xref: /linux/kernel/trace/ring_buffer.c (revision 3eeebf17f31c583f83e081b17b3076477cb96886)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/spinlock.h>
8 #include <linux/debugfs.h>
9 #include <linux/uaccess.h>
10 #include <linux/module.h>
11 #include <linux/percpu.h>
12 #include <linux/mutex.h>
13 #include <linux/sched.h>	/* used for sched_clock() (for now) */
14 #include <linux/init.h>
15 #include <linux/hash.h>
16 #include <linux/list.h>
17 #include <linux/fs.h>
18 
19 /* Up this if you want to test the TIME_EXTENTS and normalization */
20 #define DEBUG_SHIFT 0
21 
22 /* FIXME!!! */
23 u64 ring_buffer_time_stamp(int cpu)
24 {
25 	/* shift to debug/test normalization and TIME_EXTENTS */
26 	return sched_clock() << DEBUG_SHIFT;
27 }
28 
29 void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
30 {
31 	/* Just stupid testing the normalize function and deltas */
32 	*ts >>= DEBUG_SHIFT;
33 }
34 
35 #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
36 #define RB_ALIGNMENT_SHIFT	2
37 #define RB_ALIGNMENT		(1 << RB_ALIGNMENT_SHIFT)
38 #define RB_MAX_SMALL_DATA	28
39 
40 enum {
41 	RB_LEN_TIME_EXTEND = 8,
42 	RB_LEN_TIME_STAMP = 16,
43 };
44 
45 /* inline for ring buffer fast paths */
46 static inline unsigned
47 rb_event_length(struct ring_buffer_event *event)
48 {
49 	unsigned length;
50 
51 	switch (event->type) {
52 	case RINGBUF_TYPE_PADDING:
53 		/* undefined */
54 		return -1;
55 
56 	case RINGBUF_TYPE_TIME_EXTEND:
57 		return RB_LEN_TIME_EXTEND;
58 
59 	case RINGBUF_TYPE_TIME_STAMP:
60 		return RB_LEN_TIME_STAMP;
61 
62 	case RINGBUF_TYPE_DATA:
63 		if (event->len)
64 			length = event->len << RB_ALIGNMENT_SHIFT;
65 		else
66 			length = event->array[0];
67 		return length + RB_EVNT_HDR_SIZE;
68 	default:
69 		BUG();
70 	}
71 	/* not hit */
72 	return 0;
73 }
74 
75 /**
76  * ring_buffer_event_length - return the length of the event
77  * @event: the event to get the length of
78  */
79 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
80 {
81 	return rb_event_length(event);
82 }
83 
84 /* inline for ring buffer fast paths */
85 static inline void *
86 rb_event_data(struct ring_buffer_event *event)
87 {
88 	BUG_ON(event->type != RINGBUF_TYPE_DATA);
89 	/* If length is in len field, then array[0] has the data */
90 	if (event->len)
91 		return (void *)&event->array[0];
92 	/* Otherwise length is in array[0] and array[1] has the data */
93 	return (void *)&event->array[1];
94 }
95 
96 /**
97  * ring_buffer_event_data - return the data of the event
98  * @event: the event to get the data from
99  */
100 void *ring_buffer_event_data(struct ring_buffer_event *event)
101 {
102 	return rb_event_data(event);
103 }
104 
105 #define for_each_buffer_cpu(buffer, cpu)		\
106 	for_each_cpu_mask(cpu, buffer->cpumask)
107 
108 #define TS_SHIFT	27
109 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
110 #define TS_DELTA_TEST	(~TS_MASK)
111 
112 /*
113  * This hack stolen from mm/slob.c.
114  * We can store per page timing information in the page frame of the page.
115  * Thanks to Peter Zijlstra for suggesting this idea.
116  */
117 struct buffer_page {
118 	u64		 time_stamp;	/* page time stamp */
119 	local_t		 write;		/* index for next write */
120 	local_t		 commit;	/* write commited index */
121 	unsigned	 read;		/* index for next read */
122 	struct list_head list;		/* list of free pages */
123 	void *page;			/* Actual data page */
124 };
125 
126 /*
127  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
128  * this issue out.
129  */
130 static inline void free_buffer_page(struct buffer_page *bpage)
131 {
132 	if (bpage->page)
133 		__free_page(bpage->page);
134 	kfree(bpage);
135 }
136 
137 /*
138  * We need to fit the time_stamp delta into 27 bits.
139  */
140 static inline int test_time_stamp(u64 delta)
141 {
142 	if (delta & TS_DELTA_TEST)
143 		return 1;
144 	return 0;
145 }
146 
147 #define BUF_PAGE_SIZE PAGE_SIZE
148 
149 /*
150  * head_page == tail_page && head == tail then buffer is empty.
151  */
152 struct ring_buffer_per_cpu {
153 	int				cpu;
154 	struct ring_buffer		*buffer;
155 	spinlock_t			lock;
156 	struct lock_class_key		lock_key;
157 	struct list_head		pages;
158 	struct buffer_page		*head_page;	/* read from head */
159 	struct buffer_page		*tail_page;	/* write to tail */
160 	struct buffer_page		*commit_page;	/* commited pages */
161 	struct buffer_page		*reader_page;
162 	unsigned long			overrun;
163 	unsigned long			entries;
164 	u64				write_stamp;
165 	u64				read_stamp;
166 	atomic_t			record_disabled;
167 };
168 
169 struct ring_buffer {
170 	unsigned long			size;
171 	unsigned			pages;
172 	unsigned			flags;
173 	int				cpus;
174 	cpumask_t			cpumask;
175 	atomic_t			record_disabled;
176 
177 	struct mutex			mutex;
178 
179 	struct ring_buffer_per_cpu	**buffers;
180 };
181 
182 struct ring_buffer_iter {
183 	struct ring_buffer_per_cpu	*cpu_buffer;
184 	unsigned long			head;
185 	struct buffer_page		*head_page;
186 	u64				read_stamp;
187 };
188 
189 #define RB_WARN_ON(buffer, cond)				\
190 	do {							\
191 		if (unlikely(cond)) {				\
192 			atomic_inc(&buffer->record_disabled);	\
193 			WARN_ON(1);				\
194 		}						\
195 	} while (0)
196 
197 #define RB_WARN_ON_RET(buffer, cond)				\
198 	do {							\
199 		if (unlikely(cond)) {				\
200 			atomic_inc(&buffer->record_disabled);	\
201 			WARN_ON(1);				\
202 			return -1;				\
203 		}						\
204 	} while (0)
205 
206 #define RB_WARN_ON_ONCE(buffer, cond)				\
207 	do {							\
208 		static int once;				\
209 		if (unlikely(cond) && !once) {			\
210 			once++;					\
211 			atomic_inc(&buffer->record_disabled);	\
212 			WARN_ON(1);				\
213 		}						\
214 	} while (0)
215 
216 /**
217  * check_pages - integrity check of buffer pages
218  * @cpu_buffer: CPU buffer with pages to test
219  *
220  * As a safty measure we check to make sure the data pages have not
221  * been corrupted.
222  */
223 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
224 {
225 	struct list_head *head = &cpu_buffer->pages;
226 	struct buffer_page *page, *tmp;
227 
228 	RB_WARN_ON_RET(cpu_buffer, head->next->prev != head);
229 	RB_WARN_ON_RET(cpu_buffer, head->prev->next != head);
230 
231 	list_for_each_entry_safe(page, tmp, head, list) {
232 		RB_WARN_ON_RET(cpu_buffer,
233 			       page->list.next->prev != &page->list);
234 		RB_WARN_ON_RET(cpu_buffer,
235 			       page->list.prev->next != &page->list);
236 	}
237 
238 	return 0;
239 }
240 
241 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
242 			     unsigned nr_pages)
243 {
244 	struct list_head *head = &cpu_buffer->pages;
245 	struct buffer_page *page, *tmp;
246 	unsigned long addr;
247 	LIST_HEAD(pages);
248 	unsigned i;
249 
250 	for (i = 0; i < nr_pages; i++) {
251 		page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
252 				    GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
253 		if (!page)
254 			goto free_pages;
255 		list_add(&page->list, &pages);
256 
257 		addr = __get_free_page(GFP_KERNEL);
258 		if (!addr)
259 			goto free_pages;
260 		page->page = (void *)addr;
261 	}
262 
263 	list_splice(&pages, head);
264 
265 	rb_check_pages(cpu_buffer);
266 
267 	return 0;
268 
269  free_pages:
270 	list_for_each_entry_safe(page, tmp, &pages, list) {
271 		list_del_init(&page->list);
272 		free_buffer_page(page);
273 	}
274 	return -ENOMEM;
275 }
276 
277 static struct ring_buffer_per_cpu *
278 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
279 {
280 	struct ring_buffer_per_cpu *cpu_buffer;
281 	struct buffer_page *page;
282 	unsigned long addr;
283 	int ret;
284 
285 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
286 				  GFP_KERNEL, cpu_to_node(cpu));
287 	if (!cpu_buffer)
288 		return NULL;
289 
290 	cpu_buffer->cpu = cpu;
291 	cpu_buffer->buffer = buffer;
292 	spin_lock_init(&cpu_buffer->lock);
293 	INIT_LIST_HEAD(&cpu_buffer->pages);
294 
295 	page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
296 			    GFP_KERNEL, cpu_to_node(cpu));
297 	if (!page)
298 		goto fail_free_buffer;
299 
300 	cpu_buffer->reader_page = page;
301 	addr = __get_free_page(GFP_KERNEL);
302 	if (!addr)
303 		goto fail_free_reader;
304 	page->page = (void *)addr;
305 
306 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
307 
308 	ret = rb_allocate_pages(cpu_buffer, buffer->pages);
309 	if (ret < 0)
310 		goto fail_free_reader;
311 
312 	cpu_buffer->head_page
313 		= list_entry(cpu_buffer->pages.next, struct buffer_page, list);
314 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
315 
316 	return cpu_buffer;
317 
318  fail_free_reader:
319 	free_buffer_page(cpu_buffer->reader_page);
320 
321  fail_free_buffer:
322 	kfree(cpu_buffer);
323 	return NULL;
324 }
325 
326 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
327 {
328 	struct list_head *head = &cpu_buffer->pages;
329 	struct buffer_page *page, *tmp;
330 
331 	list_del_init(&cpu_buffer->reader_page->list);
332 	free_buffer_page(cpu_buffer->reader_page);
333 
334 	list_for_each_entry_safe(page, tmp, head, list) {
335 		list_del_init(&page->list);
336 		free_buffer_page(page);
337 	}
338 	kfree(cpu_buffer);
339 }
340 
341 /*
342  * Causes compile errors if the struct buffer_page gets bigger
343  * than the struct page.
344  */
345 extern int ring_buffer_page_too_big(void);
346 
347 /**
348  * ring_buffer_alloc - allocate a new ring_buffer
349  * @size: the size in bytes that is needed.
350  * @flags: attributes to set for the ring buffer.
351  *
352  * Currently the only flag that is available is the RB_FL_OVERWRITE
353  * flag. This flag means that the buffer will overwrite old data
354  * when the buffer wraps. If this flag is not set, the buffer will
355  * drop data when the tail hits the head.
356  */
357 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
358 {
359 	struct ring_buffer *buffer;
360 	int bsize;
361 	int cpu;
362 
363 	/* Paranoid! Optimizes out when all is well */
364 	if (sizeof(struct buffer_page) > sizeof(struct page))
365 		ring_buffer_page_too_big();
366 
367 
368 	/* keep it in its own cache line */
369 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
370 			 GFP_KERNEL);
371 	if (!buffer)
372 		return NULL;
373 
374 	buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
375 	buffer->flags = flags;
376 
377 	/* need at least two pages */
378 	if (buffer->pages == 1)
379 		buffer->pages++;
380 
381 	buffer->cpumask = cpu_possible_map;
382 	buffer->cpus = nr_cpu_ids;
383 
384 	bsize = sizeof(void *) * nr_cpu_ids;
385 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
386 				  GFP_KERNEL);
387 	if (!buffer->buffers)
388 		goto fail_free_buffer;
389 
390 	for_each_buffer_cpu(buffer, cpu) {
391 		buffer->buffers[cpu] =
392 			rb_allocate_cpu_buffer(buffer, cpu);
393 		if (!buffer->buffers[cpu])
394 			goto fail_free_buffers;
395 	}
396 
397 	mutex_init(&buffer->mutex);
398 
399 	return buffer;
400 
401  fail_free_buffers:
402 	for_each_buffer_cpu(buffer, cpu) {
403 		if (buffer->buffers[cpu])
404 			rb_free_cpu_buffer(buffer->buffers[cpu]);
405 	}
406 	kfree(buffer->buffers);
407 
408  fail_free_buffer:
409 	kfree(buffer);
410 	return NULL;
411 }
412 
413 /**
414  * ring_buffer_free - free a ring buffer.
415  * @buffer: the buffer to free.
416  */
417 void
418 ring_buffer_free(struct ring_buffer *buffer)
419 {
420 	int cpu;
421 
422 	for_each_buffer_cpu(buffer, cpu)
423 		rb_free_cpu_buffer(buffer->buffers[cpu]);
424 
425 	kfree(buffer);
426 }
427 
428 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
429 
430 static void
431 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
432 {
433 	struct buffer_page *page;
434 	struct list_head *p;
435 	unsigned i;
436 
437 	atomic_inc(&cpu_buffer->record_disabled);
438 	synchronize_sched();
439 
440 	for (i = 0; i < nr_pages; i++) {
441 		BUG_ON(list_empty(&cpu_buffer->pages));
442 		p = cpu_buffer->pages.next;
443 		page = list_entry(p, struct buffer_page, list);
444 		list_del_init(&page->list);
445 		free_buffer_page(page);
446 	}
447 	BUG_ON(list_empty(&cpu_buffer->pages));
448 
449 	rb_reset_cpu(cpu_buffer);
450 
451 	rb_check_pages(cpu_buffer);
452 
453 	atomic_dec(&cpu_buffer->record_disabled);
454 
455 }
456 
457 static void
458 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
459 		struct list_head *pages, unsigned nr_pages)
460 {
461 	struct buffer_page *page;
462 	struct list_head *p;
463 	unsigned i;
464 
465 	atomic_inc(&cpu_buffer->record_disabled);
466 	synchronize_sched();
467 
468 	for (i = 0; i < nr_pages; i++) {
469 		BUG_ON(list_empty(pages));
470 		p = pages->next;
471 		page = list_entry(p, struct buffer_page, list);
472 		list_del_init(&page->list);
473 		list_add_tail(&page->list, &cpu_buffer->pages);
474 	}
475 	rb_reset_cpu(cpu_buffer);
476 
477 	rb_check_pages(cpu_buffer);
478 
479 	atomic_dec(&cpu_buffer->record_disabled);
480 }
481 
482 /**
483  * ring_buffer_resize - resize the ring buffer
484  * @buffer: the buffer to resize.
485  * @size: the new size.
486  *
487  * The tracer is responsible for making sure that the buffer is
488  * not being used while changing the size.
489  * Note: We may be able to change the above requirement by using
490  *  RCU synchronizations.
491  *
492  * Minimum size is 2 * BUF_PAGE_SIZE.
493  *
494  * Returns -1 on failure.
495  */
496 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
497 {
498 	struct ring_buffer_per_cpu *cpu_buffer;
499 	unsigned nr_pages, rm_pages, new_pages;
500 	struct buffer_page *page, *tmp;
501 	unsigned long buffer_size;
502 	unsigned long addr;
503 	LIST_HEAD(pages);
504 	int i, cpu;
505 
506 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
507 	size *= BUF_PAGE_SIZE;
508 	buffer_size = buffer->pages * BUF_PAGE_SIZE;
509 
510 	/* we need a minimum of two pages */
511 	if (size < BUF_PAGE_SIZE * 2)
512 		size = BUF_PAGE_SIZE * 2;
513 
514 	if (size == buffer_size)
515 		return size;
516 
517 	mutex_lock(&buffer->mutex);
518 
519 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
520 
521 	if (size < buffer_size) {
522 
523 		/* easy case, just free pages */
524 		BUG_ON(nr_pages >= buffer->pages);
525 
526 		rm_pages = buffer->pages - nr_pages;
527 
528 		for_each_buffer_cpu(buffer, cpu) {
529 			cpu_buffer = buffer->buffers[cpu];
530 			rb_remove_pages(cpu_buffer, rm_pages);
531 		}
532 		goto out;
533 	}
534 
535 	/*
536 	 * This is a bit more difficult. We only want to add pages
537 	 * when we can allocate enough for all CPUs. We do this
538 	 * by allocating all the pages and storing them on a local
539 	 * link list. If we succeed in our allocation, then we
540 	 * add these pages to the cpu_buffers. Otherwise we just free
541 	 * them all and return -ENOMEM;
542 	 */
543 	BUG_ON(nr_pages <= buffer->pages);
544 	new_pages = nr_pages - buffer->pages;
545 
546 	for_each_buffer_cpu(buffer, cpu) {
547 		for (i = 0; i < new_pages; i++) {
548 			page = kzalloc_node(ALIGN(sizeof(*page),
549 						  cache_line_size()),
550 					    GFP_KERNEL, cpu_to_node(cpu));
551 			if (!page)
552 				goto free_pages;
553 			list_add(&page->list, &pages);
554 			addr = __get_free_page(GFP_KERNEL);
555 			if (!addr)
556 				goto free_pages;
557 			page->page = (void *)addr;
558 		}
559 	}
560 
561 	for_each_buffer_cpu(buffer, cpu) {
562 		cpu_buffer = buffer->buffers[cpu];
563 		rb_insert_pages(cpu_buffer, &pages, new_pages);
564 	}
565 
566 	BUG_ON(!list_empty(&pages));
567 
568  out:
569 	buffer->pages = nr_pages;
570 	mutex_unlock(&buffer->mutex);
571 
572 	return size;
573 
574  free_pages:
575 	list_for_each_entry_safe(page, tmp, &pages, list) {
576 		list_del_init(&page->list);
577 		free_buffer_page(page);
578 	}
579 	return -ENOMEM;
580 }
581 
582 static inline int rb_null_event(struct ring_buffer_event *event)
583 {
584 	return event->type == RINGBUF_TYPE_PADDING;
585 }
586 
587 static inline void *__rb_page_index(struct buffer_page *page, unsigned index)
588 {
589 	return page->page + index;
590 }
591 
592 static inline struct ring_buffer_event *
593 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
594 {
595 	return __rb_page_index(cpu_buffer->reader_page,
596 			       cpu_buffer->reader_page->read);
597 }
598 
599 static inline struct ring_buffer_event *
600 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
601 {
602 	return __rb_page_index(cpu_buffer->head_page,
603 			       cpu_buffer->head_page->read);
604 }
605 
606 static inline struct ring_buffer_event *
607 rb_iter_head_event(struct ring_buffer_iter *iter)
608 {
609 	return __rb_page_index(iter->head_page, iter->head);
610 }
611 
612 static inline unsigned rb_page_write(struct buffer_page *bpage)
613 {
614 	return local_read(&bpage->write);
615 }
616 
617 static inline unsigned rb_page_commit(struct buffer_page *bpage)
618 {
619 	return local_read(&bpage->commit);
620 }
621 
622 /* Size is determined by what has been commited */
623 static inline unsigned rb_page_size(struct buffer_page *bpage)
624 {
625 	return rb_page_commit(bpage);
626 }
627 
628 static inline unsigned
629 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
630 {
631 	return rb_page_commit(cpu_buffer->commit_page);
632 }
633 
634 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
635 {
636 	return rb_page_commit(cpu_buffer->head_page);
637 }
638 
639 /*
640  * When the tail hits the head and the buffer is in overwrite mode,
641  * the head jumps to the next page and all content on the previous
642  * page is discarded. But before doing so, we update the overrun
643  * variable of the buffer.
644  */
645 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
646 {
647 	struct ring_buffer_event *event;
648 	unsigned long head;
649 
650 	for (head = 0; head < rb_head_size(cpu_buffer);
651 	     head += rb_event_length(event)) {
652 
653 		event = __rb_page_index(cpu_buffer->head_page, head);
654 		BUG_ON(rb_null_event(event));
655 		/* Only count data entries */
656 		if (event->type != RINGBUF_TYPE_DATA)
657 			continue;
658 		cpu_buffer->overrun++;
659 		cpu_buffer->entries--;
660 	}
661 }
662 
663 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
664 			       struct buffer_page **page)
665 {
666 	struct list_head *p = (*page)->list.next;
667 
668 	if (p == &cpu_buffer->pages)
669 		p = p->next;
670 
671 	*page = list_entry(p, struct buffer_page, list);
672 }
673 
674 static inline unsigned
675 rb_event_index(struct ring_buffer_event *event)
676 {
677 	unsigned long addr = (unsigned long)event;
678 
679 	return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
680 }
681 
682 static inline int
683 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
684 	     struct ring_buffer_event *event)
685 {
686 	unsigned long addr = (unsigned long)event;
687 	unsigned long index;
688 
689 	index = rb_event_index(event);
690 	addr &= PAGE_MASK;
691 
692 	return cpu_buffer->commit_page->page == (void *)addr &&
693 		rb_commit_index(cpu_buffer) == index;
694 }
695 
696 static inline void
697 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
698 		    struct ring_buffer_event *event)
699 {
700 	unsigned long addr = (unsigned long)event;
701 	unsigned long index;
702 
703 	index = rb_event_index(event);
704 	addr &= PAGE_MASK;
705 
706 	while (cpu_buffer->commit_page->page != (void *)addr) {
707 		RB_WARN_ON(cpu_buffer,
708 			   cpu_buffer->commit_page == cpu_buffer->tail_page);
709 		cpu_buffer->commit_page->commit =
710 			cpu_buffer->commit_page->write;
711 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
712 		cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
713 	}
714 
715 	/* Now set the commit to the event's index */
716 	local_set(&cpu_buffer->commit_page->commit, index);
717 }
718 
719 static inline void
720 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
721 {
722 	/*
723 	 * We only race with interrupts and NMIs on this CPU.
724 	 * If we own the commit event, then we can commit
725 	 * all others that interrupted us, since the interruptions
726 	 * are in stack format (they finish before they come
727 	 * back to us). This allows us to do a simple loop to
728 	 * assign the commit to the tail.
729 	 */
730 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
731 		cpu_buffer->commit_page->commit =
732 			cpu_buffer->commit_page->write;
733 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
734 		cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
735 		/* add barrier to keep gcc from optimizing too much */
736 		barrier();
737 	}
738 	while (rb_commit_index(cpu_buffer) !=
739 	       rb_page_write(cpu_buffer->commit_page)) {
740 		cpu_buffer->commit_page->commit =
741 			cpu_buffer->commit_page->write;
742 		barrier();
743 	}
744 }
745 
746 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
747 {
748 	cpu_buffer->read_stamp = cpu_buffer->reader_page->time_stamp;
749 	cpu_buffer->reader_page->read = 0;
750 }
751 
752 static inline void rb_inc_iter(struct ring_buffer_iter *iter)
753 {
754 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
755 
756 	/*
757 	 * The iterator could be on the reader page (it starts there).
758 	 * But the head could have moved, since the reader was
759 	 * found. Check for this case and assign the iterator
760 	 * to the head page instead of next.
761 	 */
762 	if (iter->head_page == cpu_buffer->reader_page)
763 		iter->head_page = cpu_buffer->head_page;
764 	else
765 		rb_inc_page(cpu_buffer, &iter->head_page);
766 
767 	iter->read_stamp = iter->head_page->time_stamp;
768 	iter->head = 0;
769 }
770 
771 /**
772  * ring_buffer_update_event - update event type and data
773  * @event: the even to update
774  * @type: the type of event
775  * @length: the size of the event field in the ring buffer
776  *
777  * Update the type and data fields of the event. The length
778  * is the actual size that is written to the ring buffer,
779  * and with this, we can determine what to place into the
780  * data field.
781  */
782 static inline void
783 rb_update_event(struct ring_buffer_event *event,
784 			 unsigned type, unsigned length)
785 {
786 	event->type = type;
787 
788 	switch (type) {
789 
790 	case RINGBUF_TYPE_PADDING:
791 		break;
792 
793 	case RINGBUF_TYPE_TIME_EXTEND:
794 		event->len =
795 			(RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
796 			>> RB_ALIGNMENT_SHIFT;
797 		break;
798 
799 	case RINGBUF_TYPE_TIME_STAMP:
800 		event->len =
801 			(RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
802 			>> RB_ALIGNMENT_SHIFT;
803 		break;
804 
805 	case RINGBUF_TYPE_DATA:
806 		length -= RB_EVNT_HDR_SIZE;
807 		if (length > RB_MAX_SMALL_DATA) {
808 			event->len = 0;
809 			event->array[0] = length;
810 		} else
811 			event->len =
812 				(length + (RB_ALIGNMENT-1))
813 				>> RB_ALIGNMENT_SHIFT;
814 		break;
815 	default:
816 		BUG();
817 	}
818 }
819 
820 static inline unsigned rb_calculate_event_length(unsigned length)
821 {
822 	struct ring_buffer_event event; /* Used only for sizeof array */
823 
824 	/* zero length can cause confusions */
825 	if (!length)
826 		length = 1;
827 
828 	if (length > RB_MAX_SMALL_DATA)
829 		length += sizeof(event.array[0]);
830 
831 	length += RB_EVNT_HDR_SIZE;
832 	length = ALIGN(length, RB_ALIGNMENT);
833 
834 	return length;
835 }
836 
837 static struct ring_buffer_event *
838 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
839 		  unsigned type, unsigned long length, u64 *ts)
840 {
841 	struct buffer_page *tail_page, *head_page, *reader_page;
842 	unsigned long tail, write;
843 	struct ring_buffer *buffer = cpu_buffer->buffer;
844 	struct ring_buffer_event *event;
845 	unsigned long flags;
846 
847 	tail_page = cpu_buffer->tail_page;
848 	write = local_add_return(length, &tail_page->write);
849 	tail = write - length;
850 
851 	/* See if we shot pass the end of this buffer page */
852 	if (write > BUF_PAGE_SIZE) {
853 		struct buffer_page *next_page = tail_page;
854 
855 		spin_lock_irqsave(&cpu_buffer->lock, flags);
856 
857 		rb_inc_page(cpu_buffer, &next_page);
858 
859 		head_page = cpu_buffer->head_page;
860 		reader_page = cpu_buffer->reader_page;
861 
862 		/* we grabbed the lock before incrementing */
863 		RB_WARN_ON(cpu_buffer, next_page == reader_page);
864 
865 		/*
866 		 * If for some reason, we had an interrupt storm that made
867 		 * it all the way around the buffer, bail, and warn
868 		 * about it.
869 		 */
870 		if (unlikely(next_page == cpu_buffer->commit_page)) {
871 			WARN_ON_ONCE(1);
872 			goto out_unlock;
873 		}
874 
875 		if (next_page == head_page) {
876 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
877 				/* reset write */
878 				if (tail <= BUF_PAGE_SIZE)
879 					local_set(&tail_page->write, tail);
880 				goto out_unlock;
881 			}
882 
883 			/* tail_page has not moved yet? */
884 			if (tail_page == cpu_buffer->tail_page) {
885 				/* count overflows */
886 				rb_update_overflow(cpu_buffer);
887 
888 				rb_inc_page(cpu_buffer, &head_page);
889 				cpu_buffer->head_page = head_page;
890 				cpu_buffer->head_page->read = 0;
891 			}
892 		}
893 
894 		/*
895 		 * If the tail page is still the same as what we think
896 		 * it is, then it is up to us to update the tail
897 		 * pointer.
898 		 */
899 		if (tail_page == cpu_buffer->tail_page) {
900 			local_set(&next_page->write, 0);
901 			local_set(&next_page->commit, 0);
902 			cpu_buffer->tail_page = next_page;
903 
904 			/* reread the time stamp */
905 			*ts = ring_buffer_time_stamp(cpu_buffer->cpu);
906 			cpu_buffer->tail_page->time_stamp = *ts;
907 		}
908 
909 		/*
910 		 * The actual tail page has moved forward.
911 		 */
912 		if (tail < BUF_PAGE_SIZE) {
913 			/* Mark the rest of the page with padding */
914 			event = __rb_page_index(tail_page, tail);
915 			event->type = RINGBUF_TYPE_PADDING;
916 		}
917 
918 		if (tail <= BUF_PAGE_SIZE)
919 			/* Set the write back to the previous setting */
920 			local_set(&tail_page->write, tail);
921 
922 		/*
923 		 * If this was a commit entry that failed,
924 		 * increment that too
925 		 */
926 		if (tail_page == cpu_buffer->commit_page &&
927 		    tail == rb_commit_index(cpu_buffer)) {
928 			rb_set_commit_to_write(cpu_buffer);
929 		}
930 
931 		spin_unlock_irqrestore(&cpu_buffer->lock, flags);
932 
933 		/* fail and let the caller try again */
934 		return ERR_PTR(-EAGAIN);
935 	}
936 
937 	/* We reserved something on the buffer */
938 
939 	BUG_ON(write > BUF_PAGE_SIZE);
940 
941 	event = __rb_page_index(tail_page, tail);
942 	rb_update_event(event, type, length);
943 
944 	/*
945 	 * If this is a commit and the tail is zero, then update
946 	 * this page's time stamp.
947 	 */
948 	if (!tail && rb_is_commit(cpu_buffer, event))
949 		cpu_buffer->commit_page->time_stamp = *ts;
950 
951 	return event;
952 
953  out_unlock:
954 	spin_unlock_irqrestore(&cpu_buffer->lock, flags);
955 	return NULL;
956 }
957 
958 static int
959 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
960 		  u64 *ts, u64 *delta)
961 {
962 	struct ring_buffer_event *event;
963 	static int once;
964 	int ret;
965 
966 	if (unlikely(*delta > (1ULL << 59) && !once++)) {
967 		printk(KERN_WARNING "Delta way too big! %llu"
968 		       " ts=%llu write stamp = %llu\n",
969 		       *delta, *ts, cpu_buffer->write_stamp);
970 		WARN_ON(1);
971 	}
972 
973 	/*
974 	 * The delta is too big, we to add a
975 	 * new timestamp.
976 	 */
977 	event = __rb_reserve_next(cpu_buffer,
978 				  RINGBUF_TYPE_TIME_EXTEND,
979 				  RB_LEN_TIME_EXTEND,
980 				  ts);
981 	if (!event)
982 		return -EBUSY;
983 
984 	if (PTR_ERR(event) == -EAGAIN)
985 		return -EAGAIN;
986 
987 	/* Only a commited time event can update the write stamp */
988 	if (rb_is_commit(cpu_buffer, event)) {
989 		/*
990 		 * If this is the first on the page, then we need to
991 		 * update the page itself, and just put in a zero.
992 		 */
993 		if (rb_event_index(event)) {
994 			event->time_delta = *delta & TS_MASK;
995 			event->array[0] = *delta >> TS_SHIFT;
996 		} else {
997 			cpu_buffer->commit_page->time_stamp = *ts;
998 			event->time_delta = 0;
999 			event->array[0] = 0;
1000 		}
1001 		cpu_buffer->write_stamp = *ts;
1002 		/* let the caller know this was the commit */
1003 		ret = 1;
1004 	} else {
1005 		/* Darn, this is just wasted space */
1006 		event->time_delta = 0;
1007 		event->array[0] = 0;
1008 		ret = 0;
1009 	}
1010 
1011 	*delta = 0;
1012 
1013 	return ret;
1014 }
1015 
1016 static struct ring_buffer_event *
1017 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1018 		      unsigned type, unsigned long length)
1019 {
1020 	struct ring_buffer_event *event;
1021 	u64 ts, delta;
1022 	int commit = 0;
1023 
1024  again:
1025 	ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1026 
1027 	/*
1028 	 * Only the first commit can update the timestamp.
1029 	 * Yes there is a race here. If an interrupt comes in
1030 	 * just after the conditional and it traces too, then it
1031 	 * will also check the deltas. More than one timestamp may
1032 	 * also be made. But only the entry that did the actual
1033 	 * commit will be something other than zero.
1034 	 */
1035 	if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1036 	    rb_page_write(cpu_buffer->tail_page) ==
1037 	    rb_commit_index(cpu_buffer)) {
1038 
1039 		delta = ts - cpu_buffer->write_stamp;
1040 
1041 		/* make sure this delta is calculated here */
1042 		barrier();
1043 
1044 		/* Did the write stamp get updated already? */
1045 		if (unlikely(ts < cpu_buffer->write_stamp))
1046 			goto again;
1047 
1048 		if (test_time_stamp(delta)) {
1049 
1050 			commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1051 
1052 			if (commit == -EBUSY)
1053 				return NULL;
1054 
1055 			if (commit == -EAGAIN)
1056 				goto again;
1057 
1058 			RB_WARN_ON(cpu_buffer, commit < 0);
1059 		}
1060 	} else
1061 		/* Non commits have zero deltas */
1062 		delta = 0;
1063 
1064 	event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1065 	if (PTR_ERR(event) == -EAGAIN)
1066 		goto again;
1067 
1068 	if (!event) {
1069 		if (unlikely(commit))
1070 			/*
1071 			 * Ouch! We needed a timestamp and it was commited. But
1072 			 * we didn't get our event reserved.
1073 			 */
1074 			rb_set_commit_to_write(cpu_buffer);
1075 		return NULL;
1076 	}
1077 
1078 	/*
1079 	 * If the timestamp was commited, make the commit our entry
1080 	 * now so that we will update it when needed.
1081 	 */
1082 	if (commit)
1083 		rb_set_commit_event(cpu_buffer, event);
1084 	else if (!rb_is_commit(cpu_buffer, event))
1085 		delta = 0;
1086 
1087 	event->time_delta = delta;
1088 
1089 	return event;
1090 }
1091 
1092 static DEFINE_PER_CPU(int, rb_need_resched);
1093 
1094 /**
1095  * ring_buffer_lock_reserve - reserve a part of the buffer
1096  * @buffer: the ring buffer to reserve from
1097  * @length: the length of the data to reserve (excluding event header)
1098  * @flags: a pointer to save the interrupt flags
1099  *
1100  * Returns a reseverd event on the ring buffer to copy directly to.
1101  * The user of this interface will need to get the body to write into
1102  * and can use the ring_buffer_event_data() interface.
1103  *
1104  * The length is the length of the data needed, not the event length
1105  * which also includes the event header.
1106  *
1107  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1108  * If NULL is returned, then nothing has been allocated or locked.
1109  */
1110 struct ring_buffer_event *
1111 ring_buffer_lock_reserve(struct ring_buffer *buffer,
1112 			 unsigned long length,
1113 			 unsigned long *flags)
1114 {
1115 	struct ring_buffer_per_cpu *cpu_buffer;
1116 	struct ring_buffer_event *event;
1117 	int cpu, resched;
1118 
1119 	if (atomic_read(&buffer->record_disabled))
1120 		return NULL;
1121 
1122 	/* If we are tracing schedule, we don't want to recurse */
1123 	resched = need_resched();
1124 	preempt_disable_notrace();
1125 
1126 	cpu = raw_smp_processor_id();
1127 
1128 	if (!cpu_isset(cpu, buffer->cpumask))
1129 		goto out;
1130 
1131 	cpu_buffer = buffer->buffers[cpu];
1132 
1133 	if (atomic_read(&cpu_buffer->record_disabled))
1134 		goto out;
1135 
1136 	length = rb_calculate_event_length(length);
1137 	if (length > BUF_PAGE_SIZE)
1138 		goto out;
1139 
1140 	event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1141 	if (!event)
1142 		goto out;
1143 
1144 	/*
1145 	 * Need to store resched state on this cpu.
1146 	 * Only the first needs to.
1147 	 */
1148 
1149 	if (preempt_count() == 1)
1150 		per_cpu(rb_need_resched, cpu) = resched;
1151 
1152 	return event;
1153 
1154  out:
1155 	if (resched)
1156 		preempt_enable_notrace();
1157 	else
1158 		preempt_enable_notrace();
1159 	return NULL;
1160 }
1161 
1162 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1163 		      struct ring_buffer_event *event)
1164 {
1165 	cpu_buffer->entries++;
1166 
1167 	/* Only process further if we own the commit */
1168 	if (!rb_is_commit(cpu_buffer, event))
1169 		return;
1170 
1171 	cpu_buffer->write_stamp += event->time_delta;
1172 
1173 	rb_set_commit_to_write(cpu_buffer);
1174 }
1175 
1176 /**
1177  * ring_buffer_unlock_commit - commit a reserved
1178  * @buffer: The buffer to commit to
1179  * @event: The event pointer to commit.
1180  * @flags: the interrupt flags received from ring_buffer_lock_reserve.
1181  *
1182  * This commits the data to the ring buffer, and releases any locks held.
1183  *
1184  * Must be paired with ring_buffer_lock_reserve.
1185  */
1186 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1187 			      struct ring_buffer_event *event,
1188 			      unsigned long flags)
1189 {
1190 	struct ring_buffer_per_cpu *cpu_buffer;
1191 	int cpu = raw_smp_processor_id();
1192 
1193 	cpu_buffer = buffer->buffers[cpu];
1194 
1195 	rb_commit(cpu_buffer, event);
1196 
1197 	/*
1198 	 * Only the last preempt count needs to restore preemption.
1199 	 */
1200 	if (preempt_count() == 1) {
1201 		if (per_cpu(rb_need_resched, cpu))
1202 			preempt_enable_no_resched_notrace();
1203 		else
1204 			preempt_enable_notrace();
1205 	} else
1206 		preempt_enable_no_resched_notrace();
1207 
1208 	return 0;
1209 }
1210 
1211 /**
1212  * ring_buffer_write - write data to the buffer without reserving
1213  * @buffer: The ring buffer to write to.
1214  * @length: The length of the data being written (excluding the event header)
1215  * @data: The data to write to the buffer.
1216  *
1217  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1218  * one function. If you already have the data to write to the buffer, it
1219  * may be easier to simply call this function.
1220  *
1221  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1222  * and not the length of the event which would hold the header.
1223  */
1224 int ring_buffer_write(struct ring_buffer *buffer,
1225 			unsigned long length,
1226 			void *data)
1227 {
1228 	struct ring_buffer_per_cpu *cpu_buffer;
1229 	struct ring_buffer_event *event;
1230 	unsigned long event_length;
1231 	void *body;
1232 	int ret = -EBUSY;
1233 	int cpu, resched;
1234 
1235 	if (atomic_read(&buffer->record_disabled))
1236 		return -EBUSY;
1237 
1238 	resched = need_resched();
1239 	preempt_disable_notrace();
1240 
1241 	cpu = raw_smp_processor_id();
1242 
1243 	if (!cpu_isset(cpu, buffer->cpumask))
1244 		goto out;
1245 
1246 	cpu_buffer = buffer->buffers[cpu];
1247 
1248 	if (atomic_read(&cpu_buffer->record_disabled))
1249 		goto out;
1250 
1251 	event_length = rb_calculate_event_length(length);
1252 	event = rb_reserve_next_event(cpu_buffer,
1253 				      RINGBUF_TYPE_DATA, event_length);
1254 	if (!event)
1255 		goto out;
1256 
1257 	body = rb_event_data(event);
1258 
1259 	memcpy(body, data, length);
1260 
1261 	rb_commit(cpu_buffer, event);
1262 
1263 	ret = 0;
1264  out:
1265 	if (resched)
1266 		preempt_enable_no_resched_notrace();
1267 	else
1268 		preempt_enable_notrace();
1269 
1270 	return ret;
1271 }
1272 
1273 static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1274 {
1275 	struct buffer_page *reader = cpu_buffer->reader_page;
1276 	struct buffer_page *head = cpu_buffer->head_page;
1277 	struct buffer_page *commit = cpu_buffer->commit_page;
1278 
1279 	return reader->read == rb_page_commit(reader) &&
1280 		(commit == reader ||
1281 		 (commit == head &&
1282 		  head->read == rb_page_commit(commit)));
1283 }
1284 
1285 /**
1286  * ring_buffer_record_disable - stop all writes into the buffer
1287  * @buffer: The ring buffer to stop writes to.
1288  *
1289  * This prevents all writes to the buffer. Any attempt to write
1290  * to the buffer after this will fail and return NULL.
1291  *
1292  * The caller should call synchronize_sched() after this.
1293  */
1294 void ring_buffer_record_disable(struct ring_buffer *buffer)
1295 {
1296 	atomic_inc(&buffer->record_disabled);
1297 }
1298 
1299 /**
1300  * ring_buffer_record_enable - enable writes to the buffer
1301  * @buffer: The ring buffer to enable writes
1302  *
1303  * Note, multiple disables will need the same number of enables
1304  * to truely enable the writing (much like preempt_disable).
1305  */
1306 void ring_buffer_record_enable(struct ring_buffer *buffer)
1307 {
1308 	atomic_dec(&buffer->record_disabled);
1309 }
1310 
1311 /**
1312  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1313  * @buffer: The ring buffer to stop writes to.
1314  * @cpu: The CPU buffer to stop
1315  *
1316  * This prevents all writes to the buffer. Any attempt to write
1317  * to the buffer after this will fail and return NULL.
1318  *
1319  * The caller should call synchronize_sched() after this.
1320  */
1321 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1322 {
1323 	struct ring_buffer_per_cpu *cpu_buffer;
1324 
1325 	if (!cpu_isset(cpu, buffer->cpumask))
1326 		return;
1327 
1328 	cpu_buffer = buffer->buffers[cpu];
1329 	atomic_inc(&cpu_buffer->record_disabled);
1330 }
1331 
1332 /**
1333  * ring_buffer_record_enable_cpu - enable writes to the buffer
1334  * @buffer: The ring buffer to enable writes
1335  * @cpu: The CPU to enable.
1336  *
1337  * Note, multiple disables will need the same number of enables
1338  * to truely enable the writing (much like preempt_disable).
1339  */
1340 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1341 {
1342 	struct ring_buffer_per_cpu *cpu_buffer;
1343 
1344 	if (!cpu_isset(cpu, buffer->cpumask))
1345 		return;
1346 
1347 	cpu_buffer = buffer->buffers[cpu];
1348 	atomic_dec(&cpu_buffer->record_disabled);
1349 }
1350 
1351 /**
1352  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1353  * @buffer: The ring buffer
1354  * @cpu: The per CPU buffer to get the entries from.
1355  */
1356 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1357 {
1358 	struct ring_buffer_per_cpu *cpu_buffer;
1359 
1360 	if (!cpu_isset(cpu, buffer->cpumask))
1361 		return 0;
1362 
1363 	cpu_buffer = buffer->buffers[cpu];
1364 	return cpu_buffer->entries;
1365 }
1366 
1367 /**
1368  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1369  * @buffer: The ring buffer
1370  * @cpu: The per CPU buffer to get the number of overruns from
1371  */
1372 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1373 {
1374 	struct ring_buffer_per_cpu *cpu_buffer;
1375 
1376 	if (!cpu_isset(cpu, buffer->cpumask))
1377 		return 0;
1378 
1379 	cpu_buffer = buffer->buffers[cpu];
1380 	return cpu_buffer->overrun;
1381 }
1382 
1383 /**
1384  * ring_buffer_entries - get the number of entries in a buffer
1385  * @buffer: The ring buffer
1386  *
1387  * Returns the total number of entries in the ring buffer
1388  * (all CPU entries)
1389  */
1390 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1391 {
1392 	struct ring_buffer_per_cpu *cpu_buffer;
1393 	unsigned long entries = 0;
1394 	int cpu;
1395 
1396 	/* if you care about this being correct, lock the buffer */
1397 	for_each_buffer_cpu(buffer, cpu) {
1398 		cpu_buffer = buffer->buffers[cpu];
1399 		entries += cpu_buffer->entries;
1400 	}
1401 
1402 	return entries;
1403 }
1404 
1405 /**
1406  * ring_buffer_overrun_cpu - get the number of overruns in buffer
1407  * @buffer: The ring buffer
1408  *
1409  * Returns the total number of overruns in the ring buffer
1410  * (all CPU entries)
1411  */
1412 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1413 {
1414 	struct ring_buffer_per_cpu *cpu_buffer;
1415 	unsigned long overruns = 0;
1416 	int cpu;
1417 
1418 	/* if you care about this being correct, lock the buffer */
1419 	for_each_buffer_cpu(buffer, cpu) {
1420 		cpu_buffer = buffer->buffers[cpu];
1421 		overruns += cpu_buffer->overrun;
1422 	}
1423 
1424 	return overruns;
1425 }
1426 
1427 /**
1428  * ring_buffer_iter_reset - reset an iterator
1429  * @iter: The iterator to reset
1430  *
1431  * Resets the iterator, so that it will start from the beginning
1432  * again.
1433  */
1434 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1435 {
1436 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1437 
1438 	/* Iterator usage is expected to have record disabled */
1439 	if (list_empty(&cpu_buffer->reader_page->list)) {
1440 		iter->head_page = cpu_buffer->head_page;
1441 		iter->head = cpu_buffer->head_page->read;
1442 	} else {
1443 		iter->head_page = cpu_buffer->reader_page;
1444 		iter->head = cpu_buffer->reader_page->read;
1445 	}
1446 	if (iter->head)
1447 		iter->read_stamp = cpu_buffer->read_stamp;
1448 	else
1449 		iter->read_stamp = iter->head_page->time_stamp;
1450 }
1451 
1452 /**
1453  * ring_buffer_iter_empty - check if an iterator has no more to read
1454  * @iter: The iterator to check
1455  */
1456 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1457 {
1458 	struct ring_buffer_per_cpu *cpu_buffer;
1459 
1460 	cpu_buffer = iter->cpu_buffer;
1461 
1462 	return iter->head_page == cpu_buffer->commit_page &&
1463 		iter->head == rb_commit_index(cpu_buffer);
1464 }
1465 
1466 static void
1467 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1468 		     struct ring_buffer_event *event)
1469 {
1470 	u64 delta;
1471 
1472 	switch (event->type) {
1473 	case RINGBUF_TYPE_PADDING:
1474 		return;
1475 
1476 	case RINGBUF_TYPE_TIME_EXTEND:
1477 		delta = event->array[0];
1478 		delta <<= TS_SHIFT;
1479 		delta += event->time_delta;
1480 		cpu_buffer->read_stamp += delta;
1481 		return;
1482 
1483 	case RINGBUF_TYPE_TIME_STAMP:
1484 		/* FIXME: not implemented */
1485 		return;
1486 
1487 	case RINGBUF_TYPE_DATA:
1488 		cpu_buffer->read_stamp += event->time_delta;
1489 		return;
1490 
1491 	default:
1492 		BUG();
1493 	}
1494 	return;
1495 }
1496 
1497 static void
1498 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1499 			  struct ring_buffer_event *event)
1500 {
1501 	u64 delta;
1502 
1503 	switch (event->type) {
1504 	case RINGBUF_TYPE_PADDING:
1505 		return;
1506 
1507 	case RINGBUF_TYPE_TIME_EXTEND:
1508 		delta = event->array[0];
1509 		delta <<= TS_SHIFT;
1510 		delta += event->time_delta;
1511 		iter->read_stamp += delta;
1512 		return;
1513 
1514 	case RINGBUF_TYPE_TIME_STAMP:
1515 		/* FIXME: not implemented */
1516 		return;
1517 
1518 	case RINGBUF_TYPE_DATA:
1519 		iter->read_stamp += event->time_delta;
1520 		return;
1521 
1522 	default:
1523 		BUG();
1524 	}
1525 	return;
1526 }
1527 
1528 static struct buffer_page *
1529 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1530 {
1531 	struct buffer_page *reader = NULL;
1532 	unsigned long flags;
1533 
1534 	spin_lock_irqsave(&cpu_buffer->lock, flags);
1535 
1536  again:
1537 	reader = cpu_buffer->reader_page;
1538 
1539 	/* If there's more to read, return this page */
1540 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
1541 		goto out;
1542 
1543 	/* Never should we have an index greater than the size */
1544 	RB_WARN_ON(cpu_buffer,
1545 		   cpu_buffer->reader_page->read > rb_page_size(reader));
1546 
1547 	/* check if we caught up to the tail */
1548 	reader = NULL;
1549 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
1550 		goto out;
1551 
1552 	/*
1553 	 * Splice the empty reader page into the list around the head.
1554 	 * Reset the reader page to size zero.
1555 	 */
1556 
1557 	reader = cpu_buffer->head_page;
1558 	cpu_buffer->reader_page->list.next = reader->list.next;
1559 	cpu_buffer->reader_page->list.prev = reader->list.prev;
1560 
1561 	local_set(&cpu_buffer->reader_page->write, 0);
1562 	local_set(&cpu_buffer->reader_page->commit, 0);
1563 
1564 	/* Make the reader page now replace the head */
1565 	reader->list.prev->next = &cpu_buffer->reader_page->list;
1566 	reader->list.next->prev = &cpu_buffer->reader_page->list;
1567 
1568 	/*
1569 	 * If the tail is on the reader, then we must set the head
1570 	 * to the inserted page, otherwise we set it one before.
1571 	 */
1572 	cpu_buffer->head_page = cpu_buffer->reader_page;
1573 
1574 	if (cpu_buffer->commit_page != reader)
1575 		rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1576 
1577 	/* Finally update the reader page to the new head */
1578 	cpu_buffer->reader_page = reader;
1579 	rb_reset_reader_page(cpu_buffer);
1580 
1581 	goto again;
1582 
1583  out:
1584 	spin_unlock_irqrestore(&cpu_buffer->lock, flags);
1585 
1586 	return reader;
1587 }
1588 
1589 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1590 {
1591 	struct ring_buffer_event *event;
1592 	struct buffer_page *reader;
1593 	unsigned length;
1594 
1595 	reader = rb_get_reader_page(cpu_buffer);
1596 
1597 	/* This function should not be called when buffer is empty */
1598 	BUG_ON(!reader);
1599 
1600 	event = rb_reader_event(cpu_buffer);
1601 
1602 	if (event->type == RINGBUF_TYPE_DATA)
1603 		cpu_buffer->entries--;
1604 
1605 	rb_update_read_stamp(cpu_buffer, event);
1606 
1607 	length = rb_event_length(event);
1608 	cpu_buffer->reader_page->read += length;
1609 }
1610 
1611 static void rb_advance_iter(struct ring_buffer_iter *iter)
1612 {
1613 	struct ring_buffer *buffer;
1614 	struct ring_buffer_per_cpu *cpu_buffer;
1615 	struct ring_buffer_event *event;
1616 	unsigned length;
1617 
1618 	cpu_buffer = iter->cpu_buffer;
1619 	buffer = cpu_buffer->buffer;
1620 
1621 	/*
1622 	 * Check if we are at the end of the buffer.
1623 	 */
1624 	if (iter->head >= rb_page_size(iter->head_page)) {
1625 		BUG_ON(iter->head_page == cpu_buffer->commit_page);
1626 		rb_inc_iter(iter);
1627 		return;
1628 	}
1629 
1630 	event = rb_iter_head_event(iter);
1631 
1632 	length = rb_event_length(event);
1633 
1634 	/*
1635 	 * This should not be called to advance the header if we are
1636 	 * at the tail of the buffer.
1637 	 */
1638 	BUG_ON((iter->head_page == cpu_buffer->commit_page) &&
1639 	       (iter->head + length > rb_commit_index(cpu_buffer)));
1640 
1641 	rb_update_iter_read_stamp(iter, event);
1642 
1643 	iter->head += length;
1644 
1645 	/* check for end of page padding */
1646 	if ((iter->head >= rb_page_size(iter->head_page)) &&
1647 	    (iter->head_page != cpu_buffer->commit_page))
1648 		rb_advance_iter(iter);
1649 }
1650 
1651 /**
1652  * ring_buffer_peek - peek at the next event to be read
1653  * @buffer: The ring buffer to read
1654  * @cpu: The cpu to peak at
1655  * @ts: The timestamp counter of this event.
1656  *
1657  * This will return the event that will be read next, but does
1658  * not consume the data.
1659  */
1660 struct ring_buffer_event *
1661 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1662 {
1663 	struct ring_buffer_per_cpu *cpu_buffer;
1664 	struct ring_buffer_event *event;
1665 	struct buffer_page *reader;
1666 
1667 	if (!cpu_isset(cpu, buffer->cpumask))
1668 		return NULL;
1669 
1670 	cpu_buffer = buffer->buffers[cpu];
1671 
1672  again:
1673 	reader = rb_get_reader_page(cpu_buffer);
1674 	if (!reader)
1675 		return NULL;
1676 
1677 	event = rb_reader_event(cpu_buffer);
1678 
1679 	switch (event->type) {
1680 	case RINGBUF_TYPE_PADDING:
1681 		RB_WARN_ON(cpu_buffer, 1);
1682 		rb_advance_reader(cpu_buffer);
1683 		return NULL;
1684 
1685 	case RINGBUF_TYPE_TIME_EXTEND:
1686 		/* Internal data, OK to advance */
1687 		rb_advance_reader(cpu_buffer);
1688 		goto again;
1689 
1690 	case RINGBUF_TYPE_TIME_STAMP:
1691 		/* FIXME: not implemented */
1692 		rb_advance_reader(cpu_buffer);
1693 		goto again;
1694 
1695 	case RINGBUF_TYPE_DATA:
1696 		if (ts) {
1697 			*ts = cpu_buffer->read_stamp + event->time_delta;
1698 			ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1699 		}
1700 		return event;
1701 
1702 	default:
1703 		BUG();
1704 	}
1705 
1706 	return NULL;
1707 }
1708 
1709 /**
1710  * ring_buffer_iter_peek - peek at the next event to be read
1711  * @iter: The ring buffer iterator
1712  * @ts: The timestamp counter of this event.
1713  *
1714  * This will return the event that will be read next, but does
1715  * not increment the iterator.
1716  */
1717 struct ring_buffer_event *
1718 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1719 {
1720 	struct ring_buffer *buffer;
1721 	struct ring_buffer_per_cpu *cpu_buffer;
1722 	struct ring_buffer_event *event;
1723 
1724 	if (ring_buffer_iter_empty(iter))
1725 		return NULL;
1726 
1727 	cpu_buffer = iter->cpu_buffer;
1728 	buffer = cpu_buffer->buffer;
1729 
1730  again:
1731 	if (rb_per_cpu_empty(cpu_buffer))
1732 		return NULL;
1733 
1734 	event = rb_iter_head_event(iter);
1735 
1736 	switch (event->type) {
1737 	case RINGBUF_TYPE_PADDING:
1738 		rb_inc_iter(iter);
1739 		goto again;
1740 
1741 	case RINGBUF_TYPE_TIME_EXTEND:
1742 		/* Internal data, OK to advance */
1743 		rb_advance_iter(iter);
1744 		goto again;
1745 
1746 	case RINGBUF_TYPE_TIME_STAMP:
1747 		/* FIXME: not implemented */
1748 		rb_advance_iter(iter);
1749 		goto again;
1750 
1751 	case RINGBUF_TYPE_DATA:
1752 		if (ts) {
1753 			*ts = iter->read_stamp + event->time_delta;
1754 			ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1755 		}
1756 		return event;
1757 
1758 	default:
1759 		BUG();
1760 	}
1761 
1762 	return NULL;
1763 }
1764 
1765 /**
1766  * ring_buffer_consume - return an event and consume it
1767  * @buffer: The ring buffer to get the next event from
1768  *
1769  * Returns the next event in the ring buffer, and that event is consumed.
1770  * Meaning, that sequential reads will keep returning a different event,
1771  * and eventually empty the ring buffer if the producer is slower.
1772  */
1773 struct ring_buffer_event *
1774 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
1775 {
1776 	struct ring_buffer_per_cpu *cpu_buffer;
1777 	struct ring_buffer_event *event;
1778 
1779 	if (!cpu_isset(cpu, buffer->cpumask))
1780 		return NULL;
1781 
1782 	event = ring_buffer_peek(buffer, cpu, ts);
1783 	if (!event)
1784 		return NULL;
1785 
1786 	cpu_buffer = buffer->buffers[cpu];
1787 	rb_advance_reader(cpu_buffer);
1788 
1789 	return event;
1790 }
1791 
1792 /**
1793  * ring_buffer_read_start - start a non consuming read of the buffer
1794  * @buffer: The ring buffer to read from
1795  * @cpu: The cpu buffer to iterate over
1796  *
1797  * This starts up an iteration through the buffer. It also disables
1798  * the recording to the buffer until the reading is finished.
1799  * This prevents the reading from being corrupted. This is not
1800  * a consuming read, so a producer is not expected.
1801  *
1802  * Must be paired with ring_buffer_finish.
1803  */
1804 struct ring_buffer_iter *
1805 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
1806 {
1807 	struct ring_buffer_per_cpu *cpu_buffer;
1808 	struct ring_buffer_iter *iter;
1809 	unsigned long flags;
1810 
1811 	if (!cpu_isset(cpu, buffer->cpumask))
1812 		return NULL;
1813 
1814 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
1815 	if (!iter)
1816 		return NULL;
1817 
1818 	cpu_buffer = buffer->buffers[cpu];
1819 
1820 	iter->cpu_buffer = cpu_buffer;
1821 
1822 	atomic_inc(&cpu_buffer->record_disabled);
1823 	synchronize_sched();
1824 
1825 	spin_lock_irqsave(&cpu_buffer->lock, flags);
1826 	ring_buffer_iter_reset(iter);
1827 	spin_unlock_irqrestore(&cpu_buffer->lock, flags);
1828 
1829 	return iter;
1830 }
1831 
1832 /**
1833  * ring_buffer_finish - finish reading the iterator of the buffer
1834  * @iter: The iterator retrieved by ring_buffer_start
1835  *
1836  * This re-enables the recording to the buffer, and frees the
1837  * iterator.
1838  */
1839 void
1840 ring_buffer_read_finish(struct ring_buffer_iter *iter)
1841 {
1842 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1843 
1844 	atomic_dec(&cpu_buffer->record_disabled);
1845 	kfree(iter);
1846 }
1847 
1848 /**
1849  * ring_buffer_read - read the next item in the ring buffer by the iterator
1850  * @iter: The ring buffer iterator
1851  * @ts: The time stamp of the event read.
1852  *
1853  * This reads the next event in the ring buffer and increments the iterator.
1854  */
1855 struct ring_buffer_event *
1856 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
1857 {
1858 	struct ring_buffer_event *event;
1859 
1860 	event = ring_buffer_iter_peek(iter, ts);
1861 	if (!event)
1862 		return NULL;
1863 
1864 	rb_advance_iter(iter);
1865 
1866 	return event;
1867 }
1868 
1869 /**
1870  * ring_buffer_size - return the size of the ring buffer (in bytes)
1871  * @buffer: The ring buffer.
1872  */
1873 unsigned long ring_buffer_size(struct ring_buffer *buffer)
1874 {
1875 	return BUF_PAGE_SIZE * buffer->pages;
1876 }
1877 
1878 static void
1879 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
1880 {
1881 	cpu_buffer->head_page
1882 		= list_entry(cpu_buffer->pages.next, struct buffer_page, list);
1883 	local_set(&cpu_buffer->head_page->write, 0);
1884 	local_set(&cpu_buffer->head_page->commit, 0);
1885 
1886 	cpu_buffer->head_page->read = 0;
1887 
1888 	cpu_buffer->tail_page = cpu_buffer->head_page;
1889 	cpu_buffer->commit_page = cpu_buffer->head_page;
1890 
1891 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1892 	local_set(&cpu_buffer->reader_page->write, 0);
1893 	local_set(&cpu_buffer->reader_page->commit, 0);
1894 	cpu_buffer->reader_page->read = 0;
1895 
1896 	cpu_buffer->overrun = 0;
1897 	cpu_buffer->entries = 0;
1898 }
1899 
1900 /**
1901  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
1902  * @buffer: The ring buffer to reset a per cpu buffer of
1903  * @cpu: The CPU buffer to be reset
1904  */
1905 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
1906 {
1907 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
1908 	unsigned long flags;
1909 
1910 	if (!cpu_isset(cpu, buffer->cpumask))
1911 		return;
1912 
1913 	spin_lock_irqsave(&cpu_buffer->lock, flags);
1914 
1915 	rb_reset_cpu(cpu_buffer);
1916 
1917 	spin_unlock_irqrestore(&cpu_buffer->lock, flags);
1918 }
1919 
1920 /**
1921  * ring_buffer_reset - reset a ring buffer
1922  * @buffer: The ring buffer to reset all cpu buffers
1923  */
1924 void ring_buffer_reset(struct ring_buffer *buffer)
1925 {
1926 	int cpu;
1927 
1928 	for_each_buffer_cpu(buffer, cpu)
1929 		ring_buffer_reset_cpu(buffer, cpu);
1930 }
1931 
1932 /**
1933  * rind_buffer_empty - is the ring buffer empty?
1934  * @buffer: The ring buffer to test
1935  */
1936 int ring_buffer_empty(struct ring_buffer *buffer)
1937 {
1938 	struct ring_buffer_per_cpu *cpu_buffer;
1939 	int cpu;
1940 
1941 	/* yes this is racy, but if you don't like the race, lock the buffer */
1942 	for_each_buffer_cpu(buffer, cpu) {
1943 		cpu_buffer = buffer->buffers[cpu];
1944 		if (!rb_per_cpu_empty(cpu_buffer))
1945 			return 0;
1946 	}
1947 	return 1;
1948 }
1949 
1950 /**
1951  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
1952  * @buffer: The ring buffer
1953  * @cpu: The CPU buffer to test
1954  */
1955 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
1956 {
1957 	struct ring_buffer_per_cpu *cpu_buffer;
1958 
1959 	if (!cpu_isset(cpu, buffer->cpumask))
1960 		return 1;
1961 
1962 	cpu_buffer = buffer->buffers[cpu];
1963 	return rb_per_cpu_empty(cpu_buffer);
1964 }
1965 
1966 /**
1967  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
1968  * @buffer_a: One buffer to swap with
1969  * @buffer_b: The other buffer to swap with
1970  *
1971  * This function is useful for tracers that want to take a "snapshot"
1972  * of a CPU buffer and has another back up buffer lying around.
1973  * it is expected that the tracer handles the cpu buffer not being
1974  * used at the moment.
1975  */
1976 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
1977 			 struct ring_buffer *buffer_b, int cpu)
1978 {
1979 	struct ring_buffer_per_cpu *cpu_buffer_a;
1980 	struct ring_buffer_per_cpu *cpu_buffer_b;
1981 
1982 	if (!cpu_isset(cpu, buffer_a->cpumask) ||
1983 	    !cpu_isset(cpu, buffer_b->cpumask))
1984 		return -EINVAL;
1985 
1986 	/* At least make sure the two buffers are somewhat the same */
1987 	if (buffer_a->size != buffer_b->size ||
1988 	    buffer_a->pages != buffer_b->pages)
1989 		return -EINVAL;
1990 
1991 	cpu_buffer_a = buffer_a->buffers[cpu];
1992 	cpu_buffer_b = buffer_b->buffers[cpu];
1993 
1994 	/*
1995 	 * We can't do a synchronize_sched here because this
1996 	 * function can be called in atomic context.
1997 	 * Normally this will be called from the same CPU as cpu.
1998 	 * If not it's up to the caller to protect this.
1999 	 */
2000 	atomic_inc(&cpu_buffer_a->record_disabled);
2001 	atomic_inc(&cpu_buffer_b->record_disabled);
2002 
2003 	buffer_a->buffers[cpu] = cpu_buffer_b;
2004 	buffer_b->buffers[cpu] = cpu_buffer_a;
2005 
2006 	cpu_buffer_b->buffer = buffer_a;
2007 	cpu_buffer_a->buffer = buffer_b;
2008 
2009 	atomic_dec(&cpu_buffer_a->record_disabled);
2010 	atomic_dec(&cpu_buffer_b->record_disabled);
2011 
2012 	return 0;
2013 }
2014 
2015