1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic ring buffer 4 * 5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 6 */ 7 #include <linux/trace_recursion.h> 8 #include <linux/trace_events.h> 9 #include <linux/ring_buffer.h> 10 #include <linux/trace_clock.h> 11 #include <linux/sched/clock.h> 12 #include <linux/trace_seq.h> 13 #include <linux/spinlock.h> 14 #include <linux/irq_work.h> 15 #include <linux/security.h> 16 #include <linux/uaccess.h> 17 #include <linux/hardirq.h> 18 #include <linux/kthread.h> /* for self test */ 19 #include <linux/module.h> 20 #include <linux/percpu.h> 21 #include <linux/mutex.h> 22 #include <linux/delay.h> 23 #include <linux/slab.h> 24 #include <linux/init.h> 25 #include <linux/hash.h> 26 #include <linux/list.h> 27 #include <linux/cpu.h> 28 #include <linux/oom.h> 29 30 #include <asm/local.h> 31 32 /* 33 * The "absolute" timestamp in the buffer is only 59 bits. 34 * If a clock has the 5 MSBs set, it needs to be saved and 35 * reinserted. 36 */ 37 #define TS_MSB (0xf8ULL << 56) 38 #define ABS_TS_MASK (~TS_MSB) 39 40 static void update_pages_handler(struct work_struct *work); 41 42 /* 43 * The ring buffer header is special. We must manually up keep it. 44 */ 45 int ring_buffer_print_entry_header(struct trace_seq *s) 46 { 47 trace_seq_puts(s, "# compressed entry header\n"); 48 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 49 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 50 trace_seq_puts(s, "\tarray : 32 bits\n"); 51 trace_seq_putc(s, '\n'); 52 trace_seq_printf(s, "\tpadding : type == %d\n", 53 RINGBUF_TYPE_PADDING); 54 trace_seq_printf(s, "\ttime_extend : type == %d\n", 55 RINGBUF_TYPE_TIME_EXTEND); 56 trace_seq_printf(s, "\ttime_stamp : type == %d\n", 57 RINGBUF_TYPE_TIME_STAMP); 58 trace_seq_printf(s, "\tdata max type_len == %d\n", 59 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 60 61 return !trace_seq_has_overflowed(s); 62 } 63 64 /* 65 * The ring buffer is made up of a list of pages. A separate list of pages is 66 * allocated for each CPU. A writer may only write to a buffer that is 67 * associated with the CPU it is currently executing on. A reader may read 68 * from any per cpu buffer. 69 * 70 * The reader is special. For each per cpu buffer, the reader has its own 71 * reader page. When a reader has read the entire reader page, this reader 72 * page is swapped with another page in the ring buffer. 73 * 74 * Now, as long as the writer is off the reader page, the reader can do what 75 * ever it wants with that page. The writer will never write to that page 76 * again (as long as it is out of the ring buffer). 77 * 78 * Here's some silly ASCII art. 79 * 80 * +------+ 81 * |reader| RING BUFFER 82 * |page | 83 * +------+ +---+ +---+ +---+ 84 * | |-->| |-->| | 85 * +---+ +---+ +---+ 86 * ^ | 87 * | | 88 * +---------------+ 89 * 90 * 91 * +------+ 92 * |reader| RING BUFFER 93 * |page |------------------v 94 * +------+ +---+ +---+ +---+ 95 * | |-->| |-->| | 96 * +---+ +---+ +---+ 97 * ^ | 98 * | | 99 * +---------------+ 100 * 101 * 102 * +------+ 103 * |reader| RING BUFFER 104 * |page |------------------v 105 * +------+ +---+ +---+ +---+ 106 * ^ | |-->| |-->| | 107 * | +---+ +---+ +---+ 108 * | | 109 * | | 110 * +------------------------------+ 111 * 112 * 113 * +------+ 114 * |buffer| RING BUFFER 115 * |page |------------------v 116 * +------+ +---+ +---+ +---+ 117 * ^ | | | |-->| | 118 * | New +---+ +---+ +---+ 119 * | Reader------^ | 120 * | page | 121 * +------------------------------+ 122 * 123 * 124 * After we make this swap, the reader can hand this page off to the splice 125 * code and be done with it. It can even allocate a new page if it needs to 126 * and swap that into the ring buffer. 127 * 128 * We will be using cmpxchg soon to make all this lockless. 129 * 130 */ 131 132 /* Used for individual buffers (after the counter) */ 133 #define RB_BUFFER_OFF (1 << 20) 134 135 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 136 137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 138 #define RB_ALIGNMENT 4U 139 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 140 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 141 142 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 143 # define RB_FORCE_8BYTE_ALIGNMENT 0 144 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 145 #else 146 # define RB_FORCE_8BYTE_ALIGNMENT 1 147 # define RB_ARCH_ALIGNMENT 8U 148 #endif 149 150 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 151 152 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 153 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 154 155 enum { 156 RB_LEN_TIME_EXTEND = 8, 157 RB_LEN_TIME_STAMP = 8, 158 }; 159 160 #define skip_time_extend(event) \ 161 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 162 163 #define extended_time(event) \ 164 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) 165 166 static inline bool rb_null_event(struct ring_buffer_event *event) 167 { 168 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 169 } 170 171 static void rb_event_set_padding(struct ring_buffer_event *event) 172 { 173 /* padding has a NULL time_delta */ 174 event->type_len = RINGBUF_TYPE_PADDING; 175 event->time_delta = 0; 176 } 177 178 static unsigned 179 rb_event_data_length(struct ring_buffer_event *event) 180 { 181 unsigned length; 182 183 if (event->type_len) 184 length = event->type_len * RB_ALIGNMENT; 185 else 186 length = event->array[0]; 187 return length + RB_EVNT_HDR_SIZE; 188 } 189 190 /* 191 * Return the length of the given event. Will return 192 * the length of the time extend if the event is a 193 * time extend. 194 */ 195 static inline unsigned 196 rb_event_length(struct ring_buffer_event *event) 197 { 198 switch (event->type_len) { 199 case RINGBUF_TYPE_PADDING: 200 if (rb_null_event(event)) 201 /* undefined */ 202 return -1; 203 return event->array[0] + RB_EVNT_HDR_SIZE; 204 205 case RINGBUF_TYPE_TIME_EXTEND: 206 return RB_LEN_TIME_EXTEND; 207 208 case RINGBUF_TYPE_TIME_STAMP: 209 return RB_LEN_TIME_STAMP; 210 211 case RINGBUF_TYPE_DATA: 212 return rb_event_data_length(event); 213 default: 214 WARN_ON_ONCE(1); 215 } 216 /* not hit */ 217 return 0; 218 } 219 220 /* 221 * Return total length of time extend and data, 222 * or just the event length for all other events. 223 */ 224 static inline unsigned 225 rb_event_ts_length(struct ring_buffer_event *event) 226 { 227 unsigned len = 0; 228 229 if (extended_time(event)) { 230 /* time extends include the data event after it */ 231 len = RB_LEN_TIME_EXTEND; 232 event = skip_time_extend(event); 233 } 234 return len + rb_event_length(event); 235 } 236 237 /** 238 * ring_buffer_event_length - return the length of the event 239 * @event: the event to get the length of 240 * 241 * Returns the size of the data load of a data event. 242 * If the event is something other than a data event, it 243 * returns the size of the event itself. With the exception 244 * of a TIME EXTEND, where it still returns the size of the 245 * data load of the data event after it. 246 */ 247 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 248 { 249 unsigned length; 250 251 if (extended_time(event)) 252 event = skip_time_extend(event); 253 254 length = rb_event_length(event); 255 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 256 return length; 257 length -= RB_EVNT_HDR_SIZE; 258 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 259 length -= sizeof(event->array[0]); 260 return length; 261 } 262 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 263 264 /* inline for ring buffer fast paths */ 265 static __always_inline void * 266 rb_event_data(struct ring_buffer_event *event) 267 { 268 if (extended_time(event)) 269 event = skip_time_extend(event); 270 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 271 /* If length is in len field, then array[0] has the data */ 272 if (event->type_len) 273 return (void *)&event->array[0]; 274 /* Otherwise length is in array[0] and array[1] has the data */ 275 return (void *)&event->array[1]; 276 } 277 278 /** 279 * ring_buffer_event_data - return the data of the event 280 * @event: the event to get the data from 281 */ 282 void *ring_buffer_event_data(struct ring_buffer_event *event) 283 { 284 return rb_event_data(event); 285 } 286 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 287 288 #define for_each_buffer_cpu(buffer, cpu) \ 289 for_each_cpu(cpu, buffer->cpumask) 290 291 #define for_each_online_buffer_cpu(buffer, cpu) \ 292 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask) 293 294 #define TS_SHIFT 27 295 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 296 #define TS_DELTA_TEST (~TS_MASK) 297 298 static u64 rb_event_time_stamp(struct ring_buffer_event *event) 299 { 300 u64 ts; 301 302 ts = event->array[0]; 303 ts <<= TS_SHIFT; 304 ts += event->time_delta; 305 306 return ts; 307 } 308 309 /* Flag when events were overwritten */ 310 #define RB_MISSED_EVENTS (1 << 31) 311 /* Missed count stored at end */ 312 #define RB_MISSED_STORED (1 << 30) 313 314 struct buffer_data_page { 315 u64 time_stamp; /* page time stamp */ 316 local_t commit; /* write committed index */ 317 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 318 }; 319 320 /* 321 * Note, the buffer_page list must be first. The buffer pages 322 * are allocated in cache lines, which means that each buffer 323 * page will be at the beginning of a cache line, and thus 324 * the least significant bits will be zero. We use this to 325 * add flags in the list struct pointers, to make the ring buffer 326 * lockless. 327 */ 328 struct buffer_page { 329 struct list_head list; /* list of buffer pages */ 330 local_t write; /* index for next write */ 331 unsigned read; /* index for next read */ 332 local_t entries; /* entries on this page */ 333 unsigned long real_end; /* real end of data */ 334 struct buffer_data_page *page; /* Actual data page */ 335 }; 336 337 /* 338 * The buffer page counters, write and entries, must be reset 339 * atomically when crossing page boundaries. To synchronize this 340 * update, two counters are inserted into the number. One is 341 * the actual counter for the write position or count on the page. 342 * 343 * The other is a counter of updaters. Before an update happens 344 * the update partition of the counter is incremented. This will 345 * allow the updater to update the counter atomically. 346 * 347 * The counter is 20 bits, and the state data is 12. 348 */ 349 #define RB_WRITE_MASK 0xfffff 350 #define RB_WRITE_INTCNT (1 << 20) 351 352 static void rb_init_page(struct buffer_data_page *bpage) 353 { 354 local_set(&bpage->commit, 0); 355 } 356 357 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage) 358 { 359 return local_read(&bpage->page->commit); 360 } 361 362 static void free_buffer_page(struct buffer_page *bpage) 363 { 364 free_page((unsigned long)bpage->page); 365 kfree(bpage); 366 } 367 368 /* 369 * We need to fit the time_stamp delta into 27 bits. 370 */ 371 static inline bool test_time_stamp(u64 delta) 372 { 373 return !!(delta & TS_DELTA_TEST); 374 } 375 376 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 377 378 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 379 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 380 381 int ring_buffer_print_page_header(struct trace_seq *s) 382 { 383 struct buffer_data_page field; 384 385 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 386 "offset:0;\tsize:%u;\tsigned:%u;\n", 387 (unsigned int)sizeof(field.time_stamp), 388 (unsigned int)is_signed_type(u64)); 389 390 trace_seq_printf(s, "\tfield: local_t commit;\t" 391 "offset:%u;\tsize:%u;\tsigned:%u;\n", 392 (unsigned int)offsetof(typeof(field), commit), 393 (unsigned int)sizeof(field.commit), 394 (unsigned int)is_signed_type(long)); 395 396 trace_seq_printf(s, "\tfield: int overwrite;\t" 397 "offset:%u;\tsize:%u;\tsigned:%u;\n", 398 (unsigned int)offsetof(typeof(field), commit), 399 1, 400 (unsigned int)is_signed_type(long)); 401 402 trace_seq_printf(s, "\tfield: char data;\t" 403 "offset:%u;\tsize:%u;\tsigned:%u;\n", 404 (unsigned int)offsetof(typeof(field), data), 405 (unsigned int)BUF_PAGE_SIZE, 406 (unsigned int)is_signed_type(char)); 407 408 return !trace_seq_has_overflowed(s); 409 } 410 411 struct rb_irq_work { 412 struct irq_work work; 413 wait_queue_head_t waiters; 414 wait_queue_head_t full_waiters; 415 long wait_index; 416 bool waiters_pending; 417 bool full_waiters_pending; 418 bool wakeup_full; 419 }; 420 421 /* 422 * Structure to hold event state and handle nested events. 423 */ 424 struct rb_event_info { 425 u64 ts; 426 u64 delta; 427 u64 before; 428 u64 after; 429 unsigned long length; 430 struct buffer_page *tail_page; 431 int add_timestamp; 432 }; 433 434 /* 435 * Used for the add_timestamp 436 * NONE 437 * EXTEND - wants a time extend 438 * ABSOLUTE - the buffer requests all events to have absolute time stamps 439 * FORCE - force a full time stamp. 440 */ 441 enum { 442 RB_ADD_STAMP_NONE = 0, 443 RB_ADD_STAMP_EXTEND = BIT(1), 444 RB_ADD_STAMP_ABSOLUTE = BIT(2), 445 RB_ADD_STAMP_FORCE = BIT(3) 446 }; 447 /* 448 * Used for which event context the event is in. 449 * TRANSITION = 0 450 * NMI = 1 451 * IRQ = 2 452 * SOFTIRQ = 3 453 * NORMAL = 4 454 * 455 * See trace_recursive_lock() comment below for more details. 456 */ 457 enum { 458 RB_CTX_TRANSITION, 459 RB_CTX_NMI, 460 RB_CTX_IRQ, 461 RB_CTX_SOFTIRQ, 462 RB_CTX_NORMAL, 463 RB_CTX_MAX 464 }; 465 466 #if BITS_PER_LONG == 32 467 #define RB_TIME_32 468 #endif 469 470 /* To test on 64 bit machines */ 471 //#define RB_TIME_32 472 473 #ifdef RB_TIME_32 474 475 struct rb_time_struct { 476 local_t cnt; 477 local_t top; 478 local_t bottom; 479 local_t msb; 480 }; 481 #else 482 #include <asm/local64.h> 483 struct rb_time_struct { 484 local64_t time; 485 }; 486 #endif 487 typedef struct rb_time_struct rb_time_t; 488 489 #define MAX_NEST 5 490 491 /* 492 * head_page == tail_page && head == tail then buffer is empty. 493 */ 494 struct ring_buffer_per_cpu { 495 int cpu; 496 atomic_t record_disabled; 497 atomic_t resize_disabled; 498 struct trace_buffer *buffer; 499 raw_spinlock_t reader_lock; /* serialize readers */ 500 arch_spinlock_t lock; 501 struct lock_class_key lock_key; 502 struct buffer_data_page *free_page; 503 unsigned long nr_pages; 504 unsigned int current_context; 505 struct list_head *pages; 506 struct buffer_page *head_page; /* read from head */ 507 struct buffer_page *tail_page; /* write to tail */ 508 struct buffer_page *commit_page; /* committed pages */ 509 struct buffer_page *reader_page; 510 unsigned long lost_events; 511 unsigned long last_overrun; 512 unsigned long nest; 513 local_t entries_bytes; 514 local_t entries; 515 local_t overrun; 516 local_t commit_overrun; 517 local_t dropped_events; 518 local_t committing; 519 local_t commits; 520 local_t pages_touched; 521 local_t pages_lost; 522 local_t pages_read; 523 long last_pages_touch; 524 size_t shortest_full; 525 unsigned long read; 526 unsigned long read_bytes; 527 rb_time_t write_stamp; 528 rb_time_t before_stamp; 529 u64 event_stamp[MAX_NEST]; 530 u64 read_stamp; 531 /* pages removed since last reset */ 532 unsigned long pages_removed; 533 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 534 long nr_pages_to_update; 535 struct list_head new_pages; /* new pages to add */ 536 struct work_struct update_pages_work; 537 struct completion update_done; 538 539 struct rb_irq_work irq_work; 540 }; 541 542 struct trace_buffer { 543 unsigned flags; 544 int cpus; 545 atomic_t record_disabled; 546 atomic_t resizing; 547 cpumask_var_t cpumask; 548 549 struct lock_class_key *reader_lock_key; 550 551 struct mutex mutex; 552 553 struct ring_buffer_per_cpu **buffers; 554 555 struct hlist_node node; 556 u64 (*clock)(void); 557 558 struct rb_irq_work irq_work; 559 bool time_stamp_abs; 560 }; 561 562 struct ring_buffer_iter { 563 struct ring_buffer_per_cpu *cpu_buffer; 564 unsigned long head; 565 unsigned long next_event; 566 struct buffer_page *head_page; 567 struct buffer_page *cache_reader_page; 568 unsigned long cache_read; 569 unsigned long cache_pages_removed; 570 u64 read_stamp; 571 u64 page_stamp; 572 struct ring_buffer_event *event; 573 int missed_events; 574 }; 575 576 #ifdef RB_TIME_32 577 578 /* 579 * On 32 bit machines, local64_t is very expensive. As the ring 580 * buffer doesn't need all the features of a true 64 bit atomic, 581 * on 32 bit, it uses these functions (64 still uses local64_t). 582 * 583 * For the ring buffer, 64 bit required operations for the time is 584 * the following: 585 * 586 * - Reads may fail if it interrupted a modification of the time stamp. 587 * It will succeed if it did not interrupt another write even if 588 * the read itself is interrupted by a write. 589 * It returns whether it was successful or not. 590 * 591 * - Writes always succeed and will overwrite other writes and writes 592 * that were done by events interrupting the current write. 593 * 594 * - A write followed by a read of the same time stamp will always succeed, 595 * but may not contain the same value. 596 * 597 * - A cmpxchg will fail if it interrupted another write or cmpxchg. 598 * Other than that, it acts like a normal cmpxchg. 599 * 600 * The 60 bit time stamp is broken up by 30 bits in a top and bottom half 601 * (bottom being the least significant 30 bits of the 60 bit time stamp). 602 * 603 * The two most significant bits of each half holds a 2 bit counter (0-3). 604 * Each update will increment this counter by one. 605 * When reading the top and bottom, if the two counter bits match then the 606 * top and bottom together make a valid 60 bit number. 607 */ 608 #define RB_TIME_SHIFT 30 609 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1) 610 #define RB_TIME_MSB_SHIFT 60 611 612 static inline int rb_time_cnt(unsigned long val) 613 { 614 return (val >> RB_TIME_SHIFT) & 3; 615 } 616 617 static inline u64 rb_time_val(unsigned long top, unsigned long bottom) 618 { 619 u64 val; 620 621 val = top & RB_TIME_VAL_MASK; 622 val <<= RB_TIME_SHIFT; 623 val |= bottom & RB_TIME_VAL_MASK; 624 625 return val; 626 } 627 628 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt) 629 { 630 unsigned long top, bottom, msb; 631 unsigned long c; 632 633 /* 634 * If the read is interrupted by a write, then the cnt will 635 * be different. Loop until both top and bottom have been read 636 * without interruption. 637 */ 638 do { 639 c = local_read(&t->cnt); 640 top = local_read(&t->top); 641 bottom = local_read(&t->bottom); 642 msb = local_read(&t->msb); 643 } while (c != local_read(&t->cnt)); 644 645 *cnt = rb_time_cnt(top); 646 647 /* If top and msb counts don't match, this interrupted a write */ 648 if (*cnt != rb_time_cnt(msb)) 649 return false; 650 651 /* The shift to msb will lose its cnt bits */ 652 *ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT); 653 return true; 654 } 655 656 static bool rb_time_read(rb_time_t *t, u64 *ret) 657 { 658 unsigned long cnt; 659 660 return __rb_time_read(t, ret, &cnt); 661 } 662 663 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt) 664 { 665 return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT); 666 } 667 668 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom, 669 unsigned long *msb) 670 { 671 *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK); 672 *bottom = (unsigned long)(val & RB_TIME_VAL_MASK); 673 *msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT); 674 } 675 676 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt) 677 { 678 val = rb_time_val_cnt(val, cnt); 679 local_set(t, val); 680 } 681 682 static void rb_time_set(rb_time_t *t, u64 val) 683 { 684 unsigned long cnt, top, bottom, msb; 685 686 rb_time_split(val, &top, &bottom, &msb); 687 688 /* Writes always succeed with a valid number even if it gets interrupted. */ 689 do { 690 cnt = local_inc_return(&t->cnt); 691 rb_time_val_set(&t->top, top, cnt); 692 rb_time_val_set(&t->bottom, bottom, cnt); 693 rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt); 694 } while (cnt != local_read(&t->cnt)); 695 } 696 697 static inline bool 698 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set) 699 { 700 return local_try_cmpxchg(l, &expect, set); 701 } 702 703 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set) 704 { 705 unsigned long cnt, top, bottom, msb; 706 unsigned long cnt2, top2, bottom2, msb2; 707 u64 val; 708 709 /* The cmpxchg always fails if it interrupted an update */ 710 if (!__rb_time_read(t, &val, &cnt2)) 711 return false; 712 713 if (val != expect) 714 return false; 715 716 cnt = local_read(&t->cnt); 717 if ((cnt & 3) != cnt2) 718 return false; 719 720 cnt2 = cnt + 1; 721 722 rb_time_split(val, &top, &bottom, &msb); 723 top = rb_time_val_cnt(top, cnt); 724 bottom = rb_time_val_cnt(bottom, cnt); 725 726 rb_time_split(set, &top2, &bottom2, &msb2); 727 top2 = rb_time_val_cnt(top2, cnt2); 728 bottom2 = rb_time_val_cnt(bottom2, cnt2); 729 730 if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2)) 731 return false; 732 if (!rb_time_read_cmpxchg(&t->msb, msb, msb2)) 733 return false; 734 if (!rb_time_read_cmpxchg(&t->top, top, top2)) 735 return false; 736 if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2)) 737 return false; 738 return true; 739 } 740 741 #else /* 64 bits */ 742 743 /* local64_t always succeeds */ 744 745 static inline bool rb_time_read(rb_time_t *t, u64 *ret) 746 { 747 *ret = local64_read(&t->time); 748 return true; 749 } 750 static void rb_time_set(rb_time_t *t, u64 val) 751 { 752 local64_set(&t->time, val); 753 } 754 755 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set) 756 { 757 return local64_try_cmpxchg(&t->time, &expect, set); 758 } 759 #endif 760 761 /* 762 * Enable this to make sure that the event passed to 763 * ring_buffer_event_time_stamp() is not committed and also 764 * is on the buffer that it passed in. 765 */ 766 //#define RB_VERIFY_EVENT 767 #ifdef RB_VERIFY_EVENT 768 static struct list_head *rb_list_head(struct list_head *list); 769 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 770 void *event) 771 { 772 struct buffer_page *page = cpu_buffer->commit_page; 773 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page); 774 struct list_head *next; 775 long commit, write; 776 unsigned long addr = (unsigned long)event; 777 bool done = false; 778 int stop = 0; 779 780 /* Make sure the event exists and is not committed yet */ 781 do { 782 if (page == tail_page || WARN_ON_ONCE(stop++ > 100)) 783 done = true; 784 commit = local_read(&page->page->commit); 785 write = local_read(&page->write); 786 if (addr >= (unsigned long)&page->page->data[commit] && 787 addr < (unsigned long)&page->page->data[write]) 788 return; 789 790 next = rb_list_head(page->list.next); 791 page = list_entry(next, struct buffer_page, list); 792 } while (!done); 793 WARN_ON_ONCE(1); 794 } 795 #else 796 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 797 void *event) 798 { 799 } 800 #endif 801 802 /* 803 * The absolute time stamp drops the 5 MSBs and some clocks may 804 * require them. The rb_fix_abs_ts() will take a previous full 805 * time stamp, and add the 5 MSB of that time stamp on to the 806 * saved absolute time stamp. Then they are compared in case of 807 * the unlikely event that the latest time stamp incremented 808 * the 5 MSB. 809 */ 810 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts) 811 { 812 if (save_ts & TS_MSB) { 813 abs |= save_ts & TS_MSB; 814 /* Check for overflow */ 815 if (unlikely(abs < save_ts)) 816 abs += 1ULL << 59; 817 } 818 return abs; 819 } 820 821 static inline u64 rb_time_stamp(struct trace_buffer *buffer); 822 823 /** 824 * ring_buffer_event_time_stamp - return the event's current time stamp 825 * @buffer: The buffer that the event is on 826 * @event: the event to get the time stamp of 827 * 828 * Note, this must be called after @event is reserved, and before it is 829 * committed to the ring buffer. And must be called from the same 830 * context where the event was reserved (normal, softirq, irq, etc). 831 * 832 * Returns the time stamp associated with the current event. 833 * If the event has an extended time stamp, then that is used as 834 * the time stamp to return. 835 * In the highly unlikely case that the event was nested more than 836 * the max nesting, then the write_stamp of the buffer is returned, 837 * otherwise current time is returned, but that really neither of 838 * the last two cases should ever happen. 839 */ 840 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer, 841 struct ring_buffer_event *event) 842 { 843 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()]; 844 unsigned int nest; 845 u64 ts; 846 847 /* If the event includes an absolute time, then just use that */ 848 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) { 849 ts = rb_event_time_stamp(event); 850 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp); 851 } 852 853 nest = local_read(&cpu_buffer->committing); 854 verify_event(cpu_buffer, event); 855 if (WARN_ON_ONCE(!nest)) 856 goto fail; 857 858 /* Read the current saved nesting level time stamp */ 859 if (likely(--nest < MAX_NEST)) 860 return cpu_buffer->event_stamp[nest]; 861 862 /* Shouldn't happen, warn if it does */ 863 WARN_ONCE(1, "nest (%d) greater than max", nest); 864 865 fail: 866 /* Can only fail on 32 bit */ 867 if (!rb_time_read(&cpu_buffer->write_stamp, &ts)) 868 /* Screw it, just read the current time */ 869 ts = rb_time_stamp(cpu_buffer->buffer); 870 871 return ts; 872 } 873 874 /** 875 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer 876 * @buffer: The ring_buffer to get the number of pages from 877 * @cpu: The cpu of the ring_buffer to get the number of pages from 878 * 879 * Returns the number of pages used by a per_cpu buffer of the ring buffer. 880 */ 881 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu) 882 { 883 return buffer->buffers[cpu]->nr_pages; 884 } 885 886 /** 887 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer 888 * @buffer: The ring_buffer to get the number of pages from 889 * @cpu: The cpu of the ring_buffer to get the number of pages from 890 * 891 * Returns the number of pages that have content in the ring buffer. 892 */ 893 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu) 894 { 895 size_t read; 896 size_t lost; 897 size_t cnt; 898 899 read = local_read(&buffer->buffers[cpu]->pages_read); 900 lost = local_read(&buffer->buffers[cpu]->pages_lost); 901 cnt = local_read(&buffer->buffers[cpu]->pages_touched); 902 903 if (WARN_ON_ONCE(cnt < lost)) 904 return 0; 905 906 cnt -= lost; 907 908 /* The reader can read an empty page, but not more than that */ 909 if (cnt < read) { 910 WARN_ON_ONCE(read > cnt + 1); 911 return 0; 912 } 913 914 return cnt - read; 915 } 916 917 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full) 918 { 919 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 920 size_t nr_pages; 921 size_t dirty; 922 923 nr_pages = cpu_buffer->nr_pages; 924 if (!nr_pages || !full) 925 return true; 926 927 dirty = ring_buffer_nr_dirty_pages(buffer, cpu); 928 929 return (dirty * 100) > (full * nr_pages); 930 } 931 932 /* 933 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 934 * 935 * Schedules a delayed work to wake up any task that is blocked on the 936 * ring buffer waiters queue. 937 */ 938 static void rb_wake_up_waiters(struct irq_work *work) 939 { 940 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 941 942 wake_up_all(&rbwork->waiters); 943 if (rbwork->full_waiters_pending || rbwork->wakeup_full) { 944 rbwork->wakeup_full = false; 945 rbwork->full_waiters_pending = false; 946 wake_up_all(&rbwork->full_waiters); 947 } 948 } 949 950 /** 951 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer 952 * @buffer: The ring buffer to wake waiters on 953 * @cpu: The CPU buffer to wake waiters on 954 * 955 * In the case of a file that represents a ring buffer is closing, 956 * it is prudent to wake up any waiters that are on this. 957 */ 958 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu) 959 { 960 struct ring_buffer_per_cpu *cpu_buffer; 961 struct rb_irq_work *rbwork; 962 963 if (!buffer) 964 return; 965 966 if (cpu == RING_BUFFER_ALL_CPUS) { 967 968 /* Wake up individual ones too. One level recursion */ 969 for_each_buffer_cpu(buffer, cpu) 970 ring_buffer_wake_waiters(buffer, cpu); 971 972 rbwork = &buffer->irq_work; 973 } else { 974 if (WARN_ON_ONCE(!buffer->buffers)) 975 return; 976 if (WARN_ON_ONCE(cpu >= nr_cpu_ids)) 977 return; 978 979 cpu_buffer = buffer->buffers[cpu]; 980 /* The CPU buffer may not have been initialized yet */ 981 if (!cpu_buffer) 982 return; 983 rbwork = &cpu_buffer->irq_work; 984 } 985 986 rbwork->wait_index++; 987 /* make sure the waiters see the new index */ 988 smp_wmb(); 989 990 rb_wake_up_waiters(&rbwork->work); 991 } 992 993 /** 994 * ring_buffer_wait - wait for input to the ring buffer 995 * @buffer: buffer to wait on 996 * @cpu: the cpu buffer to wait on 997 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 998 * 999 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 1000 * as data is added to any of the @buffer's cpu buffers. Otherwise 1001 * it will wait for data to be added to a specific cpu buffer. 1002 */ 1003 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full) 1004 { 1005 struct ring_buffer_per_cpu *cpu_buffer; 1006 DEFINE_WAIT(wait); 1007 struct rb_irq_work *work; 1008 long wait_index; 1009 int ret = 0; 1010 1011 /* 1012 * Depending on what the caller is waiting for, either any 1013 * data in any cpu buffer, or a specific buffer, put the 1014 * caller on the appropriate wait queue. 1015 */ 1016 if (cpu == RING_BUFFER_ALL_CPUS) { 1017 work = &buffer->irq_work; 1018 /* Full only makes sense on per cpu reads */ 1019 full = 0; 1020 } else { 1021 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 1022 return -ENODEV; 1023 cpu_buffer = buffer->buffers[cpu]; 1024 work = &cpu_buffer->irq_work; 1025 } 1026 1027 wait_index = READ_ONCE(work->wait_index); 1028 1029 while (true) { 1030 if (full) 1031 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE); 1032 else 1033 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 1034 1035 /* 1036 * The events can happen in critical sections where 1037 * checking a work queue can cause deadlocks. 1038 * After adding a task to the queue, this flag is set 1039 * only to notify events to try to wake up the queue 1040 * using irq_work. 1041 * 1042 * We don't clear it even if the buffer is no longer 1043 * empty. The flag only causes the next event to run 1044 * irq_work to do the work queue wake up. The worse 1045 * that can happen if we race with !trace_empty() is that 1046 * an event will cause an irq_work to try to wake up 1047 * an empty queue. 1048 * 1049 * There's no reason to protect this flag either, as 1050 * the work queue and irq_work logic will do the necessary 1051 * synchronization for the wake ups. The only thing 1052 * that is necessary is that the wake up happens after 1053 * a task has been queued. It's OK for spurious wake ups. 1054 */ 1055 if (full) 1056 work->full_waiters_pending = true; 1057 else 1058 work->waiters_pending = true; 1059 1060 if (signal_pending(current)) { 1061 ret = -EINTR; 1062 break; 1063 } 1064 1065 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) 1066 break; 1067 1068 if (cpu != RING_BUFFER_ALL_CPUS && 1069 !ring_buffer_empty_cpu(buffer, cpu)) { 1070 unsigned long flags; 1071 bool pagebusy; 1072 bool done; 1073 1074 if (!full) 1075 break; 1076 1077 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 1078 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 1079 done = !pagebusy && full_hit(buffer, cpu, full); 1080 1081 if (!cpu_buffer->shortest_full || 1082 cpu_buffer->shortest_full > full) 1083 cpu_buffer->shortest_full = full; 1084 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 1085 if (done) 1086 break; 1087 } 1088 1089 schedule(); 1090 1091 /* Make sure to see the new wait index */ 1092 smp_rmb(); 1093 if (wait_index != work->wait_index) 1094 break; 1095 } 1096 1097 if (full) 1098 finish_wait(&work->full_waiters, &wait); 1099 else 1100 finish_wait(&work->waiters, &wait); 1101 1102 return ret; 1103 } 1104 1105 /** 1106 * ring_buffer_poll_wait - poll on buffer input 1107 * @buffer: buffer to wait on 1108 * @cpu: the cpu buffer to wait on 1109 * @filp: the file descriptor 1110 * @poll_table: The poll descriptor 1111 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 1112 * 1113 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 1114 * as data is added to any of the @buffer's cpu buffers. Otherwise 1115 * it will wait for data to be added to a specific cpu buffer. 1116 * 1117 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, 1118 * zero otherwise. 1119 */ 1120 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu, 1121 struct file *filp, poll_table *poll_table, int full) 1122 { 1123 struct ring_buffer_per_cpu *cpu_buffer; 1124 struct rb_irq_work *work; 1125 1126 if (cpu == RING_BUFFER_ALL_CPUS) { 1127 work = &buffer->irq_work; 1128 full = 0; 1129 } else { 1130 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 1131 return -EINVAL; 1132 1133 cpu_buffer = buffer->buffers[cpu]; 1134 work = &cpu_buffer->irq_work; 1135 } 1136 1137 if (full) { 1138 poll_wait(filp, &work->full_waiters, poll_table); 1139 work->full_waiters_pending = true; 1140 if (!cpu_buffer->shortest_full || 1141 cpu_buffer->shortest_full > full) 1142 cpu_buffer->shortest_full = full; 1143 } else { 1144 poll_wait(filp, &work->waiters, poll_table); 1145 work->waiters_pending = true; 1146 } 1147 1148 /* 1149 * There's a tight race between setting the waiters_pending and 1150 * checking if the ring buffer is empty. Once the waiters_pending bit 1151 * is set, the next event will wake the task up, but we can get stuck 1152 * if there's only a single event in. 1153 * 1154 * FIXME: Ideally, we need a memory barrier on the writer side as well, 1155 * but adding a memory barrier to all events will cause too much of a 1156 * performance hit in the fast path. We only need a memory barrier when 1157 * the buffer goes from empty to having content. But as this race is 1158 * extremely small, and it's not a problem if another event comes in, we 1159 * will fix it later. 1160 */ 1161 smp_mb(); 1162 1163 if (full) 1164 return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0; 1165 1166 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 1167 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 1168 return EPOLLIN | EPOLLRDNORM; 1169 return 0; 1170 } 1171 1172 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 1173 #define RB_WARN_ON(b, cond) \ 1174 ({ \ 1175 int _____ret = unlikely(cond); \ 1176 if (_____ret) { \ 1177 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 1178 struct ring_buffer_per_cpu *__b = \ 1179 (void *)b; \ 1180 atomic_inc(&__b->buffer->record_disabled); \ 1181 } else \ 1182 atomic_inc(&b->record_disabled); \ 1183 WARN_ON(1); \ 1184 } \ 1185 _____ret; \ 1186 }) 1187 1188 /* Up this if you want to test the TIME_EXTENTS and normalization */ 1189 #define DEBUG_SHIFT 0 1190 1191 static inline u64 rb_time_stamp(struct trace_buffer *buffer) 1192 { 1193 u64 ts; 1194 1195 /* Skip retpolines :-( */ 1196 if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local)) 1197 ts = trace_clock_local(); 1198 else 1199 ts = buffer->clock(); 1200 1201 /* shift to debug/test normalization and TIME_EXTENTS */ 1202 return ts << DEBUG_SHIFT; 1203 } 1204 1205 u64 ring_buffer_time_stamp(struct trace_buffer *buffer) 1206 { 1207 u64 time; 1208 1209 preempt_disable_notrace(); 1210 time = rb_time_stamp(buffer); 1211 preempt_enable_notrace(); 1212 1213 return time; 1214 } 1215 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 1216 1217 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer, 1218 int cpu, u64 *ts) 1219 { 1220 /* Just stupid testing the normalize function and deltas */ 1221 *ts >>= DEBUG_SHIFT; 1222 } 1223 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 1224 1225 /* 1226 * Making the ring buffer lockless makes things tricky. 1227 * Although writes only happen on the CPU that they are on, 1228 * and they only need to worry about interrupts. Reads can 1229 * happen on any CPU. 1230 * 1231 * The reader page is always off the ring buffer, but when the 1232 * reader finishes with a page, it needs to swap its page with 1233 * a new one from the buffer. The reader needs to take from 1234 * the head (writes go to the tail). But if a writer is in overwrite 1235 * mode and wraps, it must push the head page forward. 1236 * 1237 * Here lies the problem. 1238 * 1239 * The reader must be careful to replace only the head page, and 1240 * not another one. As described at the top of the file in the 1241 * ASCII art, the reader sets its old page to point to the next 1242 * page after head. It then sets the page after head to point to 1243 * the old reader page. But if the writer moves the head page 1244 * during this operation, the reader could end up with the tail. 1245 * 1246 * We use cmpxchg to help prevent this race. We also do something 1247 * special with the page before head. We set the LSB to 1. 1248 * 1249 * When the writer must push the page forward, it will clear the 1250 * bit that points to the head page, move the head, and then set 1251 * the bit that points to the new head page. 1252 * 1253 * We also don't want an interrupt coming in and moving the head 1254 * page on another writer. Thus we use the second LSB to catch 1255 * that too. Thus: 1256 * 1257 * head->list->prev->next bit 1 bit 0 1258 * ------- ------- 1259 * Normal page 0 0 1260 * Points to head page 0 1 1261 * New head page 1 0 1262 * 1263 * Note we can not trust the prev pointer of the head page, because: 1264 * 1265 * +----+ +-----+ +-----+ 1266 * | |------>| T |---X--->| N | 1267 * | |<------| | | | 1268 * +----+ +-----+ +-----+ 1269 * ^ ^ | 1270 * | +-----+ | | 1271 * +----------| R |----------+ | 1272 * | |<-----------+ 1273 * +-----+ 1274 * 1275 * Key: ---X--> HEAD flag set in pointer 1276 * T Tail page 1277 * R Reader page 1278 * N Next page 1279 * 1280 * (see __rb_reserve_next() to see where this happens) 1281 * 1282 * What the above shows is that the reader just swapped out 1283 * the reader page with a page in the buffer, but before it 1284 * could make the new header point back to the new page added 1285 * it was preempted by a writer. The writer moved forward onto 1286 * the new page added by the reader and is about to move forward 1287 * again. 1288 * 1289 * You can see, it is legitimate for the previous pointer of 1290 * the head (or any page) not to point back to itself. But only 1291 * temporarily. 1292 */ 1293 1294 #define RB_PAGE_NORMAL 0UL 1295 #define RB_PAGE_HEAD 1UL 1296 #define RB_PAGE_UPDATE 2UL 1297 1298 1299 #define RB_FLAG_MASK 3UL 1300 1301 /* PAGE_MOVED is not part of the mask */ 1302 #define RB_PAGE_MOVED 4UL 1303 1304 /* 1305 * rb_list_head - remove any bit 1306 */ 1307 static struct list_head *rb_list_head(struct list_head *list) 1308 { 1309 unsigned long val = (unsigned long)list; 1310 1311 return (struct list_head *)(val & ~RB_FLAG_MASK); 1312 } 1313 1314 /* 1315 * rb_is_head_page - test if the given page is the head page 1316 * 1317 * Because the reader may move the head_page pointer, we can 1318 * not trust what the head page is (it may be pointing to 1319 * the reader page). But if the next page is a header page, 1320 * its flags will be non zero. 1321 */ 1322 static inline int 1323 rb_is_head_page(struct buffer_page *page, struct list_head *list) 1324 { 1325 unsigned long val; 1326 1327 val = (unsigned long)list->next; 1328 1329 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 1330 return RB_PAGE_MOVED; 1331 1332 return val & RB_FLAG_MASK; 1333 } 1334 1335 /* 1336 * rb_is_reader_page 1337 * 1338 * The unique thing about the reader page, is that, if the 1339 * writer is ever on it, the previous pointer never points 1340 * back to the reader page. 1341 */ 1342 static bool rb_is_reader_page(struct buffer_page *page) 1343 { 1344 struct list_head *list = page->list.prev; 1345 1346 return rb_list_head(list->next) != &page->list; 1347 } 1348 1349 /* 1350 * rb_set_list_to_head - set a list_head to be pointing to head. 1351 */ 1352 static void rb_set_list_to_head(struct list_head *list) 1353 { 1354 unsigned long *ptr; 1355 1356 ptr = (unsigned long *)&list->next; 1357 *ptr |= RB_PAGE_HEAD; 1358 *ptr &= ~RB_PAGE_UPDATE; 1359 } 1360 1361 /* 1362 * rb_head_page_activate - sets up head page 1363 */ 1364 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 1365 { 1366 struct buffer_page *head; 1367 1368 head = cpu_buffer->head_page; 1369 if (!head) 1370 return; 1371 1372 /* 1373 * Set the previous list pointer to have the HEAD flag. 1374 */ 1375 rb_set_list_to_head(head->list.prev); 1376 } 1377 1378 static void rb_list_head_clear(struct list_head *list) 1379 { 1380 unsigned long *ptr = (unsigned long *)&list->next; 1381 1382 *ptr &= ~RB_FLAG_MASK; 1383 } 1384 1385 /* 1386 * rb_head_page_deactivate - clears head page ptr (for free list) 1387 */ 1388 static void 1389 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 1390 { 1391 struct list_head *hd; 1392 1393 /* Go through the whole list and clear any pointers found. */ 1394 rb_list_head_clear(cpu_buffer->pages); 1395 1396 list_for_each(hd, cpu_buffer->pages) 1397 rb_list_head_clear(hd); 1398 } 1399 1400 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 1401 struct buffer_page *head, 1402 struct buffer_page *prev, 1403 int old_flag, int new_flag) 1404 { 1405 struct list_head *list; 1406 unsigned long val = (unsigned long)&head->list; 1407 unsigned long ret; 1408 1409 list = &prev->list; 1410 1411 val &= ~RB_FLAG_MASK; 1412 1413 ret = cmpxchg((unsigned long *)&list->next, 1414 val | old_flag, val | new_flag); 1415 1416 /* check if the reader took the page */ 1417 if ((ret & ~RB_FLAG_MASK) != val) 1418 return RB_PAGE_MOVED; 1419 1420 return ret & RB_FLAG_MASK; 1421 } 1422 1423 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 1424 struct buffer_page *head, 1425 struct buffer_page *prev, 1426 int old_flag) 1427 { 1428 return rb_head_page_set(cpu_buffer, head, prev, 1429 old_flag, RB_PAGE_UPDATE); 1430 } 1431 1432 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 1433 struct buffer_page *head, 1434 struct buffer_page *prev, 1435 int old_flag) 1436 { 1437 return rb_head_page_set(cpu_buffer, head, prev, 1438 old_flag, RB_PAGE_HEAD); 1439 } 1440 1441 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 1442 struct buffer_page *head, 1443 struct buffer_page *prev, 1444 int old_flag) 1445 { 1446 return rb_head_page_set(cpu_buffer, head, prev, 1447 old_flag, RB_PAGE_NORMAL); 1448 } 1449 1450 static inline void rb_inc_page(struct buffer_page **bpage) 1451 { 1452 struct list_head *p = rb_list_head((*bpage)->list.next); 1453 1454 *bpage = list_entry(p, struct buffer_page, list); 1455 } 1456 1457 static struct buffer_page * 1458 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 1459 { 1460 struct buffer_page *head; 1461 struct buffer_page *page; 1462 struct list_head *list; 1463 int i; 1464 1465 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 1466 return NULL; 1467 1468 /* sanity check */ 1469 list = cpu_buffer->pages; 1470 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 1471 return NULL; 1472 1473 page = head = cpu_buffer->head_page; 1474 /* 1475 * It is possible that the writer moves the header behind 1476 * where we started, and we miss in one loop. 1477 * A second loop should grab the header, but we'll do 1478 * three loops just because I'm paranoid. 1479 */ 1480 for (i = 0; i < 3; i++) { 1481 do { 1482 if (rb_is_head_page(page, page->list.prev)) { 1483 cpu_buffer->head_page = page; 1484 return page; 1485 } 1486 rb_inc_page(&page); 1487 } while (page != head); 1488 } 1489 1490 RB_WARN_ON(cpu_buffer, 1); 1491 1492 return NULL; 1493 } 1494 1495 static bool rb_head_page_replace(struct buffer_page *old, 1496 struct buffer_page *new) 1497 { 1498 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1499 unsigned long val; 1500 1501 val = *ptr & ~RB_FLAG_MASK; 1502 val |= RB_PAGE_HEAD; 1503 1504 return try_cmpxchg(ptr, &val, (unsigned long)&new->list); 1505 } 1506 1507 /* 1508 * rb_tail_page_update - move the tail page forward 1509 */ 1510 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1511 struct buffer_page *tail_page, 1512 struct buffer_page *next_page) 1513 { 1514 unsigned long old_entries; 1515 unsigned long old_write; 1516 1517 /* 1518 * The tail page now needs to be moved forward. 1519 * 1520 * We need to reset the tail page, but without messing 1521 * with possible erasing of data brought in by interrupts 1522 * that have moved the tail page and are currently on it. 1523 * 1524 * We add a counter to the write field to denote this. 1525 */ 1526 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1527 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1528 1529 local_inc(&cpu_buffer->pages_touched); 1530 /* 1531 * Just make sure we have seen our old_write and synchronize 1532 * with any interrupts that come in. 1533 */ 1534 barrier(); 1535 1536 /* 1537 * If the tail page is still the same as what we think 1538 * it is, then it is up to us to update the tail 1539 * pointer. 1540 */ 1541 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1542 /* Zero the write counter */ 1543 unsigned long val = old_write & ~RB_WRITE_MASK; 1544 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1545 1546 /* 1547 * This will only succeed if an interrupt did 1548 * not come in and change it. In which case, we 1549 * do not want to modify it. 1550 * 1551 * We add (void) to let the compiler know that we do not care 1552 * about the return value of these functions. We use the 1553 * cmpxchg to only update if an interrupt did not already 1554 * do it for us. If the cmpxchg fails, we don't care. 1555 */ 1556 (void)local_cmpxchg(&next_page->write, old_write, val); 1557 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1558 1559 /* 1560 * No need to worry about races with clearing out the commit. 1561 * it only can increment when a commit takes place. But that 1562 * only happens in the outer most nested commit. 1563 */ 1564 local_set(&next_page->page->commit, 0); 1565 1566 /* Again, either we update tail_page or an interrupt does */ 1567 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page); 1568 } 1569 } 1570 1571 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1572 struct buffer_page *bpage) 1573 { 1574 unsigned long val = (unsigned long)bpage; 1575 1576 RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK); 1577 } 1578 1579 /** 1580 * rb_check_pages - integrity check of buffer pages 1581 * @cpu_buffer: CPU buffer with pages to test 1582 * 1583 * As a safety measure we check to make sure the data pages have not 1584 * been corrupted. 1585 */ 1586 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1587 { 1588 struct list_head *head = rb_list_head(cpu_buffer->pages); 1589 struct list_head *tmp; 1590 1591 if (RB_WARN_ON(cpu_buffer, 1592 rb_list_head(rb_list_head(head->next)->prev) != head)) 1593 return; 1594 1595 if (RB_WARN_ON(cpu_buffer, 1596 rb_list_head(rb_list_head(head->prev)->next) != head)) 1597 return; 1598 1599 for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) { 1600 if (RB_WARN_ON(cpu_buffer, 1601 rb_list_head(rb_list_head(tmp->next)->prev) != tmp)) 1602 return; 1603 1604 if (RB_WARN_ON(cpu_buffer, 1605 rb_list_head(rb_list_head(tmp->prev)->next) != tmp)) 1606 return; 1607 } 1608 } 1609 1610 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1611 long nr_pages, struct list_head *pages) 1612 { 1613 struct buffer_page *bpage, *tmp; 1614 bool user_thread = current->mm != NULL; 1615 gfp_t mflags; 1616 long i; 1617 1618 /* 1619 * Check if the available memory is there first. 1620 * Note, si_mem_available() only gives us a rough estimate of available 1621 * memory. It may not be accurate. But we don't care, we just want 1622 * to prevent doing any allocation when it is obvious that it is 1623 * not going to succeed. 1624 */ 1625 i = si_mem_available(); 1626 if (i < nr_pages) 1627 return -ENOMEM; 1628 1629 /* 1630 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 1631 * gracefully without invoking oom-killer and the system is not 1632 * destabilized. 1633 */ 1634 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; 1635 1636 /* 1637 * If a user thread allocates too much, and si_mem_available() 1638 * reports there's enough memory, even though there is not. 1639 * Make sure the OOM killer kills this thread. This can happen 1640 * even with RETRY_MAYFAIL because another task may be doing 1641 * an allocation after this task has taken all memory. 1642 * This is the task the OOM killer needs to take out during this 1643 * loop, even if it was triggered by an allocation somewhere else. 1644 */ 1645 if (user_thread) 1646 set_current_oom_origin(); 1647 for (i = 0; i < nr_pages; i++) { 1648 struct page *page; 1649 1650 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1651 mflags, cpu_to_node(cpu_buffer->cpu)); 1652 if (!bpage) 1653 goto free_pages; 1654 1655 rb_check_bpage(cpu_buffer, bpage); 1656 1657 list_add(&bpage->list, pages); 1658 1659 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0); 1660 if (!page) 1661 goto free_pages; 1662 bpage->page = page_address(page); 1663 rb_init_page(bpage->page); 1664 1665 if (user_thread && fatal_signal_pending(current)) 1666 goto free_pages; 1667 } 1668 if (user_thread) 1669 clear_current_oom_origin(); 1670 1671 return 0; 1672 1673 free_pages: 1674 list_for_each_entry_safe(bpage, tmp, pages, list) { 1675 list_del_init(&bpage->list); 1676 free_buffer_page(bpage); 1677 } 1678 if (user_thread) 1679 clear_current_oom_origin(); 1680 1681 return -ENOMEM; 1682 } 1683 1684 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1685 unsigned long nr_pages) 1686 { 1687 LIST_HEAD(pages); 1688 1689 WARN_ON(!nr_pages); 1690 1691 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages)) 1692 return -ENOMEM; 1693 1694 /* 1695 * The ring buffer page list is a circular list that does not 1696 * start and end with a list head. All page list items point to 1697 * other pages. 1698 */ 1699 cpu_buffer->pages = pages.next; 1700 list_del(&pages); 1701 1702 cpu_buffer->nr_pages = nr_pages; 1703 1704 rb_check_pages(cpu_buffer); 1705 1706 return 0; 1707 } 1708 1709 static struct ring_buffer_per_cpu * 1710 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu) 1711 { 1712 struct ring_buffer_per_cpu *cpu_buffer; 1713 struct buffer_page *bpage; 1714 struct page *page; 1715 int ret; 1716 1717 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1718 GFP_KERNEL, cpu_to_node(cpu)); 1719 if (!cpu_buffer) 1720 return NULL; 1721 1722 cpu_buffer->cpu = cpu; 1723 cpu_buffer->buffer = buffer; 1724 raw_spin_lock_init(&cpu_buffer->reader_lock); 1725 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1726 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1727 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1728 init_completion(&cpu_buffer->update_done); 1729 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1730 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1731 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1732 1733 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1734 GFP_KERNEL, cpu_to_node(cpu)); 1735 if (!bpage) 1736 goto fail_free_buffer; 1737 1738 rb_check_bpage(cpu_buffer, bpage); 1739 1740 cpu_buffer->reader_page = bpage; 1741 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1742 if (!page) 1743 goto fail_free_reader; 1744 bpage->page = page_address(page); 1745 rb_init_page(bpage->page); 1746 1747 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1748 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1749 1750 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1751 if (ret < 0) 1752 goto fail_free_reader; 1753 1754 cpu_buffer->head_page 1755 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1756 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1757 1758 rb_head_page_activate(cpu_buffer); 1759 1760 return cpu_buffer; 1761 1762 fail_free_reader: 1763 free_buffer_page(cpu_buffer->reader_page); 1764 1765 fail_free_buffer: 1766 kfree(cpu_buffer); 1767 return NULL; 1768 } 1769 1770 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1771 { 1772 struct list_head *head = cpu_buffer->pages; 1773 struct buffer_page *bpage, *tmp; 1774 1775 irq_work_sync(&cpu_buffer->irq_work.work); 1776 1777 free_buffer_page(cpu_buffer->reader_page); 1778 1779 if (head) { 1780 rb_head_page_deactivate(cpu_buffer); 1781 1782 list_for_each_entry_safe(bpage, tmp, head, list) { 1783 list_del_init(&bpage->list); 1784 free_buffer_page(bpage); 1785 } 1786 bpage = list_entry(head, struct buffer_page, list); 1787 free_buffer_page(bpage); 1788 } 1789 1790 kfree(cpu_buffer); 1791 } 1792 1793 /** 1794 * __ring_buffer_alloc - allocate a new ring_buffer 1795 * @size: the size in bytes per cpu that is needed. 1796 * @flags: attributes to set for the ring buffer. 1797 * @key: ring buffer reader_lock_key. 1798 * 1799 * Currently the only flag that is available is the RB_FL_OVERWRITE 1800 * flag. This flag means that the buffer will overwrite old data 1801 * when the buffer wraps. If this flag is not set, the buffer will 1802 * drop data when the tail hits the head. 1803 */ 1804 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1805 struct lock_class_key *key) 1806 { 1807 struct trace_buffer *buffer; 1808 long nr_pages; 1809 int bsize; 1810 int cpu; 1811 int ret; 1812 1813 /* keep it in its own cache line */ 1814 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1815 GFP_KERNEL); 1816 if (!buffer) 1817 return NULL; 1818 1819 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1820 goto fail_free_buffer; 1821 1822 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1823 buffer->flags = flags; 1824 buffer->clock = trace_clock_local; 1825 buffer->reader_lock_key = key; 1826 1827 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1828 init_waitqueue_head(&buffer->irq_work.waiters); 1829 1830 /* need at least two pages */ 1831 if (nr_pages < 2) 1832 nr_pages = 2; 1833 1834 buffer->cpus = nr_cpu_ids; 1835 1836 bsize = sizeof(void *) * nr_cpu_ids; 1837 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1838 GFP_KERNEL); 1839 if (!buffer->buffers) 1840 goto fail_free_cpumask; 1841 1842 cpu = raw_smp_processor_id(); 1843 cpumask_set_cpu(cpu, buffer->cpumask); 1844 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1845 if (!buffer->buffers[cpu]) 1846 goto fail_free_buffers; 1847 1848 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1849 if (ret < 0) 1850 goto fail_free_buffers; 1851 1852 mutex_init(&buffer->mutex); 1853 1854 return buffer; 1855 1856 fail_free_buffers: 1857 for_each_buffer_cpu(buffer, cpu) { 1858 if (buffer->buffers[cpu]) 1859 rb_free_cpu_buffer(buffer->buffers[cpu]); 1860 } 1861 kfree(buffer->buffers); 1862 1863 fail_free_cpumask: 1864 free_cpumask_var(buffer->cpumask); 1865 1866 fail_free_buffer: 1867 kfree(buffer); 1868 return NULL; 1869 } 1870 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1871 1872 /** 1873 * ring_buffer_free - free a ring buffer. 1874 * @buffer: the buffer to free. 1875 */ 1876 void 1877 ring_buffer_free(struct trace_buffer *buffer) 1878 { 1879 int cpu; 1880 1881 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1882 1883 irq_work_sync(&buffer->irq_work.work); 1884 1885 for_each_buffer_cpu(buffer, cpu) 1886 rb_free_cpu_buffer(buffer->buffers[cpu]); 1887 1888 kfree(buffer->buffers); 1889 free_cpumask_var(buffer->cpumask); 1890 1891 kfree(buffer); 1892 } 1893 EXPORT_SYMBOL_GPL(ring_buffer_free); 1894 1895 void ring_buffer_set_clock(struct trace_buffer *buffer, 1896 u64 (*clock)(void)) 1897 { 1898 buffer->clock = clock; 1899 } 1900 1901 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs) 1902 { 1903 buffer->time_stamp_abs = abs; 1904 } 1905 1906 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer) 1907 { 1908 return buffer->time_stamp_abs; 1909 } 1910 1911 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1912 1913 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1914 { 1915 return local_read(&bpage->entries) & RB_WRITE_MASK; 1916 } 1917 1918 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1919 { 1920 return local_read(&bpage->write) & RB_WRITE_MASK; 1921 } 1922 1923 static bool 1924 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 1925 { 1926 struct list_head *tail_page, *to_remove, *next_page; 1927 struct buffer_page *to_remove_page, *tmp_iter_page; 1928 struct buffer_page *last_page, *first_page; 1929 unsigned long nr_removed; 1930 unsigned long head_bit; 1931 int page_entries; 1932 1933 head_bit = 0; 1934 1935 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1936 atomic_inc(&cpu_buffer->record_disabled); 1937 /* 1938 * We don't race with the readers since we have acquired the reader 1939 * lock. We also don't race with writers after disabling recording. 1940 * This makes it easy to figure out the first and the last page to be 1941 * removed from the list. We unlink all the pages in between including 1942 * the first and last pages. This is done in a busy loop so that we 1943 * lose the least number of traces. 1944 * The pages are freed after we restart recording and unlock readers. 1945 */ 1946 tail_page = &cpu_buffer->tail_page->list; 1947 1948 /* 1949 * tail page might be on reader page, we remove the next page 1950 * from the ring buffer 1951 */ 1952 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1953 tail_page = rb_list_head(tail_page->next); 1954 to_remove = tail_page; 1955 1956 /* start of pages to remove */ 1957 first_page = list_entry(rb_list_head(to_remove->next), 1958 struct buffer_page, list); 1959 1960 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1961 to_remove = rb_list_head(to_remove)->next; 1962 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1963 } 1964 /* Read iterators need to reset themselves when some pages removed */ 1965 cpu_buffer->pages_removed += nr_removed; 1966 1967 next_page = rb_list_head(to_remove)->next; 1968 1969 /* 1970 * Now we remove all pages between tail_page and next_page. 1971 * Make sure that we have head_bit value preserved for the 1972 * next page 1973 */ 1974 tail_page->next = (struct list_head *)((unsigned long)next_page | 1975 head_bit); 1976 next_page = rb_list_head(next_page); 1977 next_page->prev = tail_page; 1978 1979 /* make sure pages points to a valid page in the ring buffer */ 1980 cpu_buffer->pages = next_page; 1981 1982 /* update head page */ 1983 if (head_bit) 1984 cpu_buffer->head_page = list_entry(next_page, 1985 struct buffer_page, list); 1986 1987 /* pages are removed, resume tracing and then free the pages */ 1988 atomic_dec(&cpu_buffer->record_disabled); 1989 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1990 1991 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1992 1993 /* last buffer page to remove */ 1994 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1995 list); 1996 tmp_iter_page = first_page; 1997 1998 do { 1999 cond_resched(); 2000 2001 to_remove_page = tmp_iter_page; 2002 rb_inc_page(&tmp_iter_page); 2003 2004 /* update the counters */ 2005 page_entries = rb_page_entries(to_remove_page); 2006 if (page_entries) { 2007 /* 2008 * If something was added to this page, it was full 2009 * since it is not the tail page. So we deduct the 2010 * bytes consumed in ring buffer from here. 2011 * Increment overrun to account for the lost events. 2012 */ 2013 local_add(page_entries, &cpu_buffer->overrun); 2014 local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes); 2015 local_inc(&cpu_buffer->pages_lost); 2016 } 2017 2018 /* 2019 * We have already removed references to this list item, just 2020 * free up the buffer_page and its page 2021 */ 2022 free_buffer_page(to_remove_page); 2023 nr_removed--; 2024 2025 } while (to_remove_page != last_page); 2026 2027 RB_WARN_ON(cpu_buffer, nr_removed); 2028 2029 return nr_removed == 0; 2030 } 2031 2032 static bool 2033 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 2034 { 2035 struct list_head *pages = &cpu_buffer->new_pages; 2036 unsigned long flags; 2037 bool success; 2038 int retries; 2039 2040 /* Can be called at early boot up, where interrupts must not been enabled */ 2041 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2042 /* 2043 * We are holding the reader lock, so the reader page won't be swapped 2044 * in the ring buffer. Now we are racing with the writer trying to 2045 * move head page and the tail page. 2046 * We are going to adapt the reader page update process where: 2047 * 1. We first splice the start and end of list of new pages between 2048 * the head page and its previous page. 2049 * 2. We cmpxchg the prev_page->next to point from head page to the 2050 * start of new pages list. 2051 * 3. Finally, we update the head->prev to the end of new list. 2052 * 2053 * We will try this process 10 times, to make sure that we don't keep 2054 * spinning. 2055 */ 2056 retries = 10; 2057 success = false; 2058 while (retries--) { 2059 struct list_head *head_page, *prev_page; 2060 struct list_head *last_page, *first_page; 2061 struct list_head *head_page_with_bit; 2062 struct buffer_page *hpage = rb_set_head_page(cpu_buffer); 2063 2064 if (!hpage) 2065 break; 2066 head_page = &hpage->list; 2067 prev_page = head_page->prev; 2068 2069 first_page = pages->next; 2070 last_page = pages->prev; 2071 2072 head_page_with_bit = (struct list_head *) 2073 ((unsigned long)head_page | RB_PAGE_HEAD); 2074 2075 last_page->next = head_page_with_bit; 2076 first_page->prev = prev_page; 2077 2078 /* caution: head_page_with_bit gets updated on cmpxchg failure */ 2079 if (try_cmpxchg(&prev_page->next, 2080 &head_page_with_bit, first_page)) { 2081 /* 2082 * yay, we replaced the page pointer to our new list, 2083 * now, we just have to update to head page's prev 2084 * pointer to point to end of list 2085 */ 2086 head_page->prev = last_page; 2087 success = true; 2088 break; 2089 } 2090 } 2091 2092 if (success) 2093 INIT_LIST_HEAD(pages); 2094 /* 2095 * If we weren't successful in adding in new pages, warn and stop 2096 * tracing 2097 */ 2098 RB_WARN_ON(cpu_buffer, !success); 2099 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2100 2101 /* free pages if they weren't inserted */ 2102 if (!success) { 2103 struct buffer_page *bpage, *tmp; 2104 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2105 list) { 2106 list_del_init(&bpage->list); 2107 free_buffer_page(bpage); 2108 } 2109 } 2110 return success; 2111 } 2112 2113 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 2114 { 2115 bool success; 2116 2117 if (cpu_buffer->nr_pages_to_update > 0) 2118 success = rb_insert_pages(cpu_buffer); 2119 else 2120 success = rb_remove_pages(cpu_buffer, 2121 -cpu_buffer->nr_pages_to_update); 2122 2123 if (success) 2124 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 2125 } 2126 2127 static void update_pages_handler(struct work_struct *work) 2128 { 2129 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 2130 struct ring_buffer_per_cpu, update_pages_work); 2131 rb_update_pages(cpu_buffer); 2132 complete(&cpu_buffer->update_done); 2133 } 2134 2135 /** 2136 * ring_buffer_resize - resize the ring buffer 2137 * @buffer: the buffer to resize. 2138 * @size: the new size. 2139 * @cpu_id: the cpu buffer to resize 2140 * 2141 * Minimum size is 2 * BUF_PAGE_SIZE. 2142 * 2143 * Returns 0 on success and < 0 on failure. 2144 */ 2145 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size, 2146 int cpu_id) 2147 { 2148 struct ring_buffer_per_cpu *cpu_buffer; 2149 unsigned long nr_pages; 2150 int cpu, err; 2151 2152 /* 2153 * Always succeed at resizing a non-existent buffer: 2154 */ 2155 if (!buffer) 2156 return 0; 2157 2158 /* Make sure the requested buffer exists */ 2159 if (cpu_id != RING_BUFFER_ALL_CPUS && 2160 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 2161 return 0; 2162 2163 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 2164 2165 /* we need a minimum of two pages */ 2166 if (nr_pages < 2) 2167 nr_pages = 2; 2168 2169 /* prevent another thread from changing buffer sizes */ 2170 mutex_lock(&buffer->mutex); 2171 atomic_inc(&buffer->resizing); 2172 2173 if (cpu_id == RING_BUFFER_ALL_CPUS) { 2174 /* 2175 * Don't succeed if resizing is disabled, as a reader might be 2176 * manipulating the ring buffer and is expecting a sane state while 2177 * this is true. 2178 */ 2179 for_each_buffer_cpu(buffer, cpu) { 2180 cpu_buffer = buffer->buffers[cpu]; 2181 if (atomic_read(&cpu_buffer->resize_disabled)) { 2182 err = -EBUSY; 2183 goto out_err_unlock; 2184 } 2185 } 2186 2187 /* calculate the pages to update */ 2188 for_each_buffer_cpu(buffer, cpu) { 2189 cpu_buffer = buffer->buffers[cpu]; 2190 2191 cpu_buffer->nr_pages_to_update = nr_pages - 2192 cpu_buffer->nr_pages; 2193 /* 2194 * nothing more to do for removing pages or no update 2195 */ 2196 if (cpu_buffer->nr_pages_to_update <= 0) 2197 continue; 2198 /* 2199 * to add pages, make sure all new pages can be 2200 * allocated without receiving ENOMEM 2201 */ 2202 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2203 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2204 &cpu_buffer->new_pages)) { 2205 /* not enough memory for new pages */ 2206 err = -ENOMEM; 2207 goto out_err; 2208 } 2209 2210 cond_resched(); 2211 } 2212 2213 cpus_read_lock(); 2214 /* 2215 * Fire off all the required work handlers 2216 * We can't schedule on offline CPUs, but it's not necessary 2217 * since we can change their buffer sizes without any race. 2218 */ 2219 for_each_buffer_cpu(buffer, cpu) { 2220 cpu_buffer = buffer->buffers[cpu]; 2221 if (!cpu_buffer->nr_pages_to_update) 2222 continue; 2223 2224 /* Can't run something on an offline CPU. */ 2225 if (!cpu_online(cpu)) { 2226 rb_update_pages(cpu_buffer); 2227 cpu_buffer->nr_pages_to_update = 0; 2228 } else { 2229 /* Run directly if possible. */ 2230 migrate_disable(); 2231 if (cpu != smp_processor_id()) { 2232 migrate_enable(); 2233 schedule_work_on(cpu, 2234 &cpu_buffer->update_pages_work); 2235 } else { 2236 update_pages_handler(&cpu_buffer->update_pages_work); 2237 migrate_enable(); 2238 } 2239 } 2240 } 2241 2242 /* wait for all the updates to complete */ 2243 for_each_buffer_cpu(buffer, cpu) { 2244 cpu_buffer = buffer->buffers[cpu]; 2245 if (!cpu_buffer->nr_pages_to_update) 2246 continue; 2247 2248 if (cpu_online(cpu)) 2249 wait_for_completion(&cpu_buffer->update_done); 2250 cpu_buffer->nr_pages_to_update = 0; 2251 } 2252 2253 cpus_read_unlock(); 2254 } else { 2255 cpu_buffer = buffer->buffers[cpu_id]; 2256 2257 if (nr_pages == cpu_buffer->nr_pages) 2258 goto out; 2259 2260 /* 2261 * Don't succeed if resizing is disabled, as a reader might be 2262 * manipulating the ring buffer and is expecting a sane state while 2263 * this is true. 2264 */ 2265 if (atomic_read(&cpu_buffer->resize_disabled)) { 2266 err = -EBUSY; 2267 goto out_err_unlock; 2268 } 2269 2270 cpu_buffer->nr_pages_to_update = nr_pages - 2271 cpu_buffer->nr_pages; 2272 2273 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2274 if (cpu_buffer->nr_pages_to_update > 0 && 2275 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2276 &cpu_buffer->new_pages)) { 2277 err = -ENOMEM; 2278 goto out_err; 2279 } 2280 2281 cpus_read_lock(); 2282 2283 /* Can't run something on an offline CPU. */ 2284 if (!cpu_online(cpu_id)) 2285 rb_update_pages(cpu_buffer); 2286 else { 2287 /* Run directly if possible. */ 2288 migrate_disable(); 2289 if (cpu_id == smp_processor_id()) { 2290 rb_update_pages(cpu_buffer); 2291 migrate_enable(); 2292 } else { 2293 migrate_enable(); 2294 schedule_work_on(cpu_id, 2295 &cpu_buffer->update_pages_work); 2296 wait_for_completion(&cpu_buffer->update_done); 2297 } 2298 } 2299 2300 cpu_buffer->nr_pages_to_update = 0; 2301 cpus_read_unlock(); 2302 } 2303 2304 out: 2305 /* 2306 * The ring buffer resize can happen with the ring buffer 2307 * enabled, so that the update disturbs the tracing as little 2308 * as possible. But if the buffer is disabled, we do not need 2309 * to worry about that, and we can take the time to verify 2310 * that the buffer is not corrupt. 2311 */ 2312 if (atomic_read(&buffer->record_disabled)) { 2313 atomic_inc(&buffer->record_disabled); 2314 /* 2315 * Even though the buffer was disabled, we must make sure 2316 * that it is truly disabled before calling rb_check_pages. 2317 * There could have been a race between checking 2318 * record_disable and incrementing it. 2319 */ 2320 synchronize_rcu(); 2321 for_each_buffer_cpu(buffer, cpu) { 2322 cpu_buffer = buffer->buffers[cpu]; 2323 rb_check_pages(cpu_buffer); 2324 } 2325 atomic_dec(&buffer->record_disabled); 2326 } 2327 2328 atomic_dec(&buffer->resizing); 2329 mutex_unlock(&buffer->mutex); 2330 return 0; 2331 2332 out_err: 2333 for_each_buffer_cpu(buffer, cpu) { 2334 struct buffer_page *bpage, *tmp; 2335 2336 cpu_buffer = buffer->buffers[cpu]; 2337 cpu_buffer->nr_pages_to_update = 0; 2338 2339 if (list_empty(&cpu_buffer->new_pages)) 2340 continue; 2341 2342 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2343 list) { 2344 list_del_init(&bpage->list); 2345 free_buffer_page(bpage); 2346 } 2347 } 2348 out_err_unlock: 2349 atomic_dec(&buffer->resizing); 2350 mutex_unlock(&buffer->mutex); 2351 return err; 2352 } 2353 EXPORT_SYMBOL_GPL(ring_buffer_resize); 2354 2355 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val) 2356 { 2357 mutex_lock(&buffer->mutex); 2358 if (val) 2359 buffer->flags |= RB_FL_OVERWRITE; 2360 else 2361 buffer->flags &= ~RB_FL_OVERWRITE; 2362 mutex_unlock(&buffer->mutex); 2363 } 2364 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 2365 2366 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 2367 { 2368 return bpage->page->data + index; 2369 } 2370 2371 static __always_inline struct ring_buffer_event * 2372 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 2373 { 2374 return __rb_page_index(cpu_buffer->reader_page, 2375 cpu_buffer->reader_page->read); 2376 } 2377 2378 static struct ring_buffer_event * 2379 rb_iter_head_event(struct ring_buffer_iter *iter) 2380 { 2381 struct ring_buffer_event *event; 2382 struct buffer_page *iter_head_page = iter->head_page; 2383 unsigned long commit; 2384 unsigned length; 2385 2386 if (iter->head != iter->next_event) 2387 return iter->event; 2388 2389 /* 2390 * When the writer goes across pages, it issues a cmpxchg which 2391 * is a mb(), which will synchronize with the rmb here. 2392 * (see rb_tail_page_update() and __rb_reserve_next()) 2393 */ 2394 commit = rb_page_commit(iter_head_page); 2395 smp_rmb(); 2396 2397 /* An event needs to be at least 8 bytes in size */ 2398 if (iter->head > commit - 8) 2399 goto reset; 2400 2401 event = __rb_page_index(iter_head_page, iter->head); 2402 length = rb_event_length(event); 2403 2404 /* 2405 * READ_ONCE() doesn't work on functions and we don't want the 2406 * compiler doing any crazy optimizations with length. 2407 */ 2408 barrier(); 2409 2410 if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE) 2411 /* Writer corrupted the read? */ 2412 goto reset; 2413 2414 memcpy(iter->event, event, length); 2415 /* 2416 * If the page stamp is still the same after this rmb() then the 2417 * event was safely copied without the writer entering the page. 2418 */ 2419 smp_rmb(); 2420 2421 /* Make sure the page didn't change since we read this */ 2422 if (iter->page_stamp != iter_head_page->page->time_stamp || 2423 commit > rb_page_commit(iter_head_page)) 2424 goto reset; 2425 2426 iter->next_event = iter->head + length; 2427 return iter->event; 2428 reset: 2429 /* Reset to the beginning */ 2430 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2431 iter->head = 0; 2432 iter->next_event = 0; 2433 iter->missed_events = 1; 2434 return NULL; 2435 } 2436 2437 /* Size is determined by what has been committed */ 2438 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 2439 { 2440 return rb_page_commit(bpage); 2441 } 2442 2443 static __always_inline unsigned 2444 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 2445 { 2446 return rb_page_commit(cpu_buffer->commit_page); 2447 } 2448 2449 static __always_inline unsigned 2450 rb_event_index(struct ring_buffer_event *event) 2451 { 2452 unsigned long addr = (unsigned long)event; 2453 2454 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 2455 } 2456 2457 static void rb_inc_iter(struct ring_buffer_iter *iter) 2458 { 2459 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 2460 2461 /* 2462 * The iterator could be on the reader page (it starts there). 2463 * But the head could have moved, since the reader was 2464 * found. Check for this case and assign the iterator 2465 * to the head page instead of next. 2466 */ 2467 if (iter->head_page == cpu_buffer->reader_page) 2468 iter->head_page = rb_set_head_page(cpu_buffer); 2469 else 2470 rb_inc_page(&iter->head_page); 2471 2472 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2473 iter->head = 0; 2474 iter->next_event = 0; 2475 } 2476 2477 /* 2478 * rb_handle_head_page - writer hit the head page 2479 * 2480 * Returns: +1 to retry page 2481 * 0 to continue 2482 * -1 on error 2483 */ 2484 static int 2485 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 2486 struct buffer_page *tail_page, 2487 struct buffer_page *next_page) 2488 { 2489 struct buffer_page *new_head; 2490 int entries; 2491 int type; 2492 int ret; 2493 2494 entries = rb_page_entries(next_page); 2495 2496 /* 2497 * The hard part is here. We need to move the head 2498 * forward, and protect against both readers on 2499 * other CPUs and writers coming in via interrupts. 2500 */ 2501 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 2502 RB_PAGE_HEAD); 2503 2504 /* 2505 * type can be one of four: 2506 * NORMAL - an interrupt already moved it for us 2507 * HEAD - we are the first to get here. 2508 * UPDATE - we are the interrupt interrupting 2509 * a current move. 2510 * MOVED - a reader on another CPU moved the next 2511 * pointer to its reader page. Give up 2512 * and try again. 2513 */ 2514 2515 switch (type) { 2516 case RB_PAGE_HEAD: 2517 /* 2518 * We changed the head to UPDATE, thus 2519 * it is our responsibility to update 2520 * the counters. 2521 */ 2522 local_add(entries, &cpu_buffer->overrun); 2523 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes); 2524 local_inc(&cpu_buffer->pages_lost); 2525 2526 /* 2527 * The entries will be zeroed out when we move the 2528 * tail page. 2529 */ 2530 2531 /* still more to do */ 2532 break; 2533 2534 case RB_PAGE_UPDATE: 2535 /* 2536 * This is an interrupt that interrupt the 2537 * previous update. Still more to do. 2538 */ 2539 break; 2540 case RB_PAGE_NORMAL: 2541 /* 2542 * An interrupt came in before the update 2543 * and processed this for us. 2544 * Nothing left to do. 2545 */ 2546 return 1; 2547 case RB_PAGE_MOVED: 2548 /* 2549 * The reader is on another CPU and just did 2550 * a swap with our next_page. 2551 * Try again. 2552 */ 2553 return 1; 2554 default: 2555 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2556 return -1; 2557 } 2558 2559 /* 2560 * Now that we are here, the old head pointer is 2561 * set to UPDATE. This will keep the reader from 2562 * swapping the head page with the reader page. 2563 * The reader (on another CPU) will spin till 2564 * we are finished. 2565 * 2566 * We just need to protect against interrupts 2567 * doing the job. We will set the next pointer 2568 * to HEAD. After that, we set the old pointer 2569 * to NORMAL, but only if it was HEAD before. 2570 * otherwise we are an interrupt, and only 2571 * want the outer most commit to reset it. 2572 */ 2573 new_head = next_page; 2574 rb_inc_page(&new_head); 2575 2576 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2577 RB_PAGE_NORMAL); 2578 2579 /* 2580 * Valid returns are: 2581 * HEAD - an interrupt came in and already set it. 2582 * NORMAL - One of two things: 2583 * 1) We really set it. 2584 * 2) A bunch of interrupts came in and moved 2585 * the page forward again. 2586 */ 2587 switch (ret) { 2588 case RB_PAGE_HEAD: 2589 case RB_PAGE_NORMAL: 2590 /* OK */ 2591 break; 2592 default: 2593 RB_WARN_ON(cpu_buffer, 1); 2594 return -1; 2595 } 2596 2597 /* 2598 * It is possible that an interrupt came in, 2599 * set the head up, then more interrupts came in 2600 * and moved it again. When we get back here, 2601 * the page would have been set to NORMAL but we 2602 * just set it back to HEAD. 2603 * 2604 * How do you detect this? Well, if that happened 2605 * the tail page would have moved. 2606 */ 2607 if (ret == RB_PAGE_NORMAL) { 2608 struct buffer_page *buffer_tail_page; 2609 2610 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 2611 /* 2612 * If the tail had moved passed next, then we need 2613 * to reset the pointer. 2614 */ 2615 if (buffer_tail_page != tail_page && 2616 buffer_tail_page != next_page) 2617 rb_head_page_set_normal(cpu_buffer, new_head, 2618 next_page, 2619 RB_PAGE_HEAD); 2620 } 2621 2622 /* 2623 * If this was the outer most commit (the one that 2624 * changed the original pointer from HEAD to UPDATE), 2625 * then it is up to us to reset it to NORMAL. 2626 */ 2627 if (type == RB_PAGE_HEAD) { 2628 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2629 tail_page, 2630 RB_PAGE_UPDATE); 2631 if (RB_WARN_ON(cpu_buffer, 2632 ret != RB_PAGE_UPDATE)) 2633 return -1; 2634 } 2635 2636 return 0; 2637 } 2638 2639 static inline void 2640 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2641 unsigned long tail, struct rb_event_info *info) 2642 { 2643 struct buffer_page *tail_page = info->tail_page; 2644 struct ring_buffer_event *event; 2645 unsigned long length = info->length; 2646 2647 /* 2648 * Only the event that crossed the page boundary 2649 * must fill the old tail_page with padding. 2650 */ 2651 if (tail >= BUF_PAGE_SIZE) { 2652 /* 2653 * If the page was filled, then we still need 2654 * to update the real_end. Reset it to zero 2655 * and the reader will ignore it. 2656 */ 2657 if (tail == BUF_PAGE_SIZE) 2658 tail_page->real_end = 0; 2659 2660 local_sub(length, &tail_page->write); 2661 return; 2662 } 2663 2664 event = __rb_page_index(tail_page, tail); 2665 2666 /* 2667 * Save the original length to the meta data. 2668 * This will be used by the reader to add lost event 2669 * counter. 2670 */ 2671 tail_page->real_end = tail; 2672 2673 /* 2674 * If this event is bigger than the minimum size, then 2675 * we need to be careful that we don't subtract the 2676 * write counter enough to allow another writer to slip 2677 * in on this page. 2678 * We put in a discarded commit instead, to make sure 2679 * that this space is not used again, and this space will 2680 * not be accounted into 'entries_bytes'. 2681 * 2682 * If we are less than the minimum size, we don't need to 2683 * worry about it. 2684 */ 2685 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2686 /* No room for any events */ 2687 2688 /* Mark the rest of the page with padding */ 2689 rb_event_set_padding(event); 2690 2691 /* Make sure the padding is visible before the write update */ 2692 smp_wmb(); 2693 2694 /* Set the write back to the previous setting */ 2695 local_sub(length, &tail_page->write); 2696 return; 2697 } 2698 2699 /* Put in a discarded event */ 2700 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2701 event->type_len = RINGBUF_TYPE_PADDING; 2702 /* time delta must be non zero */ 2703 event->time_delta = 1; 2704 2705 /* account for padding bytes */ 2706 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2707 2708 /* Make sure the padding is visible before the tail_page->write update */ 2709 smp_wmb(); 2710 2711 /* Set write to end of buffer */ 2712 length = (tail + length) - BUF_PAGE_SIZE; 2713 local_sub(length, &tail_page->write); 2714 } 2715 2716 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 2717 2718 /* 2719 * This is the slow path, force gcc not to inline it. 2720 */ 2721 static noinline struct ring_buffer_event * 2722 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2723 unsigned long tail, struct rb_event_info *info) 2724 { 2725 struct buffer_page *tail_page = info->tail_page; 2726 struct buffer_page *commit_page = cpu_buffer->commit_page; 2727 struct trace_buffer *buffer = cpu_buffer->buffer; 2728 struct buffer_page *next_page; 2729 int ret; 2730 2731 next_page = tail_page; 2732 2733 rb_inc_page(&next_page); 2734 2735 /* 2736 * If for some reason, we had an interrupt storm that made 2737 * it all the way around the buffer, bail, and warn 2738 * about it. 2739 */ 2740 if (unlikely(next_page == commit_page)) { 2741 local_inc(&cpu_buffer->commit_overrun); 2742 goto out_reset; 2743 } 2744 2745 /* 2746 * This is where the fun begins! 2747 * 2748 * We are fighting against races between a reader that 2749 * could be on another CPU trying to swap its reader 2750 * page with the buffer head. 2751 * 2752 * We are also fighting against interrupts coming in and 2753 * moving the head or tail on us as well. 2754 * 2755 * If the next page is the head page then we have filled 2756 * the buffer, unless the commit page is still on the 2757 * reader page. 2758 */ 2759 if (rb_is_head_page(next_page, &tail_page->list)) { 2760 2761 /* 2762 * If the commit is not on the reader page, then 2763 * move the header page. 2764 */ 2765 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2766 /* 2767 * If we are not in overwrite mode, 2768 * this is easy, just stop here. 2769 */ 2770 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2771 local_inc(&cpu_buffer->dropped_events); 2772 goto out_reset; 2773 } 2774 2775 ret = rb_handle_head_page(cpu_buffer, 2776 tail_page, 2777 next_page); 2778 if (ret < 0) 2779 goto out_reset; 2780 if (ret) 2781 goto out_again; 2782 } else { 2783 /* 2784 * We need to be careful here too. The 2785 * commit page could still be on the reader 2786 * page. We could have a small buffer, and 2787 * have filled up the buffer with events 2788 * from interrupts and such, and wrapped. 2789 * 2790 * Note, if the tail page is also on the 2791 * reader_page, we let it move out. 2792 */ 2793 if (unlikely((cpu_buffer->commit_page != 2794 cpu_buffer->tail_page) && 2795 (cpu_buffer->commit_page == 2796 cpu_buffer->reader_page))) { 2797 local_inc(&cpu_buffer->commit_overrun); 2798 goto out_reset; 2799 } 2800 } 2801 } 2802 2803 rb_tail_page_update(cpu_buffer, tail_page, next_page); 2804 2805 out_again: 2806 2807 rb_reset_tail(cpu_buffer, tail, info); 2808 2809 /* Commit what we have for now. */ 2810 rb_end_commit(cpu_buffer); 2811 /* rb_end_commit() decs committing */ 2812 local_inc(&cpu_buffer->committing); 2813 2814 /* fail and let the caller try again */ 2815 return ERR_PTR(-EAGAIN); 2816 2817 out_reset: 2818 /* reset write */ 2819 rb_reset_tail(cpu_buffer, tail, info); 2820 2821 return NULL; 2822 } 2823 2824 /* Slow path */ 2825 static struct ring_buffer_event * 2826 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs) 2827 { 2828 if (abs) 2829 event->type_len = RINGBUF_TYPE_TIME_STAMP; 2830 else 2831 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2832 2833 /* Not the first event on the page, or not delta? */ 2834 if (abs || rb_event_index(event)) { 2835 event->time_delta = delta & TS_MASK; 2836 event->array[0] = delta >> TS_SHIFT; 2837 } else { 2838 /* nope, just zero it */ 2839 event->time_delta = 0; 2840 event->array[0] = 0; 2841 } 2842 2843 return skip_time_extend(event); 2844 } 2845 2846 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2847 static inline bool sched_clock_stable(void) 2848 { 2849 return true; 2850 } 2851 #endif 2852 2853 static void 2854 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2855 struct rb_event_info *info) 2856 { 2857 u64 write_stamp; 2858 2859 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s", 2860 (unsigned long long)info->delta, 2861 (unsigned long long)info->ts, 2862 (unsigned long long)info->before, 2863 (unsigned long long)info->after, 2864 (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0), 2865 sched_clock_stable() ? "" : 2866 "If you just came from a suspend/resume,\n" 2867 "please switch to the trace global clock:\n" 2868 " echo global > /sys/kernel/tracing/trace_clock\n" 2869 "or add trace_clock=global to the kernel command line\n"); 2870 } 2871 2872 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2873 struct ring_buffer_event **event, 2874 struct rb_event_info *info, 2875 u64 *delta, 2876 unsigned int *length) 2877 { 2878 bool abs = info->add_timestamp & 2879 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE); 2880 2881 if (unlikely(info->delta > (1ULL << 59))) { 2882 /* 2883 * Some timers can use more than 59 bits, and when a timestamp 2884 * is added to the buffer, it will lose those bits. 2885 */ 2886 if (abs && (info->ts & TS_MSB)) { 2887 info->delta &= ABS_TS_MASK; 2888 2889 /* did the clock go backwards */ 2890 } else if (info->before == info->after && info->before > info->ts) { 2891 /* not interrupted */ 2892 static int once; 2893 2894 /* 2895 * This is possible with a recalibrating of the TSC. 2896 * Do not produce a call stack, but just report it. 2897 */ 2898 if (!once) { 2899 once++; 2900 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n", 2901 info->before, info->ts); 2902 } 2903 } else 2904 rb_check_timestamp(cpu_buffer, info); 2905 if (!abs) 2906 info->delta = 0; 2907 } 2908 *event = rb_add_time_stamp(*event, info->delta, abs); 2909 *length -= RB_LEN_TIME_EXTEND; 2910 *delta = 0; 2911 } 2912 2913 /** 2914 * rb_update_event - update event type and data 2915 * @cpu_buffer: The per cpu buffer of the @event 2916 * @event: the event to update 2917 * @info: The info to update the @event with (contains length and delta) 2918 * 2919 * Update the type and data fields of the @event. The length 2920 * is the actual size that is written to the ring buffer, 2921 * and with this, we can determine what to place into the 2922 * data field. 2923 */ 2924 static void 2925 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2926 struct ring_buffer_event *event, 2927 struct rb_event_info *info) 2928 { 2929 unsigned length = info->length; 2930 u64 delta = info->delta; 2931 unsigned int nest = local_read(&cpu_buffer->committing) - 1; 2932 2933 if (!WARN_ON_ONCE(nest >= MAX_NEST)) 2934 cpu_buffer->event_stamp[nest] = info->ts; 2935 2936 /* 2937 * If we need to add a timestamp, then we 2938 * add it to the start of the reserved space. 2939 */ 2940 if (unlikely(info->add_timestamp)) 2941 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length); 2942 2943 event->time_delta = delta; 2944 length -= RB_EVNT_HDR_SIZE; 2945 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2946 event->type_len = 0; 2947 event->array[0] = length; 2948 } else 2949 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2950 } 2951 2952 static unsigned rb_calculate_event_length(unsigned length) 2953 { 2954 struct ring_buffer_event event; /* Used only for sizeof array */ 2955 2956 /* zero length can cause confusions */ 2957 if (!length) 2958 length++; 2959 2960 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2961 length += sizeof(event.array[0]); 2962 2963 length += RB_EVNT_HDR_SIZE; 2964 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2965 2966 /* 2967 * In case the time delta is larger than the 27 bits for it 2968 * in the header, we need to add a timestamp. If another 2969 * event comes in when trying to discard this one to increase 2970 * the length, then the timestamp will be added in the allocated 2971 * space of this event. If length is bigger than the size needed 2972 * for the TIME_EXTEND, then padding has to be used. The events 2973 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 2974 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 2975 * As length is a multiple of 4, we only need to worry if it 2976 * is 12 (RB_LEN_TIME_EXTEND + 4). 2977 */ 2978 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 2979 length += RB_ALIGNMENT; 2980 2981 return length; 2982 } 2983 2984 static u64 rb_time_delta(struct ring_buffer_event *event) 2985 { 2986 switch (event->type_len) { 2987 case RINGBUF_TYPE_PADDING: 2988 return 0; 2989 2990 case RINGBUF_TYPE_TIME_EXTEND: 2991 return rb_event_time_stamp(event); 2992 2993 case RINGBUF_TYPE_TIME_STAMP: 2994 return 0; 2995 2996 case RINGBUF_TYPE_DATA: 2997 return event->time_delta; 2998 default: 2999 return 0; 3000 } 3001 } 3002 3003 static inline bool 3004 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 3005 struct ring_buffer_event *event) 3006 { 3007 unsigned long new_index, old_index; 3008 struct buffer_page *bpage; 3009 unsigned long addr; 3010 u64 write_stamp; 3011 u64 delta; 3012 3013 new_index = rb_event_index(event); 3014 old_index = new_index + rb_event_ts_length(event); 3015 addr = (unsigned long)event; 3016 addr &= PAGE_MASK; 3017 3018 bpage = READ_ONCE(cpu_buffer->tail_page); 3019 3020 delta = rb_time_delta(event); 3021 3022 if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp)) 3023 return false; 3024 3025 /* Make sure the write stamp is read before testing the location */ 3026 barrier(); 3027 3028 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 3029 unsigned long write_mask = 3030 local_read(&bpage->write) & ~RB_WRITE_MASK; 3031 unsigned long event_length = rb_event_length(event); 3032 3033 /* 3034 * For the before_stamp to be different than the write_stamp 3035 * to make sure that the next event adds an absolute 3036 * value and does not rely on the saved write stamp, which 3037 * is now going to be bogus. 3038 */ 3039 rb_time_set(&cpu_buffer->before_stamp, 0); 3040 3041 /* Something came in, can't discard */ 3042 if (!rb_time_cmpxchg(&cpu_buffer->write_stamp, 3043 write_stamp, write_stamp - delta)) 3044 return false; 3045 3046 /* 3047 * If an event were to come in now, it would see that the 3048 * write_stamp and the before_stamp are different, and assume 3049 * that this event just added itself before updating 3050 * the write stamp. The interrupting event will fix the 3051 * write stamp for us, and use the before stamp as its delta. 3052 */ 3053 3054 /* 3055 * This is on the tail page. It is possible that 3056 * a write could come in and move the tail page 3057 * and write to the next page. That is fine 3058 * because we just shorten what is on this page. 3059 */ 3060 old_index += write_mask; 3061 new_index += write_mask; 3062 3063 /* caution: old_index gets updated on cmpxchg failure */ 3064 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) { 3065 /* update counters */ 3066 local_sub(event_length, &cpu_buffer->entries_bytes); 3067 return true; 3068 } 3069 } 3070 3071 /* could not discard */ 3072 return false; 3073 } 3074 3075 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 3076 { 3077 local_inc(&cpu_buffer->committing); 3078 local_inc(&cpu_buffer->commits); 3079 } 3080 3081 static __always_inline void 3082 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 3083 { 3084 unsigned long max_count; 3085 3086 /* 3087 * We only race with interrupts and NMIs on this CPU. 3088 * If we own the commit event, then we can commit 3089 * all others that interrupted us, since the interruptions 3090 * are in stack format (they finish before they come 3091 * back to us). This allows us to do a simple loop to 3092 * assign the commit to the tail. 3093 */ 3094 again: 3095 max_count = cpu_buffer->nr_pages * 100; 3096 3097 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 3098 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 3099 return; 3100 if (RB_WARN_ON(cpu_buffer, 3101 rb_is_reader_page(cpu_buffer->tail_page))) 3102 return; 3103 /* 3104 * No need for a memory barrier here, as the update 3105 * of the tail_page did it for this page. 3106 */ 3107 local_set(&cpu_buffer->commit_page->page->commit, 3108 rb_page_write(cpu_buffer->commit_page)); 3109 rb_inc_page(&cpu_buffer->commit_page); 3110 /* add barrier to keep gcc from optimizing too much */ 3111 barrier(); 3112 } 3113 while (rb_commit_index(cpu_buffer) != 3114 rb_page_write(cpu_buffer->commit_page)) { 3115 3116 /* Make sure the readers see the content of what is committed. */ 3117 smp_wmb(); 3118 local_set(&cpu_buffer->commit_page->page->commit, 3119 rb_page_write(cpu_buffer->commit_page)); 3120 RB_WARN_ON(cpu_buffer, 3121 local_read(&cpu_buffer->commit_page->page->commit) & 3122 ~RB_WRITE_MASK); 3123 barrier(); 3124 } 3125 3126 /* again, keep gcc from optimizing */ 3127 barrier(); 3128 3129 /* 3130 * If an interrupt came in just after the first while loop 3131 * and pushed the tail page forward, we will be left with 3132 * a dangling commit that will never go forward. 3133 */ 3134 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 3135 goto again; 3136 } 3137 3138 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 3139 { 3140 unsigned long commits; 3141 3142 if (RB_WARN_ON(cpu_buffer, 3143 !local_read(&cpu_buffer->committing))) 3144 return; 3145 3146 again: 3147 commits = local_read(&cpu_buffer->commits); 3148 /* synchronize with interrupts */ 3149 barrier(); 3150 if (local_read(&cpu_buffer->committing) == 1) 3151 rb_set_commit_to_write(cpu_buffer); 3152 3153 local_dec(&cpu_buffer->committing); 3154 3155 /* synchronize with interrupts */ 3156 barrier(); 3157 3158 /* 3159 * Need to account for interrupts coming in between the 3160 * updating of the commit page and the clearing of the 3161 * committing counter. 3162 */ 3163 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 3164 !local_read(&cpu_buffer->committing)) { 3165 local_inc(&cpu_buffer->committing); 3166 goto again; 3167 } 3168 } 3169 3170 static inline void rb_event_discard(struct ring_buffer_event *event) 3171 { 3172 if (extended_time(event)) 3173 event = skip_time_extend(event); 3174 3175 /* array[0] holds the actual length for the discarded event */ 3176 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 3177 event->type_len = RINGBUF_TYPE_PADDING; 3178 /* time delta must be non zero */ 3179 if (!event->time_delta) 3180 event->time_delta = 1; 3181 } 3182 3183 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer) 3184 { 3185 local_inc(&cpu_buffer->entries); 3186 rb_end_commit(cpu_buffer); 3187 } 3188 3189 static __always_inline void 3190 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 3191 { 3192 if (buffer->irq_work.waiters_pending) { 3193 buffer->irq_work.waiters_pending = false; 3194 /* irq_work_queue() supplies it's own memory barriers */ 3195 irq_work_queue(&buffer->irq_work.work); 3196 } 3197 3198 if (cpu_buffer->irq_work.waiters_pending) { 3199 cpu_buffer->irq_work.waiters_pending = false; 3200 /* irq_work_queue() supplies it's own memory barriers */ 3201 irq_work_queue(&cpu_buffer->irq_work.work); 3202 } 3203 3204 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched)) 3205 return; 3206 3207 if (cpu_buffer->reader_page == cpu_buffer->commit_page) 3208 return; 3209 3210 if (!cpu_buffer->irq_work.full_waiters_pending) 3211 return; 3212 3213 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched); 3214 3215 if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full)) 3216 return; 3217 3218 cpu_buffer->irq_work.wakeup_full = true; 3219 cpu_buffer->irq_work.full_waiters_pending = false; 3220 /* irq_work_queue() supplies it's own memory barriers */ 3221 irq_work_queue(&cpu_buffer->irq_work.work); 3222 } 3223 3224 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION 3225 # define do_ring_buffer_record_recursion() \ 3226 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_) 3227 #else 3228 # define do_ring_buffer_record_recursion() do { } while (0) 3229 #endif 3230 3231 /* 3232 * The lock and unlock are done within a preempt disable section. 3233 * The current_context per_cpu variable can only be modified 3234 * by the current task between lock and unlock. But it can 3235 * be modified more than once via an interrupt. To pass this 3236 * information from the lock to the unlock without having to 3237 * access the 'in_interrupt()' functions again (which do show 3238 * a bit of overhead in something as critical as function tracing, 3239 * we use a bitmask trick. 3240 * 3241 * bit 1 = NMI context 3242 * bit 2 = IRQ context 3243 * bit 3 = SoftIRQ context 3244 * bit 4 = normal context. 3245 * 3246 * This works because this is the order of contexts that can 3247 * preempt other contexts. A SoftIRQ never preempts an IRQ 3248 * context. 3249 * 3250 * When the context is determined, the corresponding bit is 3251 * checked and set (if it was set, then a recursion of that context 3252 * happened). 3253 * 3254 * On unlock, we need to clear this bit. To do so, just subtract 3255 * 1 from the current_context and AND it to itself. 3256 * 3257 * (binary) 3258 * 101 - 1 = 100 3259 * 101 & 100 = 100 (clearing bit zero) 3260 * 3261 * 1010 - 1 = 1001 3262 * 1010 & 1001 = 1000 (clearing bit 1) 3263 * 3264 * The least significant bit can be cleared this way, and it 3265 * just so happens that it is the same bit corresponding to 3266 * the current context. 3267 * 3268 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit 3269 * is set when a recursion is detected at the current context, and if 3270 * the TRANSITION bit is already set, it will fail the recursion. 3271 * This is needed because there's a lag between the changing of 3272 * interrupt context and updating the preempt count. In this case, 3273 * a false positive will be found. To handle this, one extra recursion 3274 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION 3275 * bit is already set, then it is considered a recursion and the function 3276 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned. 3277 * 3278 * On the trace_recursive_unlock(), the TRANSITION bit will be the first 3279 * to be cleared. Even if it wasn't the context that set it. That is, 3280 * if an interrupt comes in while NORMAL bit is set and the ring buffer 3281 * is called before preempt_count() is updated, since the check will 3282 * be on the NORMAL bit, the TRANSITION bit will then be set. If an 3283 * NMI then comes in, it will set the NMI bit, but when the NMI code 3284 * does the trace_recursive_unlock() it will clear the TRANSITION bit 3285 * and leave the NMI bit set. But this is fine, because the interrupt 3286 * code that set the TRANSITION bit will then clear the NMI bit when it 3287 * calls trace_recursive_unlock(). If another NMI comes in, it will 3288 * set the TRANSITION bit and continue. 3289 * 3290 * Note: The TRANSITION bit only handles a single transition between context. 3291 */ 3292 3293 static __always_inline bool 3294 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 3295 { 3296 unsigned int val = cpu_buffer->current_context; 3297 int bit = interrupt_context_level(); 3298 3299 bit = RB_CTX_NORMAL - bit; 3300 3301 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) { 3302 /* 3303 * It is possible that this was called by transitioning 3304 * between interrupt context, and preempt_count() has not 3305 * been updated yet. In this case, use the TRANSITION bit. 3306 */ 3307 bit = RB_CTX_TRANSITION; 3308 if (val & (1 << (bit + cpu_buffer->nest))) { 3309 do_ring_buffer_record_recursion(); 3310 return true; 3311 } 3312 } 3313 3314 val |= (1 << (bit + cpu_buffer->nest)); 3315 cpu_buffer->current_context = val; 3316 3317 return false; 3318 } 3319 3320 static __always_inline void 3321 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 3322 { 3323 cpu_buffer->current_context &= 3324 cpu_buffer->current_context - (1 << cpu_buffer->nest); 3325 } 3326 3327 /* The recursive locking above uses 5 bits */ 3328 #define NESTED_BITS 5 3329 3330 /** 3331 * ring_buffer_nest_start - Allow to trace while nested 3332 * @buffer: The ring buffer to modify 3333 * 3334 * The ring buffer has a safety mechanism to prevent recursion. 3335 * But there may be a case where a trace needs to be done while 3336 * tracing something else. In this case, calling this function 3337 * will allow this function to nest within a currently active 3338 * ring_buffer_lock_reserve(). 3339 * 3340 * Call this function before calling another ring_buffer_lock_reserve() and 3341 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). 3342 */ 3343 void ring_buffer_nest_start(struct trace_buffer *buffer) 3344 { 3345 struct ring_buffer_per_cpu *cpu_buffer; 3346 int cpu; 3347 3348 /* Enabled by ring_buffer_nest_end() */ 3349 preempt_disable_notrace(); 3350 cpu = raw_smp_processor_id(); 3351 cpu_buffer = buffer->buffers[cpu]; 3352 /* This is the shift value for the above recursive locking */ 3353 cpu_buffer->nest += NESTED_BITS; 3354 } 3355 3356 /** 3357 * ring_buffer_nest_end - Allow to trace while nested 3358 * @buffer: The ring buffer to modify 3359 * 3360 * Must be called after ring_buffer_nest_start() and after the 3361 * ring_buffer_unlock_commit(). 3362 */ 3363 void ring_buffer_nest_end(struct trace_buffer *buffer) 3364 { 3365 struct ring_buffer_per_cpu *cpu_buffer; 3366 int cpu; 3367 3368 /* disabled by ring_buffer_nest_start() */ 3369 cpu = raw_smp_processor_id(); 3370 cpu_buffer = buffer->buffers[cpu]; 3371 /* This is the shift value for the above recursive locking */ 3372 cpu_buffer->nest -= NESTED_BITS; 3373 preempt_enable_notrace(); 3374 } 3375 3376 /** 3377 * ring_buffer_unlock_commit - commit a reserved 3378 * @buffer: The buffer to commit to 3379 * 3380 * This commits the data to the ring buffer, and releases any locks held. 3381 * 3382 * Must be paired with ring_buffer_lock_reserve. 3383 */ 3384 int ring_buffer_unlock_commit(struct trace_buffer *buffer) 3385 { 3386 struct ring_buffer_per_cpu *cpu_buffer; 3387 int cpu = raw_smp_processor_id(); 3388 3389 cpu_buffer = buffer->buffers[cpu]; 3390 3391 rb_commit(cpu_buffer); 3392 3393 rb_wakeups(buffer, cpu_buffer); 3394 3395 trace_recursive_unlock(cpu_buffer); 3396 3397 preempt_enable_notrace(); 3398 3399 return 0; 3400 } 3401 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 3402 3403 /* Special value to validate all deltas on a page. */ 3404 #define CHECK_FULL_PAGE 1L 3405 3406 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS 3407 static void dump_buffer_page(struct buffer_data_page *bpage, 3408 struct rb_event_info *info, 3409 unsigned long tail) 3410 { 3411 struct ring_buffer_event *event; 3412 u64 ts, delta; 3413 int e; 3414 3415 ts = bpage->time_stamp; 3416 pr_warn(" [%lld] PAGE TIME STAMP\n", ts); 3417 3418 for (e = 0; e < tail; e += rb_event_length(event)) { 3419 3420 event = (struct ring_buffer_event *)(bpage->data + e); 3421 3422 switch (event->type_len) { 3423 3424 case RINGBUF_TYPE_TIME_EXTEND: 3425 delta = rb_event_time_stamp(event); 3426 ts += delta; 3427 pr_warn(" [%lld] delta:%lld TIME EXTEND\n", ts, delta); 3428 break; 3429 3430 case RINGBUF_TYPE_TIME_STAMP: 3431 delta = rb_event_time_stamp(event); 3432 ts = rb_fix_abs_ts(delta, ts); 3433 pr_warn(" [%lld] absolute:%lld TIME STAMP\n", ts, delta); 3434 break; 3435 3436 case RINGBUF_TYPE_PADDING: 3437 ts += event->time_delta; 3438 pr_warn(" [%lld] delta:%d PADDING\n", ts, event->time_delta); 3439 break; 3440 3441 case RINGBUF_TYPE_DATA: 3442 ts += event->time_delta; 3443 pr_warn(" [%lld] delta:%d\n", ts, event->time_delta); 3444 break; 3445 3446 default: 3447 break; 3448 } 3449 } 3450 } 3451 3452 static DEFINE_PER_CPU(atomic_t, checking); 3453 static atomic_t ts_dump; 3454 3455 /* 3456 * Check if the current event time stamp matches the deltas on 3457 * the buffer page. 3458 */ 3459 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 3460 struct rb_event_info *info, 3461 unsigned long tail) 3462 { 3463 struct ring_buffer_event *event; 3464 struct buffer_data_page *bpage; 3465 u64 ts, delta; 3466 bool full = false; 3467 int e; 3468 3469 bpage = info->tail_page->page; 3470 3471 if (tail == CHECK_FULL_PAGE) { 3472 full = true; 3473 tail = local_read(&bpage->commit); 3474 } else if (info->add_timestamp & 3475 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) { 3476 /* Ignore events with absolute time stamps */ 3477 return; 3478 } 3479 3480 /* 3481 * Do not check the first event (skip possible extends too). 3482 * Also do not check if previous events have not been committed. 3483 */ 3484 if (tail <= 8 || tail > local_read(&bpage->commit)) 3485 return; 3486 3487 /* 3488 * If this interrupted another event, 3489 */ 3490 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1) 3491 goto out; 3492 3493 ts = bpage->time_stamp; 3494 3495 for (e = 0; e < tail; e += rb_event_length(event)) { 3496 3497 event = (struct ring_buffer_event *)(bpage->data + e); 3498 3499 switch (event->type_len) { 3500 3501 case RINGBUF_TYPE_TIME_EXTEND: 3502 delta = rb_event_time_stamp(event); 3503 ts += delta; 3504 break; 3505 3506 case RINGBUF_TYPE_TIME_STAMP: 3507 delta = rb_event_time_stamp(event); 3508 ts = rb_fix_abs_ts(delta, ts); 3509 break; 3510 3511 case RINGBUF_TYPE_PADDING: 3512 if (event->time_delta == 1) 3513 break; 3514 fallthrough; 3515 case RINGBUF_TYPE_DATA: 3516 ts += event->time_delta; 3517 break; 3518 3519 default: 3520 RB_WARN_ON(cpu_buffer, 1); 3521 } 3522 } 3523 if ((full && ts > info->ts) || 3524 (!full && ts + info->delta != info->ts)) { 3525 /* If another report is happening, ignore this one */ 3526 if (atomic_inc_return(&ts_dump) != 1) { 3527 atomic_dec(&ts_dump); 3528 goto out; 3529 } 3530 atomic_inc(&cpu_buffer->record_disabled); 3531 /* There's some cases in boot up that this can happen */ 3532 WARN_ON_ONCE(system_state != SYSTEM_BOOTING); 3533 pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n", 3534 cpu_buffer->cpu, 3535 ts + info->delta, info->ts, info->delta, 3536 info->before, info->after, 3537 full ? " (full)" : ""); 3538 dump_buffer_page(bpage, info, tail); 3539 atomic_dec(&ts_dump); 3540 /* Do not re-enable checking */ 3541 return; 3542 } 3543 out: 3544 atomic_dec(this_cpu_ptr(&checking)); 3545 } 3546 #else 3547 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 3548 struct rb_event_info *info, 3549 unsigned long tail) 3550 { 3551 } 3552 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */ 3553 3554 static struct ring_buffer_event * 3555 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 3556 struct rb_event_info *info) 3557 { 3558 struct ring_buffer_event *event; 3559 struct buffer_page *tail_page; 3560 unsigned long tail, write, w; 3561 bool a_ok; 3562 bool b_ok; 3563 3564 /* Don't let the compiler play games with cpu_buffer->tail_page */ 3565 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 3566 3567 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK; 3568 barrier(); 3569 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before); 3570 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3571 barrier(); 3572 info->ts = rb_time_stamp(cpu_buffer->buffer); 3573 3574 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) { 3575 info->delta = info->ts; 3576 } else { 3577 /* 3578 * If interrupting an event time update, we may need an 3579 * absolute timestamp. 3580 * Don't bother if this is the start of a new page (w == 0). 3581 */ 3582 if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) { 3583 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND; 3584 info->length += RB_LEN_TIME_EXTEND; 3585 } else { 3586 info->delta = info->ts - info->after; 3587 if (unlikely(test_time_stamp(info->delta))) { 3588 info->add_timestamp |= RB_ADD_STAMP_EXTEND; 3589 info->length += RB_LEN_TIME_EXTEND; 3590 } 3591 } 3592 } 3593 3594 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts); 3595 3596 /*C*/ write = local_add_return(info->length, &tail_page->write); 3597 3598 /* set write to only the index of the write */ 3599 write &= RB_WRITE_MASK; 3600 3601 tail = write - info->length; 3602 3603 /* See if we shot pass the end of this buffer page */ 3604 if (unlikely(write > BUF_PAGE_SIZE)) { 3605 /* before and after may now different, fix it up*/ 3606 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before); 3607 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3608 if (a_ok && b_ok && info->before != info->after) 3609 (void)rb_time_cmpxchg(&cpu_buffer->before_stamp, 3610 info->before, info->after); 3611 if (a_ok && b_ok) 3612 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE); 3613 return rb_move_tail(cpu_buffer, tail, info); 3614 } 3615 3616 if (likely(tail == w)) { 3617 u64 save_before; 3618 bool s_ok; 3619 3620 /* Nothing interrupted us between A and C */ 3621 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts); 3622 barrier(); 3623 /*E*/ s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before); 3624 RB_WARN_ON(cpu_buffer, !s_ok); 3625 if (likely(!(info->add_timestamp & 3626 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3627 /* This did not interrupt any time update */ 3628 info->delta = info->ts - info->after; 3629 else 3630 /* Just use full timestamp for interrupting event */ 3631 info->delta = info->ts; 3632 barrier(); 3633 check_buffer(cpu_buffer, info, tail); 3634 if (unlikely(info->ts != save_before)) { 3635 /* SLOW PATH - Interrupted between C and E */ 3636 3637 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3638 RB_WARN_ON(cpu_buffer, !a_ok); 3639 3640 /* Write stamp must only go forward */ 3641 if (save_before > info->after) { 3642 /* 3643 * We do not care about the result, only that 3644 * it gets updated atomically. 3645 */ 3646 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp, 3647 info->after, save_before); 3648 } 3649 } 3650 } else { 3651 u64 ts; 3652 /* SLOW PATH - Interrupted between A and C */ 3653 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3654 /* Was interrupted before here, write_stamp must be valid */ 3655 RB_WARN_ON(cpu_buffer, !a_ok); 3656 ts = rb_time_stamp(cpu_buffer->buffer); 3657 barrier(); 3658 /*E*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) && 3659 info->after < ts && 3660 rb_time_cmpxchg(&cpu_buffer->write_stamp, 3661 info->after, ts)) { 3662 /* Nothing came after this event between C and E */ 3663 info->delta = ts - info->after; 3664 } else { 3665 /* 3666 * Interrupted between C and E: 3667 * Lost the previous events time stamp. Just set the 3668 * delta to zero, and this will be the same time as 3669 * the event this event interrupted. And the events that 3670 * came after this will still be correct (as they would 3671 * have built their delta on the previous event. 3672 */ 3673 info->delta = 0; 3674 } 3675 info->ts = ts; 3676 info->add_timestamp &= ~RB_ADD_STAMP_FORCE; 3677 } 3678 3679 /* 3680 * If this is the first commit on the page, then it has the same 3681 * timestamp as the page itself. 3682 */ 3683 if (unlikely(!tail && !(info->add_timestamp & 3684 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3685 info->delta = 0; 3686 3687 /* We reserved something on the buffer */ 3688 3689 event = __rb_page_index(tail_page, tail); 3690 rb_update_event(cpu_buffer, event, info); 3691 3692 local_inc(&tail_page->entries); 3693 3694 /* 3695 * If this is the first commit on the page, then update 3696 * its timestamp. 3697 */ 3698 if (unlikely(!tail)) 3699 tail_page->page->time_stamp = info->ts; 3700 3701 /* account for these added bytes */ 3702 local_add(info->length, &cpu_buffer->entries_bytes); 3703 3704 return event; 3705 } 3706 3707 static __always_inline struct ring_buffer_event * 3708 rb_reserve_next_event(struct trace_buffer *buffer, 3709 struct ring_buffer_per_cpu *cpu_buffer, 3710 unsigned long length) 3711 { 3712 struct ring_buffer_event *event; 3713 struct rb_event_info info; 3714 int nr_loops = 0; 3715 int add_ts_default; 3716 3717 rb_start_commit(cpu_buffer); 3718 /* The commit page can not change after this */ 3719 3720 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 3721 /* 3722 * Due to the ability to swap a cpu buffer from a buffer 3723 * it is possible it was swapped before we committed. 3724 * (committing stops a swap). We check for it here and 3725 * if it happened, we have to fail the write. 3726 */ 3727 barrier(); 3728 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 3729 local_dec(&cpu_buffer->committing); 3730 local_dec(&cpu_buffer->commits); 3731 return NULL; 3732 } 3733 #endif 3734 3735 info.length = rb_calculate_event_length(length); 3736 3737 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) { 3738 add_ts_default = RB_ADD_STAMP_ABSOLUTE; 3739 info.length += RB_LEN_TIME_EXTEND; 3740 } else { 3741 add_ts_default = RB_ADD_STAMP_NONE; 3742 } 3743 3744 again: 3745 info.add_timestamp = add_ts_default; 3746 info.delta = 0; 3747 3748 /* 3749 * We allow for interrupts to reenter here and do a trace. 3750 * If one does, it will cause this original code to loop 3751 * back here. Even with heavy interrupts happening, this 3752 * should only happen a few times in a row. If this happens 3753 * 1000 times in a row, there must be either an interrupt 3754 * storm or we have something buggy. 3755 * Bail! 3756 */ 3757 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 3758 goto out_fail; 3759 3760 event = __rb_reserve_next(cpu_buffer, &info); 3761 3762 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 3763 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND)) 3764 info.length -= RB_LEN_TIME_EXTEND; 3765 goto again; 3766 } 3767 3768 if (likely(event)) 3769 return event; 3770 out_fail: 3771 rb_end_commit(cpu_buffer); 3772 return NULL; 3773 } 3774 3775 /** 3776 * ring_buffer_lock_reserve - reserve a part of the buffer 3777 * @buffer: the ring buffer to reserve from 3778 * @length: the length of the data to reserve (excluding event header) 3779 * 3780 * Returns a reserved event on the ring buffer to copy directly to. 3781 * The user of this interface will need to get the body to write into 3782 * and can use the ring_buffer_event_data() interface. 3783 * 3784 * The length is the length of the data needed, not the event length 3785 * which also includes the event header. 3786 * 3787 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 3788 * If NULL is returned, then nothing has been allocated or locked. 3789 */ 3790 struct ring_buffer_event * 3791 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length) 3792 { 3793 struct ring_buffer_per_cpu *cpu_buffer; 3794 struct ring_buffer_event *event; 3795 int cpu; 3796 3797 /* If we are tracing schedule, we don't want to recurse */ 3798 preempt_disable_notrace(); 3799 3800 if (unlikely(atomic_read(&buffer->record_disabled))) 3801 goto out; 3802 3803 cpu = raw_smp_processor_id(); 3804 3805 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 3806 goto out; 3807 3808 cpu_buffer = buffer->buffers[cpu]; 3809 3810 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 3811 goto out; 3812 3813 if (unlikely(length > BUF_MAX_DATA_SIZE)) 3814 goto out; 3815 3816 if (unlikely(trace_recursive_lock(cpu_buffer))) 3817 goto out; 3818 3819 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3820 if (!event) 3821 goto out_unlock; 3822 3823 return event; 3824 3825 out_unlock: 3826 trace_recursive_unlock(cpu_buffer); 3827 out: 3828 preempt_enable_notrace(); 3829 return NULL; 3830 } 3831 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 3832 3833 /* 3834 * Decrement the entries to the page that an event is on. 3835 * The event does not even need to exist, only the pointer 3836 * to the page it is on. This may only be called before the commit 3837 * takes place. 3838 */ 3839 static inline void 3840 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 3841 struct ring_buffer_event *event) 3842 { 3843 unsigned long addr = (unsigned long)event; 3844 struct buffer_page *bpage = cpu_buffer->commit_page; 3845 struct buffer_page *start; 3846 3847 addr &= PAGE_MASK; 3848 3849 /* Do the likely case first */ 3850 if (likely(bpage->page == (void *)addr)) { 3851 local_dec(&bpage->entries); 3852 return; 3853 } 3854 3855 /* 3856 * Because the commit page may be on the reader page we 3857 * start with the next page and check the end loop there. 3858 */ 3859 rb_inc_page(&bpage); 3860 start = bpage; 3861 do { 3862 if (bpage->page == (void *)addr) { 3863 local_dec(&bpage->entries); 3864 return; 3865 } 3866 rb_inc_page(&bpage); 3867 } while (bpage != start); 3868 3869 /* commit not part of this buffer?? */ 3870 RB_WARN_ON(cpu_buffer, 1); 3871 } 3872 3873 /** 3874 * ring_buffer_discard_commit - discard an event that has not been committed 3875 * @buffer: the ring buffer 3876 * @event: non committed event to discard 3877 * 3878 * Sometimes an event that is in the ring buffer needs to be ignored. 3879 * This function lets the user discard an event in the ring buffer 3880 * and then that event will not be read later. 3881 * 3882 * This function only works if it is called before the item has been 3883 * committed. It will try to free the event from the ring buffer 3884 * if another event has not been added behind it. 3885 * 3886 * If another event has been added behind it, it will set the event 3887 * up as discarded, and perform the commit. 3888 * 3889 * If this function is called, do not call ring_buffer_unlock_commit on 3890 * the event. 3891 */ 3892 void ring_buffer_discard_commit(struct trace_buffer *buffer, 3893 struct ring_buffer_event *event) 3894 { 3895 struct ring_buffer_per_cpu *cpu_buffer; 3896 int cpu; 3897 3898 /* The event is discarded regardless */ 3899 rb_event_discard(event); 3900 3901 cpu = smp_processor_id(); 3902 cpu_buffer = buffer->buffers[cpu]; 3903 3904 /* 3905 * This must only be called if the event has not been 3906 * committed yet. Thus we can assume that preemption 3907 * is still disabled. 3908 */ 3909 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 3910 3911 rb_decrement_entry(cpu_buffer, event); 3912 if (rb_try_to_discard(cpu_buffer, event)) 3913 goto out; 3914 3915 out: 3916 rb_end_commit(cpu_buffer); 3917 3918 trace_recursive_unlock(cpu_buffer); 3919 3920 preempt_enable_notrace(); 3921 3922 } 3923 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 3924 3925 /** 3926 * ring_buffer_write - write data to the buffer without reserving 3927 * @buffer: The ring buffer to write to. 3928 * @length: The length of the data being written (excluding the event header) 3929 * @data: The data to write to the buffer. 3930 * 3931 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 3932 * one function. If you already have the data to write to the buffer, it 3933 * may be easier to simply call this function. 3934 * 3935 * Note, like ring_buffer_lock_reserve, the length is the length of the data 3936 * and not the length of the event which would hold the header. 3937 */ 3938 int ring_buffer_write(struct trace_buffer *buffer, 3939 unsigned long length, 3940 void *data) 3941 { 3942 struct ring_buffer_per_cpu *cpu_buffer; 3943 struct ring_buffer_event *event; 3944 void *body; 3945 int ret = -EBUSY; 3946 int cpu; 3947 3948 preempt_disable_notrace(); 3949 3950 if (atomic_read(&buffer->record_disabled)) 3951 goto out; 3952 3953 cpu = raw_smp_processor_id(); 3954 3955 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3956 goto out; 3957 3958 cpu_buffer = buffer->buffers[cpu]; 3959 3960 if (atomic_read(&cpu_buffer->record_disabled)) 3961 goto out; 3962 3963 if (length > BUF_MAX_DATA_SIZE) 3964 goto out; 3965 3966 if (unlikely(trace_recursive_lock(cpu_buffer))) 3967 goto out; 3968 3969 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3970 if (!event) 3971 goto out_unlock; 3972 3973 body = rb_event_data(event); 3974 3975 memcpy(body, data, length); 3976 3977 rb_commit(cpu_buffer); 3978 3979 rb_wakeups(buffer, cpu_buffer); 3980 3981 ret = 0; 3982 3983 out_unlock: 3984 trace_recursive_unlock(cpu_buffer); 3985 3986 out: 3987 preempt_enable_notrace(); 3988 3989 return ret; 3990 } 3991 EXPORT_SYMBOL_GPL(ring_buffer_write); 3992 3993 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3994 { 3995 struct buffer_page *reader = cpu_buffer->reader_page; 3996 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3997 struct buffer_page *commit = cpu_buffer->commit_page; 3998 3999 /* In case of error, head will be NULL */ 4000 if (unlikely(!head)) 4001 return true; 4002 4003 /* Reader should exhaust content in reader page */ 4004 if (reader->read != rb_page_commit(reader)) 4005 return false; 4006 4007 /* 4008 * If writers are committing on the reader page, knowing all 4009 * committed content has been read, the ring buffer is empty. 4010 */ 4011 if (commit == reader) 4012 return true; 4013 4014 /* 4015 * If writers are committing on a page other than reader page 4016 * and head page, there should always be content to read. 4017 */ 4018 if (commit != head) 4019 return false; 4020 4021 /* 4022 * Writers are committing on the head page, we just need 4023 * to care about there're committed data, and the reader will 4024 * swap reader page with head page when it is to read data. 4025 */ 4026 return rb_page_commit(commit) == 0; 4027 } 4028 4029 /** 4030 * ring_buffer_record_disable - stop all writes into the buffer 4031 * @buffer: The ring buffer to stop writes to. 4032 * 4033 * This prevents all writes to the buffer. Any attempt to write 4034 * to the buffer after this will fail and return NULL. 4035 * 4036 * The caller should call synchronize_rcu() after this. 4037 */ 4038 void ring_buffer_record_disable(struct trace_buffer *buffer) 4039 { 4040 atomic_inc(&buffer->record_disabled); 4041 } 4042 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 4043 4044 /** 4045 * ring_buffer_record_enable - enable writes to the buffer 4046 * @buffer: The ring buffer to enable writes 4047 * 4048 * Note, multiple disables will need the same number of enables 4049 * to truly enable the writing (much like preempt_disable). 4050 */ 4051 void ring_buffer_record_enable(struct trace_buffer *buffer) 4052 { 4053 atomic_dec(&buffer->record_disabled); 4054 } 4055 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 4056 4057 /** 4058 * ring_buffer_record_off - stop all writes into the buffer 4059 * @buffer: The ring buffer to stop writes to. 4060 * 4061 * This prevents all writes to the buffer. Any attempt to write 4062 * to the buffer after this will fail and return NULL. 4063 * 4064 * This is different than ring_buffer_record_disable() as 4065 * it works like an on/off switch, where as the disable() version 4066 * must be paired with a enable(). 4067 */ 4068 void ring_buffer_record_off(struct trace_buffer *buffer) 4069 { 4070 unsigned int rd; 4071 unsigned int new_rd; 4072 4073 rd = atomic_read(&buffer->record_disabled); 4074 do { 4075 new_rd = rd | RB_BUFFER_OFF; 4076 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd)); 4077 } 4078 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 4079 4080 /** 4081 * ring_buffer_record_on - restart writes into the buffer 4082 * @buffer: The ring buffer to start writes to. 4083 * 4084 * This enables all writes to the buffer that was disabled by 4085 * ring_buffer_record_off(). 4086 * 4087 * This is different than ring_buffer_record_enable() as 4088 * it works like an on/off switch, where as the enable() version 4089 * must be paired with a disable(). 4090 */ 4091 void ring_buffer_record_on(struct trace_buffer *buffer) 4092 { 4093 unsigned int rd; 4094 unsigned int new_rd; 4095 4096 rd = atomic_read(&buffer->record_disabled); 4097 do { 4098 new_rd = rd & ~RB_BUFFER_OFF; 4099 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd)); 4100 } 4101 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 4102 4103 /** 4104 * ring_buffer_record_is_on - return true if the ring buffer can write 4105 * @buffer: The ring buffer to see if write is enabled 4106 * 4107 * Returns true if the ring buffer is in a state that it accepts writes. 4108 */ 4109 bool ring_buffer_record_is_on(struct trace_buffer *buffer) 4110 { 4111 return !atomic_read(&buffer->record_disabled); 4112 } 4113 4114 /** 4115 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable 4116 * @buffer: The ring buffer to see if write is set enabled 4117 * 4118 * Returns true if the ring buffer is set writable by ring_buffer_record_on(). 4119 * Note that this does NOT mean it is in a writable state. 4120 * 4121 * It may return true when the ring buffer has been disabled by 4122 * ring_buffer_record_disable(), as that is a temporary disabling of 4123 * the ring buffer. 4124 */ 4125 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer) 4126 { 4127 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); 4128 } 4129 4130 /** 4131 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 4132 * @buffer: The ring buffer to stop writes to. 4133 * @cpu: The CPU buffer to stop 4134 * 4135 * This prevents all writes to the buffer. Any attempt to write 4136 * to the buffer after this will fail and return NULL. 4137 * 4138 * The caller should call synchronize_rcu() after this. 4139 */ 4140 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu) 4141 { 4142 struct ring_buffer_per_cpu *cpu_buffer; 4143 4144 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4145 return; 4146 4147 cpu_buffer = buffer->buffers[cpu]; 4148 atomic_inc(&cpu_buffer->record_disabled); 4149 } 4150 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 4151 4152 /** 4153 * ring_buffer_record_enable_cpu - enable writes to the buffer 4154 * @buffer: The ring buffer to enable writes 4155 * @cpu: The CPU to enable. 4156 * 4157 * Note, multiple disables will need the same number of enables 4158 * to truly enable the writing (much like preempt_disable). 4159 */ 4160 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu) 4161 { 4162 struct ring_buffer_per_cpu *cpu_buffer; 4163 4164 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4165 return; 4166 4167 cpu_buffer = buffer->buffers[cpu]; 4168 atomic_dec(&cpu_buffer->record_disabled); 4169 } 4170 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 4171 4172 /* 4173 * The total entries in the ring buffer is the running counter 4174 * of entries entered into the ring buffer, minus the sum of 4175 * the entries read from the ring buffer and the number of 4176 * entries that were overwritten. 4177 */ 4178 static inline unsigned long 4179 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 4180 { 4181 return local_read(&cpu_buffer->entries) - 4182 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 4183 } 4184 4185 /** 4186 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 4187 * @buffer: The ring buffer 4188 * @cpu: The per CPU buffer to read from. 4189 */ 4190 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu) 4191 { 4192 unsigned long flags; 4193 struct ring_buffer_per_cpu *cpu_buffer; 4194 struct buffer_page *bpage; 4195 u64 ret = 0; 4196 4197 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4198 return 0; 4199 4200 cpu_buffer = buffer->buffers[cpu]; 4201 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4202 /* 4203 * if the tail is on reader_page, oldest time stamp is on the reader 4204 * page 4205 */ 4206 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 4207 bpage = cpu_buffer->reader_page; 4208 else 4209 bpage = rb_set_head_page(cpu_buffer); 4210 if (bpage) 4211 ret = bpage->page->time_stamp; 4212 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4213 4214 return ret; 4215 } 4216 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 4217 4218 /** 4219 * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer 4220 * @buffer: The ring buffer 4221 * @cpu: The per CPU buffer to read from. 4222 */ 4223 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu) 4224 { 4225 struct ring_buffer_per_cpu *cpu_buffer; 4226 unsigned long ret; 4227 4228 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4229 return 0; 4230 4231 cpu_buffer = buffer->buffers[cpu]; 4232 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 4233 4234 return ret; 4235 } 4236 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 4237 4238 /** 4239 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 4240 * @buffer: The ring buffer 4241 * @cpu: The per CPU buffer to get the entries from. 4242 */ 4243 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu) 4244 { 4245 struct ring_buffer_per_cpu *cpu_buffer; 4246 4247 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4248 return 0; 4249 4250 cpu_buffer = buffer->buffers[cpu]; 4251 4252 return rb_num_of_entries(cpu_buffer); 4253 } 4254 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 4255 4256 /** 4257 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 4258 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 4259 * @buffer: The ring buffer 4260 * @cpu: The per CPU buffer to get the number of overruns from 4261 */ 4262 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu) 4263 { 4264 struct ring_buffer_per_cpu *cpu_buffer; 4265 unsigned long ret; 4266 4267 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4268 return 0; 4269 4270 cpu_buffer = buffer->buffers[cpu]; 4271 ret = local_read(&cpu_buffer->overrun); 4272 4273 return ret; 4274 } 4275 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 4276 4277 /** 4278 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 4279 * commits failing due to the buffer wrapping around while there are uncommitted 4280 * events, such as during an interrupt storm. 4281 * @buffer: The ring buffer 4282 * @cpu: The per CPU buffer to get the number of overruns from 4283 */ 4284 unsigned long 4285 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu) 4286 { 4287 struct ring_buffer_per_cpu *cpu_buffer; 4288 unsigned long ret; 4289 4290 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4291 return 0; 4292 4293 cpu_buffer = buffer->buffers[cpu]; 4294 ret = local_read(&cpu_buffer->commit_overrun); 4295 4296 return ret; 4297 } 4298 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 4299 4300 /** 4301 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 4302 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 4303 * @buffer: The ring buffer 4304 * @cpu: The per CPU buffer to get the number of overruns from 4305 */ 4306 unsigned long 4307 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu) 4308 { 4309 struct ring_buffer_per_cpu *cpu_buffer; 4310 unsigned long ret; 4311 4312 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4313 return 0; 4314 4315 cpu_buffer = buffer->buffers[cpu]; 4316 ret = local_read(&cpu_buffer->dropped_events); 4317 4318 return ret; 4319 } 4320 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 4321 4322 /** 4323 * ring_buffer_read_events_cpu - get the number of events successfully read 4324 * @buffer: The ring buffer 4325 * @cpu: The per CPU buffer to get the number of events read 4326 */ 4327 unsigned long 4328 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu) 4329 { 4330 struct ring_buffer_per_cpu *cpu_buffer; 4331 4332 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4333 return 0; 4334 4335 cpu_buffer = buffer->buffers[cpu]; 4336 return cpu_buffer->read; 4337 } 4338 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 4339 4340 /** 4341 * ring_buffer_entries - get the number of entries in a buffer 4342 * @buffer: The ring buffer 4343 * 4344 * Returns the total number of entries in the ring buffer 4345 * (all CPU entries) 4346 */ 4347 unsigned long ring_buffer_entries(struct trace_buffer *buffer) 4348 { 4349 struct ring_buffer_per_cpu *cpu_buffer; 4350 unsigned long entries = 0; 4351 int cpu; 4352 4353 /* if you care about this being correct, lock the buffer */ 4354 for_each_buffer_cpu(buffer, cpu) { 4355 cpu_buffer = buffer->buffers[cpu]; 4356 entries += rb_num_of_entries(cpu_buffer); 4357 } 4358 4359 return entries; 4360 } 4361 EXPORT_SYMBOL_GPL(ring_buffer_entries); 4362 4363 /** 4364 * ring_buffer_overruns - get the number of overruns in buffer 4365 * @buffer: The ring buffer 4366 * 4367 * Returns the total number of overruns in the ring buffer 4368 * (all CPU entries) 4369 */ 4370 unsigned long ring_buffer_overruns(struct trace_buffer *buffer) 4371 { 4372 struct ring_buffer_per_cpu *cpu_buffer; 4373 unsigned long overruns = 0; 4374 int cpu; 4375 4376 /* if you care about this being correct, lock the buffer */ 4377 for_each_buffer_cpu(buffer, cpu) { 4378 cpu_buffer = buffer->buffers[cpu]; 4379 overruns += local_read(&cpu_buffer->overrun); 4380 } 4381 4382 return overruns; 4383 } 4384 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 4385 4386 static void rb_iter_reset(struct ring_buffer_iter *iter) 4387 { 4388 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4389 4390 /* Iterator usage is expected to have record disabled */ 4391 iter->head_page = cpu_buffer->reader_page; 4392 iter->head = cpu_buffer->reader_page->read; 4393 iter->next_event = iter->head; 4394 4395 iter->cache_reader_page = iter->head_page; 4396 iter->cache_read = cpu_buffer->read; 4397 iter->cache_pages_removed = cpu_buffer->pages_removed; 4398 4399 if (iter->head) { 4400 iter->read_stamp = cpu_buffer->read_stamp; 4401 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp; 4402 } else { 4403 iter->read_stamp = iter->head_page->page->time_stamp; 4404 iter->page_stamp = iter->read_stamp; 4405 } 4406 } 4407 4408 /** 4409 * ring_buffer_iter_reset - reset an iterator 4410 * @iter: The iterator to reset 4411 * 4412 * Resets the iterator, so that it will start from the beginning 4413 * again. 4414 */ 4415 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 4416 { 4417 struct ring_buffer_per_cpu *cpu_buffer; 4418 unsigned long flags; 4419 4420 if (!iter) 4421 return; 4422 4423 cpu_buffer = iter->cpu_buffer; 4424 4425 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4426 rb_iter_reset(iter); 4427 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4428 } 4429 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 4430 4431 /** 4432 * ring_buffer_iter_empty - check if an iterator has no more to read 4433 * @iter: The iterator to check 4434 */ 4435 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 4436 { 4437 struct ring_buffer_per_cpu *cpu_buffer; 4438 struct buffer_page *reader; 4439 struct buffer_page *head_page; 4440 struct buffer_page *commit_page; 4441 struct buffer_page *curr_commit_page; 4442 unsigned commit; 4443 u64 curr_commit_ts; 4444 u64 commit_ts; 4445 4446 cpu_buffer = iter->cpu_buffer; 4447 reader = cpu_buffer->reader_page; 4448 head_page = cpu_buffer->head_page; 4449 commit_page = cpu_buffer->commit_page; 4450 commit_ts = commit_page->page->time_stamp; 4451 4452 /* 4453 * When the writer goes across pages, it issues a cmpxchg which 4454 * is a mb(), which will synchronize with the rmb here. 4455 * (see rb_tail_page_update()) 4456 */ 4457 smp_rmb(); 4458 commit = rb_page_commit(commit_page); 4459 /* We want to make sure that the commit page doesn't change */ 4460 smp_rmb(); 4461 4462 /* Make sure commit page didn't change */ 4463 curr_commit_page = READ_ONCE(cpu_buffer->commit_page); 4464 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp); 4465 4466 /* If the commit page changed, then there's more data */ 4467 if (curr_commit_page != commit_page || 4468 curr_commit_ts != commit_ts) 4469 return 0; 4470 4471 /* Still racy, as it may return a false positive, but that's OK */ 4472 return ((iter->head_page == commit_page && iter->head >= commit) || 4473 (iter->head_page == reader && commit_page == head_page && 4474 head_page->read == commit && 4475 iter->head == rb_page_commit(cpu_buffer->reader_page))); 4476 } 4477 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 4478 4479 static void 4480 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 4481 struct ring_buffer_event *event) 4482 { 4483 u64 delta; 4484 4485 switch (event->type_len) { 4486 case RINGBUF_TYPE_PADDING: 4487 return; 4488 4489 case RINGBUF_TYPE_TIME_EXTEND: 4490 delta = rb_event_time_stamp(event); 4491 cpu_buffer->read_stamp += delta; 4492 return; 4493 4494 case RINGBUF_TYPE_TIME_STAMP: 4495 delta = rb_event_time_stamp(event); 4496 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp); 4497 cpu_buffer->read_stamp = delta; 4498 return; 4499 4500 case RINGBUF_TYPE_DATA: 4501 cpu_buffer->read_stamp += event->time_delta; 4502 return; 4503 4504 default: 4505 RB_WARN_ON(cpu_buffer, 1); 4506 } 4507 } 4508 4509 static void 4510 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 4511 struct ring_buffer_event *event) 4512 { 4513 u64 delta; 4514 4515 switch (event->type_len) { 4516 case RINGBUF_TYPE_PADDING: 4517 return; 4518 4519 case RINGBUF_TYPE_TIME_EXTEND: 4520 delta = rb_event_time_stamp(event); 4521 iter->read_stamp += delta; 4522 return; 4523 4524 case RINGBUF_TYPE_TIME_STAMP: 4525 delta = rb_event_time_stamp(event); 4526 delta = rb_fix_abs_ts(delta, iter->read_stamp); 4527 iter->read_stamp = delta; 4528 return; 4529 4530 case RINGBUF_TYPE_DATA: 4531 iter->read_stamp += event->time_delta; 4532 return; 4533 4534 default: 4535 RB_WARN_ON(iter->cpu_buffer, 1); 4536 } 4537 } 4538 4539 static struct buffer_page * 4540 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 4541 { 4542 struct buffer_page *reader = NULL; 4543 unsigned long overwrite; 4544 unsigned long flags; 4545 int nr_loops = 0; 4546 bool ret; 4547 4548 local_irq_save(flags); 4549 arch_spin_lock(&cpu_buffer->lock); 4550 4551 again: 4552 /* 4553 * This should normally only loop twice. But because the 4554 * start of the reader inserts an empty page, it causes 4555 * a case where we will loop three times. There should be no 4556 * reason to loop four times (that I know of). 4557 */ 4558 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 4559 reader = NULL; 4560 goto out; 4561 } 4562 4563 reader = cpu_buffer->reader_page; 4564 4565 /* If there's more to read, return this page */ 4566 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 4567 goto out; 4568 4569 /* Never should we have an index greater than the size */ 4570 if (RB_WARN_ON(cpu_buffer, 4571 cpu_buffer->reader_page->read > rb_page_size(reader))) 4572 goto out; 4573 4574 /* check if we caught up to the tail */ 4575 reader = NULL; 4576 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 4577 goto out; 4578 4579 /* Don't bother swapping if the ring buffer is empty */ 4580 if (rb_num_of_entries(cpu_buffer) == 0) 4581 goto out; 4582 4583 /* 4584 * Reset the reader page to size zero. 4585 */ 4586 local_set(&cpu_buffer->reader_page->write, 0); 4587 local_set(&cpu_buffer->reader_page->entries, 0); 4588 local_set(&cpu_buffer->reader_page->page->commit, 0); 4589 cpu_buffer->reader_page->real_end = 0; 4590 4591 spin: 4592 /* 4593 * Splice the empty reader page into the list around the head. 4594 */ 4595 reader = rb_set_head_page(cpu_buffer); 4596 if (!reader) 4597 goto out; 4598 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 4599 cpu_buffer->reader_page->list.prev = reader->list.prev; 4600 4601 /* 4602 * cpu_buffer->pages just needs to point to the buffer, it 4603 * has no specific buffer page to point to. Lets move it out 4604 * of our way so we don't accidentally swap it. 4605 */ 4606 cpu_buffer->pages = reader->list.prev; 4607 4608 /* The reader page will be pointing to the new head */ 4609 rb_set_list_to_head(&cpu_buffer->reader_page->list); 4610 4611 /* 4612 * We want to make sure we read the overruns after we set up our 4613 * pointers to the next object. The writer side does a 4614 * cmpxchg to cross pages which acts as the mb on the writer 4615 * side. Note, the reader will constantly fail the swap 4616 * while the writer is updating the pointers, so this 4617 * guarantees that the overwrite recorded here is the one we 4618 * want to compare with the last_overrun. 4619 */ 4620 smp_mb(); 4621 overwrite = local_read(&(cpu_buffer->overrun)); 4622 4623 /* 4624 * Here's the tricky part. 4625 * 4626 * We need to move the pointer past the header page. 4627 * But we can only do that if a writer is not currently 4628 * moving it. The page before the header page has the 4629 * flag bit '1' set if it is pointing to the page we want. 4630 * but if the writer is in the process of moving it 4631 * than it will be '2' or already moved '0'. 4632 */ 4633 4634 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 4635 4636 /* 4637 * If we did not convert it, then we must try again. 4638 */ 4639 if (!ret) 4640 goto spin; 4641 4642 /* 4643 * Yay! We succeeded in replacing the page. 4644 * 4645 * Now make the new head point back to the reader page. 4646 */ 4647 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 4648 rb_inc_page(&cpu_buffer->head_page); 4649 4650 local_inc(&cpu_buffer->pages_read); 4651 4652 /* Finally update the reader page to the new head */ 4653 cpu_buffer->reader_page = reader; 4654 cpu_buffer->reader_page->read = 0; 4655 4656 if (overwrite != cpu_buffer->last_overrun) { 4657 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 4658 cpu_buffer->last_overrun = overwrite; 4659 } 4660 4661 goto again; 4662 4663 out: 4664 /* Update the read_stamp on the first event */ 4665 if (reader && reader->read == 0) 4666 cpu_buffer->read_stamp = reader->page->time_stamp; 4667 4668 arch_spin_unlock(&cpu_buffer->lock); 4669 local_irq_restore(flags); 4670 4671 /* 4672 * The writer has preempt disable, wait for it. But not forever 4673 * Although, 1 second is pretty much "forever" 4674 */ 4675 #define USECS_WAIT 1000000 4676 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) { 4677 /* If the write is past the end of page, a writer is still updating it */ 4678 if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE)) 4679 break; 4680 4681 udelay(1); 4682 4683 /* Get the latest version of the reader write value */ 4684 smp_rmb(); 4685 } 4686 4687 /* The writer is not moving forward? Something is wrong */ 4688 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT)) 4689 reader = NULL; 4690 4691 /* 4692 * Make sure we see any padding after the write update 4693 * (see rb_reset_tail()). 4694 * 4695 * In addition, a writer may be writing on the reader page 4696 * if the page has not been fully filled, so the read barrier 4697 * is also needed to make sure we see the content of what is 4698 * committed by the writer (see rb_set_commit_to_write()). 4699 */ 4700 smp_rmb(); 4701 4702 4703 return reader; 4704 } 4705 4706 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 4707 { 4708 struct ring_buffer_event *event; 4709 struct buffer_page *reader; 4710 unsigned length; 4711 4712 reader = rb_get_reader_page(cpu_buffer); 4713 4714 /* This function should not be called when buffer is empty */ 4715 if (RB_WARN_ON(cpu_buffer, !reader)) 4716 return; 4717 4718 event = rb_reader_event(cpu_buffer); 4719 4720 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 4721 cpu_buffer->read++; 4722 4723 rb_update_read_stamp(cpu_buffer, event); 4724 4725 length = rb_event_length(event); 4726 cpu_buffer->reader_page->read += length; 4727 cpu_buffer->read_bytes += length; 4728 } 4729 4730 static void rb_advance_iter(struct ring_buffer_iter *iter) 4731 { 4732 struct ring_buffer_per_cpu *cpu_buffer; 4733 4734 cpu_buffer = iter->cpu_buffer; 4735 4736 /* If head == next_event then we need to jump to the next event */ 4737 if (iter->head == iter->next_event) { 4738 /* If the event gets overwritten again, there's nothing to do */ 4739 if (rb_iter_head_event(iter) == NULL) 4740 return; 4741 } 4742 4743 iter->head = iter->next_event; 4744 4745 /* 4746 * Check if we are at the end of the buffer. 4747 */ 4748 if (iter->next_event >= rb_page_size(iter->head_page)) { 4749 /* discarded commits can make the page empty */ 4750 if (iter->head_page == cpu_buffer->commit_page) 4751 return; 4752 rb_inc_iter(iter); 4753 return; 4754 } 4755 4756 rb_update_iter_read_stamp(iter, iter->event); 4757 } 4758 4759 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 4760 { 4761 return cpu_buffer->lost_events; 4762 } 4763 4764 static struct ring_buffer_event * 4765 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 4766 unsigned long *lost_events) 4767 { 4768 struct ring_buffer_event *event; 4769 struct buffer_page *reader; 4770 int nr_loops = 0; 4771 4772 if (ts) 4773 *ts = 0; 4774 again: 4775 /* 4776 * We repeat when a time extend is encountered. 4777 * Since the time extend is always attached to a data event, 4778 * we should never loop more than once. 4779 * (We never hit the following condition more than twice). 4780 */ 4781 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 4782 return NULL; 4783 4784 reader = rb_get_reader_page(cpu_buffer); 4785 if (!reader) 4786 return NULL; 4787 4788 event = rb_reader_event(cpu_buffer); 4789 4790 switch (event->type_len) { 4791 case RINGBUF_TYPE_PADDING: 4792 if (rb_null_event(event)) 4793 RB_WARN_ON(cpu_buffer, 1); 4794 /* 4795 * Because the writer could be discarding every 4796 * event it creates (which would probably be bad) 4797 * if we were to go back to "again" then we may never 4798 * catch up, and will trigger the warn on, or lock 4799 * the box. Return the padding, and we will release 4800 * the current locks, and try again. 4801 */ 4802 return event; 4803 4804 case RINGBUF_TYPE_TIME_EXTEND: 4805 /* Internal data, OK to advance */ 4806 rb_advance_reader(cpu_buffer); 4807 goto again; 4808 4809 case RINGBUF_TYPE_TIME_STAMP: 4810 if (ts) { 4811 *ts = rb_event_time_stamp(event); 4812 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp); 4813 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4814 cpu_buffer->cpu, ts); 4815 } 4816 /* Internal data, OK to advance */ 4817 rb_advance_reader(cpu_buffer); 4818 goto again; 4819 4820 case RINGBUF_TYPE_DATA: 4821 if (ts && !(*ts)) { 4822 *ts = cpu_buffer->read_stamp + event->time_delta; 4823 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4824 cpu_buffer->cpu, ts); 4825 } 4826 if (lost_events) 4827 *lost_events = rb_lost_events(cpu_buffer); 4828 return event; 4829 4830 default: 4831 RB_WARN_ON(cpu_buffer, 1); 4832 } 4833 4834 return NULL; 4835 } 4836 EXPORT_SYMBOL_GPL(ring_buffer_peek); 4837 4838 static struct ring_buffer_event * 4839 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4840 { 4841 struct trace_buffer *buffer; 4842 struct ring_buffer_per_cpu *cpu_buffer; 4843 struct ring_buffer_event *event; 4844 int nr_loops = 0; 4845 4846 if (ts) 4847 *ts = 0; 4848 4849 cpu_buffer = iter->cpu_buffer; 4850 buffer = cpu_buffer->buffer; 4851 4852 /* 4853 * Check if someone performed a consuming read to the buffer 4854 * or removed some pages from the buffer. In these cases, 4855 * iterator was invalidated and we need to reset it. 4856 */ 4857 if (unlikely(iter->cache_read != cpu_buffer->read || 4858 iter->cache_reader_page != cpu_buffer->reader_page || 4859 iter->cache_pages_removed != cpu_buffer->pages_removed)) 4860 rb_iter_reset(iter); 4861 4862 again: 4863 if (ring_buffer_iter_empty(iter)) 4864 return NULL; 4865 4866 /* 4867 * As the writer can mess with what the iterator is trying 4868 * to read, just give up if we fail to get an event after 4869 * three tries. The iterator is not as reliable when reading 4870 * the ring buffer with an active write as the consumer is. 4871 * Do not warn if the three failures is reached. 4872 */ 4873 if (++nr_loops > 3) 4874 return NULL; 4875 4876 if (rb_per_cpu_empty(cpu_buffer)) 4877 return NULL; 4878 4879 if (iter->head >= rb_page_size(iter->head_page)) { 4880 rb_inc_iter(iter); 4881 goto again; 4882 } 4883 4884 event = rb_iter_head_event(iter); 4885 if (!event) 4886 goto again; 4887 4888 switch (event->type_len) { 4889 case RINGBUF_TYPE_PADDING: 4890 if (rb_null_event(event)) { 4891 rb_inc_iter(iter); 4892 goto again; 4893 } 4894 rb_advance_iter(iter); 4895 return event; 4896 4897 case RINGBUF_TYPE_TIME_EXTEND: 4898 /* Internal data, OK to advance */ 4899 rb_advance_iter(iter); 4900 goto again; 4901 4902 case RINGBUF_TYPE_TIME_STAMP: 4903 if (ts) { 4904 *ts = rb_event_time_stamp(event); 4905 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp); 4906 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4907 cpu_buffer->cpu, ts); 4908 } 4909 /* Internal data, OK to advance */ 4910 rb_advance_iter(iter); 4911 goto again; 4912 4913 case RINGBUF_TYPE_DATA: 4914 if (ts && !(*ts)) { 4915 *ts = iter->read_stamp + event->time_delta; 4916 ring_buffer_normalize_time_stamp(buffer, 4917 cpu_buffer->cpu, ts); 4918 } 4919 return event; 4920 4921 default: 4922 RB_WARN_ON(cpu_buffer, 1); 4923 } 4924 4925 return NULL; 4926 } 4927 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 4928 4929 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 4930 { 4931 if (likely(!in_nmi())) { 4932 raw_spin_lock(&cpu_buffer->reader_lock); 4933 return true; 4934 } 4935 4936 /* 4937 * If an NMI die dumps out the content of the ring buffer 4938 * trylock must be used to prevent a deadlock if the NMI 4939 * preempted a task that holds the ring buffer locks. If 4940 * we get the lock then all is fine, if not, then continue 4941 * to do the read, but this can corrupt the ring buffer, 4942 * so it must be permanently disabled from future writes. 4943 * Reading from NMI is a oneshot deal. 4944 */ 4945 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 4946 return true; 4947 4948 /* Continue without locking, but disable the ring buffer */ 4949 atomic_inc(&cpu_buffer->record_disabled); 4950 return false; 4951 } 4952 4953 static inline void 4954 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 4955 { 4956 if (likely(locked)) 4957 raw_spin_unlock(&cpu_buffer->reader_lock); 4958 } 4959 4960 /** 4961 * ring_buffer_peek - peek at the next event to be read 4962 * @buffer: The ring buffer to read 4963 * @cpu: The cpu to peak at 4964 * @ts: The timestamp counter of this event. 4965 * @lost_events: a variable to store if events were lost (may be NULL) 4966 * 4967 * This will return the event that will be read next, but does 4968 * not consume the data. 4969 */ 4970 struct ring_buffer_event * 4971 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts, 4972 unsigned long *lost_events) 4973 { 4974 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4975 struct ring_buffer_event *event; 4976 unsigned long flags; 4977 bool dolock; 4978 4979 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4980 return NULL; 4981 4982 again: 4983 local_irq_save(flags); 4984 dolock = rb_reader_lock(cpu_buffer); 4985 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4986 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4987 rb_advance_reader(cpu_buffer); 4988 rb_reader_unlock(cpu_buffer, dolock); 4989 local_irq_restore(flags); 4990 4991 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4992 goto again; 4993 4994 return event; 4995 } 4996 4997 /** ring_buffer_iter_dropped - report if there are dropped events 4998 * @iter: The ring buffer iterator 4999 * 5000 * Returns true if there was dropped events since the last peek. 5001 */ 5002 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter) 5003 { 5004 bool ret = iter->missed_events != 0; 5005 5006 iter->missed_events = 0; 5007 return ret; 5008 } 5009 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped); 5010 5011 /** 5012 * ring_buffer_iter_peek - peek at the next event to be read 5013 * @iter: The ring buffer iterator 5014 * @ts: The timestamp counter of this event. 5015 * 5016 * This will return the event that will be read next, but does 5017 * not increment the iterator. 5018 */ 5019 struct ring_buffer_event * 5020 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 5021 { 5022 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5023 struct ring_buffer_event *event; 5024 unsigned long flags; 5025 5026 again: 5027 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5028 event = rb_iter_peek(iter, ts); 5029 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5030 5031 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5032 goto again; 5033 5034 return event; 5035 } 5036 5037 /** 5038 * ring_buffer_consume - return an event and consume it 5039 * @buffer: The ring buffer to get the next event from 5040 * @cpu: the cpu to read the buffer from 5041 * @ts: a variable to store the timestamp (may be NULL) 5042 * @lost_events: a variable to store if events were lost (may be NULL) 5043 * 5044 * Returns the next event in the ring buffer, and that event is consumed. 5045 * Meaning, that sequential reads will keep returning a different event, 5046 * and eventually empty the ring buffer if the producer is slower. 5047 */ 5048 struct ring_buffer_event * 5049 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts, 5050 unsigned long *lost_events) 5051 { 5052 struct ring_buffer_per_cpu *cpu_buffer; 5053 struct ring_buffer_event *event = NULL; 5054 unsigned long flags; 5055 bool dolock; 5056 5057 again: 5058 /* might be called in atomic */ 5059 preempt_disable(); 5060 5061 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5062 goto out; 5063 5064 cpu_buffer = buffer->buffers[cpu]; 5065 local_irq_save(flags); 5066 dolock = rb_reader_lock(cpu_buffer); 5067 5068 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 5069 if (event) { 5070 cpu_buffer->lost_events = 0; 5071 rb_advance_reader(cpu_buffer); 5072 } 5073 5074 rb_reader_unlock(cpu_buffer, dolock); 5075 local_irq_restore(flags); 5076 5077 out: 5078 preempt_enable(); 5079 5080 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5081 goto again; 5082 5083 return event; 5084 } 5085 EXPORT_SYMBOL_GPL(ring_buffer_consume); 5086 5087 /** 5088 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 5089 * @buffer: The ring buffer to read from 5090 * @cpu: The cpu buffer to iterate over 5091 * @flags: gfp flags to use for memory allocation 5092 * 5093 * This performs the initial preparations necessary to iterate 5094 * through the buffer. Memory is allocated, buffer recording 5095 * is disabled, and the iterator pointer is returned to the caller. 5096 * 5097 * Disabling buffer recording prevents the reading from being 5098 * corrupted. This is not a consuming read, so a producer is not 5099 * expected. 5100 * 5101 * After a sequence of ring_buffer_read_prepare calls, the user is 5102 * expected to make at least one call to ring_buffer_read_prepare_sync. 5103 * Afterwards, ring_buffer_read_start is invoked to get things going 5104 * for real. 5105 * 5106 * This overall must be paired with ring_buffer_read_finish. 5107 */ 5108 struct ring_buffer_iter * 5109 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags) 5110 { 5111 struct ring_buffer_per_cpu *cpu_buffer; 5112 struct ring_buffer_iter *iter; 5113 5114 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5115 return NULL; 5116 5117 iter = kzalloc(sizeof(*iter), flags); 5118 if (!iter) 5119 return NULL; 5120 5121 iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags); 5122 if (!iter->event) { 5123 kfree(iter); 5124 return NULL; 5125 } 5126 5127 cpu_buffer = buffer->buffers[cpu]; 5128 5129 iter->cpu_buffer = cpu_buffer; 5130 5131 atomic_inc(&cpu_buffer->resize_disabled); 5132 5133 return iter; 5134 } 5135 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 5136 5137 /** 5138 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 5139 * 5140 * All previously invoked ring_buffer_read_prepare calls to prepare 5141 * iterators will be synchronized. Afterwards, read_buffer_read_start 5142 * calls on those iterators are allowed. 5143 */ 5144 void 5145 ring_buffer_read_prepare_sync(void) 5146 { 5147 synchronize_rcu(); 5148 } 5149 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 5150 5151 /** 5152 * ring_buffer_read_start - start a non consuming read of the buffer 5153 * @iter: The iterator returned by ring_buffer_read_prepare 5154 * 5155 * This finalizes the startup of an iteration through the buffer. 5156 * The iterator comes from a call to ring_buffer_read_prepare and 5157 * an intervening ring_buffer_read_prepare_sync must have been 5158 * performed. 5159 * 5160 * Must be paired with ring_buffer_read_finish. 5161 */ 5162 void 5163 ring_buffer_read_start(struct ring_buffer_iter *iter) 5164 { 5165 struct ring_buffer_per_cpu *cpu_buffer; 5166 unsigned long flags; 5167 5168 if (!iter) 5169 return; 5170 5171 cpu_buffer = iter->cpu_buffer; 5172 5173 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5174 arch_spin_lock(&cpu_buffer->lock); 5175 rb_iter_reset(iter); 5176 arch_spin_unlock(&cpu_buffer->lock); 5177 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5178 } 5179 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 5180 5181 /** 5182 * ring_buffer_read_finish - finish reading the iterator of the buffer 5183 * @iter: The iterator retrieved by ring_buffer_start 5184 * 5185 * This re-enables the recording to the buffer, and frees the 5186 * iterator. 5187 */ 5188 void 5189 ring_buffer_read_finish(struct ring_buffer_iter *iter) 5190 { 5191 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5192 unsigned long flags; 5193 5194 /* 5195 * Ring buffer is disabled from recording, here's a good place 5196 * to check the integrity of the ring buffer. 5197 * Must prevent readers from trying to read, as the check 5198 * clears the HEAD page and readers require it. 5199 */ 5200 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5201 rb_check_pages(cpu_buffer); 5202 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5203 5204 atomic_dec(&cpu_buffer->resize_disabled); 5205 kfree(iter->event); 5206 kfree(iter); 5207 } 5208 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 5209 5210 /** 5211 * ring_buffer_iter_advance - advance the iterator to the next location 5212 * @iter: The ring buffer iterator 5213 * 5214 * Move the location of the iterator such that the next read will 5215 * be the next location of the iterator. 5216 */ 5217 void ring_buffer_iter_advance(struct ring_buffer_iter *iter) 5218 { 5219 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5220 unsigned long flags; 5221 5222 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5223 5224 rb_advance_iter(iter); 5225 5226 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5227 } 5228 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance); 5229 5230 /** 5231 * ring_buffer_size - return the size of the ring buffer (in bytes) 5232 * @buffer: The ring buffer. 5233 * @cpu: The CPU to get ring buffer size from. 5234 */ 5235 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu) 5236 { 5237 /* 5238 * Earlier, this method returned 5239 * BUF_PAGE_SIZE * buffer->nr_pages 5240 * Since the nr_pages field is now removed, we have converted this to 5241 * return the per cpu buffer value. 5242 */ 5243 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5244 return 0; 5245 5246 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 5247 } 5248 EXPORT_SYMBOL_GPL(ring_buffer_size); 5249 5250 static void rb_clear_buffer_page(struct buffer_page *page) 5251 { 5252 local_set(&page->write, 0); 5253 local_set(&page->entries, 0); 5254 rb_init_page(page->page); 5255 page->read = 0; 5256 } 5257 5258 static void 5259 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 5260 { 5261 struct buffer_page *page; 5262 5263 rb_head_page_deactivate(cpu_buffer); 5264 5265 cpu_buffer->head_page 5266 = list_entry(cpu_buffer->pages, struct buffer_page, list); 5267 rb_clear_buffer_page(cpu_buffer->head_page); 5268 list_for_each_entry(page, cpu_buffer->pages, list) { 5269 rb_clear_buffer_page(page); 5270 } 5271 5272 cpu_buffer->tail_page = cpu_buffer->head_page; 5273 cpu_buffer->commit_page = cpu_buffer->head_page; 5274 5275 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 5276 INIT_LIST_HEAD(&cpu_buffer->new_pages); 5277 rb_clear_buffer_page(cpu_buffer->reader_page); 5278 5279 local_set(&cpu_buffer->entries_bytes, 0); 5280 local_set(&cpu_buffer->overrun, 0); 5281 local_set(&cpu_buffer->commit_overrun, 0); 5282 local_set(&cpu_buffer->dropped_events, 0); 5283 local_set(&cpu_buffer->entries, 0); 5284 local_set(&cpu_buffer->committing, 0); 5285 local_set(&cpu_buffer->commits, 0); 5286 local_set(&cpu_buffer->pages_touched, 0); 5287 local_set(&cpu_buffer->pages_lost, 0); 5288 local_set(&cpu_buffer->pages_read, 0); 5289 cpu_buffer->last_pages_touch = 0; 5290 cpu_buffer->shortest_full = 0; 5291 cpu_buffer->read = 0; 5292 cpu_buffer->read_bytes = 0; 5293 5294 rb_time_set(&cpu_buffer->write_stamp, 0); 5295 rb_time_set(&cpu_buffer->before_stamp, 0); 5296 5297 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp)); 5298 5299 cpu_buffer->lost_events = 0; 5300 cpu_buffer->last_overrun = 0; 5301 5302 rb_head_page_activate(cpu_buffer); 5303 cpu_buffer->pages_removed = 0; 5304 } 5305 5306 /* Must have disabled the cpu buffer then done a synchronize_rcu */ 5307 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 5308 { 5309 unsigned long flags; 5310 5311 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5312 5313 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 5314 goto out; 5315 5316 arch_spin_lock(&cpu_buffer->lock); 5317 5318 rb_reset_cpu(cpu_buffer); 5319 5320 arch_spin_unlock(&cpu_buffer->lock); 5321 5322 out: 5323 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5324 } 5325 5326 /** 5327 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 5328 * @buffer: The ring buffer to reset a per cpu buffer of 5329 * @cpu: The CPU buffer to be reset 5330 */ 5331 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu) 5332 { 5333 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5334 5335 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5336 return; 5337 5338 /* prevent another thread from changing buffer sizes */ 5339 mutex_lock(&buffer->mutex); 5340 5341 atomic_inc(&cpu_buffer->resize_disabled); 5342 atomic_inc(&cpu_buffer->record_disabled); 5343 5344 /* Make sure all commits have finished */ 5345 synchronize_rcu(); 5346 5347 reset_disabled_cpu_buffer(cpu_buffer); 5348 5349 atomic_dec(&cpu_buffer->record_disabled); 5350 atomic_dec(&cpu_buffer->resize_disabled); 5351 5352 mutex_unlock(&buffer->mutex); 5353 } 5354 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 5355 5356 /* Flag to ensure proper resetting of atomic variables */ 5357 #define RESET_BIT (1 << 30) 5358 5359 /** 5360 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer 5361 * @buffer: The ring buffer to reset a per cpu buffer of 5362 */ 5363 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer) 5364 { 5365 struct ring_buffer_per_cpu *cpu_buffer; 5366 int cpu; 5367 5368 /* prevent another thread from changing buffer sizes */ 5369 mutex_lock(&buffer->mutex); 5370 5371 for_each_online_buffer_cpu(buffer, cpu) { 5372 cpu_buffer = buffer->buffers[cpu]; 5373 5374 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled); 5375 atomic_inc(&cpu_buffer->record_disabled); 5376 } 5377 5378 /* Make sure all commits have finished */ 5379 synchronize_rcu(); 5380 5381 for_each_buffer_cpu(buffer, cpu) { 5382 cpu_buffer = buffer->buffers[cpu]; 5383 5384 /* 5385 * If a CPU came online during the synchronize_rcu(), then 5386 * ignore it. 5387 */ 5388 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT)) 5389 continue; 5390 5391 reset_disabled_cpu_buffer(cpu_buffer); 5392 5393 atomic_dec(&cpu_buffer->record_disabled); 5394 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled); 5395 } 5396 5397 mutex_unlock(&buffer->mutex); 5398 } 5399 5400 /** 5401 * ring_buffer_reset - reset a ring buffer 5402 * @buffer: The ring buffer to reset all cpu buffers 5403 */ 5404 void ring_buffer_reset(struct trace_buffer *buffer) 5405 { 5406 struct ring_buffer_per_cpu *cpu_buffer; 5407 int cpu; 5408 5409 /* prevent another thread from changing buffer sizes */ 5410 mutex_lock(&buffer->mutex); 5411 5412 for_each_buffer_cpu(buffer, cpu) { 5413 cpu_buffer = buffer->buffers[cpu]; 5414 5415 atomic_inc(&cpu_buffer->resize_disabled); 5416 atomic_inc(&cpu_buffer->record_disabled); 5417 } 5418 5419 /* Make sure all commits have finished */ 5420 synchronize_rcu(); 5421 5422 for_each_buffer_cpu(buffer, cpu) { 5423 cpu_buffer = buffer->buffers[cpu]; 5424 5425 reset_disabled_cpu_buffer(cpu_buffer); 5426 5427 atomic_dec(&cpu_buffer->record_disabled); 5428 atomic_dec(&cpu_buffer->resize_disabled); 5429 } 5430 5431 mutex_unlock(&buffer->mutex); 5432 } 5433 EXPORT_SYMBOL_GPL(ring_buffer_reset); 5434 5435 /** 5436 * ring_buffer_empty - is the ring buffer empty? 5437 * @buffer: The ring buffer to test 5438 */ 5439 bool ring_buffer_empty(struct trace_buffer *buffer) 5440 { 5441 struct ring_buffer_per_cpu *cpu_buffer; 5442 unsigned long flags; 5443 bool dolock; 5444 bool ret; 5445 int cpu; 5446 5447 /* yes this is racy, but if you don't like the race, lock the buffer */ 5448 for_each_buffer_cpu(buffer, cpu) { 5449 cpu_buffer = buffer->buffers[cpu]; 5450 local_irq_save(flags); 5451 dolock = rb_reader_lock(cpu_buffer); 5452 ret = rb_per_cpu_empty(cpu_buffer); 5453 rb_reader_unlock(cpu_buffer, dolock); 5454 local_irq_restore(flags); 5455 5456 if (!ret) 5457 return false; 5458 } 5459 5460 return true; 5461 } 5462 EXPORT_SYMBOL_GPL(ring_buffer_empty); 5463 5464 /** 5465 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 5466 * @buffer: The ring buffer 5467 * @cpu: The CPU buffer to test 5468 */ 5469 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu) 5470 { 5471 struct ring_buffer_per_cpu *cpu_buffer; 5472 unsigned long flags; 5473 bool dolock; 5474 bool ret; 5475 5476 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5477 return true; 5478 5479 cpu_buffer = buffer->buffers[cpu]; 5480 local_irq_save(flags); 5481 dolock = rb_reader_lock(cpu_buffer); 5482 ret = rb_per_cpu_empty(cpu_buffer); 5483 rb_reader_unlock(cpu_buffer, dolock); 5484 local_irq_restore(flags); 5485 5486 return ret; 5487 } 5488 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 5489 5490 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 5491 /** 5492 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 5493 * @buffer_a: One buffer to swap with 5494 * @buffer_b: The other buffer to swap with 5495 * @cpu: the CPU of the buffers to swap 5496 * 5497 * This function is useful for tracers that want to take a "snapshot" 5498 * of a CPU buffer and has another back up buffer lying around. 5499 * it is expected that the tracer handles the cpu buffer not being 5500 * used at the moment. 5501 */ 5502 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a, 5503 struct trace_buffer *buffer_b, int cpu) 5504 { 5505 struct ring_buffer_per_cpu *cpu_buffer_a; 5506 struct ring_buffer_per_cpu *cpu_buffer_b; 5507 int ret = -EINVAL; 5508 5509 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 5510 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 5511 goto out; 5512 5513 cpu_buffer_a = buffer_a->buffers[cpu]; 5514 cpu_buffer_b = buffer_b->buffers[cpu]; 5515 5516 /* At least make sure the two buffers are somewhat the same */ 5517 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 5518 goto out; 5519 5520 ret = -EAGAIN; 5521 5522 if (atomic_read(&buffer_a->record_disabled)) 5523 goto out; 5524 5525 if (atomic_read(&buffer_b->record_disabled)) 5526 goto out; 5527 5528 if (atomic_read(&cpu_buffer_a->record_disabled)) 5529 goto out; 5530 5531 if (atomic_read(&cpu_buffer_b->record_disabled)) 5532 goto out; 5533 5534 /* 5535 * We can't do a synchronize_rcu here because this 5536 * function can be called in atomic context. 5537 * Normally this will be called from the same CPU as cpu. 5538 * If not it's up to the caller to protect this. 5539 */ 5540 atomic_inc(&cpu_buffer_a->record_disabled); 5541 atomic_inc(&cpu_buffer_b->record_disabled); 5542 5543 ret = -EBUSY; 5544 if (local_read(&cpu_buffer_a->committing)) 5545 goto out_dec; 5546 if (local_read(&cpu_buffer_b->committing)) 5547 goto out_dec; 5548 5549 /* 5550 * When resize is in progress, we cannot swap it because 5551 * it will mess the state of the cpu buffer. 5552 */ 5553 if (atomic_read(&buffer_a->resizing)) 5554 goto out_dec; 5555 if (atomic_read(&buffer_b->resizing)) 5556 goto out_dec; 5557 5558 buffer_a->buffers[cpu] = cpu_buffer_b; 5559 buffer_b->buffers[cpu] = cpu_buffer_a; 5560 5561 cpu_buffer_b->buffer = buffer_a; 5562 cpu_buffer_a->buffer = buffer_b; 5563 5564 ret = 0; 5565 5566 out_dec: 5567 atomic_dec(&cpu_buffer_a->record_disabled); 5568 atomic_dec(&cpu_buffer_b->record_disabled); 5569 out: 5570 return ret; 5571 } 5572 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 5573 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 5574 5575 /** 5576 * ring_buffer_alloc_read_page - allocate a page to read from buffer 5577 * @buffer: the buffer to allocate for. 5578 * @cpu: the cpu buffer to allocate. 5579 * 5580 * This function is used in conjunction with ring_buffer_read_page. 5581 * When reading a full page from the ring buffer, these functions 5582 * can be used to speed up the process. The calling function should 5583 * allocate a few pages first with this function. Then when it 5584 * needs to get pages from the ring buffer, it passes the result 5585 * of this function into ring_buffer_read_page, which will swap 5586 * the page that was allocated, with the read page of the buffer. 5587 * 5588 * Returns: 5589 * The page allocated, or ERR_PTR 5590 */ 5591 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu) 5592 { 5593 struct ring_buffer_per_cpu *cpu_buffer; 5594 struct buffer_data_page *bpage = NULL; 5595 unsigned long flags; 5596 struct page *page; 5597 5598 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5599 return ERR_PTR(-ENODEV); 5600 5601 cpu_buffer = buffer->buffers[cpu]; 5602 local_irq_save(flags); 5603 arch_spin_lock(&cpu_buffer->lock); 5604 5605 if (cpu_buffer->free_page) { 5606 bpage = cpu_buffer->free_page; 5607 cpu_buffer->free_page = NULL; 5608 } 5609 5610 arch_spin_unlock(&cpu_buffer->lock); 5611 local_irq_restore(flags); 5612 5613 if (bpage) 5614 goto out; 5615 5616 page = alloc_pages_node(cpu_to_node(cpu), 5617 GFP_KERNEL | __GFP_NORETRY, 0); 5618 if (!page) 5619 return ERR_PTR(-ENOMEM); 5620 5621 bpage = page_address(page); 5622 5623 out: 5624 rb_init_page(bpage); 5625 5626 return bpage; 5627 } 5628 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 5629 5630 /** 5631 * ring_buffer_free_read_page - free an allocated read page 5632 * @buffer: the buffer the page was allocate for 5633 * @cpu: the cpu buffer the page came from 5634 * @data: the page to free 5635 * 5636 * Free a page allocated from ring_buffer_alloc_read_page. 5637 */ 5638 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data) 5639 { 5640 struct ring_buffer_per_cpu *cpu_buffer; 5641 struct buffer_data_page *bpage = data; 5642 struct page *page = virt_to_page(bpage); 5643 unsigned long flags; 5644 5645 if (!buffer || !buffer->buffers || !buffer->buffers[cpu]) 5646 return; 5647 5648 cpu_buffer = buffer->buffers[cpu]; 5649 5650 /* If the page is still in use someplace else, we can't reuse it */ 5651 if (page_ref_count(page) > 1) 5652 goto out; 5653 5654 local_irq_save(flags); 5655 arch_spin_lock(&cpu_buffer->lock); 5656 5657 if (!cpu_buffer->free_page) { 5658 cpu_buffer->free_page = bpage; 5659 bpage = NULL; 5660 } 5661 5662 arch_spin_unlock(&cpu_buffer->lock); 5663 local_irq_restore(flags); 5664 5665 out: 5666 free_page((unsigned long)bpage); 5667 } 5668 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 5669 5670 /** 5671 * ring_buffer_read_page - extract a page from the ring buffer 5672 * @buffer: buffer to extract from 5673 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 5674 * @len: amount to extract 5675 * @cpu: the cpu of the buffer to extract 5676 * @full: should the extraction only happen when the page is full. 5677 * 5678 * This function will pull out a page from the ring buffer and consume it. 5679 * @data_page must be the address of the variable that was returned 5680 * from ring_buffer_alloc_read_page. This is because the page might be used 5681 * to swap with a page in the ring buffer. 5682 * 5683 * for example: 5684 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 5685 * if (IS_ERR(rpage)) 5686 * return PTR_ERR(rpage); 5687 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 5688 * if (ret >= 0) 5689 * process_page(rpage, ret); 5690 * 5691 * When @full is set, the function will not return true unless 5692 * the writer is off the reader page. 5693 * 5694 * Note: it is up to the calling functions to handle sleeps and wakeups. 5695 * The ring buffer can be used anywhere in the kernel and can not 5696 * blindly call wake_up. The layer that uses the ring buffer must be 5697 * responsible for that. 5698 * 5699 * Returns: 5700 * >=0 if data has been transferred, returns the offset of consumed data. 5701 * <0 if no data has been transferred. 5702 */ 5703 int ring_buffer_read_page(struct trace_buffer *buffer, 5704 void **data_page, size_t len, int cpu, int full) 5705 { 5706 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5707 struct ring_buffer_event *event; 5708 struct buffer_data_page *bpage; 5709 struct buffer_page *reader; 5710 unsigned long missed_events; 5711 unsigned long flags; 5712 unsigned int commit; 5713 unsigned int read; 5714 u64 save_timestamp; 5715 int ret = -1; 5716 5717 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5718 goto out; 5719 5720 /* 5721 * If len is not big enough to hold the page header, then 5722 * we can not copy anything. 5723 */ 5724 if (len <= BUF_PAGE_HDR_SIZE) 5725 goto out; 5726 5727 len -= BUF_PAGE_HDR_SIZE; 5728 5729 if (!data_page) 5730 goto out; 5731 5732 bpage = *data_page; 5733 if (!bpage) 5734 goto out; 5735 5736 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5737 5738 reader = rb_get_reader_page(cpu_buffer); 5739 if (!reader) 5740 goto out_unlock; 5741 5742 event = rb_reader_event(cpu_buffer); 5743 5744 read = reader->read; 5745 commit = rb_page_commit(reader); 5746 5747 /* Check if any events were dropped */ 5748 missed_events = cpu_buffer->lost_events; 5749 5750 /* 5751 * If this page has been partially read or 5752 * if len is not big enough to read the rest of the page or 5753 * a writer is still on the page, then 5754 * we must copy the data from the page to the buffer. 5755 * Otherwise, we can simply swap the page with the one passed in. 5756 */ 5757 if (read || (len < (commit - read)) || 5758 cpu_buffer->reader_page == cpu_buffer->commit_page) { 5759 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 5760 unsigned int rpos = read; 5761 unsigned int pos = 0; 5762 unsigned int size; 5763 5764 /* 5765 * If a full page is expected, this can still be returned 5766 * if there's been a previous partial read and the 5767 * rest of the page can be read and the commit page is off 5768 * the reader page. 5769 */ 5770 if (full && 5771 (!read || (len < (commit - read)) || 5772 cpu_buffer->reader_page == cpu_buffer->commit_page)) 5773 goto out_unlock; 5774 5775 if (len > (commit - read)) 5776 len = (commit - read); 5777 5778 /* Always keep the time extend and data together */ 5779 size = rb_event_ts_length(event); 5780 5781 if (len < size) 5782 goto out_unlock; 5783 5784 /* save the current timestamp, since the user will need it */ 5785 save_timestamp = cpu_buffer->read_stamp; 5786 5787 /* Need to copy one event at a time */ 5788 do { 5789 /* We need the size of one event, because 5790 * rb_advance_reader only advances by one event, 5791 * whereas rb_event_ts_length may include the size of 5792 * one or two events. 5793 * We have already ensured there's enough space if this 5794 * is a time extend. */ 5795 size = rb_event_length(event); 5796 memcpy(bpage->data + pos, rpage->data + rpos, size); 5797 5798 len -= size; 5799 5800 rb_advance_reader(cpu_buffer); 5801 rpos = reader->read; 5802 pos += size; 5803 5804 if (rpos >= commit) 5805 break; 5806 5807 event = rb_reader_event(cpu_buffer); 5808 /* Always keep the time extend and data together */ 5809 size = rb_event_ts_length(event); 5810 } while (len >= size); 5811 5812 /* update bpage */ 5813 local_set(&bpage->commit, pos); 5814 bpage->time_stamp = save_timestamp; 5815 5816 /* we copied everything to the beginning */ 5817 read = 0; 5818 } else { 5819 /* update the entry counter */ 5820 cpu_buffer->read += rb_page_entries(reader); 5821 cpu_buffer->read_bytes += rb_page_commit(reader); 5822 5823 /* swap the pages */ 5824 rb_init_page(bpage); 5825 bpage = reader->page; 5826 reader->page = *data_page; 5827 local_set(&reader->write, 0); 5828 local_set(&reader->entries, 0); 5829 reader->read = 0; 5830 *data_page = bpage; 5831 5832 /* 5833 * Use the real_end for the data size, 5834 * This gives us a chance to store the lost events 5835 * on the page. 5836 */ 5837 if (reader->real_end) 5838 local_set(&bpage->commit, reader->real_end); 5839 } 5840 ret = read; 5841 5842 cpu_buffer->lost_events = 0; 5843 5844 commit = local_read(&bpage->commit); 5845 /* 5846 * Set a flag in the commit field if we lost events 5847 */ 5848 if (missed_events) { 5849 /* If there is room at the end of the page to save the 5850 * missed events, then record it there. 5851 */ 5852 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 5853 memcpy(&bpage->data[commit], &missed_events, 5854 sizeof(missed_events)); 5855 local_add(RB_MISSED_STORED, &bpage->commit); 5856 commit += sizeof(missed_events); 5857 } 5858 local_add(RB_MISSED_EVENTS, &bpage->commit); 5859 } 5860 5861 /* 5862 * This page may be off to user land. Zero it out here. 5863 */ 5864 if (commit < BUF_PAGE_SIZE) 5865 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 5866 5867 out_unlock: 5868 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5869 5870 out: 5871 return ret; 5872 } 5873 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 5874 5875 /* 5876 * We only allocate new buffers, never free them if the CPU goes down. 5877 * If we were to free the buffer, then the user would lose any trace that was in 5878 * the buffer. 5879 */ 5880 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 5881 { 5882 struct trace_buffer *buffer; 5883 long nr_pages_same; 5884 int cpu_i; 5885 unsigned long nr_pages; 5886 5887 buffer = container_of(node, struct trace_buffer, node); 5888 if (cpumask_test_cpu(cpu, buffer->cpumask)) 5889 return 0; 5890 5891 nr_pages = 0; 5892 nr_pages_same = 1; 5893 /* check if all cpu sizes are same */ 5894 for_each_buffer_cpu(buffer, cpu_i) { 5895 /* fill in the size from first enabled cpu */ 5896 if (nr_pages == 0) 5897 nr_pages = buffer->buffers[cpu_i]->nr_pages; 5898 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 5899 nr_pages_same = 0; 5900 break; 5901 } 5902 } 5903 /* allocate minimum pages, user can later expand it */ 5904 if (!nr_pages_same) 5905 nr_pages = 2; 5906 buffer->buffers[cpu] = 5907 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 5908 if (!buffer->buffers[cpu]) { 5909 WARN(1, "failed to allocate ring buffer on CPU %u\n", 5910 cpu); 5911 return -ENOMEM; 5912 } 5913 smp_wmb(); 5914 cpumask_set_cpu(cpu, buffer->cpumask); 5915 return 0; 5916 } 5917 5918 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 5919 /* 5920 * This is a basic integrity check of the ring buffer. 5921 * Late in the boot cycle this test will run when configured in. 5922 * It will kick off a thread per CPU that will go into a loop 5923 * writing to the per cpu ring buffer various sizes of data. 5924 * Some of the data will be large items, some small. 5925 * 5926 * Another thread is created that goes into a spin, sending out 5927 * IPIs to the other CPUs to also write into the ring buffer. 5928 * this is to test the nesting ability of the buffer. 5929 * 5930 * Basic stats are recorded and reported. If something in the 5931 * ring buffer should happen that's not expected, a big warning 5932 * is displayed and all ring buffers are disabled. 5933 */ 5934 static struct task_struct *rb_threads[NR_CPUS] __initdata; 5935 5936 struct rb_test_data { 5937 struct trace_buffer *buffer; 5938 unsigned long events; 5939 unsigned long bytes_written; 5940 unsigned long bytes_alloc; 5941 unsigned long bytes_dropped; 5942 unsigned long events_nested; 5943 unsigned long bytes_written_nested; 5944 unsigned long bytes_alloc_nested; 5945 unsigned long bytes_dropped_nested; 5946 int min_size_nested; 5947 int max_size_nested; 5948 int max_size; 5949 int min_size; 5950 int cpu; 5951 int cnt; 5952 }; 5953 5954 static struct rb_test_data rb_data[NR_CPUS] __initdata; 5955 5956 /* 1 meg per cpu */ 5957 #define RB_TEST_BUFFER_SIZE 1048576 5958 5959 static char rb_string[] __initdata = 5960 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 5961 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 5962 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 5963 5964 static bool rb_test_started __initdata; 5965 5966 struct rb_item { 5967 int size; 5968 char str[]; 5969 }; 5970 5971 static __init int rb_write_something(struct rb_test_data *data, bool nested) 5972 { 5973 struct ring_buffer_event *event; 5974 struct rb_item *item; 5975 bool started; 5976 int event_len; 5977 int size; 5978 int len; 5979 int cnt; 5980 5981 /* Have nested writes different that what is written */ 5982 cnt = data->cnt + (nested ? 27 : 0); 5983 5984 /* Multiply cnt by ~e, to make some unique increment */ 5985 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1); 5986 5987 len = size + sizeof(struct rb_item); 5988 5989 started = rb_test_started; 5990 /* read rb_test_started before checking buffer enabled */ 5991 smp_rmb(); 5992 5993 event = ring_buffer_lock_reserve(data->buffer, len); 5994 if (!event) { 5995 /* Ignore dropped events before test starts. */ 5996 if (started) { 5997 if (nested) 5998 data->bytes_dropped += len; 5999 else 6000 data->bytes_dropped_nested += len; 6001 } 6002 return len; 6003 } 6004 6005 event_len = ring_buffer_event_length(event); 6006 6007 if (RB_WARN_ON(data->buffer, event_len < len)) 6008 goto out; 6009 6010 item = ring_buffer_event_data(event); 6011 item->size = size; 6012 memcpy(item->str, rb_string, size); 6013 6014 if (nested) { 6015 data->bytes_alloc_nested += event_len; 6016 data->bytes_written_nested += len; 6017 data->events_nested++; 6018 if (!data->min_size_nested || len < data->min_size_nested) 6019 data->min_size_nested = len; 6020 if (len > data->max_size_nested) 6021 data->max_size_nested = len; 6022 } else { 6023 data->bytes_alloc += event_len; 6024 data->bytes_written += len; 6025 data->events++; 6026 if (!data->min_size || len < data->min_size) 6027 data->max_size = len; 6028 if (len > data->max_size) 6029 data->max_size = len; 6030 } 6031 6032 out: 6033 ring_buffer_unlock_commit(data->buffer); 6034 6035 return 0; 6036 } 6037 6038 static __init int rb_test(void *arg) 6039 { 6040 struct rb_test_data *data = arg; 6041 6042 while (!kthread_should_stop()) { 6043 rb_write_something(data, false); 6044 data->cnt++; 6045 6046 set_current_state(TASK_INTERRUPTIBLE); 6047 /* Now sleep between a min of 100-300us and a max of 1ms */ 6048 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 6049 } 6050 6051 return 0; 6052 } 6053 6054 static __init void rb_ipi(void *ignore) 6055 { 6056 struct rb_test_data *data; 6057 int cpu = smp_processor_id(); 6058 6059 data = &rb_data[cpu]; 6060 rb_write_something(data, true); 6061 } 6062 6063 static __init int rb_hammer_test(void *arg) 6064 { 6065 while (!kthread_should_stop()) { 6066 6067 /* Send an IPI to all cpus to write data! */ 6068 smp_call_function(rb_ipi, NULL, 1); 6069 /* No sleep, but for non preempt, let others run */ 6070 schedule(); 6071 } 6072 6073 return 0; 6074 } 6075 6076 static __init int test_ringbuffer(void) 6077 { 6078 struct task_struct *rb_hammer; 6079 struct trace_buffer *buffer; 6080 int cpu; 6081 int ret = 0; 6082 6083 if (security_locked_down(LOCKDOWN_TRACEFS)) { 6084 pr_warn("Lockdown is enabled, skipping ring buffer tests\n"); 6085 return 0; 6086 } 6087 6088 pr_info("Running ring buffer tests...\n"); 6089 6090 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 6091 if (WARN_ON(!buffer)) 6092 return 0; 6093 6094 /* Disable buffer so that threads can't write to it yet */ 6095 ring_buffer_record_off(buffer); 6096 6097 for_each_online_cpu(cpu) { 6098 rb_data[cpu].buffer = buffer; 6099 rb_data[cpu].cpu = cpu; 6100 rb_data[cpu].cnt = cpu; 6101 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu], 6102 cpu, "rbtester/%u"); 6103 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 6104 pr_cont("FAILED\n"); 6105 ret = PTR_ERR(rb_threads[cpu]); 6106 goto out_free; 6107 } 6108 } 6109 6110 /* Now create the rb hammer! */ 6111 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 6112 if (WARN_ON(IS_ERR(rb_hammer))) { 6113 pr_cont("FAILED\n"); 6114 ret = PTR_ERR(rb_hammer); 6115 goto out_free; 6116 } 6117 6118 ring_buffer_record_on(buffer); 6119 /* 6120 * Show buffer is enabled before setting rb_test_started. 6121 * Yes there's a small race window where events could be 6122 * dropped and the thread wont catch it. But when a ring 6123 * buffer gets enabled, there will always be some kind of 6124 * delay before other CPUs see it. Thus, we don't care about 6125 * those dropped events. We care about events dropped after 6126 * the threads see that the buffer is active. 6127 */ 6128 smp_wmb(); 6129 rb_test_started = true; 6130 6131 set_current_state(TASK_INTERRUPTIBLE); 6132 /* Just run for 10 seconds */; 6133 schedule_timeout(10 * HZ); 6134 6135 kthread_stop(rb_hammer); 6136 6137 out_free: 6138 for_each_online_cpu(cpu) { 6139 if (!rb_threads[cpu]) 6140 break; 6141 kthread_stop(rb_threads[cpu]); 6142 } 6143 if (ret) { 6144 ring_buffer_free(buffer); 6145 return ret; 6146 } 6147 6148 /* Report! */ 6149 pr_info("finished\n"); 6150 for_each_online_cpu(cpu) { 6151 struct ring_buffer_event *event; 6152 struct rb_test_data *data = &rb_data[cpu]; 6153 struct rb_item *item; 6154 unsigned long total_events; 6155 unsigned long total_dropped; 6156 unsigned long total_written; 6157 unsigned long total_alloc; 6158 unsigned long total_read = 0; 6159 unsigned long total_size = 0; 6160 unsigned long total_len = 0; 6161 unsigned long total_lost = 0; 6162 unsigned long lost; 6163 int big_event_size; 6164 int small_event_size; 6165 6166 ret = -1; 6167 6168 total_events = data->events + data->events_nested; 6169 total_written = data->bytes_written + data->bytes_written_nested; 6170 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 6171 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 6172 6173 big_event_size = data->max_size + data->max_size_nested; 6174 small_event_size = data->min_size + data->min_size_nested; 6175 6176 pr_info("CPU %d:\n", cpu); 6177 pr_info(" events: %ld\n", total_events); 6178 pr_info(" dropped bytes: %ld\n", total_dropped); 6179 pr_info(" alloced bytes: %ld\n", total_alloc); 6180 pr_info(" written bytes: %ld\n", total_written); 6181 pr_info(" biggest event: %d\n", big_event_size); 6182 pr_info(" smallest event: %d\n", small_event_size); 6183 6184 if (RB_WARN_ON(buffer, total_dropped)) 6185 break; 6186 6187 ret = 0; 6188 6189 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 6190 total_lost += lost; 6191 item = ring_buffer_event_data(event); 6192 total_len += ring_buffer_event_length(event); 6193 total_size += item->size + sizeof(struct rb_item); 6194 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 6195 pr_info("FAILED!\n"); 6196 pr_info("buffer had: %.*s\n", item->size, item->str); 6197 pr_info("expected: %.*s\n", item->size, rb_string); 6198 RB_WARN_ON(buffer, 1); 6199 ret = -1; 6200 break; 6201 } 6202 total_read++; 6203 } 6204 if (ret) 6205 break; 6206 6207 ret = -1; 6208 6209 pr_info(" read events: %ld\n", total_read); 6210 pr_info(" lost events: %ld\n", total_lost); 6211 pr_info(" total events: %ld\n", total_lost + total_read); 6212 pr_info(" recorded len bytes: %ld\n", total_len); 6213 pr_info(" recorded size bytes: %ld\n", total_size); 6214 if (total_lost) { 6215 pr_info(" With dropped events, record len and size may not match\n" 6216 " alloced and written from above\n"); 6217 } else { 6218 if (RB_WARN_ON(buffer, total_len != total_alloc || 6219 total_size != total_written)) 6220 break; 6221 } 6222 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 6223 break; 6224 6225 ret = 0; 6226 } 6227 if (!ret) 6228 pr_info("Ring buffer PASSED!\n"); 6229 6230 ring_buffer_free(buffer); 6231 return 0; 6232 } 6233 6234 late_initcall(test_ringbuffer); 6235 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 6236