1 /* 2 * Generic ring buffer 3 * 4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 5 */ 6 #include <linux/ring_buffer.h> 7 #include <linux/trace_clock.h> 8 #include <linux/spinlock.h> 9 #include <linux/debugfs.h> 10 #include <linux/uaccess.h> 11 #include <linux/hardirq.h> 12 #include <linux/kmemcheck.h> 13 #include <linux/module.h> 14 #include <linux/percpu.h> 15 #include <linux/mutex.h> 16 #include <linux/slab.h> 17 #include <linux/init.h> 18 #include <linux/hash.h> 19 #include <linux/list.h> 20 #include <linux/cpu.h> 21 #include <linux/fs.h> 22 23 #include <asm/local.h> 24 #include "trace.h" 25 26 /* 27 * The ring buffer header is special. We must manually up keep it. 28 */ 29 int ring_buffer_print_entry_header(struct trace_seq *s) 30 { 31 int ret; 32 33 ret = trace_seq_printf(s, "# compressed entry header\n"); 34 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n"); 35 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n"); 36 ret = trace_seq_printf(s, "\tarray : 32 bits\n"); 37 ret = trace_seq_printf(s, "\n"); 38 ret = trace_seq_printf(s, "\tpadding : type == %d\n", 39 RINGBUF_TYPE_PADDING); 40 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n", 41 RINGBUF_TYPE_TIME_EXTEND); 42 ret = trace_seq_printf(s, "\tdata max type_len == %d\n", 43 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 44 45 return ret; 46 } 47 48 /* 49 * The ring buffer is made up of a list of pages. A separate list of pages is 50 * allocated for each CPU. A writer may only write to a buffer that is 51 * associated with the CPU it is currently executing on. A reader may read 52 * from any per cpu buffer. 53 * 54 * The reader is special. For each per cpu buffer, the reader has its own 55 * reader page. When a reader has read the entire reader page, this reader 56 * page is swapped with another page in the ring buffer. 57 * 58 * Now, as long as the writer is off the reader page, the reader can do what 59 * ever it wants with that page. The writer will never write to that page 60 * again (as long as it is out of the ring buffer). 61 * 62 * Here's some silly ASCII art. 63 * 64 * +------+ 65 * |reader| RING BUFFER 66 * |page | 67 * +------+ +---+ +---+ +---+ 68 * | |-->| |-->| | 69 * +---+ +---+ +---+ 70 * ^ | 71 * | | 72 * +---------------+ 73 * 74 * 75 * +------+ 76 * |reader| RING BUFFER 77 * |page |------------------v 78 * +------+ +---+ +---+ +---+ 79 * | |-->| |-->| | 80 * +---+ +---+ +---+ 81 * ^ | 82 * | | 83 * +---------------+ 84 * 85 * 86 * +------+ 87 * |reader| RING BUFFER 88 * |page |------------------v 89 * +------+ +---+ +---+ +---+ 90 * ^ | |-->| |-->| | 91 * | +---+ +---+ +---+ 92 * | | 93 * | | 94 * +------------------------------+ 95 * 96 * 97 * +------+ 98 * |buffer| RING BUFFER 99 * |page |------------------v 100 * +------+ +---+ +---+ +---+ 101 * ^ | | | |-->| | 102 * | New +---+ +---+ +---+ 103 * | Reader------^ | 104 * | page | 105 * +------------------------------+ 106 * 107 * 108 * After we make this swap, the reader can hand this page off to the splice 109 * code and be done with it. It can even allocate a new page if it needs to 110 * and swap that into the ring buffer. 111 * 112 * We will be using cmpxchg soon to make all this lockless. 113 * 114 */ 115 116 /* 117 * A fast way to enable or disable all ring buffers is to 118 * call tracing_on or tracing_off. Turning off the ring buffers 119 * prevents all ring buffers from being recorded to. 120 * Turning this switch on, makes it OK to write to the 121 * ring buffer, if the ring buffer is enabled itself. 122 * 123 * There's three layers that must be on in order to write 124 * to the ring buffer. 125 * 126 * 1) This global flag must be set. 127 * 2) The ring buffer must be enabled for recording. 128 * 3) The per cpu buffer must be enabled for recording. 129 * 130 * In case of an anomaly, this global flag has a bit set that 131 * will permantly disable all ring buffers. 132 */ 133 134 /* 135 * Global flag to disable all recording to ring buffers 136 * This has two bits: ON, DISABLED 137 * 138 * ON DISABLED 139 * ---- ---------- 140 * 0 0 : ring buffers are off 141 * 1 0 : ring buffers are on 142 * X 1 : ring buffers are permanently disabled 143 */ 144 145 enum { 146 RB_BUFFERS_ON_BIT = 0, 147 RB_BUFFERS_DISABLED_BIT = 1, 148 }; 149 150 enum { 151 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT, 152 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT, 153 }; 154 155 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON; 156 157 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 158 159 /** 160 * tracing_on - enable all tracing buffers 161 * 162 * This function enables all tracing buffers that may have been 163 * disabled with tracing_off. 164 */ 165 void tracing_on(void) 166 { 167 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags); 168 } 169 EXPORT_SYMBOL_GPL(tracing_on); 170 171 /** 172 * tracing_off - turn off all tracing buffers 173 * 174 * This function stops all tracing buffers from recording data. 175 * It does not disable any overhead the tracers themselves may 176 * be causing. This function simply causes all recording to 177 * the ring buffers to fail. 178 */ 179 void tracing_off(void) 180 { 181 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags); 182 } 183 EXPORT_SYMBOL_GPL(tracing_off); 184 185 /** 186 * tracing_off_permanent - permanently disable ring buffers 187 * 188 * This function, once called, will disable all ring buffers 189 * permanently. 190 */ 191 void tracing_off_permanent(void) 192 { 193 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags); 194 } 195 196 /** 197 * tracing_is_on - show state of ring buffers enabled 198 */ 199 int tracing_is_on(void) 200 { 201 return ring_buffer_flags == RB_BUFFERS_ON; 202 } 203 EXPORT_SYMBOL_GPL(tracing_is_on); 204 205 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 206 #define RB_ALIGNMENT 4U 207 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 208 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 209 210 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) 211 # define RB_FORCE_8BYTE_ALIGNMENT 0 212 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 213 #else 214 # define RB_FORCE_8BYTE_ALIGNMENT 1 215 # define RB_ARCH_ALIGNMENT 8U 216 #endif 217 218 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 219 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 220 221 enum { 222 RB_LEN_TIME_EXTEND = 8, 223 RB_LEN_TIME_STAMP = 16, 224 }; 225 226 #define skip_time_extend(event) \ 227 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 228 229 static inline int rb_null_event(struct ring_buffer_event *event) 230 { 231 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 232 } 233 234 static void rb_event_set_padding(struct ring_buffer_event *event) 235 { 236 /* padding has a NULL time_delta */ 237 event->type_len = RINGBUF_TYPE_PADDING; 238 event->time_delta = 0; 239 } 240 241 static unsigned 242 rb_event_data_length(struct ring_buffer_event *event) 243 { 244 unsigned length; 245 246 if (event->type_len) 247 length = event->type_len * RB_ALIGNMENT; 248 else 249 length = event->array[0]; 250 return length + RB_EVNT_HDR_SIZE; 251 } 252 253 /* 254 * Return the length of the given event. Will return 255 * the length of the time extend if the event is a 256 * time extend. 257 */ 258 static inline unsigned 259 rb_event_length(struct ring_buffer_event *event) 260 { 261 switch (event->type_len) { 262 case RINGBUF_TYPE_PADDING: 263 if (rb_null_event(event)) 264 /* undefined */ 265 return -1; 266 return event->array[0] + RB_EVNT_HDR_SIZE; 267 268 case RINGBUF_TYPE_TIME_EXTEND: 269 return RB_LEN_TIME_EXTEND; 270 271 case RINGBUF_TYPE_TIME_STAMP: 272 return RB_LEN_TIME_STAMP; 273 274 case RINGBUF_TYPE_DATA: 275 return rb_event_data_length(event); 276 default: 277 BUG(); 278 } 279 /* not hit */ 280 return 0; 281 } 282 283 /* 284 * Return total length of time extend and data, 285 * or just the event length for all other events. 286 */ 287 static inline unsigned 288 rb_event_ts_length(struct ring_buffer_event *event) 289 { 290 unsigned len = 0; 291 292 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 293 /* time extends include the data event after it */ 294 len = RB_LEN_TIME_EXTEND; 295 event = skip_time_extend(event); 296 } 297 return len + rb_event_length(event); 298 } 299 300 /** 301 * ring_buffer_event_length - return the length of the event 302 * @event: the event to get the length of 303 * 304 * Returns the size of the data load of a data event. 305 * If the event is something other than a data event, it 306 * returns the size of the event itself. With the exception 307 * of a TIME EXTEND, where it still returns the size of the 308 * data load of the data event after it. 309 */ 310 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 311 { 312 unsigned length; 313 314 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 315 event = skip_time_extend(event); 316 317 length = rb_event_length(event); 318 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 319 return length; 320 length -= RB_EVNT_HDR_SIZE; 321 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 322 length -= sizeof(event->array[0]); 323 return length; 324 } 325 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 326 327 /* inline for ring buffer fast paths */ 328 static void * 329 rb_event_data(struct ring_buffer_event *event) 330 { 331 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 332 event = skip_time_extend(event); 333 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 334 /* If length is in len field, then array[0] has the data */ 335 if (event->type_len) 336 return (void *)&event->array[0]; 337 /* Otherwise length is in array[0] and array[1] has the data */ 338 return (void *)&event->array[1]; 339 } 340 341 /** 342 * ring_buffer_event_data - return the data of the event 343 * @event: the event to get the data from 344 */ 345 void *ring_buffer_event_data(struct ring_buffer_event *event) 346 { 347 return rb_event_data(event); 348 } 349 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 350 351 #define for_each_buffer_cpu(buffer, cpu) \ 352 for_each_cpu(cpu, buffer->cpumask) 353 354 #define TS_SHIFT 27 355 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 356 #define TS_DELTA_TEST (~TS_MASK) 357 358 /* Flag when events were overwritten */ 359 #define RB_MISSED_EVENTS (1 << 31) 360 /* Missed count stored at end */ 361 #define RB_MISSED_STORED (1 << 30) 362 363 struct buffer_data_page { 364 u64 time_stamp; /* page time stamp */ 365 local_t commit; /* write committed index */ 366 unsigned char data[]; /* data of buffer page */ 367 }; 368 369 /* 370 * Note, the buffer_page list must be first. The buffer pages 371 * are allocated in cache lines, which means that each buffer 372 * page will be at the beginning of a cache line, and thus 373 * the least significant bits will be zero. We use this to 374 * add flags in the list struct pointers, to make the ring buffer 375 * lockless. 376 */ 377 struct buffer_page { 378 struct list_head list; /* list of buffer pages */ 379 local_t write; /* index for next write */ 380 unsigned read; /* index for next read */ 381 local_t entries; /* entries on this page */ 382 unsigned long real_end; /* real end of data */ 383 struct buffer_data_page *page; /* Actual data page */ 384 }; 385 386 /* 387 * The buffer page counters, write and entries, must be reset 388 * atomically when crossing page boundaries. To synchronize this 389 * update, two counters are inserted into the number. One is 390 * the actual counter for the write position or count on the page. 391 * 392 * The other is a counter of updaters. Before an update happens 393 * the update partition of the counter is incremented. This will 394 * allow the updater to update the counter atomically. 395 * 396 * The counter is 20 bits, and the state data is 12. 397 */ 398 #define RB_WRITE_MASK 0xfffff 399 #define RB_WRITE_INTCNT (1 << 20) 400 401 static void rb_init_page(struct buffer_data_page *bpage) 402 { 403 local_set(&bpage->commit, 0); 404 } 405 406 /** 407 * ring_buffer_page_len - the size of data on the page. 408 * @page: The page to read 409 * 410 * Returns the amount of data on the page, including buffer page header. 411 */ 412 size_t ring_buffer_page_len(void *page) 413 { 414 return local_read(&((struct buffer_data_page *)page)->commit) 415 + BUF_PAGE_HDR_SIZE; 416 } 417 418 /* 419 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 420 * this issue out. 421 */ 422 static void free_buffer_page(struct buffer_page *bpage) 423 { 424 free_page((unsigned long)bpage->page); 425 kfree(bpage); 426 } 427 428 /* 429 * We need to fit the time_stamp delta into 27 bits. 430 */ 431 static inline int test_time_stamp(u64 delta) 432 { 433 if (delta & TS_DELTA_TEST) 434 return 1; 435 return 0; 436 } 437 438 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 439 440 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 441 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 442 443 int ring_buffer_print_page_header(struct trace_seq *s) 444 { 445 struct buffer_data_page field; 446 int ret; 447 448 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t" 449 "offset:0;\tsize:%u;\tsigned:%u;\n", 450 (unsigned int)sizeof(field.time_stamp), 451 (unsigned int)is_signed_type(u64)); 452 453 ret = trace_seq_printf(s, "\tfield: local_t commit;\t" 454 "offset:%u;\tsize:%u;\tsigned:%u;\n", 455 (unsigned int)offsetof(typeof(field), commit), 456 (unsigned int)sizeof(field.commit), 457 (unsigned int)is_signed_type(long)); 458 459 ret = trace_seq_printf(s, "\tfield: int overwrite;\t" 460 "offset:%u;\tsize:%u;\tsigned:%u;\n", 461 (unsigned int)offsetof(typeof(field), commit), 462 1, 463 (unsigned int)is_signed_type(long)); 464 465 ret = trace_seq_printf(s, "\tfield: char data;\t" 466 "offset:%u;\tsize:%u;\tsigned:%u;\n", 467 (unsigned int)offsetof(typeof(field), data), 468 (unsigned int)BUF_PAGE_SIZE, 469 (unsigned int)is_signed_type(char)); 470 471 return ret; 472 } 473 474 /* 475 * head_page == tail_page && head == tail then buffer is empty. 476 */ 477 struct ring_buffer_per_cpu { 478 int cpu; 479 atomic_t record_disabled; 480 struct ring_buffer *buffer; 481 spinlock_t reader_lock; /* serialize readers */ 482 arch_spinlock_t lock; 483 struct lock_class_key lock_key; 484 struct list_head *pages; 485 struct buffer_page *head_page; /* read from head */ 486 struct buffer_page *tail_page; /* write to tail */ 487 struct buffer_page *commit_page; /* committed pages */ 488 struct buffer_page *reader_page; 489 unsigned long lost_events; 490 unsigned long last_overrun; 491 local_t commit_overrun; 492 local_t overrun; 493 local_t entries; 494 local_t committing; 495 local_t commits; 496 unsigned long read; 497 u64 write_stamp; 498 u64 read_stamp; 499 }; 500 501 struct ring_buffer { 502 unsigned pages; 503 unsigned flags; 504 int cpus; 505 atomic_t record_disabled; 506 cpumask_var_t cpumask; 507 508 struct lock_class_key *reader_lock_key; 509 510 struct mutex mutex; 511 512 struct ring_buffer_per_cpu **buffers; 513 514 #ifdef CONFIG_HOTPLUG_CPU 515 struct notifier_block cpu_notify; 516 #endif 517 u64 (*clock)(void); 518 }; 519 520 struct ring_buffer_iter { 521 struct ring_buffer_per_cpu *cpu_buffer; 522 unsigned long head; 523 struct buffer_page *head_page; 524 struct buffer_page *cache_reader_page; 525 unsigned long cache_read; 526 u64 read_stamp; 527 }; 528 529 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 530 #define RB_WARN_ON(b, cond) \ 531 ({ \ 532 int _____ret = unlikely(cond); \ 533 if (_____ret) { \ 534 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 535 struct ring_buffer_per_cpu *__b = \ 536 (void *)b; \ 537 atomic_inc(&__b->buffer->record_disabled); \ 538 } else \ 539 atomic_inc(&b->record_disabled); \ 540 WARN_ON(1); \ 541 } \ 542 _____ret; \ 543 }) 544 545 /* Up this if you want to test the TIME_EXTENTS and normalization */ 546 #define DEBUG_SHIFT 0 547 548 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 549 { 550 /* shift to debug/test normalization and TIME_EXTENTS */ 551 return buffer->clock() << DEBUG_SHIFT; 552 } 553 554 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 555 { 556 u64 time; 557 558 preempt_disable_notrace(); 559 time = rb_time_stamp(buffer); 560 preempt_enable_no_resched_notrace(); 561 562 return time; 563 } 564 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 565 566 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 567 int cpu, u64 *ts) 568 { 569 /* Just stupid testing the normalize function and deltas */ 570 *ts >>= DEBUG_SHIFT; 571 } 572 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 573 574 /* 575 * Making the ring buffer lockless makes things tricky. 576 * Although writes only happen on the CPU that they are on, 577 * and they only need to worry about interrupts. Reads can 578 * happen on any CPU. 579 * 580 * The reader page is always off the ring buffer, but when the 581 * reader finishes with a page, it needs to swap its page with 582 * a new one from the buffer. The reader needs to take from 583 * the head (writes go to the tail). But if a writer is in overwrite 584 * mode and wraps, it must push the head page forward. 585 * 586 * Here lies the problem. 587 * 588 * The reader must be careful to replace only the head page, and 589 * not another one. As described at the top of the file in the 590 * ASCII art, the reader sets its old page to point to the next 591 * page after head. It then sets the page after head to point to 592 * the old reader page. But if the writer moves the head page 593 * during this operation, the reader could end up with the tail. 594 * 595 * We use cmpxchg to help prevent this race. We also do something 596 * special with the page before head. We set the LSB to 1. 597 * 598 * When the writer must push the page forward, it will clear the 599 * bit that points to the head page, move the head, and then set 600 * the bit that points to the new head page. 601 * 602 * We also don't want an interrupt coming in and moving the head 603 * page on another writer. Thus we use the second LSB to catch 604 * that too. Thus: 605 * 606 * head->list->prev->next bit 1 bit 0 607 * ------- ------- 608 * Normal page 0 0 609 * Points to head page 0 1 610 * New head page 1 0 611 * 612 * Note we can not trust the prev pointer of the head page, because: 613 * 614 * +----+ +-----+ +-----+ 615 * | |------>| T |---X--->| N | 616 * | |<------| | | | 617 * +----+ +-----+ +-----+ 618 * ^ ^ | 619 * | +-----+ | | 620 * +----------| R |----------+ | 621 * | |<-----------+ 622 * +-----+ 623 * 624 * Key: ---X--> HEAD flag set in pointer 625 * T Tail page 626 * R Reader page 627 * N Next page 628 * 629 * (see __rb_reserve_next() to see where this happens) 630 * 631 * What the above shows is that the reader just swapped out 632 * the reader page with a page in the buffer, but before it 633 * could make the new header point back to the new page added 634 * it was preempted by a writer. The writer moved forward onto 635 * the new page added by the reader and is about to move forward 636 * again. 637 * 638 * You can see, it is legitimate for the previous pointer of 639 * the head (or any page) not to point back to itself. But only 640 * temporarially. 641 */ 642 643 #define RB_PAGE_NORMAL 0UL 644 #define RB_PAGE_HEAD 1UL 645 #define RB_PAGE_UPDATE 2UL 646 647 648 #define RB_FLAG_MASK 3UL 649 650 /* PAGE_MOVED is not part of the mask */ 651 #define RB_PAGE_MOVED 4UL 652 653 /* 654 * rb_list_head - remove any bit 655 */ 656 static struct list_head *rb_list_head(struct list_head *list) 657 { 658 unsigned long val = (unsigned long)list; 659 660 return (struct list_head *)(val & ~RB_FLAG_MASK); 661 } 662 663 /* 664 * rb_is_head_page - test if the given page is the head page 665 * 666 * Because the reader may move the head_page pointer, we can 667 * not trust what the head page is (it may be pointing to 668 * the reader page). But if the next page is a header page, 669 * its flags will be non zero. 670 */ 671 static inline int 672 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 673 struct buffer_page *page, struct list_head *list) 674 { 675 unsigned long val; 676 677 val = (unsigned long)list->next; 678 679 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 680 return RB_PAGE_MOVED; 681 682 return val & RB_FLAG_MASK; 683 } 684 685 /* 686 * rb_is_reader_page 687 * 688 * The unique thing about the reader page, is that, if the 689 * writer is ever on it, the previous pointer never points 690 * back to the reader page. 691 */ 692 static int rb_is_reader_page(struct buffer_page *page) 693 { 694 struct list_head *list = page->list.prev; 695 696 return rb_list_head(list->next) != &page->list; 697 } 698 699 /* 700 * rb_set_list_to_head - set a list_head to be pointing to head. 701 */ 702 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 703 struct list_head *list) 704 { 705 unsigned long *ptr; 706 707 ptr = (unsigned long *)&list->next; 708 *ptr |= RB_PAGE_HEAD; 709 *ptr &= ~RB_PAGE_UPDATE; 710 } 711 712 /* 713 * rb_head_page_activate - sets up head page 714 */ 715 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 716 { 717 struct buffer_page *head; 718 719 head = cpu_buffer->head_page; 720 if (!head) 721 return; 722 723 /* 724 * Set the previous list pointer to have the HEAD flag. 725 */ 726 rb_set_list_to_head(cpu_buffer, head->list.prev); 727 } 728 729 static void rb_list_head_clear(struct list_head *list) 730 { 731 unsigned long *ptr = (unsigned long *)&list->next; 732 733 *ptr &= ~RB_FLAG_MASK; 734 } 735 736 /* 737 * rb_head_page_dactivate - clears head page ptr (for free list) 738 */ 739 static void 740 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 741 { 742 struct list_head *hd; 743 744 /* Go through the whole list and clear any pointers found. */ 745 rb_list_head_clear(cpu_buffer->pages); 746 747 list_for_each(hd, cpu_buffer->pages) 748 rb_list_head_clear(hd); 749 } 750 751 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 752 struct buffer_page *head, 753 struct buffer_page *prev, 754 int old_flag, int new_flag) 755 { 756 struct list_head *list; 757 unsigned long val = (unsigned long)&head->list; 758 unsigned long ret; 759 760 list = &prev->list; 761 762 val &= ~RB_FLAG_MASK; 763 764 ret = cmpxchg((unsigned long *)&list->next, 765 val | old_flag, val | new_flag); 766 767 /* check if the reader took the page */ 768 if ((ret & ~RB_FLAG_MASK) != val) 769 return RB_PAGE_MOVED; 770 771 return ret & RB_FLAG_MASK; 772 } 773 774 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 775 struct buffer_page *head, 776 struct buffer_page *prev, 777 int old_flag) 778 { 779 return rb_head_page_set(cpu_buffer, head, prev, 780 old_flag, RB_PAGE_UPDATE); 781 } 782 783 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 784 struct buffer_page *head, 785 struct buffer_page *prev, 786 int old_flag) 787 { 788 return rb_head_page_set(cpu_buffer, head, prev, 789 old_flag, RB_PAGE_HEAD); 790 } 791 792 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 793 struct buffer_page *head, 794 struct buffer_page *prev, 795 int old_flag) 796 { 797 return rb_head_page_set(cpu_buffer, head, prev, 798 old_flag, RB_PAGE_NORMAL); 799 } 800 801 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 802 struct buffer_page **bpage) 803 { 804 struct list_head *p = rb_list_head((*bpage)->list.next); 805 806 *bpage = list_entry(p, struct buffer_page, list); 807 } 808 809 static struct buffer_page * 810 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 811 { 812 struct buffer_page *head; 813 struct buffer_page *page; 814 struct list_head *list; 815 int i; 816 817 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 818 return NULL; 819 820 /* sanity check */ 821 list = cpu_buffer->pages; 822 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 823 return NULL; 824 825 page = head = cpu_buffer->head_page; 826 /* 827 * It is possible that the writer moves the header behind 828 * where we started, and we miss in one loop. 829 * A second loop should grab the header, but we'll do 830 * three loops just because I'm paranoid. 831 */ 832 for (i = 0; i < 3; i++) { 833 do { 834 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 835 cpu_buffer->head_page = page; 836 return page; 837 } 838 rb_inc_page(cpu_buffer, &page); 839 } while (page != head); 840 } 841 842 RB_WARN_ON(cpu_buffer, 1); 843 844 return NULL; 845 } 846 847 static int rb_head_page_replace(struct buffer_page *old, 848 struct buffer_page *new) 849 { 850 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 851 unsigned long val; 852 unsigned long ret; 853 854 val = *ptr & ~RB_FLAG_MASK; 855 val |= RB_PAGE_HEAD; 856 857 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 858 859 return ret == val; 860 } 861 862 /* 863 * rb_tail_page_update - move the tail page forward 864 * 865 * Returns 1 if moved tail page, 0 if someone else did. 866 */ 867 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 868 struct buffer_page *tail_page, 869 struct buffer_page *next_page) 870 { 871 struct buffer_page *old_tail; 872 unsigned long old_entries; 873 unsigned long old_write; 874 int ret = 0; 875 876 /* 877 * The tail page now needs to be moved forward. 878 * 879 * We need to reset the tail page, but without messing 880 * with possible erasing of data brought in by interrupts 881 * that have moved the tail page and are currently on it. 882 * 883 * We add a counter to the write field to denote this. 884 */ 885 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 886 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 887 888 /* 889 * Just make sure we have seen our old_write and synchronize 890 * with any interrupts that come in. 891 */ 892 barrier(); 893 894 /* 895 * If the tail page is still the same as what we think 896 * it is, then it is up to us to update the tail 897 * pointer. 898 */ 899 if (tail_page == cpu_buffer->tail_page) { 900 /* Zero the write counter */ 901 unsigned long val = old_write & ~RB_WRITE_MASK; 902 unsigned long eval = old_entries & ~RB_WRITE_MASK; 903 904 /* 905 * This will only succeed if an interrupt did 906 * not come in and change it. In which case, we 907 * do not want to modify it. 908 * 909 * We add (void) to let the compiler know that we do not care 910 * about the return value of these functions. We use the 911 * cmpxchg to only update if an interrupt did not already 912 * do it for us. If the cmpxchg fails, we don't care. 913 */ 914 (void)local_cmpxchg(&next_page->write, old_write, val); 915 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 916 917 /* 918 * No need to worry about races with clearing out the commit. 919 * it only can increment when a commit takes place. But that 920 * only happens in the outer most nested commit. 921 */ 922 local_set(&next_page->page->commit, 0); 923 924 old_tail = cmpxchg(&cpu_buffer->tail_page, 925 tail_page, next_page); 926 927 if (old_tail == tail_page) 928 ret = 1; 929 } 930 931 return ret; 932 } 933 934 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 935 struct buffer_page *bpage) 936 { 937 unsigned long val = (unsigned long)bpage; 938 939 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 940 return 1; 941 942 return 0; 943 } 944 945 /** 946 * rb_check_list - make sure a pointer to a list has the last bits zero 947 */ 948 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 949 struct list_head *list) 950 { 951 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 952 return 1; 953 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 954 return 1; 955 return 0; 956 } 957 958 /** 959 * check_pages - integrity check of buffer pages 960 * @cpu_buffer: CPU buffer with pages to test 961 * 962 * As a safety measure we check to make sure the data pages have not 963 * been corrupted. 964 */ 965 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 966 { 967 struct list_head *head = cpu_buffer->pages; 968 struct buffer_page *bpage, *tmp; 969 970 rb_head_page_deactivate(cpu_buffer); 971 972 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 973 return -1; 974 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 975 return -1; 976 977 if (rb_check_list(cpu_buffer, head)) 978 return -1; 979 980 list_for_each_entry_safe(bpage, tmp, head, list) { 981 if (RB_WARN_ON(cpu_buffer, 982 bpage->list.next->prev != &bpage->list)) 983 return -1; 984 if (RB_WARN_ON(cpu_buffer, 985 bpage->list.prev->next != &bpage->list)) 986 return -1; 987 if (rb_check_list(cpu_buffer, &bpage->list)) 988 return -1; 989 } 990 991 rb_head_page_activate(cpu_buffer); 992 993 return 0; 994 } 995 996 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 997 unsigned nr_pages) 998 { 999 struct buffer_page *bpage, *tmp; 1000 LIST_HEAD(pages); 1001 unsigned i; 1002 1003 WARN_ON(!nr_pages); 1004 1005 for (i = 0; i < nr_pages; i++) { 1006 struct page *page; 1007 /* 1008 * __GFP_NORETRY flag makes sure that the allocation fails 1009 * gracefully without invoking oom-killer and the system is 1010 * not destabilized. 1011 */ 1012 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1013 GFP_KERNEL | __GFP_NORETRY, 1014 cpu_to_node(cpu_buffer->cpu)); 1015 if (!bpage) 1016 goto free_pages; 1017 1018 rb_check_bpage(cpu_buffer, bpage); 1019 1020 list_add(&bpage->list, &pages); 1021 1022 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), 1023 GFP_KERNEL | __GFP_NORETRY, 0); 1024 if (!page) 1025 goto free_pages; 1026 bpage->page = page_address(page); 1027 rb_init_page(bpage->page); 1028 } 1029 1030 /* 1031 * The ring buffer page list is a circular list that does not 1032 * start and end with a list head. All page list items point to 1033 * other pages. 1034 */ 1035 cpu_buffer->pages = pages.next; 1036 list_del(&pages); 1037 1038 rb_check_pages(cpu_buffer); 1039 1040 return 0; 1041 1042 free_pages: 1043 list_for_each_entry_safe(bpage, tmp, &pages, list) { 1044 list_del_init(&bpage->list); 1045 free_buffer_page(bpage); 1046 } 1047 return -ENOMEM; 1048 } 1049 1050 static struct ring_buffer_per_cpu * 1051 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu) 1052 { 1053 struct ring_buffer_per_cpu *cpu_buffer; 1054 struct buffer_page *bpage; 1055 struct page *page; 1056 int ret; 1057 1058 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1059 GFP_KERNEL, cpu_to_node(cpu)); 1060 if (!cpu_buffer) 1061 return NULL; 1062 1063 cpu_buffer->cpu = cpu; 1064 cpu_buffer->buffer = buffer; 1065 spin_lock_init(&cpu_buffer->reader_lock); 1066 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1067 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1068 1069 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1070 GFP_KERNEL, cpu_to_node(cpu)); 1071 if (!bpage) 1072 goto fail_free_buffer; 1073 1074 rb_check_bpage(cpu_buffer, bpage); 1075 1076 cpu_buffer->reader_page = bpage; 1077 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1078 if (!page) 1079 goto fail_free_reader; 1080 bpage->page = page_address(page); 1081 rb_init_page(bpage->page); 1082 1083 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1084 1085 ret = rb_allocate_pages(cpu_buffer, buffer->pages); 1086 if (ret < 0) 1087 goto fail_free_reader; 1088 1089 cpu_buffer->head_page 1090 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1091 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1092 1093 rb_head_page_activate(cpu_buffer); 1094 1095 return cpu_buffer; 1096 1097 fail_free_reader: 1098 free_buffer_page(cpu_buffer->reader_page); 1099 1100 fail_free_buffer: 1101 kfree(cpu_buffer); 1102 return NULL; 1103 } 1104 1105 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1106 { 1107 struct list_head *head = cpu_buffer->pages; 1108 struct buffer_page *bpage, *tmp; 1109 1110 free_buffer_page(cpu_buffer->reader_page); 1111 1112 rb_head_page_deactivate(cpu_buffer); 1113 1114 if (head) { 1115 list_for_each_entry_safe(bpage, tmp, head, list) { 1116 list_del_init(&bpage->list); 1117 free_buffer_page(bpage); 1118 } 1119 bpage = list_entry(head, struct buffer_page, list); 1120 free_buffer_page(bpage); 1121 } 1122 1123 kfree(cpu_buffer); 1124 } 1125 1126 #ifdef CONFIG_HOTPLUG_CPU 1127 static int rb_cpu_notify(struct notifier_block *self, 1128 unsigned long action, void *hcpu); 1129 #endif 1130 1131 /** 1132 * ring_buffer_alloc - allocate a new ring_buffer 1133 * @size: the size in bytes per cpu that is needed. 1134 * @flags: attributes to set for the ring buffer. 1135 * 1136 * Currently the only flag that is available is the RB_FL_OVERWRITE 1137 * flag. This flag means that the buffer will overwrite old data 1138 * when the buffer wraps. If this flag is not set, the buffer will 1139 * drop data when the tail hits the head. 1140 */ 1141 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1142 struct lock_class_key *key) 1143 { 1144 struct ring_buffer *buffer; 1145 int bsize; 1146 int cpu; 1147 1148 /* keep it in its own cache line */ 1149 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1150 GFP_KERNEL); 1151 if (!buffer) 1152 return NULL; 1153 1154 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1155 goto fail_free_buffer; 1156 1157 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1158 buffer->flags = flags; 1159 buffer->clock = trace_clock_local; 1160 buffer->reader_lock_key = key; 1161 1162 /* need at least two pages */ 1163 if (buffer->pages < 2) 1164 buffer->pages = 2; 1165 1166 /* 1167 * In case of non-hotplug cpu, if the ring-buffer is allocated 1168 * in early initcall, it will not be notified of secondary cpus. 1169 * In that off case, we need to allocate for all possible cpus. 1170 */ 1171 #ifdef CONFIG_HOTPLUG_CPU 1172 get_online_cpus(); 1173 cpumask_copy(buffer->cpumask, cpu_online_mask); 1174 #else 1175 cpumask_copy(buffer->cpumask, cpu_possible_mask); 1176 #endif 1177 buffer->cpus = nr_cpu_ids; 1178 1179 bsize = sizeof(void *) * nr_cpu_ids; 1180 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1181 GFP_KERNEL); 1182 if (!buffer->buffers) 1183 goto fail_free_cpumask; 1184 1185 for_each_buffer_cpu(buffer, cpu) { 1186 buffer->buffers[cpu] = 1187 rb_allocate_cpu_buffer(buffer, cpu); 1188 if (!buffer->buffers[cpu]) 1189 goto fail_free_buffers; 1190 } 1191 1192 #ifdef CONFIG_HOTPLUG_CPU 1193 buffer->cpu_notify.notifier_call = rb_cpu_notify; 1194 buffer->cpu_notify.priority = 0; 1195 register_cpu_notifier(&buffer->cpu_notify); 1196 #endif 1197 1198 put_online_cpus(); 1199 mutex_init(&buffer->mutex); 1200 1201 return buffer; 1202 1203 fail_free_buffers: 1204 for_each_buffer_cpu(buffer, cpu) { 1205 if (buffer->buffers[cpu]) 1206 rb_free_cpu_buffer(buffer->buffers[cpu]); 1207 } 1208 kfree(buffer->buffers); 1209 1210 fail_free_cpumask: 1211 free_cpumask_var(buffer->cpumask); 1212 put_online_cpus(); 1213 1214 fail_free_buffer: 1215 kfree(buffer); 1216 return NULL; 1217 } 1218 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1219 1220 /** 1221 * ring_buffer_free - free a ring buffer. 1222 * @buffer: the buffer to free. 1223 */ 1224 void 1225 ring_buffer_free(struct ring_buffer *buffer) 1226 { 1227 int cpu; 1228 1229 get_online_cpus(); 1230 1231 #ifdef CONFIG_HOTPLUG_CPU 1232 unregister_cpu_notifier(&buffer->cpu_notify); 1233 #endif 1234 1235 for_each_buffer_cpu(buffer, cpu) 1236 rb_free_cpu_buffer(buffer->buffers[cpu]); 1237 1238 put_online_cpus(); 1239 1240 kfree(buffer->buffers); 1241 free_cpumask_var(buffer->cpumask); 1242 1243 kfree(buffer); 1244 } 1245 EXPORT_SYMBOL_GPL(ring_buffer_free); 1246 1247 void ring_buffer_set_clock(struct ring_buffer *buffer, 1248 u64 (*clock)(void)) 1249 { 1250 buffer->clock = clock; 1251 } 1252 1253 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1254 1255 static void 1256 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages) 1257 { 1258 struct buffer_page *bpage; 1259 struct list_head *p; 1260 unsigned i; 1261 1262 spin_lock_irq(&cpu_buffer->reader_lock); 1263 rb_head_page_deactivate(cpu_buffer); 1264 1265 for (i = 0; i < nr_pages; i++) { 1266 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages))) 1267 goto out; 1268 p = cpu_buffer->pages->next; 1269 bpage = list_entry(p, struct buffer_page, list); 1270 list_del_init(&bpage->list); 1271 free_buffer_page(bpage); 1272 } 1273 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages))) 1274 goto out; 1275 1276 rb_reset_cpu(cpu_buffer); 1277 rb_check_pages(cpu_buffer); 1278 1279 out: 1280 spin_unlock_irq(&cpu_buffer->reader_lock); 1281 } 1282 1283 static void 1284 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer, 1285 struct list_head *pages, unsigned nr_pages) 1286 { 1287 struct buffer_page *bpage; 1288 struct list_head *p; 1289 unsigned i; 1290 1291 spin_lock_irq(&cpu_buffer->reader_lock); 1292 rb_head_page_deactivate(cpu_buffer); 1293 1294 for (i = 0; i < nr_pages; i++) { 1295 if (RB_WARN_ON(cpu_buffer, list_empty(pages))) 1296 goto out; 1297 p = pages->next; 1298 bpage = list_entry(p, struct buffer_page, list); 1299 list_del_init(&bpage->list); 1300 list_add_tail(&bpage->list, cpu_buffer->pages); 1301 } 1302 rb_reset_cpu(cpu_buffer); 1303 rb_check_pages(cpu_buffer); 1304 1305 out: 1306 spin_unlock_irq(&cpu_buffer->reader_lock); 1307 } 1308 1309 /** 1310 * ring_buffer_resize - resize the ring buffer 1311 * @buffer: the buffer to resize. 1312 * @size: the new size. 1313 * 1314 * Minimum size is 2 * BUF_PAGE_SIZE. 1315 * 1316 * Returns -1 on failure. 1317 */ 1318 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size) 1319 { 1320 struct ring_buffer_per_cpu *cpu_buffer; 1321 unsigned nr_pages, rm_pages, new_pages; 1322 struct buffer_page *bpage, *tmp; 1323 unsigned long buffer_size; 1324 LIST_HEAD(pages); 1325 int i, cpu; 1326 1327 /* 1328 * Always succeed at resizing a non-existent buffer: 1329 */ 1330 if (!buffer) 1331 return size; 1332 1333 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1334 size *= BUF_PAGE_SIZE; 1335 buffer_size = buffer->pages * BUF_PAGE_SIZE; 1336 1337 /* we need a minimum of two pages */ 1338 if (size < BUF_PAGE_SIZE * 2) 1339 size = BUF_PAGE_SIZE * 2; 1340 1341 if (size == buffer_size) 1342 return size; 1343 1344 atomic_inc(&buffer->record_disabled); 1345 1346 /* Make sure all writers are done with this buffer. */ 1347 synchronize_sched(); 1348 1349 mutex_lock(&buffer->mutex); 1350 get_online_cpus(); 1351 1352 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1353 1354 if (size < buffer_size) { 1355 1356 /* easy case, just free pages */ 1357 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages)) 1358 goto out_fail; 1359 1360 rm_pages = buffer->pages - nr_pages; 1361 1362 for_each_buffer_cpu(buffer, cpu) { 1363 cpu_buffer = buffer->buffers[cpu]; 1364 rb_remove_pages(cpu_buffer, rm_pages); 1365 } 1366 goto out; 1367 } 1368 1369 /* 1370 * This is a bit more difficult. We only want to add pages 1371 * when we can allocate enough for all CPUs. We do this 1372 * by allocating all the pages and storing them on a local 1373 * link list. If we succeed in our allocation, then we 1374 * add these pages to the cpu_buffers. Otherwise we just free 1375 * them all and return -ENOMEM; 1376 */ 1377 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages)) 1378 goto out_fail; 1379 1380 new_pages = nr_pages - buffer->pages; 1381 1382 for_each_buffer_cpu(buffer, cpu) { 1383 for (i = 0; i < new_pages; i++) { 1384 struct page *page; 1385 /* 1386 * __GFP_NORETRY flag makes sure that the allocation 1387 * fails gracefully without invoking oom-killer and 1388 * the system is not destabilized. 1389 */ 1390 bpage = kzalloc_node(ALIGN(sizeof(*bpage), 1391 cache_line_size()), 1392 GFP_KERNEL | __GFP_NORETRY, 1393 cpu_to_node(cpu)); 1394 if (!bpage) 1395 goto free_pages; 1396 list_add(&bpage->list, &pages); 1397 page = alloc_pages_node(cpu_to_node(cpu), 1398 GFP_KERNEL | __GFP_NORETRY, 0); 1399 if (!page) 1400 goto free_pages; 1401 bpage->page = page_address(page); 1402 rb_init_page(bpage->page); 1403 } 1404 } 1405 1406 for_each_buffer_cpu(buffer, cpu) { 1407 cpu_buffer = buffer->buffers[cpu]; 1408 rb_insert_pages(cpu_buffer, &pages, new_pages); 1409 } 1410 1411 if (RB_WARN_ON(buffer, !list_empty(&pages))) 1412 goto out_fail; 1413 1414 out: 1415 buffer->pages = nr_pages; 1416 put_online_cpus(); 1417 mutex_unlock(&buffer->mutex); 1418 1419 atomic_dec(&buffer->record_disabled); 1420 1421 return size; 1422 1423 free_pages: 1424 list_for_each_entry_safe(bpage, tmp, &pages, list) { 1425 list_del_init(&bpage->list); 1426 free_buffer_page(bpage); 1427 } 1428 put_online_cpus(); 1429 mutex_unlock(&buffer->mutex); 1430 atomic_dec(&buffer->record_disabled); 1431 return -ENOMEM; 1432 1433 /* 1434 * Something went totally wrong, and we are too paranoid 1435 * to even clean up the mess. 1436 */ 1437 out_fail: 1438 put_online_cpus(); 1439 mutex_unlock(&buffer->mutex); 1440 atomic_dec(&buffer->record_disabled); 1441 return -1; 1442 } 1443 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1444 1445 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val) 1446 { 1447 mutex_lock(&buffer->mutex); 1448 if (val) 1449 buffer->flags |= RB_FL_OVERWRITE; 1450 else 1451 buffer->flags &= ~RB_FL_OVERWRITE; 1452 mutex_unlock(&buffer->mutex); 1453 } 1454 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1455 1456 static inline void * 1457 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index) 1458 { 1459 return bpage->data + index; 1460 } 1461 1462 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1463 { 1464 return bpage->page->data + index; 1465 } 1466 1467 static inline struct ring_buffer_event * 1468 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1469 { 1470 return __rb_page_index(cpu_buffer->reader_page, 1471 cpu_buffer->reader_page->read); 1472 } 1473 1474 static inline struct ring_buffer_event * 1475 rb_iter_head_event(struct ring_buffer_iter *iter) 1476 { 1477 return __rb_page_index(iter->head_page, iter->head); 1478 } 1479 1480 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1481 { 1482 return local_read(&bpage->write) & RB_WRITE_MASK; 1483 } 1484 1485 static inline unsigned rb_page_commit(struct buffer_page *bpage) 1486 { 1487 return local_read(&bpage->page->commit); 1488 } 1489 1490 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1491 { 1492 return local_read(&bpage->entries) & RB_WRITE_MASK; 1493 } 1494 1495 /* Size is determined by what has been committed */ 1496 static inline unsigned rb_page_size(struct buffer_page *bpage) 1497 { 1498 return rb_page_commit(bpage); 1499 } 1500 1501 static inline unsigned 1502 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1503 { 1504 return rb_page_commit(cpu_buffer->commit_page); 1505 } 1506 1507 static inline unsigned 1508 rb_event_index(struct ring_buffer_event *event) 1509 { 1510 unsigned long addr = (unsigned long)event; 1511 1512 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1513 } 1514 1515 static inline int 1516 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 1517 struct ring_buffer_event *event) 1518 { 1519 unsigned long addr = (unsigned long)event; 1520 unsigned long index; 1521 1522 index = rb_event_index(event); 1523 addr &= PAGE_MASK; 1524 1525 return cpu_buffer->commit_page->page == (void *)addr && 1526 rb_commit_index(cpu_buffer) == index; 1527 } 1528 1529 static void 1530 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 1531 { 1532 unsigned long max_count; 1533 1534 /* 1535 * We only race with interrupts and NMIs on this CPU. 1536 * If we own the commit event, then we can commit 1537 * all others that interrupted us, since the interruptions 1538 * are in stack format (they finish before they come 1539 * back to us). This allows us to do a simple loop to 1540 * assign the commit to the tail. 1541 */ 1542 again: 1543 max_count = cpu_buffer->buffer->pages * 100; 1544 1545 while (cpu_buffer->commit_page != cpu_buffer->tail_page) { 1546 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 1547 return; 1548 if (RB_WARN_ON(cpu_buffer, 1549 rb_is_reader_page(cpu_buffer->tail_page))) 1550 return; 1551 local_set(&cpu_buffer->commit_page->page->commit, 1552 rb_page_write(cpu_buffer->commit_page)); 1553 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 1554 cpu_buffer->write_stamp = 1555 cpu_buffer->commit_page->page->time_stamp; 1556 /* add barrier to keep gcc from optimizing too much */ 1557 barrier(); 1558 } 1559 while (rb_commit_index(cpu_buffer) != 1560 rb_page_write(cpu_buffer->commit_page)) { 1561 1562 local_set(&cpu_buffer->commit_page->page->commit, 1563 rb_page_write(cpu_buffer->commit_page)); 1564 RB_WARN_ON(cpu_buffer, 1565 local_read(&cpu_buffer->commit_page->page->commit) & 1566 ~RB_WRITE_MASK); 1567 barrier(); 1568 } 1569 1570 /* again, keep gcc from optimizing */ 1571 barrier(); 1572 1573 /* 1574 * If an interrupt came in just after the first while loop 1575 * and pushed the tail page forward, we will be left with 1576 * a dangling commit that will never go forward. 1577 */ 1578 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page)) 1579 goto again; 1580 } 1581 1582 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 1583 { 1584 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp; 1585 cpu_buffer->reader_page->read = 0; 1586 } 1587 1588 static void rb_inc_iter(struct ring_buffer_iter *iter) 1589 { 1590 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1591 1592 /* 1593 * The iterator could be on the reader page (it starts there). 1594 * But the head could have moved, since the reader was 1595 * found. Check for this case and assign the iterator 1596 * to the head page instead of next. 1597 */ 1598 if (iter->head_page == cpu_buffer->reader_page) 1599 iter->head_page = rb_set_head_page(cpu_buffer); 1600 else 1601 rb_inc_page(cpu_buffer, &iter->head_page); 1602 1603 iter->read_stamp = iter->head_page->page->time_stamp; 1604 iter->head = 0; 1605 } 1606 1607 /* Slow path, do not inline */ 1608 static noinline struct ring_buffer_event * 1609 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta) 1610 { 1611 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 1612 1613 /* Not the first event on the page? */ 1614 if (rb_event_index(event)) { 1615 event->time_delta = delta & TS_MASK; 1616 event->array[0] = delta >> TS_SHIFT; 1617 } else { 1618 /* nope, just zero it */ 1619 event->time_delta = 0; 1620 event->array[0] = 0; 1621 } 1622 1623 return skip_time_extend(event); 1624 } 1625 1626 /** 1627 * ring_buffer_update_event - update event type and data 1628 * @event: the even to update 1629 * @type: the type of event 1630 * @length: the size of the event field in the ring buffer 1631 * 1632 * Update the type and data fields of the event. The length 1633 * is the actual size that is written to the ring buffer, 1634 * and with this, we can determine what to place into the 1635 * data field. 1636 */ 1637 static void 1638 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 1639 struct ring_buffer_event *event, unsigned length, 1640 int add_timestamp, u64 delta) 1641 { 1642 /* Only a commit updates the timestamp */ 1643 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 1644 delta = 0; 1645 1646 /* 1647 * If we need to add a timestamp, then we 1648 * add it to the start of the resevered space. 1649 */ 1650 if (unlikely(add_timestamp)) { 1651 event = rb_add_time_stamp(event, delta); 1652 length -= RB_LEN_TIME_EXTEND; 1653 delta = 0; 1654 } 1655 1656 event->time_delta = delta; 1657 length -= RB_EVNT_HDR_SIZE; 1658 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 1659 event->type_len = 0; 1660 event->array[0] = length; 1661 } else 1662 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 1663 } 1664 1665 /* 1666 * rb_handle_head_page - writer hit the head page 1667 * 1668 * Returns: +1 to retry page 1669 * 0 to continue 1670 * -1 on error 1671 */ 1672 static int 1673 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 1674 struct buffer_page *tail_page, 1675 struct buffer_page *next_page) 1676 { 1677 struct buffer_page *new_head; 1678 int entries; 1679 int type; 1680 int ret; 1681 1682 entries = rb_page_entries(next_page); 1683 1684 /* 1685 * The hard part is here. We need to move the head 1686 * forward, and protect against both readers on 1687 * other CPUs and writers coming in via interrupts. 1688 */ 1689 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 1690 RB_PAGE_HEAD); 1691 1692 /* 1693 * type can be one of four: 1694 * NORMAL - an interrupt already moved it for us 1695 * HEAD - we are the first to get here. 1696 * UPDATE - we are the interrupt interrupting 1697 * a current move. 1698 * MOVED - a reader on another CPU moved the next 1699 * pointer to its reader page. Give up 1700 * and try again. 1701 */ 1702 1703 switch (type) { 1704 case RB_PAGE_HEAD: 1705 /* 1706 * We changed the head to UPDATE, thus 1707 * it is our responsibility to update 1708 * the counters. 1709 */ 1710 local_add(entries, &cpu_buffer->overrun); 1711 1712 /* 1713 * The entries will be zeroed out when we move the 1714 * tail page. 1715 */ 1716 1717 /* still more to do */ 1718 break; 1719 1720 case RB_PAGE_UPDATE: 1721 /* 1722 * This is an interrupt that interrupt the 1723 * previous update. Still more to do. 1724 */ 1725 break; 1726 case RB_PAGE_NORMAL: 1727 /* 1728 * An interrupt came in before the update 1729 * and processed this for us. 1730 * Nothing left to do. 1731 */ 1732 return 1; 1733 case RB_PAGE_MOVED: 1734 /* 1735 * The reader is on another CPU and just did 1736 * a swap with our next_page. 1737 * Try again. 1738 */ 1739 return 1; 1740 default: 1741 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 1742 return -1; 1743 } 1744 1745 /* 1746 * Now that we are here, the old head pointer is 1747 * set to UPDATE. This will keep the reader from 1748 * swapping the head page with the reader page. 1749 * The reader (on another CPU) will spin till 1750 * we are finished. 1751 * 1752 * We just need to protect against interrupts 1753 * doing the job. We will set the next pointer 1754 * to HEAD. After that, we set the old pointer 1755 * to NORMAL, but only if it was HEAD before. 1756 * otherwise we are an interrupt, and only 1757 * want the outer most commit to reset it. 1758 */ 1759 new_head = next_page; 1760 rb_inc_page(cpu_buffer, &new_head); 1761 1762 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 1763 RB_PAGE_NORMAL); 1764 1765 /* 1766 * Valid returns are: 1767 * HEAD - an interrupt came in and already set it. 1768 * NORMAL - One of two things: 1769 * 1) We really set it. 1770 * 2) A bunch of interrupts came in and moved 1771 * the page forward again. 1772 */ 1773 switch (ret) { 1774 case RB_PAGE_HEAD: 1775 case RB_PAGE_NORMAL: 1776 /* OK */ 1777 break; 1778 default: 1779 RB_WARN_ON(cpu_buffer, 1); 1780 return -1; 1781 } 1782 1783 /* 1784 * It is possible that an interrupt came in, 1785 * set the head up, then more interrupts came in 1786 * and moved it again. When we get back here, 1787 * the page would have been set to NORMAL but we 1788 * just set it back to HEAD. 1789 * 1790 * How do you detect this? Well, if that happened 1791 * the tail page would have moved. 1792 */ 1793 if (ret == RB_PAGE_NORMAL) { 1794 /* 1795 * If the tail had moved passed next, then we need 1796 * to reset the pointer. 1797 */ 1798 if (cpu_buffer->tail_page != tail_page && 1799 cpu_buffer->tail_page != next_page) 1800 rb_head_page_set_normal(cpu_buffer, new_head, 1801 next_page, 1802 RB_PAGE_HEAD); 1803 } 1804 1805 /* 1806 * If this was the outer most commit (the one that 1807 * changed the original pointer from HEAD to UPDATE), 1808 * then it is up to us to reset it to NORMAL. 1809 */ 1810 if (type == RB_PAGE_HEAD) { 1811 ret = rb_head_page_set_normal(cpu_buffer, next_page, 1812 tail_page, 1813 RB_PAGE_UPDATE); 1814 if (RB_WARN_ON(cpu_buffer, 1815 ret != RB_PAGE_UPDATE)) 1816 return -1; 1817 } 1818 1819 return 0; 1820 } 1821 1822 static unsigned rb_calculate_event_length(unsigned length) 1823 { 1824 struct ring_buffer_event event; /* Used only for sizeof array */ 1825 1826 /* zero length can cause confusions */ 1827 if (!length) 1828 length = 1; 1829 1830 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 1831 length += sizeof(event.array[0]); 1832 1833 length += RB_EVNT_HDR_SIZE; 1834 length = ALIGN(length, RB_ARCH_ALIGNMENT); 1835 1836 return length; 1837 } 1838 1839 static inline void 1840 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 1841 struct buffer_page *tail_page, 1842 unsigned long tail, unsigned long length) 1843 { 1844 struct ring_buffer_event *event; 1845 1846 /* 1847 * Only the event that crossed the page boundary 1848 * must fill the old tail_page with padding. 1849 */ 1850 if (tail >= BUF_PAGE_SIZE) { 1851 /* 1852 * If the page was filled, then we still need 1853 * to update the real_end. Reset it to zero 1854 * and the reader will ignore it. 1855 */ 1856 if (tail == BUF_PAGE_SIZE) 1857 tail_page->real_end = 0; 1858 1859 local_sub(length, &tail_page->write); 1860 return; 1861 } 1862 1863 event = __rb_page_index(tail_page, tail); 1864 kmemcheck_annotate_bitfield(event, bitfield); 1865 1866 /* 1867 * Save the original length to the meta data. 1868 * This will be used by the reader to add lost event 1869 * counter. 1870 */ 1871 tail_page->real_end = tail; 1872 1873 /* 1874 * If this event is bigger than the minimum size, then 1875 * we need to be careful that we don't subtract the 1876 * write counter enough to allow another writer to slip 1877 * in on this page. 1878 * We put in a discarded commit instead, to make sure 1879 * that this space is not used again. 1880 * 1881 * If we are less than the minimum size, we don't need to 1882 * worry about it. 1883 */ 1884 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 1885 /* No room for any events */ 1886 1887 /* Mark the rest of the page with padding */ 1888 rb_event_set_padding(event); 1889 1890 /* Set the write back to the previous setting */ 1891 local_sub(length, &tail_page->write); 1892 return; 1893 } 1894 1895 /* Put in a discarded event */ 1896 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 1897 event->type_len = RINGBUF_TYPE_PADDING; 1898 /* time delta must be non zero */ 1899 event->time_delta = 1; 1900 1901 /* Set write to end of buffer */ 1902 length = (tail + length) - BUF_PAGE_SIZE; 1903 local_sub(length, &tail_page->write); 1904 } 1905 1906 /* 1907 * This is the slow path, force gcc not to inline it. 1908 */ 1909 static noinline struct ring_buffer_event * 1910 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 1911 unsigned long length, unsigned long tail, 1912 struct buffer_page *tail_page, u64 ts) 1913 { 1914 struct buffer_page *commit_page = cpu_buffer->commit_page; 1915 struct ring_buffer *buffer = cpu_buffer->buffer; 1916 struct buffer_page *next_page; 1917 int ret; 1918 1919 next_page = tail_page; 1920 1921 rb_inc_page(cpu_buffer, &next_page); 1922 1923 /* 1924 * If for some reason, we had an interrupt storm that made 1925 * it all the way around the buffer, bail, and warn 1926 * about it. 1927 */ 1928 if (unlikely(next_page == commit_page)) { 1929 local_inc(&cpu_buffer->commit_overrun); 1930 goto out_reset; 1931 } 1932 1933 /* 1934 * This is where the fun begins! 1935 * 1936 * We are fighting against races between a reader that 1937 * could be on another CPU trying to swap its reader 1938 * page with the buffer head. 1939 * 1940 * We are also fighting against interrupts coming in and 1941 * moving the head or tail on us as well. 1942 * 1943 * If the next page is the head page then we have filled 1944 * the buffer, unless the commit page is still on the 1945 * reader page. 1946 */ 1947 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 1948 1949 /* 1950 * If the commit is not on the reader page, then 1951 * move the header page. 1952 */ 1953 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 1954 /* 1955 * If we are not in overwrite mode, 1956 * this is easy, just stop here. 1957 */ 1958 if (!(buffer->flags & RB_FL_OVERWRITE)) 1959 goto out_reset; 1960 1961 ret = rb_handle_head_page(cpu_buffer, 1962 tail_page, 1963 next_page); 1964 if (ret < 0) 1965 goto out_reset; 1966 if (ret) 1967 goto out_again; 1968 } else { 1969 /* 1970 * We need to be careful here too. The 1971 * commit page could still be on the reader 1972 * page. We could have a small buffer, and 1973 * have filled up the buffer with events 1974 * from interrupts and such, and wrapped. 1975 * 1976 * Note, if the tail page is also the on the 1977 * reader_page, we let it move out. 1978 */ 1979 if (unlikely((cpu_buffer->commit_page != 1980 cpu_buffer->tail_page) && 1981 (cpu_buffer->commit_page == 1982 cpu_buffer->reader_page))) { 1983 local_inc(&cpu_buffer->commit_overrun); 1984 goto out_reset; 1985 } 1986 } 1987 } 1988 1989 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page); 1990 if (ret) { 1991 /* 1992 * Nested commits always have zero deltas, so 1993 * just reread the time stamp 1994 */ 1995 ts = rb_time_stamp(buffer); 1996 next_page->page->time_stamp = ts; 1997 } 1998 1999 out_again: 2000 2001 rb_reset_tail(cpu_buffer, tail_page, tail, length); 2002 2003 /* fail and let the caller try again */ 2004 return ERR_PTR(-EAGAIN); 2005 2006 out_reset: 2007 /* reset write */ 2008 rb_reset_tail(cpu_buffer, tail_page, tail, length); 2009 2010 return NULL; 2011 } 2012 2013 static struct ring_buffer_event * 2014 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 2015 unsigned long length, u64 ts, 2016 u64 delta, int add_timestamp) 2017 { 2018 struct buffer_page *tail_page; 2019 struct ring_buffer_event *event; 2020 unsigned long tail, write; 2021 2022 /* 2023 * If the time delta since the last event is too big to 2024 * hold in the time field of the event, then we append a 2025 * TIME EXTEND event ahead of the data event. 2026 */ 2027 if (unlikely(add_timestamp)) 2028 length += RB_LEN_TIME_EXTEND; 2029 2030 tail_page = cpu_buffer->tail_page; 2031 write = local_add_return(length, &tail_page->write); 2032 2033 /* set write to only the index of the write */ 2034 write &= RB_WRITE_MASK; 2035 tail = write - length; 2036 2037 /* See if we shot pass the end of this buffer page */ 2038 if (unlikely(write > BUF_PAGE_SIZE)) 2039 return rb_move_tail(cpu_buffer, length, tail, 2040 tail_page, ts); 2041 2042 /* We reserved something on the buffer */ 2043 2044 event = __rb_page_index(tail_page, tail); 2045 kmemcheck_annotate_bitfield(event, bitfield); 2046 rb_update_event(cpu_buffer, event, length, add_timestamp, delta); 2047 2048 local_inc(&tail_page->entries); 2049 2050 /* 2051 * If this is the first commit on the page, then update 2052 * its timestamp. 2053 */ 2054 if (!tail) 2055 tail_page->page->time_stamp = ts; 2056 2057 return event; 2058 } 2059 2060 static inline int 2061 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2062 struct ring_buffer_event *event) 2063 { 2064 unsigned long new_index, old_index; 2065 struct buffer_page *bpage; 2066 unsigned long index; 2067 unsigned long addr; 2068 2069 new_index = rb_event_index(event); 2070 old_index = new_index + rb_event_ts_length(event); 2071 addr = (unsigned long)event; 2072 addr &= PAGE_MASK; 2073 2074 bpage = cpu_buffer->tail_page; 2075 2076 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2077 unsigned long write_mask = 2078 local_read(&bpage->write) & ~RB_WRITE_MASK; 2079 /* 2080 * This is on the tail page. It is possible that 2081 * a write could come in and move the tail page 2082 * and write to the next page. That is fine 2083 * because we just shorten what is on this page. 2084 */ 2085 old_index += write_mask; 2086 new_index += write_mask; 2087 index = local_cmpxchg(&bpage->write, old_index, new_index); 2088 if (index == old_index) 2089 return 1; 2090 } 2091 2092 /* could not discard */ 2093 return 0; 2094 } 2095 2096 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2097 { 2098 local_inc(&cpu_buffer->committing); 2099 local_inc(&cpu_buffer->commits); 2100 } 2101 2102 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2103 { 2104 unsigned long commits; 2105 2106 if (RB_WARN_ON(cpu_buffer, 2107 !local_read(&cpu_buffer->committing))) 2108 return; 2109 2110 again: 2111 commits = local_read(&cpu_buffer->commits); 2112 /* synchronize with interrupts */ 2113 barrier(); 2114 if (local_read(&cpu_buffer->committing) == 1) 2115 rb_set_commit_to_write(cpu_buffer); 2116 2117 local_dec(&cpu_buffer->committing); 2118 2119 /* synchronize with interrupts */ 2120 barrier(); 2121 2122 /* 2123 * Need to account for interrupts coming in between the 2124 * updating of the commit page and the clearing of the 2125 * committing counter. 2126 */ 2127 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2128 !local_read(&cpu_buffer->committing)) { 2129 local_inc(&cpu_buffer->committing); 2130 goto again; 2131 } 2132 } 2133 2134 static struct ring_buffer_event * 2135 rb_reserve_next_event(struct ring_buffer *buffer, 2136 struct ring_buffer_per_cpu *cpu_buffer, 2137 unsigned long length) 2138 { 2139 struct ring_buffer_event *event; 2140 u64 ts, delta; 2141 int nr_loops = 0; 2142 int add_timestamp; 2143 u64 diff; 2144 2145 rb_start_commit(cpu_buffer); 2146 2147 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2148 /* 2149 * Due to the ability to swap a cpu buffer from a buffer 2150 * it is possible it was swapped before we committed. 2151 * (committing stops a swap). We check for it here and 2152 * if it happened, we have to fail the write. 2153 */ 2154 barrier(); 2155 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) { 2156 local_dec(&cpu_buffer->committing); 2157 local_dec(&cpu_buffer->commits); 2158 return NULL; 2159 } 2160 #endif 2161 2162 length = rb_calculate_event_length(length); 2163 again: 2164 add_timestamp = 0; 2165 delta = 0; 2166 2167 /* 2168 * We allow for interrupts to reenter here and do a trace. 2169 * If one does, it will cause this original code to loop 2170 * back here. Even with heavy interrupts happening, this 2171 * should only happen a few times in a row. If this happens 2172 * 1000 times in a row, there must be either an interrupt 2173 * storm or we have something buggy. 2174 * Bail! 2175 */ 2176 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2177 goto out_fail; 2178 2179 ts = rb_time_stamp(cpu_buffer->buffer); 2180 diff = ts - cpu_buffer->write_stamp; 2181 2182 /* make sure this diff is calculated here */ 2183 barrier(); 2184 2185 /* Did the write stamp get updated already? */ 2186 if (likely(ts >= cpu_buffer->write_stamp)) { 2187 delta = diff; 2188 if (unlikely(test_time_stamp(delta))) { 2189 int local_clock_stable = 1; 2190 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2191 local_clock_stable = sched_clock_stable; 2192 #endif 2193 WARN_ONCE(delta > (1ULL << 59), 2194 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2195 (unsigned long long)delta, 2196 (unsigned long long)ts, 2197 (unsigned long long)cpu_buffer->write_stamp, 2198 local_clock_stable ? "" : 2199 "If you just came from a suspend/resume,\n" 2200 "please switch to the trace global clock:\n" 2201 " echo global > /sys/kernel/debug/tracing/trace_clock\n"); 2202 add_timestamp = 1; 2203 } 2204 } 2205 2206 event = __rb_reserve_next(cpu_buffer, length, ts, 2207 delta, add_timestamp); 2208 if (unlikely(PTR_ERR(event) == -EAGAIN)) 2209 goto again; 2210 2211 if (!event) 2212 goto out_fail; 2213 2214 return event; 2215 2216 out_fail: 2217 rb_end_commit(cpu_buffer); 2218 return NULL; 2219 } 2220 2221 #ifdef CONFIG_TRACING 2222 2223 #define TRACE_RECURSIVE_DEPTH 16 2224 2225 /* Keep this code out of the fast path cache */ 2226 static noinline void trace_recursive_fail(void) 2227 { 2228 /* Disable all tracing before we do anything else */ 2229 tracing_off_permanent(); 2230 2231 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:" 2232 "HC[%lu]:SC[%lu]:NMI[%lu]\n", 2233 trace_recursion_buffer(), 2234 hardirq_count() >> HARDIRQ_SHIFT, 2235 softirq_count() >> SOFTIRQ_SHIFT, 2236 in_nmi()); 2237 2238 WARN_ON_ONCE(1); 2239 } 2240 2241 static inline int trace_recursive_lock(void) 2242 { 2243 trace_recursion_inc(); 2244 2245 if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH)) 2246 return 0; 2247 2248 trace_recursive_fail(); 2249 2250 return -1; 2251 } 2252 2253 static inline void trace_recursive_unlock(void) 2254 { 2255 WARN_ON_ONCE(!trace_recursion_buffer()); 2256 2257 trace_recursion_dec(); 2258 } 2259 2260 #else 2261 2262 #define trace_recursive_lock() (0) 2263 #define trace_recursive_unlock() do { } while (0) 2264 2265 #endif 2266 2267 /** 2268 * ring_buffer_lock_reserve - reserve a part of the buffer 2269 * @buffer: the ring buffer to reserve from 2270 * @length: the length of the data to reserve (excluding event header) 2271 * 2272 * Returns a reseverd event on the ring buffer to copy directly to. 2273 * The user of this interface will need to get the body to write into 2274 * and can use the ring_buffer_event_data() interface. 2275 * 2276 * The length is the length of the data needed, not the event length 2277 * which also includes the event header. 2278 * 2279 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2280 * If NULL is returned, then nothing has been allocated or locked. 2281 */ 2282 struct ring_buffer_event * 2283 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2284 { 2285 struct ring_buffer_per_cpu *cpu_buffer; 2286 struct ring_buffer_event *event; 2287 int cpu; 2288 2289 if (ring_buffer_flags != RB_BUFFERS_ON) 2290 return NULL; 2291 2292 /* If we are tracing schedule, we don't want to recurse */ 2293 preempt_disable_notrace(); 2294 2295 if (atomic_read(&buffer->record_disabled)) 2296 goto out_nocheck; 2297 2298 if (trace_recursive_lock()) 2299 goto out_nocheck; 2300 2301 cpu = raw_smp_processor_id(); 2302 2303 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2304 goto out; 2305 2306 cpu_buffer = buffer->buffers[cpu]; 2307 2308 if (atomic_read(&cpu_buffer->record_disabled)) 2309 goto out; 2310 2311 if (length > BUF_MAX_DATA_SIZE) 2312 goto out; 2313 2314 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2315 if (!event) 2316 goto out; 2317 2318 return event; 2319 2320 out: 2321 trace_recursive_unlock(); 2322 2323 out_nocheck: 2324 preempt_enable_notrace(); 2325 return NULL; 2326 } 2327 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2328 2329 static void 2330 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2331 struct ring_buffer_event *event) 2332 { 2333 u64 delta; 2334 2335 /* 2336 * The event first in the commit queue updates the 2337 * time stamp. 2338 */ 2339 if (rb_event_is_commit(cpu_buffer, event)) { 2340 /* 2341 * A commit event that is first on a page 2342 * updates the write timestamp with the page stamp 2343 */ 2344 if (!rb_event_index(event)) 2345 cpu_buffer->write_stamp = 2346 cpu_buffer->commit_page->page->time_stamp; 2347 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2348 delta = event->array[0]; 2349 delta <<= TS_SHIFT; 2350 delta += event->time_delta; 2351 cpu_buffer->write_stamp += delta; 2352 } else 2353 cpu_buffer->write_stamp += event->time_delta; 2354 } 2355 } 2356 2357 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2358 struct ring_buffer_event *event) 2359 { 2360 local_inc(&cpu_buffer->entries); 2361 rb_update_write_stamp(cpu_buffer, event); 2362 rb_end_commit(cpu_buffer); 2363 } 2364 2365 /** 2366 * ring_buffer_unlock_commit - commit a reserved 2367 * @buffer: The buffer to commit to 2368 * @event: The event pointer to commit. 2369 * 2370 * This commits the data to the ring buffer, and releases any locks held. 2371 * 2372 * Must be paired with ring_buffer_lock_reserve. 2373 */ 2374 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2375 struct ring_buffer_event *event) 2376 { 2377 struct ring_buffer_per_cpu *cpu_buffer; 2378 int cpu = raw_smp_processor_id(); 2379 2380 cpu_buffer = buffer->buffers[cpu]; 2381 2382 rb_commit(cpu_buffer, event); 2383 2384 trace_recursive_unlock(); 2385 2386 preempt_enable_notrace(); 2387 2388 return 0; 2389 } 2390 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2391 2392 static inline void rb_event_discard(struct ring_buffer_event *event) 2393 { 2394 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 2395 event = skip_time_extend(event); 2396 2397 /* array[0] holds the actual length for the discarded event */ 2398 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2399 event->type_len = RINGBUF_TYPE_PADDING; 2400 /* time delta must be non zero */ 2401 if (!event->time_delta) 2402 event->time_delta = 1; 2403 } 2404 2405 /* 2406 * Decrement the entries to the page that an event is on. 2407 * The event does not even need to exist, only the pointer 2408 * to the page it is on. This may only be called before the commit 2409 * takes place. 2410 */ 2411 static inline void 2412 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2413 struct ring_buffer_event *event) 2414 { 2415 unsigned long addr = (unsigned long)event; 2416 struct buffer_page *bpage = cpu_buffer->commit_page; 2417 struct buffer_page *start; 2418 2419 addr &= PAGE_MASK; 2420 2421 /* Do the likely case first */ 2422 if (likely(bpage->page == (void *)addr)) { 2423 local_dec(&bpage->entries); 2424 return; 2425 } 2426 2427 /* 2428 * Because the commit page may be on the reader page we 2429 * start with the next page and check the end loop there. 2430 */ 2431 rb_inc_page(cpu_buffer, &bpage); 2432 start = bpage; 2433 do { 2434 if (bpage->page == (void *)addr) { 2435 local_dec(&bpage->entries); 2436 return; 2437 } 2438 rb_inc_page(cpu_buffer, &bpage); 2439 } while (bpage != start); 2440 2441 /* commit not part of this buffer?? */ 2442 RB_WARN_ON(cpu_buffer, 1); 2443 } 2444 2445 /** 2446 * ring_buffer_commit_discard - discard an event that has not been committed 2447 * @buffer: the ring buffer 2448 * @event: non committed event to discard 2449 * 2450 * Sometimes an event that is in the ring buffer needs to be ignored. 2451 * This function lets the user discard an event in the ring buffer 2452 * and then that event will not be read later. 2453 * 2454 * This function only works if it is called before the the item has been 2455 * committed. It will try to free the event from the ring buffer 2456 * if another event has not been added behind it. 2457 * 2458 * If another event has been added behind it, it will set the event 2459 * up as discarded, and perform the commit. 2460 * 2461 * If this function is called, do not call ring_buffer_unlock_commit on 2462 * the event. 2463 */ 2464 void ring_buffer_discard_commit(struct ring_buffer *buffer, 2465 struct ring_buffer_event *event) 2466 { 2467 struct ring_buffer_per_cpu *cpu_buffer; 2468 int cpu; 2469 2470 /* The event is discarded regardless */ 2471 rb_event_discard(event); 2472 2473 cpu = smp_processor_id(); 2474 cpu_buffer = buffer->buffers[cpu]; 2475 2476 /* 2477 * This must only be called if the event has not been 2478 * committed yet. Thus we can assume that preemption 2479 * is still disabled. 2480 */ 2481 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 2482 2483 rb_decrement_entry(cpu_buffer, event); 2484 if (rb_try_to_discard(cpu_buffer, event)) 2485 goto out; 2486 2487 /* 2488 * The commit is still visible by the reader, so we 2489 * must still update the timestamp. 2490 */ 2491 rb_update_write_stamp(cpu_buffer, event); 2492 out: 2493 rb_end_commit(cpu_buffer); 2494 2495 trace_recursive_unlock(); 2496 2497 preempt_enable_notrace(); 2498 2499 } 2500 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 2501 2502 /** 2503 * ring_buffer_write - write data to the buffer without reserving 2504 * @buffer: The ring buffer to write to. 2505 * @length: The length of the data being written (excluding the event header) 2506 * @data: The data to write to the buffer. 2507 * 2508 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 2509 * one function. If you already have the data to write to the buffer, it 2510 * may be easier to simply call this function. 2511 * 2512 * Note, like ring_buffer_lock_reserve, the length is the length of the data 2513 * and not the length of the event which would hold the header. 2514 */ 2515 int ring_buffer_write(struct ring_buffer *buffer, 2516 unsigned long length, 2517 void *data) 2518 { 2519 struct ring_buffer_per_cpu *cpu_buffer; 2520 struct ring_buffer_event *event; 2521 void *body; 2522 int ret = -EBUSY; 2523 int cpu; 2524 2525 if (ring_buffer_flags != RB_BUFFERS_ON) 2526 return -EBUSY; 2527 2528 preempt_disable_notrace(); 2529 2530 if (atomic_read(&buffer->record_disabled)) 2531 goto out; 2532 2533 cpu = raw_smp_processor_id(); 2534 2535 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2536 goto out; 2537 2538 cpu_buffer = buffer->buffers[cpu]; 2539 2540 if (atomic_read(&cpu_buffer->record_disabled)) 2541 goto out; 2542 2543 if (length > BUF_MAX_DATA_SIZE) 2544 goto out; 2545 2546 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2547 if (!event) 2548 goto out; 2549 2550 body = rb_event_data(event); 2551 2552 memcpy(body, data, length); 2553 2554 rb_commit(cpu_buffer, event); 2555 2556 ret = 0; 2557 out: 2558 preempt_enable_notrace(); 2559 2560 return ret; 2561 } 2562 EXPORT_SYMBOL_GPL(ring_buffer_write); 2563 2564 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 2565 { 2566 struct buffer_page *reader = cpu_buffer->reader_page; 2567 struct buffer_page *head = rb_set_head_page(cpu_buffer); 2568 struct buffer_page *commit = cpu_buffer->commit_page; 2569 2570 /* In case of error, head will be NULL */ 2571 if (unlikely(!head)) 2572 return 1; 2573 2574 return reader->read == rb_page_commit(reader) && 2575 (commit == reader || 2576 (commit == head && 2577 head->read == rb_page_commit(commit))); 2578 } 2579 2580 /** 2581 * ring_buffer_record_disable - stop all writes into the buffer 2582 * @buffer: The ring buffer to stop writes to. 2583 * 2584 * This prevents all writes to the buffer. Any attempt to write 2585 * to the buffer after this will fail and return NULL. 2586 * 2587 * The caller should call synchronize_sched() after this. 2588 */ 2589 void ring_buffer_record_disable(struct ring_buffer *buffer) 2590 { 2591 atomic_inc(&buffer->record_disabled); 2592 } 2593 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 2594 2595 /** 2596 * ring_buffer_record_enable - enable writes to the buffer 2597 * @buffer: The ring buffer to enable writes 2598 * 2599 * Note, multiple disables will need the same number of enables 2600 * to truly enable the writing (much like preempt_disable). 2601 */ 2602 void ring_buffer_record_enable(struct ring_buffer *buffer) 2603 { 2604 atomic_dec(&buffer->record_disabled); 2605 } 2606 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 2607 2608 /** 2609 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 2610 * @buffer: The ring buffer to stop writes to. 2611 * @cpu: The CPU buffer to stop 2612 * 2613 * This prevents all writes to the buffer. Any attempt to write 2614 * to the buffer after this will fail and return NULL. 2615 * 2616 * The caller should call synchronize_sched() after this. 2617 */ 2618 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 2619 { 2620 struct ring_buffer_per_cpu *cpu_buffer; 2621 2622 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2623 return; 2624 2625 cpu_buffer = buffer->buffers[cpu]; 2626 atomic_inc(&cpu_buffer->record_disabled); 2627 } 2628 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 2629 2630 /** 2631 * ring_buffer_record_enable_cpu - enable writes to the buffer 2632 * @buffer: The ring buffer to enable writes 2633 * @cpu: The CPU to enable. 2634 * 2635 * Note, multiple disables will need the same number of enables 2636 * to truly enable the writing (much like preempt_disable). 2637 */ 2638 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 2639 { 2640 struct ring_buffer_per_cpu *cpu_buffer; 2641 2642 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2643 return; 2644 2645 cpu_buffer = buffer->buffers[cpu]; 2646 atomic_dec(&cpu_buffer->record_disabled); 2647 } 2648 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 2649 2650 /* 2651 * The total entries in the ring buffer is the running counter 2652 * of entries entered into the ring buffer, minus the sum of 2653 * the entries read from the ring buffer and the number of 2654 * entries that were overwritten. 2655 */ 2656 static inline unsigned long 2657 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 2658 { 2659 return local_read(&cpu_buffer->entries) - 2660 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 2661 } 2662 2663 /** 2664 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 2665 * @buffer: The ring buffer 2666 * @cpu: The per CPU buffer to get the entries from. 2667 */ 2668 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 2669 { 2670 struct ring_buffer_per_cpu *cpu_buffer; 2671 2672 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2673 return 0; 2674 2675 cpu_buffer = buffer->buffers[cpu]; 2676 2677 return rb_num_of_entries(cpu_buffer); 2678 } 2679 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 2680 2681 /** 2682 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer 2683 * @buffer: The ring buffer 2684 * @cpu: The per CPU buffer to get the number of overruns from 2685 */ 2686 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 2687 { 2688 struct ring_buffer_per_cpu *cpu_buffer; 2689 unsigned long ret; 2690 2691 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2692 return 0; 2693 2694 cpu_buffer = buffer->buffers[cpu]; 2695 ret = local_read(&cpu_buffer->overrun); 2696 2697 return ret; 2698 } 2699 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 2700 2701 /** 2702 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits 2703 * @buffer: The ring buffer 2704 * @cpu: The per CPU buffer to get the number of overruns from 2705 */ 2706 unsigned long 2707 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 2708 { 2709 struct ring_buffer_per_cpu *cpu_buffer; 2710 unsigned long ret; 2711 2712 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2713 return 0; 2714 2715 cpu_buffer = buffer->buffers[cpu]; 2716 ret = local_read(&cpu_buffer->commit_overrun); 2717 2718 return ret; 2719 } 2720 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 2721 2722 /** 2723 * ring_buffer_entries - get the number of entries in a buffer 2724 * @buffer: The ring buffer 2725 * 2726 * Returns the total number of entries in the ring buffer 2727 * (all CPU entries) 2728 */ 2729 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 2730 { 2731 struct ring_buffer_per_cpu *cpu_buffer; 2732 unsigned long entries = 0; 2733 int cpu; 2734 2735 /* if you care about this being correct, lock the buffer */ 2736 for_each_buffer_cpu(buffer, cpu) { 2737 cpu_buffer = buffer->buffers[cpu]; 2738 entries += rb_num_of_entries(cpu_buffer); 2739 } 2740 2741 return entries; 2742 } 2743 EXPORT_SYMBOL_GPL(ring_buffer_entries); 2744 2745 /** 2746 * ring_buffer_overruns - get the number of overruns in buffer 2747 * @buffer: The ring buffer 2748 * 2749 * Returns the total number of overruns in the ring buffer 2750 * (all CPU entries) 2751 */ 2752 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 2753 { 2754 struct ring_buffer_per_cpu *cpu_buffer; 2755 unsigned long overruns = 0; 2756 int cpu; 2757 2758 /* if you care about this being correct, lock the buffer */ 2759 for_each_buffer_cpu(buffer, cpu) { 2760 cpu_buffer = buffer->buffers[cpu]; 2761 overruns += local_read(&cpu_buffer->overrun); 2762 } 2763 2764 return overruns; 2765 } 2766 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 2767 2768 static void rb_iter_reset(struct ring_buffer_iter *iter) 2769 { 2770 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 2771 2772 /* Iterator usage is expected to have record disabled */ 2773 if (list_empty(&cpu_buffer->reader_page->list)) { 2774 iter->head_page = rb_set_head_page(cpu_buffer); 2775 if (unlikely(!iter->head_page)) 2776 return; 2777 iter->head = iter->head_page->read; 2778 } else { 2779 iter->head_page = cpu_buffer->reader_page; 2780 iter->head = cpu_buffer->reader_page->read; 2781 } 2782 if (iter->head) 2783 iter->read_stamp = cpu_buffer->read_stamp; 2784 else 2785 iter->read_stamp = iter->head_page->page->time_stamp; 2786 iter->cache_reader_page = cpu_buffer->reader_page; 2787 iter->cache_read = cpu_buffer->read; 2788 } 2789 2790 /** 2791 * ring_buffer_iter_reset - reset an iterator 2792 * @iter: The iterator to reset 2793 * 2794 * Resets the iterator, so that it will start from the beginning 2795 * again. 2796 */ 2797 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 2798 { 2799 struct ring_buffer_per_cpu *cpu_buffer; 2800 unsigned long flags; 2801 2802 if (!iter) 2803 return; 2804 2805 cpu_buffer = iter->cpu_buffer; 2806 2807 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2808 rb_iter_reset(iter); 2809 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2810 } 2811 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 2812 2813 /** 2814 * ring_buffer_iter_empty - check if an iterator has no more to read 2815 * @iter: The iterator to check 2816 */ 2817 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 2818 { 2819 struct ring_buffer_per_cpu *cpu_buffer; 2820 2821 cpu_buffer = iter->cpu_buffer; 2822 2823 return iter->head_page == cpu_buffer->commit_page && 2824 iter->head == rb_commit_index(cpu_buffer); 2825 } 2826 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 2827 2828 static void 2829 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2830 struct ring_buffer_event *event) 2831 { 2832 u64 delta; 2833 2834 switch (event->type_len) { 2835 case RINGBUF_TYPE_PADDING: 2836 return; 2837 2838 case RINGBUF_TYPE_TIME_EXTEND: 2839 delta = event->array[0]; 2840 delta <<= TS_SHIFT; 2841 delta += event->time_delta; 2842 cpu_buffer->read_stamp += delta; 2843 return; 2844 2845 case RINGBUF_TYPE_TIME_STAMP: 2846 /* FIXME: not implemented */ 2847 return; 2848 2849 case RINGBUF_TYPE_DATA: 2850 cpu_buffer->read_stamp += event->time_delta; 2851 return; 2852 2853 default: 2854 BUG(); 2855 } 2856 return; 2857 } 2858 2859 static void 2860 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 2861 struct ring_buffer_event *event) 2862 { 2863 u64 delta; 2864 2865 switch (event->type_len) { 2866 case RINGBUF_TYPE_PADDING: 2867 return; 2868 2869 case RINGBUF_TYPE_TIME_EXTEND: 2870 delta = event->array[0]; 2871 delta <<= TS_SHIFT; 2872 delta += event->time_delta; 2873 iter->read_stamp += delta; 2874 return; 2875 2876 case RINGBUF_TYPE_TIME_STAMP: 2877 /* FIXME: not implemented */ 2878 return; 2879 2880 case RINGBUF_TYPE_DATA: 2881 iter->read_stamp += event->time_delta; 2882 return; 2883 2884 default: 2885 BUG(); 2886 } 2887 return; 2888 } 2889 2890 static struct buffer_page * 2891 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 2892 { 2893 struct buffer_page *reader = NULL; 2894 unsigned long overwrite; 2895 unsigned long flags; 2896 int nr_loops = 0; 2897 int ret; 2898 2899 local_irq_save(flags); 2900 arch_spin_lock(&cpu_buffer->lock); 2901 2902 again: 2903 /* 2904 * This should normally only loop twice. But because the 2905 * start of the reader inserts an empty page, it causes 2906 * a case where we will loop three times. There should be no 2907 * reason to loop four times (that I know of). 2908 */ 2909 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 2910 reader = NULL; 2911 goto out; 2912 } 2913 2914 reader = cpu_buffer->reader_page; 2915 2916 /* If there's more to read, return this page */ 2917 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 2918 goto out; 2919 2920 /* Never should we have an index greater than the size */ 2921 if (RB_WARN_ON(cpu_buffer, 2922 cpu_buffer->reader_page->read > rb_page_size(reader))) 2923 goto out; 2924 2925 /* check if we caught up to the tail */ 2926 reader = NULL; 2927 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 2928 goto out; 2929 2930 /* 2931 * Reset the reader page to size zero. 2932 */ 2933 local_set(&cpu_buffer->reader_page->write, 0); 2934 local_set(&cpu_buffer->reader_page->entries, 0); 2935 local_set(&cpu_buffer->reader_page->page->commit, 0); 2936 cpu_buffer->reader_page->real_end = 0; 2937 2938 spin: 2939 /* 2940 * Splice the empty reader page into the list around the head. 2941 */ 2942 reader = rb_set_head_page(cpu_buffer); 2943 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 2944 cpu_buffer->reader_page->list.prev = reader->list.prev; 2945 2946 /* 2947 * cpu_buffer->pages just needs to point to the buffer, it 2948 * has no specific buffer page to point to. Lets move it out 2949 * of our way so we don't accidentally swap it. 2950 */ 2951 cpu_buffer->pages = reader->list.prev; 2952 2953 /* The reader page will be pointing to the new head */ 2954 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 2955 2956 /* 2957 * We want to make sure we read the overruns after we set up our 2958 * pointers to the next object. The writer side does a 2959 * cmpxchg to cross pages which acts as the mb on the writer 2960 * side. Note, the reader will constantly fail the swap 2961 * while the writer is updating the pointers, so this 2962 * guarantees that the overwrite recorded here is the one we 2963 * want to compare with the last_overrun. 2964 */ 2965 smp_mb(); 2966 overwrite = local_read(&(cpu_buffer->overrun)); 2967 2968 /* 2969 * Here's the tricky part. 2970 * 2971 * We need to move the pointer past the header page. 2972 * But we can only do that if a writer is not currently 2973 * moving it. The page before the header page has the 2974 * flag bit '1' set if it is pointing to the page we want. 2975 * but if the writer is in the process of moving it 2976 * than it will be '2' or already moved '0'. 2977 */ 2978 2979 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 2980 2981 /* 2982 * If we did not convert it, then we must try again. 2983 */ 2984 if (!ret) 2985 goto spin; 2986 2987 /* 2988 * Yeah! We succeeded in replacing the page. 2989 * 2990 * Now make the new head point back to the reader page. 2991 */ 2992 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 2993 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 2994 2995 /* Finally update the reader page to the new head */ 2996 cpu_buffer->reader_page = reader; 2997 rb_reset_reader_page(cpu_buffer); 2998 2999 if (overwrite != cpu_buffer->last_overrun) { 3000 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 3001 cpu_buffer->last_overrun = overwrite; 3002 } 3003 3004 goto again; 3005 3006 out: 3007 arch_spin_unlock(&cpu_buffer->lock); 3008 local_irq_restore(flags); 3009 3010 return reader; 3011 } 3012 3013 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3014 { 3015 struct ring_buffer_event *event; 3016 struct buffer_page *reader; 3017 unsigned length; 3018 3019 reader = rb_get_reader_page(cpu_buffer); 3020 3021 /* This function should not be called when buffer is empty */ 3022 if (RB_WARN_ON(cpu_buffer, !reader)) 3023 return; 3024 3025 event = rb_reader_event(cpu_buffer); 3026 3027 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3028 cpu_buffer->read++; 3029 3030 rb_update_read_stamp(cpu_buffer, event); 3031 3032 length = rb_event_length(event); 3033 cpu_buffer->reader_page->read += length; 3034 } 3035 3036 static void rb_advance_iter(struct ring_buffer_iter *iter) 3037 { 3038 struct ring_buffer_per_cpu *cpu_buffer; 3039 struct ring_buffer_event *event; 3040 unsigned length; 3041 3042 cpu_buffer = iter->cpu_buffer; 3043 3044 /* 3045 * Check if we are at the end of the buffer. 3046 */ 3047 if (iter->head >= rb_page_size(iter->head_page)) { 3048 /* discarded commits can make the page empty */ 3049 if (iter->head_page == cpu_buffer->commit_page) 3050 return; 3051 rb_inc_iter(iter); 3052 return; 3053 } 3054 3055 event = rb_iter_head_event(iter); 3056 3057 length = rb_event_length(event); 3058 3059 /* 3060 * This should not be called to advance the header if we are 3061 * at the tail of the buffer. 3062 */ 3063 if (RB_WARN_ON(cpu_buffer, 3064 (iter->head_page == cpu_buffer->commit_page) && 3065 (iter->head + length > rb_commit_index(cpu_buffer)))) 3066 return; 3067 3068 rb_update_iter_read_stamp(iter, event); 3069 3070 iter->head += length; 3071 3072 /* check for end of page padding */ 3073 if ((iter->head >= rb_page_size(iter->head_page)) && 3074 (iter->head_page != cpu_buffer->commit_page)) 3075 rb_advance_iter(iter); 3076 } 3077 3078 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3079 { 3080 return cpu_buffer->lost_events; 3081 } 3082 3083 static struct ring_buffer_event * 3084 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3085 unsigned long *lost_events) 3086 { 3087 struct ring_buffer_event *event; 3088 struct buffer_page *reader; 3089 int nr_loops = 0; 3090 3091 again: 3092 /* 3093 * We repeat when a time extend is encountered. 3094 * Since the time extend is always attached to a data event, 3095 * we should never loop more than once. 3096 * (We never hit the following condition more than twice). 3097 */ 3098 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3099 return NULL; 3100 3101 reader = rb_get_reader_page(cpu_buffer); 3102 if (!reader) 3103 return NULL; 3104 3105 event = rb_reader_event(cpu_buffer); 3106 3107 switch (event->type_len) { 3108 case RINGBUF_TYPE_PADDING: 3109 if (rb_null_event(event)) 3110 RB_WARN_ON(cpu_buffer, 1); 3111 /* 3112 * Because the writer could be discarding every 3113 * event it creates (which would probably be bad) 3114 * if we were to go back to "again" then we may never 3115 * catch up, and will trigger the warn on, or lock 3116 * the box. Return the padding, and we will release 3117 * the current locks, and try again. 3118 */ 3119 return event; 3120 3121 case RINGBUF_TYPE_TIME_EXTEND: 3122 /* Internal data, OK to advance */ 3123 rb_advance_reader(cpu_buffer); 3124 goto again; 3125 3126 case RINGBUF_TYPE_TIME_STAMP: 3127 /* FIXME: not implemented */ 3128 rb_advance_reader(cpu_buffer); 3129 goto again; 3130 3131 case RINGBUF_TYPE_DATA: 3132 if (ts) { 3133 *ts = cpu_buffer->read_stamp + event->time_delta; 3134 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3135 cpu_buffer->cpu, ts); 3136 } 3137 if (lost_events) 3138 *lost_events = rb_lost_events(cpu_buffer); 3139 return event; 3140 3141 default: 3142 BUG(); 3143 } 3144 3145 return NULL; 3146 } 3147 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3148 3149 static struct ring_buffer_event * 3150 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3151 { 3152 struct ring_buffer *buffer; 3153 struct ring_buffer_per_cpu *cpu_buffer; 3154 struct ring_buffer_event *event; 3155 int nr_loops = 0; 3156 3157 cpu_buffer = iter->cpu_buffer; 3158 buffer = cpu_buffer->buffer; 3159 3160 /* 3161 * Check if someone performed a consuming read to 3162 * the buffer. A consuming read invalidates the iterator 3163 * and we need to reset the iterator in this case. 3164 */ 3165 if (unlikely(iter->cache_read != cpu_buffer->read || 3166 iter->cache_reader_page != cpu_buffer->reader_page)) 3167 rb_iter_reset(iter); 3168 3169 again: 3170 if (ring_buffer_iter_empty(iter)) 3171 return NULL; 3172 3173 /* 3174 * We repeat when a time extend is encountered. 3175 * Since the time extend is always attached to a data event, 3176 * we should never loop more than once. 3177 * (We never hit the following condition more than twice). 3178 */ 3179 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3180 return NULL; 3181 3182 if (rb_per_cpu_empty(cpu_buffer)) 3183 return NULL; 3184 3185 if (iter->head >= local_read(&iter->head_page->page->commit)) { 3186 rb_inc_iter(iter); 3187 goto again; 3188 } 3189 3190 event = rb_iter_head_event(iter); 3191 3192 switch (event->type_len) { 3193 case RINGBUF_TYPE_PADDING: 3194 if (rb_null_event(event)) { 3195 rb_inc_iter(iter); 3196 goto again; 3197 } 3198 rb_advance_iter(iter); 3199 return event; 3200 3201 case RINGBUF_TYPE_TIME_EXTEND: 3202 /* Internal data, OK to advance */ 3203 rb_advance_iter(iter); 3204 goto again; 3205 3206 case RINGBUF_TYPE_TIME_STAMP: 3207 /* FIXME: not implemented */ 3208 rb_advance_iter(iter); 3209 goto again; 3210 3211 case RINGBUF_TYPE_DATA: 3212 if (ts) { 3213 *ts = iter->read_stamp + event->time_delta; 3214 ring_buffer_normalize_time_stamp(buffer, 3215 cpu_buffer->cpu, ts); 3216 } 3217 return event; 3218 3219 default: 3220 BUG(); 3221 } 3222 3223 return NULL; 3224 } 3225 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3226 3227 static inline int rb_ok_to_lock(void) 3228 { 3229 /* 3230 * If an NMI die dumps out the content of the ring buffer 3231 * do not grab locks. We also permanently disable the ring 3232 * buffer too. A one time deal is all you get from reading 3233 * the ring buffer from an NMI. 3234 */ 3235 if (likely(!in_nmi())) 3236 return 1; 3237 3238 tracing_off_permanent(); 3239 return 0; 3240 } 3241 3242 /** 3243 * ring_buffer_peek - peek at the next event to be read 3244 * @buffer: The ring buffer to read 3245 * @cpu: The cpu to peak at 3246 * @ts: The timestamp counter of this event. 3247 * @lost_events: a variable to store if events were lost (may be NULL) 3248 * 3249 * This will return the event that will be read next, but does 3250 * not consume the data. 3251 */ 3252 struct ring_buffer_event * 3253 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, 3254 unsigned long *lost_events) 3255 { 3256 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3257 struct ring_buffer_event *event; 3258 unsigned long flags; 3259 int dolock; 3260 3261 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3262 return NULL; 3263 3264 dolock = rb_ok_to_lock(); 3265 again: 3266 local_irq_save(flags); 3267 if (dolock) 3268 spin_lock(&cpu_buffer->reader_lock); 3269 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3270 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3271 rb_advance_reader(cpu_buffer); 3272 if (dolock) 3273 spin_unlock(&cpu_buffer->reader_lock); 3274 local_irq_restore(flags); 3275 3276 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3277 goto again; 3278 3279 return event; 3280 } 3281 3282 /** 3283 * ring_buffer_iter_peek - peek at the next event to be read 3284 * @iter: The ring buffer iterator 3285 * @ts: The timestamp counter of this event. 3286 * 3287 * This will return the event that will be read next, but does 3288 * not increment the iterator. 3289 */ 3290 struct ring_buffer_event * 3291 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3292 { 3293 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3294 struct ring_buffer_event *event; 3295 unsigned long flags; 3296 3297 again: 3298 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3299 event = rb_iter_peek(iter, ts); 3300 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3301 3302 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3303 goto again; 3304 3305 return event; 3306 } 3307 3308 /** 3309 * ring_buffer_consume - return an event and consume it 3310 * @buffer: The ring buffer to get the next event from 3311 * @cpu: the cpu to read the buffer from 3312 * @ts: a variable to store the timestamp (may be NULL) 3313 * @lost_events: a variable to store if events were lost (may be NULL) 3314 * 3315 * Returns the next event in the ring buffer, and that event is consumed. 3316 * Meaning, that sequential reads will keep returning a different event, 3317 * and eventually empty the ring buffer if the producer is slower. 3318 */ 3319 struct ring_buffer_event * 3320 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, 3321 unsigned long *lost_events) 3322 { 3323 struct ring_buffer_per_cpu *cpu_buffer; 3324 struct ring_buffer_event *event = NULL; 3325 unsigned long flags; 3326 int dolock; 3327 3328 dolock = rb_ok_to_lock(); 3329 3330 again: 3331 /* might be called in atomic */ 3332 preempt_disable(); 3333 3334 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3335 goto out; 3336 3337 cpu_buffer = buffer->buffers[cpu]; 3338 local_irq_save(flags); 3339 if (dolock) 3340 spin_lock(&cpu_buffer->reader_lock); 3341 3342 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3343 if (event) { 3344 cpu_buffer->lost_events = 0; 3345 rb_advance_reader(cpu_buffer); 3346 } 3347 3348 if (dolock) 3349 spin_unlock(&cpu_buffer->reader_lock); 3350 local_irq_restore(flags); 3351 3352 out: 3353 preempt_enable(); 3354 3355 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3356 goto again; 3357 3358 return event; 3359 } 3360 EXPORT_SYMBOL_GPL(ring_buffer_consume); 3361 3362 /** 3363 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 3364 * @buffer: The ring buffer to read from 3365 * @cpu: The cpu buffer to iterate over 3366 * 3367 * This performs the initial preparations necessary to iterate 3368 * through the buffer. Memory is allocated, buffer recording 3369 * is disabled, and the iterator pointer is returned to the caller. 3370 * 3371 * Disabling buffer recordng prevents the reading from being 3372 * corrupted. This is not a consuming read, so a producer is not 3373 * expected. 3374 * 3375 * After a sequence of ring_buffer_read_prepare calls, the user is 3376 * expected to make at least one call to ring_buffer_prepare_sync. 3377 * Afterwards, ring_buffer_read_start is invoked to get things going 3378 * for real. 3379 * 3380 * This overall must be paired with ring_buffer_finish. 3381 */ 3382 struct ring_buffer_iter * 3383 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu) 3384 { 3385 struct ring_buffer_per_cpu *cpu_buffer; 3386 struct ring_buffer_iter *iter; 3387 3388 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3389 return NULL; 3390 3391 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 3392 if (!iter) 3393 return NULL; 3394 3395 cpu_buffer = buffer->buffers[cpu]; 3396 3397 iter->cpu_buffer = cpu_buffer; 3398 3399 atomic_inc(&cpu_buffer->record_disabled); 3400 3401 return iter; 3402 } 3403 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 3404 3405 /** 3406 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 3407 * 3408 * All previously invoked ring_buffer_read_prepare calls to prepare 3409 * iterators will be synchronized. Afterwards, read_buffer_read_start 3410 * calls on those iterators are allowed. 3411 */ 3412 void 3413 ring_buffer_read_prepare_sync(void) 3414 { 3415 synchronize_sched(); 3416 } 3417 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 3418 3419 /** 3420 * ring_buffer_read_start - start a non consuming read of the buffer 3421 * @iter: The iterator returned by ring_buffer_read_prepare 3422 * 3423 * This finalizes the startup of an iteration through the buffer. 3424 * The iterator comes from a call to ring_buffer_read_prepare and 3425 * an intervening ring_buffer_read_prepare_sync must have been 3426 * performed. 3427 * 3428 * Must be paired with ring_buffer_finish. 3429 */ 3430 void 3431 ring_buffer_read_start(struct ring_buffer_iter *iter) 3432 { 3433 struct ring_buffer_per_cpu *cpu_buffer; 3434 unsigned long flags; 3435 3436 if (!iter) 3437 return; 3438 3439 cpu_buffer = iter->cpu_buffer; 3440 3441 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3442 arch_spin_lock(&cpu_buffer->lock); 3443 rb_iter_reset(iter); 3444 arch_spin_unlock(&cpu_buffer->lock); 3445 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3446 } 3447 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 3448 3449 /** 3450 * ring_buffer_finish - finish reading the iterator of the buffer 3451 * @iter: The iterator retrieved by ring_buffer_start 3452 * 3453 * This re-enables the recording to the buffer, and frees the 3454 * iterator. 3455 */ 3456 void 3457 ring_buffer_read_finish(struct ring_buffer_iter *iter) 3458 { 3459 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3460 3461 atomic_dec(&cpu_buffer->record_disabled); 3462 kfree(iter); 3463 } 3464 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 3465 3466 /** 3467 * ring_buffer_read - read the next item in the ring buffer by the iterator 3468 * @iter: The ring buffer iterator 3469 * @ts: The time stamp of the event read. 3470 * 3471 * This reads the next event in the ring buffer and increments the iterator. 3472 */ 3473 struct ring_buffer_event * 3474 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 3475 { 3476 struct ring_buffer_event *event; 3477 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3478 unsigned long flags; 3479 3480 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3481 again: 3482 event = rb_iter_peek(iter, ts); 3483 if (!event) 3484 goto out; 3485 3486 if (event->type_len == RINGBUF_TYPE_PADDING) 3487 goto again; 3488 3489 rb_advance_iter(iter); 3490 out: 3491 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3492 3493 return event; 3494 } 3495 EXPORT_SYMBOL_GPL(ring_buffer_read); 3496 3497 /** 3498 * ring_buffer_size - return the size of the ring buffer (in bytes) 3499 * @buffer: The ring buffer. 3500 */ 3501 unsigned long ring_buffer_size(struct ring_buffer *buffer) 3502 { 3503 return BUF_PAGE_SIZE * buffer->pages; 3504 } 3505 EXPORT_SYMBOL_GPL(ring_buffer_size); 3506 3507 static void 3508 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 3509 { 3510 rb_head_page_deactivate(cpu_buffer); 3511 3512 cpu_buffer->head_page 3513 = list_entry(cpu_buffer->pages, struct buffer_page, list); 3514 local_set(&cpu_buffer->head_page->write, 0); 3515 local_set(&cpu_buffer->head_page->entries, 0); 3516 local_set(&cpu_buffer->head_page->page->commit, 0); 3517 3518 cpu_buffer->head_page->read = 0; 3519 3520 cpu_buffer->tail_page = cpu_buffer->head_page; 3521 cpu_buffer->commit_page = cpu_buffer->head_page; 3522 3523 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 3524 local_set(&cpu_buffer->reader_page->write, 0); 3525 local_set(&cpu_buffer->reader_page->entries, 0); 3526 local_set(&cpu_buffer->reader_page->page->commit, 0); 3527 cpu_buffer->reader_page->read = 0; 3528 3529 local_set(&cpu_buffer->commit_overrun, 0); 3530 local_set(&cpu_buffer->overrun, 0); 3531 local_set(&cpu_buffer->entries, 0); 3532 local_set(&cpu_buffer->committing, 0); 3533 local_set(&cpu_buffer->commits, 0); 3534 cpu_buffer->read = 0; 3535 3536 cpu_buffer->write_stamp = 0; 3537 cpu_buffer->read_stamp = 0; 3538 3539 cpu_buffer->lost_events = 0; 3540 cpu_buffer->last_overrun = 0; 3541 3542 rb_head_page_activate(cpu_buffer); 3543 } 3544 3545 /** 3546 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 3547 * @buffer: The ring buffer to reset a per cpu buffer of 3548 * @cpu: The CPU buffer to be reset 3549 */ 3550 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 3551 { 3552 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3553 unsigned long flags; 3554 3555 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3556 return; 3557 3558 atomic_inc(&cpu_buffer->record_disabled); 3559 3560 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3561 3562 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 3563 goto out; 3564 3565 arch_spin_lock(&cpu_buffer->lock); 3566 3567 rb_reset_cpu(cpu_buffer); 3568 3569 arch_spin_unlock(&cpu_buffer->lock); 3570 3571 out: 3572 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3573 3574 atomic_dec(&cpu_buffer->record_disabled); 3575 } 3576 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 3577 3578 /** 3579 * ring_buffer_reset - reset a ring buffer 3580 * @buffer: The ring buffer to reset all cpu buffers 3581 */ 3582 void ring_buffer_reset(struct ring_buffer *buffer) 3583 { 3584 int cpu; 3585 3586 for_each_buffer_cpu(buffer, cpu) 3587 ring_buffer_reset_cpu(buffer, cpu); 3588 } 3589 EXPORT_SYMBOL_GPL(ring_buffer_reset); 3590 3591 /** 3592 * rind_buffer_empty - is the ring buffer empty? 3593 * @buffer: The ring buffer to test 3594 */ 3595 int ring_buffer_empty(struct ring_buffer *buffer) 3596 { 3597 struct ring_buffer_per_cpu *cpu_buffer; 3598 unsigned long flags; 3599 int dolock; 3600 int cpu; 3601 int ret; 3602 3603 dolock = rb_ok_to_lock(); 3604 3605 /* yes this is racy, but if you don't like the race, lock the buffer */ 3606 for_each_buffer_cpu(buffer, cpu) { 3607 cpu_buffer = buffer->buffers[cpu]; 3608 local_irq_save(flags); 3609 if (dolock) 3610 spin_lock(&cpu_buffer->reader_lock); 3611 ret = rb_per_cpu_empty(cpu_buffer); 3612 if (dolock) 3613 spin_unlock(&cpu_buffer->reader_lock); 3614 local_irq_restore(flags); 3615 3616 if (!ret) 3617 return 0; 3618 } 3619 3620 return 1; 3621 } 3622 EXPORT_SYMBOL_GPL(ring_buffer_empty); 3623 3624 /** 3625 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 3626 * @buffer: The ring buffer 3627 * @cpu: The CPU buffer to test 3628 */ 3629 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 3630 { 3631 struct ring_buffer_per_cpu *cpu_buffer; 3632 unsigned long flags; 3633 int dolock; 3634 int ret; 3635 3636 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3637 return 1; 3638 3639 dolock = rb_ok_to_lock(); 3640 3641 cpu_buffer = buffer->buffers[cpu]; 3642 local_irq_save(flags); 3643 if (dolock) 3644 spin_lock(&cpu_buffer->reader_lock); 3645 ret = rb_per_cpu_empty(cpu_buffer); 3646 if (dolock) 3647 spin_unlock(&cpu_buffer->reader_lock); 3648 local_irq_restore(flags); 3649 3650 return ret; 3651 } 3652 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 3653 3654 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 3655 /** 3656 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 3657 * @buffer_a: One buffer to swap with 3658 * @buffer_b: The other buffer to swap with 3659 * 3660 * This function is useful for tracers that want to take a "snapshot" 3661 * of a CPU buffer and has another back up buffer lying around. 3662 * it is expected that the tracer handles the cpu buffer not being 3663 * used at the moment. 3664 */ 3665 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 3666 struct ring_buffer *buffer_b, int cpu) 3667 { 3668 struct ring_buffer_per_cpu *cpu_buffer_a; 3669 struct ring_buffer_per_cpu *cpu_buffer_b; 3670 int ret = -EINVAL; 3671 3672 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 3673 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 3674 goto out; 3675 3676 /* At least make sure the two buffers are somewhat the same */ 3677 if (buffer_a->pages != buffer_b->pages) 3678 goto out; 3679 3680 ret = -EAGAIN; 3681 3682 if (ring_buffer_flags != RB_BUFFERS_ON) 3683 goto out; 3684 3685 if (atomic_read(&buffer_a->record_disabled)) 3686 goto out; 3687 3688 if (atomic_read(&buffer_b->record_disabled)) 3689 goto out; 3690 3691 cpu_buffer_a = buffer_a->buffers[cpu]; 3692 cpu_buffer_b = buffer_b->buffers[cpu]; 3693 3694 if (atomic_read(&cpu_buffer_a->record_disabled)) 3695 goto out; 3696 3697 if (atomic_read(&cpu_buffer_b->record_disabled)) 3698 goto out; 3699 3700 /* 3701 * We can't do a synchronize_sched here because this 3702 * function can be called in atomic context. 3703 * Normally this will be called from the same CPU as cpu. 3704 * If not it's up to the caller to protect this. 3705 */ 3706 atomic_inc(&cpu_buffer_a->record_disabled); 3707 atomic_inc(&cpu_buffer_b->record_disabled); 3708 3709 ret = -EBUSY; 3710 if (local_read(&cpu_buffer_a->committing)) 3711 goto out_dec; 3712 if (local_read(&cpu_buffer_b->committing)) 3713 goto out_dec; 3714 3715 buffer_a->buffers[cpu] = cpu_buffer_b; 3716 buffer_b->buffers[cpu] = cpu_buffer_a; 3717 3718 cpu_buffer_b->buffer = buffer_a; 3719 cpu_buffer_a->buffer = buffer_b; 3720 3721 ret = 0; 3722 3723 out_dec: 3724 atomic_dec(&cpu_buffer_a->record_disabled); 3725 atomic_dec(&cpu_buffer_b->record_disabled); 3726 out: 3727 return ret; 3728 } 3729 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 3730 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 3731 3732 /** 3733 * ring_buffer_alloc_read_page - allocate a page to read from buffer 3734 * @buffer: the buffer to allocate for. 3735 * 3736 * This function is used in conjunction with ring_buffer_read_page. 3737 * When reading a full page from the ring buffer, these functions 3738 * can be used to speed up the process. The calling function should 3739 * allocate a few pages first with this function. Then when it 3740 * needs to get pages from the ring buffer, it passes the result 3741 * of this function into ring_buffer_read_page, which will swap 3742 * the page that was allocated, with the read page of the buffer. 3743 * 3744 * Returns: 3745 * The page allocated, or NULL on error. 3746 */ 3747 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu) 3748 { 3749 struct buffer_data_page *bpage; 3750 struct page *page; 3751 3752 page = alloc_pages_node(cpu_to_node(cpu), 3753 GFP_KERNEL | __GFP_NORETRY, 0); 3754 if (!page) 3755 return NULL; 3756 3757 bpage = page_address(page); 3758 3759 rb_init_page(bpage); 3760 3761 return bpage; 3762 } 3763 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 3764 3765 /** 3766 * ring_buffer_free_read_page - free an allocated read page 3767 * @buffer: the buffer the page was allocate for 3768 * @data: the page to free 3769 * 3770 * Free a page allocated from ring_buffer_alloc_read_page. 3771 */ 3772 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data) 3773 { 3774 free_page((unsigned long)data); 3775 } 3776 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 3777 3778 /** 3779 * ring_buffer_read_page - extract a page from the ring buffer 3780 * @buffer: buffer to extract from 3781 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 3782 * @len: amount to extract 3783 * @cpu: the cpu of the buffer to extract 3784 * @full: should the extraction only happen when the page is full. 3785 * 3786 * This function will pull out a page from the ring buffer and consume it. 3787 * @data_page must be the address of the variable that was returned 3788 * from ring_buffer_alloc_read_page. This is because the page might be used 3789 * to swap with a page in the ring buffer. 3790 * 3791 * for example: 3792 * rpage = ring_buffer_alloc_read_page(buffer); 3793 * if (!rpage) 3794 * return error; 3795 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 3796 * if (ret >= 0) 3797 * process_page(rpage, ret); 3798 * 3799 * When @full is set, the function will not return true unless 3800 * the writer is off the reader page. 3801 * 3802 * Note: it is up to the calling functions to handle sleeps and wakeups. 3803 * The ring buffer can be used anywhere in the kernel and can not 3804 * blindly call wake_up. The layer that uses the ring buffer must be 3805 * responsible for that. 3806 * 3807 * Returns: 3808 * >=0 if data has been transferred, returns the offset of consumed data. 3809 * <0 if no data has been transferred. 3810 */ 3811 int ring_buffer_read_page(struct ring_buffer *buffer, 3812 void **data_page, size_t len, int cpu, int full) 3813 { 3814 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3815 struct ring_buffer_event *event; 3816 struct buffer_data_page *bpage; 3817 struct buffer_page *reader; 3818 unsigned long missed_events; 3819 unsigned long flags; 3820 unsigned int commit; 3821 unsigned int read; 3822 u64 save_timestamp; 3823 int ret = -1; 3824 3825 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3826 goto out; 3827 3828 /* 3829 * If len is not big enough to hold the page header, then 3830 * we can not copy anything. 3831 */ 3832 if (len <= BUF_PAGE_HDR_SIZE) 3833 goto out; 3834 3835 len -= BUF_PAGE_HDR_SIZE; 3836 3837 if (!data_page) 3838 goto out; 3839 3840 bpage = *data_page; 3841 if (!bpage) 3842 goto out; 3843 3844 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3845 3846 reader = rb_get_reader_page(cpu_buffer); 3847 if (!reader) 3848 goto out_unlock; 3849 3850 event = rb_reader_event(cpu_buffer); 3851 3852 read = reader->read; 3853 commit = rb_page_commit(reader); 3854 3855 /* Check if any events were dropped */ 3856 missed_events = cpu_buffer->lost_events; 3857 3858 /* 3859 * If this page has been partially read or 3860 * if len is not big enough to read the rest of the page or 3861 * a writer is still on the page, then 3862 * we must copy the data from the page to the buffer. 3863 * Otherwise, we can simply swap the page with the one passed in. 3864 */ 3865 if (read || (len < (commit - read)) || 3866 cpu_buffer->reader_page == cpu_buffer->commit_page) { 3867 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 3868 unsigned int rpos = read; 3869 unsigned int pos = 0; 3870 unsigned int size; 3871 3872 if (full) 3873 goto out_unlock; 3874 3875 if (len > (commit - read)) 3876 len = (commit - read); 3877 3878 /* Always keep the time extend and data together */ 3879 size = rb_event_ts_length(event); 3880 3881 if (len < size) 3882 goto out_unlock; 3883 3884 /* save the current timestamp, since the user will need it */ 3885 save_timestamp = cpu_buffer->read_stamp; 3886 3887 /* Need to copy one event at a time */ 3888 do { 3889 /* We need the size of one event, because 3890 * rb_advance_reader only advances by one event, 3891 * whereas rb_event_ts_length may include the size of 3892 * one or two events. 3893 * We have already ensured there's enough space if this 3894 * is a time extend. */ 3895 size = rb_event_length(event); 3896 memcpy(bpage->data + pos, rpage->data + rpos, size); 3897 3898 len -= size; 3899 3900 rb_advance_reader(cpu_buffer); 3901 rpos = reader->read; 3902 pos += size; 3903 3904 if (rpos >= commit) 3905 break; 3906 3907 event = rb_reader_event(cpu_buffer); 3908 /* Always keep the time extend and data together */ 3909 size = rb_event_ts_length(event); 3910 } while (len >= size); 3911 3912 /* update bpage */ 3913 local_set(&bpage->commit, pos); 3914 bpage->time_stamp = save_timestamp; 3915 3916 /* we copied everything to the beginning */ 3917 read = 0; 3918 } else { 3919 /* update the entry counter */ 3920 cpu_buffer->read += rb_page_entries(reader); 3921 3922 /* swap the pages */ 3923 rb_init_page(bpage); 3924 bpage = reader->page; 3925 reader->page = *data_page; 3926 local_set(&reader->write, 0); 3927 local_set(&reader->entries, 0); 3928 reader->read = 0; 3929 *data_page = bpage; 3930 3931 /* 3932 * Use the real_end for the data size, 3933 * This gives us a chance to store the lost events 3934 * on the page. 3935 */ 3936 if (reader->real_end) 3937 local_set(&bpage->commit, reader->real_end); 3938 } 3939 ret = read; 3940 3941 cpu_buffer->lost_events = 0; 3942 3943 commit = local_read(&bpage->commit); 3944 /* 3945 * Set a flag in the commit field if we lost events 3946 */ 3947 if (missed_events) { 3948 /* If there is room at the end of the page to save the 3949 * missed events, then record it there. 3950 */ 3951 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 3952 memcpy(&bpage->data[commit], &missed_events, 3953 sizeof(missed_events)); 3954 local_add(RB_MISSED_STORED, &bpage->commit); 3955 commit += sizeof(missed_events); 3956 } 3957 local_add(RB_MISSED_EVENTS, &bpage->commit); 3958 } 3959 3960 /* 3961 * This page may be off to user land. Zero it out here. 3962 */ 3963 if (commit < BUF_PAGE_SIZE) 3964 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 3965 3966 out_unlock: 3967 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3968 3969 out: 3970 return ret; 3971 } 3972 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 3973 3974 #ifdef CONFIG_TRACING 3975 static ssize_t 3976 rb_simple_read(struct file *filp, char __user *ubuf, 3977 size_t cnt, loff_t *ppos) 3978 { 3979 unsigned long *p = filp->private_data; 3980 char buf[64]; 3981 int r; 3982 3983 if (test_bit(RB_BUFFERS_DISABLED_BIT, p)) 3984 r = sprintf(buf, "permanently disabled\n"); 3985 else 3986 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p)); 3987 3988 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 3989 } 3990 3991 static ssize_t 3992 rb_simple_write(struct file *filp, const char __user *ubuf, 3993 size_t cnt, loff_t *ppos) 3994 { 3995 unsigned long *p = filp->private_data; 3996 unsigned long val; 3997 int ret; 3998 3999 ret = kstrtoul_from_user(ubuf, cnt, 10, &val); 4000 if (ret) 4001 return ret; 4002 4003 if (val) 4004 set_bit(RB_BUFFERS_ON_BIT, p); 4005 else 4006 clear_bit(RB_BUFFERS_ON_BIT, p); 4007 4008 (*ppos)++; 4009 4010 return cnt; 4011 } 4012 4013 static const struct file_operations rb_simple_fops = { 4014 .open = tracing_open_generic, 4015 .read = rb_simple_read, 4016 .write = rb_simple_write, 4017 .llseek = default_llseek, 4018 }; 4019 4020 4021 static __init int rb_init_debugfs(void) 4022 { 4023 struct dentry *d_tracer; 4024 4025 d_tracer = tracing_init_dentry(); 4026 4027 trace_create_file("tracing_on", 0644, d_tracer, 4028 &ring_buffer_flags, &rb_simple_fops); 4029 4030 return 0; 4031 } 4032 4033 fs_initcall(rb_init_debugfs); 4034 #endif 4035 4036 #ifdef CONFIG_HOTPLUG_CPU 4037 static int rb_cpu_notify(struct notifier_block *self, 4038 unsigned long action, void *hcpu) 4039 { 4040 struct ring_buffer *buffer = 4041 container_of(self, struct ring_buffer, cpu_notify); 4042 long cpu = (long)hcpu; 4043 4044 switch (action) { 4045 case CPU_UP_PREPARE: 4046 case CPU_UP_PREPARE_FROZEN: 4047 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4048 return NOTIFY_OK; 4049 4050 buffer->buffers[cpu] = 4051 rb_allocate_cpu_buffer(buffer, cpu); 4052 if (!buffer->buffers[cpu]) { 4053 WARN(1, "failed to allocate ring buffer on CPU %ld\n", 4054 cpu); 4055 return NOTIFY_OK; 4056 } 4057 smp_wmb(); 4058 cpumask_set_cpu(cpu, buffer->cpumask); 4059 break; 4060 case CPU_DOWN_PREPARE: 4061 case CPU_DOWN_PREPARE_FROZEN: 4062 /* 4063 * Do nothing. 4064 * If we were to free the buffer, then the user would 4065 * lose any trace that was in the buffer. 4066 */ 4067 break; 4068 default: 4069 break; 4070 } 4071 return NOTIFY_OK; 4072 } 4073 #endif 4074