xref: /linux/kernel/trace/ring_buffer.c (revision 367b8112fe2ea5c39a7bb4d263dcdd9b612fae18)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/spinlock.h>
8 #include <linux/debugfs.h>
9 #include <linux/uaccess.h>
10 #include <linux/module.h>
11 #include <linux/percpu.h>
12 #include <linux/mutex.h>
13 #include <linux/sched.h>	/* used for sched_clock() (for now) */
14 #include <linux/init.h>
15 #include <linux/hash.h>
16 #include <linux/list.h>
17 #include <linux/fs.h>
18 
19 /* Up this if you want to test the TIME_EXTENTS and normalization */
20 #define DEBUG_SHIFT 0
21 
22 /* FIXME!!! */
23 u64 ring_buffer_time_stamp(int cpu)
24 {
25 	/* shift to debug/test normalization and TIME_EXTENTS */
26 	return sched_clock() << DEBUG_SHIFT;
27 }
28 
29 void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
30 {
31 	/* Just stupid testing the normalize function and deltas */
32 	*ts >>= DEBUG_SHIFT;
33 }
34 
35 #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
36 #define RB_ALIGNMENT_SHIFT	2
37 #define RB_ALIGNMENT		(1 << RB_ALIGNMENT_SHIFT)
38 #define RB_MAX_SMALL_DATA	28
39 
40 enum {
41 	RB_LEN_TIME_EXTEND = 8,
42 	RB_LEN_TIME_STAMP = 16,
43 };
44 
45 /* inline for ring buffer fast paths */
46 static inline unsigned
47 rb_event_length(struct ring_buffer_event *event)
48 {
49 	unsigned length;
50 
51 	switch (event->type) {
52 	case RINGBUF_TYPE_PADDING:
53 		/* undefined */
54 		return -1;
55 
56 	case RINGBUF_TYPE_TIME_EXTEND:
57 		return RB_LEN_TIME_EXTEND;
58 
59 	case RINGBUF_TYPE_TIME_STAMP:
60 		return RB_LEN_TIME_STAMP;
61 
62 	case RINGBUF_TYPE_DATA:
63 		if (event->len)
64 			length = event->len << RB_ALIGNMENT_SHIFT;
65 		else
66 			length = event->array[0];
67 		return length + RB_EVNT_HDR_SIZE;
68 	default:
69 		BUG();
70 	}
71 	/* not hit */
72 	return 0;
73 }
74 
75 /**
76  * ring_buffer_event_length - return the length of the event
77  * @event: the event to get the length of
78  */
79 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
80 {
81 	return rb_event_length(event);
82 }
83 
84 /* inline for ring buffer fast paths */
85 static inline void *
86 rb_event_data(struct ring_buffer_event *event)
87 {
88 	BUG_ON(event->type != RINGBUF_TYPE_DATA);
89 	/* If length is in len field, then array[0] has the data */
90 	if (event->len)
91 		return (void *)&event->array[0];
92 	/* Otherwise length is in array[0] and array[1] has the data */
93 	return (void *)&event->array[1];
94 }
95 
96 /**
97  * ring_buffer_event_data - return the data of the event
98  * @event: the event to get the data from
99  */
100 void *ring_buffer_event_data(struct ring_buffer_event *event)
101 {
102 	return rb_event_data(event);
103 }
104 
105 #define for_each_buffer_cpu(buffer, cpu)		\
106 	for_each_cpu_mask(cpu, buffer->cpumask)
107 
108 #define TS_SHIFT	27
109 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
110 #define TS_DELTA_TEST	(~TS_MASK)
111 
112 /*
113  * This hack stolen from mm/slob.c.
114  * We can store per page timing information in the page frame of the page.
115  * Thanks to Peter Zijlstra for suggesting this idea.
116  */
117 struct buffer_page {
118 	u64		 time_stamp;	/* page time stamp */
119 	local_t		 write;		/* index for next write */
120 	local_t		 commit;	/* write commited index */
121 	unsigned	 read;		/* index for next read */
122 	struct list_head list;		/* list of free pages */
123 	void *page;			/* Actual data page */
124 };
125 
126 /*
127  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
128  * this issue out.
129  */
130 static inline void free_buffer_page(struct buffer_page *bpage)
131 {
132 	if (bpage->page)
133 		free_page((unsigned long)bpage->page);
134 	kfree(bpage);
135 }
136 
137 /*
138  * We need to fit the time_stamp delta into 27 bits.
139  */
140 static inline int test_time_stamp(u64 delta)
141 {
142 	if (delta & TS_DELTA_TEST)
143 		return 1;
144 	return 0;
145 }
146 
147 #define BUF_PAGE_SIZE PAGE_SIZE
148 
149 /*
150  * head_page == tail_page && head == tail then buffer is empty.
151  */
152 struct ring_buffer_per_cpu {
153 	int				cpu;
154 	struct ring_buffer		*buffer;
155 	spinlock_t			lock;
156 	struct lock_class_key		lock_key;
157 	struct list_head		pages;
158 	struct buffer_page		*head_page;	/* read from head */
159 	struct buffer_page		*tail_page;	/* write to tail */
160 	struct buffer_page		*commit_page;	/* commited pages */
161 	struct buffer_page		*reader_page;
162 	unsigned long			overrun;
163 	unsigned long			entries;
164 	u64				write_stamp;
165 	u64				read_stamp;
166 	atomic_t			record_disabled;
167 };
168 
169 struct ring_buffer {
170 	unsigned long			size;
171 	unsigned			pages;
172 	unsigned			flags;
173 	int				cpus;
174 	cpumask_t			cpumask;
175 	atomic_t			record_disabled;
176 
177 	struct mutex			mutex;
178 
179 	struct ring_buffer_per_cpu	**buffers;
180 };
181 
182 struct ring_buffer_iter {
183 	struct ring_buffer_per_cpu	*cpu_buffer;
184 	unsigned long			head;
185 	struct buffer_page		*head_page;
186 	u64				read_stamp;
187 };
188 
189 #define RB_WARN_ON(buffer, cond)				\
190 	do {							\
191 		if (unlikely(cond)) {				\
192 			atomic_inc(&buffer->record_disabled);	\
193 			WARN_ON(1);				\
194 		}						\
195 	} while (0)
196 
197 #define RB_WARN_ON_RET(buffer, cond)				\
198 	do {							\
199 		if (unlikely(cond)) {				\
200 			atomic_inc(&buffer->record_disabled);	\
201 			WARN_ON(1);				\
202 			return -1;				\
203 		}						\
204 	} while (0)
205 
206 #define RB_WARN_ON_ONCE(buffer, cond)				\
207 	do {							\
208 		static int once;				\
209 		if (unlikely(cond) && !once) {			\
210 			once++;					\
211 			atomic_inc(&buffer->record_disabled);	\
212 			WARN_ON(1);				\
213 		}						\
214 	} while (0)
215 
216 /**
217  * check_pages - integrity check of buffer pages
218  * @cpu_buffer: CPU buffer with pages to test
219  *
220  * As a safty measure we check to make sure the data pages have not
221  * been corrupted.
222  */
223 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
224 {
225 	struct list_head *head = &cpu_buffer->pages;
226 	struct buffer_page *page, *tmp;
227 
228 	RB_WARN_ON_RET(cpu_buffer, head->next->prev != head);
229 	RB_WARN_ON_RET(cpu_buffer, head->prev->next != head);
230 
231 	list_for_each_entry_safe(page, tmp, head, list) {
232 		RB_WARN_ON_RET(cpu_buffer,
233 			       page->list.next->prev != &page->list);
234 		RB_WARN_ON_RET(cpu_buffer,
235 			       page->list.prev->next != &page->list);
236 	}
237 
238 	return 0;
239 }
240 
241 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
242 			     unsigned nr_pages)
243 {
244 	struct list_head *head = &cpu_buffer->pages;
245 	struct buffer_page *page, *tmp;
246 	unsigned long addr;
247 	LIST_HEAD(pages);
248 	unsigned i;
249 
250 	for (i = 0; i < nr_pages; i++) {
251 		page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
252 				    GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
253 		if (!page)
254 			goto free_pages;
255 		list_add(&page->list, &pages);
256 
257 		addr = __get_free_page(GFP_KERNEL);
258 		if (!addr)
259 			goto free_pages;
260 		page->page = (void *)addr;
261 	}
262 
263 	list_splice(&pages, head);
264 
265 	rb_check_pages(cpu_buffer);
266 
267 	return 0;
268 
269  free_pages:
270 	list_for_each_entry_safe(page, tmp, &pages, list) {
271 		list_del_init(&page->list);
272 		free_buffer_page(page);
273 	}
274 	return -ENOMEM;
275 }
276 
277 static struct ring_buffer_per_cpu *
278 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
279 {
280 	struct ring_buffer_per_cpu *cpu_buffer;
281 	struct buffer_page *page;
282 	unsigned long addr;
283 	int ret;
284 
285 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
286 				  GFP_KERNEL, cpu_to_node(cpu));
287 	if (!cpu_buffer)
288 		return NULL;
289 
290 	cpu_buffer->cpu = cpu;
291 	cpu_buffer->buffer = buffer;
292 	spin_lock_init(&cpu_buffer->lock);
293 	INIT_LIST_HEAD(&cpu_buffer->pages);
294 
295 	page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
296 			    GFP_KERNEL, cpu_to_node(cpu));
297 	if (!page)
298 		goto fail_free_buffer;
299 
300 	cpu_buffer->reader_page = page;
301 	addr = __get_free_page(GFP_KERNEL);
302 	if (!addr)
303 		goto fail_free_reader;
304 	page->page = (void *)addr;
305 
306 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
307 
308 	ret = rb_allocate_pages(cpu_buffer, buffer->pages);
309 	if (ret < 0)
310 		goto fail_free_reader;
311 
312 	cpu_buffer->head_page
313 		= list_entry(cpu_buffer->pages.next, struct buffer_page, list);
314 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
315 
316 	return cpu_buffer;
317 
318  fail_free_reader:
319 	free_buffer_page(cpu_buffer->reader_page);
320 
321  fail_free_buffer:
322 	kfree(cpu_buffer);
323 	return NULL;
324 }
325 
326 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
327 {
328 	struct list_head *head = &cpu_buffer->pages;
329 	struct buffer_page *page, *tmp;
330 
331 	list_del_init(&cpu_buffer->reader_page->list);
332 	free_buffer_page(cpu_buffer->reader_page);
333 
334 	list_for_each_entry_safe(page, tmp, head, list) {
335 		list_del_init(&page->list);
336 		free_buffer_page(page);
337 	}
338 	kfree(cpu_buffer);
339 }
340 
341 /*
342  * Causes compile errors if the struct buffer_page gets bigger
343  * than the struct page.
344  */
345 extern int ring_buffer_page_too_big(void);
346 
347 /**
348  * ring_buffer_alloc - allocate a new ring_buffer
349  * @size: the size in bytes that is needed.
350  * @flags: attributes to set for the ring buffer.
351  *
352  * Currently the only flag that is available is the RB_FL_OVERWRITE
353  * flag. This flag means that the buffer will overwrite old data
354  * when the buffer wraps. If this flag is not set, the buffer will
355  * drop data when the tail hits the head.
356  */
357 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
358 {
359 	struct ring_buffer *buffer;
360 	int bsize;
361 	int cpu;
362 
363 	/* Paranoid! Optimizes out when all is well */
364 	if (sizeof(struct buffer_page) > sizeof(struct page))
365 		ring_buffer_page_too_big();
366 
367 
368 	/* keep it in its own cache line */
369 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
370 			 GFP_KERNEL);
371 	if (!buffer)
372 		return NULL;
373 
374 	buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
375 	buffer->flags = flags;
376 
377 	/* need at least two pages */
378 	if (buffer->pages == 1)
379 		buffer->pages++;
380 
381 	buffer->cpumask = cpu_possible_map;
382 	buffer->cpus = nr_cpu_ids;
383 
384 	bsize = sizeof(void *) * nr_cpu_ids;
385 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
386 				  GFP_KERNEL);
387 	if (!buffer->buffers)
388 		goto fail_free_buffer;
389 
390 	for_each_buffer_cpu(buffer, cpu) {
391 		buffer->buffers[cpu] =
392 			rb_allocate_cpu_buffer(buffer, cpu);
393 		if (!buffer->buffers[cpu])
394 			goto fail_free_buffers;
395 	}
396 
397 	mutex_init(&buffer->mutex);
398 
399 	return buffer;
400 
401  fail_free_buffers:
402 	for_each_buffer_cpu(buffer, cpu) {
403 		if (buffer->buffers[cpu])
404 			rb_free_cpu_buffer(buffer->buffers[cpu]);
405 	}
406 	kfree(buffer->buffers);
407 
408  fail_free_buffer:
409 	kfree(buffer);
410 	return NULL;
411 }
412 
413 /**
414  * ring_buffer_free - free a ring buffer.
415  * @buffer: the buffer to free.
416  */
417 void
418 ring_buffer_free(struct ring_buffer *buffer)
419 {
420 	int cpu;
421 
422 	for_each_buffer_cpu(buffer, cpu)
423 		rb_free_cpu_buffer(buffer->buffers[cpu]);
424 
425 	kfree(buffer);
426 }
427 
428 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
429 
430 static void
431 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
432 {
433 	struct buffer_page *page;
434 	struct list_head *p;
435 	unsigned i;
436 
437 	atomic_inc(&cpu_buffer->record_disabled);
438 	synchronize_sched();
439 
440 	for (i = 0; i < nr_pages; i++) {
441 		BUG_ON(list_empty(&cpu_buffer->pages));
442 		p = cpu_buffer->pages.next;
443 		page = list_entry(p, struct buffer_page, list);
444 		list_del_init(&page->list);
445 		free_buffer_page(page);
446 	}
447 	BUG_ON(list_empty(&cpu_buffer->pages));
448 
449 	rb_reset_cpu(cpu_buffer);
450 
451 	rb_check_pages(cpu_buffer);
452 
453 	atomic_dec(&cpu_buffer->record_disabled);
454 
455 }
456 
457 static void
458 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
459 		struct list_head *pages, unsigned nr_pages)
460 {
461 	struct buffer_page *page;
462 	struct list_head *p;
463 	unsigned i;
464 
465 	atomic_inc(&cpu_buffer->record_disabled);
466 	synchronize_sched();
467 
468 	for (i = 0; i < nr_pages; i++) {
469 		BUG_ON(list_empty(pages));
470 		p = pages->next;
471 		page = list_entry(p, struct buffer_page, list);
472 		list_del_init(&page->list);
473 		list_add_tail(&page->list, &cpu_buffer->pages);
474 	}
475 	rb_reset_cpu(cpu_buffer);
476 
477 	rb_check_pages(cpu_buffer);
478 
479 	atomic_dec(&cpu_buffer->record_disabled);
480 }
481 
482 /**
483  * ring_buffer_resize - resize the ring buffer
484  * @buffer: the buffer to resize.
485  * @size: the new size.
486  *
487  * The tracer is responsible for making sure that the buffer is
488  * not being used while changing the size.
489  * Note: We may be able to change the above requirement by using
490  *  RCU synchronizations.
491  *
492  * Minimum size is 2 * BUF_PAGE_SIZE.
493  *
494  * Returns -1 on failure.
495  */
496 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
497 {
498 	struct ring_buffer_per_cpu *cpu_buffer;
499 	unsigned nr_pages, rm_pages, new_pages;
500 	struct buffer_page *page, *tmp;
501 	unsigned long buffer_size;
502 	unsigned long addr;
503 	LIST_HEAD(pages);
504 	int i, cpu;
505 
506 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
507 	size *= BUF_PAGE_SIZE;
508 	buffer_size = buffer->pages * BUF_PAGE_SIZE;
509 
510 	/* we need a minimum of two pages */
511 	if (size < BUF_PAGE_SIZE * 2)
512 		size = BUF_PAGE_SIZE * 2;
513 
514 	if (size == buffer_size)
515 		return size;
516 
517 	mutex_lock(&buffer->mutex);
518 
519 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
520 
521 	if (size < buffer_size) {
522 
523 		/* easy case, just free pages */
524 		BUG_ON(nr_pages >= buffer->pages);
525 
526 		rm_pages = buffer->pages - nr_pages;
527 
528 		for_each_buffer_cpu(buffer, cpu) {
529 			cpu_buffer = buffer->buffers[cpu];
530 			rb_remove_pages(cpu_buffer, rm_pages);
531 		}
532 		goto out;
533 	}
534 
535 	/*
536 	 * This is a bit more difficult. We only want to add pages
537 	 * when we can allocate enough for all CPUs. We do this
538 	 * by allocating all the pages and storing them on a local
539 	 * link list. If we succeed in our allocation, then we
540 	 * add these pages to the cpu_buffers. Otherwise we just free
541 	 * them all and return -ENOMEM;
542 	 */
543 	BUG_ON(nr_pages <= buffer->pages);
544 	new_pages = nr_pages - buffer->pages;
545 
546 	for_each_buffer_cpu(buffer, cpu) {
547 		for (i = 0; i < new_pages; i++) {
548 			page = kzalloc_node(ALIGN(sizeof(*page),
549 						  cache_line_size()),
550 					    GFP_KERNEL, cpu_to_node(cpu));
551 			if (!page)
552 				goto free_pages;
553 			list_add(&page->list, &pages);
554 			addr = __get_free_page(GFP_KERNEL);
555 			if (!addr)
556 				goto free_pages;
557 			page->page = (void *)addr;
558 		}
559 	}
560 
561 	for_each_buffer_cpu(buffer, cpu) {
562 		cpu_buffer = buffer->buffers[cpu];
563 		rb_insert_pages(cpu_buffer, &pages, new_pages);
564 	}
565 
566 	BUG_ON(!list_empty(&pages));
567 
568  out:
569 	buffer->pages = nr_pages;
570 	mutex_unlock(&buffer->mutex);
571 
572 	return size;
573 
574  free_pages:
575 	list_for_each_entry_safe(page, tmp, &pages, list) {
576 		list_del_init(&page->list);
577 		free_buffer_page(page);
578 	}
579 	return -ENOMEM;
580 }
581 
582 static inline int rb_null_event(struct ring_buffer_event *event)
583 {
584 	return event->type == RINGBUF_TYPE_PADDING;
585 }
586 
587 static inline void *__rb_page_index(struct buffer_page *page, unsigned index)
588 {
589 	return page->page + index;
590 }
591 
592 static inline struct ring_buffer_event *
593 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
594 {
595 	return __rb_page_index(cpu_buffer->reader_page,
596 			       cpu_buffer->reader_page->read);
597 }
598 
599 static inline struct ring_buffer_event *
600 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
601 {
602 	return __rb_page_index(cpu_buffer->head_page,
603 			       cpu_buffer->head_page->read);
604 }
605 
606 static inline struct ring_buffer_event *
607 rb_iter_head_event(struct ring_buffer_iter *iter)
608 {
609 	return __rb_page_index(iter->head_page, iter->head);
610 }
611 
612 static inline unsigned rb_page_write(struct buffer_page *bpage)
613 {
614 	return local_read(&bpage->write);
615 }
616 
617 static inline unsigned rb_page_commit(struct buffer_page *bpage)
618 {
619 	return local_read(&bpage->commit);
620 }
621 
622 /* Size is determined by what has been commited */
623 static inline unsigned rb_page_size(struct buffer_page *bpage)
624 {
625 	return rb_page_commit(bpage);
626 }
627 
628 static inline unsigned
629 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
630 {
631 	return rb_page_commit(cpu_buffer->commit_page);
632 }
633 
634 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
635 {
636 	return rb_page_commit(cpu_buffer->head_page);
637 }
638 
639 /*
640  * When the tail hits the head and the buffer is in overwrite mode,
641  * the head jumps to the next page and all content on the previous
642  * page is discarded. But before doing so, we update the overrun
643  * variable of the buffer.
644  */
645 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
646 {
647 	struct ring_buffer_event *event;
648 	unsigned long head;
649 
650 	for (head = 0; head < rb_head_size(cpu_buffer);
651 	     head += rb_event_length(event)) {
652 
653 		event = __rb_page_index(cpu_buffer->head_page, head);
654 		BUG_ON(rb_null_event(event));
655 		/* Only count data entries */
656 		if (event->type != RINGBUF_TYPE_DATA)
657 			continue;
658 		cpu_buffer->overrun++;
659 		cpu_buffer->entries--;
660 	}
661 }
662 
663 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
664 			       struct buffer_page **page)
665 {
666 	struct list_head *p = (*page)->list.next;
667 
668 	if (p == &cpu_buffer->pages)
669 		p = p->next;
670 
671 	*page = list_entry(p, struct buffer_page, list);
672 }
673 
674 static inline unsigned
675 rb_event_index(struct ring_buffer_event *event)
676 {
677 	unsigned long addr = (unsigned long)event;
678 
679 	return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
680 }
681 
682 static inline int
683 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
684 	     struct ring_buffer_event *event)
685 {
686 	unsigned long addr = (unsigned long)event;
687 	unsigned long index;
688 
689 	index = rb_event_index(event);
690 	addr &= PAGE_MASK;
691 
692 	return cpu_buffer->commit_page->page == (void *)addr &&
693 		rb_commit_index(cpu_buffer) == index;
694 }
695 
696 static inline void
697 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
698 		    struct ring_buffer_event *event)
699 {
700 	unsigned long addr = (unsigned long)event;
701 	unsigned long index;
702 
703 	index = rb_event_index(event);
704 	addr &= PAGE_MASK;
705 
706 	while (cpu_buffer->commit_page->page != (void *)addr) {
707 		RB_WARN_ON(cpu_buffer,
708 			   cpu_buffer->commit_page == cpu_buffer->tail_page);
709 		cpu_buffer->commit_page->commit =
710 			cpu_buffer->commit_page->write;
711 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
712 		cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
713 	}
714 
715 	/* Now set the commit to the event's index */
716 	local_set(&cpu_buffer->commit_page->commit, index);
717 }
718 
719 static inline void
720 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
721 {
722 	/*
723 	 * We only race with interrupts and NMIs on this CPU.
724 	 * If we own the commit event, then we can commit
725 	 * all others that interrupted us, since the interruptions
726 	 * are in stack format (they finish before they come
727 	 * back to us). This allows us to do a simple loop to
728 	 * assign the commit to the tail.
729 	 */
730 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
731 		cpu_buffer->commit_page->commit =
732 			cpu_buffer->commit_page->write;
733 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
734 		cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
735 		/* add barrier to keep gcc from optimizing too much */
736 		barrier();
737 	}
738 	while (rb_commit_index(cpu_buffer) !=
739 	       rb_page_write(cpu_buffer->commit_page)) {
740 		cpu_buffer->commit_page->commit =
741 			cpu_buffer->commit_page->write;
742 		barrier();
743 	}
744 }
745 
746 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
747 {
748 	cpu_buffer->read_stamp = cpu_buffer->reader_page->time_stamp;
749 	cpu_buffer->reader_page->read = 0;
750 }
751 
752 static inline void rb_inc_iter(struct ring_buffer_iter *iter)
753 {
754 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
755 
756 	/*
757 	 * The iterator could be on the reader page (it starts there).
758 	 * But the head could have moved, since the reader was
759 	 * found. Check for this case and assign the iterator
760 	 * to the head page instead of next.
761 	 */
762 	if (iter->head_page == cpu_buffer->reader_page)
763 		iter->head_page = cpu_buffer->head_page;
764 	else
765 		rb_inc_page(cpu_buffer, &iter->head_page);
766 
767 	iter->read_stamp = iter->head_page->time_stamp;
768 	iter->head = 0;
769 }
770 
771 /**
772  * ring_buffer_update_event - update event type and data
773  * @event: the even to update
774  * @type: the type of event
775  * @length: the size of the event field in the ring buffer
776  *
777  * Update the type and data fields of the event. The length
778  * is the actual size that is written to the ring buffer,
779  * and with this, we can determine what to place into the
780  * data field.
781  */
782 static inline void
783 rb_update_event(struct ring_buffer_event *event,
784 			 unsigned type, unsigned length)
785 {
786 	event->type = type;
787 
788 	switch (type) {
789 
790 	case RINGBUF_TYPE_PADDING:
791 		break;
792 
793 	case RINGBUF_TYPE_TIME_EXTEND:
794 		event->len =
795 			(RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
796 			>> RB_ALIGNMENT_SHIFT;
797 		break;
798 
799 	case RINGBUF_TYPE_TIME_STAMP:
800 		event->len =
801 			(RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
802 			>> RB_ALIGNMENT_SHIFT;
803 		break;
804 
805 	case RINGBUF_TYPE_DATA:
806 		length -= RB_EVNT_HDR_SIZE;
807 		if (length > RB_MAX_SMALL_DATA) {
808 			event->len = 0;
809 			event->array[0] = length;
810 		} else
811 			event->len =
812 				(length + (RB_ALIGNMENT-1))
813 				>> RB_ALIGNMENT_SHIFT;
814 		break;
815 	default:
816 		BUG();
817 	}
818 }
819 
820 static inline unsigned rb_calculate_event_length(unsigned length)
821 {
822 	struct ring_buffer_event event; /* Used only for sizeof array */
823 
824 	/* zero length can cause confusions */
825 	if (!length)
826 		length = 1;
827 
828 	if (length > RB_MAX_SMALL_DATA)
829 		length += sizeof(event.array[0]);
830 
831 	length += RB_EVNT_HDR_SIZE;
832 	length = ALIGN(length, RB_ALIGNMENT);
833 
834 	return length;
835 }
836 
837 static struct ring_buffer_event *
838 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
839 		  unsigned type, unsigned long length, u64 *ts)
840 {
841 	struct buffer_page *tail_page, *head_page, *reader_page;
842 	unsigned long tail, write;
843 	struct ring_buffer *buffer = cpu_buffer->buffer;
844 	struct ring_buffer_event *event;
845 	unsigned long flags;
846 
847 	tail_page = cpu_buffer->tail_page;
848 	write = local_add_return(length, &tail_page->write);
849 	tail = write - length;
850 
851 	/* See if we shot pass the end of this buffer page */
852 	if (write > BUF_PAGE_SIZE) {
853 		struct buffer_page *next_page = tail_page;
854 
855 		spin_lock_irqsave(&cpu_buffer->lock, flags);
856 
857 		rb_inc_page(cpu_buffer, &next_page);
858 
859 		head_page = cpu_buffer->head_page;
860 		reader_page = cpu_buffer->reader_page;
861 
862 		/* we grabbed the lock before incrementing */
863 		RB_WARN_ON(cpu_buffer, next_page == reader_page);
864 
865 		/*
866 		 * If for some reason, we had an interrupt storm that made
867 		 * it all the way around the buffer, bail, and warn
868 		 * about it.
869 		 */
870 		if (unlikely(next_page == cpu_buffer->commit_page)) {
871 			WARN_ON_ONCE(1);
872 			goto out_unlock;
873 		}
874 
875 		if (next_page == head_page) {
876 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
877 				/* reset write */
878 				if (tail <= BUF_PAGE_SIZE)
879 					local_set(&tail_page->write, tail);
880 				goto out_unlock;
881 			}
882 
883 			/* tail_page has not moved yet? */
884 			if (tail_page == cpu_buffer->tail_page) {
885 				/* count overflows */
886 				rb_update_overflow(cpu_buffer);
887 
888 				rb_inc_page(cpu_buffer, &head_page);
889 				cpu_buffer->head_page = head_page;
890 				cpu_buffer->head_page->read = 0;
891 			}
892 		}
893 
894 		/*
895 		 * If the tail page is still the same as what we think
896 		 * it is, then it is up to us to update the tail
897 		 * pointer.
898 		 */
899 		if (tail_page == cpu_buffer->tail_page) {
900 			local_set(&next_page->write, 0);
901 			local_set(&next_page->commit, 0);
902 			cpu_buffer->tail_page = next_page;
903 
904 			/* reread the time stamp */
905 			*ts = ring_buffer_time_stamp(cpu_buffer->cpu);
906 			cpu_buffer->tail_page->time_stamp = *ts;
907 		}
908 
909 		/*
910 		 * The actual tail page has moved forward.
911 		 */
912 		if (tail < BUF_PAGE_SIZE) {
913 			/* Mark the rest of the page with padding */
914 			event = __rb_page_index(tail_page, tail);
915 			event->type = RINGBUF_TYPE_PADDING;
916 		}
917 
918 		if (tail <= BUF_PAGE_SIZE)
919 			/* Set the write back to the previous setting */
920 			local_set(&tail_page->write, tail);
921 
922 		/*
923 		 * If this was a commit entry that failed,
924 		 * increment that too
925 		 */
926 		if (tail_page == cpu_buffer->commit_page &&
927 		    tail == rb_commit_index(cpu_buffer)) {
928 			rb_set_commit_to_write(cpu_buffer);
929 		}
930 
931 		spin_unlock_irqrestore(&cpu_buffer->lock, flags);
932 
933 		/* fail and let the caller try again */
934 		return ERR_PTR(-EAGAIN);
935 	}
936 
937 	/* We reserved something on the buffer */
938 
939 	BUG_ON(write > BUF_PAGE_SIZE);
940 
941 	event = __rb_page_index(tail_page, tail);
942 	rb_update_event(event, type, length);
943 
944 	/*
945 	 * If this is a commit and the tail is zero, then update
946 	 * this page's time stamp.
947 	 */
948 	if (!tail && rb_is_commit(cpu_buffer, event))
949 		cpu_buffer->commit_page->time_stamp = *ts;
950 
951 	return event;
952 
953  out_unlock:
954 	spin_unlock_irqrestore(&cpu_buffer->lock, flags);
955 	return NULL;
956 }
957 
958 static int
959 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
960 		  u64 *ts, u64 *delta)
961 {
962 	struct ring_buffer_event *event;
963 	static int once;
964 	int ret;
965 
966 	if (unlikely(*delta > (1ULL << 59) && !once++)) {
967 		printk(KERN_WARNING "Delta way too big! %llu"
968 		       " ts=%llu write stamp = %llu\n",
969 		       (unsigned long long)*delta,
970 		       (unsigned long long)*ts,
971 		       (unsigned long long)cpu_buffer->write_stamp);
972 		WARN_ON(1);
973 	}
974 
975 	/*
976 	 * The delta is too big, we to add a
977 	 * new timestamp.
978 	 */
979 	event = __rb_reserve_next(cpu_buffer,
980 				  RINGBUF_TYPE_TIME_EXTEND,
981 				  RB_LEN_TIME_EXTEND,
982 				  ts);
983 	if (!event)
984 		return -EBUSY;
985 
986 	if (PTR_ERR(event) == -EAGAIN)
987 		return -EAGAIN;
988 
989 	/* Only a commited time event can update the write stamp */
990 	if (rb_is_commit(cpu_buffer, event)) {
991 		/*
992 		 * If this is the first on the page, then we need to
993 		 * update the page itself, and just put in a zero.
994 		 */
995 		if (rb_event_index(event)) {
996 			event->time_delta = *delta & TS_MASK;
997 			event->array[0] = *delta >> TS_SHIFT;
998 		} else {
999 			cpu_buffer->commit_page->time_stamp = *ts;
1000 			event->time_delta = 0;
1001 			event->array[0] = 0;
1002 		}
1003 		cpu_buffer->write_stamp = *ts;
1004 		/* let the caller know this was the commit */
1005 		ret = 1;
1006 	} else {
1007 		/* Darn, this is just wasted space */
1008 		event->time_delta = 0;
1009 		event->array[0] = 0;
1010 		ret = 0;
1011 	}
1012 
1013 	*delta = 0;
1014 
1015 	return ret;
1016 }
1017 
1018 static struct ring_buffer_event *
1019 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1020 		      unsigned type, unsigned long length)
1021 {
1022 	struct ring_buffer_event *event;
1023 	u64 ts, delta;
1024 	int commit = 0;
1025 	int nr_loops = 0;
1026 
1027  again:
1028 	/*
1029 	 * We allow for interrupts to reenter here and do a trace.
1030 	 * If one does, it will cause this original code to loop
1031 	 * back here. Even with heavy interrupts happening, this
1032 	 * should only happen a few times in a row. If this happens
1033 	 * 1000 times in a row, there must be either an interrupt
1034 	 * storm or we have something buggy.
1035 	 * Bail!
1036 	 */
1037 	if (unlikely(++nr_loops > 1000)) {
1038 		RB_WARN_ON(cpu_buffer, 1);
1039 		return NULL;
1040 	}
1041 
1042 	ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1043 
1044 	/*
1045 	 * Only the first commit can update the timestamp.
1046 	 * Yes there is a race here. If an interrupt comes in
1047 	 * just after the conditional and it traces too, then it
1048 	 * will also check the deltas. More than one timestamp may
1049 	 * also be made. But only the entry that did the actual
1050 	 * commit will be something other than zero.
1051 	 */
1052 	if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1053 	    rb_page_write(cpu_buffer->tail_page) ==
1054 	    rb_commit_index(cpu_buffer)) {
1055 
1056 		delta = ts - cpu_buffer->write_stamp;
1057 
1058 		/* make sure this delta is calculated here */
1059 		barrier();
1060 
1061 		/* Did the write stamp get updated already? */
1062 		if (unlikely(ts < cpu_buffer->write_stamp))
1063 			goto again;
1064 
1065 		if (test_time_stamp(delta)) {
1066 
1067 			commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1068 
1069 			if (commit == -EBUSY)
1070 				return NULL;
1071 
1072 			if (commit == -EAGAIN)
1073 				goto again;
1074 
1075 			RB_WARN_ON(cpu_buffer, commit < 0);
1076 		}
1077 	} else
1078 		/* Non commits have zero deltas */
1079 		delta = 0;
1080 
1081 	event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1082 	if (PTR_ERR(event) == -EAGAIN)
1083 		goto again;
1084 
1085 	if (!event) {
1086 		if (unlikely(commit))
1087 			/*
1088 			 * Ouch! We needed a timestamp and it was commited. But
1089 			 * we didn't get our event reserved.
1090 			 */
1091 			rb_set_commit_to_write(cpu_buffer);
1092 		return NULL;
1093 	}
1094 
1095 	/*
1096 	 * If the timestamp was commited, make the commit our entry
1097 	 * now so that we will update it when needed.
1098 	 */
1099 	if (commit)
1100 		rb_set_commit_event(cpu_buffer, event);
1101 	else if (!rb_is_commit(cpu_buffer, event))
1102 		delta = 0;
1103 
1104 	event->time_delta = delta;
1105 
1106 	return event;
1107 }
1108 
1109 static DEFINE_PER_CPU(int, rb_need_resched);
1110 
1111 /**
1112  * ring_buffer_lock_reserve - reserve a part of the buffer
1113  * @buffer: the ring buffer to reserve from
1114  * @length: the length of the data to reserve (excluding event header)
1115  * @flags: a pointer to save the interrupt flags
1116  *
1117  * Returns a reseverd event on the ring buffer to copy directly to.
1118  * The user of this interface will need to get the body to write into
1119  * and can use the ring_buffer_event_data() interface.
1120  *
1121  * The length is the length of the data needed, not the event length
1122  * which also includes the event header.
1123  *
1124  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1125  * If NULL is returned, then nothing has been allocated or locked.
1126  */
1127 struct ring_buffer_event *
1128 ring_buffer_lock_reserve(struct ring_buffer *buffer,
1129 			 unsigned long length,
1130 			 unsigned long *flags)
1131 {
1132 	struct ring_buffer_per_cpu *cpu_buffer;
1133 	struct ring_buffer_event *event;
1134 	int cpu, resched;
1135 
1136 	if (atomic_read(&buffer->record_disabled))
1137 		return NULL;
1138 
1139 	/* If we are tracing schedule, we don't want to recurse */
1140 	resched = need_resched();
1141 	preempt_disable_notrace();
1142 
1143 	cpu = raw_smp_processor_id();
1144 
1145 	if (!cpu_isset(cpu, buffer->cpumask))
1146 		goto out;
1147 
1148 	cpu_buffer = buffer->buffers[cpu];
1149 
1150 	if (atomic_read(&cpu_buffer->record_disabled))
1151 		goto out;
1152 
1153 	length = rb_calculate_event_length(length);
1154 	if (length > BUF_PAGE_SIZE)
1155 		goto out;
1156 
1157 	event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1158 	if (!event)
1159 		goto out;
1160 
1161 	/*
1162 	 * Need to store resched state on this cpu.
1163 	 * Only the first needs to.
1164 	 */
1165 
1166 	if (preempt_count() == 1)
1167 		per_cpu(rb_need_resched, cpu) = resched;
1168 
1169 	return event;
1170 
1171  out:
1172 	if (resched)
1173 		preempt_enable_notrace();
1174 	else
1175 		preempt_enable_notrace();
1176 	return NULL;
1177 }
1178 
1179 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1180 		      struct ring_buffer_event *event)
1181 {
1182 	cpu_buffer->entries++;
1183 
1184 	/* Only process further if we own the commit */
1185 	if (!rb_is_commit(cpu_buffer, event))
1186 		return;
1187 
1188 	cpu_buffer->write_stamp += event->time_delta;
1189 
1190 	rb_set_commit_to_write(cpu_buffer);
1191 }
1192 
1193 /**
1194  * ring_buffer_unlock_commit - commit a reserved
1195  * @buffer: The buffer to commit to
1196  * @event: The event pointer to commit.
1197  * @flags: the interrupt flags received from ring_buffer_lock_reserve.
1198  *
1199  * This commits the data to the ring buffer, and releases any locks held.
1200  *
1201  * Must be paired with ring_buffer_lock_reserve.
1202  */
1203 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1204 			      struct ring_buffer_event *event,
1205 			      unsigned long flags)
1206 {
1207 	struct ring_buffer_per_cpu *cpu_buffer;
1208 	int cpu = raw_smp_processor_id();
1209 
1210 	cpu_buffer = buffer->buffers[cpu];
1211 
1212 	rb_commit(cpu_buffer, event);
1213 
1214 	/*
1215 	 * Only the last preempt count needs to restore preemption.
1216 	 */
1217 	if (preempt_count() == 1) {
1218 		if (per_cpu(rb_need_resched, cpu))
1219 			preempt_enable_no_resched_notrace();
1220 		else
1221 			preempt_enable_notrace();
1222 	} else
1223 		preempt_enable_no_resched_notrace();
1224 
1225 	return 0;
1226 }
1227 
1228 /**
1229  * ring_buffer_write - write data to the buffer without reserving
1230  * @buffer: The ring buffer to write to.
1231  * @length: The length of the data being written (excluding the event header)
1232  * @data: The data to write to the buffer.
1233  *
1234  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1235  * one function. If you already have the data to write to the buffer, it
1236  * may be easier to simply call this function.
1237  *
1238  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1239  * and not the length of the event which would hold the header.
1240  */
1241 int ring_buffer_write(struct ring_buffer *buffer,
1242 			unsigned long length,
1243 			void *data)
1244 {
1245 	struct ring_buffer_per_cpu *cpu_buffer;
1246 	struct ring_buffer_event *event;
1247 	unsigned long event_length;
1248 	void *body;
1249 	int ret = -EBUSY;
1250 	int cpu, resched;
1251 
1252 	if (atomic_read(&buffer->record_disabled))
1253 		return -EBUSY;
1254 
1255 	resched = need_resched();
1256 	preempt_disable_notrace();
1257 
1258 	cpu = raw_smp_processor_id();
1259 
1260 	if (!cpu_isset(cpu, buffer->cpumask))
1261 		goto out;
1262 
1263 	cpu_buffer = buffer->buffers[cpu];
1264 
1265 	if (atomic_read(&cpu_buffer->record_disabled))
1266 		goto out;
1267 
1268 	event_length = rb_calculate_event_length(length);
1269 	event = rb_reserve_next_event(cpu_buffer,
1270 				      RINGBUF_TYPE_DATA, event_length);
1271 	if (!event)
1272 		goto out;
1273 
1274 	body = rb_event_data(event);
1275 
1276 	memcpy(body, data, length);
1277 
1278 	rb_commit(cpu_buffer, event);
1279 
1280 	ret = 0;
1281  out:
1282 	if (resched)
1283 		preempt_enable_no_resched_notrace();
1284 	else
1285 		preempt_enable_notrace();
1286 
1287 	return ret;
1288 }
1289 
1290 static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1291 {
1292 	struct buffer_page *reader = cpu_buffer->reader_page;
1293 	struct buffer_page *head = cpu_buffer->head_page;
1294 	struct buffer_page *commit = cpu_buffer->commit_page;
1295 
1296 	return reader->read == rb_page_commit(reader) &&
1297 		(commit == reader ||
1298 		 (commit == head &&
1299 		  head->read == rb_page_commit(commit)));
1300 }
1301 
1302 /**
1303  * ring_buffer_record_disable - stop all writes into the buffer
1304  * @buffer: The ring buffer to stop writes to.
1305  *
1306  * This prevents all writes to the buffer. Any attempt to write
1307  * to the buffer after this will fail and return NULL.
1308  *
1309  * The caller should call synchronize_sched() after this.
1310  */
1311 void ring_buffer_record_disable(struct ring_buffer *buffer)
1312 {
1313 	atomic_inc(&buffer->record_disabled);
1314 }
1315 
1316 /**
1317  * ring_buffer_record_enable - enable writes to the buffer
1318  * @buffer: The ring buffer to enable writes
1319  *
1320  * Note, multiple disables will need the same number of enables
1321  * to truely enable the writing (much like preempt_disable).
1322  */
1323 void ring_buffer_record_enable(struct ring_buffer *buffer)
1324 {
1325 	atomic_dec(&buffer->record_disabled);
1326 }
1327 
1328 /**
1329  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1330  * @buffer: The ring buffer to stop writes to.
1331  * @cpu: The CPU buffer to stop
1332  *
1333  * This prevents all writes to the buffer. Any attempt to write
1334  * to the buffer after this will fail and return NULL.
1335  *
1336  * The caller should call synchronize_sched() after this.
1337  */
1338 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1339 {
1340 	struct ring_buffer_per_cpu *cpu_buffer;
1341 
1342 	if (!cpu_isset(cpu, buffer->cpumask))
1343 		return;
1344 
1345 	cpu_buffer = buffer->buffers[cpu];
1346 	atomic_inc(&cpu_buffer->record_disabled);
1347 }
1348 
1349 /**
1350  * ring_buffer_record_enable_cpu - enable writes to the buffer
1351  * @buffer: The ring buffer to enable writes
1352  * @cpu: The CPU to enable.
1353  *
1354  * Note, multiple disables will need the same number of enables
1355  * to truely enable the writing (much like preempt_disable).
1356  */
1357 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1358 {
1359 	struct ring_buffer_per_cpu *cpu_buffer;
1360 
1361 	if (!cpu_isset(cpu, buffer->cpumask))
1362 		return;
1363 
1364 	cpu_buffer = buffer->buffers[cpu];
1365 	atomic_dec(&cpu_buffer->record_disabled);
1366 }
1367 
1368 /**
1369  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1370  * @buffer: The ring buffer
1371  * @cpu: The per CPU buffer to get the entries from.
1372  */
1373 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1374 {
1375 	struct ring_buffer_per_cpu *cpu_buffer;
1376 
1377 	if (!cpu_isset(cpu, buffer->cpumask))
1378 		return 0;
1379 
1380 	cpu_buffer = buffer->buffers[cpu];
1381 	return cpu_buffer->entries;
1382 }
1383 
1384 /**
1385  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1386  * @buffer: The ring buffer
1387  * @cpu: The per CPU buffer to get the number of overruns from
1388  */
1389 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1390 {
1391 	struct ring_buffer_per_cpu *cpu_buffer;
1392 
1393 	if (!cpu_isset(cpu, buffer->cpumask))
1394 		return 0;
1395 
1396 	cpu_buffer = buffer->buffers[cpu];
1397 	return cpu_buffer->overrun;
1398 }
1399 
1400 /**
1401  * ring_buffer_entries - get the number of entries in a buffer
1402  * @buffer: The ring buffer
1403  *
1404  * Returns the total number of entries in the ring buffer
1405  * (all CPU entries)
1406  */
1407 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1408 {
1409 	struct ring_buffer_per_cpu *cpu_buffer;
1410 	unsigned long entries = 0;
1411 	int cpu;
1412 
1413 	/* if you care about this being correct, lock the buffer */
1414 	for_each_buffer_cpu(buffer, cpu) {
1415 		cpu_buffer = buffer->buffers[cpu];
1416 		entries += cpu_buffer->entries;
1417 	}
1418 
1419 	return entries;
1420 }
1421 
1422 /**
1423  * ring_buffer_overrun_cpu - get the number of overruns in buffer
1424  * @buffer: The ring buffer
1425  *
1426  * Returns the total number of overruns in the ring buffer
1427  * (all CPU entries)
1428  */
1429 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1430 {
1431 	struct ring_buffer_per_cpu *cpu_buffer;
1432 	unsigned long overruns = 0;
1433 	int cpu;
1434 
1435 	/* if you care about this being correct, lock the buffer */
1436 	for_each_buffer_cpu(buffer, cpu) {
1437 		cpu_buffer = buffer->buffers[cpu];
1438 		overruns += cpu_buffer->overrun;
1439 	}
1440 
1441 	return overruns;
1442 }
1443 
1444 /**
1445  * ring_buffer_iter_reset - reset an iterator
1446  * @iter: The iterator to reset
1447  *
1448  * Resets the iterator, so that it will start from the beginning
1449  * again.
1450  */
1451 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1452 {
1453 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1454 
1455 	/* Iterator usage is expected to have record disabled */
1456 	if (list_empty(&cpu_buffer->reader_page->list)) {
1457 		iter->head_page = cpu_buffer->head_page;
1458 		iter->head = cpu_buffer->head_page->read;
1459 	} else {
1460 		iter->head_page = cpu_buffer->reader_page;
1461 		iter->head = cpu_buffer->reader_page->read;
1462 	}
1463 	if (iter->head)
1464 		iter->read_stamp = cpu_buffer->read_stamp;
1465 	else
1466 		iter->read_stamp = iter->head_page->time_stamp;
1467 }
1468 
1469 /**
1470  * ring_buffer_iter_empty - check if an iterator has no more to read
1471  * @iter: The iterator to check
1472  */
1473 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1474 {
1475 	struct ring_buffer_per_cpu *cpu_buffer;
1476 
1477 	cpu_buffer = iter->cpu_buffer;
1478 
1479 	return iter->head_page == cpu_buffer->commit_page &&
1480 		iter->head == rb_commit_index(cpu_buffer);
1481 }
1482 
1483 static void
1484 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1485 		     struct ring_buffer_event *event)
1486 {
1487 	u64 delta;
1488 
1489 	switch (event->type) {
1490 	case RINGBUF_TYPE_PADDING:
1491 		return;
1492 
1493 	case RINGBUF_TYPE_TIME_EXTEND:
1494 		delta = event->array[0];
1495 		delta <<= TS_SHIFT;
1496 		delta += event->time_delta;
1497 		cpu_buffer->read_stamp += delta;
1498 		return;
1499 
1500 	case RINGBUF_TYPE_TIME_STAMP:
1501 		/* FIXME: not implemented */
1502 		return;
1503 
1504 	case RINGBUF_TYPE_DATA:
1505 		cpu_buffer->read_stamp += event->time_delta;
1506 		return;
1507 
1508 	default:
1509 		BUG();
1510 	}
1511 	return;
1512 }
1513 
1514 static void
1515 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1516 			  struct ring_buffer_event *event)
1517 {
1518 	u64 delta;
1519 
1520 	switch (event->type) {
1521 	case RINGBUF_TYPE_PADDING:
1522 		return;
1523 
1524 	case RINGBUF_TYPE_TIME_EXTEND:
1525 		delta = event->array[0];
1526 		delta <<= TS_SHIFT;
1527 		delta += event->time_delta;
1528 		iter->read_stamp += delta;
1529 		return;
1530 
1531 	case RINGBUF_TYPE_TIME_STAMP:
1532 		/* FIXME: not implemented */
1533 		return;
1534 
1535 	case RINGBUF_TYPE_DATA:
1536 		iter->read_stamp += event->time_delta;
1537 		return;
1538 
1539 	default:
1540 		BUG();
1541 	}
1542 	return;
1543 }
1544 
1545 static struct buffer_page *
1546 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1547 {
1548 	struct buffer_page *reader = NULL;
1549 	unsigned long flags;
1550 	int nr_loops = 0;
1551 
1552 	spin_lock_irqsave(&cpu_buffer->lock, flags);
1553 
1554  again:
1555 	/*
1556 	 * This should normally only loop twice. But because the
1557 	 * start of the reader inserts an empty page, it causes
1558 	 * a case where we will loop three times. There should be no
1559 	 * reason to loop four times (that I know of).
1560 	 */
1561 	if (unlikely(++nr_loops > 3)) {
1562 		RB_WARN_ON(cpu_buffer, 1);
1563 		reader = NULL;
1564 		goto out;
1565 	}
1566 
1567 	reader = cpu_buffer->reader_page;
1568 
1569 	/* If there's more to read, return this page */
1570 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
1571 		goto out;
1572 
1573 	/* Never should we have an index greater than the size */
1574 	RB_WARN_ON(cpu_buffer,
1575 		   cpu_buffer->reader_page->read > rb_page_size(reader));
1576 
1577 	/* check if we caught up to the tail */
1578 	reader = NULL;
1579 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
1580 		goto out;
1581 
1582 	/*
1583 	 * Splice the empty reader page into the list around the head.
1584 	 * Reset the reader page to size zero.
1585 	 */
1586 
1587 	reader = cpu_buffer->head_page;
1588 	cpu_buffer->reader_page->list.next = reader->list.next;
1589 	cpu_buffer->reader_page->list.prev = reader->list.prev;
1590 
1591 	local_set(&cpu_buffer->reader_page->write, 0);
1592 	local_set(&cpu_buffer->reader_page->commit, 0);
1593 
1594 	/* Make the reader page now replace the head */
1595 	reader->list.prev->next = &cpu_buffer->reader_page->list;
1596 	reader->list.next->prev = &cpu_buffer->reader_page->list;
1597 
1598 	/*
1599 	 * If the tail is on the reader, then we must set the head
1600 	 * to the inserted page, otherwise we set it one before.
1601 	 */
1602 	cpu_buffer->head_page = cpu_buffer->reader_page;
1603 
1604 	if (cpu_buffer->commit_page != reader)
1605 		rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1606 
1607 	/* Finally update the reader page to the new head */
1608 	cpu_buffer->reader_page = reader;
1609 	rb_reset_reader_page(cpu_buffer);
1610 
1611 	goto again;
1612 
1613  out:
1614 	spin_unlock_irqrestore(&cpu_buffer->lock, flags);
1615 
1616 	return reader;
1617 }
1618 
1619 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1620 {
1621 	struct ring_buffer_event *event;
1622 	struct buffer_page *reader;
1623 	unsigned length;
1624 
1625 	reader = rb_get_reader_page(cpu_buffer);
1626 
1627 	/* This function should not be called when buffer is empty */
1628 	BUG_ON(!reader);
1629 
1630 	event = rb_reader_event(cpu_buffer);
1631 
1632 	if (event->type == RINGBUF_TYPE_DATA)
1633 		cpu_buffer->entries--;
1634 
1635 	rb_update_read_stamp(cpu_buffer, event);
1636 
1637 	length = rb_event_length(event);
1638 	cpu_buffer->reader_page->read += length;
1639 }
1640 
1641 static void rb_advance_iter(struct ring_buffer_iter *iter)
1642 {
1643 	struct ring_buffer *buffer;
1644 	struct ring_buffer_per_cpu *cpu_buffer;
1645 	struct ring_buffer_event *event;
1646 	unsigned length;
1647 
1648 	cpu_buffer = iter->cpu_buffer;
1649 	buffer = cpu_buffer->buffer;
1650 
1651 	/*
1652 	 * Check if we are at the end of the buffer.
1653 	 */
1654 	if (iter->head >= rb_page_size(iter->head_page)) {
1655 		BUG_ON(iter->head_page == cpu_buffer->commit_page);
1656 		rb_inc_iter(iter);
1657 		return;
1658 	}
1659 
1660 	event = rb_iter_head_event(iter);
1661 
1662 	length = rb_event_length(event);
1663 
1664 	/*
1665 	 * This should not be called to advance the header if we are
1666 	 * at the tail of the buffer.
1667 	 */
1668 	BUG_ON((iter->head_page == cpu_buffer->commit_page) &&
1669 	       (iter->head + length > rb_commit_index(cpu_buffer)));
1670 
1671 	rb_update_iter_read_stamp(iter, event);
1672 
1673 	iter->head += length;
1674 
1675 	/* check for end of page padding */
1676 	if ((iter->head >= rb_page_size(iter->head_page)) &&
1677 	    (iter->head_page != cpu_buffer->commit_page))
1678 		rb_advance_iter(iter);
1679 }
1680 
1681 /**
1682  * ring_buffer_peek - peek at the next event to be read
1683  * @buffer: The ring buffer to read
1684  * @cpu: The cpu to peak at
1685  * @ts: The timestamp counter of this event.
1686  *
1687  * This will return the event that will be read next, but does
1688  * not consume the data.
1689  */
1690 struct ring_buffer_event *
1691 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1692 {
1693 	struct ring_buffer_per_cpu *cpu_buffer;
1694 	struct ring_buffer_event *event;
1695 	struct buffer_page *reader;
1696 	int nr_loops = 0;
1697 
1698 	if (!cpu_isset(cpu, buffer->cpumask))
1699 		return NULL;
1700 
1701 	cpu_buffer = buffer->buffers[cpu];
1702 
1703  again:
1704 	/*
1705 	 * We repeat when a timestamp is encountered. It is possible
1706 	 * to get multiple timestamps from an interrupt entering just
1707 	 * as one timestamp is about to be written. The max times
1708 	 * that this can happen is the number of nested interrupts we
1709 	 * can have.  Nesting 10 deep of interrupts is clearly
1710 	 * an anomaly.
1711 	 */
1712 	if (unlikely(++nr_loops > 10)) {
1713 		RB_WARN_ON(cpu_buffer, 1);
1714 		return NULL;
1715 	}
1716 
1717 	reader = rb_get_reader_page(cpu_buffer);
1718 	if (!reader)
1719 		return NULL;
1720 
1721 	event = rb_reader_event(cpu_buffer);
1722 
1723 	switch (event->type) {
1724 	case RINGBUF_TYPE_PADDING:
1725 		RB_WARN_ON(cpu_buffer, 1);
1726 		rb_advance_reader(cpu_buffer);
1727 		return NULL;
1728 
1729 	case RINGBUF_TYPE_TIME_EXTEND:
1730 		/* Internal data, OK to advance */
1731 		rb_advance_reader(cpu_buffer);
1732 		goto again;
1733 
1734 	case RINGBUF_TYPE_TIME_STAMP:
1735 		/* FIXME: not implemented */
1736 		rb_advance_reader(cpu_buffer);
1737 		goto again;
1738 
1739 	case RINGBUF_TYPE_DATA:
1740 		if (ts) {
1741 			*ts = cpu_buffer->read_stamp + event->time_delta;
1742 			ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1743 		}
1744 		return event;
1745 
1746 	default:
1747 		BUG();
1748 	}
1749 
1750 	return NULL;
1751 }
1752 
1753 /**
1754  * ring_buffer_iter_peek - peek at the next event to be read
1755  * @iter: The ring buffer iterator
1756  * @ts: The timestamp counter of this event.
1757  *
1758  * This will return the event that will be read next, but does
1759  * not increment the iterator.
1760  */
1761 struct ring_buffer_event *
1762 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1763 {
1764 	struct ring_buffer *buffer;
1765 	struct ring_buffer_per_cpu *cpu_buffer;
1766 	struct ring_buffer_event *event;
1767 	int nr_loops = 0;
1768 
1769 	if (ring_buffer_iter_empty(iter))
1770 		return NULL;
1771 
1772 	cpu_buffer = iter->cpu_buffer;
1773 	buffer = cpu_buffer->buffer;
1774 
1775  again:
1776 	/*
1777 	 * We repeat when a timestamp is encountered. It is possible
1778 	 * to get multiple timestamps from an interrupt entering just
1779 	 * as one timestamp is about to be written. The max times
1780 	 * that this can happen is the number of nested interrupts we
1781 	 * can have. Nesting 10 deep of interrupts is clearly
1782 	 * an anomaly.
1783 	 */
1784 	if (unlikely(++nr_loops > 10)) {
1785 		RB_WARN_ON(cpu_buffer, 1);
1786 		return NULL;
1787 	}
1788 
1789 	if (rb_per_cpu_empty(cpu_buffer))
1790 		return NULL;
1791 
1792 	event = rb_iter_head_event(iter);
1793 
1794 	switch (event->type) {
1795 	case RINGBUF_TYPE_PADDING:
1796 		rb_inc_iter(iter);
1797 		goto again;
1798 
1799 	case RINGBUF_TYPE_TIME_EXTEND:
1800 		/* Internal data, OK to advance */
1801 		rb_advance_iter(iter);
1802 		goto again;
1803 
1804 	case RINGBUF_TYPE_TIME_STAMP:
1805 		/* FIXME: not implemented */
1806 		rb_advance_iter(iter);
1807 		goto again;
1808 
1809 	case RINGBUF_TYPE_DATA:
1810 		if (ts) {
1811 			*ts = iter->read_stamp + event->time_delta;
1812 			ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1813 		}
1814 		return event;
1815 
1816 	default:
1817 		BUG();
1818 	}
1819 
1820 	return NULL;
1821 }
1822 
1823 /**
1824  * ring_buffer_consume - return an event and consume it
1825  * @buffer: The ring buffer to get the next event from
1826  *
1827  * Returns the next event in the ring buffer, and that event is consumed.
1828  * Meaning, that sequential reads will keep returning a different event,
1829  * and eventually empty the ring buffer if the producer is slower.
1830  */
1831 struct ring_buffer_event *
1832 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
1833 {
1834 	struct ring_buffer_per_cpu *cpu_buffer;
1835 	struct ring_buffer_event *event;
1836 
1837 	if (!cpu_isset(cpu, buffer->cpumask))
1838 		return NULL;
1839 
1840 	event = ring_buffer_peek(buffer, cpu, ts);
1841 	if (!event)
1842 		return NULL;
1843 
1844 	cpu_buffer = buffer->buffers[cpu];
1845 	rb_advance_reader(cpu_buffer);
1846 
1847 	return event;
1848 }
1849 
1850 /**
1851  * ring_buffer_read_start - start a non consuming read of the buffer
1852  * @buffer: The ring buffer to read from
1853  * @cpu: The cpu buffer to iterate over
1854  *
1855  * This starts up an iteration through the buffer. It also disables
1856  * the recording to the buffer until the reading is finished.
1857  * This prevents the reading from being corrupted. This is not
1858  * a consuming read, so a producer is not expected.
1859  *
1860  * Must be paired with ring_buffer_finish.
1861  */
1862 struct ring_buffer_iter *
1863 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
1864 {
1865 	struct ring_buffer_per_cpu *cpu_buffer;
1866 	struct ring_buffer_iter *iter;
1867 	unsigned long flags;
1868 
1869 	if (!cpu_isset(cpu, buffer->cpumask))
1870 		return NULL;
1871 
1872 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
1873 	if (!iter)
1874 		return NULL;
1875 
1876 	cpu_buffer = buffer->buffers[cpu];
1877 
1878 	iter->cpu_buffer = cpu_buffer;
1879 
1880 	atomic_inc(&cpu_buffer->record_disabled);
1881 	synchronize_sched();
1882 
1883 	spin_lock_irqsave(&cpu_buffer->lock, flags);
1884 	ring_buffer_iter_reset(iter);
1885 	spin_unlock_irqrestore(&cpu_buffer->lock, flags);
1886 
1887 	return iter;
1888 }
1889 
1890 /**
1891  * ring_buffer_finish - finish reading the iterator of the buffer
1892  * @iter: The iterator retrieved by ring_buffer_start
1893  *
1894  * This re-enables the recording to the buffer, and frees the
1895  * iterator.
1896  */
1897 void
1898 ring_buffer_read_finish(struct ring_buffer_iter *iter)
1899 {
1900 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1901 
1902 	atomic_dec(&cpu_buffer->record_disabled);
1903 	kfree(iter);
1904 }
1905 
1906 /**
1907  * ring_buffer_read - read the next item in the ring buffer by the iterator
1908  * @iter: The ring buffer iterator
1909  * @ts: The time stamp of the event read.
1910  *
1911  * This reads the next event in the ring buffer and increments the iterator.
1912  */
1913 struct ring_buffer_event *
1914 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
1915 {
1916 	struct ring_buffer_event *event;
1917 
1918 	event = ring_buffer_iter_peek(iter, ts);
1919 	if (!event)
1920 		return NULL;
1921 
1922 	rb_advance_iter(iter);
1923 
1924 	return event;
1925 }
1926 
1927 /**
1928  * ring_buffer_size - return the size of the ring buffer (in bytes)
1929  * @buffer: The ring buffer.
1930  */
1931 unsigned long ring_buffer_size(struct ring_buffer *buffer)
1932 {
1933 	return BUF_PAGE_SIZE * buffer->pages;
1934 }
1935 
1936 static void
1937 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
1938 {
1939 	cpu_buffer->head_page
1940 		= list_entry(cpu_buffer->pages.next, struct buffer_page, list);
1941 	local_set(&cpu_buffer->head_page->write, 0);
1942 	local_set(&cpu_buffer->head_page->commit, 0);
1943 
1944 	cpu_buffer->head_page->read = 0;
1945 
1946 	cpu_buffer->tail_page = cpu_buffer->head_page;
1947 	cpu_buffer->commit_page = cpu_buffer->head_page;
1948 
1949 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1950 	local_set(&cpu_buffer->reader_page->write, 0);
1951 	local_set(&cpu_buffer->reader_page->commit, 0);
1952 	cpu_buffer->reader_page->read = 0;
1953 
1954 	cpu_buffer->overrun = 0;
1955 	cpu_buffer->entries = 0;
1956 }
1957 
1958 /**
1959  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
1960  * @buffer: The ring buffer to reset a per cpu buffer of
1961  * @cpu: The CPU buffer to be reset
1962  */
1963 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
1964 {
1965 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
1966 	unsigned long flags;
1967 
1968 	if (!cpu_isset(cpu, buffer->cpumask))
1969 		return;
1970 
1971 	spin_lock_irqsave(&cpu_buffer->lock, flags);
1972 
1973 	rb_reset_cpu(cpu_buffer);
1974 
1975 	spin_unlock_irqrestore(&cpu_buffer->lock, flags);
1976 }
1977 
1978 /**
1979  * ring_buffer_reset - reset a ring buffer
1980  * @buffer: The ring buffer to reset all cpu buffers
1981  */
1982 void ring_buffer_reset(struct ring_buffer *buffer)
1983 {
1984 	int cpu;
1985 
1986 	for_each_buffer_cpu(buffer, cpu)
1987 		ring_buffer_reset_cpu(buffer, cpu);
1988 }
1989 
1990 /**
1991  * rind_buffer_empty - is the ring buffer empty?
1992  * @buffer: The ring buffer to test
1993  */
1994 int ring_buffer_empty(struct ring_buffer *buffer)
1995 {
1996 	struct ring_buffer_per_cpu *cpu_buffer;
1997 	int cpu;
1998 
1999 	/* yes this is racy, but if you don't like the race, lock the buffer */
2000 	for_each_buffer_cpu(buffer, cpu) {
2001 		cpu_buffer = buffer->buffers[cpu];
2002 		if (!rb_per_cpu_empty(cpu_buffer))
2003 			return 0;
2004 	}
2005 	return 1;
2006 }
2007 
2008 /**
2009  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2010  * @buffer: The ring buffer
2011  * @cpu: The CPU buffer to test
2012  */
2013 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2014 {
2015 	struct ring_buffer_per_cpu *cpu_buffer;
2016 
2017 	if (!cpu_isset(cpu, buffer->cpumask))
2018 		return 1;
2019 
2020 	cpu_buffer = buffer->buffers[cpu];
2021 	return rb_per_cpu_empty(cpu_buffer);
2022 }
2023 
2024 /**
2025  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2026  * @buffer_a: One buffer to swap with
2027  * @buffer_b: The other buffer to swap with
2028  *
2029  * This function is useful for tracers that want to take a "snapshot"
2030  * of a CPU buffer and has another back up buffer lying around.
2031  * it is expected that the tracer handles the cpu buffer not being
2032  * used at the moment.
2033  */
2034 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2035 			 struct ring_buffer *buffer_b, int cpu)
2036 {
2037 	struct ring_buffer_per_cpu *cpu_buffer_a;
2038 	struct ring_buffer_per_cpu *cpu_buffer_b;
2039 
2040 	if (!cpu_isset(cpu, buffer_a->cpumask) ||
2041 	    !cpu_isset(cpu, buffer_b->cpumask))
2042 		return -EINVAL;
2043 
2044 	/* At least make sure the two buffers are somewhat the same */
2045 	if (buffer_a->size != buffer_b->size ||
2046 	    buffer_a->pages != buffer_b->pages)
2047 		return -EINVAL;
2048 
2049 	cpu_buffer_a = buffer_a->buffers[cpu];
2050 	cpu_buffer_b = buffer_b->buffers[cpu];
2051 
2052 	/*
2053 	 * We can't do a synchronize_sched here because this
2054 	 * function can be called in atomic context.
2055 	 * Normally this will be called from the same CPU as cpu.
2056 	 * If not it's up to the caller to protect this.
2057 	 */
2058 	atomic_inc(&cpu_buffer_a->record_disabled);
2059 	atomic_inc(&cpu_buffer_b->record_disabled);
2060 
2061 	buffer_a->buffers[cpu] = cpu_buffer_b;
2062 	buffer_b->buffers[cpu] = cpu_buffer_a;
2063 
2064 	cpu_buffer_b->buffer = buffer_a;
2065 	cpu_buffer_a->buffer = buffer_b;
2066 
2067 	atomic_dec(&cpu_buffer_a->record_disabled);
2068 	atomic_dec(&cpu_buffer_b->record_disabled);
2069 
2070 	return 0;
2071 }
2072 
2073