xref: /linux/kernel/trace/ring_buffer.c (revision 576d7fed09c7edbae7600f29a8a3ed6c1ead904f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/trace_seq.h>
13 #include <linux/spinlock.h>
14 #include <linux/irq_work.h>
15 #include <linux/security.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kthread.h>	/* for self test */
19 #include <linux/module.h>
20 #include <linux/percpu.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/list.h>
27 #include <linux/cpu.h>
28 #include <linux/oom.h>
29 
30 #include <asm/local.h>
31 
32 /*
33  * The "absolute" timestamp in the buffer is only 59 bits.
34  * If a clock has the 5 MSBs set, it needs to be saved and
35  * reinserted.
36  */
37 #define TS_MSB		(0xf8ULL << 56)
38 #define ABS_TS_MASK	(~TS_MSB)
39 
40 static void update_pages_handler(struct work_struct *work);
41 
42 /*
43  * The ring buffer header is special. We must manually up keep it.
44  */
45 int ring_buffer_print_entry_header(struct trace_seq *s)
46 {
47 	trace_seq_puts(s, "# compressed entry header\n");
48 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
49 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
50 	trace_seq_puts(s, "\tarray       :   32 bits\n");
51 	trace_seq_putc(s, '\n');
52 	trace_seq_printf(s, "\tpadding     : type == %d\n",
53 			 RINGBUF_TYPE_PADDING);
54 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
55 			 RINGBUF_TYPE_TIME_EXTEND);
56 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
57 			 RINGBUF_TYPE_TIME_STAMP);
58 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
59 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
60 
61 	return !trace_seq_has_overflowed(s);
62 }
63 
64 /*
65  * The ring buffer is made up of a list of pages. A separate list of pages is
66  * allocated for each CPU. A writer may only write to a buffer that is
67  * associated with the CPU it is currently executing on.  A reader may read
68  * from any per cpu buffer.
69  *
70  * The reader is special. For each per cpu buffer, the reader has its own
71  * reader page. When a reader has read the entire reader page, this reader
72  * page is swapped with another page in the ring buffer.
73  *
74  * Now, as long as the writer is off the reader page, the reader can do what
75  * ever it wants with that page. The writer will never write to that page
76  * again (as long as it is out of the ring buffer).
77  *
78  * Here's some silly ASCII art.
79  *
80  *   +------+
81  *   |reader|          RING BUFFER
82  *   |page  |
83  *   +------+        +---+   +---+   +---+
84  *                   |   |-->|   |-->|   |
85  *                   +---+   +---+   +---+
86  *                     ^               |
87  *                     |               |
88  *                     +---------------+
89  *
90  *
91  *   +------+
92  *   |reader|          RING BUFFER
93  *   |page  |------------------v
94  *   +------+        +---+   +---+   +---+
95  *                   |   |-->|   |-->|   |
96  *                   +---+   +---+   +---+
97  *                     ^               |
98  *                     |               |
99  *                     +---------------+
100  *
101  *
102  *   +------+
103  *   |reader|          RING BUFFER
104  *   |page  |------------------v
105  *   +------+        +---+   +---+   +---+
106  *      ^            |   |-->|   |-->|   |
107  *      |            +---+   +---+   +---+
108  *      |                              |
109  *      |                              |
110  *      +------------------------------+
111  *
112  *
113  *   +------+
114  *   |buffer|          RING BUFFER
115  *   |page  |------------------v
116  *   +------+        +---+   +---+   +---+
117  *      ^            |   |   |   |-->|   |
118  *      |   New      +---+   +---+   +---+
119  *      |  Reader------^               |
120  *      |   page                       |
121  *      +------------------------------+
122  *
123  *
124  * After we make this swap, the reader can hand this page off to the splice
125  * code and be done with it. It can even allocate a new page if it needs to
126  * and swap that into the ring buffer.
127  *
128  * We will be using cmpxchg soon to make all this lockless.
129  *
130  */
131 
132 /* Used for individual buffers (after the counter) */
133 #define RB_BUFFER_OFF		(1 << 20)
134 
135 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
136 
137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
138 #define RB_ALIGNMENT		4U
139 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
140 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
141 
142 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
143 # define RB_FORCE_8BYTE_ALIGNMENT	0
144 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
145 #else
146 # define RB_FORCE_8BYTE_ALIGNMENT	1
147 # define RB_ARCH_ALIGNMENT		8U
148 #endif
149 
150 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
151 
152 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
153 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
154 
155 enum {
156 	RB_LEN_TIME_EXTEND = 8,
157 	RB_LEN_TIME_STAMP =  8,
158 };
159 
160 #define skip_time_extend(event) \
161 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
162 
163 #define extended_time(event) \
164 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
165 
166 static inline bool rb_null_event(struct ring_buffer_event *event)
167 {
168 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
169 }
170 
171 static void rb_event_set_padding(struct ring_buffer_event *event)
172 {
173 	/* padding has a NULL time_delta */
174 	event->type_len = RINGBUF_TYPE_PADDING;
175 	event->time_delta = 0;
176 }
177 
178 static unsigned
179 rb_event_data_length(struct ring_buffer_event *event)
180 {
181 	unsigned length;
182 
183 	if (event->type_len)
184 		length = event->type_len * RB_ALIGNMENT;
185 	else
186 		length = event->array[0];
187 	return length + RB_EVNT_HDR_SIZE;
188 }
189 
190 /*
191  * Return the length of the given event. Will return
192  * the length of the time extend if the event is a
193  * time extend.
194  */
195 static inline unsigned
196 rb_event_length(struct ring_buffer_event *event)
197 {
198 	switch (event->type_len) {
199 	case RINGBUF_TYPE_PADDING:
200 		if (rb_null_event(event))
201 			/* undefined */
202 			return -1;
203 		return  event->array[0] + RB_EVNT_HDR_SIZE;
204 
205 	case RINGBUF_TYPE_TIME_EXTEND:
206 		return RB_LEN_TIME_EXTEND;
207 
208 	case RINGBUF_TYPE_TIME_STAMP:
209 		return RB_LEN_TIME_STAMP;
210 
211 	case RINGBUF_TYPE_DATA:
212 		return rb_event_data_length(event);
213 	default:
214 		WARN_ON_ONCE(1);
215 	}
216 	/* not hit */
217 	return 0;
218 }
219 
220 /*
221  * Return total length of time extend and data,
222  *   or just the event length for all other events.
223  */
224 static inline unsigned
225 rb_event_ts_length(struct ring_buffer_event *event)
226 {
227 	unsigned len = 0;
228 
229 	if (extended_time(event)) {
230 		/* time extends include the data event after it */
231 		len = RB_LEN_TIME_EXTEND;
232 		event = skip_time_extend(event);
233 	}
234 	return len + rb_event_length(event);
235 }
236 
237 /**
238  * ring_buffer_event_length - return the length of the event
239  * @event: the event to get the length of
240  *
241  * Returns the size of the data load of a data event.
242  * If the event is something other than a data event, it
243  * returns the size of the event itself. With the exception
244  * of a TIME EXTEND, where it still returns the size of the
245  * data load of the data event after it.
246  */
247 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
248 {
249 	unsigned length;
250 
251 	if (extended_time(event))
252 		event = skip_time_extend(event);
253 
254 	length = rb_event_length(event);
255 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
256 		return length;
257 	length -= RB_EVNT_HDR_SIZE;
258 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
259                 length -= sizeof(event->array[0]);
260 	return length;
261 }
262 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
263 
264 /* inline for ring buffer fast paths */
265 static __always_inline void *
266 rb_event_data(struct ring_buffer_event *event)
267 {
268 	if (extended_time(event))
269 		event = skip_time_extend(event);
270 	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
271 	/* If length is in len field, then array[0] has the data */
272 	if (event->type_len)
273 		return (void *)&event->array[0];
274 	/* Otherwise length is in array[0] and array[1] has the data */
275 	return (void *)&event->array[1];
276 }
277 
278 /**
279  * ring_buffer_event_data - return the data of the event
280  * @event: the event to get the data from
281  */
282 void *ring_buffer_event_data(struct ring_buffer_event *event)
283 {
284 	return rb_event_data(event);
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
287 
288 #define for_each_buffer_cpu(buffer, cpu)		\
289 	for_each_cpu(cpu, buffer->cpumask)
290 
291 #define for_each_online_buffer_cpu(buffer, cpu)		\
292 	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
293 
294 #define TS_SHIFT	27
295 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
296 #define TS_DELTA_TEST	(~TS_MASK)
297 
298 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
299 {
300 	u64 ts;
301 
302 	ts = event->array[0];
303 	ts <<= TS_SHIFT;
304 	ts += event->time_delta;
305 
306 	return ts;
307 }
308 
309 /* Flag when events were overwritten */
310 #define RB_MISSED_EVENTS	(1 << 31)
311 /* Missed count stored at end */
312 #define RB_MISSED_STORED	(1 << 30)
313 
314 struct buffer_data_page {
315 	u64		 time_stamp;	/* page time stamp */
316 	local_t		 commit;	/* write committed index */
317 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
318 };
319 
320 /*
321  * Note, the buffer_page list must be first. The buffer pages
322  * are allocated in cache lines, which means that each buffer
323  * page will be at the beginning of a cache line, and thus
324  * the least significant bits will be zero. We use this to
325  * add flags in the list struct pointers, to make the ring buffer
326  * lockless.
327  */
328 struct buffer_page {
329 	struct list_head list;		/* list of buffer pages */
330 	local_t		 write;		/* index for next write */
331 	unsigned	 read;		/* index for next read */
332 	local_t		 entries;	/* entries on this page */
333 	unsigned long	 real_end;	/* real end of data */
334 	struct buffer_data_page *page;	/* Actual data page */
335 };
336 
337 /*
338  * The buffer page counters, write and entries, must be reset
339  * atomically when crossing page boundaries. To synchronize this
340  * update, two counters are inserted into the number. One is
341  * the actual counter for the write position or count on the page.
342  *
343  * The other is a counter of updaters. Before an update happens
344  * the update partition of the counter is incremented. This will
345  * allow the updater to update the counter atomically.
346  *
347  * The counter is 20 bits, and the state data is 12.
348  */
349 #define RB_WRITE_MASK		0xfffff
350 #define RB_WRITE_INTCNT		(1 << 20)
351 
352 static void rb_init_page(struct buffer_data_page *bpage)
353 {
354 	local_set(&bpage->commit, 0);
355 }
356 
357 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
358 {
359 	return local_read(&bpage->page->commit);
360 }
361 
362 static void free_buffer_page(struct buffer_page *bpage)
363 {
364 	free_page((unsigned long)bpage->page);
365 	kfree(bpage);
366 }
367 
368 /*
369  * We need to fit the time_stamp delta into 27 bits.
370  */
371 static inline bool test_time_stamp(u64 delta)
372 {
373 	return !!(delta & TS_DELTA_TEST);
374 }
375 
376 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
377 
378 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
379 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
380 
381 int ring_buffer_print_page_header(struct trace_seq *s)
382 {
383 	struct buffer_data_page field;
384 
385 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
386 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
387 			 (unsigned int)sizeof(field.time_stamp),
388 			 (unsigned int)is_signed_type(u64));
389 
390 	trace_seq_printf(s, "\tfield: local_t commit;\t"
391 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
392 			 (unsigned int)offsetof(typeof(field), commit),
393 			 (unsigned int)sizeof(field.commit),
394 			 (unsigned int)is_signed_type(long));
395 
396 	trace_seq_printf(s, "\tfield: int overwrite;\t"
397 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
398 			 (unsigned int)offsetof(typeof(field), commit),
399 			 1,
400 			 (unsigned int)is_signed_type(long));
401 
402 	trace_seq_printf(s, "\tfield: char data;\t"
403 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
404 			 (unsigned int)offsetof(typeof(field), data),
405 			 (unsigned int)BUF_PAGE_SIZE,
406 			 (unsigned int)is_signed_type(char));
407 
408 	return !trace_seq_has_overflowed(s);
409 }
410 
411 struct rb_irq_work {
412 	struct irq_work			work;
413 	wait_queue_head_t		waiters;
414 	wait_queue_head_t		full_waiters;
415 	long				wait_index;
416 	bool				waiters_pending;
417 	bool				full_waiters_pending;
418 	bool				wakeup_full;
419 };
420 
421 /*
422  * Structure to hold event state and handle nested events.
423  */
424 struct rb_event_info {
425 	u64			ts;
426 	u64			delta;
427 	u64			before;
428 	u64			after;
429 	unsigned long		length;
430 	struct buffer_page	*tail_page;
431 	int			add_timestamp;
432 };
433 
434 /*
435  * Used for the add_timestamp
436  *  NONE
437  *  EXTEND - wants a time extend
438  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
439  *  FORCE - force a full time stamp.
440  */
441 enum {
442 	RB_ADD_STAMP_NONE		= 0,
443 	RB_ADD_STAMP_EXTEND		= BIT(1),
444 	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
445 	RB_ADD_STAMP_FORCE		= BIT(3)
446 };
447 /*
448  * Used for which event context the event is in.
449  *  TRANSITION = 0
450  *  NMI     = 1
451  *  IRQ     = 2
452  *  SOFTIRQ = 3
453  *  NORMAL  = 4
454  *
455  * See trace_recursive_lock() comment below for more details.
456  */
457 enum {
458 	RB_CTX_TRANSITION,
459 	RB_CTX_NMI,
460 	RB_CTX_IRQ,
461 	RB_CTX_SOFTIRQ,
462 	RB_CTX_NORMAL,
463 	RB_CTX_MAX
464 };
465 
466 #if BITS_PER_LONG == 32
467 #define RB_TIME_32
468 #endif
469 
470 /* To test on 64 bit machines */
471 //#define RB_TIME_32
472 
473 #ifdef RB_TIME_32
474 
475 struct rb_time_struct {
476 	local_t		cnt;
477 	local_t		top;
478 	local_t		bottom;
479 	local_t		msb;
480 };
481 #else
482 #include <asm/local64.h>
483 struct rb_time_struct {
484 	local64_t	time;
485 };
486 #endif
487 typedef struct rb_time_struct rb_time_t;
488 
489 #define MAX_NEST	5
490 
491 /*
492  * head_page == tail_page && head == tail then buffer is empty.
493  */
494 struct ring_buffer_per_cpu {
495 	int				cpu;
496 	atomic_t			record_disabled;
497 	atomic_t			resize_disabled;
498 	struct trace_buffer	*buffer;
499 	raw_spinlock_t			reader_lock;	/* serialize readers */
500 	arch_spinlock_t			lock;
501 	struct lock_class_key		lock_key;
502 	struct buffer_data_page		*free_page;
503 	unsigned long			nr_pages;
504 	unsigned int			current_context;
505 	struct list_head		*pages;
506 	struct buffer_page		*head_page;	/* read from head */
507 	struct buffer_page		*tail_page;	/* write to tail */
508 	struct buffer_page		*commit_page;	/* committed pages */
509 	struct buffer_page		*reader_page;
510 	unsigned long			lost_events;
511 	unsigned long			last_overrun;
512 	unsigned long			nest;
513 	local_t				entries_bytes;
514 	local_t				entries;
515 	local_t				overrun;
516 	local_t				commit_overrun;
517 	local_t				dropped_events;
518 	local_t				committing;
519 	local_t				commits;
520 	local_t				pages_touched;
521 	local_t				pages_lost;
522 	local_t				pages_read;
523 	long				last_pages_touch;
524 	size_t				shortest_full;
525 	unsigned long			read;
526 	unsigned long			read_bytes;
527 	rb_time_t			write_stamp;
528 	rb_time_t			before_stamp;
529 	u64				event_stamp[MAX_NEST];
530 	u64				read_stamp;
531 	/* pages removed since last reset */
532 	unsigned long			pages_removed;
533 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
534 	long				nr_pages_to_update;
535 	struct list_head		new_pages; /* new pages to add */
536 	struct work_struct		update_pages_work;
537 	struct completion		update_done;
538 
539 	struct rb_irq_work		irq_work;
540 };
541 
542 struct trace_buffer {
543 	unsigned			flags;
544 	int				cpus;
545 	atomic_t			record_disabled;
546 	atomic_t			resizing;
547 	cpumask_var_t			cpumask;
548 
549 	struct lock_class_key		*reader_lock_key;
550 
551 	struct mutex			mutex;
552 
553 	struct ring_buffer_per_cpu	**buffers;
554 
555 	struct hlist_node		node;
556 	u64				(*clock)(void);
557 
558 	struct rb_irq_work		irq_work;
559 	bool				time_stamp_abs;
560 };
561 
562 struct ring_buffer_iter {
563 	struct ring_buffer_per_cpu	*cpu_buffer;
564 	unsigned long			head;
565 	unsigned long			next_event;
566 	struct buffer_page		*head_page;
567 	struct buffer_page		*cache_reader_page;
568 	unsigned long			cache_read;
569 	unsigned long			cache_pages_removed;
570 	u64				read_stamp;
571 	u64				page_stamp;
572 	struct ring_buffer_event	*event;
573 	int				missed_events;
574 };
575 
576 #ifdef RB_TIME_32
577 
578 /*
579  * On 32 bit machines, local64_t is very expensive. As the ring
580  * buffer doesn't need all the features of a true 64 bit atomic,
581  * on 32 bit, it uses these functions (64 still uses local64_t).
582  *
583  * For the ring buffer, 64 bit required operations for the time is
584  * the following:
585  *
586  *  - Reads may fail if it interrupted a modification of the time stamp.
587  *      It will succeed if it did not interrupt another write even if
588  *      the read itself is interrupted by a write.
589  *      It returns whether it was successful or not.
590  *
591  *  - Writes always succeed and will overwrite other writes and writes
592  *      that were done by events interrupting the current write.
593  *
594  *  - A write followed by a read of the same time stamp will always succeed,
595  *      but may not contain the same value.
596  *
597  *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
598  *      Other than that, it acts like a normal cmpxchg.
599  *
600  * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
601  *  (bottom being the least significant 30 bits of the 60 bit time stamp).
602  *
603  * The two most significant bits of each half holds a 2 bit counter (0-3).
604  * Each update will increment this counter by one.
605  * When reading the top and bottom, if the two counter bits match then the
606  *  top and bottom together make a valid 60 bit number.
607  */
608 #define RB_TIME_SHIFT	30
609 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
610 #define RB_TIME_MSB_SHIFT	 60
611 
612 static inline int rb_time_cnt(unsigned long val)
613 {
614 	return (val >> RB_TIME_SHIFT) & 3;
615 }
616 
617 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
618 {
619 	u64 val;
620 
621 	val = top & RB_TIME_VAL_MASK;
622 	val <<= RB_TIME_SHIFT;
623 	val |= bottom & RB_TIME_VAL_MASK;
624 
625 	return val;
626 }
627 
628 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
629 {
630 	unsigned long top, bottom, msb;
631 	unsigned long c;
632 
633 	/*
634 	 * If the read is interrupted by a write, then the cnt will
635 	 * be different. Loop until both top and bottom have been read
636 	 * without interruption.
637 	 */
638 	do {
639 		c = local_read(&t->cnt);
640 		top = local_read(&t->top);
641 		bottom = local_read(&t->bottom);
642 		msb = local_read(&t->msb);
643 	} while (c != local_read(&t->cnt));
644 
645 	*cnt = rb_time_cnt(top);
646 
647 	/* If top, msb or bottom counts don't match, this interrupted a write */
648 	if (*cnt != rb_time_cnt(msb) || *cnt != rb_time_cnt(bottom))
649 		return false;
650 
651 	/* The shift to msb will lose its cnt bits */
652 	*ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT);
653 	return true;
654 }
655 
656 static bool rb_time_read(rb_time_t *t, u64 *ret)
657 {
658 	unsigned long cnt;
659 
660 	return __rb_time_read(t, ret, &cnt);
661 }
662 
663 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
664 {
665 	return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
666 }
667 
668 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom,
669 				 unsigned long *msb)
670 {
671 	*top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
672 	*bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
673 	*msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT);
674 }
675 
676 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
677 {
678 	val = rb_time_val_cnt(val, cnt);
679 	local_set(t, val);
680 }
681 
682 static void rb_time_set(rb_time_t *t, u64 val)
683 {
684 	unsigned long cnt, top, bottom, msb;
685 
686 	rb_time_split(val, &top, &bottom, &msb);
687 
688 	/* Writes always succeed with a valid number even if it gets interrupted. */
689 	do {
690 		cnt = local_inc_return(&t->cnt);
691 		rb_time_val_set(&t->top, top, cnt);
692 		rb_time_val_set(&t->bottom, bottom, cnt);
693 		rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt);
694 	} while (cnt != local_read(&t->cnt));
695 }
696 
697 static inline bool
698 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
699 {
700 	return local_try_cmpxchg(l, &expect, set);
701 }
702 
703 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
704 {
705 	unsigned long cnt, top, bottom, msb;
706 	unsigned long cnt2, top2, bottom2, msb2;
707 	u64 val;
708 
709 	/* Any interruptions in this function should cause a failure */
710 	cnt = local_read(&t->cnt);
711 
712 	/* The cmpxchg always fails if it interrupted an update */
713 	 if (!__rb_time_read(t, &val, &cnt2))
714 		 return false;
715 
716 	 if (val != expect)
717 		 return false;
718 
719 	 if ((cnt & 3) != cnt2)
720 		 return false;
721 
722 	 cnt2 = cnt + 1;
723 
724 	 rb_time_split(val, &top, &bottom, &msb);
725 	 msb = rb_time_val_cnt(msb, cnt);
726 	 top = rb_time_val_cnt(top, cnt);
727 	 bottom = rb_time_val_cnt(bottom, cnt);
728 
729 	 rb_time_split(set, &top2, &bottom2, &msb2);
730 	 msb2 = rb_time_val_cnt(msb2, cnt);
731 	 top2 = rb_time_val_cnt(top2, cnt2);
732 	 bottom2 = rb_time_val_cnt(bottom2, cnt2);
733 
734 	if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
735 		return false;
736 	if (!rb_time_read_cmpxchg(&t->msb, msb, msb2))
737 		return false;
738 	if (!rb_time_read_cmpxchg(&t->top, top, top2))
739 		return false;
740 	if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
741 		return false;
742 	return true;
743 }
744 
745 #else /* 64 bits */
746 
747 /* local64_t always succeeds */
748 
749 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
750 {
751 	*ret = local64_read(&t->time);
752 	return true;
753 }
754 static void rb_time_set(rb_time_t *t, u64 val)
755 {
756 	local64_set(&t->time, val);
757 }
758 
759 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
760 {
761 	return local64_try_cmpxchg(&t->time, &expect, set);
762 }
763 #endif
764 
765 /*
766  * Enable this to make sure that the event passed to
767  * ring_buffer_event_time_stamp() is not committed and also
768  * is on the buffer that it passed in.
769  */
770 //#define RB_VERIFY_EVENT
771 #ifdef RB_VERIFY_EVENT
772 static struct list_head *rb_list_head(struct list_head *list);
773 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
774 			 void *event)
775 {
776 	struct buffer_page *page = cpu_buffer->commit_page;
777 	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
778 	struct list_head *next;
779 	long commit, write;
780 	unsigned long addr = (unsigned long)event;
781 	bool done = false;
782 	int stop = 0;
783 
784 	/* Make sure the event exists and is not committed yet */
785 	do {
786 		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
787 			done = true;
788 		commit = local_read(&page->page->commit);
789 		write = local_read(&page->write);
790 		if (addr >= (unsigned long)&page->page->data[commit] &&
791 		    addr < (unsigned long)&page->page->data[write])
792 			return;
793 
794 		next = rb_list_head(page->list.next);
795 		page = list_entry(next, struct buffer_page, list);
796 	} while (!done);
797 	WARN_ON_ONCE(1);
798 }
799 #else
800 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
801 			 void *event)
802 {
803 }
804 #endif
805 
806 /*
807  * The absolute time stamp drops the 5 MSBs and some clocks may
808  * require them. The rb_fix_abs_ts() will take a previous full
809  * time stamp, and add the 5 MSB of that time stamp on to the
810  * saved absolute time stamp. Then they are compared in case of
811  * the unlikely event that the latest time stamp incremented
812  * the 5 MSB.
813  */
814 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
815 {
816 	if (save_ts & TS_MSB) {
817 		abs |= save_ts & TS_MSB;
818 		/* Check for overflow */
819 		if (unlikely(abs < save_ts))
820 			abs += 1ULL << 59;
821 	}
822 	return abs;
823 }
824 
825 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
826 
827 /**
828  * ring_buffer_event_time_stamp - return the event's current time stamp
829  * @buffer: The buffer that the event is on
830  * @event: the event to get the time stamp of
831  *
832  * Note, this must be called after @event is reserved, and before it is
833  * committed to the ring buffer. And must be called from the same
834  * context where the event was reserved (normal, softirq, irq, etc).
835  *
836  * Returns the time stamp associated with the current event.
837  * If the event has an extended time stamp, then that is used as
838  * the time stamp to return.
839  * In the highly unlikely case that the event was nested more than
840  * the max nesting, then the write_stamp of the buffer is returned,
841  * otherwise  current time is returned, but that really neither of
842  * the last two cases should ever happen.
843  */
844 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
845 				 struct ring_buffer_event *event)
846 {
847 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
848 	unsigned int nest;
849 	u64 ts;
850 
851 	/* If the event includes an absolute time, then just use that */
852 	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
853 		ts = rb_event_time_stamp(event);
854 		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
855 	}
856 
857 	nest = local_read(&cpu_buffer->committing);
858 	verify_event(cpu_buffer, event);
859 	if (WARN_ON_ONCE(!nest))
860 		goto fail;
861 
862 	/* Read the current saved nesting level time stamp */
863 	if (likely(--nest < MAX_NEST))
864 		return cpu_buffer->event_stamp[nest];
865 
866 	/* Shouldn't happen, warn if it does */
867 	WARN_ONCE(1, "nest (%d) greater than max", nest);
868 
869  fail:
870 	/* Can only fail on 32 bit */
871 	if (!rb_time_read(&cpu_buffer->write_stamp, &ts))
872 		/* Screw it, just read the current time */
873 		ts = rb_time_stamp(cpu_buffer->buffer);
874 
875 	return ts;
876 }
877 
878 /**
879  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
880  * @buffer: The ring_buffer to get the number of pages from
881  * @cpu: The cpu of the ring_buffer to get the number of pages from
882  *
883  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
884  */
885 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
886 {
887 	return buffer->buffers[cpu]->nr_pages;
888 }
889 
890 /**
891  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
892  * @buffer: The ring_buffer to get the number of pages from
893  * @cpu: The cpu of the ring_buffer to get the number of pages from
894  *
895  * Returns the number of pages that have content in the ring buffer.
896  */
897 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
898 {
899 	size_t read;
900 	size_t lost;
901 	size_t cnt;
902 
903 	read = local_read(&buffer->buffers[cpu]->pages_read);
904 	lost = local_read(&buffer->buffers[cpu]->pages_lost);
905 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
906 
907 	if (WARN_ON_ONCE(cnt < lost))
908 		return 0;
909 
910 	cnt -= lost;
911 
912 	/* The reader can read an empty page, but not more than that */
913 	if (cnt < read) {
914 		WARN_ON_ONCE(read > cnt + 1);
915 		return 0;
916 	}
917 
918 	return cnt - read;
919 }
920 
921 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
922 {
923 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
924 	size_t nr_pages;
925 	size_t dirty;
926 
927 	nr_pages = cpu_buffer->nr_pages;
928 	if (!nr_pages || !full)
929 		return true;
930 
931 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
932 
933 	return (dirty * 100) > (full * nr_pages);
934 }
935 
936 /*
937  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
938  *
939  * Schedules a delayed work to wake up any task that is blocked on the
940  * ring buffer waiters queue.
941  */
942 static void rb_wake_up_waiters(struct irq_work *work)
943 {
944 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
945 
946 	wake_up_all(&rbwork->waiters);
947 	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
948 		rbwork->wakeup_full = false;
949 		rbwork->full_waiters_pending = false;
950 		wake_up_all(&rbwork->full_waiters);
951 	}
952 }
953 
954 /**
955  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
956  * @buffer: The ring buffer to wake waiters on
957  * @cpu: The CPU buffer to wake waiters on
958  *
959  * In the case of a file that represents a ring buffer is closing,
960  * it is prudent to wake up any waiters that are on this.
961  */
962 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
963 {
964 	struct ring_buffer_per_cpu *cpu_buffer;
965 	struct rb_irq_work *rbwork;
966 
967 	if (!buffer)
968 		return;
969 
970 	if (cpu == RING_BUFFER_ALL_CPUS) {
971 
972 		/* Wake up individual ones too. One level recursion */
973 		for_each_buffer_cpu(buffer, cpu)
974 			ring_buffer_wake_waiters(buffer, cpu);
975 
976 		rbwork = &buffer->irq_work;
977 	} else {
978 		if (WARN_ON_ONCE(!buffer->buffers))
979 			return;
980 		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
981 			return;
982 
983 		cpu_buffer = buffer->buffers[cpu];
984 		/* The CPU buffer may not have been initialized yet */
985 		if (!cpu_buffer)
986 			return;
987 		rbwork = &cpu_buffer->irq_work;
988 	}
989 
990 	rbwork->wait_index++;
991 	/* make sure the waiters see the new index */
992 	smp_wmb();
993 
994 	rb_wake_up_waiters(&rbwork->work);
995 }
996 
997 /**
998  * ring_buffer_wait - wait for input to the ring buffer
999  * @buffer: buffer to wait on
1000  * @cpu: the cpu buffer to wait on
1001  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1002  *
1003  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1004  * as data is added to any of the @buffer's cpu buffers. Otherwise
1005  * it will wait for data to be added to a specific cpu buffer.
1006  */
1007 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
1008 {
1009 	struct ring_buffer_per_cpu *cpu_buffer;
1010 	DEFINE_WAIT(wait);
1011 	struct rb_irq_work *work;
1012 	long wait_index;
1013 	int ret = 0;
1014 
1015 	/*
1016 	 * Depending on what the caller is waiting for, either any
1017 	 * data in any cpu buffer, or a specific buffer, put the
1018 	 * caller on the appropriate wait queue.
1019 	 */
1020 	if (cpu == RING_BUFFER_ALL_CPUS) {
1021 		work = &buffer->irq_work;
1022 		/* Full only makes sense on per cpu reads */
1023 		full = 0;
1024 	} else {
1025 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1026 			return -ENODEV;
1027 		cpu_buffer = buffer->buffers[cpu];
1028 		work = &cpu_buffer->irq_work;
1029 	}
1030 
1031 	wait_index = READ_ONCE(work->wait_index);
1032 
1033 	while (true) {
1034 		if (full)
1035 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
1036 		else
1037 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
1038 
1039 		/*
1040 		 * The events can happen in critical sections where
1041 		 * checking a work queue can cause deadlocks.
1042 		 * After adding a task to the queue, this flag is set
1043 		 * only to notify events to try to wake up the queue
1044 		 * using irq_work.
1045 		 *
1046 		 * We don't clear it even if the buffer is no longer
1047 		 * empty. The flag only causes the next event to run
1048 		 * irq_work to do the work queue wake up. The worse
1049 		 * that can happen if we race with !trace_empty() is that
1050 		 * an event will cause an irq_work to try to wake up
1051 		 * an empty queue.
1052 		 *
1053 		 * There's no reason to protect this flag either, as
1054 		 * the work queue and irq_work logic will do the necessary
1055 		 * synchronization for the wake ups. The only thing
1056 		 * that is necessary is that the wake up happens after
1057 		 * a task has been queued. It's OK for spurious wake ups.
1058 		 */
1059 		if (full)
1060 			work->full_waiters_pending = true;
1061 		else
1062 			work->waiters_pending = true;
1063 
1064 		if (signal_pending(current)) {
1065 			ret = -EINTR;
1066 			break;
1067 		}
1068 
1069 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
1070 			break;
1071 
1072 		if (cpu != RING_BUFFER_ALL_CPUS &&
1073 		    !ring_buffer_empty_cpu(buffer, cpu)) {
1074 			unsigned long flags;
1075 			bool pagebusy;
1076 			bool done;
1077 
1078 			if (!full)
1079 				break;
1080 
1081 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1082 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
1083 			done = !pagebusy && full_hit(buffer, cpu, full);
1084 
1085 			if (!cpu_buffer->shortest_full ||
1086 			    cpu_buffer->shortest_full > full)
1087 				cpu_buffer->shortest_full = full;
1088 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1089 			if (done)
1090 				break;
1091 		}
1092 
1093 		schedule();
1094 
1095 		/* Make sure to see the new wait index */
1096 		smp_rmb();
1097 		if (wait_index != work->wait_index)
1098 			break;
1099 	}
1100 
1101 	if (full)
1102 		finish_wait(&work->full_waiters, &wait);
1103 	else
1104 		finish_wait(&work->waiters, &wait);
1105 
1106 	return ret;
1107 }
1108 
1109 /**
1110  * ring_buffer_poll_wait - poll on buffer input
1111  * @buffer: buffer to wait on
1112  * @cpu: the cpu buffer to wait on
1113  * @filp: the file descriptor
1114  * @poll_table: The poll descriptor
1115  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1116  *
1117  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1118  * as data is added to any of the @buffer's cpu buffers. Otherwise
1119  * it will wait for data to be added to a specific cpu buffer.
1120  *
1121  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1122  * zero otherwise.
1123  */
1124 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1125 			  struct file *filp, poll_table *poll_table, int full)
1126 {
1127 	struct ring_buffer_per_cpu *cpu_buffer;
1128 	struct rb_irq_work *work;
1129 
1130 	if (cpu == RING_BUFFER_ALL_CPUS) {
1131 		work = &buffer->irq_work;
1132 		full = 0;
1133 	} else {
1134 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1135 			return -EINVAL;
1136 
1137 		cpu_buffer = buffer->buffers[cpu];
1138 		work = &cpu_buffer->irq_work;
1139 	}
1140 
1141 	if (full) {
1142 		poll_wait(filp, &work->full_waiters, poll_table);
1143 		work->full_waiters_pending = true;
1144 		if (!cpu_buffer->shortest_full ||
1145 		    cpu_buffer->shortest_full > full)
1146 			cpu_buffer->shortest_full = full;
1147 	} else {
1148 		poll_wait(filp, &work->waiters, poll_table);
1149 		work->waiters_pending = true;
1150 	}
1151 
1152 	/*
1153 	 * There's a tight race between setting the waiters_pending and
1154 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1155 	 * is set, the next event will wake the task up, but we can get stuck
1156 	 * if there's only a single event in.
1157 	 *
1158 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1159 	 * but adding a memory barrier to all events will cause too much of a
1160 	 * performance hit in the fast path.  We only need a memory barrier when
1161 	 * the buffer goes from empty to having content.  But as this race is
1162 	 * extremely small, and it's not a problem if another event comes in, we
1163 	 * will fix it later.
1164 	 */
1165 	smp_mb();
1166 
1167 	if (full)
1168 		return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0;
1169 
1170 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1171 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1172 		return EPOLLIN | EPOLLRDNORM;
1173 	return 0;
1174 }
1175 
1176 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1177 #define RB_WARN_ON(b, cond)						\
1178 	({								\
1179 		int _____ret = unlikely(cond);				\
1180 		if (_____ret) {						\
1181 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1182 				struct ring_buffer_per_cpu *__b =	\
1183 					(void *)b;			\
1184 				atomic_inc(&__b->buffer->record_disabled); \
1185 			} else						\
1186 				atomic_inc(&b->record_disabled);	\
1187 			WARN_ON(1);					\
1188 		}							\
1189 		_____ret;						\
1190 	})
1191 
1192 /* Up this if you want to test the TIME_EXTENTS and normalization */
1193 #define DEBUG_SHIFT 0
1194 
1195 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1196 {
1197 	u64 ts;
1198 
1199 	/* Skip retpolines :-( */
1200 	if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1201 		ts = trace_clock_local();
1202 	else
1203 		ts = buffer->clock();
1204 
1205 	/* shift to debug/test normalization and TIME_EXTENTS */
1206 	return ts << DEBUG_SHIFT;
1207 }
1208 
1209 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1210 {
1211 	u64 time;
1212 
1213 	preempt_disable_notrace();
1214 	time = rb_time_stamp(buffer);
1215 	preempt_enable_notrace();
1216 
1217 	return time;
1218 }
1219 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1220 
1221 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1222 				      int cpu, u64 *ts)
1223 {
1224 	/* Just stupid testing the normalize function and deltas */
1225 	*ts >>= DEBUG_SHIFT;
1226 }
1227 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1228 
1229 /*
1230  * Making the ring buffer lockless makes things tricky.
1231  * Although writes only happen on the CPU that they are on,
1232  * and they only need to worry about interrupts. Reads can
1233  * happen on any CPU.
1234  *
1235  * The reader page is always off the ring buffer, but when the
1236  * reader finishes with a page, it needs to swap its page with
1237  * a new one from the buffer. The reader needs to take from
1238  * the head (writes go to the tail). But if a writer is in overwrite
1239  * mode and wraps, it must push the head page forward.
1240  *
1241  * Here lies the problem.
1242  *
1243  * The reader must be careful to replace only the head page, and
1244  * not another one. As described at the top of the file in the
1245  * ASCII art, the reader sets its old page to point to the next
1246  * page after head. It then sets the page after head to point to
1247  * the old reader page. But if the writer moves the head page
1248  * during this operation, the reader could end up with the tail.
1249  *
1250  * We use cmpxchg to help prevent this race. We also do something
1251  * special with the page before head. We set the LSB to 1.
1252  *
1253  * When the writer must push the page forward, it will clear the
1254  * bit that points to the head page, move the head, and then set
1255  * the bit that points to the new head page.
1256  *
1257  * We also don't want an interrupt coming in and moving the head
1258  * page on another writer. Thus we use the second LSB to catch
1259  * that too. Thus:
1260  *
1261  * head->list->prev->next        bit 1          bit 0
1262  *                              -------        -------
1263  * Normal page                     0              0
1264  * Points to head page             0              1
1265  * New head page                   1              0
1266  *
1267  * Note we can not trust the prev pointer of the head page, because:
1268  *
1269  * +----+       +-----+        +-----+
1270  * |    |------>|  T  |---X--->|  N  |
1271  * |    |<------|     |        |     |
1272  * +----+       +-----+        +-----+
1273  *   ^                           ^ |
1274  *   |          +-----+          | |
1275  *   +----------|  R  |----------+ |
1276  *              |     |<-----------+
1277  *              +-----+
1278  *
1279  * Key:  ---X-->  HEAD flag set in pointer
1280  *         T      Tail page
1281  *         R      Reader page
1282  *         N      Next page
1283  *
1284  * (see __rb_reserve_next() to see where this happens)
1285  *
1286  *  What the above shows is that the reader just swapped out
1287  *  the reader page with a page in the buffer, but before it
1288  *  could make the new header point back to the new page added
1289  *  it was preempted by a writer. The writer moved forward onto
1290  *  the new page added by the reader and is about to move forward
1291  *  again.
1292  *
1293  *  You can see, it is legitimate for the previous pointer of
1294  *  the head (or any page) not to point back to itself. But only
1295  *  temporarily.
1296  */
1297 
1298 #define RB_PAGE_NORMAL		0UL
1299 #define RB_PAGE_HEAD		1UL
1300 #define RB_PAGE_UPDATE		2UL
1301 
1302 
1303 #define RB_FLAG_MASK		3UL
1304 
1305 /* PAGE_MOVED is not part of the mask */
1306 #define RB_PAGE_MOVED		4UL
1307 
1308 /*
1309  * rb_list_head - remove any bit
1310  */
1311 static struct list_head *rb_list_head(struct list_head *list)
1312 {
1313 	unsigned long val = (unsigned long)list;
1314 
1315 	return (struct list_head *)(val & ~RB_FLAG_MASK);
1316 }
1317 
1318 /*
1319  * rb_is_head_page - test if the given page is the head page
1320  *
1321  * Because the reader may move the head_page pointer, we can
1322  * not trust what the head page is (it may be pointing to
1323  * the reader page). But if the next page is a header page,
1324  * its flags will be non zero.
1325  */
1326 static inline int
1327 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1328 {
1329 	unsigned long val;
1330 
1331 	val = (unsigned long)list->next;
1332 
1333 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1334 		return RB_PAGE_MOVED;
1335 
1336 	return val & RB_FLAG_MASK;
1337 }
1338 
1339 /*
1340  * rb_is_reader_page
1341  *
1342  * The unique thing about the reader page, is that, if the
1343  * writer is ever on it, the previous pointer never points
1344  * back to the reader page.
1345  */
1346 static bool rb_is_reader_page(struct buffer_page *page)
1347 {
1348 	struct list_head *list = page->list.prev;
1349 
1350 	return rb_list_head(list->next) != &page->list;
1351 }
1352 
1353 /*
1354  * rb_set_list_to_head - set a list_head to be pointing to head.
1355  */
1356 static void rb_set_list_to_head(struct list_head *list)
1357 {
1358 	unsigned long *ptr;
1359 
1360 	ptr = (unsigned long *)&list->next;
1361 	*ptr |= RB_PAGE_HEAD;
1362 	*ptr &= ~RB_PAGE_UPDATE;
1363 }
1364 
1365 /*
1366  * rb_head_page_activate - sets up head page
1367  */
1368 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1369 {
1370 	struct buffer_page *head;
1371 
1372 	head = cpu_buffer->head_page;
1373 	if (!head)
1374 		return;
1375 
1376 	/*
1377 	 * Set the previous list pointer to have the HEAD flag.
1378 	 */
1379 	rb_set_list_to_head(head->list.prev);
1380 }
1381 
1382 static void rb_list_head_clear(struct list_head *list)
1383 {
1384 	unsigned long *ptr = (unsigned long *)&list->next;
1385 
1386 	*ptr &= ~RB_FLAG_MASK;
1387 }
1388 
1389 /*
1390  * rb_head_page_deactivate - clears head page ptr (for free list)
1391  */
1392 static void
1393 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1394 {
1395 	struct list_head *hd;
1396 
1397 	/* Go through the whole list and clear any pointers found. */
1398 	rb_list_head_clear(cpu_buffer->pages);
1399 
1400 	list_for_each(hd, cpu_buffer->pages)
1401 		rb_list_head_clear(hd);
1402 }
1403 
1404 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1405 			    struct buffer_page *head,
1406 			    struct buffer_page *prev,
1407 			    int old_flag, int new_flag)
1408 {
1409 	struct list_head *list;
1410 	unsigned long val = (unsigned long)&head->list;
1411 	unsigned long ret;
1412 
1413 	list = &prev->list;
1414 
1415 	val &= ~RB_FLAG_MASK;
1416 
1417 	ret = cmpxchg((unsigned long *)&list->next,
1418 		      val | old_flag, val | new_flag);
1419 
1420 	/* check if the reader took the page */
1421 	if ((ret & ~RB_FLAG_MASK) != val)
1422 		return RB_PAGE_MOVED;
1423 
1424 	return ret & RB_FLAG_MASK;
1425 }
1426 
1427 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1428 				   struct buffer_page *head,
1429 				   struct buffer_page *prev,
1430 				   int old_flag)
1431 {
1432 	return rb_head_page_set(cpu_buffer, head, prev,
1433 				old_flag, RB_PAGE_UPDATE);
1434 }
1435 
1436 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1437 				 struct buffer_page *head,
1438 				 struct buffer_page *prev,
1439 				 int old_flag)
1440 {
1441 	return rb_head_page_set(cpu_buffer, head, prev,
1442 				old_flag, RB_PAGE_HEAD);
1443 }
1444 
1445 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1446 				   struct buffer_page *head,
1447 				   struct buffer_page *prev,
1448 				   int old_flag)
1449 {
1450 	return rb_head_page_set(cpu_buffer, head, prev,
1451 				old_flag, RB_PAGE_NORMAL);
1452 }
1453 
1454 static inline void rb_inc_page(struct buffer_page **bpage)
1455 {
1456 	struct list_head *p = rb_list_head((*bpage)->list.next);
1457 
1458 	*bpage = list_entry(p, struct buffer_page, list);
1459 }
1460 
1461 static struct buffer_page *
1462 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1463 {
1464 	struct buffer_page *head;
1465 	struct buffer_page *page;
1466 	struct list_head *list;
1467 	int i;
1468 
1469 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1470 		return NULL;
1471 
1472 	/* sanity check */
1473 	list = cpu_buffer->pages;
1474 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1475 		return NULL;
1476 
1477 	page = head = cpu_buffer->head_page;
1478 	/*
1479 	 * It is possible that the writer moves the header behind
1480 	 * where we started, and we miss in one loop.
1481 	 * A second loop should grab the header, but we'll do
1482 	 * three loops just because I'm paranoid.
1483 	 */
1484 	for (i = 0; i < 3; i++) {
1485 		do {
1486 			if (rb_is_head_page(page, page->list.prev)) {
1487 				cpu_buffer->head_page = page;
1488 				return page;
1489 			}
1490 			rb_inc_page(&page);
1491 		} while (page != head);
1492 	}
1493 
1494 	RB_WARN_ON(cpu_buffer, 1);
1495 
1496 	return NULL;
1497 }
1498 
1499 static bool rb_head_page_replace(struct buffer_page *old,
1500 				struct buffer_page *new)
1501 {
1502 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1503 	unsigned long val;
1504 
1505 	val = *ptr & ~RB_FLAG_MASK;
1506 	val |= RB_PAGE_HEAD;
1507 
1508 	return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1509 }
1510 
1511 /*
1512  * rb_tail_page_update - move the tail page forward
1513  */
1514 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1515 			       struct buffer_page *tail_page,
1516 			       struct buffer_page *next_page)
1517 {
1518 	unsigned long old_entries;
1519 	unsigned long old_write;
1520 
1521 	/*
1522 	 * The tail page now needs to be moved forward.
1523 	 *
1524 	 * We need to reset the tail page, but without messing
1525 	 * with possible erasing of data brought in by interrupts
1526 	 * that have moved the tail page and are currently on it.
1527 	 *
1528 	 * We add a counter to the write field to denote this.
1529 	 */
1530 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1531 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1532 
1533 	local_inc(&cpu_buffer->pages_touched);
1534 	/*
1535 	 * Just make sure we have seen our old_write and synchronize
1536 	 * with any interrupts that come in.
1537 	 */
1538 	barrier();
1539 
1540 	/*
1541 	 * If the tail page is still the same as what we think
1542 	 * it is, then it is up to us to update the tail
1543 	 * pointer.
1544 	 */
1545 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1546 		/* Zero the write counter */
1547 		unsigned long val = old_write & ~RB_WRITE_MASK;
1548 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1549 
1550 		/*
1551 		 * This will only succeed if an interrupt did
1552 		 * not come in and change it. In which case, we
1553 		 * do not want to modify it.
1554 		 *
1555 		 * We add (void) to let the compiler know that we do not care
1556 		 * about the return value of these functions. We use the
1557 		 * cmpxchg to only update if an interrupt did not already
1558 		 * do it for us. If the cmpxchg fails, we don't care.
1559 		 */
1560 		(void)local_cmpxchg(&next_page->write, old_write, val);
1561 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1562 
1563 		/*
1564 		 * No need to worry about races with clearing out the commit.
1565 		 * it only can increment when a commit takes place. But that
1566 		 * only happens in the outer most nested commit.
1567 		 */
1568 		local_set(&next_page->page->commit, 0);
1569 
1570 		/* Again, either we update tail_page or an interrupt does */
1571 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1572 	}
1573 }
1574 
1575 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1576 			  struct buffer_page *bpage)
1577 {
1578 	unsigned long val = (unsigned long)bpage;
1579 
1580 	RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1581 }
1582 
1583 /**
1584  * rb_check_pages - integrity check of buffer pages
1585  * @cpu_buffer: CPU buffer with pages to test
1586  *
1587  * As a safety measure we check to make sure the data pages have not
1588  * been corrupted.
1589  */
1590 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1591 {
1592 	struct list_head *head = rb_list_head(cpu_buffer->pages);
1593 	struct list_head *tmp;
1594 
1595 	if (RB_WARN_ON(cpu_buffer,
1596 			rb_list_head(rb_list_head(head->next)->prev) != head))
1597 		return;
1598 
1599 	if (RB_WARN_ON(cpu_buffer,
1600 			rb_list_head(rb_list_head(head->prev)->next) != head))
1601 		return;
1602 
1603 	for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1604 		if (RB_WARN_ON(cpu_buffer,
1605 				rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1606 			return;
1607 
1608 		if (RB_WARN_ON(cpu_buffer,
1609 				rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1610 			return;
1611 	}
1612 }
1613 
1614 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1615 		long nr_pages, struct list_head *pages)
1616 {
1617 	struct buffer_page *bpage, *tmp;
1618 	bool user_thread = current->mm != NULL;
1619 	gfp_t mflags;
1620 	long i;
1621 
1622 	/*
1623 	 * Check if the available memory is there first.
1624 	 * Note, si_mem_available() only gives us a rough estimate of available
1625 	 * memory. It may not be accurate. But we don't care, we just want
1626 	 * to prevent doing any allocation when it is obvious that it is
1627 	 * not going to succeed.
1628 	 */
1629 	i = si_mem_available();
1630 	if (i < nr_pages)
1631 		return -ENOMEM;
1632 
1633 	/*
1634 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1635 	 * gracefully without invoking oom-killer and the system is not
1636 	 * destabilized.
1637 	 */
1638 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1639 
1640 	/*
1641 	 * If a user thread allocates too much, and si_mem_available()
1642 	 * reports there's enough memory, even though there is not.
1643 	 * Make sure the OOM killer kills this thread. This can happen
1644 	 * even with RETRY_MAYFAIL because another task may be doing
1645 	 * an allocation after this task has taken all memory.
1646 	 * This is the task the OOM killer needs to take out during this
1647 	 * loop, even if it was triggered by an allocation somewhere else.
1648 	 */
1649 	if (user_thread)
1650 		set_current_oom_origin();
1651 	for (i = 0; i < nr_pages; i++) {
1652 		struct page *page;
1653 
1654 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1655 				    mflags, cpu_to_node(cpu_buffer->cpu));
1656 		if (!bpage)
1657 			goto free_pages;
1658 
1659 		rb_check_bpage(cpu_buffer, bpage);
1660 
1661 		list_add(&bpage->list, pages);
1662 
1663 		page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
1664 		if (!page)
1665 			goto free_pages;
1666 		bpage->page = page_address(page);
1667 		rb_init_page(bpage->page);
1668 
1669 		if (user_thread && fatal_signal_pending(current))
1670 			goto free_pages;
1671 	}
1672 	if (user_thread)
1673 		clear_current_oom_origin();
1674 
1675 	return 0;
1676 
1677 free_pages:
1678 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1679 		list_del_init(&bpage->list);
1680 		free_buffer_page(bpage);
1681 	}
1682 	if (user_thread)
1683 		clear_current_oom_origin();
1684 
1685 	return -ENOMEM;
1686 }
1687 
1688 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1689 			     unsigned long nr_pages)
1690 {
1691 	LIST_HEAD(pages);
1692 
1693 	WARN_ON(!nr_pages);
1694 
1695 	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1696 		return -ENOMEM;
1697 
1698 	/*
1699 	 * The ring buffer page list is a circular list that does not
1700 	 * start and end with a list head. All page list items point to
1701 	 * other pages.
1702 	 */
1703 	cpu_buffer->pages = pages.next;
1704 	list_del(&pages);
1705 
1706 	cpu_buffer->nr_pages = nr_pages;
1707 
1708 	rb_check_pages(cpu_buffer);
1709 
1710 	return 0;
1711 }
1712 
1713 static struct ring_buffer_per_cpu *
1714 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1715 {
1716 	struct ring_buffer_per_cpu *cpu_buffer;
1717 	struct buffer_page *bpage;
1718 	struct page *page;
1719 	int ret;
1720 
1721 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1722 				  GFP_KERNEL, cpu_to_node(cpu));
1723 	if (!cpu_buffer)
1724 		return NULL;
1725 
1726 	cpu_buffer->cpu = cpu;
1727 	cpu_buffer->buffer = buffer;
1728 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1729 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1730 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1731 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1732 	init_completion(&cpu_buffer->update_done);
1733 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1734 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1735 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1736 
1737 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1738 			    GFP_KERNEL, cpu_to_node(cpu));
1739 	if (!bpage)
1740 		goto fail_free_buffer;
1741 
1742 	rb_check_bpage(cpu_buffer, bpage);
1743 
1744 	cpu_buffer->reader_page = bpage;
1745 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1746 	if (!page)
1747 		goto fail_free_reader;
1748 	bpage->page = page_address(page);
1749 	rb_init_page(bpage->page);
1750 
1751 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1752 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1753 
1754 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1755 	if (ret < 0)
1756 		goto fail_free_reader;
1757 
1758 	cpu_buffer->head_page
1759 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1760 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1761 
1762 	rb_head_page_activate(cpu_buffer);
1763 
1764 	return cpu_buffer;
1765 
1766  fail_free_reader:
1767 	free_buffer_page(cpu_buffer->reader_page);
1768 
1769  fail_free_buffer:
1770 	kfree(cpu_buffer);
1771 	return NULL;
1772 }
1773 
1774 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1775 {
1776 	struct list_head *head = cpu_buffer->pages;
1777 	struct buffer_page *bpage, *tmp;
1778 
1779 	irq_work_sync(&cpu_buffer->irq_work.work);
1780 
1781 	free_buffer_page(cpu_buffer->reader_page);
1782 
1783 	if (head) {
1784 		rb_head_page_deactivate(cpu_buffer);
1785 
1786 		list_for_each_entry_safe(bpage, tmp, head, list) {
1787 			list_del_init(&bpage->list);
1788 			free_buffer_page(bpage);
1789 		}
1790 		bpage = list_entry(head, struct buffer_page, list);
1791 		free_buffer_page(bpage);
1792 	}
1793 
1794 	free_page((unsigned long)cpu_buffer->free_page);
1795 
1796 	kfree(cpu_buffer);
1797 }
1798 
1799 /**
1800  * __ring_buffer_alloc - allocate a new ring_buffer
1801  * @size: the size in bytes per cpu that is needed.
1802  * @flags: attributes to set for the ring buffer.
1803  * @key: ring buffer reader_lock_key.
1804  *
1805  * Currently the only flag that is available is the RB_FL_OVERWRITE
1806  * flag. This flag means that the buffer will overwrite old data
1807  * when the buffer wraps. If this flag is not set, the buffer will
1808  * drop data when the tail hits the head.
1809  */
1810 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1811 					struct lock_class_key *key)
1812 {
1813 	struct trace_buffer *buffer;
1814 	long nr_pages;
1815 	int bsize;
1816 	int cpu;
1817 	int ret;
1818 
1819 	/* keep it in its own cache line */
1820 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1821 			 GFP_KERNEL);
1822 	if (!buffer)
1823 		return NULL;
1824 
1825 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1826 		goto fail_free_buffer;
1827 
1828 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1829 	buffer->flags = flags;
1830 	buffer->clock = trace_clock_local;
1831 	buffer->reader_lock_key = key;
1832 
1833 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1834 	init_waitqueue_head(&buffer->irq_work.waiters);
1835 
1836 	/* need at least two pages */
1837 	if (nr_pages < 2)
1838 		nr_pages = 2;
1839 
1840 	buffer->cpus = nr_cpu_ids;
1841 
1842 	bsize = sizeof(void *) * nr_cpu_ids;
1843 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1844 				  GFP_KERNEL);
1845 	if (!buffer->buffers)
1846 		goto fail_free_cpumask;
1847 
1848 	cpu = raw_smp_processor_id();
1849 	cpumask_set_cpu(cpu, buffer->cpumask);
1850 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1851 	if (!buffer->buffers[cpu])
1852 		goto fail_free_buffers;
1853 
1854 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1855 	if (ret < 0)
1856 		goto fail_free_buffers;
1857 
1858 	mutex_init(&buffer->mutex);
1859 
1860 	return buffer;
1861 
1862  fail_free_buffers:
1863 	for_each_buffer_cpu(buffer, cpu) {
1864 		if (buffer->buffers[cpu])
1865 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1866 	}
1867 	kfree(buffer->buffers);
1868 
1869  fail_free_cpumask:
1870 	free_cpumask_var(buffer->cpumask);
1871 
1872  fail_free_buffer:
1873 	kfree(buffer);
1874 	return NULL;
1875 }
1876 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1877 
1878 /**
1879  * ring_buffer_free - free a ring buffer.
1880  * @buffer: the buffer to free.
1881  */
1882 void
1883 ring_buffer_free(struct trace_buffer *buffer)
1884 {
1885 	int cpu;
1886 
1887 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1888 
1889 	irq_work_sync(&buffer->irq_work.work);
1890 
1891 	for_each_buffer_cpu(buffer, cpu)
1892 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1893 
1894 	kfree(buffer->buffers);
1895 	free_cpumask_var(buffer->cpumask);
1896 
1897 	kfree(buffer);
1898 }
1899 EXPORT_SYMBOL_GPL(ring_buffer_free);
1900 
1901 void ring_buffer_set_clock(struct trace_buffer *buffer,
1902 			   u64 (*clock)(void))
1903 {
1904 	buffer->clock = clock;
1905 }
1906 
1907 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1908 {
1909 	buffer->time_stamp_abs = abs;
1910 }
1911 
1912 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1913 {
1914 	return buffer->time_stamp_abs;
1915 }
1916 
1917 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1918 
1919 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1920 {
1921 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1922 }
1923 
1924 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1925 {
1926 	return local_read(&bpage->write) & RB_WRITE_MASK;
1927 }
1928 
1929 static bool
1930 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1931 {
1932 	struct list_head *tail_page, *to_remove, *next_page;
1933 	struct buffer_page *to_remove_page, *tmp_iter_page;
1934 	struct buffer_page *last_page, *first_page;
1935 	unsigned long nr_removed;
1936 	unsigned long head_bit;
1937 	int page_entries;
1938 
1939 	head_bit = 0;
1940 
1941 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1942 	atomic_inc(&cpu_buffer->record_disabled);
1943 	/*
1944 	 * We don't race with the readers since we have acquired the reader
1945 	 * lock. We also don't race with writers after disabling recording.
1946 	 * This makes it easy to figure out the first and the last page to be
1947 	 * removed from the list. We unlink all the pages in between including
1948 	 * the first and last pages. This is done in a busy loop so that we
1949 	 * lose the least number of traces.
1950 	 * The pages are freed after we restart recording and unlock readers.
1951 	 */
1952 	tail_page = &cpu_buffer->tail_page->list;
1953 
1954 	/*
1955 	 * tail page might be on reader page, we remove the next page
1956 	 * from the ring buffer
1957 	 */
1958 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1959 		tail_page = rb_list_head(tail_page->next);
1960 	to_remove = tail_page;
1961 
1962 	/* start of pages to remove */
1963 	first_page = list_entry(rb_list_head(to_remove->next),
1964 				struct buffer_page, list);
1965 
1966 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1967 		to_remove = rb_list_head(to_remove)->next;
1968 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1969 	}
1970 	/* Read iterators need to reset themselves when some pages removed */
1971 	cpu_buffer->pages_removed += nr_removed;
1972 
1973 	next_page = rb_list_head(to_remove)->next;
1974 
1975 	/*
1976 	 * Now we remove all pages between tail_page and next_page.
1977 	 * Make sure that we have head_bit value preserved for the
1978 	 * next page
1979 	 */
1980 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1981 						head_bit);
1982 	next_page = rb_list_head(next_page);
1983 	next_page->prev = tail_page;
1984 
1985 	/* make sure pages points to a valid page in the ring buffer */
1986 	cpu_buffer->pages = next_page;
1987 
1988 	/* update head page */
1989 	if (head_bit)
1990 		cpu_buffer->head_page = list_entry(next_page,
1991 						struct buffer_page, list);
1992 
1993 	/* pages are removed, resume tracing and then free the pages */
1994 	atomic_dec(&cpu_buffer->record_disabled);
1995 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1996 
1997 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1998 
1999 	/* last buffer page to remove */
2000 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2001 				list);
2002 	tmp_iter_page = first_page;
2003 
2004 	do {
2005 		cond_resched();
2006 
2007 		to_remove_page = tmp_iter_page;
2008 		rb_inc_page(&tmp_iter_page);
2009 
2010 		/* update the counters */
2011 		page_entries = rb_page_entries(to_remove_page);
2012 		if (page_entries) {
2013 			/*
2014 			 * If something was added to this page, it was full
2015 			 * since it is not the tail page. So we deduct the
2016 			 * bytes consumed in ring buffer from here.
2017 			 * Increment overrun to account for the lost events.
2018 			 */
2019 			local_add(page_entries, &cpu_buffer->overrun);
2020 			local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
2021 			local_inc(&cpu_buffer->pages_lost);
2022 		}
2023 
2024 		/*
2025 		 * We have already removed references to this list item, just
2026 		 * free up the buffer_page and its page
2027 		 */
2028 		free_buffer_page(to_remove_page);
2029 		nr_removed--;
2030 
2031 	} while (to_remove_page != last_page);
2032 
2033 	RB_WARN_ON(cpu_buffer, nr_removed);
2034 
2035 	return nr_removed == 0;
2036 }
2037 
2038 static bool
2039 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2040 {
2041 	struct list_head *pages = &cpu_buffer->new_pages;
2042 	unsigned long flags;
2043 	bool success;
2044 	int retries;
2045 
2046 	/* Can be called at early boot up, where interrupts must not been enabled */
2047 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2048 	/*
2049 	 * We are holding the reader lock, so the reader page won't be swapped
2050 	 * in the ring buffer. Now we are racing with the writer trying to
2051 	 * move head page and the tail page.
2052 	 * We are going to adapt the reader page update process where:
2053 	 * 1. We first splice the start and end of list of new pages between
2054 	 *    the head page and its previous page.
2055 	 * 2. We cmpxchg the prev_page->next to point from head page to the
2056 	 *    start of new pages list.
2057 	 * 3. Finally, we update the head->prev to the end of new list.
2058 	 *
2059 	 * We will try this process 10 times, to make sure that we don't keep
2060 	 * spinning.
2061 	 */
2062 	retries = 10;
2063 	success = false;
2064 	while (retries--) {
2065 		struct list_head *head_page, *prev_page;
2066 		struct list_head *last_page, *first_page;
2067 		struct list_head *head_page_with_bit;
2068 		struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2069 
2070 		if (!hpage)
2071 			break;
2072 		head_page = &hpage->list;
2073 		prev_page = head_page->prev;
2074 
2075 		first_page = pages->next;
2076 		last_page  = pages->prev;
2077 
2078 		head_page_with_bit = (struct list_head *)
2079 				     ((unsigned long)head_page | RB_PAGE_HEAD);
2080 
2081 		last_page->next = head_page_with_bit;
2082 		first_page->prev = prev_page;
2083 
2084 		/* caution: head_page_with_bit gets updated on cmpxchg failure */
2085 		if (try_cmpxchg(&prev_page->next,
2086 				&head_page_with_bit, first_page)) {
2087 			/*
2088 			 * yay, we replaced the page pointer to our new list,
2089 			 * now, we just have to update to head page's prev
2090 			 * pointer to point to end of list
2091 			 */
2092 			head_page->prev = last_page;
2093 			success = true;
2094 			break;
2095 		}
2096 	}
2097 
2098 	if (success)
2099 		INIT_LIST_HEAD(pages);
2100 	/*
2101 	 * If we weren't successful in adding in new pages, warn and stop
2102 	 * tracing
2103 	 */
2104 	RB_WARN_ON(cpu_buffer, !success);
2105 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2106 
2107 	/* free pages if they weren't inserted */
2108 	if (!success) {
2109 		struct buffer_page *bpage, *tmp;
2110 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2111 					 list) {
2112 			list_del_init(&bpage->list);
2113 			free_buffer_page(bpage);
2114 		}
2115 	}
2116 	return success;
2117 }
2118 
2119 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2120 {
2121 	bool success;
2122 
2123 	if (cpu_buffer->nr_pages_to_update > 0)
2124 		success = rb_insert_pages(cpu_buffer);
2125 	else
2126 		success = rb_remove_pages(cpu_buffer,
2127 					-cpu_buffer->nr_pages_to_update);
2128 
2129 	if (success)
2130 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2131 }
2132 
2133 static void update_pages_handler(struct work_struct *work)
2134 {
2135 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2136 			struct ring_buffer_per_cpu, update_pages_work);
2137 	rb_update_pages(cpu_buffer);
2138 	complete(&cpu_buffer->update_done);
2139 }
2140 
2141 /**
2142  * ring_buffer_resize - resize the ring buffer
2143  * @buffer: the buffer to resize.
2144  * @size: the new size.
2145  * @cpu_id: the cpu buffer to resize
2146  *
2147  * Minimum size is 2 * BUF_PAGE_SIZE.
2148  *
2149  * Returns 0 on success and < 0 on failure.
2150  */
2151 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2152 			int cpu_id)
2153 {
2154 	struct ring_buffer_per_cpu *cpu_buffer;
2155 	unsigned long nr_pages;
2156 	int cpu, err;
2157 
2158 	/*
2159 	 * Always succeed at resizing a non-existent buffer:
2160 	 */
2161 	if (!buffer)
2162 		return 0;
2163 
2164 	/* Make sure the requested buffer exists */
2165 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2166 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2167 		return 0;
2168 
2169 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
2170 
2171 	/* we need a minimum of two pages */
2172 	if (nr_pages < 2)
2173 		nr_pages = 2;
2174 
2175 	/* prevent another thread from changing buffer sizes */
2176 	mutex_lock(&buffer->mutex);
2177 	atomic_inc(&buffer->resizing);
2178 
2179 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2180 		/*
2181 		 * Don't succeed if resizing is disabled, as a reader might be
2182 		 * manipulating the ring buffer and is expecting a sane state while
2183 		 * this is true.
2184 		 */
2185 		for_each_buffer_cpu(buffer, cpu) {
2186 			cpu_buffer = buffer->buffers[cpu];
2187 			if (atomic_read(&cpu_buffer->resize_disabled)) {
2188 				err = -EBUSY;
2189 				goto out_err_unlock;
2190 			}
2191 		}
2192 
2193 		/* calculate the pages to update */
2194 		for_each_buffer_cpu(buffer, cpu) {
2195 			cpu_buffer = buffer->buffers[cpu];
2196 
2197 			cpu_buffer->nr_pages_to_update = nr_pages -
2198 							cpu_buffer->nr_pages;
2199 			/*
2200 			 * nothing more to do for removing pages or no update
2201 			 */
2202 			if (cpu_buffer->nr_pages_to_update <= 0)
2203 				continue;
2204 			/*
2205 			 * to add pages, make sure all new pages can be
2206 			 * allocated without receiving ENOMEM
2207 			 */
2208 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2209 			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2210 						&cpu_buffer->new_pages)) {
2211 				/* not enough memory for new pages */
2212 				err = -ENOMEM;
2213 				goto out_err;
2214 			}
2215 
2216 			cond_resched();
2217 		}
2218 
2219 		cpus_read_lock();
2220 		/*
2221 		 * Fire off all the required work handlers
2222 		 * We can't schedule on offline CPUs, but it's not necessary
2223 		 * since we can change their buffer sizes without any race.
2224 		 */
2225 		for_each_buffer_cpu(buffer, cpu) {
2226 			cpu_buffer = buffer->buffers[cpu];
2227 			if (!cpu_buffer->nr_pages_to_update)
2228 				continue;
2229 
2230 			/* Can't run something on an offline CPU. */
2231 			if (!cpu_online(cpu)) {
2232 				rb_update_pages(cpu_buffer);
2233 				cpu_buffer->nr_pages_to_update = 0;
2234 			} else {
2235 				/* Run directly if possible. */
2236 				migrate_disable();
2237 				if (cpu != smp_processor_id()) {
2238 					migrate_enable();
2239 					schedule_work_on(cpu,
2240 							 &cpu_buffer->update_pages_work);
2241 				} else {
2242 					update_pages_handler(&cpu_buffer->update_pages_work);
2243 					migrate_enable();
2244 				}
2245 			}
2246 		}
2247 
2248 		/* wait for all the updates to complete */
2249 		for_each_buffer_cpu(buffer, cpu) {
2250 			cpu_buffer = buffer->buffers[cpu];
2251 			if (!cpu_buffer->nr_pages_to_update)
2252 				continue;
2253 
2254 			if (cpu_online(cpu))
2255 				wait_for_completion(&cpu_buffer->update_done);
2256 			cpu_buffer->nr_pages_to_update = 0;
2257 		}
2258 
2259 		cpus_read_unlock();
2260 	} else {
2261 		cpu_buffer = buffer->buffers[cpu_id];
2262 
2263 		if (nr_pages == cpu_buffer->nr_pages)
2264 			goto out;
2265 
2266 		/*
2267 		 * Don't succeed if resizing is disabled, as a reader might be
2268 		 * manipulating the ring buffer and is expecting a sane state while
2269 		 * this is true.
2270 		 */
2271 		if (atomic_read(&cpu_buffer->resize_disabled)) {
2272 			err = -EBUSY;
2273 			goto out_err_unlock;
2274 		}
2275 
2276 		cpu_buffer->nr_pages_to_update = nr_pages -
2277 						cpu_buffer->nr_pages;
2278 
2279 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2280 		if (cpu_buffer->nr_pages_to_update > 0 &&
2281 			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2282 					    &cpu_buffer->new_pages)) {
2283 			err = -ENOMEM;
2284 			goto out_err;
2285 		}
2286 
2287 		cpus_read_lock();
2288 
2289 		/* Can't run something on an offline CPU. */
2290 		if (!cpu_online(cpu_id))
2291 			rb_update_pages(cpu_buffer);
2292 		else {
2293 			/* Run directly if possible. */
2294 			migrate_disable();
2295 			if (cpu_id == smp_processor_id()) {
2296 				rb_update_pages(cpu_buffer);
2297 				migrate_enable();
2298 			} else {
2299 				migrate_enable();
2300 				schedule_work_on(cpu_id,
2301 						 &cpu_buffer->update_pages_work);
2302 				wait_for_completion(&cpu_buffer->update_done);
2303 			}
2304 		}
2305 
2306 		cpu_buffer->nr_pages_to_update = 0;
2307 		cpus_read_unlock();
2308 	}
2309 
2310  out:
2311 	/*
2312 	 * The ring buffer resize can happen with the ring buffer
2313 	 * enabled, so that the update disturbs the tracing as little
2314 	 * as possible. But if the buffer is disabled, we do not need
2315 	 * to worry about that, and we can take the time to verify
2316 	 * that the buffer is not corrupt.
2317 	 */
2318 	if (atomic_read(&buffer->record_disabled)) {
2319 		atomic_inc(&buffer->record_disabled);
2320 		/*
2321 		 * Even though the buffer was disabled, we must make sure
2322 		 * that it is truly disabled before calling rb_check_pages.
2323 		 * There could have been a race between checking
2324 		 * record_disable and incrementing it.
2325 		 */
2326 		synchronize_rcu();
2327 		for_each_buffer_cpu(buffer, cpu) {
2328 			cpu_buffer = buffer->buffers[cpu];
2329 			rb_check_pages(cpu_buffer);
2330 		}
2331 		atomic_dec(&buffer->record_disabled);
2332 	}
2333 
2334 	atomic_dec(&buffer->resizing);
2335 	mutex_unlock(&buffer->mutex);
2336 	return 0;
2337 
2338  out_err:
2339 	for_each_buffer_cpu(buffer, cpu) {
2340 		struct buffer_page *bpage, *tmp;
2341 
2342 		cpu_buffer = buffer->buffers[cpu];
2343 		cpu_buffer->nr_pages_to_update = 0;
2344 
2345 		if (list_empty(&cpu_buffer->new_pages))
2346 			continue;
2347 
2348 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2349 					list) {
2350 			list_del_init(&bpage->list);
2351 			free_buffer_page(bpage);
2352 		}
2353 	}
2354  out_err_unlock:
2355 	atomic_dec(&buffer->resizing);
2356 	mutex_unlock(&buffer->mutex);
2357 	return err;
2358 }
2359 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2360 
2361 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2362 {
2363 	mutex_lock(&buffer->mutex);
2364 	if (val)
2365 		buffer->flags |= RB_FL_OVERWRITE;
2366 	else
2367 		buffer->flags &= ~RB_FL_OVERWRITE;
2368 	mutex_unlock(&buffer->mutex);
2369 }
2370 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2371 
2372 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2373 {
2374 	return bpage->page->data + index;
2375 }
2376 
2377 static __always_inline struct ring_buffer_event *
2378 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2379 {
2380 	return __rb_page_index(cpu_buffer->reader_page,
2381 			       cpu_buffer->reader_page->read);
2382 }
2383 
2384 static struct ring_buffer_event *
2385 rb_iter_head_event(struct ring_buffer_iter *iter)
2386 {
2387 	struct ring_buffer_event *event;
2388 	struct buffer_page *iter_head_page = iter->head_page;
2389 	unsigned long commit;
2390 	unsigned length;
2391 
2392 	if (iter->head != iter->next_event)
2393 		return iter->event;
2394 
2395 	/*
2396 	 * When the writer goes across pages, it issues a cmpxchg which
2397 	 * is a mb(), which will synchronize with the rmb here.
2398 	 * (see rb_tail_page_update() and __rb_reserve_next())
2399 	 */
2400 	commit = rb_page_commit(iter_head_page);
2401 	smp_rmb();
2402 
2403 	/* An event needs to be at least 8 bytes in size */
2404 	if (iter->head > commit - 8)
2405 		goto reset;
2406 
2407 	event = __rb_page_index(iter_head_page, iter->head);
2408 	length = rb_event_length(event);
2409 
2410 	/*
2411 	 * READ_ONCE() doesn't work on functions and we don't want the
2412 	 * compiler doing any crazy optimizations with length.
2413 	 */
2414 	barrier();
2415 
2416 	if ((iter->head + length) > commit || length > BUF_PAGE_SIZE)
2417 		/* Writer corrupted the read? */
2418 		goto reset;
2419 
2420 	memcpy(iter->event, event, length);
2421 	/*
2422 	 * If the page stamp is still the same after this rmb() then the
2423 	 * event was safely copied without the writer entering the page.
2424 	 */
2425 	smp_rmb();
2426 
2427 	/* Make sure the page didn't change since we read this */
2428 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
2429 	    commit > rb_page_commit(iter_head_page))
2430 		goto reset;
2431 
2432 	iter->next_event = iter->head + length;
2433 	return iter->event;
2434  reset:
2435 	/* Reset to the beginning */
2436 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2437 	iter->head = 0;
2438 	iter->next_event = 0;
2439 	iter->missed_events = 1;
2440 	return NULL;
2441 }
2442 
2443 /* Size is determined by what has been committed */
2444 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2445 {
2446 	return rb_page_commit(bpage);
2447 }
2448 
2449 static __always_inline unsigned
2450 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2451 {
2452 	return rb_page_commit(cpu_buffer->commit_page);
2453 }
2454 
2455 static __always_inline unsigned
2456 rb_event_index(struct ring_buffer_event *event)
2457 {
2458 	unsigned long addr = (unsigned long)event;
2459 
2460 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2461 }
2462 
2463 static void rb_inc_iter(struct ring_buffer_iter *iter)
2464 {
2465 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2466 
2467 	/*
2468 	 * The iterator could be on the reader page (it starts there).
2469 	 * But the head could have moved, since the reader was
2470 	 * found. Check for this case and assign the iterator
2471 	 * to the head page instead of next.
2472 	 */
2473 	if (iter->head_page == cpu_buffer->reader_page)
2474 		iter->head_page = rb_set_head_page(cpu_buffer);
2475 	else
2476 		rb_inc_page(&iter->head_page);
2477 
2478 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2479 	iter->head = 0;
2480 	iter->next_event = 0;
2481 }
2482 
2483 /*
2484  * rb_handle_head_page - writer hit the head page
2485  *
2486  * Returns: +1 to retry page
2487  *           0 to continue
2488  *          -1 on error
2489  */
2490 static int
2491 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2492 		    struct buffer_page *tail_page,
2493 		    struct buffer_page *next_page)
2494 {
2495 	struct buffer_page *new_head;
2496 	int entries;
2497 	int type;
2498 	int ret;
2499 
2500 	entries = rb_page_entries(next_page);
2501 
2502 	/*
2503 	 * The hard part is here. We need to move the head
2504 	 * forward, and protect against both readers on
2505 	 * other CPUs and writers coming in via interrupts.
2506 	 */
2507 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2508 				       RB_PAGE_HEAD);
2509 
2510 	/*
2511 	 * type can be one of four:
2512 	 *  NORMAL - an interrupt already moved it for us
2513 	 *  HEAD   - we are the first to get here.
2514 	 *  UPDATE - we are the interrupt interrupting
2515 	 *           a current move.
2516 	 *  MOVED  - a reader on another CPU moved the next
2517 	 *           pointer to its reader page. Give up
2518 	 *           and try again.
2519 	 */
2520 
2521 	switch (type) {
2522 	case RB_PAGE_HEAD:
2523 		/*
2524 		 * We changed the head to UPDATE, thus
2525 		 * it is our responsibility to update
2526 		 * the counters.
2527 		 */
2528 		local_add(entries, &cpu_buffer->overrun);
2529 		local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
2530 		local_inc(&cpu_buffer->pages_lost);
2531 
2532 		/*
2533 		 * The entries will be zeroed out when we move the
2534 		 * tail page.
2535 		 */
2536 
2537 		/* still more to do */
2538 		break;
2539 
2540 	case RB_PAGE_UPDATE:
2541 		/*
2542 		 * This is an interrupt that interrupt the
2543 		 * previous update. Still more to do.
2544 		 */
2545 		break;
2546 	case RB_PAGE_NORMAL:
2547 		/*
2548 		 * An interrupt came in before the update
2549 		 * and processed this for us.
2550 		 * Nothing left to do.
2551 		 */
2552 		return 1;
2553 	case RB_PAGE_MOVED:
2554 		/*
2555 		 * The reader is on another CPU and just did
2556 		 * a swap with our next_page.
2557 		 * Try again.
2558 		 */
2559 		return 1;
2560 	default:
2561 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2562 		return -1;
2563 	}
2564 
2565 	/*
2566 	 * Now that we are here, the old head pointer is
2567 	 * set to UPDATE. This will keep the reader from
2568 	 * swapping the head page with the reader page.
2569 	 * The reader (on another CPU) will spin till
2570 	 * we are finished.
2571 	 *
2572 	 * We just need to protect against interrupts
2573 	 * doing the job. We will set the next pointer
2574 	 * to HEAD. After that, we set the old pointer
2575 	 * to NORMAL, but only if it was HEAD before.
2576 	 * otherwise we are an interrupt, and only
2577 	 * want the outer most commit to reset it.
2578 	 */
2579 	new_head = next_page;
2580 	rb_inc_page(&new_head);
2581 
2582 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2583 				    RB_PAGE_NORMAL);
2584 
2585 	/*
2586 	 * Valid returns are:
2587 	 *  HEAD   - an interrupt came in and already set it.
2588 	 *  NORMAL - One of two things:
2589 	 *            1) We really set it.
2590 	 *            2) A bunch of interrupts came in and moved
2591 	 *               the page forward again.
2592 	 */
2593 	switch (ret) {
2594 	case RB_PAGE_HEAD:
2595 	case RB_PAGE_NORMAL:
2596 		/* OK */
2597 		break;
2598 	default:
2599 		RB_WARN_ON(cpu_buffer, 1);
2600 		return -1;
2601 	}
2602 
2603 	/*
2604 	 * It is possible that an interrupt came in,
2605 	 * set the head up, then more interrupts came in
2606 	 * and moved it again. When we get back here,
2607 	 * the page would have been set to NORMAL but we
2608 	 * just set it back to HEAD.
2609 	 *
2610 	 * How do you detect this? Well, if that happened
2611 	 * the tail page would have moved.
2612 	 */
2613 	if (ret == RB_PAGE_NORMAL) {
2614 		struct buffer_page *buffer_tail_page;
2615 
2616 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2617 		/*
2618 		 * If the tail had moved passed next, then we need
2619 		 * to reset the pointer.
2620 		 */
2621 		if (buffer_tail_page != tail_page &&
2622 		    buffer_tail_page != next_page)
2623 			rb_head_page_set_normal(cpu_buffer, new_head,
2624 						next_page,
2625 						RB_PAGE_HEAD);
2626 	}
2627 
2628 	/*
2629 	 * If this was the outer most commit (the one that
2630 	 * changed the original pointer from HEAD to UPDATE),
2631 	 * then it is up to us to reset it to NORMAL.
2632 	 */
2633 	if (type == RB_PAGE_HEAD) {
2634 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2635 					      tail_page,
2636 					      RB_PAGE_UPDATE);
2637 		if (RB_WARN_ON(cpu_buffer,
2638 			       ret != RB_PAGE_UPDATE))
2639 			return -1;
2640 	}
2641 
2642 	return 0;
2643 }
2644 
2645 static inline void
2646 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2647 	      unsigned long tail, struct rb_event_info *info)
2648 {
2649 	struct buffer_page *tail_page = info->tail_page;
2650 	struct ring_buffer_event *event;
2651 	unsigned long length = info->length;
2652 
2653 	/*
2654 	 * Only the event that crossed the page boundary
2655 	 * must fill the old tail_page with padding.
2656 	 */
2657 	if (tail >= BUF_PAGE_SIZE) {
2658 		/*
2659 		 * If the page was filled, then we still need
2660 		 * to update the real_end. Reset it to zero
2661 		 * and the reader will ignore it.
2662 		 */
2663 		if (tail == BUF_PAGE_SIZE)
2664 			tail_page->real_end = 0;
2665 
2666 		local_sub(length, &tail_page->write);
2667 		return;
2668 	}
2669 
2670 	event = __rb_page_index(tail_page, tail);
2671 
2672 	/*
2673 	 * Save the original length to the meta data.
2674 	 * This will be used by the reader to add lost event
2675 	 * counter.
2676 	 */
2677 	tail_page->real_end = tail;
2678 
2679 	/*
2680 	 * If this event is bigger than the minimum size, then
2681 	 * we need to be careful that we don't subtract the
2682 	 * write counter enough to allow another writer to slip
2683 	 * in on this page.
2684 	 * We put in a discarded commit instead, to make sure
2685 	 * that this space is not used again, and this space will
2686 	 * not be accounted into 'entries_bytes'.
2687 	 *
2688 	 * If we are less than the minimum size, we don't need to
2689 	 * worry about it.
2690 	 */
2691 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2692 		/* No room for any events */
2693 
2694 		/* Mark the rest of the page with padding */
2695 		rb_event_set_padding(event);
2696 
2697 		/* Make sure the padding is visible before the write update */
2698 		smp_wmb();
2699 
2700 		/* Set the write back to the previous setting */
2701 		local_sub(length, &tail_page->write);
2702 		return;
2703 	}
2704 
2705 	/* Put in a discarded event */
2706 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2707 	event->type_len = RINGBUF_TYPE_PADDING;
2708 	/* time delta must be non zero */
2709 	event->time_delta = 1;
2710 
2711 	/* account for padding bytes */
2712 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2713 
2714 	/* Make sure the padding is visible before the tail_page->write update */
2715 	smp_wmb();
2716 
2717 	/* Set write to end of buffer */
2718 	length = (tail + length) - BUF_PAGE_SIZE;
2719 	local_sub(length, &tail_page->write);
2720 }
2721 
2722 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2723 
2724 /*
2725  * This is the slow path, force gcc not to inline it.
2726  */
2727 static noinline struct ring_buffer_event *
2728 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2729 	     unsigned long tail, struct rb_event_info *info)
2730 {
2731 	struct buffer_page *tail_page = info->tail_page;
2732 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2733 	struct trace_buffer *buffer = cpu_buffer->buffer;
2734 	struct buffer_page *next_page;
2735 	int ret;
2736 
2737 	next_page = tail_page;
2738 
2739 	rb_inc_page(&next_page);
2740 
2741 	/*
2742 	 * If for some reason, we had an interrupt storm that made
2743 	 * it all the way around the buffer, bail, and warn
2744 	 * about it.
2745 	 */
2746 	if (unlikely(next_page == commit_page)) {
2747 		local_inc(&cpu_buffer->commit_overrun);
2748 		goto out_reset;
2749 	}
2750 
2751 	/*
2752 	 * This is where the fun begins!
2753 	 *
2754 	 * We are fighting against races between a reader that
2755 	 * could be on another CPU trying to swap its reader
2756 	 * page with the buffer head.
2757 	 *
2758 	 * We are also fighting against interrupts coming in and
2759 	 * moving the head or tail on us as well.
2760 	 *
2761 	 * If the next page is the head page then we have filled
2762 	 * the buffer, unless the commit page is still on the
2763 	 * reader page.
2764 	 */
2765 	if (rb_is_head_page(next_page, &tail_page->list)) {
2766 
2767 		/*
2768 		 * If the commit is not on the reader page, then
2769 		 * move the header page.
2770 		 */
2771 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2772 			/*
2773 			 * If we are not in overwrite mode,
2774 			 * this is easy, just stop here.
2775 			 */
2776 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2777 				local_inc(&cpu_buffer->dropped_events);
2778 				goto out_reset;
2779 			}
2780 
2781 			ret = rb_handle_head_page(cpu_buffer,
2782 						  tail_page,
2783 						  next_page);
2784 			if (ret < 0)
2785 				goto out_reset;
2786 			if (ret)
2787 				goto out_again;
2788 		} else {
2789 			/*
2790 			 * We need to be careful here too. The
2791 			 * commit page could still be on the reader
2792 			 * page. We could have a small buffer, and
2793 			 * have filled up the buffer with events
2794 			 * from interrupts and such, and wrapped.
2795 			 *
2796 			 * Note, if the tail page is also on the
2797 			 * reader_page, we let it move out.
2798 			 */
2799 			if (unlikely((cpu_buffer->commit_page !=
2800 				      cpu_buffer->tail_page) &&
2801 				     (cpu_buffer->commit_page ==
2802 				      cpu_buffer->reader_page))) {
2803 				local_inc(&cpu_buffer->commit_overrun);
2804 				goto out_reset;
2805 			}
2806 		}
2807 	}
2808 
2809 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2810 
2811  out_again:
2812 
2813 	rb_reset_tail(cpu_buffer, tail, info);
2814 
2815 	/* Commit what we have for now. */
2816 	rb_end_commit(cpu_buffer);
2817 	/* rb_end_commit() decs committing */
2818 	local_inc(&cpu_buffer->committing);
2819 
2820 	/* fail and let the caller try again */
2821 	return ERR_PTR(-EAGAIN);
2822 
2823  out_reset:
2824 	/* reset write */
2825 	rb_reset_tail(cpu_buffer, tail, info);
2826 
2827 	return NULL;
2828 }
2829 
2830 /* Slow path */
2831 static struct ring_buffer_event *
2832 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2833 {
2834 	if (abs)
2835 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2836 	else
2837 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2838 
2839 	/* Not the first event on the page, or not delta? */
2840 	if (abs || rb_event_index(event)) {
2841 		event->time_delta = delta & TS_MASK;
2842 		event->array[0] = delta >> TS_SHIFT;
2843 	} else {
2844 		/* nope, just zero it */
2845 		event->time_delta = 0;
2846 		event->array[0] = 0;
2847 	}
2848 
2849 	return skip_time_extend(event);
2850 }
2851 
2852 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2853 static inline bool sched_clock_stable(void)
2854 {
2855 	return true;
2856 }
2857 #endif
2858 
2859 static void
2860 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2861 		   struct rb_event_info *info)
2862 {
2863 	u64 write_stamp;
2864 
2865 	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2866 		  (unsigned long long)info->delta,
2867 		  (unsigned long long)info->ts,
2868 		  (unsigned long long)info->before,
2869 		  (unsigned long long)info->after,
2870 		  (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2871 		  sched_clock_stable() ? "" :
2872 		  "If you just came from a suspend/resume,\n"
2873 		  "please switch to the trace global clock:\n"
2874 		  "  echo global > /sys/kernel/tracing/trace_clock\n"
2875 		  "or add trace_clock=global to the kernel command line\n");
2876 }
2877 
2878 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2879 				      struct ring_buffer_event **event,
2880 				      struct rb_event_info *info,
2881 				      u64 *delta,
2882 				      unsigned int *length)
2883 {
2884 	bool abs = info->add_timestamp &
2885 		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2886 
2887 	if (unlikely(info->delta > (1ULL << 59))) {
2888 		/*
2889 		 * Some timers can use more than 59 bits, and when a timestamp
2890 		 * is added to the buffer, it will lose those bits.
2891 		 */
2892 		if (abs && (info->ts & TS_MSB)) {
2893 			info->delta &= ABS_TS_MASK;
2894 
2895 		/* did the clock go backwards */
2896 		} else if (info->before == info->after && info->before > info->ts) {
2897 			/* not interrupted */
2898 			static int once;
2899 
2900 			/*
2901 			 * This is possible with a recalibrating of the TSC.
2902 			 * Do not produce a call stack, but just report it.
2903 			 */
2904 			if (!once) {
2905 				once++;
2906 				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2907 					info->before, info->ts);
2908 			}
2909 		} else
2910 			rb_check_timestamp(cpu_buffer, info);
2911 		if (!abs)
2912 			info->delta = 0;
2913 	}
2914 	*event = rb_add_time_stamp(*event, info->delta, abs);
2915 	*length -= RB_LEN_TIME_EXTEND;
2916 	*delta = 0;
2917 }
2918 
2919 /**
2920  * rb_update_event - update event type and data
2921  * @cpu_buffer: The per cpu buffer of the @event
2922  * @event: the event to update
2923  * @info: The info to update the @event with (contains length and delta)
2924  *
2925  * Update the type and data fields of the @event. The length
2926  * is the actual size that is written to the ring buffer,
2927  * and with this, we can determine what to place into the
2928  * data field.
2929  */
2930 static void
2931 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2932 		struct ring_buffer_event *event,
2933 		struct rb_event_info *info)
2934 {
2935 	unsigned length = info->length;
2936 	u64 delta = info->delta;
2937 	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2938 
2939 	if (!WARN_ON_ONCE(nest >= MAX_NEST))
2940 		cpu_buffer->event_stamp[nest] = info->ts;
2941 
2942 	/*
2943 	 * If we need to add a timestamp, then we
2944 	 * add it to the start of the reserved space.
2945 	 */
2946 	if (unlikely(info->add_timestamp))
2947 		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2948 
2949 	event->time_delta = delta;
2950 	length -= RB_EVNT_HDR_SIZE;
2951 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2952 		event->type_len = 0;
2953 		event->array[0] = length;
2954 	} else
2955 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2956 }
2957 
2958 static unsigned rb_calculate_event_length(unsigned length)
2959 {
2960 	struct ring_buffer_event event; /* Used only for sizeof array */
2961 
2962 	/* zero length can cause confusions */
2963 	if (!length)
2964 		length++;
2965 
2966 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2967 		length += sizeof(event.array[0]);
2968 
2969 	length += RB_EVNT_HDR_SIZE;
2970 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2971 
2972 	/*
2973 	 * In case the time delta is larger than the 27 bits for it
2974 	 * in the header, we need to add a timestamp. If another
2975 	 * event comes in when trying to discard this one to increase
2976 	 * the length, then the timestamp will be added in the allocated
2977 	 * space of this event. If length is bigger than the size needed
2978 	 * for the TIME_EXTEND, then padding has to be used. The events
2979 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2980 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2981 	 * As length is a multiple of 4, we only need to worry if it
2982 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2983 	 */
2984 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2985 		length += RB_ALIGNMENT;
2986 
2987 	return length;
2988 }
2989 
2990 static inline bool
2991 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2992 		  struct ring_buffer_event *event)
2993 {
2994 	unsigned long new_index, old_index;
2995 	struct buffer_page *bpage;
2996 	unsigned long addr;
2997 
2998 	new_index = rb_event_index(event);
2999 	old_index = new_index + rb_event_ts_length(event);
3000 	addr = (unsigned long)event;
3001 	addr &= PAGE_MASK;
3002 
3003 	bpage = READ_ONCE(cpu_buffer->tail_page);
3004 
3005 	/*
3006 	 * Make sure the tail_page is still the same and
3007 	 * the next write location is the end of this event
3008 	 */
3009 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3010 		unsigned long write_mask =
3011 			local_read(&bpage->write) & ~RB_WRITE_MASK;
3012 		unsigned long event_length = rb_event_length(event);
3013 
3014 		/*
3015 		 * For the before_stamp to be different than the write_stamp
3016 		 * to make sure that the next event adds an absolute
3017 		 * value and does not rely on the saved write stamp, which
3018 		 * is now going to be bogus.
3019 		 *
3020 		 * By setting the before_stamp to zero, the next event
3021 		 * is not going to use the write_stamp and will instead
3022 		 * create an absolute timestamp. This means there's no
3023 		 * reason to update the wirte_stamp!
3024 		 */
3025 		rb_time_set(&cpu_buffer->before_stamp, 0);
3026 
3027 		/*
3028 		 * If an event were to come in now, it would see that the
3029 		 * write_stamp and the before_stamp are different, and assume
3030 		 * that this event just added itself before updating
3031 		 * the write stamp. The interrupting event will fix the
3032 		 * write stamp for us, and use an absolute timestamp.
3033 		 */
3034 
3035 		/*
3036 		 * This is on the tail page. It is possible that
3037 		 * a write could come in and move the tail page
3038 		 * and write to the next page. That is fine
3039 		 * because we just shorten what is on this page.
3040 		 */
3041 		old_index += write_mask;
3042 		new_index += write_mask;
3043 
3044 		/* caution: old_index gets updated on cmpxchg failure */
3045 		if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3046 			/* update counters */
3047 			local_sub(event_length, &cpu_buffer->entries_bytes);
3048 			return true;
3049 		}
3050 	}
3051 
3052 	/* could not discard */
3053 	return false;
3054 }
3055 
3056 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3057 {
3058 	local_inc(&cpu_buffer->committing);
3059 	local_inc(&cpu_buffer->commits);
3060 }
3061 
3062 static __always_inline void
3063 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3064 {
3065 	unsigned long max_count;
3066 
3067 	/*
3068 	 * We only race with interrupts and NMIs on this CPU.
3069 	 * If we own the commit event, then we can commit
3070 	 * all others that interrupted us, since the interruptions
3071 	 * are in stack format (they finish before they come
3072 	 * back to us). This allows us to do a simple loop to
3073 	 * assign the commit to the tail.
3074 	 */
3075  again:
3076 	max_count = cpu_buffer->nr_pages * 100;
3077 
3078 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3079 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3080 			return;
3081 		if (RB_WARN_ON(cpu_buffer,
3082 			       rb_is_reader_page(cpu_buffer->tail_page)))
3083 			return;
3084 		/*
3085 		 * No need for a memory barrier here, as the update
3086 		 * of the tail_page did it for this page.
3087 		 */
3088 		local_set(&cpu_buffer->commit_page->page->commit,
3089 			  rb_page_write(cpu_buffer->commit_page));
3090 		rb_inc_page(&cpu_buffer->commit_page);
3091 		/* add barrier to keep gcc from optimizing too much */
3092 		barrier();
3093 	}
3094 	while (rb_commit_index(cpu_buffer) !=
3095 	       rb_page_write(cpu_buffer->commit_page)) {
3096 
3097 		/* Make sure the readers see the content of what is committed. */
3098 		smp_wmb();
3099 		local_set(&cpu_buffer->commit_page->page->commit,
3100 			  rb_page_write(cpu_buffer->commit_page));
3101 		RB_WARN_ON(cpu_buffer,
3102 			   local_read(&cpu_buffer->commit_page->page->commit) &
3103 			   ~RB_WRITE_MASK);
3104 		barrier();
3105 	}
3106 
3107 	/* again, keep gcc from optimizing */
3108 	barrier();
3109 
3110 	/*
3111 	 * If an interrupt came in just after the first while loop
3112 	 * and pushed the tail page forward, we will be left with
3113 	 * a dangling commit that will never go forward.
3114 	 */
3115 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3116 		goto again;
3117 }
3118 
3119 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3120 {
3121 	unsigned long commits;
3122 
3123 	if (RB_WARN_ON(cpu_buffer,
3124 		       !local_read(&cpu_buffer->committing)))
3125 		return;
3126 
3127  again:
3128 	commits = local_read(&cpu_buffer->commits);
3129 	/* synchronize with interrupts */
3130 	barrier();
3131 	if (local_read(&cpu_buffer->committing) == 1)
3132 		rb_set_commit_to_write(cpu_buffer);
3133 
3134 	local_dec(&cpu_buffer->committing);
3135 
3136 	/* synchronize with interrupts */
3137 	barrier();
3138 
3139 	/*
3140 	 * Need to account for interrupts coming in between the
3141 	 * updating of the commit page and the clearing of the
3142 	 * committing counter.
3143 	 */
3144 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3145 	    !local_read(&cpu_buffer->committing)) {
3146 		local_inc(&cpu_buffer->committing);
3147 		goto again;
3148 	}
3149 }
3150 
3151 static inline void rb_event_discard(struct ring_buffer_event *event)
3152 {
3153 	if (extended_time(event))
3154 		event = skip_time_extend(event);
3155 
3156 	/* array[0] holds the actual length for the discarded event */
3157 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3158 	event->type_len = RINGBUF_TYPE_PADDING;
3159 	/* time delta must be non zero */
3160 	if (!event->time_delta)
3161 		event->time_delta = 1;
3162 }
3163 
3164 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3165 {
3166 	local_inc(&cpu_buffer->entries);
3167 	rb_end_commit(cpu_buffer);
3168 }
3169 
3170 static __always_inline void
3171 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3172 {
3173 	if (buffer->irq_work.waiters_pending) {
3174 		buffer->irq_work.waiters_pending = false;
3175 		/* irq_work_queue() supplies it's own memory barriers */
3176 		irq_work_queue(&buffer->irq_work.work);
3177 	}
3178 
3179 	if (cpu_buffer->irq_work.waiters_pending) {
3180 		cpu_buffer->irq_work.waiters_pending = false;
3181 		/* irq_work_queue() supplies it's own memory barriers */
3182 		irq_work_queue(&cpu_buffer->irq_work.work);
3183 	}
3184 
3185 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3186 		return;
3187 
3188 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3189 		return;
3190 
3191 	if (!cpu_buffer->irq_work.full_waiters_pending)
3192 		return;
3193 
3194 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3195 
3196 	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3197 		return;
3198 
3199 	cpu_buffer->irq_work.wakeup_full = true;
3200 	cpu_buffer->irq_work.full_waiters_pending = false;
3201 	/* irq_work_queue() supplies it's own memory barriers */
3202 	irq_work_queue(&cpu_buffer->irq_work.work);
3203 }
3204 
3205 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3206 # define do_ring_buffer_record_recursion()	\
3207 	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3208 #else
3209 # define do_ring_buffer_record_recursion() do { } while (0)
3210 #endif
3211 
3212 /*
3213  * The lock and unlock are done within a preempt disable section.
3214  * The current_context per_cpu variable can only be modified
3215  * by the current task between lock and unlock. But it can
3216  * be modified more than once via an interrupt. To pass this
3217  * information from the lock to the unlock without having to
3218  * access the 'in_interrupt()' functions again (which do show
3219  * a bit of overhead in something as critical as function tracing,
3220  * we use a bitmask trick.
3221  *
3222  *  bit 1 =  NMI context
3223  *  bit 2 =  IRQ context
3224  *  bit 3 =  SoftIRQ context
3225  *  bit 4 =  normal context.
3226  *
3227  * This works because this is the order of contexts that can
3228  * preempt other contexts. A SoftIRQ never preempts an IRQ
3229  * context.
3230  *
3231  * When the context is determined, the corresponding bit is
3232  * checked and set (if it was set, then a recursion of that context
3233  * happened).
3234  *
3235  * On unlock, we need to clear this bit. To do so, just subtract
3236  * 1 from the current_context and AND it to itself.
3237  *
3238  * (binary)
3239  *  101 - 1 = 100
3240  *  101 & 100 = 100 (clearing bit zero)
3241  *
3242  *  1010 - 1 = 1001
3243  *  1010 & 1001 = 1000 (clearing bit 1)
3244  *
3245  * The least significant bit can be cleared this way, and it
3246  * just so happens that it is the same bit corresponding to
3247  * the current context.
3248  *
3249  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3250  * is set when a recursion is detected at the current context, and if
3251  * the TRANSITION bit is already set, it will fail the recursion.
3252  * This is needed because there's a lag between the changing of
3253  * interrupt context and updating the preempt count. In this case,
3254  * a false positive will be found. To handle this, one extra recursion
3255  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3256  * bit is already set, then it is considered a recursion and the function
3257  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3258  *
3259  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3260  * to be cleared. Even if it wasn't the context that set it. That is,
3261  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3262  * is called before preempt_count() is updated, since the check will
3263  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3264  * NMI then comes in, it will set the NMI bit, but when the NMI code
3265  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3266  * and leave the NMI bit set. But this is fine, because the interrupt
3267  * code that set the TRANSITION bit will then clear the NMI bit when it
3268  * calls trace_recursive_unlock(). If another NMI comes in, it will
3269  * set the TRANSITION bit and continue.
3270  *
3271  * Note: The TRANSITION bit only handles a single transition between context.
3272  */
3273 
3274 static __always_inline bool
3275 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3276 {
3277 	unsigned int val = cpu_buffer->current_context;
3278 	int bit = interrupt_context_level();
3279 
3280 	bit = RB_CTX_NORMAL - bit;
3281 
3282 	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3283 		/*
3284 		 * It is possible that this was called by transitioning
3285 		 * between interrupt context, and preempt_count() has not
3286 		 * been updated yet. In this case, use the TRANSITION bit.
3287 		 */
3288 		bit = RB_CTX_TRANSITION;
3289 		if (val & (1 << (bit + cpu_buffer->nest))) {
3290 			do_ring_buffer_record_recursion();
3291 			return true;
3292 		}
3293 	}
3294 
3295 	val |= (1 << (bit + cpu_buffer->nest));
3296 	cpu_buffer->current_context = val;
3297 
3298 	return false;
3299 }
3300 
3301 static __always_inline void
3302 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3303 {
3304 	cpu_buffer->current_context &=
3305 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3306 }
3307 
3308 /* The recursive locking above uses 5 bits */
3309 #define NESTED_BITS 5
3310 
3311 /**
3312  * ring_buffer_nest_start - Allow to trace while nested
3313  * @buffer: The ring buffer to modify
3314  *
3315  * The ring buffer has a safety mechanism to prevent recursion.
3316  * But there may be a case where a trace needs to be done while
3317  * tracing something else. In this case, calling this function
3318  * will allow this function to nest within a currently active
3319  * ring_buffer_lock_reserve().
3320  *
3321  * Call this function before calling another ring_buffer_lock_reserve() and
3322  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3323  */
3324 void ring_buffer_nest_start(struct trace_buffer *buffer)
3325 {
3326 	struct ring_buffer_per_cpu *cpu_buffer;
3327 	int cpu;
3328 
3329 	/* Enabled by ring_buffer_nest_end() */
3330 	preempt_disable_notrace();
3331 	cpu = raw_smp_processor_id();
3332 	cpu_buffer = buffer->buffers[cpu];
3333 	/* This is the shift value for the above recursive locking */
3334 	cpu_buffer->nest += NESTED_BITS;
3335 }
3336 
3337 /**
3338  * ring_buffer_nest_end - Allow to trace while nested
3339  * @buffer: The ring buffer to modify
3340  *
3341  * Must be called after ring_buffer_nest_start() and after the
3342  * ring_buffer_unlock_commit().
3343  */
3344 void ring_buffer_nest_end(struct trace_buffer *buffer)
3345 {
3346 	struct ring_buffer_per_cpu *cpu_buffer;
3347 	int cpu;
3348 
3349 	/* disabled by ring_buffer_nest_start() */
3350 	cpu = raw_smp_processor_id();
3351 	cpu_buffer = buffer->buffers[cpu];
3352 	/* This is the shift value for the above recursive locking */
3353 	cpu_buffer->nest -= NESTED_BITS;
3354 	preempt_enable_notrace();
3355 }
3356 
3357 /**
3358  * ring_buffer_unlock_commit - commit a reserved
3359  * @buffer: The buffer to commit to
3360  *
3361  * This commits the data to the ring buffer, and releases any locks held.
3362  *
3363  * Must be paired with ring_buffer_lock_reserve.
3364  */
3365 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3366 {
3367 	struct ring_buffer_per_cpu *cpu_buffer;
3368 	int cpu = raw_smp_processor_id();
3369 
3370 	cpu_buffer = buffer->buffers[cpu];
3371 
3372 	rb_commit(cpu_buffer);
3373 
3374 	rb_wakeups(buffer, cpu_buffer);
3375 
3376 	trace_recursive_unlock(cpu_buffer);
3377 
3378 	preempt_enable_notrace();
3379 
3380 	return 0;
3381 }
3382 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3383 
3384 /* Special value to validate all deltas on a page. */
3385 #define CHECK_FULL_PAGE		1L
3386 
3387 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3388 static void dump_buffer_page(struct buffer_data_page *bpage,
3389 			     struct rb_event_info *info,
3390 			     unsigned long tail)
3391 {
3392 	struct ring_buffer_event *event;
3393 	u64 ts, delta;
3394 	int e;
3395 
3396 	ts = bpage->time_stamp;
3397 	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3398 
3399 	for (e = 0; e < tail; e += rb_event_length(event)) {
3400 
3401 		event = (struct ring_buffer_event *)(bpage->data + e);
3402 
3403 		switch (event->type_len) {
3404 
3405 		case RINGBUF_TYPE_TIME_EXTEND:
3406 			delta = rb_event_time_stamp(event);
3407 			ts += delta;
3408 			pr_warn("  [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3409 			break;
3410 
3411 		case RINGBUF_TYPE_TIME_STAMP:
3412 			delta = rb_event_time_stamp(event);
3413 			ts = rb_fix_abs_ts(delta, ts);
3414 			pr_warn("  [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3415 			break;
3416 
3417 		case RINGBUF_TYPE_PADDING:
3418 			ts += event->time_delta;
3419 			pr_warn("  [%lld] delta:%d PADDING\n", ts, event->time_delta);
3420 			break;
3421 
3422 		case RINGBUF_TYPE_DATA:
3423 			ts += event->time_delta;
3424 			pr_warn("  [%lld] delta:%d\n", ts, event->time_delta);
3425 			break;
3426 
3427 		default:
3428 			break;
3429 		}
3430 	}
3431 }
3432 
3433 static DEFINE_PER_CPU(atomic_t, checking);
3434 static atomic_t ts_dump;
3435 
3436 /*
3437  * Check if the current event time stamp matches the deltas on
3438  * the buffer page.
3439  */
3440 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3441 			 struct rb_event_info *info,
3442 			 unsigned long tail)
3443 {
3444 	struct ring_buffer_event *event;
3445 	struct buffer_data_page *bpage;
3446 	u64 ts, delta;
3447 	bool full = false;
3448 	int e;
3449 
3450 	bpage = info->tail_page->page;
3451 
3452 	if (tail == CHECK_FULL_PAGE) {
3453 		full = true;
3454 		tail = local_read(&bpage->commit);
3455 	} else if (info->add_timestamp &
3456 		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3457 		/* Ignore events with absolute time stamps */
3458 		return;
3459 	}
3460 
3461 	/*
3462 	 * Do not check the first event (skip possible extends too).
3463 	 * Also do not check if previous events have not been committed.
3464 	 */
3465 	if (tail <= 8 || tail > local_read(&bpage->commit))
3466 		return;
3467 
3468 	/*
3469 	 * If this interrupted another event,
3470 	 */
3471 	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3472 		goto out;
3473 
3474 	ts = bpage->time_stamp;
3475 
3476 	for (e = 0; e < tail; e += rb_event_length(event)) {
3477 
3478 		event = (struct ring_buffer_event *)(bpage->data + e);
3479 
3480 		switch (event->type_len) {
3481 
3482 		case RINGBUF_TYPE_TIME_EXTEND:
3483 			delta = rb_event_time_stamp(event);
3484 			ts += delta;
3485 			break;
3486 
3487 		case RINGBUF_TYPE_TIME_STAMP:
3488 			delta = rb_event_time_stamp(event);
3489 			ts = rb_fix_abs_ts(delta, ts);
3490 			break;
3491 
3492 		case RINGBUF_TYPE_PADDING:
3493 			if (event->time_delta == 1)
3494 				break;
3495 			fallthrough;
3496 		case RINGBUF_TYPE_DATA:
3497 			ts += event->time_delta;
3498 			break;
3499 
3500 		default:
3501 			RB_WARN_ON(cpu_buffer, 1);
3502 		}
3503 	}
3504 	if ((full && ts > info->ts) ||
3505 	    (!full && ts + info->delta != info->ts)) {
3506 		/* If another report is happening, ignore this one */
3507 		if (atomic_inc_return(&ts_dump) != 1) {
3508 			atomic_dec(&ts_dump);
3509 			goto out;
3510 		}
3511 		atomic_inc(&cpu_buffer->record_disabled);
3512 		/* There's some cases in boot up that this can happen */
3513 		WARN_ON_ONCE(system_state != SYSTEM_BOOTING);
3514 		pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n",
3515 			cpu_buffer->cpu,
3516 			ts + info->delta, info->ts, info->delta,
3517 			info->before, info->after,
3518 			full ? " (full)" : "");
3519 		dump_buffer_page(bpage, info, tail);
3520 		atomic_dec(&ts_dump);
3521 		/* Do not re-enable checking */
3522 		return;
3523 	}
3524 out:
3525 	atomic_dec(this_cpu_ptr(&checking));
3526 }
3527 #else
3528 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3529 			 struct rb_event_info *info,
3530 			 unsigned long tail)
3531 {
3532 }
3533 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3534 
3535 static struct ring_buffer_event *
3536 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3537 		  struct rb_event_info *info)
3538 {
3539 	struct ring_buffer_event *event;
3540 	struct buffer_page *tail_page;
3541 	unsigned long tail, write, w;
3542 	bool a_ok;
3543 	bool b_ok;
3544 
3545 	/* Don't let the compiler play games with cpu_buffer->tail_page */
3546 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3547 
3548  /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
3549 	barrier();
3550 	b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3551 	a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3552 	barrier();
3553 	info->ts = rb_time_stamp(cpu_buffer->buffer);
3554 
3555 	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3556 		info->delta = info->ts;
3557 	} else {
3558 		/*
3559 		 * If interrupting an event time update, we may need an
3560 		 * absolute timestamp.
3561 		 * Don't bother if this is the start of a new page (w == 0).
3562 		 */
3563 		if (!w) {
3564 			/* Use the sub-buffer timestamp */
3565 			info->delta = 0;
3566 		} else if (unlikely(!a_ok || !b_ok || info->before != info->after)) {
3567 			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3568 			info->length += RB_LEN_TIME_EXTEND;
3569 		} else {
3570 			info->delta = info->ts - info->after;
3571 			if (unlikely(test_time_stamp(info->delta))) {
3572 				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3573 				info->length += RB_LEN_TIME_EXTEND;
3574 			}
3575 		}
3576 	}
3577 
3578  /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
3579 
3580  /*C*/	write = local_add_return(info->length, &tail_page->write);
3581 
3582 	/* set write to only the index of the write */
3583 	write &= RB_WRITE_MASK;
3584 
3585 	tail = write - info->length;
3586 
3587 	/* See if we shot pass the end of this buffer page */
3588 	if (unlikely(write > BUF_PAGE_SIZE)) {
3589 		check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3590 		return rb_move_tail(cpu_buffer, tail, info);
3591 	}
3592 
3593 	if (likely(tail == w)) {
3594 		/* Nothing interrupted us between A and C */
3595  /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
3596 		/*
3597 		 * If something came in between C and D, the write stamp
3598 		 * may now not be in sync. But that's fine as the before_stamp
3599 		 * will be different and then next event will just be forced
3600 		 * to use an absolute timestamp.
3601 		 */
3602 		if (likely(!(info->add_timestamp &
3603 			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3604 			/* This did not interrupt any time update */
3605 			info->delta = info->ts - info->after;
3606 		else
3607 			/* Just use full timestamp for interrupting event */
3608 			info->delta = info->ts;
3609 		check_buffer(cpu_buffer, info, tail);
3610 	} else {
3611 		u64 ts;
3612 		/* SLOW PATH - Interrupted between A and C */
3613 		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3614 		/* Was interrupted before here, write_stamp must be valid */
3615 		RB_WARN_ON(cpu_buffer, !a_ok);
3616 		ts = rb_time_stamp(cpu_buffer->buffer);
3617 		barrier();
3618  /*E*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3619 		    info->after < ts &&
3620 		    rb_time_cmpxchg(&cpu_buffer->write_stamp,
3621 				    info->after, ts)) {
3622 			/* Nothing came after this event between C and E */
3623 			info->delta = ts - info->after;
3624 		} else {
3625 			/*
3626 			 * Interrupted between C and E:
3627 			 * Lost the previous events time stamp. Just set the
3628 			 * delta to zero, and this will be the same time as
3629 			 * the event this event interrupted. And the events that
3630 			 * came after this will still be correct (as they would
3631 			 * have built their delta on the previous event.
3632 			 */
3633 			info->delta = 0;
3634 		}
3635 		info->ts = ts;
3636 		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3637 	}
3638 
3639 	/*
3640 	 * If this is the first commit on the page, then it has the same
3641 	 * timestamp as the page itself.
3642 	 */
3643 	if (unlikely(!tail && !(info->add_timestamp &
3644 				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3645 		info->delta = 0;
3646 
3647 	/* We reserved something on the buffer */
3648 
3649 	event = __rb_page_index(tail_page, tail);
3650 	rb_update_event(cpu_buffer, event, info);
3651 
3652 	local_inc(&tail_page->entries);
3653 
3654 	/*
3655 	 * If this is the first commit on the page, then update
3656 	 * its timestamp.
3657 	 */
3658 	if (unlikely(!tail))
3659 		tail_page->page->time_stamp = info->ts;
3660 
3661 	/* account for these added bytes */
3662 	local_add(info->length, &cpu_buffer->entries_bytes);
3663 
3664 	return event;
3665 }
3666 
3667 static __always_inline struct ring_buffer_event *
3668 rb_reserve_next_event(struct trace_buffer *buffer,
3669 		      struct ring_buffer_per_cpu *cpu_buffer,
3670 		      unsigned long length)
3671 {
3672 	struct ring_buffer_event *event;
3673 	struct rb_event_info info;
3674 	int nr_loops = 0;
3675 	int add_ts_default;
3676 
3677 	/* ring buffer does cmpxchg, make sure it is safe in NMI context */
3678 	if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) &&
3679 	    (unlikely(in_nmi()))) {
3680 		return NULL;
3681 	}
3682 
3683 	rb_start_commit(cpu_buffer);
3684 	/* The commit page can not change after this */
3685 
3686 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3687 	/*
3688 	 * Due to the ability to swap a cpu buffer from a buffer
3689 	 * it is possible it was swapped before we committed.
3690 	 * (committing stops a swap). We check for it here and
3691 	 * if it happened, we have to fail the write.
3692 	 */
3693 	barrier();
3694 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3695 		local_dec(&cpu_buffer->committing);
3696 		local_dec(&cpu_buffer->commits);
3697 		return NULL;
3698 	}
3699 #endif
3700 
3701 	info.length = rb_calculate_event_length(length);
3702 
3703 	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3704 		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3705 		info.length += RB_LEN_TIME_EXTEND;
3706 		if (info.length > BUF_MAX_DATA_SIZE)
3707 			goto out_fail;
3708 	} else {
3709 		add_ts_default = RB_ADD_STAMP_NONE;
3710 	}
3711 
3712  again:
3713 	info.add_timestamp = add_ts_default;
3714 	info.delta = 0;
3715 
3716 	/*
3717 	 * We allow for interrupts to reenter here and do a trace.
3718 	 * If one does, it will cause this original code to loop
3719 	 * back here. Even with heavy interrupts happening, this
3720 	 * should only happen a few times in a row. If this happens
3721 	 * 1000 times in a row, there must be either an interrupt
3722 	 * storm or we have something buggy.
3723 	 * Bail!
3724 	 */
3725 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3726 		goto out_fail;
3727 
3728 	event = __rb_reserve_next(cpu_buffer, &info);
3729 
3730 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3731 		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3732 			info.length -= RB_LEN_TIME_EXTEND;
3733 		goto again;
3734 	}
3735 
3736 	if (likely(event))
3737 		return event;
3738  out_fail:
3739 	rb_end_commit(cpu_buffer);
3740 	return NULL;
3741 }
3742 
3743 /**
3744  * ring_buffer_lock_reserve - reserve a part of the buffer
3745  * @buffer: the ring buffer to reserve from
3746  * @length: the length of the data to reserve (excluding event header)
3747  *
3748  * Returns a reserved event on the ring buffer to copy directly to.
3749  * The user of this interface will need to get the body to write into
3750  * and can use the ring_buffer_event_data() interface.
3751  *
3752  * The length is the length of the data needed, not the event length
3753  * which also includes the event header.
3754  *
3755  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3756  * If NULL is returned, then nothing has been allocated or locked.
3757  */
3758 struct ring_buffer_event *
3759 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3760 {
3761 	struct ring_buffer_per_cpu *cpu_buffer;
3762 	struct ring_buffer_event *event;
3763 	int cpu;
3764 
3765 	/* If we are tracing schedule, we don't want to recurse */
3766 	preempt_disable_notrace();
3767 
3768 	if (unlikely(atomic_read(&buffer->record_disabled)))
3769 		goto out;
3770 
3771 	cpu = raw_smp_processor_id();
3772 
3773 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3774 		goto out;
3775 
3776 	cpu_buffer = buffer->buffers[cpu];
3777 
3778 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3779 		goto out;
3780 
3781 	if (unlikely(length > BUF_MAX_DATA_SIZE))
3782 		goto out;
3783 
3784 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3785 		goto out;
3786 
3787 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3788 	if (!event)
3789 		goto out_unlock;
3790 
3791 	return event;
3792 
3793  out_unlock:
3794 	trace_recursive_unlock(cpu_buffer);
3795  out:
3796 	preempt_enable_notrace();
3797 	return NULL;
3798 }
3799 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3800 
3801 /*
3802  * Decrement the entries to the page that an event is on.
3803  * The event does not even need to exist, only the pointer
3804  * to the page it is on. This may only be called before the commit
3805  * takes place.
3806  */
3807 static inline void
3808 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3809 		   struct ring_buffer_event *event)
3810 {
3811 	unsigned long addr = (unsigned long)event;
3812 	struct buffer_page *bpage = cpu_buffer->commit_page;
3813 	struct buffer_page *start;
3814 
3815 	addr &= PAGE_MASK;
3816 
3817 	/* Do the likely case first */
3818 	if (likely(bpage->page == (void *)addr)) {
3819 		local_dec(&bpage->entries);
3820 		return;
3821 	}
3822 
3823 	/*
3824 	 * Because the commit page may be on the reader page we
3825 	 * start with the next page and check the end loop there.
3826 	 */
3827 	rb_inc_page(&bpage);
3828 	start = bpage;
3829 	do {
3830 		if (bpage->page == (void *)addr) {
3831 			local_dec(&bpage->entries);
3832 			return;
3833 		}
3834 		rb_inc_page(&bpage);
3835 	} while (bpage != start);
3836 
3837 	/* commit not part of this buffer?? */
3838 	RB_WARN_ON(cpu_buffer, 1);
3839 }
3840 
3841 /**
3842  * ring_buffer_discard_commit - discard an event that has not been committed
3843  * @buffer: the ring buffer
3844  * @event: non committed event to discard
3845  *
3846  * Sometimes an event that is in the ring buffer needs to be ignored.
3847  * This function lets the user discard an event in the ring buffer
3848  * and then that event will not be read later.
3849  *
3850  * This function only works if it is called before the item has been
3851  * committed. It will try to free the event from the ring buffer
3852  * if another event has not been added behind it.
3853  *
3854  * If another event has been added behind it, it will set the event
3855  * up as discarded, and perform the commit.
3856  *
3857  * If this function is called, do not call ring_buffer_unlock_commit on
3858  * the event.
3859  */
3860 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3861 				struct ring_buffer_event *event)
3862 {
3863 	struct ring_buffer_per_cpu *cpu_buffer;
3864 	int cpu;
3865 
3866 	/* The event is discarded regardless */
3867 	rb_event_discard(event);
3868 
3869 	cpu = smp_processor_id();
3870 	cpu_buffer = buffer->buffers[cpu];
3871 
3872 	/*
3873 	 * This must only be called if the event has not been
3874 	 * committed yet. Thus we can assume that preemption
3875 	 * is still disabled.
3876 	 */
3877 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3878 
3879 	rb_decrement_entry(cpu_buffer, event);
3880 	if (rb_try_to_discard(cpu_buffer, event))
3881 		goto out;
3882 
3883  out:
3884 	rb_end_commit(cpu_buffer);
3885 
3886 	trace_recursive_unlock(cpu_buffer);
3887 
3888 	preempt_enable_notrace();
3889 
3890 }
3891 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3892 
3893 /**
3894  * ring_buffer_write - write data to the buffer without reserving
3895  * @buffer: The ring buffer to write to.
3896  * @length: The length of the data being written (excluding the event header)
3897  * @data: The data to write to the buffer.
3898  *
3899  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3900  * one function. If you already have the data to write to the buffer, it
3901  * may be easier to simply call this function.
3902  *
3903  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3904  * and not the length of the event which would hold the header.
3905  */
3906 int ring_buffer_write(struct trace_buffer *buffer,
3907 		      unsigned long length,
3908 		      void *data)
3909 {
3910 	struct ring_buffer_per_cpu *cpu_buffer;
3911 	struct ring_buffer_event *event;
3912 	void *body;
3913 	int ret = -EBUSY;
3914 	int cpu;
3915 
3916 	preempt_disable_notrace();
3917 
3918 	if (atomic_read(&buffer->record_disabled))
3919 		goto out;
3920 
3921 	cpu = raw_smp_processor_id();
3922 
3923 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3924 		goto out;
3925 
3926 	cpu_buffer = buffer->buffers[cpu];
3927 
3928 	if (atomic_read(&cpu_buffer->record_disabled))
3929 		goto out;
3930 
3931 	if (length > BUF_MAX_DATA_SIZE)
3932 		goto out;
3933 
3934 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3935 		goto out;
3936 
3937 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3938 	if (!event)
3939 		goto out_unlock;
3940 
3941 	body = rb_event_data(event);
3942 
3943 	memcpy(body, data, length);
3944 
3945 	rb_commit(cpu_buffer);
3946 
3947 	rb_wakeups(buffer, cpu_buffer);
3948 
3949 	ret = 0;
3950 
3951  out_unlock:
3952 	trace_recursive_unlock(cpu_buffer);
3953 
3954  out:
3955 	preempt_enable_notrace();
3956 
3957 	return ret;
3958 }
3959 EXPORT_SYMBOL_GPL(ring_buffer_write);
3960 
3961 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3962 {
3963 	struct buffer_page *reader = cpu_buffer->reader_page;
3964 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3965 	struct buffer_page *commit = cpu_buffer->commit_page;
3966 
3967 	/* In case of error, head will be NULL */
3968 	if (unlikely(!head))
3969 		return true;
3970 
3971 	/* Reader should exhaust content in reader page */
3972 	if (reader->read != rb_page_commit(reader))
3973 		return false;
3974 
3975 	/*
3976 	 * If writers are committing on the reader page, knowing all
3977 	 * committed content has been read, the ring buffer is empty.
3978 	 */
3979 	if (commit == reader)
3980 		return true;
3981 
3982 	/*
3983 	 * If writers are committing on a page other than reader page
3984 	 * and head page, there should always be content to read.
3985 	 */
3986 	if (commit != head)
3987 		return false;
3988 
3989 	/*
3990 	 * Writers are committing on the head page, we just need
3991 	 * to care about there're committed data, and the reader will
3992 	 * swap reader page with head page when it is to read data.
3993 	 */
3994 	return rb_page_commit(commit) == 0;
3995 }
3996 
3997 /**
3998  * ring_buffer_record_disable - stop all writes into the buffer
3999  * @buffer: The ring buffer to stop writes to.
4000  *
4001  * This prevents all writes to the buffer. Any attempt to write
4002  * to the buffer after this will fail and return NULL.
4003  *
4004  * The caller should call synchronize_rcu() after this.
4005  */
4006 void ring_buffer_record_disable(struct trace_buffer *buffer)
4007 {
4008 	atomic_inc(&buffer->record_disabled);
4009 }
4010 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4011 
4012 /**
4013  * ring_buffer_record_enable - enable writes to the buffer
4014  * @buffer: The ring buffer to enable writes
4015  *
4016  * Note, multiple disables will need the same number of enables
4017  * to truly enable the writing (much like preempt_disable).
4018  */
4019 void ring_buffer_record_enable(struct trace_buffer *buffer)
4020 {
4021 	atomic_dec(&buffer->record_disabled);
4022 }
4023 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4024 
4025 /**
4026  * ring_buffer_record_off - stop all writes into the buffer
4027  * @buffer: The ring buffer to stop writes to.
4028  *
4029  * This prevents all writes to the buffer. Any attempt to write
4030  * to the buffer after this will fail and return NULL.
4031  *
4032  * This is different than ring_buffer_record_disable() as
4033  * it works like an on/off switch, where as the disable() version
4034  * must be paired with a enable().
4035  */
4036 void ring_buffer_record_off(struct trace_buffer *buffer)
4037 {
4038 	unsigned int rd;
4039 	unsigned int new_rd;
4040 
4041 	rd = atomic_read(&buffer->record_disabled);
4042 	do {
4043 		new_rd = rd | RB_BUFFER_OFF;
4044 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4045 }
4046 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4047 
4048 /**
4049  * ring_buffer_record_on - restart writes into the buffer
4050  * @buffer: The ring buffer to start writes to.
4051  *
4052  * This enables all writes to the buffer that was disabled by
4053  * ring_buffer_record_off().
4054  *
4055  * This is different than ring_buffer_record_enable() as
4056  * it works like an on/off switch, where as the enable() version
4057  * must be paired with a disable().
4058  */
4059 void ring_buffer_record_on(struct trace_buffer *buffer)
4060 {
4061 	unsigned int rd;
4062 	unsigned int new_rd;
4063 
4064 	rd = atomic_read(&buffer->record_disabled);
4065 	do {
4066 		new_rd = rd & ~RB_BUFFER_OFF;
4067 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4068 }
4069 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4070 
4071 /**
4072  * ring_buffer_record_is_on - return true if the ring buffer can write
4073  * @buffer: The ring buffer to see if write is enabled
4074  *
4075  * Returns true if the ring buffer is in a state that it accepts writes.
4076  */
4077 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4078 {
4079 	return !atomic_read(&buffer->record_disabled);
4080 }
4081 
4082 /**
4083  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4084  * @buffer: The ring buffer to see if write is set enabled
4085  *
4086  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4087  * Note that this does NOT mean it is in a writable state.
4088  *
4089  * It may return true when the ring buffer has been disabled by
4090  * ring_buffer_record_disable(), as that is a temporary disabling of
4091  * the ring buffer.
4092  */
4093 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4094 {
4095 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4096 }
4097 
4098 /**
4099  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4100  * @buffer: The ring buffer to stop writes to.
4101  * @cpu: The CPU buffer to stop
4102  *
4103  * This prevents all writes to the buffer. Any attempt to write
4104  * to the buffer after this will fail and return NULL.
4105  *
4106  * The caller should call synchronize_rcu() after this.
4107  */
4108 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4109 {
4110 	struct ring_buffer_per_cpu *cpu_buffer;
4111 
4112 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4113 		return;
4114 
4115 	cpu_buffer = buffer->buffers[cpu];
4116 	atomic_inc(&cpu_buffer->record_disabled);
4117 }
4118 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4119 
4120 /**
4121  * ring_buffer_record_enable_cpu - enable writes to the buffer
4122  * @buffer: The ring buffer to enable writes
4123  * @cpu: The CPU to enable.
4124  *
4125  * Note, multiple disables will need the same number of enables
4126  * to truly enable the writing (much like preempt_disable).
4127  */
4128 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4129 {
4130 	struct ring_buffer_per_cpu *cpu_buffer;
4131 
4132 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4133 		return;
4134 
4135 	cpu_buffer = buffer->buffers[cpu];
4136 	atomic_dec(&cpu_buffer->record_disabled);
4137 }
4138 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4139 
4140 /*
4141  * The total entries in the ring buffer is the running counter
4142  * of entries entered into the ring buffer, minus the sum of
4143  * the entries read from the ring buffer and the number of
4144  * entries that were overwritten.
4145  */
4146 static inline unsigned long
4147 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4148 {
4149 	return local_read(&cpu_buffer->entries) -
4150 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4151 }
4152 
4153 /**
4154  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4155  * @buffer: The ring buffer
4156  * @cpu: The per CPU buffer to read from.
4157  */
4158 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4159 {
4160 	unsigned long flags;
4161 	struct ring_buffer_per_cpu *cpu_buffer;
4162 	struct buffer_page *bpage;
4163 	u64 ret = 0;
4164 
4165 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4166 		return 0;
4167 
4168 	cpu_buffer = buffer->buffers[cpu];
4169 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4170 	/*
4171 	 * if the tail is on reader_page, oldest time stamp is on the reader
4172 	 * page
4173 	 */
4174 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4175 		bpage = cpu_buffer->reader_page;
4176 	else
4177 		bpage = rb_set_head_page(cpu_buffer);
4178 	if (bpage)
4179 		ret = bpage->page->time_stamp;
4180 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4181 
4182 	return ret;
4183 }
4184 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4185 
4186 /**
4187  * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4188  * @buffer: The ring buffer
4189  * @cpu: The per CPU buffer to read from.
4190  */
4191 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4192 {
4193 	struct ring_buffer_per_cpu *cpu_buffer;
4194 	unsigned long ret;
4195 
4196 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4197 		return 0;
4198 
4199 	cpu_buffer = buffer->buffers[cpu];
4200 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4201 
4202 	return ret;
4203 }
4204 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4205 
4206 /**
4207  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4208  * @buffer: The ring buffer
4209  * @cpu: The per CPU buffer to get the entries from.
4210  */
4211 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4212 {
4213 	struct ring_buffer_per_cpu *cpu_buffer;
4214 
4215 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4216 		return 0;
4217 
4218 	cpu_buffer = buffer->buffers[cpu];
4219 
4220 	return rb_num_of_entries(cpu_buffer);
4221 }
4222 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4223 
4224 /**
4225  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4226  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4227  * @buffer: The ring buffer
4228  * @cpu: The per CPU buffer to get the number of overruns from
4229  */
4230 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4231 {
4232 	struct ring_buffer_per_cpu *cpu_buffer;
4233 	unsigned long ret;
4234 
4235 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4236 		return 0;
4237 
4238 	cpu_buffer = buffer->buffers[cpu];
4239 	ret = local_read(&cpu_buffer->overrun);
4240 
4241 	return ret;
4242 }
4243 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4244 
4245 /**
4246  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4247  * commits failing due to the buffer wrapping around while there are uncommitted
4248  * events, such as during an interrupt storm.
4249  * @buffer: The ring buffer
4250  * @cpu: The per CPU buffer to get the number of overruns from
4251  */
4252 unsigned long
4253 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4254 {
4255 	struct ring_buffer_per_cpu *cpu_buffer;
4256 	unsigned long ret;
4257 
4258 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4259 		return 0;
4260 
4261 	cpu_buffer = buffer->buffers[cpu];
4262 	ret = local_read(&cpu_buffer->commit_overrun);
4263 
4264 	return ret;
4265 }
4266 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4267 
4268 /**
4269  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4270  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4271  * @buffer: The ring buffer
4272  * @cpu: The per CPU buffer to get the number of overruns from
4273  */
4274 unsigned long
4275 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4276 {
4277 	struct ring_buffer_per_cpu *cpu_buffer;
4278 	unsigned long ret;
4279 
4280 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4281 		return 0;
4282 
4283 	cpu_buffer = buffer->buffers[cpu];
4284 	ret = local_read(&cpu_buffer->dropped_events);
4285 
4286 	return ret;
4287 }
4288 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4289 
4290 /**
4291  * ring_buffer_read_events_cpu - get the number of events successfully read
4292  * @buffer: The ring buffer
4293  * @cpu: The per CPU buffer to get the number of events read
4294  */
4295 unsigned long
4296 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4297 {
4298 	struct ring_buffer_per_cpu *cpu_buffer;
4299 
4300 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4301 		return 0;
4302 
4303 	cpu_buffer = buffer->buffers[cpu];
4304 	return cpu_buffer->read;
4305 }
4306 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4307 
4308 /**
4309  * ring_buffer_entries - get the number of entries in a buffer
4310  * @buffer: The ring buffer
4311  *
4312  * Returns the total number of entries in the ring buffer
4313  * (all CPU entries)
4314  */
4315 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4316 {
4317 	struct ring_buffer_per_cpu *cpu_buffer;
4318 	unsigned long entries = 0;
4319 	int cpu;
4320 
4321 	/* if you care about this being correct, lock the buffer */
4322 	for_each_buffer_cpu(buffer, cpu) {
4323 		cpu_buffer = buffer->buffers[cpu];
4324 		entries += rb_num_of_entries(cpu_buffer);
4325 	}
4326 
4327 	return entries;
4328 }
4329 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4330 
4331 /**
4332  * ring_buffer_overruns - get the number of overruns in buffer
4333  * @buffer: The ring buffer
4334  *
4335  * Returns the total number of overruns in the ring buffer
4336  * (all CPU entries)
4337  */
4338 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4339 {
4340 	struct ring_buffer_per_cpu *cpu_buffer;
4341 	unsigned long overruns = 0;
4342 	int cpu;
4343 
4344 	/* if you care about this being correct, lock the buffer */
4345 	for_each_buffer_cpu(buffer, cpu) {
4346 		cpu_buffer = buffer->buffers[cpu];
4347 		overruns += local_read(&cpu_buffer->overrun);
4348 	}
4349 
4350 	return overruns;
4351 }
4352 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4353 
4354 static void rb_iter_reset(struct ring_buffer_iter *iter)
4355 {
4356 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4357 
4358 	/* Iterator usage is expected to have record disabled */
4359 	iter->head_page = cpu_buffer->reader_page;
4360 	iter->head = cpu_buffer->reader_page->read;
4361 	iter->next_event = iter->head;
4362 
4363 	iter->cache_reader_page = iter->head_page;
4364 	iter->cache_read = cpu_buffer->read;
4365 	iter->cache_pages_removed = cpu_buffer->pages_removed;
4366 
4367 	if (iter->head) {
4368 		iter->read_stamp = cpu_buffer->read_stamp;
4369 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4370 	} else {
4371 		iter->read_stamp = iter->head_page->page->time_stamp;
4372 		iter->page_stamp = iter->read_stamp;
4373 	}
4374 }
4375 
4376 /**
4377  * ring_buffer_iter_reset - reset an iterator
4378  * @iter: The iterator to reset
4379  *
4380  * Resets the iterator, so that it will start from the beginning
4381  * again.
4382  */
4383 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4384 {
4385 	struct ring_buffer_per_cpu *cpu_buffer;
4386 	unsigned long flags;
4387 
4388 	if (!iter)
4389 		return;
4390 
4391 	cpu_buffer = iter->cpu_buffer;
4392 
4393 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4394 	rb_iter_reset(iter);
4395 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4396 }
4397 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4398 
4399 /**
4400  * ring_buffer_iter_empty - check if an iterator has no more to read
4401  * @iter: The iterator to check
4402  */
4403 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4404 {
4405 	struct ring_buffer_per_cpu *cpu_buffer;
4406 	struct buffer_page *reader;
4407 	struct buffer_page *head_page;
4408 	struct buffer_page *commit_page;
4409 	struct buffer_page *curr_commit_page;
4410 	unsigned commit;
4411 	u64 curr_commit_ts;
4412 	u64 commit_ts;
4413 
4414 	cpu_buffer = iter->cpu_buffer;
4415 	reader = cpu_buffer->reader_page;
4416 	head_page = cpu_buffer->head_page;
4417 	commit_page = cpu_buffer->commit_page;
4418 	commit_ts = commit_page->page->time_stamp;
4419 
4420 	/*
4421 	 * When the writer goes across pages, it issues a cmpxchg which
4422 	 * is a mb(), which will synchronize with the rmb here.
4423 	 * (see rb_tail_page_update())
4424 	 */
4425 	smp_rmb();
4426 	commit = rb_page_commit(commit_page);
4427 	/* We want to make sure that the commit page doesn't change */
4428 	smp_rmb();
4429 
4430 	/* Make sure commit page didn't change */
4431 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4432 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4433 
4434 	/* If the commit page changed, then there's more data */
4435 	if (curr_commit_page != commit_page ||
4436 	    curr_commit_ts != commit_ts)
4437 		return 0;
4438 
4439 	/* Still racy, as it may return a false positive, but that's OK */
4440 	return ((iter->head_page == commit_page && iter->head >= commit) ||
4441 		(iter->head_page == reader && commit_page == head_page &&
4442 		 head_page->read == commit &&
4443 		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4444 }
4445 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4446 
4447 static void
4448 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4449 		     struct ring_buffer_event *event)
4450 {
4451 	u64 delta;
4452 
4453 	switch (event->type_len) {
4454 	case RINGBUF_TYPE_PADDING:
4455 		return;
4456 
4457 	case RINGBUF_TYPE_TIME_EXTEND:
4458 		delta = rb_event_time_stamp(event);
4459 		cpu_buffer->read_stamp += delta;
4460 		return;
4461 
4462 	case RINGBUF_TYPE_TIME_STAMP:
4463 		delta = rb_event_time_stamp(event);
4464 		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4465 		cpu_buffer->read_stamp = delta;
4466 		return;
4467 
4468 	case RINGBUF_TYPE_DATA:
4469 		cpu_buffer->read_stamp += event->time_delta;
4470 		return;
4471 
4472 	default:
4473 		RB_WARN_ON(cpu_buffer, 1);
4474 	}
4475 }
4476 
4477 static void
4478 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4479 			  struct ring_buffer_event *event)
4480 {
4481 	u64 delta;
4482 
4483 	switch (event->type_len) {
4484 	case RINGBUF_TYPE_PADDING:
4485 		return;
4486 
4487 	case RINGBUF_TYPE_TIME_EXTEND:
4488 		delta = rb_event_time_stamp(event);
4489 		iter->read_stamp += delta;
4490 		return;
4491 
4492 	case RINGBUF_TYPE_TIME_STAMP:
4493 		delta = rb_event_time_stamp(event);
4494 		delta = rb_fix_abs_ts(delta, iter->read_stamp);
4495 		iter->read_stamp = delta;
4496 		return;
4497 
4498 	case RINGBUF_TYPE_DATA:
4499 		iter->read_stamp += event->time_delta;
4500 		return;
4501 
4502 	default:
4503 		RB_WARN_ON(iter->cpu_buffer, 1);
4504 	}
4505 }
4506 
4507 static struct buffer_page *
4508 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4509 {
4510 	struct buffer_page *reader = NULL;
4511 	unsigned long overwrite;
4512 	unsigned long flags;
4513 	int nr_loops = 0;
4514 	bool ret;
4515 
4516 	local_irq_save(flags);
4517 	arch_spin_lock(&cpu_buffer->lock);
4518 
4519  again:
4520 	/*
4521 	 * This should normally only loop twice. But because the
4522 	 * start of the reader inserts an empty page, it causes
4523 	 * a case where we will loop three times. There should be no
4524 	 * reason to loop four times (that I know of).
4525 	 */
4526 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4527 		reader = NULL;
4528 		goto out;
4529 	}
4530 
4531 	reader = cpu_buffer->reader_page;
4532 
4533 	/* If there's more to read, return this page */
4534 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
4535 		goto out;
4536 
4537 	/* Never should we have an index greater than the size */
4538 	if (RB_WARN_ON(cpu_buffer,
4539 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
4540 		goto out;
4541 
4542 	/* check if we caught up to the tail */
4543 	reader = NULL;
4544 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4545 		goto out;
4546 
4547 	/* Don't bother swapping if the ring buffer is empty */
4548 	if (rb_num_of_entries(cpu_buffer) == 0)
4549 		goto out;
4550 
4551 	/*
4552 	 * Reset the reader page to size zero.
4553 	 */
4554 	local_set(&cpu_buffer->reader_page->write, 0);
4555 	local_set(&cpu_buffer->reader_page->entries, 0);
4556 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4557 	cpu_buffer->reader_page->real_end = 0;
4558 
4559  spin:
4560 	/*
4561 	 * Splice the empty reader page into the list around the head.
4562 	 */
4563 	reader = rb_set_head_page(cpu_buffer);
4564 	if (!reader)
4565 		goto out;
4566 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4567 	cpu_buffer->reader_page->list.prev = reader->list.prev;
4568 
4569 	/*
4570 	 * cpu_buffer->pages just needs to point to the buffer, it
4571 	 *  has no specific buffer page to point to. Lets move it out
4572 	 *  of our way so we don't accidentally swap it.
4573 	 */
4574 	cpu_buffer->pages = reader->list.prev;
4575 
4576 	/* The reader page will be pointing to the new head */
4577 	rb_set_list_to_head(&cpu_buffer->reader_page->list);
4578 
4579 	/*
4580 	 * We want to make sure we read the overruns after we set up our
4581 	 * pointers to the next object. The writer side does a
4582 	 * cmpxchg to cross pages which acts as the mb on the writer
4583 	 * side. Note, the reader will constantly fail the swap
4584 	 * while the writer is updating the pointers, so this
4585 	 * guarantees that the overwrite recorded here is the one we
4586 	 * want to compare with the last_overrun.
4587 	 */
4588 	smp_mb();
4589 	overwrite = local_read(&(cpu_buffer->overrun));
4590 
4591 	/*
4592 	 * Here's the tricky part.
4593 	 *
4594 	 * We need to move the pointer past the header page.
4595 	 * But we can only do that if a writer is not currently
4596 	 * moving it. The page before the header page has the
4597 	 * flag bit '1' set if it is pointing to the page we want.
4598 	 * but if the writer is in the process of moving it
4599 	 * than it will be '2' or already moved '0'.
4600 	 */
4601 
4602 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4603 
4604 	/*
4605 	 * If we did not convert it, then we must try again.
4606 	 */
4607 	if (!ret)
4608 		goto spin;
4609 
4610 	/*
4611 	 * Yay! We succeeded in replacing the page.
4612 	 *
4613 	 * Now make the new head point back to the reader page.
4614 	 */
4615 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4616 	rb_inc_page(&cpu_buffer->head_page);
4617 
4618 	local_inc(&cpu_buffer->pages_read);
4619 
4620 	/* Finally update the reader page to the new head */
4621 	cpu_buffer->reader_page = reader;
4622 	cpu_buffer->reader_page->read = 0;
4623 
4624 	if (overwrite != cpu_buffer->last_overrun) {
4625 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4626 		cpu_buffer->last_overrun = overwrite;
4627 	}
4628 
4629 	goto again;
4630 
4631  out:
4632 	/* Update the read_stamp on the first event */
4633 	if (reader && reader->read == 0)
4634 		cpu_buffer->read_stamp = reader->page->time_stamp;
4635 
4636 	arch_spin_unlock(&cpu_buffer->lock);
4637 	local_irq_restore(flags);
4638 
4639 	/*
4640 	 * The writer has preempt disable, wait for it. But not forever
4641 	 * Although, 1 second is pretty much "forever"
4642 	 */
4643 #define USECS_WAIT	1000000
4644         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4645 		/* If the write is past the end of page, a writer is still updating it */
4646 		if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE))
4647 			break;
4648 
4649 		udelay(1);
4650 
4651 		/* Get the latest version of the reader write value */
4652 		smp_rmb();
4653 	}
4654 
4655 	/* The writer is not moving forward? Something is wrong */
4656 	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4657 		reader = NULL;
4658 
4659 	/*
4660 	 * Make sure we see any padding after the write update
4661 	 * (see rb_reset_tail()).
4662 	 *
4663 	 * In addition, a writer may be writing on the reader page
4664 	 * if the page has not been fully filled, so the read barrier
4665 	 * is also needed to make sure we see the content of what is
4666 	 * committed by the writer (see rb_set_commit_to_write()).
4667 	 */
4668 	smp_rmb();
4669 
4670 
4671 	return reader;
4672 }
4673 
4674 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4675 {
4676 	struct ring_buffer_event *event;
4677 	struct buffer_page *reader;
4678 	unsigned length;
4679 
4680 	reader = rb_get_reader_page(cpu_buffer);
4681 
4682 	/* This function should not be called when buffer is empty */
4683 	if (RB_WARN_ON(cpu_buffer, !reader))
4684 		return;
4685 
4686 	event = rb_reader_event(cpu_buffer);
4687 
4688 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4689 		cpu_buffer->read++;
4690 
4691 	rb_update_read_stamp(cpu_buffer, event);
4692 
4693 	length = rb_event_length(event);
4694 	cpu_buffer->reader_page->read += length;
4695 	cpu_buffer->read_bytes += length;
4696 }
4697 
4698 static void rb_advance_iter(struct ring_buffer_iter *iter)
4699 {
4700 	struct ring_buffer_per_cpu *cpu_buffer;
4701 
4702 	cpu_buffer = iter->cpu_buffer;
4703 
4704 	/* If head == next_event then we need to jump to the next event */
4705 	if (iter->head == iter->next_event) {
4706 		/* If the event gets overwritten again, there's nothing to do */
4707 		if (rb_iter_head_event(iter) == NULL)
4708 			return;
4709 	}
4710 
4711 	iter->head = iter->next_event;
4712 
4713 	/*
4714 	 * Check if we are at the end of the buffer.
4715 	 */
4716 	if (iter->next_event >= rb_page_size(iter->head_page)) {
4717 		/* discarded commits can make the page empty */
4718 		if (iter->head_page == cpu_buffer->commit_page)
4719 			return;
4720 		rb_inc_iter(iter);
4721 		return;
4722 	}
4723 
4724 	rb_update_iter_read_stamp(iter, iter->event);
4725 }
4726 
4727 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4728 {
4729 	return cpu_buffer->lost_events;
4730 }
4731 
4732 static struct ring_buffer_event *
4733 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4734 	       unsigned long *lost_events)
4735 {
4736 	struct ring_buffer_event *event;
4737 	struct buffer_page *reader;
4738 	int nr_loops = 0;
4739 
4740 	if (ts)
4741 		*ts = 0;
4742  again:
4743 	/*
4744 	 * We repeat when a time extend is encountered.
4745 	 * Since the time extend is always attached to a data event,
4746 	 * we should never loop more than once.
4747 	 * (We never hit the following condition more than twice).
4748 	 */
4749 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4750 		return NULL;
4751 
4752 	reader = rb_get_reader_page(cpu_buffer);
4753 	if (!reader)
4754 		return NULL;
4755 
4756 	event = rb_reader_event(cpu_buffer);
4757 
4758 	switch (event->type_len) {
4759 	case RINGBUF_TYPE_PADDING:
4760 		if (rb_null_event(event))
4761 			RB_WARN_ON(cpu_buffer, 1);
4762 		/*
4763 		 * Because the writer could be discarding every
4764 		 * event it creates (which would probably be bad)
4765 		 * if we were to go back to "again" then we may never
4766 		 * catch up, and will trigger the warn on, or lock
4767 		 * the box. Return the padding, and we will release
4768 		 * the current locks, and try again.
4769 		 */
4770 		return event;
4771 
4772 	case RINGBUF_TYPE_TIME_EXTEND:
4773 		/* Internal data, OK to advance */
4774 		rb_advance_reader(cpu_buffer);
4775 		goto again;
4776 
4777 	case RINGBUF_TYPE_TIME_STAMP:
4778 		if (ts) {
4779 			*ts = rb_event_time_stamp(event);
4780 			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4781 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4782 							 cpu_buffer->cpu, ts);
4783 		}
4784 		/* Internal data, OK to advance */
4785 		rb_advance_reader(cpu_buffer);
4786 		goto again;
4787 
4788 	case RINGBUF_TYPE_DATA:
4789 		if (ts && !(*ts)) {
4790 			*ts = cpu_buffer->read_stamp + event->time_delta;
4791 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4792 							 cpu_buffer->cpu, ts);
4793 		}
4794 		if (lost_events)
4795 			*lost_events = rb_lost_events(cpu_buffer);
4796 		return event;
4797 
4798 	default:
4799 		RB_WARN_ON(cpu_buffer, 1);
4800 	}
4801 
4802 	return NULL;
4803 }
4804 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4805 
4806 static struct ring_buffer_event *
4807 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4808 {
4809 	struct trace_buffer *buffer;
4810 	struct ring_buffer_per_cpu *cpu_buffer;
4811 	struct ring_buffer_event *event;
4812 	int nr_loops = 0;
4813 
4814 	if (ts)
4815 		*ts = 0;
4816 
4817 	cpu_buffer = iter->cpu_buffer;
4818 	buffer = cpu_buffer->buffer;
4819 
4820 	/*
4821 	 * Check if someone performed a consuming read to the buffer
4822 	 * or removed some pages from the buffer. In these cases,
4823 	 * iterator was invalidated and we need to reset it.
4824 	 */
4825 	if (unlikely(iter->cache_read != cpu_buffer->read ||
4826 		     iter->cache_reader_page != cpu_buffer->reader_page ||
4827 		     iter->cache_pages_removed != cpu_buffer->pages_removed))
4828 		rb_iter_reset(iter);
4829 
4830  again:
4831 	if (ring_buffer_iter_empty(iter))
4832 		return NULL;
4833 
4834 	/*
4835 	 * As the writer can mess with what the iterator is trying
4836 	 * to read, just give up if we fail to get an event after
4837 	 * three tries. The iterator is not as reliable when reading
4838 	 * the ring buffer with an active write as the consumer is.
4839 	 * Do not warn if the three failures is reached.
4840 	 */
4841 	if (++nr_loops > 3)
4842 		return NULL;
4843 
4844 	if (rb_per_cpu_empty(cpu_buffer))
4845 		return NULL;
4846 
4847 	if (iter->head >= rb_page_size(iter->head_page)) {
4848 		rb_inc_iter(iter);
4849 		goto again;
4850 	}
4851 
4852 	event = rb_iter_head_event(iter);
4853 	if (!event)
4854 		goto again;
4855 
4856 	switch (event->type_len) {
4857 	case RINGBUF_TYPE_PADDING:
4858 		if (rb_null_event(event)) {
4859 			rb_inc_iter(iter);
4860 			goto again;
4861 		}
4862 		rb_advance_iter(iter);
4863 		return event;
4864 
4865 	case RINGBUF_TYPE_TIME_EXTEND:
4866 		/* Internal data, OK to advance */
4867 		rb_advance_iter(iter);
4868 		goto again;
4869 
4870 	case RINGBUF_TYPE_TIME_STAMP:
4871 		if (ts) {
4872 			*ts = rb_event_time_stamp(event);
4873 			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4874 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4875 							 cpu_buffer->cpu, ts);
4876 		}
4877 		/* Internal data, OK to advance */
4878 		rb_advance_iter(iter);
4879 		goto again;
4880 
4881 	case RINGBUF_TYPE_DATA:
4882 		if (ts && !(*ts)) {
4883 			*ts = iter->read_stamp + event->time_delta;
4884 			ring_buffer_normalize_time_stamp(buffer,
4885 							 cpu_buffer->cpu, ts);
4886 		}
4887 		return event;
4888 
4889 	default:
4890 		RB_WARN_ON(cpu_buffer, 1);
4891 	}
4892 
4893 	return NULL;
4894 }
4895 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4896 
4897 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4898 {
4899 	if (likely(!in_nmi())) {
4900 		raw_spin_lock(&cpu_buffer->reader_lock);
4901 		return true;
4902 	}
4903 
4904 	/*
4905 	 * If an NMI die dumps out the content of the ring buffer
4906 	 * trylock must be used to prevent a deadlock if the NMI
4907 	 * preempted a task that holds the ring buffer locks. If
4908 	 * we get the lock then all is fine, if not, then continue
4909 	 * to do the read, but this can corrupt the ring buffer,
4910 	 * so it must be permanently disabled from future writes.
4911 	 * Reading from NMI is a oneshot deal.
4912 	 */
4913 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4914 		return true;
4915 
4916 	/* Continue without locking, but disable the ring buffer */
4917 	atomic_inc(&cpu_buffer->record_disabled);
4918 	return false;
4919 }
4920 
4921 static inline void
4922 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4923 {
4924 	if (likely(locked))
4925 		raw_spin_unlock(&cpu_buffer->reader_lock);
4926 }
4927 
4928 /**
4929  * ring_buffer_peek - peek at the next event to be read
4930  * @buffer: The ring buffer to read
4931  * @cpu: The cpu to peak at
4932  * @ts: The timestamp counter of this event.
4933  * @lost_events: a variable to store if events were lost (may be NULL)
4934  *
4935  * This will return the event that will be read next, but does
4936  * not consume the data.
4937  */
4938 struct ring_buffer_event *
4939 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4940 		 unsigned long *lost_events)
4941 {
4942 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4943 	struct ring_buffer_event *event;
4944 	unsigned long flags;
4945 	bool dolock;
4946 
4947 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4948 		return NULL;
4949 
4950  again:
4951 	local_irq_save(flags);
4952 	dolock = rb_reader_lock(cpu_buffer);
4953 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4954 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4955 		rb_advance_reader(cpu_buffer);
4956 	rb_reader_unlock(cpu_buffer, dolock);
4957 	local_irq_restore(flags);
4958 
4959 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4960 		goto again;
4961 
4962 	return event;
4963 }
4964 
4965 /** ring_buffer_iter_dropped - report if there are dropped events
4966  * @iter: The ring buffer iterator
4967  *
4968  * Returns true if there was dropped events since the last peek.
4969  */
4970 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4971 {
4972 	bool ret = iter->missed_events != 0;
4973 
4974 	iter->missed_events = 0;
4975 	return ret;
4976 }
4977 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4978 
4979 /**
4980  * ring_buffer_iter_peek - peek at the next event to be read
4981  * @iter: The ring buffer iterator
4982  * @ts: The timestamp counter of this event.
4983  *
4984  * This will return the event that will be read next, but does
4985  * not increment the iterator.
4986  */
4987 struct ring_buffer_event *
4988 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4989 {
4990 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4991 	struct ring_buffer_event *event;
4992 	unsigned long flags;
4993 
4994  again:
4995 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4996 	event = rb_iter_peek(iter, ts);
4997 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4998 
4999 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5000 		goto again;
5001 
5002 	return event;
5003 }
5004 
5005 /**
5006  * ring_buffer_consume - return an event and consume it
5007  * @buffer: The ring buffer to get the next event from
5008  * @cpu: the cpu to read the buffer from
5009  * @ts: a variable to store the timestamp (may be NULL)
5010  * @lost_events: a variable to store if events were lost (may be NULL)
5011  *
5012  * Returns the next event in the ring buffer, and that event is consumed.
5013  * Meaning, that sequential reads will keep returning a different event,
5014  * and eventually empty the ring buffer if the producer is slower.
5015  */
5016 struct ring_buffer_event *
5017 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5018 		    unsigned long *lost_events)
5019 {
5020 	struct ring_buffer_per_cpu *cpu_buffer;
5021 	struct ring_buffer_event *event = NULL;
5022 	unsigned long flags;
5023 	bool dolock;
5024 
5025  again:
5026 	/* might be called in atomic */
5027 	preempt_disable();
5028 
5029 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5030 		goto out;
5031 
5032 	cpu_buffer = buffer->buffers[cpu];
5033 	local_irq_save(flags);
5034 	dolock = rb_reader_lock(cpu_buffer);
5035 
5036 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5037 	if (event) {
5038 		cpu_buffer->lost_events = 0;
5039 		rb_advance_reader(cpu_buffer);
5040 	}
5041 
5042 	rb_reader_unlock(cpu_buffer, dolock);
5043 	local_irq_restore(flags);
5044 
5045  out:
5046 	preempt_enable();
5047 
5048 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5049 		goto again;
5050 
5051 	return event;
5052 }
5053 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5054 
5055 /**
5056  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5057  * @buffer: The ring buffer to read from
5058  * @cpu: The cpu buffer to iterate over
5059  * @flags: gfp flags to use for memory allocation
5060  *
5061  * This performs the initial preparations necessary to iterate
5062  * through the buffer.  Memory is allocated, buffer recording
5063  * is disabled, and the iterator pointer is returned to the caller.
5064  *
5065  * Disabling buffer recording prevents the reading from being
5066  * corrupted. This is not a consuming read, so a producer is not
5067  * expected.
5068  *
5069  * After a sequence of ring_buffer_read_prepare calls, the user is
5070  * expected to make at least one call to ring_buffer_read_prepare_sync.
5071  * Afterwards, ring_buffer_read_start is invoked to get things going
5072  * for real.
5073  *
5074  * This overall must be paired with ring_buffer_read_finish.
5075  */
5076 struct ring_buffer_iter *
5077 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5078 {
5079 	struct ring_buffer_per_cpu *cpu_buffer;
5080 	struct ring_buffer_iter *iter;
5081 
5082 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5083 		return NULL;
5084 
5085 	iter = kzalloc(sizeof(*iter), flags);
5086 	if (!iter)
5087 		return NULL;
5088 
5089 	/* Holds the entire event: data and meta data */
5090 	iter->event = kmalloc(BUF_PAGE_SIZE, flags);
5091 	if (!iter->event) {
5092 		kfree(iter);
5093 		return NULL;
5094 	}
5095 
5096 	cpu_buffer = buffer->buffers[cpu];
5097 
5098 	iter->cpu_buffer = cpu_buffer;
5099 
5100 	atomic_inc(&cpu_buffer->resize_disabled);
5101 
5102 	return iter;
5103 }
5104 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5105 
5106 /**
5107  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5108  *
5109  * All previously invoked ring_buffer_read_prepare calls to prepare
5110  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5111  * calls on those iterators are allowed.
5112  */
5113 void
5114 ring_buffer_read_prepare_sync(void)
5115 {
5116 	synchronize_rcu();
5117 }
5118 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5119 
5120 /**
5121  * ring_buffer_read_start - start a non consuming read of the buffer
5122  * @iter: The iterator returned by ring_buffer_read_prepare
5123  *
5124  * This finalizes the startup of an iteration through the buffer.
5125  * The iterator comes from a call to ring_buffer_read_prepare and
5126  * an intervening ring_buffer_read_prepare_sync must have been
5127  * performed.
5128  *
5129  * Must be paired with ring_buffer_read_finish.
5130  */
5131 void
5132 ring_buffer_read_start(struct ring_buffer_iter *iter)
5133 {
5134 	struct ring_buffer_per_cpu *cpu_buffer;
5135 	unsigned long flags;
5136 
5137 	if (!iter)
5138 		return;
5139 
5140 	cpu_buffer = iter->cpu_buffer;
5141 
5142 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5143 	arch_spin_lock(&cpu_buffer->lock);
5144 	rb_iter_reset(iter);
5145 	arch_spin_unlock(&cpu_buffer->lock);
5146 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5147 }
5148 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5149 
5150 /**
5151  * ring_buffer_read_finish - finish reading the iterator of the buffer
5152  * @iter: The iterator retrieved by ring_buffer_start
5153  *
5154  * This re-enables the recording to the buffer, and frees the
5155  * iterator.
5156  */
5157 void
5158 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5159 {
5160 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5161 	unsigned long flags;
5162 
5163 	/*
5164 	 * Ring buffer is disabled from recording, here's a good place
5165 	 * to check the integrity of the ring buffer.
5166 	 * Must prevent readers from trying to read, as the check
5167 	 * clears the HEAD page and readers require it.
5168 	 */
5169 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5170 	rb_check_pages(cpu_buffer);
5171 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5172 
5173 	atomic_dec(&cpu_buffer->resize_disabled);
5174 	kfree(iter->event);
5175 	kfree(iter);
5176 }
5177 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5178 
5179 /**
5180  * ring_buffer_iter_advance - advance the iterator to the next location
5181  * @iter: The ring buffer iterator
5182  *
5183  * Move the location of the iterator such that the next read will
5184  * be the next location of the iterator.
5185  */
5186 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5187 {
5188 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5189 	unsigned long flags;
5190 
5191 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5192 
5193 	rb_advance_iter(iter);
5194 
5195 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5196 }
5197 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5198 
5199 /**
5200  * ring_buffer_size - return the size of the ring buffer (in bytes)
5201  * @buffer: The ring buffer.
5202  * @cpu: The CPU to get ring buffer size from.
5203  */
5204 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5205 {
5206 	/*
5207 	 * Earlier, this method returned
5208 	 *	BUF_PAGE_SIZE * buffer->nr_pages
5209 	 * Since the nr_pages field is now removed, we have converted this to
5210 	 * return the per cpu buffer value.
5211 	 */
5212 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5213 		return 0;
5214 
5215 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
5216 }
5217 EXPORT_SYMBOL_GPL(ring_buffer_size);
5218 
5219 static void rb_clear_buffer_page(struct buffer_page *page)
5220 {
5221 	local_set(&page->write, 0);
5222 	local_set(&page->entries, 0);
5223 	rb_init_page(page->page);
5224 	page->read = 0;
5225 }
5226 
5227 static void
5228 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5229 {
5230 	struct buffer_page *page;
5231 
5232 	rb_head_page_deactivate(cpu_buffer);
5233 
5234 	cpu_buffer->head_page
5235 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
5236 	rb_clear_buffer_page(cpu_buffer->head_page);
5237 	list_for_each_entry(page, cpu_buffer->pages, list) {
5238 		rb_clear_buffer_page(page);
5239 	}
5240 
5241 	cpu_buffer->tail_page = cpu_buffer->head_page;
5242 	cpu_buffer->commit_page = cpu_buffer->head_page;
5243 
5244 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5245 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
5246 	rb_clear_buffer_page(cpu_buffer->reader_page);
5247 
5248 	local_set(&cpu_buffer->entries_bytes, 0);
5249 	local_set(&cpu_buffer->overrun, 0);
5250 	local_set(&cpu_buffer->commit_overrun, 0);
5251 	local_set(&cpu_buffer->dropped_events, 0);
5252 	local_set(&cpu_buffer->entries, 0);
5253 	local_set(&cpu_buffer->committing, 0);
5254 	local_set(&cpu_buffer->commits, 0);
5255 	local_set(&cpu_buffer->pages_touched, 0);
5256 	local_set(&cpu_buffer->pages_lost, 0);
5257 	local_set(&cpu_buffer->pages_read, 0);
5258 	cpu_buffer->last_pages_touch = 0;
5259 	cpu_buffer->shortest_full = 0;
5260 	cpu_buffer->read = 0;
5261 	cpu_buffer->read_bytes = 0;
5262 
5263 	rb_time_set(&cpu_buffer->write_stamp, 0);
5264 	rb_time_set(&cpu_buffer->before_stamp, 0);
5265 
5266 	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5267 
5268 	cpu_buffer->lost_events = 0;
5269 	cpu_buffer->last_overrun = 0;
5270 
5271 	rb_head_page_activate(cpu_buffer);
5272 	cpu_buffer->pages_removed = 0;
5273 }
5274 
5275 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5276 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5277 {
5278 	unsigned long flags;
5279 
5280 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5281 
5282 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5283 		goto out;
5284 
5285 	arch_spin_lock(&cpu_buffer->lock);
5286 
5287 	rb_reset_cpu(cpu_buffer);
5288 
5289 	arch_spin_unlock(&cpu_buffer->lock);
5290 
5291  out:
5292 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5293 }
5294 
5295 /**
5296  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5297  * @buffer: The ring buffer to reset a per cpu buffer of
5298  * @cpu: The CPU buffer to be reset
5299  */
5300 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5301 {
5302 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5303 
5304 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5305 		return;
5306 
5307 	/* prevent another thread from changing buffer sizes */
5308 	mutex_lock(&buffer->mutex);
5309 
5310 	atomic_inc(&cpu_buffer->resize_disabled);
5311 	atomic_inc(&cpu_buffer->record_disabled);
5312 
5313 	/* Make sure all commits have finished */
5314 	synchronize_rcu();
5315 
5316 	reset_disabled_cpu_buffer(cpu_buffer);
5317 
5318 	atomic_dec(&cpu_buffer->record_disabled);
5319 	atomic_dec(&cpu_buffer->resize_disabled);
5320 
5321 	mutex_unlock(&buffer->mutex);
5322 }
5323 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5324 
5325 /* Flag to ensure proper resetting of atomic variables */
5326 #define RESET_BIT	(1 << 30)
5327 
5328 /**
5329  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5330  * @buffer: The ring buffer to reset a per cpu buffer of
5331  */
5332 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5333 {
5334 	struct ring_buffer_per_cpu *cpu_buffer;
5335 	int cpu;
5336 
5337 	/* prevent another thread from changing buffer sizes */
5338 	mutex_lock(&buffer->mutex);
5339 
5340 	for_each_online_buffer_cpu(buffer, cpu) {
5341 		cpu_buffer = buffer->buffers[cpu];
5342 
5343 		atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
5344 		atomic_inc(&cpu_buffer->record_disabled);
5345 	}
5346 
5347 	/* Make sure all commits have finished */
5348 	synchronize_rcu();
5349 
5350 	for_each_buffer_cpu(buffer, cpu) {
5351 		cpu_buffer = buffer->buffers[cpu];
5352 
5353 		/*
5354 		 * If a CPU came online during the synchronize_rcu(), then
5355 		 * ignore it.
5356 		 */
5357 		if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
5358 			continue;
5359 
5360 		reset_disabled_cpu_buffer(cpu_buffer);
5361 
5362 		atomic_dec(&cpu_buffer->record_disabled);
5363 		atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
5364 	}
5365 
5366 	mutex_unlock(&buffer->mutex);
5367 }
5368 
5369 /**
5370  * ring_buffer_reset - reset a ring buffer
5371  * @buffer: The ring buffer to reset all cpu buffers
5372  */
5373 void ring_buffer_reset(struct trace_buffer *buffer)
5374 {
5375 	struct ring_buffer_per_cpu *cpu_buffer;
5376 	int cpu;
5377 
5378 	/* prevent another thread from changing buffer sizes */
5379 	mutex_lock(&buffer->mutex);
5380 
5381 	for_each_buffer_cpu(buffer, cpu) {
5382 		cpu_buffer = buffer->buffers[cpu];
5383 
5384 		atomic_inc(&cpu_buffer->resize_disabled);
5385 		atomic_inc(&cpu_buffer->record_disabled);
5386 	}
5387 
5388 	/* Make sure all commits have finished */
5389 	synchronize_rcu();
5390 
5391 	for_each_buffer_cpu(buffer, cpu) {
5392 		cpu_buffer = buffer->buffers[cpu];
5393 
5394 		reset_disabled_cpu_buffer(cpu_buffer);
5395 
5396 		atomic_dec(&cpu_buffer->record_disabled);
5397 		atomic_dec(&cpu_buffer->resize_disabled);
5398 	}
5399 
5400 	mutex_unlock(&buffer->mutex);
5401 }
5402 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5403 
5404 /**
5405  * ring_buffer_empty - is the ring buffer empty?
5406  * @buffer: The ring buffer to test
5407  */
5408 bool ring_buffer_empty(struct trace_buffer *buffer)
5409 {
5410 	struct ring_buffer_per_cpu *cpu_buffer;
5411 	unsigned long flags;
5412 	bool dolock;
5413 	bool ret;
5414 	int cpu;
5415 
5416 	/* yes this is racy, but if you don't like the race, lock the buffer */
5417 	for_each_buffer_cpu(buffer, cpu) {
5418 		cpu_buffer = buffer->buffers[cpu];
5419 		local_irq_save(flags);
5420 		dolock = rb_reader_lock(cpu_buffer);
5421 		ret = rb_per_cpu_empty(cpu_buffer);
5422 		rb_reader_unlock(cpu_buffer, dolock);
5423 		local_irq_restore(flags);
5424 
5425 		if (!ret)
5426 			return false;
5427 	}
5428 
5429 	return true;
5430 }
5431 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5432 
5433 /**
5434  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5435  * @buffer: The ring buffer
5436  * @cpu: The CPU buffer to test
5437  */
5438 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5439 {
5440 	struct ring_buffer_per_cpu *cpu_buffer;
5441 	unsigned long flags;
5442 	bool dolock;
5443 	bool ret;
5444 
5445 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5446 		return true;
5447 
5448 	cpu_buffer = buffer->buffers[cpu];
5449 	local_irq_save(flags);
5450 	dolock = rb_reader_lock(cpu_buffer);
5451 	ret = rb_per_cpu_empty(cpu_buffer);
5452 	rb_reader_unlock(cpu_buffer, dolock);
5453 	local_irq_restore(flags);
5454 
5455 	return ret;
5456 }
5457 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5458 
5459 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5460 /**
5461  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5462  * @buffer_a: One buffer to swap with
5463  * @buffer_b: The other buffer to swap with
5464  * @cpu: the CPU of the buffers to swap
5465  *
5466  * This function is useful for tracers that want to take a "snapshot"
5467  * of a CPU buffer and has another back up buffer lying around.
5468  * it is expected that the tracer handles the cpu buffer not being
5469  * used at the moment.
5470  */
5471 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5472 			 struct trace_buffer *buffer_b, int cpu)
5473 {
5474 	struct ring_buffer_per_cpu *cpu_buffer_a;
5475 	struct ring_buffer_per_cpu *cpu_buffer_b;
5476 	int ret = -EINVAL;
5477 
5478 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5479 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
5480 		goto out;
5481 
5482 	cpu_buffer_a = buffer_a->buffers[cpu];
5483 	cpu_buffer_b = buffer_b->buffers[cpu];
5484 
5485 	/* At least make sure the two buffers are somewhat the same */
5486 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5487 		goto out;
5488 
5489 	ret = -EAGAIN;
5490 
5491 	if (atomic_read(&buffer_a->record_disabled))
5492 		goto out;
5493 
5494 	if (atomic_read(&buffer_b->record_disabled))
5495 		goto out;
5496 
5497 	if (atomic_read(&cpu_buffer_a->record_disabled))
5498 		goto out;
5499 
5500 	if (atomic_read(&cpu_buffer_b->record_disabled))
5501 		goto out;
5502 
5503 	/*
5504 	 * We can't do a synchronize_rcu here because this
5505 	 * function can be called in atomic context.
5506 	 * Normally this will be called from the same CPU as cpu.
5507 	 * If not it's up to the caller to protect this.
5508 	 */
5509 	atomic_inc(&cpu_buffer_a->record_disabled);
5510 	atomic_inc(&cpu_buffer_b->record_disabled);
5511 
5512 	ret = -EBUSY;
5513 	if (local_read(&cpu_buffer_a->committing))
5514 		goto out_dec;
5515 	if (local_read(&cpu_buffer_b->committing))
5516 		goto out_dec;
5517 
5518 	/*
5519 	 * When resize is in progress, we cannot swap it because
5520 	 * it will mess the state of the cpu buffer.
5521 	 */
5522 	if (atomic_read(&buffer_a->resizing))
5523 		goto out_dec;
5524 	if (atomic_read(&buffer_b->resizing))
5525 		goto out_dec;
5526 
5527 	buffer_a->buffers[cpu] = cpu_buffer_b;
5528 	buffer_b->buffers[cpu] = cpu_buffer_a;
5529 
5530 	cpu_buffer_b->buffer = buffer_a;
5531 	cpu_buffer_a->buffer = buffer_b;
5532 
5533 	ret = 0;
5534 
5535 out_dec:
5536 	atomic_dec(&cpu_buffer_a->record_disabled);
5537 	atomic_dec(&cpu_buffer_b->record_disabled);
5538 out:
5539 	return ret;
5540 }
5541 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5542 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5543 
5544 /**
5545  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5546  * @buffer: the buffer to allocate for.
5547  * @cpu: the cpu buffer to allocate.
5548  *
5549  * This function is used in conjunction with ring_buffer_read_page.
5550  * When reading a full page from the ring buffer, these functions
5551  * can be used to speed up the process. The calling function should
5552  * allocate a few pages first with this function. Then when it
5553  * needs to get pages from the ring buffer, it passes the result
5554  * of this function into ring_buffer_read_page, which will swap
5555  * the page that was allocated, with the read page of the buffer.
5556  *
5557  * Returns:
5558  *  The page allocated, or ERR_PTR
5559  */
5560 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5561 {
5562 	struct ring_buffer_per_cpu *cpu_buffer;
5563 	struct buffer_data_page *bpage = NULL;
5564 	unsigned long flags;
5565 	struct page *page;
5566 
5567 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5568 		return ERR_PTR(-ENODEV);
5569 
5570 	cpu_buffer = buffer->buffers[cpu];
5571 	local_irq_save(flags);
5572 	arch_spin_lock(&cpu_buffer->lock);
5573 
5574 	if (cpu_buffer->free_page) {
5575 		bpage = cpu_buffer->free_page;
5576 		cpu_buffer->free_page = NULL;
5577 	}
5578 
5579 	arch_spin_unlock(&cpu_buffer->lock);
5580 	local_irq_restore(flags);
5581 
5582 	if (bpage)
5583 		goto out;
5584 
5585 	page = alloc_pages_node(cpu_to_node(cpu),
5586 				GFP_KERNEL | __GFP_NORETRY, 0);
5587 	if (!page)
5588 		return ERR_PTR(-ENOMEM);
5589 
5590 	bpage = page_address(page);
5591 
5592  out:
5593 	rb_init_page(bpage);
5594 
5595 	return bpage;
5596 }
5597 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5598 
5599 /**
5600  * ring_buffer_free_read_page - free an allocated read page
5601  * @buffer: the buffer the page was allocate for
5602  * @cpu: the cpu buffer the page came from
5603  * @data: the page to free
5604  *
5605  * Free a page allocated from ring_buffer_alloc_read_page.
5606  */
5607 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5608 {
5609 	struct ring_buffer_per_cpu *cpu_buffer;
5610 	struct buffer_data_page *bpage = data;
5611 	struct page *page = virt_to_page(bpage);
5612 	unsigned long flags;
5613 
5614 	if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
5615 		return;
5616 
5617 	cpu_buffer = buffer->buffers[cpu];
5618 
5619 	/* If the page is still in use someplace else, we can't reuse it */
5620 	if (page_ref_count(page) > 1)
5621 		goto out;
5622 
5623 	local_irq_save(flags);
5624 	arch_spin_lock(&cpu_buffer->lock);
5625 
5626 	if (!cpu_buffer->free_page) {
5627 		cpu_buffer->free_page = bpage;
5628 		bpage = NULL;
5629 	}
5630 
5631 	arch_spin_unlock(&cpu_buffer->lock);
5632 	local_irq_restore(flags);
5633 
5634  out:
5635 	free_page((unsigned long)bpage);
5636 }
5637 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5638 
5639 /**
5640  * ring_buffer_read_page - extract a page from the ring buffer
5641  * @buffer: buffer to extract from
5642  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5643  * @len: amount to extract
5644  * @cpu: the cpu of the buffer to extract
5645  * @full: should the extraction only happen when the page is full.
5646  *
5647  * This function will pull out a page from the ring buffer and consume it.
5648  * @data_page must be the address of the variable that was returned
5649  * from ring_buffer_alloc_read_page. This is because the page might be used
5650  * to swap with a page in the ring buffer.
5651  *
5652  * for example:
5653  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
5654  *	if (IS_ERR(rpage))
5655  *		return PTR_ERR(rpage);
5656  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5657  *	if (ret >= 0)
5658  *		process_page(rpage, ret);
5659  *
5660  * When @full is set, the function will not return true unless
5661  * the writer is off the reader page.
5662  *
5663  * Note: it is up to the calling functions to handle sleeps and wakeups.
5664  *  The ring buffer can be used anywhere in the kernel and can not
5665  *  blindly call wake_up. The layer that uses the ring buffer must be
5666  *  responsible for that.
5667  *
5668  * Returns:
5669  *  >=0 if data has been transferred, returns the offset of consumed data.
5670  *  <0 if no data has been transferred.
5671  */
5672 int ring_buffer_read_page(struct trace_buffer *buffer,
5673 			  void **data_page, size_t len, int cpu, int full)
5674 {
5675 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5676 	struct ring_buffer_event *event;
5677 	struct buffer_data_page *bpage;
5678 	struct buffer_page *reader;
5679 	unsigned long missed_events;
5680 	unsigned long flags;
5681 	unsigned int commit;
5682 	unsigned int read;
5683 	u64 save_timestamp;
5684 	int ret = -1;
5685 
5686 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5687 		goto out;
5688 
5689 	/*
5690 	 * If len is not big enough to hold the page header, then
5691 	 * we can not copy anything.
5692 	 */
5693 	if (len <= BUF_PAGE_HDR_SIZE)
5694 		goto out;
5695 
5696 	len -= BUF_PAGE_HDR_SIZE;
5697 
5698 	if (!data_page)
5699 		goto out;
5700 
5701 	bpage = *data_page;
5702 	if (!bpage)
5703 		goto out;
5704 
5705 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5706 
5707 	reader = rb_get_reader_page(cpu_buffer);
5708 	if (!reader)
5709 		goto out_unlock;
5710 
5711 	event = rb_reader_event(cpu_buffer);
5712 
5713 	read = reader->read;
5714 	commit = rb_page_commit(reader);
5715 
5716 	/* Check if any events were dropped */
5717 	missed_events = cpu_buffer->lost_events;
5718 
5719 	/*
5720 	 * If this page has been partially read or
5721 	 * if len is not big enough to read the rest of the page or
5722 	 * a writer is still on the page, then
5723 	 * we must copy the data from the page to the buffer.
5724 	 * Otherwise, we can simply swap the page with the one passed in.
5725 	 */
5726 	if (read || (len < (commit - read)) ||
5727 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
5728 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5729 		unsigned int rpos = read;
5730 		unsigned int pos = 0;
5731 		unsigned int size;
5732 
5733 		/*
5734 		 * If a full page is expected, this can still be returned
5735 		 * if there's been a previous partial read and the
5736 		 * rest of the page can be read and the commit page is off
5737 		 * the reader page.
5738 		 */
5739 		if (full &&
5740 		    (!read || (len < (commit - read)) ||
5741 		     cpu_buffer->reader_page == cpu_buffer->commit_page))
5742 			goto out_unlock;
5743 
5744 		if (len > (commit - read))
5745 			len = (commit - read);
5746 
5747 		/* Always keep the time extend and data together */
5748 		size = rb_event_ts_length(event);
5749 
5750 		if (len < size)
5751 			goto out_unlock;
5752 
5753 		/* save the current timestamp, since the user will need it */
5754 		save_timestamp = cpu_buffer->read_stamp;
5755 
5756 		/* Need to copy one event at a time */
5757 		do {
5758 			/* We need the size of one event, because
5759 			 * rb_advance_reader only advances by one event,
5760 			 * whereas rb_event_ts_length may include the size of
5761 			 * one or two events.
5762 			 * We have already ensured there's enough space if this
5763 			 * is a time extend. */
5764 			size = rb_event_length(event);
5765 			memcpy(bpage->data + pos, rpage->data + rpos, size);
5766 
5767 			len -= size;
5768 
5769 			rb_advance_reader(cpu_buffer);
5770 			rpos = reader->read;
5771 			pos += size;
5772 
5773 			if (rpos >= commit)
5774 				break;
5775 
5776 			event = rb_reader_event(cpu_buffer);
5777 			/* Always keep the time extend and data together */
5778 			size = rb_event_ts_length(event);
5779 		} while (len >= size);
5780 
5781 		/* update bpage */
5782 		local_set(&bpage->commit, pos);
5783 		bpage->time_stamp = save_timestamp;
5784 
5785 		/* we copied everything to the beginning */
5786 		read = 0;
5787 	} else {
5788 		/* update the entry counter */
5789 		cpu_buffer->read += rb_page_entries(reader);
5790 		cpu_buffer->read_bytes += rb_page_commit(reader);
5791 
5792 		/* swap the pages */
5793 		rb_init_page(bpage);
5794 		bpage = reader->page;
5795 		reader->page = *data_page;
5796 		local_set(&reader->write, 0);
5797 		local_set(&reader->entries, 0);
5798 		reader->read = 0;
5799 		*data_page = bpage;
5800 
5801 		/*
5802 		 * Use the real_end for the data size,
5803 		 * This gives us a chance to store the lost events
5804 		 * on the page.
5805 		 */
5806 		if (reader->real_end)
5807 			local_set(&bpage->commit, reader->real_end);
5808 	}
5809 	ret = read;
5810 
5811 	cpu_buffer->lost_events = 0;
5812 
5813 	commit = local_read(&bpage->commit);
5814 	/*
5815 	 * Set a flag in the commit field if we lost events
5816 	 */
5817 	if (missed_events) {
5818 		/* If there is room at the end of the page to save the
5819 		 * missed events, then record it there.
5820 		 */
5821 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5822 			memcpy(&bpage->data[commit], &missed_events,
5823 			       sizeof(missed_events));
5824 			local_add(RB_MISSED_STORED, &bpage->commit);
5825 			commit += sizeof(missed_events);
5826 		}
5827 		local_add(RB_MISSED_EVENTS, &bpage->commit);
5828 	}
5829 
5830 	/*
5831 	 * This page may be off to user land. Zero it out here.
5832 	 */
5833 	if (commit < BUF_PAGE_SIZE)
5834 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5835 
5836  out_unlock:
5837 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5838 
5839  out:
5840 	return ret;
5841 }
5842 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5843 
5844 /*
5845  * We only allocate new buffers, never free them if the CPU goes down.
5846  * If we were to free the buffer, then the user would lose any trace that was in
5847  * the buffer.
5848  */
5849 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5850 {
5851 	struct trace_buffer *buffer;
5852 	long nr_pages_same;
5853 	int cpu_i;
5854 	unsigned long nr_pages;
5855 
5856 	buffer = container_of(node, struct trace_buffer, node);
5857 	if (cpumask_test_cpu(cpu, buffer->cpumask))
5858 		return 0;
5859 
5860 	nr_pages = 0;
5861 	nr_pages_same = 1;
5862 	/* check if all cpu sizes are same */
5863 	for_each_buffer_cpu(buffer, cpu_i) {
5864 		/* fill in the size from first enabled cpu */
5865 		if (nr_pages == 0)
5866 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
5867 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5868 			nr_pages_same = 0;
5869 			break;
5870 		}
5871 	}
5872 	/* allocate minimum pages, user can later expand it */
5873 	if (!nr_pages_same)
5874 		nr_pages = 2;
5875 	buffer->buffers[cpu] =
5876 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5877 	if (!buffer->buffers[cpu]) {
5878 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
5879 		     cpu);
5880 		return -ENOMEM;
5881 	}
5882 	smp_wmb();
5883 	cpumask_set_cpu(cpu, buffer->cpumask);
5884 	return 0;
5885 }
5886 
5887 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5888 /*
5889  * This is a basic integrity check of the ring buffer.
5890  * Late in the boot cycle this test will run when configured in.
5891  * It will kick off a thread per CPU that will go into a loop
5892  * writing to the per cpu ring buffer various sizes of data.
5893  * Some of the data will be large items, some small.
5894  *
5895  * Another thread is created that goes into a spin, sending out
5896  * IPIs to the other CPUs to also write into the ring buffer.
5897  * this is to test the nesting ability of the buffer.
5898  *
5899  * Basic stats are recorded and reported. If something in the
5900  * ring buffer should happen that's not expected, a big warning
5901  * is displayed and all ring buffers are disabled.
5902  */
5903 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5904 
5905 struct rb_test_data {
5906 	struct trace_buffer *buffer;
5907 	unsigned long		events;
5908 	unsigned long		bytes_written;
5909 	unsigned long		bytes_alloc;
5910 	unsigned long		bytes_dropped;
5911 	unsigned long		events_nested;
5912 	unsigned long		bytes_written_nested;
5913 	unsigned long		bytes_alloc_nested;
5914 	unsigned long		bytes_dropped_nested;
5915 	int			min_size_nested;
5916 	int			max_size_nested;
5917 	int			max_size;
5918 	int			min_size;
5919 	int			cpu;
5920 	int			cnt;
5921 };
5922 
5923 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5924 
5925 /* 1 meg per cpu */
5926 #define RB_TEST_BUFFER_SIZE	1048576
5927 
5928 static char rb_string[] __initdata =
5929 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5930 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5931 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5932 
5933 static bool rb_test_started __initdata;
5934 
5935 struct rb_item {
5936 	int size;
5937 	char str[];
5938 };
5939 
5940 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5941 {
5942 	struct ring_buffer_event *event;
5943 	struct rb_item *item;
5944 	bool started;
5945 	int event_len;
5946 	int size;
5947 	int len;
5948 	int cnt;
5949 
5950 	/* Have nested writes different that what is written */
5951 	cnt = data->cnt + (nested ? 27 : 0);
5952 
5953 	/* Multiply cnt by ~e, to make some unique increment */
5954 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5955 
5956 	len = size + sizeof(struct rb_item);
5957 
5958 	started = rb_test_started;
5959 	/* read rb_test_started before checking buffer enabled */
5960 	smp_rmb();
5961 
5962 	event = ring_buffer_lock_reserve(data->buffer, len);
5963 	if (!event) {
5964 		/* Ignore dropped events before test starts. */
5965 		if (started) {
5966 			if (nested)
5967 				data->bytes_dropped += len;
5968 			else
5969 				data->bytes_dropped_nested += len;
5970 		}
5971 		return len;
5972 	}
5973 
5974 	event_len = ring_buffer_event_length(event);
5975 
5976 	if (RB_WARN_ON(data->buffer, event_len < len))
5977 		goto out;
5978 
5979 	item = ring_buffer_event_data(event);
5980 	item->size = size;
5981 	memcpy(item->str, rb_string, size);
5982 
5983 	if (nested) {
5984 		data->bytes_alloc_nested += event_len;
5985 		data->bytes_written_nested += len;
5986 		data->events_nested++;
5987 		if (!data->min_size_nested || len < data->min_size_nested)
5988 			data->min_size_nested = len;
5989 		if (len > data->max_size_nested)
5990 			data->max_size_nested = len;
5991 	} else {
5992 		data->bytes_alloc += event_len;
5993 		data->bytes_written += len;
5994 		data->events++;
5995 		if (!data->min_size || len < data->min_size)
5996 			data->max_size = len;
5997 		if (len > data->max_size)
5998 			data->max_size = len;
5999 	}
6000 
6001  out:
6002 	ring_buffer_unlock_commit(data->buffer);
6003 
6004 	return 0;
6005 }
6006 
6007 static __init int rb_test(void *arg)
6008 {
6009 	struct rb_test_data *data = arg;
6010 
6011 	while (!kthread_should_stop()) {
6012 		rb_write_something(data, false);
6013 		data->cnt++;
6014 
6015 		set_current_state(TASK_INTERRUPTIBLE);
6016 		/* Now sleep between a min of 100-300us and a max of 1ms */
6017 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
6018 	}
6019 
6020 	return 0;
6021 }
6022 
6023 static __init void rb_ipi(void *ignore)
6024 {
6025 	struct rb_test_data *data;
6026 	int cpu = smp_processor_id();
6027 
6028 	data = &rb_data[cpu];
6029 	rb_write_something(data, true);
6030 }
6031 
6032 static __init int rb_hammer_test(void *arg)
6033 {
6034 	while (!kthread_should_stop()) {
6035 
6036 		/* Send an IPI to all cpus to write data! */
6037 		smp_call_function(rb_ipi, NULL, 1);
6038 		/* No sleep, but for non preempt, let others run */
6039 		schedule();
6040 	}
6041 
6042 	return 0;
6043 }
6044 
6045 static __init int test_ringbuffer(void)
6046 {
6047 	struct task_struct *rb_hammer;
6048 	struct trace_buffer *buffer;
6049 	int cpu;
6050 	int ret = 0;
6051 
6052 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
6053 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6054 		return 0;
6055 	}
6056 
6057 	pr_info("Running ring buffer tests...\n");
6058 
6059 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6060 	if (WARN_ON(!buffer))
6061 		return 0;
6062 
6063 	/* Disable buffer so that threads can't write to it yet */
6064 	ring_buffer_record_off(buffer);
6065 
6066 	for_each_online_cpu(cpu) {
6067 		rb_data[cpu].buffer = buffer;
6068 		rb_data[cpu].cpu = cpu;
6069 		rb_data[cpu].cnt = cpu;
6070 		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6071 						     cpu, "rbtester/%u");
6072 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6073 			pr_cont("FAILED\n");
6074 			ret = PTR_ERR(rb_threads[cpu]);
6075 			goto out_free;
6076 		}
6077 	}
6078 
6079 	/* Now create the rb hammer! */
6080 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6081 	if (WARN_ON(IS_ERR(rb_hammer))) {
6082 		pr_cont("FAILED\n");
6083 		ret = PTR_ERR(rb_hammer);
6084 		goto out_free;
6085 	}
6086 
6087 	ring_buffer_record_on(buffer);
6088 	/*
6089 	 * Show buffer is enabled before setting rb_test_started.
6090 	 * Yes there's a small race window where events could be
6091 	 * dropped and the thread wont catch it. But when a ring
6092 	 * buffer gets enabled, there will always be some kind of
6093 	 * delay before other CPUs see it. Thus, we don't care about
6094 	 * those dropped events. We care about events dropped after
6095 	 * the threads see that the buffer is active.
6096 	 */
6097 	smp_wmb();
6098 	rb_test_started = true;
6099 
6100 	set_current_state(TASK_INTERRUPTIBLE);
6101 	/* Just run for 10 seconds */;
6102 	schedule_timeout(10 * HZ);
6103 
6104 	kthread_stop(rb_hammer);
6105 
6106  out_free:
6107 	for_each_online_cpu(cpu) {
6108 		if (!rb_threads[cpu])
6109 			break;
6110 		kthread_stop(rb_threads[cpu]);
6111 	}
6112 	if (ret) {
6113 		ring_buffer_free(buffer);
6114 		return ret;
6115 	}
6116 
6117 	/* Report! */
6118 	pr_info("finished\n");
6119 	for_each_online_cpu(cpu) {
6120 		struct ring_buffer_event *event;
6121 		struct rb_test_data *data = &rb_data[cpu];
6122 		struct rb_item *item;
6123 		unsigned long total_events;
6124 		unsigned long total_dropped;
6125 		unsigned long total_written;
6126 		unsigned long total_alloc;
6127 		unsigned long total_read = 0;
6128 		unsigned long total_size = 0;
6129 		unsigned long total_len = 0;
6130 		unsigned long total_lost = 0;
6131 		unsigned long lost;
6132 		int big_event_size;
6133 		int small_event_size;
6134 
6135 		ret = -1;
6136 
6137 		total_events = data->events + data->events_nested;
6138 		total_written = data->bytes_written + data->bytes_written_nested;
6139 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6140 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6141 
6142 		big_event_size = data->max_size + data->max_size_nested;
6143 		small_event_size = data->min_size + data->min_size_nested;
6144 
6145 		pr_info("CPU %d:\n", cpu);
6146 		pr_info("              events:    %ld\n", total_events);
6147 		pr_info("       dropped bytes:    %ld\n", total_dropped);
6148 		pr_info("       alloced bytes:    %ld\n", total_alloc);
6149 		pr_info("       written bytes:    %ld\n", total_written);
6150 		pr_info("       biggest event:    %d\n", big_event_size);
6151 		pr_info("      smallest event:    %d\n", small_event_size);
6152 
6153 		if (RB_WARN_ON(buffer, total_dropped))
6154 			break;
6155 
6156 		ret = 0;
6157 
6158 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6159 			total_lost += lost;
6160 			item = ring_buffer_event_data(event);
6161 			total_len += ring_buffer_event_length(event);
6162 			total_size += item->size + sizeof(struct rb_item);
6163 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6164 				pr_info("FAILED!\n");
6165 				pr_info("buffer had: %.*s\n", item->size, item->str);
6166 				pr_info("expected:   %.*s\n", item->size, rb_string);
6167 				RB_WARN_ON(buffer, 1);
6168 				ret = -1;
6169 				break;
6170 			}
6171 			total_read++;
6172 		}
6173 		if (ret)
6174 			break;
6175 
6176 		ret = -1;
6177 
6178 		pr_info("         read events:   %ld\n", total_read);
6179 		pr_info("         lost events:   %ld\n", total_lost);
6180 		pr_info("        total events:   %ld\n", total_lost + total_read);
6181 		pr_info("  recorded len bytes:   %ld\n", total_len);
6182 		pr_info(" recorded size bytes:   %ld\n", total_size);
6183 		if (total_lost) {
6184 			pr_info(" With dropped events, record len and size may not match\n"
6185 				" alloced and written from above\n");
6186 		} else {
6187 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
6188 				       total_size != total_written))
6189 				break;
6190 		}
6191 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6192 			break;
6193 
6194 		ret = 0;
6195 	}
6196 	if (!ret)
6197 		pr_info("Ring buffer PASSED!\n");
6198 
6199 	ring_buffer_free(buffer);
6200 	return 0;
6201 }
6202 
6203 late_initcall(test_ringbuffer);
6204 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
6205