xref: /linux/kernel/trace/ring_buffer.c (revision 5bdef865eb358b6f3760e25e591ae115e9eeddef)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22 
23 #include "trace.h"
24 
25 /*
26  * The ring buffer header is special. We must manually up keep it.
27  */
28 int ring_buffer_print_entry_header(struct trace_seq *s)
29 {
30 	int ret;
31 
32 	ret = trace_seq_printf(s, "# compressed entry header\n");
33 	ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
34 	ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
35 	ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
36 	ret = trace_seq_printf(s, "\n");
37 	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
38 			       RINGBUF_TYPE_PADDING);
39 	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
40 			       RINGBUF_TYPE_TIME_EXTEND);
41 	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
42 			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
43 
44 	return ret;
45 }
46 
47 /*
48  * The ring buffer is made up of a list of pages. A separate list of pages is
49  * allocated for each CPU. A writer may only write to a buffer that is
50  * associated with the CPU it is currently executing on.  A reader may read
51  * from any per cpu buffer.
52  *
53  * The reader is special. For each per cpu buffer, the reader has its own
54  * reader page. When a reader has read the entire reader page, this reader
55  * page is swapped with another page in the ring buffer.
56  *
57  * Now, as long as the writer is off the reader page, the reader can do what
58  * ever it wants with that page. The writer will never write to that page
59  * again (as long as it is out of the ring buffer).
60  *
61  * Here's some silly ASCII art.
62  *
63  *   +------+
64  *   |reader|          RING BUFFER
65  *   |page  |
66  *   +------+        +---+   +---+   +---+
67  *                   |   |-->|   |-->|   |
68  *                   +---+   +---+   +---+
69  *                     ^               |
70  *                     |               |
71  *                     +---------------+
72  *
73  *
74  *   +------+
75  *   |reader|          RING BUFFER
76  *   |page  |------------------v
77  *   +------+        +---+   +---+   +---+
78  *                   |   |-->|   |-->|   |
79  *                   +---+   +---+   +---+
80  *                     ^               |
81  *                     |               |
82  *                     +---------------+
83  *
84  *
85  *   +------+
86  *   |reader|          RING BUFFER
87  *   |page  |------------------v
88  *   +------+        +---+   +---+   +---+
89  *      ^            |   |-->|   |-->|   |
90  *      |            +---+   +---+   +---+
91  *      |                              |
92  *      |                              |
93  *      +------------------------------+
94  *
95  *
96  *   +------+
97  *   |buffer|          RING BUFFER
98  *   |page  |------------------v
99  *   +------+        +---+   +---+   +---+
100  *      ^            |   |   |   |-->|   |
101  *      |   New      +---+   +---+   +---+
102  *      |  Reader------^               |
103  *      |   page                       |
104  *      +------------------------------+
105  *
106  *
107  * After we make this swap, the reader can hand this page off to the splice
108  * code and be done with it. It can even allocate a new page if it needs to
109  * and swap that into the ring buffer.
110  *
111  * We will be using cmpxchg soon to make all this lockless.
112  *
113  */
114 
115 /*
116  * A fast way to enable or disable all ring buffers is to
117  * call tracing_on or tracing_off. Turning off the ring buffers
118  * prevents all ring buffers from being recorded to.
119  * Turning this switch on, makes it OK to write to the
120  * ring buffer, if the ring buffer is enabled itself.
121  *
122  * There's three layers that must be on in order to write
123  * to the ring buffer.
124  *
125  * 1) This global flag must be set.
126  * 2) The ring buffer must be enabled for recording.
127  * 3) The per cpu buffer must be enabled for recording.
128  *
129  * In case of an anomaly, this global flag has a bit set that
130  * will permantly disable all ring buffers.
131  */
132 
133 /*
134  * Global flag to disable all recording to ring buffers
135  *  This has two bits: ON, DISABLED
136  *
137  *  ON   DISABLED
138  * ---- ----------
139  *   0      0        : ring buffers are off
140  *   1      0        : ring buffers are on
141  *   X      1        : ring buffers are permanently disabled
142  */
143 
144 enum {
145 	RB_BUFFERS_ON_BIT	= 0,
146 	RB_BUFFERS_DISABLED_BIT	= 1,
147 };
148 
149 enum {
150 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
151 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
152 };
153 
154 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
155 
156 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
157 
158 /**
159  * tracing_on - enable all tracing buffers
160  *
161  * This function enables all tracing buffers that may have been
162  * disabled with tracing_off.
163  */
164 void tracing_on(void)
165 {
166 	set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
167 }
168 EXPORT_SYMBOL_GPL(tracing_on);
169 
170 /**
171  * tracing_off - turn off all tracing buffers
172  *
173  * This function stops all tracing buffers from recording data.
174  * It does not disable any overhead the tracers themselves may
175  * be causing. This function simply causes all recording to
176  * the ring buffers to fail.
177  */
178 void tracing_off(void)
179 {
180 	clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
181 }
182 EXPORT_SYMBOL_GPL(tracing_off);
183 
184 /**
185  * tracing_off_permanent - permanently disable ring buffers
186  *
187  * This function, once called, will disable all ring buffers
188  * permanently.
189  */
190 void tracing_off_permanent(void)
191 {
192 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
193 }
194 
195 /**
196  * tracing_is_on - show state of ring buffers enabled
197  */
198 int tracing_is_on(void)
199 {
200 	return ring_buffer_flags == RB_BUFFERS_ON;
201 }
202 EXPORT_SYMBOL_GPL(tracing_is_on);
203 
204 #include "trace.h"
205 
206 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
207 #define RB_ALIGNMENT		4U
208 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
209 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
210 
211 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
212 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
213 
214 enum {
215 	RB_LEN_TIME_EXTEND = 8,
216 	RB_LEN_TIME_STAMP = 16,
217 };
218 
219 static inline int rb_null_event(struct ring_buffer_event *event)
220 {
221 	return event->type_len == RINGBUF_TYPE_PADDING
222 			&& event->time_delta == 0;
223 }
224 
225 static inline int rb_discarded_event(struct ring_buffer_event *event)
226 {
227 	return event->type_len == RINGBUF_TYPE_PADDING && event->time_delta;
228 }
229 
230 static void rb_event_set_padding(struct ring_buffer_event *event)
231 {
232 	event->type_len = RINGBUF_TYPE_PADDING;
233 	event->time_delta = 0;
234 }
235 
236 static unsigned
237 rb_event_data_length(struct ring_buffer_event *event)
238 {
239 	unsigned length;
240 
241 	if (event->type_len)
242 		length = event->type_len * RB_ALIGNMENT;
243 	else
244 		length = event->array[0];
245 	return length + RB_EVNT_HDR_SIZE;
246 }
247 
248 /* inline for ring buffer fast paths */
249 static unsigned
250 rb_event_length(struct ring_buffer_event *event)
251 {
252 	switch (event->type_len) {
253 	case RINGBUF_TYPE_PADDING:
254 		if (rb_null_event(event))
255 			/* undefined */
256 			return -1;
257 		return  event->array[0] + RB_EVNT_HDR_SIZE;
258 
259 	case RINGBUF_TYPE_TIME_EXTEND:
260 		return RB_LEN_TIME_EXTEND;
261 
262 	case RINGBUF_TYPE_TIME_STAMP:
263 		return RB_LEN_TIME_STAMP;
264 
265 	case RINGBUF_TYPE_DATA:
266 		return rb_event_data_length(event);
267 	default:
268 		BUG();
269 	}
270 	/* not hit */
271 	return 0;
272 }
273 
274 /**
275  * ring_buffer_event_length - return the length of the event
276  * @event: the event to get the length of
277  */
278 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
279 {
280 	unsigned length = rb_event_length(event);
281 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
282 		return length;
283 	length -= RB_EVNT_HDR_SIZE;
284 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
285                 length -= sizeof(event->array[0]);
286 	return length;
287 }
288 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
289 
290 /* inline for ring buffer fast paths */
291 static void *
292 rb_event_data(struct ring_buffer_event *event)
293 {
294 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
295 	/* If length is in len field, then array[0] has the data */
296 	if (event->type_len)
297 		return (void *)&event->array[0];
298 	/* Otherwise length is in array[0] and array[1] has the data */
299 	return (void *)&event->array[1];
300 }
301 
302 /**
303  * ring_buffer_event_data - return the data of the event
304  * @event: the event to get the data from
305  */
306 void *ring_buffer_event_data(struct ring_buffer_event *event)
307 {
308 	return rb_event_data(event);
309 }
310 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
311 
312 #define for_each_buffer_cpu(buffer, cpu)		\
313 	for_each_cpu(cpu, buffer->cpumask)
314 
315 #define TS_SHIFT	27
316 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
317 #define TS_DELTA_TEST	(~TS_MASK)
318 
319 struct buffer_data_page {
320 	u64		 time_stamp;	/* page time stamp */
321 	local_t		 commit;	/* write committed index */
322 	unsigned char	 data[];	/* data of buffer page */
323 };
324 
325 struct buffer_page {
326 	struct list_head list;		/* list of buffer pages */
327 	local_t		 write;		/* index for next write */
328 	unsigned	 read;		/* index for next read */
329 	local_t		 entries;	/* entries on this page */
330 	struct buffer_data_page *page;	/* Actual data page */
331 };
332 
333 static void rb_init_page(struct buffer_data_page *bpage)
334 {
335 	local_set(&bpage->commit, 0);
336 }
337 
338 /**
339  * ring_buffer_page_len - the size of data on the page.
340  * @page: The page to read
341  *
342  * Returns the amount of data on the page, including buffer page header.
343  */
344 size_t ring_buffer_page_len(void *page)
345 {
346 	return local_read(&((struct buffer_data_page *)page)->commit)
347 		+ BUF_PAGE_HDR_SIZE;
348 }
349 
350 /*
351  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
352  * this issue out.
353  */
354 static void free_buffer_page(struct buffer_page *bpage)
355 {
356 	free_page((unsigned long)bpage->page);
357 	kfree(bpage);
358 }
359 
360 /*
361  * We need to fit the time_stamp delta into 27 bits.
362  */
363 static inline int test_time_stamp(u64 delta)
364 {
365 	if (delta & TS_DELTA_TEST)
366 		return 1;
367 	return 0;
368 }
369 
370 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
371 
372 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
373 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
374 
375 /* Max number of timestamps that can fit on a page */
376 #define RB_TIMESTAMPS_PER_PAGE	(BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
377 
378 int ring_buffer_print_page_header(struct trace_seq *s)
379 {
380 	struct buffer_data_page field;
381 	int ret;
382 
383 	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
384 			       "offset:0;\tsize:%u;\n",
385 			       (unsigned int)sizeof(field.time_stamp));
386 
387 	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
388 			       "offset:%u;\tsize:%u;\n",
389 			       (unsigned int)offsetof(typeof(field), commit),
390 			       (unsigned int)sizeof(field.commit));
391 
392 	ret = trace_seq_printf(s, "\tfield: char data;\t"
393 			       "offset:%u;\tsize:%u;\n",
394 			       (unsigned int)offsetof(typeof(field), data),
395 			       (unsigned int)BUF_PAGE_SIZE);
396 
397 	return ret;
398 }
399 
400 /*
401  * head_page == tail_page && head == tail then buffer is empty.
402  */
403 struct ring_buffer_per_cpu {
404 	int				cpu;
405 	struct ring_buffer		*buffer;
406 	spinlock_t			reader_lock; /* serialize readers */
407 	raw_spinlock_t			lock;
408 	struct lock_class_key		lock_key;
409 	struct list_head		pages;
410 	struct buffer_page		*head_page;	/* read from head */
411 	struct buffer_page		*tail_page;	/* write to tail */
412 	struct buffer_page		*commit_page;	/* committed pages */
413 	struct buffer_page		*reader_page;
414 	unsigned long			nmi_dropped;
415 	unsigned long			commit_overrun;
416 	unsigned long			overrun;
417 	unsigned long			read;
418 	local_t				entries;
419 	local_t				committing;
420 	local_t				commits;
421 	u64				write_stamp;
422 	u64				read_stamp;
423 	atomic_t			record_disabled;
424 };
425 
426 struct ring_buffer {
427 	unsigned			pages;
428 	unsigned			flags;
429 	int				cpus;
430 	atomic_t			record_disabled;
431 	cpumask_var_t			cpumask;
432 
433 	struct lock_class_key		*reader_lock_key;
434 
435 	struct mutex			mutex;
436 
437 	struct ring_buffer_per_cpu	**buffers;
438 
439 #ifdef CONFIG_HOTPLUG_CPU
440 	struct notifier_block		cpu_notify;
441 #endif
442 	u64				(*clock)(void);
443 };
444 
445 struct ring_buffer_iter {
446 	struct ring_buffer_per_cpu	*cpu_buffer;
447 	unsigned long			head;
448 	struct buffer_page		*head_page;
449 	u64				read_stamp;
450 };
451 
452 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
453 #define RB_WARN_ON(buffer, cond)				\
454 	({							\
455 		int _____ret = unlikely(cond);			\
456 		if (_____ret) {					\
457 			atomic_inc(&buffer->record_disabled);	\
458 			WARN_ON(1);				\
459 		}						\
460 		_____ret;					\
461 	})
462 
463 /* Up this if you want to test the TIME_EXTENTS and normalization */
464 #define DEBUG_SHIFT 0
465 
466 static inline u64 rb_time_stamp(struct ring_buffer *buffer, int cpu)
467 {
468 	/* shift to debug/test normalization and TIME_EXTENTS */
469 	return buffer->clock() << DEBUG_SHIFT;
470 }
471 
472 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
473 {
474 	u64 time;
475 
476 	preempt_disable_notrace();
477 	time = rb_time_stamp(buffer, cpu);
478 	preempt_enable_no_resched_notrace();
479 
480 	return time;
481 }
482 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
483 
484 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
485 				      int cpu, u64 *ts)
486 {
487 	/* Just stupid testing the normalize function and deltas */
488 	*ts >>= DEBUG_SHIFT;
489 }
490 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
491 
492 /**
493  * check_pages - integrity check of buffer pages
494  * @cpu_buffer: CPU buffer with pages to test
495  *
496  * As a safety measure we check to make sure the data pages have not
497  * been corrupted.
498  */
499 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
500 {
501 	struct list_head *head = &cpu_buffer->pages;
502 	struct buffer_page *bpage, *tmp;
503 
504 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
505 		return -1;
506 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
507 		return -1;
508 
509 	list_for_each_entry_safe(bpage, tmp, head, list) {
510 		if (RB_WARN_ON(cpu_buffer,
511 			       bpage->list.next->prev != &bpage->list))
512 			return -1;
513 		if (RB_WARN_ON(cpu_buffer,
514 			       bpage->list.prev->next != &bpage->list))
515 			return -1;
516 	}
517 
518 	return 0;
519 }
520 
521 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
522 			     unsigned nr_pages)
523 {
524 	struct list_head *head = &cpu_buffer->pages;
525 	struct buffer_page *bpage, *tmp;
526 	unsigned long addr;
527 	LIST_HEAD(pages);
528 	unsigned i;
529 
530 	for (i = 0; i < nr_pages; i++) {
531 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
532 				    GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
533 		if (!bpage)
534 			goto free_pages;
535 		list_add(&bpage->list, &pages);
536 
537 		addr = __get_free_page(GFP_KERNEL);
538 		if (!addr)
539 			goto free_pages;
540 		bpage->page = (void *)addr;
541 		rb_init_page(bpage->page);
542 	}
543 
544 	list_splice(&pages, head);
545 
546 	rb_check_pages(cpu_buffer);
547 
548 	return 0;
549 
550  free_pages:
551 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
552 		list_del_init(&bpage->list);
553 		free_buffer_page(bpage);
554 	}
555 	return -ENOMEM;
556 }
557 
558 static struct ring_buffer_per_cpu *
559 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
560 {
561 	struct ring_buffer_per_cpu *cpu_buffer;
562 	struct buffer_page *bpage;
563 	unsigned long addr;
564 	int ret;
565 
566 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
567 				  GFP_KERNEL, cpu_to_node(cpu));
568 	if (!cpu_buffer)
569 		return NULL;
570 
571 	cpu_buffer->cpu = cpu;
572 	cpu_buffer->buffer = buffer;
573 	spin_lock_init(&cpu_buffer->reader_lock);
574 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
575 	cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
576 	INIT_LIST_HEAD(&cpu_buffer->pages);
577 
578 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
579 			    GFP_KERNEL, cpu_to_node(cpu));
580 	if (!bpage)
581 		goto fail_free_buffer;
582 
583 	cpu_buffer->reader_page = bpage;
584 	addr = __get_free_page(GFP_KERNEL);
585 	if (!addr)
586 		goto fail_free_reader;
587 	bpage->page = (void *)addr;
588 	rb_init_page(bpage->page);
589 
590 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
591 
592 	ret = rb_allocate_pages(cpu_buffer, buffer->pages);
593 	if (ret < 0)
594 		goto fail_free_reader;
595 
596 	cpu_buffer->head_page
597 		= list_entry(cpu_buffer->pages.next, struct buffer_page, list);
598 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
599 
600 	return cpu_buffer;
601 
602  fail_free_reader:
603 	free_buffer_page(cpu_buffer->reader_page);
604 
605  fail_free_buffer:
606 	kfree(cpu_buffer);
607 	return NULL;
608 }
609 
610 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
611 {
612 	struct list_head *head = &cpu_buffer->pages;
613 	struct buffer_page *bpage, *tmp;
614 
615 	free_buffer_page(cpu_buffer->reader_page);
616 
617 	list_for_each_entry_safe(bpage, tmp, head, list) {
618 		list_del_init(&bpage->list);
619 		free_buffer_page(bpage);
620 	}
621 	kfree(cpu_buffer);
622 }
623 
624 #ifdef CONFIG_HOTPLUG_CPU
625 static int rb_cpu_notify(struct notifier_block *self,
626 			 unsigned long action, void *hcpu);
627 #endif
628 
629 /**
630  * ring_buffer_alloc - allocate a new ring_buffer
631  * @size: the size in bytes per cpu that is needed.
632  * @flags: attributes to set for the ring buffer.
633  *
634  * Currently the only flag that is available is the RB_FL_OVERWRITE
635  * flag. This flag means that the buffer will overwrite old data
636  * when the buffer wraps. If this flag is not set, the buffer will
637  * drop data when the tail hits the head.
638  */
639 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
640 					struct lock_class_key *key)
641 {
642 	struct ring_buffer *buffer;
643 	int bsize;
644 	int cpu;
645 
646 	/* keep it in its own cache line */
647 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
648 			 GFP_KERNEL);
649 	if (!buffer)
650 		return NULL;
651 
652 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
653 		goto fail_free_buffer;
654 
655 	buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
656 	buffer->flags = flags;
657 	buffer->clock = trace_clock_local;
658 	buffer->reader_lock_key = key;
659 
660 	/* need at least two pages */
661 	if (buffer->pages < 2)
662 		buffer->pages = 2;
663 
664 	/*
665 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
666 	 * in early initcall, it will not be notified of secondary cpus.
667 	 * In that off case, we need to allocate for all possible cpus.
668 	 */
669 #ifdef CONFIG_HOTPLUG_CPU
670 	get_online_cpus();
671 	cpumask_copy(buffer->cpumask, cpu_online_mask);
672 #else
673 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
674 #endif
675 	buffer->cpus = nr_cpu_ids;
676 
677 	bsize = sizeof(void *) * nr_cpu_ids;
678 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
679 				  GFP_KERNEL);
680 	if (!buffer->buffers)
681 		goto fail_free_cpumask;
682 
683 	for_each_buffer_cpu(buffer, cpu) {
684 		buffer->buffers[cpu] =
685 			rb_allocate_cpu_buffer(buffer, cpu);
686 		if (!buffer->buffers[cpu])
687 			goto fail_free_buffers;
688 	}
689 
690 #ifdef CONFIG_HOTPLUG_CPU
691 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
692 	buffer->cpu_notify.priority = 0;
693 	register_cpu_notifier(&buffer->cpu_notify);
694 #endif
695 
696 	put_online_cpus();
697 	mutex_init(&buffer->mutex);
698 
699 	return buffer;
700 
701  fail_free_buffers:
702 	for_each_buffer_cpu(buffer, cpu) {
703 		if (buffer->buffers[cpu])
704 			rb_free_cpu_buffer(buffer->buffers[cpu]);
705 	}
706 	kfree(buffer->buffers);
707 
708  fail_free_cpumask:
709 	free_cpumask_var(buffer->cpumask);
710 	put_online_cpus();
711 
712  fail_free_buffer:
713 	kfree(buffer);
714 	return NULL;
715 }
716 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
717 
718 /**
719  * ring_buffer_free - free a ring buffer.
720  * @buffer: the buffer to free.
721  */
722 void
723 ring_buffer_free(struct ring_buffer *buffer)
724 {
725 	int cpu;
726 
727 	get_online_cpus();
728 
729 #ifdef CONFIG_HOTPLUG_CPU
730 	unregister_cpu_notifier(&buffer->cpu_notify);
731 #endif
732 
733 	for_each_buffer_cpu(buffer, cpu)
734 		rb_free_cpu_buffer(buffer->buffers[cpu]);
735 
736 	put_online_cpus();
737 
738 	free_cpumask_var(buffer->cpumask);
739 
740 	kfree(buffer);
741 }
742 EXPORT_SYMBOL_GPL(ring_buffer_free);
743 
744 void ring_buffer_set_clock(struct ring_buffer *buffer,
745 			   u64 (*clock)(void))
746 {
747 	buffer->clock = clock;
748 }
749 
750 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
751 
752 static void
753 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
754 {
755 	struct buffer_page *bpage;
756 	struct list_head *p;
757 	unsigned i;
758 
759 	atomic_inc(&cpu_buffer->record_disabled);
760 	synchronize_sched();
761 
762 	for (i = 0; i < nr_pages; i++) {
763 		if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
764 			return;
765 		p = cpu_buffer->pages.next;
766 		bpage = list_entry(p, struct buffer_page, list);
767 		list_del_init(&bpage->list);
768 		free_buffer_page(bpage);
769 	}
770 	if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
771 		return;
772 
773 	rb_reset_cpu(cpu_buffer);
774 
775 	rb_check_pages(cpu_buffer);
776 
777 	atomic_dec(&cpu_buffer->record_disabled);
778 
779 }
780 
781 static void
782 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
783 		struct list_head *pages, unsigned nr_pages)
784 {
785 	struct buffer_page *bpage;
786 	struct list_head *p;
787 	unsigned i;
788 
789 	atomic_inc(&cpu_buffer->record_disabled);
790 	synchronize_sched();
791 
792 	for (i = 0; i < nr_pages; i++) {
793 		if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
794 			return;
795 		p = pages->next;
796 		bpage = list_entry(p, struct buffer_page, list);
797 		list_del_init(&bpage->list);
798 		list_add_tail(&bpage->list, &cpu_buffer->pages);
799 	}
800 	rb_reset_cpu(cpu_buffer);
801 
802 	rb_check_pages(cpu_buffer);
803 
804 	atomic_dec(&cpu_buffer->record_disabled);
805 }
806 
807 /**
808  * ring_buffer_resize - resize the ring buffer
809  * @buffer: the buffer to resize.
810  * @size: the new size.
811  *
812  * The tracer is responsible for making sure that the buffer is
813  * not being used while changing the size.
814  * Note: We may be able to change the above requirement by using
815  *  RCU synchronizations.
816  *
817  * Minimum size is 2 * BUF_PAGE_SIZE.
818  *
819  * Returns -1 on failure.
820  */
821 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
822 {
823 	struct ring_buffer_per_cpu *cpu_buffer;
824 	unsigned nr_pages, rm_pages, new_pages;
825 	struct buffer_page *bpage, *tmp;
826 	unsigned long buffer_size;
827 	unsigned long addr;
828 	LIST_HEAD(pages);
829 	int i, cpu;
830 
831 	/*
832 	 * Always succeed at resizing a non-existent buffer:
833 	 */
834 	if (!buffer)
835 		return size;
836 
837 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
838 	size *= BUF_PAGE_SIZE;
839 	buffer_size = buffer->pages * BUF_PAGE_SIZE;
840 
841 	/* we need a minimum of two pages */
842 	if (size < BUF_PAGE_SIZE * 2)
843 		size = BUF_PAGE_SIZE * 2;
844 
845 	if (size == buffer_size)
846 		return size;
847 
848 	mutex_lock(&buffer->mutex);
849 	get_online_cpus();
850 
851 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
852 
853 	if (size < buffer_size) {
854 
855 		/* easy case, just free pages */
856 		if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
857 			goto out_fail;
858 
859 		rm_pages = buffer->pages - nr_pages;
860 
861 		for_each_buffer_cpu(buffer, cpu) {
862 			cpu_buffer = buffer->buffers[cpu];
863 			rb_remove_pages(cpu_buffer, rm_pages);
864 		}
865 		goto out;
866 	}
867 
868 	/*
869 	 * This is a bit more difficult. We only want to add pages
870 	 * when we can allocate enough for all CPUs. We do this
871 	 * by allocating all the pages and storing them on a local
872 	 * link list. If we succeed in our allocation, then we
873 	 * add these pages to the cpu_buffers. Otherwise we just free
874 	 * them all and return -ENOMEM;
875 	 */
876 	if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
877 		goto out_fail;
878 
879 	new_pages = nr_pages - buffer->pages;
880 
881 	for_each_buffer_cpu(buffer, cpu) {
882 		for (i = 0; i < new_pages; i++) {
883 			bpage = kzalloc_node(ALIGN(sizeof(*bpage),
884 						  cache_line_size()),
885 					    GFP_KERNEL, cpu_to_node(cpu));
886 			if (!bpage)
887 				goto free_pages;
888 			list_add(&bpage->list, &pages);
889 			addr = __get_free_page(GFP_KERNEL);
890 			if (!addr)
891 				goto free_pages;
892 			bpage->page = (void *)addr;
893 			rb_init_page(bpage->page);
894 		}
895 	}
896 
897 	for_each_buffer_cpu(buffer, cpu) {
898 		cpu_buffer = buffer->buffers[cpu];
899 		rb_insert_pages(cpu_buffer, &pages, new_pages);
900 	}
901 
902 	if (RB_WARN_ON(buffer, !list_empty(&pages)))
903 		goto out_fail;
904 
905  out:
906 	buffer->pages = nr_pages;
907 	put_online_cpus();
908 	mutex_unlock(&buffer->mutex);
909 
910 	return size;
911 
912  free_pages:
913 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
914 		list_del_init(&bpage->list);
915 		free_buffer_page(bpage);
916 	}
917 	put_online_cpus();
918 	mutex_unlock(&buffer->mutex);
919 	return -ENOMEM;
920 
921 	/*
922 	 * Something went totally wrong, and we are too paranoid
923 	 * to even clean up the mess.
924 	 */
925  out_fail:
926 	put_online_cpus();
927 	mutex_unlock(&buffer->mutex);
928 	return -1;
929 }
930 EXPORT_SYMBOL_GPL(ring_buffer_resize);
931 
932 static inline void *
933 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
934 {
935 	return bpage->data + index;
936 }
937 
938 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
939 {
940 	return bpage->page->data + index;
941 }
942 
943 static inline struct ring_buffer_event *
944 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
945 {
946 	return __rb_page_index(cpu_buffer->reader_page,
947 			       cpu_buffer->reader_page->read);
948 }
949 
950 static inline struct ring_buffer_event *
951 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
952 {
953 	return __rb_page_index(cpu_buffer->head_page,
954 			       cpu_buffer->head_page->read);
955 }
956 
957 static inline struct ring_buffer_event *
958 rb_iter_head_event(struct ring_buffer_iter *iter)
959 {
960 	return __rb_page_index(iter->head_page, iter->head);
961 }
962 
963 static inline unsigned rb_page_write(struct buffer_page *bpage)
964 {
965 	return local_read(&bpage->write);
966 }
967 
968 static inline unsigned rb_page_commit(struct buffer_page *bpage)
969 {
970 	return local_read(&bpage->page->commit);
971 }
972 
973 /* Size is determined by what has been commited */
974 static inline unsigned rb_page_size(struct buffer_page *bpage)
975 {
976 	return rb_page_commit(bpage);
977 }
978 
979 static inline unsigned
980 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
981 {
982 	return rb_page_commit(cpu_buffer->commit_page);
983 }
984 
985 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
986 {
987 	return rb_page_commit(cpu_buffer->head_page);
988 }
989 
990 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
991 			       struct buffer_page **bpage)
992 {
993 	struct list_head *p = (*bpage)->list.next;
994 
995 	if (p == &cpu_buffer->pages)
996 		p = p->next;
997 
998 	*bpage = list_entry(p, struct buffer_page, list);
999 }
1000 
1001 static inline unsigned
1002 rb_event_index(struct ring_buffer_event *event)
1003 {
1004 	unsigned long addr = (unsigned long)event;
1005 
1006 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1007 }
1008 
1009 static inline int
1010 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1011 		   struct ring_buffer_event *event)
1012 {
1013 	unsigned long addr = (unsigned long)event;
1014 	unsigned long index;
1015 
1016 	index = rb_event_index(event);
1017 	addr &= PAGE_MASK;
1018 
1019 	return cpu_buffer->commit_page->page == (void *)addr &&
1020 		rb_commit_index(cpu_buffer) == index;
1021 }
1022 
1023 static void
1024 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1025 {
1026 	/*
1027 	 * We only race with interrupts and NMIs on this CPU.
1028 	 * If we own the commit event, then we can commit
1029 	 * all others that interrupted us, since the interruptions
1030 	 * are in stack format (they finish before they come
1031 	 * back to us). This allows us to do a simple loop to
1032 	 * assign the commit to the tail.
1033 	 */
1034  again:
1035 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1036 		cpu_buffer->commit_page->page->commit =
1037 			cpu_buffer->commit_page->write;
1038 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1039 		cpu_buffer->write_stamp =
1040 			cpu_buffer->commit_page->page->time_stamp;
1041 		/* add barrier to keep gcc from optimizing too much */
1042 		barrier();
1043 	}
1044 	while (rb_commit_index(cpu_buffer) !=
1045 	       rb_page_write(cpu_buffer->commit_page)) {
1046 		cpu_buffer->commit_page->page->commit =
1047 			cpu_buffer->commit_page->write;
1048 		barrier();
1049 	}
1050 
1051 	/* again, keep gcc from optimizing */
1052 	barrier();
1053 
1054 	/*
1055 	 * If an interrupt came in just after the first while loop
1056 	 * and pushed the tail page forward, we will be left with
1057 	 * a dangling commit that will never go forward.
1058 	 */
1059 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1060 		goto again;
1061 }
1062 
1063 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1064 {
1065 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1066 	cpu_buffer->reader_page->read = 0;
1067 }
1068 
1069 static void rb_inc_iter(struct ring_buffer_iter *iter)
1070 {
1071 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1072 
1073 	/*
1074 	 * The iterator could be on the reader page (it starts there).
1075 	 * But the head could have moved, since the reader was
1076 	 * found. Check for this case and assign the iterator
1077 	 * to the head page instead of next.
1078 	 */
1079 	if (iter->head_page == cpu_buffer->reader_page)
1080 		iter->head_page = cpu_buffer->head_page;
1081 	else
1082 		rb_inc_page(cpu_buffer, &iter->head_page);
1083 
1084 	iter->read_stamp = iter->head_page->page->time_stamp;
1085 	iter->head = 0;
1086 }
1087 
1088 /**
1089  * ring_buffer_update_event - update event type and data
1090  * @event: the even to update
1091  * @type: the type of event
1092  * @length: the size of the event field in the ring buffer
1093  *
1094  * Update the type and data fields of the event. The length
1095  * is the actual size that is written to the ring buffer,
1096  * and with this, we can determine what to place into the
1097  * data field.
1098  */
1099 static void
1100 rb_update_event(struct ring_buffer_event *event,
1101 			 unsigned type, unsigned length)
1102 {
1103 	event->type_len = type;
1104 
1105 	switch (type) {
1106 
1107 	case RINGBUF_TYPE_PADDING:
1108 	case RINGBUF_TYPE_TIME_EXTEND:
1109 	case RINGBUF_TYPE_TIME_STAMP:
1110 		break;
1111 
1112 	case 0:
1113 		length -= RB_EVNT_HDR_SIZE;
1114 		if (length > RB_MAX_SMALL_DATA)
1115 			event->array[0] = length;
1116 		else
1117 			event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1118 		break;
1119 	default:
1120 		BUG();
1121 	}
1122 }
1123 
1124 static unsigned rb_calculate_event_length(unsigned length)
1125 {
1126 	struct ring_buffer_event event; /* Used only for sizeof array */
1127 
1128 	/* zero length can cause confusions */
1129 	if (!length)
1130 		length = 1;
1131 
1132 	if (length > RB_MAX_SMALL_DATA)
1133 		length += sizeof(event.array[0]);
1134 
1135 	length += RB_EVNT_HDR_SIZE;
1136 	length = ALIGN(length, RB_ALIGNMENT);
1137 
1138 	return length;
1139 }
1140 
1141 static inline void
1142 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1143 	      struct buffer_page *tail_page,
1144 	      unsigned long tail, unsigned long length)
1145 {
1146 	struct ring_buffer_event *event;
1147 
1148 	/*
1149 	 * Only the event that crossed the page boundary
1150 	 * must fill the old tail_page with padding.
1151 	 */
1152 	if (tail >= BUF_PAGE_SIZE) {
1153 		local_sub(length, &tail_page->write);
1154 		return;
1155 	}
1156 
1157 	event = __rb_page_index(tail_page, tail);
1158 	kmemcheck_annotate_bitfield(event, bitfield);
1159 
1160 	/*
1161 	 * If this event is bigger than the minimum size, then
1162 	 * we need to be careful that we don't subtract the
1163 	 * write counter enough to allow another writer to slip
1164 	 * in on this page.
1165 	 * We put in a discarded commit instead, to make sure
1166 	 * that this space is not used again.
1167 	 *
1168 	 * If we are less than the minimum size, we don't need to
1169 	 * worry about it.
1170 	 */
1171 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1172 		/* No room for any events */
1173 
1174 		/* Mark the rest of the page with padding */
1175 		rb_event_set_padding(event);
1176 
1177 		/* Set the write back to the previous setting */
1178 		local_sub(length, &tail_page->write);
1179 		return;
1180 	}
1181 
1182 	/* Put in a discarded event */
1183 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1184 	event->type_len = RINGBUF_TYPE_PADDING;
1185 	/* time delta must be non zero */
1186 	event->time_delta = 1;
1187 	/* Account for this as an entry */
1188 	local_inc(&tail_page->entries);
1189 	local_inc(&cpu_buffer->entries);
1190 
1191 	/* Set write to end of buffer */
1192 	length = (tail + length) - BUF_PAGE_SIZE;
1193 	local_sub(length, &tail_page->write);
1194 }
1195 
1196 static struct ring_buffer_event *
1197 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1198 	     unsigned long length, unsigned long tail,
1199 	     struct buffer_page *commit_page,
1200 	     struct buffer_page *tail_page, u64 *ts)
1201 {
1202 	struct buffer_page *next_page, *head_page, *reader_page;
1203 	struct ring_buffer *buffer = cpu_buffer->buffer;
1204 	bool lock_taken = false;
1205 	unsigned long flags;
1206 
1207 	next_page = tail_page;
1208 
1209 	local_irq_save(flags);
1210 	/*
1211 	 * Since the write to the buffer is still not
1212 	 * fully lockless, we must be careful with NMIs.
1213 	 * The locks in the writers are taken when a write
1214 	 * crosses to a new page. The locks protect against
1215 	 * races with the readers (this will soon be fixed
1216 	 * with a lockless solution).
1217 	 *
1218 	 * Because we can not protect against NMIs, and we
1219 	 * want to keep traces reentrant, we need to manage
1220 	 * what happens when we are in an NMI.
1221 	 *
1222 	 * NMIs can happen after we take the lock.
1223 	 * If we are in an NMI, only take the lock
1224 	 * if it is not already taken. Otherwise
1225 	 * simply fail.
1226 	 */
1227 	if (unlikely(in_nmi())) {
1228 		if (!__raw_spin_trylock(&cpu_buffer->lock)) {
1229 			cpu_buffer->nmi_dropped++;
1230 			goto out_reset;
1231 		}
1232 	} else
1233 		__raw_spin_lock(&cpu_buffer->lock);
1234 
1235 	lock_taken = true;
1236 
1237 	rb_inc_page(cpu_buffer, &next_page);
1238 
1239 	head_page = cpu_buffer->head_page;
1240 	reader_page = cpu_buffer->reader_page;
1241 
1242 	/* we grabbed the lock before incrementing */
1243 	if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1244 		goto out_reset;
1245 
1246 	/*
1247 	 * If for some reason, we had an interrupt storm that made
1248 	 * it all the way around the buffer, bail, and warn
1249 	 * about it.
1250 	 */
1251 	if (unlikely(next_page == commit_page)) {
1252 		cpu_buffer->commit_overrun++;
1253 		goto out_reset;
1254 	}
1255 
1256 	if (next_page == head_page) {
1257 		if (!(buffer->flags & RB_FL_OVERWRITE))
1258 			goto out_reset;
1259 
1260 		/* tail_page has not moved yet? */
1261 		if (tail_page == cpu_buffer->tail_page) {
1262 			/* count overflows */
1263 			cpu_buffer->overrun +=
1264 				local_read(&head_page->entries);
1265 
1266 			rb_inc_page(cpu_buffer, &head_page);
1267 			cpu_buffer->head_page = head_page;
1268 			cpu_buffer->head_page->read = 0;
1269 		}
1270 	}
1271 
1272 	/*
1273 	 * If the tail page is still the same as what we think
1274 	 * it is, then it is up to us to update the tail
1275 	 * pointer.
1276 	 */
1277 	if (tail_page == cpu_buffer->tail_page) {
1278 		local_set(&next_page->write, 0);
1279 		local_set(&next_page->entries, 0);
1280 		local_set(&next_page->page->commit, 0);
1281 		cpu_buffer->tail_page = next_page;
1282 
1283 		/* reread the time stamp */
1284 		*ts = rb_time_stamp(buffer, cpu_buffer->cpu);
1285 		cpu_buffer->tail_page->page->time_stamp = *ts;
1286 	}
1287 
1288 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
1289 
1290 	__raw_spin_unlock(&cpu_buffer->lock);
1291 	local_irq_restore(flags);
1292 
1293 	/* fail and let the caller try again */
1294 	return ERR_PTR(-EAGAIN);
1295 
1296  out_reset:
1297 	/* reset write */
1298 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
1299 
1300 	if (likely(lock_taken))
1301 		__raw_spin_unlock(&cpu_buffer->lock);
1302 	local_irq_restore(flags);
1303 	return NULL;
1304 }
1305 
1306 static struct ring_buffer_event *
1307 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1308 		  unsigned type, unsigned long length, u64 *ts)
1309 {
1310 	struct buffer_page *tail_page, *commit_page;
1311 	struct ring_buffer_event *event;
1312 	unsigned long tail, write;
1313 
1314 	commit_page = cpu_buffer->commit_page;
1315 	/* we just need to protect against interrupts */
1316 	barrier();
1317 	tail_page = cpu_buffer->tail_page;
1318 	write = local_add_return(length, &tail_page->write);
1319 	tail = write - length;
1320 
1321 	/* See if we shot pass the end of this buffer page */
1322 	if (write > BUF_PAGE_SIZE)
1323 		return rb_move_tail(cpu_buffer, length, tail,
1324 				    commit_page, tail_page, ts);
1325 
1326 	/* We reserved something on the buffer */
1327 
1328 	event = __rb_page_index(tail_page, tail);
1329 	kmemcheck_annotate_bitfield(event, bitfield);
1330 	rb_update_event(event, type, length);
1331 
1332 	/* The passed in type is zero for DATA */
1333 	if (likely(!type))
1334 		local_inc(&tail_page->entries);
1335 
1336 	/*
1337 	 * If this is the first commit on the page, then update
1338 	 * its timestamp.
1339 	 */
1340 	if (!tail)
1341 		tail_page->page->time_stamp = *ts;
1342 
1343 	return event;
1344 }
1345 
1346 static inline int
1347 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1348 		  struct ring_buffer_event *event)
1349 {
1350 	unsigned long new_index, old_index;
1351 	struct buffer_page *bpage;
1352 	unsigned long index;
1353 	unsigned long addr;
1354 
1355 	new_index = rb_event_index(event);
1356 	old_index = new_index + rb_event_length(event);
1357 	addr = (unsigned long)event;
1358 	addr &= PAGE_MASK;
1359 
1360 	bpage = cpu_buffer->tail_page;
1361 
1362 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1363 		/*
1364 		 * This is on the tail page. It is possible that
1365 		 * a write could come in and move the tail page
1366 		 * and write to the next page. That is fine
1367 		 * because we just shorten what is on this page.
1368 		 */
1369 		index = local_cmpxchg(&bpage->write, old_index, new_index);
1370 		if (index == old_index)
1371 			return 1;
1372 	}
1373 
1374 	/* could not discard */
1375 	return 0;
1376 }
1377 
1378 static int
1379 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1380 		  u64 *ts, u64 *delta)
1381 {
1382 	struct ring_buffer_event *event;
1383 	static int once;
1384 	int ret;
1385 
1386 	if (unlikely(*delta > (1ULL << 59) && !once++)) {
1387 		printk(KERN_WARNING "Delta way too big! %llu"
1388 		       " ts=%llu write stamp = %llu\n",
1389 		       (unsigned long long)*delta,
1390 		       (unsigned long long)*ts,
1391 		       (unsigned long long)cpu_buffer->write_stamp);
1392 		WARN_ON(1);
1393 	}
1394 
1395 	/*
1396 	 * The delta is too big, we to add a
1397 	 * new timestamp.
1398 	 */
1399 	event = __rb_reserve_next(cpu_buffer,
1400 				  RINGBUF_TYPE_TIME_EXTEND,
1401 				  RB_LEN_TIME_EXTEND,
1402 				  ts);
1403 	if (!event)
1404 		return -EBUSY;
1405 
1406 	if (PTR_ERR(event) == -EAGAIN)
1407 		return -EAGAIN;
1408 
1409 	/* Only a commited time event can update the write stamp */
1410 	if (rb_event_is_commit(cpu_buffer, event)) {
1411 		/*
1412 		 * If this is the first on the page, then it was
1413 		 * updated with the page itself. Try to discard it
1414 		 * and if we can't just make it zero.
1415 		 */
1416 		if (rb_event_index(event)) {
1417 			event->time_delta = *delta & TS_MASK;
1418 			event->array[0] = *delta >> TS_SHIFT;
1419 		} else {
1420 			/* try to discard, since we do not need this */
1421 			if (!rb_try_to_discard(cpu_buffer, event)) {
1422 				/* nope, just zero it */
1423 				event->time_delta = 0;
1424 				event->array[0] = 0;
1425 			}
1426 		}
1427 		cpu_buffer->write_stamp = *ts;
1428 		/* let the caller know this was the commit */
1429 		ret = 1;
1430 	} else {
1431 		/* Try to discard the event */
1432 		if (!rb_try_to_discard(cpu_buffer, event)) {
1433 			/* Darn, this is just wasted space */
1434 			event->time_delta = 0;
1435 			event->array[0] = 0;
1436 		}
1437 		ret = 0;
1438 	}
1439 
1440 	*delta = 0;
1441 
1442 	return ret;
1443 }
1444 
1445 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
1446 {
1447 	local_inc(&cpu_buffer->committing);
1448 	local_inc(&cpu_buffer->commits);
1449 }
1450 
1451 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
1452 {
1453 	unsigned long commits;
1454 
1455 	if (RB_WARN_ON(cpu_buffer,
1456 		       !local_read(&cpu_buffer->committing)))
1457 		return;
1458 
1459  again:
1460 	commits = local_read(&cpu_buffer->commits);
1461 	/* synchronize with interrupts */
1462 	barrier();
1463 	if (local_read(&cpu_buffer->committing) == 1)
1464 		rb_set_commit_to_write(cpu_buffer);
1465 
1466 	local_dec(&cpu_buffer->committing);
1467 
1468 	/* synchronize with interrupts */
1469 	barrier();
1470 
1471 	/*
1472 	 * Need to account for interrupts coming in between the
1473 	 * updating of the commit page and the clearing of the
1474 	 * committing counter.
1475 	 */
1476 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
1477 	    !local_read(&cpu_buffer->committing)) {
1478 		local_inc(&cpu_buffer->committing);
1479 		goto again;
1480 	}
1481 }
1482 
1483 static struct ring_buffer_event *
1484 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1485 		      unsigned long length)
1486 {
1487 	struct ring_buffer_event *event;
1488 	u64 ts, delta = 0;
1489 	int commit = 0;
1490 	int nr_loops = 0;
1491 
1492 	rb_start_commit(cpu_buffer);
1493 
1494 	length = rb_calculate_event_length(length);
1495  again:
1496 	/*
1497 	 * We allow for interrupts to reenter here and do a trace.
1498 	 * If one does, it will cause this original code to loop
1499 	 * back here. Even with heavy interrupts happening, this
1500 	 * should only happen a few times in a row. If this happens
1501 	 * 1000 times in a row, there must be either an interrupt
1502 	 * storm or we have something buggy.
1503 	 * Bail!
1504 	 */
1505 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1506 		goto out_fail;
1507 
1508 	ts = rb_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
1509 
1510 	/*
1511 	 * Only the first commit can update the timestamp.
1512 	 * Yes there is a race here. If an interrupt comes in
1513 	 * just after the conditional and it traces too, then it
1514 	 * will also check the deltas. More than one timestamp may
1515 	 * also be made. But only the entry that did the actual
1516 	 * commit will be something other than zero.
1517 	 */
1518 	if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
1519 		   rb_page_write(cpu_buffer->tail_page) ==
1520 		   rb_commit_index(cpu_buffer))) {
1521 		u64 diff;
1522 
1523 		diff = ts - cpu_buffer->write_stamp;
1524 
1525 		/* make sure this diff is calculated here */
1526 		barrier();
1527 
1528 		/* Did the write stamp get updated already? */
1529 		if (unlikely(ts < cpu_buffer->write_stamp))
1530 			goto get_event;
1531 
1532 		delta = diff;
1533 		if (unlikely(test_time_stamp(delta))) {
1534 
1535 			commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1536 			if (commit == -EBUSY)
1537 				goto out_fail;
1538 
1539 			if (commit == -EAGAIN)
1540 				goto again;
1541 
1542 			RB_WARN_ON(cpu_buffer, commit < 0);
1543 		}
1544 	}
1545 
1546  get_event:
1547 	event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
1548 	if (unlikely(PTR_ERR(event) == -EAGAIN))
1549 		goto again;
1550 
1551 	if (!event)
1552 		goto out_fail;
1553 
1554 	if (!rb_event_is_commit(cpu_buffer, event))
1555 		delta = 0;
1556 
1557 	event->time_delta = delta;
1558 
1559 	return event;
1560 
1561  out_fail:
1562 	rb_end_commit(cpu_buffer);
1563 	return NULL;
1564 }
1565 
1566 #ifdef CONFIG_TRACING
1567 
1568 #define TRACE_RECURSIVE_DEPTH 16
1569 
1570 static int trace_recursive_lock(void)
1571 {
1572 	current->trace_recursion++;
1573 
1574 	if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
1575 		return 0;
1576 
1577 	/* Disable all tracing before we do anything else */
1578 	tracing_off_permanent();
1579 
1580 	printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
1581 		    "HC[%lu]:SC[%lu]:NMI[%lu]\n",
1582 		    current->trace_recursion,
1583 		    hardirq_count() >> HARDIRQ_SHIFT,
1584 		    softirq_count() >> SOFTIRQ_SHIFT,
1585 		    in_nmi());
1586 
1587 	WARN_ON_ONCE(1);
1588 	return -1;
1589 }
1590 
1591 static void trace_recursive_unlock(void)
1592 {
1593 	WARN_ON_ONCE(!current->trace_recursion);
1594 
1595 	current->trace_recursion--;
1596 }
1597 
1598 #else
1599 
1600 #define trace_recursive_lock()		(0)
1601 #define trace_recursive_unlock()	do { } while (0)
1602 
1603 #endif
1604 
1605 static DEFINE_PER_CPU(int, rb_need_resched);
1606 
1607 /**
1608  * ring_buffer_lock_reserve - reserve a part of the buffer
1609  * @buffer: the ring buffer to reserve from
1610  * @length: the length of the data to reserve (excluding event header)
1611  *
1612  * Returns a reseverd event on the ring buffer to copy directly to.
1613  * The user of this interface will need to get the body to write into
1614  * and can use the ring_buffer_event_data() interface.
1615  *
1616  * The length is the length of the data needed, not the event length
1617  * which also includes the event header.
1618  *
1619  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1620  * If NULL is returned, then nothing has been allocated or locked.
1621  */
1622 struct ring_buffer_event *
1623 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
1624 {
1625 	struct ring_buffer_per_cpu *cpu_buffer;
1626 	struct ring_buffer_event *event;
1627 	int cpu, resched;
1628 
1629 	if (ring_buffer_flags != RB_BUFFERS_ON)
1630 		return NULL;
1631 
1632 	if (atomic_read(&buffer->record_disabled))
1633 		return NULL;
1634 
1635 	/* If we are tracing schedule, we don't want to recurse */
1636 	resched = ftrace_preempt_disable();
1637 
1638 	if (trace_recursive_lock())
1639 		goto out_nocheck;
1640 
1641 	cpu = raw_smp_processor_id();
1642 
1643 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
1644 		goto out;
1645 
1646 	cpu_buffer = buffer->buffers[cpu];
1647 
1648 	if (atomic_read(&cpu_buffer->record_disabled))
1649 		goto out;
1650 
1651 	if (length > BUF_MAX_DATA_SIZE)
1652 		goto out;
1653 
1654 	event = rb_reserve_next_event(cpu_buffer, length);
1655 	if (!event)
1656 		goto out;
1657 
1658 	/*
1659 	 * Need to store resched state on this cpu.
1660 	 * Only the first needs to.
1661 	 */
1662 
1663 	if (preempt_count() == 1)
1664 		per_cpu(rb_need_resched, cpu) = resched;
1665 
1666 	return event;
1667 
1668  out:
1669 	trace_recursive_unlock();
1670 
1671  out_nocheck:
1672 	ftrace_preempt_enable(resched);
1673 	return NULL;
1674 }
1675 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1676 
1677 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1678 		      struct ring_buffer_event *event)
1679 {
1680 	local_inc(&cpu_buffer->entries);
1681 
1682 	/*
1683 	 * The event first in the commit queue updates the
1684 	 * time stamp.
1685 	 */
1686 	if (rb_event_is_commit(cpu_buffer, event))
1687 		cpu_buffer->write_stamp += event->time_delta;
1688 
1689 	rb_end_commit(cpu_buffer);
1690 }
1691 
1692 /**
1693  * ring_buffer_unlock_commit - commit a reserved
1694  * @buffer: The buffer to commit to
1695  * @event: The event pointer to commit.
1696  *
1697  * This commits the data to the ring buffer, and releases any locks held.
1698  *
1699  * Must be paired with ring_buffer_lock_reserve.
1700  */
1701 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1702 			      struct ring_buffer_event *event)
1703 {
1704 	struct ring_buffer_per_cpu *cpu_buffer;
1705 	int cpu = raw_smp_processor_id();
1706 
1707 	cpu_buffer = buffer->buffers[cpu];
1708 
1709 	rb_commit(cpu_buffer, event);
1710 
1711 	trace_recursive_unlock();
1712 
1713 	/*
1714 	 * Only the last preempt count needs to restore preemption.
1715 	 */
1716 	if (preempt_count() == 1)
1717 		ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1718 	else
1719 		preempt_enable_no_resched_notrace();
1720 
1721 	return 0;
1722 }
1723 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1724 
1725 static inline void rb_event_discard(struct ring_buffer_event *event)
1726 {
1727 	/* array[0] holds the actual length for the discarded event */
1728 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
1729 	event->type_len = RINGBUF_TYPE_PADDING;
1730 	/* time delta must be non zero */
1731 	if (!event->time_delta)
1732 		event->time_delta = 1;
1733 }
1734 
1735 /**
1736  * ring_buffer_event_discard - discard any event in the ring buffer
1737  * @event: the event to discard
1738  *
1739  * Sometimes a event that is in the ring buffer needs to be ignored.
1740  * This function lets the user discard an event in the ring buffer
1741  * and then that event will not be read later.
1742  *
1743  * Note, it is up to the user to be careful with this, and protect
1744  * against races. If the user discards an event that has been consumed
1745  * it is possible that it could corrupt the ring buffer.
1746  */
1747 void ring_buffer_event_discard(struct ring_buffer_event *event)
1748 {
1749 	rb_event_discard(event);
1750 }
1751 EXPORT_SYMBOL_GPL(ring_buffer_event_discard);
1752 
1753 /**
1754  * ring_buffer_commit_discard - discard an event that has not been committed
1755  * @buffer: the ring buffer
1756  * @event: non committed event to discard
1757  *
1758  * This is similar to ring_buffer_event_discard but must only be
1759  * performed on an event that has not been committed yet. The difference
1760  * is that this will also try to free the event from the ring buffer
1761  * if another event has not been added behind it.
1762  *
1763  * If another event has been added behind it, it will set the event
1764  * up as discarded, and perform the commit.
1765  *
1766  * If this function is called, do not call ring_buffer_unlock_commit on
1767  * the event.
1768  */
1769 void ring_buffer_discard_commit(struct ring_buffer *buffer,
1770 				struct ring_buffer_event *event)
1771 {
1772 	struct ring_buffer_per_cpu *cpu_buffer;
1773 	int cpu;
1774 
1775 	/* The event is discarded regardless */
1776 	rb_event_discard(event);
1777 
1778 	cpu = smp_processor_id();
1779 	cpu_buffer = buffer->buffers[cpu];
1780 
1781 	/*
1782 	 * This must only be called if the event has not been
1783 	 * committed yet. Thus we can assume that preemption
1784 	 * is still disabled.
1785 	 */
1786 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
1787 
1788 	if (!rb_try_to_discard(cpu_buffer, event))
1789 		goto out;
1790 
1791 	/*
1792 	 * The commit is still visible by the reader, so we
1793 	 * must increment entries.
1794 	 */
1795 	local_inc(&cpu_buffer->entries);
1796  out:
1797 	rb_end_commit(cpu_buffer);
1798 
1799 	trace_recursive_unlock();
1800 
1801 	/*
1802 	 * Only the last preempt count needs to restore preemption.
1803 	 */
1804 	if (preempt_count() == 1)
1805 		ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1806 	else
1807 		preempt_enable_no_resched_notrace();
1808 
1809 }
1810 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
1811 
1812 /**
1813  * ring_buffer_write - write data to the buffer without reserving
1814  * @buffer: The ring buffer to write to.
1815  * @length: The length of the data being written (excluding the event header)
1816  * @data: The data to write to the buffer.
1817  *
1818  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1819  * one function. If you already have the data to write to the buffer, it
1820  * may be easier to simply call this function.
1821  *
1822  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1823  * and not the length of the event which would hold the header.
1824  */
1825 int ring_buffer_write(struct ring_buffer *buffer,
1826 			unsigned long length,
1827 			void *data)
1828 {
1829 	struct ring_buffer_per_cpu *cpu_buffer;
1830 	struct ring_buffer_event *event;
1831 	void *body;
1832 	int ret = -EBUSY;
1833 	int cpu, resched;
1834 
1835 	if (ring_buffer_flags != RB_BUFFERS_ON)
1836 		return -EBUSY;
1837 
1838 	if (atomic_read(&buffer->record_disabled))
1839 		return -EBUSY;
1840 
1841 	resched = ftrace_preempt_disable();
1842 
1843 	cpu = raw_smp_processor_id();
1844 
1845 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
1846 		goto out;
1847 
1848 	cpu_buffer = buffer->buffers[cpu];
1849 
1850 	if (atomic_read(&cpu_buffer->record_disabled))
1851 		goto out;
1852 
1853 	if (length > BUF_MAX_DATA_SIZE)
1854 		goto out;
1855 
1856 	event = rb_reserve_next_event(cpu_buffer, length);
1857 	if (!event)
1858 		goto out;
1859 
1860 	body = rb_event_data(event);
1861 
1862 	memcpy(body, data, length);
1863 
1864 	rb_commit(cpu_buffer, event);
1865 
1866 	ret = 0;
1867  out:
1868 	ftrace_preempt_enable(resched);
1869 
1870 	return ret;
1871 }
1872 EXPORT_SYMBOL_GPL(ring_buffer_write);
1873 
1874 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1875 {
1876 	struct buffer_page *reader = cpu_buffer->reader_page;
1877 	struct buffer_page *head = cpu_buffer->head_page;
1878 	struct buffer_page *commit = cpu_buffer->commit_page;
1879 
1880 	return reader->read == rb_page_commit(reader) &&
1881 		(commit == reader ||
1882 		 (commit == head &&
1883 		  head->read == rb_page_commit(commit)));
1884 }
1885 
1886 /**
1887  * ring_buffer_record_disable - stop all writes into the buffer
1888  * @buffer: The ring buffer to stop writes to.
1889  *
1890  * This prevents all writes to the buffer. Any attempt to write
1891  * to the buffer after this will fail and return NULL.
1892  *
1893  * The caller should call synchronize_sched() after this.
1894  */
1895 void ring_buffer_record_disable(struct ring_buffer *buffer)
1896 {
1897 	atomic_inc(&buffer->record_disabled);
1898 }
1899 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1900 
1901 /**
1902  * ring_buffer_record_enable - enable writes to the buffer
1903  * @buffer: The ring buffer to enable writes
1904  *
1905  * Note, multiple disables will need the same number of enables
1906  * to truely enable the writing (much like preempt_disable).
1907  */
1908 void ring_buffer_record_enable(struct ring_buffer *buffer)
1909 {
1910 	atomic_dec(&buffer->record_disabled);
1911 }
1912 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1913 
1914 /**
1915  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1916  * @buffer: The ring buffer to stop writes to.
1917  * @cpu: The CPU buffer to stop
1918  *
1919  * This prevents all writes to the buffer. Any attempt to write
1920  * to the buffer after this will fail and return NULL.
1921  *
1922  * The caller should call synchronize_sched() after this.
1923  */
1924 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1925 {
1926 	struct ring_buffer_per_cpu *cpu_buffer;
1927 
1928 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
1929 		return;
1930 
1931 	cpu_buffer = buffer->buffers[cpu];
1932 	atomic_inc(&cpu_buffer->record_disabled);
1933 }
1934 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1935 
1936 /**
1937  * ring_buffer_record_enable_cpu - enable writes to the buffer
1938  * @buffer: The ring buffer to enable writes
1939  * @cpu: The CPU to enable.
1940  *
1941  * Note, multiple disables will need the same number of enables
1942  * to truely enable the writing (much like preempt_disable).
1943  */
1944 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1945 {
1946 	struct ring_buffer_per_cpu *cpu_buffer;
1947 
1948 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
1949 		return;
1950 
1951 	cpu_buffer = buffer->buffers[cpu];
1952 	atomic_dec(&cpu_buffer->record_disabled);
1953 }
1954 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1955 
1956 /**
1957  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1958  * @buffer: The ring buffer
1959  * @cpu: The per CPU buffer to get the entries from.
1960  */
1961 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1962 {
1963 	struct ring_buffer_per_cpu *cpu_buffer;
1964 	unsigned long ret;
1965 
1966 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
1967 		return 0;
1968 
1969 	cpu_buffer = buffer->buffers[cpu];
1970 	ret = (local_read(&cpu_buffer->entries) - cpu_buffer->overrun)
1971 		- cpu_buffer->read;
1972 
1973 	return ret;
1974 }
1975 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1976 
1977 /**
1978  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1979  * @buffer: The ring buffer
1980  * @cpu: The per CPU buffer to get the number of overruns from
1981  */
1982 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1983 {
1984 	struct ring_buffer_per_cpu *cpu_buffer;
1985 	unsigned long ret;
1986 
1987 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
1988 		return 0;
1989 
1990 	cpu_buffer = buffer->buffers[cpu];
1991 	ret = cpu_buffer->overrun;
1992 
1993 	return ret;
1994 }
1995 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1996 
1997 /**
1998  * ring_buffer_nmi_dropped_cpu - get the number of nmis that were dropped
1999  * @buffer: The ring buffer
2000  * @cpu: The per CPU buffer to get the number of overruns from
2001  */
2002 unsigned long ring_buffer_nmi_dropped_cpu(struct ring_buffer *buffer, int cpu)
2003 {
2004 	struct ring_buffer_per_cpu *cpu_buffer;
2005 	unsigned long ret;
2006 
2007 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2008 		return 0;
2009 
2010 	cpu_buffer = buffer->buffers[cpu];
2011 	ret = cpu_buffer->nmi_dropped;
2012 
2013 	return ret;
2014 }
2015 EXPORT_SYMBOL_GPL(ring_buffer_nmi_dropped_cpu);
2016 
2017 /**
2018  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2019  * @buffer: The ring buffer
2020  * @cpu: The per CPU buffer to get the number of overruns from
2021  */
2022 unsigned long
2023 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2024 {
2025 	struct ring_buffer_per_cpu *cpu_buffer;
2026 	unsigned long ret;
2027 
2028 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2029 		return 0;
2030 
2031 	cpu_buffer = buffer->buffers[cpu];
2032 	ret = cpu_buffer->commit_overrun;
2033 
2034 	return ret;
2035 }
2036 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2037 
2038 /**
2039  * ring_buffer_entries - get the number of entries in a buffer
2040  * @buffer: The ring buffer
2041  *
2042  * Returns the total number of entries in the ring buffer
2043  * (all CPU entries)
2044  */
2045 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2046 {
2047 	struct ring_buffer_per_cpu *cpu_buffer;
2048 	unsigned long entries = 0;
2049 	int cpu;
2050 
2051 	/* if you care about this being correct, lock the buffer */
2052 	for_each_buffer_cpu(buffer, cpu) {
2053 		cpu_buffer = buffer->buffers[cpu];
2054 		entries += (local_read(&cpu_buffer->entries) -
2055 			    cpu_buffer->overrun) - cpu_buffer->read;
2056 	}
2057 
2058 	return entries;
2059 }
2060 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2061 
2062 /**
2063  * ring_buffer_overrun_cpu - get the number of overruns in buffer
2064  * @buffer: The ring buffer
2065  *
2066  * Returns the total number of overruns in the ring buffer
2067  * (all CPU entries)
2068  */
2069 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2070 {
2071 	struct ring_buffer_per_cpu *cpu_buffer;
2072 	unsigned long overruns = 0;
2073 	int cpu;
2074 
2075 	/* if you care about this being correct, lock the buffer */
2076 	for_each_buffer_cpu(buffer, cpu) {
2077 		cpu_buffer = buffer->buffers[cpu];
2078 		overruns += cpu_buffer->overrun;
2079 	}
2080 
2081 	return overruns;
2082 }
2083 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2084 
2085 static void rb_iter_reset(struct ring_buffer_iter *iter)
2086 {
2087 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2088 
2089 	/* Iterator usage is expected to have record disabled */
2090 	if (list_empty(&cpu_buffer->reader_page->list)) {
2091 		iter->head_page = cpu_buffer->head_page;
2092 		iter->head = cpu_buffer->head_page->read;
2093 	} else {
2094 		iter->head_page = cpu_buffer->reader_page;
2095 		iter->head = cpu_buffer->reader_page->read;
2096 	}
2097 	if (iter->head)
2098 		iter->read_stamp = cpu_buffer->read_stamp;
2099 	else
2100 		iter->read_stamp = iter->head_page->page->time_stamp;
2101 }
2102 
2103 /**
2104  * ring_buffer_iter_reset - reset an iterator
2105  * @iter: The iterator to reset
2106  *
2107  * Resets the iterator, so that it will start from the beginning
2108  * again.
2109  */
2110 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2111 {
2112 	struct ring_buffer_per_cpu *cpu_buffer;
2113 	unsigned long flags;
2114 
2115 	if (!iter)
2116 		return;
2117 
2118 	cpu_buffer = iter->cpu_buffer;
2119 
2120 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2121 	rb_iter_reset(iter);
2122 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2123 }
2124 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2125 
2126 /**
2127  * ring_buffer_iter_empty - check if an iterator has no more to read
2128  * @iter: The iterator to check
2129  */
2130 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2131 {
2132 	struct ring_buffer_per_cpu *cpu_buffer;
2133 
2134 	cpu_buffer = iter->cpu_buffer;
2135 
2136 	return iter->head_page == cpu_buffer->commit_page &&
2137 		iter->head == rb_commit_index(cpu_buffer);
2138 }
2139 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2140 
2141 static void
2142 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2143 		     struct ring_buffer_event *event)
2144 {
2145 	u64 delta;
2146 
2147 	switch (event->type_len) {
2148 	case RINGBUF_TYPE_PADDING:
2149 		return;
2150 
2151 	case RINGBUF_TYPE_TIME_EXTEND:
2152 		delta = event->array[0];
2153 		delta <<= TS_SHIFT;
2154 		delta += event->time_delta;
2155 		cpu_buffer->read_stamp += delta;
2156 		return;
2157 
2158 	case RINGBUF_TYPE_TIME_STAMP:
2159 		/* FIXME: not implemented */
2160 		return;
2161 
2162 	case RINGBUF_TYPE_DATA:
2163 		cpu_buffer->read_stamp += event->time_delta;
2164 		return;
2165 
2166 	default:
2167 		BUG();
2168 	}
2169 	return;
2170 }
2171 
2172 static void
2173 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2174 			  struct ring_buffer_event *event)
2175 {
2176 	u64 delta;
2177 
2178 	switch (event->type_len) {
2179 	case RINGBUF_TYPE_PADDING:
2180 		return;
2181 
2182 	case RINGBUF_TYPE_TIME_EXTEND:
2183 		delta = event->array[0];
2184 		delta <<= TS_SHIFT;
2185 		delta += event->time_delta;
2186 		iter->read_stamp += delta;
2187 		return;
2188 
2189 	case RINGBUF_TYPE_TIME_STAMP:
2190 		/* FIXME: not implemented */
2191 		return;
2192 
2193 	case RINGBUF_TYPE_DATA:
2194 		iter->read_stamp += event->time_delta;
2195 		return;
2196 
2197 	default:
2198 		BUG();
2199 	}
2200 	return;
2201 }
2202 
2203 static struct buffer_page *
2204 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2205 {
2206 	struct buffer_page *reader = NULL;
2207 	unsigned long flags;
2208 	int nr_loops = 0;
2209 
2210 	local_irq_save(flags);
2211 	__raw_spin_lock(&cpu_buffer->lock);
2212 
2213  again:
2214 	/*
2215 	 * This should normally only loop twice. But because the
2216 	 * start of the reader inserts an empty page, it causes
2217 	 * a case where we will loop three times. There should be no
2218 	 * reason to loop four times (that I know of).
2219 	 */
2220 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2221 		reader = NULL;
2222 		goto out;
2223 	}
2224 
2225 	reader = cpu_buffer->reader_page;
2226 
2227 	/* If there's more to read, return this page */
2228 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
2229 		goto out;
2230 
2231 	/* Never should we have an index greater than the size */
2232 	if (RB_WARN_ON(cpu_buffer,
2233 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
2234 		goto out;
2235 
2236 	/* check if we caught up to the tail */
2237 	reader = NULL;
2238 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2239 		goto out;
2240 
2241 	/*
2242 	 * Splice the empty reader page into the list around the head.
2243 	 * Reset the reader page to size zero.
2244 	 */
2245 
2246 	reader = cpu_buffer->head_page;
2247 	cpu_buffer->reader_page->list.next = reader->list.next;
2248 	cpu_buffer->reader_page->list.prev = reader->list.prev;
2249 
2250 	local_set(&cpu_buffer->reader_page->write, 0);
2251 	local_set(&cpu_buffer->reader_page->entries, 0);
2252 	local_set(&cpu_buffer->reader_page->page->commit, 0);
2253 
2254 	/* Make the reader page now replace the head */
2255 	reader->list.prev->next = &cpu_buffer->reader_page->list;
2256 	reader->list.next->prev = &cpu_buffer->reader_page->list;
2257 
2258 	/*
2259 	 * If the tail is on the reader, then we must set the head
2260 	 * to the inserted page, otherwise we set it one before.
2261 	 */
2262 	cpu_buffer->head_page = cpu_buffer->reader_page;
2263 
2264 	if (cpu_buffer->commit_page != reader)
2265 		rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2266 
2267 	/* Finally update the reader page to the new head */
2268 	cpu_buffer->reader_page = reader;
2269 	rb_reset_reader_page(cpu_buffer);
2270 
2271 	goto again;
2272 
2273  out:
2274 	__raw_spin_unlock(&cpu_buffer->lock);
2275 	local_irq_restore(flags);
2276 
2277 	return reader;
2278 }
2279 
2280 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2281 {
2282 	struct ring_buffer_event *event;
2283 	struct buffer_page *reader;
2284 	unsigned length;
2285 
2286 	reader = rb_get_reader_page(cpu_buffer);
2287 
2288 	/* This function should not be called when buffer is empty */
2289 	if (RB_WARN_ON(cpu_buffer, !reader))
2290 		return;
2291 
2292 	event = rb_reader_event(cpu_buffer);
2293 
2294 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
2295 			|| rb_discarded_event(event))
2296 		cpu_buffer->read++;
2297 
2298 	rb_update_read_stamp(cpu_buffer, event);
2299 
2300 	length = rb_event_length(event);
2301 	cpu_buffer->reader_page->read += length;
2302 }
2303 
2304 static void rb_advance_iter(struct ring_buffer_iter *iter)
2305 {
2306 	struct ring_buffer *buffer;
2307 	struct ring_buffer_per_cpu *cpu_buffer;
2308 	struct ring_buffer_event *event;
2309 	unsigned length;
2310 
2311 	cpu_buffer = iter->cpu_buffer;
2312 	buffer = cpu_buffer->buffer;
2313 
2314 	/*
2315 	 * Check if we are at the end of the buffer.
2316 	 */
2317 	if (iter->head >= rb_page_size(iter->head_page)) {
2318 		/* discarded commits can make the page empty */
2319 		if (iter->head_page == cpu_buffer->commit_page)
2320 			return;
2321 		rb_inc_iter(iter);
2322 		return;
2323 	}
2324 
2325 	event = rb_iter_head_event(iter);
2326 
2327 	length = rb_event_length(event);
2328 
2329 	/*
2330 	 * This should not be called to advance the header if we are
2331 	 * at the tail of the buffer.
2332 	 */
2333 	if (RB_WARN_ON(cpu_buffer,
2334 		       (iter->head_page == cpu_buffer->commit_page) &&
2335 		       (iter->head + length > rb_commit_index(cpu_buffer))))
2336 		return;
2337 
2338 	rb_update_iter_read_stamp(iter, event);
2339 
2340 	iter->head += length;
2341 
2342 	/* check for end of page padding */
2343 	if ((iter->head >= rb_page_size(iter->head_page)) &&
2344 	    (iter->head_page != cpu_buffer->commit_page))
2345 		rb_advance_iter(iter);
2346 }
2347 
2348 static struct ring_buffer_event *
2349 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2350 {
2351 	struct ring_buffer_per_cpu *cpu_buffer;
2352 	struct ring_buffer_event *event;
2353 	struct buffer_page *reader;
2354 	int nr_loops = 0;
2355 
2356 	cpu_buffer = buffer->buffers[cpu];
2357 
2358  again:
2359 	/*
2360 	 * We repeat when a timestamp is encountered. It is possible
2361 	 * to get multiple timestamps from an interrupt entering just
2362 	 * as one timestamp is about to be written, or from discarded
2363 	 * commits. The most that we can have is the number on a single page.
2364 	 */
2365 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
2366 		return NULL;
2367 
2368 	reader = rb_get_reader_page(cpu_buffer);
2369 	if (!reader)
2370 		return NULL;
2371 
2372 	event = rb_reader_event(cpu_buffer);
2373 
2374 	switch (event->type_len) {
2375 	case RINGBUF_TYPE_PADDING:
2376 		if (rb_null_event(event))
2377 			RB_WARN_ON(cpu_buffer, 1);
2378 		/*
2379 		 * Because the writer could be discarding every
2380 		 * event it creates (which would probably be bad)
2381 		 * if we were to go back to "again" then we may never
2382 		 * catch up, and will trigger the warn on, or lock
2383 		 * the box. Return the padding, and we will release
2384 		 * the current locks, and try again.
2385 		 */
2386 		rb_advance_reader(cpu_buffer);
2387 		return event;
2388 
2389 	case RINGBUF_TYPE_TIME_EXTEND:
2390 		/* Internal data, OK to advance */
2391 		rb_advance_reader(cpu_buffer);
2392 		goto again;
2393 
2394 	case RINGBUF_TYPE_TIME_STAMP:
2395 		/* FIXME: not implemented */
2396 		rb_advance_reader(cpu_buffer);
2397 		goto again;
2398 
2399 	case RINGBUF_TYPE_DATA:
2400 		if (ts) {
2401 			*ts = cpu_buffer->read_stamp + event->time_delta;
2402 			ring_buffer_normalize_time_stamp(buffer,
2403 							 cpu_buffer->cpu, ts);
2404 		}
2405 		return event;
2406 
2407 	default:
2408 		BUG();
2409 	}
2410 
2411 	return NULL;
2412 }
2413 EXPORT_SYMBOL_GPL(ring_buffer_peek);
2414 
2415 static struct ring_buffer_event *
2416 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2417 {
2418 	struct ring_buffer *buffer;
2419 	struct ring_buffer_per_cpu *cpu_buffer;
2420 	struct ring_buffer_event *event;
2421 	int nr_loops = 0;
2422 
2423 	if (ring_buffer_iter_empty(iter))
2424 		return NULL;
2425 
2426 	cpu_buffer = iter->cpu_buffer;
2427 	buffer = cpu_buffer->buffer;
2428 
2429  again:
2430 	/*
2431 	 * We repeat when a timestamp is encountered.
2432 	 * We can get multiple timestamps by nested interrupts or also
2433 	 * if filtering is on (discarding commits). Since discarding
2434 	 * commits can be frequent we can get a lot of timestamps.
2435 	 * But we limit them by not adding timestamps if they begin
2436 	 * at the start of a page.
2437 	 */
2438 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
2439 		return NULL;
2440 
2441 	if (rb_per_cpu_empty(cpu_buffer))
2442 		return NULL;
2443 
2444 	event = rb_iter_head_event(iter);
2445 
2446 	switch (event->type_len) {
2447 	case RINGBUF_TYPE_PADDING:
2448 		if (rb_null_event(event)) {
2449 			rb_inc_iter(iter);
2450 			goto again;
2451 		}
2452 		rb_advance_iter(iter);
2453 		return event;
2454 
2455 	case RINGBUF_TYPE_TIME_EXTEND:
2456 		/* Internal data, OK to advance */
2457 		rb_advance_iter(iter);
2458 		goto again;
2459 
2460 	case RINGBUF_TYPE_TIME_STAMP:
2461 		/* FIXME: not implemented */
2462 		rb_advance_iter(iter);
2463 		goto again;
2464 
2465 	case RINGBUF_TYPE_DATA:
2466 		if (ts) {
2467 			*ts = iter->read_stamp + event->time_delta;
2468 			ring_buffer_normalize_time_stamp(buffer,
2469 							 cpu_buffer->cpu, ts);
2470 		}
2471 		return event;
2472 
2473 	default:
2474 		BUG();
2475 	}
2476 
2477 	return NULL;
2478 }
2479 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
2480 
2481 static inline int rb_ok_to_lock(void)
2482 {
2483 	/*
2484 	 * If an NMI die dumps out the content of the ring buffer
2485 	 * do not grab locks. We also permanently disable the ring
2486 	 * buffer too. A one time deal is all you get from reading
2487 	 * the ring buffer from an NMI.
2488 	 */
2489 	if (likely(!in_nmi() && !oops_in_progress))
2490 		return 1;
2491 
2492 	tracing_off_permanent();
2493 	return 0;
2494 }
2495 
2496 /**
2497  * ring_buffer_peek - peek at the next event to be read
2498  * @buffer: The ring buffer to read
2499  * @cpu: The cpu to peak at
2500  * @ts: The timestamp counter of this event.
2501  *
2502  * This will return the event that will be read next, but does
2503  * not consume the data.
2504  */
2505 struct ring_buffer_event *
2506 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2507 {
2508 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2509 	struct ring_buffer_event *event;
2510 	unsigned long flags;
2511 	int dolock;
2512 
2513 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2514 		return NULL;
2515 
2516 	dolock = rb_ok_to_lock();
2517  again:
2518 	local_irq_save(flags);
2519 	if (dolock)
2520 		spin_lock(&cpu_buffer->reader_lock);
2521 	event = rb_buffer_peek(buffer, cpu, ts);
2522 	if (dolock)
2523 		spin_unlock(&cpu_buffer->reader_lock);
2524 	local_irq_restore(flags);
2525 
2526 	if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2527 		cpu_relax();
2528 		goto again;
2529 	}
2530 
2531 	return event;
2532 }
2533 
2534 /**
2535  * ring_buffer_iter_peek - peek at the next event to be read
2536  * @iter: The ring buffer iterator
2537  * @ts: The timestamp counter of this event.
2538  *
2539  * This will return the event that will be read next, but does
2540  * not increment the iterator.
2541  */
2542 struct ring_buffer_event *
2543 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2544 {
2545 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2546 	struct ring_buffer_event *event;
2547 	unsigned long flags;
2548 
2549  again:
2550 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2551 	event = rb_iter_peek(iter, ts);
2552 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2553 
2554 	if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2555 		cpu_relax();
2556 		goto again;
2557 	}
2558 
2559 	return event;
2560 }
2561 
2562 /**
2563  * ring_buffer_consume - return an event and consume it
2564  * @buffer: The ring buffer to get the next event from
2565  *
2566  * Returns the next event in the ring buffer, and that event is consumed.
2567  * Meaning, that sequential reads will keep returning a different event,
2568  * and eventually empty the ring buffer if the producer is slower.
2569  */
2570 struct ring_buffer_event *
2571 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2572 {
2573 	struct ring_buffer_per_cpu *cpu_buffer;
2574 	struct ring_buffer_event *event = NULL;
2575 	unsigned long flags;
2576 	int dolock;
2577 
2578 	dolock = rb_ok_to_lock();
2579 
2580  again:
2581 	/* might be called in atomic */
2582 	preempt_disable();
2583 
2584 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2585 		goto out;
2586 
2587 	cpu_buffer = buffer->buffers[cpu];
2588 	local_irq_save(flags);
2589 	if (dolock)
2590 		spin_lock(&cpu_buffer->reader_lock);
2591 
2592 	event = rb_buffer_peek(buffer, cpu, ts);
2593 	if (!event)
2594 		goto out_unlock;
2595 
2596 	rb_advance_reader(cpu_buffer);
2597 
2598  out_unlock:
2599 	if (dolock)
2600 		spin_unlock(&cpu_buffer->reader_lock);
2601 	local_irq_restore(flags);
2602 
2603  out:
2604 	preempt_enable();
2605 
2606 	if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2607 		cpu_relax();
2608 		goto again;
2609 	}
2610 
2611 	return event;
2612 }
2613 EXPORT_SYMBOL_GPL(ring_buffer_consume);
2614 
2615 /**
2616  * ring_buffer_read_start - start a non consuming read of the buffer
2617  * @buffer: The ring buffer to read from
2618  * @cpu: The cpu buffer to iterate over
2619  *
2620  * This starts up an iteration through the buffer. It also disables
2621  * the recording to the buffer until the reading is finished.
2622  * This prevents the reading from being corrupted. This is not
2623  * a consuming read, so a producer is not expected.
2624  *
2625  * Must be paired with ring_buffer_finish.
2626  */
2627 struct ring_buffer_iter *
2628 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2629 {
2630 	struct ring_buffer_per_cpu *cpu_buffer;
2631 	struct ring_buffer_iter *iter;
2632 	unsigned long flags;
2633 
2634 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2635 		return NULL;
2636 
2637 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2638 	if (!iter)
2639 		return NULL;
2640 
2641 	cpu_buffer = buffer->buffers[cpu];
2642 
2643 	iter->cpu_buffer = cpu_buffer;
2644 
2645 	atomic_inc(&cpu_buffer->record_disabled);
2646 	synchronize_sched();
2647 
2648 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2649 	__raw_spin_lock(&cpu_buffer->lock);
2650 	rb_iter_reset(iter);
2651 	__raw_spin_unlock(&cpu_buffer->lock);
2652 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2653 
2654 	return iter;
2655 }
2656 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
2657 
2658 /**
2659  * ring_buffer_finish - finish reading the iterator of the buffer
2660  * @iter: The iterator retrieved by ring_buffer_start
2661  *
2662  * This re-enables the recording to the buffer, and frees the
2663  * iterator.
2664  */
2665 void
2666 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2667 {
2668 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2669 
2670 	atomic_dec(&cpu_buffer->record_disabled);
2671 	kfree(iter);
2672 }
2673 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
2674 
2675 /**
2676  * ring_buffer_read - read the next item in the ring buffer by the iterator
2677  * @iter: The ring buffer iterator
2678  * @ts: The time stamp of the event read.
2679  *
2680  * This reads the next event in the ring buffer and increments the iterator.
2681  */
2682 struct ring_buffer_event *
2683 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2684 {
2685 	struct ring_buffer_event *event;
2686 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2687 	unsigned long flags;
2688 
2689  again:
2690 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2691 	event = rb_iter_peek(iter, ts);
2692 	if (!event)
2693 		goto out;
2694 
2695 	rb_advance_iter(iter);
2696  out:
2697 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2698 
2699 	if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2700 		cpu_relax();
2701 		goto again;
2702 	}
2703 
2704 	return event;
2705 }
2706 EXPORT_SYMBOL_GPL(ring_buffer_read);
2707 
2708 /**
2709  * ring_buffer_size - return the size of the ring buffer (in bytes)
2710  * @buffer: The ring buffer.
2711  */
2712 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2713 {
2714 	return BUF_PAGE_SIZE * buffer->pages;
2715 }
2716 EXPORT_SYMBOL_GPL(ring_buffer_size);
2717 
2718 static void
2719 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2720 {
2721 	cpu_buffer->head_page
2722 		= list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2723 	local_set(&cpu_buffer->head_page->write, 0);
2724 	local_set(&cpu_buffer->head_page->entries, 0);
2725 	local_set(&cpu_buffer->head_page->page->commit, 0);
2726 
2727 	cpu_buffer->head_page->read = 0;
2728 
2729 	cpu_buffer->tail_page = cpu_buffer->head_page;
2730 	cpu_buffer->commit_page = cpu_buffer->head_page;
2731 
2732 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2733 	local_set(&cpu_buffer->reader_page->write, 0);
2734 	local_set(&cpu_buffer->reader_page->entries, 0);
2735 	local_set(&cpu_buffer->reader_page->page->commit, 0);
2736 	cpu_buffer->reader_page->read = 0;
2737 
2738 	cpu_buffer->nmi_dropped = 0;
2739 	cpu_buffer->commit_overrun = 0;
2740 	cpu_buffer->overrun = 0;
2741 	cpu_buffer->read = 0;
2742 	local_set(&cpu_buffer->entries, 0);
2743 	local_set(&cpu_buffer->committing, 0);
2744 	local_set(&cpu_buffer->commits, 0);
2745 
2746 	cpu_buffer->write_stamp = 0;
2747 	cpu_buffer->read_stamp = 0;
2748 }
2749 
2750 /**
2751  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2752  * @buffer: The ring buffer to reset a per cpu buffer of
2753  * @cpu: The CPU buffer to be reset
2754  */
2755 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2756 {
2757 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2758 	unsigned long flags;
2759 
2760 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2761 		return;
2762 
2763 	atomic_inc(&cpu_buffer->record_disabled);
2764 
2765 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2766 
2767 	__raw_spin_lock(&cpu_buffer->lock);
2768 
2769 	rb_reset_cpu(cpu_buffer);
2770 
2771 	__raw_spin_unlock(&cpu_buffer->lock);
2772 
2773 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2774 
2775 	atomic_dec(&cpu_buffer->record_disabled);
2776 }
2777 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2778 
2779 /**
2780  * ring_buffer_reset - reset a ring buffer
2781  * @buffer: The ring buffer to reset all cpu buffers
2782  */
2783 void ring_buffer_reset(struct ring_buffer *buffer)
2784 {
2785 	int cpu;
2786 
2787 	for_each_buffer_cpu(buffer, cpu)
2788 		ring_buffer_reset_cpu(buffer, cpu);
2789 }
2790 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2791 
2792 /**
2793  * rind_buffer_empty - is the ring buffer empty?
2794  * @buffer: The ring buffer to test
2795  */
2796 int ring_buffer_empty(struct ring_buffer *buffer)
2797 {
2798 	struct ring_buffer_per_cpu *cpu_buffer;
2799 	unsigned long flags;
2800 	int dolock;
2801 	int cpu;
2802 	int ret;
2803 
2804 	dolock = rb_ok_to_lock();
2805 
2806 	/* yes this is racy, but if you don't like the race, lock the buffer */
2807 	for_each_buffer_cpu(buffer, cpu) {
2808 		cpu_buffer = buffer->buffers[cpu];
2809 		local_irq_save(flags);
2810 		if (dolock)
2811 			spin_lock(&cpu_buffer->reader_lock);
2812 		ret = rb_per_cpu_empty(cpu_buffer);
2813 		if (dolock)
2814 			spin_unlock(&cpu_buffer->reader_lock);
2815 		local_irq_restore(flags);
2816 
2817 		if (!ret)
2818 			return 0;
2819 	}
2820 
2821 	return 1;
2822 }
2823 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2824 
2825 /**
2826  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2827  * @buffer: The ring buffer
2828  * @cpu: The CPU buffer to test
2829  */
2830 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2831 {
2832 	struct ring_buffer_per_cpu *cpu_buffer;
2833 	unsigned long flags;
2834 	int dolock;
2835 	int ret;
2836 
2837 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2838 		return 1;
2839 
2840 	dolock = rb_ok_to_lock();
2841 
2842 	cpu_buffer = buffer->buffers[cpu];
2843 	local_irq_save(flags);
2844 	if (dolock)
2845 		spin_lock(&cpu_buffer->reader_lock);
2846 	ret = rb_per_cpu_empty(cpu_buffer);
2847 	if (dolock)
2848 		spin_unlock(&cpu_buffer->reader_lock);
2849 	local_irq_restore(flags);
2850 
2851 	return ret;
2852 }
2853 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2854 
2855 /**
2856  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2857  * @buffer_a: One buffer to swap with
2858  * @buffer_b: The other buffer to swap with
2859  *
2860  * This function is useful for tracers that want to take a "snapshot"
2861  * of a CPU buffer and has another back up buffer lying around.
2862  * it is expected that the tracer handles the cpu buffer not being
2863  * used at the moment.
2864  */
2865 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2866 			 struct ring_buffer *buffer_b, int cpu)
2867 {
2868 	struct ring_buffer_per_cpu *cpu_buffer_a;
2869 	struct ring_buffer_per_cpu *cpu_buffer_b;
2870 	int ret = -EINVAL;
2871 
2872 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2873 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
2874 		goto out;
2875 
2876 	/* At least make sure the two buffers are somewhat the same */
2877 	if (buffer_a->pages != buffer_b->pages)
2878 		goto out;
2879 
2880 	ret = -EAGAIN;
2881 
2882 	if (ring_buffer_flags != RB_BUFFERS_ON)
2883 		goto out;
2884 
2885 	if (atomic_read(&buffer_a->record_disabled))
2886 		goto out;
2887 
2888 	if (atomic_read(&buffer_b->record_disabled))
2889 		goto out;
2890 
2891 	cpu_buffer_a = buffer_a->buffers[cpu];
2892 	cpu_buffer_b = buffer_b->buffers[cpu];
2893 
2894 	if (atomic_read(&cpu_buffer_a->record_disabled))
2895 		goto out;
2896 
2897 	if (atomic_read(&cpu_buffer_b->record_disabled))
2898 		goto out;
2899 
2900 	/*
2901 	 * We can't do a synchronize_sched here because this
2902 	 * function can be called in atomic context.
2903 	 * Normally this will be called from the same CPU as cpu.
2904 	 * If not it's up to the caller to protect this.
2905 	 */
2906 	atomic_inc(&cpu_buffer_a->record_disabled);
2907 	atomic_inc(&cpu_buffer_b->record_disabled);
2908 
2909 	buffer_a->buffers[cpu] = cpu_buffer_b;
2910 	buffer_b->buffers[cpu] = cpu_buffer_a;
2911 
2912 	cpu_buffer_b->buffer = buffer_a;
2913 	cpu_buffer_a->buffer = buffer_b;
2914 
2915 	atomic_dec(&cpu_buffer_a->record_disabled);
2916 	atomic_dec(&cpu_buffer_b->record_disabled);
2917 
2918 	ret = 0;
2919 out:
2920 	return ret;
2921 }
2922 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2923 
2924 /**
2925  * ring_buffer_alloc_read_page - allocate a page to read from buffer
2926  * @buffer: the buffer to allocate for.
2927  *
2928  * This function is used in conjunction with ring_buffer_read_page.
2929  * When reading a full page from the ring buffer, these functions
2930  * can be used to speed up the process. The calling function should
2931  * allocate a few pages first with this function. Then when it
2932  * needs to get pages from the ring buffer, it passes the result
2933  * of this function into ring_buffer_read_page, which will swap
2934  * the page that was allocated, with the read page of the buffer.
2935  *
2936  * Returns:
2937  *  The page allocated, or NULL on error.
2938  */
2939 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2940 {
2941 	struct buffer_data_page *bpage;
2942 	unsigned long addr;
2943 
2944 	addr = __get_free_page(GFP_KERNEL);
2945 	if (!addr)
2946 		return NULL;
2947 
2948 	bpage = (void *)addr;
2949 
2950 	rb_init_page(bpage);
2951 
2952 	return bpage;
2953 }
2954 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
2955 
2956 /**
2957  * ring_buffer_free_read_page - free an allocated read page
2958  * @buffer: the buffer the page was allocate for
2959  * @data: the page to free
2960  *
2961  * Free a page allocated from ring_buffer_alloc_read_page.
2962  */
2963 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2964 {
2965 	free_page((unsigned long)data);
2966 }
2967 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
2968 
2969 /**
2970  * ring_buffer_read_page - extract a page from the ring buffer
2971  * @buffer: buffer to extract from
2972  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2973  * @len: amount to extract
2974  * @cpu: the cpu of the buffer to extract
2975  * @full: should the extraction only happen when the page is full.
2976  *
2977  * This function will pull out a page from the ring buffer and consume it.
2978  * @data_page must be the address of the variable that was returned
2979  * from ring_buffer_alloc_read_page. This is because the page might be used
2980  * to swap with a page in the ring buffer.
2981  *
2982  * for example:
2983  *	rpage = ring_buffer_alloc_read_page(buffer);
2984  *	if (!rpage)
2985  *		return error;
2986  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
2987  *	if (ret >= 0)
2988  *		process_page(rpage, ret);
2989  *
2990  * When @full is set, the function will not return true unless
2991  * the writer is off the reader page.
2992  *
2993  * Note: it is up to the calling functions to handle sleeps and wakeups.
2994  *  The ring buffer can be used anywhere in the kernel and can not
2995  *  blindly call wake_up. The layer that uses the ring buffer must be
2996  *  responsible for that.
2997  *
2998  * Returns:
2999  *  >=0 if data has been transferred, returns the offset of consumed data.
3000  *  <0 if no data has been transferred.
3001  */
3002 int ring_buffer_read_page(struct ring_buffer *buffer,
3003 			  void **data_page, size_t len, int cpu, int full)
3004 {
3005 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3006 	struct ring_buffer_event *event;
3007 	struct buffer_data_page *bpage;
3008 	struct buffer_page *reader;
3009 	unsigned long flags;
3010 	unsigned int commit;
3011 	unsigned int read;
3012 	u64 save_timestamp;
3013 	int ret = -1;
3014 
3015 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3016 		goto out;
3017 
3018 	/*
3019 	 * If len is not big enough to hold the page header, then
3020 	 * we can not copy anything.
3021 	 */
3022 	if (len <= BUF_PAGE_HDR_SIZE)
3023 		goto out;
3024 
3025 	len -= BUF_PAGE_HDR_SIZE;
3026 
3027 	if (!data_page)
3028 		goto out;
3029 
3030 	bpage = *data_page;
3031 	if (!bpage)
3032 		goto out;
3033 
3034 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3035 
3036 	reader = rb_get_reader_page(cpu_buffer);
3037 	if (!reader)
3038 		goto out_unlock;
3039 
3040 	event = rb_reader_event(cpu_buffer);
3041 
3042 	read = reader->read;
3043 	commit = rb_page_commit(reader);
3044 
3045 	/*
3046 	 * If this page has been partially read or
3047 	 * if len is not big enough to read the rest of the page or
3048 	 * a writer is still on the page, then
3049 	 * we must copy the data from the page to the buffer.
3050 	 * Otherwise, we can simply swap the page with the one passed in.
3051 	 */
3052 	if (read || (len < (commit - read)) ||
3053 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
3054 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3055 		unsigned int rpos = read;
3056 		unsigned int pos = 0;
3057 		unsigned int size;
3058 
3059 		if (full)
3060 			goto out_unlock;
3061 
3062 		if (len > (commit - read))
3063 			len = (commit - read);
3064 
3065 		size = rb_event_length(event);
3066 
3067 		if (len < size)
3068 			goto out_unlock;
3069 
3070 		/* save the current timestamp, since the user will need it */
3071 		save_timestamp = cpu_buffer->read_stamp;
3072 
3073 		/* Need to copy one event at a time */
3074 		do {
3075 			memcpy(bpage->data + pos, rpage->data + rpos, size);
3076 
3077 			len -= size;
3078 
3079 			rb_advance_reader(cpu_buffer);
3080 			rpos = reader->read;
3081 			pos += size;
3082 
3083 			event = rb_reader_event(cpu_buffer);
3084 			size = rb_event_length(event);
3085 		} while (len > size);
3086 
3087 		/* update bpage */
3088 		local_set(&bpage->commit, pos);
3089 		bpage->time_stamp = save_timestamp;
3090 
3091 		/* we copied everything to the beginning */
3092 		read = 0;
3093 	} else {
3094 		/* update the entry counter */
3095 		cpu_buffer->read += local_read(&reader->entries);
3096 
3097 		/* swap the pages */
3098 		rb_init_page(bpage);
3099 		bpage = reader->page;
3100 		reader->page = *data_page;
3101 		local_set(&reader->write, 0);
3102 		local_set(&reader->entries, 0);
3103 		reader->read = 0;
3104 		*data_page = bpage;
3105 	}
3106 	ret = read;
3107 
3108  out_unlock:
3109 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3110 
3111  out:
3112 	return ret;
3113 }
3114 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3115 
3116 #ifdef CONFIG_TRACING
3117 static ssize_t
3118 rb_simple_read(struct file *filp, char __user *ubuf,
3119 	       size_t cnt, loff_t *ppos)
3120 {
3121 	unsigned long *p = filp->private_data;
3122 	char buf[64];
3123 	int r;
3124 
3125 	if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3126 		r = sprintf(buf, "permanently disabled\n");
3127 	else
3128 		r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3129 
3130 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3131 }
3132 
3133 static ssize_t
3134 rb_simple_write(struct file *filp, const char __user *ubuf,
3135 		size_t cnt, loff_t *ppos)
3136 {
3137 	unsigned long *p = filp->private_data;
3138 	char buf[64];
3139 	unsigned long val;
3140 	int ret;
3141 
3142 	if (cnt >= sizeof(buf))
3143 		return -EINVAL;
3144 
3145 	if (copy_from_user(&buf, ubuf, cnt))
3146 		return -EFAULT;
3147 
3148 	buf[cnt] = 0;
3149 
3150 	ret = strict_strtoul(buf, 10, &val);
3151 	if (ret < 0)
3152 		return ret;
3153 
3154 	if (val)
3155 		set_bit(RB_BUFFERS_ON_BIT, p);
3156 	else
3157 		clear_bit(RB_BUFFERS_ON_BIT, p);
3158 
3159 	(*ppos)++;
3160 
3161 	return cnt;
3162 }
3163 
3164 static const struct file_operations rb_simple_fops = {
3165 	.open		= tracing_open_generic,
3166 	.read		= rb_simple_read,
3167 	.write		= rb_simple_write,
3168 };
3169 
3170 
3171 static __init int rb_init_debugfs(void)
3172 {
3173 	struct dentry *d_tracer;
3174 
3175 	d_tracer = tracing_init_dentry();
3176 
3177 	trace_create_file("tracing_on", 0644, d_tracer,
3178 			    &ring_buffer_flags, &rb_simple_fops);
3179 
3180 	return 0;
3181 }
3182 
3183 fs_initcall(rb_init_debugfs);
3184 #endif
3185 
3186 #ifdef CONFIG_HOTPLUG_CPU
3187 static int rb_cpu_notify(struct notifier_block *self,
3188 			 unsigned long action, void *hcpu)
3189 {
3190 	struct ring_buffer *buffer =
3191 		container_of(self, struct ring_buffer, cpu_notify);
3192 	long cpu = (long)hcpu;
3193 
3194 	switch (action) {
3195 	case CPU_UP_PREPARE:
3196 	case CPU_UP_PREPARE_FROZEN:
3197 		if (cpumask_test_cpu(cpu, buffer->cpumask))
3198 			return NOTIFY_OK;
3199 
3200 		buffer->buffers[cpu] =
3201 			rb_allocate_cpu_buffer(buffer, cpu);
3202 		if (!buffer->buffers[cpu]) {
3203 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3204 			     cpu);
3205 			return NOTIFY_OK;
3206 		}
3207 		smp_wmb();
3208 		cpumask_set_cpu(cpu, buffer->cpumask);
3209 		break;
3210 	case CPU_DOWN_PREPARE:
3211 	case CPU_DOWN_PREPARE_FROZEN:
3212 		/*
3213 		 * Do nothing.
3214 		 *  If we were to free the buffer, then the user would
3215 		 *  lose any trace that was in the buffer.
3216 		 */
3217 		break;
3218 	default:
3219 		break;
3220 	}
3221 	return NOTIFY_OK;
3222 }
3223 #endif
3224