1 /* 2 * Generic ring buffer 3 * 4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 5 */ 6 #include <linux/ftrace_event.h> 7 #include <linux/ring_buffer.h> 8 #include <linux/trace_clock.h> 9 #include <linux/trace_seq.h> 10 #include <linux/spinlock.h> 11 #include <linux/irq_work.h> 12 #include <linux/uaccess.h> 13 #include <linux/hardirq.h> 14 #include <linux/kthread.h> /* for self test */ 15 #include <linux/kmemcheck.h> 16 #include <linux/module.h> 17 #include <linux/percpu.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/slab.h> 21 #include <linux/init.h> 22 #include <linux/hash.h> 23 #include <linux/list.h> 24 #include <linux/cpu.h> 25 26 #include <asm/local.h> 27 28 static void update_pages_handler(struct work_struct *work); 29 30 /* 31 * The ring buffer header is special. We must manually up keep it. 32 */ 33 int ring_buffer_print_entry_header(struct trace_seq *s) 34 { 35 trace_seq_puts(s, "# compressed entry header\n"); 36 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 37 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 38 trace_seq_puts(s, "\tarray : 32 bits\n"); 39 trace_seq_putc(s, '\n'); 40 trace_seq_printf(s, "\tpadding : type == %d\n", 41 RINGBUF_TYPE_PADDING); 42 trace_seq_printf(s, "\ttime_extend : type == %d\n", 43 RINGBUF_TYPE_TIME_EXTEND); 44 trace_seq_printf(s, "\tdata max type_len == %d\n", 45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 46 47 return !trace_seq_has_overflowed(s); 48 } 49 50 /* 51 * The ring buffer is made up of a list of pages. A separate list of pages is 52 * allocated for each CPU. A writer may only write to a buffer that is 53 * associated with the CPU it is currently executing on. A reader may read 54 * from any per cpu buffer. 55 * 56 * The reader is special. For each per cpu buffer, the reader has its own 57 * reader page. When a reader has read the entire reader page, this reader 58 * page is swapped with another page in the ring buffer. 59 * 60 * Now, as long as the writer is off the reader page, the reader can do what 61 * ever it wants with that page. The writer will never write to that page 62 * again (as long as it is out of the ring buffer). 63 * 64 * Here's some silly ASCII art. 65 * 66 * +------+ 67 * |reader| RING BUFFER 68 * |page | 69 * +------+ +---+ +---+ +---+ 70 * | |-->| |-->| | 71 * +---+ +---+ +---+ 72 * ^ | 73 * | | 74 * +---------------+ 75 * 76 * 77 * +------+ 78 * |reader| RING BUFFER 79 * |page |------------------v 80 * +------+ +---+ +---+ +---+ 81 * | |-->| |-->| | 82 * +---+ +---+ +---+ 83 * ^ | 84 * | | 85 * +---------------+ 86 * 87 * 88 * +------+ 89 * |reader| RING BUFFER 90 * |page |------------------v 91 * +------+ +---+ +---+ +---+ 92 * ^ | |-->| |-->| | 93 * | +---+ +---+ +---+ 94 * | | 95 * | | 96 * +------------------------------+ 97 * 98 * 99 * +------+ 100 * |buffer| RING BUFFER 101 * |page |------------------v 102 * +------+ +---+ +---+ +---+ 103 * ^ | | | |-->| | 104 * | New +---+ +---+ +---+ 105 * | Reader------^ | 106 * | page | 107 * +------------------------------+ 108 * 109 * 110 * After we make this swap, the reader can hand this page off to the splice 111 * code and be done with it. It can even allocate a new page if it needs to 112 * and swap that into the ring buffer. 113 * 114 * We will be using cmpxchg soon to make all this lockless. 115 * 116 */ 117 118 /* 119 * A fast way to enable or disable all ring buffers is to 120 * call tracing_on or tracing_off. Turning off the ring buffers 121 * prevents all ring buffers from being recorded to. 122 * Turning this switch on, makes it OK to write to the 123 * ring buffer, if the ring buffer is enabled itself. 124 * 125 * There's three layers that must be on in order to write 126 * to the ring buffer. 127 * 128 * 1) This global flag must be set. 129 * 2) The ring buffer must be enabled for recording. 130 * 3) The per cpu buffer must be enabled for recording. 131 * 132 * In case of an anomaly, this global flag has a bit set that 133 * will permantly disable all ring buffers. 134 */ 135 136 /* 137 * Global flag to disable all recording to ring buffers 138 * This has two bits: ON, DISABLED 139 * 140 * ON DISABLED 141 * ---- ---------- 142 * 0 0 : ring buffers are off 143 * 1 0 : ring buffers are on 144 * X 1 : ring buffers are permanently disabled 145 */ 146 147 enum { 148 RB_BUFFERS_ON_BIT = 0, 149 RB_BUFFERS_DISABLED_BIT = 1, 150 }; 151 152 enum { 153 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT, 154 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT, 155 }; 156 157 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON; 158 159 /* Used for individual buffers (after the counter) */ 160 #define RB_BUFFER_OFF (1 << 20) 161 162 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 163 164 /** 165 * tracing_off_permanent - permanently disable ring buffers 166 * 167 * This function, once called, will disable all ring buffers 168 * permanently. 169 */ 170 void tracing_off_permanent(void) 171 { 172 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags); 173 } 174 175 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 176 #define RB_ALIGNMENT 4U 177 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 178 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 179 180 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 181 # define RB_FORCE_8BYTE_ALIGNMENT 0 182 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 183 #else 184 # define RB_FORCE_8BYTE_ALIGNMENT 1 185 # define RB_ARCH_ALIGNMENT 8U 186 #endif 187 188 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 189 190 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 191 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 192 193 enum { 194 RB_LEN_TIME_EXTEND = 8, 195 RB_LEN_TIME_STAMP = 16, 196 }; 197 198 #define skip_time_extend(event) \ 199 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 200 201 static inline int rb_null_event(struct ring_buffer_event *event) 202 { 203 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 204 } 205 206 static void rb_event_set_padding(struct ring_buffer_event *event) 207 { 208 /* padding has a NULL time_delta */ 209 event->type_len = RINGBUF_TYPE_PADDING; 210 event->time_delta = 0; 211 } 212 213 static unsigned 214 rb_event_data_length(struct ring_buffer_event *event) 215 { 216 unsigned length; 217 218 if (event->type_len) 219 length = event->type_len * RB_ALIGNMENT; 220 else 221 length = event->array[0]; 222 return length + RB_EVNT_HDR_SIZE; 223 } 224 225 /* 226 * Return the length of the given event. Will return 227 * the length of the time extend if the event is a 228 * time extend. 229 */ 230 static inline unsigned 231 rb_event_length(struct ring_buffer_event *event) 232 { 233 switch (event->type_len) { 234 case RINGBUF_TYPE_PADDING: 235 if (rb_null_event(event)) 236 /* undefined */ 237 return -1; 238 return event->array[0] + RB_EVNT_HDR_SIZE; 239 240 case RINGBUF_TYPE_TIME_EXTEND: 241 return RB_LEN_TIME_EXTEND; 242 243 case RINGBUF_TYPE_TIME_STAMP: 244 return RB_LEN_TIME_STAMP; 245 246 case RINGBUF_TYPE_DATA: 247 return rb_event_data_length(event); 248 default: 249 BUG(); 250 } 251 /* not hit */ 252 return 0; 253 } 254 255 /* 256 * Return total length of time extend and data, 257 * or just the event length for all other events. 258 */ 259 static inline unsigned 260 rb_event_ts_length(struct ring_buffer_event *event) 261 { 262 unsigned len = 0; 263 264 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 265 /* time extends include the data event after it */ 266 len = RB_LEN_TIME_EXTEND; 267 event = skip_time_extend(event); 268 } 269 return len + rb_event_length(event); 270 } 271 272 /** 273 * ring_buffer_event_length - return the length of the event 274 * @event: the event to get the length of 275 * 276 * Returns the size of the data load of a data event. 277 * If the event is something other than a data event, it 278 * returns the size of the event itself. With the exception 279 * of a TIME EXTEND, where it still returns the size of the 280 * data load of the data event after it. 281 */ 282 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 283 { 284 unsigned length; 285 286 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 287 event = skip_time_extend(event); 288 289 length = rb_event_length(event); 290 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 291 return length; 292 length -= RB_EVNT_HDR_SIZE; 293 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 294 length -= sizeof(event->array[0]); 295 return length; 296 } 297 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 298 299 /* inline for ring buffer fast paths */ 300 static void * 301 rb_event_data(struct ring_buffer_event *event) 302 { 303 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 304 event = skip_time_extend(event); 305 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 306 /* If length is in len field, then array[0] has the data */ 307 if (event->type_len) 308 return (void *)&event->array[0]; 309 /* Otherwise length is in array[0] and array[1] has the data */ 310 return (void *)&event->array[1]; 311 } 312 313 /** 314 * ring_buffer_event_data - return the data of the event 315 * @event: the event to get the data from 316 */ 317 void *ring_buffer_event_data(struct ring_buffer_event *event) 318 { 319 return rb_event_data(event); 320 } 321 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 322 323 #define for_each_buffer_cpu(buffer, cpu) \ 324 for_each_cpu(cpu, buffer->cpumask) 325 326 #define TS_SHIFT 27 327 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 328 #define TS_DELTA_TEST (~TS_MASK) 329 330 /* Flag when events were overwritten */ 331 #define RB_MISSED_EVENTS (1 << 31) 332 /* Missed count stored at end */ 333 #define RB_MISSED_STORED (1 << 30) 334 335 struct buffer_data_page { 336 u64 time_stamp; /* page time stamp */ 337 local_t commit; /* write committed index */ 338 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 339 }; 340 341 /* 342 * Note, the buffer_page list must be first. The buffer pages 343 * are allocated in cache lines, which means that each buffer 344 * page will be at the beginning of a cache line, and thus 345 * the least significant bits will be zero. We use this to 346 * add flags in the list struct pointers, to make the ring buffer 347 * lockless. 348 */ 349 struct buffer_page { 350 struct list_head list; /* list of buffer pages */ 351 local_t write; /* index for next write */ 352 unsigned read; /* index for next read */ 353 local_t entries; /* entries on this page */ 354 unsigned long real_end; /* real end of data */ 355 struct buffer_data_page *page; /* Actual data page */ 356 }; 357 358 /* 359 * The buffer page counters, write and entries, must be reset 360 * atomically when crossing page boundaries. To synchronize this 361 * update, two counters are inserted into the number. One is 362 * the actual counter for the write position or count on the page. 363 * 364 * The other is a counter of updaters. Before an update happens 365 * the update partition of the counter is incremented. This will 366 * allow the updater to update the counter atomically. 367 * 368 * The counter is 20 bits, and the state data is 12. 369 */ 370 #define RB_WRITE_MASK 0xfffff 371 #define RB_WRITE_INTCNT (1 << 20) 372 373 static void rb_init_page(struct buffer_data_page *bpage) 374 { 375 local_set(&bpage->commit, 0); 376 } 377 378 /** 379 * ring_buffer_page_len - the size of data on the page. 380 * @page: The page to read 381 * 382 * Returns the amount of data on the page, including buffer page header. 383 */ 384 size_t ring_buffer_page_len(void *page) 385 { 386 return local_read(&((struct buffer_data_page *)page)->commit) 387 + BUF_PAGE_HDR_SIZE; 388 } 389 390 /* 391 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 392 * this issue out. 393 */ 394 static void free_buffer_page(struct buffer_page *bpage) 395 { 396 free_page((unsigned long)bpage->page); 397 kfree(bpage); 398 } 399 400 /* 401 * We need to fit the time_stamp delta into 27 bits. 402 */ 403 static inline int test_time_stamp(u64 delta) 404 { 405 if (delta & TS_DELTA_TEST) 406 return 1; 407 return 0; 408 } 409 410 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 411 412 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 413 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 414 415 int ring_buffer_print_page_header(struct trace_seq *s) 416 { 417 struct buffer_data_page field; 418 419 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 420 "offset:0;\tsize:%u;\tsigned:%u;\n", 421 (unsigned int)sizeof(field.time_stamp), 422 (unsigned int)is_signed_type(u64)); 423 424 trace_seq_printf(s, "\tfield: local_t commit;\t" 425 "offset:%u;\tsize:%u;\tsigned:%u;\n", 426 (unsigned int)offsetof(typeof(field), commit), 427 (unsigned int)sizeof(field.commit), 428 (unsigned int)is_signed_type(long)); 429 430 trace_seq_printf(s, "\tfield: int overwrite;\t" 431 "offset:%u;\tsize:%u;\tsigned:%u;\n", 432 (unsigned int)offsetof(typeof(field), commit), 433 1, 434 (unsigned int)is_signed_type(long)); 435 436 trace_seq_printf(s, "\tfield: char data;\t" 437 "offset:%u;\tsize:%u;\tsigned:%u;\n", 438 (unsigned int)offsetof(typeof(field), data), 439 (unsigned int)BUF_PAGE_SIZE, 440 (unsigned int)is_signed_type(char)); 441 442 return !trace_seq_has_overflowed(s); 443 } 444 445 struct rb_irq_work { 446 struct irq_work work; 447 wait_queue_head_t waiters; 448 wait_queue_head_t full_waiters; 449 bool waiters_pending; 450 bool full_waiters_pending; 451 bool wakeup_full; 452 }; 453 454 /* 455 * head_page == tail_page && head == tail then buffer is empty. 456 */ 457 struct ring_buffer_per_cpu { 458 int cpu; 459 atomic_t record_disabled; 460 struct ring_buffer *buffer; 461 raw_spinlock_t reader_lock; /* serialize readers */ 462 arch_spinlock_t lock; 463 struct lock_class_key lock_key; 464 unsigned int nr_pages; 465 struct list_head *pages; 466 struct buffer_page *head_page; /* read from head */ 467 struct buffer_page *tail_page; /* write to tail */ 468 struct buffer_page *commit_page; /* committed pages */ 469 struct buffer_page *reader_page; 470 unsigned long lost_events; 471 unsigned long last_overrun; 472 local_t entries_bytes; 473 local_t entries; 474 local_t overrun; 475 local_t commit_overrun; 476 local_t dropped_events; 477 local_t committing; 478 local_t commits; 479 unsigned long read; 480 unsigned long read_bytes; 481 u64 write_stamp; 482 u64 read_stamp; 483 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 484 int nr_pages_to_update; 485 struct list_head new_pages; /* new pages to add */ 486 struct work_struct update_pages_work; 487 struct completion update_done; 488 489 struct rb_irq_work irq_work; 490 }; 491 492 struct ring_buffer { 493 unsigned flags; 494 int cpus; 495 atomic_t record_disabled; 496 atomic_t resize_disabled; 497 cpumask_var_t cpumask; 498 499 struct lock_class_key *reader_lock_key; 500 501 struct mutex mutex; 502 503 struct ring_buffer_per_cpu **buffers; 504 505 #ifdef CONFIG_HOTPLUG_CPU 506 struct notifier_block cpu_notify; 507 #endif 508 u64 (*clock)(void); 509 510 struct rb_irq_work irq_work; 511 }; 512 513 struct ring_buffer_iter { 514 struct ring_buffer_per_cpu *cpu_buffer; 515 unsigned long head; 516 struct buffer_page *head_page; 517 struct buffer_page *cache_reader_page; 518 unsigned long cache_read; 519 u64 read_stamp; 520 }; 521 522 /* 523 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 524 * 525 * Schedules a delayed work to wake up any task that is blocked on the 526 * ring buffer waiters queue. 527 */ 528 static void rb_wake_up_waiters(struct irq_work *work) 529 { 530 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 531 532 wake_up_all(&rbwork->waiters); 533 if (rbwork->wakeup_full) { 534 rbwork->wakeup_full = false; 535 wake_up_all(&rbwork->full_waiters); 536 } 537 } 538 539 /** 540 * ring_buffer_wait - wait for input to the ring buffer 541 * @buffer: buffer to wait on 542 * @cpu: the cpu buffer to wait on 543 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS 544 * 545 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 546 * as data is added to any of the @buffer's cpu buffers. Otherwise 547 * it will wait for data to be added to a specific cpu buffer. 548 */ 549 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full) 550 { 551 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer); 552 DEFINE_WAIT(wait); 553 struct rb_irq_work *work; 554 int ret = 0; 555 556 /* 557 * Depending on what the caller is waiting for, either any 558 * data in any cpu buffer, or a specific buffer, put the 559 * caller on the appropriate wait queue. 560 */ 561 if (cpu == RING_BUFFER_ALL_CPUS) { 562 work = &buffer->irq_work; 563 /* Full only makes sense on per cpu reads */ 564 full = false; 565 } else { 566 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 567 return -ENODEV; 568 cpu_buffer = buffer->buffers[cpu]; 569 work = &cpu_buffer->irq_work; 570 } 571 572 573 while (true) { 574 if (full) 575 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE); 576 else 577 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 578 579 /* 580 * The events can happen in critical sections where 581 * checking a work queue can cause deadlocks. 582 * After adding a task to the queue, this flag is set 583 * only to notify events to try to wake up the queue 584 * using irq_work. 585 * 586 * We don't clear it even if the buffer is no longer 587 * empty. The flag only causes the next event to run 588 * irq_work to do the work queue wake up. The worse 589 * that can happen if we race with !trace_empty() is that 590 * an event will cause an irq_work to try to wake up 591 * an empty queue. 592 * 593 * There's no reason to protect this flag either, as 594 * the work queue and irq_work logic will do the necessary 595 * synchronization for the wake ups. The only thing 596 * that is necessary is that the wake up happens after 597 * a task has been queued. It's OK for spurious wake ups. 598 */ 599 if (full) 600 work->full_waiters_pending = true; 601 else 602 work->waiters_pending = true; 603 604 if (signal_pending(current)) { 605 ret = -EINTR; 606 break; 607 } 608 609 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) 610 break; 611 612 if (cpu != RING_BUFFER_ALL_CPUS && 613 !ring_buffer_empty_cpu(buffer, cpu)) { 614 unsigned long flags; 615 bool pagebusy; 616 617 if (!full) 618 break; 619 620 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 621 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 622 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 623 624 if (!pagebusy) 625 break; 626 } 627 628 schedule(); 629 } 630 631 if (full) 632 finish_wait(&work->full_waiters, &wait); 633 else 634 finish_wait(&work->waiters, &wait); 635 636 return ret; 637 } 638 639 /** 640 * ring_buffer_poll_wait - poll on buffer input 641 * @buffer: buffer to wait on 642 * @cpu: the cpu buffer to wait on 643 * @filp: the file descriptor 644 * @poll_table: The poll descriptor 645 * 646 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 647 * as data is added to any of the @buffer's cpu buffers. Otherwise 648 * it will wait for data to be added to a specific cpu buffer. 649 * 650 * Returns POLLIN | POLLRDNORM if data exists in the buffers, 651 * zero otherwise. 652 */ 653 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu, 654 struct file *filp, poll_table *poll_table) 655 { 656 struct ring_buffer_per_cpu *cpu_buffer; 657 struct rb_irq_work *work; 658 659 if (cpu == RING_BUFFER_ALL_CPUS) 660 work = &buffer->irq_work; 661 else { 662 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 663 return -EINVAL; 664 665 cpu_buffer = buffer->buffers[cpu]; 666 work = &cpu_buffer->irq_work; 667 } 668 669 poll_wait(filp, &work->waiters, poll_table); 670 work->waiters_pending = true; 671 /* 672 * There's a tight race between setting the waiters_pending and 673 * checking if the ring buffer is empty. Once the waiters_pending bit 674 * is set, the next event will wake the task up, but we can get stuck 675 * if there's only a single event in. 676 * 677 * FIXME: Ideally, we need a memory barrier on the writer side as well, 678 * but adding a memory barrier to all events will cause too much of a 679 * performance hit in the fast path. We only need a memory barrier when 680 * the buffer goes from empty to having content. But as this race is 681 * extremely small, and it's not a problem if another event comes in, we 682 * will fix it later. 683 */ 684 smp_mb(); 685 686 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 687 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 688 return POLLIN | POLLRDNORM; 689 return 0; 690 } 691 692 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 693 #define RB_WARN_ON(b, cond) \ 694 ({ \ 695 int _____ret = unlikely(cond); \ 696 if (_____ret) { \ 697 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 698 struct ring_buffer_per_cpu *__b = \ 699 (void *)b; \ 700 atomic_inc(&__b->buffer->record_disabled); \ 701 } else \ 702 atomic_inc(&b->record_disabled); \ 703 WARN_ON(1); \ 704 } \ 705 _____ret; \ 706 }) 707 708 /* Up this if you want to test the TIME_EXTENTS and normalization */ 709 #define DEBUG_SHIFT 0 710 711 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 712 { 713 /* shift to debug/test normalization and TIME_EXTENTS */ 714 return buffer->clock() << DEBUG_SHIFT; 715 } 716 717 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 718 { 719 u64 time; 720 721 preempt_disable_notrace(); 722 time = rb_time_stamp(buffer); 723 preempt_enable_no_resched_notrace(); 724 725 return time; 726 } 727 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 728 729 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 730 int cpu, u64 *ts) 731 { 732 /* Just stupid testing the normalize function and deltas */ 733 *ts >>= DEBUG_SHIFT; 734 } 735 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 736 737 /* 738 * Making the ring buffer lockless makes things tricky. 739 * Although writes only happen on the CPU that they are on, 740 * and they only need to worry about interrupts. Reads can 741 * happen on any CPU. 742 * 743 * The reader page is always off the ring buffer, but when the 744 * reader finishes with a page, it needs to swap its page with 745 * a new one from the buffer. The reader needs to take from 746 * the head (writes go to the tail). But if a writer is in overwrite 747 * mode and wraps, it must push the head page forward. 748 * 749 * Here lies the problem. 750 * 751 * The reader must be careful to replace only the head page, and 752 * not another one. As described at the top of the file in the 753 * ASCII art, the reader sets its old page to point to the next 754 * page after head. It then sets the page after head to point to 755 * the old reader page. But if the writer moves the head page 756 * during this operation, the reader could end up with the tail. 757 * 758 * We use cmpxchg to help prevent this race. We also do something 759 * special with the page before head. We set the LSB to 1. 760 * 761 * When the writer must push the page forward, it will clear the 762 * bit that points to the head page, move the head, and then set 763 * the bit that points to the new head page. 764 * 765 * We also don't want an interrupt coming in and moving the head 766 * page on another writer. Thus we use the second LSB to catch 767 * that too. Thus: 768 * 769 * head->list->prev->next bit 1 bit 0 770 * ------- ------- 771 * Normal page 0 0 772 * Points to head page 0 1 773 * New head page 1 0 774 * 775 * Note we can not trust the prev pointer of the head page, because: 776 * 777 * +----+ +-----+ +-----+ 778 * | |------>| T |---X--->| N | 779 * | |<------| | | | 780 * +----+ +-----+ +-----+ 781 * ^ ^ | 782 * | +-----+ | | 783 * +----------| R |----------+ | 784 * | |<-----------+ 785 * +-----+ 786 * 787 * Key: ---X--> HEAD flag set in pointer 788 * T Tail page 789 * R Reader page 790 * N Next page 791 * 792 * (see __rb_reserve_next() to see where this happens) 793 * 794 * What the above shows is that the reader just swapped out 795 * the reader page with a page in the buffer, but before it 796 * could make the new header point back to the new page added 797 * it was preempted by a writer. The writer moved forward onto 798 * the new page added by the reader and is about to move forward 799 * again. 800 * 801 * You can see, it is legitimate for the previous pointer of 802 * the head (or any page) not to point back to itself. But only 803 * temporarially. 804 */ 805 806 #define RB_PAGE_NORMAL 0UL 807 #define RB_PAGE_HEAD 1UL 808 #define RB_PAGE_UPDATE 2UL 809 810 811 #define RB_FLAG_MASK 3UL 812 813 /* PAGE_MOVED is not part of the mask */ 814 #define RB_PAGE_MOVED 4UL 815 816 /* 817 * rb_list_head - remove any bit 818 */ 819 static struct list_head *rb_list_head(struct list_head *list) 820 { 821 unsigned long val = (unsigned long)list; 822 823 return (struct list_head *)(val & ~RB_FLAG_MASK); 824 } 825 826 /* 827 * rb_is_head_page - test if the given page is the head page 828 * 829 * Because the reader may move the head_page pointer, we can 830 * not trust what the head page is (it may be pointing to 831 * the reader page). But if the next page is a header page, 832 * its flags will be non zero. 833 */ 834 static inline int 835 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 836 struct buffer_page *page, struct list_head *list) 837 { 838 unsigned long val; 839 840 val = (unsigned long)list->next; 841 842 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 843 return RB_PAGE_MOVED; 844 845 return val & RB_FLAG_MASK; 846 } 847 848 /* 849 * rb_is_reader_page 850 * 851 * The unique thing about the reader page, is that, if the 852 * writer is ever on it, the previous pointer never points 853 * back to the reader page. 854 */ 855 static int rb_is_reader_page(struct buffer_page *page) 856 { 857 struct list_head *list = page->list.prev; 858 859 return rb_list_head(list->next) != &page->list; 860 } 861 862 /* 863 * rb_set_list_to_head - set a list_head to be pointing to head. 864 */ 865 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 866 struct list_head *list) 867 { 868 unsigned long *ptr; 869 870 ptr = (unsigned long *)&list->next; 871 *ptr |= RB_PAGE_HEAD; 872 *ptr &= ~RB_PAGE_UPDATE; 873 } 874 875 /* 876 * rb_head_page_activate - sets up head page 877 */ 878 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 879 { 880 struct buffer_page *head; 881 882 head = cpu_buffer->head_page; 883 if (!head) 884 return; 885 886 /* 887 * Set the previous list pointer to have the HEAD flag. 888 */ 889 rb_set_list_to_head(cpu_buffer, head->list.prev); 890 } 891 892 static void rb_list_head_clear(struct list_head *list) 893 { 894 unsigned long *ptr = (unsigned long *)&list->next; 895 896 *ptr &= ~RB_FLAG_MASK; 897 } 898 899 /* 900 * rb_head_page_dactivate - clears head page ptr (for free list) 901 */ 902 static void 903 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 904 { 905 struct list_head *hd; 906 907 /* Go through the whole list and clear any pointers found. */ 908 rb_list_head_clear(cpu_buffer->pages); 909 910 list_for_each(hd, cpu_buffer->pages) 911 rb_list_head_clear(hd); 912 } 913 914 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 915 struct buffer_page *head, 916 struct buffer_page *prev, 917 int old_flag, int new_flag) 918 { 919 struct list_head *list; 920 unsigned long val = (unsigned long)&head->list; 921 unsigned long ret; 922 923 list = &prev->list; 924 925 val &= ~RB_FLAG_MASK; 926 927 ret = cmpxchg((unsigned long *)&list->next, 928 val | old_flag, val | new_flag); 929 930 /* check if the reader took the page */ 931 if ((ret & ~RB_FLAG_MASK) != val) 932 return RB_PAGE_MOVED; 933 934 return ret & RB_FLAG_MASK; 935 } 936 937 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 938 struct buffer_page *head, 939 struct buffer_page *prev, 940 int old_flag) 941 { 942 return rb_head_page_set(cpu_buffer, head, prev, 943 old_flag, RB_PAGE_UPDATE); 944 } 945 946 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 947 struct buffer_page *head, 948 struct buffer_page *prev, 949 int old_flag) 950 { 951 return rb_head_page_set(cpu_buffer, head, prev, 952 old_flag, RB_PAGE_HEAD); 953 } 954 955 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 956 struct buffer_page *head, 957 struct buffer_page *prev, 958 int old_flag) 959 { 960 return rb_head_page_set(cpu_buffer, head, prev, 961 old_flag, RB_PAGE_NORMAL); 962 } 963 964 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 965 struct buffer_page **bpage) 966 { 967 struct list_head *p = rb_list_head((*bpage)->list.next); 968 969 *bpage = list_entry(p, struct buffer_page, list); 970 } 971 972 static struct buffer_page * 973 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 974 { 975 struct buffer_page *head; 976 struct buffer_page *page; 977 struct list_head *list; 978 int i; 979 980 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 981 return NULL; 982 983 /* sanity check */ 984 list = cpu_buffer->pages; 985 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 986 return NULL; 987 988 page = head = cpu_buffer->head_page; 989 /* 990 * It is possible that the writer moves the header behind 991 * where we started, and we miss in one loop. 992 * A second loop should grab the header, but we'll do 993 * three loops just because I'm paranoid. 994 */ 995 for (i = 0; i < 3; i++) { 996 do { 997 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 998 cpu_buffer->head_page = page; 999 return page; 1000 } 1001 rb_inc_page(cpu_buffer, &page); 1002 } while (page != head); 1003 } 1004 1005 RB_WARN_ON(cpu_buffer, 1); 1006 1007 return NULL; 1008 } 1009 1010 static int rb_head_page_replace(struct buffer_page *old, 1011 struct buffer_page *new) 1012 { 1013 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1014 unsigned long val; 1015 unsigned long ret; 1016 1017 val = *ptr & ~RB_FLAG_MASK; 1018 val |= RB_PAGE_HEAD; 1019 1020 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 1021 1022 return ret == val; 1023 } 1024 1025 /* 1026 * rb_tail_page_update - move the tail page forward 1027 * 1028 * Returns 1 if moved tail page, 0 if someone else did. 1029 */ 1030 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1031 struct buffer_page *tail_page, 1032 struct buffer_page *next_page) 1033 { 1034 struct buffer_page *old_tail; 1035 unsigned long old_entries; 1036 unsigned long old_write; 1037 int ret = 0; 1038 1039 /* 1040 * The tail page now needs to be moved forward. 1041 * 1042 * We need to reset the tail page, but without messing 1043 * with possible erasing of data brought in by interrupts 1044 * that have moved the tail page and are currently on it. 1045 * 1046 * We add a counter to the write field to denote this. 1047 */ 1048 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1049 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1050 1051 /* 1052 * Just make sure we have seen our old_write and synchronize 1053 * with any interrupts that come in. 1054 */ 1055 barrier(); 1056 1057 /* 1058 * If the tail page is still the same as what we think 1059 * it is, then it is up to us to update the tail 1060 * pointer. 1061 */ 1062 if (tail_page == cpu_buffer->tail_page) { 1063 /* Zero the write counter */ 1064 unsigned long val = old_write & ~RB_WRITE_MASK; 1065 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1066 1067 /* 1068 * This will only succeed if an interrupt did 1069 * not come in and change it. In which case, we 1070 * do not want to modify it. 1071 * 1072 * We add (void) to let the compiler know that we do not care 1073 * about the return value of these functions. We use the 1074 * cmpxchg to only update if an interrupt did not already 1075 * do it for us. If the cmpxchg fails, we don't care. 1076 */ 1077 (void)local_cmpxchg(&next_page->write, old_write, val); 1078 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1079 1080 /* 1081 * No need to worry about races with clearing out the commit. 1082 * it only can increment when a commit takes place. But that 1083 * only happens in the outer most nested commit. 1084 */ 1085 local_set(&next_page->page->commit, 0); 1086 1087 old_tail = cmpxchg(&cpu_buffer->tail_page, 1088 tail_page, next_page); 1089 1090 if (old_tail == tail_page) 1091 ret = 1; 1092 } 1093 1094 return ret; 1095 } 1096 1097 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1098 struct buffer_page *bpage) 1099 { 1100 unsigned long val = (unsigned long)bpage; 1101 1102 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1103 return 1; 1104 1105 return 0; 1106 } 1107 1108 /** 1109 * rb_check_list - make sure a pointer to a list has the last bits zero 1110 */ 1111 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1112 struct list_head *list) 1113 { 1114 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1115 return 1; 1116 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1117 return 1; 1118 return 0; 1119 } 1120 1121 /** 1122 * rb_check_pages - integrity check of buffer pages 1123 * @cpu_buffer: CPU buffer with pages to test 1124 * 1125 * As a safety measure we check to make sure the data pages have not 1126 * been corrupted. 1127 */ 1128 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1129 { 1130 struct list_head *head = cpu_buffer->pages; 1131 struct buffer_page *bpage, *tmp; 1132 1133 /* Reset the head page if it exists */ 1134 if (cpu_buffer->head_page) 1135 rb_set_head_page(cpu_buffer); 1136 1137 rb_head_page_deactivate(cpu_buffer); 1138 1139 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1140 return -1; 1141 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1142 return -1; 1143 1144 if (rb_check_list(cpu_buffer, head)) 1145 return -1; 1146 1147 list_for_each_entry_safe(bpage, tmp, head, list) { 1148 if (RB_WARN_ON(cpu_buffer, 1149 bpage->list.next->prev != &bpage->list)) 1150 return -1; 1151 if (RB_WARN_ON(cpu_buffer, 1152 bpage->list.prev->next != &bpage->list)) 1153 return -1; 1154 if (rb_check_list(cpu_buffer, &bpage->list)) 1155 return -1; 1156 } 1157 1158 rb_head_page_activate(cpu_buffer); 1159 1160 return 0; 1161 } 1162 1163 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu) 1164 { 1165 int i; 1166 struct buffer_page *bpage, *tmp; 1167 1168 for (i = 0; i < nr_pages; i++) { 1169 struct page *page; 1170 /* 1171 * __GFP_NORETRY flag makes sure that the allocation fails 1172 * gracefully without invoking oom-killer and the system is 1173 * not destabilized. 1174 */ 1175 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1176 GFP_KERNEL | __GFP_NORETRY, 1177 cpu_to_node(cpu)); 1178 if (!bpage) 1179 goto free_pages; 1180 1181 list_add(&bpage->list, pages); 1182 1183 page = alloc_pages_node(cpu_to_node(cpu), 1184 GFP_KERNEL | __GFP_NORETRY, 0); 1185 if (!page) 1186 goto free_pages; 1187 bpage->page = page_address(page); 1188 rb_init_page(bpage->page); 1189 } 1190 1191 return 0; 1192 1193 free_pages: 1194 list_for_each_entry_safe(bpage, tmp, pages, list) { 1195 list_del_init(&bpage->list); 1196 free_buffer_page(bpage); 1197 } 1198 1199 return -ENOMEM; 1200 } 1201 1202 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1203 unsigned nr_pages) 1204 { 1205 LIST_HEAD(pages); 1206 1207 WARN_ON(!nr_pages); 1208 1209 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu)) 1210 return -ENOMEM; 1211 1212 /* 1213 * The ring buffer page list is a circular list that does not 1214 * start and end with a list head. All page list items point to 1215 * other pages. 1216 */ 1217 cpu_buffer->pages = pages.next; 1218 list_del(&pages); 1219 1220 cpu_buffer->nr_pages = nr_pages; 1221 1222 rb_check_pages(cpu_buffer); 1223 1224 return 0; 1225 } 1226 1227 static struct ring_buffer_per_cpu * 1228 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu) 1229 { 1230 struct ring_buffer_per_cpu *cpu_buffer; 1231 struct buffer_page *bpage; 1232 struct page *page; 1233 int ret; 1234 1235 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1236 GFP_KERNEL, cpu_to_node(cpu)); 1237 if (!cpu_buffer) 1238 return NULL; 1239 1240 cpu_buffer->cpu = cpu; 1241 cpu_buffer->buffer = buffer; 1242 raw_spin_lock_init(&cpu_buffer->reader_lock); 1243 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1244 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1245 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1246 init_completion(&cpu_buffer->update_done); 1247 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1248 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1249 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1250 1251 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1252 GFP_KERNEL, cpu_to_node(cpu)); 1253 if (!bpage) 1254 goto fail_free_buffer; 1255 1256 rb_check_bpage(cpu_buffer, bpage); 1257 1258 cpu_buffer->reader_page = bpage; 1259 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1260 if (!page) 1261 goto fail_free_reader; 1262 bpage->page = page_address(page); 1263 rb_init_page(bpage->page); 1264 1265 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1266 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1267 1268 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1269 if (ret < 0) 1270 goto fail_free_reader; 1271 1272 cpu_buffer->head_page 1273 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1274 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1275 1276 rb_head_page_activate(cpu_buffer); 1277 1278 return cpu_buffer; 1279 1280 fail_free_reader: 1281 free_buffer_page(cpu_buffer->reader_page); 1282 1283 fail_free_buffer: 1284 kfree(cpu_buffer); 1285 return NULL; 1286 } 1287 1288 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1289 { 1290 struct list_head *head = cpu_buffer->pages; 1291 struct buffer_page *bpage, *tmp; 1292 1293 free_buffer_page(cpu_buffer->reader_page); 1294 1295 rb_head_page_deactivate(cpu_buffer); 1296 1297 if (head) { 1298 list_for_each_entry_safe(bpage, tmp, head, list) { 1299 list_del_init(&bpage->list); 1300 free_buffer_page(bpage); 1301 } 1302 bpage = list_entry(head, struct buffer_page, list); 1303 free_buffer_page(bpage); 1304 } 1305 1306 kfree(cpu_buffer); 1307 } 1308 1309 #ifdef CONFIG_HOTPLUG_CPU 1310 static int rb_cpu_notify(struct notifier_block *self, 1311 unsigned long action, void *hcpu); 1312 #endif 1313 1314 /** 1315 * __ring_buffer_alloc - allocate a new ring_buffer 1316 * @size: the size in bytes per cpu that is needed. 1317 * @flags: attributes to set for the ring buffer. 1318 * 1319 * Currently the only flag that is available is the RB_FL_OVERWRITE 1320 * flag. This flag means that the buffer will overwrite old data 1321 * when the buffer wraps. If this flag is not set, the buffer will 1322 * drop data when the tail hits the head. 1323 */ 1324 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1325 struct lock_class_key *key) 1326 { 1327 struct ring_buffer *buffer; 1328 int bsize; 1329 int cpu, nr_pages; 1330 1331 /* keep it in its own cache line */ 1332 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1333 GFP_KERNEL); 1334 if (!buffer) 1335 return NULL; 1336 1337 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1338 goto fail_free_buffer; 1339 1340 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1341 buffer->flags = flags; 1342 buffer->clock = trace_clock_local; 1343 buffer->reader_lock_key = key; 1344 1345 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1346 init_waitqueue_head(&buffer->irq_work.waiters); 1347 1348 /* need at least two pages */ 1349 if (nr_pages < 2) 1350 nr_pages = 2; 1351 1352 /* 1353 * In case of non-hotplug cpu, if the ring-buffer is allocated 1354 * in early initcall, it will not be notified of secondary cpus. 1355 * In that off case, we need to allocate for all possible cpus. 1356 */ 1357 #ifdef CONFIG_HOTPLUG_CPU 1358 cpu_notifier_register_begin(); 1359 cpumask_copy(buffer->cpumask, cpu_online_mask); 1360 #else 1361 cpumask_copy(buffer->cpumask, cpu_possible_mask); 1362 #endif 1363 buffer->cpus = nr_cpu_ids; 1364 1365 bsize = sizeof(void *) * nr_cpu_ids; 1366 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1367 GFP_KERNEL); 1368 if (!buffer->buffers) 1369 goto fail_free_cpumask; 1370 1371 for_each_buffer_cpu(buffer, cpu) { 1372 buffer->buffers[cpu] = 1373 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1374 if (!buffer->buffers[cpu]) 1375 goto fail_free_buffers; 1376 } 1377 1378 #ifdef CONFIG_HOTPLUG_CPU 1379 buffer->cpu_notify.notifier_call = rb_cpu_notify; 1380 buffer->cpu_notify.priority = 0; 1381 __register_cpu_notifier(&buffer->cpu_notify); 1382 cpu_notifier_register_done(); 1383 #endif 1384 1385 mutex_init(&buffer->mutex); 1386 1387 return buffer; 1388 1389 fail_free_buffers: 1390 for_each_buffer_cpu(buffer, cpu) { 1391 if (buffer->buffers[cpu]) 1392 rb_free_cpu_buffer(buffer->buffers[cpu]); 1393 } 1394 kfree(buffer->buffers); 1395 1396 fail_free_cpumask: 1397 free_cpumask_var(buffer->cpumask); 1398 #ifdef CONFIG_HOTPLUG_CPU 1399 cpu_notifier_register_done(); 1400 #endif 1401 1402 fail_free_buffer: 1403 kfree(buffer); 1404 return NULL; 1405 } 1406 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1407 1408 /** 1409 * ring_buffer_free - free a ring buffer. 1410 * @buffer: the buffer to free. 1411 */ 1412 void 1413 ring_buffer_free(struct ring_buffer *buffer) 1414 { 1415 int cpu; 1416 1417 #ifdef CONFIG_HOTPLUG_CPU 1418 cpu_notifier_register_begin(); 1419 __unregister_cpu_notifier(&buffer->cpu_notify); 1420 #endif 1421 1422 for_each_buffer_cpu(buffer, cpu) 1423 rb_free_cpu_buffer(buffer->buffers[cpu]); 1424 1425 #ifdef CONFIG_HOTPLUG_CPU 1426 cpu_notifier_register_done(); 1427 #endif 1428 1429 kfree(buffer->buffers); 1430 free_cpumask_var(buffer->cpumask); 1431 1432 kfree(buffer); 1433 } 1434 EXPORT_SYMBOL_GPL(ring_buffer_free); 1435 1436 void ring_buffer_set_clock(struct ring_buffer *buffer, 1437 u64 (*clock)(void)) 1438 { 1439 buffer->clock = clock; 1440 } 1441 1442 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1443 1444 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1445 { 1446 return local_read(&bpage->entries) & RB_WRITE_MASK; 1447 } 1448 1449 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1450 { 1451 return local_read(&bpage->write) & RB_WRITE_MASK; 1452 } 1453 1454 static int 1455 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages) 1456 { 1457 struct list_head *tail_page, *to_remove, *next_page; 1458 struct buffer_page *to_remove_page, *tmp_iter_page; 1459 struct buffer_page *last_page, *first_page; 1460 unsigned int nr_removed; 1461 unsigned long head_bit; 1462 int page_entries; 1463 1464 head_bit = 0; 1465 1466 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1467 atomic_inc(&cpu_buffer->record_disabled); 1468 /* 1469 * We don't race with the readers since we have acquired the reader 1470 * lock. We also don't race with writers after disabling recording. 1471 * This makes it easy to figure out the first and the last page to be 1472 * removed from the list. We unlink all the pages in between including 1473 * the first and last pages. This is done in a busy loop so that we 1474 * lose the least number of traces. 1475 * The pages are freed after we restart recording and unlock readers. 1476 */ 1477 tail_page = &cpu_buffer->tail_page->list; 1478 1479 /* 1480 * tail page might be on reader page, we remove the next page 1481 * from the ring buffer 1482 */ 1483 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1484 tail_page = rb_list_head(tail_page->next); 1485 to_remove = tail_page; 1486 1487 /* start of pages to remove */ 1488 first_page = list_entry(rb_list_head(to_remove->next), 1489 struct buffer_page, list); 1490 1491 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1492 to_remove = rb_list_head(to_remove)->next; 1493 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1494 } 1495 1496 next_page = rb_list_head(to_remove)->next; 1497 1498 /* 1499 * Now we remove all pages between tail_page and next_page. 1500 * Make sure that we have head_bit value preserved for the 1501 * next page 1502 */ 1503 tail_page->next = (struct list_head *)((unsigned long)next_page | 1504 head_bit); 1505 next_page = rb_list_head(next_page); 1506 next_page->prev = tail_page; 1507 1508 /* make sure pages points to a valid page in the ring buffer */ 1509 cpu_buffer->pages = next_page; 1510 1511 /* update head page */ 1512 if (head_bit) 1513 cpu_buffer->head_page = list_entry(next_page, 1514 struct buffer_page, list); 1515 1516 /* 1517 * change read pointer to make sure any read iterators reset 1518 * themselves 1519 */ 1520 cpu_buffer->read = 0; 1521 1522 /* pages are removed, resume tracing and then free the pages */ 1523 atomic_dec(&cpu_buffer->record_disabled); 1524 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1525 1526 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1527 1528 /* last buffer page to remove */ 1529 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1530 list); 1531 tmp_iter_page = first_page; 1532 1533 do { 1534 to_remove_page = tmp_iter_page; 1535 rb_inc_page(cpu_buffer, &tmp_iter_page); 1536 1537 /* update the counters */ 1538 page_entries = rb_page_entries(to_remove_page); 1539 if (page_entries) { 1540 /* 1541 * If something was added to this page, it was full 1542 * since it is not the tail page. So we deduct the 1543 * bytes consumed in ring buffer from here. 1544 * Increment overrun to account for the lost events. 1545 */ 1546 local_add(page_entries, &cpu_buffer->overrun); 1547 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1548 } 1549 1550 /* 1551 * We have already removed references to this list item, just 1552 * free up the buffer_page and its page 1553 */ 1554 free_buffer_page(to_remove_page); 1555 nr_removed--; 1556 1557 } while (to_remove_page != last_page); 1558 1559 RB_WARN_ON(cpu_buffer, nr_removed); 1560 1561 return nr_removed == 0; 1562 } 1563 1564 static int 1565 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1566 { 1567 struct list_head *pages = &cpu_buffer->new_pages; 1568 int retries, success; 1569 1570 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1571 /* 1572 * We are holding the reader lock, so the reader page won't be swapped 1573 * in the ring buffer. Now we are racing with the writer trying to 1574 * move head page and the tail page. 1575 * We are going to adapt the reader page update process where: 1576 * 1. We first splice the start and end of list of new pages between 1577 * the head page and its previous page. 1578 * 2. We cmpxchg the prev_page->next to point from head page to the 1579 * start of new pages list. 1580 * 3. Finally, we update the head->prev to the end of new list. 1581 * 1582 * We will try this process 10 times, to make sure that we don't keep 1583 * spinning. 1584 */ 1585 retries = 10; 1586 success = 0; 1587 while (retries--) { 1588 struct list_head *head_page, *prev_page, *r; 1589 struct list_head *last_page, *first_page; 1590 struct list_head *head_page_with_bit; 1591 1592 head_page = &rb_set_head_page(cpu_buffer)->list; 1593 if (!head_page) 1594 break; 1595 prev_page = head_page->prev; 1596 1597 first_page = pages->next; 1598 last_page = pages->prev; 1599 1600 head_page_with_bit = (struct list_head *) 1601 ((unsigned long)head_page | RB_PAGE_HEAD); 1602 1603 last_page->next = head_page_with_bit; 1604 first_page->prev = prev_page; 1605 1606 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1607 1608 if (r == head_page_with_bit) { 1609 /* 1610 * yay, we replaced the page pointer to our new list, 1611 * now, we just have to update to head page's prev 1612 * pointer to point to end of list 1613 */ 1614 head_page->prev = last_page; 1615 success = 1; 1616 break; 1617 } 1618 } 1619 1620 if (success) 1621 INIT_LIST_HEAD(pages); 1622 /* 1623 * If we weren't successful in adding in new pages, warn and stop 1624 * tracing 1625 */ 1626 RB_WARN_ON(cpu_buffer, !success); 1627 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1628 1629 /* free pages if they weren't inserted */ 1630 if (!success) { 1631 struct buffer_page *bpage, *tmp; 1632 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1633 list) { 1634 list_del_init(&bpage->list); 1635 free_buffer_page(bpage); 1636 } 1637 } 1638 return success; 1639 } 1640 1641 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1642 { 1643 int success; 1644 1645 if (cpu_buffer->nr_pages_to_update > 0) 1646 success = rb_insert_pages(cpu_buffer); 1647 else 1648 success = rb_remove_pages(cpu_buffer, 1649 -cpu_buffer->nr_pages_to_update); 1650 1651 if (success) 1652 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1653 } 1654 1655 static void update_pages_handler(struct work_struct *work) 1656 { 1657 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1658 struct ring_buffer_per_cpu, update_pages_work); 1659 rb_update_pages(cpu_buffer); 1660 complete(&cpu_buffer->update_done); 1661 } 1662 1663 /** 1664 * ring_buffer_resize - resize the ring buffer 1665 * @buffer: the buffer to resize. 1666 * @size: the new size. 1667 * @cpu_id: the cpu buffer to resize 1668 * 1669 * Minimum size is 2 * BUF_PAGE_SIZE. 1670 * 1671 * Returns 0 on success and < 0 on failure. 1672 */ 1673 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size, 1674 int cpu_id) 1675 { 1676 struct ring_buffer_per_cpu *cpu_buffer; 1677 unsigned nr_pages; 1678 int cpu, err = 0; 1679 1680 /* 1681 * Always succeed at resizing a non-existent buffer: 1682 */ 1683 if (!buffer) 1684 return size; 1685 1686 /* Make sure the requested buffer exists */ 1687 if (cpu_id != RING_BUFFER_ALL_CPUS && 1688 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1689 return size; 1690 1691 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1692 size *= BUF_PAGE_SIZE; 1693 1694 /* we need a minimum of two pages */ 1695 if (size < BUF_PAGE_SIZE * 2) 1696 size = BUF_PAGE_SIZE * 2; 1697 1698 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1699 1700 /* 1701 * Don't succeed if resizing is disabled, as a reader might be 1702 * manipulating the ring buffer and is expecting a sane state while 1703 * this is true. 1704 */ 1705 if (atomic_read(&buffer->resize_disabled)) 1706 return -EBUSY; 1707 1708 /* prevent another thread from changing buffer sizes */ 1709 mutex_lock(&buffer->mutex); 1710 1711 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1712 /* calculate the pages to update */ 1713 for_each_buffer_cpu(buffer, cpu) { 1714 cpu_buffer = buffer->buffers[cpu]; 1715 1716 cpu_buffer->nr_pages_to_update = nr_pages - 1717 cpu_buffer->nr_pages; 1718 /* 1719 * nothing more to do for removing pages or no update 1720 */ 1721 if (cpu_buffer->nr_pages_to_update <= 0) 1722 continue; 1723 /* 1724 * to add pages, make sure all new pages can be 1725 * allocated without receiving ENOMEM 1726 */ 1727 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1728 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1729 &cpu_buffer->new_pages, cpu)) { 1730 /* not enough memory for new pages */ 1731 err = -ENOMEM; 1732 goto out_err; 1733 } 1734 } 1735 1736 get_online_cpus(); 1737 /* 1738 * Fire off all the required work handlers 1739 * We can't schedule on offline CPUs, but it's not necessary 1740 * since we can change their buffer sizes without any race. 1741 */ 1742 for_each_buffer_cpu(buffer, cpu) { 1743 cpu_buffer = buffer->buffers[cpu]; 1744 if (!cpu_buffer->nr_pages_to_update) 1745 continue; 1746 1747 /* Can't run something on an offline CPU. */ 1748 if (!cpu_online(cpu)) { 1749 rb_update_pages(cpu_buffer); 1750 cpu_buffer->nr_pages_to_update = 0; 1751 } else { 1752 schedule_work_on(cpu, 1753 &cpu_buffer->update_pages_work); 1754 } 1755 } 1756 1757 /* wait for all the updates to complete */ 1758 for_each_buffer_cpu(buffer, cpu) { 1759 cpu_buffer = buffer->buffers[cpu]; 1760 if (!cpu_buffer->nr_pages_to_update) 1761 continue; 1762 1763 if (cpu_online(cpu)) 1764 wait_for_completion(&cpu_buffer->update_done); 1765 cpu_buffer->nr_pages_to_update = 0; 1766 } 1767 1768 put_online_cpus(); 1769 } else { 1770 /* Make sure this CPU has been intitialized */ 1771 if (!cpumask_test_cpu(cpu_id, buffer->cpumask)) 1772 goto out; 1773 1774 cpu_buffer = buffer->buffers[cpu_id]; 1775 1776 if (nr_pages == cpu_buffer->nr_pages) 1777 goto out; 1778 1779 cpu_buffer->nr_pages_to_update = nr_pages - 1780 cpu_buffer->nr_pages; 1781 1782 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1783 if (cpu_buffer->nr_pages_to_update > 0 && 1784 __rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1785 &cpu_buffer->new_pages, cpu_id)) { 1786 err = -ENOMEM; 1787 goto out_err; 1788 } 1789 1790 get_online_cpus(); 1791 1792 /* Can't run something on an offline CPU. */ 1793 if (!cpu_online(cpu_id)) 1794 rb_update_pages(cpu_buffer); 1795 else { 1796 schedule_work_on(cpu_id, 1797 &cpu_buffer->update_pages_work); 1798 wait_for_completion(&cpu_buffer->update_done); 1799 } 1800 1801 cpu_buffer->nr_pages_to_update = 0; 1802 put_online_cpus(); 1803 } 1804 1805 out: 1806 /* 1807 * The ring buffer resize can happen with the ring buffer 1808 * enabled, so that the update disturbs the tracing as little 1809 * as possible. But if the buffer is disabled, we do not need 1810 * to worry about that, and we can take the time to verify 1811 * that the buffer is not corrupt. 1812 */ 1813 if (atomic_read(&buffer->record_disabled)) { 1814 atomic_inc(&buffer->record_disabled); 1815 /* 1816 * Even though the buffer was disabled, we must make sure 1817 * that it is truly disabled before calling rb_check_pages. 1818 * There could have been a race between checking 1819 * record_disable and incrementing it. 1820 */ 1821 synchronize_sched(); 1822 for_each_buffer_cpu(buffer, cpu) { 1823 cpu_buffer = buffer->buffers[cpu]; 1824 rb_check_pages(cpu_buffer); 1825 } 1826 atomic_dec(&buffer->record_disabled); 1827 } 1828 1829 mutex_unlock(&buffer->mutex); 1830 return size; 1831 1832 out_err: 1833 for_each_buffer_cpu(buffer, cpu) { 1834 struct buffer_page *bpage, *tmp; 1835 1836 cpu_buffer = buffer->buffers[cpu]; 1837 cpu_buffer->nr_pages_to_update = 0; 1838 1839 if (list_empty(&cpu_buffer->new_pages)) 1840 continue; 1841 1842 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1843 list) { 1844 list_del_init(&bpage->list); 1845 free_buffer_page(bpage); 1846 } 1847 } 1848 mutex_unlock(&buffer->mutex); 1849 return err; 1850 } 1851 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1852 1853 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val) 1854 { 1855 mutex_lock(&buffer->mutex); 1856 if (val) 1857 buffer->flags |= RB_FL_OVERWRITE; 1858 else 1859 buffer->flags &= ~RB_FL_OVERWRITE; 1860 mutex_unlock(&buffer->mutex); 1861 } 1862 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1863 1864 static inline void * 1865 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index) 1866 { 1867 return bpage->data + index; 1868 } 1869 1870 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1871 { 1872 return bpage->page->data + index; 1873 } 1874 1875 static inline struct ring_buffer_event * 1876 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1877 { 1878 return __rb_page_index(cpu_buffer->reader_page, 1879 cpu_buffer->reader_page->read); 1880 } 1881 1882 static inline struct ring_buffer_event * 1883 rb_iter_head_event(struct ring_buffer_iter *iter) 1884 { 1885 return __rb_page_index(iter->head_page, iter->head); 1886 } 1887 1888 static inline unsigned rb_page_commit(struct buffer_page *bpage) 1889 { 1890 return local_read(&bpage->page->commit); 1891 } 1892 1893 /* Size is determined by what has been committed */ 1894 static inline unsigned rb_page_size(struct buffer_page *bpage) 1895 { 1896 return rb_page_commit(bpage); 1897 } 1898 1899 static inline unsigned 1900 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1901 { 1902 return rb_page_commit(cpu_buffer->commit_page); 1903 } 1904 1905 static inline unsigned 1906 rb_event_index(struct ring_buffer_event *event) 1907 { 1908 unsigned long addr = (unsigned long)event; 1909 1910 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1911 } 1912 1913 static inline int 1914 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 1915 struct ring_buffer_event *event) 1916 { 1917 unsigned long addr = (unsigned long)event; 1918 unsigned long index; 1919 1920 index = rb_event_index(event); 1921 addr &= PAGE_MASK; 1922 1923 return cpu_buffer->commit_page->page == (void *)addr && 1924 rb_commit_index(cpu_buffer) == index; 1925 } 1926 1927 static void 1928 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 1929 { 1930 unsigned long max_count; 1931 1932 /* 1933 * We only race with interrupts and NMIs on this CPU. 1934 * If we own the commit event, then we can commit 1935 * all others that interrupted us, since the interruptions 1936 * are in stack format (they finish before they come 1937 * back to us). This allows us to do a simple loop to 1938 * assign the commit to the tail. 1939 */ 1940 again: 1941 max_count = cpu_buffer->nr_pages * 100; 1942 1943 while (cpu_buffer->commit_page != cpu_buffer->tail_page) { 1944 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 1945 return; 1946 if (RB_WARN_ON(cpu_buffer, 1947 rb_is_reader_page(cpu_buffer->tail_page))) 1948 return; 1949 local_set(&cpu_buffer->commit_page->page->commit, 1950 rb_page_write(cpu_buffer->commit_page)); 1951 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 1952 cpu_buffer->write_stamp = 1953 cpu_buffer->commit_page->page->time_stamp; 1954 /* add barrier to keep gcc from optimizing too much */ 1955 barrier(); 1956 } 1957 while (rb_commit_index(cpu_buffer) != 1958 rb_page_write(cpu_buffer->commit_page)) { 1959 1960 local_set(&cpu_buffer->commit_page->page->commit, 1961 rb_page_write(cpu_buffer->commit_page)); 1962 RB_WARN_ON(cpu_buffer, 1963 local_read(&cpu_buffer->commit_page->page->commit) & 1964 ~RB_WRITE_MASK); 1965 barrier(); 1966 } 1967 1968 /* again, keep gcc from optimizing */ 1969 barrier(); 1970 1971 /* 1972 * If an interrupt came in just after the first while loop 1973 * and pushed the tail page forward, we will be left with 1974 * a dangling commit that will never go forward. 1975 */ 1976 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page)) 1977 goto again; 1978 } 1979 1980 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 1981 { 1982 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp; 1983 cpu_buffer->reader_page->read = 0; 1984 } 1985 1986 static void rb_inc_iter(struct ring_buffer_iter *iter) 1987 { 1988 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1989 1990 /* 1991 * The iterator could be on the reader page (it starts there). 1992 * But the head could have moved, since the reader was 1993 * found. Check for this case and assign the iterator 1994 * to the head page instead of next. 1995 */ 1996 if (iter->head_page == cpu_buffer->reader_page) 1997 iter->head_page = rb_set_head_page(cpu_buffer); 1998 else 1999 rb_inc_page(cpu_buffer, &iter->head_page); 2000 2001 iter->read_stamp = iter->head_page->page->time_stamp; 2002 iter->head = 0; 2003 } 2004 2005 /* Slow path, do not inline */ 2006 static noinline struct ring_buffer_event * 2007 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta) 2008 { 2009 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2010 2011 /* Not the first event on the page? */ 2012 if (rb_event_index(event)) { 2013 event->time_delta = delta & TS_MASK; 2014 event->array[0] = delta >> TS_SHIFT; 2015 } else { 2016 /* nope, just zero it */ 2017 event->time_delta = 0; 2018 event->array[0] = 0; 2019 } 2020 2021 return skip_time_extend(event); 2022 } 2023 2024 /** 2025 * rb_update_event - update event type and data 2026 * @event: the event to update 2027 * @type: the type of event 2028 * @length: the size of the event field in the ring buffer 2029 * 2030 * Update the type and data fields of the event. The length 2031 * is the actual size that is written to the ring buffer, 2032 * and with this, we can determine what to place into the 2033 * data field. 2034 */ 2035 static void 2036 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2037 struct ring_buffer_event *event, unsigned length, 2038 int add_timestamp, u64 delta) 2039 { 2040 /* Only a commit updates the timestamp */ 2041 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 2042 delta = 0; 2043 2044 /* 2045 * If we need to add a timestamp, then we 2046 * add it to the start of the resevered space. 2047 */ 2048 if (unlikely(add_timestamp)) { 2049 event = rb_add_time_stamp(event, delta); 2050 length -= RB_LEN_TIME_EXTEND; 2051 delta = 0; 2052 } 2053 2054 event->time_delta = delta; 2055 length -= RB_EVNT_HDR_SIZE; 2056 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2057 event->type_len = 0; 2058 event->array[0] = length; 2059 } else 2060 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2061 } 2062 2063 /* 2064 * rb_handle_head_page - writer hit the head page 2065 * 2066 * Returns: +1 to retry page 2067 * 0 to continue 2068 * -1 on error 2069 */ 2070 static int 2071 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 2072 struct buffer_page *tail_page, 2073 struct buffer_page *next_page) 2074 { 2075 struct buffer_page *new_head; 2076 int entries; 2077 int type; 2078 int ret; 2079 2080 entries = rb_page_entries(next_page); 2081 2082 /* 2083 * The hard part is here. We need to move the head 2084 * forward, and protect against both readers on 2085 * other CPUs and writers coming in via interrupts. 2086 */ 2087 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 2088 RB_PAGE_HEAD); 2089 2090 /* 2091 * type can be one of four: 2092 * NORMAL - an interrupt already moved it for us 2093 * HEAD - we are the first to get here. 2094 * UPDATE - we are the interrupt interrupting 2095 * a current move. 2096 * MOVED - a reader on another CPU moved the next 2097 * pointer to its reader page. Give up 2098 * and try again. 2099 */ 2100 2101 switch (type) { 2102 case RB_PAGE_HEAD: 2103 /* 2104 * We changed the head to UPDATE, thus 2105 * it is our responsibility to update 2106 * the counters. 2107 */ 2108 local_add(entries, &cpu_buffer->overrun); 2109 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 2110 2111 /* 2112 * The entries will be zeroed out when we move the 2113 * tail page. 2114 */ 2115 2116 /* still more to do */ 2117 break; 2118 2119 case RB_PAGE_UPDATE: 2120 /* 2121 * This is an interrupt that interrupt the 2122 * previous update. Still more to do. 2123 */ 2124 break; 2125 case RB_PAGE_NORMAL: 2126 /* 2127 * An interrupt came in before the update 2128 * and processed this for us. 2129 * Nothing left to do. 2130 */ 2131 return 1; 2132 case RB_PAGE_MOVED: 2133 /* 2134 * The reader is on another CPU and just did 2135 * a swap with our next_page. 2136 * Try again. 2137 */ 2138 return 1; 2139 default: 2140 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2141 return -1; 2142 } 2143 2144 /* 2145 * Now that we are here, the old head pointer is 2146 * set to UPDATE. This will keep the reader from 2147 * swapping the head page with the reader page. 2148 * The reader (on another CPU) will spin till 2149 * we are finished. 2150 * 2151 * We just need to protect against interrupts 2152 * doing the job. We will set the next pointer 2153 * to HEAD. After that, we set the old pointer 2154 * to NORMAL, but only if it was HEAD before. 2155 * otherwise we are an interrupt, and only 2156 * want the outer most commit to reset it. 2157 */ 2158 new_head = next_page; 2159 rb_inc_page(cpu_buffer, &new_head); 2160 2161 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2162 RB_PAGE_NORMAL); 2163 2164 /* 2165 * Valid returns are: 2166 * HEAD - an interrupt came in and already set it. 2167 * NORMAL - One of two things: 2168 * 1) We really set it. 2169 * 2) A bunch of interrupts came in and moved 2170 * the page forward again. 2171 */ 2172 switch (ret) { 2173 case RB_PAGE_HEAD: 2174 case RB_PAGE_NORMAL: 2175 /* OK */ 2176 break; 2177 default: 2178 RB_WARN_ON(cpu_buffer, 1); 2179 return -1; 2180 } 2181 2182 /* 2183 * It is possible that an interrupt came in, 2184 * set the head up, then more interrupts came in 2185 * and moved it again. When we get back here, 2186 * the page would have been set to NORMAL but we 2187 * just set it back to HEAD. 2188 * 2189 * How do you detect this? Well, if that happened 2190 * the tail page would have moved. 2191 */ 2192 if (ret == RB_PAGE_NORMAL) { 2193 /* 2194 * If the tail had moved passed next, then we need 2195 * to reset the pointer. 2196 */ 2197 if (cpu_buffer->tail_page != tail_page && 2198 cpu_buffer->tail_page != next_page) 2199 rb_head_page_set_normal(cpu_buffer, new_head, 2200 next_page, 2201 RB_PAGE_HEAD); 2202 } 2203 2204 /* 2205 * If this was the outer most commit (the one that 2206 * changed the original pointer from HEAD to UPDATE), 2207 * then it is up to us to reset it to NORMAL. 2208 */ 2209 if (type == RB_PAGE_HEAD) { 2210 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2211 tail_page, 2212 RB_PAGE_UPDATE); 2213 if (RB_WARN_ON(cpu_buffer, 2214 ret != RB_PAGE_UPDATE)) 2215 return -1; 2216 } 2217 2218 return 0; 2219 } 2220 2221 static unsigned rb_calculate_event_length(unsigned length) 2222 { 2223 struct ring_buffer_event event; /* Used only for sizeof array */ 2224 2225 /* zero length can cause confusions */ 2226 if (!length) 2227 length = 1; 2228 2229 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2230 length += sizeof(event.array[0]); 2231 2232 length += RB_EVNT_HDR_SIZE; 2233 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2234 2235 return length; 2236 } 2237 2238 static inline void 2239 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2240 struct buffer_page *tail_page, 2241 unsigned long tail, unsigned long length) 2242 { 2243 struct ring_buffer_event *event; 2244 2245 /* 2246 * Only the event that crossed the page boundary 2247 * must fill the old tail_page with padding. 2248 */ 2249 if (tail >= BUF_PAGE_SIZE) { 2250 /* 2251 * If the page was filled, then we still need 2252 * to update the real_end. Reset it to zero 2253 * and the reader will ignore it. 2254 */ 2255 if (tail == BUF_PAGE_SIZE) 2256 tail_page->real_end = 0; 2257 2258 local_sub(length, &tail_page->write); 2259 return; 2260 } 2261 2262 event = __rb_page_index(tail_page, tail); 2263 kmemcheck_annotate_bitfield(event, bitfield); 2264 2265 /* account for padding bytes */ 2266 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2267 2268 /* 2269 * Save the original length to the meta data. 2270 * This will be used by the reader to add lost event 2271 * counter. 2272 */ 2273 tail_page->real_end = tail; 2274 2275 /* 2276 * If this event is bigger than the minimum size, then 2277 * we need to be careful that we don't subtract the 2278 * write counter enough to allow another writer to slip 2279 * in on this page. 2280 * We put in a discarded commit instead, to make sure 2281 * that this space is not used again. 2282 * 2283 * If we are less than the minimum size, we don't need to 2284 * worry about it. 2285 */ 2286 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2287 /* No room for any events */ 2288 2289 /* Mark the rest of the page with padding */ 2290 rb_event_set_padding(event); 2291 2292 /* Set the write back to the previous setting */ 2293 local_sub(length, &tail_page->write); 2294 return; 2295 } 2296 2297 /* Put in a discarded event */ 2298 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2299 event->type_len = RINGBUF_TYPE_PADDING; 2300 /* time delta must be non zero */ 2301 event->time_delta = 1; 2302 2303 /* Set write to end of buffer */ 2304 length = (tail + length) - BUF_PAGE_SIZE; 2305 local_sub(length, &tail_page->write); 2306 } 2307 2308 /* 2309 * This is the slow path, force gcc not to inline it. 2310 */ 2311 static noinline struct ring_buffer_event * 2312 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2313 unsigned long length, unsigned long tail, 2314 struct buffer_page *tail_page, u64 ts) 2315 { 2316 struct buffer_page *commit_page = cpu_buffer->commit_page; 2317 struct ring_buffer *buffer = cpu_buffer->buffer; 2318 struct buffer_page *next_page; 2319 int ret; 2320 2321 next_page = tail_page; 2322 2323 rb_inc_page(cpu_buffer, &next_page); 2324 2325 /* 2326 * If for some reason, we had an interrupt storm that made 2327 * it all the way around the buffer, bail, and warn 2328 * about it. 2329 */ 2330 if (unlikely(next_page == commit_page)) { 2331 local_inc(&cpu_buffer->commit_overrun); 2332 goto out_reset; 2333 } 2334 2335 /* 2336 * This is where the fun begins! 2337 * 2338 * We are fighting against races between a reader that 2339 * could be on another CPU trying to swap its reader 2340 * page with the buffer head. 2341 * 2342 * We are also fighting against interrupts coming in and 2343 * moving the head or tail on us as well. 2344 * 2345 * If the next page is the head page then we have filled 2346 * the buffer, unless the commit page is still on the 2347 * reader page. 2348 */ 2349 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2350 2351 /* 2352 * If the commit is not on the reader page, then 2353 * move the header page. 2354 */ 2355 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2356 /* 2357 * If we are not in overwrite mode, 2358 * this is easy, just stop here. 2359 */ 2360 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2361 local_inc(&cpu_buffer->dropped_events); 2362 goto out_reset; 2363 } 2364 2365 ret = rb_handle_head_page(cpu_buffer, 2366 tail_page, 2367 next_page); 2368 if (ret < 0) 2369 goto out_reset; 2370 if (ret) 2371 goto out_again; 2372 } else { 2373 /* 2374 * We need to be careful here too. The 2375 * commit page could still be on the reader 2376 * page. We could have a small buffer, and 2377 * have filled up the buffer with events 2378 * from interrupts and such, and wrapped. 2379 * 2380 * Note, if the tail page is also the on the 2381 * reader_page, we let it move out. 2382 */ 2383 if (unlikely((cpu_buffer->commit_page != 2384 cpu_buffer->tail_page) && 2385 (cpu_buffer->commit_page == 2386 cpu_buffer->reader_page))) { 2387 local_inc(&cpu_buffer->commit_overrun); 2388 goto out_reset; 2389 } 2390 } 2391 } 2392 2393 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page); 2394 if (ret) { 2395 /* 2396 * Nested commits always have zero deltas, so 2397 * just reread the time stamp 2398 */ 2399 ts = rb_time_stamp(buffer); 2400 next_page->page->time_stamp = ts; 2401 } 2402 2403 out_again: 2404 2405 rb_reset_tail(cpu_buffer, tail_page, tail, length); 2406 2407 /* fail and let the caller try again */ 2408 return ERR_PTR(-EAGAIN); 2409 2410 out_reset: 2411 /* reset write */ 2412 rb_reset_tail(cpu_buffer, tail_page, tail, length); 2413 2414 return NULL; 2415 } 2416 2417 static struct ring_buffer_event * 2418 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 2419 unsigned long length, u64 ts, 2420 u64 delta, int add_timestamp) 2421 { 2422 struct buffer_page *tail_page; 2423 struct ring_buffer_event *event; 2424 unsigned long tail, write; 2425 2426 /* 2427 * If the time delta since the last event is too big to 2428 * hold in the time field of the event, then we append a 2429 * TIME EXTEND event ahead of the data event. 2430 */ 2431 if (unlikely(add_timestamp)) 2432 length += RB_LEN_TIME_EXTEND; 2433 2434 tail_page = cpu_buffer->tail_page; 2435 write = local_add_return(length, &tail_page->write); 2436 2437 /* set write to only the index of the write */ 2438 write &= RB_WRITE_MASK; 2439 tail = write - length; 2440 2441 /* 2442 * If this is the first commit on the page, then it has the same 2443 * timestamp as the page itself. 2444 */ 2445 if (!tail) 2446 delta = 0; 2447 2448 /* See if we shot pass the end of this buffer page */ 2449 if (unlikely(write > BUF_PAGE_SIZE)) 2450 return rb_move_tail(cpu_buffer, length, tail, 2451 tail_page, ts); 2452 2453 /* We reserved something on the buffer */ 2454 2455 event = __rb_page_index(tail_page, tail); 2456 kmemcheck_annotate_bitfield(event, bitfield); 2457 rb_update_event(cpu_buffer, event, length, add_timestamp, delta); 2458 2459 local_inc(&tail_page->entries); 2460 2461 /* 2462 * If this is the first commit on the page, then update 2463 * its timestamp. 2464 */ 2465 if (!tail) 2466 tail_page->page->time_stamp = ts; 2467 2468 /* account for these added bytes */ 2469 local_add(length, &cpu_buffer->entries_bytes); 2470 2471 return event; 2472 } 2473 2474 static inline int 2475 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2476 struct ring_buffer_event *event) 2477 { 2478 unsigned long new_index, old_index; 2479 struct buffer_page *bpage; 2480 unsigned long index; 2481 unsigned long addr; 2482 2483 new_index = rb_event_index(event); 2484 old_index = new_index + rb_event_ts_length(event); 2485 addr = (unsigned long)event; 2486 addr &= PAGE_MASK; 2487 2488 bpage = cpu_buffer->tail_page; 2489 2490 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2491 unsigned long write_mask = 2492 local_read(&bpage->write) & ~RB_WRITE_MASK; 2493 unsigned long event_length = rb_event_length(event); 2494 /* 2495 * This is on the tail page. It is possible that 2496 * a write could come in and move the tail page 2497 * and write to the next page. That is fine 2498 * because we just shorten what is on this page. 2499 */ 2500 old_index += write_mask; 2501 new_index += write_mask; 2502 index = local_cmpxchg(&bpage->write, old_index, new_index); 2503 if (index == old_index) { 2504 /* update counters */ 2505 local_sub(event_length, &cpu_buffer->entries_bytes); 2506 return 1; 2507 } 2508 } 2509 2510 /* could not discard */ 2511 return 0; 2512 } 2513 2514 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2515 { 2516 local_inc(&cpu_buffer->committing); 2517 local_inc(&cpu_buffer->commits); 2518 } 2519 2520 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2521 { 2522 unsigned long commits; 2523 2524 if (RB_WARN_ON(cpu_buffer, 2525 !local_read(&cpu_buffer->committing))) 2526 return; 2527 2528 again: 2529 commits = local_read(&cpu_buffer->commits); 2530 /* synchronize with interrupts */ 2531 barrier(); 2532 if (local_read(&cpu_buffer->committing) == 1) 2533 rb_set_commit_to_write(cpu_buffer); 2534 2535 local_dec(&cpu_buffer->committing); 2536 2537 /* synchronize with interrupts */ 2538 barrier(); 2539 2540 /* 2541 * Need to account for interrupts coming in between the 2542 * updating of the commit page and the clearing of the 2543 * committing counter. 2544 */ 2545 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2546 !local_read(&cpu_buffer->committing)) { 2547 local_inc(&cpu_buffer->committing); 2548 goto again; 2549 } 2550 } 2551 2552 static struct ring_buffer_event * 2553 rb_reserve_next_event(struct ring_buffer *buffer, 2554 struct ring_buffer_per_cpu *cpu_buffer, 2555 unsigned long length) 2556 { 2557 struct ring_buffer_event *event; 2558 u64 ts, delta; 2559 int nr_loops = 0; 2560 int add_timestamp; 2561 u64 diff; 2562 2563 rb_start_commit(cpu_buffer); 2564 2565 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2566 /* 2567 * Due to the ability to swap a cpu buffer from a buffer 2568 * it is possible it was swapped before we committed. 2569 * (committing stops a swap). We check for it here and 2570 * if it happened, we have to fail the write. 2571 */ 2572 barrier(); 2573 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) { 2574 local_dec(&cpu_buffer->committing); 2575 local_dec(&cpu_buffer->commits); 2576 return NULL; 2577 } 2578 #endif 2579 2580 length = rb_calculate_event_length(length); 2581 again: 2582 add_timestamp = 0; 2583 delta = 0; 2584 2585 /* 2586 * We allow for interrupts to reenter here and do a trace. 2587 * If one does, it will cause this original code to loop 2588 * back here. Even with heavy interrupts happening, this 2589 * should only happen a few times in a row. If this happens 2590 * 1000 times in a row, there must be either an interrupt 2591 * storm or we have something buggy. 2592 * Bail! 2593 */ 2594 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2595 goto out_fail; 2596 2597 ts = rb_time_stamp(cpu_buffer->buffer); 2598 diff = ts - cpu_buffer->write_stamp; 2599 2600 /* make sure this diff is calculated here */ 2601 barrier(); 2602 2603 /* Did the write stamp get updated already? */ 2604 if (likely(ts >= cpu_buffer->write_stamp)) { 2605 delta = diff; 2606 if (unlikely(test_time_stamp(delta))) { 2607 int local_clock_stable = 1; 2608 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2609 local_clock_stable = sched_clock_stable(); 2610 #endif 2611 WARN_ONCE(delta > (1ULL << 59), 2612 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2613 (unsigned long long)delta, 2614 (unsigned long long)ts, 2615 (unsigned long long)cpu_buffer->write_stamp, 2616 local_clock_stable ? "" : 2617 "If you just came from a suspend/resume,\n" 2618 "please switch to the trace global clock:\n" 2619 " echo global > /sys/kernel/debug/tracing/trace_clock\n"); 2620 add_timestamp = 1; 2621 } 2622 } 2623 2624 event = __rb_reserve_next(cpu_buffer, length, ts, 2625 delta, add_timestamp); 2626 if (unlikely(PTR_ERR(event) == -EAGAIN)) 2627 goto again; 2628 2629 if (!event) 2630 goto out_fail; 2631 2632 return event; 2633 2634 out_fail: 2635 rb_end_commit(cpu_buffer); 2636 return NULL; 2637 } 2638 2639 #ifdef CONFIG_TRACING 2640 2641 /* 2642 * The lock and unlock are done within a preempt disable section. 2643 * The current_context per_cpu variable can only be modified 2644 * by the current task between lock and unlock. But it can 2645 * be modified more than once via an interrupt. To pass this 2646 * information from the lock to the unlock without having to 2647 * access the 'in_interrupt()' functions again (which do show 2648 * a bit of overhead in something as critical as function tracing, 2649 * we use a bitmask trick. 2650 * 2651 * bit 0 = NMI context 2652 * bit 1 = IRQ context 2653 * bit 2 = SoftIRQ context 2654 * bit 3 = normal context. 2655 * 2656 * This works because this is the order of contexts that can 2657 * preempt other contexts. A SoftIRQ never preempts an IRQ 2658 * context. 2659 * 2660 * When the context is determined, the corresponding bit is 2661 * checked and set (if it was set, then a recursion of that context 2662 * happened). 2663 * 2664 * On unlock, we need to clear this bit. To do so, just subtract 2665 * 1 from the current_context and AND it to itself. 2666 * 2667 * (binary) 2668 * 101 - 1 = 100 2669 * 101 & 100 = 100 (clearing bit zero) 2670 * 2671 * 1010 - 1 = 1001 2672 * 1010 & 1001 = 1000 (clearing bit 1) 2673 * 2674 * The least significant bit can be cleared this way, and it 2675 * just so happens that it is the same bit corresponding to 2676 * the current context. 2677 */ 2678 static DEFINE_PER_CPU(unsigned int, current_context); 2679 2680 static __always_inline int trace_recursive_lock(void) 2681 { 2682 unsigned int val = this_cpu_read(current_context); 2683 int bit; 2684 2685 if (in_interrupt()) { 2686 if (in_nmi()) 2687 bit = 0; 2688 else if (in_irq()) 2689 bit = 1; 2690 else 2691 bit = 2; 2692 } else 2693 bit = 3; 2694 2695 if (unlikely(val & (1 << bit))) 2696 return 1; 2697 2698 val |= (1 << bit); 2699 this_cpu_write(current_context, val); 2700 2701 return 0; 2702 } 2703 2704 static __always_inline void trace_recursive_unlock(void) 2705 { 2706 unsigned int val = this_cpu_read(current_context); 2707 2708 val--; 2709 val &= this_cpu_read(current_context); 2710 this_cpu_write(current_context, val); 2711 } 2712 2713 #else 2714 2715 #define trace_recursive_lock() (0) 2716 #define trace_recursive_unlock() do { } while (0) 2717 2718 #endif 2719 2720 /** 2721 * ring_buffer_lock_reserve - reserve a part of the buffer 2722 * @buffer: the ring buffer to reserve from 2723 * @length: the length of the data to reserve (excluding event header) 2724 * 2725 * Returns a reseverd event on the ring buffer to copy directly to. 2726 * The user of this interface will need to get the body to write into 2727 * and can use the ring_buffer_event_data() interface. 2728 * 2729 * The length is the length of the data needed, not the event length 2730 * which also includes the event header. 2731 * 2732 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2733 * If NULL is returned, then nothing has been allocated or locked. 2734 */ 2735 struct ring_buffer_event * 2736 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2737 { 2738 struct ring_buffer_per_cpu *cpu_buffer; 2739 struct ring_buffer_event *event; 2740 int cpu; 2741 2742 if (ring_buffer_flags != RB_BUFFERS_ON) 2743 return NULL; 2744 2745 /* If we are tracing schedule, we don't want to recurse */ 2746 preempt_disable_notrace(); 2747 2748 if (atomic_read(&buffer->record_disabled)) 2749 goto out_nocheck; 2750 2751 if (trace_recursive_lock()) 2752 goto out_nocheck; 2753 2754 cpu = raw_smp_processor_id(); 2755 2756 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2757 goto out; 2758 2759 cpu_buffer = buffer->buffers[cpu]; 2760 2761 if (atomic_read(&cpu_buffer->record_disabled)) 2762 goto out; 2763 2764 if (length > BUF_MAX_DATA_SIZE) 2765 goto out; 2766 2767 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2768 if (!event) 2769 goto out; 2770 2771 return event; 2772 2773 out: 2774 trace_recursive_unlock(); 2775 2776 out_nocheck: 2777 preempt_enable_notrace(); 2778 return NULL; 2779 } 2780 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2781 2782 static void 2783 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2784 struct ring_buffer_event *event) 2785 { 2786 u64 delta; 2787 2788 /* 2789 * The event first in the commit queue updates the 2790 * time stamp. 2791 */ 2792 if (rb_event_is_commit(cpu_buffer, event)) { 2793 /* 2794 * A commit event that is first on a page 2795 * updates the write timestamp with the page stamp 2796 */ 2797 if (!rb_event_index(event)) 2798 cpu_buffer->write_stamp = 2799 cpu_buffer->commit_page->page->time_stamp; 2800 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2801 delta = event->array[0]; 2802 delta <<= TS_SHIFT; 2803 delta += event->time_delta; 2804 cpu_buffer->write_stamp += delta; 2805 } else 2806 cpu_buffer->write_stamp += event->time_delta; 2807 } 2808 } 2809 2810 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2811 struct ring_buffer_event *event) 2812 { 2813 local_inc(&cpu_buffer->entries); 2814 rb_update_write_stamp(cpu_buffer, event); 2815 rb_end_commit(cpu_buffer); 2816 } 2817 2818 static __always_inline void 2819 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 2820 { 2821 bool pagebusy; 2822 2823 if (buffer->irq_work.waiters_pending) { 2824 buffer->irq_work.waiters_pending = false; 2825 /* irq_work_queue() supplies it's own memory barriers */ 2826 irq_work_queue(&buffer->irq_work.work); 2827 } 2828 2829 if (cpu_buffer->irq_work.waiters_pending) { 2830 cpu_buffer->irq_work.waiters_pending = false; 2831 /* irq_work_queue() supplies it's own memory barriers */ 2832 irq_work_queue(&cpu_buffer->irq_work.work); 2833 } 2834 2835 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 2836 2837 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) { 2838 cpu_buffer->irq_work.wakeup_full = true; 2839 cpu_buffer->irq_work.full_waiters_pending = false; 2840 /* irq_work_queue() supplies it's own memory barriers */ 2841 irq_work_queue(&cpu_buffer->irq_work.work); 2842 } 2843 } 2844 2845 /** 2846 * ring_buffer_unlock_commit - commit a reserved 2847 * @buffer: The buffer to commit to 2848 * @event: The event pointer to commit. 2849 * 2850 * This commits the data to the ring buffer, and releases any locks held. 2851 * 2852 * Must be paired with ring_buffer_lock_reserve. 2853 */ 2854 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2855 struct ring_buffer_event *event) 2856 { 2857 struct ring_buffer_per_cpu *cpu_buffer; 2858 int cpu = raw_smp_processor_id(); 2859 2860 cpu_buffer = buffer->buffers[cpu]; 2861 2862 rb_commit(cpu_buffer, event); 2863 2864 rb_wakeups(buffer, cpu_buffer); 2865 2866 trace_recursive_unlock(); 2867 2868 preempt_enable_notrace(); 2869 2870 return 0; 2871 } 2872 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2873 2874 static inline void rb_event_discard(struct ring_buffer_event *event) 2875 { 2876 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 2877 event = skip_time_extend(event); 2878 2879 /* array[0] holds the actual length for the discarded event */ 2880 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2881 event->type_len = RINGBUF_TYPE_PADDING; 2882 /* time delta must be non zero */ 2883 if (!event->time_delta) 2884 event->time_delta = 1; 2885 } 2886 2887 /* 2888 * Decrement the entries to the page that an event is on. 2889 * The event does not even need to exist, only the pointer 2890 * to the page it is on. This may only be called before the commit 2891 * takes place. 2892 */ 2893 static inline void 2894 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2895 struct ring_buffer_event *event) 2896 { 2897 unsigned long addr = (unsigned long)event; 2898 struct buffer_page *bpage = cpu_buffer->commit_page; 2899 struct buffer_page *start; 2900 2901 addr &= PAGE_MASK; 2902 2903 /* Do the likely case first */ 2904 if (likely(bpage->page == (void *)addr)) { 2905 local_dec(&bpage->entries); 2906 return; 2907 } 2908 2909 /* 2910 * Because the commit page may be on the reader page we 2911 * start with the next page and check the end loop there. 2912 */ 2913 rb_inc_page(cpu_buffer, &bpage); 2914 start = bpage; 2915 do { 2916 if (bpage->page == (void *)addr) { 2917 local_dec(&bpage->entries); 2918 return; 2919 } 2920 rb_inc_page(cpu_buffer, &bpage); 2921 } while (bpage != start); 2922 2923 /* commit not part of this buffer?? */ 2924 RB_WARN_ON(cpu_buffer, 1); 2925 } 2926 2927 /** 2928 * ring_buffer_commit_discard - discard an event that has not been committed 2929 * @buffer: the ring buffer 2930 * @event: non committed event to discard 2931 * 2932 * Sometimes an event that is in the ring buffer needs to be ignored. 2933 * This function lets the user discard an event in the ring buffer 2934 * and then that event will not be read later. 2935 * 2936 * This function only works if it is called before the the item has been 2937 * committed. It will try to free the event from the ring buffer 2938 * if another event has not been added behind it. 2939 * 2940 * If another event has been added behind it, it will set the event 2941 * up as discarded, and perform the commit. 2942 * 2943 * If this function is called, do not call ring_buffer_unlock_commit on 2944 * the event. 2945 */ 2946 void ring_buffer_discard_commit(struct ring_buffer *buffer, 2947 struct ring_buffer_event *event) 2948 { 2949 struct ring_buffer_per_cpu *cpu_buffer; 2950 int cpu; 2951 2952 /* The event is discarded regardless */ 2953 rb_event_discard(event); 2954 2955 cpu = smp_processor_id(); 2956 cpu_buffer = buffer->buffers[cpu]; 2957 2958 /* 2959 * This must only be called if the event has not been 2960 * committed yet. Thus we can assume that preemption 2961 * is still disabled. 2962 */ 2963 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 2964 2965 rb_decrement_entry(cpu_buffer, event); 2966 if (rb_try_to_discard(cpu_buffer, event)) 2967 goto out; 2968 2969 /* 2970 * The commit is still visible by the reader, so we 2971 * must still update the timestamp. 2972 */ 2973 rb_update_write_stamp(cpu_buffer, event); 2974 out: 2975 rb_end_commit(cpu_buffer); 2976 2977 trace_recursive_unlock(); 2978 2979 preempt_enable_notrace(); 2980 2981 } 2982 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 2983 2984 /** 2985 * ring_buffer_write - write data to the buffer without reserving 2986 * @buffer: The ring buffer to write to. 2987 * @length: The length of the data being written (excluding the event header) 2988 * @data: The data to write to the buffer. 2989 * 2990 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 2991 * one function. If you already have the data to write to the buffer, it 2992 * may be easier to simply call this function. 2993 * 2994 * Note, like ring_buffer_lock_reserve, the length is the length of the data 2995 * and not the length of the event which would hold the header. 2996 */ 2997 int ring_buffer_write(struct ring_buffer *buffer, 2998 unsigned long length, 2999 void *data) 3000 { 3001 struct ring_buffer_per_cpu *cpu_buffer; 3002 struct ring_buffer_event *event; 3003 void *body; 3004 int ret = -EBUSY; 3005 int cpu; 3006 3007 if (ring_buffer_flags != RB_BUFFERS_ON) 3008 return -EBUSY; 3009 3010 preempt_disable_notrace(); 3011 3012 if (atomic_read(&buffer->record_disabled)) 3013 goto out; 3014 3015 cpu = raw_smp_processor_id(); 3016 3017 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3018 goto out; 3019 3020 cpu_buffer = buffer->buffers[cpu]; 3021 3022 if (atomic_read(&cpu_buffer->record_disabled)) 3023 goto out; 3024 3025 if (length > BUF_MAX_DATA_SIZE) 3026 goto out; 3027 3028 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3029 if (!event) 3030 goto out; 3031 3032 body = rb_event_data(event); 3033 3034 memcpy(body, data, length); 3035 3036 rb_commit(cpu_buffer, event); 3037 3038 rb_wakeups(buffer, cpu_buffer); 3039 3040 ret = 0; 3041 out: 3042 preempt_enable_notrace(); 3043 3044 return ret; 3045 } 3046 EXPORT_SYMBOL_GPL(ring_buffer_write); 3047 3048 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3049 { 3050 struct buffer_page *reader = cpu_buffer->reader_page; 3051 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3052 struct buffer_page *commit = cpu_buffer->commit_page; 3053 3054 /* In case of error, head will be NULL */ 3055 if (unlikely(!head)) 3056 return 1; 3057 3058 return reader->read == rb_page_commit(reader) && 3059 (commit == reader || 3060 (commit == head && 3061 head->read == rb_page_commit(commit))); 3062 } 3063 3064 /** 3065 * ring_buffer_record_disable - stop all writes into the buffer 3066 * @buffer: The ring buffer to stop writes to. 3067 * 3068 * This prevents all writes to the buffer. Any attempt to write 3069 * to the buffer after this will fail and return NULL. 3070 * 3071 * The caller should call synchronize_sched() after this. 3072 */ 3073 void ring_buffer_record_disable(struct ring_buffer *buffer) 3074 { 3075 atomic_inc(&buffer->record_disabled); 3076 } 3077 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3078 3079 /** 3080 * ring_buffer_record_enable - enable writes to the buffer 3081 * @buffer: The ring buffer to enable writes 3082 * 3083 * Note, multiple disables will need the same number of enables 3084 * to truly enable the writing (much like preempt_disable). 3085 */ 3086 void ring_buffer_record_enable(struct ring_buffer *buffer) 3087 { 3088 atomic_dec(&buffer->record_disabled); 3089 } 3090 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3091 3092 /** 3093 * ring_buffer_record_off - stop all writes into the buffer 3094 * @buffer: The ring buffer to stop writes to. 3095 * 3096 * This prevents all writes to the buffer. Any attempt to write 3097 * to the buffer after this will fail and return NULL. 3098 * 3099 * This is different than ring_buffer_record_disable() as 3100 * it works like an on/off switch, where as the disable() version 3101 * must be paired with a enable(). 3102 */ 3103 void ring_buffer_record_off(struct ring_buffer *buffer) 3104 { 3105 unsigned int rd; 3106 unsigned int new_rd; 3107 3108 do { 3109 rd = atomic_read(&buffer->record_disabled); 3110 new_rd = rd | RB_BUFFER_OFF; 3111 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3112 } 3113 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3114 3115 /** 3116 * ring_buffer_record_on - restart writes into the buffer 3117 * @buffer: The ring buffer to start writes to. 3118 * 3119 * This enables all writes to the buffer that was disabled by 3120 * ring_buffer_record_off(). 3121 * 3122 * This is different than ring_buffer_record_enable() as 3123 * it works like an on/off switch, where as the enable() version 3124 * must be paired with a disable(). 3125 */ 3126 void ring_buffer_record_on(struct ring_buffer *buffer) 3127 { 3128 unsigned int rd; 3129 unsigned int new_rd; 3130 3131 do { 3132 rd = atomic_read(&buffer->record_disabled); 3133 new_rd = rd & ~RB_BUFFER_OFF; 3134 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3135 } 3136 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 3137 3138 /** 3139 * ring_buffer_record_is_on - return true if the ring buffer can write 3140 * @buffer: The ring buffer to see if write is enabled 3141 * 3142 * Returns true if the ring buffer is in a state that it accepts writes. 3143 */ 3144 int ring_buffer_record_is_on(struct ring_buffer *buffer) 3145 { 3146 return !atomic_read(&buffer->record_disabled); 3147 } 3148 3149 /** 3150 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 3151 * @buffer: The ring buffer to stop writes to. 3152 * @cpu: The CPU buffer to stop 3153 * 3154 * This prevents all writes to the buffer. Any attempt to write 3155 * to the buffer after this will fail and return NULL. 3156 * 3157 * The caller should call synchronize_sched() after this. 3158 */ 3159 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 3160 { 3161 struct ring_buffer_per_cpu *cpu_buffer; 3162 3163 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3164 return; 3165 3166 cpu_buffer = buffer->buffers[cpu]; 3167 atomic_inc(&cpu_buffer->record_disabled); 3168 } 3169 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 3170 3171 /** 3172 * ring_buffer_record_enable_cpu - enable writes to the buffer 3173 * @buffer: The ring buffer to enable writes 3174 * @cpu: The CPU to enable. 3175 * 3176 * Note, multiple disables will need the same number of enables 3177 * to truly enable the writing (much like preempt_disable). 3178 */ 3179 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 3180 { 3181 struct ring_buffer_per_cpu *cpu_buffer; 3182 3183 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3184 return; 3185 3186 cpu_buffer = buffer->buffers[cpu]; 3187 atomic_dec(&cpu_buffer->record_disabled); 3188 } 3189 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 3190 3191 /* 3192 * The total entries in the ring buffer is the running counter 3193 * of entries entered into the ring buffer, minus the sum of 3194 * the entries read from the ring buffer and the number of 3195 * entries that were overwritten. 3196 */ 3197 static inline unsigned long 3198 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 3199 { 3200 return local_read(&cpu_buffer->entries) - 3201 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 3202 } 3203 3204 /** 3205 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 3206 * @buffer: The ring buffer 3207 * @cpu: The per CPU buffer to read from. 3208 */ 3209 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu) 3210 { 3211 unsigned long flags; 3212 struct ring_buffer_per_cpu *cpu_buffer; 3213 struct buffer_page *bpage; 3214 u64 ret = 0; 3215 3216 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3217 return 0; 3218 3219 cpu_buffer = buffer->buffers[cpu]; 3220 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3221 /* 3222 * if the tail is on reader_page, oldest time stamp is on the reader 3223 * page 3224 */ 3225 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 3226 bpage = cpu_buffer->reader_page; 3227 else 3228 bpage = rb_set_head_page(cpu_buffer); 3229 if (bpage) 3230 ret = bpage->page->time_stamp; 3231 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3232 3233 return ret; 3234 } 3235 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3236 3237 /** 3238 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3239 * @buffer: The ring buffer 3240 * @cpu: The per CPU buffer to read from. 3241 */ 3242 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu) 3243 { 3244 struct ring_buffer_per_cpu *cpu_buffer; 3245 unsigned long ret; 3246 3247 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3248 return 0; 3249 3250 cpu_buffer = buffer->buffers[cpu]; 3251 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 3252 3253 return ret; 3254 } 3255 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 3256 3257 /** 3258 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 3259 * @buffer: The ring buffer 3260 * @cpu: The per CPU buffer to get the entries from. 3261 */ 3262 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 3263 { 3264 struct ring_buffer_per_cpu *cpu_buffer; 3265 3266 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3267 return 0; 3268 3269 cpu_buffer = buffer->buffers[cpu]; 3270 3271 return rb_num_of_entries(cpu_buffer); 3272 } 3273 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 3274 3275 /** 3276 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 3277 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 3278 * @buffer: The ring buffer 3279 * @cpu: The per CPU buffer to get the number of overruns from 3280 */ 3281 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 3282 { 3283 struct ring_buffer_per_cpu *cpu_buffer; 3284 unsigned long ret; 3285 3286 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3287 return 0; 3288 3289 cpu_buffer = buffer->buffers[cpu]; 3290 ret = local_read(&cpu_buffer->overrun); 3291 3292 return ret; 3293 } 3294 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 3295 3296 /** 3297 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 3298 * commits failing due to the buffer wrapping around while there are uncommitted 3299 * events, such as during an interrupt storm. 3300 * @buffer: The ring buffer 3301 * @cpu: The per CPU buffer to get the number of overruns from 3302 */ 3303 unsigned long 3304 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 3305 { 3306 struct ring_buffer_per_cpu *cpu_buffer; 3307 unsigned long ret; 3308 3309 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3310 return 0; 3311 3312 cpu_buffer = buffer->buffers[cpu]; 3313 ret = local_read(&cpu_buffer->commit_overrun); 3314 3315 return ret; 3316 } 3317 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 3318 3319 /** 3320 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 3321 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 3322 * @buffer: The ring buffer 3323 * @cpu: The per CPU buffer to get the number of overruns from 3324 */ 3325 unsigned long 3326 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu) 3327 { 3328 struct ring_buffer_per_cpu *cpu_buffer; 3329 unsigned long ret; 3330 3331 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3332 return 0; 3333 3334 cpu_buffer = buffer->buffers[cpu]; 3335 ret = local_read(&cpu_buffer->dropped_events); 3336 3337 return ret; 3338 } 3339 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 3340 3341 /** 3342 * ring_buffer_read_events_cpu - get the number of events successfully read 3343 * @buffer: The ring buffer 3344 * @cpu: The per CPU buffer to get the number of events read 3345 */ 3346 unsigned long 3347 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu) 3348 { 3349 struct ring_buffer_per_cpu *cpu_buffer; 3350 3351 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3352 return 0; 3353 3354 cpu_buffer = buffer->buffers[cpu]; 3355 return cpu_buffer->read; 3356 } 3357 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 3358 3359 /** 3360 * ring_buffer_entries - get the number of entries in a buffer 3361 * @buffer: The ring buffer 3362 * 3363 * Returns the total number of entries in the ring buffer 3364 * (all CPU entries) 3365 */ 3366 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 3367 { 3368 struct ring_buffer_per_cpu *cpu_buffer; 3369 unsigned long entries = 0; 3370 int cpu; 3371 3372 /* if you care about this being correct, lock the buffer */ 3373 for_each_buffer_cpu(buffer, cpu) { 3374 cpu_buffer = buffer->buffers[cpu]; 3375 entries += rb_num_of_entries(cpu_buffer); 3376 } 3377 3378 return entries; 3379 } 3380 EXPORT_SYMBOL_GPL(ring_buffer_entries); 3381 3382 /** 3383 * ring_buffer_overruns - get the number of overruns in buffer 3384 * @buffer: The ring buffer 3385 * 3386 * Returns the total number of overruns in the ring buffer 3387 * (all CPU entries) 3388 */ 3389 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 3390 { 3391 struct ring_buffer_per_cpu *cpu_buffer; 3392 unsigned long overruns = 0; 3393 int cpu; 3394 3395 /* if you care about this being correct, lock the buffer */ 3396 for_each_buffer_cpu(buffer, cpu) { 3397 cpu_buffer = buffer->buffers[cpu]; 3398 overruns += local_read(&cpu_buffer->overrun); 3399 } 3400 3401 return overruns; 3402 } 3403 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 3404 3405 static void rb_iter_reset(struct ring_buffer_iter *iter) 3406 { 3407 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3408 3409 /* Iterator usage is expected to have record disabled */ 3410 iter->head_page = cpu_buffer->reader_page; 3411 iter->head = cpu_buffer->reader_page->read; 3412 3413 iter->cache_reader_page = iter->head_page; 3414 iter->cache_read = cpu_buffer->read; 3415 3416 if (iter->head) 3417 iter->read_stamp = cpu_buffer->read_stamp; 3418 else 3419 iter->read_stamp = iter->head_page->page->time_stamp; 3420 } 3421 3422 /** 3423 * ring_buffer_iter_reset - reset an iterator 3424 * @iter: The iterator to reset 3425 * 3426 * Resets the iterator, so that it will start from the beginning 3427 * again. 3428 */ 3429 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 3430 { 3431 struct ring_buffer_per_cpu *cpu_buffer; 3432 unsigned long flags; 3433 3434 if (!iter) 3435 return; 3436 3437 cpu_buffer = iter->cpu_buffer; 3438 3439 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3440 rb_iter_reset(iter); 3441 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3442 } 3443 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 3444 3445 /** 3446 * ring_buffer_iter_empty - check if an iterator has no more to read 3447 * @iter: The iterator to check 3448 */ 3449 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 3450 { 3451 struct ring_buffer_per_cpu *cpu_buffer; 3452 3453 cpu_buffer = iter->cpu_buffer; 3454 3455 return iter->head_page == cpu_buffer->commit_page && 3456 iter->head == rb_commit_index(cpu_buffer); 3457 } 3458 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 3459 3460 static void 3461 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3462 struct ring_buffer_event *event) 3463 { 3464 u64 delta; 3465 3466 switch (event->type_len) { 3467 case RINGBUF_TYPE_PADDING: 3468 return; 3469 3470 case RINGBUF_TYPE_TIME_EXTEND: 3471 delta = event->array[0]; 3472 delta <<= TS_SHIFT; 3473 delta += event->time_delta; 3474 cpu_buffer->read_stamp += delta; 3475 return; 3476 3477 case RINGBUF_TYPE_TIME_STAMP: 3478 /* FIXME: not implemented */ 3479 return; 3480 3481 case RINGBUF_TYPE_DATA: 3482 cpu_buffer->read_stamp += event->time_delta; 3483 return; 3484 3485 default: 3486 BUG(); 3487 } 3488 return; 3489 } 3490 3491 static void 3492 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 3493 struct ring_buffer_event *event) 3494 { 3495 u64 delta; 3496 3497 switch (event->type_len) { 3498 case RINGBUF_TYPE_PADDING: 3499 return; 3500 3501 case RINGBUF_TYPE_TIME_EXTEND: 3502 delta = event->array[0]; 3503 delta <<= TS_SHIFT; 3504 delta += event->time_delta; 3505 iter->read_stamp += delta; 3506 return; 3507 3508 case RINGBUF_TYPE_TIME_STAMP: 3509 /* FIXME: not implemented */ 3510 return; 3511 3512 case RINGBUF_TYPE_DATA: 3513 iter->read_stamp += event->time_delta; 3514 return; 3515 3516 default: 3517 BUG(); 3518 } 3519 return; 3520 } 3521 3522 static struct buffer_page * 3523 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 3524 { 3525 struct buffer_page *reader = NULL; 3526 unsigned long overwrite; 3527 unsigned long flags; 3528 int nr_loops = 0; 3529 int ret; 3530 3531 local_irq_save(flags); 3532 arch_spin_lock(&cpu_buffer->lock); 3533 3534 again: 3535 /* 3536 * This should normally only loop twice. But because the 3537 * start of the reader inserts an empty page, it causes 3538 * a case where we will loop three times. There should be no 3539 * reason to loop four times (that I know of). 3540 */ 3541 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 3542 reader = NULL; 3543 goto out; 3544 } 3545 3546 reader = cpu_buffer->reader_page; 3547 3548 /* If there's more to read, return this page */ 3549 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 3550 goto out; 3551 3552 /* Never should we have an index greater than the size */ 3553 if (RB_WARN_ON(cpu_buffer, 3554 cpu_buffer->reader_page->read > rb_page_size(reader))) 3555 goto out; 3556 3557 /* check if we caught up to the tail */ 3558 reader = NULL; 3559 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 3560 goto out; 3561 3562 /* Don't bother swapping if the ring buffer is empty */ 3563 if (rb_num_of_entries(cpu_buffer) == 0) 3564 goto out; 3565 3566 /* 3567 * Reset the reader page to size zero. 3568 */ 3569 local_set(&cpu_buffer->reader_page->write, 0); 3570 local_set(&cpu_buffer->reader_page->entries, 0); 3571 local_set(&cpu_buffer->reader_page->page->commit, 0); 3572 cpu_buffer->reader_page->real_end = 0; 3573 3574 spin: 3575 /* 3576 * Splice the empty reader page into the list around the head. 3577 */ 3578 reader = rb_set_head_page(cpu_buffer); 3579 if (!reader) 3580 goto out; 3581 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 3582 cpu_buffer->reader_page->list.prev = reader->list.prev; 3583 3584 /* 3585 * cpu_buffer->pages just needs to point to the buffer, it 3586 * has no specific buffer page to point to. Lets move it out 3587 * of our way so we don't accidentally swap it. 3588 */ 3589 cpu_buffer->pages = reader->list.prev; 3590 3591 /* The reader page will be pointing to the new head */ 3592 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 3593 3594 /* 3595 * We want to make sure we read the overruns after we set up our 3596 * pointers to the next object. The writer side does a 3597 * cmpxchg to cross pages which acts as the mb on the writer 3598 * side. Note, the reader will constantly fail the swap 3599 * while the writer is updating the pointers, so this 3600 * guarantees that the overwrite recorded here is the one we 3601 * want to compare with the last_overrun. 3602 */ 3603 smp_mb(); 3604 overwrite = local_read(&(cpu_buffer->overrun)); 3605 3606 /* 3607 * Here's the tricky part. 3608 * 3609 * We need to move the pointer past the header page. 3610 * But we can only do that if a writer is not currently 3611 * moving it. The page before the header page has the 3612 * flag bit '1' set if it is pointing to the page we want. 3613 * but if the writer is in the process of moving it 3614 * than it will be '2' or already moved '0'. 3615 */ 3616 3617 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 3618 3619 /* 3620 * If we did not convert it, then we must try again. 3621 */ 3622 if (!ret) 3623 goto spin; 3624 3625 /* 3626 * Yeah! We succeeded in replacing the page. 3627 * 3628 * Now make the new head point back to the reader page. 3629 */ 3630 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 3631 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 3632 3633 /* Finally update the reader page to the new head */ 3634 cpu_buffer->reader_page = reader; 3635 rb_reset_reader_page(cpu_buffer); 3636 3637 if (overwrite != cpu_buffer->last_overrun) { 3638 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 3639 cpu_buffer->last_overrun = overwrite; 3640 } 3641 3642 goto again; 3643 3644 out: 3645 arch_spin_unlock(&cpu_buffer->lock); 3646 local_irq_restore(flags); 3647 3648 return reader; 3649 } 3650 3651 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3652 { 3653 struct ring_buffer_event *event; 3654 struct buffer_page *reader; 3655 unsigned length; 3656 3657 reader = rb_get_reader_page(cpu_buffer); 3658 3659 /* This function should not be called when buffer is empty */ 3660 if (RB_WARN_ON(cpu_buffer, !reader)) 3661 return; 3662 3663 event = rb_reader_event(cpu_buffer); 3664 3665 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3666 cpu_buffer->read++; 3667 3668 rb_update_read_stamp(cpu_buffer, event); 3669 3670 length = rb_event_length(event); 3671 cpu_buffer->reader_page->read += length; 3672 } 3673 3674 static void rb_advance_iter(struct ring_buffer_iter *iter) 3675 { 3676 struct ring_buffer_per_cpu *cpu_buffer; 3677 struct ring_buffer_event *event; 3678 unsigned length; 3679 3680 cpu_buffer = iter->cpu_buffer; 3681 3682 /* 3683 * Check if we are at the end of the buffer. 3684 */ 3685 if (iter->head >= rb_page_size(iter->head_page)) { 3686 /* discarded commits can make the page empty */ 3687 if (iter->head_page == cpu_buffer->commit_page) 3688 return; 3689 rb_inc_iter(iter); 3690 return; 3691 } 3692 3693 event = rb_iter_head_event(iter); 3694 3695 length = rb_event_length(event); 3696 3697 /* 3698 * This should not be called to advance the header if we are 3699 * at the tail of the buffer. 3700 */ 3701 if (RB_WARN_ON(cpu_buffer, 3702 (iter->head_page == cpu_buffer->commit_page) && 3703 (iter->head + length > rb_commit_index(cpu_buffer)))) 3704 return; 3705 3706 rb_update_iter_read_stamp(iter, event); 3707 3708 iter->head += length; 3709 3710 /* check for end of page padding */ 3711 if ((iter->head >= rb_page_size(iter->head_page)) && 3712 (iter->head_page != cpu_buffer->commit_page)) 3713 rb_inc_iter(iter); 3714 } 3715 3716 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3717 { 3718 return cpu_buffer->lost_events; 3719 } 3720 3721 static struct ring_buffer_event * 3722 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3723 unsigned long *lost_events) 3724 { 3725 struct ring_buffer_event *event; 3726 struct buffer_page *reader; 3727 int nr_loops = 0; 3728 3729 again: 3730 /* 3731 * We repeat when a time extend is encountered. 3732 * Since the time extend is always attached to a data event, 3733 * we should never loop more than once. 3734 * (We never hit the following condition more than twice). 3735 */ 3736 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3737 return NULL; 3738 3739 reader = rb_get_reader_page(cpu_buffer); 3740 if (!reader) 3741 return NULL; 3742 3743 event = rb_reader_event(cpu_buffer); 3744 3745 switch (event->type_len) { 3746 case RINGBUF_TYPE_PADDING: 3747 if (rb_null_event(event)) 3748 RB_WARN_ON(cpu_buffer, 1); 3749 /* 3750 * Because the writer could be discarding every 3751 * event it creates (which would probably be bad) 3752 * if we were to go back to "again" then we may never 3753 * catch up, and will trigger the warn on, or lock 3754 * the box. Return the padding, and we will release 3755 * the current locks, and try again. 3756 */ 3757 return event; 3758 3759 case RINGBUF_TYPE_TIME_EXTEND: 3760 /* Internal data, OK to advance */ 3761 rb_advance_reader(cpu_buffer); 3762 goto again; 3763 3764 case RINGBUF_TYPE_TIME_STAMP: 3765 /* FIXME: not implemented */ 3766 rb_advance_reader(cpu_buffer); 3767 goto again; 3768 3769 case RINGBUF_TYPE_DATA: 3770 if (ts) { 3771 *ts = cpu_buffer->read_stamp + event->time_delta; 3772 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3773 cpu_buffer->cpu, ts); 3774 } 3775 if (lost_events) 3776 *lost_events = rb_lost_events(cpu_buffer); 3777 return event; 3778 3779 default: 3780 BUG(); 3781 } 3782 3783 return NULL; 3784 } 3785 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3786 3787 static struct ring_buffer_event * 3788 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3789 { 3790 struct ring_buffer *buffer; 3791 struct ring_buffer_per_cpu *cpu_buffer; 3792 struct ring_buffer_event *event; 3793 int nr_loops = 0; 3794 3795 cpu_buffer = iter->cpu_buffer; 3796 buffer = cpu_buffer->buffer; 3797 3798 /* 3799 * Check if someone performed a consuming read to 3800 * the buffer. A consuming read invalidates the iterator 3801 * and we need to reset the iterator in this case. 3802 */ 3803 if (unlikely(iter->cache_read != cpu_buffer->read || 3804 iter->cache_reader_page != cpu_buffer->reader_page)) 3805 rb_iter_reset(iter); 3806 3807 again: 3808 if (ring_buffer_iter_empty(iter)) 3809 return NULL; 3810 3811 /* 3812 * We repeat when a time extend is encountered or we hit 3813 * the end of the page. Since the time extend is always attached 3814 * to a data event, we should never loop more than three times. 3815 * Once for going to next page, once on time extend, and 3816 * finally once to get the event. 3817 * (We never hit the following condition more than thrice). 3818 */ 3819 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) 3820 return NULL; 3821 3822 if (rb_per_cpu_empty(cpu_buffer)) 3823 return NULL; 3824 3825 if (iter->head >= rb_page_size(iter->head_page)) { 3826 rb_inc_iter(iter); 3827 goto again; 3828 } 3829 3830 event = rb_iter_head_event(iter); 3831 3832 switch (event->type_len) { 3833 case RINGBUF_TYPE_PADDING: 3834 if (rb_null_event(event)) { 3835 rb_inc_iter(iter); 3836 goto again; 3837 } 3838 rb_advance_iter(iter); 3839 return event; 3840 3841 case RINGBUF_TYPE_TIME_EXTEND: 3842 /* Internal data, OK to advance */ 3843 rb_advance_iter(iter); 3844 goto again; 3845 3846 case RINGBUF_TYPE_TIME_STAMP: 3847 /* FIXME: not implemented */ 3848 rb_advance_iter(iter); 3849 goto again; 3850 3851 case RINGBUF_TYPE_DATA: 3852 if (ts) { 3853 *ts = iter->read_stamp + event->time_delta; 3854 ring_buffer_normalize_time_stamp(buffer, 3855 cpu_buffer->cpu, ts); 3856 } 3857 return event; 3858 3859 default: 3860 BUG(); 3861 } 3862 3863 return NULL; 3864 } 3865 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3866 3867 static inline int rb_ok_to_lock(void) 3868 { 3869 /* 3870 * If an NMI die dumps out the content of the ring buffer 3871 * do not grab locks. We also permanently disable the ring 3872 * buffer too. A one time deal is all you get from reading 3873 * the ring buffer from an NMI. 3874 */ 3875 if (likely(!in_nmi())) 3876 return 1; 3877 3878 tracing_off_permanent(); 3879 return 0; 3880 } 3881 3882 /** 3883 * ring_buffer_peek - peek at the next event to be read 3884 * @buffer: The ring buffer to read 3885 * @cpu: The cpu to peak at 3886 * @ts: The timestamp counter of this event. 3887 * @lost_events: a variable to store if events were lost (may be NULL) 3888 * 3889 * This will return the event that will be read next, but does 3890 * not consume the data. 3891 */ 3892 struct ring_buffer_event * 3893 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, 3894 unsigned long *lost_events) 3895 { 3896 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3897 struct ring_buffer_event *event; 3898 unsigned long flags; 3899 int dolock; 3900 3901 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3902 return NULL; 3903 3904 dolock = rb_ok_to_lock(); 3905 again: 3906 local_irq_save(flags); 3907 if (dolock) 3908 raw_spin_lock(&cpu_buffer->reader_lock); 3909 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3910 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3911 rb_advance_reader(cpu_buffer); 3912 if (dolock) 3913 raw_spin_unlock(&cpu_buffer->reader_lock); 3914 local_irq_restore(flags); 3915 3916 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3917 goto again; 3918 3919 return event; 3920 } 3921 3922 /** 3923 * ring_buffer_iter_peek - peek at the next event to be read 3924 * @iter: The ring buffer iterator 3925 * @ts: The timestamp counter of this event. 3926 * 3927 * This will return the event that will be read next, but does 3928 * not increment the iterator. 3929 */ 3930 struct ring_buffer_event * 3931 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3932 { 3933 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3934 struct ring_buffer_event *event; 3935 unsigned long flags; 3936 3937 again: 3938 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3939 event = rb_iter_peek(iter, ts); 3940 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3941 3942 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3943 goto again; 3944 3945 return event; 3946 } 3947 3948 /** 3949 * ring_buffer_consume - return an event and consume it 3950 * @buffer: The ring buffer to get the next event from 3951 * @cpu: the cpu to read the buffer from 3952 * @ts: a variable to store the timestamp (may be NULL) 3953 * @lost_events: a variable to store if events were lost (may be NULL) 3954 * 3955 * Returns the next event in the ring buffer, and that event is consumed. 3956 * Meaning, that sequential reads will keep returning a different event, 3957 * and eventually empty the ring buffer if the producer is slower. 3958 */ 3959 struct ring_buffer_event * 3960 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, 3961 unsigned long *lost_events) 3962 { 3963 struct ring_buffer_per_cpu *cpu_buffer; 3964 struct ring_buffer_event *event = NULL; 3965 unsigned long flags; 3966 int dolock; 3967 3968 dolock = rb_ok_to_lock(); 3969 3970 again: 3971 /* might be called in atomic */ 3972 preempt_disable(); 3973 3974 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3975 goto out; 3976 3977 cpu_buffer = buffer->buffers[cpu]; 3978 local_irq_save(flags); 3979 if (dolock) 3980 raw_spin_lock(&cpu_buffer->reader_lock); 3981 3982 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3983 if (event) { 3984 cpu_buffer->lost_events = 0; 3985 rb_advance_reader(cpu_buffer); 3986 } 3987 3988 if (dolock) 3989 raw_spin_unlock(&cpu_buffer->reader_lock); 3990 local_irq_restore(flags); 3991 3992 out: 3993 preempt_enable(); 3994 3995 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3996 goto again; 3997 3998 return event; 3999 } 4000 EXPORT_SYMBOL_GPL(ring_buffer_consume); 4001 4002 /** 4003 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 4004 * @buffer: The ring buffer to read from 4005 * @cpu: The cpu buffer to iterate over 4006 * 4007 * This performs the initial preparations necessary to iterate 4008 * through the buffer. Memory is allocated, buffer recording 4009 * is disabled, and the iterator pointer is returned to the caller. 4010 * 4011 * Disabling buffer recordng prevents the reading from being 4012 * corrupted. This is not a consuming read, so a producer is not 4013 * expected. 4014 * 4015 * After a sequence of ring_buffer_read_prepare calls, the user is 4016 * expected to make at least one call to ring_buffer_read_prepare_sync. 4017 * Afterwards, ring_buffer_read_start is invoked to get things going 4018 * for real. 4019 * 4020 * This overall must be paired with ring_buffer_read_finish. 4021 */ 4022 struct ring_buffer_iter * 4023 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu) 4024 { 4025 struct ring_buffer_per_cpu *cpu_buffer; 4026 struct ring_buffer_iter *iter; 4027 4028 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4029 return NULL; 4030 4031 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 4032 if (!iter) 4033 return NULL; 4034 4035 cpu_buffer = buffer->buffers[cpu]; 4036 4037 iter->cpu_buffer = cpu_buffer; 4038 4039 atomic_inc(&buffer->resize_disabled); 4040 atomic_inc(&cpu_buffer->record_disabled); 4041 4042 return iter; 4043 } 4044 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 4045 4046 /** 4047 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 4048 * 4049 * All previously invoked ring_buffer_read_prepare calls to prepare 4050 * iterators will be synchronized. Afterwards, read_buffer_read_start 4051 * calls on those iterators are allowed. 4052 */ 4053 void 4054 ring_buffer_read_prepare_sync(void) 4055 { 4056 synchronize_sched(); 4057 } 4058 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 4059 4060 /** 4061 * ring_buffer_read_start - start a non consuming read of the buffer 4062 * @iter: The iterator returned by ring_buffer_read_prepare 4063 * 4064 * This finalizes the startup of an iteration through the buffer. 4065 * The iterator comes from a call to ring_buffer_read_prepare and 4066 * an intervening ring_buffer_read_prepare_sync must have been 4067 * performed. 4068 * 4069 * Must be paired with ring_buffer_read_finish. 4070 */ 4071 void 4072 ring_buffer_read_start(struct ring_buffer_iter *iter) 4073 { 4074 struct ring_buffer_per_cpu *cpu_buffer; 4075 unsigned long flags; 4076 4077 if (!iter) 4078 return; 4079 4080 cpu_buffer = iter->cpu_buffer; 4081 4082 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4083 arch_spin_lock(&cpu_buffer->lock); 4084 rb_iter_reset(iter); 4085 arch_spin_unlock(&cpu_buffer->lock); 4086 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4087 } 4088 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 4089 4090 /** 4091 * ring_buffer_read_finish - finish reading the iterator of the buffer 4092 * @iter: The iterator retrieved by ring_buffer_start 4093 * 4094 * This re-enables the recording to the buffer, and frees the 4095 * iterator. 4096 */ 4097 void 4098 ring_buffer_read_finish(struct ring_buffer_iter *iter) 4099 { 4100 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4101 unsigned long flags; 4102 4103 /* 4104 * Ring buffer is disabled from recording, here's a good place 4105 * to check the integrity of the ring buffer. 4106 * Must prevent readers from trying to read, as the check 4107 * clears the HEAD page and readers require it. 4108 */ 4109 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4110 rb_check_pages(cpu_buffer); 4111 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4112 4113 atomic_dec(&cpu_buffer->record_disabled); 4114 atomic_dec(&cpu_buffer->buffer->resize_disabled); 4115 kfree(iter); 4116 } 4117 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 4118 4119 /** 4120 * ring_buffer_read - read the next item in the ring buffer by the iterator 4121 * @iter: The ring buffer iterator 4122 * @ts: The time stamp of the event read. 4123 * 4124 * This reads the next event in the ring buffer and increments the iterator. 4125 */ 4126 struct ring_buffer_event * 4127 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 4128 { 4129 struct ring_buffer_event *event; 4130 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4131 unsigned long flags; 4132 4133 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4134 again: 4135 event = rb_iter_peek(iter, ts); 4136 if (!event) 4137 goto out; 4138 4139 if (event->type_len == RINGBUF_TYPE_PADDING) 4140 goto again; 4141 4142 rb_advance_iter(iter); 4143 out: 4144 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4145 4146 return event; 4147 } 4148 EXPORT_SYMBOL_GPL(ring_buffer_read); 4149 4150 /** 4151 * ring_buffer_size - return the size of the ring buffer (in bytes) 4152 * @buffer: The ring buffer. 4153 */ 4154 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu) 4155 { 4156 /* 4157 * Earlier, this method returned 4158 * BUF_PAGE_SIZE * buffer->nr_pages 4159 * Since the nr_pages field is now removed, we have converted this to 4160 * return the per cpu buffer value. 4161 */ 4162 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4163 return 0; 4164 4165 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 4166 } 4167 EXPORT_SYMBOL_GPL(ring_buffer_size); 4168 4169 static void 4170 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 4171 { 4172 rb_head_page_deactivate(cpu_buffer); 4173 4174 cpu_buffer->head_page 4175 = list_entry(cpu_buffer->pages, struct buffer_page, list); 4176 local_set(&cpu_buffer->head_page->write, 0); 4177 local_set(&cpu_buffer->head_page->entries, 0); 4178 local_set(&cpu_buffer->head_page->page->commit, 0); 4179 4180 cpu_buffer->head_page->read = 0; 4181 4182 cpu_buffer->tail_page = cpu_buffer->head_page; 4183 cpu_buffer->commit_page = cpu_buffer->head_page; 4184 4185 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 4186 INIT_LIST_HEAD(&cpu_buffer->new_pages); 4187 local_set(&cpu_buffer->reader_page->write, 0); 4188 local_set(&cpu_buffer->reader_page->entries, 0); 4189 local_set(&cpu_buffer->reader_page->page->commit, 0); 4190 cpu_buffer->reader_page->read = 0; 4191 4192 local_set(&cpu_buffer->entries_bytes, 0); 4193 local_set(&cpu_buffer->overrun, 0); 4194 local_set(&cpu_buffer->commit_overrun, 0); 4195 local_set(&cpu_buffer->dropped_events, 0); 4196 local_set(&cpu_buffer->entries, 0); 4197 local_set(&cpu_buffer->committing, 0); 4198 local_set(&cpu_buffer->commits, 0); 4199 cpu_buffer->read = 0; 4200 cpu_buffer->read_bytes = 0; 4201 4202 cpu_buffer->write_stamp = 0; 4203 cpu_buffer->read_stamp = 0; 4204 4205 cpu_buffer->lost_events = 0; 4206 cpu_buffer->last_overrun = 0; 4207 4208 rb_head_page_activate(cpu_buffer); 4209 } 4210 4211 /** 4212 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 4213 * @buffer: The ring buffer to reset a per cpu buffer of 4214 * @cpu: The CPU buffer to be reset 4215 */ 4216 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 4217 { 4218 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4219 unsigned long flags; 4220 4221 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4222 return; 4223 4224 atomic_inc(&buffer->resize_disabled); 4225 atomic_inc(&cpu_buffer->record_disabled); 4226 4227 /* Make sure all commits have finished */ 4228 synchronize_sched(); 4229 4230 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4231 4232 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 4233 goto out; 4234 4235 arch_spin_lock(&cpu_buffer->lock); 4236 4237 rb_reset_cpu(cpu_buffer); 4238 4239 arch_spin_unlock(&cpu_buffer->lock); 4240 4241 out: 4242 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4243 4244 atomic_dec(&cpu_buffer->record_disabled); 4245 atomic_dec(&buffer->resize_disabled); 4246 } 4247 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 4248 4249 /** 4250 * ring_buffer_reset - reset a ring buffer 4251 * @buffer: The ring buffer to reset all cpu buffers 4252 */ 4253 void ring_buffer_reset(struct ring_buffer *buffer) 4254 { 4255 int cpu; 4256 4257 for_each_buffer_cpu(buffer, cpu) 4258 ring_buffer_reset_cpu(buffer, cpu); 4259 } 4260 EXPORT_SYMBOL_GPL(ring_buffer_reset); 4261 4262 /** 4263 * rind_buffer_empty - is the ring buffer empty? 4264 * @buffer: The ring buffer to test 4265 */ 4266 int ring_buffer_empty(struct ring_buffer *buffer) 4267 { 4268 struct ring_buffer_per_cpu *cpu_buffer; 4269 unsigned long flags; 4270 int dolock; 4271 int cpu; 4272 int ret; 4273 4274 dolock = rb_ok_to_lock(); 4275 4276 /* yes this is racy, but if you don't like the race, lock the buffer */ 4277 for_each_buffer_cpu(buffer, cpu) { 4278 cpu_buffer = buffer->buffers[cpu]; 4279 local_irq_save(flags); 4280 if (dolock) 4281 raw_spin_lock(&cpu_buffer->reader_lock); 4282 ret = rb_per_cpu_empty(cpu_buffer); 4283 if (dolock) 4284 raw_spin_unlock(&cpu_buffer->reader_lock); 4285 local_irq_restore(flags); 4286 4287 if (!ret) 4288 return 0; 4289 } 4290 4291 return 1; 4292 } 4293 EXPORT_SYMBOL_GPL(ring_buffer_empty); 4294 4295 /** 4296 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 4297 * @buffer: The ring buffer 4298 * @cpu: The CPU buffer to test 4299 */ 4300 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 4301 { 4302 struct ring_buffer_per_cpu *cpu_buffer; 4303 unsigned long flags; 4304 int dolock; 4305 int ret; 4306 4307 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4308 return 1; 4309 4310 dolock = rb_ok_to_lock(); 4311 4312 cpu_buffer = buffer->buffers[cpu]; 4313 local_irq_save(flags); 4314 if (dolock) 4315 raw_spin_lock(&cpu_buffer->reader_lock); 4316 ret = rb_per_cpu_empty(cpu_buffer); 4317 if (dolock) 4318 raw_spin_unlock(&cpu_buffer->reader_lock); 4319 local_irq_restore(flags); 4320 4321 return ret; 4322 } 4323 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 4324 4325 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4326 /** 4327 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 4328 * @buffer_a: One buffer to swap with 4329 * @buffer_b: The other buffer to swap with 4330 * 4331 * This function is useful for tracers that want to take a "snapshot" 4332 * of a CPU buffer and has another back up buffer lying around. 4333 * it is expected that the tracer handles the cpu buffer not being 4334 * used at the moment. 4335 */ 4336 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 4337 struct ring_buffer *buffer_b, int cpu) 4338 { 4339 struct ring_buffer_per_cpu *cpu_buffer_a; 4340 struct ring_buffer_per_cpu *cpu_buffer_b; 4341 int ret = -EINVAL; 4342 4343 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 4344 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 4345 goto out; 4346 4347 cpu_buffer_a = buffer_a->buffers[cpu]; 4348 cpu_buffer_b = buffer_b->buffers[cpu]; 4349 4350 /* At least make sure the two buffers are somewhat the same */ 4351 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 4352 goto out; 4353 4354 ret = -EAGAIN; 4355 4356 if (ring_buffer_flags != RB_BUFFERS_ON) 4357 goto out; 4358 4359 if (atomic_read(&buffer_a->record_disabled)) 4360 goto out; 4361 4362 if (atomic_read(&buffer_b->record_disabled)) 4363 goto out; 4364 4365 if (atomic_read(&cpu_buffer_a->record_disabled)) 4366 goto out; 4367 4368 if (atomic_read(&cpu_buffer_b->record_disabled)) 4369 goto out; 4370 4371 /* 4372 * We can't do a synchronize_sched here because this 4373 * function can be called in atomic context. 4374 * Normally this will be called from the same CPU as cpu. 4375 * If not it's up to the caller to protect this. 4376 */ 4377 atomic_inc(&cpu_buffer_a->record_disabled); 4378 atomic_inc(&cpu_buffer_b->record_disabled); 4379 4380 ret = -EBUSY; 4381 if (local_read(&cpu_buffer_a->committing)) 4382 goto out_dec; 4383 if (local_read(&cpu_buffer_b->committing)) 4384 goto out_dec; 4385 4386 buffer_a->buffers[cpu] = cpu_buffer_b; 4387 buffer_b->buffers[cpu] = cpu_buffer_a; 4388 4389 cpu_buffer_b->buffer = buffer_a; 4390 cpu_buffer_a->buffer = buffer_b; 4391 4392 ret = 0; 4393 4394 out_dec: 4395 atomic_dec(&cpu_buffer_a->record_disabled); 4396 atomic_dec(&cpu_buffer_b->record_disabled); 4397 out: 4398 return ret; 4399 } 4400 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 4401 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 4402 4403 /** 4404 * ring_buffer_alloc_read_page - allocate a page to read from buffer 4405 * @buffer: the buffer to allocate for. 4406 * @cpu: the cpu buffer to allocate. 4407 * 4408 * This function is used in conjunction with ring_buffer_read_page. 4409 * When reading a full page from the ring buffer, these functions 4410 * can be used to speed up the process. The calling function should 4411 * allocate a few pages first with this function. Then when it 4412 * needs to get pages from the ring buffer, it passes the result 4413 * of this function into ring_buffer_read_page, which will swap 4414 * the page that was allocated, with the read page of the buffer. 4415 * 4416 * Returns: 4417 * The page allocated, or NULL on error. 4418 */ 4419 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu) 4420 { 4421 struct buffer_data_page *bpage; 4422 struct page *page; 4423 4424 page = alloc_pages_node(cpu_to_node(cpu), 4425 GFP_KERNEL | __GFP_NORETRY, 0); 4426 if (!page) 4427 return NULL; 4428 4429 bpage = page_address(page); 4430 4431 rb_init_page(bpage); 4432 4433 return bpage; 4434 } 4435 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 4436 4437 /** 4438 * ring_buffer_free_read_page - free an allocated read page 4439 * @buffer: the buffer the page was allocate for 4440 * @data: the page to free 4441 * 4442 * Free a page allocated from ring_buffer_alloc_read_page. 4443 */ 4444 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data) 4445 { 4446 free_page((unsigned long)data); 4447 } 4448 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 4449 4450 /** 4451 * ring_buffer_read_page - extract a page from the ring buffer 4452 * @buffer: buffer to extract from 4453 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 4454 * @len: amount to extract 4455 * @cpu: the cpu of the buffer to extract 4456 * @full: should the extraction only happen when the page is full. 4457 * 4458 * This function will pull out a page from the ring buffer and consume it. 4459 * @data_page must be the address of the variable that was returned 4460 * from ring_buffer_alloc_read_page. This is because the page might be used 4461 * to swap with a page in the ring buffer. 4462 * 4463 * for example: 4464 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 4465 * if (!rpage) 4466 * return error; 4467 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 4468 * if (ret >= 0) 4469 * process_page(rpage, ret); 4470 * 4471 * When @full is set, the function will not return true unless 4472 * the writer is off the reader page. 4473 * 4474 * Note: it is up to the calling functions to handle sleeps and wakeups. 4475 * The ring buffer can be used anywhere in the kernel and can not 4476 * blindly call wake_up. The layer that uses the ring buffer must be 4477 * responsible for that. 4478 * 4479 * Returns: 4480 * >=0 if data has been transferred, returns the offset of consumed data. 4481 * <0 if no data has been transferred. 4482 */ 4483 int ring_buffer_read_page(struct ring_buffer *buffer, 4484 void **data_page, size_t len, int cpu, int full) 4485 { 4486 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4487 struct ring_buffer_event *event; 4488 struct buffer_data_page *bpage; 4489 struct buffer_page *reader; 4490 unsigned long missed_events; 4491 unsigned long flags; 4492 unsigned int commit; 4493 unsigned int read; 4494 u64 save_timestamp; 4495 int ret = -1; 4496 4497 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4498 goto out; 4499 4500 /* 4501 * If len is not big enough to hold the page header, then 4502 * we can not copy anything. 4503 */ 4504 if (len <= BUF_PAGE_HDR_SIZE) 4505 goto out; 4506 4507 len -= BUF_PAGE_HDR_SIZE; 4508 4509 if (!data_page) 4510 goto out; 4511 4512 bpage = *data_page; 4513 if (!bpage) 4514 goto out; 4515 4516 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4517 4518 reader = rb_get_reader_page(cpu_buffer); 4519 if (!reader) 4520 goto out_unlock; 4521 4522 event = rb_reader_event(cpu_buffer); 4523 4524 read = reader->read; 4525 commit = rb_page_commit(reader); 4526 4527 /* Check if any events were dropped */ 4528 missed_events = cpu_buffer->lost_events; 4529 4530 /* 4531 * If this page has been partially read or 4532 * if len is not big enough to read the rest of the page or 4533 * a writer is still on the page, then 4534 * we must copy the data from the page to the buffer. 4535 * Otherwise, we can simply swap the page with the one passed in. 4536 */ 4537 if (read || (len < (commit - read)) || 4538 cpu_buffer->reader_page == cpu_buffer->commit_page) { 4539 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 4540 unsigned int rpos = read; 4541 unsigned int pos = 0; 4542 unsigned int size; 4543 4544 if (full) 4545 goto out_unlock; 4546 4547 if (len > (commit - read)) 4548 len = (commit - read); 4549 4550 /* Always keep the time extend and data together */ 4551 size = rb_event_ts_length(event); 4552 4553 if (len < size) 4554 goto out_unlock; 4555 4556 /* save the current timestamp, since the user will need it */ 4557 save_timestamp = cpu_buffer->read_stamp; 4558 4559 /* Need to copy one event at a time */ 4560 do { 4561 /* We need the size of one event, because 4562 * rb_advance_reader only advances by one event, 4563 * whereas rb_event_ts_length may include the size of 4564 * one or two events. 4565 * We have already ensured there's enough space if this 4566 * is a time extend. */ 4567 size = rb_event_length(event); 4568 memcpy(bpage->data + pos, rpage->data + rpos, size); 4569 4570 len -= size; 4571 4572 rb_advance_reader(cpu_buffer); 4573 rpos = reader->read; 4574 pos += size; 4575 4576 if (rpos >= commit) 4577 break; 4578 4579 event = rb_reader_event(cpu_buffer); 4580 /* Always keep the time extend and data together */ 4581 size = rb_event_ts_length(event); 4582 } while (len >= size); 4583 4584 /* update bpage */ 4585 local_set(&bpage->commit, pos); 4586 bpage->time_stamp = save_timestamp; 4587 4588 /* we copied everything to the beginning */ 4589 read = 0; 4590 } else { 4591 /* update the entry counter */ 4592 cpu_buffer->read += rb_page_entries(reader); 4593 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 4594 4595 /* swap the pages */ 4596 rb_init_page(bpage); 4597 bpage = reader->page; 4598 reader->page = *data_page; 4599 local_set(&reader->write, 0); 4600 local_set(&reader->entries, 0); 4601 reader->read = 0; 4602 *data_page = bpage; 4603 4604 /* 4605 * Use the real_end for the data size, 4606 * This gives us a chance to store the lost events 4607 * on the page. 4608 */ 4609 if (reader->real_end) 4610 local_set(&bpage->commit, reader->real_end); 4611 } 4612 ret = read; 4613 4614 cpu_buffer->lost_events = 0; 4615 4616 commit = local_read(&bpage->commit); 4617 /* 4618 * Set a flag in the commit field if we lost events 4619 */ 4620 if (missed_events) { 4621 /* If there is room at the end of the page to save the 4622 * missed events, then record it there. 4623 */ 4624 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 4625 memcpy(&bpage->data[commit], &missed_events, 4626 sizeof(missed_events)); 4627 local_add(RB_MISSED_STORED, &bpage->commit); 4628 commit += sizeof(missed_events); 4629 } 4630 local_add(RB_MISSED_EVENTS, &bpage->commit); 4631 } 4632 4633 /* 4634 * This page may be off to user land. Zero it out here. 4635 */ 4636 if (commit < BUF_PAGE_SIZE) 4637 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 4638 4639 out_unlock: 4640 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4641 4642 out: 4643 return ret; 4644 } 4645 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 4646 4647 #ifdef CONFIG_HOTPLUG_CPU 4648 static int rb_cpu_notify(struct notifier_block *self, 4649 unsigned long action, void *hcpu) 4650 { 4651 struct ring_buffer *buffer = 4652 container_of(self, struct ring_buffer, cpu_notify); 4653 long cpu = (long)hcpu; 4654 int cpu_i, nr_pages_same; 4655 unsigned int nr_pages; 4656 4657 switch (action) { 4658 case CPU_UP_PREPARE: 4659 case CPU_UP_PREPARE_FROZEN: 4660 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4661 return NOTIFY_OK; 4662 4663 nr_pages = 0; 4664 nr_pages_same = 1; 4665 /* check if all cpu sizes are same */ 4666 for_each_buffer_cpu(buffer, cpu_i) { 4667 /* fill in the size from first enabled cpu */ 4668 if (nr_pages == 0) 4669 nr_pages = buffer->buffers[cpu_i]->nr_pages; 4670 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 4671 nr_pages_same = 0; 4672 break; 4673 } 4674 } 4675 /* allocate minimum pages, user can later expand it */ 4676 if (!nr_pages_same) 4677 nr_pages = 2; 4678 buffer->buffers[cpu] = 4679 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 4680 if (!buffer->buffers[cpu]) { 4681 WARN(1, "failed to allocate ring buffer on CPU %ld\n", 4682 cpu); 4683 return NOTIFY_OK; 4684 } 4685 smp_wmb(); 4686 cpumask_set_cpu(cpu, buffer->cpumask); 4687 break; 4688 case CPU_DOWN_PREPARE: 4689 case CPU_DOWN_PREPARE_FROZEN: 4690 /* 4691 * Do nothing. 4692 * If we were to free the buffer, then the user would 4693 * lose any trace that was in the buffer. 4694 */ 4695 break; 4696 default: 4697 break; 4698 } 4699 return NOTIFY_OK; 4700 } 4701 #endif 4702 4703 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 4704 /* 4705 * This is a basic integrity check of the ring buffer. 4706 * Late in the boot cycle this test will run when configured in. 4707 * It will kick off a thread per CPU that will go into a loop 4708 * writing to the per cpu ring buffer various sizes of data. 4709 * Some of the data will be large items, some small. 4710 * 4711 * Another thread is created that goes into a spin, sending out 4712 * IPIs to the other CPUs to also write into the ring buffer. 4713 * this is to test the nesting ability of the buffer. 4714 * 4715 * Basic stats are recorded and reported. If something in the 4716 * ring buffer should happen that's not expected, a big warning 4717 * is displayed and all ring buffers are disabled. 4718 */ 4719 static struct task_struct *rb_threads[NR_CPUS] __initdata; 4720 4721 struct rb_test_data { 4722 struct ring_buffer *buffer; 4723 unsigned long events; 4724 unsigned long bytes_written; 4725 unsigned long bytes_alloc; 4726 unsigned long bytes_dropped; 4727 unsigned long events_nested; 4728 unsigned long bytes_written_nested; 4729 unsigned long bytes_alloc_nested; 4730 unsigned long bytes_dropped_nested; 4731 int min_size_nested; 4732 int max_size_nested; 4733 int max_size; 4734 int min_size; 4735 int cpu; 4736 int cnt; 4737 }; 4738 4739 static struct rb_test_data rb_data[NR_CPUS] __initdata; 4740 4741 /* 1 meg per cpu */ 4742 #define RB_TEST_BUFFER_SIZE 1048576 4743 4744 static char rb_string[] __initdata = 4745 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 4746 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 4747 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 4748 4749 static bool rb_test_started __initdata; 4750 4751 struct rb_item { 4752 int size; 4753 char str[]; 4754 }; 4755 4756 static __init int rb_write_something(struct rb_test_data *data, bool nested) 4757 { 4758 struct ring_buffer_event *event; 4759 struct rb_item *item; 4760 bool started; 4761 int event_len; 4762 int size; 4763 int len; 4764 int cnt; 4765 4766 /* Have nested writes different that what is written */ 4767 cnt = data->cnt + (nested ? 27 : 0); 4768 4769 /* Multiply cnt by ~e, to make some unique increment */ 4770 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1); 4771 4772 len = size + sizeof(struct rb_item); 4773 4774 started = rb_test_started; 4775 /* read rb_test_started before checking buffer enabled */ 4776 smp_rmb(); 4777 4778 event = ring_buffer_lock_reserve(data->buffer, len); 4779 if (!event) { 4780 /* Ignore dropped events before test starts. */ 4781 if (started) { 4782 if (nested) 4783 data->bytes_dropped += len; 4784 else 4785 data->bytes_dropped_nested += len; 4786 } 4787 return len; 4788 } 4789 4790 event_len = ring_buffer_event_length(event); 4791 4792 if (RB_WARN_ON(data->buffer, event_len < len)) 4793 goto out; 4794 4795 item = ring_buffer_event_data(event); 4796 item->size = size; 4797 memcpy(item->str, rb_string, size); 4798 4799 if (nested) { 4800 data->bytes_alloc_nested += event_len; 4801 data->bytes_written_nested += len; 4802 data->events_nested++; 4803 if (!data->min_size_nested || len < data->min_size_nested) 4804 data->min_size_nested = len; 4805 if (len > data->max_size_nested) 4806 data->max_size_nested = len; 4807 } else { 4808 data->bytes_alloc += event_len; 4809 data->bytes_written += len; 4810 data->events++; 4811 if (!data->min_size || len < data->min_size) 4812 data->max_size = len; 4813 if (len > data->max_size) 4814 data->max_size = len; 4815 } 4816 4817 out: 4818 ring_buffer_unlock_commit(data->buffer, event); 4819 4820 return 0; 4821 } 4822 4823 static __init int rb_test(void *arg) 4824 { 4825 struct rb_test_data *data = arg; 4826 4827 while (!kthread_should_stop()) { 4828 rb_write_something(data, false); 4829 data->cnt++; 4830 4831 set_current_state(TASK_INTERRUPTIBLE); 4832 /* Now sleep between a min of 100-300us and a max of 1ms */ 4833 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 4834 } 4835 4836 return 0; 4837 } 4838 4839 static __init void rb_ipi(void *ignore) 4840 { 4841 struct rb_test_data *data; 4842 int cpu = smp_processor_id(); 4843 4844 data = &rb_data[cpu]; 4845 rb_write_something(data, true); 4846 } 4847 4848 static __init int rb_hammer_test(void *arg) 4849 { 4850 while (!kthread_should_stop()) { 4851 4852 /* Send an IPI to all cpus to write data! */ 4853 smp_call_function(rb_ipi, NULL, 1); 4854 /* No sleep, but for non preempt, let others run */ 4855 schedule(); 4856 } 4857 4858 return 0; 4859 } 4860 4861 static __init int test_ringbuffer(void) 4862 { 4863 struct task_struct *rb_hammer; 4864 struct ring_buffer *buffer; 4865 int cpu; 4866 int ret = 0; 4867 4868 pr_info("Running ring buffer tests...\n"); 4869 4870 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 4871 if (WARN_ON(!buffer)) 4872 return 0; 4873 4874 /* Disable buffer so that threads can't write to it yet */ 4875 ring_buffer_record_off(buffer); 4876 4877 for_each_online_cpu(cpu) { 4878 rb_data[cpu].buffer = buffer; 4879 rb_data[cpu].cpu = cpu; 4880 rb_data[cpu].cnt = cpu; 4881 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu], 4882 "rbtester/%d", cpu); 4883 if (WARN_ON(!rb_threads[cpu])) { 4884 pr_cont("FAILED\n"); 4885 ret = -1; 4886 goto out_free; 4887 } 4888 4889 kthread_bind(rb_threads[cpu], cpu); 4890 wake_up_process(rb_threads[cpu]); 4891 } 4892 4893 /* Now create the rb hammer! */ 4894 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 4895 if (WARN_ON(!rb_hammer)) { 4896 pr_cont("FAILED\n"); 4897 ret = -1; 4898 goto out_free; 4899 } 4900 4901 ring_buffer_record_on(buffer); 4902 /* 4903 * Show buffer is enabled before setting rb_test_started. 4904 * Yes there's a small race window where events could be 4905 * dropped and the thread wont catch it. But when a ring 4906 * buffer gets enabled, there will always be some kind of 4907 * delay before other CPUs see it. Thus, we don't care about 4908 * those dropped events. We care about events dropped after 4909 * the threads see that the buffer is active. 4910 */ 4911 smp_wmb(); 4912 rb_test_started = true; 4913 4914 set_current_state(TASK_INTERRUPTIBLE); 4915 /* Just run for 10 seconds */; 4916 schedule_timeout(10 * HZ); 4917 4918 kthread_stop(rb_hammer); 4919 4920 out_free: 4921 for_each_online_cpu(cpu) { 4922 if (!rb_threads[cpu]) 4923 break; 4924 kthread_stop(rb_threads[cpu]); 4925 } 4926 if (ret) { 4927 ring_buffer_free(buffer); 4928 return ret; 4929 } 4930 4931 /* Report! */ 4932 pr_info("finished\n"); 4933 for_each_online_cpu(cpu) { 4934 struct ring_buffer_event *event; 4935 struct rb_test_data *data = &rb_data[cpu]; 4936 struct rb_item *item; 4937 unsigned long total_events; 4938 unsigned long total_dropped; 4939 unsigned long total_written; 4940 unsigned long total_alloc; 4941 unsigned long total_read = 0; 4942 unsigned long total_size = 0; 4943 unsigned long total_len = 0; 4944 unsigned long total_lost = 0; 4945 unsigned long lost; 4946 int big_event_size; 4947 int small_event_size; 4948 4949 ret = -1; 4950 4951 total_events = data->events + data->events_nested; 4952 total_written = data->bytes_written + data->bytes_written_nested; 4953 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 4954 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 4955 4956 big_event_size = data->max_size + data->max_size_nested; 4957 small_event_size = data->min_size + data->min_size_nested; 4958 4959 pr_info("CPU %d:\n", cpu); 4960 pr_info(" events: %ld\n", total_events); 4961 pr_info(" dropped bytes: %ld\n", total_dropped); 4962 pr_info(" alloced bytes: %ld\n", total_alloc); 4963 pr_info(" written bytes: %ld\n", total_written); 4964 pr_info(" biggest event: %d\n", big_event_size); 4965 pr_info(" smallest event: %d\n", small_event_size); 4966 4967 if (RB_WARN_ON(buffer, total_dropped)) 4968 break; 4969 4970 ret = 0; 4971 4972 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 4973 total_lost += lost; 4974 item = ring_buffer_event_data(event); 4975 total_len += ring_buffer_event_length(event); 4976 total_size += item->size + sizeof(struct rb_item); 4977 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 4978 pr_info("FAILED!\n"); 4979 pr_info("buffer had: %.*s\n", item->size, item->str); 4980 pr_info("expected: %.*s\n", item->size, rb_string); 4981 RB_WARN_ON(buffer, 1); 4982 ret = -1; 4983 break; 4984 } 4985 total_read++; 4986 } 4987 if (ret) 4988 break; 4989 4990 ret = -1; 4991 4992 pr_info(" read events: %ld\n", total_read); 4993 pr_info(" lost events: %ld\n", total_lost); 4994 pr_info(" total events: %ld\n", total_lost + total_read); 4995 pr_info(" recorded len bytes: %ld\n", total_len); 4996 pr_info(" recorded size bytes: %ld\n", total_size); 4997 if (total_lost) 4998 pr_info(" With dropped events, record len and size may not match\n" 4999 " alloced and written from above\n"); 5000 if (!total_lost) { 5001 if (RB_WARN_ON(buffer, total_len != total_alloc || 5002 total_size != total_written)) 5003 break; 5004 } 5005 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 5006 break; 5007 5008 ret = 0; 5009 } 5010 if (!ret) 5011 pr_info("Ring buffer PASSED!\n"); 5012 5013 ring_buffer_free(buffer); 5014 return 0; 5015 } 5016 5017 late_initcall(test_ringbuffer); 5018 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 5019