xref: /linux/kernel/trace/ring_buffer.c (revision 3fa7187eceee11998f756481e45ce8c4f9d9dc48)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/trace_seq.h>
13 #include <linux/spinlock.h>
14 #include <linux/irq_work.h>
15 #include <linux/security.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kthread.h>	/* for self test */
19 #include <linux/module.h>
20 #include <linux/percpu.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/list.h>
27 #include <linux/cpu.h>
28 #include <linux/oom.h>
29 
30 #include <asm/local.h>
31 
32 /*
33  * The "absolute" timestamp in the buffer is only 59 bits.
34  * If a clock has the 5 MSBs set, it needs to be saved and
35  * reinserted.
36  */
37 #define TS_MSB		(0xf8ULL << 56)
38 #define ABS_TS_MASK	(~TS_MSB)
39 
40 static void update_pages_handler(struct work_struct *work);
41 
42 /*
43  * The ring buffer header is special. We must manually up keep it.
44  */
45 int ring_buffer_print_entry_header(struct trace_seq *s)
46 {
47 	trace_seq_puts(s, "# compressed entry header\n");
48 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
49 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
50 	trace_seq_puts(s, "\tarray       :   32 bits\n");
51 	trace_seq_putc(s, '\n');
52 	trace_seq_printf(s, "\tpadding     : type == %d\n",
53 			 RINGBUF_TYPE_PADDING);
54 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
55 			 RINGBUF_TYPE_TIME_EXTEND);
56 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
57 			 RINGBUF_TYPE_TIME_STAMP);
58 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
59 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
60 
61 	return !trace_seq_has_overflowed(s);
62 }
63 
64 /*
65  * The ring buffer is made up of a list of pages. A separate list of pages is
66  * allocated for each CPU. A writer may only write to a buffer that is
67  * associated with the CPU it is currently executing on.  A reader may read
68  * from any per cpu buffer.
69  *
70  * The reader is special. For each per cpu buffer, the reader has its own
71  * reader page. When a reader has read the entire reader page, this reader
72  * page is swapped with another page in the ring buffer.
73  *
74  * Now, as long as the writer is off the reader page, the reader can do what
75  * ever it wants with that page. The writer will never write to that page
76  * again (as long as it is out of the ring buffer).
77  *
78  * Here's some silly ASCII art.
79  *
80  *   +------+
81  *   |reader|          RING BUFFER
82  *   |page  |
83  *   +------+        +---+   +---+   +---+
84  *                   |   |-->|   |-->|   |
85  *                   +---+   +---+   +---+
86  *                     ^               |
87  *                     |               |
88  *                     +---------------+
89  *
90  *
91  *   +------+
92  *   |reader|          RING BUFFER
93  *   |page  |------------------v
94  *   +------+        +---+   +---+   +---+
95  *                   |   |-->|   |-->|   |
96  *                   +---+   +---+   +---+
97  *                     ^               |
98  *                     |               |
99  *                     +---------------+
100  *
101  *
102  *   +------+
103  *   |reader|          RING BUFFER
104  *   |page  |------------------v
105  *   +------+        +---+   +---+   +---+
106  *      ^            |   |-->|   |-->|   |
107  *      |            +---+   +---+   +---+
108  *      |                              |
109  *      |                              |
110  *      +------------------------------+
111  *
112  *
113  *   +------+
114  *   |buffer|          RING BUFFER
115  *   |page  |------------------v
116  *   +------+        +---+   +---+   +---+
117  *      ^            |   |   |   |-->|   |
118  *      |   New      +---+   +---+   +---+
119  *      |  Reader------^               |
120  *      |   page                       |
121  *      +------------------------------+
122  *
123  *
124  * After we make this swap, the reader can hand this page off to the splice
125  * code and be done with it. It can even allocate a new page if it needs to
126  * and swap that into the ring buffer.
127  *
128  * We will be using cmpxchg soon to make all this lockless.
129  *
130  */
131 
132 /* Used for individual buffers (after the counter) */
133 #define RB_BUFFER_OFF		(1 << 20)
134 
135 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
136 
137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
138 #define RB_ALIGNMENT		4U
139 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
140 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
141 
142 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
143 # define RB_FORCE_8BYTE_ALIGNMENT	0
144 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
145 #else
146 # define RB_FORCE_8BYTE_ALIGNMENT	1
147 # define RB_ARCH_ALIGNMENT		8U
148 #endif
149 
150 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
151 
152 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
153 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
154 
155 enum {
156 	RB_LEN_TIME_EXTEND = 8,
157 	RB_LEN_TIME_STAMP =  8,
158 };
159 
160 #define skip_time_extend(event) \
161 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
162 
163 #define extended_time(event) \
164 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
165 
166 static inline bool rb_null_event(struct ring_buffer_event *event)
167 {
168 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
169 }
170 
171 static void rb_event_set_padding(struct ring_buffer_event *event)
172 {
173 	/* padding has a NULL time_delta */
174 	event->type_len = RINGBUF_TYPE_PADDING;
175 	event->time_delta = 0;
176 }
177 
178 static unsigned
179 rb_event_data_length(struct ring_buffer_event *event)
180 {
181 	unsigned length;
182 
183 	if (event->type_len)
184 		length = event->type_len * RB_ALIGNMENT;
185 	else
186 		length = event->array[0];
187 	return length + RB_EVNT_HDR_SIZE;
188 }
189 
190 /*
191  * Return the length of the given event. Will return
192  * the length of the time extend if the event is a
193  * time extend.
194  */
195 static inline unsigned
196 rb_event_length(struct ring_buffer_event *event)
197 {
198 	switch (event->type_len) {
199 	case RINGBUF_TYPE_PADDING:
200 		if (rb_null_event(event))
201 			/* undefined */
202 			return -1;
203 		return  event->array[0] + RB_EVNT_HDR_SIZE;
204 
205 	case RINGBUF_TYPE_TIME_EXTEND:
206 		return RB_LEN_TIME_EXTEND;
207 
208 	case RINGBUF_TYPE_TIME_STAMP:
209 		return RB_LEN_TIME_STAMP;
210 
211 	case RINGBUF_TYPE_DATA:
212 		return rb_event_data_length(event);
213 	default:
214 		WARN_ON_ONCE(1);
215 	}
216 	/* not hit */
217 	return 0;
218 }
219 
220 /*
221  * Return total length of time extend and data,
222  *   or just the event length for all other events.
223  */
224 static inline unsigned
225 rb_event_ts_length(struct ring_buffer_event *event)
226 {
227 	unsigned len = 0;
228 
229 	if (extended_time(event)) {
230 		/* time extends include the data event after it */
231 		len = RB_LEN_TIME_EXTEND;
232 		event = skip_time_extend(event);
233 	}
234 	return len + rb_event_length(event);
235 }
236 
237 /**
238  * ring_buffer_event_length - return the length of the event
239  * @event: the event to get the length of
240  *
241  * Returns the size of the data load of a data event.
242  * If the event is something other than a data event, it
243  * returns the size of the event itself. With the exception
244  * of a TIME EXTEND, where it still returns the size of the
245  * data load of the data event after it.
246  */
247 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
248 {
249 	unsigned length;
250 
251 	if (extended_time(event))
252 		event = skip_time_extend(event);
253 
254 	length = rb_event_length(event);
255 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
256 		return length;
257 	length -= RB_EVNT_HDR_SIZE;
258 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
259                 length -= sizeof(event->array[0]);
260 	return length;
261 }
262 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
263 
264 /* inline for ring buffer fast paths */
265 static __always_inline void *
266 rb_event_data(struct ring_buffer_event *event)
267 {
268 	if (extended_time(event))
269 		event = skip_time_extend(event);
270 	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
271 	/* If length is in len field, then array[0] has the data */
272 	if (event->type_len)
273 		return (void *)&event->array[0];
274 	/* Otherwise length is in array[0] and array[1] has the data */
275 	return (void *)&event->array[1];
276 }
277 
278 /**
279  * ring_buffer_event_data - return the data of the event
280  * @event: the event to get the data from
281  */
282 void *ring_buffer_event_data(struct ring_buffer_event *event)
283 {
284 	return rb_event_data(event);
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
287 
288 #define for_each_buffer_cpu(buffer, cpu)		\
289 	for_each_cpu(cpu, buffer->cpumask)
290 
291 #define for_each_online_buffer_cpu(buffer, cpu)		\
292 	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
293 
294 #define TS_SHIFT	27
295 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
296 #define TS_DELTA_TEST	(~TS_MASK)
297 
298 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
299 {
300 	u64 ts;
301 
302 	ts = event->array[0];
303 	ts <<= TS_SHIFT;
304 	ts += event->time_delta;
305 
306 	return ts;
307 }
308 
309 /* Flag when events were overwritten */
310 #define RB_MISSED_EVENTS	(1 << 31)
311 /* Missed count stored at end */
312 #define RB_MISSED_STORED	(1 << 30)
313 
314 struct buffer_data_page {
315 	u64		 time_stamp;	/* page time stamp */
316 	local_t		 commit;	/* write committed index */
317 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
318 };
319 
320 /*
321  * Note, the buffer_page list must be first. The buffer pages
322  * are allocated in cache lines, which means that each buffer
323  * page will be at the beginning of a cache line, and thus
324  * the least significant bits will be zero. We use this to
325  * add flags in the list struct pointers, to make the ring buffer
326  * lockless.
327  */
328 struct buffer_page {
329 	struct list_head list;		/* list of buffer pages */
330 	local_t		 write;		/* index for next write */
331 	unsigned	 read;		/* index for next read */
332 	local_t		 entries;	/* entries on this page */
333 	unsigned long	 real_end;	/* real end of data */
334 	struct buffer_data_page *page;	/* Actual data page */
335 };
336 
337 /*
338  * The buffer page counters, write and entries, must be reset
339  * atomically when crossing page boundaries. To synchronize this
340  * update, two counters are inserted into the number. One is
341  * the actual counter for the write position or count on the page.
342  *
343  * The other is a counter of updaters. Before an update happens
344  * the update partition of the counter is incremented. This will
345  * allow the updater to update the counter atomically.
346  *
347  * The counter is 20 bits, and the state data is 12.
348  */
349 #define RB_WRITE_MASK		0xfffff
350 #define RB_WRITE_INTCNT		(1 << 20)
351 
352 static void rb_init_page(struct buffer_data_page *bpage)
353 {
354 	local_set(&bpage->commit, 0);
355 }
356 
357 static void free_buffer_page(struct buffer_page *bpage)
358 {
359 	free_page((unsigned long)bpage->page);
360 	kfree(bpage);
361 }
362 
363 /*
364  * We need to fit the time_stamp delta into 27 bits.
365  */
366 static inline bool test_time_stamp(u64 delta)
367 {
368 	return !!(delta & TS_DELTA_TEST);
369 }
370 
371 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
372 
373 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
374 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
375 
376 int ring_buffer_print_page_header(struct trace_seq *s)
377 {
378 	struct buffer_data_page field;
379 
380 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
381 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
382 			 (unsigned int)sizeof(field.time_stamp),
383 			 (unsigned int)is_signed_type(u64));
384 
385 	trace_seq_printf(s, "\tfield: local_t commit;\t"
386 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
387 			 (unsigned int)offsetof(typeof(field), commit),
388 			 (unsigned int)sizeof(field.commit),
389 			 (unsigned int)is_signed_type(long));
390 
391 	trace_seq_printf(s, "\tfield: int overwrite;\t"
392 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
393 			 (unsigned int)offsetof(typeof(field), commit),
394 			 1,
395 			 (unsigned int)is_signed_type(long));
396 
397 	trace_seq_printf(s, "\tfield: char data;\t"
398 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
399 			 (unsigned int)offsetof(typeof(field), data),
400 			 (unsigned int)BUF_PAGE_SIZE,
401 			 (unsigned int)is_signed_type(char));
402 
403 	return !trace_seq_has_overflowed(s);
404 }
405 
406 struct rb_irq_work {
407 	struct irq_work			work;
408 	wait_queue_head_t		waiters;
409 	wait_queue_head_t		full_waiters;
410 	long				wait_index;
411 	bool				waiters_pending;
412 	bool				full_waiters_pending;
413 	bool				wakeup_full;
414 };
415 
416 /*
417  * Structure to hold event state and handle nested events.
418  */
419 struct rb_event_info {
420 	u64			ts;
421 	u64			delta;
422 	u64			before;
423 	u64			after;
424 	unsigned long		length;
425 	struct buffer_page	*tail_page;
426 	int			add_timestamp;
427 };
428 
429 /*
430  * Used for the add_timestamp
431  *  NONE
432  *  EXTEND - wants a time extend
433  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
434  *  FORCE - force a full time stamp.
435  */
436 enum {
437 	RB_ADD_STAMP_NONE		= 0,
438 	RB_ADD_STAMP_EXTEND		= BIT(1),
439 	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
440 	RB_ADD_STAMP_FORCE		= BIT(3)
441 };
442 /*
443  * Used for which event context the event is in.
444  *  TRANSITION = 0
445  *  NMI     = 1
446  *  IRQ     = 2
447  *  SOFTIRQ = 3
448  *  NORMAL  = 4
449  *
450  * See trace_recursive_lock() comment below for more details.
451  */
452 enum {
453 	RB_CTX_TRANSITION,
454 	RB_CTX_NMI,
455 	RB_CTX_IRQ,
456 	RB_CTX_SOFTIRQ,
457 	RB_CTX_NORMAL,
458 	RB_CTX_MAX
459 };
460 
461 #if BITS_PER_LONG == 32
462 #define RB_TIME_32
463 #endif
464 
465 /* To test on 64 bit machines */
466 //#define RB_TIME_32
467 
468 #ifdef RB_TIME_32
469 
470 struct rb_time_struct {
471 	local_t		cnt;
472 	local_t		top;
473 	local_t		bottom;
474 	local_t		msb;
475 };
476 #else
477 #include <asm/local64.h>
478 struct rb_time_struct {
479 	local64_t	time;
480 };
481 #endif
482 typedef struct rb_time_struct rb_time_t;
483 
484 #define MAX_NEST	5
485 
486 /*
487  * head_page == tail_page && head == tail then buffer is empty.
488  */
489 struct ring_buffer_per_cpu {
490 	int				cpu;
491 	atomic_t			record_disabled;
492 	atomic_t			resize_disabled;
493 	struct trace_buffer	*buffer;
494 	raw_spinlock_t			reader_lock;	/* serialize readers */
495 	arch_spinlock_t			lock;
496 	struct lock_class_key		lock_key;
497 	struct buffer_data_page		*free_page;
498 	unsigned long			nr_pages;
499 	unsigned int			current_context;
500 	struct list_head		*pages;
501 	struct buffer_page		*head_page;	/* read from head */
502 	struct buffer_page		*tail_page;	/* write to tail */
503 	struct buffer_page		*commit_page;	/* committed pages */
504 	struct buffer_page		*reader_page;
505 	unsigned long			lost_events;
506 	unsigned long			last_overrun;
507 	unsigned long			nest;
508 	local_t				entries_bytes;
509 	local_t				entries;
510 	local_t				overrun;
511 	local_t				commit_overrun;
512 	local_t				dropped_events;
513 	local_t				committing;
514 	local_t				commits;
515 	local_t				pages_touched;
516 	local_t				pages_lost;
517 	local_t				pages_read;
518 	long				last_pages_touch;
519 	size_t				shortest_full;
520 	unsigned long			read;
521 	unsigned long			read_bytes;
522 	rb_time_t			write_stamp;
523 	rb_time_t			before_stamp;
524 	u64				event_stamp[MAX_NEST];
525 	u64				read_stamp;
526 	/* pages removed since last reset */
527 	unsigned long			pages_removed;
528 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
529 	long				nr_pages_to_update;
530 	struct list_head		new_pages; /* new pages to add */
531 	struct work_struct		update_pages_work;
532 	struct completion		update_done;
533 
534 	struct rb_irq_work		irq_work;
535 };
536 
537 struct trace_buffer {
538 	unsigned			flags;
539 	int				cpus;
540 	atomic_t			record_disabled;
541 	atomic_t			resizing;
542 	cpumask_var_t			cpumask;
543 
544 	struct lock_class_key		*reader_lock_key;
545 
546 	struct mutex			mutex;
547 
548 	struct ring_buffer_per_cpu	**buffers;
549 
550 	struct hlist_node		node;
551 	u64				(*clock)(void);
552 
553 	struct rb_irq_work		irq_work;
554 	bool				time_stamp_abs;
555 };
556 
557 struct ring_buffer_iter {
558 	struct ring_buffer_per_cpu	*cpu_buffer;
559 	unsigned long			head;
560 	unsigned long			next_event;
561 	struct buffer_page		*head_page;
562 	struct buffer_page		*cache_reader_page;
563 	unsigned long			cache_read;
564 	unsigned long			cache_pages_removed;
565 	u64				read_stamp;
566 	u64				page_stamp;
567 	struct ring_buffer_event	*event;
568 	int				missed_events;
569 };
570 
571 #ifdef RB_TIME_32
572 
573 /*
574  * On 32 bit machines, local64_t is very expensive. As the ring
575  * buffer doesn't need all the features of a true 64 bit atomic,
576  * on 32 bit, it uses these functions (64 still uses local64_t).
577  *
578  * For the ring buffer, 64 bit required operations for the time is
579  * the following:
580  *
581  *  - Reads may fail if it interrupted a modification of the time stamp.
582  *      It will succeed if it did not interrupt another write even if
583  *      the read itself is interrupted by a write.
584  *      It returns whether it was successful or not.
585  *
586  *  - Writes always succeed and will overwrite other writes and writes
587  *      that were done by events interrupting the current write.
588  *
589  *  - A write followed by a read of the same time stamp will always succeed,
590  *      but may not contain the same value.
591  *
592  *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
593  *      Other than that, it acts like a normal cmpxchg.
594  *
595  * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
596  *  (bottom being the least significant 30 bits of the 60 bit time stamp).
597  *
598  * The two most significant bits of each half holds a 2 bit counter (0-3).
599  * Each update will increment this counter by one.
600  * When reading the top and bottom, if the two counter bits match then the
601  *  top and bottom together make a valid 60 bit number.
602  */
603 #define RB_TIME_SHIFT	30
604 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
605 #define RB_TIME_MSB_SHIFT	 60
606 
607 static inline int rb_time_cnt(unsigned long val)
608 {
609 	return (val >> RB_TIME_SHIFT) & 3;
610 }
611 
612 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
613 {
614 	u64 val;
615 
616 	val = top & RB_TIME_VAL_MASK;
617 	val <<= RB_TIME_SHIFT;
618 	val |= bottom & RB_TIME_VAL_MASK;
619 
620 	return val;
621 }
622 
623 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
624 {
625 	unsigned long top, bottom, msb;
626 	unsigned long c;
627 
628 	/*
629 	 * If the read is interrupted by a write, then the cnt will
630 	 * be different. Loop until both top and bottom have been read
631 	 * without interruption.
632 	 */
633 	do {
634 		c = local_read(&t->cnt);
635 		top = local_read(&t->top);
636 		bottom = local_read(&t->bottom);
637 		msb = local_read(&t->msb);
638 	} while (c != local_read(&t->cnt));
639 
640 	*cnt = rb_time_cnt(top);
641 
642 	/* If top and bottom counts don't match, this interrupted a write */
643 	if (*cnt != rb_time_cnt(bottom))
644 		return false;
645 
646 	/* The shift to msb will lose its cnt bits */
647 	*ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT);
648 	return true;
649 }
650 
651 static bool rb_time_read(rb_time_t *t, u64 *ret)
652 {
653 	unsigned long cnt;
654 
655 	return __rb_time_read(t, ret, &cnt);
656 }
657 
658 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
659 {
660 	return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
661 }
662 
663 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom,
664 				 unsigned long *msb)
665 {
666 	*top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
667 	*bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
668 	*msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT);
669 }
670 
671 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
672 {
673 	val = rb_time_val_cnt(val, cnt);
674 	local_set(t, val);
675 }
676 
677 static void rb_time_set(rb_time_t *t, u64 val)
678 {
679 	unsigned long cnt, top, bottom, msb;
680 
681 	rb_time_split(val, &top, &bottom, &msb);
682 
683 	/* Writes always succeed with a valid number even if it gets interrupted. */
684 	do {
685 		cnt = local_inc_return(&t->cnt);
686 		rb_time_val_set(&t->top, top, cnt);
687 		rb_time_val_set(&t->bottom, bottom, cnt);
688 		rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt);
689 	} while (cnt != local_read(&t->cnt));
690 }
691 
692 static inline bool
693 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
694 {
695 	unsigned long ret;
696 
697 	ret = local_cmpxchg(l, expect, set);
698 	return ret == expect;
699 }
700 
701 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
702 {
703 	unsigned long cnt, top, bottom, msb;
704 	unsigned long cnt2, top2, bottom2, msb2;
705 	u64 val;
706 
707 	/* The cmpxchg always fails if it interrupted an update */
708 	 if (!__rb_time_read(t, &val, &cnt2))
709 		 return false;
710 
711 	 if (val != expect)
712 		 return false;
713 
714 	 cnt = local_read(&t->cnt);
715 	 if ((cnt & 3) != cnt2)
716 		 return false;
717 
718 	 cnt2 = cnt + 1;
719 
720 	 rb_time_split(val, &top, &bottom, &msb);
721 	 top = rb_time_val_cnt(top, cnt);
722 	 bottom = rb_time_val_cnt(bottom, cnt);
723 
724 	 rb_time_split(set, &top2, &bottom2, &msb2);
725 	 top2 = rb_time_val_cnt(top2, cnt2);
726 	 bottom2 = rb_time_val_cnt(bottom2, cnt2);
727 
728 	if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
729 		return false;
730 	if (!rb_time_read_cmpxchg(&t->msb, msb, msb2))
731 		return false;
732 	if (!rb_time_read_cmpxchg(&t->top, top, top2))
733 		return false;
734 	if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
735 		return false;
736 	return true;
737 }
738 
739 #else /* 64 bits */
740 
741 /* local64_t always succeeds */
742 
743 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
744 {
745 	*ret = local64_read(&t->time);
746 	return true;
747 }
748 static void rb_time_set(rb_time_t *t, u64 val)
749 {
750 	local64_set(&t->time, val);
751 }
752 
753 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
754 {
755 	u64 val;
756 	val = local64_cmpxchg(&t->time, expect, set);
757 	return val == expect;
758 }
759 #endif
760 
761 /*
762  * Enable this to make sure that the event passed to
763  * ring_buffer_event_time_stamp() is not committed and also
764  * is on the buffer that it passed in.
765  */
766 //#define RB_VERIFY_EVENT
767 #ifdef RB_VERIFY_EVENT
768 static struct list_head *rb_list_head(struct list_head *list);
769 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
770 			 void *event)
771 {
772 	struct buffer_page *page = cpu_buffer->commit_page;
773 	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
774 	struct list_head *next;
775 	long commit, write;
776 	unsigned long addr = (unsigned long)event;
777 	bool done = false;
778 	int stop = 0;
779 
780 	/* Make sure the event exists and is not committed yet */
781 	do {
782 		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
783 			done = true;
784 		commit = local_read(&page->page->commit);
785 		write = local_read(&page->write);
786 		if (addr >= (unsigned long)&page->page->data[commit] &&
787 		    addr < (unsigned long)&page->page->data[write])
788 			return;
789 
790 		next = rb_list_head(page->list.next);
791 		page = list_entry(next, struct buffer_page, list);
792 	} while (!done);
793 	WARN_ON_ONCE(1);
794 }
795 #else
796 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
797 			 void *event)
798 {
799 }
800 #endif
801 
802 /*
803  * The absolute time stamp drops the 5 MSBs and some clocks may
804  * require them. The rb_fix_abs_ts() will take a previous full
805  * time stamp, and add the 5 MSB of that time stamp on to the
806  * saved absolute time stamp. Then they are compared in case of
807  * the unlikely event that the latest time stamp incremented
808  * the 5 MSB.
809  */
810 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
811 {
812 	if (save_ts & TS_MSB) {
813 		abs |= save_ts & TS_MSB;
814 		/* Check for overflow */
815 		if (unlikely(abs < save_ts))
816 			abs += 1ULL << 59;
817 	}
818 	return abs;
819 }
820 
821 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
822 
823 /**
824  * ring_buffer_event_time_stamp - return the event's current time stamp
825  * @buffer: The buffer that the event is on
826  * @event: the event to get the time stamp of
827  *
828  * Note, this must be called after @event is reserved, and before it is
829  * committed to the ring buffer. And must be called from the same
830  * context where the event was reserved (normal, softirq, irq, etc).
831  *
832  * Returns the time stamp associated with the current event.
833  * If the event has an extended time stamp, then that is used as
834  * the time stamp to return.
835  * In the highly unlikely case that the event was nested more than
836  * the max nesting, then the write_stamp of the buffer is returned,
837  * otherwise  current time is returned, but that really neither of
838  * the last two cases should ever happen.
839  */
840 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
841 				 struct ring_buffer_event *event)
842 {
843 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
844 	unsigned int nest;
845 	u64 ts;
846 
847 	/* If the event includes an absolute time, then just use that */
848 	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
849 		ts = rb_event_time_stamp(event);
850 		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
851 	}
852 
853 	nest = local_read(&cpu_buffer->committing);
854 	verify_event(cpu_buffer, event);
855 	if (WARN_ON_ONCE(!nest))
856 		goto fail;
857 
858 	/* Read the current saved nesting level time stamp */
859 	if (likely(--nest < MAX_NEST))
860 		return cpu_buffer->event_stamp[nest];
861 
862 	/* Shouldn't happen, warn if it does */
863 	WARN_ONCE(1, "nest (%d) greater than max", nest);
864 
865  fail:
866 	/* Can only fail on 32 bit */
867 	if (!rb_time_read(&cpu_buffer->write_stamp, &ts))
868 		/* Screw it, just read the current time */
869 		ts = rb_time_stamp(cpu_buffer->buffer);
870 
871 	return ts;
872 }
873 
874 /**
875  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
876  * @buffer: The ring_buffer to get the number of pages from
877  * @cpu: The cpu of the ring_buffer to get the number of pages from
878  *
879  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
880  */
881 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
882 {
883 	return buffer->buffers[cpu]->nr_pages;
884 }
885 
886 /**
887  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
888  * @buffer: The ring_buffer to get the number of pages from
889  * @cpu: The cpu of the ring_buffer to get the number of pages from
890  *
891  * Returns the number of pages that have content in the ring buffer.
892  */
893 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
894 {
895 	size_t read;
896 	size_t lost;
897 	size_t cnt;
898 
899 	read = local_read(&buffer->buffers[cpu]->pages_read);
900 	lost = local_read(&buffer->buffers[cpu]->pages_lost);
901 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
902 
903 	if (WARN_ON_ONCE(cnt < lost))
904 		return 0;
905 
906 	cnt -= lost;
907 
908 	/* The reader can read an empty page, but not more than that */
909 	if (cnt < read) {
910 		WARN_ON_ONCE(read > cnt + 1);
911 		return 0;
912 	}
913 
914 	return cnt - read;
915 }
916 
917 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
918 {
919 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
920 	size_t nr_pages;
921 	size_t dirty;
922 
923 	nr_pages = cpu_buffer->nr_pages;
924 	if (!nr_pages || !full)
925 		return true;
926 
927 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
928 
929 	return (dirty * 100) > (full * nr_pages);
930 }
931 
932 /*
933  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
934  *
935  * Schedules a delayed work to wake up any task that is blocked on the
936  * ring buffer waiters queue.
937  */
938 static void rb_wake_up_waiters(struct irq_work *work)
939 {
940 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
941 
942 	wake_up_all(&rbwork->waiters);
943 	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
944 		rbwork->wakeup_full = false;
945 		rbwork->full_waiters_pending = false;
946 		wake_up_all(&rbwork->full_waiters);
947 	}
948 }
949 
950 /**
951  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
952  * @buffer: The ring buffer to wake waiters on
953  * @cpu: The CPU buffer to wake waiters on
954  *
955  * In the case of a file that represents a ring buffer is closing,
956  * it is prudent to wake up any waiters that are on this.
957  */
958 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
959 {
960 	struct ring_buffer_per_cpu *cpu_buffer;
961 	struct rb_irq_work *rbwork;
962 
963 	if (!buffer)
964 		return;
965 
966 	if (cpu == RING_BUFFER_ALL_CPUS) {
967 
968 		/* Wake up individual ones too. One level recursion */
969 		for_each_buffer_cpu(buffer, cpu)
970 			ring_buffer_wake_waiters(buffer, cpu);
971 
972 		rbwork = &buffer->irq_work;
973 	} else {
974 		if (WARN_ON_ONCE(!buffer->buffers))
975 			return;
976 		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
977 			return;
978 
979 		cpu_buffer = buffer->buffers[cpu];
980 		/* The CPU buffer may not have been initialized yet */
981 		if (!cpu_buffer)
982 			return;
983 		rbwork = &cpu_buffer->irq_work;
984 	}
985 
986 	rbwork->wait_index++;
987 	/* make sure the waiters see the new index */
988 	smp_wmb();
989 
990 	rb_wake_up_waiters(&rbwork->work);
991 }
992 
993 /**
994  * ring_buffer_wait - wait for input to the ring buffer
995  * @buffer: buffer to wait on
996  * @cpu: the cpu buffer to wait on
997  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
998  *
999  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1000  * as data is added to any of the @buffer's cpu buffers. Otherwise
1001  * it will wait for data to be added to a specific cpu buffer.
1002  */
1003 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
1004 {
1005 	struct ring_buffer_per_cpu *cpu_buffer;
1006 	DEFINE_WAIT(wait);
1007 	struct rb_irq_work *work;
1008 	long wait_index;
1009 	int ret = 0;
1010 
1011 	/*
1012 	 * Depending on what the caller is waiting for, either any
1013 	 * data in any cpu buffer, or a specific buffer, put the
1014 	 * caller on the appropriate wait queue.
1015 	 */
1016 	if (cpu == RING_BUFFER_ALL_CPUS) {
1017 		work = &buffer->irq_work;
1018 		/* Full only makes sense on per cpu reads */
1019 		full = 0;
1020 	} else {
1021 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1022 			return -ENODEV;
1023 		cpu_buffer = buffer->buffers[cpu];
1024 		work = &cpu_buffer->irq_work;
1025 	}
1026 
1027 	wait_index = READ_ONCE(work->wait_index);
1028 
1029 	while (true) {
1030 		if (full)
1031 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
1032 		else
1033 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
1034 
1035 		/*
1036 		 * The events can happen in critical sections where
1037 		 * checking a work queue can cause deadlocks.
1038 		 * After adding a task to the queue, this flag is set
1039 		 * only to notify events to try to wake up the queue
1040 		 * using irq_work.
1041 		 *
1042 		 * We don't clear it even if the buffer is no longer
1043 		 * empty. The flag only causes the next event to run
1044 		 * irq_work to do the work queue wake up. The worse
1045 		 * that can happen if we race with !trace_empty() is that
1046 		 * an event will cause an irq_work to try to wake up
1047 		 * an empty queue.
1048 		 *
1049 		 * There's no reason to protect this flag either, as
1050 		 * the work queue and irq_work logic will do the necessary
1051 		 * synchronization for the wake ups. The only thing
1052 		 * that is necessary is that the wake up happens after
1053 		 * a task has been queued. It's OK for spurious wake ups.
1054 		 */
1055 		if (full)
1056 			work->full_waiters_pending = true;
1057 		else
1058 			work->waiters_pending = true;
1059 
1060 		if (signal_pending(current)) {
1061 			ret = -EINTR;
1062 			break;
1063 		}
1064 
1065 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
1066 			break;
1067 
1068 		if (cpu != RING_BUFFER_ALL_CPUS &&
1069 		    !ring_buffer_empty_cpu(buffer, cpu)) {
1070 			unsigned long flags;
1071 			bool pagebusy;
1072 			bool done;
1073 
1074 			if (!full)
1075 				break;
1076 
1077 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1078 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
1079 			done = !pagebusy && full_hit(buffer, cpu, full);
1080 
1081 			if (!cpu_buffer->shortest_full ||
1082 			    cpu_buffer->shortest_full > full)
1083 				cpu_buffer->shortest_full = full;
1084 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1085 			if (done)
1086 				break;
1087 		}
1088 
1089 		schedule();
1090 
1091 		/* Make sure to see the new wait index */
1092 		smp_rmb();
1093 		if (wait_index != work->wait_index)
1094 			break;
1095 	}
1096 
1097 	if (full)
1098 		finish_wait(&work->full_waiters, &wait);
1099 	else
1100 		finish_wait(&work->waiters, &wait);
1101 
1102 	return ret;
1103 }
1104 
1105 /**
1106  * ring_buffer_poll_wait - poll on buffer input
1107  * @buffer: buffer to wait on
1108  * @cpu: the cpu buffer to wait on
1109  * @filp: the file descriptor
1110  * @poll_table: The poll descriptor
1111  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1112  *
1113  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1114  * as data is added to any of the @buffer's cpu buffers. Otherwise
1115  * it will wait for data to be added to a specific cpu buffer.
1116  *
1117  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1118  * zero otherwise.
1119  */
1120 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1121 			  struct file *filp, poll_table *poll_table, int full)
1122 {
1123 	struct ring_buffer_per_cpu *cpu_buffer;
1124 	struct rb_irq_work *work;
1125 
1126 	if (cpu == RING_BUFFER_ALL_CPUS) {
1127 		work = &buffer->irq_work;
1128 		full = 0;
1129 	} else {
1130 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1131 			return -EINVAL;
1132 
1133 		cpu_buffer = buffer->buffers[cpu];
1134 		work = &cpu_buffer->irq_work;
1135 	}
1136 
1137 	if (full) {
1138 		poll_wait(filp, &work->full_waiters, poll_table);
1139 		work->full_waiters_pending = true;
1140 	} else {
1141 		poll_wait(filp, &work->waiters, poll_table);
1142 		work->waiters_pending = true;
1143 	}
1144 
1145 	/*
1146 	 * There's a tight race between setting the waiters_pending and
1147 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1148 	 * is set, the next event will wake the task up, but we can get stuck
1149 	 * if there's only a single event in.
1150 	 *
1151 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1152 	 * but adding a memory barrier to all events will cause too much of a
1153 	 * performance hit in the fast path.  We only need a memory barrier when
1154 	 * the buffer goes from empty to having content.  But as this race is
1155 	 * extremely small, and it's not a problem if another event comes in, we
1156 	 * will fix it later.
1157 	 */
1158 	smp_mb();
1159 
1160 	if (full)
1161 		return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0;
1162 
1163 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1164 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1165 		return EPOLLIN | EPOLLRDNORM;
1166 	return 0;
1167 }
1168 
1169 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1170 #define RB_WARN_ON(b, cond)						\
1171 	({								\
1172 		int _____ret = unlikely(cond);				\
1173 		if (_____ret) {						\
1174 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1175 				struct ring_buffer_per_cpu *__b =	\
1176 					(void *)b;			\
1177 				atomic_inc(&__b->buffer->record_disabled); \
1178 			} else						\
1179 				atomic_inc(&b->record_disabled);	\
1180 			WARN_ON(1);					\
1181 		}							\
1182 		_____ret;						\
1183 	})
1184 
1185 /* Up this if you want to test the TIME_EXTENTS and normalization */
1186 #define DEBUG_SHIFT 0
1187 
1188 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1189 {
1190 	u64 ts;
1191 
1192 	/* Skip retpolines :-( */
1193 	if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1194 		ts = trace_clock_local();
1195 	else
1196 		ts = buffer->clock();
1197 
1198 	/* shift to debug/test normalization and TIME_EXTENTS */
1199 	return ts << DEBUG_SHIFT;
1200 }
1201 
1202 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1203 {
1204 	u64 time;
1205 
1206 	preempt_disable_notrace();
1207 	time = rb_time_stamp(buffer);
1208 	preempt_enable_notrace();
1209 
1210 	return time;
1211 }
1212 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1213 
1214 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1215 				      int cpu, u64 *ts)
1216 {
1217 	/* Just stupid testing the normalize function and deltas */
1218 	*ts >>= DEBUG_SHIFT;
1219 }
1220 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1221 
1222 /*
1223  * Making the ring buffer lockless makes things tricky.
1224  * Although writes only happen on the CPU that they are on,
1225  * and they only need to worry about interrupts. Reads can
1226  * happen on any CPU.
1227  *
1228  * The reader page is always off the ring buffer, but when the
1229  * reader finishes with a page, it needs to swap its page with
1230  * a new one from the buffer. The reader needs to take from
1231  * the head (writes go to the tail). But if a writer is in overwrite
1232  * mode and wraps, it must push the head page forward.
1233  *
1234  * Here lies the problem.
1235  *
1236  * The reader must be careful to replace only the head page, and
1237  * not another one. As described at the top of the file in the
1238  * ASCII art, the reader sets its old page to point to the next
1239  * page after head. It then sets the page after head to point to
1240  * the old reader page. But if the writer moves the head page
1241  * during this operation, the reader could end up with the tail.
1242  *
1243  * We use cmpxchg to help prevent this race. We also do something
1244  * special with the page before head. We set the LSB to 1.
1245  *
1246  * When the writer must push the page forward, it will clear the
1247  * bit that points to the head page, move the head, and then set
1248  * the bit that points to the new head page.
1249  *
1250  * We also don't want an interrupt coming in and moving the head
1251  * page on another writer. Thus we use the second LSB to catch
1252  * that too. Thus:
1253  *
1254  * head->list->prev->next        bit 1          bit 0
1255  *                              -------        -------
1256  * Normal page                     0              0
1257  * Points to head page             0              1
1258  * New head page                   1              0
1259  *
1260  * Note we can not trust the prev pointer of the head page, because:
1261  *
1262  * +----+       +-----+        +-----+
1263  * |    |------>|  T  |---X--->|  N  |
1264  * |    |<------|     |        |     |
1265  * +----+       +-----+        +-----+
1266  *   ^                           ^ |
1267  *   |          +-----+          | |
1268  *   +----------|  R  |----------+ |
1269  *              |     |<-----------+
1270  *              +-----+
1271  *
1272  * Key:  ---X-->  HEAD flag set in pointer
1273  *         T      Tail page
1274  *         R      Reader page
1275  *         N      Next page
1276  *
1277  * (see __rb_reserve_next() to see where this happens)
1278  *
1279  *  What the above shows is that the reader just swapped out
1280  *  the reader page with a page in the buffer, but before it
1281  *  could make the new header point back to the new page added
1282  *  it was preempted by a writer. The writer moved forward onto
1283  *  the new page added by the reader and is about to move forward
1284  *  again.
1285  *
1286  *  You can see, it is legitimate for the previous pointer of
1287  *  the head (or any page) not to point back to itself. But only
1288  *  temporarily.
1289  */
1290 
1291 #define RB_PAGE_NORMAL		0UL
1292 #define RB_PAGE_HEAD		1UL
1293 #define RB_PAGE_UPDATE		2UL
1294 
1295 
1296 #define RB_FLAG_MASK		3UL
1297 
1298 /* PAGE_MOVED is not part of the mask */
1299 #define RB_PAGE_MOVED		4UL
1300 
1301 /*
1302  * rb_list_head - remove any bit
1303  */
1304 static struct list_head *rb_list_head(struct list_head *list)
1305 {
1306 	unsigned long val = (unsigned long)list;
1307 
1308 	return (struct list_head *)(val & ~RB_FLAG_MASK);
1309 }
1310 
1311 /*
1312  * rb_is_head_page - test if the given page is the head page
1313  *
1314  * Because the reader may move the head_page pointer, we can
1315  * not trust what the head page is (it may be pointing to
1316  * the reader page). But if the next page is a header page,
1317  * its flags will be non zero.
1318  */
1319 static inline int
1320 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1321 {
1322 	unsigned long val;
1323 
1324 	val = (unsigned long)list->next;
1325 
1326 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1327 		return RB_PAGE_MOVED;
1328 
1329 	return val & RB_FLAG_MASK;
1330 }
1331 
1332 /*
1333  * rb_is_reader_page
1334  *
1335  * The unique thing about the reader page, is that, if the
1336  * writer is ever on it, the previous pointer never points
1337  * back to the reader page.
1338  */
1339 static bool rb_is_reader_page(struct buffer_page *page)
1340 {
1341 	struct list_head *list = page->list.prev;
1342 
1343 	return rb_list_head(list->next) != &page->list;
1344 }
1345 
1346 /*
1347  * rb_set_list_to_head - set a list_head to be pointing to head.
1348  */
1349 static void rb_set_list_to_head(struct list_head *list)
1350 {
1351 	unsigned long *ptr;
1352 
1353 	ptr = (unsigned long *)&list->next;
1354 	*ptr |= RB_PAGE_HEAD;
1355 	*ptr &= ~RB_PAGE_UPDATE;
1356 }
1357 
1358 /*
1359  * rb_head_page_activate - sets up head page
1360  */
1361 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1362 {
1363 	struct buffer_page *head;
1364 
1365 	head = cpu_buffer->head_page;
1366 	if (!head)
1367 		return;
1368 
1369 	/*
1370 	 * Set the previous list pointer to have the HEAD flag.
1371 	 */
1372 	rb_set_list_to_head(head->list.prev);
1373 }
1374 
1375 static void rb_list_head_clear(struct list_head *list)
1376 {
1377 	unsigned long *ptr = (unsigned long *)&list->next;
1378 
1379 	*ptr &= ~RB_FLAG_MASK;
1380 }
1381 
1382 /*
1383  * rb_head_page_deactivate - clears head page ptr (for free list)
1384  */
1385 static void
1386 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1387 {
1388 	struct list_head *hd;
1389 
1390 	/* Go through the whole list and clear any pointers found. */
1391 	rb_list_head_clear(cpu_buffer->pages);
1392 
1393 	list_for_each(hd, cpu_buffer->pages)
1394 		rb_list_head_clear(hd);
1395 }
1396 
1397 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1398 			    struct buffer_page *head,
1399 			    struct buffer_page *prev,
1400 			    int old_flag, int new_flag)
1401 {
1402 	struct list_head *list;
1403 	unsigned long val = (unsigned long)&head->list;
1404 	unsigned long ret;
1405 
1406 	list = &prev->list;
1407 
1408 	val &= ~RB_FLAG_MASK;
1409 
1410 	ret = cmpxchg((unsigned long *)&list->next,
1411 		      val | old_flag, val | new_flag);
1412 
1413 	/* check if the reader took the page */
1414 	if ((ret & ~RB_FLAG_MASK) != val)
1415 		return RB_PAGE_MOVED;
1416 
1417 	return ret & RB_FLAG_MASK;
1418 }
1419 
1420 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1421 				   struct buffer_page *head,
1422 				   struct buffer_page *prev,
1423 				   int old_flag)
1424 {
1425 	return rb_head_page_set(cpu_buffer, head, prev,
1426 				old_flag, RB_PAGE_UPDATE);
1427 }
1428 
1429 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1430 				 struct buffer_page *head,
1431 				 struct buffer_page *prev,
1432 				 int old_flag)
1433 {
1434 	return rb_head_page_set(cpu_buffer, head, prev,
1435 				old_flag, RB_PAGE_HEAD);
1436 }
1437 
1438 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1439 				   struct buffer_page *head,
1440 				   struct buffer_page *prev,
1441 				   int old_flag)
1442 {
1443 	return rb_head_page_set(cpu_buffer, head, prev,
1444 				old_flag, RB_PAGE_NORMAL);
1445 }
1446 
1447 static inline void rb_inc_page(struct buffer_page **bpage)
1448 {
1449 	struct list_head *p = rb_list_head((*bpage)->list.next);
1450 
1451 	*bpage = list_entry(p, struct buffer_page, list);
1452 }
1453 
1454 static struct buffer_page *
1455 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1456 {
1457 	struct buffer_page *head;
1458 	struct buffer_page *page;
1459 	struct list_head *list;
1460 	int i;
1461 
1462 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1463 		return NULL;
1464 
1465 	/* sanity check */
1466 	list = cpu_buffer->pages;
1467 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1468 		return NULL;
1469 
1470 	page = head = cpu_buffer->head_page;
1471 	/*
1472 	 * It is possible that the writer moves the header behind
1473 	 * where we started, and we miss in one loop.
1474 	 * A second loop should grab the header, but we'll do
1475 	 * three loops just because I'm paranoid.
1476 	 */
1477 	for (i = 0; i < 3; i++) {
1478 		do {
1479 			if (rb_is_head_page(page, page->list.prev)) {
1480 				cpu_buffer->head_page = page;
1481 				return page;
1482 			}
1483 			rb_inc_page(&page);
1484 		} while (page != head);
1485 	}
1486 
1487 	RB_WARN_ON(cpu_buffer, 1);
1488 
1489 	return NULL;
1490 }
1491 
1492 static bool rb_head_page_replace(struct buffer_page *old,
1493 				struct buffer_page *new)
1494 {
1495 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1496 	unsigned long val;
1497 	unsigned long ret;
1498 
1499 	val = *ptr & ~RB_FLAG_MASK;
1500 	val |= RB_PAGE_HEAD;
1501 
1502 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1503 
1504 	return ret == val;
1505 }
1506 
1507 /*
1508  * rb_tail_page_update - move the tail page forward
1509  */
1510 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1511 			       struct buffer_page *tail_page,
1512 			       struct buffer_page *next_page)
1513 {
1514 	unsigned long old_entries;
1515 	unsigned long old_write;
1516 
1517 	/*
1518 	 * The tail page now needs to be moved forward.
1519 	 *
1520 	 * We need to reset the tail page, but without messing
1521 	 * with possible erasing of data brought in by interrupts
1522 	 * that have moved the tail page and are currently on it.
1523 	 *
1524 	 * We add a counter to the write field to denote this.
1525 	 */
1526 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1527 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1528 
1529 	local_inc(&cpu_buffer->pages_touched);
1530 	/*
1531 	 * Just make sure we have seen our old_write and synchronize
1532 	 * with any interrupts that come in.
1533 	 */
1534 	barrier();
1535 
1536 	/*
1537 	 * If the tail page is still the same as what we think
1538 	 * it is, then it is up to us to update the tail
1539 	 * pointer.
1540 	 */
1541 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1542 		/* Zero the write counter */
1543 		unsigned long val = old_write & ~RB_WRITE_MASK;
1544 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1545 
1546 		/*
1547 		 * This will only succeed if an interrupt did
1548 		 * not come in and change it. In which case, we
1549 		 * do not want to modify it.
1550 		 *
1551 		 * We add (void) to let the compiler know that we do not care
1552 		 * about the return value of these functions. We use the
1553 		 * cmpxchg to only update if an interrupt did not already
1554 		 * do it for us. If the cmpxchg fails, we don't care.
1555 		 */
1556 		(void)local_cmpxchg(&next_page->write, old_write, val);
1557 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1558 
1559 		/*
1560 		 * No need to worry about races with clearing out the commit.
1561 		 * it only can increment when a commit takes place. But that
1562 		 * only happens in the outer most nested commit.
1563 		 */
1564 		local_set(&next_page->page->commit, 0);
1565 
1566 		/* Again, either we update tail_page or an interrupt does */
1567 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1568 	}
1569 }
1570 
1571 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1572 			  struct buffer_page *bpage)
1573 {
1574 	unsigned long val = (unsigned long)bpage;
1575 
1576 	RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1577 }
1578 
1579 /**
1580  * rb_check_pages - integrity check of buffer pages
1581  * @cpu_buffer: CPU buffer with pages to test
1582  *
1583  * As a safety measure we check to make sure the data pages have not
1584  * been corrupted.
1585  */
1586 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1587 {
1588 	struct list_head *head = rb_list_head(cpu_buffer->pages);
1589 	struct list_head *tmp;
1590 
1591 	if (RB_WARN_ON(cpu_buffer,
1592 			rb_list_head(rb_list_head(head->next)->prev) != head))
1593 		return;
1594 
1595 	if (RB_WARN_ON(cpu_buffer,
1596 			rb_list_head(rb_list_head(head->prev)->next) != head))
1597 		return;
1598 
1599 	for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1600 		if (RB_WARN_ON(cpu_buffer,
1601 				rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1602 			return;
1603 
1604 		if (RB_WARN_ON(cpu_buffer,
1605 				rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1606 			return;
1607 	}
1608 }
1609 
1610 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1611 		long nr_pages, struct list_head *pages)
1612 {
1613 	struct buffer_page *bpage, *tmp;
1614 	bool user_thread = current->mm != NULL;
1615 	gfp_t mflags;
1616 	long i;
1617 
1618 	/*
1619 	 * Check if the available memory is there first.
1620 	 * Note, si_mem_available() only gives us a rough estimate of available
1621 	 * memory. It may not be accurate. But we don't care, we just want
1622 	 * to prevent doing any allocation when it is obvious that it is
1623 	 * not going to succeed.
1624 	 */
1625 	i = si_mem_available();
1626 	if (i < nr_pages)
1627 		return -ENOMEM;
1628 
1629 	/*
1630 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1631 	 * gracefully without invoking oom-killer and the system is not
1632 	 * destabilized.
1633 	 */
1634 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1635 
1636 	/*
1637 	 * If a user thread allocates too much, and si_mem_available()
1638 	 * reports there's enough memory, even though there is not.
1639 	 * Make sure the OOM killer kills this thread. This can happen
1640 	 * even with RETRY_MAYFAIL because another task may be doing
1641 	 * an allocation after this task has taken all memory.
1642 	 * This is the task the OOM killer needs to take out during this
1643 	 * loop, even if it was triggered by an allocation somewhere else.
1644 	 */
1645 	if (user_thread)
1646 		set_current_oom_origin();
1647 	for (i = 0; i < nr_pages; i++) {
1648 		struct page *page;
1649 
1650 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1651 				    mflags, cpu_to_node(cpu_buffer->cpu));
1652 		if (!bpage)
1653 			goto free_pages;
1654 
1655 		rb_check_bpage(cpu_buffer, bpage);
1656 
1657 		list_add(&bpage->list, pages);
1658 
1659 		page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
1660 		if (!page)
1661 			goto free_pages;
1662 		bpage->page = page_address(page);
1663 		rb_init_page(bpage->page);
1664 
1665 		if (user_thread && fatal_signal_pending(current))
1666 			goto free_pages;
1667 	}
1668 	if (user_thread)
1669 		clear_current_oom_origin();
1670 
1671 	return 0;
1672 
1673 free_pages:
1674 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1675 		list_del_init(&bpage->list);
1676 		free_buffer_page(bpage);
1677 	}
1678 	if (user_thread)
1679 		clear_current_oom_origin();
1680 
1681 	return -ENOMEM;
1682 }
1683 
1684 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1685 			     unsigned long nr_pages)
1686 {
1687 	LIST_HEAD(pages);
1688 
1689 	WARN_ON(!nr_pages);
1690 
1691 	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1692 		return -ENOMEM;
1693 
1694 	/*
1695 	 * The ring buffer page list is a circular list that does not
1696 	 * start and end with a list head. All page list items point to
1697 	 * other pages.
1698 	 */
1699 	cpu_buffer->pages = pages.next;
1700 	list_del(&pages);
1701 
1702 	cpu_buffer->nr_pages = nr_pages;
1703 
1704 	rb_check_pages(cpu_buffer);
1705 
1706 	return 0;
1707 }
1708 
1709 static struct ring_buffer_per_cpu *
1710 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1711 {
1712 	struct ring_buffer_per_cpu *cpu_buffer;
1713 	struct buffer_page *bpage;
1714 	struct page *page;
1715 	int ret;
1716 
1717 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1718 				  GFP_KERNEL, cpu_to_node(cpu));
1719 	if (!cpu_buffer)
1720 		return NULL;
1721 
1722 	cpu_buffer->cpu = cpu;
1723 	cpu_buffer->buffer = buffer;
1724 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1725 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1726 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1727 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1728 	init_completion(&cpu_buffer->update_done);
1729 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1730 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1731 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1732 
1733 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1734 			    GFP_KERNEL, cpu_to_node(cpu));
1735 	if (!bpage)
1736 		goto fail_free_buffer;
1737 
1738 	rb_check_bpage(cpu_buffer, bpage);
1739 
1740 	cpu_buffer->reader_page = bpage;
1741 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1742 	if (!page)
1743 		goto fail_free_reader;
1744 	bpage->page = page_address(page);
1745 	rb_init_page(bpage->page);
1746 
1747 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1748 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1749 
1750 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1751 	if (ret < 0)
1752 		goto fail_free_reader;
1753 
1754 	cpu_buffer->head_page
1755 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1756 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1757 
1758 	rb_head_page_activate(cpu_buffer);
1759 
1760 	return cpu_buffer;
1761 
1762  fail_free_reader:
1763 	free_buffer_page(cpu_buffer->reader_page);
1764 
1765  fail_free_buffer:
1766 	kfree(cpu_buffer);
1767 	return NULL;
1768 }
1769 
1770 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1771 {
1772 	struct list_head *head = cpu_buffer->pages;
1773 	struct buffer_page *bpage, *tmp;
1774 
1775 	irq_work_sync(&cpu_buffer->irq_work.work);
1776 
1777 	free_buffer_page(cpu_buffer->reader_page);
1778 
1779 	if (head) {
1780 		rb_head_page_deactivate(cpu_buffer);
1781 
1782 		list_for_each_entry_safe(bpage, tmp, head, list) {
1783 			list_del_init(&bpage->list);
1784 			free_buffer_page(bpage);
1785 		}
1786 		bpage = list_entry(head, struct buffer_page, list);
1787 		free_buffer_page(bpage);
1788 	}
1789 
1790 	kfree(cpu_buffer);
1791 }
1792 
1793 /**
1794  * __ring_buffer_alloc - allocate a new ring_buffer
1795  * @size: the size in bytes per cpu that is needed.
1796  * @flags: attributes to set for the ring buffer.
1797  * @key: ring buffer reader_lock_key.
1798  *
1799  * Currently the only flag that is available is the RB_FL_OVERWRITE
1800  * flag. This flag means that the buffer will overwrite old data
1801  * when the buffer wraps. If this flag is not set, the buffer will
1802  * drop data when the tail hits the head.
1803  */
1804 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1805 					struct lock_class_key *key)
1806 {
1807 	struct trace_buffer *buffer;
1808 	long nr_pages;
1809 	int bsize;
1810 	int cpu;
1811 	int ret;
1812 
1813 	/* keep it in its own cache line */
1814 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1815 			 GFP_KERNEL);
1816 	if (!buffer)
1817 		return NULL;
1818 
1819 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1820 		goto fail_free_buffer;
1821 
1822 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1823 	buffer->flags = flags;
1824 	buffer->clock = trace_clock_local;
1825 	buffer->reader_lock_key = key;
1826 
1827 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1828 	init_waitqueue_head(&buffer->irq_work.waiters);
1829 
1830 	/* need at least two pages */
1831 	if (nr_pages < 2)
1832 		nr_pages = 2;
1833 
1834 	buffer->cpus = nr_cpu_ids;
1835 
1836 	bsize = sizeof(void *) * nr_cpu_ids;
1837 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1838 				  GFP_KERNEL);
1839 	if (!buffer->buffers)
1840 		goto fail_free_cpumask;
1841 
1842 	cpu = raw_smp_processor_id();
1843 	cpumask_set_cpu(cpu, buffer->cpumask);
1844 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1845 	if (!buffer->buffers[cpu])
1846 		goto fail_free_buffers;
1847 
1848 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1849 	if (ret < 0)
1850 		goto fail_free_buffers;
1851 
1852 	mutex_init(&buffer->mutex);
1853 
1854 	return buffer;
1855 
1856  fail_free_buffers:
1857 	for_each_buffer_cpu(buffer, cpu) {
1858 		if (buffer->buffers[cpu])
1859 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1860 	}
1861 	kfree(buffer->buffers);
1862 
1863  fail_free_cpumask:
1864 	free_cpumask_var(buffer->cpumask);
1865 
1866  fail_free_buffer:
1867 	kfree(buffer);
1868 	return NULL;
1869 }
1870 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1871 
1872 /**
1873  * ring_buffer_free - free a ring buffer.
1874  * @buffer: the buffer to free.
1875  */
1876 void
1877 ring_buffer_free(struct trace_buffer *buffer)
1878 {
1879 	int cpu;
1880 
1881 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1882 
1883 	irq_work_sync(&buffer->irq_work.work);
1884 
1885 	for_each_buffer_cpu(buffer, cpu)
1886 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1887 
1888 	kfree(buffer->buffers);
1889 	free_cpumask_var(buffer->cpumask);
1890 
1891 	kfree(buffer);
1892 }
1893 EXPORT_SYMBOL_GPL(ring_buffer_free);
1894 
1895 void ring_buffer_set_clock(struct trace_buffer *buffer,
1896 			   u64 (*clock)(void))
1897 {
1898 	buffer->clock = clock;
1899 }
1900 
1901 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1902 {
1903 	buffer->time_stamp_abs = abs;
1904 }
1905 
1906 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1907 {
1908 	return buffer->time_stamp_abs;
1909 }
1910 
1911 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1912 
1913 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1914 {
1915 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1916 }
1917 
1918 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1919 {
1920 	return local_read(&bpage->write) & RB_WRITE_MASK;
1921 }
1922 
1923 static bool
1924 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1925 {
1926 	struct list_head *tail_page, *to_remove, *next_page;
1927 	struct buffer_page *to_remove_page, *tmp_iter_page;
1928 	struct buffer_page *last_page, *first_page;
1929 	unsigned long nr_removed;
1930 	unsigned long head_bit;
1931 	int page_entries;
1932 
1933 	head_bit = 0;
1934 
1935 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1936 	atomic_inc(&cpu_buffer->record_disabled);
1937 	/*
1938 	 * We don't race with the readers since we have acquired the reader
1939 	 * lock. We also don't race with writers after disabling recording.
1940 	 * This makes it easy to figure out the first and the last page to be
1941 	 * removed from the list. We unlink all the pages in between including
1942 	 * the first and last pages. This is done in a busy loop so that we
1943 	 * lose the least number of traces.
1944 	 * The pages are freed after we restart recording and unlock readers.
1945 	 */
1946 	tail_page = &cpu_buffer->tail_page->list;
1947 
1948 	/*
1949 	 * tail page might be on reader page, we remove the next page
1950 	 * from the ring buffer
1951 	 */
1952 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1953 		tail_page = rb_list_head(tail_page->next);
1954 	to_remove = tail_page;
1955 
1956 	/* start of pages to remove */
1957 	first_page = list_entry(rb_list_head(to_remove->next),
1958 				struct buffer_page, list);
1959 
1960 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1961 		to_remove = rb_list_head(to_remove)->next;
1962 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1963 	}
1964 	/* Read iterators need to reset themselves when some pages removed */
1965 	cpu_buffer->pages_removed += nr_removed;
1966 
1967 	next_page = rb_list_head(to_remove)->next;
1968 
1969 	/*
1970 	 * Now we remove all pages between tail_page and next_page.
1971 	 * Make sure that we have head_bit value preserved for the
1972 	 * next page
1973 	 */
1974 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1975 						head_bit);
1976 	next_page = rb_list_head(next_page);
1977 	next_page->prev = tail_page;
1978 
1979 	/* make sure pages points to a valid page in the ring buffer */
1980 	cpu_buffer->pages = next_page;
1981 
1982 	/* update head page */
1983 	if (head_bit)
1984 		cpu_buffer->head_page = list_entry(next_page,
1985 						struct buffer_page, list);
1986 
1987 	/* pages are removed, resume tracing and then free the pages */
1988 	atomic_dec(&cpu_buffer->record_disabled);
1989 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1990 
1991 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1992 
1993 	/* last buffer page to remove */
1994 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1995 				list);
1996 	tmp_iter_page = first_page;
1997 
1998 	do {
1999 		cond_resched();
2000 
2001 		to_remove_page = tmp_iter_page;
2002 		rb_inc_page(&tmp_iter_page);
2003 
2004 		/* update the counters */
2005 		page_entries = rb_page_entries(to_remove_page);
2006 		if (page_entries) {
2007 			/*
2008 			 * If something was added to this page, it was full
2009 			 * since it is not the tail page. So we deduct the
2010 			 * bytes consumed in ring buffer from here.
2011 			 * Increment overrun to account for the lost events.
2012 			 */
2013 			local_add(page_entries, &cpu_buffer->overrun);
2014 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2015 			local_inc(&cpu_buffer->pages_lost);
2016 		}
2017 
2018 		/*
2019 		 * We have already removed references to this list item, just
2020 		 * free up the buffer_page and its page
2021 		 */
2022 		free_buffer_page(to_remove_page);
2023 		nr_removed--;
2024 
2025 	} while (to_remove_page != last_page);
2026 
2027 	RB_WARN_ON(cpu_buffer, nr_removed);
2028 
2029 	return nr_removed == 0;
2030 }
2031 
2032 static bool
2033 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2034 {
2035 	struct list_head *pages = &cpu_buffer->new_pages;
2036 	unsigned long flags;
2037 	bool success;
2038 	int retries;
2039 
2040 	/* Can be called at early boot up, where interrupts must not been enabled */
2041 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2042 	/*
2043 	 * We are holding the reader lock, so the reader page won't be swapped
2044 	 * in the ring buffer. Now we are racing with the writer trying to
2045 	 * move head page and the tail page.
2046 	 * We are going to adapt the reader page update process where:
2047 	 * 1. We first splice the start and end of list of new pages between
2048 	 *    the head page and its previous page.
2049 	 * 2. We cmpxchg the prev_page->next to point from head page to the
2050 	 *    start of new pages list.
2051 	 * 3. Finally, we update the head->prev to the end of new list.
2052 	 *
2053 	 * We will try this process 10 times, to make sure that we don't keep
2054 	 * spinning.
2055 	 */
2056 	retries = 10;
2057 	success = false;
2058 	while (retries--) {
2059 		struct list_head *head_page, *prev_page, *r;
2060 		struct list_head *last_page, *first_page;
2061 		struct list_head *head_page_with_bit;
2062 		struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2063 
2064 		if (!hpage)
2065 			break;
2066 		head_page = &hpage->list;
2067 		prev_page = head_page->prev;
2068 
2069 		first_page = pages->next;
2070 		last_page  = pages->prev;
2071 
2072 		head_page_with_bit = (struct list_head *)
2073 				     ((unsigned long)head_page | RB_PAGE_HEAD);
2074 
2075 		last_page->next = head_page_with_bit;
2076 		first_page->prev = prev_page;
2077 
2078 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
2079 
2080 		if (r == head_page_with_bit) {
2081 			/*
2082 			 * yay, we replaced the page pointer to our new list,
2083 			 * now, we just have to update to head page's prev
2084 			 * pointer to point to end of list
2085 			 */
2086 			head_page->prev = last_page;
2087 			success = true;
2088 			break;
2089 		}
2090 	}
2091 
2092 	if (success)
2093 		INIT_LIST_HEAD(pages);
2094 	/*
2095 	 * If we weren't successful in adding in new pages, warn and stop
2096 	 * tracing
2097 	 */
2098 	RB_WARN_ON(cpu_buffer, !success);
2099 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2100 
2101 	/* free pages if they weren't inserted */
2102 	if (!success) {
2103 		struct buffer_page *bpage, *tmp;
2104 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2105 					 list) {
2106 			list_del_init(&bpage->list);
2107 			free_buffer_page(bpage);
2108 		}
2109 	}
2110 	return success;
2111 }
2112 
2113 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2114 {
2115 	bool success;
2116 
2117 	if (cpu_buffer->nr_pages_to_update > 0)
2118 		success = rb_insert_pages(cpu_buffer);
2119 	else
2120 		success = rb_remove_pages(cpu_buffer,
2121 					-cpu_buffer->nr_pages_to_update);
2122 
2123 	if (success)
2124 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2125 }
2126 
2127 static void update_pages_handler(struct work_struct *work)
2128 {
2129 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2130 			struct ring_buffer_per_cpu, update_pages_work);
2131 	rb_update_pages(cpu_buffer);
2132 	complete(&cpu_buffer->update_done);
2133 }
2134 
2135 /**
2136  * ring_buffer_resize - resize the ring buffer
2137  * @buffer: the buffer to resize.
2138  * @size: the new size.
2139  * @cpu_id: the cpu buffer to resize
2140  *
2141  * Minimum size is 2 * BUF_PAGE_SIZE.
2142  *
2143  * Returns 0 on success and < 0 on failure.
2144  */
2145 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2146 			int cpu_id)
2147 {
2148 	struct ring_buffer_per_cpu *cpu_buffer;
2149 	unsigned long nr_pages;
2150 	int cpu, err;
2151 
2152 	/*
2153 	 * Always succeed at resizing a non-existent buffer:
2154 	 */
2155 	if (!buffer)
2156 		return 0;
2157 
2158 	/* Make sure the requested buffer exists */
2159 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2160 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2161 		return 0;
2162 
2163 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
2164 
2165 	/* we need a minimum of two pages */
2166 	if (nr_pages < 2)
2167 		nr_pages = 2;
2168 
2169 	/* prevent another thread from changing buffer sizes */
2170 	mutex_lock(&buffer->mutex);
2171 	atomic_inc(&buffer->resizing);
2172 
2173 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2174 		/*
2175 		 * Don't succeed if resizing is disabled, as a reader might be
2176 		 * manipulating the ring buffer and is expecting a sane state while
2177 		 * this is true.
2178 		 */
2179 		for_each_buffer_cpu(buffer, cpu) {
2180 			cpu_buffer = buffer->buffers[cpu];
2181 			if (atomic_read(&cpu_buffer->resize_disabled)) {
2182 				err = -EBUSY;
2183 				goto out_err_unlock;
2184 			}
2185 		}
2186 
2187 		/* calculate the pages to update */
2188 		for_each_buffer_cpu(buffer, cpu) {
2189 			cpu_buffer = buffer->buffers[cpu];
2190 
2191 			cpu_buffer->nr_pages_to_update = nr_pages -
2192 							cpu_buffer->nr_pages;
2193 			/*
2194 			 * nothing more to do for removing pages or no update
2195 			 */
2196 			if (cpu_buffer->nr_pages_to_update <= 0)
2197 				continue;
2198 			/*
2199 			 * to add pages, make sure all new pages can be
2200 			 * allocated without receiving ENOMEM
2201 			 */
2202 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2203 			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2204 						&cpu_buffer->new_pages)) {
2205 				/* not enough memory for new pages */
2206 				err = -ENOMEM;
2207 				goto out_err;
2208 			}
2209 		}
2210 
2211 		cpus_read_lock();
2212 		/*
2213 		 * Fire off all the required work handlers
2214 		 * We can't schedule on offline CPUs, but it's not necessary
2215 		 * since we can change their buffer sizes without any race.
2216 		 */
2217 		for_each_buffer_cpu(buffer, cpu) {
2218 			cpu_buffer = buffer->buffers[cpu];
2219 			if (!cpu_buffer->nr_pages_to_update)
2220 				continue;
2221 
2222 			/* Can't run something on an offline CPU. */
2223 			if (!cpu_online(cpu)) {
2224 				rb_update_pages(cpu_buffer);
2225 				cpu_buffer->nr_pages_to_update = 0;
2226 			} else {
2227 				/* Run directly if possible. */
2228 				migrate_disable();
2229 				if (cpu != smp_processor_id()) {
2230 					migrate_enable();
2231 					schedule_work_on(cpu,
2232 							 &cpu_buffer->update_pages_work);
2233 				} else {
2234 					update_pages_handler(&cpu_buffer->update_pages_work);
2235 					migrate_enable();
2236 				}
2237 			}
2238 		}
2239 
2240 		/* wait for all the updates to complete */
2241 		for_each_buffer_cpu(buffer, cpu) {
2242 			cpu_buffer = buffer->buffers[cpu];
2243 			if (!cpu_buffer->nr_pages_to_update)
2244 				continue;
2245 
2246 			if (cpu_online(cpu))
2247 				wait_for_completion(&cpu_buffer->update_done);
2248 			cpu_buffer->nr_pages_to_update = 0;
2249 		}
2250 
2251 		cpus_read_unlock();
2252 	} else {
2253 		cpu_buffer = buffer->buffers[cpu_id];
2254 
2255 		if (nr_pages == cpu_buffer->nr_pages)
2256 			goto out;
2257 
2258 		/*
2259 		 * Don't succeed if resizing is disabled, as a reader might be
2260 		 * manipulating the ring buffer and is expecting a sane state while
2261 		 * this is true.
2262 		 */
2263 		if (atomic_read(&cpu_buffer->resize_disabled)) {
2264 			err = -EBUSY;
2265 			goto out_err_unlock;
2266 		}
2267 
2268 		cpu_buffer->nr_pages_to_update = nr_pages -
2269 						cpu_buffer->nr_pages;
2270 
2271 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2272 		if (cpu_buffer->nr_pages_to_update > 0 &&
2273 			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2274 					    &cpu_buffer->new_pages)) {
2275 			err = -ENOMEM;
2276 			goto out_err;
2277 		}
2278 
2279 		cpus_read_lock();
2280 
2281 		/* Can't run something on an offline CPU. */
2282 		if (!cpu_online(cpu_id))
2283 			rb_update_pages(cpu_buffer);
2284 		else {
2285 			/* Run directly if possible. */
2286 			migrate_disable();
2287 			if (cpu_id == smp_processor_id()) {
2288 				rb_update_pages(cpu_buffer);
2289 				migrate_enable();
2290 			} else {
2291 				migrate_enable();
2292 				schedule_work_on(cpu_id,
2293 						 &cpu_buffer->update_pages_work);
2294 				wait_for_completion(&cpu_buffer->update_done);
2295 			}
2296 		}
2297 
2298 		cpu_buffer->nr_pages_to_update = 0;
2299 		cpus_read_unlock();
2300 	}
2301 
2302  out:
2303 	/*
2304 	 * The ring buffer resize can happen with the ring buffer
2305 	 * enabled, so that the update disturbs the tracing as little
2306 	 * as possible. But if the buffer is disabled, we do not need
2307 	 * to worry about that, and we can take the time to verify
2308 	 * that the buffer is not corrupt.
2309 	 */
2310 	if (atomic_read(&buffer->record_disabled)) {
2311 		atomic_inc(&buffer->record_disabled);
2312 		/*
2313 		 * Even though the buffer was disabled, we must make sure
2314 		 * that it is truly disabled before calling rb_check_pages.
2315 		 * There could have been a race between checking
2316 		 * record_disable and incrementing it.
2317 		 */
2318 		synchronize_rcu();
2319 		for_each_buffer_cpu(buffer, cpu) {
2320 			cpu_buffer = buffer->buffers[cpu];
2321 			rb_check_pages(cpu_buffer);
2322 		}
2323 		atomic_dec(&buffer->record_disabled);
2324 	}
2325 
2326 	atomic_dec(&buffer->resizing);
2327 	mutex_unlock(&buffer->mutex);
2328 	return 0;
2329 
2330  out_err:
2331 	for_each_buffer_cpu(buffer, cpu) {
2332 		struct buffer_page *bpage, *tmp;
2333 
2334 		cpu_buffer = buffer->buffers[cpu];
2335 		cpu_buffer->nr_pages_to_update = 0;
2336 
2337 		if (list_empty(&cpu_buffer->new_pages))
2338 			continue;
2339 
2340 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2341 					list) {
2342 			list_del_init(&bpage->list);
2343 			free_buffer_page(bpage);
2344 		}
2345 	}
2346  out_err_unlock:
2347 	atomic_dec(&buffer->resizing);
2348 	mutex_unlock(&buffer->mutex);
2349 	return err;
2350 }
2351 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2352 
2353 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2354 {
2355 	mutex_lock(&buffer->mutex);
2356 	if (val)
2357 		buffer->flags |= RB_FL_OVERWRITE;
2358 	else
2359 		buffer->flags &= ~RB_FL_OVERWRITE;
2360 	mutex_unlock(&buffer->mutex);
2361 }
2362 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2363 
2364 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2365 {
2366 	return bpage->page->data + index;
2367 }
2368 
2369 static __always_inline struct ring_buffer_event *
2370 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2371 {
2372 	return __rb_page_index(cpu_buffer->reader_page,
2373 			       cpu_buffer->reader_page->read);
2374 }
2375 
2376 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
2377 {
2378 	return local_read(&bpage->page->commit);
2379 }
2380 
2381 static struct ring_buffer_event *
2382 rb_iter_head_event(struct ring_buffer_iter *iter)
2383 {
2384 	struct ring_buffer_event *event;
2385 	struct buffer_page *iter_head_page = iter->head_page;
2386 	unsigned long commit;
2387 	unsigned length;
2388 
2389 	if (iter->head != iter->next_event)
2390 		return iter->event;
2391 
2392 	/*
2393 	 * When the writer goes across pages, it issues a cmpxchg which
2394 	 * is a mb(), which will synchronize with the rmb here.
2395 	 * (see rb_tail_page_update() and __rb_reserve_next())
2396 	 */
2397 	commit = rb_page_commit(iter_head_page);
2398 	smp_rmb();
2399 	event = __rb_page_index(iter_head_page, iter->head);
2400 	length = rb_event_length(event);
2401 
2402 	/*
2403 	 * READ_ONCE() doesn't work on functions and we don't want the
2404 	 * compiler doing any crazy optimizations with length.
2405 	 */
2406 	barrier();
2407 
2408 	if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2409 		/* Writer corrupted the read? */
2410 		goto reset;
2411 
2412 	memcpy(iter->event, event, length);
2413 	/*
2414 	 * If the page stamp is still the same after this rmb() then the
2415 	 * event was safely copied without the writer entering the page.
2416 	 */
2417 	smp_rmb();
2418 
2419 	/* Make sure the page didn't change since we read this */
2420 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
2421 	    commit > rb_page_commit(iter_head_page))
2422 		goto reset;
2423 
2424 	iter->next_event = iter->head + length;
2425 	return iter->event;
2426  reset:
2427 	/* Reset to the beginning */
2428 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2429 	iter->head = 0;
2430 	iter->next_event = 0;
2431 	iter->missed_events = 1;
2432 	return NULL;
2433 }
2434 
2435 /* Size is determined by what has been committed */
2436 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2437 {
2438 	return rb_page_commit(bpage);
2439 }
2440 
2441 static __always_inline unsigned
2442 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2443 {
2444 	return rb_page_commit(cpu_buffer->commit_page);
2445 }
2446 
2447 static __always_inline unsigned
2448 rb_event_index(struct ring_buffer_event *event)
2449 {
2450 	unsigned long addr = (unsigned long)event;
2451 
2452 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2453 }
2454 
2455 static void rb_inc_iter(struct ring_buffer_iter *iter)
2456 {
2457 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2458 
2459 	/*
2460 	 * The iterator could be on the reader page (it starts there).
2461 	 * But the head could have moved, since the reader was
2462 	 * found. Check for this case and assign the iterator
2463 	 * to the head page instead of next.
2464 	 */
2465 	if (iter->head_page == cpu_buffer->reader_page)
2466 		iter->head_page = rb_set_head_page(cpu_buffer);
2467 	else
2468 		rb_inc_page(&iter->head_page);
2469 
2470 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2471 	iter->head = 0;
2472 	iter->next_event = 0;
2473 }
2474 
2475 /*
2476  * rb_handle_head_page - writer hit the head page
2477  *
2478  * Returns: +1 to retry page
2479  *           0 to continue
2480  *          -1 on error
2481  */
2482 static int
2483 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2484 		    struct buffer_page *tail_page,
2485 		    struct buffer_page *next_page)
2486 {
2487 	struct buffer_page *new_head;
2488 	int entries;
2489 	int type;
2490 	int ret;
2491 
2492 	entries = rb_page_entries(next_page);
2493 
2494 	/*
2495 	 * The hard part is here. We need to move the head
2496 	 * forward, and protect against both readers on
2497 	 * other CPUs and writers coming in via interrupts.
2498 	 */
2499 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2500 				       RB_PAGE_HEAD);
2501 
2502 	/*
2503 	 * type can be one of four:
2504 	 *  NORMAL - an interrupt already moved it for us
2505 	 *  HEAD   - we are the first to get here.
2506 	 *  UPDATE - we are the interrupt interrupting
2507 	 *           a current move.
2508 	 *  MOVED  - a reader on another CPU moved the next
2509 	 *           pointer to its reader page. Give up
2510 	 *           and try again.
2511 	 */
2512 
2513 	switch (type) {
2514 	case RB_PAGE_HEAD:
2515 		/*
2516 		 * We changed the head to UPDATE, thus
2517 		 * it is our responsibility to update
2518 		 * the counters.
2519 		 */
2520 		local_add(entries, &cpu_buffer->overrun);
2521 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2522 		local_inc(&cpu_buffer->pages_lost);
2523 
2524 		/*
2525 		 * The entries will be zeroed out when we move the
2526 		 * tail page.
2527 		 */
2528 
2529 		/* still more to do */
2530 		break;
2531 
2532 	case RB_PAGE_UPDATE:
2533 		/*
2534 		 * This is an interrupt that interrupt the
2535 		 * previous update. Still more to do.
2536 		 */
2537 		break;
2538 	case RB_PAGE_NORMAL:
2539 		/*
2540 		 * An interrupt came in before the update
2541 		 * and processed this for us.
2542 		 * Nothing left to do.
2543 		 */
2544 		return 1;
2545 	case RB_PAGE_MOVED:
2546 		/*
2547 		 * The reader is on another CPU and just did
2548 		 * a swap with our next_page.
2549 		 * Try again.
2550 		 */
2551 		return 1;
2552 	default:
2553 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2554 		return -1;
2555 	}
2556 
2557 	/*
2558 	 * Now that we are here, the old head pointer is
2559 	 * set to UPDATE. This will keep the reader from
2560 	 * swapping the head page with the reader page.
2561 	 * The reader (on another CPU) will spin till
2562 	 * we are finished.
2563 	 *
2564 	 * We just need to protect against interrupts
2565 	 * doing the job. We will set the next pointer
2566 	 * to HEAD. After that, we set the old pointer
2567 	 * to NORMAL, but only if it was HEAD before.
2568 	 * otherwise we are an interrupt, and only
2569 	 * want the outer most commit to reset it.
2570 	 */
2571 	new_head = next_page;
2572 	rb_inc_page(&new_head);
2573 
2574 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2575 				    RB_PAGE_NORMAL);
2576 
2577 	/*
2578 	 * Valid returns are:
2579 	 *  HEAD   - an interrupt came in and already set it.
2580 	 *  NORMAL - One of two things:
2581 	 *            1) We really set it.
2582 	 *            2) A bunch of interrupts came in and moved
2583 	 *               the page forward again.
2584 	 */
2585 	switch (ret) {
2586 	case RB_PAGE_HEAD:
2587 	case RB_PAGE_NORMAL:
2588 		/* OK */
2589 		break;
2590 	default:
2591 		RB_WARN_ON(cpu_buffer, 1);
2592 		return -1;
2593 	}
2594 
2595 	/*
2596 	 * It is possible that an interrupt came in,
2597 	 * set the head up, then more interrupts came in
2598 	 * and moved it again. When we get back here,
2599 	 * the page would have been set to NORMAL but we
2600 	 * just set it back to HEAD.
2601 	 *
2602 	 * How do you detect this? Well, if that happened
2603 	 * the tail page would have moved.
2604 	 */
2605 	if (ret == RB_PAGE_NORMAL) {
2606 		struct buffer_page *buffer_tail_page;
2607 
2608 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2609 		/*
2610 		 * If the tail had moved passed next, then we need
2611 		 * to reset the pointer.
2612 		 */
2613 		if (buffer_tail_page != tail_page &&
2614 		    buffer_tail_page != next_page)
2615 			rb_head_page_set_normal(cpu_buffer, new_head,
2616 						next_page,
2617 						RB_PAGE_HEAD);
2618 	}
2619 
2620 	/*
2621 	 * If this was the outer most commit (the one that
2622 	 * changed the original pointer from HEAD to UPDATE),
2623 	 * then it is up to us to reset it to NORMAL.
2624 	 */
2625 	if (type == RB_PAGE_HEAD) {
2626 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2627 					      tail_page,
2628 					      RB_PAGE_UPDATE);
2629 		if (RB_WARN_ON(cpu_buffer,
2630 			       ret != RB_PAGE_UPDATE))
2631 			return -1;
2632 	}
2633 
2634 	return 0;
2635 }
2636 
2637 static inline void
2638 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2639 	      unsigned long tail, struct rb_event_info *info)
2640 {
2641 	struct buffer_page *tail_page = info->tail_page;
2642 	struct ring_buffer_event *event;
2643 	unsigned long length = info->length;
2644 
2645 	/*
2646 	 * Only the event that crossed the page boundary
2647 	 * must fill the old tail_page with padding.
2648 	 */
2649 	if (tail >= BUF_PAGE_SIZE) {
2650 		/*
2651 		 * If the page was filled, then we still need
2652 		 * to update the real_end. Reset it to zero
2653 		 * and the reader will ignore it.
2654 		 */
2655 		if (tail == BUF_PAGE_SIZE)
2656 			tail_page->real_end = 0;
2657 
2658 		local_sub(length, &tail_page->write);
2659 		return;
2660 	}
2661 
2662 	event = __rb_page_index(tail_page, tail);
2663 
2664 	/* account for padding bytes */
2665 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2666 
2667 	/*
2668 	 * Save the original length to the meta data.
2669 	 * This will be used by the reader to add lost event
2670 	 * counter.
2671 	 */
2672 	tail_page->real_end = tail;
2673 
2674 	/*
2675 	 * If this event is bigger than the minimum size, then
2676 	 * we need to be careful that we don't subtract the
2677 	 * write counter enough to allow another writer to slip
2678 	 * in on this page.
2679 	 * We put in a discarded commit instead, to make sure
2680 	 * that this space is not used again.
2681 	 *
2682 	 * If we are less than the minimum size, we don't need to
2683 	 * worry about it.
2684 	 */
2685 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2686 		/* No room for any events */
2687 
2688 		/* Mark the rest of the page with padding */
2689 		rb_event_set_padding(event);
2690 
2691 		/* Make sure the padding is visible before the write update */
2692 		smp_wmb();
2693 
2694 		/* Set the write back to the previous setting */
2695 		local_sub(length, &tail_page->write);
2696 		return;
2697 	}
2698 
2699 	/* Put in a discarded event */
2700 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2701 	event->type_len = RINGBUF_TYPE_PADDING;
2702 	/* time delta must be non zero */
2703 	event->time_delta = 1;
2704 
2705 	/* Make sure the padding is visible before the tail_page->write update */
2706 	smp_wmb();
2707 
2708 	/* Set write to end of buffer */
2709 	length = (tail + length) - BUF_PAGE_SIZE;
2710 	local_sub(length, &tail_page->write);
2711 }
2712 
2713 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2714 
2715 /*
2716  * This is the slow path, force gcc not to inline it.
2717  */
2718 static noinline struct ring_buffer_event *
2719 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2720 	     unsigned long tail, struct rb_event_info *info)
2721 {
2722 	struct buffer_page *tail_page = info->tail_page;
2723 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2724 	struct trace_buffer *buffer = cpu_buffer->buffer;
2725 	struct buffer_page *next_page;
2726 	int ret;
2727 
2728 	next_page = tail_page;
2729 
2730 	rb_inc_page(&next_page);
2731 
2732 	/*
2733 	 * If for some reason, we had an interrupt storm that made
2734 	 * it all the way around the buffer, bail, and warn
2735 	 * about it.
2736 	 */
2737 	if (unlikely(next_page == commit_page)) {
2738 		local_inc(&cpu_buffer->commit_overrun);
2739 		goto out_reset;
2740 	}
2741 
2742 	/*
2743 	 * This is where the fun begins!
2744 	 *
2745 	 * We are fighting against races between a reader that
2746 	 * could be on another CPU trying to swap its reader
2747 	 * page with the buffer head.
2748 	 *
2749 	 * We are also fighting against interrupts coming in and
2750 	 * moving the head or tail on us as well.
2751 	 *
2752 	 * If the next page is the head page then we have filled
2753 	 * the buffer, unless the commit page is still on the
2754 	 * reader page.
2755 	 */
2756 	if (rb_is_head_page(next_page, &tail_page->list)) {
2757 
2758 		/*
2759 		 * If the commit is not on the reader page, then
2760 		 * move the header page.
2761 		 */
2762 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2763 			/*
2764 			 * If we are not in overwrite mode,
2765 			 * this is easy, just stop here.
2766 			 */
2767 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2768 				local_inc(&cpu_buffer->dropped_events);
2769 				goto out_reset;
2770 			}
2771 
2772 			ret = rb_handle_head_page(cpu_buffer,
2773 						  tail_page,
2774 						  next_page);
2775 			if (ret < 0)
2776 				goto out_reset;
2777 			if (ret)
2778 				goto out_again;
2779 		} else {
2780 			/*
2781 			 * We need to be careful here too. The
2782 			 * commit page could still be on the reader
2783 			 * page. We could have a small buffer, and
2784 			 * have filled up the buffer with events
2785 			 * from interrupts and such, and wrapped.
2786 			 *
2787 			 * Note, if the tail page is also on the
2788 			 * reader_page, we let it move out.
2789 			 */
2790 			if (unlikely((cpu_buffer->commit_page !=
2791 				      cpu_buffer->tail_page) &&
2792 				     (cpu_buffer->commit_page ==
2793 				      cpu_buffer->reader_page))) {
2794 				local_inc(&cpu_buffer->commit_overrun);
2795 				goto out_reset;
2796 			}
2797 		}
2798 	}
2799 
2800 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2801 
2802  out_again:
2803 
2804 	rb_reset_tail(cpu_buffer, tail, info);
2805 
2806 	/* Commit what we have for now. */
2807 	rb_end_commit(cpu_buffer);
2808 	/* rb_end_commit() decs committing */
2809 	local_inc(&cpu_buffer->committing);
2810 
2811 	/* fail and let the caller try again */
2812 	return ERR_PTR(-EAGAIN);
2813 
2814  out_reset:
2815 	/* reset write */
2816 	rb_reset_tail(cpu_buffer, tail, info);
2817 
2818 	return NULL;
2819 }
2820 
2821 /* Slow path */
2822 static struct ring_buffer_event *
2823 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2824 {
2825 	if (abs)
2826 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2827 	else
2828 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2829 
2830 	/* Not the first event on the page, or not delta? */
2831 	if (abs || rb_event_index(event)) {
2832 		event->time_delta = delta & TS_MASK;
2833 		event->array[0] = delta >> TS_SHIFT;
2834 	} else {
2835 		/* nope, just zero it */
2836 		event->time_delta = 0;
2837 		event->array[0] = 0;
2838 	}
2839 
2840 	return skip_time_extend(event);
2841 }
2842 
2843 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2844 static inline bool sched_clock_stable(void)
2845 {
2846 	return true;
2847 }
2848 #endif
2849 
2850 static void
2851 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2852 		   struct rb_event_info *info)
2853 {
2854 	u64 write_stamp;
2855 
2856 	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2857 		  (unsigned long long)info->delta,
2858 		  (unsigned long long)info->ts,
2859 		  (unsigned long long)info->before,
2860 		  (unsigned long long)info->after,
2861 		  (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2862 		  sched_clock_stable() ? "" :
2863 		  "If you just came from a suspend/resume,\n"
2864 		  "please switch to the trace global clock:\n"
2865 		  "  echo global > /sys/kernel/tracing/trace_clock\n"
2866 		  "or add trace_clock=global to the kernel command line\n");
2867 }
2868 
2869 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2870 				      struct ring_buffer_event **event,
2871 				      struct rb_event_info *info,
2872 				      u64 *delta,
2873 				      unsigned int *length)
2874 {
2875 	bool abs = info->add_timestamp &
2876 		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2877 
2878 	if (unlikely(info->delta > (1ULL << 59))) {
2879 		/*
2880 		 * Some timers can use more than 59 bits, and when a timestamp
2881 		 * is added to the buffer, it will lose those bits.
2882 		 */
2883 		if (abs && (info->ts & TS_MSB)) {
2884 			info->delta &= ABS_TS_MASK;
2885 
2886 		/* did the clock go backwards */
2887 		} else if (info->before == info->after && info->before > info->ts) {
2888 			/* not interrupted */
2889 			static int once;
2890 
2891 			/*
2892 			 * This is possible with a recalibrating of the TSC.
2893 			 * Do not produce a call stack, but just report it.
2894 			 */
2895 			if (!once) {
2896 				once++;
2897 				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2898 					info->before, info->ts);
2899 			}
2900 		} else
2901 			rb_check_timestamp(cpu_buffer, info);
2902 		if (!abs)
2903 			info->delta = 0;
2904 	}
2905 	*event = rb_add_time_stamp(*event, info->delta, abs);
2906 	*length -= RB_LEN_TIME_EXTEND;
2907 	*delta = 0;
2908 }
2909 
2910 /**
2911  * rb_update_event - update event type and data
2912  * @cpu_buffer: The per cpu buffer of the @event
2913  * @event: the event to update
2914  * @info: The info to update the @event with (contains length and delta)
2915  *
2916  * Update the type and data fields of the @event. The length
2917  * is the actual size that is written to the ring buffer,
2918  * and with this, we can determine what to place into the
2919  * data field.
2920  */
2921 static void
2922 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2923 		struct ring_buffer_event *event,
2924 		struct rb_event_info *info)
2925 {
2926 	unsigned length = info->length;
2927 	u64 delta = info->delta;
2928 	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2929 
2930 	if (!WARN_ON_ONCE(nest >= MAX_NEST))
2931 		cpu_buffer->event_stamp[nest] = info->ts;
2932 
2933 	/*
2934 	 * If we need to add a timestamp, then we
2935 	 * add it to the start of the reserved space.
2936 	 */
2937 	if (unlikely(info->add_timestamp))
2938 		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2939 
2940 	event->time_delta = delta;
2941 	length -= RB_EVNT_HDR_SIZE;
2942 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2943 		event->type_len = 0;
2944 		event->array[0] = length;
2945 	} else
2946 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2947 }
2948 
2949 static unsigned rb_calculate_event_length(unsigned length)
2950 {
2951 	struct ring_buffer_event event; /* Used only for sizeof array */
2952 
2953 	/* zero length can cause confusions */
2954 	if (!length)
2955 		length++;
2956 
2957 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2958 		length += sizeof(event.array[0]);
2959 
2960 	length += RB_EVNT_HDR_SIZE;
2961 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2962 
2963 	/*
2964 	 * In case the time delta is larger than the 27 bits for it
2965 	 * in the header, we need to add a timestamp. If another
2966 	 * event comes in when trying to discard this one to increase
2967 	 * the length, then the timestamp will be added in the allocated
2968 	 * space of this event. If length is bigger than the size needed
2969 	 * for the TIME_EXTEND, then padding has to be used. The events
2970 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2971 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2972 	 * As length is a multiple of 4, we only need to worry if it
2973 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2974 	 */
2975 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2976 		length += RB_ALIGNMENT;
2977 
2978 	return length;
2979 }
2980 
2981 static u64 rb_time_delta(struct ring_buffer_event *event)
2982 {
2983 	switch (event->type_len) {
2984 	case RINGBUF_TYPE_PADDING:
2985 		return 0;
2986 
2987 	case RINGBUF_TYPE_TIME_EXTEND:
2988 		return rb_event_time_stamp(event);
2989 
2990 	case RINGBUF_TYPE_TIME_STAMP:
2991 		return 0;
2992 
2993 	case RINGBUF_TYPE_DATA:
2994 		return event->time_delta;
2995 	default:
2996 		return 0;
2997 	}
2998 }
2999 
3000 static inline bool
3001 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3002 		  struct ring_buffer_event *event)
3003 {
3004 	unsigned long new_index, old_index;
3005 	struct buffer_page *bpage;
3006 	unsigned long index;
3007 	unsigned long addr;
3008 	u64 write_stamp;
3009 	u64 delta;
3010 
3011 	new_index = rb_event_index(event);
3012 	old_index = new_index + rb_event_ts_length(event);
3013 	addr = (unsigned long)event;
3014 	addr &= PAGE_MASK;
3015 
3016 	bpage = READ_ONCE(cpu_buffer->tail_page);
3017 
3018 	delta = rb_time_delta(event);
3019 
3020 	if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
3021 		return false;
3022 
3023 	/* Make sure the write stamp is read before testing the location */
3024 	barrier();
3025 
3026 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3027 		unsigned long write_mask =
3028 			local_read(&bpage->write) & ~RB_WRITE_MASK;
3029 		unsigned long event_length = rb_event_length(event);
3030 
3031 		/* Something came in, can't discard */
3032 		if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
3033 				       write_stamp, write_stamp - delta))
3034 			return false;
3035 
3036 		/*
3037 		 * It's possible that the event time delta is zero
3038 		 * (has the same time stamp as the previous event)
3039 		 * in which case write_stamp and before_stamp could
3040 		 * be the same. In such a case, force before_stamp
3041 		 * to be different than write_stamp. It doesn't
3042 		 * matter what it is, as long as its different.
3043 		 */
3044 		if (!delta)
3045 			rb_time_set(&cpu_buffer->before_stamp, 0);
3046 
3047 		/*
3048 		 * If an event were to come in now, it would see that the
3049 		 * write_stamp and the before_stamp are different, and assume
3050 		 * that this event just added itself before updating
3051 		 * the write stamp. The interrupting event will fix the
3052 		 * write stamp for us, and use the before stamp as its delta.
3053 		 */
3054 
3055 		/*
3056 		 * This is on the tail page. It is possible that
3057 		 * a write could come in and move the tail page
3058 		 * and write to the next page. That is fine
3059 		 * because we just shorten what is on this page.
3060 		 */
3061 		old_index += write_mask;
3062 		new_index += write_mask;
3063 		index = local_cmpxchg(&bpage->write, old_index, new_index);
3064 		if (index == old_index) {
3065 			/* update counters */
3066 			local_sub(event_length, &cpu_buffer->entries_bytes);
3067 			return true;
3068 		}
3069 	}
3070 
3071 	/* could not discard */
3072 	return false;
3073 }
3074 
3075 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3076 {
3077 	local_inc(&cpu_buffer->committing);
3078 	local_inc(&cpu_buffer->commits);
3079 }
3080 
3081 static __always_inline void
3082 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3083 {
3084 	unsigned long max_count;
3085 
3086 	/*
3087 	 * We only race with interrupts and NMIs on this CPU.
3088 	 * If we own the commit event, then we can commit
3089 	 * all others that interrupted us, since the interruptions
3090 	 * are in stack format (they finish before they come
3091 	 * back to us). This allows us to do a simple loop to
3092 	 * assign the commit to the tail.
3093 	 */
3094  again:
3095 	max_count = cpu_buffer->nr_pages * 100;
3096 
3097 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3098 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3099 			return;
3100 		if (RB_WARN_ON(cpu_buffer,
3101 			       rb_is_reader_page(cpu_buffer->tail_page)))
3102 			return;
3103 		/*
3104 		 * No need for a memory barrier here, as the update
3105 		 * of the tail_page did it for this page.
3106 		 */
3107 		local_set(&cpu_buffer->commit_page->page->commit,
3108 			  rb_page_write(cpu_buffer->commit_page));
3109 		rb_inc_page(&cpu_buffer->commit_page);
3110 		/* add barrier to keep gcc from optimizing too much */
3111 		barrier();
3112 	}
3113 	while (rb_commit_index(cpu_buffer) !=
3114 	       rb_page_write(cpu_buffer->commit_page)) {
3115 
3116 		/* Make sure the readers see the content of what is committed. */
3117 		smp_wmb();
3118 		local_set(&cpu_buffer->commit_page->page->commit,
3119 			  rb_page_write(cpu_buffer->commit_page));
3120 		RB_WARN_ON(cpu_buffer,
3121 			   local_read(&cpu_buffer->commit_page->page->commit) &
3122 			   ~RB_WRITE_MASK);
3123 		barrier();
3124 	}
3125 
3126 	/* again, keep gcc from optimizing */
3127 	barrier();
3128 
3129 	/*
3130 	 * If an interrupt came in just after the first while loop
3131 	 * and pushed the tail page forward, we will be left with
3132 	 * a dangling commit that will never go forward.
3133 	 */
3134 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3135 		goto again;
3136 }
3137 
3138 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3139 {
3140 	unsigned long commits;
3141 
3142 	if (RB_WARN_ON(cpu_buffer,
3143 		       !local_read(&cpu_buffer->committing)))
3144 		return;
3145 
3146  again:
3147 	commits = local_read(&cpu_buffer->commits);
3148 	/* synchronize with interrupts */
3149 	barrier();
3150 	if (local_read(&cpu_buffer->committing) == 1)
3151 		rb_set_commit_to_write(cpu_buffer);
3152 
3153 	local_dec(&cpu_buffer->committing);
3154 
3155 	/* synchronize with interrupts */
3156 	barrier();
3157 
3158 	/*
3159 	 * Need to account for interrupts coming in between the
3160 	 * updating of the commit page and the clearing of the
3161 	 * committing counter.
3162 	 */
3163 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3164 	    !local_read(&cpu_buffer->committing)) {
3165 		local_inc(&cpu_buffer->committing);
3166 		goto again;
3167 	}
3168 }
3169 
3170 static inline void rb_event_discard(struct ring_buffer_event *event)
3171 {
3172 	if (extended_time(event))
3173 		event = skip_time_extend(event);
3174 
3175 	/* array[0] holds the actual length for the discarded event */
3176 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3177 	event->type_len = RINGBUF_TYPE_PADDING;
3178 	/* time delta must be non zero */
3179 	if (!event->time_delta)
3180 		event->time_delta = 1;
3181 }
3182 
3183 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3184 {
3185 	local_inc(&cpu_buffer->entries);
3186 	rb_end_commit(cpu_buffer);
3187 }
3188 
3189 static __always_inline void
3190 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3191 {
3192 	if (buffer->irq_work.waiters_pending) {
3193 		buffer->irq_work.waiters_pending = false;
3194 		/* irq_work_queue() supplies it's own memory barriers */
3195 		irq_work_queue(&buffer->irq_work.work);
3196 	}
3197 
3198 	if (cpu_buffer->irq_work.waiters_pending) {
3199 		cpu_buffer->irq_work.waiters_pending = false;
3200 		/* irq_work_queue() supplies it's own memory barriers */
3201 		irq_work_queue(&cpu_buffer->irq_work.work);
3202 	}
3203 
3204 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3205 		return;
3206 
3207 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3208 		return;
3209 
3210 	if (!cpu_buffer->irq_work.full_waiters_pending)
3211 		return;
3212 
3213 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3214 
3215 	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3216 		return;
3217 
3218 	cpu_buffer->irq_work.wakeup_full = true;
3219 	cpu_buffer->irq_work.full_waiters_pending = false;
3220 	/* irq_work_queue() supplies it's own memory barriers */
3221 	irq_work_queue(&cpu_buffer->irq_work.work);
3222 }
3223 
3224 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3225 # define do_ring_buffer_record_recursion()	\
3226 	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3227 #else
3228 # define do_ring_buffer_record_recursion() do { } while (0)
3229 #endif
3230 
3231 /*
3232  * The lock and unlock are done within a preempt disable section.
3233  * The current_context per_cpu variable can only be modified
3234  * by the current task between lock and unlock. But it can
3235  * be modified more than once via an interrupt. To pass this
3236  * information from the lock to the unlock without having to
3237  * access the 'in_interrupt()' functions again (which do show
3238  * a bit of overhead in something as critical as function tracing,
3239  * we use a bitmask trick.
3240  *
3241  *  bit 1 =  NMI context
3242  *  bit 2 =  IRQ context
3243  *  bit 3 =  SoftIRQ context
3244  *  bit 4 =  normal context.
3245  *
3246  * This works because this is the order of contexts that can
3247  * preempt other contexts. A SoftIRQ never preempts an IRQ
3248  * context.
3249  *
3250  * When the context is determined, the corresponding bit is
3251  * checked and set (if it was set, then a recursion of that context
3252  * happened).
3253  *
3254  * On unlock, we need to clear this bit. To do so, just subtract
3255  * 1 from the current_context and AND it to itself.
3256  *
3257  * (binary)
3258  *  101 - 1 = 100
3259  *  101 & 100 = 100 (clearing bit zero)
3260  *
3261  *  1010 - 1 = 1001
3262  *  1010 & 1001 = 1000 (clearing bit 1)
3263  *
3264  * The least significant bit can be cleared this way, and it
3265  * just so happens that it is the same bit corresponding to
3266  * the current context.
3267  *
3268  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3269  * is set when a recursion is detected at the current context, and if
3270  * the TRANSITION bit is already set, it will fail the recursion.
3271  * This is needed because there's a lag between the changing of
3272  * interrupt context and updating the preempt count. In this case,
3273  * a false positive will be found. To handle this, one extra recursion
3274  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3275  * bit is already set, then it is considered a recursion and the function
3276  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3277  *
3278  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3279  * to be cleared. Even if it wasn't the context that set it. That is,
3280  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3281  * is called before preempt_count() is updated, since the check will
3282  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3283  * NMI then comes in, it will set the NMI bit, but when the NMI code
3284  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3285  * and leave the NMI bit set. But this is fine, because the interrupt
3286  * code that set the TRANSITION bit will then clear the NMI bit when it
3287  * calls trace_recursive_unlock(). If another NMI comes in, it will
3288  * set the TRANSITION bit and continue.
3289  *
3290  * Note: The TRANSITION bit only handles a single transition between context.
3291  */
3292 
3293 static __always_inline bool
3294 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3295 {
3296 	unsigned int val = cpu_buffer->current_context;
3297 	int bit = interrupt_context_level();
3298 
3299 	bit = RB_CTX_NORMAL - bit;
3300 
3301 	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3302 		/*
3303 		 * It is possible that this was called by transitioning
3304 		 * between interrupt context, and preempt_count() has not
3305 		 * been updated yet. In this case, use the TRANSITION bit.
3306 		 */
3307 		bit = RB_CTX_TRANSITION;
3308 		if (val & (1 << (bit + cpu_buffer->nest))) {
3309 			do_ring_buffer_record_recursion();
3310 			return true;
3311 		}
3312 	}
3313 
3314 	val |= (1 << (bit + cpu_buffer->nest));
3315 	cpu_buffer->current_context = val;
3316 
3317 	return false;
3318 }
3319 
3320 static __always_inline void
3321 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3322 {
3323 	cpu_buffer->current_context &=
3324 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3325 }
3326 
3327 /* The recursive locking above uses 5 bits */
3328 #define NESTED_BITS 5
3329 
3330 /**
3331  * ring_buffer_nest_start - Allow to trace while nested
3332  * @buffer: The ring buffer to modify
3333  *
3334  * The ring buffer has a safety mechanism to prevent recursion.
3335  * But there may be a case where a trace needs to be done while
3336  * tracing something else. In this case, calling this function
3337  * will allow this function to nest within a currently active
3338  * ring_buffer_lock_reserve().
3339  *
3340  * Call this function before calling another ring_buffer_lock_reserve() and
3341  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3342  */
3343 void ring_buffer_nest_start(struct trace_buffer *buffer)
3344 {
3345 	struct ring_buffer_per_cpu *cpu_buffer;
3346 	int cpu;
3347 
3348 	/* Enabled by ring_buffer_nest_end() */
3349 	preempt_disable_notrace();
3350 	cpu = raw_smp_processor_id();
3351 	cpu_buffer = buffer->buffers[cpu];
3352 	/* This is the shift value for the above recursive locking */
3353 	cpu_buffer->nest += NESTED_BITS;
3354 }
3355 
3356 /**
3357  * ring_buffer_nest_end - Allow to trace while nested
3358  * @buffer: The ring buffer to modify
3359  *
3360  * Must be called after ring_buffer_nest_start() and after the
3361  * ring_buffer_unlock_commit().
3362  */
3363 void ring_buffer_nest_end(struct trace_buffer *buffer)
3364 {
3365 	struct ring_buffer_per_cpu *cpu_buffer;
3366 	int cpu;
3367 
3368 	/* disabled by ring_buffer_nest_start() */
3369 	cpu = raw_smp_processor_id();
3370 	cpu_buffer = buffer->buffers[cpu];
3371 	/* This is the shift value for the above recursive locking */
3372 	cpu_buffer->nest -= NESTED_BITS;
3373 	preempt_enable_notrace();
3374 }
3375 
3376 /**
3377  * ring_buffer_unlock_commit - commit a reserved
3378  * @buffer: The buffer to commit to
3379  *
3380  * This commits the data to the ring buffer, and releases any locks held.
3381  *
3382  * Must be paired with ring_buffer_lock_reserve.
3383  */
3384 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3385 {
3386 	struct ring_buffer_per_cpu *cpu_buffer;
3387 	int cpu = raw_smp_processor_id();
3388 
3389 	cpu_buffer = buffer->buffers[cpu];
3390 
3391 	rb_commit(cpu_buffer);
3392 
3393 	rb_wakeups(buffer, cpu_buffer);
3394 
3395 	trace_recursive_unlock(cpu_buffer);
3396 
3397 	preempt_enable_notrace();
3398 
3399 	return 0;
3400 }
3401 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3402 
3403 /* Special value to validate all deltas on a page. */
3404 #define CHECK_FULL_PAGE		1L
3405 
3406 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3407 static void dump_buffer_page(struct buffer_data_page *bpage,
3408 			     struct rb_event_info *info,
3409 			     unsigned long tail)
3410 {
3411 	struct ring_buffer_event *event;
3412 	u64 ts, delta;
3413 	int e;
3414 
3415 	ts = bpage->time_stamp;
3416 	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3417 
3418 	for (e = 0; e < tail; e += rb_event_length(event)) {
3419 
3420 		event = (struct ring_buffer_event *)(bpage->data + e);
3421 
3422 		switch (event->type_len) {
3423 
3424 		case RINGBUF_TYPE_TIME_EXTEND:
3425 			delta = rb_event_time_stamp(event);
3426 			ts += delta;
3427 			pr_warn("  [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3428 			break;
3429 
3430 		case RINGBUF_TYPE_TIME_STAMP:
3431 			delta = rb_event_time_stamp(event);
3432 			ts = rb_fix_abs_ts(delta, ts);
3433 			pr_warn("  [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3434 			break;
3435 
3436 		case RINGBUF_TYPE_PADDING:
3437 			ts += event->time_delta;
3438 			pr_warn("  [%lld] delta:%d PADDING\n", ts, event->time_delta);
3439 			break;
3440 
3441 		case RINGBUF_TYPE_DATA:
3442 			ts += event->time_delta;
3443 			pr_warn("  [%lld] delta:%d\n", ts, event->time_delta);
3444 			break;
3445 
3446 		default:
3447 			break;
3448 		}
3449 	}
3450 }
3451 
3452 static DEFINE_PER_CPU(atomic_t, checking);
3453 static atomic_t ts_dump;
3454 
3455 /*
3456  * Check if the current event time stamp matches the deltas on
3457  * the buffer page.
3458  */
3459 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3460 			 struct rb_event_info *info,
3461 			 unsigned long tail)
3462 {
3463 	struct ring_buffer_event *event;
3464 	struct buffer_data_page *bpage;
3465 	u64 ts, delta;
3466 	bool full = false;
3467 	int e;
3468 
3469 	bpage = info->tail_page->page;
3470 
3471 	if (tail == CHECK_FULL_PAGE) {
3472 		full = true;
3473 		tail = local_read(&bpage->commit);
3474 	} else if (info->add_timestamp &
3475 		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3476 		/* Ignore events with absolute time stamps */
3477 		return;
3478 	}
3479 
3480 	/*
3481 	 * Do not check the first event (skip possible extends too).
3482 	 * Also do not check if previous events have not been committed.
3483 	 */
3484 	if (tail <= 8 || tail > local_read(&bpage->commit))
3485 		return;
3486 
3487 	/*
3488 	 * If this interrupted another event,
3489 	 */
3490 	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3491 		goto out;
3492 
3493 	ts = bpage->time_stamp;
3494 
3495 	for (e = 0; e < tail; e += rb_event_length(event)) {
3496 
3497 		event = (struct ring_buffer_event *)(bpage->data + e);
3498 
3499 		switch (event->type_len) {
3500 
3501 		case RINGBUF_TYPE_TIME_EXTEND:
3502 			delta = rb_event_time_stamp(event);
3503 			ts += delta;
3504 			break;
3505 
3506 		case RINGBUF_TYPE_TIME_STAMP:
3507 			delta = rb_event_time_stamp(event);
3508 			ts = rb_fix_abs_ts(delta, ts);
3509 			break;
3510 
3511 		case RINGBUF_TYPE_PADDING:
3512 			if (event->time_delta == 1)
3513 				break;
3514 			fallthrough;
3515 		case RINGBUF_TYPE_DATA:
3516 			ts += event->time_delta;
3517 			break;
3518 
3519 		default:
3520 			RB_WARN_ON(cpu_buffer, 1);
3521 		}
3522 	}
3523 	if ((full && ts > info->ts) ||
3524 	    (!full && ts + info->delta != info->ts)) {
3525 		/* If another report is happening, ignore this one */
3526 		if (atomic_inc_return(&ts_dump) != 1) {
3527 			atomic_dec(&ts_dump);
3528 			goto out;
3529 		}
3530 		atomic_inc(&cpu_buffer->record_disabled);
3531 		/* There's some cases in boot up that this can happen */
3532 		WARN_ON_ONCE(system_state != SYSTEM_BOOTING);
3533 		pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n",
3534 			cpu_buffer->cpu,
3535 			ts + info->delta, info->ts, info->delta,
3536 			info->before, info->after,
3537 			full ? " (full)" : "");
3538 		dump_buffer_page(bpage, info, tail);
3539 		atomic_dec(&ts_dump);
3540 		/* Do not re-enable checking */
3541 		return;
3542 	}
3543 out:
3544 	atomic_dec(this_cpu_ptr(&checking));
3545 }
3546 #else
3547 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3548 			 struct rb_event_info *info,
3549 			 unsigned long tail)
3550 {
3551 }
3552 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3553 
3554 static struct ring_buffer_event *
3555 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3556 		  struct rb_event_info *info)
3557 {
3558 	struct ring_buffer_event *event;
3559 	struct buffer_page *tail_page;
3560 	unsigned long tail, write, w;
3561 	bool a_ok;
3562 	bool b_ok;
3563 
3564 	/* Don't let the compiler play games with cpu_buffer->tail_page */
3565 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3566 
3567  /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
3568 	barrier();
3569 	b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3570 	a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3571 	barrier();
3572 	info->ts = rb_time_stamp(cpu_buffer->buffer);
3573 
3574 	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3575 		info->delta = info->ts;
3576 	} else {
3577 		/*
3578 		 * If interrupting an event time update, we may need an
3579 		 * absolute timestamp.
3580 		 * Don't bother if this is the start of a new page (w == 0).
3581 		 */
3582 		if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3583 			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3584 			info->length += RB_LEN_TIME_EXTEND;
3585 		} else {
3586 			info->delta = info->ts - info->after;
3587 			if (unlikely(test_time_stamp(info->delta))) {
3588 				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3589 				info->length += RB_LEN_TIME_EXTEND;
3590 			}
3591 		}
3592 	}
3593 
3594  /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
3595 
3596  /*C*/	write = local_add_return(info->length, &tail_page->write);
3597 
3598 	/* set write to only the index of the write */
3599 	write &= RB_WRITE_MASK;
3600 
3601 	tail = write - info->length;
3602 
3603 	/* See if we shot pass the end of this buffer page */
3604 	if (unlikely(write > BUF_PAGE_SIZE)) {
3605 		/* before and after may now different, fix it up*/
3606 		b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3607 		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3608 		if (a_ok && b_ok && info->before != info->after)
3609 			(void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3610 					      info->before, info->after);
3611 		if (a_ok && b_ok)
3612 			check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3613 		return rb_move_tail(cpu_buffer, tail, info);
3614 	}
3615 
3616 	if (likely(tail == w)) {
3617 		u64 save_before;
3618 		bool s_ok;
3619 
3620 		/* Nothing interrupted us between A and C */
3621  /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
3622 		barrier();
3623  /*E*/		s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3624 		RB_WARN_ON(cpu_buffer, !s_ok);
3625 		if (likely(!(info->add_timestamp &
3626 			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3627 			/* This did not interrupt any time update */
3628 			info->delta = info->ts - info->after;
3629 		else
3630 			/* Just use full timestamp for interrupting event */
3631 			info->delta = info->ts;
3632 		barrier();
3633 		check_buffer(cpu_buffer, info, tail);
3634 		if (unlikely(info->ts != save_before)) {
3635 			/* SLOW PATH - Interrupted between C and E */
3636 
3637 			a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3638 			RB_WARN_ON(cpu_buffer, !a_ok);
3639 
3640 			/* Write stamp must only go forward */
3641 			if (save_before > info->after) {
3642 				/*
3643 				 * We do not care about the result, only that
3644 				 * it gets updated atomically.
3645 				 */
3646 				(void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3647 						      info->after, save_before);
3648 			}
3649 		}
3650 	} else {
3651 		u64 ts;
3652 		/* SLOW PATH - Interrupted between A and C */
3653 		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3654 		/* Was interrupted before here, write_stamp must be valid */
3655 		RB_WARN_ON(cpu_buffer, !a_ok);
3656 		ts = rb_time_stamp(cpu_buffer->buffer);
3657 		barrier();
3658  /*E*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3659 		    info->after < ts &&
3660 		    rb_time_cmpxchg(&cpu_buffer->write_stamp,
3661 				    info->after, ts)) {
3662 			/* Nothing came after this event between C and E */
3663 			info->delta = ts - info->after;
3664 		} else {
3665 			/*
3666 			 * Interrupted between C and E:
3667 			 * Lost the previous events time stamp. Just set the
3668 			 * delta to zero, and this will be the same time as
3669 			 * the event this event interrupted. And the events that
3670 			 * came after this will still be correct (as they would
3671 			 * have built their delta on the previous event.
3672 			 */
3673 			info->delta = 0;
3674 		}
3675 		info->ts = ts;
3676 		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3677 	}
3678 
3679 	/*
3680 	 * If this is the first commit on the page, then it has the same
3681 	 * timestamp as the page itself.
3682 	 */
3683 	if (unlikely(!tail && !(info->add_timestamp &
3684 				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3685 		info->delta = 0;
3686 
3687 	/* We reserved something on the buffer */
3688 
3689 	event = __rb_page_index(tail_page, tail);
3690 	rb_update_event(cpu_buffer, event, info);
3691 
3692 	local_inc(&tail_page->entries);
3693 
3694 	/*
3695 	 * If this is the first commit on the page, then update
3696 	 * its timestamp.
3697 	 */
3698 	if (unlikely(!tail))
3699 		tail_page->page->time_stamp = info->ts;
3700 
3701 	/* account for these added bytes */
3702 	local_add(info->length, &cpu_buffer->entries_bytes);
3703 
3704 	return event;
3705 }
3706 
3707 static __always_inline struct ring_buffer_event *
3708 rb_reserve_next_event(struct trace_buffer *buffer,
3709 		      struct ring_buffer_per_cpu *cpu_buffer,
3710 		      unsigned long length)
3711 {
3712 	struct ring_buffer_event *event;
3713 	struct rb_event_info info;
3714 	int nr_loops = 0;
3715 	int add_ts_default;
3716 
3717 	rb_start_commit(cpu_buffer);
3718 	/* The commit page can not change after this */
3719 
3720 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3721 	/*
3722 	 * Due to the ability to swap a cpu buffer from a buffer
3723 	 * it is possible it was swapped before we committed.
3724 	 * (committing stops a swap). We check for it here and
3725 	 * if it happened, we have to fail the write.
3726 	 */
3727 	barrier();
3728 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3729 		local_dec(&cpu_buffer->committing);
3730 		local_dec(&cpu_buffer->commits);
3731 		return NULL;
3732 	}
3733 #endif
3734 
3735 	info.length = rb_calculate_event_length(length);
3736 
3737 	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3738 		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3739 		info.length += RB_LEN_TIME_EXTEND;
3740 	} else {
3741 		add_ts_default = RB_ADD_STAMP_NONE;
3742 	}
3743 
3744  again:
3745 	info.add_timestamp = add_ts_default;
3746 	info.delta = 0;
3747 
3748 	/*
3749 	 * We allow for interrupts to reenter here and do a trace.
3750 	 * If one does, it will cause this original code to loop
3751 	 * back here. Even with heavy interrupts happening, this
3752 	 * should only happen a few times in a row. If this happens
3753 	 * 1000 times in a row, there must be either an interrupt
3754 	 * storm or we have something buggy.
3755 	 * Bail!
3756 	 */
3757 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3758 		goto out_fail;
3759 
3760 	event = __rb_reserve_next(cpu_buffer, &info);
3761 
3762 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3763 		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3764 			info.length -= RB_LEN_TIME_EXTEND;
3765 		goto again;
3766 	}
3767 
3768 	if (likely(event))
3769 		return event;
3770  out_fail:
3771 	rb_end_commit(cpu_buffer);
3772 	return NULL;
3773 }
3774 
3775 /**
3776  * ring_buffer_lock_reserve - reserve a part of the buffer
3777  * @buffer: the ring buffer to reserve from
3778  * @length: the length of the data to reserve (excluding event header)
3779  *
3780  * Returns a reserved event on the ring buffer to copy directly to.
3781  * The user of this interface will need to get the body to write into
3782  * and can use the ring_buffer_event_data() interface.
3783  *
3784  * The length is the length of the data needed, not the event length
3785  * which also includes the event header.
3786  *
3787  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3788  * If NULL is returned, then nothing has been allocated or locked.
3789  */
3790 struct ring_buffer_event *
3791 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3792 {
3793 	struct ring_buffer_per_cpu *cpu_buffer;
3794 	struct ring_buffer_event *event;
3795 	int cpu;
3796 
3797 	/* If we are tracing schedule, we don't want to recurse */
3798 	preempt_disable_notrace();
3799 
3800 	if (unlikely(atomic_read(&buffer->record_disabled)))
3801 		goto out;
3802 
3803 	cpu = raw_smp_processor_id();
3804 
3805 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3806 		goto out;
3807 
3808 	cpu_buffer = buffer->buffers[cpu];
3809 
3810 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3811 		goto out;
3812 
3813 	if (unlikely(length > BUF_MAX_DATA_SIZE))
3814 		goto out;
3815 
3816 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3817 		goto out;
3818 
3819 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3820 	if (!event)
3821 		goto out_unlock;
3822 
3823 	return event;
3824 
3825  out_unlock:
3826 	trace_recursive_unlock(cpu_buffer);
3827  out:
3828 	preempt_enable_notrace();
3829 	return NULL;
3830 }
3831 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3832 
3833 /*
3834  * Decrement the entries to the page that an event is on.
3835  * The event does not even need to exist, only the pointer
3836  * to the page it is on. This may only be called before the commit
3837  * takes place.
3838  */
3839 static inline void
3840 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3841 		   struct ring_buffer_event *event)
3842 {
3843 	unsigned long addr = (unsigned long)event;
3844 	struct buffer_page *bpage = cpu_buffer->commit_page;
3845 	struct buffer_page *start;
3846 
3847 	addr &= PAGE_MASK;
3848 
3849 	/* Do the likely case first */
3850 	if (likely(bpage->page == (void *)addr)) {
3851 		local_dec(&bpage->entries);
3852 		return;
3853 	}
3854 
3855 	/*
3856 	 * Because the commit page may be on the reader page we
3857 	 * start with the next page and check the end loop there.
3858 	 */
3859 	rb_inc_page(&bpage);
3860 	start = bpage;
3861 	do {
3862 		if (bpage->page == (void *)addr) {
3863 			local_dec(&bpage->entries);
3864 			return;
3865 		}
3866 		rb_inc_page(&bpage);
3867 	} while (bpage != start);
3868 
3869 	/* commit not part of this buffer?? */
3870 	RB_WARN_ON(cpu_buffer, 1);
3871 }
3872 
3873 /**
3874  * ring_buffer_discard_commit - discard an event that has not been committed
3875  * @buffer: the ring buffer
3876  * @event: non committed event to discard
3877  *
3878  * Sometimes an event that is in the ring buffer needs to be ignored.
3879  * This function lets the user discard an event in the ring buffer
3880  * and then that event will not be read later.
3881  *
3882  * This function only works if it is called before the item has been
3883  * committed. It will try to free the event from the ring buffer
3884  * if another event has not been added behind it.
3885  *
3886  * If another event has been added behind it, it will set the event
3887  * up as discarded, and perform the commit.
3888  *
3889  * If this function is called, do not call ring_buffer_unlock_commit on
3890  * the event.
3891  */
3892 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3893 				struct ring_buffer_event *event)
3894 {
3895 	struct ring_buffer_per_cpu *cpu_buffer;
3896 	int cpu;
3897 
3898 	/* The event is discarded regardless */
3899 	rb_event_discard(event);
3900 
3901 	cpu = smp_processor_id();
3902 	cpu_buffer = buffer->buffers[cpu];
3903 
3904 	/*
3905 	 * This must only be called if the event has not been
3906 	 * committed yet. Thus we can assume that preemption
3907 	 * is still disabled.
3908 	 */
3909 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3910 
3911 	rb_decrement_entry(cpu_buffer, event);
3912 	if (rb_try_to_discard(cpu_buffer, event))
3913 		goto out;
3914 
3915  out:
3916 	rb_end_commit(cpu_buffer);
3917 
3918 	trace_recursive_unlock(cpu_buffer);
3919 
3920 	preempt_enable_notrace();
3921 
3922 }
3923 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3924 
3925 /**
3926  * ring_buffer_write - write data to the buffer without reserving
3927  * @buffer: The ring buffer to write to.
3928  * @length: The length of the data being written (excluding the event header)
3929  * @data: The data to write to the buffer.
3930  *
3931  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3932  * one function. If you already have the data to write to the buffer, it
3933  * may be easier to simply call this function.
3934  *
3935  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3936  * and not the length of the event which would hold the header.
3937  */
3938 int ring_buffer_write(struct trace_buffer *buffer,
3939 		      unsigned long length,
3940 		      void *data)
3941 {
3942 	struct ring_buffer_per_cpu *cpu_buffer;
3943 	struct ring_buffer_event *event;
3944 	void *body;
3945 	int ret = -EBUSY;
3946 	int cpu;
3947 
3948 	preempt_disable_notrace();
3949 
3950 	if (atomic_read(&buffer->record_disabled))
3951 		goto out;
3952 
3953 	cpu = raw_smp_processor_id();
3954 
3955 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3956 		goto out;
3957 
3958 	cpu_buffer = buffer->buffers[cpu];
3959 
3960 	if (atomic_read(&cpu_buffer->record_disabled))
3961 		goto out;
3962 
3963 	if (length > BUF_MAX_DATA_SIZE)
3964 		goto out;
3965 
3966 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3967 		goto out;
3968 
3969 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3970 	if (!event)
3971 		goto out_unlock;
3972 
3973 	body = rb_event_data(event);
3974 
3975 	memcpy(body, data, length);
3976 
3977 	rb_commit(cpu_buffer);
3978 
3979 	rb_wakeups(buffer, cpu_buffer);
3980 
3981 	ret = 0;
3982 
3983  out_unlock:
3984 	trace_recursive_unlock(cpu_buffer);
3985 
3986  out:
3987 	preempt_enable_notrace();
3988 
3989 	return ret;
3990 }
3991 EXPORT_SYMBOL_GPL(ring_buffer_write);
3992 
3993 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3994 {
3995 	struct buffer_page *reader = cpu_buffer->reader_page;
3996 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3997 	struct buffer_page *commit = cpu_buffer->commit_page;
3998 
3999 	/* In case of error, head will be NULL */
4000 	if (unlikely(!head))
4001 		return true;
4002 
4003 	/* Reader should exhaust content in reader page */
4004 	if (reader->read != rb_page_commit(reader))
4005 		return false;
4006 
4007 	/*
4008 	 * If writers are committing on the reader page, knowing all
4009 	 * committed content has been read, the ring buffer is empty.
4010 	 */
4011 	if (commit == reader)
4012 		return true;
4013 
4014 	/*
4015 	 * If writers are committing on a page other than reader page
4016 	 * and head page, there should always be content to read.
4017 	 */
4018 	if (commit != head)
4019 		return false;
4020 
4021 	/*
4022 	 * Writers are committing on the head page, we just need
4023 	 * to care about there're committed data, and the reader will
4024 	 * swap reader page with head page when it is to read data.
4025 	 */
4026 	return rb_page_commit(commit) == 0;
4027 }
4028 
4029 /**
4030  * ring_buffer_record_disable - stop all writes into the buffer
4031  * @buffer: The ring buffer to stop writes to.
4032  *
4033  * This prevents all writes to the buffer. Any attempt to write
4034  * to the buffer after this will fail and return NULL.
4035  *
4036  * The caller should call synchronize_rcu() after this.
4037  */
4038 void ring_buffer_record_disable(struct trace_buffer *buffer)
4039 {
4040 	atomic_inc(&buffer->record_disabled);
4041 }
4042 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4043 
4044 /**
4045  * ring_buffer_record_enable - enable writes to the buffer
4046  * @buffer: The ring buffer to enable writes
4047  *
4048  * Note, multiple disables will need the same number of enables
4049  * to truly enable the writing (much like preempt_disable).
4050  */
4051 void ring_buffer_record_enable(struct trace_buffer *buffer)
4052 {
4053 	atomic_dec(&buffer->record_disabled);
4054 }
4055 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4056 
4057 /**
4058  * ring_buffer_record_off - stop all writes into the buffer
4059  * @buffer: The ring buffer to stop writes to.
4060  *
4061  * This prevents all writes to the buffer. Any attempt to write
4062  * to the buffer after this will fail and return NULL.
4063  *
4064  * This is different than ring_buffer_record_disable() as
4065  * it works like an on/off switch, where as the disable() version
4066  * must be paired with a enable().
4067  */
4068 void ring_buffer_record_off(struct trace_buffer *buffer)
4069 {
4070 	unsigned int rd;
4071 	unsigned int new_rd;
4072 
4073 	rd = atomic_read(&buffer->record_disabled);
4074 	do {
4075 		new_rd = rd | RB_BUFFER_OFF;
4076 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4077 }
4078 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4079 
4080 /**
4081  * ring_buffer_record_on - restart writes into the buffer
4082  * @buffer: The ring buffer to start writes to.
4083  *
4084  * This enables all writes to the buffer that was disabled by
4085  * ring_buffer_record_off().
4086  *
4087  * This is different than ring_buffer_record_enable() as
4088  * it works like an on/off switch, where as the enable() version
4089  * must be paired with a disable().
4090  */
4091 void ring_buffer_record_on(struct trace_buffer *buffer)
4092 {
4093 	unsigned int rd;
4094 	unsigned int new_rd;
4095 
4096 	rd = atomic_read(&buffer->record_disabled);
4097 	do {
4098 		new_rd = rd & ~RB_BUFFER_OFF;
4099 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4100 }
4101 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4102 
4103 /**
4104  * ring_buffer_record_is_on - return true if the ring buffer can write
4105  * @buffer: The ring buffer to see if write is enabled
4106  *
4107  * Returns true if the ring buffer is in a state that it accepts writes.
4108  */
4109 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4110 {
4111 	return !atomic_read(&buffer->record_disabled);
4112 }
4113 
4114 /**
4115  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4116  * @buffer: The ring buffer to see if write is set enabled
4117  *
4118  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4119  * Note that this does NOT mean it is in a writable state.
4120  *
4121  * It may return true when the ring buffer has been disabled by
4122  * ring_buffer_record_disable(), as that is a temporary disabling of
4123  * the ring buffer.
4124  */
4125 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4126 {
4127 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4128 }
4129 
4130 /**
4131  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4132  * @buffer: The ring buffer to stop writes to.
4133  * @cpu: The CPU buffer to stop
4134  *
4135  * This prevents all writes to the buffer. Any attempt to write
4136  * to the buffer after this will fail and return NULL.
4137  *
4138  * The caller should call synchronize_rcu() after this.
4139  */
4140 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4141 {
4142 	struct ring_buffer_per_cpu *cpu_buffer;
4143 
4144 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4145 		return;
4146 
4147 	cpu_buffer = buffer->buffers[cpu];
4148 	atomic_inc(&cpu_buffer->record_disabled);
4149 }
4150 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4151 
4152 /**
4153  * ring_buffer_record_enable_cpu - enable writes to the buffer
4154  * @buffer: The ring buffer to enable writes
4155  * @cpu: The CPU to enable.
4156  *
4157  * Note, multiple disables will need the same number of enables
4158  * to truly enable the writing (much like preempt_disable).
4159  */
4160 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4161 {
4162 	struct ring_buffer_per_cpu *cpu_buffer;
4163 
4164 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4165 		return;
4166 
4167 	cpu_buffer = buffer->buffers[cpu];
4168 	atomic_dec(&cpu_buffer->record_disabled);
4169 }
4170 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4171 
4172 /*
4173  * The total entries in the ring buffer is the running counter
4174  * of entries entered into the ring buffer, minus the sum of
4175  * the entries read from the ring buffer and the number of
4176  * entries that were overwritten.
4177  */
4178 static inline unsigned long
4179 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4180 {
4181 	return local_read(&cpu_buffer->entries) -
4182 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4183 }
4184 
4185 /**
4186  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4187  * @buffer: The ring buffer
4188  * @cpu: The per CPU buffer to read from.
4189  */
4190 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4191 {
4192 	unsigned long flags;
4193 	struct ring_buffer_per_cpu *cpu_buffer;
4194 	struct buffer_page *bpage;
4195 	u64 ret = 0;
4196 
4197 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4198 		return 0;
4199 
4200 	cpu_buffer = buffer->buffers[cpu];
4201 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4202 	/*
4203 	 * if the tail is on reader_page, oldest time stamp is on the reader
4204 	 * page
4205 	 */
4206 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4207 		bpage = cpu_buffer->reader_page;
4208 	else
4209 		bpage = rb_set_head_page(cpu_buffer);
4210 	if (bpage)
4211 		ret = bpage->page->time_stamp;
4212 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4213 
4214 	return ret;
4215 }
4216 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4217 
4218 /**
4219  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
4220  * @buffer: The ring buffer
4221  * @cpu: The per CPU buffer to read from.
4222  */
4223 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4224 {
4225 	struct ring_buffer_per_cpu *cpu_buffer;
4226 	unsigned long ret;
4227 
4228 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4229 		return 0;
4230 
4231 	cpu_buffer = buffer->buffers[cpu];
4232 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4233 
4234 	return ret;
4235 }
4236 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4237 
4238 /**
4239  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4240  * @buffer: The ring buffer
4241  * @cpu: The per CPU buffer to get the entries from.
4242  */
4243 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4244 {
4245 	struct ring_buffer_per_cpu *cpu_buffer;
4246 
4247 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4248 		return 0;
4249 
4250 	cpu_buffer = buffer->buffers[cpu];
4251 
4252 	return rb_num_of_entries(cpu_buffer);
4253 }
4254 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4255 
4256 /**
4257  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4258  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4259  * @buffer: The ring buffer
4260  * @cpu: The per CPU buffer to get the number of overruns from
4261  */
4262 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4263 {
4264 	struct ring_buffer_per_cpu *cpu_buffer;
4265 	unsigned long ret;
4266 
4267 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4268 		return 0;
4269 
4270 	cpu_buffer = buffer->buffers[cpu];
4271 	ret = local_read(&cpu_buffer->overrun);
4272 
4273 	return ret;
4274 }
4275 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4276 
4277 /**
4278  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4279  * commits failing due to the buffer wrapping around while there are uncommitted
4280  * events, such as during an interrupt storm.
4281  * @buffer: The ring buffer
4282  * @cpu: The per CPU buffer to get the number of overruns from
4283  */
4284 unsigned long
4285 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4286 {
4287 	struct ring_buffer_per_cpu *cpu_buffer;
4288 	unsigned long ret;
4289 
4290 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4291 		return 0;
4292 
4293 	cpu_buffer = buffer->buffers[cpu];
4294 	ret = local_read(&cpu_buffer->commit_overrun);
4295 
4296 	return ret;
4297 }
4298 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4299 
4300 /**
4301  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4302  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4303  * @buffer: The ring buffer
4304  * @cpu: The per CPU buffer to get the number of overruns from
4305  */
4306 unsigned long
4307 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4308 {
4309 	struct ring_buffer_per_cpu *cpu_buffer;
4310 	unsigned long ret;
4311 
4312 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4313 		return 0;
4314 
4315 	cpu_buffer = buffer->buffers[cpu];
4316 	ret = local_read(&cpu_buffer->dropped_events);
4317 
4318 	return ret;
4319 }
4320 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4321 
4322 /**
4323  * ring_buffer_read_events_cpu - get the number of events successfully read
4324  * @buffer: The ring buffer
4325  * @cpu: The per CPU buffer to get the number of events read
4326  */
4327 unsigned long
4328 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4329 {
4330 	struct ring_buffer_per_cpu *cpu_buffer;
4331 
4332 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4333 		return 0;
4334 
4335 	cpu_buffer = buffer->buffers[cpu];
4336 	return cpu_buffer->read;
4337 }
4338 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4339 
4340 /**
4341  * ring_buffer_entries - get the number of entries in a buffer
4342  * @buffer: The ring buffer
4343  *
4344  * Returns the total number of entries in the ring buffer
4345  * (all CPU entries)
4346  */
4347 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4348 {
4349 	struct ring_buffer_per_cpu *cpu_buffer;
4350 	unsigned long entries = 0;
4351 	int cpu;
4352 
4353 	/* if you care about this being correct, lock the buffer */
4354 	for_each_buffer_cpu(buffer, cpu) {
4355 		cpu_buffer = buffer->buffers[cpu];
4356 		entries += rb_num_of_entries(cpu_buffer);
4357 	}
4358 
4359 	return entries;
4360 }
4361 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4362 
4363 /**
4364  * ring_buffer_overruns - get the number of overruns in buffer
4365  * @buffer: The ring buffer
4366  *
4367  * Returns the total number of overruns in the ring buffer
4368  * (all CPU entries)
4369  */
4370 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4371 {
4372 	struct ring_buffer_per_cpu *cpu_buffer;
4373 	unsigned long overruns = 0;
4374 	int cpu;
4375 
4376 	/* if you care about this being correct, lock the buffer */
4377 	for_each_buffer_cpu(buffer, cpu) {
4378 		cpu_buffer = buffer->buffers[cpu];
4379 		overruns += local_read(&cpu_buffer->overrun);
4380 	}
4381 
4382 	return overruns;
4383 }
4384 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4385 
4386 static void rb_iter_reset(struct ring_buffer_iter *iter)
4387 {
4388 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4389 
4390 	/* Iterator usage is expected to have record disabled */
4391 	iter->head_page = cpu_buffer->reader_page;
4392 	iter->head = cpu_buffer->reader_page->read;
4393 	iter->next_event = iter->head;
4394 
4395 	iter->cache_reader_page = iter->head_page;
4396 	iter->cache_read = cpu_buffer->read;
4397 	iter->cache_pages_removed = cpu_buffer->pages_removed;
4398 
4399 	if (iter->head) {
4400 		iter->read_stamp = cpu_buffer->read_stamp;
4401 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4402 	} else {
4403 		iter->read_stamp = iter->head_page->page->time_stamp;
4404 		iter->page_stamp = iter->read_stamp;
4405 	}
4406 }
4407 
4408 /**
4409  * ring_buffer_iter_reset - reset an iterator
4410  * @iter: The iterator to reset
4411  *
4412  * Resets the iterator, so that it will start from the beginning
4413  * again.
4414  */
4415 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4416 {
4417 	struct ring_buffer_per_cpu *cpu_buffer;
4418 	unsigned long flags;
4419 
4420 	if (!iter)
4421 		return;
4422 
4423 	cpu_buffer = iter->cpu_buffer;
4424 
4425 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4426 	rb_iter_reset(iter);
4427 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4428 }
4429 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4430 
4431 /**
4432  * ring_buffer_iter_empty - check if an iterator has no more to read
4433  * @iter: The iterator to check
4434  */
4435 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4436 {
4437 	struct ring_buffer_per_cpu *cpu_buffer;
4438 	struct buffer_page *reader;
4439 	struct buffer_page *head_page;
4440 	struct buffer_page *commit_page;
4441 	struct buffer_page *curr_commit_page;
4442 	unsigned commit;
4443 	u64 curr_commit_ts;
4444 	u64 commit_ts;
4445 
4446 	cpu_buffer = iter->cpu_buffer;
4447 	reader = cpu_buffer->reader_page;
4448 	head_page = cpu_buffer->head_page;
4449 	commit_page = cpu_buffer->commit_page;
4450 	commit_ts = commit_page->page->time_stamp;
4451 
4452 	/*
4453 	 * When the writer goes across pages, it issues a cmpxchg which
4454 	 * is a mb(), which will synchronize with the rmb here.
4455 	 * (see rb_tail_page_update())
4456 	 */
4457 	smp_rmb();
4458 	commit = rb_page_commit(commit_page);
4459 	/* We want to make sure that the commit page doesn't change */
4460 	smp_rmb();
4461 
4462 	/* Make sure commit page didn't change */
4463 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4464 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4465 
4466 	/* If the commit page changed, then there's more data */
4467 	if (curr_commit_page != commit_page ||
4468 	    curr_commit_ts != commit_ts)
4469 		return 0;
4470 
4471 	/* Still racy, as it may return a false positive, but that's OK */
4472 	return ((iter->head_page == commit_page && iter->head >= commit) ||
4473 		(iter->head_page == reader && commit_page == head_page &&
4474 		 head_page->read == commit &&
4475 		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4476 }
4477 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4478 
4479 static void
4480 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4481 		     struct ring_buffer_event *event)
4482 {
4483 	u64 delta;
4484 
4485 	switch (event->type_len) {
4486 	case RINGBUF_TYPE_PADDING:
4487 		return;
4488 
4489 	case RINGBUF_TYPE_TIME_EXTEND:
4490 		delta = rb_event_time_stamp(event);
4491 		cpu_buffer->read_stamp += delta;
4492 		return;
4493 
4494 	case RINGBUF_TYPE_TIME_STAMP:
4495 		delta = rb_event_time_stamp(event);
4496 		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4497 		cpu_buffer->read_stamp = delta;
4498 		return;
4499 
4500 	case RINGBUF_TYPE_DATA:
4501 		cpu_buffer->read_stamp += event->time_delta;
4502 		return;
4503 
4504 	default:
4505 		RB_WARN_ON(cpu_buffer, 1);
4506 	}
4507 }
4508 
4509 static void
4510 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4511 			  struct ring_buffer_event *event)
4512 {
4513 	u64 delta;
4514 
4515 	switch (event->type_len) {
4516 	case RINGBUF_TYPE_PADDING:
4517 		return;
4518 
4519 	case RINGBUF_TYPE_TIME_EXTEND:
4520 		delta = rb_event_time_stamp(event);
4521 		iter->read_stamp += delta;
4522 		return;
4523 
4524 	case RINGBUF_TYPE_TIME_STAMP:
4525 		delta = rb_event_time_stamp(event);
4526 		delta = rb_fix_abs_ts(delta, iter->read_stamp);
4527 		iter->read_stamp = delta;
4528 		return;
4529 
4530 	case RINGBUF_TYPE_DATA:
4531 		iter->read_stamp += event->time_delta;
4532 		return;
4533 
4534 	default:
4535 		RB_WARN_ON(iter->cpu_buffer, 1);
4536 	}
4537 }
4538 
4539 static struct buffer_page *
4540 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4541 {
4542 	struct buffer_page *reader = NULL;
4543 	unsigned long overwrite;
4544 	unsigned long flags;
4545 	int nr_loops = 0;
4546 	bool ret;
4547 
4548 	local_irq_save(flags);
4549 	arch_spin_lock(&cpu_buffer->lock);
4550 
4551  again:
4552 	/*
4553 	 * This should normally only loop twice. But because the
4554 	 * start of the reader inserts an empty page, it causes
4555 	 * a case where we will loop three times. There should be no
4556 	 * reason to loop four times (that I know of).
4557 	 */
4558 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4559 		reader = NULL;
4560 		goto out;
4561 	}
4562 
4563 	reader = cpu_buffer->reader_page;
4564 
4565 	/* If there's more to read, return this page */
4566 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
4567 		goto out;
4568 
4569 	/* Never should we have an index greater than the size */
4570 	if (RB_WARN_ON(cpu_buffer,
4571 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
4572 		goto out;
4573 
4574 	/* check if we caught up to the tail */
4575 	reader = NULL;
4576 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4577 		goto out;
4578 
4579 	/* Don't bother swapping if the ring buffer is empty */
4580 	if (rb_num_of_entries(cpu_buffer) == 0)
4581 		goto out;
4582 
4583 	/*
4584 	 * Reset the reader page to size zero.
4585 	 */
4586 	local_set(&cpu_buffer->reader_page->write, 0);
4587 	local_set(&cpu_buffer->reader_page->entries, 0);
4588 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4589 	cpu_buffer->reader_page->real_end = 0;
4590 
4591  spin:
4592 	/*
4593 	 * Splice the empty reader page into the list around the head.
4594 	 */
4595 	reader = rb_set_head_page(cpu_buffer);
4596 	if (!reader)
4597 		goto out;
4598 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4599 	cpu_buffer->reader_page->list.prev = reader->list.prev;
4600 
4601 	/*
4602 	 * cpu_buffer->pages just needs to point to the buffer, it
4603 	 *  has no specific buffer page to point to. Lets move it out
4604 	 *  of our way so we don't accidentally swap it.
4605 	 */
4606 	cpu_buffer->pages = reader->list.prev;
4607 
4608 	/* The reader page will be pointing to the new head */
4609 	rb_set_list_to_head(&cpu_buffer->reader_page->list);
4610 
4611 	/*
4612 	 * We want to make sure we read the overruns after we set up our
4613 	 * pointers to the next object. The writer side does a
4614 	 * cmpxchg to cross pages which acts as the mb on the writer
4615 	 * side. Note, the reader will constantly fail the swap
4616 	 * while the writer is updating the pointers, so this
4617 	 * guarantees that the overwrite recorded here is the one we
4618 	 * want to compare with the last_overrun.
4619 	 */
4620 	smp_mb();
4621 	overwrite = local_read(&(cpu_buffer->overrun));
4622 
4623 	/*
4624 	 * Here's the tricky part.
4625 	 *
4626 	 * We need to move the pointer past the header page.
4627 	 * But we can only do that if a writer is not currently
4628 	 * moving it. The page before the header page has the
4629 	 * flag bit '1' set if it is pointing to the page we want.
4630 	 * but if the writer is in the process of moving it
4631 	 * than it will be '2' or already moved '0'.
4632 	 */
4633 
4634 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4635 
4636 	/*
4637 	 * If we did not convert it, then we must try again.
4638 	 */
4639 	if (!ret)
4640 		goto spin;
4641 
4642 	/*
4643 	 * Yay! We succeeded in replacing the page.
4644 	 *
4645 	 * Now make the new head point back to the reader page.
4646 	 */
4647 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4648 	rb_inc_page(&cpu_buffer->head_page);
4649 
4650 	local_inc(&cpu_buffer->pages_read);
4651 
4652 	/* Finally update the reader page to the new head */
4653 	cpu_buffer->reader_page = reader;
4654 	cpu_buffer->reader_page->read = 0;
4655 
4656 	if (overwrite != cpu_buffer->last_overrun) {
4657 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4658 		cpu_buffer->last_overrun = overwrite;
4659 	}
4660 
4661 	goto again;
4662 
4663  out:
4664 	/* Update the read_stamp on the first event */
4665 	if (reader && reader->read == 0)
4666 		cpu_buffer->read_stamp = reader->page->time_stamp;
4667 
4668 	arch_spin_unlock(&cpu_buffer->lock);
4669 	local_irq_restore(flags);
4670 
4671 	/*
4672 	 * The writer has preempt disable, wait for it. But not forever
4673 	 * Although, 1 second is pretty much "forever"
4674 	 */
4675 #define USECS_WAIT	1000000
4676         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4677 		/* If the write is past the end of page, a writer is still updating it */
4678 		if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE))
4679 			break;
4680 
4681 		udelay(1);
4682 
4683 		/* Get the latest version of the reader write value */
4684 		smp_rmb();
4685 	}
4686 
4687 	/* The writer is not moving forward? Something is wrong */
4688 	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4689 		reader = NULL;
4690 
4691 	/*
4692 	 * Make sure we see any padding after the write update
4693 	 * (see rb_reset_tail()).
4694 	 *
4695 	 * In addition, a writer may be writing on the reader page
4696 	 * if the page has not been fully filled, so the read barrier
4697 	 * is also needed to make sure we see the content of what is
4698 	 * committed by the writer (see rb_set_commit_to_write()).
4699 	 */
4700 	smp_rmb();
4701 
4702 
4703 	return reader;
4704 }
4705 
4706 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4707 {
4708 	struct ring_buffer_event *event;
4709 	struct buffer_page *reader;
4710 	unsigned length;
4711 
4712 	reader = rb_get_reader_page(cpu_buffer);
4713 
4714 	/* This function should not be called when buffer is empty */
4715 	if (RB_WARN_ON(cpu_buffer, !reader))
4716 		return;
4717 
4718 	event = rb_reader_event(cpu_buffer);
4719 
4720 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4721 		cpu_buffer->read++;
4722 
4723 	rb_update_read_stamp(cpu_buffer, event);
4724 
4725 	length = rb_event_length(event);
4726 	cpu_buffer->reader_page->read += length;
4727 }
4728 
4729 static void rb_advance_iter(struct ring_buffer_iter *iter)
4730 {
4731 	struct ring_buffer_per_cpu *cpu_buffer;
4732 
4733 	cpu_buffer = iter->cpu_buffer;
4734 
4735 	/* If head == next_event then we need to jump to the next event */
4736 	if (iter->head == iter->next_event) {
4737 		/* If the event gets overwritten again, there's nothing to do */
4738 		if (rb_iter_head_event(iter) == NULL)
4739 			return;
4740 	}
4741 
4742 	iter->head = iter->next_event;
4743 
4744 	/*
4745 	 * Check if we are at the end of the buffer.
4746 	 */
4747 	if (iter->next_event >= rb_page_size(iter->head_page)) {
4748 		/* discarded commits can make the page empty */
4749 		if (iter->head_page == cpu_buffer->commit_page)
4750 			return;
4751 		rb_inc_iter(iter);
4752 		return;
4753 	}
4754 
4755 	rb_update_iter_read_stamp(iter, iter->event);
4756 }
4757 
4758 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4759 {
4760 	return cpu_buffer->lost_events;
4761 }
4762 
4763 static struct ring_buffer_event *
4764 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4765 	       unsigned long *lost_events)
4766 {
4767 	struct ring_buffer_event *event;
4768 	struct buffer_page *reader;
4769 	int nr_loops = 0;
4770 
4771 	if (ts)
4772 		*ts = 0;
4773  again:
4774 	/*
4775 	 * We repeat when a time extend is encountered.
4776 	 * Since the time extend is always attached to a data event,
4777 	 * we should never loop more than once.
4778 	 * (We never hit the following condition more than twice).
4779 	 */
4780 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4781 		return NULL;
4782 
4783 	reader = rb_get_reader_page(cpu_buffer);
4784 	if (!reader)
4785 		return NULL;
4786 
4787 	event = rb_reader_event(cpu_buffer);
4788 
4789 	switch (event->type_len) {
4790 	case RINGBUF_TYPE_PADDING:
4791 		if (rb_null_event(event))
4792 			RB_WARN_ON(cpu_buffer, 1);
4793 		/*
4794 		 * Because the writer could be discarding every
4795 		 * event it creates (which would probably be bad)
4796 		 * if we were to go back to "again" then we may never
4797 		 * catch up, and will trigger the warn on, or lock
4798 		 * the box. Return the padding, and we will release
4799 		 * the current locks, and try again.
4800 		 */
4801 		return event;
4802 
4803 	case RINGBUF_TYPE_TIME_EXTEND:
4804 		/* Internal data, OK to advance */
4805 		rb_advance_reader(cpu_buffer);
4806 		goto again;
4807 
4808 	case RINGBUF_TYPE_TIME_STAMP:
4809 		if (ts) {
4810 			*ts = rb_event_time_stamp(event);
4811 			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4812 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4813 							 cpu_buffer->cpu, ts);
4814 		}
4815 		/* Internal data, OK to advance */
4816 		rb_advance_reader(cpu_buffer);
4817 		goto again;
4818 
4819 	case RINGBUF_TYPE_DATA:
4820 		if (ts && !(*ts)) {
4821 			*ts = cpu_buffer->read_stamp + event->time_delta;
4822 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4823 							 cpu_buffer->cpu, ts);
4824 		}
4825 		if (lost_events)
4826 			*lost_events = rb_lost_events(cpu_buffer);
4827 		return event;
4828 
4829 	default:
4830 		RB_WARN_ON(cpu_buffer, 1);
4831 	}
4832 
4833 	return NULL;
4834 }
4835 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4836 
4837 static struct ring_buffer_event *
4838 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4839 {
4840 	struct trace_buffer *buffer;
4841 	struct ring_buffer_per_cpu *cpu_buffer;
4842 	struct ring_buffer_event *event;
4843 	int nr_loops = 0;
4844 
4845 	if (ts)
4846 		*ts = 0;
4847 
4848 	cpu_buffer = iter->cpu_buffer;
4849 	buffer = cpu_buffer->buffer;
4850 
4851 	/*
4852 	 * Check if someone performed a consuming read to the buffer
4853 	 * or removed some pages from the buffer. In these cases,
4854 	 * iterator was invalidated and we need to reset it.
4855 	 */
4856 	if (unlikely(iter->cache_read != cpu_buffer->read ||
4857 		     iter->cache_reader_page != cpu_buffer->reader_page ||
4858 		     iter->cache_pages_removed != cpu_buffer->pages_removed))
4859 		rb_iter_reset(iter);
4860 
4861  again:
4862 	if (ring_buffer_iter_empty(iter))
4863 		return NULL;
4864 
4865 	/*
4866 	 * As the writer can mess with what the iterator is trying
4867 	 * to read, just give up if we fail to get an event after
4868 	 * three tries. The iterator is not as reliable when reading
4869 	 * the ring buffer with an active write as the consumer is.
4870 	 * Do not warn if the three failures is reached.
4871 	 */
4872 	if (++nr_loops > 3)
4873 		return NULL;
4874 
4875 	if (rb_per_cpu_empty(cpu_buffer))
4876 		return NULL;
4877 
4878 	if (iter->head >= rb_page_size(iter->head_page)) {
4879 		rb_inc_iter(iter);
4880 		goto again;
4881 	}
4882 
4883 	event = rb_iter_head_event(iter);
4884 	if (!event)
4885 		goto again;
4886 
4887 	switch (event->type_len) {
4888 	case RINGBUF_TYPE_PADDING:
4889 		if (rb_null_event(event)) {
4890 			rb_inc_iter(iter);
4891 			goto again;
4892 		}
4893 		rb_advance_iter(iter);
4894 		return event;
4895 
4896 	case RINGBUF_TYPE_TIME_EXTEND:
4897 		/* Internal data, OK to advance */
4898 		rb_advance_iter(iter);
4899 		goto again;
4900 
4901 	case RINGBUF_TYPE_TIME_STAMP:
4902 		if (ts) {
4903 			*ts = rb_event_time_stamp(event);
4904 			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4905 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4906 							 cpu_buffer->cpu, ts);
4907 		}
4908 		/* Internal data, OK to advance */
4909 		rb_advance_iter(iter);
4910 		goto again;
4911 
4912 	case RINGBUF_TYPE_DATA:
4913 		if (ts && !(*ts)) {
4914 			*ts = iter->read_stamp + event->time_delta;
4915 			ring_buffer_normalize_time_stamp(buffer,
4916 							 cpu_buffer->cpu, ts);
4917 		}
4918 		return event;
4919 
4920 	default:
4921 		RB_WARN_ON(cpu_buffer, 1);
4922 	}
4923 
4924 	return NULL;
4925 }
4926 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4927 
4928 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4929 {
4930 	if (likely(!in_nmi())) {
4931 		raw_spin_lock(&cpu_buffer->reader_lock);
4932 		return true;
4933 	}
4934 
4935 	/*
4936 	 * If an NMI die dumps out the content of the ring buffer
4937 	 * trylock must be used to prevent a deadlock if the NMI
4938 	 * preempted a task that holds the ring buffer locks. If
4939 	 * we get the lock then all is fine, if not, then continue
4940 	 * to do the read, but this can corrupt the ring buffer,
4941 	 * so it must be permanently disabled from future writes.
4942 	 * Reading from NMI is a oneshot deal.
4943 	 */
4944 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4945 		return true;
4946 
4947 	/* Continue without locking, but disable the ring buffer */
4948 	atomic_inc(&cpu_buffer->record_disabled);
4949 	return false;
4950 }
4951 
4952 static inline void
4953 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4954 {
4955 	if (likely(locked))
4956 		raw_spin_unlock(&cpu_buffer->reader_lock);
4957 }
4958 
4959 /**
4960  * ring_buffer_peek - peek at the next event to be read
4961  * @buffer: The ring buffer to read
4962  * @cpu: The cpu to peak at
4963  * @ts: The timestamp counter of this event.
4964  * @lost_events: a variable to store if events were lost (may be NULL)
4965  *
4966  * This will return the event that will be read next, but does
4967  * not consume the data.
4968  */
4969 struct ring_buffer_event *
4970 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4971 		 unsigned long *lost_events)
4972 {
4973 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4974 	struct ring_buffer_event *event;
4975 	unsigned long flags;
4976 	bool dolock;
4977 
4978 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4979 		return NULL;
4980 
4981  again:
4982 	local_irq_save(flags);
4983 	dolock = rb_reader_lock(cpu_buffer);
4984 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4985 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4986 		rb_advance_reader(cpu_buffer);
4987 	rb_reader_unlock(cpu_buffer, dolock);
4988 	local_irq_restore(flags);
4989 
4990 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4991 		goto again;
4992 
4993 	return event;
4994 }
4995 
4996 /** ring_buffer_iter_dropped - report if there are dropped events
4997  * @iter: The ring buffer iterator
4998  *
4999  * Returns true if there was dropped events since the last peek.
5000  */
5001 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5002 {
5003 	bool ret = iter->missed_events != 0;
5004 
5005 	iter->missed_events = 0;
5006 	return ret;
5007 }
5008 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5009 
5010 /**
5011  * ring_buffer_iter_peek - peek at the next event to be read
5012  * @iter: The ring buffer iterator
5013  * @ts: The timestamp counter of this event.
5014  *
5015  * This will return the event that will be read next, but does
5016  * not increment the iterator.
5017  */
5018 struct ring_buffer_event *
5019 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5020 {
5021 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5022 	struct ring_buffer_event *event;
5023 	unsigned long flags;
5024 
5025  again:
5026 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5027 	event = rb_iter_peek(iter, ts);
5028 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5029 
5030 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5031 		goto again;
5032 
5033 	return event;
5034 }
5035 
5036 /**
5037  * ring_buffer_consume - return an event and consume it
5038  * @buffer: The ring buffer to get the next event from
5039  * @cpu: the cpu to read the buffer from
5040  * @ts: a variable to store the timestamp (may be NULL)
5041  * @lost_events: a variable to store if events were lost (may be NULL)
5042  *
5043  * Returns the next event in the ring buffer, and that event is consumed.
5044  * Meaning, that sequential reads will keep returning a different event,
5045  * and eventually empty the ring buffer if the producer is slower.
5046  */
5047 struct ring_buffer_event *
5048 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5049 		    unsigned long *lost_events)
5050 {
5051 	struct ring_buffer_per_cpu *cpu_buffer;
5052 	struct ring_buffer_event *event = NULL;
5053 	unsigned long flags;
5054 	bool dolock;
5055 
5056  again:
5057 	/* might be called in atomic */
5058 	preempt_disable();
5059 
5060 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5061 		goto out;
5062 
5063 	cpu_buffer = buffer->buffers[cpu];
5064 	local_irq_save(flags);
5065 	dolock = rb_reader_lock(cpu_buffer);
5066 
5067 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5068 	if (event) {
5069 		cpu_buffer->lost_events = 0;
5070 		rb_advance_reader(cpu_buffer);
5071 	}
5072 
5073 	rb_reader_unlock(cpu_buffer, dolock);
5074 	local_irq_restore(flags);
5075 
5076  out:
5077 	preempt_enable();
5078 
5079 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5080 		goto again;
5081 
5082 	return event;
5083 }
5084 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5085 
5086 /**
5087  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5088  * @buffer: The ring buffer to read from
5089  * @cpu: The cpu buffer to iterate over
5090  * @flags: gfp flags to use for memory allocation
5091  *
5092  * This performs the initial preparations necessary to iterate
5093  * through the buffer.  Memory is allocated, buffer recording
5094  * is disabled, and the iterator pointer is returned to the caller.
5095  *
5096  * Disabling buffer recording prevents the reading from being
5097  * corrupted. This is not a consuming read, so a producer is not
5098  * expected.
5099  *
5100  * After a sequence of ring_buffer_read_prepare calls, the user is
5101  * expected to make at least one call to ring_buffer_read_prepare_sync.
5102  * Afterwards, ring_buffer_read_start is invoked to get things going
5103  * for real.
5104  *
5105  * This overall must be paired with ring_buffer_read_finish.
5106  */
5107 struct ring_buffer_iter *
5108 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5109 {
5110 	struct ring_buffer_per_cpu *cpu_buffer;
5111 	struct ring_buffer_iter *iter;
5112 
5113 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5114 		return NULL;
5115 
5116 	iter = kzalloc(sizeof(*iter), flags);
5117 	if (!iter)
5118 		return NULL;
5119 
5120 	iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
5121 	if (!iter->event) {
5122 		kfree(iter);
5123 		return NULL;
5124 	}
5125 
5126 	cpu_buffer = buffer->buffers[cpu];
5127 
5128 	iter->cpu_buffer = cpu_buffer;
5129 
5130 	atomic_inc(&cpu_buffer->resize_disabled);
5131 
5132 	return iter;
5133 }
5134 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5135 
5136 /**
5137  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5138  *
5139  * All previously invoked ring_buffer_read_prepare calls to prepare
5140  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5141  * calls on those iterators are allowed.
5142  */
5143 void
5144 ring_buffer_read_prepare_sync(void)
5145 {
5146 	synchronize_rcu();
5147 }
5148 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5149 
5150 /**
5151  * ring_buffer_read_start - start a non consuming read of the buffer
5152  * @iter: The iterator returned by ring_buffer_read_prepare
5153  *
5154  * This finalizes the startup of an iteration through the buffer.
5155  * The iterator comes from a call to ring_buffer_read_prepare and
5156  * an intervening ring_buffer_read_prepare_sync must have been
5157  * performed.
5158  *
5159  * Must be paired with ring_buffer_read_finish.
5160  */
5161 void
5162 ring_buffer_read_start(struct ring_buffer_iter *iter)
5163 {
5164 	struct ring_buffer_per_cpu *cpu_buffer;
5165 	unsigned long flags;
5166 
5167 	if (!iter)
5168 		return;
5169 
5170 	cpu_buffer = iter->cpu_buffer;
5171 
5172 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5173 	arch_spin_lock(&cpu_buffer->lock);
5174 	rb_iter_reset(iter);
5175 	arch_spin_unlock(&cpu_buffer->lock);
5176 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5177 }
5178 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5179 
5180 /**
5181  * ring_buffer_read_finish - finish reading the iterator of the buffer
5182  * @iter: The iterator retrieved by ring_buffer_start
5183  *
5184  * This re-enables the recording to the buffer, and frees the
5185  * iterator.
5186  */
5187 void
5188 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5189 {
5190 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5191 	unsigned long flags;
5192 
5193 	/*
5194 	 * Ring buffer is disabled from recording, here's a good place
5195 	 * to check the integrity of the ring buffer.
5196 	 * Must prevent readers from trying to read, as the check
5197 	 * clears the HEAD page and readers require it.
5198 	 */
5199 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5200 	rb_check_pages(cpu_buffer);
5201 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5202 
5203 	atomic_dec(&cpu_buffer->resize_disabled);
5204 	kfree(iter->event);
5205 	kfree(iter);
5206 }
5207 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5208 
5209 /**
5210  * ring_buffer_iter_advance - advance the iterator to the next location
5211  * @iter: The ring buffer iterator
5212  *
5213  * Move the location of the iterator such that the next read will
5214  * be the next location of the iterator.
5215  */
5216 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5217 {
5218 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5219 	unsigned long flags;
5220 
5221 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5222 
5223 	rb_advance_iter(iter);
5224 
5225 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5226 }
5227 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5228 
5229 /**
5230  * ring_buffer_size - return the size of the ring buffer (in bytes)
5231  * @buffer: The ring buffer.
5232  * @cpu: The CPU to get ring buffer size from.
5233  */
5234 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5235 {
5236 	/*
5237 	 * Earlier, this method returned
5238 	 *	BUF_PAGE_SIZE * buffer->nr_pages
5239 	 * Since the nr_pages field is now removed, we have converted this to
5240 	 * return the per cpu buffer value.
5241 	 */
5242 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5243 		return 0;
5244 
5245 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
5246 }
5247 EXPORT_SYMBOL_GPL(ring_buffer_size);
5248 
5249 static void rb_clear_buffer_page(struct buffer_page *page)
5250 {
5251 	local_set(&page->write, 0);
5252 	local_set(&page->entries, 0);
5253 	rb_init_page(page->page);
5254 	page->read = 0;
5255 }
5256 
5257 static void
5258 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5259 {
5260 	struct buffer_page *page;
5261 
5262 	rb_head_page_deactivate(cpu_buffer);
5263 
5264 	cpu_buffer->head_page
5265 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
5266 	rb_clear_buffer_page(cpu_buffer->head_page);
5267 	list_for_each_entry(page, cpu_buffer->pages, list) {
5268 		rb_clear_buffer_page(page);
5269 	}
5270 
5271 	cpu_buffer->tail_page = cpu_buffer->head_page;
5272 	cpu_buffer->commit_page = cpu_buffer->head_page;
5273 
5274 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5275 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
5276 	rb_clear_buffer_page(cpu_buffer->reader_page);
5277 
5278 	local_set(&cpu_buffer->entries_bytes, 0);
5279 	local_set(&cpu_buffer->overrun, 0);
5280 	local_set(&cpu_buffer->commit_overrun, 0);
5281 	local_set(&cpu_buffer->dropped_events, 0);
5282 	local_set(&cpu_buffer->entries, 0);
5283 	local_set(&cpu_buffer->committing, 0);
5284 	local_set(&cpu_buffer->commits, 0);
5285 	local_set(&cpu_buffer->pages_touched, 0);
5286 	local_set(&cpu_buffer->pages_lost, 0);
5287 	local_set(&cpu_buffer->pages_read, 0);
5288 	cpu_buffer->last_pages_touch = 0;
5289 	cpu_buffer->shortest_full = 0;
5290 	cpu_buffer->read = 0;
5291 	cpu_buffer->read_bytes = 0;
5292 
5293 	rb_time_set(&cpu_buffer->write_stamp, 0);
5294 	rb_time_set(&cpu_buffer->before_stamp, 0);
5295 
5296 	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5297 
5298 	cpu_buffer->lost_events = 0;
5299 	cpu_buffer->last_overrun = 0;
5300 
5301 	rb_head_page_activate(cpu_buffer);
5302 	cpu_buffer->pages_removed = 0;
5303 }
5304 
5305 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5306 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5307 {
5308 	unsigned long flags;
5309 
5310 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5311 
5312 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5313 		goto out;
5314 
5315 	arch_spin_lock(&cpu_buffer->lock);
5316 
5317 	rb_reset_cpu(cpu_buffer);
5318 
5319 	arch_spin_unlock(&cpu_buffer->lock);
5320 
5321  out:
5322 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5323 }
5324 
5325 /**
5326  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5327  * @buffer: The ring buffer to reset a per cpu buffer of
5328  * @cpu: The CPU buffer to be reset
5329  */
5330 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5331 {
5332 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5333 
5334 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5335 		return;
5336 
5337 	/* prevent another thread from changing buffer sizes */
5338 	mutex_lock(&buffer->mutex);
5339 
5340 	atomic_inc(&cpu_buffer->resize_disabled);
5341 	atomic_inc(&cpu_buffer->record_disabled);
5342 
5343 	/* Make sure all commits have finished */
5344 	synchronize_rcu();
5345 
5346 	reset_disabled_cpu_buffer(cpu_buffer);
5347 
5348 	atomic_dec(&cpu_buffer->record_disabled);
5349 	atomic_dec(&cpu_buffer->resize_disabled);
5350 
5351 	mutex_unlock(&buffer->mutex);
5352 }
5353 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5354 
5355 /* Flag to ensure proper resetting of atomic variables */
5356 #define RESET_BIT	(1 << 30)
5357 
5358 /**
5359  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5360  * @buffer: The ring buffer to reset a per cpu buffer of
5361  */
5362 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5363 {
5364 	struct ring_buffer_per_cpu *cpu_buffer;
5365 	int cpu;
5366 
5367 	/* prevent another thread from changing buffer sizes */
5368 	mutex_lock(&buffer->mutex);
5369 
5370 	for_each_online_buffer_cpu(buffer, cpu) {
5371 		cpu_buffer = buffer->buffers[cpu];
5372 
5373 		atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
5374 		atomic_inc(&cpu_buffer->record_disabled);
5375 	}
5376 
5377 	/* Make sure all commits have finished */
5378 	synchronize_rcu();
5379 
5380 	for_each_buffer_cpu(buffer, cpu) {
5381 		cpu_buffer = buffer->buffers[cpu];
5382 
5383 		/*
5384 		 * If a CPU came online during the synchronize_rcu(), then
5385 		 * ignore it.
5386 		 */
5387 		if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
5388 			continue;
5389 
5390 		reset_disabled_cpu_buffer(cpu_buffer);
5391 
5392 		atomic_dec(&cpu_buffer->record_disabled);
5393 		atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
5394 	}
5395 
5396 	mutex_unlock(&buffer->mutex);
5397 }
5398 
5399 /**
5400  * ring_buffer_reset - reset a ring buffer
5401  * @buffer: The ring buffer to reset all cpu buffers
5402  */
5403 void ring_buffer_reset(struct trace_buffer *buffer)
5404 {
5405 	struct ring_buffer_per_cpu *cpu_buffer;
5406 	int cpu;
5407 
5408 	/* prevent another thread from changing buffer sizes */
5409 	mutex_lock(&buffer->mutex);
5410 
5411 	for_each_buffer_cpu(buffer, cpu) {
5412 		cpu_buffer = buffer->buffers[cpu];
5413 
5414 		atomic_inc(&cpu_buffer->resize_disabled);
5415 		atomic_inc(&cpu_buffer->record_disabled);
5416 	}
5417 
5418 	/* Make sure all commits have finished */
5419 	synchronize_rcu();
5420 
5421 	for_each_buffer_cpu(buffer, cpu) {
5422 		cpu_buffer = buffer->buffers[cpu];
5423 
5424 		reset_disabled_cpu_buffer(cpu_buffer);
5425 
5426 		atomic_dec(&cpu_buffer->record_disabled);
5427 		atomic_dec(&cpu_buffer->resize_disabled);
5428 	}
5429 
5430 	mutex_unlock(&buffer->mutex);
5431 }
5432 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5433 
5434 /**
5435  * ring_buffer_empty - is the ring buffer empty?
5436  * @buffer: The ring buffer to test
5437  */
5438 bool ring_buffer_empty(struct trace_buffer *buffer)
5439 {
5440 	struct ring_buffer_per_cpu *cpu_buffer;
5441 	unsigned long flags;
5442 	bool dolock;
5443 	bool ret;
5444 	int cpu;
5445 
5446 	/* yes this is racy, but if you don't like the race, lock the buffer */
5447 	for_each_buffer_cpu(buffer, cpu) {
5448 		cpu_buffer = buffer->buffers[cpu];
5449 		local_irq_save(flags);
5450 		dolock = rb_reader_lock(cpu_buffer);
5451 		ret = rb_per_cpu_empty(cpu_buffer);
5452 		rb_reader_unlock(cpu_buffer, dolock);
5453 		local_irq_restore(flags);
5454 
5455 		if (!ret)
5456 			return false;
5457 	}
5458 
5459 	return true;
5460 }
5461 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5462 
5463 /**
5464  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5465  * @buffer: The ring buffer
5466  * @cpu: The CPU buffer to test
5467  */
5468 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5469 {
5470 	struct ring_buffer_per_cpu *cpu_buffer;
5471 	unsigned long flags;
5472 	bool dolock;
5473 	bool ret;
5474 
5475 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5476 		return true;
5477 
5478 	cpu_buffer = buffer->buffers[cpu];
5479 	local_irq_save(flags);
5480 	dolock = rb_reader_lock(cpu_buffer);
5481 	ret = rb_per_cpu_empty(cpu_buffer);
5482 	rb_reader_unlock(cpu_buffer, dolock);
5483 	local_irq_restore(flags);
5484 
5485 	return ret;
5486 }
5487 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5488 
5489 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5490 /**
5491  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5492  * @buffer_a: One buffer to swap with
5493  * @buffer_b: The other buffer to swap with
5494  * @cpu: the CPU of the buffers to swap
5495  *
5496  * This function is useful for tracers that want to take a "snapshot"
5497  * of a CPU buffer and has another back up buffer lying around.
5498  * it is expected that the tracer handles the cpu buffer not being
5499  * used at the moment.
5500  */
5501 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5502 			 struct trace_buffer *buffer_b, int cpu)
5503 {
5504 	struct ring_buffer_per_cpu *cpu_buffer_a;
5505 	struct ring_buffer_per_cpu *cpu_buffer_b;
5506 	int ret = -EINVAL;
5507 
5508 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5509 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
5510 		goto out;
5511 
5512 	cpu_buffer_a = buffer_a->buffers[cpu];
5513 	cpu_buffer_b = buffer_b->buffers[cpu];
5514 
5515 	/* At least make sure the two buffers are somewhat the same */
5516 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5517 		goto out;
5518 
5519 	ret = -EAGAIN;
5520 
5521 	if (atomic_read(&buffer_a->record_disabled))
5522 		goto out;
5523 
5524 	if (atomic_read(&buffer_b->record_disabled))
5525 		goto out;
5526 
5527 	if (atomic_read(&cpu_buffer_a->record_disabled))
5528 		goto out;
5529 
5530 	if (atomic_read(&cpu_buffer_b->record_disabled))
5531 		goto out;
5532 
5533 	/*
5534 	 * We can't do a synchronize_rcu here because this
5535 	 * function can be called in atomic context.
5536 	 * Normally this will be called from the same CPU as cpu.
5537 	 * If not it's up to the caller to protect this.
5538 	 */
5539 	atomic_inc(&cpu_buffer_a->record_disabled);
5540 	atomic_inc(&cpu_buffer_b->record_disabled);
5541 
5542 	ret = -EBUSY;
5543 	if (local_read(&cpu_buffer_a->committing))
5544 		goto out_dec;
5545 	if (local_read(&cpu_buffer_b->committing))
5546 		goto out_dec;
5547 
5548 	/*
5549 	 * When resize is in progress, we cannot swap it because
5550 	 * it will mess the state of the cpu buffer.
5551 	 */
5552 	if (atomic_read(&buffer_a->resizing))
5553 		goto out_dec;
5554 	if (atomic_read(&buffer_b->resizing))
5555 		goto out_dec;
5556 
5557 	buffer_a->buffers[cpu] = cpu_buffer_b;
5558 	buffer_b->buffers[cpu] = cpu_buffer_a;
5559 
5560 	cpu_buffer_b->buffer = buffer_a;
5561 	cpu_buffer_a->buffer = buffer_b;
5562 
5563 	ret = 0;
5564 
5565 out_dec:
5566 	atomic_dec(&cpu_buffer_a->record_disabled);
5567 	atomic_dec(&cpu_buffer_b->record_disabled);
5568 out:
5569 	return ret;
5570 }
5571 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5572 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5573 
5574 /**
5575  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5576  * @buffer: the buffer to allocate for.
5577  * @cpu: the cpu buffer to allocate.
5578  *
5579  * This function is used in conjunction with ring_buffer_read_page.
5580  * When reading a full page from the ring buffer, these functions
5581  * can be used to speed up the process. The calling function should
5582  * allocate a few pages first with this function. Then when it
5583  * needs to get pages from the ring buffer, it passes the result
5584  * of this function into ring_buffer_read_page, which will swap
5585  * the page that was allocated, with the read page of the buffer.
5586  *
5587  * Returns:
5588  *  The page allocated, or ERR_PTR
5589  */
5590 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5591 {
5592 	struct ring_buffer_per_cpu *cpu_buffer;
5593 	struct buffer_data_page *bpage = NULL;
5594 	unsigned long flags;
5595 	struct page *page;
5596 
5597 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5598 		return ERR_PTR(-ENODEV);
5599 
5600 	cpu_buffer = buffer->buffers[cpu];
5601 	local_irq_save(flags);
5602 	arch_spin_lock(&cpu_buffer->lock);
5603 
5604 	if (cpu_buffer->free_page) {
5605 		bpage = cpu_buffer->free_page;
5606 		cpu_buffer->free_page = NULL;
5607 	}
5608 
5609 	arch_spin_unlock(&cpu_buffer->lock);
5610 	local_irq_restore(flags);
5611 
5612 	if (bpage)
5613 		goto out;
5614 
5615 	page = alloc_pages_node(cpu_to_node(cpu),
5616 				GFP_KERNEL | __GFP_NORETRY, 0);
5617 	if (!page)
5618 		return ERR_PTR(-ENOMEM);
5619 
5620 	bpage = page_address(page);
5621 
5622  out:
5623 	rb_init_page(bpage);
5624 
5625 	return bpage;
5626 }
5627 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5628 
5629 /**
5630  * ring_buffer_free_read_page - free an allocated read page
5631  * @buffer: the buffer the page was allocate for
5632  * @cpu: the cpu buffer the page came from
5633  * @data: the page to free
5634  *
5635  * Free a page allocated from ring_buffer_alloc_read_page.
5636  */
5637 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5638 {
5639 	struct ring_buffer_per_cpu *cpu_buffer;
5640 	struct buffer_data_page *bpage = data;
5641 	struct page *page = virt_to_page(bpage);
5642 	unsigned long flags;
5643 
5644 	if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
5645 		return;
5646 
5647 	cpu_buffer = buffer->buffers[cpu];
5648 
5649 	/* If the page is still in use someplace else, we can't reuse it */
5650 	if (page_ref_count(page) > 1)
5651 		goto out;
5652 
5653 	local_irq_save(flags);
5654 	arch_spin_lock(&cpu_buffer->lock);
5655 
5656 	if (!cpu_buffer->free_page) {
5657 		cpu_buffer->free_page = bpage;
5658 		bpage = NULL;
5659 	}
5660 
5661 	arch_spin_unlock(&cpu_buffer->lock);
5662 	local_irq_restore(flags);
5663 
5664  out:
5665 	free_page((unsigned long)bpage);
5666 }
5667 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5668 
5669 /**
5670  * ring_buffer_read_page - extract a page from the ring buffer
5671  * @buffer: buffer to extract from
5672  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5673  * @len: amount to extract
5674  * @cpu: the cpu of the buffer to extract
5675  * @full: should the extraction only happen when the page is full.
5676  *
5677  * This function will pull out a page from the ring buffer and consume it.
5678  * @data_page must be the address of the variable that was returned
5679  * from ring_buffer_alloc_read_page. This is because the page might be used
5680  * to swap with a page in the ring buffer.
5681  *
5682  * for example:
5683  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
5684  *	if (IS_ERR(rpage))
5685  *		return PTR_ERR(rpage);
5686  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5687  *	if (ret >= 0)
5688  *		process_page(rpage, ret);
5689  *
5690  * When @full is set, the function will not return true unless
5691  * the writer is off the reader page.
5692  *
5693  * Note: it is up to the calling functions to handle sleeps and wakeups.
5694  *  The ring buffer can be used anywhere in the kernel and can not
5695  *  blindly call wake_up. The layer that uses the ring buffer must be
5696  *  responsible for that.
5697  *
5698  * Returns:
5699  *  >=0 if data has been transferred, returns the offset of consumed data.
5700  *  <0 if no data has been transferred.
5701  */
5702 int ring_buffer_read_page(struct trace_buffer *buffer,
5703 			  void **data_page, size_t len, int cpu, int full)
5704 {
5705 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5706 	struct ring_buffer_event *event;
5707 	struct buffer_data_page *bpage;
5708 	struct buffer_page *reader;
5709 	unsigned long missed_events;
5710 	unsigned long flags;
5711 	unsigned int commit;
5712 	unsigned int read;
5713 	u64 save_timestamp;
5714 	int ret = -1;
5715 
5716 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5717 		goto out;
5718 
5719 	/*
5720 	 * If len is not big enough to hold the page header, then
5721 	 * we can not copy anything.
5722 	 */
5723 	if (len <= BUF_PAGE_HDR_SIZE)
5724 		goto out;
5725 
5726 	len -= BUF_PAGE_HDR_SIZE;
5727 
5728 	if (!data_page)
5729 		goto out;
5730 
5731 	bpage = *data_page;
5732 	if (!bpage)
5733 		goto out;
5734 
5735 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5736 
5737 	reader = rb_get_reader_page(cpu_buffer);
5738 	if (!reader)
5739 		goto out_unlock;
5740 
5741 	event = rb_reader_event(cpu_buffer);
5742 
5743 	read = reader->read;
5744 	commit = rb_page_commit(reader);
5745 
5746 	/* Check if any events were dropped */
5747 	missed_events = cpu_buffer->lost_events;
5748 
5749 	/*
5750 	 * If this page has been partially read or
5751 	 * if len is not big enough to read the rest of the page or
5752 	 * a writer is still on the page, then
5753 	 * we must copy the data from the page to the buffer.
5754 	 * Otherwise, we can simply swap the page with the one passed in.
5755 	 */
5756 	if (read || (len < (commit - read)) ||
5757 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
5758 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5759 		unsigned int rpos = read;
5760 		unsigned int pos = 0;
5761 		unsigned int size;
5762 
5763 		/*
5764 		 * If a full page is expected, this can still be returned
5765 		 * if there's been a previous partial read and the
5766 		 * rest of the page can be read and the commit page is off
5767 		 * the reader page.
5768 		 */
5769 		if (full &&
5770 		    (!read || (len < (commit - read)) ||
5771 		     cpu_buffer->reader_page == cpu_buffer->commit_page))
5772 			goto out_unlock;
5773 
5774 		if (len > (commit - read))
5775 			len = (commit - read);
5776 
5777 		/* Always keep the time extend and data together */
5778 		size = rb_event_ts_length(event);
5779 
5780 		if (len < size)
5781 			goto out_unlock;
5782 
5783 		/* save the current timestamp, since the user will need it */
5784 		save_timestamp = cpu_buffer->read_stamp;
5785 
5786 		/* Need to copy one event at a time */
5787 		do {
5788 			/* We need the size of one event, because
5789 			 * rb_advance_reader only advances by one event,
5790 			 * whereas rb_event_ts_length may include the size of
5791 			 * one or two events.
5792 			 * We have already ensured there's enough space if this
5793 			 * is a time extend. */
5794 			size = rb_event_length(event);
5795 			memcpy(bpage->data + pos, rpage->data + rpos, size);
5796 
5797 			len -= size;
5798 
5799 			rb_advance_reader(cpu_buffer);
5800 			rpos = reader->read;
5801 			pos += size;
5802 
5803 			if (rpos >= commit)
5804 				break;
5805 
5806 			event = rb_reader_event(cpu_buffer);
5807 			/* Always keep the time extend and data together */
5808 			size = rb_event_ts_length(event);
5809 		} while (len >= size);
5810 
5811 		/* update bpage */
5812 		local_set(&bpage->commit, pos);
5813 		bpage->time_stamp = save_timestamp;
5814 
5815 		/* we copied everything to the beginning */
5816 		read = 0;
5817 	} else {
5818 		/* update the entry counter */
5819 		cpu_buffer->read += rb_page_entries(reader);
5820 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5821 
5822 		/* swap the pages */
5823 		rb_init_page(bpage);
5824 		bpage = reader->page;
5825 		reader->page = *data_page;
5826 		local_set(&reader->write, 0);
5827 		local_set(&reader->entries, 0);
5828 		reader->read = 0;
5829 		*data_page = bpage;
5830 
5831 		/*
5832 		 * Use the real_end for the data size,
5833 		 * This gives us a chance to store the lost events
5834 		 * on the page.
5835 		 */
5836 		if (reader->real_end)
5837 			local_set(&bpage->commit, reader->real_end);
5838 	}
5839 	ret = read;
5840 
5841 	cpu_buffer->lost_events = 0;
5842 
5843 	commit = local_read(&bpage->commit);
5844 	/*
5845 	 * Set a flag in the commit field if we lost events
5846 	 */
5847 	if (missed_events) {
5848 		/* If there is room at the end of the page to save the
5849 		 * missed events, then record it there.
5850 		 */
5851 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5852 			memcpy(&bpage->data[commit], &missed_events,
5853 			       sizeof(missed_events));
5854 			local_add(RB_MISSED_STORED, &bpage->commit);
5855 			commit += sizeof(missed_events);
5856 		}
5857 		local_add(RB_MISSED_EVENTS, &bpage->commit);
5858 	}
5859 
5860 	/*
5861 	 * This page may be off to user land. Zero it out here.
5862 	 */
5863 	if (commit < BUF_PAGE_SIZE)
5864 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5865 
5866  out_unlock:
5867 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5868 
5869  out:
5870 	return ret;
5871 }
5872 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5873 
5874 /*
5875  * We only allocate new buffers, never free them if the CPU goes down.
5876  * If we were to free the buffer, then the user would lose any trace that was in
5877  * the buffer.
5878  */
5879 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5880 {
5881 	struct trace_buffer *buffer;
5882 	long nr_pages_same;
5883 	int cpu_i;
5884 	unsigned long nr_pages;
5885 
5886 	buffer = container_of(node, struct trace_buffer, node);
5887 	if (cpumask_test_cpu(cpu, buffer->cpumask))
5888 		return 0;
5889 
5890 	nr_pages = 0;
5891 	nr_pages_same = 1;
5892 	/* check if all cpu sizes are same */
5893 	for_each_buffer_cpu(buffer, cpu_i) {
5894 		/* fill in the size from first enabled cpu */
5895 		if (nr_pages == 0)
5896 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
5897 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5898 			nr_pages_same = 0;
5899 			break;
5900 		}
5901 	}
5902 	/* allocate minimum pages, user can later expand it */
5903 	if (!nr_pages_same)
5904 		nr_pages = 2;
5905 	buffer->buffers[cpu] =
5906 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5907 	if (!buffer->buffers[cpu]) {
5908 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
5909 		     cpu);
5910 		return -ENOMEM;
5911 	}
5912 	smp_wmb();
5913 	cpumask_set_cpu(cpu, buffer->cpumask);
5914 	return 0;
5915 }
5916 
5917 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5918 /*
5919  * This is a basic integrity check of the ring buffer.
5920  * Late in the boot cycle this test will run when configured in.
5921  * It will kick off a thread per CPU that will go into a loop
5922  * writing to the per cpu ring buffer various sizes of data.
5923  * Some of the data will be large items, some small.
5924  *
5925  * Another thread is created that goes into a spin, sending out
5926  * IPIs to the other CPUs to also write into the ring buffer.
5927  * this is to test the nesting ability of the buffer.
5928  *
5929  * Basic stats are recorded and reported. If something in the
5930  * ring buffer should happen that's not expected, a big warning
5931  * is displayed and all ring buffers are disabled.
5932  */
5933 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5934 
5935 struct rb_test_data {
5936 	struct trace_buffer *buffer;
5937 	unsigned long		events;
5938 	unsigned long		bytes_written;
5939 	unsigned long		bytes_alloc;
5940 	unsigned long		bytes_dropped;
5941 	unsigned long		events_nested;
5942 	unsigned long		bytes_written_nested;
5943 	unsigned long		bytes_alloc_nested;
5944 	unsigned long		bytes_dropped_nested;
5945 	int			min_size_nested;
5946 	int			max_size_nested;
5947 	int			max_size;
5948 	int			min_size;
5949 	int			cpu;
5950 	int			cnt;
5951 };
5952 
5953 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5954 
5955 /* 1 meg per cpu */
5956 #define RB_TEST_BUFFER_SIZE	1048576
5957 
5958 static char rb_string[] __initdata =
5959 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5960 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5961 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5962 
5963 static bool rb_test_started __initdata;
5964 
5965 struct rb_item {
5966 	int size;
5967 	char str[];
5968 };
5969 
5970 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5971 {
5972 	struct ring_buffer_event *event;
5973 	struct rb_item *item;
5974 	bool started;
5975 	int event_len;
5976 	int size;
5977 	int len;
5978 	int cnt;
5979 
5980 	/* Have nested writes different that what is written */
5981 	cnt = data->cnt + (nested ? 27 : 0);
5982 
5983 	/* Multiply cnt by ~e, to make some unique increment */
5984 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5985 
5986 	len = size + sizeof(struct rb_item);
5987 
5988 	started = rb_test_started;
5989 	/* read rb_test_started before checking buffer enabled */
5990 	smp_rmb();
5991 
5992 	event = ring_buffer_lock_reserve(data->buffer, len);
5993 	if (!event) {
5994 		/* Ignore dropped events before test starts. */
5995 		if (started) {
5996 			if (nested)
5997 				data->bytes_dropped += len;
5998 			else
5999 				data->bytes_dropped_nested += len;
6000 		}
6001 		return len;
6002 	}
6003 
6004 	event_len = ring_buffer_event_length(event);
6005 
6006 	if (RB_WARN_ON(data->buffer, event_len < len))
6007 		goto out;
6008 
6009 	item = ring_buffer_event_data(event);
6010 	item->size = size;
6011 	memcpy(item->str, rb_string, size);
6012 
6013 	if (nested) {
6014 		data->bytes_alloc_nested += event_len;
6015 		data->bytes_written_nested += len;
6016 		data->events_nested++;
6017 		if (!data->min_size_nested || len < data->min_size_nested)
6018 			data->min_size_nested = len;
6019 		if (len > data->max_size_nested)
6020 			data->max_size_nested = len;
6021 	} else {
6022 		data->bytes_alloc += event_len;
6023 		data->bytes_written += len;
6024 		data->events++;
6025 		if (!data->min_size || len < data->min_size)
6026 			data->max_size = len;
6027 		if (len > data->max_size)
6028 			data->max_size = len;
6029 	}
6030 
6031  out:
6032 	ring_buffer_unlock_commit(data->buffer);
6033 
6034 	return 0;
6035 }
6036 
6037 static __init int rb_test(void *arg)
6038 {
6039 	struct rb_test_data *data = arg;
6040 
6041 	while (!kthread_should_stop()) {
6042 		rb_write_something(data, false);
6043 		data->cnt++;
6044 
6045 		set_current_state(TASK_INTERRUPTIBLE);
6046 		/* Now sleep between a min of 100-300us and a max of 1ms */
6047 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
6048 	}
6049 
6050 	return 0;
6051 }
6052 
6053 static __init void rb_ipi(void *ignore)
6054 {
6055 	struct rb_test_data *data;
6056 	int cpu = smp_processor_id();
6057 
6058 	data = &rb_data[cpu];
6059 	rb_write_something(data, true);
6060 }
6061 
6062 static __init int rb_hammer_test(void *arg)
6063 {
6064 	while (!kthread_should_stop()) {
6065 
6066 		/* Send an IPI to all cpus to write data! */
6067 		smp_call_function(rb_ipi, NULL, 1);
6068 		/* No sleep, but for non preempt, let others run */
6069 		schedule();
6070 	}
6071 
6072 	return 0;
6073 }
6074 
6075 static __init int test_ringbuffer(void)
6076 {
6077 	struct task_struct *rb_hammer;
6078 	struct trace_buffer *buffer;
6079 	int cpu;
6080 	int ret = 0;
6081 
6082 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
6083 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6084 		return 0;
6085 	}
6086 
6087 	pr_info("Running ring buffer tests...\n");
6088 
6089 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6090 	if (WARN_ON(!buffer))
6091 		return 0;
6092 
6093 	/* Disable buffer so that threads can't write to it yet */
6094 	ring_buffer_record_off(buffer);
6095 
6096 	for_each_online_cpu(cpu) {
6097 		rb_data[cpu].buffer = buffer;
6098 		rb_data[cpu].cpu = cpu;
6099 		rb_data[cpu].cnt = cpu;
6100 		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6101 						     cpu, "rbtester/%u");
6102 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6103 			pr_cont("FAILED\n");
6104 			ret = PTR_ERR(rb_threads[cpu]);
6105 			goto out_free;
6106 		}
6107 	}
6108 
6109 	/* Now create the rb hammer! */
6110 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6111 	if (WARN_ON(IS_ERR(rb_hammer))) {
6112 		pr_cont("FAILED\n");
6113 		ret = PTR_ERR(rb_hammer);
6114 		goto out_free;
6115 	}
6116 
6117 	ring_buffer_record_on(buffer);
6118 	/*
6119 	 * Show buffer is enabled before setting rb_test_started.
6120 	 * Yes there's a small race window where events could be
6121 	 * dropped and the thread wont catch it. But when a ring
6122 	 * buffer gets enabled, there will always be some kind of
6123 	 * delay before other CPUs see it. Thus, we don't care about
6124 	 * those dropped events. We care about events dropped after
6125 	 * the threads see that the buffer is active.
6126 	 */
6127 	smp_wmb();
6128 	rb_test_started = true;
6129 
6130 	set_current_state(TASK_INTERRUPTIBLE);
6131 	/* Just run for 10 seconds */;
6132 	schedule_timeout(10 * HZ);
6133 
6134 	kthread_stop(rb_hammer);
6135 
6136  out_free:
6137 	for_each_online_cpu(cpu) {
6138 		if (!rb_threads[cpu])
6139 			break;
6140 		kthread_stop(rb_threads[cpu]);
6141 	}
6142 	if (ret) {
6143 		ring_buffer_free(buffer);
6144 		return ret;
6145 	}
6146 
6147 	/* Report! */
6148 	pr_info("finished\n");
6149 	for_each_online_cpu(cpu) {
6150 		struct ring_buffer_event *event;
6151 		struct rb_test_data *data = &rb_data[cpu];
6152 		struct rb_item *item;
6153 		unsigned long total_events;
6154 		unsigned long total_dropped;
6155 		unsigned long total_written;
6156 		unsigned long total_alloc;
6157 		unsigned long total_read = 0;
6158 		unsigned long total_size = 0;
6159 		unsigned long total_len = 0;
6160 		unsigned long total_lost = 0;
6161 		unsigned long lost;
6162 		int big_event_size;
6163 		int small_event_size;
6164 
6165 		ret = -1;
6166 
6167 		total_events = data->events + data->events_nested;
6168 		total_written = data->bytes_written + data->bytes_written_nested;
6169 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6170 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6171 
6172 		big_event_size = data->max_size + data->max_size_nested;
6173 		small_event_size = data->min_size + data->min_size_nested;
6174 
6175 		pr_info("CPU %d:\n", cpu);
6176 		pr_info("              events:    %ld\n", total_events);
6177 		pr_info("       dropped bytes:    %ld\n", total_dropped);
6178 		pr_info("       alloced bytes:    %ld\n", total_alloc);
6179 		pr_info("       written bytes:    %ld\n", total_written);
6180 		pr_info("       biggest event:    %d\n", big_event_size);
6181 		pr_info("      smallest event:    %d\n", small_event_size);
6182 
6183 		if (RB_WARN_ON(buffer, total_dropped))
6184 			break;
6185 
6186 		ret = 0;
6187 
6188 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6189 			total_lost += lost;
6190 			item = ring_buffer_event_data(event);
6191 			total_len += ring_buffer_event_length(event);
6192 			total_size += item->size + sizeof(struct rb_item);
6193 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6194 				pr_info("FAILED!\n");
6195 				pr_info("buffer had: %.*s\n", item->size, item->str);
6196 				pr_info("expected:   %.*s\n", item->size, rb_string);
6197 				RB_WARN_ON(buffer, 1);
6198 				ret = -1;
6199 				break;
6200 			}
6201 			total_read++;
6202 		}
6203 		if (ret)
6204 			break;
6205 
6206 		ret = -1;
6207 
6208 		pr_info("         read events:   %ld\n", total_read);
6209 		pr_info("         lost events:   %ld\n", total_lost);
6210 		pr_info("        total events:   %ld\n", total_lost + total_read);
6211 		pr_info("  recorded len bytes:   %ld\n", total_len);
6212 		pr_info(" recorded size bytes:   %ld\n", total_size);
6213 		if (total_lost) {
6214 			pr_info(" With dropped events, record len and size may not match\n"
6215 				" alloced and written from above\n");
6216 		} else {
6217 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
6218 				       total_size != total_written))
6219 				break;
6220 		}
6221 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6222 			break;
6223 
6224 		ret = 0;
6225 	}
6226 	if (!ret)
6227 		pr_info("Ring buffer PASSED!\n");
6228 
6229 	ring_buffer_free(buffer);
6230 	return 0;
6231 }
6232 
6233 late_initcall(test_ringbuffer);
6234 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
6235