1 /* 2 * Generic ring buffer 3 * 4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 5 */ 6 #include <linux/ftrace_event.h> 7 #include <linux/ring_buffer.h> 8 #include <linux/trace_clock.h> 9 #include <linux/trace_seq.h> 10 #include <linux/spinlock.h> 11 #include <linux/irq_work.h> 12 #include <linux/debugfs.h> 13 #include <linux/uaccess.h> 14 #include <linux/hardirq.h> 15 #include <linux/kthread.h> /* for self test */ 16 #include <linux/kmemcheck.h> 17 #include <linux/module.h> 18 #include <linux/percpu.h> 19 #include <linux/mutex.h> 20 #include <linux/delay.h> 21 #include <linux/slab.h> 22 #include <linux/init.h> 23 #include <linux/hash.h> 24 #include <linux/list.h> 25 #include <linux/cpu.h> 26 #include <linux/fs.h> 27 28 #include <asm/local.h> 29 30 static void update_pages_handler(struct work_struct *work); 31 32 /* 33 * The ring buffer header is special. We must manually up keep it. 34 */ 35 int ring_buffer_print_entry_header(struct trace_seq *s) 36 { 37 int ret; 38 39 ret = trace_seq_printf(s, "# compressed entry header\n"); 40 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n"); 41 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n"); 42 ret = trace_seq_printf(s, "\tarray : 32 bits\n"); 43 ret = trace_seq_printf(s, "\n"); 44 ret = trace_seq_printf(s, "\tpadding : type == %d\n", 45 RINGBUF_TYPE_PADDING); 46 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n", 47 RINGBUF_TYPE_TIME_EXTEND); 48 ret = trace_seq_printf(s, "\tdata max type_len == %d\n", 49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 50 51 return ret; 52 } 53 54 /* 55 * The ring buffer is made up of a list of pages. A separate list of pages is 56 * allocated for each CPU. A writer may only write to a buffer that is 57 * associated with the CPU it is currently executing on. A reader may read 58 * from any per cpu buffer. 59 * 60 * The reader is special. For each per cpu buffer, the reader has its own 61 * reader page. When a reader has read the entire reader page, this reader 62 * page is swapped with another page in the ring buffer. 63 * 64 * Now, as long as the writer is off the reader page, the reader can do what 65 * ever it wants with that page. The writer will never write to that page 66 * again (as long as it is out of the ring buffer). 67 * 68 * Here's some silly ASCII art. 69 * 70 * +------+ 71 * |reader| RING BUFFER 72 * |page | 73 * +------+ +---+ +---+ +---+ 74 * | |-->| |-->| | 75 * +---+ +---+ +---+ 76 * ^ | 77 * | | 78 * +---------------+ 79 * 80 * 81 * +------+ 82 * |reader| RING BUFFER 83 * |page |------------------v 84 * +------+ +---+ +---+ +---+ 85 * | |-->| |-->| | 86 * +---+ +---+ +---+ 87 * ^ | 88 * | | 89 * +---------------+ 90 * 91 * 92 * +------+ 93 * |reader| RING BUFFER 94 * |page |------------------v 95 * +------+ +---+ +---+ +---+ 96 * ^ | |-->| |-->| | 97 * | +---+ +---+ +---+ 98 * | | 99 * | | 100 * +------------------------------+ 101 * 102 * 103 * +------+ 104 * |buffer| RING BUFFER 105 * |page |------------------v 106 * +------+ +---+ +---+ +---+ 107 * ^ | | | |-->| | 108 * | New +---+ +---+ +---+ 109 * | Reader------^ | 110 * | page | 111 * +------------------------------+ 112 * 113 * 114 * After we make this swap, the reader can hand this page off to the splice 115 * code and be done with it. It can even allocate a new page if it needs to 116 * and swap that into the ring buffer. 117 * 118 * We will be using cmpxchg soon to make all this lockless. 119 * 120 */ 121 122 /* 123 * A fast way to enable or disable all ring buffers is to 124 * call tracing_on or tracing_off. Turning off the ring buffers 125 * prevents all ring buffers from being recorded to. 126 * Turning this switch on, makes it OK to write to the 127 * ring buffer, if the ring buffer is enabled itself. 128 * 129 * There's three layers that must be on in order to write 130 * to the ring buffer. 131 * 132 * 1) This global flag must be set. 133 * 2) The ring buffer must be enabled for recording. 134 * 3) The per cpu buffer must be enabled for recording. 135 * 136 * In case of an anomaly, this global flag has a bit set that 137 * will permantly disable all ring buffers. 138 */ 139 140 /* 141 * Global flag to disable all recording to ring buffers 142 * This has two bits: ON, DISABLED 143 * 144 * ON DISABLED 145 * ---- ---------- 146 * 0 0 : ring buffers are off 147 * 1 0 : ring buffers are on 148 * X 1 : ring buffers are permanently disabled 149 */ 150 151 enum { 152 RB_BUFFERS_ON_BIT = 0, 153 RB_BUFFERS_DISABLED_BIT = 1, 154 }; 155 156 enum { 157 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT, 158 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT, 159 }; 160 161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON; 162 163 /* Used for individual buffers (after the counter) */ 164 #define RB_BUFFER_OFF (1 << 20) 165 166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 167 168 /** 169 * tracing_off_permanent - permanently disable ring buffers 170 * 171 * This function, once called, will disable all ring buffers 172 * permanently. 173 */ 174 void tracing_off_permanent(void) 175 { 176 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags); 177 } 178 179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 180 #define RB_ALIGNMENT 4U 181 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 182 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 183 184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 185 # define RB_FORCE_8BYTE_ALIGNMENT 0 186 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 187 #else 188 # define RB_FORCE_8BYTE_ALIGNMENT 1 189 # define RB_ARCH_ALIGNMENT 8U 190 #endif 191 192 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 193 194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 196 197 enum { 198 RB_LEN_TIME_EXTEND = 8, 199 RB_LEN_TIME_STAMP = 16, 200 }; 201 202 #define skip_time_extend(event) \ 203 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 204 205 static inline int rb_null_event(struct ring_buffer_event *event) 206 { 207 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 208 } 209 210 static void rb_event_set_padding(struct ring_buffer_event *event) 211 { 212 /* padding has a NULL time_delta */ 213 event->type_len = RINGBUF_TYPE_PADDING; 214 event->time_delta = 0; 215 } 216 217 static unsigned 218 rb_event_data_length(struct ring_buffer_event *event) 219 { 220 unsigned length; 221 222 if (event->type_len) 223 length = event->type_len * RB_ALIGNMENT; 224 else 225 length = event->array[0]; 226 return length + RB_EVNT_HDR_SIZE; 227 } 228 229 /* 230 * Return the length of the given event. Will return 231 * the length of the time extend if the event is a 232 * time extend. 233 */ 234 static inline unsigned 235 rb_event_length(struct ring_buffer_event *event) 236 { 237 switch (event->type_len) { 238 case RINGBUF_TYPE_PADDING: 239 if (rb_null_event(event)) 240 /* undefined */ 241 return -1; 242 return event->array[0] + RB_EVNT_HDR_SIZE; 243 244 case RINGBUF_TYPE_TIME_EXTEND: 245 return RB_LEN_TIME_EXTEND; 246 247 case RINGBUF_TYPE_TIME_STAMP: 248 return RB_LEN_TIME_STAMP; 249 250 case RINGBUF_TYPE_DATA: 251 return rb_event_data_length(event); 252 default: 253 BUG(); 254 } 255 /* not hit */ 256 return 0; 257 } 258 259 /* 260 * Return total length of time extend and data, 261 * or just the event length for all other events. 262 */ 263 static inline unsigned 264 rb_event_ts_length(struct ring_buffer_event *event) 265 { 266 unsigned len = 0; 267 268 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 269 /* time extends include the data event after it */ 270 len = RB_LEN_TIME_EXTEND; 271 event = skip_time_extend(event); 272 } 273 return len + rb_event_length(event); 274 } 275 276 /** 277 * ring_buffer_event_length - return the length of the event 278 * @event: the event to get the length of 279 * 280 * Returns the size of the data load of a data event. 281 * If the event is something other than a data event, it 282 * returns the size of the event itself. With the exception 283 * of a TIME EXTEND, where it still returns the size of the 284 * data load of the data event after it. 285 */ 286 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 287 { 288 unsigned length; 289 290 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 291 event = skip_time_extend(event); 292 293 length = rb_event_length(event); 294 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 295 return length; 296 length -= RB_EVNT_HDR_SIZE; 297 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 298 length -= sizeof(event->array[0]); 299 return length; 300 } 301 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 302 303 /* inline for ring buffer fast paths */ 304 static void * 305 rb_event_data(struct ring_buffer_event *event) 306 { 307 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 308 event = skip_time_extend(event); 309 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 310 /* If length is in len field, then array[0] has the data */ 311 if (event->type_len) 312 return (void *)&event->array[0]; 313 /* Otherwise length is in array[0] and array[1] has the data */ 314 return (void *)&event->array[1]; 315 } 316 317 /** 318 * ring_buffer_event_data - return the data of the event 319 * @event: the event to get the data from 320 */ 321 void *ring_buffer_event_data(struct ring_buffer_event *event) 322 { 323 return rb_event_data(event); 324 } 325 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 326 327 #define for_each_buffer_cpu(buffer, cpu) \ 328 for_each_cpu(cpu, buffer->cpumask) 329 330 #define TS_SHIFT 27 331 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 332 #define TS_DELTA_TEST (~TS_MASK) 333 334 /* Flag when events were overwritten */ 335 #define RB_MISSED_EVENTS (1 << 31) 336 /* Missed count stored at end */ 337 #define RB_MISSED_STORED (1 << 30) 338 339 struct buffer_data_page { 340 u64 time_stamp; /* page time stamp */ 341 local_t commit; /* write committed index */ 342 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 343 }; 344 345 /* 346 * Note, the buffer_page list must be first. The buffer pages 347 * are allocated in cache lines, which means that each buffer 348 * page will be at the beginning of a cache line, and thus 349 * the least significant bits will be zero. We use this to 350 * add flags in the list struct pointers, to make the ring buffer 351 * lockless. 352 */ 353 struct buffer_page { 354 struct list_head list; /* list of buffer pages */ 355 local_t write; /* index for next write */ 356 unsigned read; /* index for next read */ 357 local_t entries; /* entries on this page */ 358 unsigned long real_end; /* real end of data */ 359 struct buffer_data_page *page; /* Actual data page */ 360 }; 361 362 /* 363 * The buffer page counters, write and entries, must be reset 364 * atomically when crossing page boundaries. To synchronize this 365 * update, two counters are inserted into the number. One is 366 * the actual counter for the write position or count on the page. 367 * 368 * The other is a counter of updaters. Before an update happens 369 * the update partition of the counter is incremented. This will 370 * allow the updater to update the counter atomically. 371 * 372 * The counter is 20 bits, and the state data is 12. 373 */ 374 #define RB_WRITE_MASK 0xfffff 375 #define RB_WRITE_INTCNT (1 << 20) 376 377 static void rb_init_page(struct buffer_data_page *bpage) 378 { 379 local_set(&bpage->commit, 0); 380 } 381 382 /** 383 * ring_buffer_page_len - the size of data on the page. 384 * @page: The page to read 385 * 386 * Returns the amount of data on the page, including buffer page header. 387 */ 388 size_t ring_buffer_page_len(void *page) 389 { 390 return local_read(&((struct buffer_data_page *)page)->commit) 391 + BUF_PAGE_HDR_SIZE; 392 } 393 394 /* 395 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 396 * this issue out. 397 */ 398 static void free_buffer_page(struct buffer_page *bpage) 399 { 400 free_page((unsigned long)bpage->page); 401 kfree(bpage); 402 } 403 404 /* 405 * We need to fit the time_stamp delta into 27 bits. 406 */ 407 static inline int test_time_stamp(u64 delta) 408 { 409 if (delta & TS_DELTA_TEST) 410 return 1; 411 return 0; 412 } 413 414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 415 416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 418 419 int ring_buffer_print_page_header(struct trace_seq *s) 420 { 421 struct buffer_data_page field; 422 int ret; 423 424 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t" 425 "offset:0;\tsize:%u;\tsigned:%u;\n", 426 (unsigned int)sizeof(field.time_stamp), 427 (unsigned int)is_signed_type(u64)); 428 429 ret = trace_seq_printf(s, "\tfield: local_t commit;\t" 430 "offset:%u;\tsize:%u;\tsigned:%u;\n", 431 (unsigned int)offsetof(typeof(field), commit), 432 (unsigned int)sizeof(field.commit), 433 (unsigned int)is_signed_type(long)); 434 435 ret = trace_seq_printf(s, "\tfield: int overwrite;\t" 436 "offset:%u;\tsize:%u;\tsigned:%u;\n", 437 (unsigned int)offsetof(typeof(field), commit), 438 1, 439 (unsigned int)is_signed_type(long)); 440 441 ret = trace_seq_printf(s, "\tfield: char data;\t" 442 "offset:%u;\tsize:%u;\tsigned:%u;\n", 443 (unsigned int)offsetof(typeof(field), data), 444 (unsigned int)BUF_PAGE_SIZE, 445 (unsigned int)is_signed_type(char)); 446 447 return ret; 448 } 449 450 struct rb_irq_work { 451 struct irq_work work; 452 wait_queue_head_t waiters; 453 bool waiters_pending; 454 }; 455 456 /* 457 * head_page == tail_page && head == tail then buffer is empty. 458 */ 459 struct ring_buffer_per_cpu { 460 int cpu; 461 atomic_t record_disabled; 462 struct ring_buffer *buffer; 463 raw_spinlock_t reader_lock; /* serialize readers */ 464 arch_spinlock_t lock; 465 struct lock_class_key lock_key; 466 unsigned int nr_pages; 467 struct list_head *pages; 468 struct buffer_page *head_page; /* read from head */ 469 struct buffer_page *tail_page; /* write to tail */ 470 struct buffer_page *commit_page; /* committed pages */ 471 struct buffer_page *reader_page; 472 unsigned long lost_events; 473 unsigned long last_overrun; 474 local_t entries_bytes; 475 local_t entries; 476 local_t overrun; 477 local_t commit_overrun; 478 local_t dropped_events; 479 local_t committing; 480 local_t commits; 481 unsigned long read; 482 unsigned long read_bytes; 483 u64 write_stamp; 484 u64 read_stamp; 485 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 486 int nr_pages_to_update; 487 struct list_head new_pages; /* new pages to add */ 488 struct work_struct update_pages_work; 489 struct completion update_done; 490 491 struct rb_irq_work irq_work; 492 }; 493 494 struct ring_buffer { 495 unsigned flags; 496 int cpus; 497 atomic_t record_disabled; 498 atomic_t resize_disabled; 499 cpumask_var_t cpumask; 500 501 struct lock_class_key *reader_lock_key; 502 503 struct mutex mutex; 504 505 struct ring_buffer_per_cpu **buffers; 506 507 #ifdef CONFIG_HOTPLUG_CPU 508 struct notifier_block cpu_notify; 509 #endif 510 u64 (*clock)(void); 511 512 struct rb_irq_work irq_work; 513 }; 514 515 struct ring_buffer_iter { 516 struct ring_buffer_per_cpu *cpu_buffer; 517 unsigned long head; 518 struct buffer_page *head_page; 519 struct buffer_page *cache_reader_page; 520 unsigned long cache_read; 521 u64 read_stamp; 522 }; 523 524 /* 525 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 526 * 527 * Schedules a delayed work to wake up any task that is blocked on the 528 * ring buffer waiters queue. 529 */ 530 static void rb_wake_up_waiters(struct irq_work *work) 531 { 532 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 533 534 wake_up_all(&rbwork->waiters); 535 } 536 537 /** 538 * ring_buffer_wait - wait for input to the ring buffer 539 * @buffer: buffer to wait on 540 * @cpu: the cpu buffer to wait on 541 * 542 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 543 * as data is added to any of the @buffer's cpu buffers. Otherwise 544 * it will wait for data to be added to a specific cpu buffer. 545 */ 546 void ring_buffer_wait(struct ring_buffer *buffer, int cpu) 547 { 548 struct ring_buffer_per_cpu *cpu_buffer; 549 DEFINE_WAIT(wait); 550 struct rb_irq_work *work; 551 552 /* 553 * Depending on what the caller is waiting for, either any 554 * data in any cpu buffer, or a specific buffer, put the 555 * caller on the appropriate wait queue. 556 */ 557 if (cpu == RING_BUFFER_ALL_CPUS) 558 work = &buffer->irq_work; 559 else { 560 cpu_buffer = buffer->buffers[cpu]; 561 work = &cpu_buffer->irq_work; 562 } 563 564 565 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 566 567 /* 568 * The events can happen in critical sections where 569 * checking a work queue can cause deadlocks. 570 * After adding a task to the queue, this flag is set 571 * only to notify events to try to wake up the queue 572 * using irq_work. 573 * 574 * We don't clear it even if the buffer is no longer 575 * empty. The flag only causes the next event to run 576 * irq_work to do the work queue wake up. The worse 577 * that can happen if we race with !trace_empty() is that 578 * an event will cause an irq_work to try to wake up 579 * an empty queue. 580 * 581 * There's no reason to protect this flag either, as 582 * the work queue and irq_work logic will do the necessary 583 * synchronization for the wake ups. The only thing 584 * that is necessary is that the wake up happens after 585 * a task has been queued. It's OK for spurious wake ups. 586 */ 587 work->waiters_pending = true; 588 589 if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) || 590 (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu))) 591 schedule(); 592 593 finish_wait(&work->waiters, &wait); 594 } 595 596 /** 597 * ring_buffer_poll_wait - poll on buffer input 598 * @buffer: buffer to wait on 599 * @cpu: the cpu buffer to wait on 600 * @filp: the file descriptor 601 * @poll_table: The poll descriptor 602 * 603 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 604 * as data is added to any of the @buffer's cpu buffers. Otherwise 605 * it will wait for data to be added to a specific cpu buffer. 606 * 607 * Returns POLLIN | POLLRDNORM if data exists in the buffers, 608 * zero otherwise. 609 */ 610 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu, 611 struct file *filp, poll_table *poll_table) 612 { 613 struct ring_buffer_per_cpu *cpu_buffer; 614 struct rb_irq_work *work; 615 616 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 617 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 618 return POLLIN | POLLRDNORM; 619 620 if (cpu == RING_BUFFER_ALL_CPUS) 621 work = &buffer->irq_work; 622 else { 623 cpu_buffer = buffer->buffers[cpu]; 624 work = &cpu_buffer->irq_work; 625 } 626 627 work->waiters_pending = true; 628 poll_wait(filp, &work->waiters, poll_table); 629 630 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 631 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 632 return POLLIN | POLLRDNORM; 633 return 0; 634 } 635 636 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 637 #define RB_WARN_ON(b, cond) \ 638 ({ \ 639 int _____ret = unlikely(cond); \ 640 if (_____ret) { \ 641 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 642 struct ring_buffer_per_cpu *__b = \ 643 (void *)b; \ 644 atomic_inc(&__b->buffer->record_disabled); \ 645 } else \ 646 atomic_inc(&b->record_disabled); \ 647 WARN_ON(1); \ 648 } \ 649 _____ret; \ 650 }) 651 652 /* Up this if you want to test the TIME_EXTENTS and normalization */ 653 #define DEBUG_SHIFT 0 654 655 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 656 { 657 /* shift to debug/test normalization and TIME_EXTENTS */ 658 return buffer->clock() << DEBUG_SHIFT; 659 } 660 661 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 662 { 663 u64 time; 664 665 preempt_disable_notrace(); 666 time = rb_time_stamp(buffer); 667 preempt_enable_no_resched_notrace(); 668 669 return time; 670 } 671 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 672 673 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 674 int cpu, u64 *ts) 675 { 676 /* Just stupid testing the normalize function and deltas */ 677 *ts >>= DEBUG_SHIFT; 678 } 679 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 680 681 /* 682 * Making the ring buffer lockless makes things tricky. 683 * Although writes only happen on the CPU that they are on, 684 * and they only need to worry about interrupts. Reads can 685 * happen on any CPU. 686 * 687 * The reader page is always off the ring buffer, but when the 688 * reader finishes with a page, it needs to swap its page with 689 * a new one from the buffer. The reader needs to take from 690 * the head (writes go to the tail). But if a writer is in overwrite 691 * mode and wraps, it must push the head page forward. 692 * 693 * Here lies the problem. 694 * 695 * The reader must be careful to replace only the head page, and 696 * not another one. As described at the top of the file in the 697 * ASCII art, the reader sets its old page to point to the next 698 * page after head. It then sets the page after head to point to 699 * the old reader page. But if the writer moves the head page 700 * during this operation, the reader could end up with the tail. 701 * 702 * We use cmpxchg to help prevent this race. We also do something 703 * special with the page before head. We set the LSB to 1. 704 * 705 * When the writer must push the page forward, it will clear the 706 * bit that points to the head page, move the head, and then set 707 * the bit that points to the new head page. 708 * 709 * We also don't want an interrupt coming in and moving the head 710 * page on another writer. Thus we use the second LSB to catch 711 * that too. Thus: 712 * 713 * head->list->prev->next bit 1 bit 0 714 * ------- ------- 715 * Normal page 0 0 716 * Points to head page 0 1 717 * New head page 1 0 718 * 719 * Note we can not trust the prev pointer of the head page, because: 720 * 721 * +----+ +-----+ +-----+ 722 * | |------>| T |---X--->| N | 723 * | |<------| | | | 724 * +----+ +-----+ +-----+ 725 * ^ ^ | 726 * | +-----+ | | 727 * +----------| R |----------+ | 728 * | |<-----------+ 729 * +-----+ 730 * 731 * Key: ---X--> HEAD flag set in pointer 732 * T Tail page 733 * R Reader page 734 * N Next page 735 * 736 * (see __rb_reserve_next() to see where this happens) 737 * 738 * What the above shows is that the reader just swapped out 739 * the reader page with a page in the buffer, but before it 740 * could make the new header point back to the new page added 741 * it was preempted by a writer. The writer moved forward onto 742 * the new page added by the reader and is about to move forward 743 * again. 744 * 745 * You can see, it is legitimate for the previous pointer of 746 * the head (or any page) not to point back to itself. But only 747 * temporarially. 748 */ 749 750 #define RB_PAGE_NORMAL 0UL 751 #define RB_PAGE_HEAD 1UL 752 #define RB_PAGE_UPDATE 2UL 753 754 755 #define RB_FLAG_MASK 3UL 756 757 /* PAGE_MOVED is not part of the mask */ 758 #define RB_PAGE_MOVED 4UL 759 760 /* 761 * rb_list_head - remove any bit 762 */ 763 static struct list_head *rb_list_head(struct list_head *list) 764 { 765 unsigned long val = (unsigned long)list; 766 767 return (struct list_head *)(val & ~RB_FLAG_MASK); 768 } 769 770 /* 771 * rb_is_head_page - test if the given page is the head page 772 * 773 * Because the reader may move the head_page pointer, we can 774 * not trust what the head page is (it may be pointing to 775 * the reader page). But if the next page is a header page, 776 * its flags will be non zero. 777 */ 778 static inline int 779 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 780 struct buffer_page *page, struct list_head *list) 781 { 782 unsigned long val; 783 784 val = (unsigned long)list->next; 785 786 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 787 return RB_PAGE_MOVED; 788 789 return val & RB_FLAG_MASK; 790 } 791 792 /* 793 * rb_is_reader_page 794 * 795 * The unique thing about the reader page, is that, if the 796 * writer is ever on it, the previous pointer never points 797 * back to the reader page. 798 */ 799 static int rb_is_reader_page(struct buffer_page *page) 800 { 801 struct list_head *list = page->list.prev; 802 803 return rb_list_head(list->next) != &page->list; 804 } 805 806 /* 807 * rb_set_list_to_head - set a list_head to be pointing to head. 808 */ 809 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 810 struct list_head *list) 811 { 812 unsigned long *ptr; 813 814 ptr = (unsigned long *)&list->next; 815 *ptr |= RB_PAGE_HEAD; 816 *ptr &= ~RB_PAGE_UPDATE; 817 } 818 819 /* 820 * rb_head_page_activate - sets up head page 821 */ 822 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 823 { 824 struct buffer_page *head; 825 826 head = cpu_buffer->head_page; 827 if (!head) 828 return; 829 830 /* 831 * Set the previous list pointer to have the HEAD flag. 832 */ 833 rb_set_list_to_head(cpu_buffer, head->list.prev); 834 } 835 836 static void rb_list_head_clear(struct list_head *list) 837 { 838 unsigned long *ptr = (unsigned long *)&list->next; 839 840 *ptr &= ~RB_FLAG_MASK; 841 } 842 843 /* 844 * rb_head_page_dactivate - clears head page ptr (for free list) 845 */ 846 static void 847 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 848 { 849 struct list_head *hd; 850 851 /* Go through the whole list and clear any pointers found. */ 852 rb_list_head_clear(cpu_buffer->pages); 853 854 list_for_each(hd, cpu_buffer->pages) 855 rb_list_head_clear(hd); 856 } 857 858 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 859 struct buffer_page *head, 860 struct buffer_page *prev, 861 int old_flag, int new_flag) 862 { 863 struct list_head *list; 864 unsigned long val = (unsigned long)&head->list; 865 unsigned long ret; 866 867 list = &prev->list; 868 869 val &= ~RB_FLAG_MASK; 870 871 ret = cmpxchg((unsigned long *)&list->next, 872 val | old_flag, val | new_flag); 873 874 /* check if the reader took the page */ 875 if ((ret & ~RB_FLAG_MASK) != val) 876 return RB_PAGE_MOVED; 877 878 return ret & RB_FLAG_MASK; 879 } 880 881 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 882 struct buffer_page *head, 883 struct buffer_page *prev, 884 int old_flag) 885 { 886 return rb_head_page_set(cpu_buffer, head, prev, 887 old_flag, RB_PAGE_UPDATE); 888 } 889 890 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 891 struct buffer_page *head, 892 struct buffer_page *prev, 893 int old_flag) 894 { 895 return rb_head_page_set(cpu_buffer, head, prev, 896 old_flag, RB_PAGE_HEAD); 897 } 898 899 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 900 struct buffer_page *head, 901 struct buffer_page *prev, 902 int old_flag) 903 { 904 return rb_head_page_set(cpu_buffer, head, prev, 905 old_flag, RB_PAGE_NORMAL); 906 } 907 908 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 909 struct buffer_page **bpage) 910 { 911 struct list_head *p = rb_list_head((*bpage)->list.next); 912 913 *bpage = list_entry(p, struct buffer_page, list); 914 } 915 916 static struct buffer_page * 917 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 918 { 919 struct buffer_page *head; 920 struct buffer_page *page; 921 struct list_head *list; 922 int i; 923 924 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 925 return NULL; 926 927 /* sanity check */ 928 list = cpu_buffer->pages; 929 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 930 return NULL; 931 932 page = head = cpu_buffer->head_page; 933 /* 934 * It is possible that the writer moves the header behind 935 * where we started, and we miss in one loop. 936 * A second loop should grab the header, but we'll do 937 * three loops just because I'm paranoid. 938 */ 939 for (i = 0; i < 3; i++) { 940 do { 941 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 942 cpu_buffer->head_page = page; 943 return page; 944 } 945 rb_inc_page(cpu_buffer, &page); 946 } while (page != head); 947 } 948 949 RB_WARN_ON(cpu_buffer, 1); 950 951 return NULL; 952 } 953 954 static int rb_head_page_replace(struct buffer_page *old, 955 struct buffer_page *new) 956 { 957 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 958 unsigned long val; 959 unsigned long ret; 960 961 val = *ptr & ~RB_FLAG_MASK; 962 val |= RB_PAGE_HEAD; 963 964 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 965 966 return ret == val; 967 } 968 969 /* 970 * rb_tail_page_update - move the tail page forward 971 * 972 * Returns 1 if moved tail page, 0 if someone else did. 973 */ 974 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 975 struct buffer_page *tail_page, 976 struct buffer_page *next_page) 977 { 978 struct buffer_page *old_tail; 979 unsigned long old_entries; 980 unsigned long old_write; 981 int ret = 0; 982 983 /* 984 * The tail page now needs to be moved forward. 985 * 986 * We need to reset the tail page, but without messing 987 * with possible erasing of data brought in by interrupts 988 * that have moved the tail page and are currently on it. 989 * 990 * We add a counter to the write field to denote this. 991 */ 992 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 993 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 994 995 /* 996 * Just make sure we have seen our old_write and synchronize 997 * with any interrupts that come in. 998 */ 999 barrier(); 1000 1001 /* 1002 * If the tail page is still the same as what we think 1003 * it is, then it is up to us to update the tail 1004 * pointer. 1005 */ 1006 if (tail_page == cpu_buffer->tail_page) { 1007 /* Zero the write counter */ 1008 unsigned long val = old_write & ~RB_WRITE_MASK; 1009 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1010 1011 /* 1012 * This will only succeed if an interrupt did 1013 * not come in and change it. In which case, we 1014 * do not want to modify it. 1015 * 1016 * We add (void) to let the compiler know that we do not care 1017 * about the return value of these functions. We use the 1018 * cmpxchg to only update if an interrupt did not already 1019 * do it for us. If the cmpxchg fails, we don't care. 1020 */ 1021 (void)local_cmpxchg(&next_page->write, old_write, val); 1022 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1023 1024 /* 1025 * No need to worry about races with clearing out the commit. 1026 * it only can increment when a commit takes place. But that 1027 * only happens in the outer most nested commit. 1028 */ 1029 local_set(&next_page->page->commit, 0); 1030 1031 old_tail = cmpxchg(&cpu_buffer->tail_page, 1032 tail_page, next_page); 1033 1034 if (old_tail == tail_page) 1035 ret = 1; 1036 } 1037 1038 return ret; 1039 } 1040 1041 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1042 struct buffer_page *bpage) 1043 { 1044 unsigned long val = (unsigned long)bpage; 1045 1046 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1047 return 1; 1048 1049 return 0; 1050 } 1051 1052 /** 1053 * rb_check_list - make sure a pointer to a list has the last bits zero 1054 */ 1055 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1056 struct list_head *list) 1057 { 1058 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1059 return 1; 1060 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1061 return 1; 1062 return 0; 1063 } 1064 1065 /** 1066 * check_pages - integrity check of buffer pages 1067 * @cpu_buffer: CPU buffer with pages to test 1068 * 1069 * As a safety measure we check to make sure the data pages have not 1070 * been corrupted. 1071 */ 1072 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1073 { 1074 struct list_head *head = cpu_buffer->pages; 1075 struct buffer_page *bpage, *tmp; 1076 1077 /* Reset the head page if it exists */ 1078 if (cpu_buffer->head_page) 1079 rb_set_head_page(cpu_buffer); 1080 1081 rb_head_page_deactivate(cpu_buffer); 1082 1083 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1084 return -1; 1085 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1086 return -1; 1087 1088 if (rb_check_list(cpu_buffer, head)) 1089 return -1; 1090 1091 list_for_each_entry_safe(bpage, tmp, head, list) { 1092 if (RB_WARN_ON(cpu_buffer, 1093 bpage->list.next->prev != &bpage->list)) 1094 return -1; 1095 if (RB_WARN_ON(cpu_buffer, 1096 bpage->list.prev->next != &bpage->list)) 1097 return -1; 1098 if (rb_check_list(cpu_buffer, &bpage->list)) 1099 return -1; 1100 } 1101 1102 rb_head_page_activate(cpu_buffer); 1103 1104 return 0; 1105 } 1106 1107 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu) 1108 { 1109 int i; 1110 struct buffer_page *bpage, *tmp; 1111 1112 for (i = 0; i < nr_pages; i++) { 1113 struct page *page; 1114 /* 1115 * __GFP_NORETRY flag makes sure that the allocation fails 1116 * gracefully without invoking oom-killer and the system is 1117 * not destabilized. 1118 */ 1119 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1120 GFP_KERNEL | __GFP_NORETRY, 1121 cpu_to_node(cpu)); 1122 if (!bpage) 1123 goto free_pages; 1124 1125 list_add(&bpage->list, pages); 1126 1127 page = alloc_pages_node(cpu_to_node(cpu), 1128 GFP_KERNEL | __GFP_NORETRY, 0); 1129 if (!page) 1130 goto free_pages; 1131 bpage->page = page_address(page); 1132 rb_init_page(bpage->page); 1133 } 1134 1135 return 0; 1136 1137 free_pages: 1138 list_for_each_entry_safe(bpage, tmp, pages, list) { 1139 list_del_init(&bpage->list); 1140 free_buffer_page(bpage); 1141 } 1142 1143 return -ENOMEM; 1144 } 1145 1146 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1147 unsigned nr_pages) 1148 { 1149 LIST_HEAD(pages); 1150 1151 WARN_ON(!nr_pages); 1152 1153 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu)) 1154 return -ENOMEM; 1155 1156 /* 1157 * The ring buffer page list is a circular list that does not 1158 * start and end with a list head. All page list items point to 1159 * other pages. 1160 */ 1161 cpu_buffer->pages = pages.next; 1162 list_del(&pages); 1163 1164 cpu_buffer->nr_pages = nr_pages; 1165 1166 rb_check_pages(cpu_buffer); 1167 1168 return 0; 1169 } 1170 1171 static struct ring_buffer_per_cpu * 1172 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu) 1173 { 1174 struct ring_buffer_per_cpu *cpu_buffer; 1175 struct buffer_page *bpage; 1176 struct page *page; 1177 int ret; 1178 1179 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1180 GFP_KERNEL, cpu_to_node(cpu)); 1181 if (!cpu_buffer) 1182 return NULL; 1183 1184 cpu_buffer->cpu = cpu; 1185 cpu_buffer->buffer = buffer; 1186 raw_spin_lock_init(&cpu_buffer->reader_lock); 1187 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1188 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1189 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1190 init_completion(&cpu_buffer->update_done); 1191 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1192 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1193 1194 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1195 GFP_KERNEL, cpu_to_node(cpu)); 1196 if (!bpage) 1197 goto fail_free_buffer; 1198 1199 rb_check_bpage(cpu_buffer, bpage); 1200 1201 cpu_buffer->reader_page = bpage; 1202 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1203 if (!page) 1204 goto fail_free_reader; 1205 bpage->page = page_address(page); 1206 rb_init_page(bpage->page); 1207 1208 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1209 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1210 1211 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1212 if (ret < 0) 1213 goto fail_free_reader; 1214 1215 cpu_buffer->head_page 1216 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1217 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1218 1219 rb_head_page_activate(cpu_buffer); 1220 1221 return cpu_buffer; 1222 1223 fail_free_reader: 1224 free_buffer_page(cpu_buffer->reader_page); 1225 1226 fail_free_buffer: 1227 kfree(cpu_buffer); 1228 return NULL; 1229 } 1230 1231 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1232 { 1233 struct list_head *head = cpu_buffer->pages; 1234 struct buffer_page *bpage, *tmp; 1235 1236 free_buffer_page(cpu_buffer->reader_page); 1237 1238 rb_head_page_deactivate(cpu_buffer); 1239 1240 if (head) { 1241 list_for_each_entry_safe(bpage, tmp, head, list) { 1242 list_del_init(&bpage->list); 1243 free_buffer_page(bpage); 1244 } 1245 bpage = list_entry(head, struct buffer_page, list); 1246 free_buffer_page(bpage); 1247 } 1248 1249 kfree(cpu_buffer); 1250 } 1251 1252 #ifdef CONFIG_HOTPLUG_CPU 1253 static int rb_cpu_notify(struct notifier_block *self, 1254 unsigned long action, void *hcpu); 1255 #endif 1256 1257 /** 1258 * ring_buffer_alloc - allocate a new ring_buffer 1259 * @size: the size in bytes per cpu that is needed. 1260 * @flags: attributes to set for the ring buffer. 1261 * 1262 * Currently the only flag that is available is the RB_FL_OVERWRITE 1263 * flag. This flag means that the buffer will overwrite old data 1264 * when the buffer wraps. If this flag is not set, the buffer will 1265 * drop data when the tail hits the head. 1266 */ 1267 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1268 struct lock_class_key *key) 1269 { 1270 struct ring_buffer *buffer; 1271 int bsize; 1272 int cpu, nr_pages; 1273 1274 /* keep it in its own cache line */ 1275 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1276 GFP_KERNEL); 1277 if (!buffer) 1278 return NULL; 1279 1280 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1281 goto fail_free_buffer; 1282 1283 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1284 buffer->flags = flags; 1285 buffer->clock = trace_clock_local; 1286 buffer->reader_lock_key = key; 1287 1288 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1289 init_waitqueue_head(&buffer->irq_work.waiters); 1290 1291 /* need at least two pages */ 1292 if (nr_pages < 2) 1293 nr_pages = 2; 1294 1295 /* 1296 * In case of non-hotplug cpu, if the ring-buffer is allocated 1297 * in early initcall, it will not be notified of secondary cpus. 1298 * In that off case, we need to allocate for all possible cpus. 1299 */ 1300 #ifdef CONFIG_HOTPLUG_CPU 1301 get_online_cpus(); 1302 cpumask_copy(buffer->cpumask, cpu_online_mask); 1303 #else 1304 cpumask_copy(buffer->cpumask, cpu_possible_mask); 1305 #endif 1306 buffer->cpus = nr_cpu_ids; 1307 1308 bsize = sizeof(void *) * nr_cpu_ids; 1309 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1310 GFP_KERNEL); 1311 if (!buffer->buffers) 1312 goto fail_free_cpumask; 1313 1314 for_each_buffer_cpu(buffer, cpu) { 1315 buffer->buffers[cpu] = 1316 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1317 if (!buffer->buffers[cpu]) 1318 goto fail_free_buffers; 1319 } 1320 1321 #ifdef CONFIG_HOTPLUG_CPU 1322 buffer->cpu_notify.notifier_call = rb_cpu_notify; 1323 buffer->cpu_notify.priority = 0; 1324 register_cpu_notifier(&buffer->cpu_notify); 1325 #endif 1326 1327 put_online_cpus(); 1328 mutex_init(&buffer->mutex); 1329 1330 return buffer; 1331 1332 fail_free_buffers: 1333 for_each_buffer_cpu(buffer, cpu) { 1334 if (buffer->buffers[cpu]) 1335 rb_free_cpu_buffer(buffer->buffers[cpu]); 1336 } 1337 kfree(buffer->buffers); 1338 1339 fail_free_cpumask: 1340 free_cpumask_var(buffer->cpumask); 1341 put_online_cpus(); 1342 1343 fail_free_buffer: 1344 kfree(buffer); 1345 return NULL; 1346 } 1347 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1348 1349 /** 1350 * ring_buffer_free - free a ring buffer. 1351 * @buffer: the buffer to free. 1352 */ 1353 void 1354 ring_buffer_free(struct ring_buffer *buffer) 1355 { 1356 int cpu; 1357 1358 get_online_cpus(); 1359 1360 #ifdef CONFIG_HOTPLUG_CPU 1361 unregister_cpu_notifier(&buffer->cpu_notify); 1362 #endif 1363 1364 for_each_buffer_cpu(buffer, cpu) 1365 rb_free_cpu_buffer(buffer->buffers[cpu]); 1366 1367 put_online_cpus(); 1368 1369 kfree(buffer->buffers); 1370 free_cpumask_var(buffer->cpumask); 1371 1372 kfree(buffer); 1373 } 1374 EXPORT_SYMBOL_GPL(ring_buffer_free); 1375 1376 void ring_buffer_set_clock(struct ring_buffer *buffer, 1377 u64 (*clock)(void)) 1378 { 1379 buffer->clock = clock; 1380 } 1381 1382 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1383 1384 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1385 { 1386 return local_read(&bpage->entries) & RB_WRITE_MASK; 1387 } 1388 1389 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1390 { 1391 return local_read(&bpage->write) & RB_WRITE_MASK; 1392 } 1393 1394 static int 1395 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages) 1396 { 1397 struct list_head *tail_page, *to_remove, *next_page; 1398 struct buffer_page *to_remove_page, *tmp_iter_page; 1399 struct buffer_page *last_page, *first_page; 1400 unsigned int nr_removed; 1401 unsigned long head_bit; 1402 int page_entries; 1403 1404 head_bit = 0; 1405 1406 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1407 atomic_inc(&cpu_buffer->record_disabled); 1408 /* 1409 * We don't race with the readers since we have acquired the reader 1410 * lock. We also don't race with writers after disabling recording. 1411 * This makes it easy to figure out the first and the last page to be 1412 * removed from the list. We unlink all the pages in between including 1413 * the first and last pages. This is done in a busy loop so that we 1414 * lose the least number of traces. 1415 * The pages are freed after we restart recording and unlock readers. 1416 */ 1417 tail_page = &cpu_buffer->tail_page->list; 1418 1419 /* 1420 * tail page might be on reader page, we remove the next page 1421 * from the ring buffer 1422 */ 1423 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1424 tail_page = rb_list_head(tail_page->next); 1425 to_remove = tail_page; 1426 1427 /* start of pages to remove */ 1428 first_page = list_entry(rb_list_head(to_remove->next), 1429 struct buffer_page, list); 1430 1431 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1432 to_remove = rb_list_head(to_remove)->next; 1433 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1434 } 1435 1436 next_page = rb_list_head(to_remove)->next; 1437 1438 /* 1439 * Now we remove all pages between tail_page and next_page. 1440 * Make sure that we have head_bit value preserved for the 1441 * next page 1442 */ 1443 tail_page->next = (struct list_head *)((unsigned long)next_page | 1444 head_bit); 1445 next_page = rb_list_head(next_page); 1446 next_page->prev = tail_page; 1447 1448 /* make sure pages points to a valid page in the ring buffer */ 1449 cpu_buffer->pages = next_page; 1450 1451 /* update head page */ 1452 if (head_bit) 1453 cpu_buffer->head_page = list_entry(next_page, 1454 struct buffer_page, list); 1455 1456 /* 1457 * change read pointer to make sure any read iterators reset 1458 * themselves 1459 */ 1460 cpu_buffer->read = 0; 1461 1462 /* pages are removed, resume tracing and then free the pages */ 1463 atomic_dec(&cpu_buffer->record_disabled); 1464 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1465 1466 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1467 1468 /* last buffer page to remove */ 1469 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1470 list); 1471 tmp_iter_page = first_page; 1472 1473 do { 1474 to_remove_page = tmp_iter_page; 1475 rb_inc_page(cpu_buffer, &tmp_iter_page); 1476 1477 /* update the counters */ 1478 page_entries = rb_page_entries(to_remove_page); 1479 if (page_entries) { 1480 /* 1481 * If something was added to this page, it was full 1482 * since it is not the tail page. So we deduct the 1483 * bytes consumed in ring buffer from here. 1484 * Increment overrun to account for the lost events. 1485 */ 1486 local_add(page_entries, &cpu_buffer->overrun); 1487 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1488 } 1489 1490 /* 1491 * We have already removed references to this list item, just 1492 * free up the buffer_page and its page 1493 */ 1494 free_buffer_page(to_remove_page); 1495 nr_removed--; 1496 1497 } while (to_remove_page != last_page); 1498 1499 RB_WARN_ON(cpu_buffer, nr_removed); 1500 1501 return nr_removed == 0; 1502 } 1503 1504 static int 1505 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1506 { 1507 struct list_head *pages = &cpu_buffer->new_pages; 1508 int retries, success; 1509 1510 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1511 /* 1512 * We are holding the reader lock, so the reader page won't be swapped 1513 * in the ring buffer. Now we are racing with the writer trying to 1514 * move head page and the tail page. 1515 * We are going to adapt the reader page update process where: 1516 * 1. We first splice the start and end of list of new pages between 1517 * the head page and its previous page. 1518 * 2. We cmpxchg the prev_page->next to point from head page to the 1519 * start of new pages list. 1520 * 3. Finally, we update the head->prev to the end of new list. 1521 * 1522 * We will try this process 10 times, to make sure that we don't keep 1523 * spinning. 1524 */ 1525 retries = 10; 1526 success = 0; 1527 while (retries--) { 1528 struct list_head *head_page, *prev_page, *r; 1529 struct list_head *last_page, *first_page; 1530 struct list_head *head_page_with_bit; 1531 1532 head_page = &rb_set_head_page(cpu_buffer)->list; 1533 if (!head_page) 1534 break; 1535 prev_page = head_page->prev; 1536 1537 first_page = pages->next; 1538 last_page = pages->prev; 1539 1540 head_page_with_bit = (struct list_head *) 1541 ((unsigned long)head_page | RB_PAGE_HEAD); 1542 1543 last_page->next = head_page_with_bit; 1544 first_page->prev = prev_page; 1545 1546 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1547 1548 if (r == head_page_with_bit) { 1549 /* 1550 * yay, we replaced the page pointer to our new list, 1551 * now, we just have to update to head page's prev 1552 * pointer to point to end of list 1553 */ 1554 head_page->prev = last_page; 1555 success = 1; 1556 break; 1557 } 1558 } 1559 1560 if (success) 1561 INIT_LIST_HEAD(pages); 1562 /* 1563 * If we weren't successful in adding in new pages, warn and stop 1564 * tracing 1565 */ 1566 RB_WARN_ON(cpu_buffer, !success); 1567 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1568 1569 /* free pages if they weren't inserted */ 1570 if (!success) { 1571 struct buffer_page *bpage, *tmp; 1572 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1573 list) { 1574 list_del_init(&bpage->list); 1575 free_buffer_page(bpage); 1576 } 1577 } 1578 return success; 1579 } 1580 1581 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1582 { 1583 int success; 1584 1585 if (cpu_buffer->nr_pages_to_update > 0) 1586 success = rb_insert_pages(cpu_buffer); 1587 else 1588 success = rb_remove_pages(cpu_buffer, 1589 -cpu_buffer->nr_pages_to_update); 1590 1591 if (success) 1592 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1593 } 1594 1595 static void update_pages_handler(struct work_struct *work) 1596 { 1597 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1598 struct ring_buffer_per_cpu, update_pages_work); 1599 rb_update_pages(cpu_buffer); 1600 complete(&cpu_buffer->update_done); 1601 } 1602 1603 /** 1604 * ring_buffer_resize - resize the ring buffer 1605 * @buffer: the buffer to resize. 1606 * @size: the new size. 1607 * 1608 * Minimum size is 2 * BUF_PAGE_SIZE. 1609 * 1610 * Returns 0 on success and < 0 on failure. 1611 */ 1612 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size, 1613 int cpu_id) 1614 { 1615 struct ring_buffer_per_cpu *cpu_buffer; 1616 unsigned nr_pages; 1617 int cpu, err = 0; 1618 1619 /* 1620 * Always succeed at resizing a non-existent buffer: 1621 */ 1622 if (!buffer) 1623 return size; 1624 1625 /* Make sure the requested buffer exists */ 1626 if (cpu_id != RING_BUFFER_ALL_CPUS && 1627 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1628 return size; 1629 1630 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1631 size *= BUF_PAGE_SIZE; 1632 1633 /* we need a minimum of two pages */ 1634 if (size < BUF_PAGE_SIZE * 2) 1635 size = BUF_PAGE_SIZE * 2; 1636 1637 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1638 1639 /* 1640 * Don't succeed if resizing is disabled, as a reader might be 1641 * manipulating the ring buffer and is expecting a sane state while 1642 * this is true. 1643 */ 1644 if (atomic_read(&buffer->resize_disabled)) 1645 return -EBUSY; 1646 1647 /* prevent another thread from changing buffer sizes */ 1648 mutex_lock(&buffer->mutex); 1649 1650 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1651 /* calculate the pages to update */ 1652 for_each_buffer_cpu(buffer, cpu) { 1653 cpu_buffer = buffer->buffers[cpu]; 1654 1655 cpu_buffer->nr_pages_to_update = nr_pages - 1656 cpu_buffer->nr_pages; 1657 /* 1658 * nothing more to do for removing pages or no update 1659 */ 1660 if (cpu_buffer->nr_pages_to_update <= 0) 1661 continue; 1662 /* 1663 * to add pages, make sure all new pages can be 1664 * allocated without receiving ENOMEM 1665 */ 1666 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1667 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1668 &cpu_buffer->new_pages, cpu)) { 1669 /* not enough memory for new pages */ 1670 err = -ENOMEM; 1671 goto out_err; 1672 } 1673 } 1674 1675 get_online_cpus(); 1676 /* 1677 * Fire off all the required work handlers 1678 * We can't schedule on offline CPUs, but it's not necessary 1679 * since we can change their buffer sizes without any race. 1680 */ 1681 for_each_buffer_cpu(buffer, cpu) { 1682 cpu_buffer = buffer->buffers[cpu]; 1683 if (!cpu_buffer->nr_pages_to_update) 1684 continue; 1685 1686 /* The update must run on the CPU that is being updated. */ 1687 preempt_disable(); 1688 if (cpu == smp_processor_id() || !cpu_online(cpu)) { 1689 rb_update_pages(cpu_buffer); 1690 cpu_buffer->nr_pages_to_update = 0; 1691 } else { 1692 /* 1693 * Can not disable preemption for schedule_work_on() 1694 * on PREEMPT_RT. 1695 */ 1696 preempt_enable(); 1697 schedule_work_on(cpu, 1698 &cpu_buffer->update_pages_work); 1699 preempt_disable(); 1700 } 1701 preempt_enable(); 1702 } 1703 1704 /* wait for all the updates to complete */ 1705 for_each_buffer_cpu(buffer, cpu) { 1706 cpu_buffer = buffer->buffers[cpu]; 1707 if (!cpu_buffer->nr_pages_to_update) 1708 continue; 1709 1710 if (cpu_online(cpu)) 1711 wait_for_completion(&cpu_buffer->update_done); 1712 cpu_buffer->nr_pages_to_update = 0; 1713 } 1714 1715 put_online_cpus(); 1716 } else { 1717 /* Make sure this CPU has been intitialized */ 1718 if (!cpumask_test_cpu(cpu_id, buffer->cpumask)) 1719 goto out; 1720 1721 cpu_buffer = buffer->buffers[cpu_id]; 1722 1723 if (nr_pages == cpu_buffer->nr_pages) 1724 goto out; 1725 1726 cpu_buffer->nr_pages_to_update = nr_pages - 1727 cpu_buffer->nr_pages; 1728 1729 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1730 if (cpu_buffer->nr_pages_to_update > 0 && 1731 __rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1732 &cpu_buffer->new_pages, cpu_id)) { 1733 err = -ENOMEM; 1734 goto out_err; 1735 } 1736 1737 get_online_cpus(); 1738 1739 preempt_disable(); 1740 /* The update must run on the CPU that is being updated. */ 1741 if (cpu_id == smp_processor_id() || !cpu_online(cpu_id)) 1742 rb_update_pages(cpu_buffer); 1743 else { 1744 /* 1745 * Can not disable preemption for schedule_work_on() 1746 * on PREEMPT_RT. 1747 */ 1748 preempt_enable(); 1749 schedule_work_on(cpu_id, 1750 &cpu_buffer->update_pages_work); 1751 wait_for_completion(&cpu_buffer->update_done); 1752 preempt_disable(); 1753 } 1754 preempt_enable(); 1755 1756 cpu_buffer->nr_pages_to_update = 0; 1757 put_online_cpus(); 1758 } 1759 1760 out: 1761 /* 1762 * The ring buffer resize can happen with the ring buffer 1763 * enabled, so that the update disturbs the tracing as little 1764 * as possible. But if the buffer is disabled, we do not need 1765 * to worry about that, and we can take the time to verify 1766 * that the buffer is not corrupt. 1767 */ 1768 if (atomic_read(&buffer->record_disabled)) { 1769 atomic_inc(&buffer->record_disabled); 1770 /* 1771 * Even though the buffer was disabled, we must make sure 1772 * that it is truly disabled before calling rb_check_pages. 1773 * There could have been a race between checking 1774 * record_disable and incrementing it. 1775 */ 1776 synchronize_sched(); 1777 for_each_buffer_cpu(buffer, cpu) { 1778 cpu_buffer = buffer->buffers[cpu]; 1779 rb_check_pages(cpu_buffer); 1780 } 1781 atomic_dec(&buffer->record_disabled); 1782 } 1783 1784 mutex_unlock(&buffer->mutex); 1785 return size; 1786 1787 out_err: 1788 for_each_buffer_cpu(buffer, cpu) { 1789 struct buffer_page *bpage, *tmp; 1790 1791 cpu_buffer = buffer->buffers[cpu]; 1792 cpu_buffer->nr_pages_to_update = 0; 1793 1794 if (list_empty(&cpu_buffer->new_pages)) 1795 continue; 1796 1797 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1798 list) { 1799 list_del_init(&bpage->list); 1800 free_buffer_page(bpage); 1801 } 1802 } 1803 mutex_unlock(&buffer->mutex); 1804 return err; 1805 } 1806 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1807 1808 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val) 1809 { 1810 mutex_lock(&buffer->mutex); 1811 if (val) 1812 buffer->flags |= RB_FL_OVERWRITE; 1813 else 1814 buffer->flags &= ~RB_FL_OVERWRITE; 1815 mutex_unlock(&buffer->mutex); 1816 } 1817 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1818 1819 static inline void * 1820 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index) 1821 { 1822 return bpage->data + index; 1823 } 1824 1825 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1826 { 1827 return bpage->page->data + index; 1828 } 1829 1830 static inline struct ring_buffer_event * 1831 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1832 { 1833 return __rb_page_index(cpu_buffer->reader_page, 1834 cpu_buffer->reader_page->read); 1835 } 1836 1837 static inline struct ring_buffer_event * 1838 rb_iter_head_event(struct ring_buffer_iter *iter) 1839 { 1840 return __rb_page_index(iter->head_page, iter->head); 1841 } 1842 1843 static inline unsigned rb_page_commit(struct buffer_page *bpage) 1844 { 1845 return local_read(&bpage->page->commit); 1846 } 1847 1848 /* Size is determined by what has been committed */ 1849 static inline unsigned rb_page_size(struct buffer_page *bpage) 1850 { 1851 return rb_page_commit(bpage); 1852 } 1853 1854 static inline unsigned 1855 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1856 { 1857 return rb_page_commit(cpu_buffer->commit_page); 1858 } 1859 1860 static inline unsigned 1861 rb_event_index(struct ring_buffer_event *event) 1862 { 1863 unsigned long addr = (unsigned long)event; 1864 1865 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1866 } 1867 1868 static inline int 1869 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 1870 struct ring_buffer_event *event) 1871 { 1872 unsigned long addr = (unsigned long)event; 1873 unsigned long index; 1874 1875 index = rb_event_index(event); 1876 addr &= PAGE_MASK; 1877 1878 return cpu_buffer->commit_page->page == (void *)addr && 1879 rb_commit_index(cpu_buffer) == index; 1880 } 1881 1882 static void 1883 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 1884 { 1885 unsigned long max_count; 1886 1887 /* 1888 * We only race with interrupts and NMIs on this CPU. 1889 * If we own the commit event, then we can commit 1890 * all others that interrupted us, since the interruptions 1891 * are in stack format (they finish before they come 1892 * back to us). This allows us to do a simple loop to 1893 * assign the commit to the tail. 1894 */ 1895 again: 1896 max_count = cpu_buffer->nr_pages * 100; 1897 1898 while (cpu_buffer->commit_page != cpu_buffer->tail_page) { 1899 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 1900 return; 1901 if (RB_WARN_ON(cpu_buffer, 1902 rb_is_reader_page(cpu_buffer->tail_page))) 1903 return; 1904 local_set(&cpu_buffer->commit_page->page->commit, 1905 rb_page_write(cpu_buffer->commit_page)); 1906 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 1907 cpu_buffer->write_stamp = 1908 cpu_buffer->commit_page->page->time_stamp; 1909 /* add barrier to keep gcc from optimizing too much */ 1910 barrier(); 1911 } 1912 while (rb_commit_index(cpu_buffer) != 1913 rb_page_write(cpu_buffer->commit_page)) { 1914 1915 local_set(&cpu_buffer->commit_page->page->commit, 1916 rb_page_write(cpu_buffer->commit_page)); 1917 RB_WARN_ON(cpu_buffer, 1918 local_read(&cpu_buffer->commit_page->page->commit) & 1919 ~RB_WRITE_MASK); 1920 barrier(); 1921 } 1922 1923 /* again, keep gcc from optimizing */ 1924 barrier(); 1925 1926 /* 1927 * If an interrupt came in just after the first while loop 1928 * and pushed the tail page forward, we will be left with 1929 * a dangling commit that will never go forward. 1930 */ 1931 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page)) 1932 goto again; 1933 } 1934 1935 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 1936 { 1937 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp; 1938 cpu_buffer->reader_page->read = 0; 1939 } 1940 1941 static void rb_inc_iter(struct ring_buffer_iter *iter) 1942 { 1943 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1944 1945 /* 1946 * The iterator could be on the reader page (it starts there). 1947 * But the head could have moved, since the reader was 1948 * found. Check for this case and assign the iterator 1949 * to the head page instead of next. 1950 */ 1951 if (iter->head_page == cpu_buffer->reader_page) 1952 iter->head_page = rb_set_head_page(cpu_buffer); 1953 else 1954 rb_inc_page(cpu_buffer, &iter->head_page); 1955 1956 iter->read_stamp = iter->head_page->page->time_stamp; 1957 iter->head = 0; 1958 } 1959 1960 /* Slow path, do not inline */ 1961 static noinline struct ring_buffer_event * 1962 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta) 1963 { 1964 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 1965 1966 /* Not the first event on the page? */ 1967 if (rb_event_index(event)) { 1968 event->time_delta = delta & TS_MASK; 1969 event->array[0] = delta >> TS_SHIFT; 1970 } else { 1971 /* nope, just zero it */ 1972 event->time_delta = 0; 1973 event->array[0] = 0; 1974 } 1975 1976 return skip_time_extend(event); 1977 } 1978 1979 /** 1980 * rb_update_event - update event type and data 1981 * @event: the even to update 1982 * @type: the type of event 1983 * @length: the size of the event field in the ring buffer 1984 * 1985 * Update the type and data fields of the event. The length 1986 * is the actual size that is written to the ring buffer, 1987 * and with this, we can determine what to place into the 1988 * data field. 1989 */ 1990 static void 1991 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 1992 struct ring_buffer_event *event, unsigned length, 1993 int add_timestamp, u64 delta) 1994 { 1995 /* Only a commit updates the timestamp */ 1996 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 1997 delta = 0; 1998 1999 /* 2000 * If we need to add a timestamp, then we 2001 * add it to the start of the resevered space. 2002 */ 2003 if (unlikely(add_timestamp)) { 2004 event = rb_add_time_stamp(event, delta); 2005 length -= RB_LEN_TIME_EXTEND; 2006 delta = 0; 2007 } 2008 2009 event->time_delta = delta; 2010 length -= RB_EVNT_HDR_SIZE; 2011 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2012 event->type_len = 0; 2013 event->array[0] = length; 2014 } else 2015 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2016 } 2017 2018 /* 2019 * rb_handle_head_page - writer hit the head page 2020 * 2021 * Returns: +1 to retry page 2022 * 0 to continue 2023 * -1 on error 2024 */ 2025 static int 2026 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 2027 struct buffer_page *tail_page, 2028 struct buffer_page *next_page) 2029 { 2030 struct buffer_page *new_head; 2031 int entries; 2032 int type; 2033 int ret; 2034 2035 entries = rb_page_entries(next_page); 2036 2037 /* 2038 * The hard part is here. We need to move the head 2039 * forward, and protect against both readers on 2040 * other CPUs and writers coming in via interrupts. 2041 */ 2042 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 2043 RB_PAGE_HEAD); 2044 2045 /* 2046 * type can be one of four: 2047 * NORMAL - an interrupt already moved it for us 2048 * HEAD - we are the first to get here. 2049 * UPDATE - we are the interrupt interrupting 2050 * a current move. 2051 * MOVED - a reader on another CPU moved the next 2052 * pointer to its reader page. Give up 2053 * and try again. 2054 */ 2055 2056 switch (type) { 2057 case RB_PAGE_HEAD: 2058 /* 2059 * We changed the head to UPDATE, thus 2060 * it is our responsibility to update 2061 * the counters. 2062 */ 2063 local_add(entries, &cpu_buffer->overrun); 2064 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 2065 2066 /* 2067 * The entries will be zeroed out when we move the 2068 * tail page. 2069 */ 2070 2071 /* still more to do */ 2072 break; 2073 2074 case RB_PAGE_UPDATE: 2075 /* 2076 * This is an interrupt that interrupt the 2077 * previous update. Still more to do. 2078 */ 2079 break; 2080 case RB_PAGE_NORMAL: 2081 /* 2082 * An interrupt came in before the update 2083 * and processed this for us. 2084 * Nothing left to do. 2085 */ 2086 return 1; 2087 case RB_PAGE_MOVED: 2088 /* 2089 * The reader is on another CPU and just did 2090 * a swap with our next_page. 2091 * Try again. 2092 */ 2093 return 1; 2094 default: 2095 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2096 return -1; 2097 } 2098 2099 /* 2100 * Now that we are here, the old head pointer is 2101 * set to UPDATE. This will keep the reader from 2102 * swapping the head page with the reader page. 2103 * The reader (on another CPU) will spin till 2104 * we are finished. 2105 * 2106 * We just need to protect against interrupts 2107 * doing the job. We will set the next pointer 2108 * to HEAD. After that, we set the old pointer 2109 * to NORMAL, but only if it was HEAD before. 2110 * otherwise we are an interrupt, and only 2111 * want the outer most commit to reset it. 2112 */ 2113 new_head = next_page; 2114 rb_inc_page(cpu_buffer, &new_head); 2115 2116 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2117 RB_PAGE_NORMAL); 2118 2119 /* 2120 * Valid returns are: 2121 * HEAD - an interrupt came in and already set it. 2122 * NORMAL - One of two things: 2123 * 1) We really set it. 2124 * 2) A bunch of interrupts came in and moved 2125 * the page forward again. 2126 */ 2127 switch (ret) { 2128 case RB_PAGE_HEAD: 2129 case RB_PAGE_NORMAL: 2130 /* OK */ 2131 break; 2132 default: 2133 RB_WARN_ON(cpu_buffer, 1); 2134 return -1; 2135 } 2136 2137 /* 2138 * It is possible that an interrupt came in, 2139 * set the head up, then more interrupts came in 2140 * and moved it again. When we get back here, 2141 * the page would have been set to NORMAL but we 2142 * just set it back to HEAD. 2143 * 2144 * How do you detect this? Well, if that happened 2145 * the tail page would have moved. 2146 */ 2147 if (ret == RB_PAGE_NORMAL) { 2148 /* 2149 * If the tail had moved passed next, then we need 2150 * to reset the pointer. 2151 */ 2152 if (cpu_buffer->tail_page != tail_page && 2153 cpu_buffer->tail_page != next_page) 2154 rb_head_page_set_normal(cpu_buffer, new_head, 2155 next_page, 2156 RB_PAGE_HEAD); 2157 } 2158 2159 /* 2160 * If this was the outer most commit (the one that 2161 * changed the original pointer from HEAD to UPDATE), 2162 * then it is up to us to reset it to NORMAL. 2163 */ 2164 if (type == RB_PAGE_HEAD) { 2165 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2166 tail_page, 2167 RB_PAGE_UPDATE); 2168 if (RB_WARN_ON(cpu_buffer, 2169 ret != RB_PAGE_UPDATE)) 2170 return -1; 2171 } 2172 2173 return 0; 2174 } 2175 2176 static unsigned rb_calculate_event_length(unsigned length) 2177 { 2178 struct ring_buffer_event event; /* Used only for sizeof array */ 2179 2180 /* zero length can cause confusions */ 2181 if (!length) 2182 length = 1; 2183 2184 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2185 length += sizeof(event.array[0]); 2186 2187 length += RB_EVNT_HDR_SIZE; 2188 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2189 2190 return length; 2191 } 2192 2193 static inline void 2194 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2195 struct buffer_page *tail_page, 2196 unsigned long tail, unsigned long length) 2197 { 2198 struct ring_buffer_event *event; 2199 2200 /* 2201 * Only the event that crossed the page boundary 2202 * must fill the old tail_page with padding. 2203 */ 2204 if (tail >= BUF_PAGE_SIZE) { 2205 /* 2206 * If the page was filled, then we still need 2207 * to update the real_end. Reset it to zero 2208 * and the reader will ignore it. 2209 */ 2210 if (tail == BUF_PAGE_SIZE) 2211 tail_page->real_end = 0; 2212 2213 local_sub(length, &tail_page->write); 2214 return; 2215 } 2216 2217 event = __rb_page_index(tail_page, tail); 2218 kmemcheck_annotate_bitfield(event, bitfield); 2219 2220 /* account for padding bytes */ 2221 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2222 2223 /* 2224 * Save the original length to the meta data. 2225 * This will be used by the reader to add lost event 2226 * counter. 2227 */ 2228 tail_page->real_end = tail; 2229 2230 /* 2231 * If this event is bigger than the minimum size, then 2232 * we need to be careful that we don't subtract the 2233 * write counter enough to allow another writer to slip 2234 * in on this page. 2235 * We put in a discarded commit instead, to make sure 2236 * that this space is not used again. 2237 * 2238 * If we are less than the minimum size, we don't need to 2239 * worry about it. 2240 */ 2241 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2242 /* No room for any events */ 2243 2244 /* Mark the rest of the page with padding */ 2245 rb_event_set_padding(event); 2246 2247 /* Set the write back to the previous setting */ 2248 local_sub(length, &tail_page->write); 2249 return; 2250 } 2251 2252 /* Put in a discarded event */ 2253 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2254 event->type_len = RINGBUF_TYPE_PADDING; 2255 /* time delta must be non zero */ 2256 event->time_delta = 1; 2257 2258 /* Set write to end of buffer */ 2259 length = (tail + length) - BUF_PAGE_SIZE; 2260 local_sub(length, &tail_page->write); 2261 } 2262 2263 /* 2264 * This is the slow path, force gcc not to inline it. 2265 */ 2266 static noinline struct ring_buffer_event * 2267 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2268 unsigned long length, unsigned long tail, 2269 struct buffer_page *tail_page, u64 ts) 2270 { 2271 struct buffer_page *commit_page = cpu_buffer->commit_page; 2272 struct ring_buffer *buffer = cpu_buffer->buffer; 2273 struct buffer_page *next_page; 2274 int ret; 2275 2276 next_page = tail_page; 2277 2278 rb_inc_page(cpu_buffer, &next_page); 2279 2280 /* 2281 * If for some reason, we had an interrupt storm that made 2282 * it all the way around the buffer, bail, and warn 2283 * about it. 2284 */ 2285 if (unlikely(next_page == commit_page)) { 2286 local_inc(&cpu_buffer->commit_overrun); 2287 goto out_reset; 2288 } 2289 2290 /* 2291 * This is where the fun begins! 2292 * 2293 * We are fighting against races between a reader that 2294 * could be on another CPU trying to swap its reader 2295 * page with the buffer head. 2296 * 2297 * We are also fighting against interrupts coming in and 2298 * moving the head or tail on us as well. 2299 * 2300 * If the next page is the head page then we have filled 2301 * the buffer, unless the commit page is still on the 2302 * reader page. 2303 */ 2304 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2305 2306 /* 2307 * If the commit is not on the reader page, then 2308 * move the header page. 2309 */ 2310 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2311 /* 2312 * If we are not in overwrite mode, 2313 * this is easy, just stop here. 2314 */ 2315 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2316 local_inc(&cpu_buffer->dropped_events); 2317 goto out_reset; 2318 } 2319 2320 ret = rb_handle_head_page(cpu_buffer, 2321 tail_page, 2322 next_page); 2323 if (ret < 0) 2324 goto out_reset; 2325 if (ret) 2326 goto out_again; 2327 } else { 2328 /* 2329 * We need to be careful here too. The 2330 * commit page could still be on the reader 2331 * page. We could have a small buffer, and 2332 * have filled up the buffer with events 2333 * from interrupts and such, and wrapped. 2334 * 2335 * Note, if the tail page is also the on the 2336 * reader_page, we let it move out. 2337 */ 2338 if (unlikely((cpu_buffer->commit_page != 2339 cpu_buffer->tail_page) && 2340 (cpu_buffer->commit_page == 2341 cpu_buffer->reader_page))) { 2342 local_inc(&cpu_buffer->commit_overrun); 2343 goto out_reset; 2344 } 2345 } 2346 } 2347 2348 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page); 2349 if (ret) { 2350 /* 2351 * Nested commits always have zero deltas, so 2352 * just reread the time stamp 2353 */ 2354 ts = rb_time_stamp(buffer); 2355 next_page->page->time_stamp = ts; 2356 } 2357 2358 out_again: 2359 2360 rb_reset_tail(cpu_buffer, tail_page, tail, length); 2361 2362 /* fail and let the caller try again */ 2363 return ERR_PTR(-EAGAIN); 2364 2365 out_reset: 2366 /* reset write */ 2367 rb_reset_tail(cpu_buffer, tail_page, tail, length); 2368 2369 return NULL; 2370 } 2371 2372 static struct ring_buffer_event * 2373 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 2374 unsigned long length, u64 ts, 2375 u64 delta, int add_timestamp) 2376 { 2377 struct buffer_page *tail_page; 2378 struct ring_buffer_event *event; 2379 unsigned long tail, write; 2380 2381 /* 2382 * If the time delta since the last event is too big to 2383 * hold in the time field of the event, then we append a 2384 * TIME EXTEND event ahead of the data event. 2385 */ 2386 if (unlikely(add_timestamp)) 2387 length += RB_LEN_TIME_EXTEND; 2388 2389 tail_page = cpu_buffer->tail_page; 2390 write = local_add_return(length, &tail_page->write); 2391 2392 /* set write to only the index of the write */ 2393 write &= RB_WRITE_MASK; 2394 tail = write - length; 2395 2396 /* See if we shot pass the end of this buffer page */ 2397 if (unlikely(write > BUF_PAGE_SIZE)) 2398 return rb_move_tail(cpu_buffer, length, tail, 2399 tail_page, ts); 2400 2401 /* We reserved something on the buffer */ 2402 2403 event = __rb_page_index(tail_page, tail); 2404 kmemcheck_annotate_bitfield(event, bitfield); 2405 rb_update_event(cpu_buffer, event, length, add_timestamp, delta); 2406 2407 local_inc(&tail_page->entries); 2408 2409 /* 2410 * If this is the first commit on the page, then update 2411 * its timestamp. 2412 */ 2413 if (!tail) 2414 tail_page->page->time_stamp = ts; 2415 2416 /* account for these added bytes */ 2417 local_add(length, &cpu_buffer->entries_bytes); 2418 2419 return event; 2420 } 2421 2422 static inline int 2423 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2424 struct ring_buffer_event *event) 2425 { 2426 unsigned long new_index, old_index; 2427 struct buffer_page *bpage; 2428 unsigned long index; 2429 unsigned long addr; 2430 2431 new_index = rb_event_index(event); 2432 old_index = new_index + rb_event_ts_length(event); 2433 addr = (unsigned long)event; 2434 addr &= PAGE_MASK; 2435 2436 bpage = cpu_buffer->tail_page; 2437 2438 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2439 unsigned long write_mask = 2440 local_read(&bpage->write) & ~RB_WRITE_MASK; 2441 unsigned long event_length = rb_event_length(event); 2442 /* 2443 * This is on the tail page. It is possible that 2444 * a write could come in and move the tail page 2445 * and write to the next page. That is fine 2446 * because we just shorten what is on this page. 2447 */ 2448 old_index += write_mask; 2449 new_index += write_mask; 2450 index = local_cmpxchg(&bpage->write, old_index, new_index); 2451 if (index == old_index) { 2452 /* update counters */ 2453 local_sub(event_length, &cpu_buffer->entries_bytes); 2454 return 1; 2455 } 2456 } 2457 2458 /* could not discard */ 2459 return 0; 2460 } 2461 2462 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2463 { 2464 local_inc(&cpu_buffer->committing); 2465 local_inc(&cpu_buffer->commits); 2466 } 2467 2468 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2469 { 2470 unsigned long commits; 2471 2472 if (RB_WARN_ON(cpu_buffer, 2473 !local_read(&cpu_buffer->committing))) 2474 return; 2475 2476 again: 2477 commits = local_read(&cpu_buffer->commits); 2478 /* synchronize with interrupts */ 2479 barrier(); 2480 if (local_read(&cpu_buffer->committing) == 1) 2481 rb_set_commit_to_write(cpu_buffer); 2482 2483 local_dec(&cpu_buffer->committing); 2484 2485 /* synchronize with interrupts */ 2486 barrier(); 2487 2488 /* 2489 * Need to account for interrupts coming in between the 2490 * updating of the commit page and the clearing of the 2491 * committing counter. 2492 */ 2493 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2494 !local_read(&cpu_buffer->committing)) { 2495 local_inc(&cpu_buffer->committing); 2496 goto again; 2497 } 2498 } 2499 2500 static struct ring_buffer_event * 2501 rb_reserve_next_event(struct ring_buffer *buffer, 2502 struct ring_buffer_per_cpu *cpu_buffer, 2503 unsigned long length) 2504 { 2505 struct ring_buffer_event *event; 2506 u64 ts, delta; 2507 int nr_loops = 0; 2508 int add_timestamp; 2509 u64 diff; 2510 2511 rb_start_commit(cpu_buffer); 2512 2513 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2514 /* 2515 * Due to the ability to swap a cpu buffer from a buffer 2516 * it is possible it was swapped before we committed. 2517 * (committing stops a swap). We check for it here and 2518 * if it happened, we have to fail the write. 2519 */ 2520 barrier(); 2521 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) { 2522 local_dec(&cpu_buffer->committing); 2523 local_dec(&cpu_buffer->commits); 2524 return NULL; 2525 } 2526 #endif 2527 2528 length = rb_calculate_event_length(length); 2529 again: 2530 add_timestamp = 0; 2531 delta = 0; 2532 2533 /* 2534 * We allow for interrupts to reenter here and do a trace. 2535 * If one does, it will cause this original code to loop 2536 * back here. Even with heavy interrupts happening, this 2537 * should only happen a few times in a row. If this happens 2538 * 1000 times in a row, there must be either an interrupt 2539 * storm or we have something buggy. 2540 * Bail! 2541 */ 2542 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2543 goto out_fail; 2544 2545 ts = rb_time_stamp(cpu_buffer->buffer); 2546 diff = ts - cpu_buffer->write_stamp; 2547 2548 /* make sure this diff is calculated here */ 2549 barrier(); 2550 2551 /* Did the write stamp get updated already? */ 2552 if (likely(ts >= cpu_buffer->write_stamp)) { 2553 delta = diff; 2554 if (unlikely(test_time_stamp(delta))) { 2555 int local_clock_stable = 1; 2556 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2557 local_clock_stable = sched_clock_stable; 2558 #endif 2559 WARN_ONCE(delta > (1ULL << 59), 2560 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2561 (unsigned long long)delta, 2562 (unsigned long long)ts, 2563 (unsigned long long)cpu_buffer->write_stamp, 2564 local_clock_stable ? "" : 2565 "If you just came from a suspend/resume,\n" 2566 "please switch to the trace global clock:\n" 2567 " echo global > /sys/kernel/debug/tracing/trace_clock\n"); 2568 add_timestamp = 1; 2569 } 2570 } 2571 2572 event = __rb_reserve_next(cpu_buffer, length, ts, 2573 delta, add_timestamp); 2574 if (unlikely(PTR_ERR(event) == -EAGAIN)) 2575 goto again; 2576 2577 if (!event) 2578 goto out_fail; 2579 2580 return event; 2581 2582 out_fail: 2583 rb_end_commit(cpu_buffer); 2584 return NULL; 2585 } 2586 2587 #ifdef CONFIG_TRACING 2588 2589 /* 2590 * The lock and unlock are done within a preempt disable section. 2591 * The current_context per_cpu variable can only be modified 2592 * by the current task between lock and unlock. But it can 2593 * be modified more than once via an interrupt. To pass this 2594 * information from the lock to the unlock without having to 2595 * access the 'in_interrupt()' functions again (which do show 2596 * a bit of overhead in something as critical as function tracing, 2597 * we use a bitmask trick. 2598 * 2599 * bit 0 = NMI context 2600 * bit 1 = IRQ context 2601 * bit 2 = SoftIRQ context 2602 * bit 3 = normal context. 2603 * 2604 * This works because this is the order of contexts that can 2605 * preempt other contexts. A SoftIRQ never preempts an IRQ 2606 * context. 2607 * 2608 * When the context is determined, the corresponding bit is 2609 * checked and set (if it was set, then a recursion of that context 2610 * happened). 2611 * 2612 * On unlock, we need to clear this bit. To do so, just subtract 2613 * 1 from the current_context and AND it to itself. 2614 * 2615 * (binary) 2616 * 101 - 1 = 100 2617 * 101 & 100 = 100 (clearing bit zero) 2618 * 2619 * 1010 - 1 = 1001 2620 * 1010 & 1001 = 1000 (clearing bit 1) 2621 * 2622 * The least significant bit can be cleared this way, and it 2623 * just so happens that it is the same bit corresponding to 2624 * the current context. 2625 */ 2626 static DEFINE_PER_CPU(unsigned int, current_context); 2627 2628 static __always_inline int trace_recursive_lock(void) 2629 { 2630 unsigned int val = this_cpu_read(current_context); 2631 int bit; 2632 2633 if (in_interrupt()) { 2634 if (in_nmi()) 2635 bit = 0; 2636 else if (in_irq()) 2637 bit = 1; 2638 else 2639 bit = 2; 2640 } else 2641 bit = 3; 2642 2643 if (unlikely(val & (1 << bit))) 2644 return 1; 2645 2646 val |= (1 << bit); 2647 this_cpu_write(current_context, val); 2648 2649 return 0; 2650 } 2651 2652 static __always_inline void trace_recursive_unlock(void) 2653 { 2654 unsigned int val = this_cpu_read(current_context); 2655 2656 val--; 2657 val &= this_cpu_read(current_context); 2658 this_cpu_write(current_context, val); 2659 } 2660 2661 #else 2662 2663 #define trace_recursive_lock() (0) 2664 #define trace_recursive_unlock() do { } while (0) 2665 2666 #endif 2667 2668 /** 2669 * ring_buffer_lock_reserve - reserve a part of the buffer 2670 * @buffer: the ring buffer to reserve from 2671 * @length: the length of the data to reserve (excluding event header) 2672 * 2673 * Returns a reseverd event on the ring buffer to copy directly to. 2674 * The user of this interface will need to get the body to write into 2675 * and can use the ring_buffer_event_data() interface. 2676 * 2677 * The length is the length of the data needed, not the event length 2678 * which also includes the event header. 2679 * 2680 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2681 * If NULL is returned, then nothing has been allocated or locked. 2682 */ 2683 struct ring_buffer_event * 2684 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2685 { 2686 struct ring_buffer_per_cpu *cpu_buffer; 2687 struct ring_buffer_event *event; 2688 int cpu; 2689 2690 if (ring_buffer_flags != RB_BUFFERS_ON) 2691 return NULL; 2692 2693 /* If we are tracing schedule, we don't want to recurse */ 2694 preempt_disable_notrace(); 2695 2696 if (atomic_read(&buffer->record_disabled)) 2697 goto out_nocheck; 2698 2699 if (trace_recursive_lock()) 2700 goto out_nocheck; 2701 2702 cpu = raw_smp_processor_id(); 2703 2704 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2705 goto out; 2706 2707 cpu_buffer = buffer->buffers[cpu]; 2708 2709 if (atomic_read(&cpu_buffer->record_disabled)) 2710 goto out; 2711 2712 if (length > BUF_MAX_DATA_SIZE) 2713 goto out; 2714 2715 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2716 if (!event) 2717 goto out; 2718 2719 return event; 2720 2721 out: 2722 trace_recursive_unlock(); 2723 2724 out_nocheck: 2725 preempt_enable_notrace(); 2726 return NULL; 2727 } 2728 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2729 2730 static void 2731 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2732 struct ring_buffer_event *event) 2733 { 2734 u64 delta; 2735 2736 /* 2737 * The event first in the commit queue updates the 2738 * time stamp. 2739 */ 2740 if (rb_event_is_commit(cpu_buffer, event)) { 2741 /* 2742 * A commit event that is first on a page 2743 * updates the write timestamp with the page stamp 2744 */ 2745 if (!rb_event_index(event)) 2746 cpu_buffer->write_stamp = 2747 cpu_buffer->commit_page->page->time_stamp; 2748 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2749 delta = event->array[0]; 2750 delta <<= TS_SHIFT; 2751 delta += event->time_delta; 2752 cpu_buffer->write_stamp += delta; 2753 } else 2754 cpu_buffer->write_stamp += event->time_delta; 2755 } 2756 } 2757 2758 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2759 struct ring_buffer_event *event) 2760 { 2761 local_inc(&cpu_buffer->entries); 2762 rb_update_write_stamp(cpu_buffer, event); 2763 rb_end_commit(cpu_buffer); 2764 } 2765 2766 static __always_inline void 2767 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 2768 { 2769 if (buffer->irq_work.waiters_pending) { 2770 buffer->irq_work.waiters_pending = false; 2771 /* irq_work_queue() supplies it's own memory barriers */ 2772 irq_work_queue(&buffer->irq_work.work); 2773 } 2774 2775 if (cpu_buffer->irq_work.waiters_pending) { 2776 cpu_buffer->irq_work.waiters_pending = false; 2777 /* irq_work_queue() supplies it's own memory barriers */ 2778 irq_work_queue(&cpu_buffer->irq_work.work); 2779 } 2780 } 2781 2782 /** 2783 * ring_buffer_unlock_commit - commit a reserved 2784 * @buffer: The buffer to commit to 2785 * @event: The event pointer to commit. 2786 * 2787 * This commits the data to the ring buffer, and releases any locks held. 2788 * 2789 * Must be paired with ring_buffer_lock_reserve. 2790 */ 2791 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2792 struct ring_buffer_event *event) 2793 { 2794 struct ring_buffer_per_cpu *cpu_buffer; 2795 int cpu = raw_smp_processor_id(); 2796 2797 cpu_buffer = buffer->buffers[cpu]; 2798 2799 rb_commit(cpu_buffer, event); 2800 2801 rb_wakeups(buffer, cpu_buffer); 2802 2803 trace_recursive_unlock(); 2804 2805 preempt_enable_notrace(); 2806 2807 return 0; 2808 } 2809 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2810 2811 static inline void rb_event_discard(struct ring_buffer_event *event) 2812 { 2813 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 2814 event = skip_time_extend(event); 2815 2816 /* array[0] holds the actual length for the discarded event */ 2817 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2818 event->type_len = RINGBUF_TYPE_PADDING; 2819 /* time delta must be non zero */ 2820 if (!event->time_delta) 2821 event->time_delta = 1; 2822 } 2823 2824 /* 2825 * Decrement the entries to the page that an event is on. 2826 * The event does not even need to exist, only the pointer 2827 * to the page it is on. This may only be called before the commit 2828 * takes place. 2829 */ 2830 static inline void 2831 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2832 struct ring_buffer_event *event) 2833 { 2834 unsigned long addr = (unsigned long)event; 2835 struct buffer_page *bpage = cpu_buffer->commit_page; 2836 struct buffer_page *start; 2837 2838 addr &= PAGE_MASK; 2839 2840 /* Do the likely case first */ 2841 if (likely(bpage->page == (void *)addr)) { 2842 local_dec(&bpage->entries); 2843 return; 2844 } 2845 2846 /* 2847 * Because the commit page may be on the reader page we 2848 * start with the next page and check the end loop there. 2849 */ 2850 rb_inc_page(cpu_buffer, &bpage); 2851 start = bpage; 2852 do { 2853 if (bpage->page == (void *)addr) { 2854 local_dec(&bpage->entries); 2855 return; 2856 } 2857 rb_inc_page(cpu_buffer, &bpage); 2858 } while (bpage != start); 2859 2860 /* commit not part of this buffer?? */ 2861 RB_WARN_ON(cpu_buffer, 1); 2862 } 2863 2864 /** 2865 * ring_buffer_commit_discard - discard an event that has not been committed 2866 * @buffer: the ring buffer 2867 * @event: non committed event to discard 2868 * 2869 * Sometimes an event that is in the ring buffer needs to be ignored. 2870 * This function lets the user discard an event in the ring buffer 2871 * and then that event will not be read later. 2872 * 2873 * This function only works if it is called before the the item has been 2874 * committed. It will try to free the event from the ring buffer 2875 * if another event has not been added behind it. 2876 * 2877 * If another event has been added behind it, it will set the event 2878 * up as discarded, and perform the commit. 2879 * 2880 * If this function is called, do not call ring_buffer_unlock_commit on 2881 * the event. 2882 */ 2883 void ring_buffer_discard_commit(struct ring_buffer *buffer, 2884 struct ring_buffer_event *event) 2885 { 2886 struct ring_buffer_per_cpu *cpu_buffer; 2887 int cpu; 2888 2889 /* The event is discarded regardless */ 2890 rb_event_discard(event); 2891 2892 cpu = smp_processor_id(); 2893 cpu_buffer = buffer->buffers[cpu]; 2894 2895 /* 2896 * This must only be called if the event has not been 2897 * committed yet. Thus we can assume that preemption 2898 * is still disabled. 2899 */ 2900 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 2901 2902 rb_decrement_entry(cpu_buffer, event); 2903 if (rb_try_to_discard(cpu_buffer, event)) 2904 goto out; 2905 2906 /* 2907 * The commit is still visible by the reader, so we 2908 * must still update the timestamp. 2909 */ 2910 rb_update_write_stamp(cpu_buffer, event); 2911 out: 2912 rb_end_commit(cpu_buffer); 2913 2914 trace_recursive_unlock(); 2915 2916 preempt_enable_notrace(); 2917 2918 } 2919 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 2920 2921 /** 2922 * ring_buffer_write - write data to the buffer without reserving 2923 * @buffer: The ring buffer to write to. 2924 * @length: The length of the data being written (excluding the event header) 2925 * @data: The data to write to the buffer. 2926 * 2927 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 2928 * one function. If you already have the data to write to the buffer, it 2929 * may be easier to simply call this function. 2930 * 2931 * Note, like ring_buffer_lock_reserve, the length is the length of the data 2932 * and not the length of the event which would hold the header. 2933 */ 2934 int ring_buffer_write(struct ring_buffer *buffer, 2935 unsigned long length, 2936 void *data) 2937 { 2938 struct ring_buffer_per_cpu *cpu_buffer; 2939 struct ring_buffer_event *event; 2940 void *body; 2941 int ret = -EBUSY; 2942 int cpu; 2943 2944 if (ring_buffer_flags != RB_BUFFERS_ON) 2945 return -EBUSY; 2946 2947 preempt_disable_notrace(); 2948 2949 if (atomic_read(&buffer->record_disabled)) 2950 goto out; 2951 2952 cpu = raw_smp_processor_id(); 2953 2954 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2955 goto out; 2956 2957 cpu_buffer = buffer->buffers[cpu]; 2958 2959 if (atomic_read(&cpu_buffer->record_disabled)) 2960 goto out; 2961 2962 if (length > BUF_MAX_DATA_SIZE) 2963 goto out; 2964 2965 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2966 if (!event) 2967 goto out; 2968 2969 body = rb_event_data(event); 2970 2971 memcpy(body, data, length); 2972 2973 rb_commit(cpu_buffer, event); 2974 2975 rb_wakeups(buffer, cpu_buffer); 2976 2977 ret = 0; 2978 out: 2979 preempt_enable_notrace(); 2980 2981 return ret; 2982 } 2983 EXPORT_SYMBOL_GPL(ring_buffer_write); 2984 2985 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 2986 { 2987 struct buffer_page *reader = cpu_buffer->reader_page; 2988 struct buffer_page *head = rb_set_head_page(cpu_buffer); 2989 struct buffer_page *commit = cpu_buffer->commit_page; 2990 2991 /* In case of error, head will be NULL */ 2992 if (unlikely(!head)) 2993 return 1; 2994 2995 return reader->read == rb_page_commit(reader) && 2996 (commit == reader || 2997 (commit == head && 2998 head->read == rb_page_commit(commit))); 2999 } 3000 3001 /** 3002 * ring_buffer_record_disable - stop all writes into the buffer 3003 * @buffer: The ring buffer to stop writes to. 3004 * 3005 * This prevents all writes to the buffer. Any attempt to write 3006 * to the buffer after this will fail and return NULL. 3007 * 3008 * The caller should call synchronize_sched() after this. 3009 */ 3010 void ring_buffer_record_disable(struct ring_buffer *buffer) 3011 { 3012 atomic_inc(&buffer->record_disabled); 3013 } 3014 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3015 3016 /** 3017 * ring_buffer_record_enable - enable writes to the buffer 3018 * @buffer: The ring buffer to enable writes 3019 * 3020 * Note, multiple disables will need the same number of enables 3021 * to truly enable the writing (much like preempt_disable). 3022 */ 3023 void ring_buffer_record_enable(struct ring_buffer *buffer) 3024 { 3025 atomic_dec(&buffer->record_disabled); 3026 } 3027 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3028 3029 /** 3030 * ring_buffer_record_off - stop all writes into the buffer 3031 * @buffer: The ring buffer to stop writes to. 3032 * 3033 * This prevents all writes to the buffer. Any attempt to write 3034 * to the buffer after this will fail and return NULL. 3035 * 3036 * This is different than ring_buffer_record_disable() as 3037 * it works like an on/off switch, where as the disable() version 3038 * must be paired with a enable(). 3039 */ 3040 void ring_buffer_record_off(struct ring_buffer *buffer) 3041 { 3042 unsigned int rd; 3043 unsigned int new_rd; 3044 3045 do { 3046 rd = atomic_read(&buffer->record_disabled); 3047 new_rd = rd | RB_BUFFER_OFF; 3048 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3049 } 3050 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3051 3052 /** 3053 * ring_buffer_record_on - restart writes into the buffer 3054 * @buffer: The ring buffer to start writes to. 3055 * 3056 * This enables all writes to the buffer that was disabled by 3057 * ring_buffer_record_off(). 3058 * 3059 * This is different than ring_buffer_record_enable() as 3060 * it works like an on/off switch, where as the enable() version 3061 * must be paired with a disable(). 3062 */ 3063 void ring_buffer_record_on(struct ring_buffer *buffer) 3064 { 3065 unsigned int rd; 3066 unsigned int new_rd; 3067 3068 do { 3069 rd = atomic_read(&buffer->record_disabled); 3070 new_rd = rd & ~RB_BUFFER_OFF; 3071 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3072 } 3073 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 3074 3075 /** 3076 * ring_buffer_record_is_on - return true if the ring buffer can write 3077 * @buffer: The ring buffer to see if write is enabled 3078 * 3079 * Returns true if the ring buffer is in a state that it accepts writes. 3080 */ 3081 int ring_buffer_record_is_on(struct ring_buffer *buffer) 3082 { 3083 return !atomic_read(&buffer->record_disabled); 3084 } 3085 3086 /** 3087 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 3088 * @buffer: The ring buffer to stop writes to. 3089 * @cpu: The CPU buffer to stop 3090 * 3091 * This prevents all writes to the buffer. Any attempt to write 3092 * to the buffer after this will fail and return NULL. 3093 * 3094 * The caller should call synchronize_sched() after this. 3095 */ 3096 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 3097 { 3098 struct ring_buffer_per_cpu *cpu_buffer; 3099 3100 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3101 return; 3102 3103 cpu_buffer = buffer->buffers[cpu]; 3104 atomic_inc(&cpu_buffer->record_disabled); 3105 } 3106 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 3107 3108 /** 3109 * ring_buffer_record_enable_cpu - enable writes to the buffer 3110 * @buffer: The ring buffer to enable writes 3111 * @cpu: The CPU to enable. 3112 * 3113 * Note, multiple disables will need the same number of enables 3114 * to truly enable the writing (much like preempt_disable). 3115 */ 3116 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 3117 { 3118 struct ring_buffer_per_cpu *cpu_buffer; 3119 3120 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3121 return; 3122 3123 cpu_buffer = buffer->buffers[cpu]; 3124 atomic_dec(&cpu_buffer->record_disabled); 3125 } 3126 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 3127 3128 /* 3129 * The total entries in the ring buffer is the running counter 3130 * of entries entered into the ring buffer, minus the sum of 3131 * the entries read from the ring buffer and the number of 3132 * entries that were overwritten. 3133 */ 3134 static inline unsigned long 3135 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 3136 { 3137 return local_read(&cpu_buffer->entries) - 3138 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 3139 } 3140 3141 /** 3142 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 3143 * @buffer: The ring buffer 3144 * @cpu: The per CPU buffer to read from. 3145 */ 3146 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu) 3147 { 3148 unsigned long flags; 3149 struct ring_buffer_per_cpu *cpu_buffer; 3150 struct buffer_page *bpage; 3151 u64 ret = 0; 3152 3153 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3154 return 0; 3155 3156 cpu_buffer = buffer->buffers[cpu]; 3157 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3158 /* 3159 * if the tail is on reader_page, oldest time stamp is on the reader 3160 * page 3161 */ 3162 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 3163 bpage = cpu_buffer->reader_page; 3164 else 3165 bpage = rb_set_head_page(cpu_buffer); 3166 if (bpage) 3167 ret = bpage->page->time_stamp; 3168 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3169 3170 return ret; 3171 } 3172 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3173 3174 /** 3175 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3176 * @buffer: The ring buffer 3177 * @cpu: The per CPU buffer to read from. 3178 */ 3179 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu) 3180 { 3181 struct ring_buffer_per_cpu *cpu_buffer; 3182 unsigned long ret; 3183 3184 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3185 return 0; 3186 3187 cpu_buffer = buffer->buffers[cpu]; 3188 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 3189 3190 return ret; 3191 } 3192 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 3193 3194 /** 3195 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 3196 * @buffer: The ring buffer 3197 * @cpu: The per CPU buffer to get the entries from. 3198 */ 3199 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 3200 { 3201 struct ring_buffer_per_cpu *cpu_buffer; 3202 3203 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3204 return 0; 3205 3206 cpu_buffer = buffer->buffers[cpu]; 3207 3208 return rb_num_of_entries(cpu_buffer); 3209 } 3210 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 3211 3212 /** 3213 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 3214 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 3215 * @buffer: The ring buffer 3216 * @cpu: The per CPU buffer to get the number of overruns from 3217 */ 3218 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 3219 { 3220 struct ring_buffer_per_cpu *cpu_buffer; 3221 unsigned long ret; 3222 3223 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3224 return 0; 3225 3226 cpu_buffer = buffer->buffers[cpu]; 3227 ret = local_read(&cpu_buffer->overrun); 3228 3229 return ret; 3230 } 3231 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 3232 3233 /** 3234 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 3235 * commits failing due to the buffer wrapping around while there are uncommitted 3236 * events, such as during an interrupt storm. 3237 * @buffer: The ring buffer 3238 * @cpu: The per CPU buffer to get the number of overruns from 3239 */ 3240 unsigned long 3241 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 3242 { 3243 struct ring_buffer_per_cpu *cpu_buffer; 3244 unsigned long ret; 3245 3246 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3247 return 0; 3248 3249 cpu_buffer = buffer->buffers[cpu]; 3250 ret = local_read(&cpu_buffer->commit_overrun); 3251 3252 return ret; 3253 } 3254 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 3255 3256 /** 3257 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 3258 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 3259 * @buffer: The ring buffer 3260 * @cpu: The per CPU buffer to get the number of overruns from 3261 */ 3262 unsigned long 3263 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu) 3264 { 3265 struct ring_buffer_per_cpu *cpu_buffer; 3266 unsigned long ret; 3267 3268 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3269 return 0; 3270 3271 cpu_buffer = buffer->buffers[cpu]; 3272 ret = local_read(&cpu_buffer->dropped_events); 3273 3274 return ret; 3275 } 3276 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 3277 3278 /** 3279 * ring_buffer_read_events_cpu - get the number of events successfully read 3280 * @buffer: The ring buffer 3281 * @cpu: The per CPU buffer to get the number of events read 3282 */ 3283 unsigned long 3284 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu) 3285 { 3286 struct ring_buffer_per_cpu *cpu_buffer; 3287 3288 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3289 return 0; 3290 3291 cpu_buffer = buffer->buffers[cpu]; 3292 return cpu_buffer->read; 3293 } 3294 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 3295 3296 /** 3297 * ring_buffer_entries - get the number of entries in a buffer 3298 * @buffer: The ring buffer 3299 * 3300 * Returns the total number of entries in the ring buffer 3301 * (all CPU entries) 3302 */ 3303 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 3304 { 3305 struct ring_buffer_per_cpu *cpu_buffer; 3306 unsigned long entries = 0; 3307 int cpu; 3308 3309 /* if you care about this being correct, lock the buffer */ 3310 for_each_buffer_cpu(buffer, cpu) { 3311 cpu_buffer = buffer->buffers[cpu]; 3312 entries += rb_num_of_entries(cpu_buffer); 3313 } 3314 3315 return entries; 3316 } 3317 EXPORT_SYMBOL_GPL(ring_buffer_entries); 3318 3319 /** 3320 * ring_buffer_overruns - get the number of overruns in buffer 3321 * @buffer: The ring buffer 3322 * 3323 * Returns the total number of overruns in the ring buffer 3324 * (all CPU entries) 3325 */ 3326 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 3327 { 3328 struct ring_buffer_per_cpu *cpu_buffer; 3329 unsigned long overruns = 0; 3330 int cpu; 3331 3332 /* if you care about this being correct, lock the buffer */ 3333 for_each_buffer_cpu(buffer, cpu) { 3334 cpu_buffer = buffer->buffers[cpu]; 3335 overruns += local_read(&cpu_buffer->overrun); 3336 } 3337 3338 return overruns; 3339 } 3340 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 3341 3342 static void rb_iter_reset(struct ring_buffer_iter *iter) 3343 { 3344 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3345 3346 /* Iterator usage is expected to have record disabled */ 3347 if (list_empty(&cpu_buffer->reader_page->list)) { 3348 iter->head_page = rb_set_head_page(cpu_buffer); 3349 if (unlikely(!iter->head_page)) 3350 return; 3351 iter->head = iter->head_page->read; 3352 } else { 3353 iter->head_page = cpu_buffer->reader_page; 3354 iter->head = cpu_buffer->reader_page->read; 3355 } 3356 if (iter->head) 3357 iter->read_stamp = cpu_buffer->read_stamp; 3358 else 3359 iter->read_stamp = iter->head_page->page->time_stamp; 3360 iter->cache_reader_page = cpu_buffer->reader_page; 3361 iter->cache_read = cpu_buffer->read; 3362 } 3363 3364 /** 3365 * ring_buffer_iter_reset - reset an iterator 3366 * @iter: The iterator to reset 3367 * 3368 * Resets the iterator, so that it will start from the beginning 3369 * again. 3370 */ 3371 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 3372 { 3373 struct ring_buffer_per_cpu *cpu_buffer; 3374 unsigned long flags; 3375 3376 if (!iter) 3377 return; 3378 3379 cpu_buffer = iter->cpu_buffer; 3380 3381 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3382 rb_iter_reset(iter); 3383 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3384 } 3385 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 3386 3387 /** 3388 * ring_buffer_iter_empty - check if an iterator has no more to read 3389 * @iter: The iterator to check 3390 */ 3391 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 3392 { 3393 struct ring_buffer_per_cpu *cpu_buffer; 3394 3395 cpu_buffer = iter->cpu_buffer; 3396 3397 return iter->head_page == cpu_buffer->commit_page && 3398 iter->head == rb_commit_index(cpu_buffer); 3399 } 3400 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 3401 3402 static void 3403 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3404 struct ring_buffer_event *event) 3405 { 3406 u64 delta; 3407 3408 switch (event->type_len) { 3409 case RINGBUF_TYPE_PADDING: 3410 return; 3411 3412 case RINGBUF_TYPE_TIME_EXTEND: 3413 delta = event->array[0]; 3414 delta <<= TS_SHIFT; 3415 delta += event->time_delta; 3416 cpu_buffer->read_stamp += delta; 3417 return; 3418 3419 case RINGBUF_TYPE_TIME_STAMP: 3420 /* FIXME: not implemented */ 3421 return; 3422 3423 case RINGBUF_TYPE_DATA: 3424 cpu_buffer->read_stamp += event->time_delta; 3425 return; 3426 3427 default: 3428 BUG(); 3429 } 3430 return; 3431 } 3432 3433 static void 3434 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 3435 struct ring_buffer_event *event) 3436 { 3437 u64 delta; 3438 3439 switch (event->type_len) { 3440 case RINGBUF_TYPE_PADDING: 3441 return; 3442 3443 case RINGBUF_TYPE_TIME_EXTEND: 3444 delta = event->array[0]; 3445 delta <<= TS_SHIFT; 3446 delta += event->time_delta; 3447 iter->read_stamp += delta; 3448 return; 3449 3450 case RINGBUF_TYPE_TIME_STAMP: 3451 /* FIXME: not implemented */ 3452 return; 3453 3454 case RINGBUF_TYPE_DATA: 3455 iter->read_stamp += event->time_delta; 3456 return; 3457 3458 default: 3459 BUG(); 3460 } 3461 return; 3462 } 3463 3464 static struct buffer_page * 3465 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 3466 { 3467 struct buffer_page *reader = NULL; 3468 unsigned long overwrite; 3469 unsigned long flags; 3470 int nr_loops = 0; 3471 int ret; 3472 3473 local_irq_save(flags); 3474 arch_spin_lock(&cpu_buffer->lock); 3475 3476 again: 3477 /* 3478 * This should normally only loop twice. But because the 3479 * start of the reader inserts an empty page, it causes 3480 * a case where we will loop three times. There should be no 3481 * reason to loop four times (that I know of). 3482 */ 3483 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 3484 reader = NULL; 3485 goto out; 3486 } 3487 3488 reader = cpu_buffer->reader_page; 3489 3490 /* If there's more to read, return this page */ 3491 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 3492 goto out; 3493 3494 /* Never should we have an index greater than the size */ 3495 if (RB_WARN_ON(cpu_buffer, 3496 cpu_buffer->reader_page->read > rb_page_size(reader))) 3497 goto out; 3498 3499 /* check if we caught up to the tail */ 3500 reader = NULL; 3501 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 3502 goto out; 3503 3504 /* Don't bother swapping if the ring buffer is empty */ 3505 if (rb_num_of_entries(cpu_buffer) == 0) 3506 goto out; 3507 3508 /* 3509 * Reset the reader page to size zero. 3510 */ 3511 local_set(&cpu_buffer->reader_page->write, 0); 3512 local_set(&cpu_buffer->reader_page->entries, 0); 3513 local_set(&cpu_buffer->reader_page->page->commit, 0); 3514 cpu_buffer->reader_page->real_end = 0; 3515 3516 spin: 3517 /* 3518 * Splice the empty reader page into the list around the head. 3519 */ 3520 reader = rb_set_head_page(cpu_buffer); 3521 if (!reader) 3522 goto out; 3523 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 3524 cpu_buffer->reader_page->list.prev = reader->list.prev; 3525 3526 /* 3527 * cpu_buffer->pages just needs to point to the buffer, it 3528 * has no specific buffer page to point to. Lets move it out 3529 * of our way so we don't accidentally swap it. 3530 */ 3531 cpu_buffer->pages = reader->list.prev; 3532 3533 /* The reader page will be pointing to the new head */ 3534 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 3535 3536 /* 3537 * We want to make sure we read the overruns after we set up our 3538 * pointers to the next object. The writer side does a 3539 * cmpxchg to cross pages which acts as the mb on the writer 3540 * side. Note, the reader will constantly fail the swap 3541 * while the writer is updating the pointers, so this 3542 * guarantees that the overwrite recorded here is the one we 3543 * want to compare with the last_overrun. 3544 */ 3545 smp_mb(); 3546 overwrite = local_read(&(cpu_buffer->overrun)); 3547 3548 /* 3549 * Here's the tricky part. 3550 * 3551 * We need to move the pointer past the header page. 3552 * But we can only do that if a writer is not currently 3553 * moving it. The page before the header page has the 3554 * flag bit '1' set if it is pointing to the page we want. 3555 * but if the writer is in the process of moving it 3556 * than it will be '2' or already moved '0'. 3557 */ 3558 3559 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 3560 3561 /* 3562 * If we did not convert it, then we must try again. 3563 */ 3564 if (!ret) 3565 goto spin; 3566 3567 /* 3568 * Yeah! We succeeded in replacing the page. 3569 * 3570 * Now make the new head point back to the reader page. 3571 */ 3572 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 3573 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 3574 3575 /* Finally update the reader page to the new head */ 3576 cpu_buffer->reader_page = reader; 3577 rb_reset_reader_page(cpu_buffer); 3578 3579 if (overwrite != cpu_buffer->last_overrun) { 3580 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 3581 cpu_buffer->last_overrun = overwrite; 3582 } 3583 3584 goto again; 3585 3586 out: 3587 arch_spin_unlock(&cpu_buffer->lock); 3588 local_irq_restore(flags); 3589 3590 return reader; 3591 } 3592 3593 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3594 { 3595 struct ring_buffer_event *event; 3596 struct buffer_page *reader; 3597 unsigned length; 3598 3599 reader = rb_get_reader_page(cpu_buffer); 3600 3601 /* This function should not be called when buffer is empty */ 3602 if (RB_WARN_ON(cpu_buffer, !reader)) 3603 return; 3604 3605 event = rb_reader_event(cpu_buffer); 3606 3607 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3608 cpu_buffer->read++; 3609 3610 rb_update_read_stamp(cpu_buffer, event); 3611 3612 length = rb_event_length(event); 3613 cpu_buffer->reader_page->read += length; 3614 } 3615 3616 static void rb_advance_iter(struct ring_buffer_iter *iter) 3617 { 3618 struct ring_buffer_per_cpu *cpu_buffer; 3619 struct ring_buffer_event *event; 3620 unsigned length; 3621 3622 cpu_buffer = iter->cpu_buffer; 3623 3624 /* 3625 * Check if we are at the end of the buffer. 3626 */ 3627 if (iter->head >= rb_page_size(iter->head_page)) { 3628 /* discarded commits can make the page empty */ 3629 if (iter->head_page == cpu_buffer->commit_page) 3630 return; 3631 rb_inc_iter(iter); 3632 return; 3633 } 3634 3635 event = rb_iter_head_event(iter); 3636 3637 length = rb_event_length(event); 3638 3639 /* 3640 * This should not be called to advance the header if we are 3641 * at the tail of the buffer. 3642 */ 3643 if (RB_WARN_ON(cpu_buffer, 3644 (iter->head_page == cpu_buffer->commit_page) && 3645 (iter->head + length > rb_commit_index(cpu_buffer)))) 3646 return; 3647 3648 rb_update_iter_read_stamp(iter, event); 3649 3650 iter->head += length; 3651 3652 /* check for end of page padding */ 3653 if ((iter->head >= rb_page_size(iter->head_page)) && 3654 (iter->head_page != cpu_buffer->commit_page)) 3655 rb_inc_iter(iter); 3656 } 3657 3658 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3659 { 3660 return cpu_buffer->lost_events; 3661 } 3662 3663 static struct ring_buffer_event * 3664 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3665 unsigned long *lost_events) 3666 { 3667 struct ring_buffer_event *event; 3668 struct buffer_page *reader; 3669 int nr_loops = 0; 3670 3671 again: 3672 /* 3673 * We repeat when a time extend is encountered. 3674 * Since the time extend is always attached to a data event, 3675 * we should never loop more than once. 3676 * (We never hit the following condition more than twice). 3677 */ 3678 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3679 return NULL; 3680 3681 reader = rb_get_reader_page(cpu_buffer); 3682 if (!reader) 3683 return NULL; 3684 3685 event = rb_reader_event(cpu_buffer); 3686 3687 switch (event->type_len) { 3688 case RINGBUF_TYPE_PADDING: 3689 if (rb_null_event(event)) 3690 RB_WARN_ON(cpu_buffer, 1); 3691 /* 3692 * Because the writer could be discarding every 3693 * event it creates (which would probably be bad) 3694 * if we were to go back to "again" then we may never 3695 * catch up, and will trigger the warn on, or lock 3696 * the box. Return the padding, and we will release 3697 * the current locks, and try again. 3698 */ 3699 return event; 3700 3701 case RINGBUF_TYPE_TIME_EXTEND: 3702 /* Internal data, OK to advance */ 3703 rb_advance_reader(cpu_buffer); 3704 goto again; 3705 3706 case RINGBUF_TYPE_TIME_STAMP: 3707 /* FIXME: not implemented */ 3708 rb_advance_reader(cpu_buffer); 3709 goto again; 3710 3711 case RINGBUF_TYPE_DATA: 3712 if (ts) { 3713 *ts = cpu_buffer->read_stamp + event->time_delta; 3714 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3715 cpu_buffer->cpu, ts); 3716 } 3717 if (lost_events) 3718 *lost_events = rb_lost_events(cpu_buffer); 3719 return event; 3720 3721 default: 3722 BUG(); 3723 } 3724 3725 return NULL; 3726 } 3727 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3728 3729 static struct ring_buffer_event * 3730 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3731 { 3732 struct ring_buffer *buffer; 3733 struct ring_buffer_per_cpu *cpu_buffer; 3734 struct ring_buffer_event *event; 3735 int nr_loops = 0; 3736 3737 cpu_buffer = iter->cpu_buffer; 3738 buffer = cpu_buffer->buffer; 3739 3740 /* 3741 * Check if someone performed a consuming read to 3742 * the buffer. A consuming read invalidates the iterator 3743 * and we need to reset the iterator in this case. 3744 */ 3745 if (unlikely(iter->cache_read != cpu_buffer->read || 3746 iter->cache_reader_page != cpu_buffer->reader_page)) 3747 rb_iter_reset(iter); 3748 3749 again: 3750 if (ring_buffer_iter_empty(iter)) 3751 return NULL; 3752 3753 /* 3754 * We repeat when a time extend is encountered. 3755 * Since the time extend is always attached to a data event, 3756 * we should never loop more than once. 3757 * (We never hit the following condition more than twice). 3758 */ 3759 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3760 return NULL; 3761 3762 if (rb_per_cpu_empty(cpu_buffer)) 3763 return NULL; 3764 3765 if (iter->head >= local_read(&iter->head_page->page->commit)) { 3766 rb_inc_iter(iter); 3767 goto again; 3768 } 3769 3770 event = rb_iter_head_event(iter); 3771 3772 switch (event->type_len) { 3773 case RINGBUF_TYPE_PADDING: 3774 if (rb_null_event(event)) { 3775 rb_inc_iter(iter); 3776 goto again; 3777 } 3778 rb_advance_iter(iter); 3779 return event; 3780 3781 case RINGBUF_TYPE_TIME_EXTEND: 3782 /* Internal data, OK to advance */ 3783 rb_advance_iter(iter); 3784 goto again; 3785 3786 case RINGBUF_TYPE_TIME_STAMP: 3787 /* FIXME: not implemented */ 3788 rb_advance_iter(iter); 3789 goto again; 3790 3791 case RINGBUF_TYPE_DATA: 3792 if (ts) { 3793 *ts = iter->read_stamp + event->time_delta; 3794 ring_buffer_normalize_time_stamp(buffer, 3795 cpu_buffer->cpu, ts); 3796 } 3797 return event; 3798 3799 default: 3800 BUG(); 3801 } 3802 3803 return NULL; 3804 } 3805 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3806 3807 static inline int rb_ok_to_lock(void) 3808 { 3809 /* 3810 * If an NMI die dumps out the content of the ring buffer 3811 * do not grab locks. We also permanently disable the ring 3812 * buffer too. A one time deal is all you get from reading 3813 * the ring buffer from an NMI. 3814 */ 3815 if (likely(!in_nmi())) 3816 return 1; 3817 3818 tracing_off_permanent(); 3819 return 0; 3820 } 3821 3822 /** 3823 * ring_buffer_peek - peek at the next event to be read 3824 * @buffer: The ring buffer to read 3825 * @cpu: The cpu to peak at 3826 * @ts: The timestamp counter of this event. 3827 * @lost_events: a variable to store if events were lost (may be NULL) 3828 * 3829 * This will return the event that will be read next, but does 3830 * not consume the data. 3831 */ 3832 struct ring_buffer_event * 3833 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, 3834 unsigned long *lost_events) 3835 { 3836 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3837 struct ring_buffer_event *event; 3838 unsigned long flags; 3839 int dolock; 3840 3841 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3842 return NULL; 3843 3844 dolock = rb_ok_to_lock(); 3845 again: 3846 local_irq_save(flags); 3847 if (dolock) 3848 raw_spin_lock(&cpu_buffer->reader_lock); 3849 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3850 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3851 rb_advance_reader(cpu_buffer); 3852 if (dolock) 3853 raw_spin_unlock(&cpu_buffer->reader_lock); 3854 local_irq_restore(flags); 3855 3856 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3857 goto again; 3858 3859 return event; 3860 } 3861 3862 /** 3863 * ring_buffer_iter_peek - peek at the next event to be read 3864 * @iter: The ring buffer iterator 3865 * @ts: The timestamp counter of this event. 3866 * 3867 * This will return the event that will be read next, but does 3868 * not increment the iterator. 3869 */ 3870 struct ring_buffer_event * 3871 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3872 { 3873 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3874 struct ring_buffer_event *event; 3875 unsigned long flags; 3876 3877 again: 3878 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3879 event = rb_iter_peek(iter, ts); 3880 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3881 3882 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3883 goto again; 3884 3885 return event; 3886 } 3887 3888 /** 3889 * ring_buffer_consume - return an event and consume it 3890 * @buffer: The ring buffer to get the next event from 3891 * @cpu: the cpu to read the buffer from 3892 * @ts: a variable to store the timestamp (may be NULL) 3893 * @lost_events: a variable to store if events were lost (may be NULL) 3894 * 3895 * Returns the next event in the ring buffer, and that event is consumed. 3896 * Meaning, that sequential reads will keep returning a different event, 3897 * and eventually empty the ring buffer if the producer is slower. 3898 */ 3899 struct ring_buffer_event * 3900 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, 3901 unsigned long *lost_events) 3902 { 3903 struct ring_buffer_per_cpu *cpu_buffer; 3904 struct ring_buffer_event *event = NULL; 3905 unsigned long flags; 3906 int dolock; 3907 3908 dolock = rb_ok_to_lock(); 3909 3910 again: 3911 /* might be called in atomic */ 3912 preempt_disable(); 3913 3914 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3915 goto out; 3916 3917 cpu_buffer = buffer->buffers[cpu]; 3918 local_irq_save(flags); 3919 if (dolock) 3920 raw_spin_lock(&cpu_buffer->reader_lock); 3921 3922 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3923 if (event) { 3924 cpu_buffer->lost_events = 0; 3925 rb_advance_reader(cpu_buffer); 3926 } 3927 3928 if (dolock) 3929 raw_spin_unlock(&cpu_buffer->reader_lock); 3930 local_irq_restore(flags); 3931 3932 out: 3933 preempt_enable(); 3934 3935 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3936 goto again; 3937 3938 return event; 3939 } 3940 EXPORT_SYMBOL_GPL(ring_buffer_consume); 3941 3942 /** 3943 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 3944 * @buffer: The ring buffer to read from 3945 * @cpu: The cpu buffer to iterate over 3946 * 3947 * This performs the initial preparations necessary to iterate 3948 * through the buffer. Memory is allocated, buffer recording 3949 * is disabled, and the iterator pointer is returned to the caller. 3950 * 3951 * Disabling buffer recordng prevents the reading from being 3952 * corrupted. This is not a consuming read, so a producer is not 3953 * expected. 3954 * 3955 * After a sequence of ring_buffer_read_prepare calls, the user is 3956 * expected to make at least one call to ring_buffer_prepare_sync. 3957 * Afterwards, ring_buffer_read_start is invoked to get things going 3958 * for real. 3959 * 3960 * This overall must be paired with ring_buffer_finish. 3961 */ 3962 struct ring_buffer_iter * 3963 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu) 3964 { 3965 struct ring_buffer_per_cpu *cpu_buffer; 3966 struct ring_buffer_iter *iter; 3967 3968 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3969 return NULL; 3970 3971 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 3972 if (!iter) 3973 return NULL; 3974 3975 cpu_buffer = buffer->buffers[cpu]; 3976 3977 iter->cpu_buffer = cpu_buffer; 3978 3979 atomic_inc(&buffer->resize_disabled); 3980 atomic_inc(&cpu_buffer->record_disabled); 3981 3982 return iter; 3983 } 3984 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 3985 3986 /** 3987 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 3988 * 3989 * All previously invoked ring_buffer_read_prepare calls to prepare 3990 * iterators will be synchronized. Afterwards, read_buffer_read_start 3991 * calls on those iterators are allowed. 3992 */ 3993 void 3994 ring_buffer_read_prepare_sync(void) 3995 { 3996 synchronize_sched(); 3997 } 3998 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 3999 4000 /** 4001 * ring_buffer_read_start - start a non consuming read of the buffer 4002 * @iter: The iterator returned by ring_buffer_read_prepare 4003 * 4004 * This finalizes the startup of an iteration through the buffer. 4005 * The iterator comes from a call to ring_buffer_read_prepare and 4006 * an intervening ring_buffer_read_prepare_sync must have been 4007 * performed. 4008 * 4009 * Must be paired with ring_buffer_finish. 4010 */ 4011 void 4012 ring_buffer_read_start(struct ring_buffer_iter *iter) 4013 { 4014 struct ring_buffer_per_cpu *cpu_buffer; 4015 unsigned long flags; 4016 4017 if (!iter) 4018 return; 4019 4020 cpu_buffer = iter->cpu_buffer; 4021 4022 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4023 arch_spin_lock(&cpu_buffer->lock); 4024 rb_iter_reset(iter); 4025 arch_spin_unlock(&cpu_buffer->lock); 4026 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4027 } 4028 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 4029 4030 /** 4031 * ring_buffer_finish - finish reading the iterator of the buffer 4032 * @iter: The iterator retrieved by ring_buffer_start 4033 * 4034 * This re-enables the recording to the buffer, and frees the 4035 * iterator. 4036 */ 4037 void 4038 ring_buffer_read_finish(struct ring_buffer_iter *iter) 4039 { 4040 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4041 unsigned long flags; 4042 4043 /* 4044 * Ring buffer is disabled from recording, here's a good place 4045 * to check the integrity of the ring buffer. 4046 * Must prevent readers from trying to read, as the check 4047 * clears the HEAD page and readers require it. 4048 */ 4049 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4050 rb_check_pages(cpu_buffer); 4051 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4052 4053 atomic_dec(&cpu_buffer->record_disabled); 4054 atomic_dec(&cpu_buffer->buffer->resize_disabled); 4055 kfree(iter); 4056 } 4057 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 4058 4059 /** 4060 * ring_buffer_read - read the next item in the ring buffer by the iterator 4061 * @iter: The ring buffer iterator 4062 * @ts: The time stamp of the event read. 4063 * 4064 * This reads the next event in the ring buffer and increments the iterator. 4065 */ 4066 struct ring_buffer_event * 4067 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 4068 { 4069 struct ring_buffer_event *event; 4070 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4071 unsigned long flags; 4072 4073 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4074 again: 4075 event = rb_iter_peek(iter, ts); 4076 if (!event) 4077 goto out; 4078 4079 if (event->type_len == RINGBUF_TYPE_PADDING) 4080 goto again; 4081 4082 rb_advance_iter(iter); 4083 out: 4084 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4085 4086 return event; 4087 } 4088 EXPORT_SYMBOL_GPL(ring_buffer_read); 4089 4090 /** 4091 * ring_buffer_size - return the size of the ring buffer (in bytes) 4092 * @buffer: The ring buffer. 4093 */ 4094 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu) 4095 { 4096 /* 4097 * Earlier, this method returned 4098 * BUF_PAGE_SIZE * buffer->nr_pages 4099 * Since the nr_pages field is now removed, we have converted this to 4100 * return the per cpu buffer value. 4101 */ 4102 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4103 return 0; 4104 4105 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 4106 } 4107 EXPORT_SYMBOL_GPL(ring_buffer_size); 4108 4109 static void 4110 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 4111 { 4112 rb_head_page_deactivate(cpu_buffer); 4113 4114 cpu_buffer->head_page 4115 = list_entry(cpu_buffer->pages, struct buffer_page, list); 4116 local_set(&cpu_buffer->head_page->write, 0); 4117 local_set(&cpu_buffer->head_page->entries, 0); 4118 local_set(&cpu_buffer->head_page->page->commit, 0); 4119 4120 cpu_buffer->head_page->read = 0; 4121 4122 cpu_buffer->tail_page = cpu_buffer->head_page; 4123 cpu_buffer->commit_page = cpu_buffer->head_page; 4124 4125 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 4126 INIT_LIST_HEAD(&cpu_buffer->new_pages); 4127 local_set(&cpu_buffer->reader_page->write, 0); 4128 local_set(&cpu_buffer->reader_page->entries, 0); 4129 local_set(&cpu_buffer->reader_page->page->commit, 0); 4130 cpu_buffer->reader_page->read = 0; 4131 4132 local_set(&cpu_buffer->entries_bytes, 0); 4133 local_set(&cpu_buffer->overrun, 0); 4134 local_set(&cpu_buffer->commit_overrun, 0); 4135 local_set(&cpu_buffer->dropped_events, 0); 4136 local_set(&cpu_buffer->entries, 0); 4137 local_set(&cpu_buffer->committing, 0); 4138 local_set(&cpu_buffer->commits, 0); 4139 cpu_buffer->read = 0; 4140 cpu_buffer->read_bytes = 0; 4141 4142 cpu_buffer->write_stamp = 0; 4143 cpu_buffer->read_stamp = 0; 4144 4145 cpu_buffer->lost_events = 0; 4146 cpu_buffer->last_overrun = 0; 4147 4148 rb_head_page_activate(cpu_buffer); 4149 } 4150 4151 /** 4152 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 4153 * @buffer: The ring buffer to reset a per cpu buffer of 4154 * @cpu: The CPU buffer to be reset 4155 */ 4156 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 4157 { 4158 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4159 unsigned long flags; 4160 4161 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4162 return; 4163 4164 atomic_inc(&buffer->resize_disabled); 4165 atomic_inc(&cpu_buffer->record_disabled); 4166 4167 /* Make sure all commits have finished */ 4168 synchronize_sched(); 4169 4170 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4171 4172 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 4173 goto out; 4174 4175 arch_spin_lock(&cpu_buffer->lock); 4176 4177 rb_reset_cpu(cpu_buffer); 4178 4179 arch_spin_unlock(&cpu_buffer->lock); 4180 4181 out: 4182 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4183 4184 atomic_dec(&cpu_buffer->record_disabled); 4185 atomic_dec(&buffer->resize_disabled); 4186 } 4187 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 4188 4189 /** 4190 * ring_buffer_reset - reset a ring buffer 4191 * @buffer: The ring buffer to reset all cpu buffers 4192 */ 4193 void ring_buffer_reset(struct ring_buffer *buffer) 4194 { 4195 int cpu; 4196 4197 for_each_buffer_cpu(buffer, cpu) 4198 ring_buffer_reset_cpu(buffer, cpu); 4199 } 4200 EXPORT_SYMBOL_GPL(ring_buffer_reset); 4201 4202 /** 4203 * rind_buffer_empty - is the ring buffer empty? 4204 * @buffer: The ring buffer to test 4205 */ 4206 int ring_buffer_empty(struct ring_buffer *buffer) 4207 { 4208 struct ring_buffer_per_cpu *cpu_buffer; 4209 unsigned long flags; 4210 int dolock; 4211 int cpu; 4212 int ret; 4213 4214 dolock = rb_ok_to_lock(); 4215 4216 /* yes this is racy, but if you don't like the race, lock the buffer */ 4217 for_each_buffer_cpu(buffer, cpu) { 4218 cpu_buffer = buffer->buffers[cpu]; 4219 local_irq_save(flags); 4220 if (dolock) 4221 raw_spin_lock(&cpu_buffer->reader_lock); 4222 ret = rb_per_cpu_empty(cpu_buffer); 4223 if (dolock) 4224 raw_spin_unlock(&cpu_buffer->reader_lock); 4225 local_irq_restore(flags); 4226 4227 if (!ret) 4228 return 0; 4229 } 4230 4231 return 1; 4232 } 4233 EXPORT_SYMBOL_GPL(ring_buffer_empty); 4234 4235 /** 4236 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 4237 * @buffer: The ring buffer 4238 * @cpu: The CPU buffer to test 4239 */ 4240 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 4241 { 4242 struct ring_buffer_per_cpu *cpu_buffer; 4243 unsigned long flags; 4244 int dolock; 4245 int ret; 4246 4247 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4248 return 1; 4249 4250 dolock = rb_ok_to_lock(); 4251 4252 cpu_buffer = buffer->buffers[cpu]; 4253 local_irq_save(flags); 4254 if (dolock) 4255 raw_spin_lock(&cpu_buffer->reader_lock); 4256 ret = rb_per_cpu_empty(cpu_buffer); 4257 if (dolock) 4258 raw_spin_unlock(&cpu_buffer->reader_lock); 4259 local_irq_restore(flags); 4260 4261 return ret; 4262 } 4263 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 4264 4265 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4266 /** 4267 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 4268 * @buffer_a: One buffer to swap with 4269 * @buffer_b: The other buffer to swap with 4270 * 4271 * This function is useful for tracers that want to take a "snapshot" 4272 * of a CPU buffer and has another back up buffer lying around. 4273 * it is expected that the tracer handles the cpu buffer not being 4274 * used at the moment. 4275 */ 4276 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 4277 struct ring_buffer *buffer_b, int cpu) 4278 { 4279 struct ring_buffer_per_cpu *cpu_buffer_a; 4280 struct ring_buffer_per_cpu *cpu_buffer_b; 4281 int ret = -EINVAL; 4282 4283 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 4284 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 4285 goto out; 4286 4287 cpu_buffer_a = buffer_a->buffers[cpu]; 4288 cpu_buffer_b = buffer_b->buffers[cpu]; 4289 4290 /* At least make sure the two buffers are somewhat the same */ 4291 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 4292 goto out; 4293 4294 ret = -EAGAIN; 4295 4296 if (ring_buffer_flags != RB_BUFFERS_ON) 4297 goto out; 4298 4299 if (atomic_read(&buffer_a->record_disabled)) 4300 goto out; 4301 4302 if (atomic_read(&buffer_b->record_disabled)) 4303 goto out; 4304 4305 if (atomic_read(&cpu_buffer_a->record_disabled)) 4306 goto out; 4307 4308 if (atomic_read(&cpu_buffer_b->record_disabled)) 4309 goto out; 4310 4311 /* 4312 * We can't do a synchronize_sched here because this 4313 * function can be called in atomic context. 4314 * Normally this will be called from the same CPU as cpu. 4315 * If not it's up to the caller to protect this. 4316 */ 4317 atomic_inc(&cpu_buffer_a->record_disabled); 4318 atomic_inc(&cpu_buffer_b->record_disabled); 4319 4320 ret = -EBUSY; 4321 if (local_read(&cpu_buffer_a->committing)) 4322 goto out_dec; 4323 if (local_read(&cpu_buffer_b->committing)) 4324 goto out_dec; 4325 4326 buffer_a->buffers[cpu] = cpu_buffer_b; 4327 buffer_b->buffers[cpu] = cpu_buffer_a; 4328 4329 cpu_buffer_b->buffer = buffer_a; 4330 cpu_buffer_a->buffer = buffer_b; 4331 4332 ret = 0; 4333 4334 out_dec: 4335 atomic_dec(&cpu_buffer_a->record_disabled); 4336 atomic_dec(&cpu_buffer_b->record_disabled); 4337 out: 4338 return ret; 4339 } 4340 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 4341 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 4342 4343 /** 4344 * ring_buffer_alloc_read_page - allocate a page to read from buffer 4345 * @buffer: the buffer to allocate for. 4346 * 4347 * This function is used in conjunction with ring_buffer_read_page. 4348 * When reading a full page from the ring buffer, these functions 4349 * can be used to speed up the process. The calling function should 4350 * allocate a few pages first with this function. Then when it 4351 * needs to get pages from the ring buffer, it passes the result 4352 * of this function into ring_buffer_read_page, which will swap 4353 * the page that was allocated, with the read page of the buffer. 4354 * 4355 * Returns: 4356 * The page allocated, or NULL on error. 4357 */ 4358 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu) 4359 { 4360 struct buffer_data_page *bpage; 4361 struct page *page; 4362 4363 page = alloc_pages_node(cpu_to_node(cpu), 4364 GFP_KERNEL | __GFP_NORETRY, 0); 4365 if (!page) 4366 return NULL; 4367 4368 bpage = page_address(page); 4369 4370 rb_init_page(bpage); 4371 4372 return bpage; 4373 } 4374 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 4375 4376 /** 4377 * ring_buffer_free_read_page - free an allocated read page 4378 * @buffer: the buffer the page was allocate for 4379 * @data: the page to free 4380 * 4381 * Free a page allocated from ring_buffer_alloc_read_page. 4382 */ 4383 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data) 4384 { 4385 free_page((unsigned long)data); 4386 } 4387 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 4388 4389 /** 4390 * ring_buffer_read_page - extract a page from the ring buffer 4391 * @buffer: buffer to extract from 4392 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 4393 * @len: amount to extract 4394 * @cpu: the cpu of the buffer to extract 4395 * @full: should the extraction only happen when the page is full. 4396 * 4397 * This function will pull out a page from the ring buffer and consume it. 4398 * @data_page must be the address of the variable that was returned 4399 * from ring_buffer_alloc_read_page. This is because the page might be used 4400 * to swap with a page in the ring buffer. 4401 * 4402 * for example: 4403 * rpage = ring_buffer_alloc_read_page(buffer); 4404 * if (!rpage) 4405 * return error; 4406 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 4407 * if (ret >= 0) 4408 * process_page(rpage, ret); 4409 * 4410 * When @full is set, the function will not return true unless 4411 * the writer is off the reader page. 4412 * 4413 * Note: it is up to the calling functions to handle sleeps and wakeups. 4414 * The ring buffer can be used anywhere in the kernel and can not 4415 * blindly call wake_up. The layer that uses the ring buffer must be 4416 * responsible for that. 4417 * 4418 * Returns: 4419 * >=0 if data has been transferred, returns the offset of consumed data. 4420 * <0 if no data has been transferred. 4421 */ 4422 int ring_buffer_read_page(struct ring_buffer *buffer, 4423 void **data_page, size_t len, int cpu, int full) 4424 { 4425 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4426 struct ring_buffer_event *event; 4427 struct buffer_data_page *bpage; 4428 struct buffer_page *reader; 4429 unsigned long missed_events; 4430 unsigned long flags; 4431 unsigned int commit; 4432 unsigned int read; 4433 u64 save_timestamp; 4434 int ret = -1; 4435 4436 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4437 goto out; 4438 4439 /* 4440 * If len is not big enough to hold the page header, then 4441 * we can not copy anything. 4442 */ 4443 if (len <= BUF_PAGE_HDR_SIZE) 4444 goto out; 4445 4446 len -= BUF_PAGE_HDR_SIZE; 4447 4448 if (!data_page) 4449 goto out; 4450 4451 bpage = *data_page; 4452 if (!bpage) 4453 goto out; 4454 4455 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4456 4457 reader = rb_get_reader_page(cpu_buffer); 4458 if (!reader) 4459 goto out_unlock; 4460 4461 event = rb_reader_event(cpu_buffer); 4462 4463 read = reader->read; 4464 commit = rb_page_commit(reader); 4465 4466 /* Check if any events were dropped */ 4467 missed_events = cpu_buffer->lost_events; 4468 4469 /* 4470 * If this page has been partially read or 4471 * if len is not big enough to read the rest of the page or 4472 * a writer is still on the page, then 4473 * we must copy the data from the page to the buffer. 4474 * Otherwise, we can simply swap the page with the one passed in. 4475 */ 4476 if (read || (len < (commit - read)) || 4477 cpu_buffer->reader_page == cpu_buffer->commit_page) { 4478 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 4479 unsigned int rpos = read; 4480 unsigned int pos = 0; 4481 unsigned int size; 4482 4483 if (full) 4484 goto out_unlock; 4485 4486 if (len > (commit - read)) 4487 len = (commit - read); 4488 4489 /* Always keep the time extend and data together */ 4490 size = rb_event_ts_length(event); 4491 4492 if (len < size) 4493 goto out_unlock; 4494 4495 /* save the current timestamp, since the user will need it */ 4496 save_timestamp = cpu_buffer->read_stamp; 4497 4498 /* Need to copy one event at a time */ 4499 do { 4500 /* We need the size of one event, because 4501 * rb_advance_reader only advances by one event, 4502 * whereas rb_event_ts_length may include the size of 4503 * one or two events. 4504 * We have already ensured there's enough space if this 4505 * is a time extend. */ 4506 size = rb_event_length(event); 4507 memcpy(bpage->data + pos, rpage->data + rpos, size); 4508 4509 len -= size; 4510 4511 rb_advance_reader(cpu_buffer); 4512 rpos = reader->read; 4513 pos += size; 4514 4515 if (rpos >= commit) 4516 break; 4517 4518 event = rb_reader_event(cpu_buffer); 4519 /* Always keep the time extend and data together */ 4520 size = rb_event_ts_length(event); 4521 } while (len >= size); 4522 4523 /* update bpage */ 4524 local_set(&bpage->commit, pos); 4525 bpage->time_stamp = save_timestamp; 4526 4527 /* we copied everything to the beginning */ 4528 read = 0; 4529 } else { 4530 /* update the entry counter */ 4531 cpu_buffer->read += rb_page_entries(reader); 4532 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 4533 4534 /* swap the pages */ 4535 rb_init_page(bpage); 4536 bpage = reader->page; 4537 reader->page = *data_page; 4538 local_set(&reader->write, 0); 4539 local_set(&reader->entries, 0); 4540 reader->read = 0; 4541 *data_page = bpage; 4542 4543 /* 4544 * Use the real_end for the data size, 4545 * This gives us a chance to store the lost events 4546 * on the page. 4547 */ 4548 if (reader->real_end) 4549 local_set(&bpage->commit, reader->real_end); 4550 } 4551 ret = read; 4552 4553 cpu_buffer->lost_events = 0; 4554 4555 commit = local_read(&bpage->commit); 4556 /* 4557 * Set a flag in the commit field if we lost events 4558 */ 4559 if (missed_events) { 4560 /* If there is room at the end of the page to save the 4561 * missed events, then record it there. 4562 */ 4563 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 4564 memcpy(&bpage->data[commit], &missed_events, 4565 sizeof(missed_events)); 4566 local_add(RB_MISSED_STORED, &bpage->commit); 4567 commit += sizeof(missed_events); 4568 } 4569 local_add(RB_MISSED_EVENTS, &bpage->commit); 4570 } 4571 4572 /* 4573 * This page may be off to user land. Zero it out here. 4574 */ 4575 if (commit < BUF_PAGE_SIZE) 4576 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 4577 4578 out_unlock: 4579 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4580 4581 out: 4582 return ret; 4583 } 4584 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 4585 4586 #ifdef CONFIG_HOTPLUG_CPU 4587 static int rb_cpu_notify(struct notifier_block *self, 4588 unsigned long action, void *hcpu) 4589 { 4590 struct ring_buffer *buffer = 4591 container_of(self, struct ring_buffer, cpu_notify); 4592 long cpu = (long)hcpu; 4593 int cpu_i, nr_pages_same; 4594 unsigned int nr_pages; 4595 4596 switch (action) { 4597 case CPU_UP_PREPARE: 4598 case CPU_UP_PREPARE_FROZEN: 4599 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4600 return NOTIFY_OK; 4601 4602 nr_pages = 0; 4603 nr_pages_same = 1; 4604 /* check if all cpu sizes are same */ 4605 for_each_buffer_cpu(buffer, cpu_i) { 4606 /* fill in the size from first enabled cpu */ 4607 if (nr_pages == 0) 4608 nr_pages = buffer->buffers[cpu_i]->nr_pages; 4609 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 4610 nr_pages_same = 0; 4611 break; 4612 } 4613 } 4614 /* allocate minimum pages, user can later expand it */ 4615 if (!nr_pages_same) 4616 nr_pages = 2; 4617 buffer->buffers[cpu] = 4618 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 4619 if (!buffer->buffers[cpu]) { 4620 WARN(1, "failed to allocate ring buffer on CPU %ld\n", 4621 cpu); 4622 return NOTIFY_OK; 4623 } 4624 smp_wmb(); 4625 cpumask_set_cpu(cpu, buffer->cpumask); 4626 break; 4627 case CPU_DOWN_PREPARE: 4628 case CPU_DOWN_PREPARE_FROZEN: 4629 /* 4630 * Do nothing. 4631 * If we were to free the buffer, then the user would 4632 * lose any trace that was in the buffer. 4633 */ 4634 break; 4635 default: 4636 break; 4637 } 4638 return NOTIFY_OK; 4639 } 4640 #endif 4641 4642 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 4643 /* 4644 * This is a basic integrity check of the ring buffer. 4645 * Late in the boot cycle this test will run when configured in. 4646 * It will kick off a thread per CPU that will go into a loop 4647 * writing to the per cpu ring buffer various sizes of data. 4648 * Some of the data will be large items, some small. 4649 * 4650 * Another thread is created that goes into a spin, sending out 4651 * IPIs to the other CPUs to also write into the ring buffer. 4652 * this is to test the nesting ability of the buffer. 4653 * 4654 * Basic stats are recorded and reported. If something in the 4655 * ring buffer should happen that's not expected, a big warning 4656 * is displayed and all ring buffers are disabled. 4657 */ 4658 static struct task_struct *rb_threads[NR_CPUS] __initdata; 4659 4660 struct rb_test_data { 4661 struct ring_buffer *buffer; 4662 unsigned long events; 4663 unsigned long bytes_written; 4664 unsigned long bytes_alloc; 4665 unsigned long bytes_dropped; 4666 unsigned long events_nested; 4667 unsigned long bytes_written_nested; 4668 unsigned long bytes_alloc_nested; 4669 unsigned long bytes_dropped_nested; 4670 int min_size_nested; 4671 int max_size_nested; 4672 int max_size; 4673 int min_size; 4674 int cpu; 4675 int cnt; 4676 }; 4677 4678 static struct rb_test_data rb_data[NR_CPUS] __initdata; 4679 4680 /* 1 meg per cpu */ 4681 #define RB_TEST_BUFFER_SIZE 1048576 4682 4683 static char rb_string[] __initdata = 4684 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 4685 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 4686 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 4687 4688 static bool rb_test_started __initdata; 4689 4690 struct rb_item { 4691 int size; 4692 char str[]; 4693 }; 4694 4695 static __init int rb_write_something(struct rb_test_data *data, bool nested) 4696 { 4697 struct ring_buffer_event *event; 4698 struct rb_item *item; 4699 bool started; 4700 int event_len; 4701 int size; 4702 int len; 4703 int cnt; 4704 4705 /* Have nested writes different that what is written */ 4706 cnt = data->cnt + (nested ? 27 : 0); 4707 4708 /* Multiply cnt by ~e, to make some unique increment */ 4709 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1); 4710 4711 len = size + sizeof(struct rb_item); 4712 4713 started = rb_test_started; 4714 /* read rb_test_started before checking buffer enabled */ 4715 smp_rmb(); 4716 4717 event = ring_buffer_lock_reserve(data->buffer, len); 4718 if (!event) { 4719 /* Ignore dropped events before test starts. */ 4720 if (started) { 4721 if (nested) 4722 data->bytes_dropped += len; 4723 else 4724 data->bytes_dropped_nested += len; 4725 } 4726 return len; 4727 } 4728 4729 event_len = ring_buffer_event_length(event); 4730 4731 if (RB_WARN_ON(data->buffer, event_len < len)) 4732 goto out; 4733 4734 item = ring_buffer_event_data(event); 4735 item->size = size; 4736 memcpy(item->str, rb_string, size); 4737 4738 if (nested) { 4739 data->bytes_alloc_nested += event_len; 4740 data->bytes_written_nested += len; 4741 data->events_nested++; 4742 if (!data->min_size_nested || len < data->min_size_nested) 4743 data->min_size_nested = len; 4744 if (len > data->max_size_nested) 4745 data->max_size_nested = len; 4746 } else { 4747 data->bytes_alloc += event_len; 4748 data->bytes_written += len; 4749 data->events++; 4750 if (!data->min_size || len < data->min_size) 4751 data->max_size = len; 4752 if (len > data->max_size) 4753 data->max_size = len; 4754 } 4755 4756 out: 4757 ring_buffer_unlock_commit(data->buffer, event); 4758 4759 return 0; 4760 } 4761 4762 static __init int rb_test(void *arg) 4763 { 4764 struct rb_test_data *data = arg; 4765 4766 while (!kthread_should_stop()) { 4767 rb_write_something(data, false); 4768 data->cnt++; 4769 4770 set_current_state(TASK_INTERRUPTIBLE); 4771 /* Now sleep between a min of 100-300us and a max of 1ms */ 4772 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 4773 } 4774 4775 return 0; 4776 } 4777 4778 static __init void rb_ipi(void *ignore) 4779 { 4780 struct rb_test_data *data; 4781 int cpu = smp_processor_id(); 4782 4783 data = &rb_data[cpu]; 4784 rb_write_something(data, true); 4785 } 4786 4787 static __init int rb_hammer_test(void *arg) 4788 { 4789 while (!kthread_should_stop()) { 4790 4791 /* Send an IPI to all cpus to write data! */ 4792 smp_call_function(rb_ipi, NULL, 1); 4793 /* No sleep, but for non preempt, let others run */ 4794 schedule(); 4795 } 4796 4797 return 0; 4798 } 4799 4800 static __init int test_ringbuffer(void) 4801 { 4802 struct task_struct *rb_hammer; 4803 struct ring_buffer *buffer; 4804 int cpu; 4805 int ret = 0; 4806 4807 pr_info("Running ring buffer tests...\n"); 4808 4809 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 4810 if (WARN_ON(!buffer)) 4811 return 0; 4812 4813 /* Disable buffer so that threads can't write to it yet */ 4814 ring_buffer_record_off(buffer); 4815 4816 for_each_online_cpu(cpu) { 4817 rb_data[cpu].buffer = buffer; 4818 rb_data[cpu].cpu = cpu; 4819 rb_data[cpu].cnt = cpu; 4820 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu], 4821 "rbtester/%d", cpu); 4822 if (WARN_ON(!rb_threads[cpu])) { 4823 pr_cont("FAILED\n"); 4824 ret = -1; 4825 goto out_free; 4826 } 4827 4828 kthread_bind(rb_threads[cpu], cpu); 4829 wake_up_process(rb_threads[cpu]); 4830 } 4831 4832 /* Now create the rb hammer! */ 4833 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 4834 if (WARN_ON(!rb_hammer)) { 4835 pr_cont("FAILED\n"); 4836 ret = -1; 4837 goto out_free; 4838 } 4839 4840 ring_buffer_record_on(buffer); 4841 /* 4842 * Show buffer is enabled before setting rb_test_started. 4843 * Yes there's a small race window where events could be 4844 * dropped and the thread wont catch it. But when a ring 4845 * buffer gets enabled, there will always be some kind of 4846 * delay before other CPUs see it. Thus, we don't care about 4847 * those dropped events. We care about events dropped after 4848 * the threads see that the buffer is active. 4849 */ 4850 smp_wmb(); 4851 rb_test_started = true; 4852 4853 set_current_state(TASK_INTERRUPTIBLE); 4854 /* Just run for 10 seconds */; 4855 schedule_timeout(10 * HZ); 4856 4857 kthread_stop(rb_hammer); 4858 4859 out_free: 4860 for_each_online_cpu(cpu) { 4861 if (!rb_threads[cpu]) 4862 break; 4863 kthread_stop(rb_threads[cpu]); 4864 } 4865 if (ret) { 4866 ring_buffer_free(buffer); 4867 return ret; 4868 } 4869 4870 /* Report! */ 4871 pr_info("finished\n"); 4872 for_each_online_cpu(cpu) { 4873 struct ring_buffer_event *event; 4874 struct rb_test_data *data = &rb_data[cpu]; 4875 struct rb_item *item; 4876 unsigned long total_events; 4877 unsigned long total_dropped; 4878 unsigned long total_written; 4879 unsigned long total_alloc; 4880 unsigned long total_read = 0; 4881 unsigned long total_size = 0; 4882 unsigned long total_len = 0; 4883 unsigned long total_lost = 0; 4884 unsigned long lost; 4885 int big_event_size; 4886 int small_event_size; 4887 4888 ret = -1; 4889 4890 total_events = data->events + data->events_nested; 4891 total_written = data->bytes_written + data->bytes_written_nested; 4892 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 4893 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 4894 4895 big_event_size = data->max_size + data->max_size_nested; 4896 small_event_size = data->min_size + data->min_size_nested; 4897 4898 pr_info("CPU %d:\n", cpu); 4899 pr_info(" events: %ld\n", total_events); 4900 pr_info(" dropped bytes: %ld\n", total_dropped); 4901 pr_info(" alloced bytes: %ld\n", total_alloc); 4902 pr_info(" written bytes: %ld\n", total_written); 4903 pr_info(" biggest event: %d\n", big_event_size); 4904 pr_info(" smallest event: %d\n", small_event_size); 4905 4906 if (RB_WARN_ON(buffer, total_dropped)) 4907 break; 4908 4909 ret = 0; 4910 4911 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 4912 total_lost += lost; 4913 item = ring_buffer_event_data(event); 4914 total_len += ring_buffer_event_length(event); 4915 total_size += item->size + sizeof(struct rb_item); 4916 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 4917 pr_info("FAILED!\n"); 4918 pr_info("buffer had: %.*s\n", item->size, item->str); 4919 pr_info("expected: %.*s\n", item->size, rb_string); 4920 RB_WARN_ON(buffer, 1); 4921 ret = -1; 4922 break; 4923 } 4924 total_read++; 4925 } 4926 if (ret) 4927 break; 4928 4929 ret = -1; 4930 4931 pr_info(" read events: %ld\n", total_read); 4932 pr_info(" lost events: %ld\n", total_lost); 4933 pr_info(" total events: %ld\n", total_lost + total_read); 4934 pr_info(" recorded len bytes: %ld\n", total_len); 4935 pr_info(" recorded size bytes: %ld\n", total_size); 4936 if (total_lost) 4937 pr_info(" With dropped events, record len and size may not match\n" 4938 " alloced and written from above\n"); 4939 if (!total_lost) { 4940 if (RB_WARN_ON(buffer, total_len != total_alloc || 4941 total_size != total_written)) 4942 break; 4943 } 4944 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 4945 break; 4946 4947 ret = 0; 4948 } 4949 if (!ret) 4950 pr_info("Ring buffer PASSED!\n"); 4951 4952 ring_buffer_free(buffer); 4953 return 0; 4954 } 4955 4956 late_initcall(test_ringbuffer); 4957 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 4958