xref: /linux/kernel/trace/ring_buffer.c (revision 5a0e3ad6af8660be21ca98a971cd00f331318c05)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/hash.h>
20 #include <linux/list.h>
21 #include <linux/cpu.h>
22 #include <linux/fs.h>
23 
24 #include <asm/local.h>
25 #include "trace.h"
26 
27 /*
28  * The ring buffer header is special. We must manually up keep it.
29  */
30 int ring_buffer_print_entry_header(struct trace_seq *s)
31 {
32 	int ret;
33 
34 	ret = trace_seq_printf(s, "# compressed entry header\n");
35 	ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
36 	ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
37 	ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
38 	ret = trace_seq_printf(s, "\n");
39 	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
40 			       RINGBUF_TYPE_PADDING);
41 	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
42 			       RINGBUF_TYPE_TIME_EXTEND);
43 	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
44 			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
45 
46 	return ret;
47 }
48 
49 /*
50  * The ring buffer is made up of a list of pages. A separate list of pages is
51  * allocated for each CPU. A writer may only write to a buffer that is
52  * associated with the CPU it is currently executing on.  A reader may read
53  * from any per cpu buffer.
54  *
55  * The reader is special. For each per cpu buffer, the reader has its own
56  * reader page. When a reader has read the entire reader page, this reader
57  * page is swapped with another page in the ring buffer.
58  *
59  * Now, as long as the writer is off the reader page, the reader can do what
60  * ever it wants with that page. The writer will never write to that page
61  * again (as long as it is out of the ring buffer).
62  *
63  * Here's some silly ASCII art.
64  *
65  *   +------+
66  *   |reader|          RING BUFFER
67  *   |page  |
68  *   +------+        +---+   +---+   +---+
69  *                   |   |-->|   |-->|   |
70  *                   +---+   +---+   +---+
71  *                     ^               |
72  *                     |               |
73  *                     +---------------+
74  *
75  *
76  *   +------+
77  *   |reader|          RING BUFFER
78  *   |page  |------------------v
79  *   +------+        +---+   +---+   +---+
80  *                   |   |-->|   |-->|   |
81  *                   +---+   +---+   +---+
82  *                     ^               |
83  *                     |               |
84  *                     +---------------+
85  *
86  *
87  *   +------+
88  *   |reader|          RING BUFFER
89  *   |page  |------------------v
90  *   +------+        +---+   +---+   +---+
91  *      ^            |   |-->|   |-->|   |
92  *      |            +---+   +---+   +---+
93  *      |                              |
94  *      |                              |
95  *      +------------------------------+
96  *
97  *
98  *   +------+
99  *   |buffer|          RING BUFFER
100  *   |page  |------------------v
101  *   +------+        +---+   +---+   +---+
102  *      ^            |   |   |   |-->|   |
103  *      |   New      +---+   +---+   +---+
104  *      |  Reader------^               |
105  *      |   page                       |
106  *      +------------------------------+
107  *
108  *
109  * After we make this swap, the reader can hand this page off to the splice
110  * code and be done with it. It can even allocate a new page if it needs to
111  * and swap that into the ring buffer.
112  *
113  * We will be using cmpxchg soon to make all this lockless.
114  *
115  */
116 
117 /*
118  * A fast way to enable or disable all ring buffers is to
119  * call tracing_on or tracing_off. Turning off the ring buffers
120  * prevents all ring buffers from being recorded to.
121  * Turning this switch on, makes it OK to write to the
122  * ring buffer, if the ring buffer is enabled itself.
123  *
124  * There's three layers that must be on in order to write
125  * to the ring buffer.
126  *
127  * 1) This global flag must be set.
128  * 2) The ring buffer must be enabled for recording.
129  * 3) The per cpu buffer must be enabled for recording.
130  *
131  * In case of an anomaly, this global flag has a bit set that
132  * will permantly disable all ring buffers.
133  */
134 
135 /*
136  * Global flag to disable all recording to ring buffers
137  *  This has two bits: ON, DISABLED
138  *
139  *  ON   DISABLED
140  * ---- ----------
141  *   0      0        : ring buffers are off
142  *   1      0        : ring buffers are on
143  *   X      1        : ring buffers are permanently disabled
144  */
145 
146 enum {
147 	RB_BUFFERS_ON_BIT	= 0,
148 	RB_BUFFERS_DISABLED_BIT	= 1,
149 };
150 
151 enum {
152 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
153 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
154 };
155 
156 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
157 
158 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
159 
160 /**
161  * tracing_on - enable all tracing buffers
162  *
163  * This function enables all tracing buffers that may have been
164  * disabled with tracing_off.
165  */
166 void tracing_on(void)
167 {
168 	set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
169 }
170 EXPORT_SYMBOL_GPL(tracing_on);
171 
172 /**
173  * tracing_off - turn off all tracing buffers
174  *
175  * This function stops all tracing buffers from recording data.
176  * It does not disable any overhead the tracers themselves may
177  * be causing. This function simply causes all recording to
178  * the ring buffers to fail.
179  */
180 void tracing_off(void)
181 {
182 	clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
183 }
184 EXPORT_SYMBOL_GPL(tracing_off);
185 
186 /**
187  * tracing_off_permanent - permanently disable ring buffers
188  *
189  * This function, once called, will disable all ring buffers
190  * permanently.
191  */
192 void tracing_off_permanent(void)
193 {
194 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
195 }
196 
197 /**
198  * tracing_is_on - show state of ring buffers enabled
199  */
200 int tracing_is_on(void)
201 {
202 	return ring_buffer_flags == RB_BUFFERS_ON;
203 }
204 EXPORT_SYMBOL_GPL(tracing_is_on);
205 
206 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
207 #define RB_ALIGNMENT		4U
208 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
209 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
210 
211 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
212 # define RB_FORCE_8BYTE_ALIGNMENT	0
213 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
214 #else
215 # define RB_FORCE_8BYTE_ALIGNMENT	1
216 # define RB_ARCH_ALIGNMENT		8U
217 #endif
218 
219 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
220 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
221 
222 enum {
223 	RB_LEN_TIME_EXTEND = 8,
224 	RB_LEN_TIME_STAMP = 16,
225 };
226 
227 static inline int rb_null_event(struct ring_buffer_event *event)
228 {
229 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
230 }
231 
232 static void rb_event_set_padding(struct ring_buffer_event *event)
233 {
234 	/* padding has a NULL time_delta */
235 	event->type_len = RINGBUF_TYPE_PADDING;
236 	event->time_delta = 0;
237 }
238 
239 static unsigned
240 rb_event_data_length(struct ring_buffer_event *event)
241 {
242 	unsigned length;
243 
244 	if (event->type_len)
245 		length = event->type_len * RB_ALIGNMENT;
246 	else
247 		length = event->array[0];
248 	return length + RB_EVNT_HDR_SIZE;
249 }
250 
251 /* inline for ring buffer fast paths */
252 static unsigned
253 rb_event_length(struct ring_buffer_event *event)
254 {
255 	switch (event->type_len) {
256 	case RINGBUF_TYPE_PADDING:
257 		if (rb_null_event(event))
258 			/* undefined */
259 			return -1;
260 		return  event->array[0] + RB_EVNT_HDR_SIZE;
261 
262 	case RINGBUF_TYPE_TIME_EXTEND:
263 		return RB_LEN_TIME_EXTEND;
264 
265 	case RINGBUF_TYPE_TIME_STAMP:
266 		return RB_LEN_TIME_STAMP;
267 
268 	case RINGBUF_TYPE_DATA:
269 		return rb_event_data_length(event);
270 	default:
271 		BUG();
272 	}
273 	/* not hit */
274 	return 0;
275 }
276 
277 /**
278  * ring_buffer_event_length - return the length of the event
279  * @event: the event to get the length of
280  */
281 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
282 {
283 	unsigned length = rb_event_length(event);
284 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
285 		return length;
286 	length -= RB_EVNT_HDR_SIZE;
287 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
288                 length -= sizeof(event->array[0]);
289 	return length;
290 }
291 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
292 
293 /* inline for ring buffer fast paths */
294 static void *
295 rb_event_data(struct ring_buffer_event *event)
296 {
297 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
298 	/* If length is in len field, then array[0] has the data */
299 	if (event->type_len)
300 		return (void *)&event->array[0];
301 	/* Otherwise length is in array[0] and array[1] has the data */
302 	return (void *)&event->array[1];
303 }
304 
305 /**
306  * ring_buffer_event_data - return the data of the event
307  * @event: the event to get the data from
308  */
309 void *ring_buffer_event_data(struct ring_buffer_event *event)
310 {
311 	return rb_event_data(event);
312 }
313 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
314 
315 #define for_each_buffer_cpu(buffer, cpu)		\
316 	for_each_cpu(cpu, buffer->cpumask)
317 
318 #define TS_SHIFT	27
319 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
320 #define TS_DELTA_TEST	(~TS_MASK)
321 
322 struct buffer_data_page {
323 	u64		 time_stamp;	/* page time stamp */
324 	local_t		 commit;	/* write committed index */
325 	unsigned char	 data[];	/* data of buffer page */
326 };
327 
328 /*
329  * Note, the buffer_page list must be first. The buffer pages
330  * are allocated in cache lines, which means that each buffer
331  * page will be at the beginning of a cache line, and thus
332  * the least significant bits will be zero. We use this to
333  * add flags in the list struct pointers, to make the ring buffer
334  * lockless.
335  */
336 struct buffer_page {
337 	struct list_head list;		/* list of buffer pages */
338 	local_t		 write;		/* index for next write */
339 	unsigned	 read;		/* index for next read */
340 	local_t		 entries;	/* entries on this page */
341 	struct buffer_data_page *page;	/* Actual data page */
342 };
343 
344 /*
345  * The buffer page counters, write and entries, must be reset
346  * atomically when crossing page boundaries. To synchronize this
347  * update, two counters are inserted into the number. One is
348  * the actual counter for the write position or count on the page.
349  *
350  * The other is a counter of updaters. Before an update happens
351  * the update partition of the counter is incremented. This will
352  * allow the updater to update the counter atomically.
353  *
354  * The counter is 20 bits, and the state data is 12.
355  */
356 #define RB_WRITE_MASK		0xfffff
357 #define RB_WRITE_INTCNT		(1 << 20)
358 
359 static void rb_init_page(struct buffer_data_page *bpage)
360 {
361 	local_set(&bpage->commit, 0);
362 }
363 
364 /**
365  * ring_buffer_page_len - the size of data on the page.
366  * @page: The page to read
367  *
368  * Returns the amount of data on the page, including buffer page header.
369  */
370 size_t ring_buffer_page_len(void *page)
371 {
372 	return local_read(&((struct buffer_data_page *)page)->commit)
373 		+ BUF_PAGE_HDR_SIZE;
374 }
375 
376 /*
377  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
378  * this issue out.
379  */
380 static void free_buffer_page(struct buffer_page *bpage)
381 {
382 	free_page((unsigned long)bpage->page);
383 	kfree(bpage);
384 }
385 
386 /*
387  * We need to fit the time_stamp delta into 27 bits.
388  */
389 static inline int test_time_stamp(u64 delta)
390 {
391 	if (delta & TS_DELTA_TEST)
392 		return 1;
393 	return 0;
394 }
395 
396 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
397 
398 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
399 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
400 
401 /* Max number of timestamps that can fit on a page */
402 #define RB_TIMESTAMPS_PER_PAGE	(BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
403 
404 int ring_buffer_print_page_header(struct trace_seq *s)
405 {
406 	struct buffer_data_page field;
407 	int ret;
408 
409 	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
410 			       "offset:0;\tsize:%u;\tsigned:%u;\n",
411 			       (unsigned int)sizeof(field.time_stamp),
412 			       (unsigned int)is_signed_type(u64));
413 
414 	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
415 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
416 			       (unsigned int)offsetof(typeof(field), commit),
417 			       (unsigned int)sizeof(field.commit),
418 			       (unsigned int)is_signed_type(long));
419 
420 	ret = trace_seq_printf(s, "\tfield: char data;\t"
421 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
422 			       (unsigned int)offsetof(typeof(field), data),
423 			       (unsigned int)BUF_PAGE_SIZE,
424 			       (unsigned int)is_signed_type(char));
425 
426 	return ret;
427 }
428 
429 /*
430  * head_page == tail_page && head == tail then buffer is empty.
431  */
432 struct ring_buffer_per_cpu {
433 	int				cpu;
434 	struct ring_buffer		*buffer;
435 	spinlock_t			reader_lock;	/* serialize readers */
436 	arch_spinlock_t			lock;
437 	struct lock_class_key		lock_key;
438 	struct list_head		*pages;
439 	struct buffer_page		*head_page;	/* read from head */
440 	struct buffer_page		*tail_page;	/* write to tail */
441 	struct buffer_page		*commit_page;	/* committed pages */
442 	struct buffer_page		*reader_page;
443 	local_t				commit_overrun;
444 	local_t				overrun;
445 	local_t				entries;
446 	local_t				committing;
447 	local_t				commits;
448 	unsigned long			read;
449 	u64				write_stamp;
450 	u64				read_stamp;
451 	atomic_t			record_disabled;
452 };
453 
454 struct ring_buffer {
455 	unsigned			pages;
456 	unsigned			flags;
457 	int				cpus;
458 	atomic_t			record_disabled;
459 	cpumask_var_t			cpumask;
460 
461 	struct lock_class_key		*reader_lock_key;
462 
463 	struct mutex			mutex;
464 
465 	struct ring_buffer_per_cpu	**buffers;
466 
467 #ifdef CONFIG_HOTPLUG_CPU
468 	struct notifier_block		cpu_notify;
469 #endif
470 	u64				(*clock)(void);
471 };
472 
473 struct ring_buffer_iter {
474 	struct ring_buffer_per_cpu	*cpu_buffer;
475 	unsigned long			head;
476 	struct buffer_page		*head_page;
477 	struct buffer_page		*cache_reader_page;
478 	unsigned long			cache_read;
479 	u64				read_stamp;
480 };
481 
482 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
483 #define RB_WARN_ON(b, cond)						\
484 	({								\
485 		int _____ret = unlikely(cond);				\
486 		if (_____ret) {						\
487 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
488 				struct ring_buffer_per_cpu *__b =	\
489 					(void *)b;			\
490 				atomic_inc(&__b->buffer->record_disabled); \
491 			} else						\
492 				atomic_inc(&b->record_disabled);	\
493 			WARN_ON(1);					\
494 		}							\
495 		_____ret;						\
496 	})
497 
498 /* Up this if you want to test the TIME_EXTENTS and normalization */
499 #define DEBUG_SHIFT 0
500 
501 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
502 {
503 	/* shift to debug/test normalization and TIME_EXTENTS */
504 	return buffer->clock() << DEBUG_SHIFT;
505 }
506 
507 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
508 {
509 	u64 time;
510 
511 	preempt_disable_notrace();
512 	time = rb_time_stamp(buffer);
513 	preempt_enable_no_resched_notrace();
514 
515 	return time;
516 }
517 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
518 
519 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
520 				      int cpu, u64 *ts)
521 {
522 	/* Just stupid testing the normalize function and deltas */
523 	*ts >>= DEBUG_SHIFT;
524 }
525 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
526 
527 /*
528  * Making the ring buffer lockless makes things tricky.
529  * Although writes only happen on the CPU that they are on,
530  * and they only need to worry about interrupts. Reads can
531  * happen on any CPU.
532  *
533  * The reader page is always off the ring buffer, but when the
534  * reader finishes with a page, it needs to swap its page with
535  * a new one from the buffer. The reader needs to take from
536  * the head (writes go to the tail). But if a writer is in overwrite
537  * mode and wraps, it must push the head page forward.
538  *
539  * Here lies the problem.
540  *
541  * The reader must be careful to replace only the head page, and
542  * not another one. As described at the top of the file in the
543  * ASCII art, the reader sets its old page to point to the next
544  * page after head. It then sets the page after head to point to
545  * the old reader page. But if the writer moves the head page
546  * during this operation, the reader could end up with the tail.
547  *
548  * We use cmpxchg to help prevent this race. We also do something
549  * special with the page before head. We set the LSB to 1.
550  *
551  * When the writer must push the page forward, it will clear the
552  * bit that points to the head page, move the head, and then set
553  * the bit that points to the new head page.
554  *
555  * We also don't want an interrupt coming in and moving the head
556  * page on another writer. Thus we use the second LSB to catch
557  * that too. Thus:
558  *
559  * head->list->prev->next        bit 1          bit 0
560  *                              -------        -------
561  * Normal page                     0              0
562  * Points to head page             0              1
563  * New head page                   1              0
564  *
565  * Note we can not trust the prev pointer of the head page, because:
566  *
567  * +----+       +-----+        +-----+
568  * |    |------>|  T  |---X--->|  N  |
569  * |    |<------|     |        |     |
570  * +----+       +-----+        +-----+
571  *   ^                           ^ |
572  *   |          +-----+          | |
573  *   +----------|  R  |----------+ |
574  *              |     |<-----------+
575  *              +-----+
576  *
577  * Key:  ---X-->  HEAD flag set in pointer
578  *         T      Tail page
579  *         R      Reader page
580  *         N      Next page
581  *
582  * (see __rb_reserve_next() to see where this happens)
583  *
584  *  What the above shows is that the reader just swapped out
585  *  the reader page with a page in the buffer, but before it
586  *  could make the new header point back to the new page added
587  *  it was preempted by a writer. The writer moved forward onto
588  *  the new page added by the reader and is about to move forward
589  *  again.
590  *
591  *  You can see, it is legitimate for the previous pointer of
592  *  the head (or any page) not to point back to itself. But only
593  *  temporarially.
594  */
595 
596 #define RB_PAGE_NORMAL		0UL
597 #define RB_PAGE_HEAD		1UL
598 #define RB_PAGE_UPDATE		2UL
599 
600 
601 #define RB_FLAG_MASK		3UL
602 
603 /* PAGE_MOVED is not part of the mask */
604 #define RB_PAGE_MOVED		4UL
605 
606 /*
607  * rb_list_head - remove any bit
608  */
609 static struct list_head *rb_list_head(struct list_head *list)
610 {
611 	unsigned long val = (unsigned long)list;
612 
613 	return (struct list_head *)(val & ~RB_FLAG_MASK);
614 }
615 
616 /*
617  * rb_is_head_page - test if the given page is the head page
618  *
619  * Because the reader may move the head_page pointer, we can
620  * not trust what the head page is (it may be pointing to
621  * the reader page). But if the next page is a header page,
622  * its flags will be non zero.
623  */
624 static int inline
625 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
626 		struct buffer_page *page, struct list_head *list)
627 {
628 	unsigned long val;
629 
630 	val = (unsigned long)list->next;
631 
632 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
633 		return RB_PAGE_MOVED;
634 
635 	return val & RB_FLAG_MASK;
636 }
637 
638 /*
639  * rb_is_reader_page
640  *
641  * The unique thing about the reader page, is that, if the
642  * writer is ever on it, the previous pointer never points
643  * back to the reader page.
644  */
645 static int rb_is_reader_page(struct buffer_page *page)
646 {
647 	struct list_head *list = page->list.prev;
648 
649 	return rb_list_head(list->next) != &page->list;
650 }
651 
652 /*
653  * rb_set_list_to_head - set a list_head to be pointing to head.
654  */
655 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
656 				struct list_head *list)
657 {
658 	unsigned long *ptr;
659 
660 	ptr = (unsigned long *)&list->next;
661 	*ptr |= RB_PAGE_HEAD;
662 	*ptr &= ~RB_PAGE_UPDATE;
663 }
664 
665 /*
666  * rb_head_page_activate - sets up head page
667  */
668 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
669 {
670 	struct buffer_page *head;
671 
672 	head = cpu_buffer->head_page;
673 	if (!head)
674 		return;
675 
676 	/*
677 	 * Set the previous list pointer to have the HEAD flag.
678 	 */
679 	rb_set_list_to_head(cpu_buffer, head->list.prev);
680 }
681 
682 static void rb_list_head_clear(struct list_head *list)
683 {
684 	unsigned long *ptr = (unsigned long *)&list->next;
685 
686 	*ptr &= ~RB_FLAG_MASK;
687 }
688 
689 /*
690  * rb_head_page_dactivate - clears head page ptr (for free list)
691  */
692 static void
693 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
694 {
695 	struct list_head *hd;
696 
697 	/* Go through the whole list and clear any pointers found. */
698 	rb_list_head_clear(cpu_buffer->pages);
699 
700 	list_for_each(hd, cpu_buffer->pages)
701 		rb_list_head_clear(hd);
702 }
703 
704 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
705 			    struct buffer_page *head,
706 			    struct buffer_page *prev,
707 			    int old_flag, int new_flag)
708 {
709 	struct list_head *list;
710 	unsigned long val = (unsigned long)&head->list;
711 	unsigned long ret;
712 
713 	list = &prev->list;
714 
715 	val &= ~RB_FLAG_MASK;
716 
717 	ret = cmpxchg((unsigned long *)&list->next,
718 		      val | old_flag, val | new_flag);
719 
720 	/* check if the reader took the page */
721 	if ((ret & ~RB_FLAG_MASK) != val)
722 		return RB_PAGE_MOVED;
723 
724 	return ret & RB_FLAG_MASK;
725 }
726 
727 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
728 				   struct buffer_page *head,
729 				   struct buffer_page *prev,
730 				   int old_flag)
731 {
732 	return rb_head_page_set(cpu_buffer, head, prev,
733 				old_flag, RB_PAGE_UPDATE);
734 }
735 
736 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
737 				 struct buffer_page *head,
738 				 struct buffer_page *prev,
739 				 int old_flag)
740 {
741 	return rb_head_page_set(cpu_buffer, head, prev,
742 				old_flag, RB_PAGE_HEAD);
743 }
744 
745 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
746 				   struct buffer_page *head,
747 				   struct buffer_page *prev,
748 				   int old_flag)
749 {
750 	return rb_head_page_set(cpu_buffer, head, prev,
751 				old_flag, RB_PAGE_NORMAL);
752 }
753 
754 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
755 			       struct buffer_page **bpage)
756 {
757 	struct list_head *p = rb_list_head((*bpage)->list.next);
758 
759 	*bpage = list_entry(p, struct buffer_page, list);
760 }
761 
762 static struct buffer_page *
763 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
764 {
765 	struct buffer_page *head;
766 	struct buffer_page *page;
767 	struct list_head *list;
768 	int i;
769 
770 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
771 		return NULL;
772 
773 	/* sanity check */
774 	list = cpu_buffer->pages;
775 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
776 		return NULL;
777 
778 	page = head = cpu_buffer->head_page;
779 	/*
780 	 * It is possible that the writer moves the header behind
781 	 * where we started, and we miss in one loop.
782 	 * A second loop should grab the header, but we'll do
783 	 * three loops just because I'm paranoid.
784 	 */
785 	for (i = 0; i < 3; i++) {
786 		do {
787 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
788 				cpu_buffer->head_page = page;
789 				return page;
790 			}
791 			rb_inc_page(cpu_buffer, &page);
792 		} while (page != head);
793 	}
794 
795 	RB_WARN_ON(cpu_buffer, 1);
796 
797 	return NULL;
798 }
799 
800 static int rb_head_page_replace(struct buffer_page *old,
801 				struct buffer_page *new)
802 {
803 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
804 	unsigned long val;
805 	unsigned long ret;
806 
807 	val = *ptr & ~RB_FLAG_MASK;
808 	val |= RB_PAGE_HEAD;
809 
810 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
811 
812 	return ret == val;
813 }
814 
815 /*
816  * rb_tail_page_update - move the tail page forward
817  *
818  * Returns 1 if moved tail page, 0 if someone else did.
819  */
820 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
821 			       struct buffer_page *tail_page,
822 			       struct buffer_page *next_page)
823 {
824 	struct buffer_page *old_tail;
825 	unsigned long old_entries;
826 	unsigned long old_write;
827 	int ret = 0;
828 
829 	/*
830 	 * The tail page now needs to be moved forward.
831 	 *
832 	 * We need to reset the tail page, but without messing
833 	 * with possible erasing of data brought in by interrupts
834 	 * that have moved the tail page and are currently on it.
835 	 *
836 	 * We add a counter to the write field to denote this.
837 	 */
838 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
839 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
840 
841 	/*
842 	 * Just make sure we have seen our old_write and synchronize
843 	 * with any interrupts that come in.
844 	 */
845 	barrier();
846 
847 	/*
848 	 * If the tail page is still the same as what we think
849 	 * it is, then it is up to us to update the tail
850 	 * pointer.
851 	 */
852 	if (tail_page == cpu_buffer->tail_page) {
853 		/* Zero the write counter */
854 		unsigned long val = old_write & ~RB_WRITE_MASK;
855 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
856 
857 		/*
858 		 * This will only succeed if an interrupt did
859 		 * not come in and change it. In which case, we
860 		 * do not want to modify it.
861 		 *
862 		 * We add (void) to let the compiler know that we do not care
863 		 * about the return value of these functions. We use the
864 		 * cmpxchg to only update if an interrupt did not already
865 		 * do it for us. If the cmpxchg fails, we don't care.
866 		 */
867 		(void)local_cmpxchg(&next_page->write, old_write, val);
868 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
869 
870 		/*
871 		 * No need to worry about races with clearing out the commit.
872 		 * it only can increment when a commit takes place. But that
873 		 * only happens in the outer most nested commit.
874 		 */
875 		local_set(&next_page->page->commit, 0);
876 
877 		old_tail = cmpxchg(&cpu_buffer->tail_page,
878 				   tail_page, next_page);
879 
880 		if (old_tail == tail_page)
881 			ret = 1;
882 	}
883 
884 	return ret;
885 }
886 
887 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
888 			  struct buffer_page *bpage)
889 {
890 	unsigned long val = (unsigned long)bpage;
891 
892 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
893 		return 1;
894 
895 	return 0;
896 }
897 
898 /**
899  * rb_check_list - make sure a pointer to a list has the last bits zero
900  */
901 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
902 			 struct list_head *list)
903 {
904 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
905 		return 1;
906 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
907 		return 1;
908 	return 0;
909 }
910 
911 /**
912  * check_pages - integrity check of buffer pages
913  * @cpu_buffer: CPU buffer with pages to test
914  *
915  * As a safety measure we check to make sure the data pages have not
916  * been corrupted.
917  */
918 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
919 {
920 	struct list_head *head = cpu_buffer->pages;
921 	struct buffer_page *bpage, *tmp;
922 
923 	rb_head_page_deactivate(cpu_buffer);
924 
925 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
926 		return -1;
927 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
928 		return -1;
929 
930 	if (rb_check_list(cpu_buffer, head))
931 		return -1;
932 
933 	list_for_each_entry_safe(bpage, tmp, head, list) {
934 		if (RB_WARN_ON(cpu_buffer,
935 			       bpage->list.next->prev != &bpage->list))
936 			return -1;
937 		if (RB_WARN_ON(cpu_buffer,
938 			       bpage->list.prev->next != &bpage->list))
939 			return -1;
940 		if (rb_check_list(cpu_buffer, &bpage->list))
941 			return -1;
942 	}
943 
944 	rb_head_page_activate(cpu_buffer);
945 
946 	return 0;
947 }
948 
949 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
950 			     unsigned nr_pages)
951 {
952 	struct buffer_page *bpage, *tmp;
953 	unsigned long addr;
954 	LIST_HEAD(pages);
955 	unsigned i;
956 
957 	WARN_ON(!nr_pages);
958 
959 	for (i = 0; i < nr_pages; i++) {
960 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
961 				    GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
962 		if (!bpage)
963 			goto free_pages;
964 
965 		rb_check_bpage(cpu_buffer, bpage);
966 
967 		list_add(&bpage->list, &pages);
968 
969 		addr = __get_free_page(GFP_KERNEL);
970 		if (!addr)
971 			goto free_pages;
972 		bpage->page = (void *)addr;
973 		rb_init_page(bpage->page);
974 	}
975 
976 	/*
977 	 * The ring buffer page list is a circular list that does not
978 	 * start and end with a list head. All page list items point to
979 	 * other pages.
980 	 */
981 	cpu_buffer->pages = pages.next;
982 	list_del(&pages);
983 
984 	rb_check_pages(cpu_buffer);
985 
986 	return 0;
987 
988  free_pages:
989 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
990 		list_del_init(&bpage->list);
991 		free_buffer_page(bpage);
992 	}
993 	return -ENOMEM;
994 }
995 
996 static struct ring_buffer_per_cpu *
997 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
998 {
999 	struct ring_buffer_per_cpu *cpu_buffer;
1000 	struct buffer_page *bpage;
1001 	unsigned long addr;
1002 	int ret;
1003 
1004 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1005 				  GFP_KERNEL, cpu_to_node(cpu));
1006 	if (!cpu_buffer)
1007 		return NULL;
1008 
1009 	cpu_buffer->cpu = cpu;
1010 	cpu_buffer->buffer = buffer;
1011 	spin_lock_init(&cpu_buffer->reader_lock);
1012 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1013 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1014 
1015 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1016 			    GFP_KERNEL, cpu_to_node(cpu));
1017 	if (!bpage)
1018 		goto fail_free_buffer;
1019 
1020 	rb_check_bpage(cpu_buffer, bpage);
1021 
1022 	cpu_buffer->reader_page = bpage;
1023 	addr = __get_free_page(GFP_KERNEL);
1024 	if (!addr)
1025 		goto fail_free_reader;
1026 	bpage->page = (void *)addr;
1027 	rb_init_page(bpage->page);
1028 
1029 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1030 
1031 	ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1032 	if (ret < 0)
1033 		goto fail_free_reader;
1034 
1035 	cpu_buffer->head_page
1036 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1037 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1038 
1039 	rb_head_page_activate(cpu_buffer);
1040 
1041 	return cpu_buffer;
1042 
1043  fail_free_reader:
1044 	free_buffer_page(cpu_buffer->reader_page);
1045 
1046  fail_free_buffer:
1047 	kfree(cpu_buffer);
1048 	return NULL;
1049 }
1050 
1051 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1052 {
1053 	struct list_head *head = cpu_buffer->pages;
1054 	struct buffer_page *bpage, *tmp;
1055 
1056 	free_buffer_page(cpu_buffer->reader_page);
1057 
1058 	rb_head_page_deactivate(cpu_buffer);
1059 
1060 	if (head) {
1061 		list_for_each_entry_safe(bpage, tmp, head, list) {
1062 			list_del_init(&bpage->list);
1063 			free_buffer_page(bpage);
1064 		}
1065 		bpage = list_entry(head, struct buffer_page, list);
1066 		free_buffer_page(bpage);
1067 	}
1068 
1069 	kfree(cpu_buffer);
1070 }
1071 
1072 #ifdef CONFIG_HOTPLUG_CPU
1073 static int rb_cpu_notify(struct notifier_block *self,
1074 			 unsigned long action, void *hcpu);
1075 #endif
1076 
1077 /**
1078  * ring_buffer_alloc - allocate a new ring_buffer
1079  * @size: the size in bytes per cpu that is needed.
1080  * @flags: attributes to set for the ring buffer.
1081  *
1082  * Currently the only flag that is available is the RB_FL_OVERWRITE
1083  * flag. This flag means that the buffer will overwrite old data
1084  * when the buffer wraps. If this flag is not set, the buffer will
1085  * drop data when the tail hits the head.
1086  */
1087 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1088 					struct lock_class_key *key)
1089 {
1090 	struct ring_buffer *buffer;
1091 	int bsize;
1092 	int cpu;
1093 
1094 	/* keep it in its own cache line */
1095 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1096 			 GFP_KERNEL);
1097 	if (!buffer)
1098 		return NULL;
1099 
1100 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1101 		goto fail_free_buffer;
1102 
1103 	buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1104 	buffer->flags = flags;
1105 	buffer->clock = trace_clock_local;
1106 	buffer->reader_lock_key = key;
1107 
1108 	/* need at least two pages */
1109 	if (buffer->pages < 2)
1110 		buffer->pages = 2;
1111 
1112 	/*
1113 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1114 	 * in early initcall, it will not be notified of secondary cpus.
1115 	 * In that off case, we need to allocate for all possible cpus.
1116 	 */
1117 #ifdef CONFIG_HOTPLUG_CPU
1118 	get_online_cpus();
1119 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1120 #else
1121 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1122 #endif
1123 	buffer->cpus = nr_cpu_ids;
1124 
1125 	bsize = sizeof(void *) * nr_cpu_ids;
1126 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1127 				  GFP_KERNEL);
1128 	if (!buffer->buffers)
1129 		goto fail_free_cpumask;
1130 
1131 	for_each_buffer_cpu(buffer, cpu) {
1132 		buffer->buffers[cpu] =
1133 			rb_allocate_cpu_buffer(buffer, cpu);
1134 		if (!buffer->buffers[cpu])
1135 			goto fail_free_buffers;
1136 	}
1137 
1138 #ifdef CONFIG_HOTPLUG_CPU
1139 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1140 	buffer->cpu_notify.priority = 0;
1141 	register_cpu_notifier(&buffer->cpu_notify);
1142 #endif
1143 
1144 	put_online_cpus();
1145 	mutex_init(&buffer->mutex);
1146 
1147 	return buffer;
1148 
1149  fail_free_buffers:
1150 	for_each_buffer_cpu(buffer, cpu) {
1151 		if (buffer->buffers[cpu])
1152 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1153 	}
1154 	kfree(buffer->buffers);
1155 
1156  fail_free_cpumask:
1157 	free_cpumask_var(buffer->cpumask);
1158 	put_online_cpus();
1159 
1160  fail_free_buffer:
1161 	kfree(buffer);
1162 	return NULL;
1163 }
1164 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1165 
1166 /**
1167  * ring_buffer_free - free a ring buffer.
1168  * @buffer: the buffer to free.
1169  */
1170 void
1171 ring_buffer_free(struct ring_buffer *buffer)
1172 {
1173 	int cpu;
1174 
1175 	get_online_cpus();
1176 
1177 #ifdef CONFIG_HOTPLUG_CPU
1178 	unregister_cpu_notifier(&buffer->cpu_notify);
1179 #endif
1180 
1181 	for_each_buffer_cpu(buffer, cpu)
1182 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1183 
1184 	put_online_cpus();
1185 
1186 	kfree(buffer->buffers);
1187 	free_cpumask_var(buffer->cpumask);
1188 
1189 	kfree(buffer);
1190 }
1191 EXPORT_SYMBOL_GPL(ring_buffer_free);
1192 
1193 void ring_buffer_set_clock(struct ring_buffer *buffer,
1194 			   u64 (*clock)(void))
1195 {
1196 	buffer->clock = clock;
1197 }
1198 
1199 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1200 
1201 static void
1202 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1203 {
1204 	struct buffer_page *bpage;
1205 	struct list_head *p;
1206 	unsigned i;
1207 
1208 	spin_lock_irq(&cpu_buffer->reader_lock);
1209 	rb_head_page_deactivate(cpu_buffer);
1210 
1211 	for (i = 0; i < nr_pages; i++) {
1212 		if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1213 			return;
1214 		p = cpu_buffer->pages->next;
1215 		bpage = list_entry(p, struct buffer_page, list);
1216 		list_del_init(&bpage->list);
1217 		free_buffer_page(bpage);
1218 	}
1219 	if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1220 		return;
1221 
1222 	rb_reset_cpu(cpu_buffer);
1223 	rb_check_pages(cpu_buffer);
1224 
1225 	spin_unlock_irq(&cpu_buffer->reader_lock);
1226 }
1227 
1228 static void
1229 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1230 		struct list_head *pages, unsigned nr_pages)
1231 {
1232 	struct buffer_page *bpage;
1233 	struct list_head *p;
1234 	unsigned i;
1235 
1236 	spin_lock_irq(&cpu_buffer->reader_lock);
1237 	rb_head_page_deactivate(cpu_buffer);
1238 
1239 	for (i = 0; i < nr_pages; i++) {
1240 		if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1241 			return;
1242 		p = pages->next;
1243 		bpage = list_entry(p, struct buffer_page, list);
1244 		list_del_init(&bpage->list);
1245 		list_add_tail(&bpage->list, cpu_buffer->pages);
1246 	}
1247 	rb_reset_cpu(cpu_buffer);
1248 	rb_check_pages(cpu_buffer);
1249 
1250 	spin_unlock_irq(&cpu_buffer->reader_lock);
1251 }
1252 
1253 /**
1254  * ring_buffer_resize - resize the ring buffer
1255  * @buffer: the buffer to resize.
1256  * @size: the new size.
1257  *
1258  * Minimum size is 2 * BUF_PAGE_SIZE.
1259  *
1260  * Returns -1 on failure.
1261  */
1262 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1263 {
1264 	struct ring_buffer_per_cpu *cpu_buffer;
1265 	unsigned nr_pages, rm_pages, new_pages;
1266 	struct buffer_page *bpage, *tmp;
1267 	unsigned long buffer_size;
1268 	unsigned long addr;
1269 	LIST_HEAD(pages);
1270 	int i, cpu;
1271 
1272 	/*
1273 	 * Always succeed at resizing a non-existent buffer:
1274 	 */
1275 	if (!buffer)
1276 		return size;
1277 
1278 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1279 	size *= BUF_PAGE_SIZE;
1280 	buffer_size = buffer->pages * BUF_PAGE_SIZE;
1281 
1282 	/* we need a minimum of two pages */
1283 	if (size < BUF_PAGE_SIZE * 2)
1284 		size = BUF_PAGE_SIZE * 2;
1285 
1286 	if (size == buffer_size)
1287 		return size;
1288 
1289 	atomic_inc(&buffer->record_disabled);
1290 
1291 	/* Make sure all writers are done with this buffer. */
1292 	synchronize_sched();
1293 
1294 	mutex_lock(&buffer->mutex);
1295 	get_online_cpus();
1296 
1297 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1298 
1299 	if (size < buffer_size) {
1300 
1301 		/* easy case, just free pages */
1302 		if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1303 			goto out_fail;
1304 
1305 		rm_pages = buffer->pages - nr_pages;
1306 
1307 		for_each_buffer_cpu(buffer, cpu) {
1308 			cpu_buffer = buffer->buffers[cpu];
1309 			rb_remove_pages(cpu_buffer, rm_pages);
1310 		}
1311 		goto out;
1312 	}
1313 
1314 	/*
1315 	 * This is a bit more difficult. We only want to add pages
1316 	 * when we can allocate enough for all CPUs. We do this
1317 	 * by allocating all the pages and storing them on a local
1318 	 * link list. If we succeed in our allocation, then we
1319 	 * add these pages to the cpu_buffers. Otherwise we just free
1320 	 * them all and return -ENOMEM;
1321 	 */
1322 	if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1323 		goto out_fail;
1324 
1325 	new_pages = nr_pages - buffer->pages;
1326 
1327 	for_each_buffer_cpu(buffer, cpu) {
1328 		for (i = 0; i < new_pages; i++) {
1329 			bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1330 						  cache_line_size()),
1331 					    GFP_KERNEL, cpu_to_node(cpu));
1332 			if (!bpage)
1333 				goto free_pages;
1334 			list_add(&bpage->list, &pages);
1335 			addr = __get_free_page(GFP_KERNEL);
1336 			if (!addr)
1337 				goto free_pages;
1338 			bpage->page = (void *)addr;
1339 			rb_init_page(bpage->page);
1340 		}
1341 	}
1342 
1343 	for_each_buffer_cpu(buffer, cpu) {
1344 		cpu_buffer = buffer->buffers[cpu];
1345 		rb_insert_pages(cpu_buffer, &pages, new_pages);
1346 	}
1347 
1348 	if (RB_WARN_ON(buffer, !list_empty(&pages)))
1349 		goto out_fail;
1350 
1351  out:
1352 	buffer->pages = nr_pages;
1353 	put_online_cpus();
1354 	mutex_unlock(&buffer->mutex);
1355 
1356 	atomic_dec(&buffer->record_disabled);
1357 
1358 	return size;
1359 
1360  free_pages:
1361 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
1362 		list_del_init(&bpage->list);
1363 		free_buffer_page(bpage);
1364 	}
1365 	put_online_cpus();
1366 	mutex_unlock(&buffer->mutex);
1367 	atomic_dec(&buffer->record_disabled);
1368 	return -ENOMEM;
1369 
1370 	/*
1371 	 * Something went totally wrong, and we are too paranoid
1372 	 * to even clean up the mess.
1373 	 */
1374  out_fail:
1375 	put_online_cpus();
1376 	mutex_unlock(&buffer->mutex);
1377 	atomic_dec(&buffer->record_disabled);
1378 	return -1;
1379 }
1380 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1381 
1382 static inline void *
1383 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1384 {
1385 	return bpage->data + index;
1386 }
1387 
1388 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1389 {
1390 	return bpage->page->data + index;
1391 }
1392 
1393 static inline struct ring_buffer_event *
1394 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1395 {
1396 	return __rb_page_index(cpu_buffer->reader_page,
1397 			       cpu_buffer->reader_page->read);
1398 }
1399 
1400 static inline struct ring_buffer_event *
1401 rb_iter_head_event(struct ring_buffer_iter *iter)
1402 {
1403 	return __rb_page_index(iter->head_page, iter->head);
1404 }
1405 
1406 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1407 {
1408 	return local_read(&bpage->write) & RB_WRITE_MASK;
1409 }
1410 
1411 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1412 {
1413 	return local_read(&bpage->page->commit);
1414 }
1415 
1416 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1417 {
1418 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1419 }
1420 
1421 /* Size is determined by what has been commited */
1422 static inline unsigned rb_page_size(struct buffer_page *bpage)
1423 {
1424 	return rb_page_commit(bpage);
1425 }
1426 
1427 static inline unsigned
1428 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1429 {
1430 	return rb_page_commit(cpu_buffer->commit_page);
1431 }
1432 
1433 static inline unsigned
1434 rb_event_index(struct ring_buffer_event *event)
1435 {
1436 	unsigned long addr = (unsigned long)event;
1437 
1438 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1439 }
1440 
1441 static inline int
1442 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1443 		   struct ring_buffer_event *event)
1444 {
1445 	unsigned long addr = (unsigned long)event;
1446 	unsigned long index;
1447 
1448 	index = rb_event_index(event);
1449 	addr &= PAGE_MASK;
1450 
1451 	return cpu_buffer->commit_page->page == (void *)addr &&
1452 		rb_commit_index(cpu_buffer) == index;
1453 }
1454 
1455 static void
1456 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1457 {
1458 	unsigned long max_count;
1459 
1460 	/*
1461 	 * We only race with interrupts and NMIs on this CPU.
1462 	 * If we own the commit event, then we can commit
1463 	 * all others that interrupted us, since the interruptions
1464 	 * are in stack format (they finish before they come
1465 	 * back to us). This allows us to do a simple loop to
1466 	 * assign the commit to the tail.
1467 	 */
1468  again:
1469 	max_count = cpu_buffer->buffer->pages * 100;
1470 
1471 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1472 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1473 			return;
1474 		if (RB_WARN_ON(cpu_buffer,
1475 			       rb_is_reader_page(cpu_buffer->tail_page)))
1476 			return;
1477 		local_set(&cpu_buffer->commit_page->page->commit,
1478 			  rb_page_write(cpu_buffer->commit_page));
1479 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1480 		cpu_buffer->write_stamp =
1481 			cpu_buffer->commit_page->page->time_stamp;
1482 		/* add barrier to keep gcc from optimizing too much */
1483 		barrier();
1484 	}
1485 	while (rb_commit_index(cpu_buffer) !=
1486 	       rb_page_write(cpu_buffer->commit_page)) {
1487 
1488 		local_set(&cpu_buffer->commit_page->page->commit,
1489 			  rb_page_write(cpu_buffer->commit_page));
1490 		RB_WARN_ON(cpu_buffer,
1491 			   local_read(&cpu_buffer->commit_page->page->commit) &
1492 			   ~RB_WRITE_MASK);
1493 		barrier();
1494 	}
1495 
1496 	/* again, keep gcc from optimizing */
1497 	barrier();
1498 
1499 	/*
1500 	 * If an interrupt came in just after the first while loop
1501 	 * and pushed the tail page forward, we will be left with
1502 	 * a dangling commit that will never go forward.
1503 	 */
1504 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1505 		goto again;
1506 }
1507 
1508 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1509 {
1510 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1511 	cpu_buffer->reader_page->read = 0;
1512 }
1513 
1514 static void rb_inc_iter(struct ring_buffer_iter *iter)
1515 {
1516 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1517 
1518 	/*
1519 	 * The iterator could be on the reader page (it starts there).
1520 	 * But the head could have moved, since the reader was
1521 	 * found. Check for this case and assign the iterator
1522 	 * to the head page instead of next.
1523 	 */
1524 	if (iter->head_page == cpu_buffer->reader_page)
1525 		iter->head_page = rb_set_head_page(cpu_buffer);
1526 	else
1527 		rb_inc_page(cpu_buffer, &iter->head_page);
1528 
1529 	iter->read_stamp = iter->head_page->page->time_stamp;
1530 	iter->head = 0;
1531 }
1532 
1533 /**
1534  * ring_buffer_update_event - update event type and data
1535  * @event: the even to update
1536  * @type: the type of event
1537  * @length: the size of the event field in the ring buffer
1538  *
1539  * Update the type and data fields of the event. The length
1540  * is the actual size that is written to the ring buffer,
1541  * and with this, we can determine what to place into the
1542  * data field.
1543  */
1544 static void
1545 rb_update_event(struct ring_buffer_event *event,
1546 			 unsigned type, unsigned length)
1547 {
1548 	event->type_len = type;
1549 
1550 	switch (type) {
1551 
1552 	case RINGBUF_TYPE_PADDING:
1553 	case RINGBUF_TYPE_TIME_EXTEND:
1554 	case RINGBUF_TYPE_TIME_STAMP:
1555 		break;
1556 
1557 	case 0:
1558 		length -= RB_EVNT_HDR_SIZE;
1559 		if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1560 			event->array[0] = length;
1561 		else
1562 			event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1563 		break;
1564 	default:
1565 		BUG();
1566 	}
1567 }
1568 
1569 /*
1570  * rb_handle_head_page - writer hit the head page
1571  *
1572  * Returns: +1 to retry page
1573  *           0 to continue
1574  *          -1 on error
1575  */
1576 static int
1577 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1578 		    struct buffer_page *tail_page,
1579 		    struct buffer_page *next_page)
1580 {
1581 	struct buffer_page *new_head;
1582 	int entries;
1583 	int type;
1584 	int ret;
1585 
1586 	entries = rb_page_entries(next_page);
1587 
1588 	/*
1589 	 * The hard part is here. We need to move the head
1590 	 * forward, and protect against both readers on
1591 	 * other CPUs and writers coming in via interrupts.
1592 	 */
1593 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1594 				       RB_PAGE_HEAD);
1595 
1596 	/*
1597 	 * type can be one of four:
1598 	 *  NORMAL - an interrupt already moved it for us
1599 	 *  HEAD   - we are the first to get here.
1600 	 *  UPDATE - we are the interrupt interrupting
1601 	 *           a current move.
1602 	 *  MOVED  - a reader on another CPU moved the next
1603 	 *           pointer to its reader page. Give up
1604 	 *           and try again.
1605 	 */
1606 
1607 	switch (type) {
1608 	case RB_PAGE_HEAD:
1609 		/*
1610 		 * We changed the head to UPDATE, thus
1611 		 * it is our responsibility to update
1612 		 * the counters.
1613 		 */
1614 		local_add(entries, &cpu_buffer->overrun);
1615 
1616 		/*
1617 		 * The entries will be zeroed out when we move the
1618 		 * tail page.
1619 		 */
1620 
1621 		/* still more to do */
1622 		break;
1623 
1624 	case RB_PAGE_UPDATE:
1625 		/*
1626 		 * This is an interrupt that interrupt the
1627 		 * previous update. Still more to do.
1628 		 */
1629 		break;
1630 	case RB_PAGE_NORMAL:
1631 		/*
1632 		 * An interrupt came in before the update
1633 		 * and processed this for us.
1634 		 * Nothing left to do.
1635 		 */
1636 		return 1;
1637 	case RB_PAGE_MOVED:
1638 		/*
1639 		 * The reader is on another CPU and just did
1640 		 * a swap with our next_page.
1641 		 * Try again.
1642 		 */
1643 		return 1;
1644 	default:
1645 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1646 		return -1;
1647 	}
1648 
1649 	/*
1650 	 * Now that we are here, the old head pointer is
1651 	 * set to UPDATE. This will keep the reader from
1652 	 * swapping the head page with the reader page.
1653 	 * The reader (on another CPU) will spin till
1654 	 * we are finished.
1655 	 *
1656 	 * We just need to protect against interrupts
1657 	 * doing the job. We will set the next pointer
1658 	 * to HEAD. After that, we set the old pointer
1659 	 * to NORMAL, but only if it was HEAD before.
1660 	 * otherwise we are an interrupt, and only
1661 	 * want the outer most commit to reset it.
1662 	 */
1663 	new_head = next_page;
1664 	rb_inc_page(cpu_buffer, &new_head);
1665 
1666 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1667 				    RB_PAGE_NORMAL);
1668 
1669 	/*
1670 	 * Valid returns are:
1671 	 *  HEAD   - an interrupt came in and already set it.
1672 	 *  NORMAL - One of two things:
1673 	 *            1) We really set it.
1674 	 *            2) A bunch of interrupts came in and moved
1675 	 *               the page forward again.
1676 	 */
1677 	switch (ret) {
1678 	case RB_PAGE_HEAD:
1679 	case RB_PAGE_NORMAL:
1680 		/* OK */
1681 		break;
1682 	default:
1683 		RB_WARN_ON(cpu_buffer, 1);
1684 		return -1;
1685 	}
1686 
1687 	/*
1688 	 * It is possible that an interrupt came in,
1689 	 * set the head up, then more interrupts came in
1690 	 * and moved it again. When we get back here,
1691 	 * the page would have been set to NORMAL but we
1692 	 * just set it back to HEAD.
1693 	 *
1694 	 * How do you detect this? Well, if that happened
1695 	 * the tail page would have moved.
1696 	 */
1697 	if (ret == RB_PAGE_NORMAL) {
1698 		/*
1699 		 * If the tail had moved passed next, then we need
1700 		 * to reset the pointer.
1701 		 */
1702 		if (cpu_buffer->tail_page != tail_page &&
1703 		    cpu_buffer->tail_page != next_page)
1704 			rb_head_page_set_normal(cpu_buffer, new_head,
1705 						next_page,
1706 						RB_PAGE_HEAD);
1707 	}
1708 
1709 	/*
1710 	 * If this was the outer most commit (the one that
1711 	 * changed the original pointer from HEAD to UPDATE),
1712 	 * then it is up to us to reset it to NORMAL.
1713 	 */
1714 	if (type == RB_PAGE_HEAD) {
1715 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
1716 					      tail_page,
1717 					      RB_PAGE_UPDATE);
1718 		if (RB_WARN_ON(cpu_buffer,
1719 			       ret != RB_PAGE_UPDATE))
1720 			return -1;
1721 	}
1722 
1723 	return 0;
1724 }
1725 
1726 static unsigned rb_calculate_event_length(unsigned length)
1727 {
1728 	struct ring_buffer_event event; /* Used only for sizeof array */
1729 
1730 	/* zero length can cause confusions */
1731 	if (!length)
1732 		length = 1;
1733 
1734 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1735 		length += sizeof(event.array[0]);
1736 
1737 	length += RB_EVNT_HDR_SIZE;
1738 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
1739 
1740 	return length;
1741 }
1742 
1743 static inline void
1744 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1745 	      struct buffer_page *tail_page,
1746 	      unsigned long tail, unsigned long length)
1747 {
1748 	struct ring_buffer_event *event;
1749 
1750 	/*
1751 	 * Only the event that crossed the page boundary
1752 	 * must fill the old tail_page with padding.
1753 	 */
1754 	if (tail >= BUF_PAGE_SIZE) {
1755 		local_sub(length, &tail_page->write);
1756 		return;
1757 	}
1758 
1759 	event = __rb_page_index(tail_page, tail);
1760 	kmemcheck_annotate_bitfield(event, bitfield);
1761 
1762 	/*
1763 	 * If this event is bigger than the minimum size, then
1764 	 * we need to be careful that we don't subtract the
1765 	 * write counter enough to allow another writer to slip
1766 	 * in on this page.
1767 	 * We put in a discarded commit instead, to make sure
1768 	 * that this space is not used again.
1769 	 *
1770 	 * If we are less than the minimum size, we don't need to
1771 	 * worry about it.
1772 	 */
1773 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1774 		/* No room for any events */
1775 
1776 		/* Mark the rest of the page with padding */
1777 		rb_event_set_padding(event);
1778 
1779 		/* Set the write back to the previous setting */
1780 		local_sub(length, &tail_page->write);
1781 		return;
1782 	}
1783 
1784 	/* Put in a discarded event */
1785 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1786 	event->type_len = RINGBUF_TYPE_PADDING;
1787 	/* time delta must be non zero */
1788 	event->time_delta = 1;
1789 
1790 	/* Set write to end of buffer */
1791 	length = (tail + length) - BUF_PAGE_SIZE;
1792 	local_sub(length, &tail_page->write);
1793 }
1794 
1795 static struct ring_buffer_event *
1796 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1797 	     unsigned long length, unsigned long tail,
1798 	     struct buffer_page *tail_page, u64 *ts)
1799 {
1800 	struct buffer_page *commit_page = cpu_buffer->commit_page;
1801 	struct ring_buffer *buffer = cpu_buffer->buffer;
1802 	struct buffer_page *next_page;
1803 	int ret;
1804 
1805 	next_page = tail_page;
1806 
1807 	rb_inc_page(cpu_buffer, &next_page);
1808 
1809 	/*
1810 	 * If for some reason, we had an interrupt storm that made
1811 	 * it all the way around the buffer, bail, and warn
1812 	 * about it.
1813 	 */
1814 	if (unlikely(next_page == commit_page)) {
1815 		local_inc(&cpu_buffer->commit_overrun);
1816 		goto out_reset;
1817 	}
1818 
1819 	/*
1820 	 * This is where the fun begins!
1821 	 *
1822 	 * We are fighting against races between a reader that
1823 	 * could be on another CPU trying to swap its reader
1824 	 * page with the buffer head.
1825 	 *
1826 	 * We are also fighting against interrupts coming in and
1827 	 * moving the head or tail on us as well.
1828 	 *
1829 	 * If the next page is the head page then we have filled
1830 	 * the buffer, unless the commit page is still on the
1831 	 * reader page.
1832 	 */
1833 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1834 
1835 		/*
1836 		 * If the commit is not on the reader page, then
1837 		 * move the header page.
1838 		 */
1839 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1840 			/*
1841 			 * If we are not in overwrite mode,
1842 			 * this is easy, just stop here.
1843 			 */
1844 			if (!(buffer->flags & RB_FL_OVERWRITE))
1845 				goto out_reset;
1846 
1847 			ret = rb_handle_head_page(cpu_buffer,
1848 						  tail_page,
1849 						  next_page);
1850 			if (ret < 0)
1851 				goto out_reset;
1852 			if (ret)
1853 				goto out_again;
1854 		} else {
1855 			/*
1856 			 * We need to be careful here too. The
1857 			 * commit page could still be on the reader
1858 			 * page. We could have a small buffer, and
1859 			 * have filled up the buffer with events
1860 			 * from interrupts and such, and wrapped.
1861 			 *
1862 			 * Note, if the tail page is also the on the
1863 			 * reader_page, we let it move out.
1864 			 */
1865 			if (unlikely((cpu_buffer->commit_page !=
1866 				      cpu_buffer->tail_page) &&
1867 				     (cpu_buffer->commit_page ==
1868 				      cpu_buffer->reader_page))) {
1869 				local_inc(&cpu_buffer->commit_overrun);
1870 				goto out_reset;
1871 			}
1872 		}
1873 	}
1874 
1875 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1876 	if (ret) {
1877 		/*
1878 		 * Nested commits always have zero deltas, so
1879 		 * just reread the time stamp
1880 		 */
1881 		*ts = rb_time_stamp(buffer);
1882 		next_page->page->time_stamp = *ts;
1883 	}
1884 
1885  out_again:
1886 
1887 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
1888 
1889 	/* fail and let the caller try again */
1890 	return ERR_PTR(-EAGAIN);
1891 
1892  out_reset:
1893 	/* reset write */
1894 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
1895 
1896 	return NULL;
1897 }
1898 
1899 static struct ring_buffer_event *
1900 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1901 		  unsigned type, unsigned long length, u64 *ts)
1902 {
1903 	struct buffer_page *tail_page;
1904 	struct ring_buffer_event *event;
1905 	unsigned long tail, write;
1906 
1907 	tail_page = cpu_buffer->tail_page;
1908 	write = local_add_return(length, &tail_page->write);
1909 
1910 	/* set write to only the index of the write */
1911 	write &= RB_WRITE_MASK;
1912 	tail = write - length;
1913 
1914 	/* See if we shot pass the end of this buffer page */
1915 	if (write > BUF_PAGE_SIZE)
1916 		return rb_move_tail(cpu_buffer, length, tail,
1917 				    tail_page, ts);
1918 
1919 	/* We reserved something on the buffer */
1920 
1921 	event = __rb_page_index(tail_page, tail);
1922 	kmemcheck_annotate_bitfield(event, bitfield);
1923 	rb_update_event(event, type, length);
1924 
1925 	/* The passed in type is zero for DATA */
1926 	if (likely(!type))
1927 		local_inc(&tail_page->entries);
1928 
1929 	/*
1930 	 * If this is the first commit on the page, then update
1931 	 * its timestamp.
1932 	 */
1933 	if (!tail)
1934 		tail_page->page->time_stamp = *ts;
1935 
1936 	return event;
1937 }
1938 
1939 static inline int
1940 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1941 		  struct ring_buffer_event *event)
1942 {
1943 	unsigned long new_index, old_index;
1944 	struct buffer_page *bpage;
1945 	unsigned long index;
1946 	unsigned long addr;
1947 
1948 	new_index = rb_event_index(event);
1949 	old_index = new_index + rb_event_length(event);
1950 	addr = (unsigned long)event;
1951 	addr &= PAGE_MASK;
1952 
1953 	bpage = cpu_buffer->tail_page;
1954 
1955 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1956 		unsigned long write_mask =
1957 			local_read(&bpage->write) & ~RB_WRITE_MASK;
1958 		/*
1959 		 * This is on the tail page. It is possible that
1960 		 * a write could come in and move the tail page
1961 		 * and write to the next page. That is fine
1962 		 * because we just shorten what is on this page.
1963 		 */
1964 		old_index += write_mask;
1965 		new_index += write_mask;
1966 		index = local_cmpxchg(&bpage->write, old_index, new_index);
1967 		if (index == old_index)
1968 			return 1;
1969 	}
1970 
1971 	/* could not discard */
1972 	return 0;
1973 }
1974 
1975 static int
1976 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1977 		  u64 *ts, u64 *delta)
1978 {
1979 	struct ring_buffer_event *event;
1980 	static int once;
1981 	int ret;
1982 
1983 	if (unlikely(*delta > (1ULL << 59) && !once++)) {
1984 		printk(KERN_WARNING "Delta way too big! %llu"
1985 		       " ts=%llu write stamp = %llu\n",
1986 		       (unsigned long long)*delta,
1987 		       (unsigned long long)*ts,
1988 		       (unsigned long long)cpu_buffer->write_stamp);
1989 		WARN_ON(1);
1990 	}
1991 
1992 	/*
1993 	 * The delta is too big, we to add a
1994 	 * new timestamp.
1995 	 */
1996 	event = __rb_reserve_next(cpu_buffer,
1997 				  RINGBUF_TYPE_TIME_EXTEND,
1998 				  RB_LEN_TIME_EXTEND,
1999 				  ts);
2000 	if (!event)
2001 		return -EBUSY;
2002 
2003 	if (PTR_ERR(event) == -EAGAIN)
2004 		return -EAGAIN;
2005 
2006 	/* Only a commited time event can update the write stamp */
2007 	if (rb_event_is_commit(cpu_buffer, event)) {
2008 		/*
2009 		 * If this is the first on the page, then it was
2010 		 * updated with the page itself. Try to discard it
2011 		 * and if we can't just make it zero.
2012 		 */
2013 		if (rb_event_index(event)) {
2014 			event->time_delta = *delta & TS_MASK;
2015 			event->array[0] = *delta >> TS_SHIFT;
2016 		} else {
2017 			/* try to discard, since we do not need this */
2018 			if (!rb_try_to_discard(cpu_buffer, event)) {
2019 				/* nope, just zero it */
2020 				event->time_delta = 0;
2021 				event->array[0] = 0;
2022 			}
2023 		}
2024 		cpu_buffer->write_stamp = *ts;
2025 		/* let the caller know this was the commit */
2026 		ret = 1;
2027 	} else {
2028 		/* Try to discard the event */
2029 		if (!rb_try_to_discard(cpu_buffer, event)) {
2030 			/* Darn, this is just wasted space */
2031 			event->time_delta = 0;
2032 			event->array[0] = 0;
2033 		}
2034 		ret = 0;
2035 	}
2036 
2037 	*delta = 0;
2038 
2039 	return ret;
2040 }
2041 
2042 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2043 {
2044 	local_inc(&cpu_buffer->committing);
2045 	local_inc(&cpu_buffer->commits);
2046 }
2047 
2048 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2049 {
2050 	unsigned long commits;
2051 
2052 	if (RB_WARN_ON(cpu_buffer,
2053 		       !local_read(&cpu_buffer->committing)))
2054 		return;
2055 
2056  again:
2057 	commits = local_read(&cpu_buffer->commits);
2058 	/* synchronize with interrupts */
2059 	barrier();
2060 	if (local_read(&cpu_buffer->committing) == 1)
2061 		rb_set_commit_to_write(cpu_buffer);
2062 
2063 	local_dec(&cpu_buffer->committing);
2064 
2065 	/* synchronize with interrupts */
2066 	barrier();
2067 
2068 	/*
2069 	 * Need to account for interrupts coming in between the
2070 	 * updating of the commit page and the clearing of the
2071 	 * committing counter.
2072 	 */
2073 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2074 	    !local_read(&cpu_buffer->committing)) {
2075 		local_inc(&cpu_buffer->committing);
2076 		goto again;
2077 	}
2078 }
2079 
2080 static struct ring_buffer_event *
2081 rb_reserve_next_event(struct ring_buffer *buffer,
2082 		      struct ring_buffer_per_cpu *cpu_buffer,
2083 		      unsigned long length)
2084 {
2085 	struct ring_buffer_event *event;
2086 	u64 ts, delta = 0;
2087 	int commit = 0;
2088 	int nr_loops = 0;
2089 
2090 	rb_start_commit(cpu_buffer);
2091 
2092 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2093 	/*
2094 	 * Due to the ability to swap a cpu buffer from a buffer
2095 	 * it is possible it was swapped before we committed.
2096 	 * (committing stops a swap). We check for it here and
2097 	 * if it happened, we have to fail the write.
2098 	 */
2099 	barrier();
2100 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2101 		local_dec(&cpu_buffer->committing);
2102 		local_dec(&cpu_buffer->commits);
2103 		return NULL;
2104 	}
2105 #endif
2106 
2107 	length = rb_calculate_event_length(length);
2108  again:
2109 	/*
2110 	 * We allow for interrupts to reenter here and do a trace.
2111 	 * If one does, it will cause this original code to loop
2112 	 * back here. Even with heavy interrupts happening, this
2113 	 * should only happen a few times in a row. If this happens
2114 	 * 1000 times in a row, there must be either an interrupt
2115 	 * storm or we have something buggy.
2116 	 * Bail!
2117 	 */
2118 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2119 		goto out_fail;
2120 
2121 	ts = rb_time_stamp(cpu_buffer->buffer);
2122 
2123 	/*
2124 	 * Only the first commit can update the timestamp.
2125 	 * Yes there is a race here. If an interrupt comes in
2126 	 * just after the conditional and it traces too, then it
2127 	 * will also check the deltas. More than one timestamp may
2128 	 * also be made. But only the entry that did the actual
2129 	 * commit will be something other than zero.
2130 	 */
2131 	if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
2132 		   rb_page_write(cpu_buffer->tail_page) ==
2133 		   rb_commit_index(cpu_buffer))) {
2134 		u64 diff;
2135 
2136 		diff = ts - cpu_buffer->write_stamp;
2137 
2138 		/* make sure this diff is calculated here */
2139 		barrier();
2140 
2141 		/* Did the write stamp get updated already? */
2142 		if (unlikely(ts < cpu_buffer->write_stamp))
2143 			goto get_event;
2144 
2145 		delta = diff;
2146 		if (unlikely(test_time_stamp(delta))) {
2147 
2148 			commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
2149 			if (commit == -EBUSY)
2150 				goto out_fail;
2151 
2152 			if (commit == -EAGAIN)
2153 				goto again;
2154 
2155 			RB_WARN_ON(cpu_buffer, commit < 0);
2156 		}
2157 	}
2158 
2159  get_event:
2160 	event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
2161 	if (unlikely(PTR_ERR(event) == -EAGAIN))
2162 		goto again;
2163 
2164 	if (!event)
2165 		goto out_fail;
2166 
2167 	if (!rb_event_is_commit(cpu_buffer, event))
2168 		delta = 0;
2169 
2170 	event->time_delta = delta;
2171 
2172 	return event;
2173 
2174  out_fail:
2175 	rb_end_commit(cpu_buffer);
2176 	return NULL;
2177 }
2178 
2179 #ifdef CONFIG_TRACING
2180 
2181 #define TRACE_RECURSIVE_DEPTH 16
2182 
2183 static int trace_recursive_lock(void)
2184 {
2185 	current->trace_recursion++;
2186 
2187 	if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2188 		return 0;
2189 
2190 	/* Disable all tracing before we do anything else */
2191 	tracing_off_permanent();
2192 
2193 	printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2194 		    "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2195 		    current->trace_recursion,
2196 		    hardirq_count() >> HARDIRQ_SHIFT,
2197 		    softirq_count() >> SOFTIRQ_SHIFT,
2198 		    in_nmi());
2199 
2200 	WARN_ON_ONCE(1);
2201 	return -1;
2202 }
2203 
2204 static void trace_recursive_unlock(void)
2205 {
2206 	WARN_ON_ONCE(!current->trace_recursion);
2207 
2208 	current->trace_recursion--;
2209 }
2210 
2211 #else
2212 
2213 #define trace_recursive_lock()		(0)
2214 #define trace_recursive_unlock()	do { } while (0)
2215 
2216 #endif
2217 
2218 static DEFINE_PER_CPU(int, rb_need_resched);
2219 
2220 /**
2221  * ring_buffer_lock_reserve - reserve a part of the buffer
2222  * @buffer: the ring buffer to reserve from
2223  * @length: the length of the data to reserve (excluding event header)
2224  *
2225  * Returns a reseverd event on the ring buffer to copy directly to.
2226  * The user of this interface will need to get the body to write into
2227  * and can use the ring_buffer_event_data() interface.
2228  *
2229  * The length is the length of the data needed, not the event length
2230  * which also includes the event header.
2231  *
2232  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2233  * If NULL is returned, then nothing has been allocated or locked.
2234  */
2235 struct ring_buffer_event *
2236 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2237 {
2238 	struct ring_buffer_per_cpu *cpu_buffer;
2239 	struct ring_buffer_event *event;
2240 	int cpu, resched;
2241 
2242 	if (ring_buffer_flags != RB_BUFFERS_ON)
2243 		return NULL;
2244 
2245 	/* If we are tracing schedule, we don't want to recurse */
2246 	resched = ftrace_preempt_disable();
2247 
2248 	if (atomic_read(&buffer->record_disabled))
2249 		goto out_nocheck;
2250 
2251 	if (trace_recursive_lock())
2252 		goto out_nocheck;
2253 
2254 	cpu = raw_smp_processor_id();
2255 
2256 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2257 		goto out;
2258 
2259 	cpu_buffer = buffer->buffers[cpu];
2260 
2261 	if (atomic_read(&cpu_buffer->record_disabled))
2262 		goto out;
2263 
2264 	if (length > BUF_MAX_DATA_SIZE)
2265 		goto out;
2266 
2267 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2268 	if (!event)
2269 		goto out;
2270 
2271 	/*
2272 	 * Need to store resched state on this cpu.
2273 	 * Only the first needs to.
2274 	 */
2275 
2276 	if (preempt_count() == 1)
2277 		per_cpu(rb_need_resched, cpu) = resched;
2278 
2279 	return event;
2280 
2281  out:
2282 	trace_recursive_unlock();
2283 
2284  out_nocheck:
2285 	ftrace_preempt_enable(resched);
2286 	return NULL;
2287 }
2288 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2289 
2290 static void
2291 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2292 		      struct ring_buffer_event *event)
2293 {
2294 	/*
2295 	 * The event first in the commit queue updates the
2296 	 * time stamp.
2297 	 */
2298 	if (rb_event_is_commit(cpu_buffer, event))
2299 		cpu_buffer->write_stamp += event->time_delta;
2300 }
2301 
2302 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2303 		      struct ring_buffer_event *event)
2304 {
2305 	local_inc(&cpu_buffer->entries);
2306 	rb_update_write_stamp(cpu_buffer, event);
2307 	rb_end_commit(cpu_buffer);
2308 }
2309 
2310 /**
2311  * ring_buffer_unlock_commit - commit a reserved
2312  * @buffer: The buffer to commit to
2313  * @event: The event pointer to commit.
2314  *
2315  * This commits the data to the ring buffer, and releases any locks held.
2316  *
2317  * Must be paired with ring_buffer_lock_reserve.
2318  */
2319 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2320 			      struct ring_buffer_event *event)
2321 {
2322 	struct ring_buffer_per_cpu *cpu_buffer;
2323 	int cpu = raw_smp_processor_id();
2324 
2325 	cpu_buffer = buffer->buffers[cpu];
2326 
2327 	rb_commit(cpu_buffer, event);
2328 
2329 	trace_recursive_unlock();
2330 
2331 	/*
2332 	 * Only the last preempt count needs to restore preemption.
2333 	 */
2334 	if (preempt_count() == 1)
2335 		ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2336 	else
2337 		preempt_enable_no_resched_notrace();
2338 
2339 	return 0;
2340 }
2341 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2342 
2343 static inline void rb_event_discard(struct ring_buffer_event *event)
2344 {
2345 	/* array[0] holds the actual length for the discarded event */
2346 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2347 	event->type_len = RINGBUF_TYPE_PADDING;
2348 	/* time delta must be non zero */
2349 	if (!event->time_delta)
2350 		event->time_delta = 1;
2351 }
2352 
2353 /*
2354  * Decrement the entries to the page that an event is on.
2355  * The event does not even need to exist, only the pointer
2356  * to the page it is on. This may only be called before the commit
2357  * takes place.
2358  */
2359 static inline void
2360 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2361 		   struct ring_buffer_event *event)
2362 {
2363 	unsigned long addr = (unsigned long)event;
2364 	struct buffer_page *bpage = cpu_buffer->commit_page;
2365 	struct buffer_page *start;
2366 
2367 	addr &= PAGE_MASK;
2368 
2369 	/* Do the likely case first */
2370 	if (likely(bpage->page == (void *)addr)) {
2371 		local_dec(&bpage->entries);
2372 		return;
2373 	}
2374 
2375 	/*
2376 	 * Because the commit page may be on the reader page we
2377 	 * start with the next page and check the end loop there.
2378 	 */
2379 	rb_inc_page(cpu_buffer, &bpage);
2380 	start = bpage;
2381 	do {
2382 		if (bpage->page == (void *)addr) {
2383 			local_dec(&bpage->entries);
2384 			return;
2385 		}
2386 		rb_inc_page(cpu_buffer, &bpage);
2387 	} while (bpage != start);
2388 
2389 	/* commit not part of this buffer?? */
2390 	RB_WARN_ON(cpu_buffer, 1);
2391 }
2392 
2393 /**
2394  * ring_buffer_commit_discard - discard an event that has not been committed
2395  * @buffer: the ring buffer
2396  * @event: non committed event to discard
2397  *
2398  * Sometimes an event that is in the ring buffer needs to be ignored.
2399  * This function lets the user discard an event in the ring buffer
2400  * and then that event will not be read later.
2401  *
2402  * This function only works if it is called before the the item has been
2403  * committed. It will try to free the event from the ring buffer
2404  * if another event has not been added behind it.
2405  *
2406  * If another event has been added behind it, it will set the event
2407  * up as discarded, and perform the commit.
2408  *
2409  * If this function is called, do not call ring_buffer_unlock_commit on
2410  * the event.
2411  */
2412 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2413 				struct ring_buffer_event *event)
2414 {
2415 	struct ring_buffer_per_cpu *cpu_buffer;
2416 	int cpu;
2417 
2418 	/* The event is discarded regardless */
2419 	rb_event_discard(event);
2420 
2421 	cpu = smp_processor_id();
2422 	cpu_buffer = buffer->buffers[cpu];
2423 
2424 	/*
2425 	 * This must only be called if the event has not been
2426 	 * committed yet. Thus we can assume that preemption
2427 	 * is still disabled.
2428 	 */
2429 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2430 
2431 	rb_decrement_entry(cpu_buffer, event);
2432 	if (rb_try_to_discard(cpu_buffer, event))
2433 		goto out;
2434 
2435 	/*
2436 	 * The commit is still visible by the reader, so we
2437 	 * must still update the timestamp.
2438 	 */
2439 	rb_update_write_stamp(cpu_buffer, event);
2440  out:
2441 	rb_end_commit(cpu_buffer);
2442 
2443 	trace_recursive_unlock();
2444 
2445 	/*
2446 	 * Only the last preempt count needs to restore preemption.
2447 	 */
2448 	if (preempt_count() == 1)
2449 		ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2450 	else
2451 		preempt_enable_no_resched_notrace();
2452 
2453 }
2454 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2455 
2456 /**
2457  * ring_buffer_write - write data to the buffer without reserving
2458  * @buffer: The ring buffer to write to.
2459  * @length: The length of the data being written (excluding the event header)
2460  * @data: The data to write to the buffer.
2461  *
2462  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2463  * one function. If you already have the data to write to the buffer, it
2464  * may be easier to simply call this function.
2465  *
2466  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2467  * and not the length of the event which would hold the header.
2468  */
2469 int ring_buffer_write(struct ring_buffer *buffer,
2470 			unsigned long length,
2471 			void *data)
2472 {
2473 	struct ring_buffer_per_cpu *cpu_buffer;
2474 	struct ring_buffer_event *event;
2475 	void *body;
2476 	int ret = -EBUSY;
2477 	int cpu, resched;
2478 
2479 	if (ring_buffer_flags != RB_BUFFERS_ON)
2480 		return -EBUSY;
2481 
2482 	resched = ftrace_preempt_disable();
2483 
2484 	if (atomic_read(&buffer->record_disabled))
2485 		goto out;
2486 
2487 	cpu = raw_smp_processor_id();
2488 
2489 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2490 		goto out;
2491 
2492 	cpu_buffer = buffer->buffers[cpu];
2493 
2494 	if (atomic_read(&cpu_buffer->record_disabled))
2495 		goto out;
2496 
2497 	if (length > BUF_MAX_DATA_SIZE)
2498 		goto out;
2499 
2500 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2501 	if (!event)
2502 		goto out;
2503 
2504 	body = rb_event_data(event);
2505 
2506 	memcpy(body, data, length);
2507 
2508 	rb_commit(cpu_buffer, event);
2509 
2510 	ret = 0;
2511  out:
2512 	ftrace_preempt_enable(resched);
2513 
2514 	return ret;
2515 }
2516 EXPORT_SYMBOL_GPL(ring_buffer_write);
2517 
2518 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2519 {
2520 	struct buffer_page *reader = cpu_buffer->reader_page;
2521 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
2522 	struct buffer_page *commit = cpu_buffer->commit_page;
2523 
2524 	/* In case of error, head will be NULL */
2525 	if (unlikely(!head))
2526 		return 1;
2527 
2528 	return reader->read == rb_page_commit(reader) &&
2529 		(commit == reader ||
2530 		 (commit == head &&
2531 		  head->read == rb_page_commit(commit)));
2532 }
2533 
2534 /**
2535  * ring_buffer_record_disable - stop all writes into the buffer
2536  * @buffer: The ring buffer to stop writes to.
2537  *
2538  * This prevents all writes to the buffer. Any attempt to write
2539  * to the buffer after this will fail and return NULL.
2540  *
2541  * The caller should call synchronize_sched() after this.
2542  */
2543 void ring_buffer_record_disable(struct ring_buffer *buffer)
2544 {
2545 	atomic_inc(&buffer->record_disabled);
2546 }
2547 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2548 
2549 /**
2550  * ring_buffer_record_enable - enable writes to the buffer
2551  * @buffer: The ring buffer to enable writes
2552  *
2553  * Note, multiple disables will need the same number of enables
2554  * to truly enable the writing (much like preempt_disable).
2555  */
2556 void ring_buffer_record_enable(struct ring_buffer *buffer)
2557 {
2558 	atomic_dec(&buffer->record_disabled);
2559 }
2560 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2561 
2562 /**
2563  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2564  * @buffer: The ring buffer to stop writes to.
2565  * @cpu: The CPU buffer to stop
2566  *
2567  * This prevents all writes to the buffer. Any attempt to write
2568  * to the buffer after this will fail and return NULL.
2569  *
2570  * The caller should call synchronize_sched() after this.
2571  */
2572 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2573 {
2574 	struct ring_buffer_per_cpu *cpu_buffer;
2575 
2576 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2577 		return;
2578 
2579 	cpu_buffer = buffer->buffers[cpu];
2580 	atomic_inc(&cpu_buffer->record_disabled);
2581 }
2582 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2583 
2584 /**
2585  * ring_buffer_record_enable_cpu - enable writes to the buffer
2586  * @buffer: The ring buffer to enable writes
2587  * @cpu: The CPU to enable.
2588  *
2589  * Note, multiple disables will need the same number of enables
2590  * to truly enable the writing (much like preempt_disable).
2591  */
2592 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2593 {
2594 	struct ring_buffer_per_cpu *cpu_buffer;
2595 
2596 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2597 		return;
2598 
2599 	cpu_buffer = buffer->buffers[cpu];
2600 	atomic_dec(&cpu_buffer->record_disabled);
2601 }
2602 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2603 
2604 /**
2605  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2606  * @buffer: The ring buffer
2607  * @cpu: The per CPU buffer to get the entries from.
2608  */
2609 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2610 {
2611 	struct ring_buffer_per_cpu *cpu_buffer;
2612 	unsigned long ret;
2613 
2614 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2615 		return 0;
2616 
2617 	cpu_buffer = buffer->buffers[cpu];
2618 	ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun))
2619 		- cpu_buffer->read;
2620 
2621 	return ret;
2622 }
2623 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2624 
2625 /**
2626  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2627  * @buffer: The ring buffer
2628  * @cpu: The per CPU buffer to get the number of overruns from
2629  */
2630 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2631 {
2632 	struct ring_buffer_per_cpu *cpu_buffer;
2633 	unsigned long ret;
2634 
2635 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2636 		return 0;
2637 
2638 	cpu_buffer = buffer->buffers[cpu];
2639 	ret = local_read(&cpu_buffer->overrun);
2640 
2641 	return ret;
2642 }
2643 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2644 
2645 /**
2646  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2647  * @buffer: The ring buffer
2648  * @cpu: The per CPU buffer to get the number of overruns from
2649  */
2650 unsigned long
2651 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2652 {
2653 	struct ring_buffer_per_cpu *cpu_buffer;
2654 	unsigned long ret;
2655 
2656 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2657 		return 0;
2658 
2659 	cpu_buffer = buffer->buffers[cpu];
2660 	ret = local_read(&cpu_buffer->commit_overrun);
2661 
2662 	return ret;
2663 }
2664 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2665 
2666 /**
2667  * ring_buffer_entries - get the number of entries in a buffer
2668  * @buffer: The ring buffer
2669  *
2670  * Returns the total number of entries in the ring buffer
2671  * (all CPU entries)
2672  */
2673 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2674 {
2675 	struct ring_buffer_per_cpu *cpu_buffer;
2676 	unsigned long entries = 0;
2677 	int cpu;
2678 
2679 	/* if you care about this being correct, lock the buffer */
2680 	for_each_buffer_cpu(buffer, cpu) {
2681 		cpu_buffer = buffer->buffers[cpu];
2682 		entries += (local_read(&cpu_buffer->entries) -
2683 			    local_read(&cpu_buffer->overrun)) - cpu_buffer->read;
2684 	}
2685 
2686 	return entries;
2687 }
2688 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2689 
2690 /**
2691  * ring_buffer_overruns - get the number of overruns in buffer
2692  * @buffer: The ring buffer
2693  *
2694  * Returns the total number of overruns in the ring buffer
2695  * (all CPU entries)
2696  */
2697 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2698 {
2699 	struct ring_buffer_per_cpu *cpu_buffer;
2700 	unsigned long overruns = 0;
2701 	int cpu;
2702 
2703 	/* if you care about this being correct, lock the buffer */
2704 	for_each_buffer_cpu(buffer, cpu) {
2705 		cpu_buffer = buffer->buffers[cpu];
2706 		overruns += local_read(&cpu_buffer->overrun);
2707 	}
2708 
2709 	return overruns;
2710 }
2711 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2712 
2713 static void rb_iter_reset(struct ring_buffer_iter *iter)
2714 {
2715 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2716 
2717 	/* Iterator usage is expected to have record disabled */
2718 	if (list_empty(&cpu_buffer->reader_page->list)) {
2719 		iter->head_page = rb_set_head_page(cpu_buffer);
2720 		if (unlikely(!iter->head_page))
2721 			return;
2722 		iter->head = iter->head_page->read;
2723 	} else {
2724 		iter->head_page = cpu_buffer->reader_page;
2725 		iter->head = cpu_buffer->reader_page->read;
2726 	}
2727 	if (iter->head)
2728 		iter->read_stamp = cpu_buffer->read_stamp;
2729 	else
2730 		iter->read_stamp = iter->head_page->page->time_stamp;
2731 	iter->cache_reader_page = cpu_buffer->reader_page;
2732 	iter->cache_read = cpu_buffer->read;
2733 }
2734 
2735 /**
2736  * ring_buffer_iter_reset - reset an iterator
2737  * @iter: The iterator to reset
2738  *
2739  * Resets the iterator, so that it will start from the beginning
2740  * again.
2741  */
2742 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2743 {
2744 	struct ring_buffer_per_cpu *cpu_buffer;
2745 	unsigned long flags;
2746 
2747 	if (!iter)
2748 		return;
2749 
2750 	cpu_buffer = iter->cpu_buffer;
2751 
2752 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2753 	rb_iter_reset(iter);
2754 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2755 }
2756 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2757 
2758 /**
2759  * ring_buffer_iter_empty - check if an iterator has no more to read
2760  * @iter: The iterator to check
2761  */
2762 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2763 {
2764 	struct ring_buffer_per_cpu *cpu_buffer;
2765 
2766 	cpu_buffer = iter->cpu_buffer;
2767 
2768 	return iter->head_page == cpu_buffer->commit_page &&
2769 		iter->head == rb_commit_index(cpu_buffer);
2770 }
2771 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2772 
2773 static void
2774 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2775 		     struct ring_buffer_event *event)
2776 {
2777 	u64 delta;
2778 
2779 	switch (event->type_len) {
2780 	case RINGBUF_TYPE_PADDING:
2781 		return;
2782 
2783 	case RINGBUF_TYPE_TIME_EXTEND:
2784 		delta = event->array[0];
2785 		delta <<= TS_SHIFT;
2786 		delta += event->time_delta;
2787 		cpu_buffer->read_stamp += delta;
2788 		return;
2789 
2790 	case RINGBUF_TYPE_TIME_STAMP:
2791 		/* FIXME: not implemented */
2792 		return;
2793 
2794 	case RINGBUF_TYPE_DATA:
2795 		cpu_buffer->read_stamp += event->time_delta;
2796 		return;
2797 
2798 	default:
2799 		BUG();
2800 	}
2801 	return;
2802 }
2803 
2804 static void
2805 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2806 			  struct ring_buffer_event *event)
2807 {
2808 	u64 delta;
2809 
2810 	switch (event->type_len) {
2811 	case RINGBUF_TYPE_PADDING:
2812 		return;
2813 
2814 	case RINGBUF_TYPE_TIME_EXTEND:
2815 		delta = event->array[0];
2816 		delta <<= TS_SHIFT;
2817 		delta += event->time_delta;
2818 		iter->read_stamp += delta;
2819 		return;
2820 
2821 	case RINGBUF_TYPE_TIME_STAMP:
2822 		/* FIXME: not implemented */
2823 		return;
2824 
2825 	case RINGBUF_TYPE_DATA:
2826 		iter->read_stamp += event->time_delta;
2827 		return;
2828 
2829 	default:
2830 		BUG();
2831 	}
2832 	return;
2833 }
2834 
2835 static struct buffer_page *
2836 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2837 {
2838 	struct buffer_page *reader = NULL;
2839 	unsigned long flags;
2840 	int nr_loops = 0;
2841 	int ret;
2842 
2843 	local_irq_save(flags);
2844 	arch_spin_lock(&cpu_buffer->lock);
2845 
2846  again:
2847 	/*
2848 	 * This should normally only loop twice. But because the
2849 	 * start of the reader inserts an empty page, it causes
2850 	 * a case where we will loop three times. There should be no
2851 	 * reason to loop four times (that I know of).
2852 	 */
2853 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2854 		reader = NULL;
2855 		goto out;
2856 	}
2857 
2858 	reader = cpu_buffer->reader_page;
2859 
2860 	/* If there's more to read, return this page */
2861 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
2862 		goto out;
2863 
2864 	/* Never should we have an index greater than the size */
2865 	if (RB_WARN_ON(cpu_buffer,
2866 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
2867 		goto out;
2868 
2869 	/* check if we caught up to the tail */
2870 	reader = NULL;
2871 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2872 		goto out;
2873 
2874 	/*
2875 	 * Reset the reader page to size zero.
2876 	 */
2877 	local_set(&cpu_buffer->reader_page->write, 0);
2878 	local_set(&cpu_buffer->reader_page->entries, 0);
2879 	local_set(&cpu_buffer->reader_page->page->commit, 0);
2880 
2881  spin:
2882 	/*
2883 	 * Splice the empty reader page into the list around the head.
2884 	 */
2885 	reader = rb_set_head_page(cpu_buffer);
2886 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
2887 	cpu_buffer->reader_page->list.prev = reader->list.prev;
2888 
2889 	/*
2890 	 * cpu_buffer->pages just needs to point to the buffer, it
2891 	 *  has no specific buffer page to point to. Lets move it out
2892 	 *  of our way so we don't accidently swap it.
2893 	 */
2894 	cpu_buffer->pages = reader->list.prev;
2895 
2896 	/* The reader page will be pointing to the new head */
2897 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2898 
2899 	/*
2900 	 * Here's the tricky part.
2901 	 *
2902 	 * We need to move the pointer past the header page.
2903 	 * But we can only do that if a writer is not currently
2904 	 * moving it. The page before the header page has the
2905 	 * flag bit '1' set if it is pointing to the page we want.
2906 	 * but if the writer is in the process of moving it
2907 	 * than it will be '2' or already moved '0'.
2908 	 */
2909 
2910 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2911 
2912 	/*
2913 	 * If we did not convert it, then we must try again.
2914 	 */
2915 	if (!ret)
2916 		goto spin;
2917 
2918 	/*
2919 	 * Yeah! We succeeded in replacing the page.
2920 	 *
2921 	 * Now make the new head point back to the reader page.
2922 	 */
2923 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
2924 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2925 
2926 	/* Finally update the reader page to the new head */
2927 	cpu_buffer->reader_page = reader;
2928 	rb_reset_reader_page(cpu_buffer);
2929 
2930 	goto again;
2931 
2932  out:
2933 	arch_spin_unlock(&cpu_buffer->lock);
2934 	local_irq_restore(flags);
2935 
2936 	return reader;
2937 }
2938 
2939 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2940 {
2941 	struct ring_buffer_event *event;
2942 	struct buffer_page *reader;
2943 	unsigned length;
2944 
2945 	reader = rb_get_reader_page(cpu_buffer);
2946 
2947 	/* This function should not be called when buffer is empty */
2948 	if (RB_WARN_ON(cpu_buffer, !reader))
2949 		return;
2950 
2951 	event = rb_reader_event(cpu_buffer);
2952 
2953 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
2954 		cpu_buffer->read++;
2955 
2956 	rb_update_read_stamp(cpu_buffer, event);
2957 
2958 	length = rb_event_length(event);
2959 	cpu_buffer->reader_page->read += length;
2960 }
2961 
2962 static void rb_advance_iter(struct ring_buffer_iter *iter)
2963 {
2964 	struct ring_buffer *buffer;
2965 	struct ring_buffer_per_cpu *cpu_buffer;
2966 	struct ring_buffer_event *event;
2967 	unsigned length;
2968 
2969 	cpu_buffer = iter->cpu_buffer;
2970 	buffer = cpu_buffer->buffer;
2971 
2972 	/*
2973 	 * Check if we are at the end of the buffer.
2974 	 */
2975 	if (iter->head >= rb_page_size(iter->head_page)) {
2976 		/* discarded commits can make the page empty */
2977 		if (iter->head_page == cpu_buffer->commit_page)
2978 			return;
2979 		rb_inc_iter(iter);
2980 		return;
2981 	}
2982 
2983 	event = rb_iter_head_event(iter);
2984 
2985 	length = rb_event_length(event);
2986 
2987 	/*
2988 	 * This should not be called to advance the header if we are
2989 	 * at the tail of the buffer.
2990 	 */
2991 	if (RB_WARN_ON(cpu_buffer,
2992 		       (iter->head_page == cpu_buffer->commit_page) &&
2993 		       (iter->head + length > rb_commit_index(cpu_buffer))))
2994 		return;
2995 
2996 	rb_update_iter_read_stamp(iter, event);
2997 
2998 	iter->head += length;
2999 
3000 	/* check for end of page padding */
3001 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3002 	    (iter->head_page != cpu_buffer->commit_page))
3003 		rb_advance_iter(iter);
3004 }
3005 
3006 static struct ring_buffer_event *
3007 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts)
3008 {
3009 	struct ring_buffer_event *event;
3010 	struct buffer_page *reader;
3011 	int nr_loops = 0;
3012 
3013  again:
3014 	/*
3015 	 * We repeat when a timestamp is encountered. It is possible
3016 	 * to get multiple timestamps from an interrupt entering just
3017 	 * as one timestamp is about to be written, or from discarded
3018 	 * commits. The most that we can have is the number on a single page.
3019 	 */
3020 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3021 		return NULL;
3022 
3023 	reader = rb_get_reader_page(cpu_buffer);
3024 	if (!reader)
3025 		return NULL;
3026 
3027 	event = rb_reader_event(cpu_buffer);
3028 
3029 	switch (event->type_len) {
3030 	case RINGBUF_TYPE_PADDING:
3031 		if (rb_null_event(event))
3032 			RB_WARN_ON(cpu_buffer, 1);
3033 		/*
3034 		 * Because the writer could be discarding every
3035 		 * event it creates (which would probably be bad)
3036 		 * if we were to go back to "again" then we may never
3037 		 * catch up, and will trigger the warn on, or lock
3038 		 * the box. Return the padding, and we will release
3039 		 * the current locks, and try again.
3040 		 */
3041 		return event;
3042 
3043 	case RINGBUF_TYPE_TIME_EXTEND:
3044 		/* Internal data, OK to advance */
3045 		rb_advance_reader(cpu_buffer);
3046 		goto again;
3047 
3048 	case RINGBUF_TYPE_TIME_STAMP:
3049 		/* FIXME: not implemented */
3050 		rb_advance_reader(cpu_buffer);
3051 		goto again;
3052 
3053 	case RINGBUF_TYPE_DATA:
3054 		if (ts) {
3055 			*ts = cpu_buffer->read_stamp + event->time_delta;
3056 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3057 							 cpu_buffer->cpu, ts);
3058 		}
3059 		return event;
3060 
3061 	default:
3062 		BUG();
3063 	}
3064 
3065 	return NULL;
3066 }
3067 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3068 
3069 static struct ring_buffer_event *
3070 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3071 {
3072 	struct ring_buffer *buffer;
3073 	struct ring_buffer_per_cpu *cpu_buffer;
3074 	struct ring_buffer_event *event;
3075 	int nr_loops = 0;
3076 
3077 	cpu_buffer = iter->cpu_buffer;
3078 	buffer = cpu_buffer->buffer;
3079 
3080 	/*
3081 	 * Check if someone performed a consuming read to
3082 	 * the buffer. A consuming read invalidates the iterator
3083 	 * and we need to reset the iterator in this case.
3084 	 */
3085 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3086 		     iter->cache_reader_page != cpu_buffer->reader_page))
3087 		rb_iter_reset(iter);
3088 
3089  again:
3090 	if (ring_buffer_iter_empty(iter))
3091 		return NULL;
3092 
3093 	/*
3094 	 * We repeat when a timestamp is encountered.
3095 	 * We can get multiple timestamps by nested interrupts or also
3096 	 * if filtering is on (discarding commits). Since discarding
3097 	 * commits can be frequent we can get a lot of timestamps.
3098 	 * But we limit them by not adding timestamps if they begin
3099 	 * at the start of a page.
3100 	 */
3101 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3102 		return NULL;
3103 
3104 	if (rb_per_cpu_empty(cpu_buffer))
3105 		return NULL;
3106 
3107 	if (iter->head >= local_read(&iter->head_page->page->commit)) {
3108 		rb_inc_iter(iter);
3109 		goto again;
3110 	}
3111 
3112 	event = rb_iter_head_event(iter);
3113 
3114 	switch (event->type_len) {
3115 	case RINGBUF_TYPE_PADDING:
3116 		if (rb_null_event(event)) {
3117 			rb_inc_iter(iter);
3118 			goto again;
3119 		}
3120 		rb_advance_iter(iter);
3121 		return event;
3122 
3123 	case RINGBUF_TYPE_TIME_EXTEND:
3124 		/* Internal data, OK to advance */
3125 		rb_advance_iter(iter);
3126 		goto again;
3127 
3128 	case RINGBUF_TYPE_TIME_STAMP:
3129 		/* FIXME: not implemented */
3130 		rb_advance_iter(iter);
3131 		goto again;
3132 
3133 	case RINGBUF_TYPE_DATA:
3134 		if (ts) {
3135 			*ts = iter->read_stamp + event->time_delta;
3136 			ring_buffer_normalize_time_stamp(buffer,
3137 							 cpu_buffer->cpu, ts);
3138 		}
3139 		return event;
3140 
3141 	default:
3142 		BUG();
3143 	}
3144 
3145 	return NULL;
3146 }
3147 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3148 
3149 static inline int rb_ok_to_lock(void)
3150 {
3151 	/*
3152 	 * If an NMI die dumps out the content of the ring buffer
3153 	 * do not grab locks. We also permanently disable the ring
3154 	 * buffer too. A one time deal is all you get from reading
3155 	 * the ring buffer from an NMI.
3156 	 */
3157 	if (likely(!in_nmi()))
3158 		return 1;
3159 
3160 	tracing_off_permanent();
3161 	return 0;
3162 }
3163 
3164 /**
3165  * ring_buffer_peek - peek at the next event to be read
3166  * @buffer: The ring buffer to read
3167  * @cpu: The cpu to peak at
3168  * @ts: The timestamp counter of this event.
3169  *
3170  * This will return the event that will be read next, but does
3171  * not consume the data.
3172  */
3173 struct ring_buffer_event *
3174 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
3175 {
3176 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3177 	struct ring_buffer_event *event;
3178 	unsigned long flags;
3179 	int dolock;
3180 
3181 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3182 		return NULL;
3183 
3184 	dolock = rb_ok_to_lock();
3185  again:
3186 	local_irq_save(flags);
3187 	if (dolock)
3188 		spin_lock(&cpu_buffer->reader_lock);
3189 	event = rb_buffer_peek(cpu_buffer, ts);
3190 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3191 		rb_advance_reader(cpu_buffer);
3192 	if (dolock)
3193 		spin_unlock(&cpu_buffer->reader_lock);
3194 	local_irq_restore(flags);
3195 
3196 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3197 		goto again;
3198 
3199 	return event;
3200 }
3201 
3202 /**
3203  * ring_buffer_iter_peek - peek at the next event to be read
3204  * @iter: The ring buffer iterator
3205  * @ts: The timestamp counter of this event.
3206  *
3207  * This will return the event that will be read next, but does
3208  * not increment the iterator.
3209  */
3210 struct ring_buffer_event *
3211 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3212 {
3213 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3214 	struct ring_buffer_event *event;
3215 	unsigned long flags;
3216 
3217  again:
3218 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3219 	event = rb_iter_peek(iter, ts);
3220 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3221 
3222 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3223 		goto again;
3224 
3225 	return event;
3226 }
3227 
3228 /**
3229  * ring_buffer_consume - return an event and consume it
3230  * @buffer: The ring buffer to get the next event from
3231  *
3232  * Returns the next event in the ring buffer, and that event is consumed.
3233  * Meaning, that sequential reads will keep returning a different event,
3234  * and eventually empty the ring buffer if the producer is slower.
3235  */
3236 struct ring_buffer_event *
3237 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
3238 {
3239 	struct ring_buffer_per_cpu *cpu_buffer;
3240 	struct ring_buffer_event *event = NULL;
3241 	unsigned long flags;
3242 	int dolock;
3243 
3244 	dolock = rb_ok_to_lock();
3245 
3246  again:
3247 	/* might be called in atomic */
3248 	preempt_disable();
3249 
3250 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3251 		goto out;
3252 
3253 	cpu_buffer = buffer->buffers[cpu];
3254 	local_irq_save(flags);
3255 	if (dolock)
3256 		spin_lock(&cpu_buffer->reader_lock);
3257 
3258 	event = rb_buffer_peek(cpu_buffer, ts);
3259 	if (event)
3260 		rb_advance_reader(cpu_buffer);
3261 
3262 	if (dolock)
3263 		spin_unlock(&cpu_buffer->reader_lock);
3264 	local_irq_restore(flags);
3265 
3266  out:
3267 	preempt_enable();
3268 
3269 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3270 		goto again;
3271 
3272 	return event;
3273 }
3274 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3275 
3276 /**
3277  * ring_buffer_read_start - start a non consuming read of the buffer
3278  * @buffer: The ring buffer to read from
3279  * @cpu: The cpu buffer to iterate over
3280  *
3281  * This starts up an iteration through the buffer. It also disables
3282  * the recording to the buffer until the reading is finished.
3283  * This prevents the reading from being corrupted. This is not
3284  * a consuming read, so a producer is not expected.
3285  *
3286  * Must be paired with ring_buffer_finish.
3287  */
3288 struct ring_buffer_iter *
3289 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
3290 {
3291 	struct ring_buffer_per_cpu *cpu_buffer;
3292 	struct ring_buffer_iter *iter;
3293 	unsigned long flags;
3294 
3295 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3296 		return NULL;
3297 
3298 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3299 	if (!iter)
3300 		return NULL;
3301 
3302 	cpu_buffer = buffer->buffers[cpu];
3303 
3304 	iter->cpu_buffer = cpu_buffer;
3305 
3306 	atomic_inc(&cpu_buffer->record_disabled);
3307 	synchronize_sched();
3308 
3309 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3310 	arch_spin_lock(&cpu_buffer->lock);
3311 	rb_iter_reset(iter);
3312 	arch_spin_unlock(&cpu_buffer->lock);
3313 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3314 
3315 	return iter;
3316 }
3317 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3318 
3319 /**
3320  * ring_buffer_finish - finish reading the iterator of the buffer
3321  * @iter: The iterator retrieved by ring_buffer_start
3322  *
3323  * This re-enables the recording to the buffer, and frees the
3324  * iterator.
3325  */
3326 void
3327 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3328 {
3329 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3330 
3331 	atomic_dec(&cpu_buffer->record_disabled);
3332 	kfree(iter);
3333 }
3334 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3335 
3336 /**
3337  * ring_buffer_read - read the next item in the ring buffer by the iterator
3338  * @iter: The ring buffer iterator
3339  * @ts: The time stamp of the event read.
3340  *
3341  * This reads the next event in the ring buffer and increments the iterator.
3342  */
3343 struct ring_buffer_event *
3344 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3345 {
3346 	struct ring_buffer_event *event;
3347 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3348 	unsigned long flags;
3349 
3350 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3351  again:
3352 	event = rb_iter_peek(iter, ts);
3353 	if (!event)
3354 		goto out;
3355 
3356 	if (event->type_len == RINGBUF_TYPE_PADDING)
3357 		goto again;
3358 
3359 	rb_advance_iter(iter);
3360  out:
3361 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3362 
3363 	return event;
3364 }
3365 EXPORT_SYMBOL_GPL(ring_buffer_read);
3366 
3367 /**
3368  * ring_buffer_size - return the size of the ring buffer (in bytes)
3369  * @buffer: The ring buffer.
3370  */
3371 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3372 {
3373 	return BUF_PAGE_SIZE * buffer->pages;
3374 }
3375 EXPORT_SYMBOL_GPL(ring_buffer_size);
3376 
3377 static void
3378 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3379 {
3380 	rb_head_page_deactivate(cpu_buffer);
3381 
3382 	cpu_buffer->head_page
3383 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
3384 	local_set(&cpu_buffer->head_page->write, 0);
3385 	local_set(&cpu_buffer->head_page->entries, 0);
3386 	local_set(&cpu_buffer->head_page->page->commit, 0);
3387 
3388 	cpu_buffer->head_page->read = 0;
3389 
3390 	cpu_buffer->tail_page = cpu_buffer->head_page;
3391 	cpu_buffer->commit_page = cpu_buffer->head_page;
3392 
3393 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3394 	local_set(&cpu_buffer->reader_page->write, 0);
3395 	local_set(&cpu_buffer->reader_page->entries, 0);
3396 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3397 	cpu_buffer->reader_page->read = 0;
3398 
3399 	local_set(&cpu_buffer->commit_overrun, 0);
3400 	local_set(&cpu_buffer->overrun, 0);
3401 	local_set(&cpu_buffer->entries, 0);
3402 	local_set(&cpu_buffer->committing, 0);
3403 	local_set(&cpu_buffer->commits, 0);
3404 	cpu_buffer->read = 0;
3405 
3406 	cpu_buffer->write_stamp = 0;
3407 	cpu_buffer->read_stamp = 0;
3408 
3409 	rb_head_page_activate(cpu_buffer);
3410 }
3411 
3412 /**
3413  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3414  * @buffer: The ring buffer to reset a per cpu buffer of
3415  * @cpu: The CPU buffer to be reset
3416  */
3417 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3418 {
3419 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3420 	unsigned long flags;
3421 
3422 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3423 		return;
3424 
3425 	atomic_inc(&cpu_buffer->record_disabled);
3426 
3427 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3428 
3429 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3430 		goto out;
3431 
3432 	arch_spin_lock(&cpu_buffer->lock);
3433 
3434 	rb_reset_cpu(cpu_buffer);
3435 
3436 	arch_spin_unlock(&cpu_buffer->lock);
3437 
3438  out:
3439 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3440 
3441 	atomic_dec(&cpu_buffer->record_disabled);
3442 }
3443 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3444 
3445 /**
3446  * ring_buffer_reset - reset a ring buffer
3447  * @buffer: The ring buffer to reset all cpu buffers
3448  */
3449 void ring_buffer_reset(struct ring_buffer *buffer)
3450 {
3451 	int cpu;
3452 
3453 	for_each_buffer_cpu(buffer, cpu)
3454 		ring_buffer_reset_cpu(buffer, cpu);
3455 }
3456 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3457 
3458 /**
3459  * rind_buffer_empty - is the ring buffer empty?
3460  * @buffer: The ring buffer to test
3461  */
3462 int ring_buffer_empty(struct ring_buffer *buffer)
3463 {
3464 	struct ring_buffer_per_cpu *cpu_buffer;
3465 	unsigned long flags;
3466 	int dolock;
3467 	int cpu;
3468 	int ret;
3469 
3470 	dolock = rb_ok_to_lock();
3471 
3472 	/* yes this is racy, but if you don't like the race, lock the buffer */
3473 	for_each_buffer_cpu(buffer, cpu) {
3474 		cpu_buffer = buffer->buffers[cpu];
3475 		local_irq_save(flags);
3476 		if (dolock)
3477 			spin_lock(&cpu_buffer->reader_lock);
3478 		ret = rb_per_cpu_empty(cpu_buffer);
3479 		if (dolock)
3480 			spin_unlock(&cpu_buffer->reader_lock);
3481 		local_irq_restore(flags);
3482 
3483 		if (!ret)
3484 			return 0;
3485 	}
3486 
3487 	return 1;
3488 }
3489 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3490 
3491 /**
3492  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3493  * @buffer: The ring buffer
3494  * @cpu: The CPU buffer to test
3495  */
3496 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3497 {
3498 	struct ring_buffer_per_cpu *cpu_buffer;
3499 	unsigned long flags;
3500 	int dolock;
3501 	int ret;
3502 
3503 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3504 		return 1;
3505 
3506 	dolock = rb_ok_to_lock();
3507 
3508 	cpu_buffer = buffer->buffers[cpu];
3509 	local_irq_save(flags);
3510 	if (dolock)
3511 		spin_lock(&cpu_buffer->reader_lock);
3512 	ret = rb_per_cpu_empty(cpu_buffer);
3513 	if (dolock)
3514 		spin_unlock(&cpu_buffer->reader_lock);
3515 	local_irq_restore(flags);
3516 
3517 	return ret;
3518 }
3519 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3520 
3521 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3522 /**
3523  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3524  * @buffer_a: One buffer to swap with
3525  * @buffer_b: The other buffer to swap with
3526  *
3527  * This function is useful for tracers that want to take a "snapshot"
3528  * of a CPU buffer and has another back up buffer lying around.
3529  * it is expected that the tracer handles the cpu buffer not being
3530  * used at the moment.
3531  */
3532 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3533 			 struct ring_buffer *buffer_b, int cpu)
3534 {
3535 	struct ring_buffer_per_cpu *cpu_buffer_a;
3536 	struct ring_buffer_per_cpu *cpu_buffer_b;
3537 	int ret = -EINVAL;
3538 
3539 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3540 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
3541 		goto out;
3542 
3543 	/* At least make sure the two buffers are somewhat the same */
3544 	if (buffer_a->pages != buffer_b->pages)
3545 		goto out;
3546 
3547 	ret = -EAGAIN;
3548 
3549 	if (ring_buffer_flags != RB_BUFFERS_ON)
3550 		goto out;
3551 
3552 	if (atomic_read(&buffer_a->record_disabled))
3553 		goto out;
3554 
3555 	if (atomic_read(&buffer_b->record_disabled))
3556 		goto out;
3557 
3558 	cpu_buffer_a = buffer_a->buffers[cpu];
3559 	cpu_buffer_b = buffer_b->buffers[cpu];
3560 
3561 	if (atomic_read(&cpu_buffer_a->record_disabled))
3562 		goto out;
3563 
3564 	if (atomic_read(&cpu_buffer_b->record_disabled))
3565 		goto out;
3566 
3567 	/*
3568 	 * We can't do a synchronize_sched here because this
3569 	 * function can be called in atomic context.
3570 	 * Normally this will be called from the same CPU as cpu.
3571 	 * If not it's up to the caller to protect this.
3572 	 */
3573 	atomic_inc(&cpu_buffer_a->record_disabled);
3574 	atomic_inc(&cpu_buffer_b->record_disabled);
3575 
3576 	ret = -EBUSY;
3577 	if (local_read(&cpu_buffer_a->committing))
3578 		goto out_dec;
3579 	if (local_read(&cpu_buffer_b->committing))
3580 		goto out_dec;
3581 
3582 	buffer_a->buffers[cpu] = cpu_buffer_b;
3583 	buffer_b->buffers[cpu] = cpu_buffer_a;
3584 
3585 	cpu_buffer_b->buffer = buffer_a;
3586 	cpu_buffer_a->buffer = buffer_b;
3587 
3588 	ret = 0;
3589 
3590 out_dec:
3591 	atomic_dec(&cpu_buffer_a->record_disabled);
3592 	atomic_dec(&cpu_buffer_b->record_disabled);
3593 out:
3594 	return ret;
3595 }
3596 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3597 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3598 
3599 /**
3600  * ring_buffer_alloc_read_page - allocate a page to read from buffer
3601  * @buffer: the buffer to allocate for.
3602  *
3603  * This function is used in conjunction with ring_buffer_read_page.
3604  * When reading a full page from the ring buffer, these functions
3605  * can be used to speed up the process. The calling function should
3606  * allocate a few pages first with this function. Then when it
3607  * needs to get pages from the ring buffer, it passes the result
3608  * of this function into ring_buffer_read_page, which will swap
3609  * the page that was allocated, with the read page of the buffer.
3610  *
3611  * Returns:
3612  *  The page allocated, or NULL on error.
3613  */
3614 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3615 {
3616 	struct buffer_data_page *bpage;
3617 	unsigned long addr;
3618 
3619 	addr = __get_free_page(GFP_KERNEL);
3620 	if (!addr)
3621 		return NULL;
3622 
3623 	bpage = (void *)addr;
3624 
3625 	rb_init_page(bpage);
3626 
3627 	return bpage;
3628 }
3629 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3630 
3631 /**
3632  * ring_buffer_free_read_page - free an allocated read page
3633  * @buffer: the buffer the page was allocate for
3634  * @data: the page to free
3635  *
3636  * Free a page allocated from ring_buffer_alloc_read_page.
3637  */
3638 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3639 {
3640 	free_page((unsigned long)data);
3641 }
3642 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3643 
3644 /**
3645  * ring_buffer_read_page - extract a page from the ring buffer
3646  * @buffer: buffer to extract from
3647  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3648  * @len: amount to extract
3649  * @cpu: the cpu of the buffer to extract
3650  * @full: should the extraction only happen when the page is full.
3651  *
3652  * This function will pull out a page from the ring buffer and consume it.
3653  * @data_page must be the address of the variable that was returned
3654  * from ring_buffer_alloc_read_page. This is because the page might be used
3655  * to swap with a page in the ring buffer.
3656  *
3657  * for example:
3658  *	rpage = ring_buffer_alloc_read_page(buffer);
3659  *	if (!rpage)
3660  *		return error;
3661  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3662  *	if (ret >= 0)
3663  *		process_page(rpage, ret);
3664  *
3665  * When @full is set, the function will not return true unless
3666  * the writer is off the reader page.
3667  *
3668  * Note: it is up to the calling functions to handle sleeps and wakeups.
3669  *  The ring buffer can be used anywhere in the kernel and can not
3670  *  blindly call wake_up. The layer that uses the ring buffer must be
3671  *  responsible for that.
3672  *
3673  * Returns:
3674  *  >=0 if data has been transferred, returns the offset of consumed data.
3675  *  <0 if no data has been transferred.
3676  */
3677 int ring_buffer_read_page(struct ring_buffer *buffer,
3678 			  void **data_page, size_t len, int cpu, int full)
3679 {
3680 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3681 	struct ring_buffer_event *event;
3682 	struct buffer_data_page *bpage;
3683 	struct buffer_page *reader;
3684 	unsigned long flags;
3685 	unsigned int commit;
3686 	unsigned int read;
3687 	u64 save_timestamp;
3688 	int ret = -1;
3689 
3690 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3691 		goto out;
3692 
3693 	/*
3694 	 * If len is not big enough to hold the page header, then
3695 	 * we can not copy anything.
3696 	 */
3697 	if (len <= BUF_PAGE_HDR_SIZE)
3698 		goto out;
3699 
3700 	len -= BUF_PAGE_HDR_SIZE;
3701 
3702 	if (!data_page)
3703 		goto out;
3704 
3705 	bpage = *data_page;
3706 	if (!bpage)
3707 		goto out;
3708 
3709 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3710 
3711 	reader = rb_get_reader_page(cpu_buffer);
3712 	if (!reader)
3713 		goto out_unlock;
3714 
3715 	event = rb_reader_event(cpu_buffer);
3716 
3717 	read = reader->read;
3718 	commit = rb_page_commit(reader);
3719 
3720 	/*
3721 	 * If this page has been partially read or
3722 	 * if len is not big enough to read the rest of the page or
3723 	 * a writer is still on the page, then
3724 	 * we must copy the data from the page to the buffer.
3725 	 * Otherwise, we can simply swap the page with the one passed in.
3726 	 */
3727 	if (read || (len < (commit - read)) ||
3728 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
3729 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3730 		unsigned int rpos = read;
3731 		unsigned int pos = 0;
3732 		unsigned int size;
3733 
3734 		if (full)
3735 			goto out_unlock;
3736 
3737 		if (len > (commit - read))
3738 			len = (commit - read);
3739 
3740 		size = rb_event_length(event);
3741 
3742 		if (len < size)
3743 			goto out_unlock;
3744 
3745 		/* save the current timestamp, since the user will need it */
3746 		save_timestamp = cpu_buffer->read_stamp;
3747 
3748 		/* Need to copy one event at a time */
3749 		do {
3750 			memcpy(bpage->data + pos, rpage->data + rpos, size);
3751 
3752 			len -= size;
3753 
3754 			rb_advance_reader(cpu_buffer);
3755 			rpos = reader->read;
3756 			pos += size;
3757 
3758 			event = rb_reader_event(cpu_buffer);
3759 			size = rb_event_length(event);
3760 		} while (len > size);
3761 
3762 		/* update bpage */
3763 		local_set(&bpage->commit, pos);
3764 		bpage->time_stamp = save_timestamp;
3765 
3766 		/* we copied everything to the beginning */
3767 		read = 0;
3768 	} else {
3769 		/* update the entry counter */
3770 		cpu_buffer->read += rb_page_entries(reader);
3771 
3772 		/* swap the pages */
3773 		rb_init_page(bpage);
3774 		bpage = reader->page;
3775 		reader->page = *data_page;
3776 		local_set(&reader->write, 0);
3777 		local_set(&reader->entries, 0);
3778 		reader->read = 0;
3779 		*data_page = bpage;
3780 	}
3781 	ret = read;
3782 
3783  out_unlock:
3784 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3785 
3786  out:
3787 	return ret;
3788 }
3789 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3790 
3791 #ifdef CONFIG_TRACING
3792 static ssize_t
3793 rb_simple_read(struct file *filp, char __user *ubuf,
3794 	       size_t cnt, loff_t *ppos)
3795 {
3796 	unsigned long *p = filp->private_data;
3797 	char buf[64];
3798 	int r;
3799 
3800 	if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3801 		r = sprintf(buf, "permanently disabled\n");
3802 	else
3803 		r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3804 
3805 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3806 }
3807 
3808 static ssize_t
3809 rb_simple_write(struct file *filp, const char __user *ubuf,
3810 		size_t cnt, loff_t *ppos)
3811 {
3812 	unsigned long *p = filp->private_data;
3813 	char buf[64];
3814 	unsigned long val;
3815 	int ret;
3816 
3817 	if (cnt >= sizeof(buf))
3818 		return -EINVAL;
3819 
3820 	if (copy_from_user(&buf, ubuf, cnt))
3821 		return -EFAULT;
3822 
3823 	buf[cnt] = 0;
3824 
3825 	ret = strict_strtoul(buf, 10, &val);
3826 	if (ret < 0)
3827 		return ret;
3828 
3829 	if (val)
3830 		set_bit(RB_BUFFERS_ON_BIT, p);
3831 	else
3832 		clear_bit(RB_BUFFERS_ON_BIT, p);
3833 
3834 	(*ppos)++;
3835 
3836 	return cnt;
3837 }
3838 
3839 static const struct file_operations rb_simple_fops = {
3840 	.open		= tracing_open_generic,
3841 	.read		= rb_simple_read,
3842 	.write		= rb_simple_write,
3843 };
3844 
3845 
3846 static __init int rb_init_debugfs(void)
3847 {
3848 	struct dentry *d_tracer;
3849 
3850 	d_tracer = tracing_init_dentry();
3851 
3852 	trace_create_file("tracing_on", 0644, d_tracer,
3853 			    &ring_buffer_flags, &rb_simple_fops);
3854 
3855 	return 0;
3856 }
3857 
3858 fs_initcall(rb_init_debugfs);
3859 #endif
3860 
3861 #ifdef CONFIG_HOTPLUG_CPU
3862 static int rb_cpu_notify(struct notifier_block *self,
3863 			 unsigned long action, void *hcpu)
3864 {
3865 	struct ring_buffer *buffer =
3866 		container_of(self, struct ring_buffer, cpu_notify);
3867 	long cpu = (long)hcpu;
3868 
3869 	switch (action) {
3870 	case CPU_UP_PREPARE:
3871 	case CPU_UP_PREPARE_FROZEN:
3872 		if (cpumask_test_cpu(cpu, buffer->cpumask))
3873 			return NOTIFY_OK;
3874 
3875 		buffer->buffers[cpu] =
3876 			rb_allocate_cpu_buffer(buffer, cpu);
3877 		if (!buffer->buffers[cpu]) {
3878 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3879 			     cpu);
3880 			return NOTIFY_OK;
3881 		}
3882 		smp_wmb();
3883 		cpumask_set_cpu(cpu, buffer->cpumask);
3884 		break;
3885 	case CPU_DOWN_PREPARE:
3886 	case CPU_DOWN_PREPARE_FROZEN:
3887 		/*
3888 		 * Do nothing.
3889 		 *  If we were to free the buffer, then the user would
3890 		 *  lose any trace that was in the buffer.
3891 		 */
3892 		break;
3893 	default:
3894 		break;
3895 	}
3896 	return NOTIFY_OK;
3897 }
3898 #endif
3899