1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic ring buffer 4 * 5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 6 */ 7 #include <linux/trace_recursion.h> 8 #include <linux/trace_events.h> 9 #include <linux/ring_buffer.h> 10 #include <linux/trace_clock.h> 11 #include <linux/sched/clock.h> 12 #include <linux/cacheflush.h> 13 #include <linux/trace_seq.h> 14 #include <linux/spinlock.h> 15 #include <linux/irq_work.h> 16 #include <linux/security.h> 17 #include <linux/uaccess.h> 18 #include <linux/hardirq.h> 19 #include <linux/kthread.h> /* for self test */ 20 #include <linux/module.h> 21 #include <linux/percpu.h> 22 #include <linux/mutex.h> 23 #include <linux/delay.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/hash.h> 27 #include <linux/list.h> 28 #include <linux/cpu.h> 29 #include <linux/oom.h> 30 #include <linux/mm.h> 31 32 #include <asm/local64.h> 33 #include <asm/local.h> 34 35 #include "trace.h" 36 37 /* 38 * The "absolute" timestamp in the buffer is only 59 bits. 39 * If a clock has the 5 MSBs set, it needs to be saved and 40 * reinserted. 41 */ 42 #define TS_MSB (0xf8ULL << 56) 43 #define ABS_TS_MASK (~TS_MSB) 44 45 static void update_pages_handler(struct work_struct *work); 46 47 #define RING_BUFFER_META_MAGIC 0xBADFEED 48 49 struct ring_buffer_meta { 50 int magic; 51 int struct_size; 52 unsigned long text_addr; 53 unsigned long data_addr; 54 unsigned long first_buffer; 55 unsigned long head_buffer; 56 unsigned long commit_buffer; 57 __u32 subbuf_size; 58 __u32 nr_subbufs; 59 int buffers[]; 60 }; 61 62 /* 63 * The ring buffer header is special. We must manually up keep it. 64 */ 65 int ring_buffer_print_entry_header(struct trace_seq *s) 66 { 67 trace_seq_puts(s, "# compressed entry header\n"); 68 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 69 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 70 trace_seq_puts(s, "\tarray : 32 bits\n"); 71 trace_seq_putc(s, '\n'); 72 trace_seq_printf(s, "\tpadding : type == %d\n", 73 RINGBUF_TYPE_PADDING); 74 trace_seq_printf(s, "\ttime_extend : type == %d\n", 75 RINGBUF_TYPE_TIME_EXTEND); 76 trace_seq_printf(s, "\ttime_stamp : type == %d\n", 77 RINGBUF_TYPE_TIME_STAMP); 78 trace_seq_printf(s, "\tdata max type_len == %d\n", 79 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 80 81 return !trace_seq_has_overflowed(s); 82 } 83 84 /* 85 * The ring buffer is made up of a list of pages. A separate list of pages is 86 * allocated for each CPU. A writer may only write to a buffer that is 87 * associated with the CPU it is currently executing on. A reader may read 88 * from any per cpu buffer. 89 * 90 * The reader is special. For each per cpu buffer, the reader has its own 91 * reader page. When a reader has read the entire reader page, this reader 92 * page is swapped with another page in the ring buffer. 93 * 94 * Now, as long as the writer is off the reader page, the reader can do what 95 * ever it wants with that page. The writer will never write to that page 96 * again (as long as it is out of the ring buffer). 97 * 98 * Here's some silly ASCII art. 99 * 100 * +------+ 101 * |reader| RING BUFFER 102 * |page | 103 * +------+ +---+ +---+ +---+ 104 * | |-->| |-->| | 105 * +---+ +---+ +---+ 106 * ^ | 107 * | | 108 * +---------------+ 109 * 110 * 111 * +------+ 112 * |reader| RING BUFFER 113 * |page |------------------v 114 * +------+ +---+ +---+ +---+ 115 * | |-->| |-->| | 116 * +---+ +---+ +---+ 117 * ^ | 118 * | | 119 * +---------------+ 120 * 121 * 122 * +------+ 123 * |reader| RING BUFFER 124 * |page |------------------v 125 * +------+ +---+ +---+ +---+ 126 * ^ | |-->| |-->| | 127 * | +---+ +---+ +---+ 128 * | | 129 * | | 130 * +------------------------------+ 131 * 132 * 133 * +------+ 134 * |buffer| RING BUFFER 135 * |page |------------------v 136 * +------+ +---+ +---+ +---+ 137 * ^ | | | |-->| | 138 * | New +---+ +---+ +---+ 139 * | Reader------^ | 140 * | page | 141 * +------------------------------+ 142 * 143 * 144 * After we make this swap, the reader can hand this page off to the splice 145 * code and be done with it. It can even allocate a new page if it needs to 146 * and swap that into the ring buffer. 147 * 148 * We will be using cmpxchg soon to make all this lockless. 149 * 150 */ 151 152 /* Used for individual buffers (after the counter) */ 153 #define RB_BUFFER_OFF (1 << 20) 154 155 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 156 157 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 158 #define RB_ALIGNMENT 4U 159 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 160 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 161 162 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 163 # define RB_FORCE_8BYTE_ALIGNMENT 0 164 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 165 #else 166 # define RB_FORCE_8BYTE_ALIGNMENT 1 167 # define RB_ARCH_ALIGNMENT 8U 168 #endif 169 170 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 171 172 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 173 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 174 175 enum { 176 RB_LEN_TIME_EXTEND = 8, 177 RB_LEN_TIME_STAMP = 8, 178 }; 179 180 #define skip_time_extend(event) \ 181 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 182 183 #define extended_time(event) \ 184 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) 185 186 static inline bool rb_null_event(struct ring_buffer_event *event) 187 { 188 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 189 } 190 191 static void rb_event_set_padding(struct ring_buffer_event *event) 192 { 193 /* padding has a NULL time_delta */ 194 event->type_len = RINGBUF_TYPE_PADDING; 195 event->time_delta = 0; 196 } 197 198 static unsigned 199 rb_event_data_length(struct ring_buffer_event *event) 200 { 201 unsigned length; 202 203 if (event->type_len) 204 length = event->type_len * RB_ALIGNMENT; 205 else 206 length = event->array[0]; 207 return length + RB_EVNT_HDR_SIZE; 208 } 209 210 /* 211 * Return the length of the given event. Will return 212 * the length of the time extend if the event is a 213 * time extend. 214 */ 215 static inline unsigned 216 rb_event_length(struct ring_buffer_event *event) 217 { 218 switch (event->type_len) { 219 case RINGBUF_TYPE_PADDING: 220 if (rb_null_event(event)) 221 /* undefined */ 222 return -1; 223 return event->array[0] + RB_EVNT_HDR_SIZE; 224 225 case RINGBUF_TYPE_TIME_EXTEND: 226 return RB_LEN_TIME_EXTEND; 227 228 case RINGBUF_TYPE_TIME_STAMP: 229 return RB_LEN_TIME_STAMP; 230 231 case RINGBUF_TYPE_DATA: 232 return rb_event_data_length(event); 233 default: 234 WARN_ON_ONCE(1); 235 } 236 /* not hit */ 237 return 0; 238 } 239 240 /* 241 * Return total length of time extend and data, 242 * or just the event length for all other events. 243 */ 244 static inline unsigned 245 rb_event_ts_length(struct ring_buffer_event *event) 246 { 247 unsigned len = 0; 248 249 if (extended_time(event)) { 250 /* time extends include the data event after it */ 251 len = RB_LEN_TIME_EXTEND; 252 event = skip_time_extend(event); 253 } 254 return len + rb_event_length(event); 255 } 256 257 /** 258 * ring_buffer_event_length - return the length of the event 259 * @event: the event to get the length of 260 * 261 * Returns the size of the data load of a data event. 262 * If the event is something other than a data event, it 263 * returns the size of the event itself. With the exception 264 * of a TIME EXTEND, where it still returns the size of the 265 * data load of the data event after it. 266 */ 267 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 268 { 269 unsigned length; 270 271 if (extended_time(event)) 272 event = skip_time_extend(event); 273 274 length = rb_event_length(event); 275 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 276 return length; 277 length -= RB_EVNT_HDR_SIZE; 278 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 279 length -= sizeof(event->array[0]); 280 return length; 281 } 282 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 283 284 /* inline for ring buffer fast paths */ 285 static __always_inline void * 286 rb_event_data(struct ring_buffer_event *event) 287 { 288 if (extended_time(event)) 289 event = skip_time_extend(event); 290 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 291 /* If length is in len field, then array[0] has the data */ 292 if (event->type_len) 293 return (void *)&event->array[0]; 294 /* Otherwise length is in array[0] and array[1] has the data */ 295 return (void *)&event->array[1]; 296 } 297 298 /** 299 * ring_buffer_event_data - return the data of the event 300 * @event: the event to get the data from 301 */ 302 void *ring_buffer_event_data(struct ring_buffer_event *event) 303 { 304 return rb_event_data(event); 305 } 306 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 307 308 #define for_each_buffer_cpu(buffer, cpu) \ 309 for_each_cpu(cpu, buffer->cpumask) 310 311 #define for_each_online_buffer_cpu(buffer, cpu) \ 312 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask) 313 314 #define TS_SHIFT 27 315 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 316 #define TS_DELTA_TEST (~TS_MASK) 317 318 static u64 rb_event_time_stamp(struct ring_buffer_event *event) 319 { 320 u64 ts; 321 322 ts = event->array[0]; 323 ts <<= TS_SHIFT; 324 ts += event->time_delta; 325 326 return ts; 327 } 328 329 /* Flag when events were overwritten */ 330 #define RB_MISSED_EVENTS (1 << 31) 331 /* Missed count stored at end */ 332 #define RB_MISSED_STORED (1 << 30) 333 334 #define RB_MISSED_MASK (3 << 30) 335 336 struct buffer_data_page { 337 u64 time_stamp; /* page time stamp */ 338 local_t commit; /* write committed index */ 339 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 340 }; 341 342 struct buffer_data_read_page { 343 unsigned order; /* order of the page */ 344 struct buffer_data_page *data; /* actual data, stored in this page */ 345 }; 346 347 /* 348 * Note, the buffer_page list must be first. The buffer pages 349 * are allocated in cache lines, which means that each buffer 350 * page will be at the beginning of a cache line, and thus 351 * the least significant bits will be zero. We use this to 352 * add flags in the list struct pointers, to make the ring buffer 353 * lockless. 354 */ 355 struct buffer_page { 356 struct list_head list; /* list of buffer pages */ 357 local_t write; /* index for next write */ 358 unsigned read; /* index for next read */ 359 local_t entries; /* entries on this page */ 360 unsigned long real_end; /* real end of data */ 361 unsigned order; /* order of the page */ 362 u32 id:30; /* ID for external mapping */ 363 u32 range:1; /* Mapped via a range */ 364 struct buffer_data_page *page; /* Actual data page */ 365 }; 366 367 /* 368 * The buffer page counters, write and entries, must be reset 369 * atomically when crossing page boundaries. To synchronize this 370 * update, two counters are inserted into the number. One is 371 * the actual counter for the write position or count on the page. 372 * 373 * The other is a counter of updaters. Before an update happens 374 * the update partition of the counter is incremented. This will 375 * allow the updater to update the counter atomically. 376 * 377 * The counter is 20 bits, and the state data is 12. 378 */ 379 #define RB_WRITE_MASK 0xfffff 380 #define RB_WRITE_INTCNT (1 << 20) 381 382 static void rb_init_page(struct buffer_data_page *bpage) 383 { 384 local_set(&bpage->commit, 0); 385 } 386 387 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage) 388 { 389 return local_read(&bpage->page->commit); 390 } 391 392 static void free_buffer_page(struct buffer_page *bpage) 393 { 394 /* Range pages are not to be freed */ 395 if (!bpage->range) 396 free_pages((unsigned long)bpage->page, bpage->order); 397 kfree(bpage); 398 } 399 400 /* 401 * We need to fit the time_stamp delta into 27 bits. 402 */ 403 static inline bool test_time_stamp(u64 delta) 404 { 405 return !!(delta & TS_DELTA_TEST); 406 } 407 408 struct rb_irq_work { 409 struct irq_work work; 410 wait_queue_head_t waiters; 411 wait_queue_head_t full_waiters; 412 atomic_t seq; 413 bool waiters_pending; 414 bool full_waiters_pending; 415 bool wakeup_full; 416 }; 417 418 /* 419 * Structure to hold event state and handle nested events. 420 */ 421 struct rb_event_info { 422 u64 ts; 423 u64 delta; 424 u64 before; 425 u64 after; 426 unsigned long length; 427 struct buffer_page *tail_page; 428 int add_timestamp; 429 }; 430 431 /* 432 * Used for the add_timestamp 433 * NONE 434 * EXTEND - wants a time extend 435 * ABSOLUTE - the buffer requests all events to have absolute time stamps 436 * FORCE - force a full time stamp. 437 */ 438 enum { 439 RB_ADD_STAMP_NONE = 0, 440 RB_ADD_STAMP_EXTEND = BIT(1), 441 RB_ADD_STAMP_ABSOLUTE = BIT(2), 442 RB_ADD_STAMP_FORCE = BIT(3) 443 }; 444 /* 445 * Used for which event context the event is in. 446 * TRANSITION = 0 447 * NMI = 1 448 * IRQ = 2 449 * SOFTIRQ = 3 450 * NORMAL = 4 451 * 452 * See trace_recursive_lock() comment below for more details. 453 */ 454 enum { 455 RB_CTX_TRANSITION, 456 RB_CTX_NMI, 457 RB_CTX_IRQ, 458 RB_CTX_SOFTIRQ, 459 RB_CTX_NORMAL, 460 RB_CTX_MAX 461 }; 462 463 struct rb_time_struct { 464 local64_t time; 465 }; 466 typedef struct rb_time_struct rb_time_t; 467 468 #define MAX_NEST 5 469 470 /* 471 * head_page == tail_page && head == tail then buffer is empty. 472 */ 473 struct ring_buffer_per_cpu { 474 int cpu; 475 atomic_t record_disabled; 476 atomic_t resize_disabled; 477 struct trace_buffer *buffer; 478 raw_spinlock_t reader_lock; /* serialize readers */ 479 arch_spinlock_t lock; 480 struct lock_class_key lock_key; 481 struct buffer_data_page *free_page; 482 unsigned long nr_pages; 483 unsigned int current_context; 484 struct list_head *pages; 485 struct buffer_page *head_page; /* read from head */ 486 struct buffer_page *tail_page; /* write to tail */ 487 struct buffer_page *commit_page; /* committed pages */ 488 struct buffer_page *reader_page; 489 unsigned long lost_events; 490 unsigned long last_overrun; 491 unsigned long nest; 492 local_t entries_bytes; 493 local_t entries; 494 local_t overrun; 495 local_t commit_overrun; 496 local_t dropped_events; 497 local_t committing; 498 local_t commits; 499 local_t pages_touched; 500 local_t pages_lost; 501 local_t pages_read; 502 long last_pages_touch; 503 size_t shortest_full; 504 unsigned long read; 505 unsigned long read_bytes; 506 rb_time_t write_stamp; 507 rb_time_t before_stamp; 508 u64 event_stamp[MAX_NEST]; 509 u64 read_stamp; 510 /* pages removed since last reset */ 511 unsigned long pages_removed; 512 513 unsigned int mapped; 514 unsigned int user_mapped; /* user space mapping */ 515 struct mutex mapping_lock; 516 unsigned long *subbuf_ids; /* ID to subbuf VA */ 517 struct trace_buffer_meta *meta_page; 518 struct ring_buffer_meta *ring_meta; 519 520 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 521 long nr_pages_to_update; 522 struct list_head new_pages; /* new pages to add */ 523 struct work_struct update_pages_work; 524 struct completion update_done; 525 526 struct rb_irq_work irq_work; 527 }; 528 529 struct trace_buffer { 530 unsigned flags; 531 int cpus; 532 atomic_t record_disabled; 533 atomic_t resizing; 534 cpumask_var_t cpumask; 535 536 struct lock_class_key *reader_lock_key; 537 538 struct mutex mutex; 539 540 struct ring_buffer_per_cpu **buffers; 541 542 struct hlist_node node; 543 u64 (*clock)(void); 544 545 struct rb_irq_work irq_work; 546 bool time_stamp_abs; 547 548 unsigned long range_addr_start; 549 unsigned long range_addr_end; 550 551 long last_text_delta; 552 long last_data_delta; 553 554 unsigned int subbuf_size; 555 unsigned int subbuf_order; 556 unsigned int max_data_size; 557 }; 558 559 struct ring_buffer_iter { 560 struct ring_buffer_per_cpu *cpu_buffer; 561 unsigned long head; 562 unsigned long next_event; 563 struct buffer_page *head_page; 564 struct buffer_page *cache_reader_page; 565 unsigned long cache_read; 566 unsigned long cache_pages_removed; 567 u64 read_stamp; 568 u64 page_stamp; 569 struct ring_buffer_event *event; 570 size_t event_size; 571 int missed_events; 572 }; 573 574 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s) 575 { 576 struct buffer_data_page field; 577 578 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 579 "offset:0;\tsize:%u;\tsigned:%u;\n", 580 (unsigned int)sizeof(field.time_stamp), 581 (unsigned int)is_signed_type(u64)); 582 583 trace_seq_printf(s, "\tfield: local_t commit;\t" 584 "offset:%u;\tsize:%u;\tsigned:%u;\n", 585 (unsigned int)offsetof(typeof(field), commit), 586 (unsigned int)sizeof(field.commit), 587 (unsigned int)is_signed_type(long)); 588 589 trace_seq_printf(s, "\tfield: int overwrite;\t" 590 "offset:%u;\tsize:%u;\tsigned:%u;\n", 591 (unsigned int)offsetof(typeof(field), commit), 592 1, 593 (unsigned int)is_signed_type(long)); 594 595 trace_seq_printf(s, "\tfield: char data;\t" 596 "offset:%u;\tsize:%u;\tsigned:%u;\n", 597 (unsigned int)offsetof(typeof(field), data), 598 (unsigned int)buffer->subbuf_size, 599 (unsigned int)is_signed_type(char)); 600 601 return !trace_seq_has_overflowed(s); 602 } 603 604 static inline void rb_time_read(rb_time_t *t, u64 *ret) 605 { 606 *ret = local64_read(&t->time); 607 } 608 static void rb_time_set(rb_time_t *t, u64 val) 609 { 610 local64_set(&t->time, val); 611 } 612 613 /* 614 * Enable this to make sure that the event passed to 615 * ring_buffer_event_time_stamp() is not committed and also 616 * is on the buffer that it passed in. 617 */ 618 //#define RB_VERIFY_EVENT 619 #ifdef RB_VERIFY_EVENT 620 static struct list_head *rb_list_head(struct list_head *list); 621 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 622 void *event) 623 { 624 struct buffer_page *page = cpu_buffer->commit_page; 625 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page); 626 struct list_head *next; 627 long commit, write; 628 unsigned long addr = (unsigned long)event; 629 bool done = false; 630 int stop = 0; 631 632 /* Make sure the event exists and is not committed yet */ 633 do { 634 if (page == tail_page || WARN_ON_ONCE(stop++ > 100)) 635 done = true; 636 commit = local_read(&page->page->commit); 637 write = local_read(&page->write); 638 if (addr >= (unsigned long)&page->page->data[commit] && 639 addr < (unsigned long)&page->page->data[write]) 640 return; 641 642 next = rb_list_head(page->list.next); 643 page = list_entry(next, struct buffer_page, list); 644 } while (!done); 645 WARN_ON_ONCE(1); 646 } 647 #else 648 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 649 void *event) 650 { 651 } 652 #endif 653 654 /* 655 * The absolute time stamp drops the 5 MSBs and some clocks may 656 * require them. The rb_fix_abs_ts() will take a previous full 657 * time stamp, and add the 5 MSB of that time stamp on to the 658 * saved absolute time stamp. Then they are compared in case of 659 * the unlikely event that the latest time stamp incremented 660 * the 5 MSB. 661 */ 662 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts) 663 { 664 if (save_ts & TS_MSB) { 665 abs |= save_ts & TS_MSB; 666 /* Check for overflow */ 667 if (unlikely(abs < save_ts)) 668 abs += 1ULL << 59; 669 } 670 return abs; 671 } 672 673 static inline u64 rb_time_stamp(struct trace_buffer *buffer); 674 675 /** 676 * ring_buffer_event_time_stamp - return the event's current time stamp 677 * @buffer: The buffer that the event is on 678 * @event: the event to get the time stamp of 679 * 680 * Note, this must be called after @event is reserved, and before it is 681 * committed to the ring buffer. And must be called from the same 682 * context where the event was reserved (normal, softirq, irq, etc). 683 * 684 * Returns the time stamp associated with the current event. 685 * If the event has an extended time stamp, then that is used as 686 * the time stamp to return. 687 * In the highly unlikely case that the event was nested more than 688 * the max nesting, then the write_stamp of the buffer is returned, 689 * otherwise current time is returned, but that really neither of 690 * the last two cases should ever happen. 691 */ 692 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer, 693 struct ring_buffer_event *event) 694 { 695 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()]; 696 unsigned int nest; 697 u64 ts; 698 699 /* If the event includes an absolute time, then just use that */ 700 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) { 701 ts = rb_event_time_stamp(event); 702 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp); 703 } 704 705 nest = local_read(&cpu_buffer->committing); 706 verify_event(cpu_buffer, event); 707 if (WARN_ON_ONCE(!nest)) 708 goto fail; 709 710 /* Read the current saved nesting level time stamp */ 711 if (likely(--nest < MAX_NEST)) 712 return cpu_buffer->event_stamp[nest]; 713 714 /* Shouldn't happen, warn if it does */ 715 WARN_ONCE(1, "nest (%d) greater than max", nest); 716 717 fail: 718 rb_time_read(&cpu_buffer->write_stamp, &ts); 719 720 return ts; 721 } 722 723 /** 724 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer 725 * @buffer: The ring_buffer to get the number of pages from 726 * @cpu: The cpu of the ring_buffer to get the number of pages from 727 * 728 * Returns the number of pages that have content in the ring buffer. 729 */ 730 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu) 731 { 732 size_t read; 733 size_t lost; 734 size_t cnt; 735 736 read = local_read(&buffer->buffers[cpu]->pages_read); 737 lost = local_read(&buffer->buffers[cpu]->pages_lost); 738 cnt = local_read(&buffer->buffers[cpu]->pages_touched); 739 740 if (WARN_ON_ONCE(cnt < lost)) 741 return 0; 742 743 cnt -= lost; 744 745 /* The reader can read an empty page, but not more than that */ 746 if (cnt < read) { 747 WARN_ON_ONCE(read > cnt + 1); 748 return 0; 749 } 750 751 return cnt - read; 752 } 753 754 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full) 755 { 756 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 757 size_t nr_pages; 758 size_t dirty; 759 760 nr_pages = cpu_buffer->nr_pages; 761 if (!nr_pages || !full) 762 return true; 763 764 /* 765 * Add one as dirty will never equal nr_pages, as the sub-buffer 766 * that the writer is on is not counted as dirty. 767 * This is needed if "buffer_percent" is set to 100. 768 */ 769 dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1; 770 771 return (dirty * 100) >= (full * nr_pages); 772 } 773 774 /* 775 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 776 * 777 * Schedules a delayed work to wake up any task that is blocked on the 778 * ring buffer waiters queue. 779 */ 780 static void rb_wake_up_waiters(struct irq_work *work) 781 { 782 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 783 784 /* For waiters waiting for the first wake up */ 785 (void)atomic_fetch_inc_release(&rbwork->seq); 786 787 wake_up_all(&rbwork->waiters); 788 if (rbwork->full_waiters_pending || rbwork->wakeup_full) { 789 /* Only cpu_buffer sets the above flags */ 790 struct ring_buffer_per_cpu *cpu_buffer = 791 container_of(rbwork, struct ring_buffer_per_cpu, irq_work); 792 793 /* Called from interrupt context */ 794 raw_spin_lock(&cpu_buffer->reader_lock); 795 rbwork->wakeup_full = false; 796 rbwork->full_waiters_pending = false; 797 798 /* Waking up all waiters, they will reset the shortest full */ 799 cpu_buffer->shortest_full = 0; 800 raw_spin_unlock(&cpu_buffer->reader_lock); 801 802 wake_up_all(&rbwork->full_waiters); 803 } 804 } 805 806 /** 807 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer 808 * @buffer: The ring buffer to wake waiters on 809 * @cpu: The CPU buffer to wake waiters on 810 * 811 * In the case of a file that represents a ring buffer is closing, 812 * it is prudent to wake up any waiters that are on this. 813 */ 814 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu) 815 { 816 struct ring_buffer_per_cpu *cpu_buffer; 817 struct rb_irq_work *rbwork; 818 819 if (!buffer) 820 return; 821 822 if (cpu == RING_BUFFER_ALL_CPUS) { 823 824 /* Wake up individual ones too. One level recursion */ 825 for_each_buffer_cpu(buffer, cpu) 826 ring_buffer_wake_waiters(buffer, cpu); 827 828 rbwork = &buffer->irq_work; 829 } else { 830 if (WARN_ON_ONCE(!buffer->buffers)) 831 return; 832 if (WARN_ON_ONCE(cpu >= nr_cpu_ids)) 833 return; 834 835 cpu_buffer = buffer->buffers[cpu]; 836 /* The CPU buffer may not have been initialized yet */ 837 if (!cpu_buffer) 838 return; 839 rbwork = &cpu_buffer->irq_work; 840 } 841 842 /* This can be called in any context */ 843 irq_work_queue(&rbwork->work); 844 } 845 846 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full) 847 { 848 struct ring_buffer_per_cpu *cpu_buffer; 849 bool ret = false; 850 851 /* Reads of all CPUs always waits for any data */ 852 if (cpu == RING_BUFFER_ALL_CPUS) 853 return !ring_buffer_empty(buffer); 854 855 cpu_buffer = buffer->buffers[cpu]; 856 857 if (!ring_buffer_empty_cpu(buffer, cpu)) { 858 unsigned long flags; 859 bool pagebusy; 860 861 if (!full) 862 return true; 863 864 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 865 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 866 ret = !pagebusy && full_hit(buffer, cpu, full); 867 868 if (!ret && (!cpu_buffer->shortest_full || 869 cpu_buffer->shortest_full > full)) { 870 cpu_buffer->shortest_full = full; 871 } 872 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 873 } 874 return ret; 875 } 876 877 static inline bool 878 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer, 879 int cpu, int full, ring_buffer_cond_fn cond, void *data) 880 { 881 if (rb_watermark_hit(buffer, cpu, full)) 882 return true; 883 884 if (cond(data)) 885 return true; 886 887 /* 888 * The events can happen in critical sections where 889 * checking a work queue can cause deadlocks. 890 * After adding a task to the queue, this flag is set 891 * only to notify events to try to wake up the queue 892 * using irq_work. 893 * 894 * We don't clear it even if the buffer is no longer 895 * empty. The flag only causes the next event to run 896 * irq_work to do the work queue wake up. The worse 897 * that can happen if we race with !trace_empty() is that 898 * an event will cause an irq_work to try to wake up 899 * an empty queue. 900 * 901 * There's no reason to protect this flag either, as 902 * the work queue and irq_work logic will do the necessary 903 * synchronization for the wake ups. The only thing 904 * that is necessary is that the wake up happens after 905 * a task has been queued. It's OK for spurious wake ups. 906 */ 907 if (full) 908 rbwork->full_waiters_pending = true; 909 else 910 rbwork->waiters_pending = true; 911 912 return false; 913 } 914 915 struct rb_wait_data { 916 struct rb_irq_work *irq_work; 917 int seq; 918 }; 919 920 /* 921 * The default wait condition for ring_buffer_wait() is to just to exit the 922 * wait loop the first time it is woken up. 923 */ 924 static bool rb_wait_once(void *data) 925 { 926 struct rb_wait_data *rdata = data; 927 struct rb_irq_work *rbwork = rdata->irq_work; 928 929 return atomic_read_acquire(&rbwork->seq) != rdata->seq; 930 } 931 932 /** 933 * ring_buffer_wait - wait for input to the ring buffer 934 * @buffer: buffer to wait on 935 * @cpu: the cpu buffer to wait on 936 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 937 * @cond: condition function to break out of wait (NULL to run once) 938 * @data: the data to pass to @cond. 939 * 940 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 941 * as data is added to any of the @buffer's cpu buffers. Otherwise 942 * it will wait for data to be added to a specific cpu buffer. 943 */ 944 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full, 945 ring_buffer_cond_fn cond, void *data) 946 { 947 struct ring_buffer_per_cpu *cpu_buffer; 948 struct wait_queue_head *waitq; 949 struct rb_irq_work *rbwork; 950 struct rb_wait_data rdata; 951 int ret = 0; 952 953 /* 954 * Depending on what the caller is waiting for, either any 955 * data in any cpu buffer, or a specific buffer, put the 956 * caller on the appropriate wait queue. 957 */ 958 if (cpu == RING_BUFFER_ALL_CPUS) { 959 rbwork = &buffer->irq_work; 960 /* Full only makes sense on per cpu reads */ 961 full = 0; 962 } else { 963 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 964 return -ENODEV; 965 cpu_buffer = buffer->buffers[cpu]; 966 rbwork = &cpu_buffer->irq_work; 967 } 968 969 if (full) 970 waitq = &rbwork->full_waiters; 971 else 972 waitq = &rbwork->waiters; 973 974 /* Set up to exit loop as soon as it is woken */ 975 if (!cond) { 976 cond = rb_wait_once; 977 rdata.irq_work = rbwork; 978 rdata.seq = atomic_read_acquire(&rbwork->seq); 979 data = &rdata; 980 } 981 982 ret = wait_event_interruptible((*waitq), 983 rb_wait_cond(rbwork, buffer, cpu, full, cond, data)); 984 985 return ret; 986 } 987 988 /** 989 * ring_buffer_poll_wait - poll on buffer input 990 * @buffer: buffer to wait on 991 * @cpu: the cpu buffer to wait on 992 * @filp: the file descriptor 993 * @poll_table: The poll descriptor 994 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 995 * 996 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 997 * as data is added to any of the @buffer's cpu buffers. Otherwise 998 * it will wait for data to be added to a specific cpu buffer. 999 * 1000 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, 1001 * zero otherwise. 1002 */ 1003 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu, 1004 struct file *filp, poll_table *poll_table, int full) 1005 { 1006 struct ring_buffer_per_cpu *cpu_buffer; 1007 struct rb_irq_work *rbwork; 1008 1009 if (cpu == RING_BUFFER_ALL_CPUS) { 1010 rbwork = &buffer->irq_work; 1011 full = 0; 1012 } else { 1013 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 1014 return EPOLLERR; 1015 1016 cpu_buffer = buffer->buffers[cpu]; 1017 rbwork = &cpu_buffer->irq_work; 1018 } 1019 1020 if (full) { 1021 poll_wait(filp, &rbwork->full_waiters, poll_table); 1022 1023 if (rb_watermark_hit(buffer, cpu, full)) 1024 return EPOLLIN | EPOLLRDNORM; 1025 /* 1026 * Only allow full_waiters_pending update to be seen after 1027 * the shortest_full is set (in rb_watermark_hit). If the 1028 * writer sees the full_waiters_pending flag set, it will 1029 * compare the amount in the ring buffer to shortest_full. 1030 * If the amount in the ring buffer is greater than the 1031 * shortest_full percent, it will call the irq_work handler 1032 * to wake up this list. The irq_handler will reset shortest_full 1033 * back to zero. That's done under the reader_lock, but 1034 * the below smp_mb() makes sure that the update to 1035 * full_waiters_pending doesn't leak up into the above. 1036 */ 1037 smp_mb(); 1038 rbwork->full_waiters_pending = true; 1039 return 0; 1040 } 1041 1042 poll_wait(filp, &rbwork->waiters, poll_table); 1043 rbwork->waiters_pending = true; 1044 1045 /* 1046 * There's a tight race between setting the waiters_pending and 1047 * checking if the ring buffer is empty. Once the waiters_pending bit 1048 * is set, the next event will wake the task up, but we can get stuck 1049 * if there's only a single event in. 1050 * 1051 * FIXME: Ideally, we need a memory barrier on the writer side as well, 1052 * but adding a memory barrier to all events will cause too much of a 1053 * performance hit in the fast path. We only need a memory barrier when 1054 * the buffer goes from empty to having content. But as this race is 1055 * extremely small, and it's not a problem if another event comes in, we 1056 * will fix it later. 1057 */ 1058 smp_mb(); 1059 1060 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 1061 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 1062 return EPOLLIN | EPOLLRDNORM; 1063 return 0; 1064 } 1065 1066 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 1067 #define RB_WARN_ON(b, cond) \ 1068 ({ \ 1069 int _____ret = unlikely(cond); \ 1070 if (_____ret) { \ 1071 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 1072 struct ring_buffer_per_cpu *__b = \ 1073 (void *)b; \ 1074 atomic_inc(&__b->buffer->record_disabled); \ 1075 } else \ 1076 atomic_inc(&b->record_disabled); \ 1077 WARN_ON(1); \ 1078 } \ 1079 _____ret; \ 1080 }) 1081 1082 /* Up this if you want to test the TIME_EXTENTS and normalization */ 1083 #define DEBUG_SHIFT 0 1084 1085 static inline u64 rb_time_stamp(struct trace_buffer *buffer) 1086 { 1087 u64 ts; 1088 1089 /* Skip retpolines :-( */ 1090 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local)) 1091 ts = trace_clock_local(); 1092 else 1093 ts = buffer->clock(); 1094 1095 /* shift to debug/test normalization and TIME_EXTENTS */ 1096 return ts << DEBUG_SHIFT; 1097 } 1098 1099 u64 ring_buffer_time_stamp(struct trace_buffer *buffer) 1100 { 1101 u64 time; 1102 1103 preempt_disable_notrace(); 1104 time = rb_time_stamp(buffer); 1105 preempt_enable_notrace(); 1106 1107 return time; 1108 } 1109 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 1110 1111 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer, 1112 int cpu, u64 *ts) 1113 { 1114 /* Just stupid testing the normalize function and deltas */ 1115 *ts >>= DEBUG_SHIFT; 1116 } 1117 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 1118 1119 /* 1120 * Making the ring buffer lockless makes things tricky. 1121 * Although writes only happen on the CPU that they are on, 1122 * and they only need to worry about interrupts. Reads can 1123 * happen on any CPU. 1124 * 1125 * The reader page is always off the ring buffer, but when the 1126 * reader finishes with a page, it needs to swap its page with 1127 * a new one from the buffer. The reader needs to take from 1128 * the head (writes go to the tail). But if a writer is in overwrite 1129 * mode and wraps, it must push the head page forward. 1130 * 1131 * Here lies the problem. 1132 * 1133 * The reader must be careful to replace only the head page, and 1134 * not another one. As described at the top of the file in the 1135 * ASCII art, the reader sets its old page to point to the next 1136 * page after head. It then sets the page after head to point to 1137 * the old reader page. But if the writer moves the head page 1138 * during this operation, the reader could end up with the tail. 1139 * 1140 * We use cmpxchg to help prevent this race. We also do something 1141 * special with the page before head. We set the LSB to 1. 1142 * 1143 * When the writer must push the page forward, it will clear the 1144 * bit that points to the head page, move the head, and then set 1145 * the bit that points to the new head page. 1146 * 1147 * We also don't want an interrupt coming in and moving the head 1148 * page on another writer. Thus we use the second LSB to catch 1149 * that too. Thus: 1150 * 1151 * head->list->prev->next bit 1 bit 0 1152 * ------- ------- 1153 * Normal page 0 0 1154 * Points to head page 0 1 1155 * New head page 1 0 1156 * 1157 * Note we can not trust the prev pointer of the head page, because: 1158 * 1159 * +----+ +-----+ +-----+ 1160 * | |------>| T |---X--->| N | 1161 * | |<------| | | | 1162 * +----+ +-----+ +-----+ 1163 * ^ ^ | 1164 * | +-----+ | | 1165 * +----------| R |----------+ | 1166 * | |<-----------+ 1167 * +-----+ 1168 * 1169 * Key: ---X--> HEAD flag set in pointer 1170 * T Tail page 1171 * R Reader page 1172 * N Next page 1173 * 1174 * (see __rb_reserve_next() to see where this happens) 1175 * 1176 * What the above shows is that the reader just swapped out 1177 * the reader page with a page in the buffer, but before it 1178 * could make the new header point back to the new page added 1179 * it was preempted by a writer. The writer moved forward onto 1180 * the new page added by the reader and is about to move forward 1181 * again. 1182 * 1183 * You can see, it is legitimate for the previous pointer of 1184 * the head (or any page) not to point back to itself. But only 1185 * temporarily. 1186 */ 1187 1188 #define RB_PAGE_NORMAL 0UL 1189 #define RB_PAGE_HEAD 1UL 1190 #define RB_PAGE_UPDATE 2UL 1191 1192 1193 #define RB_FLAG_MASK 3UL 1194 1195 /* PAGE_MOVED is not part of the mask */ 1196 #define RB_PAGE_MOVED 4UL 1197 1198 /* 1199 * rb_list_head - remove any bit 1200 */ 1201 static struct list_head *rb_list_head(struct list_head *list) 1202 { 1203 unsigned long val = (unsigned long)list; 1204 1205 return (struct list_head *)(val & ~RB_FLAG_MASK); 1206 } 1207 1208 /* 1209 * rb_is_head_page - test if the given page is the head page 1210 * 1211 * Because the reader may move the head_page pointer, we can 1212 * not trust what the head page is (it may be pointing to 1213 * the reader page). But if the next page is a header page, 1214 * its flags will be non zero. 1215 */ 1216 static inline int 1217 rb_is_head_page(struct buffer_page *page, struct list_head *list) 1218 { 1219 unsigned long val; 1220 1221 val = (unsigned long)list->next; 1222 1223 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 1224 return RB_PAGE_MOVED; 1225 1226 return val & RB_FLAG_MASK; 1227 } 1228 1229 /* 1230 * rb_is_reader_page 1231 * 1232 * The unique thing about the reader page, is that, if the 1233 * writer is ever on it, the previous pointer never points 1234 * back to the reader page. 1235 */ 1236 static bool rb_is_reader_page(struct buffer_page *page) 1237 { 1238 struct list_head *list = page->list.prev; 1239 1240 return rb_list_head(list->next) != &page->list; 1241 } 1242 1243 /* 1244 * rb_set_list_to_head - set a list_head to be pointing to head. 1245 */ 1246 static void rb_set_list_to_head(struct list_head *list) 1247 { 1248 unsigned long *ptr; 1249 1250 ptr = (unsigned long *)&list->next; 1251 *ptr |= RB_PAGE_HEAD; 1252 *ptr &= ~RB_PAGE_UPDATE; 1253 } 1254 1255 /* 1256 * rb_head_page_activate - sets up head page 1257 */ 1258 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 1259 { 1260 struct buffer_page *head; 1261 1262 head = cpu_buffer->head_page; 1263 if (!head) 1264 return; 1265 1266 /* 1267 * Set the previous list pointer to have the HEAD flag. 1268 */ 1269 rb_set_list_to_head(head->list.prev); 1270 1271 if (cpu_buffer->ring_meta) { 1272 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 1273 meta->head_buffer = (unsigned long)head->page; 1274 } 1275 } 1276 1277 static void rb_list_head_clear(struct list_head *list) 1278 { 1279 unsigned long *ptr = (unsigned long *)&list->next; 1280 1281 *ptr &= ~RB_FLAG_MASK; 1282 } 1283 1284 /* 1285 * rb_head_page_deactivate - clears head page ptr (for free list) 1286 */ 1287 static void 1288 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 1289 { 1290 struct list_head *hd; 1291 1292 /* Go through the whole list and clear any pointers found. */ 1293 rb_list_head_clear(cpu_buffer->pages); 1294 1295 list_for_each(hd, cpu_buffer->pages) 1296 rb_list_head_clear(hd); 1297 } 1298 1299 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 1300 struct buffer_page *head, 1301 struct buffer_page *prev, 1302 int old_flag, int new_flag) 1303 { 1304 struct list_head *list; 1305 unsigned long val = (unsigned long)&head->list; 1306 unsigned long ret; 1307 1308 list = &prev->list; 1309 1310 val &= ~RB_FLAG_MASK; 1311 1312 ret = cmpxchg((unsigned long *)&list->next, 1313 val | old_flag, val | new_flag); 1314 1315 /* check if the reader took the page */ 1316 if ((ret & ~RB_FLAG_MASK) != val) 1317 return RB_PAGE_MOVED; 1318 1319 return ret & RB_FLAG_MASK; 1320 } 1321 1322 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 1323 struct buffer_page *head, 1324 struct buffer_page *prev, 1325 int old_flag) 1326 { 1327 return rb_head_page_set(cpu_buffer, head, prev, 1328 old_flag, RB_PAGE_UPDATE); 1329 } 1330 1331 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 1332 struct buffer_page *head, 1333 struct buffer_page *prev, 1334 int old_flag) 1335 { 1336 return rb_head_page_set(cpu_buffer, head, prev, 1337 old_flag, RB_PAGE_HEAD); 1338 } 1339 1340 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 1341 struct buffer_page *head, 1342 struct buffer_page *prev, 1343 int old_flag) 1344 { 1345 return rb_head_page_set(cpu_buffer, head, prev, 1346 old_flag, RB_PAGE_NORMAL); 1347 } 1348 1349 static inline void rb_inc_page(struct buffer_page **bpage) 1350 { 1351 struct list_head *p = rb_list_head((*bpage)->list.next); 1352 1353 *bpage = list_entry(p, struct buffer_page, list); 1354 } 1355 1356 static struct buffer_page * 1357 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 1358 { 1359 struct buffer_page *head; 1360 struct buffer_page *page; 1361 struct list_head *list; 1362 int i; 1363 1364 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 1365 return NULL; 1366 1367 /* sanity check */ 1368 list = cpu_buffer->pages; 1369 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 1370 return NULL; 1371 1372 page = head = cpu_buffer->head_page; 1373 /* 1374 * It is possible that the writer moves the header behind 1375 * where we started, and we miss in one loop. 1376 * A second loop should grab the header, but we'll do 1377 * three loops just because I'm paranoid. 1378 */ 1379 for (i = 0; i < 3; i++) { 1380 do { 1381 if (rb_is_head_page(page, page->list.prev)) { 1382 cpu_buffer->head_page = page; 1383 return page; 1384 } 1385 rb_inc_page(&page); 1386 } while (page != head); 1387 } 1388 1389 RB_WARN_ON(cpu_buffer, 1); 1390 1391 return NULL; 1392 } 1393 1394 static bool rb_head_page_replace(struct buffer_page *old, 1395 struct buffer_page *new) 1396 { 1397 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1398 unsigned long val; 1399 1400 val = *ptr & ~RB_FLAG_MASK; 1401 val |= RB_PAGE_HEAD; 1402 1403 return try_cmpxchg(ptr, &val, (unsigned long)&new->list); 1404 } 1405 1406 /* 1407 * rb_tail_page_update - move the tail page forward 1408 */ 1409 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1410 struct buffer_page *tail_page, 1411 struct buffer_page *next_page) 1412 { 1413 unsigned long old_entries; 1414 unsigned long old_write; 1415 1416 /* 1417 * The tail page now needs to be moved forward. 1418 * 1419 * We need to reset the tail page, but without messing 1420 * with possible erasing of data brought in by interrupts 1421 * that have moved the tail page and are currently on it. 1422 * 1423 * We add a counter to the write field to denote this. 1424 */ 1425 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1426 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1427 1428 /* 1429 * Just make sure we have seen our old_write and synchronize 1430 * with any interrupts that come in. 1431 */ 1432 barrier(); 1433 1434 /* 1435 * If the tail page is still the same as what we think 1436 * it is, then it is up to us to update the tail 1437 * pointer. 1438 */ 1439 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1440 /* Zero the write counter */ 1441 unsigned long val = old_write & ~RB_WRITE_MASK; 1442 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1443 1444 /* 1445 * This will only succeed if an interrupt did 1446 * not come in and change it. In which case, we 1447 * do not want to modify it. 1448 * 1449 * We add (void) to let the compiler know that we do not care 1450 * about the return value of these functions. We use the 1451 * cmpxchg to only update if an interrupt did not already 1452 * do it for us. If the cmpxchg fails, we don't care. 1453 */ 1454 (void)local_cmpxchg(&next_page->write, old_write, val); 1455 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1456 1457 /* 1458 * No need to worry about races with clearing out the commit. 1459 * it only can increment when a commit takes place. But that 1460 * only happens in the outer most nested commit. 1461 */ 1462 local_set(&next_page->page->commit, 0); 1463 1464 /* Either we update tail_page or an interrupt does */ 1465 if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page)) 1466 local_inc(&cpu_buffer->pages_touched); 1467 } 1468 } 1469 1470 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1471 struct buffer_page *bpage) 1472 { 1473 unsigned long val = (unsigned long)bpage; 1474 1475 RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK); 1476 } 1477 1478 /** 1479 * rb_check_pages - integrity check of buffer pages 1480 * @cpu_buffer: CPU buffer with pages to test 1481 * 1482 * As a safety measure we check to make sure the data pages have not 1483 * been corrupted. 1484 * 1485 * Callers of this function need to guarantee that the list of pages doesn't get 1486 * modified during the check. In particular, if it's possible that the function 1487 * is invoked with concurrent readers which can swap in a new reader page then 1488 * the caller should take cpu_buffer->reader_lock. 1489 */ 1490 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1491 { 1492 struct list_head *head = rb_list_head(cpu_buffer->pages); 1493 struct list_head *tmp; 1494 1495 if (RB_WARN_ON(cpu_buffer, 1496 rb_list_head(rb_list_head(head->next)->prev) != head)) 1497 return; 1498 1499 if (RB_WARN_ON(cpu_buffer, 1500 rb_list_head(rb_list_head(head->prev)->next) != head)) 1501 return; 1502 1503 for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) { 1504 if (RB_WARN_ON(cpu_buffer, 1505 rb_list_head(rb_list_head(tmp->next)->prev) != tmp)) 1506 return; 1507 1508 if (RB_WARN_ON(cpu_buffer, 1509 rb_list_head(rb_list_head(tmp->prev)->next) != tmp)) 1510 return; 1511 } 1512 } 1513 1514 /* 1515 * Take an address, add the meta data size as well as the array of 1516 * array subbuffer indexes, then align it to a subbuffer size. 1517 * 1518 * This is used to help find the next per cpu subbuffer within a mapped range. 1519 */ 1520 static unsigned long 1521 rb_range_align_subbuf(unsigned long addr, int subbuf_size, int nr_subbufs) 1522 { 1523 addr += sizeof(struct ring_buffer_meta) + 1524 sizeof(int) * nr_subbufs; 1525 return ALIGN(addr, subbuf_size); 1526 } 1527 1528 /* 1529 * Return the ring_buffer_meta for a given @cpu. 1530 */ 1531 static void *rb_range_meta(struct trace_buffer *buffer, int nr_pages, int cpu) 1532 { 1533 int subbuf_size = buffer->subbuf_size + BUF_PAGE_HDR_SIZE; 1534 unsigned long ptr = buffer->range_addr_start; 1535 struct ring_buffer_meta *meta; 1536 int nr_subbufs; 1537 1538 if (!ptr) 1539 return NULL; 1540 1541 /* When nr_pages passed in is zero, the first meta has already been initialized */ 1542 if (!nr_pages) { 1543 meta = (struct ring_buffer_meta *)ptr; 1544 nr_subbufs = meta->nr_subbufs; 1545 } else { 1546 meta = NULL; 1547 /* Include the reader page */ 1548 nr_subbufs = nr_pages + 1; 1549 } 1550 1551 /* 1552 * The first chunk may not be subbuffer aligned, where as 1553 * the rest of the chunks are. 1554 */ 1555 if (cpu) { 1556 ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs); 1557 ptr += subbuf_size * nr_subbufs; 1558 1559 /* We can use multiplication to find chunks greater than 1 */ 1560 if (cpu > 1) { 1561 unsigned long size; 1562 unsigned long p; 1563 1564 /* Save the beginning of this CPU chunk */ 1565 p = ptr; 1566 ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs); 1567 ptr += subbuf_size * nr_subbufs; 1568 1569 /* Now all chunks after this are the same size */ 1570 size = ptr - p; 1571 ptr += size * (cpu - 2); 1572 } 1573 } 1574 return (void *)ptr; 1575 } 1576 1577 /* Return the start of subbufs given the meta pointer */ 1578 static void *rb_subbufs_from_meta(struct ring_buffer_meta *meta) 1579 { 1580 int subbuf_size = meta->subbuf_size; 1581 unsigned long ptr; 1582 1583 ptr = (unsigned long)meta; 1584 ptr = rb_range_align_subbuf(ptr, subbuf_size, meta->nr_subbufs); 1585 1586 return (void *)ptr; 1587 } 1588 1589 /* 1590 * Return a specific sub-buffer for a given @cpu defined by @idx. 1591 */ 1592 static void *rb_range_buffer(struct ring_buffer_per_cpu *cpu_buffer, int idx) 1593 { 1594 struct ring_buffer_meta *meta; 1595 unsigned long ptr; 1596 int subbuf_size; 1597 1598 meta = rb_range_meta(cpu_buffer->buffer, 0, cpu_buffer->cpu); 1599 if (!meta) 1600 return NULL; 1601 1602 if (WARN_ON_ONCE(idx >= meta->nr_subbufs)) 1603 return NULL; 1604 1605 subbuf_size = meta->subbuf_size; 1606 1607 /* Map this buffer to the order that's in meta->buffers[] */ 1608 idx = meta->buffers[idx]; 1609 1610 ptr = (unsigned long)rb_subbufs_from_meta(meta); 1611 1612 ptr += subbuf_size * idx; 1613 if (ptr + subbuf_size > cpu_buffer->buffer->range_addr_end) 1614 return NULL; 1615 1616 return (void *)ptr; 1617 } 1618 1619 /* 1620 * See if the existing memory contains valid ring buffer data. 1621 * As the previous kernel must be the same as this kernel, all 1622 * the calculations (size of buffers and number of buffers) 1623 * must be the same. 1624 */ 1625 static bool rb_meta_valid(struct ring_buffer_meta *meta, int cpu, 1626 struct trace_buffer *buffer, int nr_pages) 1627 { 1628 int subbuf_size = PAGE_SIZE; 1629 struct buffer_data_page *subbuf; 1630 unsigned long buffers_start; 1631 unsigned long buffers_end; 1632 int i; 1633 1634 /* Check the meta magic and meta struct size */ 1635 if (meta->magic != RING_BUFFER_META_MAGIC || 1636 meta->struct_size != sizeof(*meta)) { 1637 pr_info("Ring buffer boot meta[%d] mismatch of magic or struct size\n", cpu); 1638 return false; 1639 } 1640 1641 /* The subbuffer's size and number of subbuffers must match */ 1642 if (meta->subbuf_size != subbuf_size || 1643 meta->nr_subbufs != nr_pages + 1) { 1644 pr_info("Ring buffer boot meta [%d] mismatch of subbuf_size/nr_pages\n", cpu); 1645 return false; 1646 } 1647 1648 buffers_start = meta->first_buffer; 1649 buffers_end = meta->first_buffer + (subbuf_size * meta->nr_subbufs); 1650 1651 /* Is the head and commit buffers within the range of buffers? */ 1652 if (meta->head_buffer < buffers_start || 1653 meta->head_buffer >= buffers_end) { 1654 pr_info("Ring buffer boot meta [%d] head buffer out of range\n", cpu); 1655 return false; 1656 } 1657 1658 if (meta->commit_buffer < buffers_start || 1659 meta->commit_buffer >= buffers_end) { 1660 pr_info("Ring buffer boot meta [%d] commit buffer out of range\n", cpu); 1661 return false; 1662 } 1663 1664 subbuf = rb_subbufs_from_meta(meta); 1665 1666 /* Is the meta buffers and the subbufs themselves have correct data? */ 1667 for (i = 0; i < meta->nr_subbufs; i++) { 1668 if (meta->buffers[i] < 0 || 1669 meta->buffers[i] >= meta->nr_subbufs) { 1670 pr_info("Ring buffer boot meta [%d] array out of range\n", cpu); 1671 return false; 1672 } 1673 1674 if ((unsigned)local_read(&subbuf->commit) > subbuf_size) { 1675 pr_info("Ring buffer boot meta [%d] buffer invalid commit\n", cpu); 1676 return false; 1677 } 1678 1679 subbuf = (void *)subbuf + subbuf_size; 1680 } 1681 1682 return true; 1683 } 1684 1685 static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf); 1686 1687 static int rb_read_data_buffer(struct buffer_data_page *dpage, int tail, int cpu, 1688 unsigned long long *timestamp, u64 *delta_ptr) 1689 { 1690 struct ring_buffer_event *event; 1691 u64 ts, delta; 1692 int events = 0; 1693 int e; 1694 1695 *delta_ptr = 0; 1696 *timestamp = 0; 1697 1698 ts = dpage->time_stamp; 1699 1700 for (e = 0; e < tail; e += rb_event_length(event)) { 1701 1702 event = (struct ring_buffer_event *)(dpage->data + e); 1703 1704 switch (event->type_len) { 1705 1706 case RINGBUF_TYPE_TIME_EXTEND: 1707 delta = rb_event_time_stamp(event); 1708 ts += delta; 1709 break; 1710 1711 case RINGBUF_TYPE_TIME_STAMP: 1712 delta = rb_event_time_stamp(event); 1713 delta = rb_fix_abs_ts(delta, ts); 1714 if (delta < ts) { 1715 *delta_ptr = delta; 1716 *timestamp = ts; 1717 return -1; 1718 } 1719 ts = delta; 1720 break; 1721 1722 case RINGBUF_TYPE_PADDING: 1723 if (event->time_delta == 1) 1724 break; 1725 fallthrough; 1726 case RINGBUF_TYPE_DATA: 1727 events++; 1728 ts += event->time_delta; 1729 break; 1730 1731 default: 1732 return -1; 1733 } 1734 } 1735 *timestamp = ts; 1736 return events; 1737 } 1738 1739 static int rb_validate_buffer(struct buffer_data_page *dpage, int cpu) 1740 { 1741 unsigned long long ts; 1742 u64 delta; 1743 int tail; 1744 1745 tail = local_read(&dpage->commit); 1746 return rb_read_data_buffer(dpage, tail, cpu, &ts, &delta); 1747 } 1748 1749 /* If the meta data has been validated, now validate the events */ 1750 static void rb_meta_validate_events(struct ring_buffer_per_cpu *cpu_buffer) 1751 { 1752 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 1753 struct buffer_page *head_page; 1754 unsigned long entry_bytes = 0; 1755 unsigned long entries = 0; 1756 int ret; 1757 int i; 1758 1759 if (!meta || !meta->head_buffer) 1760 return; 1761 1762 /* Do the reader page first */ 1763 ret = rb_validate_buffer(cpu_buffer->reader_page->page, cpu_buffer->cpu); 1764 if (ret < 0) { 1765 pr_info("Ring buffer reader page is invalid\n"); 1766 goto invalid; 1767 } 1768 entries += ret; 1769 entry_bytes += local_read(&cpu_buffer->reader_page->page->commit); 1770 local_set(&cpu_buffer->reader_page->entries, ret); 1771 1772 head_page = cpu_buffer->head_page; 1773 1774 /* If both the head and commit are on the reader_page then we are done. */ 1775 if (head_page == cpu_buffer->reader_page && 1776 head_page == cpu_buffer->commit_page) 1777 goto done; 1778 1779 /* Iterate until finding the commit page */ 1780 for (i = 0; i < meta->nr_subbufs + 1; i++, rb_inc_page(&head_page)) { 1781 1782 /* Reader page has already been done */ 1783 if (head_page == cpu_buffer->reader_page) 1784 continue; 1785 1786 ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu); 1787 if (ret < 0) { 1788 pr_info("Ring buffer meta [%d] invalid buffer page\n", 1789 cpu_buffer->cpu); 1790 goto invalid; 1791 } 1792 entries += ret; 1793 entry_bytes += local_read(&head_page->page->commit); 1794 local_set(&cpu_buffer->head_page->entries, ret); 1795 1796 if (head_page == cpu_buffer->commit_page) 1797 break; 1798 } 1799 1800 if (head_page != cpu_buffer->commit_page) { 1801 pr_info("Ring buffer meta [%d] commit page not found\n", 1802 cpu_buffer->cpu); 1803 goto invalid; 1804 } 1805 done: 1806 local_set(&cpu_buffer->entries, entries); 1807 local_set(&cpu_buffer->entries_bytes, entry_bytes); 1808 1809 pr_info("Ring buffer meta [%d] is from previous boot!\n", cpu_buffer->cpu); 1810 return; 1811 1812 invalid: 1813 /* The content of the buffers are invalid, reset the meta data */ 1814 meta->head_buffer = 0; 1815 meta->commit_buffer = 0; 1816 1817 /* Reset the reader page */ 1818 local_set(&cpu_buffer->reader_page->entries, 0); 1819 local_set(&cpu_buffer->reader_page->page->commit, 0); 1820 1821 /* Reset all the subbuffers */ 1822 for (i = 0; i < meta->nr_subbufs - 1; i++, rb_inc_page(&head_page)) { 1823 local_set(&head_page->entries, 0); 1824 local_set(&head_page->page->commit, 0); 1825 } 1826 } 1827 1828 /* Used to calculate data delta */ 1829 static char rb_data_ptr[] = ""; 1830 1831 #define THIS_TEXT_PTR ((unsigned long)rb_meta_init_text_addr) 1832 #define THIS_DATA_PTR ((unsigned long)rb_data_ptr) 1833 1834 static void rb_meta_init_text_addr(struct ring_buffer_meta *meta) 1835 { 1836 meta->text_addr = THIS_TEXT_PTR; 1837 meta->data_addr = THIS_DATA_PTR; 1838 } 1839 1840 static void rb_range_meta_init(struct trace_buffer *buffer, int nr_pages) 1841 { 1842 struct ring_buffer_meta *meta; 1843 unsigned long delta; 1844 void *subbuf; 1845 int cpu; 1846 int i; 1847 1848 for (cpu = 0; cpu < nr_cpu_ids; cpu++) { 1849 void *next_meta; 1850 1851 meta = rb_range_meta(buffer, nr_pages, cpu); 1852 1853 if (rb_meta_valid(meta, cpu, buffer, nr_pages)) { 1854 /* Make the mappings match the current address */ 1855 subbuf = rb_subbufs_from_meta(meta); 1856 delta = (unsigned long)subbuf - meta->first_buffer; 1857 meta->first_buffer += delta; 1858 meta->head_buffer += delta; 1859 meta->commit_buffer += delta; 1860 buffer->last_text_delta = THIS_TEXT_PTR - meta->text_addr; 1861 buffer->last_data_delta = THIS_DATA_PTR - meta->data_addr; 1862 continue; 1863 } 1864 1865 if (cpu < nr_cpu_ids - 1) 1866 next_meta = rb_range_meta(buffer, nr_pages, cpu + 1); 1867 else 1868 next_meta = (void *)buffer->range_addr_end; 1869 1870 memset(meta, 0, next_meta - (void *)meta); 1871 1872 meta->magic = RING_BUFFER_META_MAGIC; 1873 meta->struct_size = sizeof(*meta); 1874 1875 meta->nr_subbufs = nr_pages + 1; 1876 meta->subbuf_size = PAGE_SIZE; 1877 1878 subbuf = rb_subbufs_from_meta(meta); 1879 1880 meta->first_buffer = (unsigned long)subbuf; 1881 rb_meta_init_text_addr(meta); 1882 1883 /* 1884 * The buffers[] array holds the order of the sub-buffers 1885 * that are after the meta data. The sub-buffers may 1886 * be swapped out when read and inserted into a different 1887 * location of the ring buffer. Although their addresses 1888 * remain the same, the buffers[] array contains the 1889 * index into the sub-buffers holding their actual order. 1890 */ 1891 for (i = 0; i < meta->nr_subbufs; i++) { 1892 meta->buffers[i] = i; 1893 rb_init_page(subbuf); 1894 subbuf += meta->subbuf_size; 1895 } 1896 } 1897 } 1898 1899 static void *rbm_start(struct seq_file *m, loff_t *pos) 1900 { 1901 struct ring_buffer_per_cpu *cpu_buffer = m->private; 1902 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 1903 unsigned long val; 1904 1905 if (!meta) 1906 return NULL; 1907 1908 if (*pos > meta->nr_subbufs) 1909 return NULL; 1910 1911 val = *pos; 1912 val++; 1913 1914 return (void *)val; 1915 } 1916 1917 static void *rbm_next(struct seq_file *m, void *v, loff_t *pos) 1918 { 1919 (*pos)++; 1920 1921 return rbm_start(m, pos); 1922 } 1923 1924 static int rbm_show(struct seq_file *m, void *v) 1925 { 1926 struct ring_buffer_per_cpu *cpu_buffer = m->private; 1927 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 1928 unsigned long val = (unsigned long)v; 1929 1930 if (val == 1) { 1931 seq_printf(m, "head_buffer: %d\n", 1932 rb_meta_subbuf_idx(meta, (void *)meta->head_buffer)); 1933 seq_printf(m, "commit_buffer: %d\n", 1934 rb_meta_subbuf_idx(meta, (void *)meta->commit_buffer)); 1935 seq_printf(m, "subbuf_size: %d\n", meta->subbuf_size); 1936 seq_printf(m, "nr_subbufs: %d\n", meta->nr_subbufs); 1937 return 0; 1938 } 1939 1940 val -= 2; 1941 seq_printf(m, "buffer[%ld]: %d\n", val, meta->buffers[val]); 1942 1943 return 0; 1944 } 1945 1946 static void rbm_stop(struct seq_file *m, void *p) 1947 { 1948 } 1949 1950 static const struct seq_operations rb_meta_seq_ops = { 1951 .start = rbm_start, 1952 .next = rbm_next, 1953 .show = rbm_show, 1954 .stop = rbm_stop, 1955 }; 1956 1957 int ring_buffer_meta_seq_init(struct file *file, struct trace_buffer *buffer, int cpu) 1958 { 1959 struct seq_file *m; 1960 int ret; 1961 1962 ret = seq_open(file, &rb_meta_seq_ops); 1963 if (ret) 1964 return ret; 1965 1966 m = file->private_data; 1967 m->private = buffer->buffers[cpu]; 1968 1969 return 0; 1970 } 1971 1972 /* Map the buffer_pages to the previous head and commit pages */ 1973 static void rb_meta_buffer_update(struct ring_buffer_per_cpu *cpu_buffer, 1974 struct buffer_page *bpage) 1975 { 1976 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 1977 1978 if (meta->head_buffer == (unsigned long)bpage->page) 1979 cpu_buffer->head_page = bpage; 1980 1981 if (meta->commit_buffer == (unsigned long)bpage->page) { 1982 cpu_buffer->commit_page = bpage; 1983 cpu_buffer->tail_page = bpage; 1984 } 1985 } 1986 1987 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1988 long nr_pages, struct list_head *pages) 1989 { 1990 struct trace_buffer *buffer = cpu_buffer->buffer; 1991 struct ring_buffer_meta *meta = NULL; 1992 struct buffer_page *bpage, *tmp; 1993 bool user_thread = current->mm != NULL; 1994 gfp_t mflags; 1995 long i; 1996 1997 /* 1998 * Check if the available memory is there first. 1999 * Note, si_mem_available() only gives us a rough estimate of available 2000 * memory. It may not be accurate. But we don't care, we just want 2001 * to prevent doing any allocation when it is obvious that it is 2002 * not going to succeed. 2003 */ 2004 i = si_mem_available(); 2005 if (i < nr_pages) 2006 return -ENOMEM; 2007 2008 /* 2009 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 2010 * gracefully without invoking oom-killer and the system is not 2011 * destabilized. 2012 */ 2013 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; 2014 2015 /* 2016 * If a user thread allocates too much, and si_mem_available() 2017 * reports there's enough memory, even though there is not. 2018 * Make sure the OOM killer kills this thread. This can happen 2019 * even with RETRY_MAYFAIL because another task may be doing 2020 * an allocation after this task has taken all memory. 2021 * This is the task the OOM killer needs to take out during this 2022 * loop, even if it was triggered by an allocation somewhere else. 2023 */ 2024 if (user_thread) 2025 set_current_oom_origin(); 2026 2027 if (buffer->range_addr_start) 2028 meta = rb_range_meta(buffer, nr_pages, cpu_buffer->cpu); 2029 2030 for (i = 0; i < nr_pages; i++) { 2031 struct page *page; 2032 2033 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 2034 mflags, cpu_to_node(cpu_buffer->cpu)); 2035 if (!bpage) 2036 goto free_pages; 2037 2038 rb_check_bpage(cpu_buffer, bpage); 2039 2040 /* 2041 * Append the pages as for mapped buffers we want to keep 2042 * the order 2043 */ 2044 list_add_tail(&bpage->list, pages); 2045 2046 if (meta) { 2047 /* A range was given. Use that for the buffer page */ 2048 bpage->page = rb_range_buffer(cpu_buffer, i + 1); 2049 if (!bpage->page) 2050 goto free_pages; 2051 /* If this is valid from a previous boot */ 2052 if (meta->head_buffer) 2053 rb_meta_buffer_update(cpu_buffer, bpage); 2054 bpage->range = 1; 2055 bpage->id = i + 1; 2056 } else { 2057 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), 2058 mflags | __GFP_COMP | __GFP_ZERO, 2059 cpu_buffer->buffer->subbuf_order); 2060 if (!page) 2061 goto free_pages; 2062 bpage->page = page_address(page); 2063 rb_init_page(bpage->page); 2064 } 2065 bpage->order = cpu_buffer->buffer->subbuf_order; 2066 2067 if (user_thread && fatal_signal_pending(current)) 2068 goto free_pages; 2069 } 2070 if (user_thread) 2071 clear_current_oom_origin(); 2072 2073 return 0; 2074 2075 free_pages: 2076 list_for_each_entry_safe(bpage, tmp, pages, list) { 2077 list_del_init(&bpage->list); 2078 free_buffer_page(bpage); 2079 } 2080 if (user_thread) 2081 clear_current_oom_origin(); 2082 2083 return -ENOMEM; 2084 } 2085 2086 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 2087 unsigned long nr_pages) 2088 { 2089 LIST_HEAD(pages); 2090 2091 WARN_ON(!nr_pages); 2092 2093 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages)) 2094 return -ENOMEM; 2095 2096 /* 2097 * The ring buffer page list is a circular list that does not 2098 * start and end with a list head. All page list items point to 2099 * other pages. 2100 */ 2101 cpu_buffer->pages = pages.next; 2102 list_del(&pages); 2103 2104 cpu_buffer->nr_pages = nr_pages; 2105 2106 rb_check_pages(cpu_buffer); 2107 2108 return 0; 2109 } 2110 2111 static struct ring_buffer_per_cpu * 2112 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu) 2113 { 2114 struct ring_buffer_per_cpu *cpu_buffer; 2115 struct ring_buffer_meta *meta; 2116 struct buffer_page *bpage; 2117 struct page *page; 2118 int ret; 2119 2120 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 2121 GFP_KERNEL, cpu_to_node(cpu)); 2122 if (!cpu_buffer) 2123 return NULL; 2124 2125 cpu_buffer->cpu = cpu; 2126 cpu_buffer->buffer = buffer; 2127 raw_spin_lock_init(&cpu_buffer->reader_lock); 2128 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 2129 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 2130 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 2131 init_completion(&cpu_buffer->update_done); 2132 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 2133 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 2134 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 2135 mutex_init(&cpu_buffer->mapping_lock); 2136 2137 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 2138 GFP_KERNEL, cpu_to_node(cpu)); 2139 if (!bpage) 2140 goto fail_free_buffer; 2141 2142 rb_check_bpage(cpu_buffer, bpage); 2143 2144 cpu_buffer->reader_page = bpage; 2145 2146 if (buffer->range_addr_start) { 2147 /* 2148 * Range mapped buffers have the same restrictions as memory 2149 * mapped ones do. 2150 */ 2151 cpu_buffer->mapped = 1; 2152 cpu_buffer->ring_meta = rb_range_meta(buffer, nr_pages, cpu); 2153 bpage->page = rb_range_buffer(cpu_buffer, 0); 2154 if (!bpage->page) 2155 goto fail_free_reader; 2156 if (cpu_buffer->ring_meta->head_buffer) 2157 rb_meta_buffer_update(cpu_buffer, bpage); 2158 bpage->range = 1; 2159 } else { 2160 page = alloc_pages_node(cpu_to_node(cpu), 2161 GFP_KERNEL | __GFP_COMP | __GFP_ZERO, 2162 cpu_buffer->buffer->subbuf_order); 2163 if (!page) 2164 goto fail_free_reader; 2165 bpage->page = page_address(page); 2166 rb_init_page(bpage->page); 2167 } 2168 2169 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 2170 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2171 2172 ret = rb_allocate_pages(cpu_buffer, nr_pages); 2173 if (ret < 0) 2174 goto fail_free_reader; 2175 2176 rb_meta_validate_events(cpu_buffer); 2177 2178 /* If the boot meta was valid then this has already been updated */ 2179 meta = cpu_buffer->ring_meta; 2180 if (!meta || !meta->head_buffer || 2181 !cpu_buffer->head_page || !cpu_buffer->commit_page || !cpu_buffer->tail_page) { 2182 if (meta && meta->head_buffer && 2183 (cpu_buffer->head_page || cpu_buffer->commit_page || cpu_buffer->tail_page)) { 2184 pr_warn("Ring buffer meta buffers not all mapped\n"); 2185 if (!cpu_buffer->head_page) 2186 pr_warn(" Missing head_page\n"); 2187 if (!cpu_buffer->commit_page) 2188 pr_warn(" Missing commit_page\n"); 2189 if (!cpu_buffer->tail_page) 2190 pr_warn(" Missing tail_page\n"); 2191 } 2192 2193 cpu_buffer->head_page 2194 = list_entry(cpu_buffer->pages, struct buffer_page, list); 2195 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 2196 2197 rb_head_page_activate(cpu_buffer); 2198 2199 if (cpu_buffer->ring_meta) 2200 meta->commit_buffer = meta->head_buffer; 2201 } else { 2202 /* The valid meta buffer still needs to activate the head page */ 2203 rb_head_page_activate(cpu_buffer); 2204 } 2205 2206 return cpu_buffer; 2207 2208 fail_free_reader: 2209 free_buffer_page(cpu_buffer->reader_page); 2210 2211 fail_free_buffer: 2212 kfree(cpu_buffer); 2213 return NULL; 2214 } 2215 2216 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 2217 { 2218 struct list_head *head = cpu_buffer->pages; 2219 struct buffer_page *bpage, *tmp; 2220 2221 irq_work_sync(&cpu_buffer->irq_work.work); 2222 2223 free_buffer_page(cpu_buffer->reader_page); 2224 2225 if (head) { 2226 rb_head_page_deactivate(cpu_buffer); 2227 2228 list_for_each_entry_safe(bpage, tmp, head, list) { 2229 list_del_init(&bpage->list); 2230 free_buffer_page(bpage); 2231 } 2232 bpage = list_entry(head, struct buffer_page, list); 2233 free_buffer_page(bpage); 2234 } 2235 2236 free_page((unsigned long)cpu_buffer->free_page); 2237 2238 kfree(cpu_buffer); 2239 } 2240 2241 static struct trace_buffer *alloc_buffer(unsigned long size, unsigned flags, 2242 int order, unsigned long start, 2243 unsigned long end, 2244 struct lock_class_key *key) 2245 { 2246 struct trace_buffer *buffer; 2247 long nr_pages; 2248 int subbuf_size; 2249 int bsize; 2250 int cpu; 2251 int ret; 2252 2253 /* keep it in its own cache line */ 2254 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 2255 GFP_KERNEL); 2256 if (!buffer) 2257 return NULL; 2258 2259 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 2260 goto fail_free_buffer; 2261 2262 buffer->subbuf_order = order; 2263 subbuf_size = (PAGE_SIZE << order); 2264 buffer->subbuf_size = subbuf_size - BUF_PAGE_HDR_SIZE; 2265 2266 /* Max payload is buffer page size - header (8bytes) */ 2267 buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2); 2268 2269 buffer->flags = flags; 2270 buffer->clock = trace_clock_local; 2271 buffer->reader_lock_key = key; 2272 2273 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 2274 init_waitqueue_head(&buffer->irq_work.waiters); 2275 2276 buffer->cpus = nr_cpu_ids; 2277 2278 bsize = sizeof(void *) * nr_cpu_ids; 2279 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 2280 GFP_KERNEL); 2281 if (!buffer->buffers) 2282 goto fail_free_cpumask; 2283 2284 /* If start/end are specified, then that overrides size */ 2285 if (start && end) { 2286 unsigned long ptr; 2287 int n; 2288 2289 size = end - start; 2290 size = size / nr_cpu_ids; 2291 2292 /* 2293 * The number of sub-buffers (nr_pages) is determined by the 2294 * total size allocated minus the meta data size. 2295 * Then that is divided by the number of per CPU buffers 2296 * needed, plus account for the integer array index that 2297 * will be appended to the meta data. 2298 */ 2299 nr_pages = (size - sizeof(struct ring_buffer_meta)) / 2300 (subbuf_size + sizeof(int)); 2301 /* Need at least two pages plus the reader page */ 2302 if (nr_pages < 3) 2303 goto fail_free_buffers; 2304 2305 again: 2306 /* Make sure that the size fits aligned */ 2307 for (n = 0, ptr = start; n < nr_cpu_ids; n++) { 2308 ptr += sizeof(struct ring_buffer_meta) + 2309 sizeof(int) * nr_pages; 2310 ptr = ALIGN(ptr, subbuf_size); 2311 ptr += subbuf_size * nr_pages; 2312 } 2313 if (ptr > end) { 2314 if (nr_pages <= 3) 2315 goto fail_free_buffers; 2316 nr_pages--; 2317 goto again; 2318 } 2319 2320 /* nr_pages should not count the reader page */ 2321 nr_pages--; 2322 buffer->range_addr_start = start; 2323 buffer->range_addr_end = end; 2324 2325 rb_range_meta_init(buffer, nr_pages); 2326 } else { 2327 2328 /* need at least two pages */ 2329 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size); 2330 if (nr_pages < 2) 2331 nr_pages = 2; 2332 } 2333 2334 cpu = raw_smp_processor_id(); 2335 cpumask_set_cpu(cpu, buffer->cpumask); 2336 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 2337 if (!buffer->buffers[cpu]) 2338 goto fail_free_buffers; 2339 2340 /* If already mapped, do not hook to CPU hotplug */ 2341 if (!start) { 2342 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 2343 if (ret < 0) 2344 goto fail_free_buffers; 2345 } 2346 2347 mutex_init(&buffer->mutex); 2348 2349 return buffer; 2350 2351 fail_free_buffers: 2352 for_each_buffer_cpu(buffer, cpu) { 2353 if (buffer->buffers[cpu]) 2354 rb_free_cpu_buffer(buffer->buffers[cpu]); 2355 } 2356 kfree(buffer->buffers); 2357 2358 fail_free_cpumask: 2359 free_cpumask_var(buffer->cpumask); 2360 2361 fail_free_buffer: 2362 kfree(buffer); 2363 return NULL; 2364 } 2365 2366 /** 2367 * __ring_buffer_alloc - allocate a new ring_buffer 2368 * @size: the size in bytes per cpu that is needed. 2369 * @flags: attributes to set for the ring buffer. 2370 * @key: ring buffer reader_lock_key. 2371 * 2372 * Currently the only flag that is available is the RB_FL_OVERWRITE 2373 * flag. This flag means that the buffer will overwrite old data 2374 * when the buffer wraps. If this flag is not set, the buffer will 2375 * drop data when the tail hits the head. 2376 */ 2377 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 2378 struct lock_class_key *key) 2379 { 2380 /* Default buffer page size - one system page */ 2381 return alloc_buffer(size, flags, 0, 0, 0,key); 2382 2383 } 2384 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 2385 2386 /** 2387 * __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory 2388 * @size: the size in bytes per cpu that is needed. 2389 * @flags: attributes to set for the ring buffer. 2390 * @start: start of allocated range 2391 * @range_size: size of allocated range 2392 * @order: sub-buffer order 2393 * @key: ring buffer reader_lock_key. 2394 * 2395 * Currently the only flag that is available is the RB_FL_OVERWRITE 2396 * flag. This flag means that the buffer will overwrite old data 2397 * when the buffer wraps. If this flag is not set, the buffer will 2398 * drop data when the tail hits the head. 2399 */ 2400 struct trace_buffer *__ring_buffer_alloc_range(unsigned long size, unsigned flags, 2401 int order, unsigned long start, 2402 unsigned long range_size, 2403 struct lock_class_key *key) 2404 { 2405 return alloc_buffer(size, flags, order, start, start + range_size, key); 2406 } 2407 2408 /** 2409 * ring_buffer_last_boot_delta - return the delta offset from last boot 2410 * @buffer: The buffer to return the delta from 2411 * @text: Return text delta 2412 * @data: Return data delta 2413 * 2414 * Returns: The true if the delta is non zero 2415 */ 2416 bool ring_buffer_last_boot_delta(struct trace_buffer *buffer, long *text, 2417 long *data) 2418 { 2419 if (!buffer) 2420 return false; 2421 2422 if (!buffer->last_text_delta) 2423 return false; 2424 2425 *text = buffer->last_text_delta; 2426 *data = buffer->last_data_delta; 2427 2428 return true; 2429 } 2430 2431 /** 2432 * ring_buffer_free - free a ring buffer. 2433 * @buffer: the buffer to free. 2434 */ 2435 void 2436 ring_buffer_free(struct trace_buffer *buffer) 2437 { 2438 int cpu; 2439 2440 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 2441 2442 irq_work_sync(&buffer->irq_work.work); 2443 2444 for_each_buffer_cpu(buffer, cpu) 2445 rb_free_cpu_buffer(buffer->buffers[cpu]); 2446 2447 kfree(buffer->buffers); 2448 free_cpumask_var(buffer->cpumask); 2449 2450 kfree(buffer); 2451 } 2452 EXPORT_SYMBOL_GPL(ring_buffer_free); 2453 2454 void ring_buffer_set_clock(struct trace_buffer *buffer, 2455 u64 (*clock)(void)) 2456 { 2457 buffer->clock = clock; 2458 } 2459 2460 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs) 2461 { 2462 buffer->time_stamp_abs = abs; 2463 } 2464 2465 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer) 2466 { 2467 return buffer->time_stamp_abs; 2468 } 2469 2470 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 2471 { 2472 return local_read(&bpage->entries) & RB_WRITE_MASK; 2473 } 2474 2475 static inline unsigned long rb_page_write(struct buffer_page *bpage) 2476 { 2477 return local_read(&bpage->write) & RB_WRITE_MASK; 2478 } 2479 2480 static bool 2481 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 2482 { 2483 struct list_head *tail_page, *to_remove, *next_page; 2484 struct buffer_page *to_remove_page, *tmp_iter_page; 2485 struct buffer_page *last_page, *first_page; 2486 unsigned long nr_removed; 2487 unsigned long head_bit; 2488 int page_entries; 2489 2490 head_bit = 0; 2491 2492 raw_spin_lock_irq(&cpu_buffer->reader_lock); 2493 atomic_inc(&cpu_buffer->record_disabled); 2494 /* 2495 * We don't race with the readers since we have acquired the reader 2496 * lock. We also don't race with writers after disabling recording. 2497 * This makes it easy to figure out the first and the last page to be 2498 * removed from the list. We unlink all the pages in between including 2499 * the first and last pages. This is done in a busy loop so that we 2500 * lose the least number of traces. 2501 * The pages are freed after we restart recording and unlock readers. 2502 */ 2503 tail_page = &cpu_buffer->tail_page->list; 2504 2505 /* 2506 * tail page might be on reader page, we remove the next page 2507 * from the ring buffer 2508 */ 2509 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 2510 tail_page = rb_list_head(tail_page->next); 2511 to_remove = tail_page; 2512 2513 /* start of pages to remove */ 2514 first_page = list_entry(rb_list_head(to_remove->next), 2515 struct buffer_page, list); 2516 2517 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 2518 to_remove = rb_list_head(to_remove)->next; 2519 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 2520 } 2521 /* Read iterators need to reset themselves when some pages removed */ 2522 cpu_buffer->pages_removed += nr_removed; 2523 2524 next_page = rb_list_head(to_remove)->next; 2525 2526 /* 2527 * Now we remove all pages between tail_page and next_page. 2528 * Make sure that we have head_bit value preserved for the 2529 * next page 2530 */ 2531 tail_page->next = (struct list_head *)((unsigned long)next_page | 2532 head_bit); 2533 next_page = rb_list_head(next_page); 2534 next_page->prev = tail_page; 2535 2536 /* make sure pages points to a valid page in the ring buffer */ 2537 cpu_buffer->pages = next_page; 2538 2539 /* update head page */ 2540 if (head_bit) 2541 cpu_buffer->head_page = list_entry(next_page, 2542 struct buffer_page, list); 2543 2544 /* pages are removed, resume tracing and then free the pages */ 2545 atomic_dec(&cpu_buffer->record_disabled); 2546 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 2547 2548 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 2549 2550 /* last buffer page to remove */ 2551 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 2552 list); 2553 tmp_iter_page = first_page; 2554 2555 do { 2556 cond_resched(); 2557 2558 to_remove_page = tmp_iter_page; 2559 rb_inc_page(&tmp_iter_page); 2560 2561 /* update the counters */ 2562 page_entries = rb_page_entries(to_remove_page); 2563 if (page_entries) { 2564 /* 2565 * If something was added to this page, it was full 2566 * since it is not the tail page. So we deduct the 2567 * bytes consumed in ring buffer from here. 2568 * Increment overrun to account for the lost events. 2569 */ 2570 local_add(page_entries, &cpu_buffer->overrun); 2571 local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes); 2572 local_inc(&cpu_buffer->pages_lost); 2573 } 2574 2575 /* 2576 * We have already removed references to this list item, just 2577 * free up the buffer_page and its page 2578 */ 2579 free_buffer_page(to_remove_page); 2580 nr_removed--; 2581 2582 } while (to_remove_page != last_page); 2583 2584 RB_WARN_ON(cpu_buffer, nr_removed); 2585 2586 return nr_removed == 0; 2587 } 2588 2589 static bool 2590 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 2591 { 2592 struct list_head *pages = &cpu_buffer->new_pages; 2593 unsigned long flags; 2594 bool success; 2595 int retries; 2596 2597 /* Can be called at early boot up, where interrupts must not been enabled */ 2598 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2599 /* 2600 * We are holding the reader lock, so the reader page won't be swapped 2601 * in the ring buffer. Now we are racing with the writer trying to 2602 * move head page and the tail page. 2603 * We are going to adapt the reader page update process where: 2604 * 1. We first splice the start and end of list of new pages between 2605 * the head page and its previous page. 2606 * 2. We cmpxchg the prev_page->next to point from head page to the 2607 * start of new pages list. 2608 * 3. Finally, we update the head->prev to the end of new list. 2609 * 2610 * We will try this process 10 times, to make sure that we don't keep 2611 * spinning. 2612 */ 2613 retries = 10; 2614 success = false; 2615 while (retries--) { 2616 struct list_head *head_page, *prev_page; 2617 struct list_head *last_page, *first_page; 2618 struct list_head *head_page_with_bit; 2619 struct buffer_page *hpage = rb_set_head_page(cpu_buffer); 2620 2621 if (!hpage) 2622 break; 2623 head_page = &hpage->list; 2624 prev_page = head_page->prev; 2625 2626 first_page = pages->next; 2627 last_page = pages->prev; 2628 2629 head_page_with_bit = (struct list_head *) 2630 ((unsigned long)head_page | RB_PAGE_HEAD); 2631 2632 last_page->next = head_page_with_bit; 2633 first_page->prev = prev_page; 2634 2635 /* caution: head_page_with_bit gets updated on cmpxchg failure */ 2636 if (try_cmpxchg(&prev_page->next, 2637 &head_page_with_bit, first_page)) { 2638 /* 2639 * yay, we replaced the page pointer to our new list, 2640 * now, we just have to update to head page's prev 2641 * pointer to point to end of list 2642 */ 2643 head_page->prev = last_page; 2644 success = true; 2645 break; 2646 } 2647 } 2648 2649 if (success) 2650 INIT_LIST_HEAD(pages); 2651 /* 2652 * If we weren't successful in adding in new pages, warn and stop 2653 * tracing 2654 */ 2655 RB_WARN_ON(cpu_buffer, !success); 2656 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2657 2658 /* free pages if they weren't inserted */ 2659 if (!success) { 2660 struct buffer_page *bpage, *tmp; 2661 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2662 list) { 2663 list_del_init(&bpage->list); 2664 free_buffer_page(bpage); 2665 } 2666 } 2667 return success; 2668 } 2669 2670 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 2671 { 2672 bool success; 2673 2674 if (cpu_buffer->nr_pages_to_update > 0) 2675 success = rb_insert_pages(cpu_buffer); 2676 else 2677 success = rb_remove_pages(cpu_buffer, 2678 -cpu_buffer->nr_pages_to_update); 2679 2680 if (success) 2681 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 2682 } 2683 2684 static void update_pages_handler(struct work_struct *work) 2685 { 2686 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 2687 struct ring_buffer_per_cpu, update_pages_work); 2688 rb_update_pages(cpu_buffer); 2689 complete(&cpu_buffer->update_done); 2690 } 2691 2692 /** 2693 * ring_buffer_resize - resize the ring buffer 2694 * @buffer: the buffer to resize. 2695 * @size: the new size. 2696 * @cpu_id: the cpu buffer to resize 2697 * 2698 * Minimum size is 2 * buffer->subbuf_size. 2699 * 2700 * Returns 0 on success and < 0 on failure. 2701 */ 2702 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size, 2703 int cpu_id) 2704 { 2705 struct ring_buffer_per_cpu *cpu_buffer; 2706 unsigned long nr_pages; 2707 int cpu, err; 2708 2709 /* 2710 * Always succeed at resizing a non-existent buffer: 2711 */ 2712 if (!buffer) 2713 return 0; 2714 2715 /* Make sure the requested buffer exists */ 2716 if (cpu_id != RING_BUFFER_ALL_CPUS && 2717 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 2718 return 0; 2719 2720 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size); 2721 2722 /* we need a minimum of two pages */ 2723 if (nr_pages < 2) 2724 nr_pages = 2; 2725 2726 /* prevent another thread from changing buffer sizes */ 2727 mutex_lock(&buffer->mutex); 2728 atomic_inc(&buffer->resizing); 2729 2730 if (cpu_id == RING_BUFFER_ALL_CPUS) { 2731 /* 2732 * Don't succeed if resizing is disabled, as a reader might be 2733 * manipulating the ring buffer and is expecting a sane state while 2734 * this is true. 2735 */ 2736 for_each_buffer_cpu(buffer, cpu) { 2737 cpu_buffer = buffer->buffers[cpu]; 2738 if (atomic_read(&cpu_buffer->resize_disabled)) { 2739 err = -EBUSY; 2740 goto out_err_unlock; 2741 } 2742 } 2743 2744 /* calculate the pages to update */ 2745 for_each_buffer_cpu(buffer, cpu) { 2746 cpu_buffer = buffer->buffers[cpu]; 2747 2748 cpu_buffer->nr_pages_to_update = nr_pages - 2749 cpu_buffer->nr_pages; 2750 /* 2751 * nothing more to do for removing pages or no update 2752 */ 2753 if (cpu_buffer->nr_pages_to_update <= 0) 2754 continue; 2755 /* 2756 * to add pages, make sure all new pages can be 2757 * allocated without receiving ENOMEM 2758 */ 2759 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2760 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2761 &cpu_buffer->new_pages)) { 2762 /* not enough memory for new pages */ 2763 err = -ENOMEM; 2764 goto out_err; 2765 } 2766 2767 cond_resched(); 2768 } 2769 2770 cpus_read_lock(); 2771 /* 2772 * Fire off all the required work handlers 2773 * We can't schedule on offline CPUs, but it's not necessary 2774 * since we can change their buffer sizes without any race. 2775 */ 2776 for_each_buffer_cpu(buffer, cpu) { 2777 cpu_buffer = buffer->buffers[cpu]; 2778 if (!cpu_buffer->nr_pages_to_update) 2779 continue; 2780 2781 /* Can't run something on an offline CPU. */ 2782 if (!cpu_online(cpu)) { 2783 rb_update_pages(cpu_buffer); 2784 cpu_buffer->nr_pages_to_update = 0; 2785 } else { 2786 /* Run directly if possible. */ 2787 migrate_disable(); 2788 if (cpu != smp_processor_id()) { 2789 migrate_enable(); 2790 schedule_work_on(cpu, 2791 &cpu_buffer->update_pages_work); 2792 } else { 2793 update_pages_handler(&cpu_buffer->update_pages_work); 2794 migrate_enable(); 2795 } 2796 } 2797 } 2798 2799 /* wait for all the updates to complete */ 2800 for_each_buffer_cpu(buffer, cpu) { 2801 cpu_buffer = buffer->buffers[cpu]; 2802 if (!cpu_buffer->nr_pages_to_update) 2803 continue; 2804 2805 if (cpu_online(cpu)) 2806 wait_for_completion(&cpu_buffer->update_done); 2807 cpu_buffer->nr_pages_to_update = 0; 2808 } 2809 2810 cpus_read_unlock(); 2811 } else { 2812 cpu_buffer = buffer->buffers[cpu_id]; 2813 2814 if (nr_pages == cpu_buffer->nr_pages) 2815 goto out; 2816 2817 /* 2818 * Don't succeed if resizing is disabled, as a reader might be 2819 * manipulating the ring buffer and is expecting a sane state while 2820 * this is true. 2821 */ 2822 if (atomic_read(&cpu_buffer->resize_disabled)) { 2823 err = -EBUSY; 2824 goto out_err_unlock; 2825 } 2826 2827 cpu_buffer->nr_pages_to_update = nr_pages - 2828 cpu_buffer->nr_pages; 2829 2830 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2831 if (cpu_buffer->nr_pages_to_update > 0 && 2832 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2833 &cpu_buffer->new_pages)) { 2834 err = -ENOMEM; 2835 goto out_err; 2836 } 2837 2838 cpus_read_lock(); 2839 2840 /* Can't run something on an offline CPU. */ 2841 if (!cpu_online(cpu_id)) 2842 rb_update_pages(cpu_buffer); 2843 else { 2844 /* Run directly if possible. */ 2845 migrate_disable(); 2846 if (cpu_id == smp_processor_id()) { 2847 rb_update_pages(cpu_buffer); 2848 migrate_enable(); 2849 } else { 2850 migrate_enable(); 2851 schedule_work_on(cpu_id, 2852 &cpu_buffer->update_pages_work); 2853 wait_for_completion(&cpu_buffer->update_done); 2854 } 2855 } 2856 2857 cpu_buffer->nr_pages_to_update = 0; 2858 cpus_read_unlock(); 2859 } 2860 2861 out: 2862 /* 2863 * The ring buffer resize can happen with the ring buffer 2864 * enabled, so that the update disturbs the tracing as little 2865 * as possible. But if the buffer is disabled, we do not need 2866 * to worry about that, and we can take the time to verify 2867 * that the buffer is not corrupt. 2868 */ 2869 if (atomic_read(&buffer->record_disabled)) { 2870 atomic_inc(&buffer->record_disabled); 2871 /* 2872 * Even though the buffer was disabled, we must make sure 2873 * that it is truly disabled before calling rb_check_pages. 2874 * There could have been a race between checking 2875 * record_disable and incrementing it. 2876 */ 2877 synchronize_rcu(); 2878 for_each_buffer_cpu(buffer, cpu) { 2879 unsigned long flags; 2880 2881 cpu_buffer = buffer->buffers[cpu]; 2882 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2883 rb_check_pages(cpu_buffer); 2884 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2885 } 2886 atomic_dec(&buffer->record_disabled); 2887 } 2888 2889 atomic_dec(&buffer->resizing); 2890 mutex_unlock(&buffer->mutex); 2891 return 0; 2892 2893 out_err: 2894 for_each_buffer_cpu(buffer, cpu) { 2895 struct buffer_page *bpage, *tmp; 2896 2897 cpu_buffer = buffer->buffers[cpu]; 2898 cpu_buffer->nr_pages_to_update = 0; 2899 2900 if (list_empty(&cpu_buffer->new_pages)) 2901 continue; 2902 2903 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2904 list) { 2905 list_del_init(&bpage->list); 2906 free_buffer_page(bpage); 2907 } 2908 } 2909 out_err_unlock: 2910 atomic_dec(&buffer->resizing); 2911 mutex_unlock(&buffer->mutex); 2912 return err; 2913 } 2914 EXPORT_SYMBOL_GPL(ring_buffer_resize); 2915 2916 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val) 2917 { 2918 mutex_lock(&buffer->mutex); 2919 if (val) 2920 buffer->flags |= RB_FL_OVERWRITE; 2921 else 2922 buffer->flags &= ~RB_FL_OVERWRITE; 2923 mutex_unlock(&buffer->mutex); 2924 } 2925 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 2926 2927 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 2928 { 2929 return bpage->page->data + index; 2930 } 2931 2932 static __always_inline struct ring_buffer_event * 2933 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 2934 { 2935 return __rb_page_index(cpu_buffer->reader_page, 2936 cpu_buffer->reader_page->read); 2937 } 2938 2939 static struct ring_buffer_event * 2940 rb_iter_head_event(struct ring_buffer_iter *iter) 2941 { 2942 struct ring_buffer_event *event; 2943 struct buffer_page *iter_head_page = iter->head_page; 2944 unsigned long commit; 2945 unsigned length; 2946 2947 if (iter->head != iter->next_event) 2948 return iter->event; 2949 2950 /* 2951 * When the writer goes across pages, it issues a cmpxchg which 2952 * is a mb(), which will synchronize with the rmb here. 2953 * (see rb_tail_page_update() and __rb_reserve_next()) 2954 */ 2955 commit = rb_page_commit(iter_head_page); 2956 smp_rmb(); 2957 2958 /* An event needs to be at least 8 bytes in size */ 2959 if (iter->head > commit - 8) 2960 goto reset; 2961 2962 event = __rb_page_index(iter_head_page, iter->head); 2963 length = rb_event_length(event); 2964 2965 /* 2966 * READ_ONCE() doesn't work on functions and we don't want the 2967 * compiler doing any crazy optimizations with length. 2968 */ 2969 barrier(); 2970 2971 if ((iter->head + length) > commit || length > iter->event_size) 2972 /* Writer corrupted the read? */ 2973 goto reset; 2974 2975 memcpy(iter->event, event, length); 2976 /* 2977 * If the page stamp is still the same after this rmb() then the 2978 * event was safely copied without the writer entering the page. 2979 */ 2980 smp_rmb(); 2981 2982 /* Make sure the page didn't change since we read this */ 2983 if (iter->page_stamp != iter_head_page->page->time_stamp || 2984 commit > rb_page_commit(iter_head_page)) 2985 goto reset; 2986 2987 iter->next_event = iter->head + length; 2988 return iter->event; 2989 reset: 2990 /* Reset to the beginning */ 2991 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2992 iter->head = 0; 2993 iter->next_event = 0; 2994 iter->missed_events = 1; 2995 return NULL; 2996 } 2997 2998 /* Size is determined by what has been committed */ 2999 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 3000 { 3001 return rb_page_commit(bpage) & ~RB_MISSED_MASK; 3002 } 3003 3004 static __always_inline unsigned 3005 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 3006 { 3007 return rb_page_commit(cpu_buffer->commit_page); 3008 } 3009 3010 static __always_inline unsigned 3011 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event) 3012 { 3013 unsigned long addr = (unsigned long)event; 3014 3015 addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1; 3016 3017 return addr - BUF_PAGE_HDR_SIZE; 3018 } 3019 3020 static void rb_inc_iter(struct ring_buffer_iter *iter) 3021 { 3022 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3023 3024 /* 3025 * The iterator could be on the reader page (it starts there). 3026 * But the head could have moved, since the reader was 3027 * found. Check for this case and assign the iterator 3028 * to the head page instead of next. 3029 */ 3030 if (iter->head_page == cpu_buffer->reader_page) 3031 iter->head_page = rb_set_head_page(cpu_buffer); 3032 else 3033 rb_inc_page(&iter->head_page); 3034 3035 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 3036 iter->head = 0; 3037 iter->next_event = 0; 3038 } 3039 3040 /* Return the index into the sub-buffers for a given sub-buffer */ 3041 static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf) 3042 { 3043 void *subbuf_array; 3044 3045 subbuf_array = (void *)meta + sizeof(int) * meta->nr_subbufs; 3046 subbuf_array = (void *)ALIGN((unsigned long)subbuf_array, meta->subbuf_size); 3047 return (subbuf - subbuf_array) / meta->subbuf_size; 3048 } 3049 3050 static void rb_update_meta_head(struct ring_buffer_per_cpu *cpu_buffer, 3051 struct buffer_page *next_page) 3052 { 3053 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 3054 unsigned long old_head = (unsigned long)next_page->page; 3055 unsigned long new_head; 3056 3057 rb_inc_page(&next_page); 3058 new_head = (unsigned long)next_page->page; 3059 3060 /* 3061 * Only move it forward once, if something else came in and 3062 * moved it forward, then we don't want to touch it. 3063 */ 3064 (void)cmpxchg(&meta->head_buffer, old_head, new_head); 3065 } 3066 3067 static void rb_update_meta_reader(struct ring_buffer_per_cpu *cpu_buffer, 3068 struct buffer_page *reader) 3069 { 3070 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 3071 void *old_reader = cpu_buffer->reader_page->page; 3072 void *new_reader = reader->page; 3073 int id; 3074 3075 id = reader->id; 3076 cpu_buffer->reader_page->id = id; 3077 reader->id = 0; 3078 3079 meta->buffers[0] = rb_meta_subbuf_idx(meta, new_reader); 3080 meta->buffers[id] = rb_meta_subbuf_idx(meta, old_reader); 3081 3082 /* The head pointer is the one after the reader */ 3083 rb_update_meta_head(cpu_buffer, reader); 3084 } 3085 3086 /* 3087 * rb_handle_head_page - writer hit the head page 3088 * 3089 * Returns: +1 to retry page 3090 * 0 to continue 3091 * -1 on error 3092 */ 3093 static int 3094 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 3095 struct buffer_page *tail_page, 3096 struct buffer_page *next_page) 3097 { 3098 struct buffer_page *new_head; 3099 int entries; 3100 int type; 3101 int ret; 3102 3103 entries = rb_page_entries(next_page); 3104 3105 /* 3106 * The hard part is here. We need to move the head 3107 * forward, and protect against both readers on 3108 * other CPUs and writers coming in via interrupts. 3109 */ 3110 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 3111 RB_PAGE_HEAD); 3112 3113 /* 3114 * type can be one of four: 3115 * NORMAL - an interrupt already moved it for us 3116 * HEAD - we are the first to get here. 3117 * UPDATE - we are the interrupt interrupting 3118 * a current move. 3119 * MOVED - a reader on another CPU moved the next 3120 * pointer to its reader page. Give up 3121 * and try again. 3122 */ 3123 3124 switch (type) { 3125 case RB_PAGE_HEAD: 3126 /* 3127 * We changed the head to UPDATE, thus 3128 * it is our responsibility to update 3129 * the counters. 3130 */ 3131 local_add(entries, &cpu_buffer->overrun); 3132 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes); 3133 local_inc(&cpu_buffer->pages_lost); 3134 3135 if (cpu_buffer->ring_meta) 3136 rb_update_meta_head(cpu_buffer, next_page); 3137 /* 3138 * The entries will be zeroed out when we move the 3139 * tail page. 3140 */ 3141 3142 /* still more to do */ 3143 break; 3144 3145 case RB_PAGE_UPDATE: 3146 /* 3147 * This is an interrupt that interrupt the 3148 * previous update. Still more to do. 3149 */ 3150 break; 3151 case RB_PAGE_NORMAL: 3152 /* 3153 * An interrupt came in before the update 3154 * and processed this for us. 3155 * Nothing left to do. 3156 */ 3157 return 1; 3158 case RB_PAGE_MOVED: 3159 /* 3160 * The reader is on another CPU and just did 3161 * a swap with our next_page. 3162 * Try again. 3163 */ 3164 return 1; 3165 default: 3166 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 3167 return -1; 3168 } 3169 3170 /* 3171 * Now that we are here, the old head pointer is 3172 * set to UPDATE. This will keep the reader from 3173 * swapping the head page with the reader page. 3174 * The reader (on another CPU) will spin till 3175 * we are finished. 3176 * 3177 * We just need to protect against interrupts 3178 * doing the job. We will set the next pointer 3179 * to HEAD. After that, we set the old pointer 3180 * to NORMAL, but only if it was HEAD before. 3181 * otherwise we are an interrupt, and only 3182 * want the outer most commit to reset it. 3183 */ 3184 new_head = next_page; 3185 rb_inc_page(&new_head); 3186 3187 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 3188 RB_PAGE_NORMAL); 3189 3190 /* 3191 * Valid returns are: 3192 * HEAD - an interrupt came in and already set it. 3193 * NORMAL - One of two things: 3194 * 1) We really set it. 3195 * 2) A bunch of interrupts came in and moved 3196 * the page forward again. 3197 */ 3198 switch (ret) { 3199 case RB_PAGE_HEAD: 3200 case RB_PAGE_NORMAL: 3201 /* OK */ 3202 break; 3203 default: 3204 RB_WARN_ON(cpu_buffer, 1); 3205 return -1; 3206 } 3207 3208 /* 3209 * It is possible that an interrupt came in, 3210 * set the head up, then more interrupts came in 3211 * and moved it again. When we get back here, 3212 * the page would have been set to NORMAL but we 3213 * just set it back to HEAD. 3214 * 3215 * How do you detect this? Well, if that happened 3216 * the tail page would have moved. 3217 */ 3218 if (ret == RB_PAGE_NORMAL) { 3219 struct buffer_page *buffer_tail_page; 3220 3221 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 3222 /* 3223 * If the tail had moved passed next, then we need 3224 * to reset the pointer. 3225 */ 3226 if (buffer_tail_page != tail_page && 3227 buffer_tail_page != next_page) 3228 rb_head_page_set_normal(cpu_buffer, new_head, 3229 next_page, 3230 RB_PAGE_HEAD); 3231 } 3232 3233 /* 3234 * If this was the outer most commit (the one that 3235 * changed the original pointer from HEAD to UPDATE), 3236 * then it is up to us to reset it to NORMAL. 3237 */ 3238 if (type == RB_PAGE_HEAD) { 3239 ret = rb_head_page_set_normal(cpu_buffer, next_page, 3240 tail_page, 3241 RB_PAGE_UPDATE); 3242 if (RB_WARN_ON(cpu_buffer, 3243 ret != RB_PAGE_UPDATE)) 3244 return -1; 3245 } 3246 3247 return 0; 3248 } 3249 3250 static inline void 3251 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 3252 unsigned long tail, struct rb_event_info *info) 3253 { 3254 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size); 3255 struct buffer_page *tail_page = info->tail_page; 3256 struct ring_buffer_event *event; 3257 unsigned long length = info->length; 3258 3259 /* 3260 * Only the event that crossed the page boundary 3261 * must fill the old tail_page with padding. 3262 */ 3263 if (tail >= bsize) { 3264 /* 3265 * If the page was filled, then we still need 3266 * to update the real_end. Reset it to zero 3267 * and the reader will ignore it. 3268 */ 3269 if (tail == bsize) 3270 tail_page->real_end = 0; 3271 3272 local_sub(length, &tail_page->write); 3273 return; 3274 } 3275 3276 event = __rb_page_index(tail_page, tail); 3277 3278 /* 3279 * Save the original length to the meta data. 3280 * This will be used by the reader to add lost event 3281 * counter. 3282 */ 3283 tail_page->real_end = tail; 3284 3285 /* 3286 * If this event is bigger than the minimum size, then 3287 * we need to be careful that we don't subtract the 3288 * write counter enough to allow another writer to slip 3289 * in on this page. 3290 * We put in a discarded commit instead, to make sure 3291 * that this space is not used again, and this space will 3292 * not be accounted into 'entries_bytes'. 3293 * 3294 * If we are less than the minimum size, we don't need to 3295 * worry about it. 3296 */ 3297 if (tail > (bsize - RB_EVNT_MIN_SIZE)) { 3298 /* No room for any events */ 3299 3300 /* Mark the rest of the page with padding */ 3301 rb_event_set_padding(event); 3302 3303 /* Make sure the padding is visible before the write update */ 3304 smp_wmb(); 3305 3306 /* Set the write back to the previous setting */ 3307 local_sub(length, &tail_page->write); 3308 return; 3309 } 3310 3311 /* Put in a discarded event */ 3312 event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE; 3313 event->type_len = RINGBUF_TYPE_PADDING; 3314 /* time delta must be non zero */ 3315 event->time_delta = 1; 3316 3317 /* account for padding bytes */ 3318 local_add(bsize - tail, &cpu_buffer->entries_bytes); 3319 3320 /* Make sure the padding is visible before the tail_page->write update */ 3321 smp_wmb(); 3322 3323 /* Set write to end of buffer */ 3324 length = (tail + length) - bsize; 3325 local_sub(length, &tail_page->write); 3326 } 3327 3328 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 3329 3330 /* 3331 * This is the slow path, force gcc not to inline it. 3332 */ 3333 static noinline struct ring_buffer_event * 3334 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 3335 unsigned long tail, struct rb_event_info *info) 3336 { 3337 struct buffer_page *tail_page = info->tail_page; 3338 struct buffer_page *commit_page = cpu_buffer->commit_page; 3339 struct trace_buffer *buffer = cpu_buffer->buffer; 3340 struct buffer_page *next_page; 3341 int ret; 3342 3343 next_page = tail_page; 3344 3345 rb_inc_page(&next_page); 3346 3347 /* 3348 * If for some reason, we had an interrupt storm that made 3349 * it all the way around the buffer, bail, and warn 3350 * about it. 3351 */ 3352 if (unlikely(next_page == commit_page)) { 3353 local_inc(&cpu_buffer->commit_overrun); 3354 goto out_reset; 3355 } 3356 3357 /* 3358 * This is where the fun begins! 3359 * 3360 * We are fighting against races between a reader that 3361 * could be on another CPU trying to swap its reader 3362 * page with the buffer head. 3363 * 3364 * We are also fighting against interrupts coming in and 3365 * moving the head or tail on us as well. 3366 * 3367 * If the next page is the head page then we have filled 3368 * the buffer, unless the commit page is still on the 3369 * reader page. 3370 */ 3371 if (rb_is_head_page(next_page, &tail_page->list)) { 3372 3373 /* 3374 * If the commit is not on the reader page, then 3375 * move the header page. 3376 */ 3377 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 3378 /* 3379 * If we are not in overwrite mode, 3380 * this is easy, just stop here. 3381 */ 3382 if (!(buffer->flags & RB_FL_OVERWRITE)) { 3383 local_inc(&cpu_buffer->dropped_events); 3384 goto out_reset; 3385 } 3386 3387 ret = rb_handle_head_page(cpu_buffer, 3388 tail_page, 3389 next_page); 3390 if (ret < 0) 3391 goto out_reset; 3392 if (ret) 3393 goto out_again; 3394 } else { 3395 /* 3396 * We need to be careful here too. The 3397 * commit page could still be on the reader 3398 * page. We could have a small buffer, and 3399 * have filled up the buffer with events 3400 * from interrupts and such, and wrapped. 3401 * 3402 * Note, if the tail page is also on the 3403 * reader_page, we let it move out. 3404 */ 3405 if (unlikely((cpu_buffer->commit_page != 3406 cpu_buffer->tail_page) && 3407 (cpu_buffer->commit_page == 3408 cpu_buffer->reader_page))) { 3409 local_inc(&cpu_buffer->commit_overrun); 3410 goto out_reset; 3411 } 3412 } 3413 } 3414 3415 rb_tail_page_update(cpu_buffer, tail_page, next_page); 3416 3417 out_again: 3418 3419 rb_reset_tail(cpu_buffer, tail, info); 3420 3421 /* Commit what we have for now. */ 3422 rb_end_commit(cpu_buffer); 3423 /* rb_end_commit() decs committing */ 3424 local_inc(&cpu_buffer->committing); 3425 3426 /* fail and let the caller try again */ 3427 return ERR_PTR(-EAGAIN); 3428 3429 out_reset: 3430 /* reset write */ 3431 rb_reset_tail(cpu_buffer, tail, info); 3432 3433 return NULL; 3434 } 3435 3436 /* Slow path */ 3437 static struct ring_buffer_event * 3438 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3439 struct ring_buffer_event *event, u64 delta, bool abs) 3440 { 3441 if (abs) 3442 event->type_len = RINGBUF_TYPE_TIME_STAMP; 3443 else 3444 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 3445 3446 /* Not the first event on the page, or not delta? */ 3447 if (abs || rb_event_index(cpu_buffer, event)) { 3448 event->time_delta = delta & TS_MASK; 3449 event->array[0] = delta >> TS_SHIFT; 3450 } else { 3451 /* nope, just zero it */ 3452 event->time_delta = 0; 3453 event->array[0] = 0; 3454 } 3455 3456 return skip_time_extend(event); 3457 } 3458 3459 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 3460 static inline bool sched_clock_stable(void) 3461 { 3462 return true; 3463 } 3464 #endif 3465 3466 static void 3467 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 3468 struct rb_event_info *info) 3469 { 3470 u64 write_stamp; 3471 3472 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s", 3473 (unsigned long long)info->delta, 3474 (unsigned long long)info->ts, 3475 (unsigned long long)info->before, 3476 (unsigned long long)info->after, 3477 (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}), 3478 sched_clock_stable() ? "" : 3479 "If you just came from a suspend/resume,\n" 3480 "please switch to the trace global clock:\n" 3481 " echo global > /sys/kernel/tracing/trace_clock\n" 3482 "or add trace_clock=global to the kernel command line\n"); 3483 } 3484 3485 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 3486 struct ring_buffer_event **event, 3487 struct rb_event_info *info, 3488 u64 *delta, 3489 unsigned int *length) 3490 { 3491 bool abs = info->add_timestamp & 3492 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE); 3493 3494 if (unlikely(info->delta > (1ULL << 59))) { 3495 /* 3496 * Some timers can use more than 59 bits, and when a timestamp 3497 * is added to the buffer, it will lose those bits. 3498 */ 3499 if (abs && (info->ts & TS_MSB)) { 3500 info->delta &= ABS_TS_MASK; 3501 3502 /* did the clock go backwards */ 3503 } else if (info->before == info->after && info->before > info->ts) { 3504 /* not interrupted */ 3505 static int once; 3506 3507 /* 3508 * This is possible with a recalibrating of the TSC. 3509 * Do not produce a call stack, but just report it. 3510 */ 3511 if (!once) { 3512 once++; 3513 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n", 3514 info->before, info->ts); 3515 } 3516 } else 3517 rb_check_timestamp(cpu_buffer, info); 3518 if (!abs) 3519 info->delta = 0; 3520 } 3521 *event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs); 3522 *length -= RB_LEN_TIME_EXTEND; 3523 *delta = 0; 3524 } 3525 3526 /** 3527 * rb_update_event - update event type and data 3528 * @cpu_buffer: The per cpu buffer of the @event 3529 * @event: the event to update 3530 * @info: The info to update the @event with (contains length and delta) 3531 * 3532 * Update the type and data fields of the @event. The length 3533 * is the actual size that is written to the ring buffer, 3534 * and with this, we can determine what to place into the 3535 * data field. 3536 */ 3537 static void 3538 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 3539 struct ring_buffer_event *event, 3540 struct rb_event_info *info) 3541 { 3542 unsigned length = info->length; 3543 u64 delta = info->delta; 3544 unsigned int nest = local_read(&cpu_buffer->committing) - 1; 3545 3546 if (!WARN_ON_ONCE(nest >= MAX_NEST)) 3547 cpu_buffer->event_stamp[nest] = info->ts; 3548 3549 /* 3550 * If we need to add a timestamp, then we 3551 * add it to the start of the reserved space. 3552 */ 3553 if (unlikely(info->add_timestamp)) 3554 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length); 3555 3556 event->time_delta = delta; 3557 length -= RB_EVNT_HDR_SIZE; 3558 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 3559 event->type_len = 0; 3560 event->array[0] = length; 3561 } else 3562 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 3563 } 3564 3565 static unsigned rb_calculate_event_length(unsigned length) 3566 { 3567 struct ring_buffer_event event; /* Used only for sizeof array */ 3568 3569 /* zero length can cause confusions */ 3570 if (!length) 3571 length++; 3572 3573 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 3574 length += sizeof(event.array[0]); 3575 3576 length += RB_EVNT_HDR_SIZE; 3577 length = ALIGN(length, RB_ARCH_ALIGNMENT); 3578 3579 /* 3580 * In case the time delta is larger than the 27 bits for it 3581 * in the header, we need to add a timestamp. If another 3582 * event comes in when trying to discard this one to increase 3583 * the length, then the timestamp will be added in the allocated 3584 * space of this event. If length is bigger than the size needed 3585 * for the TIME_EXTEND, then padding has to be used. The events 3586 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 3587 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 3588 * As length is a multiple of 4, we only need to worry if it 3589 * is 12 (RB_LEN_TIME_EXTEND + 4). 3590 */ 3591 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 3592 length += RB_ALIGNMENT; 3593 3594 return length; 3595 } 3596 3597 static inline bool 3598 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 3599 struct ring_buffer_event *event) 3600 { 3601 unsigned long new_index, old_index; 3602 struct buffer_page *bpage; 3603 unsigned long addr; 3604 3605 new_index = rb_event_index(cpu_buffer, event); 3606 old_index = new_index + rb_event_ts_length(event); 3607 addr = (unsigned long)event; 3608 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1); 3609 3610 bpage = READ_ONCE(cpu_buffer->tail_page); 3611 3612 /* 3613 * Make sure the tail_page is still the same and 3614 * the next write location is the end of this event 3615 */ 3616 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 3617 unsigned long write_mask = 3618 local_read(&bpage->write) & ~RB_WRITE_MASK; 3619 unsigned long event_length = rb_event_length(event); 3620 3621 /* 3622 * For the before_stamp to be different than the write_stamp 3623 * to make sure that the next event adds an absolute 3624 * value and does not rely on the saved write stamp, which 3625 * is now going to be bogus. 3626 * 3627 * By setting the before_stamp to zero, the next event 3628 * is not going to use the write_stamp and will instead 3629 * create an absolute timestamp. This means there's no 3630 * reason to update the wirte_stamp! 3631 */ 3632 rb_time_set(&cpu_buffer->before_stamp, 0); 3633 3634 /* 3635 * If an event were to come in now, it would see that the 3636 * write_stamp and the before_stamp are different, and assume 3637 * that this event just added itself before updating 3638 * the write stamp. The interrupting event will fix the 3639 * write stamp for us, and use an absolute timestamp. 3640 */ 3641 3642 /* 3643 * This is on the tail page. It is possible that 3644 * a write could come in and move the tail page 3645 * and write to the next page. That is fine 3646 * because we just shorten what is on this page. 3647 */ 3648 old_index += write_mask; 3649 new_index += write_mask; 3650 3651 /* caution: old_index gets updated on cmpxchg failure */ 3652 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) { 3653 /* update counters */ 3654 local_sub(event_length, &cpu_buffer->entries_bytes); 3655 return true; 3656 } 3657 } 3658 3659 /* could not discard */ 3660 return false; 3661 } 3662 3663 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 3664 { 3665 local_inc(&cpu_buffer->committing); 3666 local_inc(&cpu_buffer->commits); 3667 } 3668 3669 static __always_inline void 3670 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 3671 { 3672 unsigned long max_count; 3673 3674 /* 3675 * We only race with interrupts and NMIs on this CPU. 3676 * If we own the commit event, then we can commit 3677 * all others that interrupted us, since the interruptions 3678 * are in stack format (they finish before they come 3679 * back to us). This allows us to do a simple loop to 3680 * assign the commit to the tail. 3681 */ 3682 again: 3683 max_count = cpu_buffer->nr_pages * 100; 3684 3685 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 3686 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 3687 return; 3688 if (RB_WARN_ON(cpu_buffer, 3689 rb_is_reader_page(cpu_buffer->tail_page))) 3690 return; 3691 /* 3692 * No need for a memory barrier here, as the update 3693 * of the tail_page did it for this page. 3694 */ 3695 local_set(&cpu_buffer->commit_page->page->commit, 3696 rb_page_write(cpu_buffer->commit_page)); 3697 rb_inc_page(&cpu_buffer->commit_page); 3698 if (cpu_buffer->ring_meta) { 3699 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 3700 meta->commit_buffer = (unsigned long)cpu_buffer->commit_page->page; 3701 } 3702 /* add barrier to keep gcc from optimizing too much */ 3703 barrier(); 3704 } 3705 while (rb_commit_index(cpu_buffer) != 3706 rb_page_write(cpu_buffer->commit_page)) { 3707 3708 /* Make sure the readers see the content of what is committed. */ 3709 smp_wmb(); 3710 local_set(&cpu_buffer->commit_page->page->commit, 3711 rb_page_write(cpu_buffer->commit_page)); 3712 RB_WARN_ON(cpu_buffer, 3713 local_read(&cpu_buffer->commit_page->page->commit) & 3714 ~RB_WRITE_MASK); 3715 barrier(); 3716 } 3717 3718 /* again, keep gcc from optimizing */ 3719 barrier(); 3720 3721 /* 3722 * If an interrupt came in just after the first while loop 3723 * and pushed the tail page forward, we will be left with 3724 * a dangling commit that will never go forward. 3725 */ 3726 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 3727 goto again; 3728 } 3729 3730 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 3731 { 3732 unsigned long commits; 3733 3734 if (RB_WARN_ON(cpu_buffer, 3735 !local_read(&cpu_buffer->committing))) 3736 return; 3737 3738 again: 3739 commits = local_read(&cpu_buffer->commits); 3740 /* synchronize with interrupts */ 3741 barrier(); 3742 if (local_read(&cpu_buffer->committing) == 1) 3743 rb_set_commit_to_write(cpu_buffer); 3744 3745 local_dec(&cpu_buffer->committing); 3746 3747 /* synchronize with interrupts */ 3748 barrier(); 3749 3750 /* 3751 * Need to account for interrupts coming in between the 3752 * updating of the commit page and the clearing of the 3753 * committing counter. 3754 */ 3755 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 3756 !local_read(&cpu_buffer->committing)) { 3757 local_inc(&cpu_buffer->committing); 3758 goto again; 3759 } 3760 } 3761 3762 static inline void rb_event_discard(struct ring_buffer_event *event) 3763 { 3764 if (extended_time(event)) 3765 event = skip_time_extend(event); 3766 3767 /* array[0] holds the actual length for the discarded event */ 3768 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 3769 event->type_len = RINGBUF_TYPE_PADDING; 3770 /* time delta must be non zero */ 3771 if (!event->time_delta) 3772 event->time_delta = 1; 3773 } 3774 3775 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer) 3776 { 3777 local_inc(&cpu_buffer->entries); 3778 rb_end_commit(cpu_buffer); 3779 } 3780 3781 static __always_inline void 3782 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 3783 { 3784 if (buffer->irq_work.waiters_pending) { 3785 buffer->irq_work.waiters_pending = false; 3786 /* irq_work_queue() supplies it's own memory barriers */ 3787 irq_work_queue(&buffer->irq_work.work); 3788 } 3789 3790 if (cpu_buffer->irq_work.waiters_pending) { 3791 cpu_buffer->irq_work.waiters_pending = false; 3792 /* irq_work_queue() supplies it's own memory barriers */ 3793 irq_work_queue(&cpu_buffer->irq_work.work); 3794 } 3795 3796 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched)) 3797 return; 3798 3799 if (cpu_buffer->reader_page == cpu_buffer->commit_page) 3800 return; 3801 3802 if (!cpu_buffer->irq_work.full_waiters_pending) 3803 return; 3804 3805 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched); 3806 3807 if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full)) 3808 return; 3809 3810 cpu_buffer->irq_work.wakeup_full = true; 3811 cpu_buffer->irq_work.full_waiters_pending = false; 3812 /* irq_work_queue() supplies it's own memory barriers */ 3813 irq_work_queue(&cpu_buffer->irq_work.work); 3814 } 3815 3816 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION 3817 # define do_ring_buffer_record_recursion() \ 3818 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_) 3819 #else 3820 # define do_ring_buffer_record_recursion() do { } while (0) 3821 #endif 3822 3823 /* 3824 * The lock and unlock are done within a preempt disable section. 3825 * The current_context per_cpu variable can only be modified 3826 * by the current task between lock and unlock. But it can 3827 * be modified more than once via an interrupt. To pass this 3828 * information from the lock to the unlock without having to 3829 * access the 'in_interrupt()' functions again (which do show 3830 * a bit of overhead in something as critical as function tracing, 3831 * we use a bitmask trick. 3832 * 3833 * bit 1 = NMI context 3834 * bit 2 = IRQ context 3835 * bit 3 = SoftIRQ context 3836 * bit 4 = normal context. 3837 * 3838 * This works because this is the order of contexts that can 3839 * preempt other contexts. A SoftIRQ never preempts an IRQ 3840 * context. 3841 * 3842 * When the context is determined, the corresponding bit is 3843 * checked and set (if it was set, then a recursion of that context 3844 * happened). 3845 * 3846 * On unlock, we need to clear this bit. To do so, just subtract 3847 * 1 from the current_context and AND it to itself. 3848 * 3849 * (binary) 3850 * 101 - 1 = 100 3851 * 101 & 100 = 100 (clearing bit zero) 3852 * 3853 * 1010 - 1 = 1001 3854 * 1010 & 1001 = 1000 (clearing bit 1) 3855 * 3856 * The least significant bit can be cleared this way, and it 3857 * just so happens that it is the same bit corresponding to 3858 * the current context. 3859 * 3860 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit 3861 * is set when a recursion is detected at the current context, and if 3862 * the TRANSITION bit is already set, it will fail the recursion. 3863 * This is needed because there's a lag between the changing of 3864 * interrupt context and updating the preempt count. In this case, 3865 * a false positive will be found. To handle this, one extra recursion 3866 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION 3867 * bit is already set, then it is considered a recursion and the function 3868 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned. 3869 * 3870 * On the trace_recursive_unlock(), the TRANSITION bit will be the first 3871 * to be cleared. Even if it wasn't the context that set it. That is, 3872 * if an interrupt comes in while NORMAL bit is set and the ring buffer 3873 * is called before preempt_count() is updated, since the check will 3874 * be on the NORMAL bit, the TRANSITION bit will then be set. If an 3875 * NMI then comes in, it will set the NMI bit, but when the NMI code 3876 * does the trace_recursive_unlock() it will clear the TRANSITION bit 3877 * and leave the NMI bit set. But this is fine, because the interrupt 3878 * code that set the TRANSITION bit will then clear the NMI bit when it 3879 * calls trace_recursive_unlock(). If another NMI comes in, it will 3880 * set the TRANSITION bit and continue. 3881 * 3882 * Note: The TRANSITION bit only handles a single transition between context. 3883 */ 3884 3885 static __always_inline bool 3886 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 3887 { 3888 unsigned int val = cpu_buffer->current_context; 3889 int bit = interrupt_context_level(); 3890 3891 bit = RB_CTX_NORMAL - bit; 3892 3893 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) { 3894 /* 3895 * It is possible that this was called by transitioning 3896 * between interrupt context, and preempt_count() has not 3897 * been updated yet. In this case, use the TRANSITION bit. 3898 */ 3899 bit = RB_CTX_TRANSITION; 3900 if (val & (1 << (bit + cpu_buffer->nest))) { 3901 do_ring_buffer_record_recursion(); 3902 return true; 3903 } 3904 } 3905 3906 val |= (1 << (bit + cpu_buffer->nest)); 3907 cpu_buffer->current_context = val; 3908 3909 return false; 3910 } 3911 3912 static __always_inline void 3913 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 3914 { 3915 cpu_buffer->current_context &= 3916 cpu_buffer->current_context - (1 << cpu_buffer->nest); 3917 } 3918 3919 /* The recursive locking above uses 5 bits */ 3920 #define NESTED_BITS 5 3921 3922 /** 3923 * ring_buffer_nest_start - Allow to trace while nested 3924 * @buffer: The ring buffer to modify 3925 * 3926 * The ring buffer has a safety mechanism to prevent recursion. 3927 * But there may be a case where a trace needs to be done while 3928 * tracing something else. In this case, calling this function 3929 * will allow this function to nest within a currently active 3930 * ring_buffer_lock_reserve(). 3931 * 3932 * Call this function before calling another ring_buffer_lock_reserve() and 3933 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). 3934 */ 3935 void ring_buffer_nest_start(struct trace_buffer *buffer) 3936 { 3937 struct ring_buffer_per_cpu *cpu_buffer; 3938 int cpu; 3939 3940 /* Enabled by ring_buffer_nest_end() */ 3941 preempt_disable_notrace(); 3942 cpu = raw_smp_processor_id(); 3943 cpu_buffer = buffer->buffers[cpu]; 3944 /* This is the shift value for the above recursive locking */ 3945 cpu_buffer->nest += NESTED_BITS; 3946 } 3947 3948 /** 3949 * ring_buffer_nest_end - Allow to trace while nested 3950 * @buffer: The ring buffer to modify 3951 * 3952 * Must be called after ring_buffer_nest_start() and after the 3953 * ring_buffer_unlock_commit(). 3954 */ 3955 void ring_buffer_nest_end(struct trace_buffer *buffer) 3956 { 3957 struct ring_buffer_per_cpu *cpu_buffer; 3958 int cpu; 3959 3960 /* disabled by ring_buffer_nest_start() */ 3961 cpu = raw_smp_processor_id(); 3962 cpu_buffer = buffer->buffers[cpu]; 3963 /* This is the shift value for the above recursive locking */ 3964 cpu_buffer->nest -= NESTED_BITS; 3965 preempt_enable_notrace(); 3966 } 3967 3968 /** 3969 * ring_buffer_unlock_commit - commit a reserved 3970 * @buffer: The buffer to commit to 3971 * 3972 * This commits the data to the ring buffer, and releases any locks held. 3973 * 3974 * Must be paired with ring_buffer_lock_reserve. 3975 */ 3976 int ring_buffer_unlock_commit(struct trace_buffer *buffer) 3977 { 3978 struct ring_buffer_per_cpu *cpu_buffer; 3979 int cpu = raw_smp_processor_id(); 3980 3981 cpu_buffer = buffer->buffers[cpu]; 3982 3983 rb_commit(cpu_buffer); 3984 3985 rb_wakeups(buffer, cpu_buffer); 3986 3987 trace_recursive_unlock(cpu_buffer); 3988 3989 preempt_enable_notrace(); 3990 3991 return 0; 3992 } 3993 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 3994 3995 /* Special value to validate all deltas on a page. */ 3996 #define CHECK_FULL_PAGE 1L 3997 3998 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS 3999 4000 static const char *show_irq_str(int bits) 4001 { 4002 const char *type[] = { 4003 ".", // 0 4004 "s", // 1 4005 "h", // 2 4006 "Hs", // 3 4007 "n", // 4 4008 "Ns", // 5 4009 "Nh", // 6 4010 "NHs", // 7 4011 }; 4012 4013 return type[bits]; 4014 } 4015 4016 /* Assume this is an trace event */ 4017 static const char *show_flags(struct ring_buffer_event *event) 4018 { 4019 struct trace_entry *entry; 4020 int bits = 0; 4021 4022 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry)) 4023 return "X"; 4024 4025 entry = ring_buffer_event_data(event); 4026 4027 if (entry->flags & TRACE_FLAG_SOFTIRQ) 4028 bits |= 1; 4029 4030 if (entry->flags & TRACE_FLAG_HARDIRQ) 4031 bits |= 2; 4032 4033 if (entry->flags & TRACE_FLAG_NMI) 4034 bits |= 4; 4035 4036 return show_irq_str(bits); 4037 } 4038 4039 static const char *show_irq(struct ring_buffer_event *event) 4040 { 4041 struct trace_entry *entry; 4042 4043 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry)) 4044 return ""; 4045 4046 entry = ring_buffer_event_data(event); 4047 if (entry->flags & TRACE_FLAG_IRQS_OFF) 4048 return "d"; 4049 return ""; 4050 } 4051 4052 static const char *show_interrupt_level(void) 4053 { 4054 unsigned long pc = preempt_count(); 4055 unsigned char level = 0; 4056 4057 if (pc & SOFTIRQ_OFFSET) 4058 level |= 1; 4059 4060 if (pc & HARDIRQ_MASK) 4061 level |= 2; 4062 4063 if (pc & NMI_MASK) 4064 level |= 4; 4065 4066 return show_irq_str(level); 4067 } 4068 4069 static void dump_buffer_page(struct buffer_data_page *bpage, 4070 struct rb_event_info *info, 4071 unsigned long tail) 4072 { 4073 struct ring_buffer_event *event; 4074 u64 ts, delta; 4075 int e; 4076 4077 ts = bpage->time_stamp; 4078 pr_warn(" [%lld] PAGE TIME STAMP\n", ts); 4079 4080 for (e = 0; e < tail; e += rb_event_length(event)) { 4081 4082 event = (struct ring_buffer_event *)(bpage->data + e); 4083 4084 switch (event->type_len) { 4085 4086 case RINGBUF_TYPE_TIME_EXTEND: 4087 delta = rb_event_time_stamp(event); 4088 ts += delta; 4089 pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n", 4090 e, ts, delta); 4091 break; 4092 4093 case RINGBUF_TYPE_TIME_STAMP: 4094 delta = rb_event_time_stamp(event); 4095 ts = rb_fix_abs_ts(delta, ts); 4096 pr_warn(" 0x%x: [%lld] absolute:%lld TIME STAMP\n", 4097 e, ts, delta); 4098 break; 4099 4100 case RINGBUF_TYPE_PADDING: 4101 ts += event->time_delta; 4102 pr_warn(" 0x%x: [%lld] delta:%d PADDING\n", 4103 e, ts, event->time_delta); 4104 break; 4105 4106 case RINGBUF_TYPE_DATA: 4107 ts += event->time_delta; 4108 pr_warn(" 0x%x: [%lld] delta:%d %s%s\n", 4109 e, ts, event->time_delta, 4110 show_flags(event), show_irq(event)); 4111 break; 4112 4113 default: 4114 break; 4115 } 4116 } 4117 pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e); 4118 } 4119 4120 static DEFINE_PER_CPU(atomic_t, checking); 4121 static atomic_t ts_dump; 4122 4123 #define buffer_warn_return(fmt, ...) \ 4124 do { \ 4125 /* If another report is happening, ignore this one */ \ 4126 if (atomic_inc_return(&ts_dump) != 1) { \ 4127 atomic_dec(&ts_dump); \ 4128 goto out; \ 4129 } \ 4130 atomic_inc(&cpu_buffer->record_disabled); \ 4131 pr_warn(fmt, ##__VA_ARGS__); \ 4132 dump_buffer_page(bpage, info, tail); \ 4133 atomic_dec(&ts_dump); \ 4134 /* There's some cases in boot up that this can happen */ \ 4135 if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING)) \ 4136 /* Do not re-enable checking */ \ 4137 return; \ 4138 } while (0) 4139 4140 /* 4141 * Check if the current event time stamp matches the deltas on 4142 * the buffer page. 4143 */ 4144 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 4145 struct rb_event_info *info, 4146 unsigned long tail) 4147 { 4148 struct buffer_data_page *bpage; 4149 u64 ts, delta; 4150 bool full = false; 4151 int ret; 4152 4153 bpage = info->tail_page->page; 4154 4155 if (tail == CHECK_FULL_PAGE) { 4156 full = true; 4157 tail = local_read(&bpage->commit); 4158 } else if (info->add_timestamp & 4159 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) { 4160 /* Ignore events with absolute time stamps */ 4161 return; 4162 } 4163 4164 /* 4165 * Do not check the first event (skip possible extends too). 4166 * Also do not check if previous events have not been committed. 4167 */ 4168 if (tail <= 8 || tail > local_read(&bpage->commit)) 4169 return; 4170 4171 /* 4172 * If this interrupted another event, 4173 */ 4174 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1) 4175 goto out; 4176 4177 ret = rb_read_data_buffer(bpage, tail, cpu_buffer->cpu, &ts, &delta); 4178 if (ret < 0) { 4179 if (delta < ts) { 4180 buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n", 4181 cpu_buffer->cpu, ts, delta); 4182 goto out; 4183 } 4184 } 4185 if ((full && ts > info->ts) || 4186 (!full && ts + info->delta != info->ts)) { 4187 buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n", 4188 cpu_buffer->cpu, 4189 ts + info->delta, info->ts, info->delta, 4190 info->before, info->after, 4191 full ? " (full)" : "", show_interrupt_level()); 4192 } 4193 out: 4194 atomic_dec(this_cpu_ptr(&checking)); 4195 } 4196 #else 4197 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 4198 struct rb_event_info *info, 4199 unsigned long tail) 4200 { 4201 } 4202 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */ 4203 4204 static struct ring_buffer_event * 4205 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 4206 struct rb_event_info *info) 4207 { 4208 struct ring_buffer_event *event; 4209 struct buffer_page *tail_page; 4210 unsigned long tail, write, w; 4211 4212 /* Don't let the compiler play games with cpu_buffer->tail_page */ 4213 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 4214 4215 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK; 4216 barrier(); 4217 rb_time_read(&cpu_buffer->before_stamp, &info->before); 4218 rb_time_read(&cpu_buffer->write_stamp, &info->after); 4219 barrier(); 4220 info->ts = rb_time_stamp(cpu_buffer->buffer); 4221 4222 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) { 4223 info->delta = info->ts; 4224 } else { 4225 /* 4226 * If interrupting an event time update, we may need an 4227 * absolute timestamp. 4228 * Don't bother if this is the start of a new page (w == 0). 4229 */ 4230 if (!w) { 4231 /* Use the sub-buffer timestamp */ 4232 info->delta = 0; 4233 } else if (unlikely(info->before != info->after)) { 4234 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND; 4235 info->length += RB_LEN_TIME_EXTEND; 4236 } else { 4237 info->delta = info->ts - info->after; 4238 if (unlikely(test_time_stamp(info->delta))) { 4239 info->add_timestamp |= RB_ADD_STAMP_EXTEND; 4240 info->length += RB_LEN_TIME_EXTEND; 4241 } 4242 } 4243 } 4244 4245 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts); 4246 4247 /*C*/ write = local_add_return(info->length, &tail_page->write); 4248 4249 /* set write to only the index of the write */ 4250 write &= RB_WRITE_MASK; 4251 4252 tail = write - info->length; 4253 4254 /* See if we shot pass the end of this buffer page */ 4255 if (unlikely(write > cpu_buffer->buffer->subbuf_size)) { 4256 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE); 4257 return rb_move_tail(cpu_buffer, tail, info); 4258 } 4259 4260 if (likely(tail == w)) { 4261 /* Nothing interrupted us between A and C */ 4262 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts); 4263 /* 4264 * If something came in between C and D, the write stamp 4265 * may now not be in sync. But that's fine as the before_stamp 4266 * will be different and then next event will just be forced 4267 * to use an absolute timestamp. 4268 */ 4269 if (likely(!(info->add_timestamp & 4270 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 4271 /* This did not interrupt any time update */ 4272 info->delta = info->ts - info->after; 4273 else 4274 /* Just use full timestamp for interrupting event */ 4275 info->delta = info->ts; 4276 check_buffer(cpu_buffer, info, tail); 4277 } else { 4278 u64 ts; 4279 /* SLOW PATH - Interrupted between A and C */ 4280 4281 /* Save the old before_stamp */ 4282 rb_time_read(&cpu_buffer->before_stamp, &info->before); 4283 4284 /* 4285 * Read a new timestamp and update the before_stamp to make 4286 * the next event after this one force using an absolute 4287 * timestamp. This is in case an interrupt were to come in 4288 * between E and F. 4289 */ 4290 ts = rb_time_stamp(cpu_buffer->buffer); 4291 rb_time_set(&cpu_buffer->before_stamp, ts); 4292 4293 barrier(); 4294 /*E*/ rb_time_read(&cpu_buffer->write_stamp, &info->after); 4295 barrier(); 4296 /*F*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) && 4297 info->after == info->before && info->after < ts) { 4298 /* 4299 * Nothing came after this event between C and F, it is 4300 * safe to use info->after for the delta as it 4301 * matched info->before and is still valid. 4302 */ 4303 info->delta = ts - info->after; 4304 } else { 4305 /* 4306 * Interrupted between C and F: 4307 * Lost the previous events time stamp. Just set the 4308 * delta to zero, and this will be the same time as 4309 * the event this event interrupted. And the events that 4310 * came after this will still be correct (as they would 4311 * have built their delta on the previous event. 4312 */ 4313 info->delta = 0; 4314 } 4315 info->ts = ts; 4316 info->add_timestamp &= ~RB_ADD_STAMP_FORCE; 4317 } 4318 4319 /* 4320 * If this is the first commit on the page, then it has the same 4321 * timestamp as the page itself. 4322 */ 4323 if (unlikely(!tail && !(info->add_timestamp & 4324 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 4325 info->delta = 0; 4326 4327 /* We reserved something on the buffer */ 4328 4329 event = __rb_page_index(tail_page, tail); 4330 rb_update_event(cpu_buffer, event, info); 4331 4332 local_inc(&tail_page->entries); 4333 4334 /* 4335 * If this is the first commit on the page, then update 4336 * its timestamp. 4337 */ 4338 if (unlikely(!tail)) 4339 tail_page->page->time_stamp = info->ts; 4340 4341 /* account for these added bytes */ 4342 local_add(info->length, &cpu_buffer->entries_bytes); 4343 4344 return event; 4345 } 4346 4347 static __always_inline struct ring_buffer_event * 4348 rb_reserve_next_event(struct trace_buffer *buffer, 4349 struct ring_buffer_per_cpu *cpu_buffer, 4350 unsigned long length) 4351 { 4352 struct ring_buffer_event *event; 4353 struct rb_event_info info; 4354 int nr_loops = 0; 4355 int add_ts_default; 4356 4357 /* ring buffer does cmpxchg, make sure it is safe in NMI context */ 4358 if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) && 4359 (unlikely(in_nmi()))) { 4360 return NULL; 4361 } 4362 4363 rb_start_commit(cpu_buffer); 4364 /* The commit page can not change after this */ 4365 4366 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4367 /* 4368 * Due to the ability to swap a cpu buffer from a buffer 4369 * it is possible it was swapped before we committed. 4370 * (committing stops a swap). We check for it here and 4371 * if it happened, we have to fail the write. 4372 */ 4373 barrier(); 4374 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 4375 local_dec(&cpu_buffer->committing); 4376 local_dec(&cpu_buffer->commits); 4377 return NULL; 4378 } 4379 #endif 4380 4381 info.length = rb_calculate_event_length(length); 4382 4383 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) { 4384 add_ts_default = RB_ADD_STAMP_ABSOLUTE; 4385 info.length += RB_LEN_TIME_EXTEND; 4386 if (info.length > cpu_buffer->buffer->max_data_size) 4387 goto out_fail; 4388 } else { 4389 add_ts_default = RB_ADD_STAMP_NONE; 4390 } 4391 4392 again: 4393 info.add_timestamp = add_ts_default; 4394 info.delta = 0; 4395 4396 /* 4397 * We allow for interrupts to reenter here and do a trace. 4398 * If one does, it will cause this original code to loop 4399 * back here. Even with heavy interrupts happening, this 4400 * should only happen a few times in a row. If this happens 4401 * 1000 times in a row, there must be either an interrupt 4402 * storm or we have something buggy. 4403 * Bail! 4404 */ 4405 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 4406 goto out_fail; 4407 4408 event = __rb_reserve_next(cpu_buffer, &info); 4409 4410 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 4411 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND)) 4412 info.length -= RB_LEN_TIME_EXTEND; 4413 goto again; 4414 } 4415 4416 if (likely(event)) 4417 return event; 4418 out_fail: 4419 rb_end_commit(cpu_buffer); 4420 return NULL; 4421 } 4422 4423 /** 4424 * ring_buffer_lock_reserve - reserve a part of the buffer 4425 * @buffer: the ring buffer to reserve from 4426 * @length: the length of the data to reserve (excluding event header) 4427 * 4428 * Returns a reserved event on the ring buffer to copy directly to. 4429 * The user of this interface will need to get the body to write into 4430 * and can use the ring_buffer_event_data() interface. 4431 * 4432 * The length is the length of the data needed, not the event length 4433 * which also includes the event header. 4434 * 4435 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 4436 * If NULL is returned, then nothing has been allocated or locked. 4437 */ 4438 struct ring_buffer_event * 4439 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length) 4440 { 4441 struct ring_buffer_per_cpu *cpu_buffer; 4442 struct ring_buffer_event *event; 4443 int cpu; 4444 4445 /* If we are tracing schedule, we don't want to recurse */ 4446 preempt_disable_notrace(); 4447 4448 if (unlikely(atomic_read(&buffer->record_disabled))) 4449 goto out; 4450 4451 cpu = raw_smp_processor_id(); 4452 4453 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 4454 goto out; 4455 4456 cpu_buffer = buffer->buffers[cpu]; 4457 4458 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 4459 goto out; 4460 4461 if (unlikely(length > buffer->max_data_size)) 4462 goto out; 4463 4464 if (unlikely(trace_recursive_lock(cpu_buffer))) 4465 goto out; 4466 4467 event = rb_reserve_next_event(buffer, cpu_buffer, length); 4468 if (!event) 4469 goto out_unlock; 4470 4471 return event; 4472 4473 out_unlock: 4474 trace_recursive_unlock(cpu_buffer); 4475 out: 4476 preempt_enable_notrace(); 4477 return NULL; 4478 } 4479 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 4480 4481 /* 4482 * Decrement the entries to the page that an event is on. 4483 * The event does not even need to exist, only the pointer 4484 * to the page it is on. This may only be called before the commit 4485 * takes place. 4486 */ 4487 static inline void 4488 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 4489 struct ring_buffer_event *event) 4490 { 4491 unsigned long addr = (unsigned long)event; 4492 struct buffer_page *bpage = cpu_buffer->commit_page; 4493 struct buffer_page *start; 4494 4495 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1); 4496 4497 /* Do the likely case first */ 4498 if (likely(bpage->page == (void *)addr)) { 4499 local_dec(&bpage->entries); 4500 return; 4501 } 4502 4503 /* 4504 * Because the commit page may be on the reader page we 4505 * start with the next page and check the end loop there. 4506 */ 4507 rb_inc_page(&bpage); 4508 start = bpage; 4509 do { 4510 if (bpage->page == (void *)addr) { 4511 local_dec(&bpage->entries); 4512 return; 4513 } 4514 rb_inc_page(&bpage); 4515 } while (bpage != start); 4516 4517 /* commit not part of this buffer?? */ 4518 RB_WARN_ON(cpu_buffer, 1); 4519 } 4520 4521 /** 4522 * ring_buffer_discard_commit - discard an event that has not been committed 4523 * @buffer: the ring buffer 4524 * @event: non committed event to discard 4525 * 4526 * Sometimes an event that is in the ring buffer needs to be ignored. 4527 * This function lets the user discard an event in the ring buffer 4528 * and then that event will not be read later. 4529 * 4530 * This function only works if it is called before the item has been 4531 * committed. It will try to free the event from the ring buffer 4532 * if another event has not been added behind it. 4533 * 4534 * If another event has been added behind it, it will set the event 4535 * up as discarded, and perform the commit. 4536 * 4537 * If this function is called, do not call ring_buffer_unlock_commit on 4538 * the event. 4539 */ 4540 void ring_buffer_discard_commit(struct trace_buffer *buffer, 4541 struct ring_buffer_event *event) 4542 { 4543 struct ring_buffer_per_cpu *cpu_buffer; 4544 int cpu; 4545 4546 /* The event is discarded regardless */ 4547 rb_event_discard(event); 4548 4549 cpu = smp_processor_id(); 4550 cpu_buffer = buffer->buffers[cpu]; 4551 4552 /* 4553 * This must only be called if the event has not been 4554 * committed yet. Thus we can assume that preemption 4555 * is still disabled. 4556 */ 4557 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 4558 4559 rb_decrement_entry(cpu_buffer, event); 4560 if (rb_try_to_discard(cpu_buffer, event)) 4561 goto out; 4562 4563 out: 4564 rb_end_commit(cpu_buffer); 4565 4566 trace_recursive_unlock(cpu_buffer); 4567 4568 preempt_enable_notrace(); 4569 4570 } 4571 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 4572 4573 /** 4574 * ring_buffer_write - write data to the buffer without reserving 4575 * @buffer: The ring buffer to write to. 4576 * @length: The length of the data being written (excluding the event header) 4577 * @data: The data to write to the buffer. 4578 * 4579 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 4580 * one function. If you already have the data to write to the buffer, it 4581 * may be easier to simply call this function. 4582 * 4583 * Note, like ring_buffer_lock_reserve, the length is the length of the data 4584 * and not the length of the event which would hold the header. 4585 */ 4586 int ring_buffer_write(struct trace_buffer *buffer, 4587 unsigned long length, 4588 void *data) 4589 { 4590 struct ring_buffer_per_cpu *cpu_buffer; 4591 struct ring_buffer_event *event; 4592 void *body; 4593 int ret = -EBUSY; 4594 int cpu; 4595 4596 preempt_disable_notrace(); 4597 4598 if (atomic_read(&buffer->record_disabled)) 4599 goto out; 4600 4601 cpu = raw_smp_processor_id(); 4602 4603 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4604 goto out; 4605 4606 cpu_buffer = buffer->buffers[cpu]; 4607 4608 if (atomic_read(&cpu_buffer->record_disabled)) 4609 goto out; 4610 4611 if (length > buffer->max_data_size) 4612 goto out; 4613 4614 if (unlikely(trace_recursive_lock(cpu_buffer))) 4615 goto out; 4616 4617 event = rb_reserve_next_event(buffer, cpu_buffer, length); 4618 if (!event) 4619 goto out_unlock; 4620 4621 body = rb_event_data(event); 4622 4623 memcpy(body, data, length); 4624 4625 rb_commit(cpu_buffer); 4626 4627 rb_wakeups(buffer, cpu_buffer); 4628 4629 ret = 0; 4630 4631 out_unlock: 4632 trace_recursive_unlock(cpu_buffer); 4633 4634 out: 4635 preempt_enable_notrace(); 4636 4637 return ret; 4638 } 4639 EXPORT_SYMBOL_GPL(ring_buffer_write); 4640 4641 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 4642 { 4643 struct buffer_page *reader = cpu_buffer->reader_page; 4644 struct buffer_page *head = rb_set_head_page(cpu_buffer); 4645 struct buffer_page *commit = cpu_buffer->commit_page; 4646 4647 /* In case of error, head will be NULL */ 4648 if (unlikely(!head)) 4649 return true; 4650 4651 /* Reader should exhaust content in reader page */ 4652 if (reader->read != rb_page_size(reader)) 4653 return false; 4654 4655 /* 4656 * If writers are committing on the reader page, knowing all 4657 * committed content has been read, the ring buffer is empty. 4658 */ 4659 if (commit == reader) 4660 return true; 4661 4662 /* 4663 * If writers are committing on a page other than reader page 4664 * and head page, there should always be content to read. 4665 */ 4666 if (commit != head) 4667 return false; 4668 4669 /* 4670 * Writers are committing on the head page, we just need 4671 * to care about there're committed data, and the reader will 4672 * swap reader page with head page when it is to read data. 4673 */ 4674 return rb_page_commit(commit) == 0; 4675 } 4676 4677 /** 4678 * ring_buffer_record_disable - stop all writes into the buffer 4679 * @buffer: The ring buffer to stop writes to. 4680 * 4681 * This prevents all writes to the buffer. Any attempt to write 4682 * to the buffer after this will fail and return NULL. 4683 * 4684 * The caller should call synchronize_rcu() after this. 4685 */ 4686 void ring_buffer_record_disable(struct trace_buffer *buffer) 4687 { 4688 atomic_inc(&buffer->record_disabled); 4689 } 4690 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 4691 4692 /** 4693 * ring_buffer_record_enable - enable writes to the buffer 4694 * @buffer: The ring buffer to enable writes 4695 * 4696 * Note, multiple disables will need the same number of enables 4697 * to truly enable the writing (much like preempt_disable). 4698 */ 4699 void ring_buffer_record_enable(struct trace_buffer *buffer) 4700 { 4701 atomic_dec(&buffer->record_disabled); 4702 } 4703 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 4704 4705 /** 4706 * ring_buffer_record_off - stop all writes into the buffer 4707 * @buffer: The ring buffer to stop writes to. 4708 * 4709 * This prevents all writes to the buffer. Any attempt to write 4710 * to the buffer after this will fail and return NULL. 4711 * 4712 * This is different than ring_buffer_record_disable() as 4713 * it works like an on/off switch, where as the disable() version 4714 * must be paired with a enable(). 4715 */ 4716 void ring_buffer_record_off(struct trace_buffer *buffer) 4717 { 4718 unsigned int rd; 4719 unsigned int new_rd; 4720 4721 rd = atomic_read(&buffer->record_disabled); 4722 do { 4723 new_rd = rd | RB_BUFFER_OFF; 4724 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd)); 4725 } 4726 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 4727 4728 /** 4729 * ring_buffer_record_on - restart writes into the buffer 4730 * @buffer: The ring buffer to start writes to. 4731 * 4732 * This enables all writes to the buffer that was disabled by 4733 * ring_buffer_record_off(). 4734 * 4735 * This is different than ring_buffer_record_enable() as 4736 * it works like an on/off switch, where as the enable() version 4737 * must be paired with a disable(). 4738 */ 4739 void ring_buffer_record_on(struct trace_buffer *buffer) 4740 { 4741 unsigned int rd; 4742 unsigned int new_rd; 4743 4744 rd = atomic_read(&buffer->record_disabled); 4745 do { 4746 new_rd = rd & ~RB_BUFFER_OFF; 4747 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd)); 4748 } 4749 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 4750 4751 /** 4752 * ring_buffer_record_is_on - return true if the ring buffer can write 4753 * @buffer: The ring buffer to see if write is enabled 4754 * 4755 * Returns true if the ring buffer is in a state that it accepts writes. 4756 */ 4757 bool ring_buffer_record_is_on(struct trace_buffer *buffer) 4758 { 4759 return !atomic_read(&buffer->record_disabled); 4760 } 4761 4762 /** 4763 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable 4764 * @buffer: The ring buffer to see if write is set enabled 4765 * 4766 * Returns true if the ring buffer is set writable by ring_buffer_record_on(). 4767 * Note that this does NOT mean it is in a writable state. 4768 * 4769 * It may return true when the ring buffer has been disabled by 4770 * ring_buffer_record_disable(), as that is a temporary disabling of 4771 * the ring buffer. 4772 */ 4773 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer) 4774 { 4775 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); 4776 } 4777 4778 /** 4779 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 4780 * @buffer: The ring buffer to stop writes to. 4781 * @cpu: The CPU buffer to stop 4782 * 4783 * This prevents all writes to the buffer. Any attempt to write 4784 * to the buffer after this will fail and return NULL. 4785 * 4786 * The caller should call synchronize_rcu() after this. 4787 */ 4788 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu) 4789 { 4790 struct ring_buffer_per_cpu *cpu_buffer; 4791 4792 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4793 return; 4794 4795 cpu_buffer = buffer->buffers[cpu]; 4796 atomic_inc(&cpu_buffer->record_disabled); 4797 } 4798 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 4799 4800 /** 4801 * ring_buffer_record_enable_cpu - enable writes to the buffer 4802 * @buffer: The ring buffer to enable writes 4803 * @cpu: The CPU to enable. 4804 * 4805 * Note, multiple disables will need the same number of enables 4806 * to truly enable the writing (much like preempt_disable). 4807 */ 4808 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu) 4809 { 4810 struct ring_buffer_per_cpu *cpu_buffer; 4811 4812 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4813 return; 4814 4815 cpu_buffer = buffer->buffers[cpu]; 4816 atomic_dec(&cpu_buffer->record_disabled); 4817 } 4818 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 4819 4820 /* 4821 * The total entries in the ring buffer is the running counter 4822 * of entries entered into the ring buffer, minus the sum of 4823 * the entries read from the ring buffer and the number of 4824 * entries that were overwritten. 4825 */ 4826 static inline unsigned long 4827 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 4828 { 4829 return local_read(&cpu_buffer->entries) - 4830 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 4831 } 4832 4833 /** 4834 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 4835 * @buffer: The ring buffer 4836 * @cpu: The per CPU buffer to read from. 4837 */ 4838 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu) 4839 { 4840 unsigned long flags; 4841 struct ring_buffer_per_cpu *cpu_buffer; 4842 struct buffer_page *bpage; 4843 u64 ret = 0; 4844 4845 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4846 return 0; 4847 4848 cpu_buffer = buffer->buffers[cpu]; 4849 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4850 /* 4851 * if the tail is on reader_page, oldest time stamp is on the reader 4852 * page 4853 */ 4854 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 4855 bpage = cpu_buffer->reader_page; 4856 else 4857 bpage = rb_set_head_page(cpu_buffer); 4858 if (bpage) 4859 ret = bpage->page->time_stamp; 4860 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4861 4862 return ret; 4863 } 4864 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 4865 4866 /** 4867 * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer 4868 * @buffer: The ring buffer 4869 * @cpu: The per CPU buffer to read from. 4870 */ 4871 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu) 4872 { 4873 struct ring_buffer_per_cpu *cpu_buffer; 4874 unsigned long ret; 4875 4876 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4877 return 0; 4878 4879 cpu_buffer = buffer->buffers[cpu]; 4880 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 4881 4882 return ret; 4883 } 4884 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 4885 4886 /** 4887 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 4888 * @buffer: The ring buffer 4889 * @cpu: The per CPU buffer to get the entries from. 4890 */ 4891 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu) 4892 { 4893 struct ring_buffer_per_cpu *cpu_buffer; 4894 4895 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4896 return 0; 4897 4898 cpu_buffer = buffer->buffers[cpu]; 4899 4900 return rb_num_of_entries(cpu_buffer); 4901 } 4902 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 4903 4904 /** 4905 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 4906 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 4907 * @buffer: The ring buffer 4908 * @cpu: The per CPU buffer to get the number of overruns from 4909 */ 4910 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu) 4911 { 4912 struct ring_buffer_per_cpu *cpu_buffer; 4913 unsigned long ret; 4914 4915 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4916 return 0; 4917 4918 cpu_buffer = buffer->buffers[cpu]; 4919 ret = local_read(&cpu_buffer->overrun); 4920 4921 return ret; 4922 } 4923 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 4924 4925 /** 4926 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 4927 * commits failing due to the buffer wrapping around while there are uncommitted 4928 * events, such as during an interrupt storm. 4929 * @buffer: The ring buffer 4930 * @cpu: The per CPU buffer to get the number of overruns from 4931 */ 4932 unsigned long 4933 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu) 4934 { 4935 struct ring_buffer_per_cpu *cpu_buffer; 4936 unsigned long ret; 4937 4938 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4939 return 0; 4940 4941 cpu_buffer = buffer->buffers[cpu]; 4942 ret = local_read(&cpu_buffer->commit_overrun); 4943 4944 return ret; 4945 } 4946 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 4947 4948 /** 4949 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 4950 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 4951 * @buffer: The ring buffer 4952 * @cpu: The per CPU buffer to get the number of overruns from 4953 */ 4954 unsigned long 4955 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu) 4956 { 4957 struct ring_buffer_per_cpu *cpu_buffer; 4958 unsigned long ret; 4959 4960 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4961 return 0; 4962 4963 cpu_buffer = buffer->buffers[cpu]; 4964 ret = local_read(&cpu_buffer->dropped_events); 4965 4966 return ret; 4967 } 4968 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 4969 4970 /** 4971 * ring_buffer_read_events_cpu - get the number of events successfully read 4972 * @buffer: The ring buffer 4973 * @cpu: The per CPU buffer to get the number of events read 4974 */ 4975 unsigned long 4976 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu) 4977 { 4978 struct ring_buffer_per_cpu *cpu_buffer; 4979 4980 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4981 return 0; 4982 4983 cpu_buffer = buffer->buffers[cpu]; 4984 return cpu_buffer->read; 4985 } 4986 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 4987 4988 /** 4989 * ring_buffer_entries - get the number of entries in a buffer 4990 * @buffer: The ring buffer 4991 * 4992 * Returns the total number of entries in the ring buffer 4993 * (all CPU entries) 4994 */ 4995 unsigned long ring_buffer_entries(struct trace_buffer *buffer) 4996 { 4997 struct ring_buffer_per_cpu *cpu_buffer; 4998 unsigned long entries = 0; 4999 int cpu; 5000 5001 /* if you care about this being correct, lock the buffer */ 5002 for_each_buffer_cpu(buffer, cpu) { 5003 cpu_buffer = buffer->buffers[cpu]; 5004 entries += rb_num_of_entries(cpu_buffer); 5005 } 5006 5007 return entries; 5008 } 5009 EXPORT_SYMBOL_GPL(ring_buffer_entries); 5010 5011 /** 5012 * ring_buffer_overruns - get the number of overruns in buffer 5013 * @buffer: The ring buffer 5014 * 5015 * Returns the total number of overruns in the ring buffer 5016 * (all CPU entries) 5017 */ 5018 unsigned long ring_buffer_overruns(struct trace_buffer *buffer) 5019 { 5020 struct ring_buffer_per_cpu *cpu_buffer; 5021 unsigned long overruns = 0; 5022 int cpu; 5023 5024 /* if you care about this being correct, lock the buffer */ 5025 for_each_buffer_cpu(buffer, cpu) { 5026 cpu_buffer = buffer->buffers[cpu]; 5027 overruns += local_read(&cpu_buffer->overrun); 5028 } 5029 5030 return overruns; 5031 } 5032 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 5033 5034 static void rb_iter_reset(struct ring_buffer_iter *iter) 5035 { 5036 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5037 5038 /* Iterator usage is expected to have record disabled */ 5039 iter->head_page = cpu_buffer->reader_page; 5040 iter->head = cpu_buffer->reader_page->read; 5041 iter->next_event = iter->head; 5042 5043 iter->cache_reader_page = iter->head_page; 5044 iter->cache_read = cpu_buffer->read; 5045 iter->cache_pages_removed = cpu_buffer->pages_removed; 5046 5047 if (iter->head) { 5048 iter->read_stamp = cpu_buffer->read_stamp; 5049 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp; 5050 } else { 5051 iter->read_stamp = iter->head_page->page->time_stamp; 5052 iter->page_stamp = iter->read_stamp; 5053 } 5054 } 5055 5056 /** 5057 * ring_buffer_iter_reset - reset an iterator 5058 * @iter: The iterator to reset 5059 * 5060 * Resets the iterator, so that it will start from the beginning 5061 * again. 5062 */ 5063 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 5064 { 5065 struct ring_buffer_per_cpu *cpu_buffer; 5066 unsigned long flags; 5067 5068 if (!iter) 5069 return; 5070 5071 cpu_buffer = iter->cpu_buffer; 5072 5073 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5074 rb_iter_reset(iter); 5075 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5076 } 5077 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 5078 5079 /** 5080 * ring_buffer_iter_empty - check if an iterator has no more to read 5081 * @iter: The iterator to check 5082 */ 5083 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 5084 { 5085 struct ring_buffer_per_cpu *cpu_buffer; 5086 struct buffer_page *reader; 5087 struct buffer_page *head_page; 5088 struct buffer_page *commit_page; 5089 struct buffer_page *curr_commit_page; 5090 unsigned commit; 5091 u64 curr_commit_ts; 5092 u64 commit_ts; 5093 5094 cpu_buffer = iter->cpu_buffer; 5095 reader = cpu_buffer->reader_page; 5096 head_page = cpu_buffer->head_page; 5097 commit_page = READ_ONCE(cpu_buffer->commit_page); 5098 commit_ts = commit_page->page->time_stamp; 5099 5100 /* 5101 * When the writer goes across pages, it issues a cmpxchg which 5102 * is a mb(), which will synchronize with the rmb here. 5103 * (see rb_tail_page_update()) 5104 */ 5105 smp_rmb(); 5106 commit = rb_page_commit(commit_page); 5107 /* We want to make sure that the commit page doesn't change */ 5108 smp_rmb(); 5109 5110 /* Make sure commit page didn't change */ 5111 curr_commit_page = READ_ONCE(cpu_buffer->commit_page); 5112 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp); 5113 5114 /* If the commit page changed, then there's more data */ 5115 if (curr_commit_page != commit_page || 5116 curr_commit_ts != commit_ts) 5117 return 0; 5118 5119 /* Still racy, as it may return a false positive, but that's OK */ 5120 return ((iter->head_page == commit_page && iter->head >= commit) || 5121 (iter->head_page == reader && commit_page == head_page && 5122 head_page->read == commit && 5123 iter->head == rb_page_size(cpu_buffer->reader_page))); 5124 } 5125 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 5126 5127 static void 5128 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 5129 struct ring_buffer_event *event) 5130 { 5131 u64 delta; 5132 5133 switch (event->type_len) { 5134 case RINGBUF_TYPE_PADDING: 5135 return; 5136 5137 case RINGBUF_TYPE_TIME_EXTEND: 5138 delta = rb_event_time_stamp(event); 5139 cpu_buffer->read_stamp += delta; 5140 return; 5141 5142 case RINGBUF_TYPE_TIME_STAMP: 5143 delta = rb_event_time_stamp(event); 5144 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp); 5145 cpu_buffer->read_stamp = delta; 5146 return; 5147 5148 case RINGBUF_TYPE_DATA: 5149 cpu_buffer->read_stamp += event->time_delta; 5150 return; 5151 5152 default: 5153 RB_WARN_ON(cpu_buffer, 1); 5154 } 5155 } 5156 5157 static void 5158 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 5159 struct ring_buffer_event *event) 5160 { 5161 u64 delta; 5162 5163 switch (event->type_len) { 5164 case RINGBUF_TYPE_PADDING: 5165 return; 5166 5167 case RINGBUF_TYPE_TIME_EXTEND: 5168 delta = rb_event_time_stamp(event); 5169 iter->read_stamp += delta; 5170 return; 5171 5172 case RINGBUF_TYPE_TIME_STAMP: 5173 delta = rb_event_time_stamp(event); 5174 delta = rb_fix_abs_ts(delta, iter->read_stamp); 5175 iter->read_stamp = delta; 5176 return; 5177 5178 case RINGBUF_TYPE_DATA: 5179 iter->read_stamp += event->time_delta; 5180 return; 5181 5182 default: 5183 RB_WARN_ON(iter->cpu_buffer, 1); 5184 } 5185 } 5186 5187 static struct buffer_page * 5188 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 5189 { 5190 struct buffer_page *reader = NULL; 5191 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size); 5192 unsigned long overwrite; 5193 unsigned long flags; 5194 int nr_loops = 0; 5195 bool ret; 5196 5197 local_irq_save(flags); 5198 arch_spin_lock(&cpu_buffer->lock); 5199 5200 again: 5201 /* 5202 * This should normally only loop twice. But because the 5203 * start of the reader inserts an empty page, it causes 5204 * a case where we will loop three times. There should be no 5205 * reason to loop four times (that I know of). 5206 */ 5207 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 5208 reader = NULL; 5209 goto out; 5210 } 5211 5212 reader = cpu_buffer->reader_page; 5213 5214 /* If there's more to read, return this page */ 5215 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 5216 goto out; 5217 5218 /* Never should we have an index greater than the size */ 5219 if (RB_WARN_ON(cpu_buffer, 5220 cpu_buffer->reader_page->read > rb_page_size(reader))) 5221 goto out; 5222 5223 /* check if we caught up to the tail */ 5224 reader = NULL; 5225 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 5226 goto out; 5227 5228 /* Don't bother swapping if the ring buffer is empty */ 5229 if (rb_num_of_entries(cpu_buffer) == 0) 5230 goto out; 5231 5232 /* 5233 * Reset the reader page to size zero. 5234 */ 5235 local_set(&cpu_buffer->reader_page->write, 0); 5236 local_set(&cpu_buffer->reader_page->entries, 0); 5237 local_set(&cpu_buffer->reader_page->page->commit, 0); 5238 cpu_buffer->reader_page->real_end = 0; 5239 5240 spin: 5241 /* 5242 * Splice the empty reader page into the list around the head. 5243 */ 5244 reader = rb_set_head_page(cpu_buffer); 5245 if (!reader) 5246 goto out; 5247 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 5248 cpu_buffer->reader_page->list.prev = reader->list.prev; 5249 5250 /* 5251 * cpu_buffer->pages just needs to point to the buffer, it 5252 * has no specific buffer page to point to. Lets move it out 5253 * of our way so we don't accidentally swap it. 5254 */ 5255 cpu_buffer->pages = reader->list.prev; 5256 5257 /* The reader page will be pointing to the new head */ 5258 rb_set_list_to_head(&cpu_buffer->reader_page->list); 5259 5260 /* 5261 * We want to make sure we read the overruns after we set up our 5262 * pointers to the next object. The writer side does a 5263 * cmpxchg to cross pages which acts as the mb on the writer 5264 * side. Note, the reader will constantly fail the swap 5265 * while the writer is updating the pointers, so this 5266 * guarantees that the overwrite recorded here is the one we 5267 * want to compare with the last_overrun. 5268 */ 5269 smp_mb(); 5270 overwrite = local_read(&(cpu_buffer->overrun)); 5271 5272 /* 5273 * Here's the tricky part. 5274 * 5275 * We need to move the pointer past the header page. 5276 * But we can only do that if a writer is not currently 5277 * moving it. The page before the header page has the 5278 * flag bit '1' set if it is pointing to the page we want. 5279 * but if the writer is in the process of moving it 5280 * than it will be '2' or already moved '0'. 5281 */ 5282 5283 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 5284 5285 /* 5286 * If we did not convert it, then we must try again. 5287 */ 5288 if (!ret) 5289 goto spin; 5290 5291 if (cpu_buffer->ring_meta) 5292 rb_update_meta_reader(cpu_buffer, reader); 5293 5294 /* 5295 * Yay! We succeeded in replacing the page. 5296 * 5297 * Now make the new head point back to the reader page. 5298 */ 5299 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 5300 rb_inc_page(&cpu_buffer->head_page); 5301 5302 local_inc(&cpu_buffer->pages_read); 5303 5304 /* Finally update the reader page to the new head */ 5305 cpu_buffer->reader_page = reader; 5306 cpu_buffer->reader_page->read = 0; 5307 5308 if (overwrite != cpu_buffer->last_overrun) { 5309 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 5310 cpu_buffer->last_overrun = overwrite; 5311 } 5312 5313 goto again; 5314 5315 out: 5316 /* Update the read_stamp on the first event */ 5317 if (reader && reader->read == 0) 5318 cpu_buffer->read_stamp = reader->page->time_stamp; 5319 5320 arch_spin_unlock(&cpu_buffer->lock); 5321 local_irq_restore(flags); 5322 5323 /* 5324 * The writer has preempt disable, wait for it. But not forever 5325 * Although, 1 second is pretty much "forever" 5326 */ 5327 #define USECS_WAIT 1000000 5328 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) { 5329 /* If the write is past the end of page, a writer is still updating it */ 5330 if (likely(!reader || rb_page_write(reader) <= bsize)) 5331 break; 5332 5333 udelay(1); 5334 5335 /* Get the latest version of the reader write value */ 5336 smp_rmb(); 5337 } 5338 5339 /* The writer is not moving forward? Something is wrong */ 5340 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT)) 5341 reader = NULL; 5342 5343 /* 5344 * Make sure we see any padding after the write update 5345 * (see rb_reset_tail()). 5346 * 5347 * In addition, a writer may be writing on the reader page 5348 * if the page has not been fully filled, so the read barrier 5349 * is also needed to make sure we see the content of what is 5350 * committed by the writer (see rb_set_commit_to_write()). 5351 */ 5352 smp_rmb(); 5353 5354 5355 return reader; 5356 } 5357 5358 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 5359 { 5360 struct ring_buffer_event *event; 5361 struct buffer_page *reader; 5362 unsigned length; 5363 5364 reader = rb_get_reader_page(cpu_buffer); 5365 5366 /* This function should not be called when buffer is empty */ 5367 if (RB_WARN_ON(cpu_buffer, !reader)) 5368 return; 5369 5370 event = rb_reader_event(cpu_buffer); 5371 5372 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 5373 cpu_buffer->read++; 5374 5375 rb_update_read_stamp(cpu_buffer, event); 5376 5377 length = rb_event_length(event); 5378 cpu_buffer->reader_page->read += length; 5379 cpu_buffer->read_bytes += length; 5380 } 5381 5382 static void rb_advance_iter(struct ring_buffer_iter *iter) 5383 { 5384 struct ring_buffer_per_cpu *cpu_buffer; 5385 5386 cpu_buffer = iter->cpu_buffer; 5387 5388 /* If head == next_event then we need to jump to the next event */ 5389 if (iter->head == iter->next_event) { 5390 /* If the event gets overwritten again, there's nothing to do */ 5391 if (rb_iter_head_event(iter) == NULL) 5392 return; 5393 } 5394 5395 iter->head = iter->next_event; 5396 5397 /* 5398 * Check if we are at the end of the buffer. 5399 */ 5400 if (iter->next_event >= rb_page_size(iter->head_page)) { 5401 /* discarded commits can make the page empty */ 5402 if (iter->head_page == cpu_buffer->commit_page) 5403 return; 5404 rb_inc_iter(iter); 5405 return; 5406 } 5407 5408 rb_update_iter_read_stamp(iter, iter->event); 5409 } 5410 5411 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 5412 { 5413 return cpu_buffer->lost_events; 5414 } 5415 5416 static struct ring_buffer_event * 5417 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 5418 unsigned long *lost_events) 5419 { 5420 struct ring_buffer_event *event; 5421 struct buffer_page *reader; 5422 int nr_loops = 0; 5423 5424 if (ts) 5425 *ts = 0; 5426 again: 5427 /* 5428 * We repeat when a time extend is encountered. 5429 * Since the time extend is always attached to a data event, 5430 * we should never loop more than once. 5431 * (We never hit the following condition more than twice). 5432 */ 5433 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 5434 return NULL; 5435 5436 reader = rb_get_reader_page(cpu_buffer); 5437 if (!reader) 5438 return NULL; 5439 5440 event = rb_reader_event(cpu_buffer); 5441 5442 switch (event->type_len) { 5443 case RINGBUF_TYPE_PADDING: 5444 if (rb_null_event(event)) 5445 RB_WARN_ON(cpu_buffer, 1); 5446 /* 5447 * Because the writer could be discarding every 5448 * event it creates (which would probably be bad) 5449 * if we were to go back to "again" then we may never 5450 * catch up, and will trigger the warn on, or lock 5451 * the box. Return the padding, and we will release 5452 * the current locks, and try again. 5453 */ 5454 return event; 5455 5456 case RINGBUF_TYPE_TIME_EXTEND: 5457 /* Internal data, OK to advance */ 5458 rb_advance_reader(cpu_buffer); 5459 goto again; 5460 5461 case RINGBUF_TYPE_TIME_STAMP: 5462 if (ts) { 5463 *ts = rb_event_time_stamp(event); 5464 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp); 5465 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 5466 cpu_buffer->cpu, ts); 5467 } 5468 /* Internal data, OK to advance */ 5469 rb_advance_reader(cpu_buffer); 5470 goto again; 5471 5472 case RINGBUF_TYPE_DATA: 5473 if (ts && !(*ts)) { 5474 *ts = cpu_buffer->read_stamp + event->time_delta; 5475 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 5476 cpu_buffer->cpu, ts); 5477 } 5478 if (lost_events) 5479 *lost_events = rb_lost_events(cpu_buffer); 5480 return event; 5481 5482 default: 5483 RB_WARN_ON(cpu_buffer, 1); 5484 } 5485 5486 return NULL; 5487 } 5488 EXPORT_SYMBOL_GPL(ring_buffer_peek); 5489 5490 static struct ring_buffer_event * 5491 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 5492 { 5493 struct trace_buffer *buffer; 5494 struct ring_buffer_per_cpu *cpu_buffer; 5495 struct ring_buffer_event *event; 5496 int nr_loops = 0; 5497 5498 if (ts) 5499 *ts = 0; 5500 5501 cpu_buffer = iter->cpu_buffer; 5502 buffer = cpu_buffer->buffer; 5503 5504 /* 5505 * Check if someone performed a consuming read to the buffer 5506 * or removed some pages from the buffer. In these cases, 5507 * iterator was invalidated and we need to reset it. 5508 */ 5509 if (unlikely(iter->cache_read != cpu_buffer->read || 5510 iter->cache_reader_page != cpu_buffer->reader_page || 5511 iter->cache_pages_removed != cpu_buffer->pages_removed)) 5512 rb_iter_reset(iter); 5513 5514 again: 5515 if (ring_buffer_iter_empty(iter)) 5516 return NULL; 5517 5518 /* 5519 * As the writer can mess with what the iterator is trying 5520 * to read, just give up if we fail to get an event after 5521 * three tries. The iterator is not as reliable when reading 5522 * the ring buffer with an active write as the consumer is. 5523 * Do not warn if the three failures is reached. 5524 */ 5525 if (++nr_loops > 3) 5526 return NULL; 5527 5528 if (rb_per_cpu_empty(cpu_buffer)) 5529 return NULL; 5530 5531 if (iter->head >= rb_page_size(iter->head_page)) { 5532 rb_inc_iter(iter); 5533 goto again; 5534 } 5535 5536 event = rb_iter_head_event(iter); 5537 if (!event) 5538 goto again; 5539 5540 switch (event->type_len) { 5541 case RINGBUF_TYPE_PADDING: 5542 if (rb_null_event(event)) { 5543 rb_inc_iter(iter); 5544 goto again; 5545 } 5546 rb_advance_iter(iter); 5547 return event; 5548 5549 case RINGBUF_TYPE_TIME_EXTEND: 5550 /* Internal data, OK to advance */ 5551 rb_advance_iter(iter); 5552 goto again; 5553 5554 case RINGBUF_TYPE_TIME_STAMP: 5555 if (ts) { 5556 *ts = rb_event_time_stamp(event); 5557 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp); 5558 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 5559 cpu_buffer->cpu, ts); 5560 } 5561 /* Internal data, OK to advance */ 5562 rb_advance_iter(iter); 5563 goto again; 5564 5565 case RINGBUF_TYPE_DATA: 5566 if (ts && !(*ts)) { 5567 *ts = iter->read_stamp + event->time_delta; 5568 ring_buffer_normalize_time_stamp(buffer, 5569 cpu_buffer->cpu, ts); 5570 } 5571 return event; 5572 5573 default: 5574 RB_WARN_ON(cpu_buffer, 1); 5575 } 5576 5577 return NULL; 5578 } 5579 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 5580 5581 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 5582 { 5583 if (likely(!in_nmi())) { 5584 raw_spin_lock(&cpu_buffer->reader_lock); 5585 return true; 5586 } 5587 5588 /* 5589 * If an NMI die dumps out the content of the ring buffer 5590 * trylock must be used to prevent a deadlock if the NMI 5591 * preempted a task that holds the ring buffer locks. If 5592 * we get the lock then all is fine, if not, then continue 5593 * to do the read, but this can corrupt the ring buffer, 5594 * so it must be permanently disabled from future writes. 5595 * Reading from NMI is a oneshot deal. 5596 */ 5597 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 5598 return true; 5599 5600 /* Continue without locking, but disable the ring buffer */ 5601 atomic_inc(&cpu_buffer->record_disabled); 5602 return false; 5603 } 5604 5605 static inline void 5606 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 5607 { 5608 if (likely(locked)) 5609 raw_spin_unlock(&cpu_buffer->reader_lock); 5610 } 5611 5612 /** 5613 * ring_buffer_peek - peek at the next event to be read 5614 * @buffer: The ring buffer to read 5615 * @cpu: The cpu to peak at 5616 * @ts: The timestamp counter of this event. 5617 * @lost_events: a variable to store if events were lost (may be NULL) 5618 * 5619 * This will return the event that will be read next, but does 5620 * not consume the data. 5621 */ 5622 struct ring_buffer_event * 5623 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts, 5624 unsigned long *lost_events) 5625 { 5626 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5627 struct ring_buffer_event *event; 5628 unsigned long flags; 5629 bool dolock; 5630 5631 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5632 return NULL; 5633 5634 again: 5635 local_irq_save(flags); 5636 dolock = rb_reader_lock(cpu_buffer); 5637 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 5638 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5639 rb_advance_reader(cpu_buffer); 5640 rb_reader_unlock(cpu_buffer, dolock); 5641 local_irq_restore(flags); 5642 5643 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5644 goto again; 5645 5646 return event; 5647 } 5648 5649 /** ring_buffer_iter_dropped - report if there are dropped events 5650 * @iter: The ring buffer iterator 5651 * 5652 * Returns true if there was dropped events since the last peek. 5653 */ 5654 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter) 5655 { 5656 bool ret = iter->missed_events != 0; 5657 5658 iter->missed_events = 0; 5659 return ret; 5660 } 5661 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped); 5662 5663 /** 5664 * ring_buffer_iter_peek - peek at the next event to be read 5665 * @iter: The ring buffer iterator 5666 * @ts: The timestamp counter of this event. 5667 * 5668 * This will return the event that will be read next, but does 5669 * not increment the iterator. 5670 */ 5671 struct ring_buffer_event * 5672 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 5673 { 5674 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5675 struct ring_buffer_event *event; 5676 unsigned long flags; 5677 5678 again: 5679 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5680 event = rb_iter_peek(iter, ts); 5681 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5682 5683 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5684 goto again; 5685 5686 return event; 5687 } 5688 5689 /** 5690 * ring_buffer_consume - return an event and consume it 5691 * @buffer: The ring buffer to get the next event from 5692 * @cpu: the cpu to read the buffer from 5693 * @ts: a variable to store the timestamp (may be NULL) 5694 * @lost_events: a variable to store if events were lost (may be NULL) 5695 * 5696 * Returns the next event in the ring buffer, and that event is consumed. 5697 * Meaning, that sequential reads will keep returning a different event, 5698 * and eventually empty the ring buffer if the producer is slower. 5699 */ 5700 struct ring_buffer_event * 5701 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts, 5702 unsigned long *lost_events) 5703 { 5704 struct ring_buffer_per_cpu *cpu_buffer; 5705 struct ring_buffer_event *event = NULL; 5706 unsigned long flags; 5707 bool dolock; 5708 5709 again: 5710 /* might be called in atomic */ 5711 preempt_disable(); 5712 5713 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5714 goto out; 5715 5716 cpu_buffer = buffer->buffers[cpu]; 5717 local_irq_save(flags); 5718 dolock = rb_reader_lock(cpu_buffer); 5719 5720 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 5721 if (event) { 5722 cpu_buffer->lost_events = 0; 5723 rb_advance_reader(cpu_buffer); 5724 } 5725 5726 rb_reader_unlock(cpu_buffer, dolock); 5727 local_irq_restore(flags); 5728 5729 out: 5730 preempt_enable(); 5731 5732 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5733 goto again; 5734 5735 return event; 5736 } 5737 EXPORT_SYMBOL_GPL(ring_buffer_consume); 5738 5739 /** 5740 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 5741 * @buffer: The ring buffer to read from 5742 * @cpu: The cpu buffer to iterate over 5743 * @flags: gfp flags to use for memory allocation 5744 * 5745 * This performs the initial preparations necessary to iterate 5746 * through the buffer. Memory is allocated, buffer resizing 5747 * is disabled, and the iterator pointer is returned to the caller. 5748 * 5749 * After a sequence of ring_buffer_read_prepare calls, the user is 5750 * expected to make at least one call to ring_buffer_read_prepare_sync. 5751 * Afterwards, ring_buffer_read_start is invoked to get things going 5752 * for real. 5753 * 5754 * This overall must be paired with ring_buffer_read_finish. 5755 */ 5756 struct ring_buffer_iter * 5757 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags) 5758 { 5759 struct ring_buffer_per_cpu *cpu_buffer; 5760 struct ring_buffer_iter *iter; 5761 5762 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5763 return NULL; 5764 5765 iter = kzalloc(sizeof(*iter), flags); 5766 if (!iter) 5767 return NULL; 5768 5769 /* Holds the entire event: data and meta data */ 5770 iter->event_size = buffer->subbuf_size; 5771 iter->event = kmalloc(iter->event_size, flags); 5772 if (!iter->event) { 5773 kfree(iter); 5774 return NULL; 5775 } 5776 5777 cpu_buffer = buffer->buffers[cpu]; 5778 5779 iter->cpu_buffer = cpu_buffer; 5780 5781 atomic_inc(&cpu_buffer->resize_disabled); 5782 5783 return iter; 5784 } 5785 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 5786 5787 /** 5788 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 5789 * 5790 * All previously invoked ring_buffer_read_prepare calls to prepare 5791 * iterators will be synchronized. Afterwards, read_buffer_read_start 5792 * calls on those iterators are allowed. 5793 */ 5794 void 5795 ring_buffer_read_prepare_sync(void) 5796 { 5797 synchronize_rcu(); 5798 } 5799 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 5800 5801 /** 5802 * ring_buffer_read_start - start a non consuming read of the buffer 5803 * @iter: The iterator returned by ring_buffer_read_prepare 5804 * 5805 * This finalizes the startup of an iteration through the buffer. 5806 * The iterator comes from a call to ring_buffer_read_prepare and 5807 * an intervening ring_buffer_read_prepare_sync must have been 5808 * performed. 5809 * 5810 * Must be paired with ring_buffer_read_finish. 5811 */ 5812 void 5813 ring_buffer_read_start(struct ring_buffer_iter *iter) 5814 { 5815 struct ring_buffer_per_cpu *cpu_buffer; 5816 unsigned long flags; 5817 5818 if (!iter) 5819 return; 5820 5821 cpu_buffer = iter->cpu_buffer; 5822 5823 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5824 arch_spin_lock(&cpu_buffer->lock); 5825 rb_iter_reset(iter); 5826 arch_spin_unlock(&cpu_buffer->lock); 5827 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5828 } 5829 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 5830 5831 /** 5832 * ring_buffer_read_finish - finish reading the iterator of the buffer 5833 * @iter: The iterator retrieved by ring_buffer_start 5834 * 5835 * This re-enables resizing of the buffer, and frees the iterator. 5836 */ 5837 void 5838 ring_buffer_read_finish(struct ring_buffer_iter *iter) 5839 { 5840 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5841 unsigned long flags; 5842 5843 /* Use this opportunity to check the integrity of the ring buffer. */ 5844 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5845 rb_check_pages(cpu_buffer); 5846 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5847 5848 atomic_dec(&cpu_buffer->resize_disabled); 5849 kfree(iter->event); 5850 kfree(iter); 5851 } 5852 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 5853 5854 /** 5855 * ring_buffer_iter_advance - advance the iterator to the next location 5856 * @iter: The ring buffer iterator 5857 * 5858 * Move the location of the iterator such that the next read will 5859 * be the next location of the iterator. 5860 */ 5861 void ring_buffer_iter_advance(struct ring_buffer_iter *iter) 5862 { 5863 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5864 unsigned long flags; 5865 5866 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5867 5868 rb_advance_iter(iter); 5869 5870 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5871 } 5872 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance); 5873 5874 /** 5875 * ring_buffer_size - return the size of the ring buffer (in bytes) 5876 * @buffer: The ring buffer. 5877 * @cpu: The CPU to get ring buffer size from. 5878 */ 5879 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu) 5880 { 5881 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5882 return 0; 5883 5884 return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages; 5885 } 5886 EXPORT_SYMBOL_GPL(ring_buffer_size); 5887 5888 /** 5889 * ring_buffer_max_event_size - return the max data size of an event 5890 * @buffer: The ring buffer. 5891 * 5892 * Returns the maximum size an event can be. 5893 */ 5894 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer) 5895 { 5896 /* If abs timestamp is requested, events have a timestamp too */ 5897 if (ring_buffer_time_stamp_abs(buffer)) 5898 return buffer->max_data_size - RB_LEN_TIME_EXTEND; 5899 return buffer->max_data_size; 5900 } 5901 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size); 5902 5903 static void rb_clear_buffer_page(struct buffer_page *page) 5904 { 5905 local_set(&page->write, 0); 5906 local_set(&page->entries, 0); 5907 rb_init_page(page->page); 5908 page->read = 0; 5909 } 5910 5911 static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer) 5912 { 5913 struct trace_buffer_meta *meta = cpu_buffer->meta_page; 5914 5915 if (!meta) 5916 return; 5917 5918 meta->reader.read = cpu_buffer->reader_page->read; 5919 meta->reader.id = cpu_buffer->reader_page->id; 5920 meta->reader.lost_events = cpu_buffer->lost_events; 5921 5922 meta->entries = local_read(&cpu_buffer->entries); 5923 meta->overrun = local_read(&cpu_buffer->overrun); 5924 meta->read = cpu_buffer->read; 5925 5926 /* Some archs do not have data cache coherency between kernel and user-space */ 5927 flush_dcache_folio(virt_to_folio(cpu_buffer->meta_page)); 5928 } 5929 5930 static void 5931 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 5932 { 5933 struct buffer_page *page; 5934 5935 rb_head_page_deactivate(cpu_buffer); 5936 5937 cpu_buffer->head_page 5938 = list_entry(cpu_buffer->pages, struct buffer_page, list); 5939 rb_clear_buffer_page(cpu_buffer->head_page); 5940 list_for_each_entry(page, cpu_buffer->pages, list) { 5941 rb_clear_buffer_page(page); 5942 } 5943 5944 cpu_buffer->tail_page = cpu_buffer->head_page; 5945 cpu_buffer->commit_page = cpu_buffer->head_page; 5946 5947 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 5948 INIT_LIST_HEAD(&cpu_buffer->new_pages); 5949 rb_clear_buffer_page(cpu_buffer->reader_page); 5950 5951 local_set(&cpu_buffer->entries_bytes, 0); 5952 local_set(&cpu_buffer->overrun, 0); 5953 local_set(&cpu_buffer->commit_overrun, 0); 5954 local_set(&cpu_buffer->dropped_events, 0); 5955 local_set(&cpu_buffer->entries, 0); 5956 local_set(&cpu_buffer->committing, 0); 5957 local_set(&cpu_buffer->commits, 0); 5958 local_set(&cpu_buffer->pages_touched, 0); 5959 local_set(&cpu_buffer->pages_lost, 0); 5960 local_set(&cpu_buffer->pages_read, 0); 5961 cpu_buffer->last_pages_touch = 0; 5962 cpu_buffer->shortest_full = 0; 5963 cpu_buffer->read = 0; 5964 cpu_buffer->read_bytes = 0; 5965 5966 rb_time_set(&cpu_buffer->write_stamp, 0); 5967 rb_time_set(&cpu_buffer->before_stamp, 0); 5968 5969 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp)); 5970 5971 cpu_buffer->lost_events = 0; 5972 cpu_buffer->last_overrun = 0; 5973 5974 rb_head_page_activate(cpu_buffer); 5975 cpu_buffer->pages_removed = 0; 5976 5977 if (cpu_buffer->mapped) { 5978 rb_update_meta_page(cpu_buffer); 5979 if (cpu_buffer->ring_meta) { 5980 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 5981 meta->commit_buffer = meta->head_buffer; 5982 } 5983 } 5984 } 5985 5986 /* Must have disabled the cpu buffer then done a synchronize_rcu */ 5987 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 5988 { 5989 unsigned long flags; 5990 5991 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5992 5993 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 5994 goto out; 5995 5996 arch_spin_lock(&cpu_buffer->lock); 5997 5998 rb_reset_cpu(cpu_buffer); 5999 6000 arch_spin_unlock(&cpu_buffer->lock); 6001 6002 out: 6003 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 6004 } 6005 6006 /** 6007 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 6008 * @buffer: The ring buffer to reset a per cpu buffer of 6009 * @cpu: The CPU buffer to be reset 6010 */ 6011 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu) 6012 { 6013 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 6014 struct ring_buffer_meta *meta; 6015 6016 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6017 return; 6018 6019 /* prevent another thread from changing buffer sizes */ 6020 mutex_lock(&buffer->mutex); 6021 6022 atomic_inc(&cpu_buffer->resize_disabled); 6023 atomic_inc(&cpu_buffer->record_disabled); 6024 6025 /* Make sure all commits have finished */ 6026 synchronize_rcu(); 6027 6028 reset_disabled_cpu_buffer(cpu_buffer); 6029 6030 atomic_dec(&cpu_buffer->record_disabled); 6031 atomic_dec(&cpu_buffer->resize_disabled); 6032 6033 /* Make sure persistent meta now uses this buffer's addresses */ 6034 meta = rb_range_meta(buffer, 0, cpu_buffer->cpu); 6035 if (meta) 6036 rb_meta_init_text_addr(meta); 6037 6038 mutex_unlock(&buffer->mutex); 6039 } 6040 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 6041 6042 /* Flag to ensure proper resetting of atomic variables */ 6043 #define RESET_BIT (1 << 30) 6044 6045 /** 6046 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer 6047 * @buffer: The ring buffer to reset a per cpu buffer of 6048 */ 6049 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer) 6050 { 6051 struct ring_buffer_per_cpu *cpu_buffer; 6052 struct ring_buffer_meta *meta; 6053 int cpu; 6054 6055 /* prevent another thread from changing buffer sizes */ 6056 mutex_lock(&buffer->mutex); 6057 6058 for_each_online_buffer_cpu(buffer, cpu) { 6059 cpu_buffer = buffer->buffers[cpu]; 6060 6061 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled); 6062 atomic_inc(&cpu_buffer->record_disabled); 6063 } 6064 6065 /* Make sure all commits have finished */ 6066 synchronize_rcu(); 6067 6068 for_each_buffer_cpu(buffer, cpu) { 6069 cpu_buffer = buffer->buffers[cpu]; 6070 6071 /* 6072 * If a CPU came online during the synchronize_rcu(), then 6073 * ignore it. 6074 */ 6075 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT)) 6076 continue; 6077 6078 reset_disabled_cpu_buffer(cpu_buffer); 6079 6080 /* Make sure persistent meta now uses this buffer's addresses */ 6081 meta = rb_range_meta(buffer, 0, cpu_buffer->cpu); 6082 if (meta) 6083 rb_meta_init_text_addr(meta); 6084 6085 atomic_dec(&cpu_buffer->record_disabled); 6086 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled); 6087 } 6088 6089 mutex_unlock(&buffer->mutex); 6090 } 6091 6092 /** 6093 * ring_buffer_reset - reset a ring buffer 6094 * @buffer: The ring buffer to reset all cpu buffers 6095 */ 6096 void ring_buffer_reset(struct trace_buffer *buffer) 6097 { 6098 struct ring_buffer_per_cpu *cpu_buffer; 6099 int cpu; 6100 6101 /* prevent another thread from changing buffer sizes */ 6102 mutex_lock(&buffer->mutex); 6103 6104 for_each_buffer_cpu(buffer, cpu) { 6105 cpu_buffer = buffer->buffers[cpu]; 6106 6107 atomic_inc(&cpu_buffer->resize_disabled); 6108 atomic_inc(&cpu_buffer->record_disabled); 6109 } 6110 6111 /* Make sure all commits have finished */ 6112 synchronize_rcu(); 6113 6114 for_each_buffer_cpu(buffer, cpu) { 6115 cpu_buffer = buffer->buffers[cpu]; 6116 6117 reset_disabled_cpu_buffer(cpu_buffer); 6118 6119 atomic_dec(&cpu_buffer->record_disabled); 6120 atomic_dec(&cpu_buffer->resize_disabled); 6121 } 6122 6123 mutex_unlock(&buffer->mutex); 6124 } 6125 EXPORT_SYMBOL_GPL(ring_buffer_reset); 6126 6127 /** 6128 * ring_buffer_empty - is the ring buffer empty? 6129 * @buffer: The ring buffer to test 6130 */ 6131 bool ring_buffer_empty(struct trace_buffer *buffer) 6132 { 6133 struct ring_buffer_per_cpu *cpu_buffer; 6134 unsigned long flags; 6135 bool dolock; 6136 bool ret; 6137 int cpu; 6138 6139 /* yes this is racy, but if you don't like the race, lock the buffer */ 6140 for_each_buffer_cpu(buffer, cpu) { 6141 cpu_buffer = buffer->buffers[cpu]; 6142 local_irq_save(flags); 6143 dolock = rb_reader_lock(cpu_buffer); 6144 ret = rb_per_cpu_empty(cpu_buffer); 6145 rb_reader_unlock(cpu_buffer, dolock); 6146 local_irq_restore(flags); 6147 6148 if (!ret) 6149 return false; 6150 } 6151 6152 return true; 6153 } 6154 EXPORT_SYMBOL_GPL(ring_buffer_empty); 6155 6156 /** 6157 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 6158 * @buffer: The ring buffer 6159 * @cpu: The CPU buffer to test 6160 */ 6161 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu) 6162 { 6163 struct ring_buffer_per_cpu *cpu_buffer; 6164 unsigned long flags; 6165 bool dolock; 6166 bool ret; 6167 6168 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6169 return true; 6170 6171 cpu_buffer = buffer->buffers[cpu]; 6172 local_irq_save(flags); 6173 dolock = rb_reader_lock(cpu_buffer); 6174 ret = rb_per_cpu_empty(cpu_buffer); 6175 rb_reader_unlock(cpu_buffer, dolock); 6176 local_irq_restore(flags); 6177 6178 return ret; 6179 } 6180 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 6181 6182 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 6183 /** 6184 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 6185 * @buffer_a: One buffer to swap with 6186 * @buffer_b: The other buffer to swap with 6187 * @cpu: the CPU of the buffers to swap 6188 * 6189 * This function is useful for tracers that want to take a "snapshot" 6190 * of a CPU buffer and has another back up buffer lying around. 6191 * it is expected that the tracer handles the cpu buffer not being 6192 * used at the moment. 6193 */ 6194 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a, 6195 struct trace_buffer *buffer_b, int cpu) 6196 { 6197 struct ring_buffer_per_cpu *cpu_buffer_a; 6198 struct ring_buffer_per_cpu *cpu_buffer_b; 6199 int ret = -EINVAL; 6200 6201 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 6202 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 6203 goto out; 6204 6205 cpu_buffer_a = buffer_a->buffers[cpu]; 6206 cpu_buffer_b = buffer_b->buffers[cpu]; 6207 6208 /* It's up to the callers to not try to swap mapped buffers */ 6209 if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped)) { 6210 ret = -EBUSY; 6211 goto out; 6212 } 6213 6214 /* At least make sure the two buffers are somewhat the same */ 6215 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 6216 goto out; 6217 6218 if (buffer_a->subbuf_order != buffer_b->subbuf_order) 6219 goto out; 6220 6221 ret = -EAGAIN; 6222 6223 if (atomic_read(&buffer_a->record_disabled)) 6224 goto out; 6225 6226 if (atomic_read(&buffer_b->record_disabled)) 6227 goto out; 6228 6229 if (atomic_read(&cpu_buffer_a->record_disabled)) 6230 goto out; 6231 6232 if (atomic_read(&cpu_buffer_b->record_disabled)) 6233 goto out; 6234 6235 /* 6236 * We can't do a synchronize_rcu here because this 6237 * function can be called in atomic context. 6238 * Normally this will be called from the same CPU as cpu. 6239 * If not it's up to the caller to protect this. 6240 */ 6241 atomic_inc(&cpu_buffer_a->record_disabled); 6242 atomic_inc(&cpu_buffer_b->record_disabled); 6243 6244 ret = -EBUSY; 6245 if (local_read(&cpu_buffer_a->committing)) 6246 goto out_dec; 6247 if (local_read(&cpu_buffer_b->committing)) 6248 goto out_dec; 6249 6250 /* 6251 * When resize is in progress, we cannot swap it because 6252 * it will mess the state of the cpu buffer. 6253 */ 6254 if (atomic_read(&buffer_a->resizing)) 6255 goto out_dec; 6256 if (atomic_read(&buffer_b->resizing)) 6257 goto out_dec; 6258 6259 buffer_a->buffers[cpu] = cpu_buffer_b; 6260 buffer_b->buffers[cpu] = cpu_buffer_a; 6261 6262 cpu_buffer_b->buffer = buffer_a; 6263 cpu_buffer_a->buffer = buffer_b; 6264 6265 ret = 0; 6266 6267 out_dec: 6268 atomic_dec(&cpu_buffer_a->record_disabled); 6269 atomic_dec(&cpu_buffer_b->record_disabled); 6270 out: 6271 return ret; 6272 } 6273 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 6274 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 6275 6276 /** 6277 * ring_buffer_alloc_read_page - allocate a page to read from buffer 6278 * @buffer: the buffer to allocate for. 6279 * @cpu: the cpu buffer to allocate. 6280 * 6281 * This function is used in conjunction with ring_buffer_read_page. 6282 * When reading a full page from the ring buffer, these functions 6283 * can be used to speed up the process. The calling function should 6284 * allocate a few pages first with this function. Then when it 6285 * needs to get pages from the ring buffer, it passes the result 6286 * of this function into ring_buffer_read_page, which will swap 6287 * the page that was allocated, with the read page of the buffer. 6288 * 6289 * Returns: 6290 * The page allocated, or ERR_PTR 6291 */ 6292 struct buffer_data_read_page * 6293 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu) 6294 { 6295 struct ring_buffer_per_cpu *cpu_buffer; 6296 struct buffer_data_read_page *bpage = NULL; 6297 unsigned long flags; 6298 struct page *page; 6299 6300 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6301 return ERR_PTR(-ENODEV); 6302 6303 bpage = kzalloc(sizeof(*bpage), GFP_KERNEL); 6304 if (!bpage) 6305 return ERR_PTR(-ENOMEM); 6306 6307 bpage->order = buffer->subbuf_order; 6308 cpu_buffer = buffer->buffers[cpu]; 6309 local_irq_save(flags); 6310 arch_spin_lock(&cpu_buffer->lock); 6311 6312 if (cpu_buffer->free_page) { 6313 bpage->data = cpu_buffer->free_page; 6314 cpu_buffer->free_page = NULL; 6315 } 6316 6317 arch_spin_unlock(&cpu_buffer->lock); 6318 local_irq_restore(flags); 6319 6320 if (bpage->data) 6321 goto out; 6322 6323 page = alloc_pages_node(cpu_to_node(cpu), 6324 GFP_KERNEL | __GFP_NORETRY | __GFP_COMP | __GFP_ZERO, 6325 cpu_buffer->buffer->subbuf_order); 6326 if (!page) { 6327 kfree(bpage); 6328 return ERR_PTR(-ENOMEM); 6329 } 6330 6331 bpage->data = page_address(page); 6332 6333 out: 6334 rb_init_page(bpage->data); 6335 6336 return bpage; 6337 } 6338 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 6339 6340 /** 6341 * ring_buffer_free_read_page - free an allocated read page 6342 * @buffer: the buffer the page was allocate for 6343 * @cpu: the cpu buffer the page came from 6344 * @data_page: the page to free 6345 * 6346 * Free a page allocated from ring_buffer_alloc_read_page. 6347 */ 6348 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, 6349 struct buffer_data_read_page *data_page) 6350 { 6351 struct ring_buffer_per_cpu *cpu_buffer; 6352 struct buffer_data_page *bpage = data_page->data; 6353 struct page *page = virt_to_page(bpage); 6354 unsigned long flags; 6355 6356 if (!buffer || !buffer->buffers || !buffer->buffers[cpu]) 6357 return; 6358 6359 cpu_buffer = buffer->buffers[cpu]; 6360 6361 /* 6362 * If the page is still in use someplace else, or order of the page 6363 * is different from the subbuffer order of the buffer - 6364 * we can't reuse it 6365 */ 6366 if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order) 6367 goto out; 6368 6369 local_irq_save(flags); 6370 arch_spin_lock(&cpu_buffer->lock); 6371 6372 if (!cpu_buffer->free_page) { 6373 cpu_buffer->free_page = bpage; 6374 bpage = NULL; 6375 } 6376 6377 arch_spin_unlock(&cpu_buffer->lock); 6378 local_irq_restore(flags); 6379 6380 out: 6381 free_pages((unsigned long)bpage, data_page->order); 6382 kfree(data_page); 6383 } 6384 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 6385 6386 /** 6387 * ring_buffer_read_page - extract a page from the ring buffer 6388 * @buffer: buffer to extract from 6389 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 6390 * @len: amount to extract 6391 * @cpu: the cpu of the buffer to extract 6392 * @full: should the extraction only happen when the page is full. 6393 * 6394 * This function will pull out a page from the ring buffer and consume it. 6395 * @data_page must be the address of the variable that was returned 6396 * from ring_buffer_alloc_read_page. This is because the page might be used 6397 * to swap with a page in the ring buffer. 6398 * 6399 * for example: 6400 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 6401 * if (IS_ERR(rpage)) 6402 * return PTR_ERR(rpage); 6403 * ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0); 6404 * if (ret >= 0) 6405 * process_page(ring_buffer_read_page_data(rpage), ret); 6406 * ring_buffer_free_read_page(buffer, cpu, rpage); 6407 * 6408 * When @full is set, the function will not return true unless 6409 * the writer is off the reader page. 6410 * 6411 * Note: it is up to the calling functions to handle sleeps and wakeups. 6412 * The ring buffer can be used anywhere in the kernel and can not 6413 * blindly call wake_up. The layer that uses the ring buffer must be 6414 * responsible for that. 6415 * 6416 * Returns: 6417 * >=0 if data has been transferred, returns the offset of consumed data. 6418 * <0 if no data has been transferred. 6419 */ 6420 int ring_buffer_read_page(struct trace_buffer *buffer, 6421 struct buffer_data_read_page *data_page, 6422 size_t len, int cpu, int full) 6423 { 6424 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 6425 struct ring_buffer_event *event; 6426 struct buffer_data_page *bpage; 6427 struct buffer_page *reader; 6428 unsigned long missed_events; 6429 unsigned long flags; 6430 unsigned int commit; 6431 unsigned int read; 6432 u64 save_timestamp; 6433 int ret = -1; 6434 6435 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6436 goto out; 6437 6438 /* 6439 * If len is not big enough to hold the page header, then 6440 * we can not copy anything. 6441 */ 6442 if (len <= BUF_PAGE_HDR_SIZE) 6443 goto out; 6444 6445 len -= BUF_PAGE_HDR_SIZE; 6446 6447 if (!data_page || !data_page->data) 6448 goto out; 6449 if (data_page->order != buffer->subbuf_order) 6450 goto out; 6451 6452 bpage = data_page->data; 6453 if (!bpage) 6454 goto out; 6455 6456 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 6457 6458 reader = rb_get_reader_page(cpu_buffer); 6459 if (!reader) 6460 goto out_unlock; 6461 6462 event = rb_reader_event(cpu_buffer); 6463 6464 read = reader->read; 6465 commit = rb_page_size(reader); 6466 6467 /* Check if any events were dropped */ 6468 missed_events = cpu_buffer->lost_events; 6469 6470 /* 6471 * If this page has been partially read or 6472 * if len is not big enough to read the rest of the page or 6473 * a writer is still on the page, then 6474 * we must copy the data from the page to the buffer. 6475 * Otherwise, we can simply swap the page with the one passed in. 6476 */ 6477 if (read || (len < (commit - read)) || 6478 cpu_buffer->reader_page == cpu_buffer->commit_page || 6479 cpu_buffer->mapped) { 6480 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 6481 unsigned int rpos = read; 6482 unsigned int pos = 0; 6483 unsigned int size; 6484 6485 /* 6486 * If a full page is expected, this can still be returned 6487 * if there's been a previous partial read and the 6488 * rest of the page can be read and the commit page is off 6489 * the reader page. 6490 */ 6491 if (full && 6492 (!read || (len < (commit - read)) || 6493 cpu_buffer->reader_page == cpu_buffer->commit_page)) 6494 goto out_unlock; 6495 6496 if (len > (commit - read)) 6497 len = (commit - read); 6498 6499 /* Always keep the time extend and data together */ 6500 size = rb_event_ts_length(event); 6501 6502 if (len < size) 6503 goto out_unlock; 6504 6505 /* save the current timestamp, since the user will need it */ 6506 save_timestamp = cpu_buffer->read_stamp; 6507 6508 /* Need to copy one event at a time */ 6509 do { 6510 /* We need the size of one event, because 6511 * rb_advance_reader only advances by one event, 6512 * whereas rb_event_ts_length may include the size of 6513 * one or two events. 6514 * We have already ensured there's enough space if this 6515 * is a time extend. */ 6516 size = rb_event_length(event); 6517 memcpy(bpage->data + pos, rpage->data + rpos, size); 6518 6519 len -= size; 6520 6521 rb_advance_reader(cpu_buffer); 6522 rpos = reader->read; 6523 pos += size; 6524 6525 if (rpos >= commit) 6526 break; 6527 6528 event = rb_reader_event(cpu_buffer); 6529 /* Always keep the time extend and data together */ 6530 size = rb_event_ts_length(event); 6531 } while (len >= size); 6532 6533 /* update bpage */ 6534 local_set(&bpage->commit, pos); 6535 bpage->time_stamp = save_timestamp; 6536 6537 /* we copied everything to the beginning */ 6538 read = 0; 6539 } else { 6540 /* update the entry counter */ 6541 cpu_buffer->read += rb_page_entries(reader); 6542 cpu_buffer->read_bytes += rb_page_size(reader); 6543 6544 /* swap the pages */ 6545 rb_init_page(bpage); 6546 bpage = reader->page; 6547 reader->page = data_page->data; 6548 local_set(&reader->write, 0); 6549 local_set(&reader->entries, 0); 6550 reader->read = 0; 6551 data_page->data = bpage; 6552 6553 /* 6554 * Use the real_end for the data size, 6555 * This gives us a chance to store the lost events 6556 * on the page. 6557 */ 6558 if (reader->real_end) 6559 local_set(&bpage->commit, reader->real_end); 6560 } 6561 ret = read; 6562 6563 cpu_buffer->lost_events = 0; 6564 6565 commit = local_read(&bpage->commit); 6566 /* 6567 * Set a flag in the commit field if we lost events 6568 */ 6569 if (missed_events) { 6570 /* If there is room at the end of the page to save the 6571 * missed events, then record it there. 6572 */ 6573 if (buffer->subbuf_size - commit >= sizeof(missed_events)) { 6574 memcpy(&bpage->data[commit], &missed_events, 6575 sizeof(missed_events)); 6576 local_add(RB_MISSED_STORED, &bpage->commit); 6577 commit += sizeof(missed_events); 6578 } 6579 local_add(RB_MISSED_EVENTS, &bpage->commit); 6580 } 6581 6582 /* 6583 * This page may be off to user land. Zero it out here. 6584 */ 6585 if (commit < buffer->subbuf_size) 6586 memset(&bpage->data[commit], 0, buffer->subbuf_size - commit); 6587 6588 out_unlock: 6589 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 6590 6591 out: 6592 return ret; 6593 } 6594 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 6595 6596 /** 6597 * ring_buffer_read_page_data - get pointer to the data in the page. 6598 * @page: the page to get the data from 6599 * 6600 * Returns pointer to the actual data in this page. 6601 */ 6602 void *ring_buffer_read_page_data(struct buffer_data_read_page *page) 6603 { 6604 return page->data; 6605 } 6606 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data); 6607 6608 /** 6609 * ring_buffer_subbuf_size_get - get size of the sub buffer. 6610 * @buffer: the buffer to get the sub buffer size from 6611 * 6612 * Returns size of the sub buffer, in bytes. 6613 */ 6614 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer) 6615 { 6616 return buffer->subbuf_size + BUF_PAGE_HDR_SIZE; 6617 } 6618 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get); 6619 6620 /** 6621 * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page. 6622 * @buffer: The ring_buffer to get the system sub page order from 6623 * 6624 * By default, one ring buffer sub page equals to one system page. This parameter 6625 * is configurable, per ring buffer. The size of the ring buffer sub page can be 6626 * extended, but must be an order of system page size. 6627 * 6628 * Returns the order of buffer sub page size, in system pages: 6629 * 0 means the sub buffer size is 1 system page and so forth. 6630 * In case of an error < 0 is returned. 6631 */ 6632 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer) 6633 { 6634 if (!buffer) 6635 return -EINVAL; 6636 6637 return buffer->subbuf_order; 6638 } 6639 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get); 6640 6641 /** 6642 * ring_buffer_subbuf_order_set - set the size of ring buffer sub page. 6643 * @buffer: The ring_buffer to set the new page size. 6644 * @order: Order of the system pages in one sub buffer page 6645 * 6646 * By default, one ring buffer pages equals to one system page. This API can be 6647 * used to set new size of the ring buffer page. The size must be order of 6648 * system page size, that's why the input parameter @order is the order of 6649 * system pages that are allocated for one ring buffer page: 6650 * 0 - 1 system page 6651 * 1 - 2 system pages 6652 * 3 - 4 system pages 6653 * ... 6654 * 6655 * Returns 0 on success or < 0 in case of an error. 6656 */ 6657 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order) 6658 { 6659 struct ring_buffer_per_cpu *cpu_buffer; 6660 struct buffer_page *bpage, *tmp; 6661 int old_order, old_size; 6662 int nr_pages; 6663 int psize; 6664 int err; 6665 int cpu; 6666 6667 if (!buffer || order < 0) 6668 return -EINVAL; 6669 6670 if (buffer->subbuf_order == order) 6671 return 0; 6672 6673 psize = (1 << order) * PAGE_SIZE; 6674 if (psize <= BUF_PAGE_HDR_SIZE) 6675 return -EINVAL; 6676 6677 /* Size of a subbuf cannot be greater than the write counter */ 6678 if (psize > RB_WRITE_MASK + 1) 6679 return -EINVAL; 6680 6681 old_order = buffer->subbuf_order; 6682 old_size = buffer->subbuf_size; 6683 6684 /* prevent another thread from changing buffer sizes */ 6685 mutex_lock(&buffer->mutex); 6686 atomic_inc(&buffer->record_disabled); 6687 6688 /* Make sure all commits have finished */ 6689 synchronize_rcu(); 6690 6691 buffer->subbuf_order = order; 6692 buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE; 6693 6694 /* Make sure all new buffers are allocated, before deleting the old ones */ 6695 for_each_buffer_cpu(buffer, cpu) { 6696 6697 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6698 continue; 6699 6700 cpu_buffer = buffer->buffers[cpu]; 6701 6702 if (cpu_buffer->mapped) { 6703 err = -EBUSY; 6704 goto error; 6705 } 6706 6707 /* Update the number of pages to match the new size */ 6708 nr_pages = old_size * buffer->buffers[cpu]->nr_pages; 6709 nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size); 6710 6711 /* we need a minimum of two pages */ 6712 if (nr_pages < 2) 6713 nr_pages = 2; 6714 6715 cpu_buffer->nr_pages_to_update = nr_pages; 6716 6717 /* Include the reader page */ 6718 nr_pages++; 6719 6720 /* Allocate the new size buffer */ 6721 INIT_LIST_HEAD(&cpu_buffer->new_pages); 6722 if (__rb_allocate_pages(cpu_buffer, nr_pages, 6723 &cpu_buffer->new_pages)) { 6724 /* not enough memory for new pages */ 6725 err = -ENOMEM; 6726 goto error; 6727 } 6728 } 6729 6730 for_each_buffer_cpu(buffer, cpu) { 6731 6732 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6733 continue; 6734 6735 cpu_buffer = buffer->buffers[cpu]; 6736 6737 /* Clear the head bit to make the link list normal to read */ 6738 rb_head_page_deactivate(cpu_buffer); 6739 6740 /* Now walk the list and free all the old sub buffers */ 6741 list_for_each_entry_safe(bpage, tmp, cpu_buffer->pages, list) { 6742 list_del_init(&bpage->list); 6743 free_buffer_page(bpage); 6744 } 6745 /* The above loop stopped an the last page needing to be freed */ 6746 bpage = list_entry(cpu_buffer->pages, struct buffer_page, list); 6747 free_buffer_page(bpage); 6748 6749 /* Free the current reader page */ 6750 free_buffer_page(cpu_buffer->reader_page); 6751 6752 /* One page was allocated for the reader page */ 6753 cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next, 6754 struct buffer_page, list); 6755 list_del_init(&cpu_buffer->reader_page->list); 6756 6757 /* The cpu_buffer pages are a link list with no head */ 6758 cpu_buffer->pages = cpu_buffer->new_pages.next; 6759 cpu_buffer->new_pages.next->prev = cpu_buffer->new_pages.prev; 6760 cpu_buffer->new_pages.prev->next = cpu_buffer->new_pages.next; 6761 6762 /* Clear the new_pages list */ 6763 INIT_LIST_HEAD(&cpu_buffer->new_pages); 6764 6765 cpu_buffer->head_page 6766 = list_entry(cpu_buffer->pages, struct buffer_page, list); 6767 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 6768 6769 cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update; 6770 cpu_buffer->nr_pages_to_update = 0; 6771 6772 free_pages((unsigned long)cpu_buffer->free_page, old_order); 6773 cpu_buffer->free_page = NULL; 6774 6775 rb_head_page_activate(cpu_buffer); 6776 6777 rb_check_pages(cpu_buffer); 6778 } 6779 6780 atomic_dec(&buffer->record_disabled); 6781 mutex_unlock(&buffer->mutex); 6782 6783 return 0; 6784 6785 error: 6786 buffer->subbuf_order = old_order; 6787 buffer->subbuf_size = old_size; 6788 6789 atomic_dec(&buffer->record_disabled); 6790 mutex_unlock(&buffer->mutex); 6791 6792 for_each_buffer_cpu(buffer, cpu) { 6793 cpu_buffer = buffer->buffers[cpu]; 6794 6795 if (!cpu_buffer->nr_pages_to_update) 6796 continue; 6797 6798 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) { 6799 list_del_init(&bpage->list); 6800 free_buffer_page(bpage); 6801 } 6802 } 6803 6804 return err; 6805 } 6806 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set); 6807 6808 static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer) 6809 { 6810 struct page *page; 6811 6812 if (cpu_buffer->meta_page) 6813 return 0; 6814 6815 page = alloc_page(GFP_USER | __GFP_ZERO); 6816 if (!page) 6817 return -ENOMEM; 6818 6819 cpu_buffer->meta_page = page_to_virt(page); 6820 6821 return 0; 6822 } 6823 6824 static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer) 6825 { 6826 unsigned long addr = (unsigned long)cpu_buffer->meta_page; 6827 6828 free_page(addr); 6829 cpu_buffer->meta_page = NULL; 6830 } 6831 6832 static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer, 6833 unsigned long *subbuf_ids) 6834 { 6835 struct trace_buffer_meta *meta = cpu_buffer->meta_page; 6836 unsigned int nr_subbufs = cpu_buffer->nr_pages + 1; 6837 struct buffer_page *first_subbuf, *subbuf; 6838 int id = 0; 6839 6840 subbuf_ids[id] = (unsigned long)cpu_buffer->reader_page->page; 6841 cpu_buffer->reader_page->id = id++; 6842 6843 first_subbuf = subbuf = rb_set_head_page(cpu_buffer); 6844 do { 6845 if (WARN_ON(id >= nr_subbufs)) 6846 break; 6847 6848 subbuf_ids[id] = (unsigned long)subbuf->page; 6849 subbuf->id = id; 6850 6851 rb_inc_page(&subbuf); 6852 id++; 6853 } while (subbuf != first_subbuf); 6854 6855 /* install subbuf ID to kern VA translation */ 6856 cpu_buffer->subbuf_ids = subbuf_ids; 6857 6858 meta->meta_struct_len = sizeof(*meta); 6859 meta->nr_subbufs = nr_subbufs; 6860 meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE; 6861 meta->meta_page_size = meta->subbuf_size; 6862 6863 rb_update_meta_page(cpu_buffer); 6864 } 6865 6866 static struct ring_buffer_per_cpu * 6867 rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu) 6868 { 6869 struct ring_buffer_per_cpu *cpu_buffer; 6870 6871 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6872 return ERR_PTR(-EINVAL); 6873 6874 cpu_buffer = buffer->buffers[cpu]; 6875 6876 mutex_lock(&cpu_buffer->mapping_lock); 6877 6878 if (!cpu_buffer->user_mapped) { 6879 mutex_unlock(&cpu_buffer->mapping_lock); 6880 return ERR_PTR(-ENODEV); 6881 } 6882 6883 return cpu_buffer; 6884 } 6885 6886 static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer) 6887 { 6888 mutex_unlock(&cpu_buffer->mapping_lock); 6889 } 6890 6891 /* 6892 * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need 6893 * to be set-up or torn-down. 6894 */ 6895 static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer, 6896 bool inc) 6897 { 6898 unsigned long flags; 6899 6900 lockdep_assert_held(&cpu_buffer->mapping_lock); 6901 6902 /* mapped is always greater or equal to user_mapped */ 6903 if (WARN_ON(cpu_buffer->mapped < cpu_buffer->user_mapped)) 6904 return -EINVAL; 6905 6906 if (inc && cpu_buffer->mapped == UINT_MAX) 6907 return -EBUSY; 6908 6909 if (WARN_ON(!inc && cpu_buffer->user_mapped == 0)) 6910 return -EINVAL; 6911 6912 mutex_lock(&cpu_buffer->buffer->mutex); 6913 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 6914 6915 if (inc) { 6916 cpu_buffer->user_mapped++; 6917 cpu_buffer->mapped++; 6918 } else { 6919 cpu_buffer->user_mapped--; 6920 cpu_buffer->mapped--; 6921 } 6922 6923 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 6924 mutex_unlock(&cpu_buffer->buffer->mutex); 6925 6926 return 0; 6927 } 6928 6929 /* 6930 * +--------------+ pgoff == 0 6931 * | meta page | 6932 * +--------------+ pgoff == 1 6933 * | subbuffer 0 | 6934 * | | 6935 * +--------------+ pgoff == (1 + (1 << subbuf_order)) 6936 * | subbuffer 1 | 6937 * | | 6938 * ... 6939 */ 6940 #ifdef CONFIG_MMU 6941 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer, 6942 struct vm_area_struct *vma) 6943 { 6944 unsigned long nr_subbufs, nr_pages, nr_vma_pages, pgoff = vma->vm_pgoff; 6945 unsigned int subbuf_pages, subbuf_order; 6946 struct page **pages; 6947 int p = 0, s = 0; 6948 int err; 6949 6950 /* Refuse MP_PRIVATE or writable mappings */ 6951 if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC || 6952 !(vma->vm_flags & VM_MAYSHARE)) 6953 return -EPERM; 6954 6955 subbuf_order = cpu_buffer->buffer->subbuf_order; 6956 subbuf_pages = 1 << subbuf_order; 6957 6958 if (subbuf_order && pgoff % subbuf_pages) 6959 return -EINVAL; 6960 6961 /* 6962 * Make sure the mapping cannot become writable later. Also tell the VM 6963 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND). 6964 */ 6965 vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP, 6966 VM_MAYWRITE); 6967 6968 lockdep_assert_held(&cpu_buffer->mapping_lock); 6969 6970 nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */ 6971 nr_pages = ((nr_subbufs + 1) << subbuf_order) - pgoff; /* + meta-page */ 6972 6973 nr_vma_pages = vma_pages(vma); 6974 if (!nr_vma_pages || nr_vma_pages > nr_pages) 6975 return -EINVAL; 6976 6977 nr_pages = nr_vma_pages; 6978 6979 pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL); 6980 if (!pages) 6981 return -ENOMEM; 6982 6983 if (!pgoff) { 6984 unsigned long meta_page_padding; 6985 6986 pages[p++] = virt_to_page(cpu_buffer->meta_page); 6987 6988 /* 6989 * Pad with the zero-page to align the meta-page with the 6990 * sub-buffers. 6991 */ 6992 meta_page_padding = subbuf_pages - 1; 6993 while (meta_page_padding-- && p < nr_pages) { 6994 unsigned long __maybe_unused zero_addr = 6995 vma->vm_start + (PAGE_SIZE * p); 6996 6997 pages[p++] = ZERO_PAGE(zero_addr); 6998 } 6999 } else { 7000 /* Skip the meta-page */ 7001 pgoff -= subbuf_pages; 7002 7003 s += pgoff / subbuf_pages; 7004 } 7005 7006 while (p < nr_pages) { 7007 struct page *page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]); 7008 int off = 0; 7009 7010 if (WARN_ON_ONCE(s >= nr_subbufs)) { 7011 err = -EINVAL; 7012 goto out; 7013 } 7014 7015 for (; off < (1 << (subbuf_order)); off++, page++) { 7016 if (p >= nr_pages) 7017 break; 7018 7019 pages[p++] = page; 7020 } 7021 s++; 7022 } 7023 7024 err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages); 7025 7026 out: 7027 kfree(pages); 7028 7029 return err; 7030 } 7031 #else 7032 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer, 7033 struct vm_area_struct *vma) 7034 { 7035 return -EOPNOTSUPP; 7036 } 7037 #endif 7038 7039 int ring_buffer_map(struct trace_buffer *buffer, int cpu, 7040 struct vm_area_struct *vma) 7041 { 7042 struct ring_buffer_per_cpu *cpu_buffer; 7043 unsigned long flags, *subbuf_ids; 7044 int err = 0; 7045 7046 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 7047 return -EINVAL; 7048 7049 cpu_buffer = buffer->buffers[cpu]; 7050 7051 mutex_lock(&cpu_buffer->mapping_lock); 7052 7053 if (cpu_buffer->user_mapped) { 7054 err = __rb_map_vma(cpu_buffer, vma); 7055 if (!err) 7056 err = __rb_inc_dec_mapped(cpu_buffer, true); 7057 mutex_unlock(&cpu_buffer->mapping_lock); 7058 return err; 7059 } 7060 7061 /* prevent another thread from changing buffer/sub-buffer sizes */ 7062 mutex_lock(&buffer->mutex); 7063 7064 err = rb_alloc_meta_page(cpu_buffer); 7065 if (err) 7066 goto unlock; 7067 7068 /* subbuf_ids include the reader while nr_pages does not */ 7069 subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL); 7070 if (!subbuf_ids) { 7071 rb_free_meta_page(cpu_buffer); 7072 err = -ENOMEM; 7073 goto unlock; 7074 } 7075 7076 atomic_inc(&cpu_buffer->resize_disabled); 7077 7078 /* 7079 * Lock all readers to block any subbuf swap until the subbuf IDs are 7080 * assigned. 7081 */ 7082 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 7083 rb_setup_ids_meta_page(cpu_buffer, subbuf_ids); 7084 7085 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 7086 7087 err = __rb_map_vma(cpu_buffer, vma); 7088 if (!err) { 7089 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 7090 /* This is the first time it is mapped by user */ 7091 cpu_buffer->mapped++; 7092 cpu_buffer->user_mapped = 1; 7093 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 7094 } else { 7095 kfree(cpu_buffer->subbuf_ids); 7096 cpu_buffer->subbuf_ids = NULL; 7097 rb_free_meta_page(cpu_buffer); 7098 } 7099 7100 unlock: 7101 mutex_unlock(&buffer->mutex); 7102 mutex_unlock(&cpu_buffer->mapping_lock); 7103 7104 return err; 7105 } 7106 7107 int ring_buffer_unmap(struct trace_buffer *buffer, int cpu) 7108 { 7109 struct ring_buffer_per_cpu *cpu_buffer; 7110 unsigned long flags; 7111 int err = 0; 7112 7113 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 7114 return -EINVAL; 7115 7116 cpu_buffer = buffer->buffers[cpu]; 7117 7118 mutex_lock(&cpu_buffer->mapping_lock); 7119 7120 if (!cpu_buffer->user_mapped) { 7121 err = -ENODEV; 7122 goto out; 7123 } else if (cpu_buffer->user_mapped > 1) { 7124 __rb_inc_dec_mapped(cpu_buffer, false); 7125 goto out; 7126 } 7127 7128 mutex_lock(&buffer->mutex); 7129 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 7130 7131 /* This is the last user space mapping */ 7132 if (!WARN_ON_ONCE(cpu_buffer->mapped < cpu_buffer->user_mapped)) 7133 cpu_buffer->mapped--; 7134 cpu_buffer->user_mapped = 0; 7135 7136 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 7137 7138 kfree(cpu_buffer->subbuf_ids); 7139 cpu_buffer->subbuf_ids = NULL; 7140 rb_free_meta_page(cpu_buffer); 7141 atomic_dec(&cpu_buffer->resize_disabled); 7142 7143 mutex_unlock(&buffer->mutex); 7144 7145 out: 7146 mutex_unlock(&cpu_buffer->mapping_lock); 7147 7148 return err; 7149 } 7150 7151 int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu) 7152 { 7153 struct ring_buffer_per_cpu *cpu_buffer; 7154 struct buffer_page *reader; 7155 unsigned long missed_events; 7156 unsigned long reader_size; 7157 unsigned long flags; 7158 7159 cpu_buffer = rb_get_mapped_buffer(buffer, cpu); 7160 if (IS_ERR(cpu_buffer)) 7161 return (int)PTR_ERR(cpu_buffer); 7162 7163 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 7164 7165 consume: 7166 if (rb_per_cpu_empty(cpu_buffer)) 7167 goto out; 7168 7169 reader_size = rb_page_size(cpu_buffer->reader_page); 7170 7171 /* 7172 * There are data to be read on the current reader page, we can 7173 * return to the caller. But before that, we assume the latter will read 7174 * everything. Let's update the kernel reader accordingly. 7175 */ 7176 if (cpu_buffer->reader_page->read < reader_size) { 7177 while (cpu_buffer->reader_page->read < reader_size) 7178 rb_advance_reader(cpu_buffer); 7179 goto out; 7180 } 7181 7182 reader = rb_get_reader_page(cpu_buffer); 7183 if (WARN_ON(!reader)) 7184 goto out; 7185 7186 /* Check if any events were dropped */ 7187 missed_events = cpu_buffer->lost_events; 7188 7189 if (cpu_buffer->reader_page != cpu_buffer->commit_page) { 7190 if (missed_events) { 7191 struct buffer_data_page *bpage = reader->page; 7192 unsigned int commit; 7193 /* 7194 * Use the real_end for the data size, 7195 * This gives us a chance to store the lost events 7196 * on the page. 7197 */ 7198 if (reader->real_end) 7199 local_set(&bpage->commit, reader->real_end); 7200 /* 7201 * If there is room at the end of the page to save the 7202 * missed events, then record it there. 7203 */ 7204 commit = rb_page_size(reader); 7205 if (buffer->subbuf_size - commit >= sizeof(missed_events)) { 7206 memcpy(&bpage->data[commit], &missed_events, 7207 sizeof(missed_events)); 7208 local_add(RB_MISSED_STORED, &bpage->commit); 7209 } 7210 local_add(RB_MISSED_EVENTS, &bpage->commit); 7211 } 7212 } else { 7213 /* 7214 * There really shouldn't be any missed events if the commit 7215 * is on the reader page. 7216 */ 7217 WARN_ON_ONCE(missed_events); 7218 } 7219 7220 cpu_buffer->lost_events = 0; 7221 7222 goto consume; 7223 7224 out: 7225 /* Some archs do not have data cache coherency between kernel and user-space */ 7226 flush_dcache_folio(virt_to_folio(cpu_buffer->reader_page->page)); 7227 7228 rb_update_meta_page(cpu_buffer); 7229 7230 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 7231 rb_put_mapped_buffer(cpu_buffer); 7232 7233 return 0; 7234 } 7235 7236 /* 7237 * We only allocate new buffers, never free them if the CPU goes down. 7238 * If we were to free the buffer, then the user would lose any trace that was in 7239 * the buffer. 7240 */ 7241 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 7242 { 7243 struct trace_buffer *buffer; 7244 long nr_pages_same; 7245 int cpu_i; 7246 unsigned long nr_pages; 7247 7248 buffer = container_of(node, struct trace_buffer, node); 7249 if (cpumask_test_cpu(cpu, buffer->cpumask)) 7250 return 0; 7251 7252 nr_pages = 0; 7253 nr_pages_same = 1; 7254 /* check if all cpu sizes are same */ 7255 for_each_buffer_cpu(buffer, cpu_i) { 7256 /* fill in the size from first enabled cpu */ 7257 if (nr_pages == 0) 7258 nr_pages = buffer->buffers[cpu_i]->nr_pages; 7259 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 7260 nr_pages_same = 0; 7261 break; 7262 } 7263 } 7264 /* allocate minimum pages, user can later expand it */ 7265 if (!nr_pages_same) 7266 nr_pages = 2; 7267 buffer->buffers[cpu] = 7268 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 7269 if (!buffer->buffers[cpu]) { 7270 WARN(1, "failed to allocate ring buffer on CPU %u\n", 7271 cpu); 7272 return -ENOMEM; 7273 } 7274 smp_wmb(); 7275 cpumask_set_cpu(cpu, buffer->cpumask); 7276 return 0; 7277 } 7278 7279 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 7280 /* 7281 * This is a basic integrity check of the ring buffer. 7282 * Late in the boot cycle this test will run when configured in. 7283 * It will kick off a thread per CPU that will go into a loop 7284 * writing to the per cpu ring buffer various sizes of data. 7285 * Some of the data will be large items, some small. 7286 * 7287 * Another thread is created that goes into a spin, sending out 7288 * IPIs to the other CPUs to also write into the ring buffer. 7289 * this is to test the nesting ability of the buffer. 7290 * 7291 * Basic stats are recorded and reported. If something in the 7292 * ring buffer should happen that's not expected, a big warning 7293 * is displayed and all ring buffers are disabled. 7294 */ 7295 static struct task_struct *rb_threads[NR_CPUS] __initdata; 7296 7297 struct rb_test_data { 7298 struct trace_buffer *buffer; 7299 unsigned long events; 7300 unsigned long bytes_written; 7301 unsigned long bytes_alloc; 7302 unsigned long bytes_dropped; 7303 unsigned long events_nested; 7304 unsigned long bytes_written_nested; 7305 unsigned long bytes_alloc_nested; 7306 unsigned long bytes_dropped_nested; 7307 int min_size_nested; 7308 int max_size_nested; 7309 int max_size; 7310 int min_size; 7311 int cpu; 7312 int cnt; 7313 }; 7314 7315 static struct rb_test_data rb_data[NR_CPUS] __initdata; 7316 7317 /* 1 meg per cpu */ 7318 #define RB_TEST_BUFFER_SIZE 1048576 7319 7320 static char rb_string[] __initdata = 7321 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 7322 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 7323 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 7324 7325 static bool rb_test_started __initdata; 7326 7327 struct rb_item { 7328 int size; 7329 char str[]; 7330 }; 7331 7332 static __init int rb_write_something(struct rb_test_data *data, bool nested) 7333 { 7334 struct ring_buffer_event *event; 7335 struct rb_item *item; 7336 bool started; 7337 int event_len; 7338 int size; 7339 int len; 7340 int cnt; 7341 7342 /* Have nested writes different that what is written */ 7343 cnt = data->cnt + (nested ? 27 : 0); 7344 7345 /* Multiply cnt by ~e, to make some unique increment */ 7346 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1); 7347 7348 len = size + sizeof(struct rb_item); 7349 7350 started = rb_test_started; 7351 /* read rb_test_started before checking buffer enabled */ 7352 smp_rmb(); 7353 7354 event = ring_buffer_lock_reserve(data->buffer, len); 7355 if (!event) { 7356 /* Ignore dropped events before test starts. */ 7357 if (started) { 7358 if (nested) 7359 data->bytes_dropped += len; 7360 else 7361 data->bytes_dropped_nested += len; 7362 } 7363 return len; 7364 } 7365 7366 event_len = ring_buffer_event_length(event); 7367 7368 if (RB_WARN_ON(data->buffer, event_len < len)) 7369 goto out; 7370 7371 item = ring_buffer_event_data(event); 7372 item->size = size; 7373 memcpy(item->str, rb_string, size); 7374 7375 if (nested) { 7376 data->bytes_alloc_nested += event_len; 7377 data->bytes_written_nested += len; 7378 data->events_nested++; 7379 if (!data->min_size_nested || len < data->min_size_nested) 7380 data->min_size_nested = len; 7381 if (len > data->max_size_nested) 7382 data->max_size_nested = len; 7383 } else { 7384 data->bytes_alloc += event_len; 7385 data->bytes_written += len; 7386 data->events++; 7387 if (!data->min_size || len < data->min_size) 7388 data->max_size = len; 7389 if (len > data->max_size) 7390 data->max_size = len; 7391 } 7392 7393 out: 7394 ring_buffer_unlock_commit(data->buffer); 7395 7396 return 0; 7397 } 7398 7399 static __init int rb_test(void *arg) 7400 { 7401 struct rb_test_data *data = arg; 7402 7403 while (!kthread_should_stop()) { 7404 rb_write_something(data, false); 7405 data->cnt++; 7406 7407 set_current_state(TASK_INTERRUPTIBLE); 7408 /* Now sleep between a min of 100-300us and a max of 1ms */ 7409 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 7410 } 7411 7412 return 0; 7413 } 7414 7415 static __init void rb_ipi(void *ignore) 7416 { 7417 struct rb_test_data *data; 7418 int cpu = smp_processor_id(); 7419 7420 data = &rb_data[cpu]; 7421 rb_write_something(data, true); 7422 } 7423 7424 static __init int rb_hammer_test(void *arg) 7425 { 7426 while (!kthread_should_stop()) { 7427 7428 /* Send an IPI to all cpus to write data! */ 7429 smp_call_function(rb_ipi, NULL, 1); 7430 /* No sleep, but for non preempt, let others run */ 7431 schedule(); 7432 } 7433 7434 return 0; 7435 } 7436 7437 static __init int test_ringbuffer(void) 7438 { 7439 struct task_struct *rb_hammer; 7440 struct trace_buffer *buffer; 7441 int cpu; 7442 int ret = 0; 7443 7444 if (security_locked_down(LOCKDOWN_TRACEFS)) { 7445 pr_warn("Lockdown is enabled, skipping ring buffer tests\n"); 7446 return 0; 7447 } 7448 7449 pr_info("Running ring buffer tests...\n"); 7450 7451 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 7452 if (WARN_ON(!buffer)) 7453 return 0; 7454 7455 /* Disable buffer so that threads can't write to it yet */ 7456 ring_buffer_record_off(buffer); 7457 7458 for_each_online_cpu(cpu) { 7459 rb_data[cpu].buffer = buffer; 7460 rb_data[cpu].cpu = cpu; 7461 rb_data[cpu].cnt = cpu; 7462 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu], 7463 cpu, "rbtester/%u"); 7464 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 7465 pr_cont("FAILED\n"); 7466 ret = PTR_ERR(rb_threads[cpu]); 7467 goto out_free; 7468 } 7469 } 7470 7471 /* Now create the rb hammer! */ 7472 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 7473 if (WARN_ON(IS_ERR(rb_hammer))) { 7474 pr_cont("FAILED\n"); 7475 ret = PTR_ERR(rb_hammer); 7476 goto out_free; 7477 } 7478 7479 ring_buffer_record_on(buffer); 7480 /* 7481 * Show buffer is enabled before setting rb_test_started. 7482 * Yes there's a small race window where events could be 7483 * dropped and the thread wont catch it. But when a ring 7484 * buffer gets enabled, there will always be some kind of 7485 * delay before other CPUs see it. Thus, we don't care about 7486 * those dropped events. We care about events dropped after 7487 * the threads see that the buffer is active. 7488 */ 7489 smp_wmb(); 7490 rb_test_started = true; 7491 7492 set_current_state(TASK_INTERRUPTIBLE); 7493 /* Just run for 10 seconds */; 7494 schedule_timeout(10 * HZ); 7495 7496 kthread_stop(rb_hammer); 7497 7498 out_free: 7499 for_each_online_cpu(cpu) { 7500 if (!rb_threads[cpu]) 7501 break; 7502 kthread_stop(rb_threads[cpu]); 7503 } 7504 if (ret) { 7505 ring_buffer_free(buffer); 7506 return ret; 7507 } 7508 7509 /* Report! */ 7510 pr_info("finished\n"); 7511 for_each_online_cpu(cpu) { 7512 struct ring_buffer_event *event; 7513 struct rb_test_data *data = &rb_data[cpu]; 7514 struct rb_item *item; 7515 unsigned long total_events; 7516 unsigned long total_dropped; 7517 unsigned long total_written; 7518 unsigned long total_alloc; 7519 unsigned long total_read = 0; 7520 unsigned long total_size = 0; 7521 unsigned long total_len = 0; 7522 unsigned long total_lost = 0; 7523 unsigned long lost; 7524 int big_event_size; 7525 int small_event_size; 7526 7527 ret = -1; 7528 7529 total_events = data->events + data->events_nested; 7530 total_written = data->bytes_written + data->bytes_written_nested; 7531 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 7532 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 7533 7534 big_event_size = data->max_size + data->max_size_nested; 7535 small_event_size = data->min_size + data->min_size_nested; 7536 7537 pr_info("CPU %d:\n", cpu); 7538 pr_info(" events: %ld\n", total_events); 7539 pr_info(" dropped bytes: %ld\n", total_dropped); 7540 pr_info(" alloced bytes: %ld\n", total_alloc); 7541 pr_info(" written bytes: %ld\n", total_written); 7542 pr_info(" biggest event: %d\n", big_event_size); 7543 pr_info(" smallest event: %d\n", small_event_size); 7544 7545 if (RB_WARN_ON(buffer, total_dropped)) 7546 break; 7547 7548 ret = 0; 7549 7550 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 7551 total_lost += lost; 7552 item = ring_buffer_event_data(event); 7553 total_len += ring_buffer_event_length(event); 7554 total_size += item->size + sizeof(struct rb_item); 7555 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 7556 pr_info("FAILED!\n"); 7557 pr_info("buffer had: %.*s\n", item->size, item->str); 7558 pr_info("expected: %.*s\n", item->size, rb_string); 7559 RB_WARN_ON(buffer, 1); 7560 ret = -1; 7561 break; 7562 } 7563 total_read++; 7564 } 7565 if (ret) 7566 break; 7567 7568 ret = -1; 7569 7570 pr_info(" read events: %ld\n", total_read); 7571 pr_info(" lost events: %ld\n", total_lost); 7572 pr_info(" total events: %ld\n", total_lost + total_read); 7573 pr_info(" recorded len bytes: %ld\n", total_len); 7574 pr_info(" recorded size bytes: %ld\n", total_size); 7575 if (total_lost) { 7576 pr_info(" With dropped events, record len and size may not match\n" 7577 " alloced and written from above\n"); 7578 } else { 7579 if (RB_WARN_ON(buffer, total_len != total_alloc || 7580 total_size != total_written)) 7581 break; 7582 } 7583 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 7584 break; 7585 7586 ret = 0; 7587 } 7588 if (!ret) 7589 pr_info("Ring buffer PASSED!\n"); 7590 7591 ring_buffer_free(buffer); 7592 return 0; 7593 } 7594 7595 late_initcall(test_ringbuffer); 7596 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 7597