1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic ring buffer 4 * 5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 6 */ 7 #include <linux/trace_recursion.h> 8 #include <linux/trace_events.h> 9 #include <linux/ring_buffer.h> 10 #include <linux/trace_clock.h> 11 #include <linux/sched/clock.h> 12 #include <linux/trace_seq.h> 13 #include <linux/spinlock.h> 14 #include <linux/irq_work.h> 15 #include <linux/security.h> 16 #include <linux/uaccess.h> 17 #include <linux/hardirq.h> 18 #include <linux/kthread.h> /* for self test */ 19 #include <linux/module.h> 20 #include <linux/percpu.h> 21 #include <linux/mutex.h> 22 #include <linux/delay.h> 23 #include <linux/slab.h> 24 #include <linux/init.h> 25 #include <linux/hash.h> 26 #include <linux/list.h> 27 #include <linux/cpu.h> 28 #include <linux/oom.h> 29 30 #include <asm/local64.h> 31 #include <asm/local.h> 32 33 /* 34 * The "absolute" timestamp in the buffer is only 59 bits. 35 * If a clock has the 5 MSBs set, it needs to be saved and 36 * reinserted. 37 */ 38 #define TS_MSB (0xf8ULL << 56) 39 #define ABS_TS_MASK (~TS_MSB) 40 41 static void update_pages_handler(struct work_struct *work); 42 43 /* 44 * The ring buffer header is special. We must manually up keep it. 45 */ 46 int ring_buffer_print_entry_header(struct trace_seq *s) 47 { 48 trace_seq_puts(s, "# compressed entry header\n"); 49 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 50 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 51 trace_seq_puts(s, "\tarray : 32 bits\n"); 52 trace_seq_putc(s, '\n'); 53 trace_seq_printf(s, "\tpadding : type == %d\n", 54 RINGBUF_TYPE_PADDING); 55 trace_seq_printf(s, "\ttime_extend : type == %d\n", 56 RINGBUF_TYPE_TIME_EXTEND); 57 trace_seq_printf(s, "\ttime_stamp : type == %d\n", 58 RINGBUF_TYPE_TIME_STAMP); 59 trace_seq_printf(s, "\tdata max type_len == %d\n", 60 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 61 62 return !trace_seq_has_overflowed(s); 63 } 64 65 /* 66 * The ring buffer is made up of a list of pages. A separate list of pages is 67 * allocated for each CPU. A writer may only write to a buffer that is 68 * associated with the CPU it is currently executing on. A reader may read 69 * from any per cpu buffer. 70 * 71 * The reader is special. For each per cpu buffer, the reader has its own 72 * reader page. When a reader has read the entire reader page, this reader 73 * page is swapped with another page in the ring buffer. 74 * 75 * Now, as long as the writer is off the reader page, the reader can do what 76 * ever it wants with that page. The writer will never write to that page 77 * again (as long as it is out of the ring buffer). 78 * 79 * Here's some silly ASCII art. 80 * 81 * +------+ 82 * |reader| RING BUFFER 83 * |page | 84 * +------+ +---+ +---+ +---+ 85 * | |-->| |-->| | 86 * +---+ +---+ +---+ 87 * ^ | 88 * | | 89 * +---------------+ 90 * 91 * 92 * +------+ 93 * |reader| RING BUFFER 94 * |page |------------------v 95 * +------+ +---+ +---+ +---+ 96 * | |-->| |-->| | 97 * +---+ +---+ +---+ 98 * ^ | 99 * | | 100 * +---------------+ 101 * 102 * 103 * +------+ 104 * |reader| RING BUFFER 105 * |page |------------------v 106 * +------+ +---+ +---+ +---+ 107 * ^ | |-->| |-->| | 108 * | +---+ +---+ +---+ 109 * | | 110 * | | 111 * +------------------------------+ 112 * 113 * 114 * +------+ 115 * |buffer| RING BUFFER 116 * |page |------------------v 117 * +------+ +---+ +---+ +---+ 118 * ^ | | | |-->| | 119 * | New +---+ +---+ +---+ 120 * | Reader------^ | 121 * | page | 122 * +------------------------------+ 123 * 124 * 125 * After we make this swap, the reader can hand this page off to the splice 126 * code and be done with it. It can even allocate a new page if it needs to 127 * and swap that into the ring buffer. 128 * 129 * We will be using cmpxchg soon to make all this lockless. 130 * 131 */ 132 133 /* Used for individual buffers (after the counter) */ 134 #define RB_BUFFER_OFF (1 << 20) 135 136 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 137 138 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 139 #define RB_ALIGNMENT 4U 140 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 141 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 142 143 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 144 # define RB_FORCE_8BYTE_ALIGNMENT 0 145 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 146 #else 147 # define RB_FORCE_8BYTE_ALIGNMENT 1 148 # define RB_ARCH_ALIGNMENT 8U 149 #endif 150 151 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 152 153 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 154 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 155 156 enum { 157 RB_LEN_TIME_EXTEND = 8, 158 RB_LEN_TIME_STAMP = 8, 159 }; 160 161 #define skip_time_extend(event) \ 162 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 163 164 #define extended_time(event) \ 165 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) 166 167 static inline bool rb_null_event(struct ring_buffer_event *event) 168 { 169 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 170 } 171 172 static void rb_event_set_padding(struct ring_buffer_event *event) 173 { 174 /* padding has a NULL time_delta */ 175 event->type_len = RINGBUF_TYPE_PADDING; 176 event->time_delta = 0; 177 } 178 179 static unsigned 180 rb_event_data_length(struct ring_buffer_event *event) 181 { 182 unsigned length; 183 184 if (event->type_len) 185 length = event->type_len * RB_ALIGNMENT; 186 else 187 length = event->array[0]; 188 return length + RB_EVNT_HDR_SIZE; 189 } 190 191 /* 192 * Return the length of the given event. Will return 193 * the length of the time extend if the event is a 194 * time extend. 195 */ 196 static inline unsigned 197 rb_event_length(struct ring_buffer_event *event) 198 { 199 switch (event->type_len) { 200 case RINGBUF_TYPE_PADDING: 201 if (rb_null_event(event)) 202 /* undefined */ 203 return -1; 204 return event->array[0] + RB_EVNT_HDR_SIZE; 205 206 case RINGBUF_TYPE_TIME_EXTEND: 207 return RB_LEN_TIME_EXTEND; 208 209 case RINGBUF_TYPE_TIME_STAMP: 210 return RB_LEN_TIME_STAMP; 211 212 case RINGBUF_TYPE_DATA: 213 return rb_event_data_length(event); 214 default: 215 WARN_ON_ONCE(1); 216 } 217 /* not hit */ 218 return 0; 219 } 220 221 /* 222 * Return total length of time extend and data, 223 * or just the event length for all other events. 224 */ 225 static inline unsigned 226 rb_event_ts_length(struct ring_buffer_event *event) 227 { 228 unsigned len = 0; 229 230 if (extended_time(event)) { 231 /* time extends include the data event after it */ 232 len = RB_LEN_TIME_EXTEND; 233 event = skip_time_extend(event); 234 } 235 return len + rb_event_length(event); 236 } 237 238 /** 239 * ring_buffer_event_length - return the length of the event 240 * @event: the event to get the length of 241 * 242 * Returns the size of the data load of a data event. 243 * If the event is something other than a data event, it 244 * returns the size of the event itself. With the exception 245 * of a TIME EXTEND, where it still returns the size of the 246 * data load of the data event after it. 247 */ 248 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 249 { 250 unsigned length; 251 252 if (extended_time(event)) 253 event = skip_time_extend(event); 254 255 length = rb_event_length(event); 256 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 257 return length; 258 length -= RB_EVNT_HDR_SIZE; 259 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 260 length -= sizeof(event->array[0]); 261 return length; 262 } 263 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 264 265 /* inline for ring buffer fast paths */ 266 static __always_inline void * 267 rb_event_data(struct ring_buffer_event *event) 268 { 269 if (extended_time(event)) 270 event = skip_time_extend(event); 271 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 272 /* If length is in len field, then array[0] has the data */ 273 if (event->type_len) 274 return (void *)&event->array[0]; 275 /* Otherwise length is in array[0] and array[1] has the data */ 276 return (void *)&event->array[1]; 277 } 278 279 /** 280 * ring_buffer_event_data - return the data of the event 281 * @event: the event to get the data from 282 */ 283 void *ring_buffer_event_data(struct ring_buffer_event *event) 284 { 285 return rb_event_data(event); 286 } 287 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 288 289 #define for_each_buffer_cpu(buffer, cpu) \ 290 for_each_cpu(cpu, buffer->cpumask) 291 292 #define for_each_online_buffer_cpu(buffer, cpu) \ 293 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask) 294 295 #define TS_SHIFT 27 296 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 297 #define TS_DELTA_TEST (~TS_MASK) 298 299 static u64 rb_event_time_stamp(struct ring_buffer_event *event) 300 { 301 u64 ts; 302 303 ts = event->array[0]; 304 ts <<= TS_SHIFT; 305 ts += event->time_delta; 306 307 return ts; 308 } 309 310 /* Flag when events were overwritten */ 311 #define RB_MISSED_EVENTS (1 << 31) 312 /* Missed count stored at end */ 313 #define RB_MISSED_STORED (1 << 30) 314 315 struct buffer_data_page { 316 u64 time_stamp; /* page time stamp */ 317 local_t commit; /* write committed index */ 318 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 319 }; 320 321 struct buffer_data_read_page { 322 unsigned order; /* order of the page */ 323 struct buffer_data_page *data; /* actual data, stored in this page */ 324 }; 325 326 /* 327 * Note, the buffer_page list must be first. The buffer pages 328 * are allocated in cache lines, which means that each buffer 329 * page will be at the beginning of a cache line, and thus 330 * the least significant bits will be zero. We use this to 331 * add flags in the list struct pointers, to make the ring buffer 332 * lockless. 333 */ 334 struct buffer_page { 335 struct list_head list; /* list of buffer pages */ 336 local_t write; /* index for next write */ 337 unsigned read; /* index for next read */ 338 local_t entries; /* entries on this page */ 339 unsigned long real_end; /* real end of data */ 340 unsigned order; /* order of the page */ 341 struct buffer_data_page *page; /* Actual data page */ 342 }; 343 344 /* 345 * The buffer page counters, write and entries, must be reset 346 * atomically when crossing page boundaries. To synchronize this 347 * update, two counters are inserted into the number. One is 348 * the actual counter for the write position or count on the page. 349 * 350 * The other is a counter of updaters. Before an update happens 351 * the update partition of the counter is incremented. This will 352 * allow the updater to update the counter atomically. 353 * 354 * The counter is 20 bits, and the state data is 12. 355 */ 356 #define RB_WRITE_MASK 0xfffff 357 #define RB_WRITE_INTCNT (1 << 20) 358 359 static void rb_init_page(struct buffer_data_page *bpage) 360 { 361 local_set(&bpage->commit, 0); 362 } 363 364 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage) 365 { 366 return local_read(&bpage->page->commit); 367 } 368 369 static void free_buffer_page(struct buffer_page *bpage) 370 { 371 free_pages((unsigned long)bpage->page, bpage->order); 372 kfree(bpage); 373 } 374 375 /* 376 * We need to fit the time_stamp delta into 27 bits. 377 */ 378 static inline bool test_time_stamp(u64 delta) 379 { 380 return !!(delta & TS_DELTA_TEST); 381 } 382 383 struct rb_irq_work { 384 struct irq_work work; 385 wait_queue_head_t waiters; 386 wait_queue_head_t full_waiters; 387 long wait_index; 388 bool waiters_pending; 389 bool full_waiters_pending; 390 bool wakeup_full; 391 }; 392 393 /* 394 * Structure to hold event state and handle nested events. 395 */ 396 struct rb_event_info { 397 u64 ts; 398 u64 delta; 399 u64 before; 400 u64 after; 401 unsigned long length; 402 struct buffer_page *tail_page; 403 int add_timestamp; 404 }; 405 406 /* 407 * Used for the add_timestamp 408 * NONE 409 * EXTEND - wants a time extend 410 * ABSOLUTE - the buffer requests all events to have absolute time stamps 411 * FORCE - force a full time stamp. 412 */ 413 enum { 414 RB_ADD_STAMP_NONE = 0, 415 RB_ADD_STAMP_EXTEND = BIT(1), 416 RB_ADD_STAMP_ABSOLUTE = BIT(2), 417 RB_ADD_STAMP_FORCE = BIT(3) 418 }; 419 /* 420 * Used for which event context the event is in. 421 * TRANSITION = 0 422 * NMI = 1 423 * IRQ = 2 424 * SOFTIRQ = 3 425 * NORMAL = 4 426 * 427 * See trace_recursive_lock() comment below for more details. 428 */ 429 enum { 430 RB_CTX_TRANSITION, 431 RB_CTX_NMI, 432 RB_CTX_IRQ, 433 RB_CTX_SOFTIRQ, 434 RB_CTX_NORMAL, 435 RB_CTX_MAX 436 }; 437 438 struct rb_time_struct { 439 local64_t time; 440 }; 441 typedef struct rb_time_struct rb_time_t; 442 443 #define MAX_NEST 5 444 445 /* 446 * head_page == tail_page && head == tail then buffer is empty. 447 */ 448 struct ring_buffer_per_cpu { 449 int cpu; 450 atomic_t record_disabled; 451 atomic_t resize_disabled; 452 struct trace_buffer *buffer; 453 raw_spinlock_t reader_lock; /* serialize readers */ 454 arch_spinlock_t lock; 455 struct lock_class_key lock_key; 456 struct buffer_data_page *free_page; 457 unsigned long nr_pages; 458 unsigned int current_context; 459 struct list_head *pages; 460 struct buffer_page *head_page; /* read from head */ 461 struct buffer_page *tail_page; /* write to tail */ 462 struct buffer_page *commit_page; /* committed pages */ 463 struct buffer_page *reader_page; 464 unsigned long lost_events; 465 unsigned long last_overrun; 466 unsigned long nest; 467 local_t entries_bytes; 468 local_t entries; 469 local_t overrun; 470 local_t commit_overrun; 471 local_t dropped_events; 472 local_t committing; 473 local_t commits; 474 local_t pages_touched; 475 local_t pages_lost; 476 local_t pages_read; 477 long last_pages_touch; 478 size_t shortest_full; 479 unsigned long read; 480 unsigned long read_bytes; 481 rb_time_t write_stamp; 482 rb_time_t before_stamp; 483 u64 event_stamp[MAX_NEST]; 484 u64 read_stamp; 485 /* pages removed since last reset */ 486 unsigned long pages_removed; 487 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 488 long nr_pages_to_update; 489 struct list_head new_pages; /* new pages to add */ 490 struct work_struct update_pages_work; 491 struct completion update_done; 492 493 struct rb_irq_work irq_work; 494 }; 495 496 struct trace_buffer { 497 unsigned flags; 498 int cpus; 499 atomic_t record_disabled; 500 atomic_t resizing; 501 cpumask_var_t cpumask; 502 503 struct lock_class_key *reader_lock_key; 504 505 struct mutex mutex; 506 507 struct ring_buffer_per_cpu **buffers; 508 509 struct hlist_node node; 510 u64 (*clock)(void); 511 512 struct rb_irq_work irq_work; 513 bool time_stamp_abs; 514 515 unsigned int subbuf_size; 516 unsigned int subbuf_order; 517 unsigned int max_data_size; 518 }; 519 520 struct ring_buffer_iter { 521 struct ring_buffer_per_cpu *cpu_buffer; 522 unsigned long head; 523 unsigned long next_event; 524 struct buffer_page *head_page; 525 struct buffer_page *cache_reader_page; 526 unsigned long cache_read; 527 unsigned long cache_pages_removed; 528 u64 read_stamp; 529 u64 page_stamp; 530 struct ring_buffer_event *event; 531 size_t event_size; 532 int missed_events; 533 }; 534 535 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s) 536 { 537 struct buffer_data_page field; 538 539 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 540 "offset:0;\tsize:%u;\tsigned:%u;\n", 541 (unsigned int)sizeof(field.time_stamp), 542 (unsigned int)is_signed_type(u64)); 543 544 trace_seq_printf(s, "\tfield: local_t commit;\t" 545 "offset:%u;\tsize:%u;\tsigned:%u;\n", 546 (unsigned int)offsetof(typeof(field), commit), 547 (unsigned int)sizeof(field.commit), 548 (unsigned int)is_signed_type(long)); 549 550 trace_seq_printf(s, "\tfield: int overwrite;\t" 551 "offset:%u;\tsize:%u;\tsigned:%u;\n", 552 (unsigned int)offsetof(typeof(field), commit), 553 1, 554 (unsigned int)is_signed_type(long)); 555 556 trace_seq_printf(s, "\tfield: char data;\t" 557 "offset:%u;\tsize:%u;\tsigned:%u;\n", 558 (unsigned int)offsetof(typeof(field), data), 559 (unsigned int)buffer->subbuf_size, 560 (unsigned int)is_signed_type(char)); 561 562 return !trace_seq_has_overflowed(s); 563 } 564 565 static inline void rb_time_read(rb_time_t *t, u64 *ret) 566 { 567 *ret = local64_read(&t->time); 568 } 569 static void rb_time_set(rb_time_t *t, u64 val) 570 { 571 local64_set(&t->time, val); 572 } 573 574 /* 575 * Enable this to make sure that the event passed to 576 * ring_buffer_event_time_stamp() is not committed and also 577 * is on the buffer that it passed in. 578 */ 579 //#define RB_VERIFY_EVENT 580 #ifdef RB_VERIFY_EVENT 581 static struct list_head *rb_list_head(struct list_head *list); 582 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 583 void *event) 584 { 585 struct buffer_page *page = cpu_buffer->commit_page; 586 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page); 587 struct list_head *next; 588 long commit, write; 589 unsigned long addr = (unsigned long)event; 590 bool done = false; 591 int stop = 0; 592 593 /* Make sure the event exists and is not committed yet */ 594 do { 595 if (page == tail_page || WARN_ON_ONCE(stop++ > 100)) 596 done = true; 597 commit = local_read(&page->page->commit); 598 write = local_read(&page->write); 599 if (addr >= (unsigned long)&page->page->data[commit] && 600 addr < (unsigned long)&page->page->data[write]) 601 return; 602 603 next = rb_list_head(page->list.next); 604 page = list_entry(next, struct buffer_page, list); 605 } while (!done); 606 WARN_ON_ONCE(1); 607 } 608 #else 609 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 610 void *event) 611 { 612 } 613 #endif 614 615 /* 616 * The absolute time stamp drops the 5 MSBs and some clocks may 617 * require them. The rb_fix_abs_ts() will take a previous full 618 * time stamp, and add the 5 MSB of that time stamp on to the 619 * saved absolute time stamp. Then they are compared in case of 620 * the unlikely event that the latest time stamp incremented 621 * the 5 MSB. 622 */ 623 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts) 624 { 625 if (save_ts & TS_MSB) { 626 abs |= save_ts & TS_MSB; 627 /* Check for overflow */ 628 if (unlikely(abs < save_ts)) 629 abs += 1ULL << 59; 630 } 631 return abs; 632 } 633 634 static inline u64 rb_time_stamp(struct trace_buffer *buffer); 635 636 /** 637 * ring_buffer_event_time_stamp - return the event's current time stamp 638 * @buffer: The buffer that the event is on 639 * @event: the event to get the time stamp of 640 * 641 * Note, this must be called after @event is reserved, and before it is 642 * committed to the ring buffer. And must be called from the same 643 * context where the event was reserved (normal, softirq, irq, etc). 644 * 645 * Returns the time stamp associated with the current event. 646 * If the event has an extended time stamp, then that is used as 647 * the time stamp to return. 648 * In the highly unlikely case that the event was nested more than 649 * the max nesting, then the write_stamp of the buffer is returned, 650 * otherwise current time is returned, but that really neither of 651 * the last two cases should ever happen. 652 */ 653 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer, 654 struct ring_buffer_event *event) 655 { 656 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()]; 657 unsigned int nest; 658 u64 ts; 659 660 /* If the event includes an absolute time, then just use that */ 661 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) { 662 ts = rb_event_time_stamp(event); 663 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp); 664 } 665 666 nest = local_read(&cpu_buffer->committing); 667 verify_event(cpu_buffer, event); 668 if (WARN_ON_ONCE(!nest)) 669 goto fail; 670 671 /* Read the current saved nesting level time stamp */ 672 if (likely(--nest < MAX_NEST)) 673 return cpu_buffer->event_stamp[nest]; 674 675 /* Shouldn't happen, warn if it does */ 676 WARN_ONCE(1, "nest (%d) greater than max", nest); 677 678 fail: 679 rb_time_read(&cpu_buffer->write_stamp, &ts); 680 681 return ts; 682 } 683 684 /** 685 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer 686 * @buffer: The ring_buffer to get the number of pages from 687 * @cpu: The cpu of the ring_buffer to get the number of pages from 688 * 689 * Returns the number of pages used by a per_cpu buffer of the ring buffer. 690 */ 691 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu) 692 { 693 return buffer->buffers[cpu]->nr_pages; 694 } 695 696 /** 697 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer 698 * @buffer: The ring_buffer to get the number of pages from 699 * @cpu: The cpu of the ring_buffer to get the number of pages from 700 * 701 * Returns the number of pages that have content in the ring buffer. 702 */ 703 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu) 704 { 705 size_t read; 706 size_t lost; 707 size_t cnt; 708 709 read = local_read(&buffer->buffers[cpu]->pages_read); 710 lost = local_read(&buffer->buffers[cpu]->pages_lost); 711 cnt = local_read(&buffer->buffers[cpu]->pages_touched); 712 713 if (WARN_ON_ONCE(cnt < lost)) 714 return 0; 715 716 cnt -= lost; 717 718 /* The reader can read an empty page, but not more than that */ 719 if (cnt < read) { 720 WARN_ON_ONCE(read > cnt + 1); 721 return 0; 722 } 723 724 return cnt - read; 725 } 726 727 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full) 728 { 729 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 730 size_t nr_pages; 731 size_t dirty; 732 733 nr_pages = cpu_buffer->nr_pages; 734 if (!nr_pages || !full) 735 return true; 736 737 /* 738 * Add one as dirty will never equal nr_pages, as the sub-buffer 739 * that the writer is on is not counted as dirty. 740 * This is needed if "buffer_percent" is set to 100. 741 */ 742 dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1; 743 744 return (dirty * 100) >= (full * nr_pages); 745 } 746 747 /* 748 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 749 * 750 * Schedules a delayed work to wake up any task that is blocked on the 751 * ring buffer waiters queue. 752 */ 753 static void rb_wake_up_waiters(struct irq_work *work) 754 { 755 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 756 757 wake_up_all(&rbwork->waiters); 758 if (rbwork->full_waiters_pending || rbwork->wakeup_full) { 759 rbwork->wakeup_full = false; 760 rbwork->full_waiters_pending = false; 761 wake_up_all(&rbwork->full_waiters); 762 } 763 } 764 765 /** 766 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer 767 * @buffer: The ring buffer to wake waiters on 768 * @cpu: The CPU buffer to wake waiters on 769 * 770 * In the case of a file that represents a ring buffer is closing, 771 * it is prudent to wake up any waiters that are on this. 772 */ 773 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu) 774 { 775 struct ring_buffer_per_cpu *cpu_buffer; 776 struct rb_irq_work *rbwork; 777 778 if (!buffer) 779 return; 780 781 if (cpu == RING_BUFFER_ALL_CPUS) { 782 783 /* Wake up individual ones too. One level recursion */ 784 for_each_buffer_cpu(buffer, cpu) 785 ring_buffer_wake_waiters(buffer, cpu); 786 787 rbwork = &buffer->irq_work; 788 } else { 789 if (WARN_ON_ONCE(!buffer->buffers)) 790 return; 791 if (WARN_ON_ONCE(cpu >= nr_cpu_ids)) 792 return; 793 794 cpu_buffer = buffer->buffers[cpu]; 795 /* The CPU buffer may not have been initialized yet */ 796 if (!cpu_buffer) 797 return; 798 rbwork = &cpu_buffer->irq_work; 799 } 800 801 rbwork->wait_index++; 802 /* make sure the waiters see the new index */ 803 smp_wmb(); 804 805 /* This can be called in any context */ 806 irq_work_queue(&rbwork->work); 807 } 808 809 /** 810 * ring_buffer_wait - wait for input to the ring buffer 811 * @buffer: buffer to wait on 812 * @cpu: the cpu buffer to wait on 813 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 814 * 815 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 816 * as data is added to any of the @buffer's cpu buffers. Otherwise 817 * it will wait for data to be added to a specific cpu buffer. 818 */ 819 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full) 820 { 821 struct ring_buffer_per_cpu *cpu_buffer; 822 DEFINE_WAIT(wait); 823 struct rb_irq_work *work; 824 long wait_index; 825 int ret = 0; 826 827 /* 828 * Depending on what the caller is waiting for, either any 829 * data in any cpu buffer, or a specific buffer, put the 830 * caller on the appropriate wait queue. 831 */ 832 if (cpu == RING_BUFFER_ALL_CPUS) { 833 work = &buffer->irq_work; 834 /* Full only makes sense on per cpu reads */ 835 full = 0; 836 } else { 837 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 838 return -ENODEV; 839 cpu_buffer = buffer->buffers[cpu]; 840 work = &cpu_buffer->irq_work; 841 } 842 843 wait_index = READ_ONCE(work->wait_index); 844 845 while (true) { 846 if (full) 847 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE); 848 else 849 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 850 851 /* 852 * The events can happen in critical sections where 853 * checking a work queue can cause deadlocks. 854 * After adding a task to the queue, this flag is set 855 * only to notify events to try to wake up the queue 856 * using irq_work. 857 * 858 * We don't clear it even if the buffer is no longer 859 * empty. The flag only causes the next event to run 860 * irq_work to do the work queue wake up. The worse 861 * that can happen if we race with !trace_empty() is that 862 * an event will cause an irq_work to try to wake up 863 * an empty queue. 864 * 865 * There's no reason to protect this flag either, as 866 * the work queue and irq_work logic will do the necessary 867 * synchronization for the wake ups. The only thing 868 * that is necessary is that the wake up happens after 869 * a task has been queued. It's OK for spurious wake ups. 870 */ 871 if (full) 872 work->full_waiters_pending = true; 873 else 874 work->waiters_pending = true; 875 876 if (signal_pending(current)) { 877 ret = -EINTR; 878 break; 879 } 880 881 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) 882 break; 883 884 if (cpu != RING_BUFFER_ALL_CPUS && 885 !ring_buffer_empty_cpu(buffer, cpu)) { 886 unsigned long flags; 887 bool pagebusy; 888 bool done; 889 890 if (!full) 891 break; 892 893 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 894 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 895 done = !pagebusy && full_hit(buffer, cpu, full); 896 897 if (!cpu_buffer->shortest_full || 898 cpu_buffer->shortest_full > full) 899 cpu_buffer->shortest_full = full; 900 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 901 if (done) 902 break; 903 } 904 905 schedule(); 906 907 /* Make sure to see the new wait index */ 908 smp_rmb(); 909 if (wait_index != work->wait_index) 910 break; 911 } 912 913 if (full) 914 finish_wait(&work->full_waiters, &wait); 915 else 916 finish_wait(&work->waiters, &wait); 917 918 return ret; 919 } 920 921 /** 922 * ring_buffer_poll_wait - poll on buffer input 923 * @buffer: buffer to wait on 924 * @cpu: the cpu buffer to wait on 925 * @filp: the file descriptor 926 * @poll_table: The poll descriptor 927 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 928 * 929 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 930 * as data is added to any of the @buffer's cpu buffers. Otherwise 931 * it will wait for data to be added to a specific cpu buffer. 932 * 933 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, 934 * zero otherwise. 935 */ 936 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu, 937 struct file *filp, poll_table *poll_table, int full) 938 { 939 struct ring_buffer_per_cpu *cpu_buffer; 940 struct rb_irq_work *work; 941 942 if (cpu == RING_BUFFER_ALL_CPUS) { 943 work = &buffer->irq_work; 944 full = 0; 945 } else { 946 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 947 return -EINVAL; 948 949 cpu_buffer = buffer->buffers[cpu]; 950 work = &cpu_buffer->irq_work; 951 } 952 953 if (full) { 954 poll_wait(filp, &work->full_waiters, poll_table); 955 work->full_waiters_pending = true; 956 if (!cpu_buffer->shortest_full || 957 cpu_buffer->shortest_full > full) 958 cpu_buffer->shortest_full = full; 959 } else { 960 poll_wait(filp, &work->waiters, poll_table); 961 work->waiters_pending = true; 962 } 963 964 /* 965 * There's a tight race between setting the waiters_pending and 966 * checking if the ring buffer is empty. Once the waiters_pending bit 967 * is set, the next event will wake the task up, but we can get stuck 968 * if there's only a single event in. 969 * 970 * FIXME: Ideally, we need a memory barrier on the writer side as well, 971 * but adding a memory barrier to all events will cause too much of a 972 * performance hit in the fast path. We only need a memory barrier when 973 * the buffer goes from empty to having content. But as this race is 974 * extremely small, and it's not a problem if another event comes in, we 975 * will fix it later. 976 */ 977 smp_mb(); 978 979 if (full) 980 return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0; 981 982 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 983 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 984 return EPOLLIN | EPOLLRDNORM; 985 return 0; 986 } 987 988 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 989 #define RB_WARN_ON(b, cond) \ 990 ({ \ 991 int _____ret = unlikely(cond); \ 992 if (_____ret) { \ 993 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 994 struct ring_buffer_per_cpu *__b = \ 995 (void *)b; \ 996 atomic_inc(&__b->buffer->record_disabled); \ 997 } else \ 998 atomic_inc(&b->record_disabled); \ 999 WARN_ON(1); \ 1000 } \ 1001 _____ret; \ 1002 }) 1003 1004 /* Up this if you want to test the TIME_EXTENTS and normalization */ 1005 #define DEBUG_SHIFT 0 1006 1007 static inline u64 rb_time_stamp(struct trace_buffer *buffer) 1008 { 1009 u64 ts; 1010 1011 /* Skip retpolines :-( */ 1012 if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local)) 1013 ts = trace_clock_local(); 1014 else 1015 ts = buffer->clock(); 1016 1017 /* shift to debug/test normalization and TIME_EXTENTS */ 1018 return ts << DEBUG_SHIFT; 1019 } 1020 1021 u64 ring_buffer_time_stamp(struct trace_buffer *buffer) 1022 { 1023 u64 time; 1024 1025 preempt_disable_notrace(); 1026 time = rb_time_stamp(buffer); 1027 preempt_enable_notrace(); 1028 1029 return time; 1030 } 1031 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 1032 1033 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer, 1034 int cpu, u64 *ts) 1035 { 1036 /* Just stupid testing the normalize function and deltas */ 1037 *ts >>= DEBUG_SHIFT; 1038 } 1039 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 1040 1041 /* 1042 * Making the ring buffer lockless makes things tricky. 1043 * Although writes only happen on the CPU that they are on, 1044 * and they only need to worry about interrupts. Reads can 1045 * happen on any CPU. 1046 * 1047 * The reader page is always off the ring buffer, but when the 1048 * reader finishes with a page, it needs to swap its page with 1049 * a new one from the buffer. The reader needs to take from 1050 * the head (writes go to the tail). But if a writer is in overwrite 1051 * mode and wraps, it must push the head page forward. 1052 * 1053 * Here lies the problem. 1054 * 1055 * The reader must be careful to replace only the head page, and 1056 * not another one. As described at the top of the file in the 1057 * ASCII art, the reader sets its old page to point to the next 1058 * page after head. It then sets the page after head to point to 1059 * the old reader page. But if the writer moves the head page 1060 * during this operation, the reader could end up with the tail. 1061 * 1062 * We use cmpxchg to help prevent this race. We also do something 1063 * special with the page before head. We set the LSB to 1. 1064 * 1065 * When the writer must push the page forward, it will clear the 1066 * bit that points to the head page, move the head, and then set 1067 * the bit that points to the new head page. 1068 * 1069 * We also don't want an interrupt coming in and moving the head 1070 * page on another writer. Thus we use the second LSB to catch 1071 * that too. Thus: 1072 * 1073 * head->list->prev->next bit 1 bit 0 1074 * ------- ------- 1075 * Normal page 0 0 1076 * Points to head page 0 1 1077 * New head page 1 0 1078 * 1079 * Note we can not trust the prev pointer of the head page, because: 1080 * 1081 * +----+ +-----+ +-----+ 1082 * | |------>| T |---X--->| N | 1083 * | |<------| | | | 1084 * +----+ +-----+ +-----+ 1085 * ^ ^ | 1086 * | +-----+ | | 1087 * +----------| R |----------+ | 1088 * | |<-----------+ 1089 * +-----+ 1090 * 1091 * Key: ---X--> HEAD flag set in pointer 1092 * T Tail page 1093 * R Reader page 1094 * N Next page 1095 * 1096 * (see __rb_reserve_next() to see where this happens) 1097 * 1098 * What the above shows is that the reader just swapped out 1099 * the reader page with a page in the buffer, but before it 1100 * could make the new header point back to the new page added 1101 * it was preempted by a writer. The writer moved forward onto 1102 * the new page added by the reader and is about to move forward 1103 * again. 1104 * 1105 * You can see, it is legitimate for the previous pointer of 1106 * the head (or any page) not to point back to itself. But only 1107 * temporarily. 1108 */ 1109 1110 #define RB_PAGE_NORMAL 0UL 1111 #define RB_PAGE_HEAD 1UL 1112 #define RB_PAGE_UPDATE 2UL 1113 1114 1115 #define RB_FLAG_MASK 3UL 1116 1117 /* PAGE_MOVED is not part of the mask */ 1118 #define RB_PAGE_MOVED 4UL 1119 1120 /* 1121 * rb_list_head - remove any bit 1122 */ 1123 static struct list_head *rb_list_head(struct list_head *list) 1124 { 1125 unsigned long val = (unsigned long)list; 1126 1127 return (struct list_head *)(val & ~RB_FLAG_MASK); 1128 } 1129 1130 /* 1131 * rb_is_head_page - test if the given page is the head page 1132 * 1133 * Because the reader may move the head_page pointer, we can 1134 * not trust what the head page is (it may be pointing to 1135 * the reader page). But if the next page is a header page, 1136 * its flags will be non zero. 1137 */ 1138 static inline int 1139 rb_is_head_page(struct buffer_page *page, struct list_head *list) 1140 { 1141 unsigned long val; 1142 1143 val = (unsigned long)list->next; 1144 1145 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 1146 return RB_PAGE_MOVED; 1147 1148 return val & RB_FLAG_MASK; 1149 } 1150 1151 /* 1152 * rb_is_reader_page 1153 * 1154 * The unique thing about the reader page, is that, if the 1155 * writer is ever on it, the previous pointer never points 1156 * back to the reader page. 1157 */ 1158 static bool rb_is_reader_page(struct buffer_page *page) 1159 { 1160 struct list_head *list = page->list.prev; 1161 1162 return rb_list_head(list->next) != &page->list; 1163 } 1164 1165 /* 1166 * rb_set_list_to_head - set a list_head to be pointing to head. 1167 */ 1168 static void rb_set_list_to_head(struct list_head *list) 1169 { 1170 unsigned long *ptr; 1171 1172 ptr = (unsigned long *)&list->next; 1173 *ptr |= RB_PAGE_HEAD; 1174 *ptr &= ~RB_PAGE_UPDATE; 1175 } 1176 1177 /* 1178 * rb_head_page_activate - sets up head page 1179 */ 1180 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 1181 { 1182 struct buffer_page *head; 1183 1184 head = cpu_buffer->head_page; 1185 if (!head) 1186 return; 1187 1188 /* 1189 * Set the previous list pointer to have the HEAD flag. 1190 */ 1191 rb_set_list_to_head(head->list.prev); 1192 } 1193 1194 static void rb_list_head_clear(struct list_head *list) 1195 { 1196 unsigned long *ptr = (unsigned long *)&list->next; 1197 1198 *ptr &= ~RB_FLAG_MASK; 1199 } 1200 1201 /* 1202 * rb_head_page_deactivate - clears head page ptr (for free list) 1203 */ 1204 static void 1205 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 1206 { 1207 struct list_head *hd; 1208 1209 /* Go through the whole list and clear any pointers found. */ 1210 rb_list_head_clear(cpu_buffer->pages); 1211 1212 list_for_each(hd, cpu_buffer->pages) 1213 rb_list_head_clear(hd); 1214 } 1215 1216 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 1217 struct buffer_page *head, 1218 struct buffer_page *prev, 1219 int old_flag, int new_flag) 1220 { 1221 struct list_head *list; 1222 unsigned long val = (unsigned long)&head->list; 1223 unsigned long ret; 1224 1225 list = &prev->list; 1226 1227 val &= ~RB_FLAG_MASK; 1228 1229 ret = cmpxchg((unsigned long *)&list->next, 1230 val | old_flag, val | new_flag); 1231 1232 /* check if the reader took the page */ 1233 if ((ret & ~RB_FLAG_MASK) != val) 1234 return RB_PAGE_MOVED; 1235 1236 return ret & RB_FLAG_MASK; 1237 } 1238 1239 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 1240 struct buffer_page *head, 1241 struct buffer_page *prev, 1242 int old_flag) 1243 { 1244 return rb_head_page_set(cpu_buffer, head, prev, 1245 old_flag, RB_PAGE_UPDATE); 1246 } 1247 1248 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 1249 struct buffer_page *head, 1250 struct buffer_page *prev, 1251 int old_flag) 1252 { 1253 return rb_head_page_set(cpu_buffer, head, prev, 1254 old_flag, RB_PAGE_HEAD); 1255 } 1256 1257 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 1258 struct buffer_page *head, 1259 struct buffer_page *prev, 1260 int old_flag) 1261 { 1262 return rb_head_page_set(cpu_buffer, head, prev, 1263 old_flag, RB_PAGE_NORMAL); 1264 } 1265 1266 static inline void rb_inc_page(struct buffer_page **bpage) 1267 { 1268 struct list_head *p = rb_list_head((*bpage)->list.next); 1269 1270 *bpage = list_entry(p, struct buffer_page, list); 1271 } 1272 1273 static struct buffer_page * 1274 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 1275 { 1276 struct buffer_page *head; 1277 struct buffer_page *page; 1278 struct list_head *list; 1279 int i; 1280 1281 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 1282 return NULL; 1283 1284 /* sanity check */ 1285 list = cpu_buffer->pages; 1286 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 1287 return NULL; 1288 1289 page = head = cpu_buffer->head_page; 1290 /* 1291 * It is possible that the writer moves the header behind 1292 * where we started, and we miss in one loop. 1293 * A second loop should grab the header, but we'll do 1294 * three loops just because I'm paranoid. 1295 */ 1296 for (i = 0; i < 3; i++) { 1297 do { 1298 if (rb_is_head_page(page, page->list.prev)) { 1299 cpu_buffer->head_page = page; 1300 return page; 1301 } 1302 rb_inc_page(&page); 1303 } while (page != head); 1304 } 1305 1306 RB_WARN_ON(cpu_buffer, 1); 1307 1308 return NULL; 1309 } 1310 1311 static bool rb_head_page_replace(struct buffer_page *old, 1312 struct buffer_page *new) 1313 { 1314 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1315 unsigned long val; 1316 1317 val = *ptr & ~RB_FLAG_MASK; 1318 val |= RB_PAGE_HEAD; 1319 1320 return try_cmpxchg(ptr, &val, (unsigned long)&new->list); 1321 } 1322 1323 /* 1324 * rb_tail_page_update - move the tail page forward 1325 */ 1326 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1327 struct buffer_page *tail_page, 1328 struct buffer_page *next_page) 1329 { 1330 unsigned long old_entries; 1331 unsigned long old_write; 1332 1333 /* 1334 * The tail page now needs to be moved forward. 1335 * 1336 * We need to reset the tail page, but without messing 1337 * with possible erasing of data brought in by interrupts 1338 * that have moved the tail page and are currently on it. 1339 * 1340 * We add a counter to the write field to denote this. 1341 */ 1342 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1343 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1344 1345 local_inc(&cpu_buffer->pages_touched); 1346 /* 1347 * Just make sure we have seen our old_write and synchronize 1348 * with any interrupts that come in. 1349 */ 1350 barrier(); 1351 1352 /* 1353 * If the tail page is still the same as what we think 1354 * it is, then it is up to us to update the tail 1355 * pointer. 1356 */ 1357 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1358 /* Zero the write counter */ 1359 unsigned long val = old_write & ~RB_WRITE_MASK; 1360 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1361 1362 /* 1363 * This will only succeed if an interrupt did 1364 * not come in and change it. In which case, we 1365 * do not want to modify it. 1366 * 1367 * We add (void) to let the compiler know that we do not care 1368 * about the return value of these functions. We use the 1369 * cmpxchg to only update if an interrupt did not already 1370 * do it for us. If the cmpxchg fails, we don't care. 1371 */ 1372 (void)local_cmpxchg(&next_page->write, old_write, val); 1373 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1374 1375 /* 1376 * No need to worry about races with clearing out the commit. 1377 * it only can increment when a commit takes place. But that 1378 * only happens in the outer most nested commit. 1379 */ 1380 local_set(&next_page->page->commit, 0); 1381 1382 /* Again, either we update tail_page or an interrupt does */ 1383 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page); 1384 } 1385 } 1386 1387 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1388 struct buffer_page *bpage) 1389 { 1390 unsigned long val = (unsigned long)bpage; 1391 1392 RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK); 1393 } 1394 1395 /** 1396 * rb_check_pages - integrity check of buffer pages 1397 * @cpu_buffer: CPU buffer with pages to test 1398 * 1399 * As a safety measure we check to make sure the data pages have not 1400 * been corrupted. 1401 */ 1402 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1403 { 1404 struct list_head *head = rb_list_head(cpu_buffer->pages); 1405 struct list_head *tmp; 1406 1407 if (RB_WARN_ON(cpu_buffer, 1408 rb_list_head(rb_list_head(head->next)->prev) != head)) 1409 return; 1410 1411 if (RB_WARN_ON(cpu_buffer, 1412 rb_list_head(rb_list_head(head->prev)->next) != head)) 1413 return; 1414 1415 for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) { 1416 if (RB_WARN_ON(cpu_buffer, 1417 rb_list_head(rb_list_head(tmp->next)->prev) != tmp)) 1418 return; 1419 1420 if (RB_WARN_ON(cpu_buffer, 1421 rb_list_head(rb_list_head(tmp->prev)->next) != tmp)) 1422 return; 1423 } 1424 } 1425 1426 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1427 long nr_pages, struct list_head *pages) 1428 { 1429 struct buffer_page *bpage, *tmp; 1430 bool user_thread = current->mm != NULL; 1431 gfp_t mflags; 1432 long i; 1433 1434 /* 1435 * Check if the available memory is there first. 1436 * Note, si_mem_available() only gives us a rough estimate of available 1437 * memory. It may not be accurate. But we don't care, we just want 1438 * to prevent doing any allocation when it is obvious that it is 1439 * not going to succeed. 1440 */ 1441 i = si_mem_available(); 1442 if (i < nr_pages) 1443 return -ENOMEM; 1444 1445 /* 1446 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 1447 * gracefully without invoking oom-killer and the system is not 1448 * destabilized. 1449 */ 1450 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; 1451 1452 /* 1453 * If a user thread allocates too much, and si_mem_available() 1454 * reports there's enough memory, even though there is not. 1455 * Make sure the OOM killer kills this thread. This can happen 1456 * even with RETRY_MAYFAIL because another task may be doing 1457 * an allocation after this task has taken all memory. 1458 * This is the task the OOM killer needs to take out during this 1459 * loop, even if it was triggered by an allocation somewhere else. 1460 */ 1461 if (user_thread) 1462 set_current_oom_origin(); 1463 for (i = 0; i < nr_pages; i++) { 1464 struct page *page; 1465 1466 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1467 mflags, cpu_to_node(cpu_buffer->cpu)); 1468 if (!bpage) 1469 goto free_pages; 1470 1471 rb_check_bpage(cpu_buffer, bpage); 1472 1473 list_add(&bpage->list, pages); 1474 1475 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 1476 cpu_buffer->buffer->subbuf_order); 1477 if (!page) 1478 goto free_pages; 1479 bpage->page = page_address(page); 1480 bpage->order = cpu_buffer->buffer->subbuf_order; 1481 rb_init_page(bpage->page); 1482 1483 if (user_thread && fatal_signal_pending(current)) 1484 goto free_pages; 1485 } 1486 if (user_thread) 1487 clear_current_oom_origin(); 1488 1489 return 0; 1490 1491 free_pages: 1492 list_for_each_entry_safe(bpage, tmp, pages, list) { 1493 list_del_init(&bpage->list); 1494 free_buffer_page(bpage); 1495 } 1496 if (user_thread) 1497 clear_current_oom_origin(); 1498 1499 return -ENOMEM; 1500 } 1501 1502 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1503 unsigned long nr_pages) 1504 { 1505 LIST_HEAD(pages); 1506 1507 WARN_ON(!nr_pages); 1508 1509 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages)) 1510 return -ENOMEM; 1511 1512 /* 1513 * The ring buffer page list is a circular list that does not 1514 * start and end with a list head. All page list items point to 1515 * other pages. 1516 */ 1517 cpu_buffer->pages = pages.next; 1518 list_del(&pages); 1519 1520 cpu_buffer->nr_pages = nr_pages; 1521 1522 rb_check_pages(cpu_buffer); 1523 1524 return 0; 1525 } 1526 1527 static struct ring_buffer_per_cpu * 1528 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu) 1529 { 1530 struct ring_buffer_per_cpu *cpu_buffer; 1531 struct buffer_page *bpage; 1532 struct page *page; 1533 int ret; 1534 1535 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1536 GFP_KERNEL, cpu_to_node(cpu)); 1537 if (!cpu_buffer) 1538 return NULL; 1539 1540 cpu_buffer->cpu = cpu; 1541 cpu_buffer->buffer = buffer; 1542 raw_spin_lock_init(&cpu_buffer->reader_lock); 1543 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1544 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1545 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1546 init_completion(&cpu_buffer->update_done); 1547 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1548 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1549 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1550 1551 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1552 GFP_KERNEL, cpu_to_node(cpu)); 1553 if (!bpage) 1554 goto fail_free_buffer; 1555 1556 rb_check_bpage(cpu_buffer, bpage); 1557 1558 cpu_buffer->reader_page = bpage; 1559 1560 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, cpu_buffer->buffer->subbuf_order); 1561 if (!page) 1562 goto fail_free_reader; 1563 bpage->page = page_address(page); 1564 rb_init_page(bpage->page); 1565 1566 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1567 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1568 1569 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1570 if (ret < 0) 1571 goto fail_free_reader; 1572 1573 cpu_buffer->head_page 1574 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1575 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1576 1577 rb_head_page_activate(cpu_buffer); 1578 1579 return cpu_buffer; 1580 1581 fail_free_reader: 1582 free_buffer_page(cpu_buffer->reader_page); 1583 1584 fail_free_buffer: 1585 kfree(cpu_buffer); 1586 return NULL; 1587 } 1588 1589 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1590 { 1591 struct list_head *head = cpu_buffer->pages; 1592 struct buffer_page *bpage, *tmp; 1593 1594 irq_work_sync(&cpu_buffer->irq_work.work); 1595 1596 free_buffer_page(cpu_buffer->reader_page); 1597 1598 if (head) { 1599 rb_head_page_deactivate(cpu_buffer); 1600 1601 list_for_each_entry_safe(bpage, tmp, head, list) { 1602 list_del_init(&bpage->list); 1603 free_buffer_page(bpage); 1604 } 1605 bpage = list_entry(head, struct buffer_page, list); 1606 free_buffer_page(bpage); 1607 } 1608 1609 free_page((unsigned long)cpu_buffer->free_page); 1610 1611 kfree(cpu_buffer); 1612 } 1613 1614 /** 1615 * __ring_buffer_alloc - allocate a new ring_buffer 1616 * @size: the size in bytes per cpu that is needed. 1617 * @flags: attributes to set for the ring buffer. 1618 * @key: ring buffer reader_lock_key. 1619 * 1620 * Currently the only flag that is available is the RB_FL_OVERWRITE 1621 * flag. This flag means that the buffer will overwrite old data 1622 * when the buffer wraps. If this flag is not set, the buffer will 1623 * drop data when the tail hits the head. 1624 */ 1625 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1626 struct lock_class_key *key) 1627 { 1628 struct trace_buffer *buffer; 1629 long nr_pages; 1630 int bsize; 1631 int cpu; 1632 int ret; 1633 1634 /* keep it in its own cache line */ 1635 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1636 GFP_KERNEL); 1637 if (!buffer) 1638 return NULL; 1639 1640 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1641 goto fail_free_buffer; 1642 1643 /* Default buffer page size - one system page */ 1644 buffer->subbuf_order = 0; 1645 buffer->subbuf_size = PAGE_SIZE - BUF_PAGE_HDR_SIZE; 1646 1647 /* Max payload is buffer page size - header (8bytes) */ 1648 buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2); 1649 1650 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size); 1651 buffer->flags = flags; 1652 buffer->clock = trace_clock_local; 1653 buffer->reader_lock_key = key; 1654 1655 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1656 init_waitqueue_head(&buffer->irq_work.waiters); 1657 1658 /* need at least two pages */ 1659 if (nr_pages < 2) 1660 nr_pages = 2; 1661 1662 buffer->cpus = nr_cpu_ids; 1663 1664 bsize = sizeof(void *) * nr_cpu_ids; 1665 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1666 GFP_KERNEL); 1667 if (!buffer->buffers) 1668 goto fail_free_cpumask; 1669 1670 cpu = raw_smp_processor_id(); 1671 cpumask_set_cpu(cpu, buffer->cpumask); 1672 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1673 if (!buffer->buffers[cpu]) 1674 goto fail_free_buffers; 1675 1676 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1677 if (ret < 0) 1678 goto fail_free_buffers; 1679 1680 mutex_init(&buffer->mutex); 1681 1682 return buffer; 1683 1684 fail_free_buffers: 1685 for_each_buffer_cpu(buffer, cpu) { 1686 if (buffer->buffers[cpu]) 1687 rb_free_cpu_buffer(buffer->buffers[cpu]); 1688 } 1689 kfree(buffer->buffers); 1690 1691 fail_free_cpumask: 1692 free_cpumask_var(buffer->cpumask); 1693 1694 fail_free_buffer: 1695 kfree(buffer); 1696 return NULL; 1697 } 1698 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1699 1700 /** 1701 * ring_buffer_free - free a ring buffer. 1702 * @buffer: the buffer to free. 1703 */ 1704 void 1705 ring_buffer_free(struct trace_buffer *buffer) 1706 { 1707 int cpu; 1708 1709 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1710 1711 irq_work_sync(&buffer->irq_work.work); 1712 1713 for_each_buffer_cpu(buffer, cpu) 1714 rb_free_cpu_buffer(buffer->buffers[cpu]); 1715 1716 kfree(buffer->buffers); 1717 free_cpumask_var(buffer->cpumask); 1718 1719 kfree(buffer); 1720 } 1721 EXPORT_SYMBOL_GPL(ring_buffer_free); 1722 1723 void ring_buffer_set_clock(struct trace_buffer *buffer, 1724 u64 (*clock)(void)) 1725 { 1726 buffer->clock = clock; 1727 } 1728 1729 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs) 1730 { 1731 buffer->time_stamp_abs = abs; 1732 } 1733 1734 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer) 1735 { 1736 return buffer->time_stamp_abs; 1737 } 1738 1739 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1740 1741 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1742 { 1743 return local_read(&bpage->entries) & RB_WRITE_MASK; 1744 } 1745 1746 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1747 { 1748 return local_read(&bpage->write) & RB_WRITE_MASK; 1749 } 1750 1751 static bool 1752 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 1753 { 1754 struct list_head *tail_page, *to_remove, *next_page; 1755 struct buffer_page *to_remove_page, *tmp_iter_page; 1756 struct buffer_page *last_page, *first_page; 1757 unsigned long nr_removed; 1758 unsigned long head_bit; 1759 int page_entries; 1760 1761 head_bit = 0; 1762 1763 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1764 atomic_inc(&cpu_buffer->record_disabled); 1765 /* 1766 * We don't race with the readers since we have acquired the reader 1767 * lock. We also don't race with writers after disabling recording. 1768 * This makes it easy to figure out the first and the last page to be 1769 * removed from the list. We unlink all the pages in between including 1770 * the first and last pages. This is done in a busy loop so that we 1771 * lose the least number of traces. 1772 * The pages are freed after we restart recording and unlock readers. 1773 */ 1774 tail_page = &cpu_buffer->tail_page->list; 1775 1776 /* 1777 * tail page might be on reader page, we remove the next page 1778 * from the ring buffer 1779 */ 1780 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1781 tail_page = rb_list_head(tail_page->next); 1782 to_remove = tail_page; 1783 1784 /* start of pages to remove */ 1785 first_page = list_entry(rb_list_head(to_remove->next), 1786 struct buffer_page, list); 1787 1788 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1789 to_remove = rb_list_head(to_remove)->next; 1790 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1791 } 1792 /* Read iterators need to reset themselves when some pages removed */ 1793 cpu_buffer->pages_removed += nr_removed; 1794 1795 next_page = rb_list_head(to_remove)->next; 1796 1797 /* 1798 * Now we remove all pages between tail_page and next_page. 1799 * Make sure that we have head_bit value preserved for the 1800 * next page 1801 */ 1802 tail_page->next = (struct list_head *)((unsigned long)next_page | 1803 head_bit); 1804 next_page = rb_list_head(next_page); 1805 next_page->prev = tail_page; 1806 1807 /* make sure pages points to a valid page in the ring buffer */ 1808 cpu_buffer->pages = next_page; 1809 1810 /* update head page */ 1811 if (head_bit) 1812 cpu_buffer->head_page = list_entry(next_page, 1813 struct buffer_page, list); 1814 1815 /* pages are removed, resume tracing and then free the pages */ 1816 atomic_dec(&cpu_buffer->record_disabled); 1817 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1818 1819 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1820 1821 /* last buffer page to remove */ 1822 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1823 list); 1824 tmp_iter_page = first_page; 1825 1826 do { 1827 cond_resched(); 1828 1829 to_remove_page = tmp_iter_page; 1830 rb_inc_page(&tmp_iter_page); 1831 1832 /* update the counters */ 1833 page_entries = rb_page_entries(to_remove_page); 1834 if (page_entries) { 1835 /* 1836 * If something was added to this page, it was full 1837 * since it is not the tail page. So we deduct the 1838 * bytes consumed in ring buffer from here. 1839 * Increment overrun to account for the lost events. 1840 */ 1841 local_add(page_entries, &cpu_buffer->overrun); 1842 local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes); 1843 local_inc(&cpu_buffer->pages_lost); 1844 } 1845 1846 /* 1847 * We have already removed references to this list item, just 1848 * free up the buffer_page and its page 1849 */ 1850 free_buffer_page(to_remove_page); 1851 nr_removed--; 1852 1853 } while (to_remove_page != last_page); 1854 1855 RB_WARN_ON(cpu_buffer, nr_removed); 1856 1857 return nr_removed == 0; 1858 } 1859 1860 static bool 1861 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1862 { 1863 struct list_head *pages = &cpu_buffer->new_pages; 1864 unsigned long flags; 1865 bool success; 1866 int retries; 1867 1868 /* Can be called at early boot up, where interrupts must not been enabled */ 1869 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 1870 /* 1871 * We are holding the reader lock, so the reader page won't be swapped 1872 * in the ring buffer. Now we are racing with the writer trying to 1873 * move head page and the tail page. 1874 * We are going to adapt the reader page update process where: 1875 * 1. We first splice the start and end of list of new pages between 1876 * the head page and its previous page. 1877 * 2. We cmpxchg the prev_page->next to point from head page to the 1878 * start of new pages list. 1879 * 3. Finally, we update the head->prev to the end of new list. 1880 * 1881 * We will try this process 10 times, to make sure that we don't keep 1882 * spinning. 1883 */ 1884 retries = 10; 1885 success = false; 1886 while (retries--) { 1887 struct list_head *head_page, *prev_page; 1888 struct list_head *last_page, *first_page; 1889 struct list_head *head_page_with_bit; 1890 struct buffer_page *hpage = rb_set_head_page(cpu_buffer); 1891 1892 if (!hpage) 1893 break; 1894 head_page = &hpage->list; 1895 prev_page = head_page->prev; 1896 1897 first_page = pages->next; 1898 last_page = pages->prev; 1899 1900 head_page_with_bit = (struct list_head *) 1901 ((unsigned long)head_page | RB_PAGE_HEAD); 1902 1903 last_page->next = head_page_with_bit; 1904 first_page->prev = prev_page; 1905 1906 /* caution: head_page_with_bit gets updated on cmpxchg failure */ 1907 if (try_cmpxchg(&prev_page->next, 1908 &head_page_with_bit, first_page)) { 1909 /* 1910 * yay, we replaced the page pointer to our new list, 1911 * now, we just have to update to head page's prev 1912 * pointer to point to end of list 1913 */ 1914 head_page->prev = last_page; 1915 success = true; 1916 break; 1917 } 1918 } 1919 1920 if (success) 1921 INIT_LIST_HEAD(pages); 1922 /* 1923 * If we weren't successful in adding in new pages, warn and stop 1924 * tracing 1925 */ 1926 RB_WARN_ON(cpu_buffer, !success); 1927 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 1928 1929 /* free pages if they weren't inserted */ 1930 if (!success) { 1931 struct buffer_page *bpage, *tmp; 1932 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1933 list) { 1934 list_del_init(&bpage->list); 1935 free_buffer_page(bpage); 1936 } 1937 } 1938 return success; 1939 } 1940 1941 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1942 { 1943 bool success; 1944 1945 if (cpu_buffer->nr_pages_to_update > 0) 1946 success = rb_insert_pages(cpu_buffer); 1947 else 1948 success = rb_remove_pages(cpu_buffer, 1949 -cpu_buffer->nr_pages_to_update); 1950 1951 if (success) 1952 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1953 } 1954 1955 static void update_pages_handler(struct work_struct *work) 1956 { 1957 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1958 struct ring_buffer_per_cpu, update_pages_work); 1959 rb_update_pages(cpu_buffer); 1960 complete(&cpu_buffer->update_done); 1961 } 1962 1963 /** 1964 * ring_buffer_resize - resize the ring buffer 1965 * @buffer: the buffer to resize. 1966 * @size: the new size. 1967 * @cpu_id: the cpu buffer to resize 1968 * 1969 * Minimum size is 2 * buffer->subbuf_size. 1970 * 1971 * Returns 0 on success and < 0 on failure. 1972 */ 1973 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size, 1974 int cpu_id) 1975 { 1976 struct ring_buffer_per_cpu *cpu_buffer; 1977 unsigned long nr_pages; 1978 int cpu, err; 1979 1980 /* 1981 * Always succeed at resizing a non-existent buffer: 1982 */ 1983 if (!buffer) 1984 return 0; 1985 1986 /* Make sure the requested buffer exists */ 1987 if (cpu_id != RING_BUFFER_ALL_CPUS && 1988 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1989 return 0; 1990 1991 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size); 1992 1993 /* we need a minimum of two pages */ 1994 if (nr_pages < 2) 1995 nr_pages = 2; 1996 1997 /* prevent another thread from changing buffer sizes */ 1998 mutex_lock(&buffer->mutex); 1999 atomic_inc(&buffer->resizing); 2000 2001 if (cpu_id == RING_BUFFER_ALL_CPUS) { 2002 /* 2003 * Don't succeed if resizing is disabled, as a reader might be 2004 * manipulating the ring buffer and is expecting a sane state while 2005 * this is true. 2006 */ 2007 for_each_buffer_cpu(buffer, cpu) { 2008 cpu_buffer = buffer->buffers[cpu]; 2009 if (atomic_read(&cpu_buffer->resize_disabled)) { 2010 err = -EBUSY; 2011 goto out_err_unlock; 2012 } 2013 } 2014 2015 /* calculate the pages to update */ 2016 for_each_buffer_cpu(buffer, cpu) { 2017 cpu_buffer = buffer->buffers[cpu]; 2018 2019 cpu_buffer->nr_pages_to_update = nr_pages - 2020 cpu_buffer->nr_pages; 2021 /* 2022 * nothing more to do for removing pages or no update 2023 */ 2024 if (cpu_buffer->nr_pages_to_update <= 0) 2025 continue; 2026 /* 2027 * to add pages, make sure all new pages can be 2028 * allocated without receiving ENOMEM 2029 */ 2030 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2031 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2032 &cpu_buffer->new_pages)) { 2033 /* not enough memory for new pages */ 2034 err = -ENOMEM; 2035 goto out_err; 2036 } 2037 2038 cond_resched(); 2039 } 2040 2041 cpus_read_lock(); 2042 /* 2043 * Fire off all the required work handlers 2044 * We can't schedule on offline CPUs, but it's not necessary 2045 * since we can change their buffer sizes without any race. 2046 */ 2047 for_each_buffer_cpu(buffer, cpu) { 2048 cpu_buffer = buffer->buffers[cpu]; 2049 if (!cpu_buffer->nr_pages_to_update) 2050 continue; 2051 2052 /* Can't run something on an offline CPU. */ 2053 if (!cpu_online(cpu)) { 2054 rb_update_pages(cpu_buffer); 2055 cpu_buffer->nr_pages_to_update = 0; 2056 } else { 2057 /* Run directly if possible. */ 2058 migrate_disable(); 2059 if (cpu != smp_processor_id()) { 2060 migrate_enable(); 2061 schedule_work_on(cpu, 2062 &cpu_buffer->update_pages_work); 2063 } else { 2064 update_pages_handler(&cpu_buffer->update_pages_work); 2065 migrate_enable(); 2066 } 2067 } 2068 } 2069 2070 /* wait for all the updates to complete */ 2071 for_each_buffer_cpu(buffer, cpu) { 2072 cpu_buffer = buffer->buffers[cpu]; 2073 if (!cpu_buffer->nr_pages_to_update) 2074 continue; 2075 2076 if (cpu_online(cpu)) 2077 wait_for_completion(&cpu_buffer->update_done); 2078 cpu_buffer->nr_pages_to_update = 0; 2079 } 2080 2081 cpus_read_unlock(); 2082 } else { 2083 cpu_buffer = buffer->buffers[cpu_id]; 2084 2085 if (nr_pages == cpu_buffer->nr_pages) 2086 goto out; 2087 2088 /* 2089 * Don't succeed if resizing is disabled, as a reader might be 2090 * manipulating the ring buffer and is expecting a sane state while 2091 * this is true. 2092 */ 2093 if (atomic_read(&cpu_buffer->resize_disabled)) { 2094 err = -EBUSY; 2095 goto out_err_unlock; 2096 } 2097 2098 cpu_buffer->nr_pages_to_update = nr_pages - 2099 cpu_buffer->nr_pages; 2100 2101 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2102 if (cpu_buffer->nr_pages_to_update > 0 && 2103 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2104 &cpu_buffer->new_pages)) { 2105 err = -ENOMEM; 2106 goto out_err; 2107 } 2108 2109 cpus_read_lock(); 2110 2111 /* Can't run something on an offline CPU. */ 2112 if (!cpu_online(cpu_id)) 2113 rb_update_pages(cpu_buffer); 2114 else { 2115 /* Run directly if possible. */ 2116 migrate_disable(); 2117 if (cpu_id == smp_processor_id()) { 2118 rb_update_pages(cpu_buffer); 2119 migrate_enable(); 2120 } else { 2121 migrate_enable(); 2122 schedule_work_on(cpu_id, 2123 &cpu_buffer->update_pages_work); 2124 wait_for_completion(&cpu_buffer->update_done); 2125 } 2126 } 2127 2128 cpu_buffer->nr_pages_to_update = 0; 2129 cpus_read_unlock(); 2130 } 2131 2132 out: 2133 /* 2134 * The ring buffer resize can happen with the ring buffer 2135 * enabled, so that the update disturbs the tracing as little 2136 * as possible. But if the buffer is disabled, we do not need 2137 * to worry about that, and we can take the time to verify 2138 * that the buffer is not corrupt. 2139 */ 2140 if (atomic_read(&buffer->record_disabled)) { 2141 atomic_inc(&buffer->record_disabled); 2142 /* 2143 * Even though the buffer was disabled, we must make sure 2144 * that it is truly disabled before calling rb_check_pages. 2145 * There could have been a race between checking 2146 * record_disable and incrementing it. 2147 */ 2148 synchronize_rcu(); 2149 for_each_buffer_cpu(buffer, cpu) { 2150 cpu_buffer = buffer->buffers[cpu]; 2151 rb_check_pages(cpu_buffer); 2152 } 2153 atomic_dec(&buffer->record_disabled); 2154 } 2155 2156 atomic_dec(&buffer->resizing); 2157 mutex_unlock(&buffer->mutex); 2158 return 0; 2159 2160 out_err: 2161 for_each_buffer_cpu(buffer, cpu) { 2162 struct buffer_page *bpage, *tmp; 2163 2164 cpu_buffer = buffer->buffers[cpu]; 2165 cpu_buffer->nr_pages_to_update = 0; 2166 2167 if (list_empty(&cpu_buffer->new_pages)) 2168 continue; 2169 2170 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2171 list) { 2172 list_del_init(&bpage->list); 2173 free_buffer_page(bpage); 2174 } 2175 } 2176 out_err_unlock: 2177 atomic_dec(&buffer->resizing); 2178 mutex_unlock(&buffer->mutex); 2179 return err; 2180 } 2181 EXPORT_SYMBOL_GPL(ring_buffer_resize); 2182 2183 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val) 2184 { 2185 mutex_lock(&buffer->mutex); 2186 if (val) 2187 buffer->flags |= RB_FL_OVERWRITE; 2188 else 2189 buffer->flags &= ~RB_FL_OVERWRITE; 2190 mutex_unlock(&buffer->mutex); 2191 } 2192 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 2193 2194 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 2195 { 2196 return bpage->page->data + index; 2197 } 2198 2199 static __always_inline struct ring_buffer_event * 2200 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 2201 { 2202 return __rb_page_index(cpu_buffer->reader_page, 2203 cpu_buffer->reader_page->read); 2204 } 2205 2206 static struct ring_buffer_event * 2207 rb_iter_head_event(struct ring_buffer_iter *iter) 2208 { 2209 struct ring_buffer_event *event; 2210 struct buffer_page *iter_head_page = iter->head_page; 2211 unsigned long commit; 2212 unsigned length; 2213 2214 if (iter->head != iter->next_event) 2215 return iter->event; 2216 2217 /* 2218 * When the writer goes across pages, it issues a cmpxchg which 2219 * is a mb(), which will synchronize with the rmb here. 2220 * (see rb_tail_page_update() and __rb_reserve_next()) 2221 */ 2222 commit = rb_page_commit(iter_head_page); 2223 smp_rmb(); 2224 2225 /* An event needs to be at least 8 bytes in size */ 2226 if (iter->head > commit - 8) 2227 goto reset; 2228 2229 event = __rb_page_index(iter_head_page, iter->head); 2230 length = rb_event_length(event); 2231 2232 /* 2233 * READ_ONCE() doesn't work on functions and we don't want the 2234 * compiler doing any crazy optimizations with length. 2235 */ 2236 barrier(); 2237 2238 if ((iter->head + length) > commit || length > iter->event_size) 2239 /* Writer corrupted the read? */ 2240 goto reset; 2241 2242 memcpy(iter->event, event, length); 2243 /* 2244 * If the page stamp is still the same after this rmb() then the 2245 * event was safely copied without the writer entering the page. 2246 */ 2247 smp_rmb(); 2248 2249 /* Make sure the page didn't change since we read this */ 2250 if (iter->page_stamp != iter_head_page->page->time_stamp || 2251 commit > rb_page_commit(iter_head_page)) 2252 goto reset; 2253 2254 iter->next_event = iter->head + length; 2255 return iter->event; 2256 reset: 2257 /* Reset to the beginning */ 2258 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2259 iter->head = 0; 2260 iter->next_event = 0; 2261 iter->missed_events = 1; 2262 return NULL; 2263 } 2264 2265 /* Size is determined by what has been committed */ 2266 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 2267 { 2268 return rb_page_commit(bpage); 2269 } 2270 2271 static __always_inline unsigned 2272 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 2273 { 2274 return rb_page_commit(cpu_buffer->commit_page); 2275 } 2276 2277 static __always_inline unsigned 2278 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event) 2279 { 2280 unsigned long addr = (unsigned long)event; 2281 2282 addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1; 2283 2284 return addr - BUF_PAGE_HDR_SIZE; 2285 } 2286 2287 static void rb_inc_iter(struct ring_buffer_iter *iter) 2288 { 2289 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 2290 2291 /* 2292 * The iterator could be on the reader page (it starts there). 2293 * But the head could have moved, since the reader was 2294 * found. Check for this case and assign the iterator 2295 * to the head page instead of next. 2296 */ 2297 if (iter->head_page == cpu_buffer->reader_page) 2298 iter->head_page = rb_set_head_page(cpu_buffer); 2299 else 2300 rb_inc_page(&iter->head_page); 2301 2302 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2303 iter->head = 0; 2304 iter->next_event = 0; 2305 } 2306 2307 /* 2308 * rb_handle_head_page - writer hit the head page 2309 * 2310 * Returns: +1 to retry page 2311 * 0 to continue 2312 * -1 on error 2313 */ 2314 static int 2315 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 2316 struct buffer_page *tail_page, 2317 struct buffer_page *next_page) 2318 { 2319 struct buffer_page *new_head; 2320 int entries; 2321 int type; 2322 int ret; 2323 2324 entries = rb_page_entries(next_page); 2325 2326 /* 2327 * The hard part is here. We need to move the head 2328 * forward, and protect against both readers on 2329 * other CPUs and writers coming in via interrupts. 2330 */ 2331 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 2332 RB_PAGE_HEAD); 2333 2334 /* 2335 * type can be one of four: 2336 * NORMAL - an interrupt already moved it for us 2337 * HEAD - we are the first to get here. 2338 * UPDATE - we are the interrupt interrupting 2339 * a current move. 2340 * MOVED - a reader on another CPU moved the next 2341 * pointer to its reader page. Give up 2342 * and try again. 2343 */ 2344 2345 switch (type) { 2346 case RB_PAGE_HEAD: 2347 /* 2348 * We changed the head to UPDATE, thus 2349 * it is our responsibility to update 2350 * the counters. 2351 */ 2352 local_add(entries, &cpu_buffer->overrun); 2353 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes); 2354 local_inc(&cpu_buffer->pages_lost); 2355 2356 /* 2357 * The entries will be zeroed out when we move the 2358 * tail page. 2359 */ 2360 2361 /* still more to do */ 2362 break; 2363 2364 case RB_PAGE_UPDATE: 2365 /* 2366 * This is an interrupt that interrupt the 2367 * previous update. Still more to do. 2368 */ 2369 break; 2370 case RB_PAGE_NORMAL: 2371 /* 2372 * An interrupt came in before the update 2373 * and processed this for us. 2374 * Nothing left to do. 2375 */ 2376 return 1; 2377 case RB_PAGE_MOVED: 2378 /* 2379 * The reader is on another CPU and just did 2380 * a swap with our next_page. 2381 * Try again. 2382 */ 2383 return 1; 2384 default: 2385 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2386 return -1; 2387 } 2388 2389 /* 2390 * Now that we are here, the old head pointer is 2391 * set to UPDATE. This will keep the reader from 2392 * swapping the head page with the reader page. 2393 * The reader (on another CPU) will spin till 2394 * we are finished. 2395 * 2396 * We just need to protect against interrupts 2397 * doing the job. We will set the next pointer 2398 * to HEAD. After that, we set the old pointer 2399 * to NORMAL, but only if it was HEAD before. 2400 * otherwise we are an interrupt, and only 2401 * want the outer most commit to reset it. 2402 */ 2403 new_head = next_page; 2404 rb_inc_page(&new_head); 2405 2406 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2407 RB_PAGE_NORMAL); 2408 2409 /* 2410 * Valid returns are: 2411 * HEAD - an interrupt came in and already set it. 2412 * NORMAL - One of two things: 2413 * 1) We really set it. 2414 * 2) A bunch of interrupts came in and moved 2415 * the page forward again. 2416 */ 2417 switch (ret) { 2418 case RB_PAGE_HEAD: 2419 case RB_PAGE_NORMAL: 2420 /* OK */ 2421 break; 2422 default: 2423 RB_WARN_ON(cpu_buffer, 1); 2424 return -1; 2425 } 2426 2427 /* 2428 * It is possible that an interrupt came in, 2429 * set the head up, then more interrupts came in 2430 * and moved it again. When we get back here, 2431 * the page would have been set to NORMAL but we 2432 * just set it back to HEAD. 2433 * 2434 * How do you detect this? Well, if that happened 2435 * the tail page would have moved. 2436 */ 2437 if (ret == RB_PAGE_NORMAL) { 2438 struct buffer_page *buffer_tail_page; 2439 2440 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 2441 /* 2442 * If the tail had moved passed next, then we need 2443 * to reset the pointer. 2444 */ 2445 if (buffer_tail_page != tail_page && 2446 buffer_tail_page != next_page) 2447 rb_head_page_set_normal(cpu_buffer, new_head, 2448 next_page, 2449 RB_PAGE_HEAD); 2450 } 2451 2452 /* 2453 * If this was the outer most commit (the one that 2454 * changed the original pointer from HEAD to UPDATE), 2455 * then it is up to us to reset it to NORMAL. 2456 */ 2457 if (type == RB_PAGE_HEAD) { 2458 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2459 tail_page, 2460 RB_PAGE_UPDATE); 2461 if (RB_WARN_ON(cpu_buffer, 2462 ret != RB_PAGE_UPDATE)) 2463 return -1; 2464 } 2465 2466 return 0; 2467 } 2468 2469 static inline void 2470 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2471 unsigned long tail, struct rb_event_info *info) 2472 { 2473 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size); 2474 struct buffer_page *tail_page = info->tail_page; 2475 struct ring_buffer_event *event; 2476 unsigned long length = info->length; 2477 2478 /* 2479 * Only the event that crossed the page boundary 2480 * must fill the old tail_page with padding. 2481 */ 2482 if (tail >= bsize) { 2483 /* 2484 * If the page was filled, then we still need 2485 * to update the real_end. Reset it to zero 2486 * and the reader will ignore it. 2487 */ 2488 if (tail == bsize) 2489 tail_page->real_end = 0; 2490 2491 local_sub(length, &tail_page->write); 2492 return; 2493 } 2494 2495 event = __rb_page_index(tail_page, tail); 2496 2497 /* 2498 * Save the original length to the meta data. 2499 * This will be used by the reader to add lost event 2500 * counter. 2501 */ 2502 tail_page->real_end = tail; 2503 2504 /* 2505 * If this event is bigger than the minimum size, then 2506 * we need to be careful that we don't subtract the 2507 * write counter enough to allow another writer to slip 2508 * in on this page. 2509 * We put in a discarded commit instead, to make sure 2510 * that this space is not used again, and this space will 2511 * not be accounted into 'entries_bytes'. 2512 * 2513 * If we are less than the minimum size, we don't need to 2514 * worry about it. 2515 */ 2516 if (tail > (bsize - RB_EVNT_MIN_SIZE)) { 2517 /* No room for any events */ 2518 2519 /* Mark the rest of the page with padding */ 2520 rb_event_set_padding(event); 2521 2522 /* Make sure the padding is visible before the write update */ 2523 smp_wmb(); 2524 2525 /* Set the write back to the previous setting */ 2526 local_sub(length, &tail_page->write); 2527 return; 2528 } 2529 2530 /* Put in a discarded event */ 2531 event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE; 2532 event->type_len = RINGBUF_TYPE_PADDING; 2533 /* time delta must be non zero */ 2534 event->time_delta = 1; 2535 2536 /* account for padding bytes */ 2537 local_add(bsize - tail, &cpu_buffer->entries_bytes); 2538 2539 /* Make sure the padding is visible before the tail_page->write update */ 2540 smp_wmb(); 2541 2542 /* Set write to end of buffer */ 2543 length = (tail + length) - bsize; 2544 local_sub(length, &tail_page->write); 2545 } 2546 2547 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 2548 2549 /* 2550 * This is the slow path, force gcc not to inline it. 2551 */ 2552 static noinline struct ring_buffer_event * 2553 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2554 unsigned long tail, struct rb_event_info *info) 2555 { 2556 struct buffer_page *tail_page = info->tail_page; 2557 struct buffer_page *commit_page = cpu_buffer->commit_page; 2558 struct trace_buffer *buffer = cpu_buffer->buffer; 2559 struct buffer_page *next_page; 2560 int ret; 2561 2562 next_page = tail_page; 2563 2564 rb_inc_page(&next_page); 2565 2566 /* 2567 * If for some reason, we had an interrupt storm that made 2568 * it all the way around the buffer, bail, and warn 2569 * about it. 2570 */ 2571 if (unlikely(next_page == commit_page)) { 2572 local_inc(&cpu_buffer->commit_overrun); 2573 goto out_reset; 2574 } 2575 2576 /* 2577 * This is where the fun begins! 2578 * 2579 * We are fighting against races between a reader that 2580 * could be on another CPU trying to swap its reader 2581 * page with the buffer head. 2582 * 2583 * We are also fighting against interrupts coming in and 2584 * moving the head or tail on us as well. 2585 * 2586 * If the next page is the head page then we have filled 2587 * the buffer, unless the commit page is still on the 2588 * reader page. 2589 */ 2590 if (rb_is_head_page(next_page, &tail_page->list)) { 2591 2592 /* 2593 * If the commit is not on the reader page, then 2594 * move the header page. 2595 */ 2596 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2597 /* 2598 * If we are not in overwrite mode, 2599 * this is easy, just stop here. 2600 */ 2601 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2602 local_inc(&cpu_buffer->dropped_events); 2603 goto out_reset; 2604 } 2605 2606 ret = rb_handle_head_page(cpu_buffer, 2607 tail_page, 2608 next_page); 2609 if (ret < 0) 2610 goto out_reset; 2611 if (ret) 2612 goto out_again; 2613 } else { 2614 /* 2615 * We need to be careful here too. The 2616 * commit page could still be on the reader 2617 * page. We could have a small buffer, and 2618 * have filled up the buffer with events 2619 * from interrupts and such, and wrapped. 2620 * 2621 * Note, if the tail page is also on the 2622 * reader_page, we let it move out. 2623 */ 2624 if (unlikely((cpu_buffer->commit_page != 2625 cpu_buffer->tail_page) && 2626 (cpu_buffer->commit_page == 2627 cpu_buffer->reader_page))) { 2628 local_inc(&cpu_buffer->commit_overrun); 2629 goto out_reset; 2630 } 2631 } 2632 } 2633 2634 rb_tail_page_update(cpu_buffer, tail_page, next_page); 2635 2636 out_again: 2637 2638 rb_reset_tail(cpu_buffer, tail, info); 2639 2640 /* Commit what we have for now. */ 2641 rb_end_commit(cpu_buffer); 2642 /* rb_end_commit() decs committing */ 2643 local_inc(&cpu_buffer->committing); 2644 2645 /* fail and let the caller try again */ 2646 return ERR_PTR(-EAGAIN); 2647 2648 out_reset: 2649 /* reset write */ 2650 rb_reset_tail(cpu_buffer, tail, info); 2651 2652 return NULL; 2653 } 2654 2655 /* Slow path */ 2656 static struct ring_buffer_event * 2657 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2658 struct ring_buffer_event *event, u64 delta, bool abs) 2659 { 2660 if (abs) 2661 event->type_len = RINGBUF_TYPE_TIME_STAMP; 2662 else 2663 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2664 2665 /* Not the first event on the page, or not delta? */ 2666 if (abs || rb_event_index(cpu_buffer, event)) { 2667 event->time_delta = delta & TS_MASK; 2668 event->array[0] = delta >> TS_SHIFT; 2669 } else { 2670 /* nope, just zero it */ 2671 event->time_delta = 0; 2672 event->array[0] = 0; 2673 } 2674 2675 return skip_time_extend(event); 2676 } 2677 2678 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2679 static inline bool sched_clock_stable(void) 2680 { 2681 return true; 2682 } 2683 #endif 2684 2685 static void 2686 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2687 struct rb_event_info *info) 2688 { 2689 u64 write_stamp; 2690 2691 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s", 2692 (unsigned long long)info->delta, 2693 (unsigned long long)info->ts, 2694 (unsigned long long)info->before, 2695 (unsigned long long)info->after, 2696 (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}), 2697 sched_clock_stable() ? "" : 2698 "If you just came from a suspend/resume,\n" 2699 "please switch to the trace global clock:\n" 2700 " echo global > /sys/kernel/tracing/trace_clock\n" 2701 "or add trace_clock=global to the kernel command line\n"); 2702 } 2703 2704 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2705 struct ring_buffer_event **event, 2706 struct rb_event_info *info, 2707 u64 *delta, 2708 unsigned int *length) 2709 { 2710 bool abs = info->add_timestamp & 2711 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE); 2712 2713 if (unlikely(info->delta > (1ULL << 59))) { 2714 /* 2715 * Some timers can use more than 59 bits, and when a timestamp 2716 * is added to the buffer, it will lose those bits. 2717 */ 2718 if (abs && (info->ts & TS_MSB)) { 2719 info->delta &= ABS_TS_MASK; 2720 2721 /* did the clock go backwards */ 2722 } else if (info->before == info->after && info->before > info->ts) { 2723 /* not interrupted */ 2724 static int once; 2725 2726 /* 2727 * This is possible with a recalibrating of the TSC. 2728 * Do not produce a call stack, but just report it. 2729 */ 2730 if (!once) { 2731 once++; 2732 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n", 2733 info->before, info->ts); 2734 } 2735 } else 2736 rb_check_timestamp(cpu_buffer, info); 2737 if (!abs) 2738 info->delta = 0; 2739 } 2740 *event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs); 2741 *length -= RB_LEN_TIME_EXTEND; 2742 *delta = 0; 2743 } 2744 2745 /** 2746 * rb_update_event - update event type and data 2747 * @cpu_buffer: The per cpu buffer of the @event 2748 * @event: the event to update 2749 * @info: The info to update the @event with (contains length and delta) 2750 * 2751 * Update the type and data fields of the @event. The length 2752 * is the actual size that is written to the ring buffer, 2753 * and with this, we can determine what to place into the 2754 * data field. 2755 */ 2756 static void 2757 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2758 struct ring_buffer_event *event, 2759 struct rb_event_info *info) 2760 { 2761 unsigned length = info->length; 2762 u64 delta = info->delta; 2763 unsigned int nest = local_read(&cpu_buffer->committing) - 1; 2764 2765 if (!WARN_ON_ONCE(nest >= MAX_NEST)) 2766 cpu_buffer->event_stamp[nest] = info->ts; 2767 2768 /* 2769 * If we need to add a timestamp, then we 2770 * add it to the start of the reserved space. 2771 */ 2772 if (unlikely(info->add_timestamp)) 2773 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length); 2774 2775 event->time_delta = delta; 2776 length -= RB_EVNT_HDR_SIZE; 2777 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2778 event->type_len = 0; 2779 event->array[0] = length; 2780 } else 2781 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2782 } 2783 2784 static unsigned rb_calculate_event_length(unsigned length) 2785 { 2786 struct ring_buffer_event event; /* Used only for sizeof array */ 2787 2788 /* zero length can cause confusions */ 2789 if (!length) 2790 length++; 2791 2792 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2793 length += sizeof(event.array[0]); 2794 2795 length += RB_EVNT_HDR_SIZE; 2796 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2797 2798 /* 2799 * In case the time delta is larger than the 27 bits for it 2800 * in the header, we need to add a timestamp. If another 2801 * event comes in when trying to discard this one to increase 2802 * the length, then the timestamp will be added in the allocated 2803 * space of this event. If length is bigger than the size needed 2804 * for the TIME_EXTEND, then padding has to be used. The events 2805 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 2806 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 2807 * As length is a multiple of 4, we only need to worry if it 2808 * is 12 (RB_LEN_TIME_EXTEND + 4). 2809 */ 2810 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 2811 length += RB_ALIGNMENT; 2812 2813 return length; 2814 } 2815 2816 static inline bool 2817 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2818 struct ring_buffer_event *event) 2819 { 2820 unsigned long new_index, old_index; 2821 struct buffer_page *bpage; 2822 unsigned long addr; 2823 2824 new_index = rb_event_index(cpu_buffer, event); 2825 old_index = new_index + rb_event_ts_length(event); 2826 addr = (unsigned long)event; 2827 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1); 2828 2829 bpage = READ_ONCE(cpu_buffer->tail_page); 2830 2831 /* 2832 * Make sure the tail_page is still the same and 2833 * the next write location is the end of this event 2834 */ 2835 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2836 unsigned long write_mask = 2837 local_read(&bpage->write) & ~RB_WRITE_MASK; 2838 unsigned long event_length = rb_event_length(event); 2839 2840 /* 2841 * For the before_stamp to be different than the write_stamp 2842 * to make sure that the next event adds an absolute 2843 * value and does not rely on the saved write stamp, which 2844 * is now going to be bogus. 2845 * 2846 * By setting the before_stamp to zero, the next event 2847 * is not going to use the write_stamp and will instead 2848 * create an absolute timestamp. This means there's no 2849 * reason to update the wirte_stamp! 2850 */ 2851 rb_time_set(&cpu_buffer->before_stamp, 0); 2852 2853 /* 2854 * If an event were to come in now, it would see that the 2855 * write_stamp and the before_stamp are different, and assume 2856 * that this event just added itself before updating 2857 * the write stamp. The interrupting event will fix the 2858 * write stamp for us, and use an absolute timestamp. 2859 */ 2860 2861 /* 2862 * This is on the tail page. It is possible that 2863 * a write could come in and move the tail page 2864 * and write to the next page. That is fine 2865 * because we just shorten what is on this page. 2866 */ 2867 old_index += write_mask; 2868 new_index += write_mask; 2869 2870 /* caution: old_index gets updated on cmpxchg failure */ 2871 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) { 2872 /* update counters */ 2873 local_sub(event_length, &cpu_buffer->entries_bytes); 2874 return true; 2875 } 2876 } 2877 2878 /* could not discard */ 2879 return false; 2880 } 2881 2882 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2883 { 2884 local_inc(&cpu_buffer->committing); 2885 local_inc(&cpu_buffer->commits); 2886 } 2887 2888 static __always_inline void 2889 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 2890 { 2891 unsigned long max_count; 2892 2893 /* 2894 * We only race with interrupts and NMIs on this CPU. 2895 * If we own the commit event, then we can commit 2896 * all others that interrupted us, since the interruptions 2897 * are in stack format (they finish before they come 2898 * back to us). This allows us to do a simple loop to 2899 * assign the commit to the tail. 2900 */ 2901 again: 2902 max_count = cpu_buffer->nr_pages * 100; 2903 2904 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 2905 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 2906 return; 2907 if (RB_WARN_ON(cpu_buffer, 2908 rb_is_reader_page(cpu_buffer->tail_page))) 2909 return; 2910 /* 2911 * No need for a memory barrier here, as the update 2912 * of the tail_page did it for this page. 2913 */ 2914 local_set(&cpu_buffer->commit_page->page->commit, 2915 rb_page_write(cpu_buffer->commit_page)); 2916 rb_inc_page(&cpu_buffer->commit_page); 2917 /* add barrier to keep gcc from optimizing too much */ 2918 barrier(); 2919 } 2920 while (rb_commit_index(cpu_buffer) != 2921 rb_page_write(cpu_buffer->commit_page)) { 2922 2923 /* Make sure the readers see the content of what is committed. */ 2924 smp_wmb(); 2925 local_set(&cpu_buffer->commit_page->page->commit, 2926 rb_page_write(cpu_buffer->commit_page)); 2927 RB_WARN_ON(cpu_buffer, 2928 local_read(&cpu_buffer->commit_page->page->commit) & 2929 ~RB_WRITE_MASK); 2930 barrier(); 2931 } 2932 2933 /* again, keep gcc from optimizing */ 2934 barrier(); 2935 2936 /* 2937 * If an interrupt came in just after the first while loop 2938 * and pushed the tail page forward, we will be left with 2939 * a dangling commit that will never go forward. 2940 */ 2941 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 2942 goto again; 2943 } 2944 2945 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2946 { 2947 unsigned long commits; 2948 2949 if (RB_WARN_ON(cpu_buffer, 2950 !local_read(&cpu_buffer->committing))) 2951 return; 2952 2953 again: 2954 commits = local_read(&cpu_buffer->commits); 2955 /* synchronize with interrupts */ 2956 barrier(); 2957 if (local_read(&cpu_buffer->committing) == 1) 2958 rb_set_commit_to_write(cpu_buffer); 2959 2960 local_dec(&cpu_buffer->committing); 2961 2962 /* synchronize with interrupts */ 2963 barrier(); 2964 2965 /* 2966 * Need to account for interrupts coming in between the 2967 * updating of the commit page and the clearing of the 2968 * committing counter. 2969 */ 2970 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2971 !local_read(&cpu_buffer->committing)) { 2972 local_inc(&cpu_buffer->committing); 2973 goto again; 2974 } 2975 } 2976 2977 static inline void rb_event_discard(struct ring_buffer_event *event) 2978 { 2979 if (extended_time(event)) 2980 event = skip_time_extend(event); 2981 2982 /* array[0] holds the actual length for the discarded event */ 2983 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2984 event->type_len = RINGBUF_TYPE_PADDING; 2985 /* time delta must be non zero */ 2986 if (!event->time_delta) 2987 event->time_delta = 1; 2988 } 2989 2990 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer) 2991 { 2992 local_inc(&cpu_buffer->entries); 2993 rb_end_commit(cpu_buffer); 2994 } 2995 2996 static __always_inline void 2997 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 2998 { 2999 if (buffer->irq_work.waiters_pending) { 3000 buffer->irq_work.waiters_pending = false; 3001 /* irq_work_queue() supplies it's own memory barriers */ 3002 irq_work_queue(&buffer->irq_work.work); 3003 } 3004 3005 if (cpu_buffer->irq_work.waiters_pending) { 3006 cpu_buffer->irq_work.waiters_pending = false; 3007 /* irq_work_queue() supplies it's own memory barriers */ 3008 irq_work_queue(&cpu_buffer->irq_work.work); 3009 } 3010 3011 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched)) 3012 return; 3013 3014 if (cpu_buffer->reader_page == cpu_buffer->commit_page) 3015 return; 3016 3017 if (!cpu_buffer->irq_work.full_waiters_pending) 3018 return; 3019 3020 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched); 3021 3022 if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full)) 3023 return; 3024 3025 cpu_buffer->irq_work.wakeup_full = true; 3026 cpu_buffer->irq_work.full_waiters_pending = false; 3027 /* irq_work_queue() supplies it's own memory barriers */ 3028 irq_work_queue(&cpu_buffer->irq_work.work); 3029 } 3030 3031 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION 3032 # define do_ring_buffer_record_recursion() \ 3033 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_) 3034 #else 3035 # define do_ring_buffer_record_recursion() do { } while (0) 3036 #endif 3037 3038 /* 3039 * The lock and unlock are done within a preempt disable section. 3040 * The current_context per_cpu variable can only be modified 3041 * by the current task between lock and unlock. But it can 3042 * be modified more than once via an interrupt. To pass this 3043 * information from the lock to the unlock without having to 3044 * access the 'in_interrupt()' functions again (which do show 3045 * a bit of overhead in something as critical as function tracing, 3046 * we use a bitmask trick. 3047 * 3048 * bit 1 = NMI context 3049 * bit 2 = IRQ context 3050 * bit 3 = SoftIRQ context 3051 * bit 4 = normal context. 3052 * 3053 * This works because this is the order of contexts that can 3054 * preempt other contexts. A SoftIRQ never preempts an IRQ 3055 * context. 3056 * 3057 * When the context is determined, the corresponding bit is 3058 * checked and set (if it was set, then a recursion of that context 3059 * happened). 3060 * 3061 * On unlock, we need to clear this bit. To do so, just subtract 3062 * 1 from the current_context and AND it to itself. 3063 * 3064 * (binary) 3065 * 101 - 1 = 100 3066 * 101 & 100 = 100 (clearing bit zero) 3067 * 3068 * 1010 - 1 = 1001 3069 * 1010 & 1001 = 1000 (clearing bit 1) 3070 * 3071 * The least significant bit can be cleared this way, and it 3072 * just so happens that it is the same bit corresponding to 3073 * the current context. 3074 * 3075 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit 3076 * is set when a recursion is detected at the current context, and if 3077 * the TRANSITION bit is already set, it will fail the recursion. 3078 * This is needed because there's a lag between the changing of 3079 * interrupt context and updating the preempt count. In this case, 3080 * a false positive will be found. To handle this, one extra recursion 3081 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION 3082 * bit is already set, then it is considered a recursion and the function 3083 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned. 3084 * 3085 * On the trace_recursive_unlock(), the TRANSITION bit will be the first 3086 * to be cleared. Even if it wasn't the context that set it. That is, 3087 * if an interrupt comes in while NORMAL bit is set and the ring buffer 3088 * is called before preempt_count() is updated, since the check will 3089 * be on the NORMAL bit, the TRANSITION bit will then be set. If an 3090 * NMI then comes in, it will set the NMI bit, but when the NMI code 3091 * does the trace_recursive_unlock() it will clear the TRANSITION bit 3092 * and leave the NMI bit set. But this is fine, because the interrupt 3093 * code that set the TRANSITION bit will then clear the NMI bit when it 3094 * calls trace_recursive_unlock(). If another NMI comes in, it will 3095 * set the TRANSITION bit and continue. 3096 * 3097 * Note: The TRANSITION bit only handles a single transition between context. 3098 */ 3099 3100 static __always_inline bool 3101 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 3102 { 3103 unsigned int val = cpu_buffer->current_context; 3104 int bit = interrupt_context_level(); 3105 3106 bit = RB_CTX_NORMAL - bit; 3107 3108 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) { 3109 /* 3110 * It is possible that this was called by transitioning 3111 * between interrupt context, and preempt_count() has not 3112 * been updated yet. In this case, use the TRANSITION bit. 3113 */ 3114 bit = RB_CTX_TRANSITION; 3115 if (val & (1 << (bit + cpu_buffer->nest))) { 3116 do_ring_buffer_record_recursion(); 3117 return true; 3118 } 3119 } 3120 3121 val |= (1 << (bit + cpu_buffer->nest)); 3122 cpu_buffer->current_context = val; 3123 3124 return false; 3125 } 3126 3127 static __always_inline void 3128 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 3129 { 3130 cpu_buffer->current_context &= 3131 cpu_buffer->current_context - (1 << cpu_buffer->nest); 3132 } 3133 3134 /* The recursive locking above uses 5 bits */ 3135 #define NESTED_BITS 5 3136 3137 /** 3138 * ring_buffer_nest_start - Allow to trace while nested 3139 * @buffer: The ring buffer to modify 3140 * 3141 * The ring buffer has a safety mechanism to prevent recursion. 3142 * But there may be a case where a trace needs to be done while 3143 * tracing something else. In this case, calling this function 3144 * will allow this function to nest within a currently active 3145 * ring_buffer_lock_reserve(). 3146 * 3147 * Call this function before calling another ring_buffer_lock_reserve() and 3148 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). 3149 */ 3150 void ring_buffer_nest_start(struct trace_buffer *buffer) 3151 { 3152 struct ring_buffer_per_cpu *cpu_buffer; 3153 int cpu; 3154 3155 /* Enabled by ring_buffer_nest_end() */ 3156 preempt_disable_notrace(); 3157 cpu = raw_smp_processor_id(); 3158 cpu_buffer = buffer->buffers[cpu]; 3159 /* This is the shift value for the above recursive locking */ 3160 cpu_buffer->nest += NESTED_BITS; 3161 } 3162 3163 /** 3164 * ring_buffer_nest_end - Allow to trace while nested 3165 * @buffer: The ring buffer to modify 3166 * 3167 * Must be called after ring_buffer_nest_start() and after the 3168 * ring_buffer_unlock_commit(). 3169 */ 3170 void ring_buffer_nest_end(struct trace_buffer *buffer) 3171 { 3172 struct ring_buffer_per_cpu *cpu_buffer; 3173 int cpu; 3174 3175 /* disabled by ring_buffer_nest_start() */ 3176 cpu = raw_smp_processor_id(); 3177 cpu_buffer = buffer->buffers[cpu]; 3178 /* This is the shift value for the above recursive locking */ 3179 cpu_buffer->nest -= NESTED_BITS; 3180 preempt_enable_notrace(); 3181 } 3182 3183 /** 3184 * ring_buffer_unlock_commit - commit a reserved 3185 * @buffer: The buffer to commit to 3186 * 3187 * This commits the data to the ring buffer, and releases any locks held. 3188 * 3189 * Must be paired with ring_buffer_lock_reserve. 3190 */ 3191 int ring_buffer_unlock_commit(struct trace_buffer *buffer) 3192 { 3193 struct ring_buffer_per_cpu *cpu_buffer; 3194 int cpu = raw_smp_processor_id(); 3195 3196 cpu_buffer = buffer->buffers[cpu]; 3197 3198 rb_commit(cpu_buffer); 3199 3200 rb_wakeups(buffer, cpu_buffer); 3201 3202 trace_recursive_unlock(cpu_buffer); 3203 3204 preempt_enable_notrace(); 3205 3206 return 0; 3207 } 3208 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 3209 3210 /* Special value to validate all deltas on a page. */ 3211 #define CHECK_FULL_PAGE 1L 3212 3213 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS 3214 3215 static const char *show_irq_str(int bits) 3216 { 3217 const char *type[] = { 3218 ".", // 0 3219 "s", // 1 3220 "h", // 2 3221 "Hs", // 3 3222 "n", // 4 3223 "Ns", // 5 3224 "Nh", // 6 3225 "NHs", // 7 3226 }; 3227 3228 return type[bits]; 3229 } 3230 3231 /* Assume this is an trace event */ 3232 static const char *show_flags(struct ring_buffer_event *event) 3233 { 3234 struct trace_entry *entry; 3235 int bits = 0; 3236 3237 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry)) 3238 return "X"; 3239 3240 entry = ring_buffer_event_data(event); 3241 3242 if (entry->flags & TRACE_FLAG_SOFTIRQ) 3243 bits |= 1; 3244 3245 if (entry->flags & TRACE_FLAG_HARDIRQ) 3246 bits |= 2; 3247 3248 if (entry->flags & TRACE_FLAG_NMI) 3249 bits |= 4; 3250 3251 return show_irq_str(bits); 3252 } 3253 3254 static const char *show_irq(struct ring_buffer_event *event) 3255 { 3256 struct trace_entry *entry; 3257 3258 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry)) 3259 return ""; 3260 3261 entry = ring_buffer_event_data(event); 3262 if (entry->flags & TRACE_FLAG_IRQS_OFF) 3263 return "d"; 3264 return ""; 3265 } 3266 3267 static const char *show_interrupt_level(void) 3268 { 3269 unsigned long pc = preempt_count(); 3270 unsigned char level = 0; 3271 3272 if (pc & SOFTIRQ_OFFSET) 3273 level |= 1; 3274 3275 if (pc & HARDIRQ_MASK) 3276 level |= 2; 3277 3278 if (pc & NMI_MASK) 3279 level |= 4; 3280 3281 return show_irq_str(level); 3282 } 3283 3284 static void dump_buffer_page(struct buffer_data_page *bpage, 3285 struct rb_event_info *info, 3286 unsigned long tail) 3287 { 3288 struct ring_buffer_event *event; 3289 u64 ts, delta; 3290 int e; 3291 3292 ts = bpage->time_stamp; 3293 pr_warn(" [%lld] PAGE TIME STAMP\n", ts); 3294 3295 for (e = 0; e < tail; e += rb_event_length(event)) { 3296 3297 event = (struct ring_buffer_event *)(bpage->data + e); 3298 3299 switch (event->type_len) { 3300 3301 case RINGBUF_TYPE_TIME_EXTEND: 3302 delta = rb_event_time_stamp(event); 3303 ts += delta; 3304 pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n", 3305 e, ts, delta); 3306 break; 3307 3308 case RINGBUF_TYPE_TIME_STAMP: 3309 delta = rb_event_time_stamp(event); 3310 ts = rb_fix_abs_ts(delta, ts); 3311 pr_warn(" 0x%x: [%lld] absolute:%lld TIME STAMP\n", 3312 e, ts, delta); 3313 break; 3314 3315 case RINGBUF_TYPE_PADDING: 3316 ts += event->time_delta; 3317 pr_warn(" 0x%x: [%lld] delta:%d PADDING\n", 3318 e, ts, event->time_delta); 3319 break; 3320 3321 case RINGBUF_TYPE_DATA: 3322 ts += event->time_delta; 3323 pr_warn(" 0x%x: [%lld] delta:%d %s%s\n", 3324 e, ts, event->time_delta, 3325 show_flags(event), show_irq(event)); 3326 break; 3327 3328 default: 3329 break; 3330 } 3331 } 3332 pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e); 3333 } 3334 3335 static DEFINE_PER_CPU(atomic_t, checking); 3336 static atomic_t ts_dump; 3337 3338 #define buffer_warn_return(fmt, ...) \ 3339 do { \ 3340 /* If another report is happening, ignore this one */ \ 3341 if (atomic_inc_return(&ts_dump) != 1) { \ 3342 atomic_dec(&ts_dump); \ 3343 goto out; \ 3344 } \ 3345 atomic_inc(&cpu_buffer->record_disabled); \ 3346 pr_warn(fmt, ##__VA_ARGS__); \ 3347 dump_buffer_page(bpage, info, tail); \ 3348 atomic_dec(&ts_dump); \ 3349 /* There's some cases in boot up that this can happen */ \ 3350 if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING)) \ 3351 /* Do not re-enable checking */ \ 3352 return; \ 3353 } while (0) 3354 3355 /* 3356 * Check if the current event time stamp matches the deltas on 3357 * the buffer page. 3358 */ 3359 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 3360 struct rb_event_info *info, 3361 unsigned long tail) 3362 { 3363 struct ring_buffer_event *event; 3364 struct buffer_data_page *bpage; 3365 u64 ts, delta; 3366 bool full = false; 3367 int e; 3368 3369 bpage = info->tail_page->page; 3370 3371 if (tail == CHECK_FULL_PAGE) { 3372 full = true; 3373 tail = local_read(&bpage->commit); 3374 } else if (info->add_timestamp & 3375 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) { 3376 /* Ignore events with absolute time stamps */ 3377 return; 3378 } 3379 3380 /* 3381 * Do not check the first event (skip possible extends too). 3382 * Also do not check if previous events have not been committed. 3383 */ 3384 if (tail <= 8 || tail > local_read(&bpage->commit)) 3385 return; 3386 3387 /* 3388 * If this interrupted another event, 3389 */ 3390 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1) 3391 goto out; 3392 3393 ts = bpage->time_stamp; 3394 3395 for (e = 0; e < tail; e += rb_event_length(event)) { 3396 3397 event = (struct ring_buffer_event *)(bpage->data + e); 3398 3399 switch (event->type_len) { 3400 3401 case RINGBUF_TYPE_TIME_EXTEND: 3402 delta = rb_event_time_stamp(event); 3403 ts += delta; 3404 break; 3405 3406 case RINGBUF_TYPE_TIME_STAMP: 3407 delta = rb_event_time_stamp(event); 3408 delta = rb_fix_abs_ts(delta, ts); 3409 if (delta < ts) { 3410 buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n", 3411 cpu_buffer->cpu, ts, delta); 3412 } 3413 ts = delta; 3414 break; 3415 3416 case RINGBUF_TYPE_PADDING: 3417 if (event->time_delta == 1) 3418 break; 3419 fallthrough; 3420 case RINGBUF_TYPE_DATA: 3421 ts += event->time_delta; 3422 break; 3423 3424 default: 3425 RB_WARN_ON(cpu_buffer, 1); 3426 } 3427 } 3428 if ((full && ts > info->ts) || 3429 (!full && ts + info->delta != info->ts)) { 3430 buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n", 3431 cpu_buffer->cpu, 3432 ts + info->delta, info->ts, info->delta, 3433 info->before, info->after, 3434 full ? " (full)" : "", show_interrupt_level()); 3435 } 3436 out: 3437 atomic_dec(this_cpu_ptr(&checking)); 3438 } 3439 #else 3440 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 3441 struct rb_event_info *info, 3442 unsigned long tail) 3443 { 3444 } 3445 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */ 3446 3447 static struct ring_buffer_event * 3448 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 3449 struct rb_event_info *info) 3450 { 3451 struct ring_buffer_event *event; 3452 struct buffer_page *tail_page; 3453 unsigned long tail, write, w; 3454 3455 /* Don't let the compiler play games with cpu_buffer->tail_page */ 3456 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 3457 3458 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK; 3459 barrier(); 3460 rb_time_read(&cpu_buffer->before_stamp, &info->before); 3461 rb_time_read(&cpu_buffer->write_stamp, &info->after); 3462 barrier(); 3463 info->ts = rb_time_stamp(cpu_buffer->buffer); 3464 3465 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) { 3466 info->delta = info->ts; 3467 } else { 3468 /* 3469 * If interrupting an event time update, we may need an 3470 * absolute timestamp. 3471 * Don't bother if this is the start of a new page (w == 0). 3472 */ 3473 if (!w) { 3474 /* Use the sub-buffer timestamp */ 3475 info->delta = 0; 3476 } else if (unlikely(info->before != info->after)) { 3477 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND; 3478 info->length += RB_LEN_TIME_EXTEND; 3479 } else { 3480 info->delta = info->ts - info->after; 3481 if (unlikely(test_time_stamp(info->delta))) { 3482 info->add_timestamp |= RB_ADD_STAMP_EXTEND; 3483 info->length += RB_LEN_TIME_EXTEND; 3484 } 3485 } 3486 } 3487 3488 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts); 3489 3490 /*C*/ write = local_add_return(info->length, &tail_page->write); 3491 3492 /* set write to only the index of the write */ 3493 write &= RB_WRITE_MASK; 3494 3495 tail = write - info->length; 3496 3497 /* See if we shot pass the end of this buffer page */ 3498 if (unlikely(write > cpu_buffer->buffer->subbuf_size)) { 3499 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE); 3500 return rb_move_tail(cpu_buffer, tail, info); 3501 } 3502 3503 if (likely(tail == w)) { 3504 /* Nothing interrupted us between A and C */ 3505 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts); 3506 /* 3507 * If something came in between C and D, the write stamp 3508 * may now not be in sync. But that's fine as the before_stamp 3509 * will be different and then next event will just be forced 3510 * to use an absolute timestamp. 3511 */ 3512 if (likely(!(info->add_timestamp & 3513 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3514 /* This did not interrupt any time update */ 3515 info->delta = info->ts - info->after; 3516 else 3517 /* Just use full timestamp for interrupting event */ 3518 info->delta = info->ts; 3519 check_buffer(cpu_buffer, info, tail); 3520 } else { 3521 u64 ts; 3522 /* SLOW PATH - Interrupted between A and C */ 3523 3524 /* Save the old before_stamp */ 3525 rb_time_read(&cpu_buffer->before_stamp, &info->before); 3526 3527 /* 3528 * Read a new timestamp and update the before_stamp to make 3529 * the next event after this one force using an absolute 3530 * timestamp. This is in case an interrupt were to come in 3531 * between E and F. 3532 */ 3533 ts = rb_time_stamp(cpu_buffer->buffer); 3534 rb_time_set(&cpu_buffer->before_stamp, ts); 3535 3536 barrier(); 3537 /*E*/ rb_time_read(&cpu_buffer->write_stamp, &info->after); 3538 barrier(); 3539 /*F*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) && 3540 info->after == info->before && info->after < ts) { 3541 /* 3542 * Nothing came after this event between C and F, it is 3543 * safe to use info->after for the delta as it 3544 * matched info->before and is still valid. 3545 */ 3546 info->delta = ts - info->after; 3547 } else { 3548 /* 3549 * Interrupted between C and F: 3550 * Lost the previous events time stamp. Just set the 3551 * delta to zero, and this will be the same time as 3552 * the event this event interrupted. And the events that 3553 * came after this will still be correct (as they would 3554 * have built their delta on the previous event. 3555 */ 3556 info->delta = 0; 3557 } 3558 info->ts = ts; 3559 info->add_timestamp &= ~RB_ADD_STAMP_FORCE; 3560 } 3561 3562 /* 3563 * If this is the first commit on the page, then it has the same 3564 * timestamp as the page itself. 3565 */ 3566 if (unlikely(!tail && !(info->add_timestamp & 3567 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3568 info->delta = 0; 3569 3570 /* We reserved something on the buffer */ 3571 3572 event = __rb_page_index(tail_page, tail); 3573 rb_update_event(cpu_buffer, event, info); 3574 3575 local_inc(&tail_page->entries); 3576 3577 /* 3578 * If this is the first commit on the page, then update 3579 * its timestamp. 3580 */ 3581 if (unlikely(!tail)) 3582 tail_page->page->time_stamp = info->ts; 3583 3584 /* account for these added bytes */ 3585 local_add(info->length, &cpu_buffer->entries_bytes); 3586 3587 return event; 3588 } 3589 3590 static __always_inline struct ring_buffer_event * 3591 rb_reserve_next_event(struct trace_buffer *buffer, 3592 struct ring_buffer_per_cpu *cpu_buffer, 3593 unsigned long length) 3594 { 3595 struct ring_buffer_event *event; 3596 struct rb_event_info info; 3597 int nr_loops = 0; 3598 int add_ts_default; 3599 3600 /* ring buffer does cmpxchg, make sure it is safe in NMI context */ 3601 if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) && 3602 (unlikely(in_nmi()))) { 3603 return NULL; 3604 } 3605 3606 rb_start_commit(cpu_buffer); 3607 /* The commit page can not change after this */ 3608 3609 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 3610 /* 3611 * Due to the ability to swap a cpu buffer from a buffer 3612 * it is possible it was swapped before we committed. 3613 * (committing stops a swap). We check for it here and 3614 * if it happened, we have to fail the write. 3615 */ 3616 barrier(); 3617 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 3618 local_dec(&cpu_buffer->committing); 3619 local_dec(&cpu_buffer->commits); 3620 return NULL; 3621 } 3622 #endif 3623 3624 info.length = rb_calculate_event_length(length); 3625 3626 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) { 3627 add_ts_default = RB_ADD_STAMP_ABSOLUTE; 3628 info.length += RB_LEN_TIME_EXTEND; 3629 if (info.length > cpu_buffer->buffer->max_data_size) 3630 goto out_fail; 3631 } else { 3632 add_ts_default = RB_ADD_STAMP_NONE; 3633 } 3634 3635 again: 3636 info.add_timestamp = add_ts_default; 3637 info.delta = 0; 3638 3639 /* 3640 * We allow for interrupts to reenter here and do a trace. 3641 * If one does, it will cause this original code to loop 3642 * back here. Even with heavy interrupts happening, this 3643 * should only happen a few times in a row. If this happens 3644 * 1000 times in a row, there must be either an interrupt 3645 * storm or we have something buggy. 3646 * Bail! 3647 */ 3648 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 3649 goto out_fail; 3650 3651 event = __rb_reserve_next(cpu_buffer, &info); 3652 3653 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 3654 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND)) 3655 info.length -= RB_LEN_TIME_EXTEND; 3656 goto again; 3657 } 3658 3659 if (likely(event)) 3660 return event; 3661 out_fail: 3662 rb_end_commit(cpu_buffer); 3663 return NULL; 3664 } 3665 3666 /** 3667 * ring_buffer_lock_reserve - reserve a part of the buffer 3668 * @buffer: the ring buffer to reserve from 3669 * @length: the length of the data to reserve (excluding event header) 3670 * 3671 * Returns a reserved event on the ring buffer to copy directly to. 3672 * The user of this interface will need to get the body to write into 3673 * and can use the ring_buffer_event_data() interface. 3674 * 3675 * The length is the length of the data needed, not the event length 3676 * which also includes the event header. 3677 * 3678 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 3679 * If NULL is returned, then nothing has been allocated or locked. 3680 */ 3681 struct ring_buffer_event * 3682 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length) 3683 { 3684 struct ring_buffer_per_cpu *cpu_buffer; 3685 struct ring_buffer_event *event; 3686 int cpu; 3687 3688 /* If we are tracing schedule, we don't want to recurse */ 3689 preempt_disable_notrace(); 3690 3691 if (unlikely(atomic_read(&buffer->record_disabled))) 3692 goto out; 3693 3694 cpu = raw_smp_processor_id(); 3695 3696 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 3697 goto out; 3698 3699 cpu_buffer = buffer->buffers[cpu]; 3700 3701 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 3702 goto out; 3703 3704 if (unlikely(length > buffer->max_data_size)) 3705 goto out; 3706 3707 if (unlikely(trace_recursive_lock(cpu_buffer))) 3708 goto out; 3709 3710 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3711 if (!event) 3712 goto out_unlock; 3713 3714 return event; 3715 3716 out_unlock: 3717 trace_recursive_unlock(cpu_buffer); 3718 out: 3719 preempt_enable_notrace(); 3720 return NULL; 3721 } 3722 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 3723 3724 /* 3725 * Decrement the entries to the page that an event is on. 3726 * The event does not even need to exist, only the pointer 3727 * to the page it is on. This may only be called before the commit 3728 * takes place. 3729 */ 3730 static inline void 3731 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 3732 struct ring_buffer_event *event) 3733 { 3734 unsigned long addr = (unsigned long)event; 3735 struct buffer_page *bpage = cpu_buffer->commit_page; 3736 struct buffer_page *start; 3737 3738 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1); 3739 3740 /* Do the likely case first */ 3741 if (likely(bpage->page == (void *)addr)) { 3742 local_dec(&bpage->entries); 3743 return; 3744 } 3745 3746 /* 3747 * Because the commit page may be on the reader page we 3748 * start with the next page and check the end loop there. 3749 */ 3750 rb_inc_page(&bpage); 3751 start = bpage; 3752 do { 3753 if (bpage->page == (void *)addr) { 3754 local_dec(&bpage->entries); 3755 return; 3756 } 3757 rb_inc_page(&bpage); 3758 } while (bpage != start); 3759 3760 /* commit not part of this buffer?? */ 3761 RB_WARN_ON(cpu_buffer, 1); 3762 } 3763 3764 /** 3765 * ring_buffer_discard_commit - discard an event that has not been committed 3766 * @buffer: the ring buffer 3767 * @event: non committed event to discard 3768 * 3769 * Sometimes an event that is in the ring buffer needs to be ignored. 3770 * This function lets the user discard an event in the ring buffer 3771 * and then that event will not be read later. 3772 * 3773 * This function only works if it is called before the item has been 3774 * committed. It will try to free the event from the ring buffer 3775 * if another event has not been added behind it. 3776 * 3777 * If another event has been added behind it, it will set the event 3778 * up as discarded, and perform the commit. 3779 * 3780 * If this function is called, do not call ring_buffer_unlock_commit on 3781 * the event. 3782 */ 3783 void ring_buffer_discard_commit(struct trace_buffer *buffer, 3784 struct ring_buffer_event *event) 3785 { 3786 struct ring_buffer_per_cpu *cpu_buffer; 3787 int cpu; 3788 3789 /* The event is discarded regardless */ 3790 rb_event_discard(event); 3791 3792 cpu = smp_processor_id(); 3793 cpu_buffer = buffer->buffers[cpu]; 3794 3795 /* 3796 * This must only be called if the event has not been 3797 * committed yet. Thus we can assume that preemption 3798 * is still disabled. 3799 */ 3800 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 3801 3802 rb_decrement_entry(cpu_buffer, event); 3803 if (rb_try_to_discard(cpu_buffer, event)) 3804 goto out; 3805 3806 out: 3807 rb_end_commit(cpu_buffer); 3808 3809 trace_recursive_unlock(cpu_buffer); 3810 3811 preempt_enable_notrace(); 3812 3813 } 3814 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 3815 3816 /** 3817 * ring_buffer_write - write data to the buffer without reserving 3818 * @buffer: The ring buffer to write to. 3819 * @length: The length of the data being written (excluding the event header) 3820 * @data: The data to write to the buffer. 3821 * 3822 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 3823 * one function. If you already have the data to write to the buffer, it 3824 * may be easier to simply call this function. 3825 * 3826 * Note, like ring_buffer_lock_reserve, the length is the length of the data 3827 * and not the length of the event which would hold the header. 3828 */ 3829 int ring_buffer_write(struct trace_buffer *buffer, 3830 unsigned long length, 3831 void *data) 3832 { 3833 struct ring_buffer_per_cpu *cpu_buffer; 3834 struct ring_buffer_event *event; 3835 void *body; 3836 int ret = -EBUSY; 3837 int cpu; 3838 3839 preempt_disable_notrace(); 3840 3841 if (atomic_read(&buffer->record_disabled)) 3842 goto out; 3843 3844 cpu = raw_smp_processor_id(); 3845 3846 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3847 goto out; 3848 3849 cpu_buffer = buffer->buffers[cpu]; 3850 3851 if (atomic_read(&cpu_buffer->record_disabled)) 3852 goto out; 3853 3854 if (length > buffer->max_data_size) 3855 goto out; 3856 3857 if (unlikely(trace_recursive_lock(cpu_buffer))) 3858 goto out; 3859 3860 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3861 if (!event) 3862 goto out_unlock; 3863 3864 body = rb_event_data(event); 3865 3866 memcpy(body, data, length); 3867 3868 rb_commit(cpu_buffer); 3869 3870 rb_wakeups(buffer, cpu_buffer); 3871 3872 ret = 0; 3873 3874 out_unlock: 3875 trace_recursive_unlock(cpu_buffer); 3876 3877 out: 3878 preempt_enable_notrace(); 3879 3880 return ret; 3881 } 3882 EXPORT_SYMBOL_GPL(ring_buffer_write); 3883 3884 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3885 { 3886 struct buffer_page *reader = cpu_buffer->reader_page; 3887 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3888 struct buffer_page *commit = cpu_buffer->commit_page; 3889 3890 /* In case of error, head will be NULL */ 3891 if (unlikely(!head)) 3892 return true; 3893 3894 /* Reader should exhaust content in reader page */ 3895 if (reader->read != rb_page_commit(reader)) 3896 return false; 3897 3898 /* 3899 * If writers are committing on the reader page, knowing all 3900 * committed content has been read, the ring buffer is empty. 3901 */ 3902 if (commit == reader) 3903 return true; 3904 3905 /* 3906 * If writers are committing on a page other than reader page 3907 * and head page, there should always be content to read. 3908 */ 3909 if (commit != head) 3910 return false; 3911 3912 /* 3913 * Writers are committing on the head page, we just need 3914 * to care about there're committed data, and the reader will 3915 * swap reader page with head page when it is to read data. 3916 */ 3917 return rb_page_commit(commit) == 0; 3918 } 3919 3920 /** 3921 * ring_buffer_record_disable - stop all writes into the buffer 3922 * @buffer: The ring buffer to stop writes to. 3923 * 3924 * This prevents all writes to the buffer. Any attempt to write 3925 * to the buffer after this will fail and return NULL. 3926 * 3927 * The caller should call synchronize_rcu() after this. 3928 */ 3929 void ring_buffer_record_disable(struct trace_buffer *buffer) 3930 { 3931 atomic_inc(&buffer->record_disabled); 3932 } 3933 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3934 3935 /** 3936 * ring_buffer_record_enable - enable writes to the buffer 3937 * @buffer: The ring buffer to enable writes 3938 * 3939 * Note, multiple disables will need the same number of enables 3940 * to truly enable the writing (much like preempt_disable). 3941 */ 3942 void ring_buffer_record_enable(struct trace_buffer *buffer) 3943 { 3944 atomic_dec(&buffer->record_disabled); 3945 } 3946 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3947 3948 /** 3949 * ring_buffer_record_off - stop all writes into the buffer 3950 * @buffer: The ring buffer to stop writes to. 3951 * 3952 * This prevents all writes to the buffer. Any attempt to write 3953 * to the buffer after this will fail and return NULL. 3954 * 3955 * This is different than ring_buffer_record_disable() as 3956 * it works like an on/off switch, where as the disable() version 3957 * must be paired with a enable(). 3958 */ 3959 void ring_buffer_record_off(struct trace_buffer *buffer) 3960 { 3961 unsigned int rd; 3962 unsigned int new_rd; 3963 3964 rd = atomic_read(&buffer->record_disabled); 3965 do { 3966 new_rd = rd | RB_BUFFER_OFF; 3967 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd)); 3968 } 3969 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3970 3971 /** 3972 * ring_buffer_record_on - restart writes into the buffer 3973 * @buffer: The ring buffer to start writes to. 3974 * 3975 * This enables all writes to the buffer that was disabled by 3976 * ring_buffer_record_off(). 3977 * 3978 * This is different than ring_buffer_record_enable() as 3979 * it works like an on/off switch, where as the enable() version 3980 * must be paired with a disable(). 3981 */ 3982 void ring_buffer_record_on(struct trace_buffer *buffer) 3983 { 3984 unsigned int rd; 3985 unsigned int new_rd; 3986 3987 rd = atomic_read(&buffer->record_disabled); 3988 do { 3989 new_rd = rd & ~RB_BUFFER_OFF; 3990 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd)); 3991 } 3992 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 3993 3994 /** 3995 * ring_buffer_record_is_on - return true if the ring buffer can write 3996 * @buffer: The ring buffer to see if write is enabled 3997 * 3998 * Returns true if the ring buffer is in a state that it accepts writes. 3999 */ 4000 bool ring_buffer_record_is_on(struct trace_buffer *buffer) 4001 { 4002 return !atomic_read(&buffer->record_disabled); 4003 } 4004 4005 /** 4006 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable 4007 * @buffer: The ring buffer to see if write is set enabled 4008 * 4009 * Returns true if the ring buffer is set writable by ring_buffer_record_on(). 4010 * Note that this does NOT mean it is in a writable state. 4011 * 4012 * It may return true when the ring buffer has been disabled by 4013 * ring_buffer_record_disable(), as that is a temporary disabling of 4014 * the ring buffer. 4015 */ 4016 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer) 4017 { 4018 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); 4019 } 4020 4021 /** 4022 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 4023 * @buffer: The ring buffer to stop writes to. 4024 * @cpu: The CPU buffer to stop 4025 * 4026 * This prevents all writes to the buffer. Any attempt to write 4027 * to the buffer after this will fail and return NULL. 4028 * 4029 * The caller should call synchronize_rcu() after this. 4030 */ 4031 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu) 4032 { 4033 struct ring_buffer_per_cpu *cpu_buffer; 4034 4035 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4036 return; 4037 4038 cpu_buffer = buffer->buffers[cpu]; 4039 atomic_inc(&cpu_buffer->record_disabled); 4040 } 4041 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 4042 4043 /** 4044 * ring_buffer_record_enable_cpu - enable writes to the buffer 4045 * @buffer: The ring buffer to enable writes 4046 * @cpu: The CPU to enable. 4047 * 4048 * Note, multiple disables will need the same number of enables 4049 * to truly enable the writing (much like preempt_disable). 4050 */ 4051 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu) 4052 { 4053 struct ring_buffer_per_cpu *cpu_buffer; 4054 4055 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4056 return; 4057 4058 cpu_buffer = buffer->buffers[cpu]; 4059 atomic_dec(&cpu_buffer->record_disabled); 4060 } 4061 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 4062 4063 /* 4064 * The total entries in the ring buffer is the running counter 4065 * of entries entered into the ring buffer, minus the sum of 4066 * the entries read from the ring buffer and the number of 4067 * entries that were overwritten. 4068 */ 4069 static inline unsigned long 4070 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 4071 { 4072 return local_read(&cpu_buffer->entries) - 4073 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 4074 } 4075 4076 /** 4077 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 4078 * @buffer: The ring buffer 4079 * @cpu: The per CPU buffer to read from. 4080 */ 4081 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu) 4082 { 4083 unsigned long flags; 4084 struct ring_buffer_per_cpu *cpu_buffer; 4085 struct buffer_page *bpage; 4086 u64 ret = 0; 4087 4088 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4089 return 0; 4090 4091 cpu_buffer = buffer->buffers[cpu]; 4092 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4093 /* 4094 * if the tail is on reader_page, oldest time stamp is on the reader 4095 * page 4096 */ 4097 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 4098 bpage = cpu_buffer->reader_page; 4099 else 4100 bpage = rb_set_head_page(cpu_buffer); 4101 if (bpage) 4102 ret = bpage->page->time_stamp; 4103 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4104 4105 return ret; 4106 } 4107 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 4108 4109 /** 4110 * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer 4111 * @buffer: The ring buffer 4112 * @cpu: The per CPU buffer to read from. 4113 */ 4114 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu) 4115 { 4116 struct ring_buffer_per_cpu *cpu_buffer; 4117 unsigned long ret; 4118 4119 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4120 return 0; 4121 4122 cpu_buffer = buffer->buffers[cpu]; 4123 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 4124 4125 return ret; 4126 } 4127 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 4128 4129 /** 4130 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 4131 * @buffer: The ring buffer 4132 * @cpu: The per CPU buffer to get the entries from. 4133 */ 4134 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu) 4135 { 4136 struct ring_buffer_per_cpu *cpu_buffer; 4137 4138 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4139 return 0; 4140 4141 cpu_buffer = buffer->buffers[cpu]; 4142 4143 return rb_num_of_entries(cpu_buffer); 4144 } 4145 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 4146 4147 /** 4148 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 4149 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 4150 * @buffer: The ring buffer 4151 * @cpu: The per CPU buffer to get the number of overruns from 4152 */ 4153 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu) 4154 { 4155 struct ring_buffer_per_cpu *cpu_buffer; 4156 unsigned long ret; 4157 4158 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4159 return 0; 4160 4161 cpu_buffer = buffer->buffers[cpu]; 4162 ret = local_read(&cpu_buffer->overrun); 4163 4164 return ret; 4165 } 4166 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 4167 4168 /** 4169 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 4170 * commits failing due to the buffer wrapping around while there are uncommitted 4171 * events, such as during an interrupt storm. 4172 * @buffer: The ring buffer 4173 * @cpu: The per CPU buffer to get the number of overruns from 4174 */ 4175 unsigned long 4176 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu) 4177 { 4178 struct ring_buffer_per_cpu *cpu_buffer; 4179 unsigned long ret; 4180 4181 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4182 return 0; 4183 4184 cpu_buffer = buffer->buffers[cpu]; 4185 ret = local_read(&cpu_buffer->commit_overrun); 4186 4187 return ret; 4188 } 4189 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 4190 4191 /** 4192 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 4193 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 4194 * @buffer: The ring buffer 4195 * @cpu: The per CPU buffer to get the number of overruns from 4196 */ 4197 unsigned long 4198 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu) 4199 { 4200 struct ring_buffer_per_cpu *cpu_buffer; 4201 unsigned long ret; 4202 4203 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4204 return 0; 4205 4206 cpu_buffer = buffer->buffers[cpu]; 4207 ret = local_read(&cpu_buffer->dropped_events); 4208 4209 return ret; 4210 } 4211 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 4212 4213 /** 4214 * ring_buffer_read_events_cpu - get the number of events successfully read 4215 * @buffer: The ring buffer 4216 * @cpu: The per CPU buffer to get the number of events read 4217 */ 4218 unsigned long 4219 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu) 4220 { 4221 struct ring_buffer_per_cpu *cpu_buffer; 4222 4223 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4224 return 0; 4225 4226 cpu_buffer = buffer->buffers[cpu]; 4227 return cpu_buffer->read; 4228 } 4229 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 4230 4231 /** 4232 * ring_buffer_entries - get the number of entries in a buffer 4233 * @buffer: The ring buffer 4234 * 4235 * Returns the total number of entries in the ring buffer 4236 * (all CPU entries) 4237 */ 4238 unsigned long ring_buffer_entries(struct trace_buffer *buffer) 4239 { 4240 struct ring_buffer_per_cpu *cpu_buffer; 4241 unsigned long entries = 0; 4242 int cpu; 4243 4244 /* if you care about this being correct, lock the buffer */ 4245 for_each_buffer_cpu(buffer, cpu) { 4246 cpu_buffer = buffer->buffers[cpu]; 4247 entries += rb_num_of_entries(cpu_buffer); 4248 } 4249 4250 return entries; 4251 } 4252 EXPORT_SYMBOL_GPL(ring_buffer_entries); 4253 4254 /** 4255 * ring_buffer_overruns - get the number of overruns in buffer 4256 * @buffer: The ring buffer 4257 * 4258 * Returns the total number of overruns in the ring buffer 4259 * (all CPU entries) 4260 */ 4261 unsigned long ring_buffer_overruns(struct trace_buffer *buffer) 4262 { 4263 struct ring_buffer_per_cpu *cpu_buffer; 4264 unsigned long overruns = 0; 4265 int cpu; 4266 4267 /* if you care about this being correct, lock the buffer */ 4268 for_each_buffer_cpu(buffer, cpu) { 4269 cpu_buffer = buffer->buffers[cpu]; 4270 overruns += local_read(&cpu_buffer->overrun); 4271 } 4272 4273 return overruns; 4274 } 4275 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 4276 4277 static void rb_iter_reset(struct ring_buffer_iter *iter) 4278 { 4279 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4280 4281 /* Iterator usage is expected to have record disabled */ 4282 iter->head_page = cpu_buffer->reader_page; 4283 iter->head = cpu_buffer->reader_page->read; 4284 iter->next_event = iter->head; 4285 4286 iter->cache_reader_page = iter->head_page; 4287 iter->cache_read = cpu_buffer->read; 4288 iter->cache_pages_removed = cpu_buffer->pages_removed; 4289 4290 if (iter->head) { 4291 iter->read_stamp = cpu_buffer->read_stamp; 4292 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp; 4293 } else { 4294 iter->read_stamp = iter->head_page->page->time_stamp; 4295 iter->page_stamp = iter->read_stamp; 4296 } 4297 } 4298 4299 /** 4300 * ring_buffer_iter_reset - reset an iterator 4301 * @iter: The iterator to reset 4302 * 4303 * Resets the iterator, so that it will start from the beginning 4304 * again. 4305 */ 4306 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 4307 { 4308 struct ring_buffer_per_cpu *cpu_buffer; 4309 unsigned long flags; 4310 4311 if (!iter) 4312 return; 4313 4314 cpu_buffer = iter->cpu_buffer; 4315 4316 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4317 rb_iter_reset(iter); 4318 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4319 } 4320 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 4321 4322 /** 4323 * ring_buffer_iter_empty - check if an iterator has no more to read 4324 * @iter: The iterator to check 4325 */ 4326 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 4327 { 4328 struct ring_buffer_per_cpu *cpu_buffer; 4329 struct buffer_page *reader; 4330 struct buffer_page *head_page; 4331 struct buffer_page *commit_page; 4332 struct buffer_page *curr_commit_page; 4333 unsigned commit; 4334 u64 curr_commit_ts; 4335 u64 commit_ts; 4336 4337 cpu_buffer = iter->cpu_buffer; 4338 reader = cpu_buffer->reader_page; 4339 head_page = cpu_buffer->head_page; 4340 commit_page = cpu_buffer->commit_page; 4341 commit_ts = commit_page->page->time_stamp; 4342 4343 /* 4344 * When the writer goes across pages, it issues a cmpxchg which 4345 * is a mb(), which will synchronize with the rmb here. 4346 * (see rb_tail_page_update()) 4347 */ 4348 smp_rmb(); 4349 commit = rb_page_commit(commit_page); 4350 /* We want to make sure that the commit page doesn't change */ 4351 smp_rmb(); 4352 4353 /* Make sure commit page didn't change */ 4354 curr_commit_page = READ_ONCE(cpu_buffer->commit_page); 4355 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp); 4356 4357 /* If the commit page changed, then there's more data */ 4358 if (curr_commit_page != commit_page || 4359 curr_commit_ts != commit_ts) 4360 return 0; 4361 4362 /* Still racy, as it may return a false positive, but that's OK */ 4363 return ((iter->head_page == commit_page && iter->head >= commit) || 4364 (iter->head_page == reader && commit_page == head_page && 4365 head_page->read == commit && 4366 iter->head == rb_page_commit(cpu_buffer->reader_page))); 4367 } 4368 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 4369 4370 static void 4371 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 4372 struct ring_buffer_event *event) 4373 { 4374 u64 delta; 4375 4376 switch (event->type_len) { 4377 case RINGBUF_TYPE_PADDING: 4378 return; 4379 4380 case RINGBUF_TYPE_TIME_EXTEND: 4381 delta = rb_event_time_stamp(event); 4382 cpu_buffer->read_stamp += delta; 4383 return; 4384 4385 case RINGBUF_TYPE_TIME_STAMP: 4386 delta = rb_event_time_stamp(event); 4387 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp); 4388 cpu_buffer->read_stamp = delta; 4389 return; 4390 4391 case RINGBUF_TYPE_DATA: 4392 cpu_buffer->read_stamp += event->time_delta; 4393 return; 4394 4395 default: 4396 RB_WARN_ON(cpu_buffer, 1); 4397 } 4398 } 4399 4400 static void 4401 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 4402 struct ring_buffer_event *event) 4403 { 4404 u64 delta; 4405 4406 switch (event->type_len) { 4407 case RINGBUF_TYPE_PADDING: 4408 return; 4409 4410 case RINGBUF_TYPE_TIME_EXTEND: 4411 delta = rb_event_time_stamp(event); 4412 iter->read_stamp += delta; 4413 return; 4414 4415 case RINGBUF_TYPE_TIME_STAMP: 4416 delta = rb_event_time_stamp(event); 4417 delta = rb_fix_abs_ts(delta, iter->read_stamp); 4418 iter->read_stamp = delta; 4419 return; 4420 4421 case RINGBUF_TYPE_DATA: 4422 iter->read_stamp += event->time_delta; 4423 return; 4424 4425 default: 4426 RB_WARN_ON(iter->cpu_buffer, 1); 4427 } 4428 } 4429 4430 static struct buffer_page * 4431 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 4432 { 4433 struct buffer_page *reader = NULL; 4434 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size); 4435 unsigned long overwrite; 4436 unsigned long flags; 4437 int nr_loops = 0; 4438 bool ret; 4439 4440 local_irq_save(flags); 4441 arch_spin_lock(&cpu_buffer->lock); 4442 4443 again: 4444 /* 4445 * This should normally only loop twice. But because the 4446 * start of the reader inserts an empty page, it causes 4447 * a case where we will loop three times. There should be no 4448 * reason to loop four times (that I know of). 4449 */ 4450 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 4451 reader = NULL; 4452 goto out; 4453 } 4454 4455 reader = cpu_buffer->reader_page; 4456 4457 /* If there's more to read, return this page */ 4458 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 4459 goto out; 4460 4461 /* Never should we have an index greater than the size */ 4462 if (RB_WARN_ON(cpu_buffer, 4463 cpu_buffer->reader_page->read > rb_page_size(reader))) 4464 goto out; 4465 4466 /* check if we caught up to the tail */ 4467 reader = NULL; 4468 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 4469 goto out; 4470 4471 /* Don't bother swapping if the ring buffer is empty */ 4472 if (rb_num_of_entries(cpu_buffer) == 0) 4473 goto out; 4474 4475 /* 4476 * Reset the reader page to size zero. 4477 */ 4478 local_set(&cpu_buffer->reader_page->write, 0); 4479 local_set(&cpu_buffer->reader_page->entries, 0); 4480 local_set(&cpu_buffer->reader_page->page->commit, 0); 4481 cpu_buffer->reader_page->real_end = 0; 4482 4483 spin: 4484 /* 4485 * Splice the empty reader page into the list around the head. 4486 */ 4487 reader = rb_set_head_page(cpu_buffer); 4488 if (!reader) 4489 goto out; 4490 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 4491 cpu_buffer->reader_page->list.prev = reader->list.prev; 4492 4493 /* 4494 * cpu_buffer->pages just needs to point to the buffer, it 4495 * has no specific buffer page to point to. Lets move it out 4496 * of our way so we don't accidentally swap it. 4497 */ 4498 cpu_buffer->pages = reader->list.prev; 4499 4500 /* The reader page will be pointing to the new head */ 4501 rb_set_list_to_head(&cpu_buffer->reader_page->list); 4502 4503 /* 4504 * We want to make sure we read the overruns after we set up our 4505 * pointers to the next object. The writer side does a 4506 * cmpxchg to cross pages which acts as the mb on the writer 4507 * side. Note, the reader will constantly fail the swap 4508 * while the writer is updating the pointers, so this 4509 * guarantees that the overwrite recorded here is the one we 4510 * want to compare with the last_overrun. 4511 */ 4512 smp_mb(); 4513 overwrite = local_read(&(cpu_buffer->overrun)); 4514 4515 /* 4516 * Here's the tricky part. 4517 * 4518 * We need to move the pointer past the header page. 4519 * But we can only do that if a writer is not currently 4520 * moving it. The page before the header page has the 4521 * flag bit '1' set if it is pointing to the page we want. 4522 * but if the writer is in the process of moving it 4523 * than it will be '2' or already moved '0'. 4524 */ 4525 4526 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 4527 4528 /* 4529 * If we did not convert it, then we must try again. 4530 */ 4531 if (!ret) 4532 goto spin; 4533 4534 /* 4535 * Yay! We succeeded in replacing the page. 4536 * 4537 * Now make the new head point back to the reader page. 4538 */ 4539 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 4540 rb_inc_page(&cpu_buffer->head_page); 4541 4542 local_inc(&cpu_buffer->pages_read); 4543 4544 /* Finally update the reader page to the new head */ 4545 cpu_buffer->reader_page = reader; 4546 cpu_buffer->reader_page->read = 0; 4547 4548 if (overwrite != cpu_buffer->last_overrun) { 4549 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 4550 cpu_buffer->last_overrun = overwrite; 4551 } 4552 4553 goto again; 4554 4555 out: 4556 /* Update the read_stamp on the first event */ 4557 if (reader && reader->read == 0) 4558 cpu_buffer->read_stamp = reader->page->time_stamp; 4559 4560 arch_spin_unlock(&cpu_buffer->lock); 4561 local_irq_restore(flags); 4562 4563 /* 4564 * The writer has preempt disable, wait for it. But not forever 4565 * Although, 1 second is pretty much "forever" 4566 */ 4567 #define USECS_WAIT 1000000 4568 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) { 4569 /* If the write is past the end of page, a writer is still updating it */ 4570 if (likely(!reader || rb_page_write(reader) <= bsize)) 4571 break; 4572 4573 udelay(1); 4574 4575 /* Get the latest version of the reader write value */ 4576 smp_rmb(); 4577 } 4578 4579 /* The writer is not moving forward? Something is wrong */ 4580 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT)) 4581 reader = NULL; 4582 4583 /* 4584 * Make sure we see any padding after the write update 4585 * (see rb_reset_tail()). 4586 * 4587 * In addition, a writer may be writing on the reader page 4588 * if the page has not been fully filled, so the read barrier 4589 * is also needed to make sure we see the content of what is 4590 * committed by the writer (see rb_set_commit_to_write()). 4591 */ 4592 smp_rmb(); 4593 4594 4595 return reader; 4596 } 4597 4598 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 4599 { 4600 struct ring_buffer_event *event; 4601 struct buffer_page *reader; 4602 unsigned length; 4603 4604 reader = rb_get_reader_page(cpu_buffer); 4605 4606 /* This function should not be called when buffer is empty */ 4607 if (RB_WARN_ON(cpu_buffer, !reader)) 4608 return; 4609 4610 event = rb_reader_event(cpu_buffer); 4611 4612 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 4613 cpu_buffer->read++; 4614 4615 rb_update_read_stamp(cpu_buffer, event); 4616 4617 length = rb_event_length(event); 4618 cpu_buffer->reader_page->read += length; 4619 cpu_buffer->read_bytes += length; 4620 } 4621 4622 static void rb_advance_iter(struct ring_buffer_iter *iter) 4623 { 4624 struct ring_buffer_per_cpu *cpu_buffer; 4625 4626 cpu_buffer = iter->cpu_buffer; 4627 4628 /* If head == next_event then we need to jump to the next event */ 4629 if (iter->head == iter->next_event) { 4630 /* If the event gets overwritten again, there's nothing to do */ 4631 if (rb_iter_head_event(iter) == NULL) 4632 return; 4633 } 4634 4635 iter->head = iter->next_event; 4636 4637 /* 4638 * Check if we are at the end of the buffer. 4639 */ 4640 if (iter->next_event >= rb_page_size(iter->head_page)) { 4641 /* discarded commits can make the page empty */ 4642 if (iter->head_page == cpu_buffer->commit_page) 4643 return; 4644 rb_inc_iter(iter); 4645 return; 4646 } 4647 4648 rb_update_iter_read_stamp(iter, iter->event); 4649 } 4650 4651 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 4652 { 4653 return cpu_buffer->lost_events; 4654 } 4655 4656 static struct ring_buffer_event * 4657 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 4658 unsigned long *lost_events) 4659 { 4660 struct ring_buffer_event *event; 4661 struct buffer_page *reader; 4662 int nr_loops = 0; 4663 4664 if (ts) 4665 *ts = 0; 4666 again: 4667 /* 4668 * We repeat when a time extend is encountered. 4669 * Since the time extend is always attached to a data event, 4670 * we should never loop more than once. 4671 * (We never hit the following condition more than twice). 4672 */ 4673 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 4674 return NULL; 4675 4676 reader = rb_get_reader_page(cpu_buffer); 4677 if (!reader) 4678 return NULL; 4679 4680 event = rb_reader_event(cpu_buffer); 4681 4682 switch (event->type_len) { 4683 case RINGBUF_TYPE_PADDING: 4684 if (rb_null_event(event)) 4685 RB_WARN_ON(cpu_buffer, 1); 4686 /* 4687 * Because the writer could be discarding every 4688 * event it creates (which would probably be bad) 4689 * if we were to go back to "again" then we may never 4690 * catch up, and will trigger the warn on, or lock 4691 * the box. Return the padding, and we will release 4692 * the current locks, and try again. 4693 */ 4694 return event; 4695 4696 case RINGBUF_TYPE_TIME_EXTEND: 4697 /* Internal data, OK to advance */ 4698 rb_advance_reader(cpu_buffer); 4699 goto again; 4700 4701 case RINGBUF_TYPE_TIME_STAMP: 4702 if (ts) { 4703 *ts = rb_event_time_stamp(event); 4704 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp); 4705 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4706 cpu_buffer->cpu, ts); 4707 } 4708 /* Internal data, OK to advance */ 4709 rb_advance_reader(cpu_buffer); 4710 goto again; 4711 4712 case RINGBUF_TYPE_DATA: 4713 if (ts && !(*ts)) { 4714 *ts = cpu_buffer->read_stamp + event->time_delta; 4715 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4716 cpu_buffer->cpu, ts); 4717 } 4718 if (lost_events) 4719 *lost_events = rb_lost_events(cpu_buffer); 4720 return event; 4721 4722 default: 4723 RB_WARN_ON(cpu_buffer, 1); 4724 } 4725 4726 return NULL; 4727 } 4728 EXPORT_SYMBOL_GPL(ring_buffer_peek); 4729 4730 static struct ring_buffer_event * 4731 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4732 { 4733 struct trace_buffer *buffer; 4734 struct ring_buffer_per_cpu *cpu_buffer; 4735 struct ring_buffer_event *event; 4736 int nr_loops = 0; 4737 4738 if (ts) 4739 *ts = 0; 4740 4741 cpu_buffer = iter->cpu_buffer; 4742 buffer = cpu_buffer->buffer; 4743 4744 /* 4745 * Check if someone performed a consuming read to the buffer 4746 * or removed some pages from the buffer. In these cases, 4747 * iterator was invalidated and we need to reset it. 4748 */ 4749 if (unlikely(iter->cache_read != cpu_buffer->read || 4750 iter->cache_reader_page != cpu_buffer->reader_page || 4751 iter->cache_pages_removed != cpu_buffer->pages_removed)) 4752 rb_iter_reset(iter); 4753 4754 again: 4755 if (ring_buffer_iter_empty(iter)) 4756 return NULL; 4757 4758 /* 4759 * As the writer can mess with what the iterator is trying 4760 * to read, just give up if we fail to get an event after 4761 * three tries. The iterator is not as reliable when reading 4762 * the ring buffer with an active write as the consumer is. 4763 * Do not warn if the three failures is reached. 4764 */ 4765 if (++nr_loops > 3) 4766 return NULL; 4767 4768 if (rb_per_cpu_empty(cpu_buffer)) 4769 return NULL; 4770 4771 if (iter->head >= rb_page_size(iter->head_page)) { 4772 rb_inc_iter(iter); 4773 goto again; 4774 } 4775 4776 event = rb_iter_head_event(iter); 4777 if (!event) 4778 goto again; 4779 4780 switch (event->type_len) { 4781 case RINGBUF_TYPE_PADDING: 4782 if (rb_null_event(event)) { 4783 rb_inc_iter(iter); 4784 goto again; 4785 } 4786 rb_advance_iter(iter); 4787 return event; 4788 4789 case RINGBUF_TYPE_TIME_EXTEND: 4790 /* Internal data, OK to advance */ 4791 rb_advance_iter(iter); 4792 goto again; 4793 4794 case RINGBUF_TYPE_TIME_STAMP: 4795 if (ts) { 4796 *ts = rb_event_time_stamp(event); 4797 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp); 4798 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4799 cpu_buffer->cpu, ts); 4800 } 4801 /* Internal data, OK to advance */ 4802 rb_advance_iter(iter); 4803 goto again; 4804 4805 case RINGBUF_TYPE_DATA: 4806 if (ts && !(*ts)) { 4807 *ts = iter->read_stamp + event->time_delta; 4808 ring_buffer_normalize_time_stamp(buffer, 4809 cpu_buffer->cpu, ts); 4810 } 4811 return event; 4812 4813 default: 4814 RB_WARN_ON(cpu_buffer, 1); 4815 } 4816 4817 return NULL; 4818 } 4819 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 4820 4821 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 4822 { 4823 if (likely(!in_nmi())) { 4824 raw_spin_lock(&cpu_buffer->reader_lock); 4825 return true; 4826 } 4827 4828 /* 4829 * If an NMI die dumps out the content of the ring buffer 4830 * trylock must be used to prevent a deadlock if the NMI 4831 * preempted a task that holds the ring buffer locks. If 4832 * we get the lock then all is fine, if not, then continue 4833 * to do the read, but this can corrupt the ring buffer, 4834 * so it must be permanently disabled from future writes. 4835 * Reading from NMI is a oneshot deal. 4836 */ 4837 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 4838 return true; 4839 4840 /* Continue without locking, but disable the ring buffer */ 4841 atomic_inc(&cpu_buffer->record_disabled); 4842 return false; 4843 } 4844 4845 static inline void 4846 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 4847 { 4848 if (likely(locked)) 4849 raw_spin_unlock(&cpu_buffer->reader_lock); 4850 } 4851 4852 /** 4853 * ring_buffer_peek - peek at the next event to be read 4854 * @buffer: The ring buffer to read 4855 * @cpu: The cpu to peak at 4856 * @ts: The timestamp counter of this event. 4857 * @lost_events: a variable to store if events were lost (may be NULL) 4858 * 4859 * This will return the event that will be read next, but does 4860 * not consume the data. 4861 */ 4862 struct ring_buffer_event * 4863 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts, 4864 unsigned long *lost_events) 4865 { 4866 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4867 struct ring_buffer_event *event; 4868 unsigned long flags; 4869 bool dolock; 4870 4871 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4872 return NULL; 4873 4874 again: 4875 local_irq_save(flags); 4876 dolock = rb_reader_lock(cpu_buffer); 4877 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4878 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4879 rb_advance_reader(cpu_buffer); 4880 rb_reader_unlock(cpu_buffer, dolock); 4881 local_irq_restore(flags); 4882 4883 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4884 goto again; 4885 4886 return event; 4887 } 4888 4889 /** ring_buffer_iter_dropped - report if there are dropped events 4890 * @iter: The ring buffer iterator 4891 * 4892 * Returns true if there was dropped events since the last peek. 4893 */ 4894 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter) 4895 { 4896 bool ret = iter->missed_events != 0; 4897 4898 iter->missed_events = 0; 4899 return ret; 4900 } 4901 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped); 4902 4903 /** 4904 * ring_buffer_iter_peek - peek at the next event to be read 4905 * @iter: The ring buffer iterator 4906 * @ts: The timestamp counter of this event. 4907 * 4908 * This will return the event that will be read next, but does 4909 * not increment the iterator. 4910 */ 4911 struct ring_buffer_event * 4912 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4913 { 4914 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4915 struct ring_buffer_event *event; 4916 unsigned long flags; 4917 4918 again: 4919 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4920 event = rb_iter_peek(iter, ts); 4921 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4922 4923 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4924 goto again; 4925 4926 return event; 4927 } 4928 4929 /** 4930 * ring_buffer_consume - return an event and consume it 4931 * @buffer: The ring buffer to get the next event from 4932 * @cpu: the cpu to read the buffer from 4933 * @ts: a variable to store the timestamp (may be NULL) 4934 * @lost_events: a variable to store if events were lost (may be NULL) 4935 * 4936 * Returns the next event in the ring buffer, and that event is consumed. 4937 * Meaning, that sequential reads will keep returning a different event, 4938 * and eventually empty the ring buffer if the producer is slower. 4939 */ 4940 struct ring_buffer_event * 4941 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts, 4942 unsigned long *lost_events) 4943 { 4944 struct ring_buffer_per_cpu *cpu_buffer; 4945 struct ring_buffer_event *event = NULL; 4946 unsigned long flags; 4947 bool dolock; 4948 4949 again: 4950 /* might be called in atomic */ 4951 preempt_disable(); 4952 4953 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4954 goto out; 4955 4956 cpu_buffer = buffer->buffers[cpu]; 4957 local_irq_save(flags); 4958 dolock = rb_reader_lock(cpu_buffer); 4959 4960 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4961 if (event) { 4962 cpu_buffer->lost_events = 0; 4963 rb_advance_reader(cpu_buffer); 4964 } 4965 4966 rb_reader_unlock(cpu_buffer, dolock); 4967 local_irq_restore(flags); 4968 4969 out: 4970 preempt_enable(); 4971 4972 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4973 goto again; 4974 4975 return event; 4976 } 4977 EXPORT_SYMBOL_GPL(ring_buffer_consume); 4978 4979 /** 4980 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 4981 * @buffer: The ring buffer to read from 4982 * @cpu: The cpu buffer to iterate over 4983 * @flags: gfp flags to use for memory allocation 4984 * 4985 * This performs the initial preparations necessary to iterate 4986 * through the buffer. Memory is allocated, buffer recording 4987 * is disabled, and the iterator pointer is returned to the caller. 4988 * 4989 * Disabling buffer recording prevents the reading from being 4990 * corrupted. This is not a consuming read, so a producer is not 4991 * expected. 4992 * 4993 * After a sequence of ring_buffer_read_prepare calls, the user is 4994 * expected to make at least one call to ring_buffer_read_prepare_sync. 4995 * Afterwards, ring_buffer_read_start is invoked to get things going 4996 * for real. 4997 * 4998 * This overall must be paired with ring_buffer_read_finish. 4999 */ 5000 struct ring_buffer_iter * 5001 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags) 5002 { 5003 struct ring_buffer_per_cpu *cpu_buffer; 5004 struct ring_buffer_iter *iter; 5005 5006 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5007 return NULL; 5008 5009 iter = kzalloc(sizeof(*iter), flags); 5010 if (!iter) 5011 return NULL; 5012 5013 /* Holds the entire event: data and meta data */ 5014 iter->event_size = buffer->subbuf_size; 5015 iter->event = kmalloc(iter->event_size, flags); 5016 if (!iter->event) { 5017 kfree(iter); 5018 return NULL; 5019 } 5020 5021 cpu_buffer = buffer->buffers[cpu]; 5022 5023 iter->cpu_buffer = cpu_buffer; 5024 5025 atomic_inc(&cpu_buffer->resize_disabled); 5026 5027 return iter; 5028 } 5029 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 5030 5031 /** 5032 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 5033 * 5034 * All previously invoked ring_buffer_read_prepare calls to prepare 5035 * iterators will be synchronized. Afterwards, read_buffer_read_start 5036 * calls on those iterators are allowed. 5037 */ 5038 void 5039 ring_buffer_read_prepare_sync(void) 5040 { 5041 synchronize_rcu(); 5042 } 5043 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 5044 5045 /** 5046 * ring_buffer_read_start - start a non consuming read of the buffer 5047 * @iter: The iterator returned by ring_buffer_read_prepare 5048 * 5049 * This finalizes the startup of an iteration through the buffer. 5050 * The iterator comes from a call to ring_buffer_read_prepare and 5051 * an intervening ring_buffer_read_prepare_sync must have been 5052 * performed. 5053 * 5054 * Must be paired with ring_buffer_read_finish. 5055 */ 5056 void 5057 ring_buffer_read_start(struct ring_buffer_iter *iter) 5058 { 5059 struct ring_buffer_per_cpu *cpu_buffer; 5060 unsigned long flags; 5061 5062 if (!iter) 5063 return; 5064 5065 cpu_buffer = iter->cpu_buffer; 5066 5067 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5068 arch_spin_lock(&cpu_buffer->lock); 5069 rb_iter_reset(iter); 5070 arch_spin_unlock(&cpu_buffer->lock); 5071 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5072 } 5073 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 5074 5075 /** 5076 * ring_buffer_read_finish - finish reading the iterator of the buffer 5077 * @iter: The iterator retrieved by ring_buffer_start 5078 * 5079 * This re-enables the recording to the buffer, and frees the 5080 * iterator. 5081 */ 5082 void 5083 ring_buffer_read_finish(struct ring_buffer_iter *iter) 5084 { 5085 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5086 unsigned long flags; 5087 5088 /* 5089 * Ring buffer is disabled from recording, here's a good place 5090 * to check the integrity of the ring buffer. 5091 * Must prevent readers from trying to read, as the check 5092 * clears the HEAD page and readers require it. 5093 */ 5094 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5095 rb_check_pages(cpu_buffer); 5096 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5097 5098 atomic_dec(&cpu_buffer->resize_disabled); 5099 kfree(iter->event); 5100 kfree(iter); 5101 } 5102 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 5103 5104 /** 5105 * ring_buffer_iter_advance - advance the iterator to the next location 5106 * @iter: The ring buffer iterator 5107 * 5108 * Move the location of the iterator such that the next read will 5109 * be the next location of the iterator. 5110 */ 5111 void ring_buffer_iter_advance(struct ring_buffer_iter *iter) 5112 { 5113 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5114 unsigned long flags; 5115 5116 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5117 5118 rb_advance_iter(iter); 5119 5120 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5121 } 5122 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance); 5123 5124 /** 5125 * ring_buffer_size - return the size of the ring buffer (in bytes) 5126 * @buffer: The ring buffer. 5127 * @cpu: The CPU to get ring buffer size from. 5128 */ 5129 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu) 5130 { 5131 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5132 return 0; 5133 5134 return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages; 5135 } 5136 EXPORT_SYMBOL_GPL(ring_buffer_size); 5137 5138 /** 5139 * ring_buffer_max_event_size - return the max data size of an event 5140 * @buffer: The ring buffer. 5141 * 5142 * Returns the maximum size an event can be. 5143 */ 5144 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer) 5145 { 5146 /* If abs timestamp is requested, events have a timestamp too */ 5147 if (ring_buffer_time_stamp_abs(buffer)) 5148 return buffer->max_data_size - RB_LEN_TIME_EXTEND; 5149 return buffer->max_data_size; 5150 } 5151 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size); 5152 5153 static void rb_clear_buffer_page(struct buffer_page *page) 5154 { 5155 local_set(&page->write, 0); 5156 local_set(&page->entries, 0); 5157 rb_init_page(page->page); 5158 page->read = 0; 5159 } 5160 5161 static void 5162 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 5163 { 5164 struct buffer_page *page; 5165 5166 rb_head_page_deactivate(cpu_buffer); 5167 5168 cpu_buffer->head_page 5169 = list_entry(cpu_buffer->pages, struct buffer_page, list); 5170 rb_clear_buffer_page(cpu_buffer->head_page); 5171 list_for_each_entry(page, cpu_buffer->pages, list) { 5172 rb_clear_buffer_page(page); 5173 } 5174 5175 cpu_buffer->tail_page = cpu_buffer->head_page; 5176 cpu_buffer->commit_page = cpu_buffer->head_page; 5177 5178 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 5179 INIT_LIST_HEAD(&cpu_buffer->new_pages); 5180 rb_clear_buffer_page(cpu_buffer->reader_page); 5181 5182 local_set(&cpu_buffer->entries_bytes, 0); 5183 local_set(&cpu_buffer->overrun, 0); 5184 local_set(&cpu_buffer->commit_overrun, 0); 5185 local_set(&cpu_buffer->dropped_events, 0); 5186 local_set(&cpu_buffer->entries, 0); 5187 local_set(&cpu_buffer->committing, 0); 5188 local_set(&cpu_buffer->commits, 0); 5189 local_set(&cpu_buffer->pages_touched, 0); 5190 local_set(&cpu_buffer->pages_lost, 0); 5191 local_set(&cpu_buffer->pages_read, 0); 5192 cpu_buffer->last_pages_touch = 0; 5193 cpu_buffer->shortest_full = 0; 5194 cpu_buffer->read = 0; 5195 cpu_buffer->read_bytes = 0; 5196 5197 rb_time_set(&cpu_buffer->write_stamp, 0); 5198 rb_time_set(&cpu_buffer->before_stamp, 0); 5199 5200 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp)); 5201 5202 cpu_buffer->lost_events = 0; 5203 cpu_buffer->last_overrun = 0; 5204 5205 rb_head_page_activate(cpu_buffer); 5206 cpu_buffer->pages_removed = 0; 5207 } 5208 5209 /* Must have disabled the cpu buffer then done a synchronize_rcu */ 5210 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 5211 { 5212 unsigned long flags; 5213 5214 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5215 5216 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 5217 goto out; 5218 5219 arch_spin_lock(&cpu_buffer->lock); 5220 5221 rb_reset_cpu(cpu_buffer); 5222 5223 arch_spin_unlock(&cpu_buffer->lock); 5224 5225 out: 5226 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5227 } 5228 5229 /** 5230 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 5231 * @buffer: The ring buffer to reset a per cpu buffer of 5232 * @cpu: The CPU buffer to be reset 5233 */ 5234 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu) 5235 { 5236 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5237 5238 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5239 return; 5240 5241 /* prevent another thread from changing buffer sizes */ 5242 mutex_lock(&buffer->mutex); 5243 5244 atomic_inc(&cpu_buffer->resize_disabled); 5245 atomic_inc(&cpu_buffer->record_disabled); 5246 5247 /* Make sure all commits have finished */ 5248 synchronize_rcu(); 5249 5250 reset_disabled_cpu_buffer(cpu_buffer); 5251 5252 atomic_dec(&cpu_buffer->record_disabled); 5253 atomic_dec(&cpu_buffer->resize_disabled); 5254 5255 mutex_unlock(&buffer->mutex); 5256 } 5257 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 5258 5259 /* Flag to ensure proper resetting of atomic variables */ 5260 #define RESET_BIT (1 << 30) 5261 5262 /** 5263 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer 5264 * @buffer: The ring buffer to reset a per cpu buffer of 5265 */ 5266 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer) 5267 { 5268 struct ring_buffer_per_cpu *cpu_buffer; 5269 int cpu; 5270 5271 /* prevent another thread from changing buffer sizes */ 5272 mutex_lock(&buffer->mutex); 5273 5274 for_each_online_buffer_cpu(buffer, cpu) { 5275 cpu_buffer = buffer->buffers[cpu]; 5276 5277 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled); 5278 atomic_inc(&cpu_buffer->record_disabled); 5279 } 5280 5281 /* Make sure all commits have finished */ 5282 synchronize_rcu(); 5283 5284 for_each_buffer_cpu(buffer, cpu) { 5285 cpu_buffer = buffer->buffers[cpu]; 5286 5287 /* 5288 * If a CPU came online during the synchronize_rcu(), then 5289 * ignore it. 5290 */ 5291 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT)) 5292 continue; 5293 5294 reset_disabled_cpu_buffer(cpu_buffer); 5295 5296 atomic_dec(&cpu_buffer->record_disabled); 5297 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled); 5298 } 5299 5300 mutex_unlock(&buffer->mutex); 5301 } 5302 5303 /** 5304 * ring_buffer_reset - reset a ring buffer 5305 * @buffer: The ring buffer to reset all cpu buffers 5306 */ 5307 void ring_buffer_reset(struct trace_buffer *buffer) 5308 { 5309 struct ring_buffer_per_cpu *cpu_buffer; 5310 int cpu; 5311 5312 /* prevent another thread from changing buffer sizes */ 5313 mutex_lock(&buffer->mutex); 5314 5315 for_each_buffer_cpu(buffer, cpu) { 5316 cpu_buffer = buffer->buffers[cpu]; 5317 5318 atomic_inc(&cpu_buffer->resize_disabled); 5319 atomic_inc(&cpu_buffer->record_disabled); 5320 } 5321 5322 /* Make sure all commits have finished */ 5323 synchronize_rcu(); 5324 5325 for_each_buffer_cpu(buffer, cpu) { 5326 cpu_buffer = buffer->buffers[cpu]; 5327 5328 reset_disabled_cpu_buffer(cpu_buffer); 5329 5330 atomic_dec(&cpu_buffer->record_disabled); 5331 atomic_dec(&cpu_buffer->resize_disabled); 5332 } 5333 5334 mutex_unlock(&buffer->mutex); 5335 } 5336 EXPORT_SYMBOL_GPL(ring_buffer_reset); 5337 5338 /** 5339 * ring_buffer_empty - is the ring buffer empty? 5340 * @buffer: The ring buffer to test 5341 */ 5342 bool ring_buffer_empty(struct trace_buffer *buffer) 5343 { 5344 struct ring_buffer_per_cpu *cpu_buffer; 5345 unsigned long flags; 5346 bool dolock; 5347 bool ret; 5348 int cpu; 5349 5350 /* yes this is racy, but if you don't like the race, lock the buffer */ 5351 for_each_buffer_cpu(buffer, cpu) { 5352 cpu_buffer = buffer->buffers[cpu]; 5353 local_irq_save(flags); 5354 dolock = rb_reader_lock(cpu_buffer); 5355 ret = rb_per_cpu_empty(cpu_buffer); 5356 rb_reader_unlock(cpu_buffer, dolock); 5357 local_irq_restore(flags); 5358 5359 if (!ret) 5360 return false; 5361 } 5362 5363 return true; 5364 } 5365 EXPORT_SYMBOL_GPL(ring_buffer_empty); 5366 5367 /** 5368 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 5369 * @buffer: The ring buffer 5370 * @cpu: The CPU buffer to test 5371 */ 5372 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu) 5373 { 5374 struct ring_buffer_per_cpu *cpu_buffer; 5375 unsigned long flags; 5376 bool dolock; 5377 bool ret; 5378 5379 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5380 return true; 5381 5382 cpu_buffer = buffer->buffers[cpu]; 5383 local_irq_save(flags); 5384 dolock = rb_reader_lock(cpu_buffer); 5385 ret = rb_per_cpu_empty(cpu_buffer); 5386 rb_reader_unlock(cpu_buffer, dolock); 5387 local_irq_restore(flags); 5388 5389 return ret; 5390 } 5391 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 5392 5393 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 5394 /** 5395 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 5396 * @buffer_a: One buffer to swap with 5397 * @buffer_b: The other buffer to swap with 5398 * @cpu: the CPU of the buffers to swap 5399 * 5400 * This function is useful for tracers that want to take a "snapshot" 5401 * of a CPU buffer and has another back up buffer lying around. 5402 * it is expected that the tracer handles the cpu buffer not being 5403 * used at the moment. 5404 */ 5405 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a, 5406 struct trace_buffer *buffer_b, int cpu) 5407 { 5408 struct ring_buffer_per_cpu *cpu_buffer_a; 5409 struct ring_buffer_per_cpu *cpu_buffer_b; 5410 int ret = -EINVAL; 5411 5412 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 5413 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 5414 goto out; 5415 5416 cpu_buffer_a = buffer_a->buffers[cpu]; 5417 cpu_buffer_b = buffer_b->buffers[cpu]; 5418 5419 /* At least make sure the two buffers are somewhat the same */ 5420 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 5421 goto out; 5422 5423 if (buffer_a->subbuf_order != buffer_b->subbuf_order) 5424 goto out; 5425 5426 ret = -EAGAIN; 5427 5428 if (atomic_read(&buffer_a->record_disabled)) 5429 goto out; 5430 5431 if (atomic_read(&buffer_b->record_disabled)) 5432 goto out; 5433 5434 if (atomic_read(&cpu_buffer_a->record_disabled)) 5435 goto out; 5436 5437 if (atomic_read(&cpu_buffer_b->record_disabled)) 5438 goto out; 5439 5440 /* 5441 * We can't do a synchronize_rcu here because this 5442 * function can be called in atomic context. 5443 * Normally this will be called from the same CPU as cpu. 5444 * If not it's up to the caller to protect this. 5445 */ 5446 atomic_inc(&cpu_buffer_a->record_disabled); 5447 atomic_inc(&cpu_buffer_b->record_disabled); 5448 5449 ret = -EBUSY; 5450 if (local_read(&cpu_buffer_a->committing)) 5451 goto out_dec; 5452 if (local_read(&cpu_buffer_b->committing)) 5453 goto out_dec; 5454 5455 /* 5456 * When resize is in progress, we cannot swap it because 5457 * it will mess the state of the cpu buffer. 5458 */ 5459 if (atomic_read(&buffer_a->resizing)) 5460 goto out_dec; 5461 if (atomic_read(&buffer_b->resizing)) 5462 goto out_dec; 5463 5464 buffer_a->buffers[cpu] = cpu_buffer_b; 5465 buffer_b->buffers[cpu] = cpu_buffer_a; 5466 5467 cpu_buffer_b->buffer = buffer_a; 5468 cpu_buffer_a->buffer = buffer_b; 5469 5470 ret = 0; 5471 5472 out_dec: 5473 atomic_dec(&cpu_buffer_a->record_disabled); 5474 atomic_dec(&cpu_buffer_b->record_disabled); 5475 out: 5476 return ret; 5477 } 5478 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 5479 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 5480 5481 /** 5482 * ring_buffer_alloc_read_page - allocate a page to read from buffer 5483 * @buffer: the buffer to allocate for. 5484 * @cpu: the cpu buffer to allocate. 5485 * 5486 * This function is used in conjunction with ring_buffer_read_page. 5487 * When reading a full page from the ring buffer, these functions 5488 * can be used to speed up the process. The calling function should 5489 * allocate a few pages first with this function. Then when it 5490 * needs to get pages from the ring buffer, it passes the result 5491 * of this function into ring_buffer_read_page, which will swap 5492 * the page that was allocated, with the read page of the buffer. 5493 * 5494 * Returns: 5495 * The page allocated, or ERR_PTR 5496 */ 5497 struct buffer_data_read_page * 5498 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu) 5499 { 5500 struct ring_buffer_per_cpu *cpu_buffer; 5501 struct buffer_data_read_page *bpage = NULL; 5502 unsigned long flags; 5503 struct page *page; 5504 5505 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5506 return ERR_PTR(-ENODEV); 5507 5508 bpage = kzalloc(sizeof(*bpage), GFP_KERNEL); 5509 if (!bpage) 5510 return ERR_PTR(-ENOMEM); 5511 5512 bpage->order = buffer->subbuf_order; 5513 cpu_buffer = buffer->buffers[cpu]; 5514 local_irq_save(flags); 5515 arch_spin_lock(&cpu_buffer->lock); 5516 5517 if (cpu_buffer->free_page) { 5518 bpage->data = cpu_buffer->free_page; 5519 cpu_buffer->free_page = NULL; 5520 } 5521 5522 arch_spin_unlock(&cpu_buffer->lock); 5523 local_irq_restore(flags); 5524 5525 if (bpage->data) 5526 goto out; 5527 5528 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL | __GFP_NORETRY, 5529 cpu_buffer->buffer->subbuf_order); 5530 if (!page) { 5531 kfree(bpage); 5532 return ERR_PTR(-ENOMEM); 5533 } 5534 5535 bpage->data = page_address(page); 5536 5537 out: 5538 rb_init_page(bpage->data); 5539 5540 return bpage; 5541 } 5542 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 5543 5544 /** 5545 * ring_buffer_free_read_page - free an allocated read page 5546 * @buffer: the buffer the page was allocate for 5547 * @cpu: the cpu buffer the page came from 5548 * @data_page: the page to free 5549 * 5550 * Free a page allocated from ring_buffer_alloc_read_page. 5551 */ 5552 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, 5553 struct buffer_data_read_page *data_page) 5554 { 5555 struct ring_buffer_per_cpu *cpu_buffer; 5556 struct buffer_data_page *bpage = data_page->data; 5557 struct page *page = virt_to_page(bpage); 5558 unsigned long flags; 5559 5560 if (!buffer || !buffer->buffers || !buffer->buffers[cpu]) 5561 return; 5562 5563 cpu_buffer = buffer->buffers[cpu]; 5564 5565 /* 5566 * If the page is still in use someplace else, or order of the page 5567 * is different from the subbuffer order of the buffer - 5568 * we can't reuse it 5569 */ 5570 if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order) 5571 goto out; 5572 5573 local_irq_save(flags); 5574 arch_spin_lock(&cpu_buffer->lock); 5575 5576 if (!cpu_buffer->free_page) { 5577 cpu_buffer->free_page = bpage; 5578 bpage = NULL; 5579 } 5580 5581 arch_spin_unlock(&cpu_buffer->lock); 5582 local_irq_restore(flags); 5583 5584 out: 5585 free_pages((unsigned long)bpage, data_page->order); 5586 kfree(data_page); 5587 } 5588 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 5589 5590 /** 5591 * ring_buffer_read_page - extract a page from the ring buffer 5592 * @buffer: buffer to extract from 5593 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 5594 * @len: amount to extract 5595 * @cpu: the cpu of the buffer to extract 5596 * @full: should the extraction only happen when the page is full. 5597 * 5598 * This function will pull out a page from the ring buffer and consume it. 5599 * @data_page must be the address of the variable that was returned 5600 * from ring_buffer_alloc_read_page. This is because the page might be used 5601 * to swap with a page in the ring buffer. 5602 * 5603 * for example: 5604 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 5605 * if (IS_ERR(rpage)) 5606 * return PTR_ERR(rpage); 5607 * ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0); 5608 * if (ret >= 0) 5609 * process_page(ring_buffer_read_page_data(rpage), ret); 5610 * ring_buffer_free_read_page(buffer, cpu, rpage); 5611 * 5612 * When @full is set, the function will not return true unless 5613 * the writer is off the reader page. 5614 * 5615 * Note: it is up to the calling functions to handle sleeps and wakeups. 5616 * The ring buffer can be used anywhere in the kernel and can not 5617 * blindly call wake_up. The layer that uses the ring buffer must be 5618 * responsible for that. 5619 * 5620 * Returns: 5621 * >=0 if data has been transferred, returns the offset of consumed data. 5622 * <0 if no data has been transferred. 5623 */ 5624 int ring_buffer_read_page(struct trace_buffer *buffer, 5625 struct buffer_data_read_page *data_page, 5626 size_t len, int cpu, int full) 5627 { 5628 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5629 struct ring_buffer_event *event; 5630 struct buffer_data_page *bpage; 5631 struct buffer_page *reader; 5632 unsigned long missed_events; 5633 unsigned long flags; 5634 unsigned int commit; 5635 unsigned int read; 5636 u64 save_timestamp; 5637 int ret = -1; 5638 5639 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5640 goto out; 5641 5642 /* 5643 * If len is not big enough to hold the page header, then 5644 * we can not copy anything. 5645 */ 5646 if (len <= BUF_PAGE_HDR_SIZE) 5647 goto out; 5648 5649 len -= BUF_PAGE_HDR_SIZE; 5650 5651 if (!data_page || !data_page->data) 5652 goto out; 5653 if (data_page->order != buffer->subbuf_order) 5654 goto out; 5655 5656 bpage = data_page->data; 5657 if (!bpage) 5658 goto out; 5659 5660 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5661 5662 reader = rb_get_reader_page(cpu_buffer); 5663 if (!reader) 5664 goto out_unlock; 5665 5666 event = rb_reader_event(cpu_buffer); 5667 5668 read = reader->read; 5669 commit = rb_page_commit(reader); 5670 5671 /* Check if any events were dropped */ 5672 missed_events = cpu_buffer->lost_events; 5673 5674 /* 5675 * If this page has been partially read or 5676 * if len is not big enough to read the rest of the page or 5677 * a writer is still on the page, then 5678 * we must copy the data from the page to the buffer. 5679 * Otherwise, we can simply swap the page with the one passed in. 5680 */ 5681 if (read || (len < (commit - read)) || 5682 cpu_buffer->reader_page == cpu_buffer->commit_page) { 5683 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 5684 unsigned int rpos = read; 5685 unsigned int pos = 0; 5686 unsigned int size; 5687 5688 /* 5689 * If a full page is expected, this can still be returned 5690 * if there's been a previous partial read and the 5691 * rest of the page can be read and the commit page is off 5692 * the reader page. 5693 */ 5694 if (full && 5695 (!read || (len < (commit - read)) || 5696 cpu_buffer->reader_page == cpu_buffer->commit_page)) 5697 goto out_unlock; 5698 5699 if (len > (commit - read)) 5700 len = (commit - read); 5701 5702 /* Always keep the time extend and data together */ 5703 size = rb_event_ts_length(event); 5704 5705 if (len < size) 5706 goto out_unlock; 5707 5708 /* save the current timestamp, since the user will need it */ 5709 save_timestamp = cpu_buffer->read_stamp; 5710 5711 /* Need to copy one event at a time */ 5712 do { 5713 /* We need the size of one event, because 5714 * rb_advance_reader only advances by one event, 5715 * whereas rb_event_ts_length may include the size of 5716 * one or two events. 5717 * We have already ensured there's enough space if this 5718 * is a time extend. */ 5719 size = rb_event_length(event); 5720 memcpy(bpage->data + pos, rpage->data + rpos, size); 5721 5722 len -= size; 5723 5724 rb_advance_reader(cpu_buffer); 5725 rpos = reader->read; 5726 pos += size; 5727 5728 if (rpos >= commit) 5729 break; 5730 5731 event = rb_reader_event(cpu_buffer); 5732 /* Always keep the time extend and data together */ 5733 size = rb_event_ts_length(event); 5734 } while (len >= size); 5735 5736 /* update bpage */ 5737 local_set(&bpage->commit, pos); 5738 bpage->time_stamp = save_timestamp; 5739 5740 /* we copied everything to the beginning */ 5741 read = 0; 5742 } else { 5743 /* update the entry counter */ 5744 cpu_buffer->read += rb_page_entries(reader); 5745 cpu_buffer->read_bytes += rb_page_commit(reader); 5746 5747 /* swap the pages */ 5748 rb_init_page(bpage); 5749 bpage = reader->page; 5750 reader->page = data_page->data; 5751 local_set(&reader->write, 0); 5752 local_set(&reader->entries, 0); 5753 reader->read = 0; 5754 data_page->data = bpage; 5755 5756 /* 5757 * Use the real_end for the data size, 5758 * This gives us a chance to store the lost events 5759 * on the page. 5760 */ 5761 if (reader->real_end) 5762 local_set(&bpage->commit, reader->real_end); 5763 } 5764 ret = read; 5765 5766 cpu_buffer->lost_events = 0; 5767 5768 commit = local_read(&bpage->commit); 5769 /* 5770 * Set a flag in the commit field if we lost events 5771 */ 5772 if (missed_events) { 5773 /* If there is room at the end of the page to save the 5774 * missed events, then record it there. 5775 */ 5776 if (buffer->subbuf_size - commit >= sizeof(missed_events)) { 5777 memcpy(&bpage->data[commit], &missed_events, 5778 sizeof(missed_events)); 5779 local_add(RB_MISSED_STORED, &bpage->commit); 5780 commit += sizeof(missed_events); 5781 } 5782 local_add(RB_MISSED_EVENTS, &bpage->commit); 5783 } 5784 5785 /* 5786 * This page may be off to user land. Zero it out here. 5787 */ 5788 if (commit < buffer->subbuf_size) 5789 memset(&bpage->data[commit], 0, buffer->subbuf_size - commit); 5790 5791 out_unlock: 5792 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5793 5794 out: 5795 return ret; 5796 } 5797 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 5798 5799 /** 5800 * ring_buffer_read_page_data - get pointer to the data in the page. 5801 * @page: the page to get the data from 5802 * 5803 * Returns pointer to the actual data in this page. 5804 */ 5805 void *ring_buffer_read_page_data(struct buffer_data_read_page *page) 5806 { 5807 return page->data; 5808 } 5809 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data); 5810 5811 /** 5812 * ring_buffer_subbuf_size_get - get size of the sub buffer. 5813 * @buffer: the buffer to get the sub buffer size from 5814 * 5815 * Returns size of the sub buffer, in bytes. 5816 */ 5817 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer) 5818 { 5819 return buffer->subbuf_size + BUF_PAGE_HDR_SIZE; 5820 } 5821 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get); 5822 5823 /** 5824 * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page. 5825 * @buffer: The ring_buffer to get the system sub page order from 5826 * 5827 * By default, one ring buffer sub page equals to one system page. This parameter 5828 * is configurable, per ring buffer. The size of the ring buffer sub page can be 5829 * extended, but must be an order of system page size. 5830 * 5831 * Returns the order of buffer sub page size, in system pages: 5832 * 0 means the sub buffer size is 1 system page and so forth. 5833 * In case of an error < 0 is returned. 5834 */ 5835 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer) 5836 { 5837 if (!buffer) 5838 return -EINVAL; 5839 5840 return buffer->subbuf_order; 5841 } 5842 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get); 5843 5844 /** 5845 * ring_buffer_subbuf_order_set - set the size of ring buffer sub page. 5846 * @buffer: The ring_buffer to set the new page size. 5847 * @order: Order of the system pages in one sub buffer page 5848 * 5849 * By default, one ring buffer pages equals to one system page. This API can be 5850 * used to set new size of the ring buffer page. The size must be order of 5851 * system page size, that's why the input parameter @order is the order of 5852 * system pages that are allocated for one ring buffer page: 5853 * 0 - 1 system page 5854 * 1 - 2 system pages 5855 * 3 - 4 system pages 5856 * ... 5857 * 5858 * Returns 0 on success or < 0 in case of an error. 5859 */ 5860 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order) 5861 { 5862 struct ring_buffer_per_cpu *cpu_buffer; 5863 struct buffer_page *bpage, *tmp; 5864 int old_order, old_size; 5865 int nr_pages; 5866 int psize; 5867 int err; 5868 int cpu; 5869 5870 if (!buffer || order < 0) 5871 return -EINVAL; 5872 5873 if (buffer->subbuf_order == order) 5874 return 0; 5875 5876 psize = (1 << order) * PAGE_SIZE; 5877 if (psize <= BUF_PAGE_HDR_SIZE) 5878 return -EINVAL; 5879 5880 old_order = buffer->subbuf_order; 5881 old_size = buffer->subbuf_size; 5882 5883 /* prevent another thread from changing buffer sizes */ 5884 mutex_lock(&buffer->mutex); 5885 atomic_inc(&buffer->record_disabled); 5886 5887 /* Make sure all commits have finished */ 5888 synchronize_rcu(); 5889 5890 buffer->subbuf_order = order; 5891 buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE; 5892 5893 /* Make sure all new buffers are allocated, before deleting the old ones */ 5894 for_each_buffer_cpu(buffer, cpu) { 5895 5896 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5897 continue; 5898 5899 cpu_buffer = buffer->buffers[cpu]; 5900 5901 /* Update the number of pages to match the new size */ 5902 nr_pages = old_size * buffer->buffers[cpu]->nr_pages; 5903 nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size); 5904 5905 /* we need a minimum of two pages */ 5906 if (nr_pages < 2) 5907 nr_pages = 2; 5908 5909 cpu_buffer->nr_pages_to_update = nr_pages; 5910 5911 /* Include the reader page */ 5912 nr_pages++; 5913 5914 /* Allocate the new size buffer */ 5915 INIT_LIST_HEAD(&cpu_buffer->new_pages); 5916 if (__rb_allocate_pages(cpu_buffer, nr_pages, 5917 &cpu_buffer->new_pages)) { 5918 /* not enough memory for new pages */ 5919 err = -ENOMEM; 5920 goto error; 5921 } 5922 } 5923 5924 for_each_buffer_cpu(buffer, cpu) { 5925 5926 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5927 continue; 5928 5929 cpu_buffer = buffer->buffers[cpu]; 5930 5931 /* Clear the head bit to make the link list normal to read */ 5932 rb_head_page_deactivate(cpu_buffer); 5933 5934 /* Now walk the list and free all the old sub buffers */ 5935 list_for_each_entry_safe(bpage, tmp, cpu_buffer->pages, list) { 5936 list_del_init(&bpage->list); 5937 free_buffer_page(bpage); 5938 } 5939 /* The above loop stopped an the last page needing to be freed */ 5940 bpage = list_entry(cpu_buffer->pages, struct buffer_page, list); 5941 free_buffer_page(bpage); 5942 5943 /* Free the current reader page */ 5944 free_buffer_page(cpu_buffer->reader_page); 5945 5946 /* One page was allocated for the reader page */ 5947 cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next, 5948 struct buffer_page, list); 5949 list_del_init(&cpu_buffer->reader_page->list); 5950 5951 /* The cpu_buffer pages are a link list with no head */ 5952 cpu_buffer->pages = cpu_buffer->new_pages.next; 5953 cpu_buffer->new_pages.next->prev = cpu_buffer->new_pages.prev; 5954 cpu_buffer->new_pages.prev->next = cpu_buffer->new_pages.next; 5955 5956 /* Clear the new_pages list */ 5957 INIT_LIST_HEAD(&cpu_buffer->new_pages); 5958 5959 cpu_buffer->head_page 5960 = list_entry(cpu_buffer->pages, struct buffer_page, list); 5961 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 5962 5963 cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update; 5964 cpu_buffer->nr_pages_to_update = 0; 5965 5966 free_pages((unsigned long)cpu_buffer->free_page, old_order); 5967 cpu_buffer->free_page = NULL; 5968 5969 rb_head_page_activate(cpu_buffer); 5970 5971 rb_check_pages(cpu_buffer); 5972 } 5973 5974 atomic_dec(&buffer->record_disabled); 5975 mutex_unlock(&buffer->mutex); 5976 5977 return 0; 5978 5979 error: 5980 buffer->subbuf_order = old_order; 5981 buffer->subbuf_size = old_size; 5982 5983 atomic_dec(&buffer->record_disabled); 5984 mutex_unlock(&buffer->mutex); 5985 5986 for_each_buffer_cpu(buffer, cpu) { 5987 cpu_buffer = buffer->buffers[cpu]; 5988 5989 if (!cpu_buffer->nr_pages_to_update) 5990 continue; 5991 5992 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) { 5993 list_del_init(&bpage->list); 5994 free_buffer_page(bpage); 5995 } 5996 } 5997 5998 return err; 5999 } 6000 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set); 6001 6002 /* 6003 * We only allocate new buffers, never free them if the CPU goes down. 6004 * If we were to free the buffer, then the user would lose any trace that was in 6005 * the buffer. 6006 */ 6007 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 6008 { 6009 struct trace_buffer *buffer; 6010 long nr_pages_same; 6011 int cpu_i; 6012 unsigned long nr_pages; 6013 6014 buffer = container_of(node, struct trace_buffer, node); 6015 if (cpumask_test_cpu(cpu, buffer->cpumask)) 6016 return 0; 6017 6018 nr_pages = 0; 6019 nr_pages_same = 1; 6020 /* check if all cpu sizes are same */ 6021 for_each_buffer_cpu(buffer, cpu_i) { 6022 /* fill in the size from first enabled cpu */ 6023 if (nr_pages == 0) 6024 nr_pages = buffer->buffers[cpu_i]->nr_pages; 6025 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 6026 nr_pages_same = 0; 6027 break; 6028 } 6029 } 6030 /* allocate minimum pages, user can later expand it */ 6031 if (!nr_pages_same) 6032 nr_pages = 2; 6033 buffer->buffers[cpu] = 6034 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 6035 if (!buffer->buffers[cpu]) { 6036 WARN(1, "failed to allocate ring buffer on CPU %u\n", 6037 cpu); 6038 return -ENOMEM; 6039 } 6040 smp_wmb(); 6041 cpumask_set_cpu(cpu, buffer->cpumask); 6042 return 0; 6043 } 6044 6045 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 6046 /* 6047 * This is a basic integrity check of the ring buffer. 6048 * Late in the boot cycle this test will run when configured in. 6049 * It will kick off a thread per CPU that will go into a loop 6050 * writing to the per cpu ring buffer various sizes of data. 6051 * Some of the data will be large items, some small. 6052 * 6053 * Another thread is created that goes into a spin, sending out 6054 * IPIs to the other CPUs to also write into the ring buffer. 6055 * this is to test the nesting ability of the buffer. 6056 * 6057 * Basic stats are recorded and reported. If something in the 6058 * ring buffer should happen that's not expected, a big warning 6059 * is displayed and all ring buffers are disabled. 6060 */ 6061 static struct task_struct *rb_threads[NR_CPUS] __initdata; 6062 6063 struct rb_test_data { 6064 struct trace_buffer *buffer; 6065 unsigned long events; 6066 unsigned long bytes_written; 6067 unsigned long bytes_alloc; 6068 unsigned long bytes_dropped; 6069 unsigned long events_nested; 6070 unsigned long bytes_written_nested; 6071 unsigned long bytes_alloc_nested; 6072 unsigned long bytes_dropped_nested; 6073 int min_size_nested; 6074 int max_size_nested; 6075 int max_size; 6076 int min_size; 6077 int cpu; 6078 int cnt; 6079 }; 6080 6081 static struct rb_test_data rb_data[NR_CPUS] __initdata; 6082 6083 /* 1 meg per cpu */ 6084 #define RB_TEST_BUFFER_SIZE 1048576 6085 6086 static char rb_string[] __initdata = 6087 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 6088 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 6089 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 6090 6091 static bool rb_test_started __initdata; 6092 6093 struct rb_item { 6094 int size; 6095 char str[]; 6096 }; 6097 6098 static __init int rb_write_something(struct rb_test_data *data, bool nested) 6099 { 6100 struct ring_buffer_event *event; 6101 struct rb_item *item; 6102 bool started; 6103 int event_len; 6104 int size; 6105 int len; 6106 int cnt; 6107 6108 /* Have nested writes different that what is written */ 6109 cnt = data->cnt + (nested ? 27 : 0); 6110 6111 /* Multiply cnt by ~e, to make some unique increment */ 6112 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1); 6113 6114 len = size + sizeof(struct rb_item); 6115 6116 started = rb_test_started; 6117 /* read rb_test_started before checking buffer enabled */ 6118 smp_rmb(); 6119 6120 event = ring_buffer_lock_reserve(data->buffer, len); 6121 if (!event) { 6122 /* Ignore dropped events before test starts. */ 6123 if (started) { 6124 if (nested) 6125 data->bytes_dropped += len; 6126 else 6127 data->bytes_dropped_nested += len; 6128 } 6129 return len; 6130 } 6131 6132 event_len = ring_buffer_event_length(event); 6133 6134 if (RB_WARN_ON(data->buffer, event_len < len)) 6135 goto out; 6136 6137 item = ring_buffer_event_data(event); 6138 item->size = size; 6139 memcpy(item->str, rb_string, size); 6140 6141 if (nested) { 6142 data->bytes_alloc_nested += event_len; 6143 data->bytes_written_nested += len; 6144 data->events_nested++; 6145 if (!data->min_size_nested || len < data->min_size_nested) 6146 data->min_size_nested = len; 6147 if (len > data->max_size_nested) 6148 data->max_size_nested = len; 6149 } else { 6150 data->bytes_alloc += event_len; 6151 data->bytes_written += len; 6152 data->events++; 6153 if (!data->min_size || len < data->min_size) 6154 data->max_size = len; 6155 if (len > data->max_size) 6156 data->max_size = len; 6157 } 6158 6159 out: 6160 ring_buffer_unlock_commit(data->buffer); 6161 6162 return 0; 6163 } 6164 6165 static __init int rb_test(void *arg) 6166 { 6167 struct rb_test_data *data = arg; 6168 6169 while (!kthread_should_stop()) { 6170 rb_write_something(data, false); 6171 data->cnt++; 6172 6173 set_current_state(TASK_INTERRUPTIBLE); 6174 /* Now sleep between a min of 100-300us and a max of 1ms */ 6175 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 6176 } 6177 6178 return 0; 6179 } 6180 6181 static __init void rb_ipi(void *ignore) 6182 { 6183 struct rb_test_data *data; 6184 int cpu = smp_processor_id(); 6185 6186 data = &rb_data[cpu]; 6187 rb_write_something(data, true); 6188 } 6189 6190 static __init int rb_hammer_test(void *arg) 6191 { 6192 while (!kthread_should_stop()) { 6193 6194 /* Send an IPI to all cpus to write data! */ 6195 smp_call_function(rb_ipi, NULL, 1); 6196 /* No sleep, but for non preempt, let others run */ 6197 schedule(); 6198 } 6199 6200 return 0; 6201 } 6202 6203 static __init int test_ringbuffer(void) 6204 { 6205 struct task_struct *rb_hammer; 6206 struct trace_buffer *buffer; 6207 int cpu; 6208 int ret = 0; 6209 6210 if (security_locked_down(LOCKDOWN_TRACEFS)) { 6211 pr_warn("Lockdown is enabled, skipping ring buffer tests\n"); 6212 return 0; 6213 } 6214 6215 pr_info("Running ring buffer tests...\n"); 6216 6217 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 6218 if (WARN_ON(!buffer)) 6219 return 0; 6220 6221 /* Disable buffer so that threads can't write to it yet */ 6222 ring_buffer_record_off(buffer); 6223 6224 for_each_online_cpu(cpu) { 6225 rb_data[cpu].buffer = buffer; 6226 rb_data[cpu].cpu = cpu; 6227 rb_data[cpu].cnt = cpu; 6228 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu], 6229 cpu, "rbtester/%u"); 6230 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 6231 pr_cont("FAILED\n"); 6232 ret = PTR_ERR(rb_threads[cpu]); 6233 goto out_free; 6234 } 6235 } 6236 6237 /* Now create the rb hammer! */ 6238 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 6239 if (WARN_ON(IS_ERR(rb_hammer))) { 6240 pr_cont("FAILED\n"); 6241 ret = PTR_ERR(rb_hammer); 6242 goto out_free; 6243 } 6244 6245 ring_buffer_record_on(buffer); 6246 /* 6247 * Show buffer is enabled before setting rb_test_started. 6248 * Yes there's a small race window where events could be 6249 * dropped and the thread wont catch it. But when a ring 6250 * buffer gets enabled, there will always be some kind of 6251 * delay before other CPUs see it. Thus, we don't care about 6252 * those dropped events. We care about events dropped after 6253 * the threads see that the buffer is active. 6254 */ 6255 smp_wmb(); 6256 rb_test_started = true; 6257 6258 set_current_state(TASK_INTERRUPTIBLE); 6259 /* Just run for 10 seconds */; 6260 schedule_timeout(10 * HZ); 6261 6262 kthread_stop(rb_hammer); 6263 6264 out_free: 6265 for_each_online_cpu(cpu) { 6266 if (!rb_threads[cpu]) 6267 break; 6268 kthread_stop(rb_threads[cpu]); 6269 } 6270 if (ret) { 6271 ring_buffer_free(buffer); 6272 return ret; 6273 } 6274 6275 /* Report! */ 6276 pr_info("finished\n"); 6277 for_each_online_cpu(cpu) { 6278 struct ring_buffer_event *event; 6279 struct rb_test_data *data = &rb_data[cpu]; 6280 struct rb_item *item; 6281 unsigned long total_events; 6282 unsigned long total_dropped; 6283 unsigned long total_written; 6284 unsigned long total_alloc; 6285 unsigned long total_read = 0; 6286 unsigned long total_size = 0; 6287 unsigned long total_len = 0; 6288 unsigned long total_lost = 0; 6289 unsigned long lost; 6290 int big_event_size; 6291 int small_event_size; 6292 6293 ret = -1; 6294 6295 total_events = data->events + data->events_nested; 6296 total_written = data->bytes_written + data->bytes_written_nested; 6297 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 6298 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 6299 6300 big_event_size = data->max_size + data->max_size_nested; 6301 small_event_size = data->min_size + data->min_size_nested; 6302 6303 pr_info("CPU %d:\n", cpu); 6304 pr_info(" events: %ld\n", total_events); 6305 pr_info(" dropped bytes: %ld\n", total_dropped); 6306 pr_info(" alloced bytes: %ld\n", total_alloc); 6307 pr_info(" written bytes: %ld\n", total_written); 6308 pr_info(" biggest event: %d\n", big_event_size); 6309 pr_info(" smallest event: %d\n", small_event_size); 6310 6311 if (RB_WARN_ON(buffer, total_dropped)) 6312 break; 6313 6314 ret = 0; 6315 6316 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 6317 total_lost += lost; 6318 item = ring_buffer_event_data(event); 6319 total_len += ring_buffer_event_length(event); 6320 total_size += item->size + sizeof(struct rb_item); 6321 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 6322 pr_info("FAILED!\n"); 6323 pr_info("buffer had: %.*s\n", item->size, item->str); 6324 pr_info("expected: %.*s\n", item->size, rb_string); 6325 RB_WARN_ON(buffer, 1); 6326 ret = -1; 6327 break; 6328 } 6329 total_read++; 6330 } 6331 if (ret) 6332 break; 6333 6334 ret = -1; 6335 6336 pr_info(" read events: %ld\n", total_read); 6337 pr_info(" lost events: %ld\n", total_lost); 6338 pr_info(" total events: %ld\n", total_lost + total_read); 6339 pr_info(" recorded len bytes: %ld\n", total_len); 6340 pr_info(" recorded size bytes: %ld\n", total_size); 6341 if (total_lost) { 6342 pr_info(" With dropped events, record len and size may not match\n" 6343 " alloced and written from above\n"); 6344 } else { 6345 if (RB_WARN_ON(buffer, total_len != total_alloc || 6346 total_size != total_written)) 6347 break; 6348 } 6349 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 6350 break; 6351 6352 ret = 0; 6353 } 6354 if (!ret) 6355 pr_info("Ring buffer PASSED!\n"); 6356 6357 ring_buffer_free(buffer); 6358 return 0; 6359 } 6360 6361 late_initcall(test_ringbuffer); 6362 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 6363