1 /* 2 * Generic ring buffer 3 * 4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 5 */ 6 #include <linux/trace_events.h> 7 #include <linux/ring_buffer.h> 8 #include <linux/trace_clock.h> 9 #include <linux/sched/clock.h> 10 #include <linux/trace_seq.h> 11 #include <linux/spinlock.h> 12 #include <linux/irq_work.h> 13 #include <linux/uaccess.h> 14 #include <linux/hardirq.h> 15 #include <linux/kthread.h> /* for self test */ 16 #include <linux/kmemcheck.h> 17 #include <linux/module.h> 18 #include <linux/percpu.h> 19 #include <linux/mutex.h> 20 #include <linux/delay.h> 21 #include <linux/slab.h> 22 #include <linux/init.h> 23 #include <linux/hash.h> 24 #include <linux/list.h> 25 #include <linux/cpu.h> 26 27 #include <asm/local.h> 28 29 static void update_pages_handler(struct work_struct *work); 30 31 /* 32 * The ring buffer header is special. We must manually up keep it. 33 */ 34 int ring_buffer_print_entry_header(struct trace_seq *s) 35 { 36 trace_seq_puts(s, "# compressed entry header\n"); 37 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 38 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 39 trace_seq_puts(s, "\tarray : 32 bits\n"); 40 trace_seq_putc(s, '\n'); 41 trace_seq_printf(s, "\tpadding : type == %d\n", 42 RINGBUF_TYPE_PADDING); 43 trace_seq_printf(s, "\ttime_extend : type == %d\n", 44 RINGBUF_TYPE_TIME_EXTEND); 45 trace_seq_printf(s, "\tdata max type_len == %d\n", 46 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 47 48 return !trace_seq_has_overflowed(s); 49 } 50 51 /* 52 * The ring buffer is made up of a list of pages. A separate list of pages is 53 * allocated for each CPU. A writer may only write to a buffer that is 54 * associated with the CPU it is currently executing on. A reader may read 55 * from any per cpu buffer. 56 * 57 * The reader is special. For each per cpu buffer, the reader has its own 58 * reader page. When a reader has read the entire reader page, this reader 59 * page is swapped with another page in the ring buffer. 60 * 61 * Now, as long as the writer is off the reader page, the reader can do what 62 * ever it wants with that page. The writer will never write to that page 63 * again (as long as it is out of the ring buffer). 64 * 65 * Here's some silly ASCII art. 66 * 67 * +------+ 68 * |reader| RING BUFFER 69 * |page | 70 * +------+ +---+ +---+ +---+ 71 * | |-->| |-->| | 72 * +---+ +---+ +---+ 73 * ^ | 74 * | | 75 * +---------------+ 76 * 77 * 78 * +------+ 79 * |reader| RING BUFFER 80 * |page |------------------v 81 * +------+ +---+ +---+ +---+ 82 * | |-->| |-->| | 83 * +---+ +---+ +---+ 84 * ^ | 85 * | | 86 * +---------------+ 87 * 88 * 89 * +------+ 90 * |reader| RING BUFFER 91 * |page |------------------v 92 * +------+ +---+ +---+ +---+ 93 * ^ | |-->| |-->| | 94 * | +---+ +---+ +---+ 95 * | | 96 * | | 97 * +------------------------------+ 98 * 99 * 100 * +------+ 101 * |buffer| RING BUFFER 102 * |page |------------------v 103 * +------+ +---+ +---+ +---+ 104 * ^ | | | |-->| | 105 * | New +---+ +---+ +---+ 106 * | Reader------^ | 107 * | page | 108 * +------------------------------+ 109 * 110 * 111 * After we make this swap, the reader can hand this page off to the splice 112 * code and be done with it. It can even allocate a new page if it needs to 113 * and swap that into the ring buffer. 114 * 115 * We will be using cmpxchg soon to make all this lockless. 116 * 117 */ 118 119 /* Used for individual buffers (after the counter) */ 120 #define RB_BUFFER_OFF (1 << 20) 121 122 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 123 124 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 125 #define RB_ALIGNMENT 4U 126 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 127 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 128 129 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 130 # define RB_FORCE_8BYTE_ALIGNMENT 0 131 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 132 #else 133 # define RB_FORCE_8BYTE_ALIGNMENT 1 134 # define RB_ARCH_ALIGNMENT 8U 135 #endif 136 137 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 138 139 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 140 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 141 142 enum { 143 RB_LEN_TIME_EXTEND = 8, 144 RB_LEN_TIME_STAMP = 16, 145 }; 146 147 #define skip_time_extend(event) \ 148 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 149 150 static inline int rb_null_event(struct ring_buffer_event *event) 151 { 152 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 153 } 154 155 static void rb_event_set_padding(struct ring_buffer_event *event) 156 { 157 /* padding has a NULL time_delta */ 158 event->type_len = RINGBUF_TYPE_PADDING; 159 event->time_delta = 0; 160 } 161 162 static unsigned 163 rb_event_data_length(struct ring_buffer_event *event) 164 { 165 unsigned length; 166 167 if (event->type_len) 168 length = event->type_len * RB_ALIGNMENT; 169 else 170 length = event->array[0]; 171 return length + RB_EVNT_HDR_SIZE; 172 } 173 174 /* 175 * Return the length of the given event. Will return 176 * the length of the time extend if the event is a 177 * time extend. 178 */ 179 static inline unsigned 180 rb_event_length(struct ring_buffer_event *event) 181 { 182 switch (event->type_len) { 183 case RINGBUF_TYPE_PADDING: 184 if (rb_null_event(event)) 185 /* undefined */ 186 return -1; 187 return event->array[0] + RB_EVNT_HDR_SIZE; 188 189 case RINGBUF_TYPE_TIME_EXTEND: 190 return RB_LEN_TIME_EXTEND; 191 192 case RINGBUF_TYPE_TIME_STAMP: 193 return RB_LEN_TIME_STAMP; 194 195 case RINGBUF_TYPE_DATA: 196 return rb_event_data_length(event); 197 default: 198 BUG(); 199 } 200 /* not hit */ 201 return 0; 202 } 203 204 /* 205 * Return total length of time extend and data, 206 * or just the event length for all other events. 207 */ 208 static inline unsigned 209 rb_event_ts_length(struct ring_buffer_event *event) 210 { 211 unsigned len = 0; 212 213 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 214 /* time extends include the data event after it */ 215 len = RB_LEN_TIME_EXTEND; 216 event = skip_time_extend(event); 217 } 218 return len + rb_event_length(event); 219 } 220 221 /** 222 * ring_buffer_event_length - return the length of the event 223 * @event: the event to get the length of 224 * 225 * Returns the size of the data load of a data event. 226 * If the event is something other than a data event, it 227 * returns the size of the event itself. With the exception 228 * of a TIME EXTEND, where it still returns the size of the 229 * data load of the data event after it. 230 */ 231 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 232 { 233 unsigned length; 234 235 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 236 event = skip_time_extend(event); 237 238 length = rb_event_length(event); 239 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 240 return length; 241 length -= RB_EVNT_HDR_SIZE; 242 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 243 length -= sizeof(event->array[0]); 244 return length; 245 } 246 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 247 248 /* inline for ring buffer fast paths */ 249 static __always_inline void * 250 rb_event_data(struct ring_buffer_event *event) 251 { 252 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 253 event = skip_time_extend(event); 254 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 255 /* If length is in len field, then array[0] has the data */ 256 if (event->type_len) 257 return (void *)&event->array[0]; 258 /* Otherwise length is in array[0] and array[1] has the data */ 259 return (void *)&event->array[1]; 260 } 261 262 /** 263 * ring_buffer_event_data - return the data of the event 264 * @event: the event to get the data from 265 */ 266 void *ring_buffer_event_data(struct ring_buffer_event *event) 267 { 268 return rb_event_data(event); 269 } 270 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 271 272 #define for_each_buffer_cpu(buffer, cpu) \ 273 for_each_cpu(cpu, buffer->cpumask) 274 275 #define TS_SHIFT 27 276 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 277 #define TS_DELTA_TEST (~TS_MASK) 278 279 /* Flag when events were overwritten */ 280 #define RB_MISSED_EVENTS (1 << 31) 281 /* Missed count stored at end */ 282 #define RB_MISSED_STORED (1 << 30) 283 284 struct buffer_data_page { 285 u64 time_stamp; /* page time stamp */ 286 local_t commit; /* write committed index */ 287 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 288 }; 289 290 /* 291 * Note, the buffer_page list must be first. The buffer pages 292 * are allocated in cache lines, which means that each buffer 293 * page will be at the beginning of a cache line, and thus 294 * the least significant bits will be zero. We use this to 295 * add flags in the list struct pointers, to make the ring buffer 296 * lockless. 297 */ 298 struct buffer_page { 299 struct list_head list; /* list of buffer pages */ 300 local_t write; /* index for next write */ 301 unsigned read; /* index for next read */ 302 local_t entries; /* entries on this page */ 303 unsigned long real_end; /* real end of data */ 304 struct buffer_data_page *page; /* Actual data page */ 305 }; 306 307 /* 308 * The buffer page counters, write and entries, must be reset 309 * atomically when crossing page boundaries. To synchronize this 310 * update, two counters are inserted into the number. One is 311 * the actual counter for the write position or count on the page. 312 * 313 * The other is a counter of updaters. Before an update happens 314 * the update partition of the counter is incremented. This will 315 * allow the updater to update the counter atomically. 316 * 317 * The counter is 20 bits, and the state data is 12. 318 */ 319 #define RB_WRITE_MASK 0xfffff 320 #define RB_WRITE_INTCNT (1 << 20) 321 322 static void rb_init_page(struct buffer_data_page *bpage) 323 { 324 local_set(&bpage->commit, 0); 325 } 326 327 /** 328 * ring_buffer_page_len - the size of data on the page. 329 * @page: The page to read 330 * 331 * Returns the amount of data on the page, including buffer page header. 332 */ 333 size_t ring_buffer_page_len(void *page) 334 { 335 return local_read(&((struct buffer_data_page *)page)->commit) 336 + BUF_PAGE_HDR_SIZE; 337 } 338 339 /* 340 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 341 * this issue out. 342 */ 343 static void free_buffer_page(struct buffer_page *bpage) 344 { 345 free_page((unsigned long)bpage->page); 346 kfree(bpage); 347 } 348 349 /* 350 * We need to fit the time_stamp delta into 27 bits. 351 */ 352 static inline int test_time_stamp(u64 delta) 353 { 354 if (delta & TS_DELTA_TEST) 355 return 1; 356 return 0; 357 } 358 359 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 360 361 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 362 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 363 364 int ring_buffer_print_page_header(struct trace_seq *s) 365 { 366 struct buffer_data_page field; 367 368 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 369 "offset:0;\tsize:%u;\tsigned:%u;\n", 370 (unsigned int)sizeof(field.time_stamp), 371 (unsigned int)is_signed_type(u64)); 372 373 trace_seq_printf(s, "\tfield: local_t commit;\t" 374 "offset:%u;\tsize:%u;\tsigned:%u;\n", 375 (unsigned int)offsetof(typeof(field), commit), 376 (unsigned int)sizeof(field.commit), 377 (unsigned int)is_signed_type(long)); 378 379 trace_seq_printf(s, "\tfield: int overwrite;\t" 380 "offset:%u;\tsize:%u;\tsigned:%u;\n", 381 (unsigned int)offsetof(typeof(field), commit), 382 1, 383 (unsigned int)is_signed_type(long)); 384 385 trace_seq_printf(s, "\tfield: char data;\t" 386 "offset:%u;\tsize:%u;\tsigned:%u;\n", 387 (unsigned int)offsetof(typeof(field), data), 388 (unsigned int)BUF_PAGE_SIZE, 389 (unsigned int)is_signed_type(char)); 390 391 return !trace_seq_has_overflowed(s); 392 } 393 394 struct rb_irq_work { 395 struct irq_work work; 396 wait_queue_head_t waiters; 397 wait_queue_head_t full_waiters; 398 bool waiters_pending; 399 bool full_waiters_pending; 400 bool wakeup_full; 401 }; 402 403 /* 404 * Structure to hold event state and handle nested events. 405 */ 406 struct rb_event_info { 407 u64 ts; 408 u64 delta; 409 unsigned long length; 410 struct buffer_page *tail_page; 411 int add_timestamp; 412 }; 413 414 /* 415 * Used for which event context the event is in. 416 * NMI = 0 417 * IRQ = 1 418 * SOFTIRQ = 2 419 * NORMAL = 3 420 * 421 * See trace_recursive_lock() comment below for more details. 422 */ 423 enum { 424 RB_CTX_NMI, 425 RB_CTX_IRQ, 426 RB_CTX_SOFTIRQ, 427 RB_CTX_NORMAL, 428 RB_CTX_MAX 429 }; 430 431 /* 432 * head_page == tail_page && head == tail then buffer is empty. 433 */ 434 struct ring_buffer_per_cpu { 435 int cpu; 436 atomic_t record_disabled; 437 struct ring_buffer *buffer; 438 raw_spinlock_t reader_lock; /* serialize readers */ 439 arch_spinlock_t lock; 440 struct lock_class_key lock_key; 441 unsigned long nr_pages; 442 unsigned int current_context; 443 struct list_head *pages; 444 struct buffer_page *head_page; /* read from head */ 445 struct buffer_page *tail_page; /* write to tail */ 446 struct buffer_page *commit_page; /* committed pages */ 447 struct buffer_page *reader_page; 448 unsigned long lost_events; 449 unsigned long last_overrun; 450 local_t entries_bytes; 451 local_t entries; 452 local_t overrun; 453 local_t commit_overrun; 454 local_t dropped_events; 455 local_t committing; 456 local_t commits; 457 unsigned long read; 458 unsigned long read_bytes; 459 u64 write_stamp; 460 u64 read_stamp; 461 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 462 long nr_pages_to_update; 463 struct list_head new_pages; /* new pages to add */ 464 struct work_struct update_pages_work; 465 struct completion update_done; 466 467 struct rb_irq_work irq_work; 468 }; 469 470 struct ring_buffer { 471 unsigned flags; 472 int cpus; 473 atomic_t record_disabled; 474 atomic_t resize_disabled; 475 cpumask_var_t cpumask; 476 477 struct lock_class_key *reader_lock_key; 478 479 struct mutex mutex; 480 481 struct ring_buffer_per_cpu **buffers; 482 483 struct hlist_node node; 484 u64 (*clock)(void); 485 486 struct rb_irq_work irq_work; 487 }; 488 489 struct ring_buffer_iter { 490 struct ring_buffer_per_cpu *cpu_buffer; 491 unsigned long head; 492 struct buffer_page *head_page; 493 struct buffer_page *cache_reader_page; 494 unsigned long cache_read; 495 u64 read_stamp; 496 }; 497 498 /* 499 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 500 * 501 * Schedules a delayed work to wake up any task that is blocked on the 502 * ring buffer waiters queue. 503 */ 504 static void rb_wake_up_waiters(struct irq_work *work) 505 { 506 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 507 508 wake_up_all(&rbwork->waiters); 509 if (rbwork->wakeup_full) { 510 rbwork->wakeup_full = false; 511 wake_up_all(&rbwork->full_waiters); 512 } 513 } 514 515 /** 516 * ring_buffer_wait - wait for input to the ring buffer 517 * @buffer: buffer to wait on 518 * @cpu: the cpu buffer to wait on 519 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS 520 * 521 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 522 * as data is added to any of the @buffer's cpu buffers. Otherwise 523 * it will wait for data to be added to a specific cpu buffer. 524 */ 525 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full) 526 { 527 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer); 528 DEFINE_WAIT(wait); 529 struct rb_irq_work *work; 530 int ret = 0; 531 532 /* 533 * Depending on what the caller is waiting for, either any 534 * data in any cpu buffer, or a specific buffer, put the 535 * caller on the appropriate wait queue. 536 */ 537 if (cpu == RING_BUFFER_ALL_CPUS) { 538 work = &buffer->irq_work; 539 /* Full only makes sense on per cpu reads */ 540 full = false; 541 } else { 542 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 543 return -ENODEV; 544 cpu_buffer = buffer->buffers[cpu]; 545 work = &cpu_buffer->irq_work; 546 } 547 548 549 while (true) { 550 if (full) 551 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE); 552 else 553 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 554 555 /* 556 * The events can happen in critical sections where 557 * checking a work queue can cause deadlocks. 558 * After adding a task to the queue, this flag is set 559 * only to notify events to try to wake up the queue 560 * using irq_work. 561 * 562 * We don't clear it even if the buffer is no longer 563 * empty. The flag only causes the next event to run 564 * irq_work to do the work queue wake up. The worse 565 * that can happen if we race with !trace_empty() is that 566 * an event will cause an irq_work to try to wake up 567 * an empty queue. 568 * 569 * There's no reason to protect this flag either, as 570 * the work queue and irq_work logic will do the necessary 571 * synchronization for the wake ups. The only thing 572 * that is necessary is that the wake up happens after 573 * a task has been queued. It's OK for spurious wake ups. 574 */ 575 if (full) 576 work->full_waiters_pending = true; 577 else 578 work->waiters_pending = true; 579 580 if (signal_pending(current)) { 581 ret = -EINTR; 582 break; 583 } 584 585 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) 586 break; 587 588 if (cpu != RING_BUFFER_ALL_CPUS && 589 !ring_buffer_empty_cpu(buffer, cpu)) { 590 unsigned long flags; 591 bool pagebusy; 592 593 if (!full) 594 break; 595 596 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 597 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 598 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 599 600 if (!pagebusy) 601 break; 602 } 603 604 schedule(); 605 } 606 607 if (full) 608 finish_wait(&work->full_waiters, &wait); 609 else 610 finish_wait(&work->waiters, &wait); 611 612 return ret; 613 } 614 615 /** 616 * ring_buffer_poll_wait - poll on buffer input 617 * @buffer: buffer to wait on 618 * @cpu: the cpu buffer to wait on 619 * @filp: the file descriptor 620 * @poll_table: The poll descriptor 621 * 622 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 623 * as data is added to any of the @buffer's cpu buffers. Otherwise 624 * it will wait for data to be added to a specific cpu buffer. 625 * 626 * Returns POLLIN | POLLRDNORM if data exists in the buffers, 627 * zero otherwise. 628 */ 629 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu, 630 struct file *filp, poll_table *poll_table) 631 { 632 struct ring_buffer_per_cpu *cpu_buffer; 633 struct rb_irq_work *work; 634 635 if (cpu == RING_BUFFER_ALL_CPUS) 636 work = &buffer->irq_work; 637 else { 638 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 639 return -EINVAL; 640 641 cpu_buffer = buffer->buffers[cpu]; 642 work = &cpu_buffer->irq_work; 643 } 644 645 poll_wait(filp, &work->waiters, poll_table); 646 work->waiters_pending = true; 647 /* 648 * There's a tight race between setting the waiters_pending and 649 * checking if the ring buffer is empty. Once the waiters_pending bit 650 * is set, the next event will wake the task up, but we can get stuck 651 * if there's only a single event in. 652 * 653 * FIXME: Ideally, we need a memory barrier on the writer side as well, 654 * but adding a memory barrier to all events will cause too much of a 655 * performance hit in the fast path. We only need a memory barrier when 656 * the buffer goes from empty to having content. But as this race is 657 * extremely small, and it's not a problem if another event comes in, we 658 * will fix it later. 659 */ 660 smp_mb(); 661 662 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 663 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 664 return POLLIN | POLLRDNORM; 665 return 0; 666 } 667 668 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 669 #define RB_WARN_ON(b, cond) \ 670 ({ \ 671 int _____ret = unlikely(cond); \ 672 if (_____ret) { \ 673 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 674 struct ring_buffer_per_cpu *__b = \ 675 (void *)b; \ 676 atomic_inc(&__b->buffer->record_disabled); \ 677 } else \ 678 atomic_inc(&b->record_disabled); \ 679 WARN_ON(1); \ 680 } \ 681 _____ret; \ 682 }) 683 684 /* Up this if you want to test the TIME_EXTENTS and normalization */ 685 #define DEBUG_SHIFT 0 686 687 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 688 { 689 /* shift to debug/test normalization and TIME_EXTENTS */ 690 return buffer->clock() << DEBUG_SHIFT; 691 } 692 693 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 694 { 695 u64 time; 696 697 preempt_disable_notrace(); 698 time = rb_time_stamp(buffer); 699 preempt_enable_no_resched_notrace(); 700 701 return time; 702 } 703 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 704 705 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 706 int cpu, u64 *ts) 707 { 708 /* Just stupid testing the normalize function and deltas */ 709 *ts >>= DEBUG_SHIFT; 710 } 711 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 712 713 /* 714 * Making the ring buffer lockless makes things tricky. 715 * Although writes only happen on the CPU that they are on, 716 * and they only need to worry about interrupts. Reads can 717 * happen on any CPU. 718 * 719 * The reader page is always off the ring buffer, but when the 720 * reader finishes with a page, it needs to swap its page with 721 * a new one from the buffer. The reader needs to take from 722 * the head (writes go to the tail). But if a writer is in overwrite 723 * mode and wraps, it must push the head page forward. 724 * 725 * Here lies the problem. 726 * 727 * The reader must be careful to replace only the head page, and 728 * not another one. As described at the top of the file in the 729 * ASCII art, the reader sets its old page to point to the next 730 * page after head. It then sets the page after head to point to 731 * the old reader page. But if the writer moves the head page 732 * during this operation, the reader could end up with the tail. 733 * 734 * We use cmpxchg to help prevent this race. We also do something 735 * special with the page before head. We set the LSB to 1. 736 * 737 * When the writer must push the page forward, it will clear the 738 * bit that points to the head page, move the head, and then set 739 * the bit that points to the new head page. 740 * 741 * We also don't want an interrupt coming in and moving the head 742 * page on another writer. Thus we use the second LSB to catch 743 * that too. Thus: 744 * 745 * head->list->prev->next bit 1 bit 0 746 * ------- ------- 747 * Normal page 0 0 748 * Points to head page 0 1 749 * New head page 1 0 750 * 751 * Note we can not trust the prev pointer of the head page, because: 752 * 753 * +----+ +-----+ +-----+ 754 * | |------>| T |---X--->| N | 755 * | |<------| | | | 756 * +----+ +-----+ +-----+ 757 * ^ ^ | 758 * | +-----+ | | 759 * +----------| R |----------+ | 760 * | |<-----------+ 761 * +-----+ 762 * 763 * Key: ---X--> HEAD flag set in pointer 764 * T Tail page 765 * R Reader page 766 * N Next page 767 * 768 * (see __rb_reserve_next() to see where this happens) 769 * 770 * What the above shows is that the reader just swapped out 771 * the reader page with a page in the buffer, but before it 772 * could make the new header point back to the new page added 773 * it was preempted by a writer. The writer moved forward onto 774 * the new page added by the reader and is about to move forward 775 * again. 776 * 777 * You can see, it is legitimate for the previous pointer of 778 * the head (or any page) not to point back to itself. But only 779 * temporarially. 780 */ 781 782 #define RB_PAGE_NORMAL 0UL 783 #define RB_PAGE_HEAD 1UL 784 #define RB_PAGE_UPDATE 2UL 785 786 787 #define RB_FLAG_MASK 3UL 788 789 /* PAGE_MOVED is not part of the mask */ 790 #define RB_PAGE_MOVED 4UL 791 792 /* 793 * rb_list_head - remove any bit 794 */ 795 static struct list_head *rb_list_head(struct list_head *list) 796 { 797 unsigned long val = (unsigned long)list; 798 799 return (struct list_head *)(val & ~RB_FLAG_MASK); 800 } 801 802 /* 803 * rb_is_head_page - test if the given page is the head page 804 * 805 * Because the reader may move the head_page pointer, we can 806 * not trust what the head page is (it may be pointing to 807 * the reader page). But if the next page is a header page, 808 * its flags will be non zero. 809 */ 810 static inline int 811 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 812 struct buffer_page *page, struct list_head *list) 813 { 814 unsigned long val; 815 816 val = (unsigned long)list->next; 817 818 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 819 return RB_PAGE_MOVED; 820 821 return val & RB_FLAG_MASK; 822 } 823 824 /* 825 * rb_is_reader_page 826 * 827 * The unique thing about the reader page, is that, if the 828 * writer is ever on it, the previous pointer never points 829 * back to the reader page. 830 */ 831 static bool rb_is_reader_page(struct buffer_page *page) 832 { 833 struct list_head *list = page->list.prev; 834 835 return rb_list_head(list->next) != &page->list; 836 } 837 838 /* 839 * rb_set_list_to_head - set a list_head to be pointing to head. 840 */ 841 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 842 struct list_head *list) 843 { 844 unsigned long *ptr; 845 846 ptr = (unsigned long *)&list->next; 847 *ptr |= RB_PAGE_HEAD; 848 *ptr &= ~RB_PAGE_UPDATE; 849 } 850 851 /* 852 * rb_head_page_activate - sets up head page 853 */ 854 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 855 { 856 struct buffer_page *head; 857 858 head = cpu_buffer->head_page; 859 if (!head) 860 return; 861 862 /* 863 * Set the previous list pointer to have the HEAD flag. 864 */ 865 rb_set_list_to_head(cpu_buffer, head->list.prev); 866 } 867 868 static void rb_list_head_clear(struct list_head *list) 869 { 870 unsigned long *ptr = (unsigned long *)&list->next; 871 872 *ptr &= ~RB_FLAG_MASK; 873 } 874 875 /* 876 * rb_head_page_dactivate - clears head page ptr (for free list) 877 */ 878 static void 879 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 880 { 881 struct list_head *hd; 882 883 /* Go through the whole list and clear any pointers found. */ 884 rb_list_head_clear(cpu_buffer->pages); 885 886 list_for_each(hd, cpu_buffer->pages) 887 rb_list_head_clear(hd); 888 } 889 890 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 891 struct buffer_page *head, 892 struct buffer_page *prev, 893 int old_flag, int new_flag) 894 { 895 struct list_head *list; 896 unsigned long val = (unsigned long)&head->list; 897 unsigned long ret; 898 899 list = &prev->list; 900 901 val &= ~RB_FLAG_MASK; 902 903 ret = cmpxchg((unsigned long *)&list->next, 904 val | old_flag, val | new_flag); 905 906 /* check if the reader took the page */ 907 if ((ret & ~RB_FLAG_MASK) != val) 908 return RB_PAGE_MOVED; 909 910 return ret & RB_FLAG_MASK; 911 } 912 913 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 914 struct buffer_page *head, 915 struct buffer_page *prev, 916 int old_flag) 917 { 918 return rb_head_page_set(cpu_buffer, head, prev, 919 old_flag, RB_PAGE_UPDATE); 920 } 921 922 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 923 struct buffer_page *head, 924 struct buffer_page *prev, 925 int old_flag) 926 { 927 return rb_head_page_set(cpu_buffer, head, prev, 928 old_flag, RB_PAGE_HEAD); 929 } 930 931 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 932 struct buffer_page *head, 933 struct buffer_page *prev, 934 int old_flag) 935 { 936 return rb_head_page_set(cpu_buffer, head, prev, 937 old_flag, RB_PAGE_NORMAL); 938 } 939 940 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 941 struct buffer_page **bpage) 942 { 943 struct list_head *p = rb_list_head((*bpage)->list.next); 944 945 *bpage = list_entry(p, struct buffer_page, list); 946 } 947 948 static struct buffer_page * 949 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 950 { 951 struct buffer_page *head; 952 struct buffer_page *page; 953 struct list_head *list; 954 int i; 955 956 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 957 return NULL; 958 959 /* sanity check */ 960 list = cpu_buffer->pages; 961 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 962 return NULL; 963 964 page = head = cpu_buffer->head_page; 965 /* 966 * It is possible that the writer moves the header behind 967 * where we started, and we miss in one loop. 968 * A second loop should grab the header, but we'll do 969 * three loops just because I'm paranoid. 970 */ 971 for (i = 0; i < 3; i++) { 972 do { 973 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 974 cpu_buffer->head_page = page; 975 return page; 976 } 977 rb_inc_page(cpu_buffer, &page); 978 } while (page != head); 979 } 980 981 RB_WARN_ON(cpu_buffer, 1); 982 983 return NULL; 984 } 985 986 static int rb_head_page_replace(struct buffer_page *old, 987 struct buffer_page *new) 988 { 989 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 990 unsigned long val; 991 unsigned long ret; 992 993 val = *ptr & ~RB_FLAG_MASK; 994 val |= RB_PAGE_HEAD; 995 996 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 997 998 return ret == val; 999 } 1000 1001 /* 1002 * rb_tail_page_update - move the tail page forward 1003 */ 1004 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1005 struct buffer_page *tail_page, 1006 struct buffer_page *next_page) 1007 { 1008 unsigned long old_entries; 1009 unsigned long old_write; 1010 1011 /* 1012 * The tail page now needs to be moved forward. 1013 * 1014 * We need to reset the tail page, but without messing 1015 * with possible erasing of data brought in by interrupts 1016 * that have moved the tail page and are currently on it. 1017 * 1018 * We add a counter to the write field to denote this. 1019 */ 1020 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1021 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1022 1023 /* 1024 * Just make sure we have seen our old_write and synchronize 1025 * with any interrupts that come in. 1026 */ 1027 barrier(); 1028 1029 /* 1030 * If the tail page is still the same as what we think 1031 * it is, then it is up to us to update the tail 1032 * pointer. 1033 */ 1034 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1035 /* Zero the write counter */ 1036 unsigned long val = old_write & ~RB_WRITE_MASK; 1037 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1038 1039 /* 1040 * This will only succeed if an interrupt did 1041 * not come in and change it. In which case, we 1042 * do not want to modify it. 1043 * 1044 * We add (void) to let the compiler know that we do not care 1045 * about the return value of these functions. We use the 1046 * cmpxchg to only update if an interrupt did not already 1047 * do it for us. If the cmpxchg fails, we don't care. 1048 */ 1049 (void)local_cmpxchg(&next_page->write, old_write, val); 1050 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1051 1052 /* 1053 * No need to worry about races with clearing out the commit. 1054 * it only can increment when a commit takes place. But that 1055 * only happens in the outer most nested commit. 1056 */ 1057 local_set(&next_page->page->commit, 0); 1058 1059 /* Again, either we update tail_page or an interrupt does */ 1060 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page); 1061 } 1062 } 1063 1064 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1065 struct buffer_page *bpage) 1066 { 1067 unsigned long val = (unsigned long)bpage; 1068 1069 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1070 return 1; 1071 1072 return 0; 1073 } 1074 1075 /** 1076 * rb_check_list - make sure a pointer to a list has the last bits zero 1077 */ 1078 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1079 struct list_head *list) 1080 { 1081 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1082 return 1; 1083 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1084 return 1; 1085 return 0; 1086 } 1087 1088 /** 1089 * rb_check_pages - integrity check of buffer pages 1090 * @cpu_buffer: CPU buffer with pages to test 1091 * 1092 * As a safety measure we check to make sure the data pages have not 1093 * been corrupted. 1094 */ 1095 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1096 { 1097 struct list_head *head = cpu_buffer->pages; 1098 struct buffer_page *bpage, *tmp; 1099 1100 /* Reset the head page if it exists */ 1101 if (cpu_buffer->head_page) 1102 rb_set_head_page(cpu_buffer); 1103 1104 rb_head_page_deactivate(cpu_buffer); 1105 1106 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1107 return -1; 1108 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1109 return -1; 1110 1111 if (rb_check_list(cpu_buffer, head)) 1112 return -1; 1113 1114 list_for_each_entry_safe(bpage, tmp, head, list) { 1115 if (RB_WARN_ON(cpu_buffer, 1116 bpage->list.next->prev != &bpage->list)) 1117 return -1; 1118 if (RB_WARN_ON(cpu_buffer, 1119 bpage->list.prev->next != &bpage->list)) 1120 return -1; 1121 if (rb_check_list(cpu_buffer, &bpage->list)) 1122 return -1; 1123 } 1124 1125 rb_head_page_activate(cpu_buffer); 1126 1127 return 0; 1128 } 1129 1130 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu) 1131 { 1132 struct buffer_page *bpage, *tmp; 1133 long i; 1134 1135 for (i = 0; i < nr_pages; i++) { 1136 struct page *page; 1137 /* 1138 * __GFP_NORETRY flag makes sure that the allocation fails 1139 * gracefully without invoking oom-killer and the system is 1140 * not destabilized. 1141 */ 1142 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1143 GFP_KERNEL | __GFP_NORETRY, 1144 cpu_to_node(cpu)); 1145 if (!bpage) 1146 goto free_pages; 1147 1148 list_add(&bpage->list, pages); 1149 1150 page = alloc_pages_node(cpu_to_node(cpu), 1151 GFP_KERNEL | __GFP_NORETRY, 0); 1152 if (!page) 1153 goto free_pages; 1154 bpage->page = page_address(page); 1155 rb_init_page(bpage->page); 1156 } 1157 1158 return 0; 1159 1160 free_pages: 1161 list_for_each_entry_safe(bpage, tmp, pages, list) { 1162 list_del_init(&bpage->list); 1163 free_buffer_page(bpage); 1164 } 1165 1166 return -ENOMEM; 1167 } 1168 1169 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1170 unsigned long nr_pages) 1171 { 1172 LIST_HEAD(pages); 1173 1174 WARN_ON(!nr_pages); 1175 1176 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu)) 1177 return -ENOMEM; 1178 1179 /* 1180 * The ring buffer page list is a circular list that does not 1181 * start and end with a list head. All page list items point to 1182 * other pages. 1183 */ 1184 cpu_buffer->pages = pages.next; 1185 list_del(&pages); 1186 1187 cpu_buffer->nr_pages = nr_pages; 1188 1189 rb_check_pages(cpu_buffer); 1190 1191 return 0; 1192 } 1193 1194 static struct ring_buffer_per_cpu * 1195 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu) 1196 { 1197 struct ring_buffer_per_cpu *cpu_buffer; 1198 struct buffer_page *bpage; 1199 struct page *page; 1200 int ret; 1201 1202 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1203 GFP_KERNEL, cpu_to_node(cpu)); 1204 if (!cpu_buffer) 1205 return NULL; 1206 1207 cpu_buffer->cpu = cpu; 1208 cpu_buffer->buffer = buffer; 1209 raw_spin_lock_init(&cpu_buffer->reader_lock); 1210 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1211 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1212 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1213 init_completion(&cpu_buffer->update_done); 1214 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1215 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1216 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1217 1218 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1219 GFP_KERNEL, cpu_to_node(cpu)); 1220 if (!bpage) 1221 goto fail_free_buffer; 1222 1223 rb_check_bpage(cpu_buffer, bpage); 1224 1225 cpu_buffer->reader_page = bpage; 1226 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1227 if (!page) 1228 goto fail_free_reader; 1229 bpage->page = page_address(page); 1230 rb_init_page(bpage->page); 1231 1232 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1233 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1234 1235 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1236 if (ret < 0) 1237 goto fail_free_reader; 1238 1239 cpu_buffer->head_page 1240 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1241 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1242 1243 rb_head_page_activate(cpu_buffer); 1244 1245 return cpu_buffer; 1246 1247 fail_free_reader: 1248 free_buffer_page(cpu_buffer->reader_page); 1249 1250 fail_free_buffer: 1251 kfree(cpu_buffer); 1252 return NULL; 1253 } 1254 1255 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1256 { 1257 struct list_head *head = cpu_buffer->pages; 1258 struct buffer_page *bpage, *tmp; 1259 1260 free_buffer_page(cpu_buffer->reader_page); 1261 1262 rb_head_page_deactivate(cpu_buffer); 1263 1264 if (head) { 1265 list_for_each_entry_safe(bpage, tmp, head, list) { 1266 list_del_init(&bpage->list); 1267 free_buffer_page(bpage); 1268 } 1269 bpage = list_entry(head, struct buffer_page, list); 1270 free_buffer_page(bpage); 1271 } 1272 1273 kfree(cpu_buffer); 1274 } 1275 1276 /** 1277 * __ring_buffer_alloc - allocate a new ring_buffer 1278 * @size: the size in bytes per cpu that is needed. 1279 * @flags: attributes to set for the ring buffer. 1280 * 1281 * Currently the only flag that is available is the RB_FL_OVERWRITE 1282 * flag. This flag means that the buffer will overwrite old data 1283 * when the buffer wraps. If this flag is not set, the buffer will 1284 * drop data when the tail hits the head. 1285 */ 1286 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1287 struct lock_class_key *key) 1288 { 1289 struct ring_buffer *buffer; 1290 long nr_pages; 1291 int bsize; 1292 int cpu; 1293 int ret; 1294 1295 /* keep it in its own cache line */ 1296 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1297 GFP_KERNEL); 1298 if (!buffer) 1299 return NULL; 1300 1301 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1302 goto fail_free_buffer; 1303 1304 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1305 buffer->flags = flags; 1306 buffer->clock = trace_clock_local; 1307 buffer->reader_lock_key = key; 1308 1309 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1310 init_waitqueue_head(&buffer->irq_work.waiters); 1311 1312 /* need at least two pages */ 1313 if (nr_pages < 2) 1314 nr_pages = 2; 1315 1316 buffer->cpus = nr_cpu_ids; 1317 1318 bsize = sizeof(void *) * nr_cpu_ids; 1319 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1320 GFP_KERNEL); 1321 if (!buffer->buffers) 1322 goto fail_free_cpumask; 1323 1324 cpu = raw_smp_processor_id(); 1325 cpumask_set_cpu(cpu, buffer->cpumask); 1326 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1327 if (!buffer->buffers[cpu]) 1328 goto fail_free_buffers; 1329 1330 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1331 if (ret < 0) 1332 goto fail_free_buffers; 1333 1334 mutex_init(&buffer->mutex); 1335 1336 return buffer; 1337 1338 fail_free_buffers: 1339 for_each_buffer_cpu(buffer, cpu) { 1340 if (buffer->buffers[cpu]) 1341 rb_free_cpu_buffer(buffer->buffers[cpu]); 1342 } 1343 kfree(buffer->buffers); 1344 1345 fail_free_cpumask: 1346 free_cpumask_var(buffer->cpumask); 1347 1348 fail_free_buffer: 1349 kfree(buffer); 1350 return NULL; 1351 } 1352 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1353 1354 /** 1355 * ring_buffer_free - free a ring buffer. 1356 * @buffer: the buffer to free. 1357 */ 1358 void 1359 ring_buffer_free(struct ring_buffer *buffer) 1360 { 1361 int cpu; 1362 1363 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1364 1365 for_each_buffer_cpu(buffer, cpu) 1366 rb_free_cpu_buffer(buffer->buffers[cpu]); 1367 1368 kfree(buffer->buffers); 1369 free_cpumask_var(buffer->cpumask); 1370 1371 kfree(buffer); 1372 } 1373 EXPORT_SYMBOL_GPL(ring_buffer_free); 1374 1375 void ring_buffer_set_clock(struct ring_buffer *buffer, 1376 u64 (*clock)(void)) 1377 { 1378 buffer->clock = clock; 1379 } 1380 1381 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1382 1383 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1384 { 1385 return local_read(&bpage->entries) & RB_WRITE_MASK; 1386 } 1387 1388 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1389 { 1390 return local_read(&bpage->write) & RB_WRITE_MASK; 1391 } 1392 1393 static int 1394 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 1395 { 1396 struct list_head *tail_page, *to_remove, *next_page; 1397 struct buffer_page *to_remove_page, *tmp_iter_page; 1398 struct buffer_page *last_page, *first_page; 1399 unsigned long nr_removed; 1400 unsigned long head_bit; 1401 int page_entries; 1402 1403 head_bit = 0; 1404 1405 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1406 atomic_inc(&cpu_buffer->record_disabled); 1407 /* 1408 * We don't race with the readers since we have acquired the reader 1409 * lock. We also don't race with writers after disabling recording. 1410 * This makes it easy to figure out the first and the last page to be 1411 * removed from the list. We unlink all the pages in between including 1412 * the first and last pages. This is done in a busy loop so that we 1413 * lose the least number of traces. 1414 * The pages are freed after we restart recording and unlock readers. 1415 */ 1416 tail_page = &cpu_buffer->tail_page->list; 1417 1418 /* 1419 * tail page might be on reader page, we remove the next page 1420 * from the ring buffer 1421 */ 1422 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1423 tail_page = rb_list_head(tail_page->next); 1424 to_remove = tail_page; 1425 1426 /* start of pages to remove */ 1427 first_page = list_entry(rb_list_head(to_remove->next), 1428 struct buffer_page, list); 1429 1430 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1431 to_remove = rb_list_head(to_remove)->next; 1432 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1433 } 1434 1435 next_page = rb_list_head(to_remove)->next; 1436 1437 /* 1438 * Now we remove all pages between tail_page and next_page. 1439 * Make sure that we have head_bit value preserved for the 1440 * next page 1441 */ 1442 tail_page->next = (struct list_head *)((unsigned long)next_page | 1443 head_bit); 1444 next_page = rb_list_head(next_page); 1445 next_page->prev = tail_page; 1446 1447 /* make sure pages points to a valid page in the ring buffer */ 1448 cpu_buffer->pages = next_page; 1449 1450 /* update head page */ 1451 if (head_bit) 1452 cpu_buffer->head_page = list_entry(next_page, 1453 struct buffer_page, list); 1454 1455 /* 1456 * change read pointer to make sure any read iterators reset 1457 * themselves 1458 */ 1459 cpu_buffer->read = 0; 1460 1461 /* pages are removed, resume tracing and then free the pages */ 1462 atomic_dec(&cpu_buffer->record_disabled); 1463 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1464 1465 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1466 1467 /* last buffer page to remove */ 1468 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1469 list); 1470 tmp_iter_page = first_page; 1471 1472 do { 1473 to_remove_page = tmp_iter_page; 1474 rb_inc_page(cpu_buffer, &tmp_iter_page); 1475 1476 /* update the counters */ 1477 page_entries = rb_page_entries(to_remove_page); 1478 if (page_entries) { 1479 /* 1480 * If something was added to this page, it was full 1481 * since it is not the tail page. So we deduct the 1482 * bytes consumed in ring buffer from here. 1483 * Increment overrun to account for the lost events. 1484 */ 1485 local_add(page_entries, &cpu_buffer->overrun); 1486 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1487 } 1488 1489 /* 1490 * We have already removed references to this list item, just 1491 * free up the buffer_page and its page 1492 */ 1493 free_buffer_page(to_remove_page); 1494 nr_removed--; 1495 1496 } while (to_remove_page != last_page); 1497 1498 RB_WARN_ON(cpu_buffer, nr_removed); 1499 1500 return nr_removed == 0; 1501 } 1502 1503 static int 1504 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1505 { 1506 struct list_head *pages = &cpu_buffer->new_pages; 1507 int retries, success; 1508 1509 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1510 /* 1511 * We are holding the reader lock, so the reader page won't be swapped 1512 * in the ring buffer. Now we are racing with the writer trying to 1513 * move head page and the tail page. 1514 * We are going to adapt the reader page update process where: 1515 * 1. We first splice the start and end of list of new pages between 1516 * the head page and its previous page. 1517 * 2. We cmpxchg the prev_page->next to point from head page to the 1518 * start of new pages list. 1519 * 3. Finally, we update the head->prev to the end of new list. 1520 * 1521 * We will try this process 10 times, to make sure that we don't keep 1522 * spinning. 1523 */ 1524 retries = 10; 1525 success = 0; 1526 while (retries--) { 1527 struct list_head *head_page, *prev_page, *r; 1528 struct list_head *last_page, *first_page; 1529 struct list_head *head_page_with_bit; 1530 1531 head_page = &rb_set_head_page(cpu_buffer)->list; 1532 if (!head_page) 1533 break; 1534 prev_page = head_page->prev; 1535 1536 first_page = pages->next; 1537 last_page = pages->prev; 1538 1539 head_page_with_bit = (struct list_head *) 1540 ((unsigned long)head_page | RB_PAGE_HEAD); 1541 1542 last_page->next = head_page_with_bit; 1543 first_page->prev = prev_page; 1544 1545 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1546 1547 if (r == head_page_with_bit) { 1548 /* 1549 * yay, we replaced the page pointer to our new list, 1550 * now, we just have to update to head page's prev 1551 * pointer to point to end of list 1552 */ 1553 head_page->prev = last_page; 1554 success = 1; 1555 break; 1556 } 1557 } 1558 1559 if (success) 1560 INIT_LIST_HEAD(pages); 1561 /* 1562 * If we weren't successful in adding in new pages, warn and stop 1563 * tracing 1564 */ 1565 RB_WARN_ON(cpu_buffer, !success); 1566 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1567 1568 /* free pages if they weren't inserted */ 1569 if (!success) { 1570 struct buffer_page *bpage, *tmp; 1571 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1572 list) { 1573 list_del_init(&bpage->list); 1574 free_buffer_page(bpage); 1575 } 1576 } 1577 return success; 1578 } 1579 1580 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1581 { 1582 int success; 1583 1584 if (cpu_buffer->nr_pages_to_update > 0) 1585 success = rb_insert_pages(cpu_buffer); 1586 else 1587 success = rb_remove_pages(cpu_buffer, 1588 -cpu_buffer->nr_pages_to_update); 1589 1590 if (success) 1591 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1592 } 1593 1594 static void update_pages_handler(struct work_struct *work) 1595 { 1596 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1597 struct ring_buffer_per_cpu, update_pages_work); 1598 rb_update_pages(cpu_buffer); 1599 complete(&cpu_buffer->update_done); 1600 } 1601 1602 /** 1603 * ring_buffer_resize - resize the ring buffer 1604 * @buffer: the buffer to resize. 1605 * @size: the new size. 1606 * @cpu_id: the cpu buffer to resize 1607 * 1608 * Minimum size is 2 * BUF_PAGE_SIZE. 1609 * 1610 * Returns 0 on success and < 0 on failure. 1611 */ 1612 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size, 1613 int cpu_id) 1614 { 1615 struct ring_buffer_per_cpu *cpu_buffer; 1616 unsigned long nr_pages; 1617 int cpu, err = 0; 1618 1619 /* 1620 * Always succeed at resizing a non-existent buffer: 1621 */ 1622 if (!buffer) 1623 return size; 1624 1625 /* Make sure the requested buffer exists */ 1626 if (cpu_id != RING_BUFFER_ALL_CPUS && 1627 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1628 return size; 1629 1630 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1631 1632 /* we need a minimum of two pages */ 1633 if (nr_pages < 2) 1634 nr_pages = 2; 1635 1636 size = nr_pages * BUF_PAGE_SIZE; 1637 1638 /* 1639 * Don't succeed if resizing is disabled, as a reader might be 1640 * manipulating the ring buffer and is expecting a sane state while 1641 * this is true. 1642 */ 1643 if (atomic_read(&buffer->resize_disabled)) 1644 return -EBUSY; 1645 1646 /* prevent another thread from changing buffer sizes */ 1647 mutex_lock(&buffer->mutex); 1648 1649 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1650 /* calculate the pages to update */ 1651 for_each_buffer_cpu(buffer, cpu) { 1652 cpu_buffer = buffer->buffers[cpu]; 1653 1654 cpu_buffer->nr_pages_to_update = nr_pages - 1655 cpu_buffer->nr_pages; 1656 /* 1657 * nothing more to do for removing pages or no update 1658 */ 1659 if (cpu_buffer->nr_pages_to_update <= 0) 1660 continue; 1661 /* 1662 * to add pages, make sure all new pages can be 1663 * allocated without receiving ENOMEM 1664 */ 1665 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1666 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1667 &cpu_buffer->new_pages, cpu)) { 1668 /* not enough memory for new pages */ 1669 err = -ENOMEM; 1670 goto out_err; 1671 } 1672 } 1673 1674 get_online_cpus(); 1675 /* 1676 * Fire off all the required work handlers 1677 * We can't schedule on offline CPUs, but it's not necessary 1678 * since we can change their buffer sizes without any race. 1679 */ 1680 for_each_buffer_cpu(buffer, cpu) { 1681 cpu_buffer = buffer->buffers[cpu]; 1682 if (!cpu_buffer->nr_pages_to_update) 1683 continue; 1684 1685 /* Can't run something on an offline CPU. */ 1686 if (!cpu_online(cpu)) { 1687 rb_update_pages(cpu_buffer); 1688 cpu_buffer->nr_pages_to_update = 0; 1689 } else { 1690 schedule_work_on(cpu, 1691 &cpu_buffer->update_pages_work); 1692 } 1693 } 1694 1695 /* wait for all the updates to complete */ 1696 for_each_buffer_cpu(buffer, cpu) { 1697 cpu_buffer = buffer->buffers[cpu]; 1698 if (!cpu_buffer->nr_pages_to_update) 1699 continue; 1700 1701 if (cpu_online(cpu)) 1702 wait_for_completion(&cpu_buffer->update_done); 1703 cpu_buffer->nr_pages_to_update = 0; 1704 } 1705 1706 put_online_cpus(); 1707 } else { 1708 /* Make sure this CPU has been intitialized */ 1709 if (!cpumask_test_cpu(cpu_id, buffer->cpumask)) 1710 goto out; 1711 1712 cpu_buffer = buffer->buffers[cpu_id]; 1713 1714 if (nr_pages == cpu_buffer->nr_pages) 1715 goto out; 1716 1717 cpu_buffer->nr_pages_to_update = nr_pages - 1718 cpu_buffer->nr_pages; 1719 1720 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1721 if (cpu_buffer->nr_pages_to_update > 0 && 1722 __rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1723 &cpu_buffer->new_pages, cpu_id)) { 1724 err = -ENOMEM; 1725 goto out_err; 1726 } 1727 1728 get_online_cpus(); 1729 1730 /* Can't run something on an offline CPU. */ 1731 if (!cpu_online(cpu_id)) 1732 rb_update_pages(cpu_buffer); 1733 else { 1734 schedule_work_on(cpu_id, 1735 &cpu_buffer->update_pages_work); 1736 wait_for_completion(&cpu_buffer->update_done); 1737 } 1738 1739 cpu_buffer->nr_pages_to_update = 0; 1740 put_online_cpus(); 1741 } 1742 1743 out: 1744 /* 1745 * The ring buffer resize can happen with the ring buffer 1746 * enabled, so that the update disturbs the tracing as little 1747 * as possible. But if the buffer is disabled, we do not need 1748 * to worry about that, and we can take the time to verify 1749 * that the buffer is not corrupt. 1750 */ 1751 if (atomic_read(&buffer->record_disabled)) { 1752 atomic_inc(&buffer->record_disabled); 1753 /* 1754 * Even though the buffer was disabled, we must make sure 1755 * that it is truly disabled before calling rb_check_pages. 1756 * There could have been a race between checking 1757 * record_disable and incrementing it. 1758 */ 1759 synchronize_sched(); 1760 for_each_buffer_cpu(buffer, cpu) { 1761 cpu_buffer = buffer->buffers[cpu]; 1762 rb_check_pages(cpu_buffer); 1763 } 1764 atomic_dec(&buffer->record_disabled); 1765 } 1766 1767 mutex_unlock(&buffer->mutex); 1768 return size; 1769 1770 out_err: 1771 for_each_buffer_cpu(buffer, cpu) { 1772 struct buffer_page *bpage, *tmp; 1773 1774 cpu_buffer = buffer->buffers[cpu]; 1775 cpu_buffer->nr_pages_to_update = 0; 1776 1777 if (list_empty(&cpu_buffer->new_pages)) 1778 continue; 1779 1780 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1781 list) { 1782 list_del_init(&bpage->list); 1783 free_buffer_page(bpage); 1784 } 1785 } 1786 mutex_unlock(&buffer->mutex); 1787 return err; 1788 } 1789 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1790 1791 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val) 1792 { 1793 mutex_lock(&buffer->mutex); 1794 if (val) 1795 buffer->flags |= RB_FL_OVERWRITE; 1796 else 1797 buffer->flags &= ~RB_FL_OVERWRITE; 1798 mutex_unlock(&buffer->mutex); 1799 } 1800 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1801 1802 static __always_inline void * 1803 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index) 1804 { 1805 return bpage->data + index; 1806 } 1807 1808 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1809 { 1810 return bpage->page->data + index; 1811 } 1812 1813 static __always_inline struct ring_buffer_event * 1814 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1815 { 1816 return __rb_page_index(cpu_buffer->reader_page, 1817 cpu_buffer->reader_page->read); 1818 } 1819 1820 static __always_inline struct ring_buffer_event * 1821 rb_iter_head_event(struct ring_buffer_iter *iter) 1822 { 1823 return __rb_page_index(iter->head_page, iter->head); 1824 } 1825 1826 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage) 1827 { 1828 return local_read(&bpage->page->commit); 1829 } 1830 1831 /* Size is determined by what has been committed */ 1832 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 1833 { 1834 return rb_page_commit(bpage); 1835 } 1836 1837 static __always_inline unsigned 1838 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1839 { 1840 return rb_page_commit(cpu_buffer->commit_page); 1841 } 1842 1843 static __always_inline unsigned 1844 rb_event_index(struct ring_buffer_event *event) 1845 { 1846 unsigned long addr = (unsigned long)event; 1847 1848 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1849 } 1850 1851 static void rb_inc_iter(struct ring_buffer_iter *iter) 1852 { 1853 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1854 1855 /* 1856 * The iterator could be on the reader page (it starts there). 1857 * But the head could have moved, since the reader was 1858 * found. Check for this case and assign the iterator 1859 * to the head page instead of next. 1860 */ 1861 if (iter->head_page == cpu_buffer->reader_page) 1862 iter->head_page = rb_set_head_page(cpu_buffer); 1863 else 1864 rb_inc_page(cpu_buffer, &iter->head_page); 1865 1866 iter->read_stamp = iter->head_page->page->time_stamp; 1867 iter->head = 0; 1868 } 1869 1870 /* 1871 * rb_handle_head_page - writer hit the head page 1872 * 1873 * Returns: +1 to retry page 1874 * 0 to continue 1875 * -1 on error 1876 */ 1877 static int 1878 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 1879 struct buffer_page *tail_page, 1880 struct buffer_page *next_page) 1881 { 1882 struct buffer_page *new_head; 1883 int entries; 1884 int type; 1885 int ret; 1886 1887 entries = rb_page_entries(next_page); 1888 1889 /* 1890 * The hard part is here. We need to move the head 1891 * forward, and protect against both readers on 1892 * other CPUs and writers coming in via interrupts. 1893 */ 1894 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 1895 RB_PAGE_HEAD); 1896 1897 /* 1898 * type can be one of four: 1899 * NORMAL - an interrupt already moved it for us 1900 * HEAD - we are the first to get here. 1901 * UPDATE - we are the interrupt interrupting 1902 * a current move. 1903 * MOVED - a reader on another CPU moved the next 1904 * pointer to its reader page. Give up 1905 * and try again. 1906 */ 1907 1908 switch (type) { 1909 case RB_PAGE_HEAD: 1910 /* 1911 * We changed the head to UPDATE, thus 1912 * it is our responsibility to update 1913 * the counters. 1914 */ 1915 local_add(entries, &cpu_buffer->overrun); 1916 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1917 1918 /* 1919 * The entries will be zeroed out when we move the 1920 * tail page. 1921 */ 1922 1923 /* still more to do */ 1924 break; 1925 1926 case RB_PAGE_UPDATE: 1927 /* 1928 * This is an interrupt that interrupt the 1929 * previous update. Still more to do. 1930 */ 1931 break; 1932 case RB_PAGE_NORMAL: 1933 /* 1934 * An interrupt came in before the update 1935 * and processed this for us. 1936 * Nothing left to do. 1937 */ 1938 return 1; 1939 case RB_PAGE_MOVED: 1940 /* 1941 * The reader is on another CPU and just did 1942 * a swap with our next_page. 1943 * Try again. 1944 */ 1945 return 1; 1946 default: 1947 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 1948 return -1; 1949 } 1950 1951 /* 1952 * Now that we are here, the old head pointer is 1953 * set to UPDATE. This will keep the reader from 1954 * swapping the head page with the reader page. 1955 * The reader (on another CPU) will spin till 1956 * we are finished. 1957 * 1958 * We just need to protect against interrupts 1959 * doing the job. We will set the next pointer 1960 * to HEAD. After that, we set the old pointer 1961 * to NORMAL, but only if it was HEAD before. 1962 * otherwise we are an interrupt, and only 1963 * want the outer most commit to reset it. 1964 */ 1965 new_head = next_page; 1966 rb_inc_page(cpu_buffer, &new_head); 1967 1968 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 1969 RB_PAGE_NORMAL); 1970 1971 /* 1972 * Valid returns are: 1973 * HEAD - an interrupt came in and already set it. 1974 * NORMAL - One of two things: 1975 * 1) We really set it. 1976 * 2) A bunch of interrupts came in and moved 1977 * the page forward again. 1978 */ 1979 switch (ret) { 1980 case RB_PAGE_HEAD: 1981 case RB_PAGE_NORMAL: 1982 /* OK */ 1983 break; 1984 default: 1985 RB_WARN_ON(cpu_buffer, 1); 1986 return -1; 1987 } 1988 1989 /* 1990 * It is possible that an interrupt came in, 1991 * set the head up, then more interrupts came in 1992 * and moved it again. When we get back here, 1993 * the page would have been set to NORMAL but we 1994 * just set it back to HEAD. 1995 * 1996 * How do you detect this? Well, if that happened 1997 * the tail page would have moved. 1998 */ 1999 if (ret == RB_PAGE_NORMAL) { 2000 struct buffer_page *buffer_tail_page; 2001 2002 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 2003 /* 2004 * If the tail had moved passed next, then we need 2005 * to reset the pointer. 2006 */ 2007 if (buffer_tail_page != tail_page && 2008 buffer_tail_page != next_page) 2009 rb_head_page_set_normal(cpu_buffer, new_head, 2010 next_page, 2011 RB_PAGE_HEAD); 2012 } 2013 2014 /* 2015 * If this was the outer most commit (the one that 2016 * changed the original pointer from HEAD to UPDATE), 2017 * then it is up to us to reset it to NORMAL. 2018 */ 2019 if (type == RB_PAGE_HEAD) { 2020 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2021 tail_page, 2022 RB_PAGE_UPDATE); 2023 if (RB_WARN_ON(cpu_buffer, 2024 ret != RB_PAGE_UPDATE)) 2025 return -1; 2026 } 2027 2028 return 0; 2029 } 2030 2031 static inline void 2032 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2033 unsigned long tail, struct rb_event_info *info) 2034 { 2035 struct buffer_page *tail_page = info->tail_page; 2036 struct ring_buffer_event *event; 2037 unsigned long length = info->length; 2038 2039 /* 2040 * Only the event that crossed the page boundary 2041 * must fill the old tail_page with padding. 2042 */ 2043 if (tail >= BUF_PAGE_SIZE) { 2044 /* 2045 * If the page was filled, then we still need 2046 * to update the real_end. Reset it to zero 2047 * and the reader will ignore it. 2048 */ 2049 if (tail == BUF_PAGE_SIZE) 2050 tail_page->real_end = 0; 2051 2052 local_sub(length, &tail_page->write); 2053 return; 2054 } 2055 2056 event = __rb_page_index(tail_page, tail); 2057 kmemcheck_annotate_bitfield(event, bitfield); 2058 2059 /* account for padding bytes */ 2060 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2061 2062 /* 2063 * Save the original length to the meta data. 2064 * This will be used by the reader to add lost event 2065 * counter. 2066 */ 2067 tail_page->real_end = tail; 2068 2069 /* 2070 * If this event is bigger than the minimum size, then 2071 * we need to be careful that we don't subtract the 2072 * write counter enough to allow another writer to slip 2073 * in on this page. 2074 * We put in a discarded commit instead, to make sure 2075 * that this space is not used again. 2076 * 2077 * If we are less than the minimum size, we don't need to 2078 * worry about it. 2079 */ 2080 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2081 /* No room for any events */ 2082 2083 /* Mark the rest of the page with padding */ 2084 rb_event_set_padding(event); 2085 2086 /* Set the write back to the previous setting */ 2087 local_sub(length, &tail_page->write); 2088 return; 2089 } 2090 2091 /* Put in a discarded event */ 2092 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2093 event->type_len = RINGBUF_TYPE_PADDING; 2094 /* time delta must be non zero */ 2095 event->time_delta = 1; 2096 2097 /* Set write to end of buffer */ 2098 length = (tail + length) - BUF_PAGE_SIZE; 2099 local_sub(length, &tail_page->write); 2100 } 2101 2102 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 2103 2104 /* 2105 * This is the slow path, force gcc not to inline it. 2106 */ 2107 static noinline struct ring_buffer_event * 2108 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2109 unsigned long tail, struct rb_event_info *info) 2110 { 2111 struct buffer_page *tail_page = info->tail_page; 2112 struct buffer_page *commit_page = cpu_buffer->commit_page; 2113 struct ring_buffer *buffer = cpu_buffer->buffer; 2114 struct buffer_page *next_page; 2115 int ret; 2116 2117 next_page = tail_page; 2118 2119 rb_inc_page(cpu_buffer, &next_page); 2120 2121 /* 2122 * If for some reason, we had an interrupt storm that made 2123 * it all the way around the buffer, bail, and warn 2124 * about it. 2125 */ 2126 if (unlikely(next_page == commit_page)) { 2127 local_inc(&cpu_buffer->commit_overrun); 2128 goto out_reset; 2129 } 2130 2131 /* 2132 * This is where the fun begins! 2133 * 2134 * We are fighting against races between a reader that 2135 * could be on another CPU trying to swap its reader 2136 * page with the buffer head. 2137 * 2138 * We are also fighting against interrupts coming in and 2139 * moving the head or tail on us as well. 2140 * 2141 * If the next page is the head page then we have filled 2142 * the buffer, unless the commit page is still on the 2143 * reader page. 2144 */ 2145 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2146 2147 /* 2148 * If the commit is not on the reader page, then 2149 * move the header page. 2150 */ 2151 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2152 /* 2153 * If we are not in overwrite mode, 2154 * this is easy, just stop here. 2155 */ 2156 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2157 local_inc(&cpu_buffer->dropped_events); 2158 goto out_reset; 2159 } 2160 2161 ret = rb_handle_head_page(cpu_buffer, 2162 tail_page, 2163 next_page); 2164 if (ret < 0) 2165 goto out_reset; 2166 if (ret) 2167 goto out_again; 2168 } else { 2169 /* 2170 * We need to be careful here too. The 2171 * commit page could still be on the reader 2172 * page. We could have a small buffer, and 2173 * have filled up the buffer with events 2174 * from interrupts and such, and wrapped. 2175 * 2176 * Note, if the tail page is also the on the 2177 * reader_page, we let it move out. 2178 */ 2179 if (unlikely((cpu_buffer->commit_page != 2180 cpu_buffer->tail_page) && 2181 (cpu_buffer->commit_page == 2182 cpu_buffer->reader_page))) { 2183 local_inc(&cpu_buffer->commit_overrun); 2184 goto out_reset; 2185 } 2186 } 2187 } 2188 2189 rb_tail_page_update(cpu_buffer, tail_page, next_page); 2190 2191 out_again: 2192 2193 rb_reset_tail(cpu_buffer, tail, info); 2194 2195 /* Commit what we have for now. */ 2196 rb_end_commit(cpu_buffer); 2197 /* rb_end_commit() decs committing */ 2198 local_inc(&cpu_buffer->committing); 2199 2200 /* fail and let the caller try again */ 2201 return ERR_PTR(-EAGAIN); 2202 2203 out_reset: 2204 /* reset write */ 2205 rb_reset_tail(cpu_buffer, tail, info); 2206 2207 return NULL; 2208 } 2209 2210 /* Slow path, do not inline */ 2211 static noinline struct ring_buffer_event * 2212 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta) 2213 { 2214 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2215 2216 /* Not the first event on the page? */ 2217 if (rb_event_index(event)) { 2218 event->time_delta = delta & TS_MASK; 2219 event->array[0] = delta >> TS_SHIFT; 2220 } else { 2221 /* nope, just zero it */ 2222 event->time_delta = 0; 2223 event->array[0] = 0; 2224 } 2225 2226 return skip_time_extend(event); 2227 } 2228 2229 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2230 struct ring_buffer_event *event); 2231 2232 /** 2233 * rb_update_event - update event type and data 2234 * @event: the event to update 2235 * @type: the type of event 2236 * @length: the size of the event field in the ring buffer 2237 * 2238 * Update the type and data fields of the event. The length 2239 * is the actual size that is written to the ring buffer, 2240 * and with this, we can determine what to place into the 2241 * data field. 2242 */ 2243 static void 2244 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2245 struct ring_buffer_event *event, 2246 struct rb_event_info *info) 2247 { 2248 unsigned length = info->length; 2249 u64 delta = info->delta; 2250 2251 /* Only a commit updates the timestamp */ 2252 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 2253 delta = 0; 2254 2255 /* 2256 * If we need to add a timestamp, then we 2257 * add it to the start of the resevered space. 2258 */ 2259 if (unlikely(info->add_timestamp)) { 2260 event = rb_add_time_stamp(event, delta); 2261 length -= RB_LEN_TIME_EXTEND; 2262 delta = 0; 2263 } 2264 2265 event->time_delta = delta; 2266 length -= RB_EVNT_HDR_SIZE; 2267 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2268 event->type_len = 0; 2269 event->array[0] = length; 2270 } else 2271 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2272 } 2273 2274 static unsigned rb_calculate_event_length(unsigned length) 2275 { 2276 struct ring_buffer_event event; /* Used only for sizeof array */ 2277 2278 /* zero length can cause confusions */ 2279 if (!length) 2280 length++; 2281 2282 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2283 length += sizeof(event.array[0]); 2284 2285 length += RB_EVNT_HDR_SIZE; 2286 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2287 2288 /* 2289 * In case the time delta is larger than the 27 bits for it 2290 * in the header, we need to add a timestamp. If another 2291 * event comes in when trying to discard this one to increase 2292 * the length, then the timestamp will be added in the allocated 2293 * space of this event. If length is bigger than the size needed 2294 * for the TIME_EXTEND, then padding has to be used. The events 2295 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 2296 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 2297 * As length is a multiple of 4, we only need to worry if it 2298 * is 12 (RB_LEN_TIME_EXTEND + 4). 2299 */ 2300 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 2301 length += RB_ALIGNMENT; 2302 2303 return length; 2304 } 2305 2306 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2307 static inline bool sched_clock_stable(void) 2308 { 2309 return true; 2310 } 2311 #endif 2312 2313 static inline int 2314 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2315 struct ring_buffer_event *event) 2316 { 2317 unsigned long new_index, old_index; 2318 struct buffer_page *bpage; 2319 unsigned long index; 2320 unsigned long addr; 2321 2322 new_index = rb_event_index(event); 2323 old_index = new_index + rb_event_ts_length(event); 2324 addr = (unsigned long)event; 2325 addr &= PAGE_MASK; 2326 2327 bpage = READ_ONCE(cpu_buffer->tail_page); 2328 2329 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2330 unsigned long write_mask = 2331 local_read(&bpage->write) & ~RB_WRITE_MASK; 2332 unsigned long event_length = rb_event_length(event); 2333 /* 2334 * This is on the tail page. It is possible that 2335 * a write could come in and move the tail page 2336 * and write to the next page. That is fine 2337 * because we just shorten what is on this page. 2338 */ 2339 old_index += write_mask; 2340 new_index += write_mask; 2341 index = local_cmpxchg(&bpage->write, old_index, new_index); 2342 if (index == old_index) { 2343 /* update counters */ 2344 local_sub(event_length, &cpu_buffer->entries_bytes); 2345 return 1; 2346 } 2347 } 2348 2349 /* could not discard */ 2350 return 0; 2351 } 2352 2353 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2354 { 2355 local_inc(&cpu_buffer->committing); 2356 local_inc(&cpu_buffer->commits); 2357 } 2358 2359 static __always_inline void 2360 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 2361 { 2362 unsigned long max_count; 2363 2364 /* 2365 * We only race with interrupts and NMIs on this CPU. 2366 * If we own the commit event, then we can commit 2367 * all others that interrupted us, since the interruptions 2368 * are in stack format (they finish before they come 2369 * back to us). This allows us to do a simple loop to 2370 * assign the commit to the tail. 2371 */ 2372 again: 2373 max_count = cpu_buffer->nr_pages * 100; 2374 2375 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 2376 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 2377 return; 2378 if (RB_WARN_ON(cpu_buffer, 2379 rb_is_reader_page(cpu_buffer->tail_page))) 2380 return; 2381 local_set(&cpu_buffer->commit_page->page->commit, 2382 rb_page_write(cpu_buffer->commit_page)); 2383 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 2384 /* Only update the write stamp if the page has an event */ 2385 if (rb_page_write(cpu_buffer->commit_page)) 2386 cpu_buffer->write_stamp = 2387 cpu_buffer->commit_page->page->time_stamp; 2388 /* add barrier to keep gcc from optimizing too much */ 2389 barrier(); 2390 } 2391 while (rb_commit_index(cpu_buffer) != 2392 rb_page_write(cpu_buffer->commit_page)) { 2393 2394 local_set(&cpu_buffer->commit_page->page->commit, 2395 rb_page_write(cpu_buffer->commit_page)); 2396 RB_WARN_ON(cpu_buffer, 2397 local_read(&cpu_buffer->commit_page->page->commit) & 2398 ~RB_WRITE_MASK); 2399 barrier(); 2400 } 2401 2402 /* again, keep gcc from optimizing */ 2403 barrier(); 2404 2405 /* 2406 * If an interrupt came in just after the first while loop 2407 * and pushed the tail page forward, we will be left with 2408 * a dangling commit that will never go forward. 2409 */ 2410 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 2411 goto again; 2412 } 2413 2414 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2415 { 2416 unsigned long commits; 2417 2418 if (RB_WARN_ON(cpu_buffer, 2419 !local_read(&cpu_buffer->committing))) 2420 return; 2421 2422 again: 2423 commits = local_read(&cpu_buffer->commits); 2424 /* synchronize with interrupts */ 2425 barrier(); 2426 if (local_read(&cpu_buffer->committing) == 1) 2427 rb_set_commit_to_write(cpu_buffer); 2428 2429 local_dec(&cpu_buffer->committing); 2430 2431 /* synchronize with interrupts */ 2432 barrier(); 2433 2434 /* 2435 * Need to account for interrupts coming in between the 2436 * updating of the commit page and the clearing of the 2437 * committing counter. 2438 */ 2439 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2440 !local_read(&cpu_buffer->committing)) { 2441 local_inc(&cpu_buffer->committing); 2442 goto again; 2443 } 2444 } 2445 2446 static inline void rb_event_discard(struct ring_buffer_event *event) 2447 { 2448 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 2449 event = skip_time_extend(event); 2450 2451 /* array[0] holds the actual length for the discarded event */ 2452 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2453 event->type_len = RINGBUF_TYPE_PADDING; 2454 /* time delta must be non zero */ 2455 if (!event->time_delta) 2456 event->time_delta = 1; 2457 } 2458 2459 static __always_inline bool 2460 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2461 struct ring_buffer_event *event) 2462 { 2463 unsigned long addr = (unsigned long)event; 2464 unsigned long index; 2465 2466 index = rb_event_index(event); 2467 addr &= PAGE_MASK; 2468 2469 return cpu_buffer->commit_page->page == (void *)addr && 2470 rb_commit_index(cpu_buffer) == index; 2471 } 2472 2473 static __always_inline void 2474 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2475 struct ring_buffer_event *event) 2476 { 2477 u64 delta; 2478 2479 /* 2480 * The event first in the commit queue updates the 2481 * time stamp. 2482 */ 2483 if (rb_event_is_commit(cpu_buffer, event)) { 2484 /* 2485 * A commit event that is first on a page 2486 * updates the write timestamp with the page stamp 2487 */ 2488 if (!rb_event_index(event)) 2489 cpu_buffer->write_stamp = 2490 cpu_buffer->commit_page->page->time_stamp; 2491 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2492 delta = event->array[0]; 2493 delta <<= TS_SHIFT; 2494 delta += event->time_delta; 2495 cpu_buffer->write_stamp += delta; 2496 } else 2497 cpu_buffer->write_stamp += event->time_delta; 2498 } 2499 } 2500 2501 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2502 struct ring_buffer_event *event) 2503 { 2504 local_inc(&cpu_buffer->entries); 2505 rb_update_write_stamp(cpu_buffer, event); 2506 rb_end_commit(cpu_buffer); 2507 } 2508 2509 static __always_inline void 2510 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 2511 { 2512 bool pagebusy; 2513 2514 if (buffer->irq_work.waiters_pending) { 2515 buffer->irq_work.waiters_pending = false; 2516 /* irq_work_queue() supplies it's own memory barriers */ 2517 irq_work_queue(&buffer->irq_work.work); 2518 } 2519 2520 if (cpu_buffer->irq_work.waiters_pending) { 2521 cpu_buffer->irq_work.waiters_pending = false; 2522 /* irq_work_queue() supplies it's own memory barriers */ 2523 irq_work_queue(&cpu_buffer->irq_work.work); 2524 } 2525 2526 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 2527 2528 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) { 2529 cpu_buffer->irq_work.wakeup_full = true; 2530 cpu_buffer->irq_work.full_waiters_pending = false; 2531 /* irq_work_queue() supplies it's own memory barriers */ 2532 irq_work_queue(&cpu_buffer->irq_work.work); 2533 } 2534 } 2535 2536 /* 2537 * The lock and unlock are done within a preempt disable section. 2538 * The current_context per_cpu variable can only be modified 2539 * by the current task between lock and unlock. But it can 2540 * be modified more than once via an interrupt. To pass this 2541 * information from the lock to the unlock without having to 2542 * access the 'in_interrupt()' functions again (which do show 2543 * a bit of overhead in something as critical as function tracing, 2544 * we use a bitmask trick. 2545 * 2546 * bit 0 = NMI context 2547 * bit 1 = IRQ context 2548 * bit 2 = SoftIRQ context 2549 * bit 3 = normal context. 2550 * 2551 * This works because this is the order of contexts that can 2552 * preempt other contexts. A SoftIRQ never preempts an IRQ 2553 * context. 2554 * 2555 * When the context is determined, the corresponding bit is 2556 * checked and set (if it was set, then a recursion of that context 2557 * happened). 2558 * 2559 * On unlock, we need to clear this bit. To do so, just subtract 2560 * 1 from the current_context and AND it to itself. 2561 * 2562 * (binary) 2563 * 101 - 1 = 100 2564 * 101 & 100 = 100 (clearing bit zero) 2565 * 2566 * 1010 - 1 = 1001 2567 * 1010 & 1001 = 1000 (clearing bit 1) 2568 * 2569 * The least significant bit can be cleared this way, and it 2570 * just so happens that it is the same bit corresponding to 2571 * the current context. 2572 */ 2573 2574 static __always_inline int 2575 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 2576 { 2577 unsigned int val = cpu_buffer->current_context; 2578 int bit; 2579 2580 if (in_interrupt()) { 2581 if (in_nmi()) 2582 bit = RB_CTX_NMI; 2583 else if (in_irq()) 2584 bit = RB_CTX_IRQ; 2585 else 2586 bit = RB_CTX_SOFTIRQ; 2587 } else 2588 bit = RB_CTX_NORMAL; 2589 2590 if (unlikely(val & (1 << bit))) 2591 return 1; 2592 2593 val |= (1 << bit); 2594 cpu_buffer->current_context = val; 2595 2596 return 0; 2597 } 2598 2599 static __always_inline void 2600 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 2601 { 2602 cpu_buffer->current_context &= cpu_buffer->current_context - 1; 2603 } 2604 2605 /** 2606 * ring_buffer_unlock_commit - commit a reserved 2607 * @buffer: The buffer to commit to 2608 * @event: The event pointer to commit. 2609 * 2610 * This commits the data to the ring buffer, and releases any locks held. 2611 * 2612 * Must be paired with ring_buffer_lock_reserve. 2613 */ 2614 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2615 struct ring_buffer_event *event) 2616 { 2617 struct ring_buffer_per_cpu *cpu_buffer; 2618 int cpu = raw_smp_processor_id(); 2619 2620 cpu_buffer = buffer->buffers[cpu]; 2621 2622 rb_commit(cpu_buffer, event); 2623 2624 rb_wakeups(buffer, cpu_buffer); 2625 2626 trace_recursive_unlock(cpu_buffer); 2627 2628 preempt_enable_notrace(); 2629 2630 return 0; 2631 } 2632 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2633 2634 static noinline void 2635 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2636 struct rb_event_info *info) 2637 { 2638 WARN_ONCE(info->delta > (1ULL << 59), 2639 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2640 (unsigned long long)info->delta, 2641 (unsigned long long)info->ts, 2642 (unsigned long long)cpu_buffer->write_stamp, 2643 sched_clock_stable() ? "" : 2644 "If you just came from a suspend/resume,\n" 2645 "please switch to the trace global clock:\n" 2646 " echo global > /sys/kernel/debug/tracing/trace_clock\n"); 2647 info->add_timestamp = 1; 2648 } 2649 2650 static struct ring_buffer_event * 2651 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 2652 struct rb_event_info *info) 2653 { 2654 struct ring_buffer_event *event; 2655 struct buffer_page *tail_page; 2656 unsigned long tail, write; 2657 2658 /* 2659 * If the time delta since the last event is too big to 2660 * hold in the time field of the event, then we append a 2661 * TIME EXTEND event ahead of the data event. 2662 */ 2663 if (unlikely(info->add_timestamp)) 2664 info->length += RB_LEN_TIME_EXTEND; 2665 2666 /* Don't let the compiler play games with cpu_buffer->tail_page */ 2667 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 2668 write = local_add_return(info->length, &tail_page->write); 2669 2670 /* set write to only the index of the write */ 2671 write &= RB_WRITE_MASK; 2672 tail = write - info->length; 2673 2674 /* 2675 * If this is the first commit on the page, then it has the same 2676 * timestamp as the page itself. 2677 */ 2678 if (!tail) 2679 info->delta = 0; 2680 2681 /* See if we shot pass the end of this buffer page */ 2682 if (unlikely(write > BUF_PAGE_SIZE)) 2683 return rb_move_tail(cpu_buffer, tail, info); 2684 2685 /* We reserved something on the buffer */ 2686 2687 event = __rb_page_index(tail_page, tail); 2688 kmemcheck_annotate_bitfield(event, bitfield); 2689 rb_update_event(cpu_buffer, event, info); 2690 2691 local_inc(&tail_page->entries); 2692 2693 /* 2694 * If this is the first commit on the page, then update 2695 * its timestamp. 2696 */ 2697 if (!tail) 2698 tail_page->page->time_stamp = info->ts; 2699 2700 /* account for these added bytes */ 2701 local_add(info->length, &cpu_buffer->entries_bytes); 2702 2703 return event; 2704 } 2705 2706 static __always_inline struct ring_buffer_event * 2707 rb_reserve_next_event(struct ring_buffer *buffer, 2708 struct ring_buffer_per_cpu *cpu_buffer, 2709 unsigned long length) 2710 { 2711 struct ring_buffer_event *event; 2712 struct rb_event_info info; 2713 int nr_loops = 0; 2714 u64 diff; 2715 2716 rb_start_commit(cpu_buffer); 2717 2718 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2719 /* 2720 * Due to the ability to swap a cpu buffer from a buffer 2721 * it is possible it was swapped before we committed. 2722 * (committing stops a swap). We check for it here and 2723 * if it happened, we have to fail the write. 2724 */ 2725 barrier(); 2726 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) { 2727 local_dec(&cpu_buffer->committing); 2728 local_dec(&cpu_buffer->commits); 2729 return NULL; 2730 } 2731 #endif 2732 2733 info.length = rb_calculate_event_length(length); 2734 again: 2735 info.add_timestamp = 0; 2736 info.delta = 0; 2737 2738 /* 2739 * We allow for interrupts to reenter here and do a trace. 2740 * If one does, it will cause this original code to loop 2741 * back here. Even with heavy interrupts happening, this 2742 * should only happen a few times in a row. If this happens 2743 * 1000 times in a row, there must be either an interrupt 2744 * storm or we have something buggy. 2745 * Bail! 2746 */ 2747 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2748 goto out_fail; 2749 2750 info.ts = rb_time_stamp(cpu_buffer->buffer); 2751 diff = info.ts - cpu_buffer->write_stamp; 2752 2753 /* make sure this diff is calculated here */ 2754 barrier(); 2755 2756 /* Did the write stamp get updated already? */ 2757 if (likely(info.ts >= cpu_buffer->write_stamp)) { 2758 info.delta = diff; 2759 if (unlikely(test_time_stamp(info.delta))) 2760 rb_handle_timestamp(cpu_buffer, &info); 2761 } 2762 2763 event = __rb_reserve_next(cpu_buffer, &info); 2764 2765 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 2766 if (info.add_timestamp) 2767 info.length -= RB_LEN_TIME_EXTEND; 2768 goto again; 2769 } 2770 2771 if (!event) 2772 goto out_fail; 2773 2774 return event; 2775 2776 out_fail: 2777 rb_end_commit(cpu_buffer); 2778 return NULL; 2779 } 2780 2781 /** 2782 * ring_buffer_lock_reserve - reserve a part of the buffer 2783 * @buffer: the ring buffer to reserve from 2784 * @length: the length of the data to reserve (excluding event header) 2785 * 2786 * Returns a reseverd event on the ring buffer to copy directly to. 2787 * The user of this interface will need to get the body to write into 2788 * and can use the ring_buffer_event_data() interface. 2789 * 2790 * The length is the length of the data needed, not the event length 2791 * which also includes the event header. 2792 * 2793 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2794 * If NULL is returned, then nothing has been allocated or locked. 2795 */ 2796 struct ring_buffer_event * 2797 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2798 { 2799 struct ring_buffer_per_cpu *cpu_buffer; 2800 struct ring_buffer_event *event; 2801 int cpu; 2802 2803 /* If we are tracing schedule, we don't want to recurse */ 2804 preempt_disable_notrace(); 2805 2806 if (unlikely(atomic_read(&buffer->record_disabled))) 2807 goto out; 2808 2809 cpu = raw_smp_processor_id(); 2810 2811 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 2812 goto out; 2813 2814 cpu_buffer = buffer->buffers[cpu]; 2815 2816 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 2817 goto out; 2818 2819 if (unlikely(length > BUF_MAX_DATA_SIZE)) 2820 goto out; 2821 2822 if (unlikely(trace_recursive_lock(cpu_buffer))) 2823 goto out; 2824 2825 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2826 if (!event) 2827 goto out_unlock; 2828 2829 return event; 2830 2831 out_unlock: 2832 trace_recursive_unlock(cpu_buffer); 2833 out: 2834 preempt_enable_notrace(); 2835 return NULL; 2836 } 2837 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2838 2839 /* 2840 * Decrement the entries to the page that an event is on. 2841 * The event does not even need to exist, only the pointer 2842 * to the page it is on. This may only be called before the commit 2843 * takes place. 2844 */ 2845 static inline void 2846 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2847 struct ring_buffer_event *event) 2848 { 2849 unsigned long addr = (unsigned long)event; 2850 struct buffer_page *bpage = cpu_buffer->commit_page; 2851 struct buffer_page *start; 2852 2853 addr &= PAGE_MASK; 2854 2855 /* Do the likely case first */ 2856 if (likely(bpage->page == (void *)addr)) { 2857 local_dec(&bpage->entries); 2858 return; 2859 } 2860 2861 /* 2862 * Because the commit page may be on the reader page we 2863 * start with the next page and check the end loop there. 2864 */ 2865 rb_inc_page(cpu_buffer, &bpage); 2866 start = bpage; 2867 do { 2868 if (bpage->page == (void *)addr) { 2869 local_dec(&bpage->entries); 2870 return; 2871 } 2872 rb_inc_page(cpu_buffer, &bpage); 2873 } while (bpage != start); 2874 2875 /* commit not part of this buffer?? */ 2876 RB_WARN_ON(cpu_buffer, 1); 2877 } 2878 2879 /** 2880 * ring_buffer_commit_discard - discard an event that has not been committed 2881 * @buffer: the ring buffer 2882 * @event: non committed event to discard 2883 * 2884 * Sometimes an event that is in the ring buffer needs to be ignored. 2885 * This function lets the user discard an event in the ring buffer 2886 * and then that event will not be read later. 2887 * 2888 * This function only works if it is called before the the item has been 2889 * committed. It will try to free the event from the ring buffer 2890 * if another event has not been added behind it. 2891 * 2892 * If another event has been added behind it, it will set the event 2893 * up as discarded, and perform the commit. 2894 * 2895 * If this function is called, do not call ring_buffer_unlock_commit on 2896 * the event. 2897 */ 2898 void ring_buffer_discard_commit(struct ring_buffer *buffer, 2899 struct ring_buffer_event *event) 2900 { 2901 struct ring_buffer_per_cpu *cpu_buffer; 2902 int cpu; 2903 2904 /* The event is discarded regardless */ 2905 rb_event_discard(event); 2906 2907 cpu = smp_processor_id(); 2908 cpu_buffer = buffer->buffers[cpu]; 2909 2910 /* 2911 * This must only be called if the event has not been 2912 * committed yet. Thus we can assume that preemption 2913 * is still disabled. 2914 */ 2915 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 2916 2917 rb_decrement_entry(cpu_buffer, event); 2918 if (rb_try_to_discard(cpu_buffer, event)) 2919 goto out; 2920 2921 /* 2922 * The commit is still visible by the reader, so we 2923 * must still update the timestamp. 2924 */ 2925 rb_update_write_stamp(cpu_buffer, event); 2926 out: 2927 rb_end_commit(cpu_buffer); 2928 2929 trace_recursive_unlock(cpu_buffer); 2930 2931 preempt_enable_notrace(); 2932 2933 } 2934 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 2935 2936 /** 2937 * ring_buffer_write - write data to the buffer without reserving 2938 * @buffer: The ring buffer to write to. 2939 * @length: The length of the data being written (excluding the event header) 2940 * @data: The data to write to the buffer. 2941 * 2942 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 2943 * one function. If you already have the data to write to the buffer, it 2944 * may be easier to simply call this function. 2945 * 2946 * Note, like ring_buffer_lock_reserve, the length is the length of the data 2947 * and not the length of the event which would hold the header. 2948 */ 2949 int ring_buffer_write(struct ring_buffer *buffer, 2950 unsigned long length, 2951 void *data) 2952 { 2953 struct ring_buffer_per_cpu *cpu_buffer; 2954 struct ring_buffer_event *event; 2955 void *body; 2956 int ret = -EBUSY; 2957 int cpu; 2958 2959 preempt_disable_notrace(); 2960 2961 if (atomic_read(&buffer->record_disabled)) 2962 goto out; 2963 2964 cpu = raw_smp_processor_id(); 2965 2966 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2967 goto out; 2968 2969 cpu_buffer = buffer->buffers[cpu]; 2970 2971 if (atomic_read(&cpu_buffer->record_disabled)) 2972 goto out; 2973 2974 if (length > BUF_MAX_DATA_SIZE) 2975 goto out; 2976 2977 if (unlikely(trace_recursive_lock(cpu_buffer))) 2978 goto out; 2979 2980 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2981 if (!event) 2982 goto out_unlock; 2983 2984 body = rb_event_data(event); 2985 2986 memcpy(body, data, length); 2987 2988 rb_commit(cpu_buffer, event); 2989 2990 rb_wakeups(buffer, cpu_buffer); 2991 2992 ret = 0; 2993 2994 out_unlock: 2995 trace_recursive_unlock(cpu_buffer); 2996 2997 out: 2998 preempt_enable_notrace(); 2999 3000 return ret; 3001 } 3002 EXPORT_SYMBOL_GPL(ring_buffer_write); 3003 3004 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3005 { 3006 struct buffer_page *reader = cpu_buffer->reader_page; 3007 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3008 struct buffer_page *commit = cpu_buffer->commit_page; 3009 3010 /* In case of error, head will be NULL */ 3011 if (unlikely(!head)) 3012 return true; 3013 3014 return reader->read == rb_page_commit(reader) && 3015 (commit == reader || 3016 (commit == head && 3017 head->read == rb_page_commit(commit))); 3018 } 3019 3020 /** 3021 * ring_buffer_record_disable - stop all writes into the buffer 3022 * @buffer: The ring buffer to stop writes to. 3023 * 3024 * This prevents all writes to the buffer. Any attempt to write 3025 * to the buffer after this will fail and return NULL. 3026 * 3027 * The caller should call synchronize_sched() after this. 3028 */ 3029 void ring_buffer_record_disable(struct ring_buffer *buffer) 3030 { 3031 atomic_inc(&buffer->record_disabled); 3032 } 3033 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3034 3035 /** 3036 * ring_buffer_record_enable - enable writes to the buffer 3037 * @buffer: The ring buffer to enable writes 3038 * 3039 * Note, multiple disables will need the same number of enables 3040 * to truly enable the writing (much like preempt_disable). 3041 */ 3042 void ring_buffer_record_enable(struct ring_buffer *buffer) 3043 { 3044 atomic_dec(&buffer->record_disabled); 3045 } 3046 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3047 3048 /** 3049 * ring_buffer_record_off - stop all writes into the buffer 3050 * @buffer: The ring buffer to stop writes to. 3051 * 3052 * This prevents all writes to the buffer. Any attempt to write 3053 * to the buffer after this will fail and return NULL. 3054 * 3055 * This is different than ring_buffer_record_disable() as 3056 * it works like an on/off switch, where as the disable() version 3057 * must be paired with a enable(). 3058 */ 3059 void ring_buffer_record_off(struct ring_buffer *buffer) 3060 { 3061 unsigned int rd; 3062 unsigned int new_rd; 3063 3064 do { 3065 rd = atomic_read(&buffer->record_disabled); 3066 new_rd = rd | RB_BUFFER_OFF; 3067 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3068 } 3069 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3070 3071 /** 3072 * ring_buffer_record_on - restart writes into the buffer 3073 * @buffer: The ring buffer to start writes to. 3074 * 3075 * This enables all writes to the buffer that was disabled by 3076 * ring_buffer_record_off(). 3077 * 3078 * This is different than ring_buffer_record_enable() as 3079 * it works like an on/off switch, where as the enable() version 3080 * must be paired with a disable(). 3081 */ 3082 void ring_buffer_record_on(struct ring_buffer *buffer) 3083 { 3084 unsigned int rd; 3085 unsigned int new_rd; 3086 3087 do { 3088 rd = atomic_read(&buffer->record_disabled); 3089 new_rd = rd & ~RB_BUFFER_OFF; 3090 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3091 } 3092 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 3093 3094 /** 3095 * ring_buffer_record_is_on - return true if the ring buffer can write 3096 * @buffer: The ring buffer to see if write is enabled 3097 * 3098 * Returns true if the ring buffer is in a state that it accepts writes. 3099 */ 3100 int ring_buffer_record_is_on(struct ring_buffer *buffer) 3101 { 3102 return !atomic_read(&buffer->record_disabled); 3103 } 3104 3105 /** 3106 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 3107 * @buffer: The ring buffer to stop writes to. 3108 * @cpu: The CPU buffer to stop 3109 * 3110 * This prevents all writes to the buffer. Any attempt to write 3111 * to the buffer after this will fail and return NULL. 3112 * 3113 * The caller should call synchronize_sched() after this. 3114 */ 3115 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 3116 { 3117 struct ring_buffer_per_cpu *cpu_buffer; 3118 3119 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3120 return; 3121 3122 cpu_buffer = buffer->buffers[cpu]; 3123 atomic_inc(&cpu_buffer->record_disabled); 3124 } 3125 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 3126 3127 /** 3128 * ring_buffer_record_enable_cpu - enable writes to the buffer 3129 * @buffer: The ring buffer to enable writes 3130 * @cpu: The CPU to enable. 3131 * 3132 * Note, multiple disables will need the same number of enables 3133 * to truly enable the writing (much like preempt_disable). 3134 */ 3135 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 3136 { 3137 struct ring_buffer_per_cpu *cpu_buffer; 3138 3139 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3140 return; 3141 3142 cpu_buffer = buffer->buffers[cpu]; 3143 atomic_dec(&cpu_buffer->record_disabled); 3144 } 3145 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 3146 3147 /* 3148 * The total entries in the ring buffer is the running counter 3149 * of entries entered into the ring buffer, minus the sum of 3150 * the entries read from the ring buffer and the number of 3151 * entries that were overwritten. 3152 */ 3153 static inline unsigned long 3154 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 3155 { 3156 return local_read(&cpu_buffer->entries) - 3157 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 3158 } 3159 3160 /** 3161 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 3162 * @buffer: The ring buffer 3163 * @cpu: The per CPU buffer to read from. 3164 */ 3165 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu) 3166 { 3167 unsigned long flags; 3168 struct ring_buffer_per_cpu *cpu_buffer; 3169 struct buffer_page *bpage; 3170 u64 ret = 0; 3171 3172 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3173 return 0; 3174 3175 cpu_buffer = buffer->buffers[cpu]; 3176 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3177 /* 3178 * if the tail is on reader_page, oldest time stamp is on the reader 3179 * page 3180 */ 3181 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 3182 bpage = cpu_buffer->reader_page; 3183 else 3184 bpage = rb_set_head_page(cpu_buffer); 3185 if (bpage) 3186 ret = bpage->page->time_stamp; 3187 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3188 3189 return ret; 3190 } 3191 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3192 3193 /** 3194 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3195 * @buffer: The ring buffer 3196 * @cpu: The per CPU buffer to read from. 3197 */ 3198 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu) 3199 { 3200 struct ring_buffer_per_cpu *cpu_buffer; 3201 unsigned long ret; 3202 3203 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3204 return 0; 3205 3206 cpu_buffer = buffer->buffers[cpu]; 3207 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 3208 3209 return ret; 3210 } 3211 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 3212 3213 /** 3214 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 3215 * @buffer: The ring buffer 3216 * @cpu: The per CPU buffer to get the entries from. 3217 */ 3218 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 3219 { 3220 struct ring_buffer_per_cpu *cpu_buffer; 3221 3222 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3223 return 0; 3224 3225 cpu_buffer = buffer->buffers[cpu]; 3226 3227 return rb_num_of_entries(cpu_buffer); 3228 } 3229 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 3230 3231 /** 3232 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 3233 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 3234 * @buffer: The ring buffer 3235 * @cpu: The per CPU buffer to get the number of overruns from 3236 */ 3237 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 3238 { 3239 struct ring_buffer_per_cpu *cpu_buffer; 3240 unsigned long ret; 3241 3242 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3243 return 0; 3244 3245 cpu_buffer = buffer->buffers[cpu]; 3246 ret = local_read(&cpu_buffer->overrun); 3247 3248 return ret; 3249 } 3250 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 3251 3252 /** 3253 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 3254 * commits failing due to the buffer wrapping around while there are uncommitted 3255 * events, such as during an interrupt storm. 3256 * @buffer: The ring buffer 3257 * @cpu: The per CPU buffer to get the number of overruns from 3258 */ 3259 unsigned long 3260 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 3261 { 3262 struct ring_buffer_per_cpu *cpu_buffer; 3263 unsigned long ret; 3264 3265 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3266 return 0; 3267 3268 cpu_buffer = buffer->buffers[cpu]; 3269 ret = local_read(&cpu_buffer->commit_overrun); 3270 3271 return ret; 3272 } 3273 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 3274 3275 /** 3276 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 3277 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 3278 * @buffer: The ring buffer 3279 * @cpu: The per CPU buffer to get the number of overruns from 3280 */ 3281 unsigned long 3282 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu) 3283 { 3284 struct ring_buffer_per_cpu *cpu_buffer; 3285 unsigned long ret; 3286 3287 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3288 return 0; 3289 3290 cpu_buffer = buffer->buffers[cpu]; 3291 ret = local_read(&cpu_buffer->dropped_events); 3292 3293 return ret; 3294 } 3295 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 3296 3297 /** 3298 * ring_buffer_read_events_cpu - get the number of events successfully read 3299 * @buffer: The ring buffer 3300 * @cpu: The per CPU buffer to get the number of events read 3301 */ 3302 unsigned long 3303 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu) 3304 { 3305 struct ring_buffer_per_cpu *cpu_buffer; 3306 3307 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3308 return 0; 3309 3310 cpu_buffer = buffer->buffers[cpu]; 3311 return cpu_buffer->read; 3312 } 3313 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 3314 3315 /** 3316 * ring_buffer_entries - get the number of entries in a buffer 3317 * @buffer: The ring buffer 3318 * 3319 * Returns the total number of entries in the ring buffer 3320 * (all CPU entries) 3321 */ 3322 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 3323 { 3324 struct ring_buffer_per_cpu *cpu_buffer; 3325 unsigned long entries = 0; 3326 int cpu; 3327 3328 /* if you care about this being correct, lock the buffer */ 3329 for_each_buffer_cpu(buffer, cpu) { 3330 cpu_buffer = buffer->buffers[cpu]; 3331 entries += rb_num_of_entries(cpu_buffer); 3332 } 3333 3334 return entries; 3335 } 3336 EXPORT_SYMBOL_GPL(ring_buffer_entries); 3337 3338 /** 3339 * ring_buffer_overruns - get the number of overruns in buffer 3340 * @buffer: The ring buffer 3341 * 3342 * Returns the total number of overruns in the ring buffer 3343 * (all CPU entries) 3344 */ 3345 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 3346 { 3347 struct ring_buffer_per_cpu *cpu_buffer; 3348 unsigned long overruns = 0; 3349 int cpu; 3350 3351 /* if you care about this being correct, lock the buffer */ 3352 for_each_buffer_cpu(buffer, cpu) { 3353 cpu_buffer = buffer->buffers[cpu]; 3354 overruns += local_read(&cpu_buffer->overrun); 3355 } 3356 3357 return overruns; 3358 } 3359 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 3360 3361 static void rb_iter_reset(struct ring_buffer_iter *iter) 3362 { 3363 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3364 3365 /* Iterator usage is expected to have record disabled */ 3366 iter->head_page = cpu_buffer->reader_page; 3367 iter->head = cpu_buffer->reader_page->read; 3368 3369 iter->cache_reader_page = iter->head_page; 3370 iter->cache_read = cpu_buffer->read; 3371 3372 if (iter->head) 3373 iter->read_stamp = cpu_buffer->read_stamp; 3374 else 3375 iter->read_stamp = iter->head_page->page->time_stamp; 3376 } 3377 3378 /** 3379 * ring_buffer_iter_reset - reset an iterator 3380 * @iter: The iterator to reset 3381 * 3382 * Resets the iterator, so that it will start from the beginning 3383 * again. 3384 */ 3385 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 3386 { 3387 struct ring_buffer_per_cpu *cpu_buffer; 3388 unsigned long flags; 3389 3390 if (!iter) 3391 return; 3392 3393 cpu_buffer = iter->cpu_buffer; 3394 3395 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3396 rb_iter_reset(iter); 3397 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3398 } 3399 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 3400 3401 /** 3402 * ring_buffer_iter_empty - check if an iterator has no more to read 3403 * @iter: The iterator to check 3404 */ 3405 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 3406 { 3407 struct ring_buffer_per_cpu *cpu_buffer; 3408 struct buffer_page *reader; 3409 struct buffer_page *head_page; 3410 struct buffer_page *commit_page; 3411 unsigned commit; 3412 3413 cpu_buffer = iter->cpu_buffer; 3414 3415 /* Remember, trace recording is off when iterator is in use */ 3416 reader = cpu_buffer->reader_page; 3417 head_page = cpu_buffer->head_page; 3418 commit_page = cpu_buffer->commit_page; 3419 commit = rb_page_commit(commit_page); 3420 3421 return ((iter->head_page == commit_page && iter->head == commit) || 3422 (iter->head_page == reader && commit_page == head_page && 3423 head_page->read == commit && 3424 iter->head == rb_page_commit(cpu_buffer->reader_page))); 3425 } 3426 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 3427 3428 static void 3429 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3430 struct ring_buffer_event *event) 3431 { 3432 u64 delta; 3433 3434 switch (event->type_len) { 3435 case RINGBUF_TYPE_PADDING: 3436 return; 3437 3438 case RINGBUF_TYPE_TIME_EXTEND: 3439 delta = event->array[0]; 3440 delta <<= TS_SHIFT; 3441 delta += event->time_delta; 3442 cpu_buffer->read_stamp += delta; 3443 return; 3444 3445 case RINGBUF_TYPE_TIME_STAMP: 3446 /* FIXME: not implemented */ 3447 return; 3448 3449 case RINGBUF_TYPE_DATA: 3450 cpu_buffer->read_stamp += event->time_delta; 3451 return; 3452 3453 default: 3454 BUG(); 3455 } 3456 return; 3457 } 3458 3459 static void 3460 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 3461 struct ring_buffer_event *event) 3462 { 3463 u64 delta; 3464 3465 switch (event->type_len) { 3466 case RINGBUF_TYPE_PADDING: 3467 return; 3468 3469 case RINGBUF_TYPE_TIME_EXTEND: 3470 delta = event->array[0]; 3471 delta <<= TS_SHIFT; 3472 delta += event->time_delta; 3473 iter->read_stamp += delta; 3474 return; 3475 3476 case RINGBUF_TYPE_TIME_STAMP: 3477 /* FIXME: not implemented */ 3478 return; 3479 3480 case RINGBUF_TYPE_DATA: 3481 iter->read_stamp += event->time_delta; 3482 return; 3483 3484 default: 3485 BUG(); 3486 } 3487 return; 3488 } 3489 3490 static struct buffer_page * 3491 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 3492 { 3493 struct buffer_page *reader = NULL; 3494 unsigned long overwrite; 3495 unsigned long flags; 3496 int nr_loops = 0; 3497 int ret; 3498 3499 local_irq_save(flags); 3500 arch_spin_lock(&cpu_buffer->lock); 3501 3502 again: 3503 /* 3504 * This should normally only loop twice. But because the 3505 * start of the reader inserts an empty page, it causes 3506 * a case where we will loop three times. There should be no 3507 * reason to loop four times (that I know of). 3508 */ 3509 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 3510 reader = NULL; 3511 goto out; 3512 } 3513 3514 reader = cpu_buffer->reader_page; 3515 3516 /* If there's more to read, return this page */ 3517 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 3518 goto out; 3519 3520 /* Never should we have an index greater than the size */ 3521 if (RB_WARN_ON(cpu_buffer, 3522 cpu_buffer->reader_page->read > rb_page_size(reader))) 3523 goto out; 3524 3525 /* check if we caught up to the tail */ 3526 reader = NULL; 3527 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 3528 goto out; 3529 3530 /* Don't bother swapping if the ring buffer is empty */ 3531 if (rb_num_of_entries(cpu_buffer) == 0) 3532 goto out; 3533 3534 /* 3535 * Reset the reader page to size zero. 3536 */ 3537 local_set(&cpu_buffer->reader_page->write, 0); 3538 local_set(&cpu_buffer->reader_page->entries, 0); 3539 local_set(&cpu_buffer->reader_page->page->commit, 0); 3540 cpu_buffer->reader_page->real_end = 0; 3541 3542 spin: 3543 /* 3544 * Splice the empty reader page into the list around the head. 3545 */ 3546 reader = rb_set_head_page(cpu_buffer); 3547 if (!reader) 3548 goto out; 3549 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 3550 cpu_buffer->reader_page->list.prev = reader->list.prev; 3551 3552 /* 3553 * cpu_buffer->pages just needs to point to the buffer, it 3554 * has no specific buffer page to point to. Lets move it out 3555 * of our way so we don't accidentally swap it. 3556 */ 3557 cpu_buffer->pages = reader->list.prev; 3558 3559 /* The reader page will be pointing to the new head */ 3560 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 3561 3562 /* 3563 * We want to make sure we read the overruns after we set up our 3564 * pointers to the next object. The writer side does a 3565 * cmpxchg to cross pages which acts as the mb on the writer 3566 * side. Note, the reader will constantly fail the swap 3567 * while the writer is updating the pointers, so this 3568 * guarantees that the overwrite recorded here is the one we 3569 * want to compare with the last_overrun. 3570 */ 3571 smp_mb(); 3572 overwrite = local_read(&(cpu_buffer->overrun)); 3573 3574 /* 3575 * Here's the tricky part. 3576 * 3577 * We need to move the pointer past the header page. 3578 * But we can only do that if a writer is not currently 3579 * moving it. The page before the header page has the 3580 * flag bit '1' set if it is pointing to the page we want. 3581 * but if the writer is in the process of moving it 3582 * than it will be '2' or already moved '0'. 3583 */ 3584 3585 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 3586 3587 /* 3588 * If we did not convert it, then we must try again. 3589 */ 3590 if (!ret) 3591 goto spin; 3592 3593 /* 3594 * Yeah! We succeeded in replacing the page. 3595 * 3596 * Now make the new head point back to the reader page. 3597 */ 3598 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 3599 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 3600 3601 /* Finally update the reader page to the new head */ 3602 cpu_buffer->reader_page = reader; 3603 cpu_buffer->reader_page->read = 0; 3604 3605 if (overwrite != cpu_buffer->last_overrun) { 3606 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 3607 cpu_buffer->last_overrun = overwrite; 3608 } 3609 3610 goto again; 3611 3612 out: 3613 /* Update the read_stamp on the first event */ 3614 if (reader && reader->read == 0) 3615 cpu_buffer->read_stamp = reader->page->time_stamp; 3616 3617 arch_spin_unlock(&cpu_buffer->lock); 3618 local_irq_restore(flags); 3619 3620 return reader; 3621 } 3622 3623 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3624 { 3625 struct ring_buffer_event *event; 3626 struct buffer_page *reader; 3627 unsigned length; 3628 3629 reader = rb_get_reader_page(cpu_buffer); 3630 3631 /* This function should not be called when buffer is empty */ 3632 if (RB_WARN_ON(cpu_buffer, !reader)) 3633 return; 3634 3635 event = rb_reader_event(cpu_buffer); 3636 3637 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3638 cpu_buffer->read++; 3639 3640 rb_update_read_stamp(cpu_buffer, event); 3641 3642 length = rb_event_length(event); 3643 cpu_buffer->reader_page->read += length; 3644 } 3645 3646 static void rb_advance_iter(struct ring_buffer_iter *iter) 3647 { 3648 struct ring_buffer_per_cpu *cpu_buffer; 3649 struct ring_buffer_event *event; 3650 unsigned length; 3651 3652 cpu_buffer = iter->cpu_buffer; 3653 3654 /* 3655 * Check if we are at the end of the buffer. 3656 */ 3657 if (iter->head >= rb_page_size(iter->head_page)) { 3658 /* discarded commits can make the page empty */ 3659 if (iter->head_page == cpu_buffer->commit_page) 3660 return; 3661 rb_inc_iter(iter); 3662 return; 3663 } 3664 3665 event = rb_iter_head_event(iter); 3666 3667 length = rb_event_length(event); 3668 3669 /* 3670 * This should not be called to advance the header if we are 3671 * at the tail of the buffer. 3672 */ 3673 if (RB_WARN_ON(cpu_buffer, 3674 (iter->head_page == cpu_buffer->commit_page) && 3675 (iter->head + length > rb_commit_index(cpu_buffer)))) 3676 return; 3677 3678 rb_update_iter_read_stamp(iter, event); 3679 3680 iter->head += length; 3681 3682 /* check for end of page padding */ 3683 if ((iter->head >= rb_page_size(iter->head_page)) && 3684 (iter->head_page != cpu_buffer->commit_page)) 3685 rb_inc_iter(iter); 3686 } 3687 3688 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3689 { 3690 return cpu_buffer->lost_events; 3691 } 3692 3693 static struct ring_buffer_event * 3694 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3695 unsigned long *lost_events) 3696 { 3697 struct ring_buffer_event *event; 3698 struct buffer_page *reader; 3699 int nr_loops = 0; 3700 3701 again: 3702 /* 3703 * We repeat when a time extend is encountered. 3704 * Since the time extend is always attached to a data event, 3705 * we should never loop more than once. 3706 * (We never hit the following condition more than twice). 3707 */ 3708 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3709 return NULL; 3710 3711 reader = rb_get_reader_page(cpu_buffer); 3712 if (!reader) 3713 return NULL; 3714 3715 event = rb_reader_event(cpu_buffer); 3716 3717 switch (event->type_len) { 3718 case RINGBUF_TYPE_PADDING: 3719 if (rb_null_event(event)) 3720 RB_WARN_ON(cpu_buffer, 1); 3721 /* 3722 * Because the writer could be discarding every 3723 * event it creates (which would probably be bad) 3724 * if we were to go back to "again" then we may never 3725 * catch up, and will trigger the warn on, or lock 3726 * the box. Return the padding, and we will release 3727 * the current locks, and try again. 3728 */ 3729 return event; 3730 3731 case RINGBUF_TYPE_TIME_EXTEND: 3732 /* Internal data, OK to advance */ 3733 rb_advance_reader(cpu_buffer); 3734 goto again; 3735 3736 case RINGBUF_TYPE_TIME_STAMP: 3737 /* FIXME: not implemented */ 3738 rb_advance_reader(cpu_buffer); 3739 goto again; 3740 3741 case RINGBUF_TYPE_DATA: 3742 if (ts) { 3743 *ts = cpu_buffer->read_stamp + event->time_delta; 3744 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3745 cpu_buffer->cpu, ts); 3746 } 3747 if (lost_events) 3748 *lost_events = rb_lost_events(cpu_buffer); 3749 return event; 3750 3751 default: 3752 BUG(); 3753 } 3754 3755 return NULL; 3756 } 3757 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3758 3759 static struct ring_buffer_event * 3760 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3761 { 3762 struct ring_buffer *buffer; 3763 struct ring_buffer_per_cpu *cpu_buffer; 3764 struct ring_buffer_event *event; 3765 int nr_loops = 0; 3766 3767 cpu_buffer = iter->cpu_buffer; 3768 buffer = cpu_buffer->buffer; 3769 3770 /* 3771 * Check if someone performed a consuming read to 3772 * the buffer. A consuming read invalidates the iterator 3773 * and we need to reset the iterator in this case. 3774 */ 3775 if (unlikely(iter->cache_read != cpu_buffer->read || 3776 iter->cache_reader_page != cpu_buffer->reader_page)) 3777 rb_iter_reset(iter); 3778 3779 again: 3780 if (ring_buffer_iter_empty(iter)) 3781 return NULL; 3782 3783 /* 3784 * We repeat when a time extend is encountered or we hit 3785 * the end of the page. Since the time extend is always attached 3786 * to a data event, we should never loop more than three times. 3787 * Once for going to next page, once on time extend, and 3788 * finally once to get the event. 3789 * (We never hit the following condition more than thrice). 3790 */ 3791 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) 3792 return NULL; 3793 3794 if (rb_per_cpu_empty(cpu_buffer)) 3795 return NULL; 3796 3797 if (iter->head >= rb_page_size(iter->head_page)) { 3798 rb_inc_iter(iter); 3799 goto again; 3800 } 3801 3802 event = rb_iter_head_event(iter); 3803 3804 switch (event->type_len) { 3805 case RINGBUF_TYPE_PADDING: 3806 if (rb_null_event(event)) { 3807 rb_inc_iter(iter); 3808 goto again; 3809 } 3810 rb_advance_iter(iter); 3811 return event; 3812 3813 case RINGBUF_TYPE_TIME_EXTEND: 3814 /* Internal data, OK to advance */ 3815 rb_advance_iter(iter); 3816 goto again; 3817 3818 case RINGBUF_TYPE_TIME_STAMP: 3819 /* FIXME: not implemented */ 3820 rb_advance_iter(iter); 3821 goto again; 3822 3823 case RINGBUF_TYPE_DATA: 3824 if (ts) { 3825 *ts = iter->read_stamp + event->time_delta; 3826 ring_buffer_normalize_time_stamp(buffer, 3827 cpu_buffer->cpu, ts); 3828 } 3829 return event; 3830 3831 default: 3832 BUG(); 3833 } 3834 3835 return NULL; 3836 } 3837 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3838 3839 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 3840 { 3841 if (likely(!in_nmi())) { 3842 raw_spin_lock(&cpu_buffer->reader_lock); 3843 return true; 3844 } 3845 3846 /* 3847 * If an NMI die dumps out the content of the ring buffer 3848 * trylock must be used to prevent a deadlock if the NMI 3849 * preempted a task that holds the ring buffer locks. If 3850 * we get the lock then all is fine, if not, then continue 3851 * to do the read, but this can corrupt the ring buffer, 3852 * so it must be permanently disabled from future writes. 3853 * Reading from NMI is a oneshot deal. 3854 */ 3855 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 3856 return true; 3857 3858 /* Continue without locking, but disable the ring buffer */ 3859 atomic_inc(&cpu_buffer->record_disabled); 3860 return false; 3861 } 3862 3863 static inline void 3864 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 3865 { 3866 if (likely(locked)) 3867 raw_spin_unlock(&cpu_buffer->reader_lock); 3868 return; 3869 } 3870 3871 /** 3872 * ring_buffer_peek - peek at the next event to be read 3873 * @buffer: The ring buffer to read 3874 * @cpu: The cpu to peak at 3875 * @ts: The timestamp counter of this event. 3876 * @lost_events: a variable to store if events were lost (may be NULL) 3877 * 3878 * This will return the event that will be read next, but does 3879 * not consume the data. 3880 */ 3881 struct ring_buffer_event * 3882 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, 3883 unsigned long *lost_events) 3884 { 3885 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3886 struct ring_buffer_event *event; 3887 unsigned long flags; 3888 bool dolock; 3889 3890 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3891 return NULL; 3892 3893 again: 3894 local_irq_save(flags); 3895 dolock = rb_reader_lock(cpu_buffer); 3896 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3897 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3898 rb_advance_reader(cpu_buffer); 3899 rb_reader_unlock(cpu_buffer, dolock); 3900 local_irq_restore(flags); 3901 3902 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3903 goto again; 3904 3905 return event; 3906 } 3907 3908 /** 3909 * ring_buffer_iter_peek - peek at the next event to be read 3910 * @iter: The ring buffer iterator 3911 * @ts: The timestamp counter of this event. 3912 * 3913 * This will return the event that will be read next, but does 3914 * not increment the iterator. 3915 */ 3916 struct ring_buffer_event * 3917 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3918 { 3919 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3920 struct ring_buffer_event *event; 3921 unsigned long flags; 3922 3923 again: 3924 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3925 event = rb_iter_peek(iter, ts); 3926 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3927 3928 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3929 goto again; 3930 3931 return event; 3932 } 3933 3934 /** 3935 * ring_buffer_consume - return an event and consume it 3936 * @buffer: The ring buffer to get the next event from 3937 * @cpu: the cpu to read the buffer from 3938 * @ts: a variable to store the timestamp (may be NULL) 3939 * @lost_events: a variable to store if events were lost (may be NULL) 3940 * 3941 * Returns the next event in the ring buffer, and that event is consumed. 3942 * Meaning, that sequential reads will keep returning a different event, 3943 * and eventually empty the ring buffer if the producer is slower. 3944 */ 3945 struct ring_buffer_event * 3946 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, 3947 unsigned long *lost_events) 3948 { 3949 struct ring_buffer_per_cpu *cpu_buffer; 3950 struct ring_buffer_event *event = NULL; 3951 unsigned long flags; 3952 bool dolock; 3953 3954 again: 3955 /* might be called in atomic */ 3956 preempt_disable(); 3957 3958 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3959 goto out; 3960 3961 cpu_buffer = buffer->buffers[cpu]; 3962 local_irq_save(flags); 3963 dolock = rb_reader_lock(cpu_buffer); 3964 3965 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3966 if (event) { 3967 cpu_buffer->lost_events = 0; 3968 rb_advance_reader(cpu_buffer); 3969 } 3970 3971 rb_reader_unlock(cpu_buffer, dolock); 3972 local_irq_restore(flags); 3973 3974 out: 3975 preempt_enable(); 3976 3977 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3978 goto again; 3979 3980 return event; 3981 } 3982 EXPORT_SYMBOL_GPL(ring_buffer_consume); 3983 3984 /** 3985 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 3986 * @buffer: The ring buffer to read from 3987 * @cpu: The cpu buffer to iterate over 3988 * 3989 * This performs the initial preparations necessary to iterate 3990 * through the buffer. Memory is allocated, buffer recording 3991 * is disabled, and the iterator pointer is returned to the caller. 3992 * 3993 * Disabling buffer recordng prevents the reading from being 3994 * corrupted. This is not a consuming read, so a producer is not 3995 * expected. 3996 * 3997 * After a sequence of ring_buffer_read_prepare calls, the user is 3998 * expected to make at least one call to ring_buffer_read_prepare_sync. 3999 * Afterwards, ring_buffer_read_start is invoked to get things going 4000 * for real. 4001 * 4002 * This overall must be paired with ring_buffer_read_finish. 4003 */ 4004 struct ring_buffer_iter * 4005 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu) 4006 { 4007 struct ring_buffer_per_cpu *cpu_buffer; 4008 struct ring_buffer_iter *iter; 4009 4010 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4011 return NULL; 4012 4013 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 4014 if (!iter) 4015 return NULL; 4016 4017 cpu_buffer = buffer->buffers[cpu]; 4018 4019 iter->cpu_buffer = cpu_buffer; 4020 4021 atomic_inc(&buffer->resize_disabled); 4022 atomic_inc(&cpu_buffer->record_disabled); 4023 4024 return iter; 4025 } 4026 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 4027 4028 /** 4029 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 4030 * 4031 * All previously invoked ring_buffer_read_prepare calls to prepare 4032 * iterators will be synchronized. Afterwards, read_buffer_read_start 4033 * calls on those iterators are allowed. 4034 */ 4035 void 4036 ring_buffer_read_prepare_sync(void) 4037 { 4038 synchronize_sched(); 4039 } 4040 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 4041 4042 /** 4043 * ring_buffer_read_start - start a non consuming read of the buffer 4044 * @iter: The iterator returned by ring_buffer_read_prepare 4045 * 4046 * This finalizes the startup of an iteration through the buffer. 4047 * The iterator comes from a call to ring_buffer_read_prepare and 4048 * an intervening ring_buffer_read_prepare_sync must have been 4049 * performed. 4050 * 4051 * Must be paired with ring_buffer_read_finish. 4052 */ 4053 void 4054 ring_buffer_read_start(struct ring_buffer_iter *iter) 4055 { 4056 struct ring_buffer_per_cpu *cpu_buffer; 4057 unsigned long flags; 4058 4059 if (!iter) 4060 return; 4061 4062 cpu_buffer = iter->cpu_buffer; 4063 4064 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4065 arch_spin_lock(&cpu_buffer->lock); 4066 rb_iter_reset(iter); 4067 arch_spin_unlock(&cpu_buffer->lock); 4068 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4069 } 4070 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 4071 4072 /** 4073 * ring_buffer_read_finish - finish reading the iterator of the buffer 4074 * @iter: The iterator retrieved by ring_buffer_start 4075 * 4076 * This re-enables the recording to the buffer, and frees the 4077 * iterator. 4078 */ 4079 void 4080 ring_buffer_read_finish(struct ring_buffer_iter *iter) 4081 { 4082 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4083 unsigned long flags; 4084 4085 /* 4086 * Ring buffer is disabled from recording, here's a good place 4087 * to check the integrity of the ring buffer. 4088 * Must prevent readers from trying to read, as the check 4089 * clears the HEAD page and readers require it. 4090 */ 4091 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4092 rb_check_pages(cpu_buffer); 4093 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4094 4095 atomic_dec(&cpu_buffer->record_disabled); 4096 atomic_dec(&cpu_buffer->buffer->resize_disabled); 4097 kfree(iter); 4098 } 4099 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 4100 4101 /** 4102 * ring_buffer_read - read the next item in the ring buffer by the iterator 4103 * @iter: The ring buffer iterator 4104 * @ts: The time stamp of the event read. 4105 * 4106 * This reads the next event in the ring buffer and increments the iterator. 4107 */ 4108 struct ring_buffer_event * 4109 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 4110 { 4111 struct ring_buffer_event *event; 4112 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4113 unsigned long flags; 4114 4115 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4116 again: 4117 event = rb_iter_peek(iter, ts); 4118 if (!event) 4119 goto out; 4120 4121 if (event->type_len == RINGBUF_TYPE_PADDING) 4122 goto again; 4123 4124 rb_advance_iter(iter); 4125 out: 4126 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4127 4128 return event; 4129 } 4130 EXPORT_SYMBOL_GPL(ring_buffer_read); 4131 4132 /** 4133 * ring_buffer_size - return the size of the ring buffer (in bytes) 4134 * @buffer: The ring buffer. 4135 */ 4136 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu) 4137 { 4138 /* 4139 * Earlier, this method returned 4140 * BUF_PAGE_SIZE * buffer->nr_pages 4141 * Since the nr_pages field is now removed, we have converted this to 4142 * return the per cpu buffer value. 4143 */ 4144 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4145 return 0; 4146 4147 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 4148 } 4149 EXPORT_SYMBOL_GPL(ring_buffer_size); 4150 4151 static void 4152 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 4153 { 4154 rb_head_page_deactivate(cpu_buffer); 4155 4156 cpu_buffer->head_page 4157 = list_entry(cpu_buffer->pages, struct buffer_page, list); 4158 local_set(&cpu_buffer->head_page->write, 0); 4159 local_set(&cpu_buffer->head_page->entries, 0); 4160 local_set(&cpu_buffer->head_page->page->commit, 0); 4161 4162 cpu_buffer->head_page->read = 0; 4163 4164 cpu_buffer->tail_page = cpu_buffer->head_page; 4165 cpu_buffer->commit_page = cpu_buffer->head_page; 4166 4167 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 4168 INIT_LIST_HEAD(&cpu_buffer->new_pages); 4169 local_set(&cpu_buffer->reader_page->write, 0); 4170 local_set(&cpu_buffer->reader_page->entries, 0); 4171 local_set(&cpu_buffer->reader_page->page->commit, 0); 4172 cpu_buffer->reader_page->read = 0; 4173 4174 local_set(&cpu_buffer->entries_bytes, 0); 4175 local_set(&cpu_buffer->overrun, 0); 4176 local_set(&cpu_buffer->commit_overrun, 0); 4177 local_set(&cpu_buffer->dropped_events, 0); 4178 local_set(&cpu_buffer->entries, 0); 4179 local_set(&cpu_buffer->committing, 0); 4180 local_set(&cpu_buffer->commits, 0); 4181 cpu_buffer->read = 0; 4182 cpu_buffer->read_bytes = 0; 4183 4184 cpu_buffer->write_stamp = 0; 4185 cpu_buffer->read_stamp = 0; 4186 4187 cpu_buffer->lost_events = 0; 4188 cpu_buffer->last_overrun = 0; 4189 4190 rb_head_page_activate(cpu_buffer); 4191 } 4192 4193 /** 4194 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 4195 * @buffer: The ring buffer to reset a per cpu buffer of 4196 * @cpu: The CPU buffer to be reset 4197 */ 4198 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 4199 { 4200 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4201 unsigned long flags; 4202 4203 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4204 return; 4205 4206 atomic_inc(&buffer->resize_disabled); 4207 atomic_inc(&cpu_buffer->record_disabled); 4208 4209 /* Make sure all commits have finished */ 4210 synchronize_sched(); 4211 4212 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4213 4214 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 4215 goto out; 4216 4217 arch_spin_lock(&cpu_buffer->lock); 4218 4219 rb_reset_cpu(cpu_buffer); 4220 4221 arch_spin_unlock(&cpu_buffer->lock); 4222 4223 out: 4224 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4225 4226 atomic_dec(&cpu_buffer->record_disabled); 4227 atomic_dec(&buffer->resize_disabled); 4228 } 4229 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 4230 4231 /** 4232 * ring_buffer_reset - reset a ring buffer 4233 * @buffer: The ring buffer to reset all cpu buffers 4234 */ 4235 void ring_buffer_reset(struct ring_buffer *buffer) 4236 { 4237 int cpu; 4238 4239 for_each_buffer_cpu(buffer, cpu) 4240 ring_buffer_reset_cpu(buffer, cpu); 4241 } 4242 EXPORT_SYMBOL_GPL(ring_buffer_reset); 4243 4244 /** 4245 * rind_buffer_empty - is the ring buffer empty? 4246 * @buffer: The ring buffer to test 4247 */ 4248 bool ring_buffer_empty(struct ring_buffer *buffer) 4249 { 4250 struct ring_buffer_per_cpu *cpu_buffer; 4251 unsigned long flags; 4252 bool dolock; 4253 int cpu; 4254 int ret; 4255 4256 /* yes this is racy, but if you don't like the race, lock the buffer */ 4257 for_each_buffer_cpu(buffer, cpu) { 4258 cpu_buffer = buffer->buffers[cpu]; 4259 local_irq_save(flags); 4260 dolock = rb_reader_lock(cpu_buffer); 4261 ret = rb_per_cpu_empty(cpu_buffer); 4262 rb_reader_unlock(cpu_buffer, dolock); 4263 local_irq_restore(flags); 4264 4265 if (!ret) 4266 return false; 4267 } 4268 4269 return true; 4270 } 4271 EXPORT_SYMBOL_GPL(ring_buffer_empty); 4272 4273 /** 4274 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 4275 * @buffer: The ring buffer 4276 * @cpu: The CPU buffer to test 4277 */ 4278 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 4279 { 4280 struct ring_buffer_per_cpu *cpu_buffer; 4281 unsigned long flags; 4282 bool dolock; 4283 int ret; 4284 4285 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4286 return true; 4287 4288 cpu_buffer = buffer->buffers[cpu]; 4289 local_irq_save(flags); 4290 dolock = rb_reader_lock(cpu_buffer); 4291 ret = rb_per_cpu_empty(cpu_buffer); 4292 rb_reader_unlock(cpu_buffer, dolock); 4293 local_irq_restore(flags); 4294 4295 return ret; 4296 } 4297 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 4298 4299 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4300 /** 4301 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 4302 * @buffer_a: One buffer to swap with 4303 * @buffer_b: The other buffer to swap with 4304 * 4305 * This function is useful for tracers that want to take a "snapshot" 4306 * of a CPU buffer and has another back up buffer lying around. 4307 * it is expected that the tracer handles the cpu buffer not being 4308 * used at the moment. 4309 */ 4310 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 4311 struct ring_buffer *buffer_b, int cpu) 4312 { 4313 struct ring_buffer_per_cpu *cpu_buffer_a; 4314 struct ring_buffer_per_cpu *cpu_buffer_b; 4315 int ret = -EINVAL; 4316 4317 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 4318 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 4319 goto out; 4320 4321 cpu_buffer_a = buffer_a->buffers[cpu]; 4322 cpu_buffer_b = buffer_b->buffers[cpu]; 4323 4324 /* At least make sure the two buffers are somewhat the same */ 4325 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 4326 goto out; 4327 4328 ret = -EAGAIN; 4329 4330 if (atomic_read(&buffer_a->record_disabled)) 4331 goto out; 4332 4333 if (atomic_read(&buffer_b->record_disabled)) 4334 goto out; 4335 4336 if (atomic_read(&cpu_buffer_a->record_disabled)) 4337 goto out; 4338 4339 if (atomic_read(&cpu_buffer_b->record_disabled)) 4340 goto out; 4341 4342 /* 4343 * We can't do a synchronize_sched here because this 4344 * function can be called in atomic context. 4345 * Normally this will be called from the same CPU as cpu. 4346 * If not it's up to the caller to protect this. 4347 */ 4348 atomic_inc(&cpu_buffer_a->record_disabled); 4349 atomic_inc(&cpu_buffer_b->record_disabled); 4350 4351 ret = -EBUSY; 4352 if (local_read(&cpu_buffer_a->committing)) 4353 goto out_dec; 4354 if (local_read(&cpu_buffer_b->committing)) 4355 goto out_dec; 4356 4357 buffer_a->buffers[cpu] = cpu_buffer_b; 4358 buffer_b->buffers[cpu] = cpu_buffer_a; 4359 4360 cpu_buffer_b->buffer = buffer_a; 4361 cpu_buffer_a->buffer = buffer_b; 4362 4363 ret = 0; 4364 4365 out_dec: 4366 atomic_dec(&cpu_buffer_a->record_disabled); 4367 atomic_dec(&cpu_buffer_b->record_disabled); 4368 out: 4369 return ret; 4370 } 4371 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 4372 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 4373 4374 /** 4375 * ring_buffer_alloc_read_page - allocate a page to read from buffer 4376 * @buffer: the buffer to allocate for. 4377 * @cpu: the cpu buffer to allocate. 4378 * 4379 * This function is used in conjunction with ring_buffer_read_page. 4380 * When reading a full page from the ring buffer, these functions 4381 * can be used to speed up the process. The calling function should 4382 * allocate a few pages first with this function. Then when it 4383 * needs to get pages from the ring buffer, it passes the result 4384 * of this function into ring_buffer_read_page, which will swap 4385 * the page that was allocated, with the read page of the buffer. 4386 * 4387 * Returns: 4388 * The page allocated, or NULL on error. 4389 */ 4390 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu) 4391 { 4392 struct buffer_data_page *bpage; 4393 struct page *page; 4394 4395 page = alloc_pages_node(cpu_to_node(cpu), 4396 GFP_KERNEL | __GFP_NORETRY, 0); 4397 if (!page) 4398 return NULL; 4399 4400 bpage = page_address(page); 4401 4402 rb_init_page(bpage); 4403 4404 return bpage; 4405 } 4406 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 4407 4408 /** 4409 * ring_buffer_free_read_page - free an allocated read page 4410 * @buffer: the buffer the page was allocate for 4411 * @data: the page to free 4412 * 4413 * Free a page allocated from ring_buffer_alloc_read_page. 4414 */ 4415 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data) 4416 { 4417 free_page((unsigned long)data); 4418 } 4419 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 4420 4421 /** 4422 * ring_buffer_read_page - extract a page from the ring buffer 4423 * @buffer: buffer to extract from 4424 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 4425 * @len: amount to extract 4426 * @cpu: the cpu of the buffer to extract 4427 * @full: should the extraction only happen when the page is full. 4428 * 4429 * This function will pull out a page from the ring buffer and consume it. 4430 * @data_page must be the address of the variable that was returned 4431 * from ring_buffer_alloc_read_page. This is because the page might be used 4432 * to swap with a page in the ring buffer. 4433 * 4434 * for example: 4435 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 4436 * if (!rpage) 4437 * return error; 4438 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 4439 * if (ret >= 0) 4440 * process_page(rpage, ret); 4441 * 4442 * When @full is set, the function will not return true unless 4443 * the writer is off the reader page. 4444 * 4445 * Note: it is up to the calling functions to handle sleeps and wakeups. 4446 * The ring buffer can be used anywhere in the kernel and can not 4447 * blindly call wake_up. The layer that uses the ring buffer must be 4448 * responsible for that. 4449 * 4450 * Returns: 4451 * >=0 if data has been transferred, returns the offset of consumed data. 4452 * <0 if no data has been transferred. 4453 */ 4454 int ring_buffer_read_page(struct ring_buffer *buffer, 4455 void **data_page, size_t len, int cpu, int full) 4456 { 4457 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4458 struct ring_buffer_event *event; 4459 struct buffer_data_page *bpage; 4460 struct buffer_page *reader; 4461 unsigned long missed_events; 4462 unsigned long flags; 4463 unsigned int commit; 4464 unsigned int read; 4465 u64 save_timestamp; 4466 int ret = -1; 4467 4468 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4469 goto out; 4470 4471 /* 4472 * If len is not big enough to hold the page header, then 4473 * we can not copy anything. 4474 */ 4475 if (len <= BUF_PAGE_HDR_SIZE) 4476 goto out; 4477 4478 len -= BUF_PAGE_HDR_SIZE; 4479 4480 if (!data_page) 4481 goto out; 4482 4483 bpage = *data_page; 4484 if (!bpage) 4485 goto out; 4486 4487 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4488 4489 reader = rb_get_reader_page(cpu_buffer); 4490 if (!reader) 4491 goto out_unlock; 4492 4493 event = rb_reader_event(cpu_buffer); 4494 4495 read = reader->read; 4496 commit = rb_page_commit(reader); 4497 4498 /* Check if any events were dropped */ 4499 missed_events = cpu_buffer->lost_events; 4500 4501 /* 4502 * If this page has been partially read or 4503 * if len is not big enough to read the rest of the page or 4504 * a writer is still on the page, then 4505 * we must copy the data from the page to the buffer. 4506 * Otherwise, we can simply swap the page with the one passed in. 4507 */ 4508 if (read || (len < (commit - read)) || 4509 cpu_buffer->reader_page == cpu_buffer->commit_page) { 4510 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 4511 unsigned int rpos = read; 4512 unsigned int pos = 0; 4513 unsigned int size; 4514 4515 if (full) 4516 goto out_unlock; 4517 4518 if (len > (commit - read)) 4519 len = (commit - read); 4520 4521 /* Always keep the time extend and data together */ 4522 size = rb_event_ts_length(event); 4523 4524 if (len < size) 4525 goto out_unlock; 4526 4527 /* save the current timestamp, since the user will need it */ 4528 save_timestamp = cpu_buffer->read_stamp; 4529 4530 /* Need to copy one event at a time */ 4531 do { 4532 /* We need the size of one event, because 4533 * rb_advance_reader only advances by one event, 4534 * whereas rb_event_ts_length may include the size of 4535 * one or two events. 4536 * We have already ensured there's enough space if this 4537 * is a time extend. */ 4538 size = rb_event_length(event); 4539 memcpy(bpage->data + pos, rpage->data + rpos, size); 4540 4541 len -= size; 4542 4543 rb_advance_reader(cpu_buffer); 4544 rpos = reader->read; 4545 pos += size; 4546 4547 if (rpos >= commit) 4548 break; 4549 4550 event = rb_reader_event(cpu_buffer); 4551 /* Always keep the time extend and data together */ 4552 size = rb_event_ts_length(event); 4553 } while (len >= size); 4554 4555 /* update bpage */ 4556 local_set(&bpage->commit, pos); 4557 bpage->time_stamp = save_timestamp; 4558 4559 /* we copied everything to the beginning */ 4560 read = 0; 4561 } else { 4562 /* update the entry counter */ 4563 cpu_buffer->read += rb_page_entries(reader); 4564 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 4565 4566 /* swap the pages */ 4567 rb_init_page(bpage); 4568 bpage = reader->page; 4569 reader->page = *data_page; 4570 local_set(&reader->write, 0); 4571 local_set(&reader->entries, 0); 4572 reader->read = 0; 4573 *data_page = bpage; 4574 4575 /* 4576 * Use the real_end for the data size, 4577 * This gives us a chance to store the lost events 4578 * on the page. 4579 */ 4580 if (reader->real_end) 4581 local_set(&bpage->commit, reader->real_end); 4582 } 4583 ret = read; 4584 4585 cpu_buffer->lost_events = 0; 4586 4587 commit = local_read(&bpage->commit); 4588 /* 4589 * Set a flag in the commit field if we lost events 4590 */ 4591 if (missed_events) { 4592 /* If there is room at the end of the page to save the 4593 * missed events, then record it there. 4594 */ 4595 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 4596 memcpy(&bpage->data[commit], &missed_events, 4597 sizeof(missed_events)); 4598 local_add(RB_MISSED_STORED, &bpage->commit); 4599 commit += sizeof(missed_events); 4600 } 4601 local_add(RB_MISSED_EVENTS, &bpage->commit); 4602 } 4603 4604 /* 4605 * This page may be off to user land. Zero it out here. 4606 */ 4607 if (commit < BUF_PAGE_SIZE) 4608 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 4609 4610 out_unlock: 4611 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4612 4613 out: 4614 return ret; 4615 } 4616 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 4617 4618 /* 4619 * We only allocate new buffers, never free them if the CPU goes down. 4620 * If we were to free the buffer, then the user would lose any trace that was in 4621 * the buffer. 4622 */ 4623 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 4624 { 4625 struct ring_buffer *buffer; 4626 long nr_pages_same; 4627 int cpu_i; 4628 unsigned long nr_pages; 4629 4630 buffer = container_of(node, struct ring_buffer, node); 4631 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4632 return 0; 4633 4634 nr_pages = 0; 4635 nr_pages_same = 1; 4636 /* check if all cpu sizes are same */ 4637 for_each_buffer_cpu(buffer, cpu_i) { 4638 /* fill in the size from first enabled cpu */ 4639 if (nr_pages == 0) 4640 nr_pages = buffer->buffers[cpu_i]->nr_pages; 4641 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 4642 nr_pages_same = 0; 4643 break; 4644 } 4645 } 4646 /* allocate minimum pages, user can later expand it */ 4647 if (!nr_pages_same) 4648 nr_pages = 2; 4649 buffer->buffers[cpu] = 4650 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 4651 if (!buffer->buffers[cpu]) { 4652 WARN(1, "failed to allocate ring buffer on CPU %u\n", 4653 cpu); 4654 return -ENOMEM; 4655 } 4656 smp_wmb(); 4657 cpumask_set_cpu(cpu, buffer->cpumask); 4658 return 0; 4659 } 4660 4661 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 4662 /* 4663 * This is a basic integrity check of the ring buffer. 4664 * Late in the boot cycle this test will run when configured in. 4665 * It will kick off a thread per CPU that will go into a loop 4666 * writing to the per cpu ring buffer various sizes of data. 4667 * Some of the data will be large items, some small. 4668 * 4669 * Another thread is created that goes into a spin, sending out 4670 * IPIs to the other CPUs to also write into the ring buffer. 4671 * this is to test the nesting ability of the buffer. 4672 * 4673 * Basic stats are recorded and reported. If something in the 4674 * ring buffer should happen that's not expected, a big warning 4675 * is displayed and all ring buffers are disabled. 4676 */ 4677 static struct task_struct *rb_threads[NR_CPUS] __initdata; 4678 4679 struct rb_test_data { 4680 struct ring_buffer *buffer; 4681 unsigned long events; 4682 unsigned long bytes_written; 4683 unsigned long bytes_alloc; 4684 unsigned long bytes_dropped; 4685 unsigned long events_nested; 4686 unsigned long bytes_written_nested; 4687 unsigned long bytes_alloc_nested; 4688 unsigned long bytes_dropped_nested; 4689 int min_size_nested; 4690 int max_size_nested; 4691 int max_size; 4692 int min_size; 4693 int cpu; 4694 int cnt; 4695 }; 4696 4697 static struct rb_test_data rb_data[NR_CPUS] __initdata; 4698 4699 /* 1 meg per cpu */ 4700 #define RB_TEST_BUFFER_SIZE 1048576 4701 4702 static char rb_string[] __initdata = 4703 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 4704 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 4705 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 4706 4707 static bool rb_test_started __initdata; 4708 4709 struct rb_item { 4710 int size; 4711 char str[]; 4712 }; 4713 4714 static __init int rb_write_something(struct rb_test_data *data, bool nested) 4715 { 4716 struct ring_buffer_event *event; 4717 struct rb_item *item; 4718 bool started; 4719 int event_len; 4720 int size; 4721 int len; 4722 int cnt; 4723 4724 /* Have nested writes different that what is written */ 4725 cnt = data->cnt + (nested ? 27 : 0); 4726 4727 /* Multiply cnt by ~e, to make some unique increment */ 4728 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1); 4729 4730 len = size + sizeof(struct rb_item); 4731 4732 started = rb_test_started; 4733 /* read rb_test_started before checking buffer enabled */ 4734 smp_rmb(); 4735 4736 event = ring_buffer_lock_reserve(data->buffer, len); 4737 if (!event) { 4738 /* Ignore dropped events before test starts. */ 4739 if (started) { 4740 if (nested) 4741 data->bytes_dropped += len; 4742 else 4743 data->bytes_dropped_nested += len; 4744 } 4745 return len; 4746 } 4747 4748 event_len = ring_buffer_event_length(event); 4749 4750 if (RB_WARN_ON(data->buffer, event_len < len)) 4751 goto out; 4752 4753 item = ring_buffer_event_data(event); 4754 item->size = size; 4755 memcpy(item->str, rb_string, size); 4756 4757 if (nested) { 4758 data->bytes_alloc_nested += event_len; 4759 data->bytes_written_nested += len; 4760 data->events_nested++; 4761 if (!data->min_size_nested || len < data->min_size_nested) 4762 data->min_size_nested = len; 4763 if (len > data->max_size_nested) 4764 data->max_size_nested = len; 4765 } else { 4766 data->bytes_alloc += event_len; 4767 data->bytes_written += len; 4768 data->events++; 4769 if (!data->min_size || len < data->min_size) 4770 data->max_size = len; 4771 if (len > data->max_size) 4772 data->max_size = len; 4773 } 4774 4775 out: 4776 ring_buffer_unlock_commit(data->buffer, event); 4777 4778 return 0; 4779 } 4780 4781 static __init int rb_test(void *arg) 4782 { 4783 struct rb_test_data *data = arg; 4784 4785 while (!kthread_should_stop()) { 4786 rb_write_something(data, false); 4787 data->cnt++; 4788 4789 set_current_state(TASK_INTERRUPTIBLE); 4790 /* Now sleep between a min of 100-300us and a max of 1ms */ 4791 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 4792 } 4793 4794 return 0; 4795 } 4796 4797 static __init void rb_ipi(void *ignore) 4798 { 4799 struct rb_test_data *data; 4800 int cpu = smp_processor_id(); 4801 4802 data = &rb_data[cpu]; 4803 rb_write_something(data, true); 4804 } 4805 4806 static __init int rb_hammer_test(void *arg) 4807 { 4808 while (!kthread_should_stop()) { 4809 4810 /* Send an IPI to all cpus to write data! */ 4811 smp_call_function(rb_ipi, NULL, 1); 4812 /* No sleep, but for non preempt, let others run */ 4813 schedule(); 4814 } 4815 4816 return 0; 4817 } 4818 4819 static __init int test_ringbuffer(void) 4820 { 4821 struct task_struct *rb_hammer; 4822 struct ring_buffer *buffer; 4823 int cpu; 4824 int ret = 0; 4825 4826 pr_info("Running ring buffer tests...\n"); 4827 4828 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 4829 if (WARN_ON(!buffer)) 4830 return 0; 4831 4832 /* Disable buffer so that threads can't write to it yet */ 4833 ring_buffer_record_off(buffer); 4834 4835 for_each_online_cpu(cpu) { 4836 rb_data[cpu].buffer = buffer; 4837 rb_data[cpu].cpu = cpu; 4838 rb_data[cpu].cnt = cpu; 4839 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu], 4840 "rbtester/%d", cpu); 4841 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 4842 pr_cont("FAILED\n"); 4843 ret = PTR_ERR(rb_threads[cpu]); 4844 goto out_free; 4845 } 4846 4847 kthread_bind(rb_threads[cpu], cpu); 4848 wake_up_process(rb_threads[cpu]); 4849 } 4850 4851 /* Now create the rb hammer! */ 4852 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 4853 if (WARN_ON(IS_ERR(rb_hammer))) { 4854 pr_cont("FAILED\n"); 4855 ret = PTR_ERR(rb_hammer); 4856 goto out_free; 4857 } 4858 4859 ring_buffer_record_on(buffer); 4860 /* 4861 * Show buffer is enabled before setting rb_test_started. 4862 * Yes there's a small race window where events could be 4863 * dropped and the thread wont catch it. But when a ring 4864 * buffer gets enabled, there will always be some kind of 4865 * delay before other CPUs see it. Thus, we don't care about 4866 * those dropped events. We care about events dropped after 4867 * the threads see that the buffer is active. 4868 */ 4869 smp_wmb(); 4870 rb_test_started = true; 4871 4872 set_current_state(TASK_INTERRUPTIBLE); 4873 /* Just run for 10 seconds */; 4874 schedule_timeout(10 * HZ); 4875 4876 kthread_stop(rb_hammer); 4877 4878 out_free: 4879 for_each_online_cpu(cpu) { 4880 if (!rb_threads[cpu]) 4881 break; 4882 kthread_stop(rb_threads[cpu]); 4883 } 4884 if (ret) { 4885 ring_buffer_free(buffer); 4886 return ret; 4887 } 4888 4889 /* Report! */ 4890 pr_info("finished\n"); 4891 for_each_online_cpu(cpu) { 4892 struct ring_buffer_event *event; 4893 struct rb_test_data *data = &rb_data[cpu]; 4894 struct rb_item *item; 4895 unsigned long total_events; 4896 unsigned long total_dropped; 4897 unsigned long total_written; 4898 unsigned long total_alloc; 4899 unsigned long total_read = 0; 4900 unsigned long total_size = 0; 4901 unsigned long total_len = 0; 4902 unsigned long total_lost = 0; 4903 unsigned long lost; 4904 int big_event_size; 4905 int small_event_size; 4906 4907 ret = -1; 4908 4909 total_events = data->events + data->events_nested; 4910 total_written = data->bytes_written + data->bytes_written_nested; 4911 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 4912 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 4913 4914 big_event_size = data->max_size + data->max_size_nested; 4915 small_event_size = data->min_size + data->min_size_nested; 4916 4917 pr_info("CPU %d:\n", cpu); 4918 pr_info(" events: %ld\n", total_events); 4919 pr_info(" dropped bytes: %ld\n", total_dropped); 4920 pr_info(" alloced bytes: %ld\n", total_alloc); 4921 pr_info(" written bytes: %ld\n", total_written); 4922 pr_info(" biggest event: %d\n", big_event_size); 4923 pr_info(" smallest event: %d\n", small_event_size); 4924 4925 if (RB_WARN_ON(buffer, total_dropped)) 4926 break; 4927 4928 ret = 0; 4929 4930 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 4931 total_lost += lost; 4932 item = ring_buffer_event_data(event); 4933 total_len += ring_buffer_event_length(event); 4934 total_size += item->size + sizeof(struct rb_item); 4935 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 4936 pr_info("FAILED!\n"); 4937 pr_info("buffer had: %.*s\n", item->size, item->str); 4938 pr_info("expected: %.*s\n", item->size, rb_string); 4939 RB_WARN_ON(buffer, 1); 4940 ret = -1; 4941 break; 4942 } 4943 total_read++; 4944 } 4945 if (ret) 4946 break; 4947 4948 ret = -1; 4949 4950 pr_info(" read events: %ld\n", total_read); 4951 pr_info(" lost events: %ld\n", total_lost); 4952 pr_info(" total events: %ld\n", total_lost + total_read); 4953 pr_info(" recorded len bytes: %ld\n", total_len); 4954 pr_info(" recorded size bytes: %ld\n", total_size); 4955 if (total_lost) 4956 pr_info(" With dropped events, record len and size may not match\n" 4957 " alloced and written from above\n"); 4958 if (!total_lost) { 4959 if (RB_WARN_ON(buffer, total_len != total_alloc || 4960 total_size != total_written)) 4961 break; 4962 } 4963 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 4964 break; 4965 4966 ret = 0; 4967 } 4968 if (!ret) 4969 pr_info("Ring buffer PASSED!\n"); 4970 4971 ring_buffer_free(buffer); 4972 return 0; 4973 } 4974 4975 late_initcall(test_ringbuffer); 4976 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 4977