xref: /linux/kernel/trace/ring_buffer.c (revision 2b0cfa6e49566c8fa6759734cf821aa6e8271a9e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/trace_seq.h>
13 #include <linux/spinlock.h>
14 #include <linux/irq_work.h>
15 #include <linux/security.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kthread.h>	/* for self test */
19 #include <linux/module.h>
20 #include <linux/percpu.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/list.h>
27 #include <linux/cpu.h>
28 #include <linux/oom.h>
29 
30 #include <asm/local64.h>
31 #include <asm/local.h>
32 
33 /*
34  * The "absolute" timestamp in the buffer is only 59 bits.
35  * If a clock has the 5 MSBs set, it needs to be saved and
36  * reinserted.
37  */
38 #define TS_MSB		(0xf8ULL << 56)
39 #define ABS_TS_MASK	(~TS_MSB)
40 
41 static void update_pages_handler(struct work_struct *work);
42 
43 /*
44  * The ring buffer header is special. We must manually up keep it.
45  */
46 int ring_buffer_print_entry_header(struct trace_seq *s)
47 {
48 	trace_seq_puts(s, "# compressed entry header\n");
49 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
50 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
51 	trace_seq_puts(s, "\tarray       :   32 bits\n");
52 	trace_seq_putc(s, '\n');
53 	trace_seq_printf(s, "\tpadding     : type == %d\n",
54 			 RINGBUF_TYPE_PADDING);
55 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
56 			 RINGBUF_TYPE_TIME_EXTEND);
57 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
58 			 RINGBUF_TYPE_TIME_STAMP);
59 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
60 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
61 
62 	return !trace_seq_has_overflowed(s);
63 }
64 
65 /*
66  * The ring buffer is made up of a list of pages. A separate list of pages is
67  * allocated for each CPU. A writer may only write to a buffer that is
68  * associated with the CPU it is currently executing on.  A reader may read
69  * from any per cpu buffer.
70  *
71  * The reader is special. For each per cpu buffer, the reader has its own
72  * reader page. When a reader has read the entire reader page, this reader
73  * page is swapped with another page in the ring buffer.
74  *
75  * Now, as long as the writer is off the reader page, the reader can do what
76  * ever it wants with that page. The writer will never write to that page
77  * again (as long as it is out of the ring buffer).
78  *
79  * Here's some silly ASCII art.
80  *
81  *   +------+
82  *   |reader|          RING BUFFER
83  *   |page  |
84  *   +------+        +---+   +---+   +---+
85  *                   |   |-->|   |-->|   |
86  *                   +---+   +---+   +---+
87  *                     ^               |
88  *                     |               |
89  *                     +---------------+
90  *
91  *
92  *   +------+
93  *   |reader|          RING BUFFER
94  *   |page  |------------------v
95  *   +------+        +---+   +---+   +---+
96  *                   |   |-->|   |-->|   |
97  *                   +---+   +---+   +---+
98  *                     ^               |
99  *                     |               |
100  *                     +---------------+
101  *
102  *
103  *   +------+
104  *   |reader|          RING BUFFER
105  *   |page  |------------------v
106  *   +------+        +---+   +---+   +---+
107  *      ^            |   |-->|   |-->|   |
108  *      |            +---+   +---+   +---+
109  *      |                              |
110  *      |                              |
111  *      +------------------------------+
112  *
113  *
114  *   +------+
115  *   |buffer|          RING BUFFER
116  *   |page  |------------------v
117  *   +------+        +---+   +---+   +---+
118  *      ^            |   |   |   |-->|   |
119  *      |   New      +---+   +---+   +---+
120  *      |  Reader------^               |
121  *      |   page                       |
122  *      +------------------------------+
123  *
124  *
125  * After we make this swap, the reader can hand this page off to the splice
126  * code and be done with it. It can even allocate a new page if it needs to
127  * and swap that into the ring buffer.
128  *
129  * We will be using cmpxchg soon to make all this lockless.
130  *
131  */
132 
133 /* Used for individual buffers (after the counter) */
134 #define RB_BUFFER_OFF		(1 << 20)
135 
136 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
137 
138 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
139 #define RB_ALIGNMENT		4U
140 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
141 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
142 
143 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
144 # define RB_FORCE_8BYTE_ALIGNMENT	0
145 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
146 #else
147 # define RB_FORCE_8BYTE_ALIGNMENT	1
148 # define RB_ARCH_ALIGNMENT		8U
149 #endif
150 
151 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
152 
153 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
154 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
155 
156 enum {
157 	RB_LEN_TIME_EXTEND = 8,
158 	RB_LEN_TIME_STAMP =  8,
159 };
160 
161 #define skip_time_extend(event) \
162 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
163 
164 #define extended_time(event) \
165 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
166 
167 static inline bool rb_null_event(struct ring_buffer_event *event)
168 {
169 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
170 }
171 
172 static void rb_event_set_padding(struct ring_buffer_event *event)
173 {
174 	/* padding has a NULL time_delta */
175 	event->type_len = RINGBUF_TYPE_PADDING;
176 	event->time_delta = 0;
177 }
178 
179 static unsigned
180 rb_event_data_length(struct ring_buffer_event *event)
181 {
182 	unsigned length;
183 
184 	if (event->type_len)
185 		length = event->type_len * RB_ALIGNMENT;
186 	else
187 		length = event->array[0];
188 	return length + RB_EVNT_HDR_SIZE;
189 }
190 
191 /*
192  * Return the length of the given event. Will return
193  * the length of the time extend if the event is a
194  * time extend.
195  */
196 static inline unsigned
197 rb_event_length(struct ring_buffer_event *event)
198 {
199 	switch (event->type_len) {
200 	case RINGBUF_TYPE_PADDING:
201 		if (rb_null_event(event))
202 			/* undefined */
203 			return -1;
204 		return  event->array[0] + RB_EVNT_HDR_SIZE;
205 
206 	case RINGBUF_TYPE_TIME_EXTEND:
207 		return RB_LEN_TIME_EXTEND;
208 
209 	case RINGBUF_TYPE_TIME_STAMP:
210 		return RB_LEN_TIME_STAMP;
211 
212 	case RINGBUF_TYPE_DATA:
213 		return rb_event_data_length(event);
214 	default:
215 		WARN_ON_ONCE(1);
216 	}
217 	/* not hit */
218 	return 0;
219 }
220 
221 /*
222  * Return total length of time extend and data,
223  *   or just the event length for all other events.
224  */
225 static inline unsigned
226 rb_event_ts_length(struct ring_buffer_event *event)
227 {
228 	unsigned len = 0;
229 
230 	if (extended_time(event)) {
231 		/* time extends include the data event after it */
232 		len = RB_LEN_TIME_EXTEND;
233 		event = skip_time_extend(event);
234 	}
235 	return len + rb_event_length(event);
236 }
237 
238 /**
239  * ring_buffer_event_length - return the length of the event
240  * @event: the event to get the length of
241  *
242  * Returns the size of the data load of a data event.
243  * If the event is something other than a data event, it
244  * returns the size of the event itself. With the exception
245  * of a TIME EXTEND, where it still returns the size of the
246  * data load of the data event after it.
247  */
248 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
249 {
250 	unsigned length;
251 
252 	if (extended_time(event))
253 		event = skip_time_extend(event);
254 
255 	length = rb_event_length(event);
256 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
257 		return length;
258 	length -= RB_EVNT_HDR_SIZE;
259 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
260                 length -= sizeof(event->array[0]);
261 	return length;
262 }
263 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
264 
265 /* inline for ring buffer fast paths */
266 static __always_inline void *
267 rb_event_data(struct ring_buffer_event *event)
268 {
269 	if (extended_time(event))
270 		event = skip_time_extend(event);
271 	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
272 	/* If length is in len field, then array[0] has the data */
273 	if (event->type_len)
274 		return (void *)&event->array[0];
275 	/* Otherwise length is in array[0] and array[1] has the data */
276 	return (void *)&event->array[1];
277 }
278 
279 /**
280  * ring_buffer_event_data - return the data of the event
281  * @event: the event to get the data from
282  */
283 void *ring_buffer_event_data(struct ring_buffer_event *event)
284 {
285 	return rb_event_data(event);
286 }
287 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
288 
289 #define for_each_buffer_cpu(buffer, cpu)		\
290 	for_each_cpu(cpu, buffer->cpumask)
291 
292 #define for_each_online_buffer_cpu(buffer, cpu)		\
293 	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
294 
295 #define TS_SHIFT	27
296 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
297 #define TS_DELTA_TEST	(~TS_MASK)
298 
299 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
300 {
301 	u64 ts;
302 
303 	ts = event->array[0];
304 	ts <<= TS_SHIFT;
305 	ts += event->time_delta;
306 
307 	return ts;
308 }
309 
310 /* Flag when events were overwritten */
311 #define RB_MISSED_EVENTS	(1 << 31)
312 /* Missed count stored at end */
313 #define RB_MISSED_STORED	(1 << 30)
314 
315 struct buffer_data_page {
316 	u64		 time_stamp;	/* page time stamp */
317 	local_t		 commit;	/* write committed index */
318 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
319 };
320 
321 struct buffer_data_read_page {
322 	unsigned		order;	/* order of the page */
323 	struct buffer_data_page	*data;	/* actual data, stored in this page */
324 };
325 
326 /*
327  * Note, the buffer_page list must be first. The buffer pages
328  * are allocated in cache lines, which means that each buffer
329  * page will be at the beginning of a cache line, and thus
330  * the least significant bits will be zero. We use this to
331  * add flags in the list struct pointers, to make the ring buffer
332  * lockless.
333  */
334 struct buffer_page {
335 	struct list_head list;		/* list of buffer pages */
336 	local_t		 write;		/* index for next write */
337 	unsigned	 read;		/* index for next read */
338 	local_t		 entries;	/* entries on this page */
339 	unsigned long	 real_end;	/* real end of data */
340 	unsigned	 order;		/* order of the page */
341 	struct buffer_data_page *page;	/* Actual data page */
342 };
343 
344 /*
345  * The buffer page counters, write and entries, must be reset
346  * atomically when crossing page boundaries. To synchronize this
347  * update, two counters are inserted into the number. One is
348  * the actual counter for the write position or count on the page.
349  *
350  * The other is a counter of updaters. Before an update happens
351  * the update partition of the counter is incremented. This will
352  * allow the updater to update the counter atomically.
353  *
354  * The counter is 20 bits, and the state data is 12.
355  */
356 #define RB_WRITE_MASK		0xfffff
357 #define RB_WRITE_INTCNT		(1 << 20)
358 
359 static void rb_init_page(struct buffer_data_page *bpage)
360 {
361 	local_set(&bpage->commit, 0);
362 }
363 
364 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
365 {
366 	return local_read(&bpage->page->commit);
367 }
368 
369 static void free_buffer_page(struct buffer_page *bpage)
370 {
371 	free_pages((unsigned long)bpage->page, bpage->order);
372 	kfree(bpage);
373 }
374 
375 /*
376  * We need to fit the time_stamp delta into 27 bits.
377  */
378 static inline bool test_time_stamp(u64 delta)
379 {
380 	return !!(delta & TS_DELTA_TEST);
381 }
382 
383 struct rb_irq_work {
384 	struct irq_work			work;
385 	wait_queue_head_t		waiters;
386 	wait_queue_head_t		full_waiters;
387 	long				wait_index;
388 	bool				waiters_pending;
389 	bool				full_waiters_pending;
390 	bool				wakeup_full;
391 };
392 
393 /*
394  * Structure to hold event state and handle nested events.
395  */
396 struct rb_event_info {
397 	u64			ts;
398 	u64			delta;
399 	u64			before;
400 	u64			after;
401 	unsigned long		length;
402 	struct buffer_page	*tail_page;
403 	int			add_timestamp;
404 };
405 
406 /*
407  * Used for the add_timestamp
408  *  NONE
409  *  EXTEND - wants a time extend
410  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
411  *  FORCE - force a full time stamp.
412  */
413 enum {
414 	RB_ADD_STAMP_NONE		= 0,
415 	RB_ADD_STAMP_EXTEND		= BIT(1),
416 	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
417 	RB_ADD_STAMP_FORCE		= BIT(3)
418 };
419 /*
420  * Used for which event context the event is in.
421  *  TRANSITION = 0
422  *  NMI     = 1
423  *  IRQ     = 2
424  *  SOFTIRQ = 3
425  *  NORMAL  = 4
426  *
427  * See trace_recursive_lock() comment below for more details.
428  */
429 enum {
430 	RB_CTX_TRANSITION,
431 	RB_CTX_NMI,
432 	RB_CTX_IRQ,
433 	RB_CTX_SOFTIRQ,
434 	RB_CTX_NORMAL,
435 	RB_CTX_MAX
436 };
437 
438 struct rb_time_struct {
439 	local64_t	time;
440 };
441 typedef struct rb_time_struct rb_time_t;
442 
443 #define MAX_NEST	5
444 
445 /*
446  * head_page == tail_page && head == tail then buffer is empty.
447  */
448 struct ring_buffer_per_cpu {
449 	int				cpu;
450 	atomic_t			record_disabled;
451 	atomic_t			resize_disabled;
452 	struct trace_buffer	*buffer;
453 	raw_spinlock_t			reader_lock;	/* serialize readers */
454 	arch_spinlock_t			lock;
455 	struct lock_class_key		lock_key;
456 	struct buffer_data_page		*free_page;
457 	unsigned long			nr_pages;
458 	unsigned int			current_context;
459 	struct list_head		*pages;
460 	struct buffer_page		*head_page;	/* read from head */
461 	struct buffer_page		*tail_page;	/* write to tail */
462 	struct buffer_page		*commit_page;	/* committed pages */
463 	struct buffer_page		*reader_page;
464 	unsigned long			lost_events;
465 	unsigned long			last_overrun;
466 	unsigned long			nest;
467 	local_t				entries_bytes;
468 	local_t				entries;
469 	local_t				overrun;
470 	local_t				commit_overrun;
471 	local_t				dropped_events;
472 	local_t				committing;
473 	local_t				commits;
474 	local_t				pages_touched;
475 	local_t				pages_lost;
476 	local_t				pages_read;
477 	long				last_pages_touch;
478 	size_t				shortest_full;
479 	unsigned long			read;
480 	unsigned long			read_bytes;
481 	rb_time_t			write_stamp;
482 	rb_time_t			before_stamp;
483 	u64				event_stamp[MAX_NEST];
484 	u64				read_stamp;
485 	/* pages removed since last reset */
486 	unsigned long			pages_removed;
487 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
488 	long				nr_pages_to_update;
489 	struct list_head		new_pages; /* new pages to add */
490 	struct work_struct		update_pages_work;
491 	struct completion		update_done;
492 
493 	struct rb_irq_work		irq_work;
494 };
495 
496 struct trace_buffer {
497 	unsigned			flags;
498 	int				cpus;
499 	atomic_t			record_disabled;
500 	atomic_t			resizing;
501 	cpumask_var_t			cpumask;
502 
503 	struct lock_class_key		*reader_lock_key;
504 
505 	struct mutex			mutex;
506 
507 	struct ring_buffer_per_cpu	**buffers;
508 
509 	struct hlist_node		node;
510 	u64				(*clock)(void);
511 
512 	struct rb_irq_work		irq_work;
513 	bool				time_stamp_abs;
514 
515 	unsigned int			subbuf_size;
516 	unsigned int			subbuf_order;
517 	unsigned int			max_data_size;
518 };
519 
520 struct ring_buffer_iter {
521 	struct ring_buffer_per_cpu	*cpu_buffer;
522 	unsigned long			head;
523 	unsigned long			next_event;
524 	struct buffer_page		*head_page;
525 	struct buffer_page		*cache_reader_page;
526 	unsigned long			cache_read;
527 	unsigned long			cache_pages_removed;
528 	u64				read_stamp;
529 	u64				page_stamp;
530 	struct ring_buffer_event	*event;
531 	size_t				event_size;
532 	int				missed_events;
533 };
534 
535 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
536 {
537 	struct buffer_data_page field;
538 
539 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
540 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
541 			 (unsigned int)sizeof(field.time_stamp),
542 			 (unsigned int)is_signed_type(u64));
543 
544 	trace_seq_printf(s, "\tfield: local_t commit;\t"
545 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
546 			 (unsigned int)offsetof(typeof(field), commit),
547 			 (unsigned int)sizeof(field.commit),
548 			 (unsigned int)is_signed_type(long));
549 
550 	trace_seq_printf(s, "\tfield: int overwrite;\t"
551 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
552 			 (unsigned int)offsetof(typeof(field), commit),
553 			 1,
554 			 (unsigned int)is_signed_type(long));
555 
556 	trace_seq_printf(s, "\tfield: char data;\t"
557 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
558 			 (unsigned int)offsetof(typeof(field), data),
559 			 (unsigned int)buffer->subbuf_size,
560 			 (unsigned int)is_signed_type(char));
561 
562 	return !trace_seq_has_overflowed(s);
563 }
564 
565 static inline void rb_time_read(rb_time_t *t, u64 *ret)
566 {
567 	*ret = local64_read(&t->time);
568 }
569 static void rb_time_set(rb_time_t *t, u64 val)
570 {
571 	local64_set(&t->time, val);
572 }
573 
574 /*
575  * Enable this to make sure that the event passed to
576  * ring_buffer_event_time_stamp() is not committed and also
577  * is on the buffer that it passed in.
578  */
579 //#define RB_VERIFY_EVENT
580 #ifdef RB_VERIFY_EVENT
581 static struct list_head *rb_list_head(struct list_head *list);
582 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
583 			 void *event)
584 {
585 	struct buffer_page *page = cpu_buffer->commit_page;
586 	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
587 	struct list_head *next;
588 	long commit, write;
589 	unsigned long addr = (unsigned long)event;
590 	bool done = false;
591 	int stop = 0;
592 
593 	/* Make sure the event exists and is not committed yet */
594 	do {
595 		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
596 			done = true;
597 		commit = local_read(&page->page->commit);
598 		write = local_read(&page->write);
599 		if (addr >= (unsigned long)&page->page->data[commit] &&
600 		    addr < (unsigned long)&page->page->data[write])
601 			return;
602 
603 		next = rb_list_head(page->list.next);
604 		page = list_entry(next, struct buffer_page, list);
605 	} while (!done);
606 	WARN_ON_ONCE(1);
607 }
608 #else
609 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
610 			 void *event)
611 {
612 }
613 #endif
614 
615 /*
616  * The absolute time stamp drops the 5 MSBs and some clocks may
617  * require them. The rb_fix_abs_ts() will take a previous full
618  * time stamp, and add the 5 MSB of that time stamp on to the
619  * saved absolute time stamp. Then they are compared in case of
620  * the unlikely event that the latest time stamp incremented
621  * the 5 MSB.
622  */
623 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
624 {
625 	if (save_ts & TS_MSB) {
626 		abs |= save_ts & TS_MSB;
627 		/* Check for overflow */
628 		if (unlikely(abs < save_ts))
629 			abs += 1ULL << 59;
630 	}
631 	return abs;
632 }
633 
634 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
635 
636 /**
637  * ring_buffer_event_time_stamp - return the event's current time stamp
638  * @buffer: The buffer that the event is on
639  * @event: the event to get the time stamp of
640  *
641  * Note, this must be called after @event is reserved, and before it is
642  * committed to the ring buffer. And must be called from the same
643  * context where the event was reserved (normal, softirq, irq, etc).
644  *
645  * Returns the time stamp associated with the current event.
646  * If the event has an extended time stamp, then that is used as
647  * the time stamp to return.
648  * In the highly unlikely case that the event was nested more than
649  * the max nesting, then the write_stamp of the buffer is returned,
650  * otherwise  current time is returned, but that really neither of
651  * the last two cases should ever happen.
652  */
653 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
654 				 struct ring_buffer_event *event)
655 {
656 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
657 	unsigned int nest;
658 	u64 ts;
659 
660 	/* If the event includes an absolute time, then just use that */
661 	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
662 		ts = rb_event_time_stamp(event);
663 		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
664 	}
665 
666 	nest = local_read(&cpu_buffer->committing);
667 	verify_event(cpu_buffer, event);
668 	if (WARN_ON_ONCE(!nest))
669 		goto fail;
670 
671 	/* Read the current saved nesting level time stamp */
672 	if (likely(--nest < MAX_NEST))
673 		return cpu_buffer->event_stamp[nest];
674 
675 	/* Shouldn't happen, warn if it does */
676 	WARN_ONCE(1, "nest (%d) greater than max", nest);
677 
678  fail:
679 	rb_time_read(&cpu_buffer->write_stamp, &ts);
680 
681 	return ts;
682 }
683 
684 /**
685  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
686  * @buffer: The ring_buffer to get the number of pages from
687  * @cpu: The cpu of the ring_buffer to get the number of pages from
688  *
689  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
690  */
691 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
692 {
693 	return buffer->buffers[cpu]->nr_pages;
694 }
695 
696 /**
697  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
698  * @buffer: The ring_buffer to get the number of pages from
699  * @cpu: The cpu of the ring_buffer to get the number of pages from
700  *
701  * Returns the number of pages that have content in the ring buffer.
702  */
703 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
704 {
705 	size_t read;
706 	size_t lost;
707 	size_t cnt;
708 
709 	read = local_read(&buffer->buffers[cpu]->pages_read);
710 	lost = local_read(&buffer->buffers[cpu]->pages_lost);
711 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
712 
713 	if (WARN_ON_ONCE(cnt < lost))
714 		return 0;
715 
716 	cnt -= lost;
717 
718 	/* The reader can read an empty page, but not more than that */
719 	if (cnt < read) {
720 		WARN_ON_ONCE(read > cnt + 1);
721 		return 0;
722 	}
723 
724 	return cnt - read;
725 }
726 
727 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
728 {
729 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
730 	size_t nr_pages;
731 	size_t dirty;
732 
733 	nr_pages = cpu_buffer->nr_pages;
734 	if (!nr_pages || !full)
735 		return true;
736 
737 	/*
738 	 * Add one as dirty will never equal nr_pages, as the sub-buffer
739 	 * that the writer is on is not counted as dirty.
740 	 * This is needed if "buffer_percent" is set to 100.
741 	 */
742 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
743 
744 	return (dirty * 100) >= (full * nr_pages);
745 }
746 
747 /*
748  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
749  *
750  * Schedules a delayed work to wake up any task that is blocked on the
751  * ring buffer waiters queue.
752  */
753 static void rb_wake_up_waiters(struct irq_work *work)
754 {
755 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
756 
757 	wake_up_all(&rbwork->waiters);
758 	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
759 		rbwork->wakeup_full = false;
760 		rbwork->full_waiters_pending = false;
761 		wake_up_all(&rbwork->full_waiters);
762 	}
763 }
764 
765 /**
766  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
767  * @buffer: The ring buffer to wake waiters on
768  * @cpu: The CPU buffer to wake waiters on
769  *
770  * In the case of a file that represents a ring buffer is closing,
771  * it is prudent to wake up any waiters that are on this.
772  */
773 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
774 {
775 	struct ring_buffer_per_cpu *cpu_buffer;
776 	struct rb_irq_work *rbwork;
777 
778 	if (!buffer)
779 		return;
780 
781 	if (cpu == RING_BUFFER_ALL_CPUS) {
782 
783 		/* Wake up individual ones too. One level recursion */
784 		for_each_buffer_cpu(buffer, cpu)
785 			ring_buffer_wake_waiters(buffer, cpu);
786 
787 		rbwork = &buffer->irq_work;
788 	} else {
789 		if (WARN_ON_ONCE(!buffer->buffers))
790 			return;
791 		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
792 			return;
793 
794 		cpu_buffer = buffer->buffers[cpu];
795 		/* The CPU buffer may not have been initialized yet */
796 		if (!cpu_buffer)
797 			return;
798 		rbwork = &cpu_buffer->irq_work;
799 	}
800 
801 	rbwork->wait_index++;
802 	/* make sure the waiters see the new index */
803 	smp_wmb();
804 
805 	/* This can be called in any context */
806 	irq_work_queue(&rbwork->work);
807 }
808 
809 /**
810  * ring_buffer_wait - wait for input to the ring buffer
811  * @buffer: buffer to wait on
812  * @cpu: the cpu buffer to wait on
813  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
814  *
815  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
816  * as data is added to any of the @buffer's cpu buffers. Otherwise
817  * it will wait for data to be added to a specific cpu buffer.
818  */
819 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
820 {
821 	struct ring_buffer_per_cpu *cpu_buffer;
822 	DEFINE_WAIT(wait);
823 	struct rb_irq_work *work;
824 	long wait_index;
825 	int ret = 0;
826 
827 	/*
828 	 * Depending on what the caller is waiting for, either any
829 	 * data in any cpu buffer, or a specific buffer, put the
830 	 * caller on the appropriate wait queue.
831 	 */
832 	if (cpu == RING_BUFFER_ALL_CPUS) {
833 		work = &buffer->irq_work;
834 		/* Full only makes sense on per cpu reads */
835 		full = 0;
836 	} else {
837 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
838 			return -ENODEV;
839 		cpu_buffer = buffer->buffers[cpu];
840 		work = &cpu_buffer->irq_work;
841 	}
842 
843 	wait_index = READ_ONCE(work->wait_index);
844 
845 	while (true) {
846 		if (full)
847 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
848 		else
849 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
850 
851 		/*
852 		 * The events can happen in critical sections where
853 		 * checking a work queue can cause deadlocks.
854 		 * After adding a task to the queue, this flag is set
855 		 * only to notify events to try to wake up the queue
856 		 * using irq_work.
857 		 *
858 		 * We don't clear it even if the buffer is no longer
859 		 * empty. The flag only causes the next event to run
860 		 * irq_work to do the work queue wake up. The worse
861 		 * that can happen if we race with !trace_empty() is that
862 		 * an event will cause an irq_work to try to wake up
863 		 * an empty queue.
864 		 *
865 		 * There's no reason to protect this flag either, as
866 		 * the work queue and irq_work logic will do the necessary
867 		 * synchronization for the wake ups. The only thing
868 		 * that is necessary is that the wake up happens after
869 		 * a task has been queued. It's OK for spurious wake ups.
870 		 */
871 		if (full)
872 			work->full_waiters_pending = true;
873 		else
874 			work->waiters_pending = true;
875 
876 		if (signal_pending(current)) {
877 			ret = -EINTR;
878 			break;
879 		}
880 
881 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
882 			break;
883 
884 		if (cpu != RING_BUFFER_ALL_CPUS &&
885 		    !ring_buffer_empty_cpu(buffer, cpu)) {
886 			unsigned long flags;
887 			bool pagebusy;
888 			bool done;
889 
890 			if (!full)
891 				break;
892 
893 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
894 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
895 			done = !pagebusy && full_hit(buffer, cpu, full);
896 
897 			if (!cpu_buffer->shortest_full ||
898 			    cpu_buffer->shortest_full > full)
899 				cpu_buffer->shortest_full = full;
900 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
901 			if (done)
902 				break;
903 		}
904 
905 		schedule();
906 
907 		/* Make sure to see the new wait index */
908 		smp_rmb();
909 		if (wait_index != work->wait_index)
910 			break;
911 	}
912 
913 	if (full)
914 		finish_wait(&work->full_waiters, &wait);
915 	else
916 		finish_wait(&work->waiters, &wait);
917 
918 	return ret;
919 }
920 
921 /**
922  * ring_buffer_poll_wait - poll on buffer input
923  * @buffer: buffer to wait on
924  * @cpu: the cpu buffer to wait on
925  * @filp: the file descriptor
926  * @poll_table: The poll descriptor
927  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
928  *
929  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
930  * as data is added to any of the @buffer's cpu buffers. Otherwise
931  * it will wait for data to be added to a specific cpu buffer.
932  *
933  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
934  * zero otherwise.
935  */
936 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
937 			  struct file *filp, poll_table *poll_table, int full)
938 {
939 	struct ring_buffer_per_cpu *cpu_buffer;
940 	struct rb_irq_work *work;
941 
942 	if (cpu == RING_BUFFER_ALL_CPUS) {
943 		work = &buffer->irq_work;
944 		full = 0;
945 	} else {
946 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
947 			return EPOLLERR;
948 
949 		cpu_buffer = buffer->buffers[cpu];
950 		work = &cpu_buffer->irq_work;
951 	}
952 
953 	if (full) {
954 		poll_wait(filp, &work->full_waiters, poll_table);
955 		work->full_waiters_pending = true;
956 		if (!cpu_buffer->shortest_full ||
957 		    cpu_buffer->shortest_full > full)
958 			cpu_buffer->shortest_full = full;
959 	} else {
960 		poll_wait(filp, &work->waiters, poll_table);
961 		work->waiters_pending = true;
962 	}
963 
964 	/*
965 	 * There's a tight race between setting the waiters_pending and
966 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
967 	 * is set, the next event will wake the task up, but we can get stuck
968 	 * if there's only a single event in.
969 	 *
970 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
971 	 * but adding a memory barrier to all events will cause too much of a
972 	 * performance hit in the fast path.  We only need a memory barrier when
973 	 * the buffer goes from empty to having content.  But as this race is
974 	 * extremely small, and it's not a problem if another event comes in, we
975 	 * will fix it later.
976 	 */
977 	smp_mb();
978 
979 	if (full)
980 		return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0;
981 
982 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
983 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
984 		return EPOLLIN | EPOLLRDNORM;
985 	return 0;
986 }
987 
988 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
989 #define RB_WARN_ON(b, cond)						\
990 	({								\
991 		int _____ret = unlikely(cond);				\
992 		if (_____ret) {						\
993 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
994 				struct ring_buffer_per_cpu *__b =	\
995 					(void *)b;			\
996 				atomic_inc(&__b->buffer->record_disabled); \
997 			} else						\
998 				atomic_inc(&b->record_disabled);	\
999 			WARN_ON(1);					\
1000 		}							\
1001 		_____ret;						\
1002 	})
1003 
1004 /* Up this if you want to test the TIME_EXTENTS and normalization */
1005 #define DEBUG_SHIFT 0
1006 
1007 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1008 {
1009 	u64 ts;
1010 
1011 	/* Skip retpolines :-( */
1012 	if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1013 		ts = trace_clock_local();
1014 	else
1015 		ts = buffer->clock();
1016 
1017 	/* shift to debug/test normalization and TIME_EXTENTS */
1018 	return ts << DEBUG_SHIFT;
1019 }
1020 
1021 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1022 {
1023 	u64 time;
1024 
1025 	preempt_disable_notrace();
1026 	time = rb_time_stamp(buffer);
1027 	preempt_enable_notrace();
1028 
1029 	return time;
1030 }
1031 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1032 
1033 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1034 				      int cpu, u64 *ts)
1035 {
1036 	/* Just stupid testing the normalize function and deltas */
1037 	*ts >>= DEBUG_SHIFT;
1038 }
1039 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1040 
1041 /*
1042  * Making the ring buffer lockless makes things tricky.
1043  * Although writes only happen on the CPU that they are on,
1044  * and they only need to worry about interrupts. Reads can
1045  * happen on any CPU.
1046  *
1047  * The reader page is always off the ring buffer, but when the
1048  * reader finishes with a page, it needs to swap its page with
1049  * a new one from the buffer. The reader needs to take from
1050  * the head (writes go to the tail). But if a writer is in overwrite
1051  * mode and wraps, it must push the head page forward.
1052  *
1053  * Here lies the problem.
1054  *
1055  * The reader must be careful to replace only the head page, and
1056  * not another one. As described at the top of the file in the
1057  * ASCII art, the reader sets its old page to point to the next
1058  * page after head. It then sets the page after head to point to
1059  * the old reader page. But if the writer moves the head page
1060  * during this operation, the reader could end up with the tail.
1061  *
1062  * We use cmpxchg to help prevent this race. We also do something
1063  * special with the page before head. We set the LSB to 1.
1064  *
1065  * When the writer must push the page forward, it will clear the
1066  * bit that points to the head page, move the head, and then set
1067  * the bit that points to the new head page.
1068  *
1069  * We also don't want an interrupt coming in and moving the head
1070  * page on another writer. Thus we use the second LSB to catch
1071  * that too. Thus:
1072  *
1073  * head->list->prev->next        bit 1          bit 0
1074  *                              -------        -------
1075  * Normal page                     0              0
1076  * Points to head page             0              1
1077  * New head page                   1              0
1078  *
1079  * Note we can not trust the prev pointer of the head page, because:
1080  *
1081  * +----+       +-----+        +-----+
1082  * |    |------>|  T  |---X--->|  N  |
1083  * |    |<------|     |        |     |
1084  * +----+       +-----+        +-----+
1085  *   ^                           ^ |
1086  *   |          +-----+          | |
1087  *   +----------|  R  |----------+ |
1088  *              |     |<-----------+
1089  *              +-----+
1090  *
1091  * Key:  ---X-->  HEAD flag set in pointer
1092  *         T      Tail page
1093  *         R      Reader page
1094  *         N      Next page
1095  *
1096  * (see __rb_reserve_next() to see where this happens)
1097  *
1098  *  What the above shows is that the reader just swapped out
1099  *  the reader page with a page in the buffer, but before it
1100  *  could make the new header point back to the new page added
1101  *  it was preempted by a writer. The writer moved forward onto
1102  *  the new page added by the reader and is about to move forward
1103  *  again.
1104  *
1105  *  You can see, it is legitimate for the previous pointer of
1106  *  the head (or any page) not to point back to itself. But only
1107  *  temporarily.
1108  */
1109 
1110 #define RB_PAGE_NORMAL		0UL
1111 #define RB_PAGE_HEAD		1UL
1112 #define RB_PAGE_UPDATE		2UL
1113 
1114 
1115 #define RB_FLAG_MASK		3UL
1116 
1117 /* PAGE_MOVED is not part of the mask */
1118 #define RB_PAGE_MOVED		4UL
1119 
1120 /*
1121  * rb_list_head - remove any bit
1122  */
1123 static struct list_head *rb_list_head(struct list_head *list)
1124 {
1125 	unsigned long val = (unsigned long)list;
1126 
1127 	return (struct list_head *)(val & ~RB_FLAG_MASK);
1128 }
1129 
1130 /*
1131  * rb_is_head_page - test if the given page is the head page
1132  *
1133  * Because the reader may move the head_page pointer, we can
1134  * not trust what the head page is (it may be pointing to
1135  * the reader page). But if the next page is a header page,
1136  * its flags will be non zero.
1137  */
1138 static inline int
1139 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1140 {
1141 	unsigned long val;
1142 
1143 	val = (unsigned long)list->next;
1144 
1145 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1146 		return RB_PAGE_MOVED;
1147 
1148 	return val & RB_FLAG_MASK;
1149 }
1150 
1151 /*
1152  * rb_is_reader_page
1153  *
1154  * The unique thing about the reader page, is that, if the
1155  * writer is ever on it, the previous pointer never points
1156  * back to the reader page.
1157  */
1158 static bool rb_is_reader_page(struct buffer_page *page)
1159 {
1160 	struct list_head *list = page->list.prev;
1161 
1162 	return rb_list_head(list->next) != &page->list;
1163 }
1164 
1165 /*
1166  * rb_set_list_to_head - set a list_head to be pointing to head.
1167  */
1168 static void rb_set_list_to_head(struct list_head *list)
1169 {
1170 	unsigned long *ptr;
1171 
1172 	ptr = (unsigned long *)&list->next;
1173 	*ptr |= RB_PAGE_HEAD;
1174 	*ptr &= ~RB_PAGE_UPDATE;
1175 }
1176 
1177 /*
1178  * rb_head_page_activate - sets up head page
1179  */
1180 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1181 {
1182 	struct buffer_page *head;
1183 
1184 	head = cpu_buffer->head_page;
1185 	if (!head)
1186 		return;
1187 
1188 	/*
1189 	 * Set the previous list pointer to have the HEAD flag.
1190 	 */
1191 	rb_set_list_to_head(head->list.prev);
1192 }
1193 
1194 static void rb_list_head_clear(struct list_head *list)
1195 {
1196 	unsigned long *ptr = (unsigned long *)&list->next;
1197 
1198 	*ptr &= ~RB_FLAG_MASK;
1199 }
1200 
1201 /*
1202  * rb_head_page_deactivate - clears head page ptr (for free list)
1203  */
1204 static void
1205 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1206 {
1207 	struct list_head *hd;
1208 
1209 	/* Go through the whole list and clear any pointers found. */
1210 	rb_list_head_clear(cpu_buffer->pages);
1211 
1212 	list_for_each(hd, cpu_buffer->pages)
1213 		rb_list_head_clear(hd);
1214 }
1215 
1216 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1217 			    struct buffer_page *head,
1218 			    struct buffer_page *prev,
1219 			    int old_flag, int new_flag)
1220 {
1221 	struct list_head *list;
1222 	unsigned long val = (unsigned long)&head->list;
1223 	unsigned long ret;
1224 
1225 	list = &prev->list;
1226 
1227 	val &= ~RB_FLAG_MASK;
1228 
1229 	ret = cmpxchg((unsigned long *)&list->next,
1230 		      val | old_flag, val | new_flag);
1231 
1232 	/* check if the reader took the page */
1233 	if ((ret & ~RB_FLAG_MASK) != val)
1234 		return RB_PAGE_MOVED;
1235 
1236 	return ret & RB_FLAG_MASK;
1237 }
1238 
1239 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1240 				   struct buffer_page *head,
1241 				   struct buffer_page *prev,
1242 				   int old_flag)
1243 {
1244 	return rb_head_page_set(cpu_buffer, head, prev,
1245 				old_flag, RB_PAGE_UPDATE);
1246 }
1247 
1248 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1249 				 struct buffer_page *head,
1250 				 struct buffer_page *prev,
1251 				 int old_flag)
1252 {
1253 	return rb_head_page_set(cpu_buffer, head, prev,
1254 				old_flag, RB_PAGE_HEAD);
1255 }
1256 
1257 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1258 				   struct buffer_page *head,
1259 				   struct buffer_page *prev,
1260 				   int old_flag)
1261 {
1262 	return rb_head_page_set(cpu_buffer, head, prev,
1263 				old_flag, RB_PAGE_NORMAL);
1264 }
1265 
1266 static inline void rb_inc_page(struct buffer_page **bpage)
1267 {
1268 	struct list_head *p = rb_list_head((*bpage)->list.next);
1269 
1270 	*bpage = list_entry(p, struct buffer_page, list);
1271 }
1272 
1273 static struct buffer_page *
1274 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1275 {
1276 	struct buffer_page *head;
1277 	struct buffer_page *page;
1278 	struct list_head *list;
1279 	int i;
1280 
1281 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1282 		return NULL;
1283 
1284 	/* sanity check */
1285 	list = cpu_buffer->pages;
1286 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1287 		return NULL;
1288 
1289 	page = head = cpu_buffer->head_page;
1290 	/*
1291 	 * It is possible that the writer moves the header behind
1292 	 * where we started, and we miss in one loop.
1293 	 * A second loop should grab the header, but we'll do
1294 	 * three loops just because I'm paranoid.
1295 	 */
1296 	for (i = 0; i < 3; i++) {
1297 		do {
1298 			if (rb_is_head_page(page, page->list.prev)) {
1299 				cpu_buffer->head_page = page;
1300 				return page;
1301 			}
1302 			rb_inc_page(&page);
1303 		} while (page != head);
1304 	}
1305 
1306 	RB_WARN_ON(cpu_buffer, 1);
1307 
1308 	return NULL;
1309 }
1310 
1311 static bool rb_head_page_replace(struct buffer_page *old,
1312 				struct buffer_page *new)
1313 {
1314 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1315 	unsigned long val;
1316 
1317 	val = *ptr & ~RB_FLAG_MASK;
1318 	val |= RB_PAGE_HEAD;
1319 
1320 	return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1321 }
1322 
1323 /*
1324  * rb_tail_page_update - move the tail page forward
1325  */
1326 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1327 			       struct buffer_page *tail_page,
1328 			       struct buffer_page *next_page)
1329 {
1330 	unsigned long old_entries;
1331 	unsigned long old_write;
1332 
1333 	/*
1334 	 * The tail page now needs to be moved forward.
1335 	 *
1336 	 * We need to reset the tail page, but without messing
1337 	 * with possible erasing of data brought in by interrupts
1338 	 * that have moved the tail page and are currently on it.
1339 	 *
1340 	 * We add a counter to the write field to denote this.
1341 	 */
1342 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1343 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1344 
1345 	local_inc(&cpu_buffer->pages_touched);
1346 	/*
1347 	 * Just make sure we have seen our old_write and synchronize
1348 	 * with any interrupts that come in.
1349 	 */
1350 	barrier();
1351 
1352 	/*
1353 	 * If the tail page is still the same as what we think
1354 	 * it is, then it is up to us to update the tail
1355 	 * pointer.
1356 	 */
1357 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1358 		/* Zero the write counter */
1359 		unsigned long val = old_write & ~RB_WRITE_MASK;
1360 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1361 
1362 		/*
1363 		 * This will only succeed if an interrupt did
1364 		 * not come in and change it. In which case, we
1365 		 * do not want to modify it.
1366 		 *
1367 		 * We add (void) to let the compiler know that we do not care
1368 		 * about the return value of these functions. We use the
1369 		 * cmpxchg to only update if an interrupt did not already
1370 		 * do it for us. If the cmpxchg fails, we don't care.
1371 		 */
1372 		(void)local_cmpxchg(&next_page->write, old_write, val);
1373 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1374 
1375 		/*
1376 		 * No need to worry about races with clearing out the commit.
1377 		 * it only can increment when a commit takes place. But that
1378 		 * only happens in the outer most nested commit.
1379 		 */
1380 		local_set(&next_page->page->commit, 0);
1381 
1382 		/* Again, either we update tail_page or an interrupt does */
1383 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1384 	}
1385 }
1386 
1387 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1388 			  struct buffer_page *bpage)
1389 {
1390 	unsigned long val = (unsigned long)bpage;
1391 
1392 	RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1393 }
1394 
1395 /**
1396  * rb_check_pages - integrity check of buffer pages
1397  * @cpu_buffer: CPU buffer with pages to test
1398  *
1399  * As a safety measure we check to make sure the data pages have not
1400  * been corrupted.
1401  */
1402 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1403 {
1404 	struct list_head *head = rb_list_head(cpu_buffer->pages);
1405 	struct list_head *tmp;
1406 
1407 	if (RB_WARN_ON(cpu_buffer,
1408 			rb_list_head(rb_list_head(head->next)->prev) != head))
1409 		return;
1410 
1411 	if (RB_WARN_ON(cpu_buffer,
1412 			rb_list_head(rb_list_head(head->prev)->next) != head))
1413 		return;
1414 
1415 	for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1416 		if (RB_WARN_ON(cpu_buffer,
1417 				rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1418 			return;
1419 
1420 		if (RB_WARN_ON(cpu_buffer,
1421 				rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1422 			return;
1423 	}
1424 }
1425 
1426 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1427 		long nr_pages, struct list_head *pages)
1428 {
1429 	struct buffer_page *bpage, *tmp;
1430 	bool user_thread = current->mm != NULL;
1431 	gfp_t mflags;
1432 	long i;
1433 
1434 	/*
1435 	 * Check if the available memory is there first.
1436 	 * Note, si_mem_available() only gives us a rough estimate of available
1437 	 * memory. It may not be accurate. But we don't care, we just want
1438 	 * to prevent doing any allocation when it is obvious that it is
1439 	 * not going to succeed.
1440 	 */
1441 	i = si_mem_available();
1442 	if (i < nr_pages)
1443 		return -ENOMEM;
1444 
1445 	/*
1446 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1447 	 * gracefully without invoking oom-killer and the system is not
1448 	 * destabilized.
1449 	 */
1450 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1451 
1452 	/*
1453 	 * If a user thread allocates too much, and si_mem_available()
1454 	 * reports there's enough memory, even though there is not.
1455 	 * Make sure the OOM killer kills this thread. This can happen
1456 	 * even with RETRY_MAYFAIL because another task may be doing
1457 	 * an allocation after this task has taken all memory.
1458 	 * This is the task the OOM killer needs to take out during this
1459 	 * loop, even if it was triggered by an allocation somewhere else.
1460 	 */
1461 	if (user_thread)
1462 		set_current_oom_origin();
1463 	for (i = 0; i < nr_pages; i++) {
1464 		struct page *page;
1465 
1466 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1467 				    mflags, cpu_to_node(cpu_buffer->cpu));
1468 		if (!bpage)
1469 			goto free_pages;
1470 
1471 		rb_check_bpage(cpu_buffer, bpage);
1472 
1473 		list_add(&bpage->list, pages);
1474 
1475 		page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags,
1476 					cpu_buffer->buffer->subbuf_order);
1477 		if (!page)
1478 			goto free_pages;
1479 		bpage->page = page_address(page);
1480 		bpage->order = cpu_buffer->buffer->subbuf_order;
1481 		rb_init_page(bpage->page);
1482 
1483 		if (user_thread && fatal_signal_pending(current))
1484 			goto free_pages;
1485 	}
1486 	if (user_thread)
1487 		clear_current_oom_origin();
1488 
1489 	return 0;
1490 
1491 free_pages:
1492 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1493 		list_del_init(&bpage->list);
1494 		free_buffer_page(bpage);
1495 	}
1496 	if (user_thread)
1497 		clear_current_oom_origin();
1498 
1499 	return -ENOMEM;
1500 }
1501 
1502 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1503 			     unsigned long nr_pages)
1504 {
1505 	LIST_HEAD(pages);
1506 
1507 	WARN_ON(!nr_pages);
1508 
1509 	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1510 		return -ENOMEM;
1511 
1512 	/*
1513 	 * The ring buffer page list is a circular list that does not
1514 	 * start and end with a list head. All page list items point to
1515 	 * other pages.
1516 	 */
1517 	cpu_buffer->pages = pages.next;
1518 	list_del(&pages);
1519 
1520 	cpu_buffer->nr_pages = nr_pages;
1521 
1522 	rb_check_pages(cpu_buffer);
1523 
1524 	return 0;
1525 }
1526 
1527 static struct ring_buffer_per_cpu *
1528 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1529 {
1530 	struct ring_buffer_per_cpu *cpu_buffer;
1531 	struct buffer_page *bpage;
1532 	struct page *page;
1533 	int ret;
1534 
1535 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1536 				  GFP_KERNEL, cpu_to_node(cpu));
1537 	if (!cpu_buffer)
1538 		return NULL;
1539 
1540 	cpu_buffer->cpu = cpu;
1541 	cpu_buffer->buffer = buffer;
1542 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1543 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1544 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1545 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1546 	init_completion(&cpu_buffer->update_done);
1547 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1548 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1549 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1550 
1551 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1552 			    GFP_KERNEL, cpu_to_node(cpu));
1553 	if (!bpage)
1554 		goto fail_free_buffer;
1555 
1556 	rb_check_bpage(cpu_buffer, bpage);
1557 
1558 	cpu_buffer->reader_page = bpage;
1559 
1560 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, cpu_buffer->buffer->subbuf_order);
1561 	if (!page)
1562 		goto fail_free_reader;
1563 	bpage->page = page_address(page);
1564 	rb_init_page(bpage->page);
1565 
1566 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1567 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1568 
1569 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1570 	if (ret < 0)
1571 		goto fail_free_reader;
1572 
1573 	cpu_buffer->head_page
1574 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1575 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1576 
1577 	rb_head_page_activate(cpu_buffer);
1578 
1579 	return cpu_buffer;
1580 
1581  fail_free_reader:
1582 	free_buffer_page(cpu_buffer->reader_page);
1583 
1584  fail_free_buffer:
1585 	kfree(cpu_buffer);
1586 	return NULL;
1587 }
1588 
1589 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1590 {
1591 	struct list_head *head = cpu_buffer->pages;
1592 	struct buffer_page *bpage, *tmp;
1593 
1594 	irq_work_sync(&cpu_buffer->irq_work.work);
1595 
1596 	free_buffer_page(cpu_buffer->reader_page);
1597 
1598 	if (head) {
1599 		rb_head_page_deactivate(cpu_buffer);
1600 
1601 		list_for_each_entry_safe(bpage, tmp, head, list) {
1602 			list_del_init(&bpage->list);
1603 			free_buffer_page(bpage);
1604 		}
1605 		bpage = list_entry(head, struct buffer_page, list);
1606 		free_buffer_page(bpage);
1607 	}
1608 
1609 	free_page((unsigned long)cpu_buffer->free_page);
1610 
1611 	kfree(cpu_buffer);
1612 }
1613 
1614 /**
1615  * __ring_buffer_alloc - allocate a new ring_buffer
1616  * @size: the size in bytes per cpu that is needed.
1617  * @flags: attributes to set for the ring buffer.
1618  * @key: ring buffer reader_lock_key.
1619  *
1620  * Currently the only flag that is available is the RB_FL_OVERWRITE
1621  * flag. This flag means that the buffer will overwrite old data
1622  * when the buffer wraps. If this flag is not set, the buffer will
1623  * drop data when the tail hits the head.
1624  */
1625 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1626 					struct lock_class_key *key)
1627 {
1628 	struct trace_buffer *buffer;
1629 	long nr_pages;
1630 	int bsize;
1631 	int cpu;
1632 	int ret;
1633 
1634 	/* keep it in its own cache line */
1635 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1636 			 GFP_KERNEL);
1637 	if (!buffer)
1638 		return NULL;
1639 
1640 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1641 		goto fail_free_buffer;
1642 
1643 	/* Default buffer page size - one system page */
1644 	buffer->subbuf_order = 0;
1645 	buffer->subbuf_size = PAGE_SIZE - BUF_PAGE_HDR_SIZE;
1646 
1647 	/* Max payload is buffer page size - header (8bytes) */
1648 	buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
1649 
1650 	nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
1651 	buffer->flags = flags;
1652 	buffer->clock = trace_clock_local;
1653 	buffer->reader_lock_key = key;
1654 
1655 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1656 	init_waitqueue_head(&buffer->irq_work.waiters);
1657 
1658 	/* need at least two pages */
1659 	if (nr_pages < 2)
1660 		nr_pages = 2;
1661 
1662 	buffer->cpus = nr_cpu_ids;
1663 
1664 	bsize = sizeof(void *) * nr_cpu_ids;
1665 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1666 				  GFP_KERNEL);
1667 	if (!buffer->buffers)
1668 		goto fail_free_cpumask;
1669 
1670 	cpu = raw_smp_processor_id();
1671 	cpumask_set_cpu(cpu, buffer->cpumask);
1672 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1673 	if (!buffer->buffers[cpu])
1674 		goto fail_free_buffers;
1675 
1676 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1677 	if (ret < 0)
1678 		goto fail_free_buffers;
1679 
1680 	mutex_init(&buffer->mutex);
1681 
1682 	return buffer;
1683 
1684  fail_free_buffers:
1685 	for_each_buffer_cpu(buffer, cpu) {
1686 		if (buffer->buffers[cpu])
1687 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1688 	}
1689 	kfree(buffer->buffers);
1690 
1691  fail_free_cpumask:
1692 	free_cpumask_var(buffer->cpumask);
1693 
1694  fail_free_buffer:
1695 	kfree(buffer);
1696 	return NULL;
1697 }
1698 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1699 
1700 /**
1701  * ring_buffer_free - free a ring buffer.
1702  * @buffer: the buffer to free.
1703  */
1704 void
1705 ring_buffer_free(struct trace_buffer *buffer)
1706 {
1707 	int cpu;
1708 
1709 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1710 
1711 	irq_work_sync(&buffer->irq_work.work);
1712 
1713 	for_each_buffer_cpu(buffer, cpu)
1714 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1715 
1716 	kfree(buffer->buffers);
1717 	free_cpumask_var(buffer->cpumask);
1718 
1719 	kfree(buffer);
1720 }
1721 EXPORT_SYMBOL_GPL(ring_buffer_free);
1722 
1723 void ring_buffer_set_clock(struct trace_buffer *buffer,
1724 			   u64 (*clock)(void))
1725 {
1726 	buffer->clock = clock;
1727 }
1728 
1729 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1730 {
1731 	buffer->time_stamp_abs = abs;
1732 }
1733 
1734 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1735 {
1736 	return buffer->time_stamp_abs;
1737 }
1738 
1739 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1740 
1741 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1742 {
1743 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1744 }
1745 
1746 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1747 {
1748 	return local_read(&bpage->write) & RB_WRITE_MASK;
1749 }
1750 
1751 static bool
1752 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1753 {
1754 	struct list_head *tail_page, *to_remove, *next_page;
1755 	struct buffer_page *to_remove_page, *tmp_iter_page;
1756 	struct buffer_page *last_page, *first_page;
1757 	unsigned long nr_removed;
1758 	unsigned long head_bit;
1759 	int page_entries;
1760 
1761 	head_bit = 0;
1762 
1763 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1764 	atomic_inc(&cpu_buffer->record_disabled);
1765 	/*
1766 	 * We don't race with the readers since we have acquired the reader
1767 	 * lock. We also don't race with writers after disabling recording.
1768 	 * This makes it easy to figure out the first and the last page to be
1769 	 * removed from the list. We unlink all the pages in between including
1770 	 * the first and last pages. This is done in a busy loop so that we
1771 	 * lose the least number of traces.
1772 	 * The pages are freed after we restart recording and unlock readers.
1773 	 */
1774 	tail_page = &cpu_buffer->tail_page->list;
1775 
1776 	/*
1777 	 * tail page might be on reader page, we remove the next page
1778 	 * from the ring buffer
1779 	 */
1780 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1781 		tail_page = rb_list_head(tail_page->next);
1782 	to_remove = tail_page;
1783 
1784 	/* start of pages to remove */
1785 	first_page = list_entry(rb_list_head(to_remove->next),
1786 				struct buffer_page, list);
1787 
1788 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1789 		to_remove = rb_list_head(to_remove)->next;
1790 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1791 	}
1792 	/* Read iterators need to reset themselves when some pages removed */
1793 	cpu_buffer->pages_removed += nr_removed;
1794 
1795 	next_page = rb_list_head(to_remove)->next;
1796 
1797 	/*
1798 	 * Now we remove all pages between tail_page and next_page.
1799 	 * Make sure that we have head_bit value preserved for the
1800 	 * next page
1801 	 */
1802 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1803 						head_bit);
1804 	next_page = rb_list_head(next_page);
1805 	next_page->prev = tail_page;
1806 
1807 	/* make sure pages points to a valid page in the ring buffer */
1808 	cpu_buffer->pages = next_page;
1809 
1810 	/* update head page */
1811 	if (head_bit)
1812 		cpu_buffer->head_page = list_entry(next_page,
1813 						struct buffer_page, list);
1814 
1815 	/* pages are removed, resume tracing and then free the pages */
1816 	atomic_dec(&cpu_buffer->record_disabled);
1817 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1818 
1819 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1820 
1821 	/* last buffer page to remove */
1822 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1823 				list);
1824 	tmp_iter_page = first_page;
1825 
1826 	do {
1827 		cond_resched();
1828 
1829 		to_remove_page = tmp_iter_page;
1830 		rb_inc_page(&tmp_iter_page);
1831 
1832 		/* update the counters */
1833 		page_entries = rb_page_entries(to_remove_page);
1834 		if (page_entries) {
1835 			/*
1836 			 * If something was added to this page, it was full
1837 			 * since it is not the tail page. So we deduct the
1838 			 * bytes consumed in ring buffer from here.
1839 			 * Increment overrun to account for the lost events.
1840 			 */
1841 			local_add(page_entries, &cpu_buffer->overrun);
1842 			local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
1843 			local_inc(&cpu_buffer->pages_lost);
1844 		}
1845 
1846 		/*
1847 		 * We have already removed references to this list item, just
1848 		 * free up the buffer_page and its page
1849 		 */
1850 		free_buffer_page(to_remove_page);
1851 		nr_removed--;
1852 
1853 	} while (to_remove_page != last_page);
1854 
1855 	RB_WARN_ON(cpu_buffer, nr_removed);
1856 
1857 	return nr_removed == 0;
1858 }
1859 
1860 static bool
1861 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1862 {
1863 	struct list_head *pages = &cpu_buffer->new_pages;
1864 	unsigned long flags;
1865 	bool success;
1866 	int retries;
1867 
1868 	/* Can be called at early boot up, where interrupts must not been enabled */
1869 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1870 	/*
1871 	 * We are holding the reader lock, so the reader page won't be swapped
1872 	 * in the ring buffer. Now we are racing with the writer trying to
1873 	 * move head page and the tail page.
1874 	 * We are going to adapt the reader page update process where:
1875 	 * 1. We first splice the start and end of list of new pages between
1876 	 *    the head page and its previous page.
1877 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1878 	 *    start of new pages list.
1879 	 * 3. Finally, we update the head->prev to the end of new list.
1880 	 *
1881 	 * We will try this process 10 times, to make sure that we don't keep
1882 	 * spinning.
1883 	 */
1884 	retries = 10;
1885 	success = false;
1886 	while (retries--) {
1887 		struct list_head *head_page, *prev_page;
1888 		struct list_head *last_page, *first_page;
1889 		struct list_head *head_page_with_bit;
1890 		struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
1891 
1892 		if (!hpage)
1893 			break;
1894 		head_page = &hpage->list;
1895 		prev_page = head_page->prev;
1896 
1897 		first_page = pages->next;
1898 		last_page  = pages->prev;
1899 
1900 		head_page_with_bit = (struct list_head *)
1901 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1902 
1903 		last_page->next = head_page_with_bit;
1904 		first_page->prev = prev_page;
1905 
1906 		/* caution: head_page_with_bit gets updated on cmpxchg failure */
1907 		if (try_cmpxchg(&prev_page->next,
1908 				&head_page_with_bit, first_page)) {
1909 			/*
1910 			 * yay, we replaced the page pointer to our new list,
1911 			 * now, we just have to update to head page's prev
1912 			 * pointer to point to end of list
1913 			 */
1914 			head_page->prev = last_page;
1915 			success = true;
1916 			break;
1917 		}
1918 	}
1919 
1920 	if (success)
1921 		INIT_LIST_HEAD(pages);
1922 	/*
1923 	 * If we weren't successful in adding in new pages, warn and stop
1924 	 * tracing
1925 	 */
1926 	RB_WARN_ON(cpu_buffer, !success);
1927 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1928 
1929 	/* free pages if they weren't inserted */
1930 	if (!success) {
1931 		struct buffer_page *bpage, *tmp;
1932 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1933 					 list) {
1934 			list_del_init(&bpage->list);
1935 			free_buffer_page(bpage);
1936 		}
1937 	}
1938 	return success;
1939 }
1940 
1941 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1942 {
1943 	bool success;
1944 
1945 	if (cpu_buffer->nr_pages_to_update > 0)
1946 		success = rb_insert_pages(cpu_buffer);
1947 	else
1948 		success = rb_remove_pages(cpu_buffer,
1949 					-cpu_buffer->nr_pages_to_update);
1950 
1951 	if (success)
1952 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1953 }
1954 
1955 static void update_pages_handler(struct work_struct *work)
1956 {
1957 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1958 			struct ring_buffer_per_cpu, update_pages_work);
1959 	rb_update_pages(cpu_buffer);
1960 	complete(&cpu_buffer->update_done);
1961 }
1962 
1963 /**
1964  * ring_buffer_resize - resize the ring buffer
1965  * @buffer: the buffer to resize.
1966  * @size: the new size.
1967  * @cpu_id: the cpu buffer to resize
1968  *
1969  * Minimum size is 2 * buffer->subbuf_size.
1970  *
1971  * Returns 0 on success and < 0 on failure.
1972  */
1973 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
1974 			int cpu_id)
1975 {
1976 	struct ring_buffer_per_cpu *cpu_buffer;
1977 	unsigned long nr_pages;
1978 	int cpu, err;
1979 
1980 	/*
1981 	 * Always succeed at resizing a non-existent buffer:
1982 	 */
1983 	if (!buffer)
1984 		return 0;
1985 
1986 	/* Make sure the requested buffer exists */
1987 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1988 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1989 		return 0;
1990 
1991 	nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
1992 
1993 	/* we need a minimum of two pages */
1994 	if (nr_pages < 2)
1995 		nr_pages = 2;
1996 
1997 	/* prevent another thread from changing buffer sizes */
1998 	mutex_lock(&buffer->mutex);
1999 	atomic_inc(&buffer->resizing);
2000 
2001 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2002 		/*
2003 		 * Don't succeed if resizing is disabled, as a reader might be
2004 		 * manipulating the ring buffer and is expecting a sane state while
2005 		 * this is true.
2006 		 */
2007 		for_each_buffer_cpu(buffer, cpu) {
2008 			cpu_buffer = buffer->buffers[cpu];
2009 			if (atomic_read(&cpu_buffer->resize_disabled)) {
2010 				err = -EBUSY;
2011 				goto out_err_unlock;
2012 			}
2013 		}
2014 
2015 		/* calculate the pages to update */
2016 		for_each_buffer_cpu(buffer, cpu) {
2017 			cpu_buffer = buffer->buffers[cpu];
2018 
2019 			cpu_buffer->nr_pages_to_update = nr_pages -
2020 							cpu_buffer->nr_pages;
2021 			/*
2022 			 * nothing more to do for removing pages or no update
2023 			 */
2024 			if (cpu_buffer->nr_pages_to_update <= 0)
2025 				continue;
2026 			/*
2027 			 * to add pages, make sure all new pages can be
2028 			 * allocated without receiving ENOMEM
2029 			 */
2030 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2031 			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2032 						&cpu_buffer->new_pages)) {
2033 				/* not enough memory for new pages */
2034 				err = -ENOMEM;
2035 				goto out_err;
2036 			}
2037 
2038 			cond_resched();
2039 		}
2040 
2041 		cpus_read_lock();
2042 		/*
2043 		 * Fire off all the required work handlers
2044 		 * We can't schedule on offline CPUs, but it's not necessary
2045 		 * since we can change their buffer sizes without any race.
2046 		 */
2047 		for_each_buffer_cpu(buffer, cpu) {
2048 			cpu_buffer = buffer->buffers[cpu];
2049 			if (!cpu_buffer->nr_pages_to_update)
2050 				continue;
2051 
2052 			/* Can't run something on an offline CPU. */
2053 			if (!cpu_online(cpu)) {
2054 				rb_update_pages(cpu_buffer);
2055 				cpu_buffer->nr_pages_to_update = 0;
2056 			} else {
2057 				/* Run directly if possible. */
2058 				migrate_disable();
2059 				if (cpu != smp_processor_id()) {
2060 					migrate_enable();
2061 					schedule_work_on(cpu,
2062 							 &cpu_buffer->update_pages_work);
2063 				} else {
2064 					update_pages_handler(&cpu_buffer->update_pages_work);
2065 					migrate_enable();
2066 				}
2067 			}
2068 		}
2069 
2070 		/* wait for all the updates to complete */
2071 		for_each_buffer_cpu(buffer, cpu) {
2072 			cpu_buffer = buffer->buffers[cpu];
2073 			if (!cpu_buffer->nr_pages_to_update)
2074 				continue;
2075 
2076 			if (cpu_online(cpu))
2077 				wait_for_completion(&cpu_buffer->update_done);
2078 			cpu_buffer->nr_pages_to_update = 0;
2079 		}
2080 
2081 		cpus_read_unlock();
2082 	} else {
2083 		cpu_buffer = buffer->buffers[cpu_id];
2084 
2085 		if (nr_pages == cpu_buffer->nr_pages)
2086 			goto out;
2087 
2088 		/*
2089 		 * Don't succeed if resizing is disabled, as a reader might be
2090 		 * manipulating the ring buffer and is expecting a sane state while
2091 		 * this is true.
2092 		 */
2093 		if (atomic_read(&cpu_buffer->resize_disabled)) {
2094 			err = -EBUSY;
2095 			goto out_err_unlock;
2096 		}
2097 
2098 		cpu_buffer->nr_pages_to_update = nr_pages -
2099 						cpu_buffer->nr_pages;
2100 
2101 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2102 		if (cpu_buffer->nr_pages_to_update > 0 &&
2103 			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2104 					    &cpu_buffer->new_pages)) {
2105 			err = -ENOMEM;
2106 			goto out_err;
2107 		}
2108 
2109 		cpus_read_lock();
2110 
2111 		/* Can't run something on an offline CPU. */
2112 		if (!cpu_online(cpu_id))
2113 			rb_update_pages(cpu_buffer);
2114 		else {
2115 			/* Run directly if possible. */
2116 			migrate_disable();
2117 			if (cpu_id == smp_processor_id()) {
2118 				rb_update_pages(cpu_buffer);
2119 				migrate_enable();
2120 			} else {
2121 				migrate_enable();
2122 				schedule_work_on(cpu_id,
2123 						 &cpu_buffer->update_pages_work);
2124 				wait_for_completion(&cpu_buffer->update_done);
2125 			}
2126 		}
2127 
2128 		cpu_buffer->nr_pages_to_update = 0;
2129 		cpus_read_unlock();
2130 	}
2131 
2132  out:
2133 	/*
2134 	 * The ring buffer resize can happen with the ring buffer
2135 	 * enabled, so that the update disturbs the tracing as little
2136 	 * as possible. But if the buffer is disabled, we do not need
2137 	 * to worry about that, and we can take the time to verify
2138 	 * that the buffer is not corrupt.
2139 	 */
2140 	if (atomic_read(&buffer->record_disabled)) {
2141 		atomic_inc(&buffer->record_disabled);
2142 		/*
2143 		 * Even though the buffer was disabled, we must make sure
2144 		 * that it is truly disabled before calling rb_check_pages.
2145 		 * There could have been a race between checking
2146 		 * record_disable and incrementing it.
2147 		 */
2148 		synchronize_rcu();
2149 		for_each_buffer_cpu(buffer, cpu) {
2150 			cpu_buffer = buffer->buffers[cpu];
2151 			rb_check_pages(cpu_buffer);
2152 		}
2153 		atomic_dec(&buffer->record_disabled);
2154 	}
2155 
2156 	atomic_dec(&buffer->resizing);
2157 	mutex_unlock(&buffer->mutex);
2158 	return 0;
2159 
2160  out_err:
2161 	for_each_buffer_cpu(buffer, cpu) {
2162 		struct buffer_page *bpage, *tmp;
2163 
2164 		cpu_buffer = buffer->buffers[cpu];
2165 		cpu_buffer->nr_pages_to_update = 0;
2166 
2167 		if (list_empty(&cpu_buffer->new_pages))
2168 			continue;
2169 
2170 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2171 					list) {
2172 			list_del_init(&bpage->list);
2173 			free_buffer_page(bpage);
2174 		}
2175 	}
2176  out_err_unlock:
2177 	atomic_dec(&buffer->resizing);
2178 	mutex_unlock(&buffer->mutex);
2179 	return err;
2180 }
2181 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2182 
2183 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2184 {
2185 	mutex_lock(&buffer->mutex);
2186 	if (val)
2187 		buffer->flags |= RB_FL_OVERWRITE;
2188 	else
2189 		buffer->flags &= ~RB_FL_OVERWRITE;
2190 	mutex_unlock(&buffer->mutex);
2191 }
2192 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2193 
2194 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2195 {
2196 	return bpage->page->data + index;
2197 }
2198 
2199 static __always_inline struct ring_buffer_event *
2200 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2201 {
2202 	return __rb_page_index(cpu_buffer->reader_page,
2203 			       cpu_buffer->reader_page->read);
2204 }
2205 
2206 static struct ring_buffer_event *
2207 rb_iter_head_event(struct ring_buffer_iter *iter)
2208 {
2209 	struct ring_buffer_event *event;
2210 	struct buffer_page *iter_head_page = iter->head_page;
2211 	unsigned long commit;
2212 	unsigned length;
2213 
2214 	if (iter->head != iter->next_event)
2215 		return iter->event;
2216 
2217 	/*
2218 	 * When the writer goes across pages, it issues a cmpxchg which
2219 	 * is a mb(), which will synchronize with the rmb here.
2220 	 * (see rb_tail_page_update() and __rb_reserve_next())
2221 	 */
2222 	commit = rb_page_commit(iter_head_page);
2223 	smp_rmb();
2224 
2225 	/* An event needs to be at least 8 bytes in size */
2226 	if (iter->head > commit - 8)
2227 		goto reset;
2228 
2229 	event = __rb_page_index(iter_head_page, iter->head);
2230 	length = rb_event_length(event);
2231 
2232 	/*
2233 	 * READ_ONCE() doesn't work on functions and we don't want the
2234 	 * compiler doing any crazy optimizations with length.
2235 	 */
2236 	barrier();
2237 
2238 	if ((iter->head + length) > commit || length > iter->event_size)
2239 		/* Writer corrupted the read? */
2240 		goto reset;
2241 
2242 	memcpy(iter->event, event, length);
2243 	/*
2244 	 * If the page stamp is still the same after this rmb() then the
2245 	 * event was safely copied without the writer entering the page.
2246 	 */
2247 	smp_rmb();
2248 
2249 	/* Make sure the page didn't change since we read this */
2250 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
2251 	    commit > rb_page_commit(iter_head_page))
2252 		goto reset;
2253 
2254 	iter->next_event = iter->head + length;
2255 	return iter->event;
2256  reset:
2257 	/* Reset to the beginning */
2258 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2259 	iter->head = 0;
2260 	iter->next_event = 0;
2261 	iter->missed_events = 1;
2262 	return NULL;
2263 }
2264 
2265 /* Size is determined by what has been committed */
2266 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2267 {
2268 	return rb_page_commit(bpage);
2269 }
2270 
2271 static __always_inline unsigned
2272 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2273 {
2274 	return rb_page_commit(cpu_buffer->commit_page);
2275 }
2276 
2277 static __always_inline unsigned
2278 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
2279 {
2280 	unsigned long addr = (unsigned long)event;
2281 
2282 	addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
2283 
2284 	return addr - BUF_PAGE_HDR_SIZE;
2285 }
2286 
2287 static void rb_inc_iter(struct ring_buffer_iter *iter)
2288 {
2289 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2290 
2291 	/*
2292 	 * The iterator could be on the reader page (it starts there).
2293 	 * But the head could have moved, since the reader was
2294 	 * found. Check for this case and assign the iterator
2295 	 * to the head page instead of next.
2296 	 */
2297 	if (iter->head_page == cpu_buffer->reader_page)
2298 		iter->head_page = rb_set_head_page(cpu_buffer);
2299 	else
2300 		rb_inc_page(&iter->head_page);
2301 
2302 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2303 	iter->head = 0;
2304 	iter->next_event = 0;
2305 }
2306 
2307 /*
2308  * rb_handle_head_page - writer hit the head page
2309  *
2310  * Returns: +1 to retry page
2311  *           0 to continue
2312  *          -1 on error
2313  */
2314 static int
2315 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2316 		    struct buffer_page *tail_page,
2317 		    struct buffer_page *next_page)
2318 {
2319 	struct buffer_page *new_head;
2320 	int entries;
2321 	int type;
2322 	int ret;
2323 
2324 	entries = rb_page_entries(next_page);
2325 
2326 	/*
2327 	 * The hard part is here. We need to move the head
2328 	 * forward, and protect against both readers on
2329 	 * other CPUs and writers coming in via interrupts.
2330 	 */
2331 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2332 				       RB_PAGE_HEAD);
2333 
2334 	/*
2335 	 * type can be one of four:
2336 	 *  NORMAL - an interrupt already moved it for us
2337 	 *  HEAD   - we are the first to get here.
2338 	 *  UPDATE - we are the interrupt interrupting
2339 	 *           a current move.
2340 	 *  MOVED  - a reader on another CPU moved the next
2341 	 *           pointer to its reader page. Give up
2342 	 *           and try again.
2343 	 */
2344 
2345 	switch (type) {
2346 	case RB_PAGE_HEAD:
2347 		/*
2348 		 * We changed the head to UPDATE, thus
2349 		 * it is our responsibility to update
2350 		 * the counters.
2351 		 */
2352 		local_add(entries, &cpu_buffer->overrun);
2353 		local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
2354 		local_inc(&cpu_buffer->pages_lost);
2355 
2356 		/*
2357 		 * The entries will be zeroed out when we move the
2358 		 * tail page.
2359 		 */
2360 
2361 		/* still more to do */
2362 		break;
2363 
2364 	case RB_PAGE_UPDATE:
2365 		/*
2366 		 * This is an interrupt that interrupt the
2367 		 * previous update. Still more to do.
2368 		 */
2369 		break;
2370 	case RB_PAGE_NORMAL:
2371 		/*
2372 		 * An interrupt came in before the update
2373 		 * and processed this for us.
2374 		 * Nothing left to do.
2375 		 */
2376 		return 1;
2377 	case RB_PAGE_MOVED:
2378 		/*
2379 		 * The reader is on another CPU and just did
2380 		 * a swap with our next_page.
2381 		 * Try again.
2382 		 */
2383 		return 1;
2384 	default:
2385 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2386 		return -1;
2387 	}
2388 
2389 	/*
2390 	 * Now that we are here, the old head pointer is
2391 	 * set to UPDATE. This will keep the reader from
2392 	 * swapping the head page with the reader page.
2393 	 * The reader (on another CPU) will spin till
2394 	 * we are finished.
2395 	 *
2396 	 * We just need to protect against interrupts
2397 	 * doing the job. We will set the next pointer
2398 	 * to HEAD. After that, we set the old pointer
2399 	 * to NORMAL, but only if it was HEAD before.
2400 	 * otherwise we are an interrupt, and only
2401 	 * want the outer most commit to reset it.
2402 	 */
2403 	new_head = next_page;
2404 	rb_inc_page(&new_head);
2405 
2406 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2407 				    RB_PAGE_NORMAL);
2408 
2409 	/*
2410 	 * Valid returns are:
2411 	 *  HEAD   - an interrupt came in and already set it.
2412 	 *  NORMAL - One of two things:
2413 	 *            1) We really set it.
2414 	 *            2) A bunch of interrupts came in and moved
2415 	 *               the page forward again.
2416 	 */
2417 	switch (ret) {
2418 	case RB_PAGE_HEAD:
2419 	case RB_PAGE_NORMAL:
2420 		/* OK */
2421 		break;
2422 	default:
2423 		RB_WARN_ON(cpu_buffer, 1);
2424 		return -1;
2425 	}
2426 
2427 	/*
2428 	 * It is possible that an interrupt came in,
2429 	 * set the head up, then more interrupts came in
2430 	 * and moved it again. When we get back here,
2431 	 * the page would have been set to NORMAL but we
2432 	 * just set it back to HEAD.
2433 	 *
2434 	 * How do you detect this? Well, if that happened
2435 	 * the tail page would have moved.
2436 	 */
2437 	if (ret == RB_PAGE_NORMAL) {
2438 		struct buffer_page *buffer_tail_page;
2439 
2440 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2441 		/*
2442 		 * If the tail had moved passed next, then we need
2443 		 * to reset the pointer.
2444 		 */
2445 		if (buffer_tail_page != tail_page &&
2446 		    buffer_tail_page != next_page)
2447 			rb_head_page_set_normal(cpu_buffer, new_head,
2448 						next_page,
2449 						RB_PAGE_HEAD);
2450 	}
2451 
2452 	/*
2453 	 * If this was the outer most commit (the one that
2454 	 * changed the original pointer from HEAD to UPDATE),
2455 	 * then it is up to us to reset it to NORMAL.
2456 	 */
2457 	if (type == RB_PAGE_HEAD) {
2458 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2459 					      tail_page,
2460 					      RB_PAGE_UPDATE);
2461 		if (RB_WARN_ON(cpu_buffer,
2462 			       ret != RB_PAGE_UPDATE))
2463 			return -1;
2464 	}
2465 
2466 	return 0;
2467 }
2468 
2469 static inline void
2470 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2471 	      unsigned long tail, struct rb_event_info *info)
2472 {
2473 	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
2474 	struct buffer_page *tail_page = info->tail_page;
2475 	struct ring_buffer_event *event;
2476 	unsigned long length = info->length;
2477 
2478 	/*
2479 	 * Only the event that crossed the page boundary
2480 	 * must fill the old tail_page with padding.
2481 	 */
2482 	if (tail >= bsize) {
2483 		/*
2484 		 * If the page was filled, then we still need
2485 		 * to update the real_end. Reset it to zero
2486 		 * and the reader will ignore it.
2487 		 */
2488 		if (tail == bsize)
2489 			tail_page->real_end = 0;
2490 
2491 		local_sub(length, &tail_page->write);
2492 		return;
2493 	}
2494 
2495 	event = __rb_page_index(tail_page, tail);
2496 
2497 	/*
2498 	 * Save the original length to the meta data.
2499 	 * This will be used by the reader to add lost event
2500 	 * counter.
2501 	 */
2502 	tail_page->real_end = tail;
2503 
2504 	/*
2505 	 * If this event is bigger than the minimum size, then
2506 	 * we need to be careful that we don't subtract the
2507 	 * write counter enough to allow another writer to slip
2508 	 * in on this page.
2509 	 * We put in a discarded commit instead, to make sure
2510 	 * that this space is not used again, and this space will
2511 	 * not be accounted into 'entries_bytes'.
2512 	 *
2513 	 * If we are less than the minimum size, we don't need to
2514 	 * worry about it.
2515 	 */
2516 	if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
2517 		/* No room for any events */
2518 
2519 		/* Mark the rest of the page with padding */
2520 		rb_event_set_padding(event);
2521 
2522 		/* Make sure the padding is visible before the write update */
2523 		smp_wmb();
2524 
2525 		/* Set the write back to the previous setting */
2526 		local_sub(length, &tail_page->write);
2527 		return;
2528 	}
2529 
2530 	/* Put in a discarded event */
2531 	event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
2532 	event->type_len = RINGBUF_TYPE_PADDING;
2533 	/* time delta must be non zero */
2534 	event->time_delta = 1;
2535 
2536 	/* account for padding bytes */
2537 	local_add(bsize - tail, &cpu_buffer->entries_bytes);
2538 
2539 	/* Make sure the padding is visible before the tail_page->write update */
2540 	smp_wmb();
2541 
2542 	/* Set write to end of buffer */
2543 	length = (tail + length) - bsize;
2544 	local_sub(length, &tail_page->write);
2545 }
2546 
2547 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2548 
2549 /*
2550  * This is the slow path, force gcc not to inline it.
2551  */
2552 static noinline struct ring_buffer_event *
2553 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2554 	     unsigned long tail, struct rb_event_info *info)
2555 {
2556 	struct buffer_page *tail_page = info->tail_page;
2557 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2558 	struct trace_buffer *buffer = cpu_buffer->buffer;
2559 	struct buffer_page *next_page;
2560 	int ret;
2561 
2562 	next_page = tail_page;
2563 
2564 	rb_inc_page(&next_page);
2565 
2566 	/*
2567 	 * If for some reason, we had an interrupt storm that made
2568 	 * it all the way around the buffer, bail, and warn
2569 	 * about it.
2570 	 */
2571 	if (unlikely(next_page == commit_page)) {
2572 		local_inc(&cpu_buffer->commit_overrun);
2573 		goto out_reset;
2574 	}
2575 
2576 	/*
2577 	 * This is where the fun begins!
2578 	 *
2579 	 * We are fighting against races between a reader that
2580 	 * could be on another CPU trying to swap its reader
2581 	 * page with the buffer head.
2582 	 *
2583 	 * We are also fighting against interrupts coming in and
2584 	 * moving the head or tail on us as well.
2585 	 *
2586 	 * If the next page is the head page then we have filled
2587 	 * the buffer, unless the commit page is still on the
2588 	 * reader page.
2589 	 */
2590 	if (rb_is_head_page(next_page, &tail_page->list)) {
2591 
2592 		/*
2593 		 * If the commit is not on the reader page, then
2594 		 * move the header page.
2595 		 */
2596 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2597 			/*
2598 			 * If we are not in overwrite mode,
2599 			 * this is easy, just stop here.
2600 			 */
2601 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2602 				local_inc(&cpu_buffer->dropped_events);
2603 				goto out_reset;
2604 			}
2605 
2606 			ret = rb_handle_head_page(cpu_buffer,
2607 						  tail_page,
2608 						  next_page);
2609 			if (ret < 0)
2610 				goto out_reset;
2611 			if (ret)
2612 				goto out_again;
2613 		} else {
2614 			/*
2615 			 * We need to be careful here too. The
2616 			 * commit page could still be on the reader
2617 			 * page. We could have a small buffer, and
2618 			 * have filled up the buffer with events
2619 			 * from interrupts and such, and wrapped.
2620 			 *
2621 			 * Note, if the tail page is also on the
2622 			 * reader_page, we let it move out.
2623 			 */
2624 			if (unlikely((cpu_buffer->commit_page !=
2625 				      cpu_buffer->tail_page) &&
2626 				     (cpu_buffer->commit_page ==
2627 				      cpu_buffer->reader_page))) {
2628 				local_inc(&cpu_buffer->commit_overrun);
2629 				goto out_reset;
2630 			}
2631 		}
2632 	}
2633 
2634 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2635 
2636  out_again:
2637 
2638 	rb_reset_tail(cpu_buffer, tail, info);
2639 
2640 	/* Commit what we have for now. */
2641 	rb_end_commit(cpu_buffer);
2642 	/* rb_end_commit() decs committing */
2643 	local_inc(&cpu_buffer->committing);
2644 
2645 	/* fail and let the caller try again */
2646 	return ERR_PTR(-EAGAIN);
2647 
2648  out_reset:
2649 	/* reset write */
2650 	rb_reset_tail(cpu_buffer, tail, info);
2651 
2652 	return NULL;
2653 }
2654 
2655 /* Slow path */
2656 static struct ring_buffer_event *
2657 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2658 		  struct ring_buffer_event *event, u64 delta, bool abs)
2659 {
2660 	if (abs)
2661 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2662 	else
2663 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2664 
2665 	/* Not the first event on the page, or not delta? */
2666 	if (abs || rb_event_index(cpu_buffer, event)) {
2667 		event->time_delta = delta & TS_MASK;
2668 		event->array[0] = delta >> TS_SHIFT;
2669 	} else {
2670 		/* nope, just zero it */
2671 		event->time_delta = 0;
2672 		event->array[0] = 0;
2673 	}
2674 
2675 	return skip_time_extend(event);
2676 }
2677 
2678 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2679 static inline bool sched_clock_stable(void)
2680 {
2681 	return true;
2682 }
2683 #endif
2684 
2685 static void
2686 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2687 		   struct rb_event_info *info)
2688 {
2689 	u64 write_stamp;
2690 
2691 	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2692 		  (unsigned long long)info->delta,
2693 		  (unsigned long long)info->ts,
2694 		  (unsigned long long)info->before,
2695 		  (unsigned long long)info->after,
2696 		  (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
2697 		  sched_clock_stable() ? "" :
2698 		  "If you just came from a suspend/resume,\n"
2699 		  "please switch to the trace global clock:\n"
2700 		  "  echo global > /sys/kernel/tracing/trace_clock\n"
2701 		  "or add trace_clock=global to the kernel command line\n");
2702 }
2703 
2704 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2705 				      struct ring_buffer_event **event,
2706 				      struct rb_event_info *info,
2707 				      u64 *delta,
2708 				      unsigned int *length)
2709 {
2710 	bool abs = info->add_timestamp &
2711 		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2712 
2713 	if (unlikely(info->delta > (1ULL << 59))) {
2714 		/*
2715 		 * Some timers can use more than 59 bits, and when a timestamp
2716 		 * is added to the buffer, it will lose those bits.
2717 		 */
2718 		if (abs && (info->ts & TS_MSB)) {
2719 			info->delta &= ABS_TS_MASK;
2720 
2721 		/* did the clock go backwards */
2722 		} else if (info->before == info->after && info->before > info->ts) {
2723 			/* not interrupted */
2724 			static int once;
2725 
2726 			/*
2727 			 * This is possible with a recalibrating of the TSC.
2728 			 * Do not produce a call stack, but just report it.
2729 			 */
2730 			if (!once) {
2731 				once++;
2732 				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2733 					info->before, info->ts);
2734 			}
2735 		} else
2736 			rb_check_timestamp(cpu_buffer, info);
2737 		if (!abs)
2738 			info->delta = 0;
2739 	}
2740 	*event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
2741 	*length -= RB_LEN_TIME_EXTEND;
2742 	*delta = 0;
2743 }
2744 
2745 /**
2746  * rb_update_event - update event type and data
2747  * @cpu_buffer: The per cpu buffer of the @event
2748  * @event: the event to update
2749  * @info: The info to update the @event with (contains length and delta)
2750  *
2751  * Update the type and data fields of the @event. The length
2752  * is the actual size that is written to the ring buffer,
2753  * and with this, we can determine what to place into the
2754  * data field.
2755  */
2756 static void
2757 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2758 		struct ring_buffer_event *event,
2759 		struct rb_event_info *info)
2760 {
2761 	unsigned length = info->length;
2762 	u64 delta = info->delta;
2763 	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2764 
2765 	if (!WARN_ON_ONCE(nest >= MAX_NEST))
2766 		cpu_buffer->event_stamp[nest] = info->ts;
2767 
2768 	/*
2769 	 * If we need to add a timestamp, then we
2770 	 * add it to the start of the reserved space.
2771 	 */
2772 	if (unlikely(info->add_timestamp))
2773 		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2774 
2775 	event->time_delta = delta;
2776 	length -= RB_EVNT_HDR_SIZE;
2777 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2778 		event->type_len = 0;
2779 		event->array[0] = length;
2780 	} else
2781 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2782 }
2783 
2784 static unsigned rb_calculate_event_length(unsigned length)
2785 {
2786 	struct ring_buffer_event event; /* Used only for sizeof array */
2787 
2788 	/* zero length can cause confusions */
2789 	if (!length)
2790 		length++;
2791 
2792 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2793 		length += sizeof(event.array[0]);
2794 
2795 	length += RB_EVNT_HDR_SIZE;
2796 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2797 
2798 	/*
2799 	 * In case the time delta is larger than the 27 bits for it
2800 	 * in the header, we need to add a timestamp. If another
2801 	 * event comes in when trying to discard this one to increase
2802 	 * the length, then the timestamp will be added in the allocated
2803 	 * space of this event. If length is bigger than the size needed
2804 	 * for the TIME_EXTEND, then padding has to be used. The events
2805 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2806 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2807 	 * As length is a multiple of 4, we only need to worry if it
2808 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2809 	 */
2810 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2811 		length += RB_ALIGNMENT;
2812 
2813 	return length;
2814 }
2815 
2816 static inline bool
2817 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2818 		  struct ring_buffer_event *event)
2819 {
2820 	unsigned long new_index, old_index;
2821 	struct buffer_page *bpage;
2822 	unsigned long addr;
2823 
2824 	new_index = rb_event_index(cpu_buffer, event);
2825 	old_index = new_index + rb_event_ts_length(event);
2826 	addr = (unsigned long)event;
2827 	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
2828 
2829 	bpage = READ_ONCE(cpu_buffer->tail_page);
2830 
2831 	/*
2832 	 * Make sure the tail_page is still the same and
2833 	 * the next write location is the end of this event
2834 	 */
2835 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2836 		unsigned long write_mask =
2837 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2838 		unsigned long event_length = rb_event_length(event);
2839 
2840 		/*
2841 		 * For the before_stamp to be different than the write_stamp
2842 		 * to make sure that the next event adds an absolute
2843 		 * value and does not rely on the saved write stamp, which
2844 		 * is now going to be bogus.
2845 		 *
2846 		 * By setting the before_stamp to zero, the next event
2847 		 * is not going to use the write_stamp and will instead
2848 		 * create an absolute timestamp. This means there's no
2849 		 * reason to update the wirte_stamp!
2850 		 */
2851 		rb_time_set(&cpu_buffer->before_stamp, 0);
2852 
2853 		/*
2854 		 * If an event were to come in now, it would see that the
2855 		 * write_stamp and the before_stamp are different, and assume
2856 		 * that this event just added itself before updating
2857 		 * the write stamp. The interrupting event will fix the
2858 		 * write stamp for us, and use an absolute timestamp.
2859 		 */
2860 
2861 		/*
2862 		 * This is on the tail page. It is possible that
2863 		 * a write could come in and move the tail page
2864 		 * and write to the next page. That is fine
2865 		 * because we just shorten what is on this page.
2866 		 */
2867 		old_index += write_mask;
2868 		new_index += write_mask;
2869 
2870 		/* caution: old_index gets updated on cmpxchg failure */
2871 		if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
2872 			/* update counters */
2873 			local_sub(event_length, &cpu_buffer->entries_bytes);
2874 			return true;
2875 		}
2876 	}
2877 
2878 	/* could not discard */
2879 	return false;
2880 }
2881 
2882 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2883 {
2884 	local_inc(&cpu_buffer->committing);
2885 	local_inc(&cpu_buffer->commits);
2886 }
2887 
2888 static __always_inline void
2889 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2890 {
2891 	unsigned long max_count;
2892 
2893 	/*
2894 	 * We only race with interrupts and NMIs on this CPU.
2895 	 * If we own the commit event, then we can commit
2896 	 * all others that interrupted us, since the interruptions
2897 	 * are in stack format (they finish before they come
2898 	 * back to us). This allows us to do a simple loop to
2899 	 * assign the commit to the tail.
2900 	 */
2901  again:
2902 	max_count = cpu_buffer->nr_pages * 100;
2903 
2904 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2905 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2906 			return;
2907 		if (RB_WARN_ON(cpu_buffer,
2908 			       rb_is_reader_page(cpu_buffer->tail_page)))
2909 			return;
2910 		/*
2911 		 * No need for a memory barrier here, as the update
2912 		 * of the tail_page did it for this page.
2913 		 */
2914 		local_set(&cpu_buffer->commit_page->page->commit,
2915 			  rb_page_write(cpu_buffer->commit_page));
2916 		rb_inc_page(&cpu_buffer->commit_page);
2917 		/* add barrier to keep gcc from optimizing too much */
2918 		barrier();
2919 	}
2920 	while (rb_commit_index(cpu_buffer) !=
2921 	       rb_page_write(cpu_buffer->commit_page)) {
2922 
2923 		/* Make sure the readers see the content of what is committed. */
2924 		smp_wmb();
2925 		local_set(&cpu_buffer->commit_page->page->commit,
2926 			  rb_page_write(cpu_buffer->commit_page));
2927 		RB_WARN_ON(cpu_buffer,
2928 			   local_read(&cpu_buffer->commit_page->page->commit) &
2929 			   ~RB_WRITE_MASK);
2930 		barrier();
2931 	}
2932 
2933 	/* again, keep gcc from optimizing */
2934 	barrier();
2935 
2936 	/*
2937 	 * If an interrupt came in just after the first while loop
2938 	 * and pushed the tail page forward, we will be left with
2939 	 * a dangling commit that will never go forward.
2940 	 */
2941 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2942 		goto again;
2943 }
2944 
2945 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2946 {
2947 	unsigned long commits;
2948 
2949 	if (RB_WARN_ON(cpu_buffer,
2950 		       !local_read(&cpu_buffer->committing)))
2951 		return;
2952 
2953  again:
2954 	commits = local_read(&cpu_buffer->commits);
2955 	/* synchronize with interrupts */
2956 	barrier();
2957 	if (local_read(&cpu_buffer->committing) == 1)
2958 		rb_set_commit_to_write(cpu_buffer);
2959 
2960 	local_dec(&cpu_buffer->committing);
2961 
2962 	/* synchronize with interrupts */
2963 	barrier();
2964 
2965 	/*
2966 	 * Need to account for interrupts coming in between the
2967 	 * updating of the commit page and the clearing of the
2968 	 * committing counter.
2969 	 */
2970 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2971 	    !local_read(&cpu_buffer->committing)) {
2972 		local_inc(&cpu_buffer->committing);
2973 		goto again;
2974 	}
2975 }
2976 
2977 static inline void rb_event_discard(struct ring_buffer_event *event)
2978 {
2979 	if (extended_time(event))
2980 		event = skip_time_extend(event);
2981 
2982 	/* array[0] holds the actual length for the discarded event */
2983 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2984 	event->type_len = RINGBUF_TYPE_PADDING;
2985 	/* time delta must be non zero */
2986 	if (!event->time_delta)
2987 		event->time_delta = 1;
2988 }
2989 
2990 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
2991 {
2992 	local_inc(&cpu_buffer->entries);
2993 	rb_end_commit(cpu_buffer);
2994 }
2995 
2996 static __always_inline void
2997 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2998 {
2999 	if (buffer->irq_work.waiters_pending) {
3000 		buffer->irq_work.waiters_pending = false;
3001 		/* irq_work_queue() supplies it's own memory barriers */
3002 		irq_work_queue(&buffer->irq_work.work);
3003 	}
3004 
3005 	if (cpu_buffer->irq_work.waiters_pending) {
3006 		cpu_buffer->irq_work.waiters_pending = false;
3007 		/* irq_work_queue() supplies it's own memory barriers */
3008 		irq_work_queue(&cpu_buffer->irq_work.work);
3009 	}
3010 
3011 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3012 		return;
3013 
3014 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3015 		return;
3016 
3017 	if (!cpu_buffer->irq_work.full_waiters_pending)
3018 		return;
3019 
3020 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3021 
3022 	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3023 		return;
3024 
3025 	cpu_buffer->irq_work.wakeup_full = true;
3026 	cpu_buffer->irq_work.full_waiters_pending = false;
3027 	/* irq_work_queue() supplies it's own memory barriers */
3028 	irq_work_queue(&cpu_buffer->irq_work.work);
3029 }
3030 
3031 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3032 # define do_ring_buffer_record_recursion()	\
3033 	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3034 #else
3035 # define do_ring_buffer_record_recursion() do { } while (0)
3036 #endif
3037 
3038 /*
3039  * The lock and unlock are done within a preempt disable section.
3040  * The current_context per_cpu variable can only be modified
3041  * by the current task between lock and unlock. But it can
3042  * be modified more than once via an interrupt. To pass this
3043  * information from the lock to the unlock without having to
3044  * access the 'in_interrupt()' functions again (which do show
3045  * a bit of overhead in something as critical as function tracing,
3046  * we use a bitmask trick.
3047  *
3048  *  bit 1 =  NMI context
3049  *  bit 2 =  IRQ context
3050  *  bit 3 =  SoftIRQ context
3051  *  bit 4 =  normal context.
3052  *
3053  * This works because this is the order of contexts that can
3054  * preempt other contexts. A SoftIRQ never preempts an IRQ
3055  * context.
3056  *
3057  * When the context is determined, the corresponding bit is
3058  * checked and set (if it was set, then a recursion of that context
3059  * happened).
3060  *
3061  * On unlock, we need to clear this bit. To do so, just subtract
3062  * 1 from the current_context and AND it to itself.
3063  *
3064  * (binary)
3065  *  101 - 1 = 100
3066  *  101 & 100 = 100 (clearing bit zero)
3067  *
3068  *  1010 - 1 = 1001
3069  *  1010 & 1001 = 1000 (clearing bit 1)
3070  *
3071  * The least significant bit can be cleared this way, and it
3072  * just so happens that it is the same bit corresponding to
3073  * the current context.
3074  *
3075  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3076  * is set when a recursion is detected at the current context, and if
3077  * the TRANSITION bit is already set, it will fail the recursion.
3078  * This is needed because there's a lag between the changing of
3079  * interrupt context and updating the preempt count. In this case,
3080  * a false positive will be found. To handle this, one extra recursion
3081  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3082  * bit is already set, then it is considered a recursion and the function
3083  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3084  *
3085  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3086  * to be cleared. Even if it wasn't the context that set it. That is,
3087  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3088  * is called before preempt_count() is updated, since the check will
3089  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3090  * NMI then comes in, it will set the NMI bit, but when the NMI code
3091  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3092  * and leave the NMI bit set. But this is fine, because the interrupt
3093  * code that set the TRANSITION bit will then clear the NMI bit when it
3094  * calls trace_recursive_unlock(). If another NMI comes in, it will
3095  * set the TRANSITION bit and continue.
3096  *
3097  * Note: The TRANSITION bit only handles a single transition between context.
3098  */
3099 
3100 static __always_inline bool
3101 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3102 {
3103 	unsigned int val = cpu_buffer->current_context;
3104 	int bit = interrupt_context_level();
3105 
3106 	bit = RB_CTX_NORMAL - bit;
3107 
3108 	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3109 		/*
3110 		 * It is possible that this was called by transitioning
3111 		 * between interrupt context, and preempt_count() has not
3112 		 * been updated yet. In this case, use the TRANSITION bit.
3113 		 */
3114 		bit = RB_CTX_TRANSITION;
3115 		if (val & (1 << (bit + cpu_buffer->nest))) {
3116 			do_ring_buffer_record_recursion();
3117 			return true;
3118 		}
3119 	}
3120 
3121 	val |= (1 << (bit + cpu_buffer->nest));
3122 	cpu_buffer->current_context = val;
3123 
3124 	return false;
3125 }
3126 
3127 static __always_inline void
3128 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3129 {
3130 	cpu_buffer->current_context &=
3131 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3132 }
3133 
3134 /* The recursive locking above uses 5 bits */
3135 #define NESTED_BITS 5
3136 
3137 /**
3138  * ring_buffer_nest_start - Allow to trace while nested
3139  * @buffer: The ring buffer to modify
3140  *
3141  * The ring buffer has a safety mechanism to prevent recursion.
3142  * But there may be a case where a trace needs to be done while
3143  * tracing something else. In this case, calling this function
3144  * will allow this function to nest within a currently active
3145  * ring_buffer_lock_reserve().
3146  *
3147  * Call this function before calling another ring_buffer_lock_reserve() and
3148  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3149  */
3150 void ring_buffer_nest_start(struct trace_buffer *buffer)
3151 {
3152 	struct ring_buffer_per_cpu *cpu_buffer;
3153 	int cpu;
3154 
3155 	/* Enabled by ring_buffer_nest_end() */
3156 	preempt_disable_notrace();
3157 	cpu = raw_smp_processor_id();
3158 	cpu_buffer = buffer->buffers[cpu];
3159 	/* This is the shift value for the above recursive locking */
3160 	cpu_buffer->nest += NESTED_BITS;
3161 }
3162 
3163 /**
3164  * ring_buffer_nest_end - Allow to trace while nested
3165  * @buffer: The ring buffer to modify
3166  *
3167  * Must be called after ring_buffer_nest_start() and after the
3168  * ring_buffer_unlock_commit().
3169  */
3170 void ring_buffer_nest_end(struct trace_buffer *buffer)
3171 {
3172 	struct ring_buffer_per_cpu *cpu_buffer;
3173 	int cpu;
3174 
3175 	/* disabled by ring_buffer_nest_start() */
3176 	cpu = raw_smp_processor_id();
3177 	cpu_buffer = buffer->buffers[cpu];
3178 	/* This is the shift value for the above recursive locking */
3179 	cpu_buffer->nest -= NESTED_BITS;
3180 	preempt_enable_notrace();
3181 }
3182 
3183 /**
3184  * ring_buffer_unlock_commit - commit a reserved
3185  * @buffer: The buffer to commit to
3186  *
3187  * This commits the data to the ring buffer, and releases any locks held.
3188  *
3189  * Must be paired with ring_buffer_lock_reserve.
3190  */
3191 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3192 {
3193 	struct ring_buffer_per_cpu *cpu_buffer;
3194 	int cpu = raw_smp_processor_id();
3195 
3196 	cpu_buffer = buffer->buffers[cpu];
3197 
3198 	rb_commit(cpu_buffer);
3199 
3200 	rb_wakeups(buffer, cpu_buffer);
3201 
3202 	trace_recursive_unlock(cpu_buffer);
3203 
3204 	preempt_enable_notrace();
3205 
3206 	return 0;
3207 }
3208 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3209 
3210 /* Special value to validate all deltas on a page. */
3211 #define CHECK_FULL_PAGE		1L
3212 
3213 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3214 
3215 static const char *show_irq_str(int bits)
3216 {
3217 	const char *type[] = {
3218 		".",	// 0
3219 		"s",	// 1
3220 		"h",	// 2
3221 		"Hs",	// 3
3222 		"n",	// 4
3223 		"Ns",	// 5
3224 		"Nh",	// 6
3225 		"NHs",	// 7
3226 	};
3227 
3228 	return type[bits];
3229 }
3230 
3231 /* Assume this is an trace event */
3232 static const char *show_flags(struct ring_buffer_event *event)
3233 {
3234 	struct trace_entry *entry;
3235 	int bits = 0;
3236 
3237 	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
3238 		return "X";
3239 
3240 	entry = ring_buffer_event_data(event);
3241 
3242 	if (entry->flags & TRACE_FLAG_SOFTIRQ)
3243 		bits |= 1;
3244 
3245 	if (entry->flags & TRACE_FLAG_HARDIRQ)
3246 		bits |= 2;
3247 
3248 	if (entry->flags & TRACE_FLAG_NMI)
3249 		bits |= 4;
3250 
3251 	return show_irq_str(bits);
3252 }
3253 
3254 static const char *show_irq(struct ring_buffer_event *event)
3255 {
3256 	struct trace_entry *entry;
3257 
3258 	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
3259 		return "";
3260 
3261 	entry = ring_buffer_event_data(event);
3262 	if (entry->flags & TRACE_FLAG_IRQS_OFF)
3263 		return "d";
3264 	return "";
3265 }
3266 
3267 static const char *show_interrupt_level(void)
3268 {
3269 	unsigned long pc = preempt_count();
3270 	unsigned char level = 0;
3271 
3272 	if (pc & SOFTIRQ_OFFSET)
3273 		level |= 1;
3274 
3275 	if (pc & HARDIRQ_MASK)
3276 		level |= 2;
3277 
3278 	if (pc & NMI_MASK)
3279 		level |= 4;
3280 
3281 	return show_irq_str(level);
3282 }
3283 
3284 static void dump_buffer_page(struct buffer_data_page *bpage,
3285 			     struct rb_event_info *info,
3286 			     unsigned long tail)
3287 {
3288 	struct ring_buffer_event *event;
3289 	u64 ts, delta;
3290 	int e;
3291 
3292 	ts = bpage->time_stamp;
3293 	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3294 
3295 	for (e = 0; e < tail; e += rb_event_length(event)) {
3296 
3297 		event = (struct ring_buffer_event *)(bpage->data + e);
3298 
3299 		switch (event->type_len) {
3300 
3301 		case RINGBUF_TYPE_TIME_EXTEND:
3302 			delta = rb_event_time_stamp(event);
3303 			ts += delta;
3304 			pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
3305 				e, ts, delta);
3306 			break;
3307 
3308 		case RINGBUF_TYPE_TIME_STAMP:
3309 			delta = rb_event_time_stamp(event);
3310 			ts = rb_fix_abs_ts(delta, ts);
3311 			pr_warn(" 0x%x:  [%lld] absolute:%lld TIME STAMP\n",
3312 				e, ts, delta);
3313 			break;
3314 
3315 		case RINGBUF_TYPE_PADDING:
3316 			ts += event->time_delta;
3317 			pr_warn(" 0x%x:  [%lld] delta:%d PADDING\n",
3318 				e, ts, event->time_delta);
3319 			break;
3320 
3321 		case RINGBUF_TYPE_DATA:
3322 			ts += event->time_delta;
3323 			pr_warn(" 0x%x:  [%lld] delta:%d %s%s\n",
3324 				e, ts, event->time_delta,
3325 				show_flags(event), show_irq(event));
3326 			break;
3327 
3328 		default:
3329 			break;
3330 		}
3331 	}
3332 	pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
3333 }
3334 
3335 static DEFINE_PER_CPU(atomic_t, checking);
3336 static atomic_t ts_dump;
3337 
3338 #define buffer_warn_return(fmt, ...)					\
3339 	do {								\
3340 		/* If another report is happening, ignore this one */	\
3341 		if (atomic_inc_return(&ts_dump) != 1) {			\
3342 			atomic_dec(&ts_dump);				\
3343 			goto out;					\
3344 		}							\
3345 		atomic_inc(&cpu_buffer->record_disabled);		\
3346 		pr_warn(fmt, ##__VA_ARGS__);				\
3347 		dump_buffer_page(bpage, info, tail);			\
3348 		atomic_dec(&ts_dump);					\
3349 		/* There's some cases in boot up that this can happen */ \
3350 		if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING))	\
3351 			/* Do not re-enable checking */			\
3352 			return;						\
3353 	} while (0)
3354 
3355 /*
3356  * Check if the current event time stamp matches the deltas on
3357  * the buffer page.
3358  */
3359 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3360 			 struct rb_event_info *info,
3361 			 unsigned long tail)
3362 {
3363 	struct ring_buffer_event *event;
3364 	struct buffer_data_page *bpage;
3365 	u64 ts, delta;
3366 	bool full = false;
3367 	int e;
3368 
3369 	bpage = info->tail_page->page;
3370 
3371 	if (tail == CHECK_FULL_PAGE) {
3372 		full = true;
3373 		tail = local_read(&bpage->commit);
3374 	} else if (info->add_timestamp &
3375 		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3376 		/* Ignore events with absolute time stamps */
3377 		return;
3378 	}
3379 
3380 	/*
3381 	 * Do not check the first event (skip possible extends too).
3382 	 * Also do not check if previous events have not been committed.
3383 	 */
3384 	if (tail <= 8 || tail > local_read(&bpage->commit))
3385 		return;
3386 
3387 	/*
3388 	 * If this interrupted another event,
3389 	 */
3390 	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3391 		goto out;
3392 
3393 	ts = bpage->time_stamp;
3394 
3395 	for (e = 0; e < tail; e += rb_event_length(event)) {
3396 
3397 		event = (struct ring_buffer_event *)(bpage->data + e);
3398 
3399 		switch (event->type_len) {
3400 
3401 		case RINGBUF_TYPE_TIME_EXTEND:
3402 			delta = rb_event_time_stamp(event);
3403 			ts += delta;
3404 			break;
3405 
3406 		case RINGBUF_TYPE_TIME_STAMP:
3407 			delta = rb_event_time_stamp(event);
3408 			delta = rb_fix_abs_ts(delta, ts);
3409 			if (delta < ts) {
3410 				buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
3411 						   cpu_buffer->cpu, ts, delta);
3412 			}
3413 			ts = delta;
3414 			break;
3415 
3416 		case RINGBUF_TYPE_PADDING:
3417 			if (event->time_delta == 1)
3418 				break;
3419 			fallthrough;
3420 		case RINGBUF_TYPE_DATA:
3421 			ts += event->time_delta;
3422 			break;
3423 
3424 		default:
3425 			RB_WARN_ON(cpu_buffer, 1);
3426 		}
3427 	}
3428 	if ((full && ts > info->ts) ||
3429 	    (!full && ts + info->delta != info->ts)) {
3430 		buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
3431 				   cpu_buffer->cpu,
3432 				   ts + info->delta, info->ts, info->delta,
3433 				   info->before, info->after,
3434 				   full ? " (full)" : "", show_interrupt_level());
3435 	}
3436 out:
3437 	atomic_dec(this_cpu_ptr(&checking));
3438 }
3439 #else
3440 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3441 			 struct rb_event_info *info,
3442 			 unsigned long tail)
3443 {
3444 }
3445 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3446 
3447 static struct ring_buffer_event *
3448 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3449 		  struct rb_event_info *info)
3450 {
3451 	struct ring_buffer_event *event;
3452 	struct buffer_page *tail_page;
3453 	unsigned long tail, write, w;
3454 
3455 	/* Don't let the compiler play games with cpu_buffer->tail_page */
3456 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3457 
3458  /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
3459 	barrier();
3460 	rb_time_read(&cpu_buffer->before_stamp, &info->before);
3461 	rb_time_read(&cpu_buffer->write_stamp, &info->after);
3462 	barrier();
3463 	info->ts = rb_time_stamp(cpu_buffer->buffer);
3464 
3465 	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3466 		info->delta = info->ts;
3467 	} else {
3468 		/*
3469 		 * If interrupting an event time update, we may need an
3470 		 * absolute timestamp.
3471 		 * Don't bother if this is the start of a new page (w == 0).
3472 		 */
3473 		if (!w) {
3474 			/* Use the sub-buffer timestamp */
3475 			info->delta = 0;
3476 		} else if (unlikely(info->before != info->after)) {
3477 			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3478 			info->length += RB_LEN_TIME_EXTEND;
3479 		} else {
3480 			info->delta = info->ts - info->after;
3481 			if (unlikely(test_time_stamp(info->delta))) {
3482 				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3483 				info->length += RB_LEN_TIME_EXTEND;
3484 			}
3485 		}
3486 	}
3487 
3488  /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
3489 
3490  /*C*/	write = local_add_return(info->length, &tail_page->write);
3491 
3492 	/* set write to only the index of the write */
3493 	write &= RB_WRITE_MASK;
3494 
3495 	tail = write - info->length;
3496 
3497 	/* See if we shot pass the end of this buffer page */
3498 	if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
3499 		check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3500 		return rb_move_tail(cpu_buffer, tail, info);
3501 	}
3502 
3503 	if (likely(tail == w)) {
3504 		/* Nothing interrupted us between A and C */
3505  /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
3506 		/*
3507 		 * If something came in between C and D, the write stamp
3508 		 * may now not be in sync. But that's fine as the before_stamp
3509 		 * will be different and then next event will just be forced
3510 		 * to use an absolute timestamp.
3511 		 */
3512 		if (likely(!(info->add_timestamp &
3513 			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3514 			/* This did not interrupt any time update */
3515 			info->delta = info->ts - info->after;
3516 		else
3517 			/* Just use full timestamp for interrupting event */
3518 			info->delta = info->ts;
3519 		check_buffer(cpu_buffer, info, tail);
3520 	} else {
3521 		u64 ts;
3522 		/* SLOW PATH - Interrupted between A and C */
3523 
3524 		/* Save the old before_stamp */
3525 		rb_time_read(&cpu_buffer->before_stamp, &info->before);
3526 
3527 		/*
3528 		 * Read a new timestamp and update the before_stamp to make
3529 		 * the next event after this one force using an absolute
3530 		 * timestamp. This is in case an interrupt were to come in
3531 		 * between E and F.
3532 		 */
3533 		ts = rb_time_stamp(cpu_buffer->buffer);
3534 		rb_time_set(&cpu_buffer->before_stamp, ts);
3535 
3536 		barrier();
3537  /*E*/		rb_time_read(&cpu_buffer->write_stamp, &info->after);
3538 		barrier();
3539  /*F*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3540 		    info->after == info->before && info->after < ts) {
3541 			/*
3542 			 * Nothing came after this event between C and F, it is
3543 			 * safe to use info->after for the delta as it
3544 			 * matched info->before and is still valid.
3545 			 */
3546 			info->delta = ts - info->after;
3547 		} else {
3548 			/*
3549 			 * Interrupted between C and F:
3550 			 * Lost the previous events time stamp. Just set the
3551 			 * delta to zero, and this will be the same time as
3552 			 * the event this event interrupted. And the events that
3553 			 * came after this will still be correct (as they would
3554 			 * have built their delta on the previous event.
3555 			 */
3556 			info->delta = 0;
3557 		}
3558 		info->ts = ts;
3559 		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3560 	}
3561 
3562 	/*
3563 	 * If this is the first commit on the page, then it has the same
3564 	 * timestamp as the page itself.
3565 	 */
3566 	if (unlikely(!tail && !(info->add_timestamp &
3567 				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3568 		info->delta = 0;
3569 
3570 	/* We reserved something on the buffer */
3571 
3572 	event = __rb_page_index(tail_page, tail);
3573 	rb_update_event(cpu_buffer, event, info);
3574 
3575 	local_inc(&tail_page->entries);
3576 
3577 	/*
3578 	 * If this is the first commit on the page, then update
3579 	 * its timestamp.
3580 	 */
3581 	if (unlikely(!tail))
3582 		tail_page->page->time_stamp = info->ts;
3583 
3584 	/* account for these added bytes */
3585 	local_add(info->length, &cpu_buffer->entries_bytes);
3586 
3587 	return event;
3588 }
3589 
3590 static __always_inline struct ring_buffer_event *
3591 rb_reserve_next_event(struct trace_buffer *buffer,
3592 		      struct ring_buffer_per_cpu *cpu_buffer,
3593 		      unsigned long length)
3594 {
3595 	struct ring_buffer_event *event;
3596 	struct rb_event_info info;
3597 	int nr_loops = 0;
3598 	int add_ts_default;
3599 
3600 	/* ring buffer does cmpxchg, make sure it is safe in NMI context */
3601 	if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) &&
3602 	    (unlikely(in_nmi()))) {
3603 		return NULL;
3604 	}
3605 
3606 	rb_start_commit(cpu_buffer);
3607 	/* The commit page can not change after this */
3608 
3609 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3610 	/*
3611 	 * Due to the ability to swap a cpu buffer from a buffer
3612 	 * it is possible it was swapped before we committed.
3613 	 * (committing stops a swap). We check for it here and
3614 	 * if it happened, we have to fail the write.
3615 	 */
3616 	barrier();
3617 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3618 		local_dec(&cpu_buffer->committing);
3619 		local_dec(&cpu_buffer->commits);
3620 		return NULL;
3621 	}
3622 #endif
3623 
3624 	info.length = rb_calculate_event_length(length);
3625 
3626 	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3627 		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3628 		info.length += RB_LEN_TIME_EXTEND;
3629 		if (info.length > cpu_buffer->buffer->max_data_size)
3630 			goto out_fail;
3631 	} else {
3632 		add_ts_default = RB_ADD_STAMP_NONE;
3633 	}
3634 
3635  again:
3636 	info.add_timestamp = add_ts_default;
3637 	info.delta = 0;
3638 
3639 	/*
3640 	 * We allow for interrupts to reenter here and do a trace.
3641 	 * If one does, it will cause this original code to loop
3642 	 * back here. Even with heavy interrupts happening, this
3643 	 * should only happen a few times in a row. If this happens
3644 	 * 1000 times in a row, there must be either an interrupt
3645 	 * storm or we have something buggy.
3646 	 * Bail!
3647 	 */
3648 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3649 		goto out_fail;
3650 
3651 	event = __rb_reserve_next(cpu_buffer, &info);
3652 
3653 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3654 		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3655 			info.length -= RB_LEN_TIME_EXTEND;
3656 		goto again;
3657 	}
3658 
3659 	if (likely(event))
3660 		return event;
3661  out_fail:
3662 	rb_end_commit(cpu_buffer);
3663 	return NULL;
3664 }
3665 
3666 /**
3667  * ring_buffer_lock_reserve - reserve a part of the buffer
3668  * @buffer: the ring buffer to reserve from
3669  * @length: the length of the data to reserve (excluding event header)
3670  *
3671  * Returns a reserved event on the ring buffer to copy directly to.
3672  * The user of this interface will need to get the body to write into
3673  * and can use the ring_buffer_event_data() interface.
3674  *
3675  * The length is the length of the data needed, not the event length
3676  * which also includes the event header.
3677  *
3678  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3679  * If NULL is returned, then nothing has been allocated or locked.
3680  */
3681 struct ring_buffer_event *
3682 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3683 {
3684 	struct ring_buffer_per_cpu *cpu_buffer;
3685 	struct ring_buffer_event *event;
3686 	int cpu;
3687 
3688 	/* If we are tracing schedule, we don't want to recurse */
3689 	preempt_disable_notrace();
3690 
3691 	if (unlikely(atomic_read(&buffer->record_disabled)))
3692 		goto out;
3693 
3694 	cpu = raw_smp_processor_id();
3695 
3696 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3697 		goto out;
3698 
3699 	cpu_buffer = buffer->buffers[cpu];
3700 
3701 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3702 		goto out;
3703 
3704 	if (unlikely(length > buffer->max_data_size))
3705 		goto out;
3706 
3707 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3708 		goto out;
3709 
3710 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3711 	if (!event)
3712 		goto out_unlock;
3713 
3714 	return event;
3715 
3716  out_unlock:
3717 	trace_recursive_unlock(cpu_buffer);
3718  out:
3719 	preempt_enable_notrace();
3720 	return NULL;
3721 }
3722 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3723 
3724 /*
3725  * Decrement the entries to the page that an event is on.
3726  * The event does not even need to exist, only the pointer
3727  * to the page it is on. This may only be called before the commit
3728  * takes place.
3729  */
3730 static inline void
3731 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3732 		   struct ring_buffer_event *event)
3733 {
3734 	unsigned long addr = (unsigned long)event;
3735 	struct buffer_page *bpage = cpu_buffer->commit_page;
3736 	struct buffer_page *start;
3737 
3738 	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3739 
3740 	/* Do the likely case first */
3741 	if (likely(bpage->page == (void *)addr)) {
3742 		local_dec(&bpage->entries);
3743 		return;
3744 	}
3745 
3746 	/*
3747 	 * Because the commit page may be on the reader page we
3748 	 * start with the next page and check the end loop there.
3749 	 */
3750 	rb_inc_page(&bpage);
3751 	start = bpage;
3752 	do {
3753 		if (bpage->page == (void *)addr) {
3754 			local_dec(&bpage->entries);
3755 			return;
3756 		}
3757 		rb_inc_page(&bpage);
3758 	} while (bpage != start);
3759 
3760 	/* commit not part of this buffer?? */
3761 	RB_WARN_ON(cpu_buffer, 1);
3762 }
3763 
3764 /**
3765  * ring_buffer_discard_commit - discard an event that has not been committed
3766  * @buffer: the ring buffer
3767  * @event: non committed event to discard
3768  *
3769  * Sometimes an event that is in the ring buffer needs to be ignored.
3770  * This function lets the user discard an event in the ring buffer
3771  * and then that event will not be read later.
3772  *
3773  * This function only works if it is called before the item has been
3774  * committed. It will try to free the event from the ring buffer
3775  * if another event has not been added behind it.
3776  *
3777  * If another event has been added behind it, it will set the event
3778  * up as discarded, and perform the commit.
3779  *
3780  * If this function is called, do not call ring_buffer_unlock_commit on
3781  * the event.
3782  */
3783 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3784 				struct ring_buffer_event *event)
3785 {
3786 	struct ring_buffer_per_cpu *cpu_buffer;
3787 	int cpu;
3788 
3789 	/* The event is discarded regardless */
3790 	rb_event_discard(event);
3791 
3792 	cpu = smp_processor_id();
3793 	cpu_buffer = buffer->buffers[cpu];
3794 
3795 	/*
3796 	 * This must only be called if the event has not been
3797 	 * committed yet. Thus we can assume that preemption
3798 	 * is still disabled.
3799 	 */
3800 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3801 
3802 	rb_decrement_entry(cpu_buffer, event);
3803 	if (rb_try_to_discard(cpu_buffer, event))
3804 		goto out;
3805 
3806  out:
3807 	rb_end_commit(cpu_buffer);
3808 
3809 	trace_recursive_unlock(cpu_buffer);
3810 
3811 	preempt_enable_notrace();
3812 
3813 }
3814 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3815 
3816 /**
3817  * ring_buffer_write - write data to the buffer without reserving
3818  * @buffer: The ring buffer to write to.
3819  * @length: The length of the data being written (excluding the event header)
3820  * @data: The data to write to the buffer.
3821  *
3822  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3823  * one function. If you already have the data to write to the buffer, it
3824  * may be easier to simply call this function.
3825  *
3826  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3827  * and not the length of the event which would hold the header.
3828  */
3829 int ring_buffer_write(struct trace_buffer *buffer,
3830 		      unsigned long length,
3831 		      void *data)
3832 {
3833 	struct ring_buffer_per_cpu *cpu_buffer;
3834 	struct ring_buffer_event *event;
3835 	void *body;
3836 	int ret = -EBUSY;
3837 	int cpu;
3838 
3839 	preempt_disable_notrace();
3840 
3841 	if (atomic_read(&buffer->record_disabled))
3842 		goto out;
3843 
3844 	cpu = raw_smp_processor_id();
3845 
3846 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3847 		goto out;
3848 
3849 	cpu_buffer = buffer->buffers[cpu];
3850 
3851 	if (atomic_read(&cpu_buffer->record_disabled))
3852 		goto out;
3853 
3854 	if (length > buffer->max_data_size)
3855 		goto out;
3856 
3857 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3858 		goto out;
3859 
3860 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3861 	if (!event)
3862 		goto out_unlock;
3863 
3864 	body = rb_event_data(event);
3865 
3866 	memcpy(body, data, length);
3867 
3868 	rb_commit(cpu_buffer);
3869 
3870 	rb_wakeups(buffer, cpu_buffer);
3871 
3872 	ret = 0;
3873 
3874  out_unlock:
3875 	trace_recursive_unlock(cpu_buffer);
3876 
3877  out:
3878 	preempt_enable_notrace();
3879 
3880 	return ret;
3881 }
3882 EXPORT_SYMBOL_GPL(ring_buffer_write);
3883 
3884 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3885 {
3886 	struct buffer_page *reader = cpu_buffer->reader_page;
3887 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3888 	struct buffer_page *commit = cpu_buffer->commit_page;
3889 
3890 	/* In case of error, head will be NULL */
3891 	if (unlikely(!head))
3892 		return true;
3893 
3894 	/* Reader should exhaust content in reader page */
3895 	if (reader->read != rb_page_commit(reader))
3896 		return false;
3897 
3898 	/*
3899 	 * If writers are committing on the reader page, knowing all
3900 	 * committed content has been read, the ring buffer is empty.
3901 	 */
3902 	if (commit == reader)
3903 		return true;
3904 
3905 	/*
3906 	 * If writers are committing on a page other than reader page
3907 	 * and head page, there should always be content to read.
3908 	 */
3909 	if (commit != head)
3910 		return false;
3911 
3912 	/*
3913 	 * Writers are committing on the head page, we just need
3914 	 * to care about there're committed data, and the reader will
3915 	 * swap reader page with head page when it is to read data.
3916 	 */
3917 	return rb_page_commit(commit) == 0;
3918 }
3919 
3920 /**
3921  * ring_buffer_record_disable - stop all writes into the buffer
3922  * @buffer: The ring buffer to stop writes to.
3923  *
3924  * This prevents all writes to the buffer. Any attempt to write
3925  * to the buffer after this will fail and return NULL.
3926  *
3927  * The caller should call synchronize_rcu() after this.
3928  */
3929 void ring_buffer_record_disable(struct trace_buffer *buffer)
3930 {
3931 	atomic_inc(&buffer->record_disabled);
3932 }
3933 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3934 
3935 /**
3936  * ring_buffer_record_enable - enable writes to the buffer
3937  * @buffer: The ring buffer to enable writes
3938  *
3939  * Note, multiple disables will need the same number of enables
3940  * to truly enable the writing (much like preempt_disable).
3941  */
3942 void ring_buffer_record_enable(struct trace_buffer *buffer)
3943 {
3944 	atomic_dec(&buffer->record_disabled);
3945 }
3946 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3947 
3948 /**
3949  * ring_buffer_record_off - stop all writes into the buffer
3950  * @buffer: The ring buffer to stop writes to.
3951  *
3952  * This prevents all writes to the buffer. Any attempt to write
3953  * to the buffer after this will fail and return NULL.
3954  *
3955  * This is different than ring_buffer_record_disable() as
3956  * it works like an on/off switch, where as the disable() version
3957  * must be paired with a enable().
3958  */
3959 void ring_buffer_record_off(struct trace_buffer *buffer)
3960 {
3961 	unsigned int rd;
3962 	unsigned int new_rd;
3963 
3964 	rd = atomic_read(&buffer->record_disabled);
3965 	do {
3966 		new_rd = rd | RB_BUFFER_OFF;
3967 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
3968 }
3969 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3970 
3971 /**
3972  * ring_buffer_record_on - restart writes into the buffer
3973  * @buffer: The ring buffer to start writes to.
3974  *
3975  * This enables all writes to the buffer that was disabled by
3976  * ring_buffer_record_off().
3977  *
3978  * This is different than ring_buffer_record_enable() as
3979  * it works like an on/off switch, where as the enable() version
3980  * must be paired with a disable().
3981  */
3982 void ring_buffer_record_on(struct trace_buffer *buffer)
3983 {
3984 	unsigned int rd;
3985 	unsigned int new_rd;
3986 
3987 	rd = atomic_read(&buffer->record_disabled);
3988 	do {
3989 		new_rd = rd & ~RB_BUFFER_OFF;
3990 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
3991 }
3992 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3993 
3994 /**
3995  * ring_buffer_record_is_on - return true if the ring buffer can write
3996  * @buffer: The ring buffer to see if write is enabled
3997  *
3998  * Returns true if the ring buffer is in a state that it accepts writes.
3999  */
4000 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4001 {
4002 	return !atomic_read(&buffer->record_disabled);
4003 }
4004 
4005 /**
4006  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4007  * @buffer: The ring buffer to see if write is set enabled
4008  *
4009  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4010  * Note that this does NOT mean it is in a writable state.
4011  *
4012  * It may return true when the ring buffer has been disabled by
4013  * ring_buffer_record_disable(), as that is a temporary disabling of
4014  * the ring buffer.
4015  */
4016 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4017 {
4018 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4019 }
4020 
4021 /**
4022  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4023  * @buffer: The ring buffer to stop writes to.
4024  * @cpu: The CPU buffer to stop
4025  *
4026  * This prevents all writes to the buffer. Any attempt to write
4027  * to the buffer after this will fail and return NULL.
4028  *
4029  * The caller should call synchronize_rcu() after this.
4030  */
4031 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4032 {
4033 	struct ring_buffer_per_cpu *cpu_buffer;
4034 
4035 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4036 		return;
4037 
4038 	cpu_buffer = buffer->buffers[cpu];
4039 	atomic_inc(&cpu_buffer->record_disabled);
4040 }
4041 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4042 
4043 /**
4044  * ring_buffer_record_enable_cpu - enable writes to the buffer
4045  * @buffer: The ring buffer to enable writes
4046  * @cpu: The CPU to enable.
4047  *
4048  * Note, multiple disables will need the same number of enables
4049  * to truly enable the writing (much like preempt_disable).
4050  */
4051 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4052 {
4053 	struct ring_buffer_per_cpu *cpu_buffer;
4054 
4055 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4056 		return;
4057 
4058 	cpu_buffer = buffer->buffers[cpu];
4059 	atomic_dec(&cpu_buffer->record_disabled);
4060 }
4061 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4062 
4063 /*
4064  * The total entries in the ring buffer is the running counter
4065  * of entries entered into the ring buffer, minus the sum of
4066  * the entries read from the ring buffer and the number of
4067  * entries that were overwritten.
4068  */
4069 static inline unsigned long
4070 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4071 {
4072 	return local_read(&cpu_buffer->entries) -
4073 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4074 }
4075 
4076 /**
4077  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4078  * @buffer: The ring buffer
4079  * @cpu: The per CPU buffer to read from.
4080  */
4081 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4082 {
4083 	unsigned long flags;
4084 	struct ring_buffer_per_cpu *cpu_buffer;
4085 	struct buffer_page *bpage;
4086 	u64 ret = 0;
4087 
4088 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4089 		return 0;
4090 
4091 	cpu_buffer = buffer->buffers[cpu];
4092 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4093 	/*
4094 	 * if the tail is on reader_page, oldest time stamp is on the reader
4095 	 * page
4096 	 */
4097 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4098 		bpage = cpu_buffer->reader_page;
4099 	else
4100 		bpage = rb_set_head_page(cpu_buffer);
4101 	if (bpage)
4102 		ret = bpage->page->time_stamp;
4103 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4104 
4105 	return ret;
4106 }
4107 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4108 
4109 /**
4110  * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4111  * @buffer: The ring buffer
4112  * @cpu: The per CPU buffer to read from.
4113  */
4114 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4115 {
4116 	struct ring_buffer_per_cpu *cpu_buffer;
4117 	unsigned long ret;
4118 
4119 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4120 		return 0;
4121 
4122 	cpu_buffer = buffer->buffers[cpu];
4123 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4124 
4125 	return ret;
4126 }
4127 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4128 
4129 /**
4130  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4131  * @buffer: The ring buffer
4132  * @cpu: The per CPU buffer to get the entries from.
4133  */
4134 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4135 {
4136 	struct ring_buffer_per_cpu *cpu_buffer;
4137 
4138 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4139 		return 0;
4140 
4141 	cpu_buffer = buffer->buffers[cpu];
4142 
4143 	return rb_num_of_entries(cpu_buffer);
4144 }
4145 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4146 
4147 /**
4148  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4149  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4150  * @buffer: The ring buffer
4151  * @cpu: The per CPU buffer to get the number of overruns from
4152  */
4153 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4154 {
4155 	struct ring_buffer_per_cpu *cpu_buffer;
4156 	unsigned long ret;
4157 
4158 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4159 		return 0;
4160 
4161 	cpu_buffer = buffer->buffers[cpu];
4162 	ret = local_read(&cpu_buffer->overrun);
4163 
4164 	return ret;
4165 }
4166 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4167 
4168 /**
4169  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4170  * commits failing due to the buffer wrapping around while there are uncommitted
4171  * events, such as during an interrupt storm.
4172  * @buffer: The ring buffer
4173  * @cpu: The per CPU buffer to get the number of overruns from
4174  */
4175 unsigned long
4176 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4177 {
4178 	struct ring_buffer_per_cpu *cpu_buffer;
4179 	unsigned long ret;
4180 
4181 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4182 		return 0;
4183 
4184 	cpu_buffer = buffer->buffers[cpu];
4185 	ret = local_read(&cpu_buffer->commit_overrun);
4186 
4187 	return ret;
4188 }
4189 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4190 
4191 /**
4192  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4193  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4194  * @buffer: The ring buffer
4195  * @cpu: The per CPU buffer to get the number of overruns from
4196  */
4197 unsigned long
4198 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4199 {
4200 	struct ring_buffer_per_cpu *cpu_buffer;
4201 	unsigned long ret;
4202 
4203 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4204 		return 0;
4205 
4206 	cpu_buffer = buffer->buffers[cpu];
4207 	ret = local_read(&cpu_buffer->dropped_events);
4208 
4209 	return ret;
4210 }
4211 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4212 
4213 /**
4214  * ring_buffer_read_events_cpu - get the number of events successfully read
4215  * @buffer: The ring buffer
4216  * @cpu: The per CPU buffer to get the number of events read
4217  */
4218 unsigned long
4219 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4220 {
4221 	struct ring_buffer_per_cpu *cpu_buffer;
4222 
4223 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4224 		return 0;
4225 
4226 	cpu_buffer = buffer->buffers[cpu];
4227 	return cpu_buffer->read;
4228 }
4229 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4230 
4231 /**
4232  * ring_buffer_entries - get the number of entries in a buffer
4233  * @buffer: The ring buffer
4234  *
4235  * Returns the total number of entries in the ring buffer
4236  * (all CPU entries)
4237  */
4238 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4239 {
4240 	struct ring_buffer_per_cpu *cpu_buffer;
4241 	unsigned long entries = 0;
4242 	int cpu;
4243 
4244 	/* if you care about this being correct, lock the buffer */
4245 	for_each_buffer_cpu(buffer, cpu) {
4246 		cpu_buffer = buffer->buffers[cpu];
4247 		entries += rb_num_of_entries(cpu_buffer);
4248 	}
4249 
4250 	return entries;
4251 }
4252 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4253 
4254 /**
4255  * ring_buffer_overruns - get the number of overruns in buffer
4256  * @buffer: The ring buffer
4257  *
4258  * Returns the total number of overruns in the ring buffer
4259  * (all CPU entries)
4260  */
4261 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4262 {
4263 	struct ring_buffer_per_cpu *cpu_buffer;
4264 	unsigned long overruns = 0;
4265 	int cpu;
4266 
4267 	/* if you care about this being correct, lock the buffer */
4268 	for_each_buffer_cpu(buffer, cpu) {
4269 		cpu_buffer = buffer->buffers[cpu];
4270 		overruns += local_read(&cpu_buffer->overrun);
4271 	}
4272 
4273 	return overruns;
4274 }
4275 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4276 
4277 static void rb_iter_reset(struct ring_buffer_iter *iter)
4278 {
4279 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4280 
4281 	/* Iterator usage is expected to have record disabled */
4282 	iter->head_page = cpu_buffer->reader_page;
4283 	iter->head = cpu_buffer->reader_page->read;
4284 	iter->next_event = iter->head;
4285 
4286 	iter->cache_reader_page = iter->head_page;
4287 	iter->cache_read = cpu_buffer->read;
4288 	iter->cache_pages_removed = cpu_buffer->pages_removed;
4289 
4290 	if (iter->head) {
4291 		iter->read_stamp = cpu_buffer->read_stamp;
4292 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4293 	} else {
4294 		iter->read_stamp = iter->head_page->page->time_stamp;
4295 		iter->page_stamp = iter->read_stamp;
4296 	}
4297 }
4298 
4299 /**
4300  * ring_buffer_iter_reset - reset an iterator
4301  * @iter: The iterator to reset
4302  *
4303  * Resets the iterator, so that it will start from the beginning
4304  * again.
4305  */
4306 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4307 {
4308 	struct ring_buffer_per_cpu *cpu_buffer;
4309 	unsigned long flags;
4310 
4311 	if (!iter)
4312 		return;
4313 
4314 	cpu_buffer = iter->cpu_buffer;
4315 
4316 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4317 	rb_iter_reset(iter);
4318 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4319 }
4320 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4321 
4322 /**
4323  * ring_buffer_iter_empty - check if an iterator has no more to read
4324  * @iter: The iterator to check
4325  */
4326 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4327 {
4328 	struct ring_buffer_per_cpu *cpu_buffer;
4329 	struct buffer_page *reader;
4330 	struct buffer_page *head_page;
4331 	struct buffer_page *commit_page;
4332 	struct buffer_page *curr_commit_page;
4333 	unsigned commit;
4334 	u64 curr_commit_ts;
4335 	u64 commit_ts;
4336 
4337 	cpu_buffer = iter->cpu_buffer;
4338 	reader = cpu_buffer->reader_page;
4339 	head_page = cpu_buffer->head_page;
4340 	commit_page = cpu_buffer->commit_page;
4341 	commit_ts = commit_page->page->time_stamp;
4342 
4343 	/*
4344 	 * When the writer goes across pages, it issues a cmpxchg which
4345 	 * is a mb(), which will synchronize with the rmb here.
4346 	 * (see rb_tail_page_update())
4347 	 */
4348 	smp_rmb();
4349 	commit = rb_page_commit(commit_page);
4350 	/* We want to make sure that the commit page doesn't change */
4351 	smp_rmb();
4352 
4353 	/* Make sure commit page didn't change */
4354 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4355 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4356 
4357 	/* If the commit page changed, then there's more data */
4358 	if (curr_commit_page != commit_page ||
4359 	    curr_commit_ts != commit_ts)
4360 		return 0;
4361 
4362 	/* Still racy, as it may return a false positive, but that's OK */
4363 	return ((iter->head_page == commit_page && iter->head >= commit) ||
4364 		(iter->head_page == reader && commit_page == head_page &&
4365 		 head_page->read == commit &&
4366 		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4367 }
4368 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4369 
4370 static void
4371 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4372 		     struct ring_buffer_event *event)
4373 {
4374 	u64 delta;
4375 
4376 	switch (event->type_len) {
4377 	case RINGBUF_TYPE_PADDING:
4378 		return;
4379 
4380 	case RINGBUF_TYPE_TIME_EXTEND:
4381 		delta = rb_event_time_stamp(event);
4382 		cpu_buffer->read_stamp += delta;
4383 		return;
4384 
4385 	case RINGBUF_TYPE_TIME_STAMP:
4386 		delta = rb_event_time_stamp(event);
4387 		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4388 		cpu_buffer->read_stamp = delta;
4389 		return;
4390 
4391 	case RINGBUF_TYPE_DATA:
4392 		cpu_buffer->read_stamp += event->time_delta;
4393 		return;
4394 
4395 	default:
4396 		RB_WARN_ON(cpu_buffer, 1);
4397 	}
4398 }
4399 
4400 static void
4401 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4402 			  struct ring_buffer_event *event)
4403 {
4404 	u64 delta;
4405 
4406 	switch (event->type_len) {
4407 	case RINGBUF_TYPE_PADDING:
4408 		return;
4409 
4410 	case RINGBUF_TYPE_TIME_EXTEND:
4411 		delta = rb_event_time_stamp(event);
4412 		iter->read_stamp += delta;
4413 		return;
4414 
4415 	case RINGBUF_TYPE_TIME_STAMP:
4416 		delta = rb_event_time_stamp(event);
4417 		delta = rb_fix_abs_ts(delta, iter->read_stamp);
4418 		iter->read_stamp = delta;
4419 		return;
4420 
4421 	case RINGBUF_TYPE_DATA:
4422 		iter->read_stamp += event->time_delta;
4423 		return;
4424 
4425 	default:
4426 		RB_WARN_ON(iter->cpu_buffer, 1);
4427 	}
4428 }
4429 
4430 static struct buffer_page *
4431 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4432 {
4433 	struct buffer_page *reader = NULL;
4434 	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
4435 	unsigned long overwrite;
4436 	unsigned long flags;
4437 	int nr_loops = 0;
4438 	bool ret;
4439 
4440 	local_irq_save(flags);
4441 	arch_spin_lock(&cpu_buffer->lock);
4442 
4443  again:
4444 	/*
4445 	 * This should normally only loop twice. But because the
4446 	 * start of the reader inserts an empty page, it causes
4447 	 * a case where we will loop three times. There should be no
4448 	 * reason to loop four times (that I know of).
4449 	 */
4450 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4451 		reader = NULL;
4452 		goto out;
4453 	}
4454 
4455 	reader = cpu_buffer->reader_page;
4456 
4457 	/* If there's more to read, return this page */
4458 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
4459 		goto out;
4460 
4461 	/* Never should we have an index greater than the size */
4462 	if (RB_WARN_ON(cpu_buffer,
4463 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
4464 		goto out;
4465 
4466 	/* check if we caught up to the tail */
4467 	reader = NULL;
4468 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4469 		goto out;
4470 
4471 	/* Don't bother swapping if the ring buffer is empty */
4472 	if (rb_num_of_entries(cpu_buffer) == 0)
4473 		goto out;
4474 
4475 	/*
4476 	 * Reset the reader page to size zero.
4477 	 */
4478 	local_set(&cpu_buffer->reader_page->write, 0);
4479 	local_set(&cpu_buffer->reader_page->entries, 0);
4480 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4481 	cpu_buffer->reader_page->real_end = 0;
4482 
4483  spin:
4484 	/*
4485 	 * Splice the empty reader page into the list around the head.
4486 	 */
4487 	reader = rb_set_head_page(cpu_buffer);
4488 	if (!reader)
4489 		goto out;
4490 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4491 	cpu_buffer->reader_page->list.prev = reader->list.prev;
4492 
4493 	/*
4494 	 * cpu_buffer->pages just needs to point to the buffer, it
4495 	 *  has no specific buffer page to point to. Lets move it out
4496 	 *  of our way so we don't accidentally swap it.
4497 	 */
4498 	cpu_buffer->pages = reader->list.prev;
4499 
4500 	/* The reader page will be pointing to the new head */
4501 	rb_set_list_to_head(&cpu_buffer->reader_page->list);
4502 
4503 	/*
4504 	 * We want to make sure we read the overruns after we set up our
4505 	 * pointers to the next object. The writer side does a
4506 	 * cmpxchg to cross pages which acts as the mb on the writer
4507 	 * side. Note, the reader will constantly fail the swap
4508 	 * while the writer is updating the pointers, so this
4509 	 * guarantees that the overwrite recorded here is the one we
4510 	 * want to compare with the last_overrun.
4511 	 */
4512 	smp_mb();
4513 	overwrite = local_read(&(cpu_buffer->overrun));
4514 
4515 	/*
4516 	 * Here's the tricky part.
4517 	 *
4518 	 * We need to move the pointer past the header page.
4519 	 * But we can only do that if a writer is not currently
4520 	 * moving it. The page before the header page has the
4521 	 * flag bit '1' set if it is pointing to the page we want.
4522 	 * but if the writer is in the process of moving it
4523 	 * than it will be '2' or already moved '0'.
4524 	 */
4525 
4526 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4527 
4528 	/*
4529 	 * If we did not convert it, then we must try again.
4530 	 */
4531 	if (!ret)
4532 		goto spin;
4533 
4534 	/*
4535 	 * Yay! We succeeded in replacing the page.
4536 	 *
4537 	 * Now make the new head point back to the reader page.
4538 	 */
4539 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4540 	rb_inc_page(&cpu_buffer->head_page);
4541 
4542 	local_inc(&cpu_buffer->pages_read);
4543 
4544 	/* Finally update the reader page to the new head */
4545 	cpu_buffer->reader_page = reader;
4546 	cpu_buffer->reader_page->read = 0;
4547 
4548 	if (overwrite != cpu_buffer->last_overrun) {
4549 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4550 		cpu_buffer->last_overrun = overwrite;
4551 	}
4552 
4553 	goto again;
4554 
4555  out:
4556 	/* Update the read_stamp on the first event */
4557 	if (reader && reader->read == 0)
4558 		cpu_buffer->read_stamp = reader->page->time_stamp;
4559 
4560 	arch_spin_unlock(&cpu_buffer->lock);
4561 	local_irq_restore(flags);
4562 
4563 	/*
4564 	 * The writer has preempt disable, wait for it. But not forever
4565 	 * Although, 1 second is pretty much "forever"
4566 	 */
4567 #define USECS_WAIT	1000000
4568         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4569 		/* If the write is past the end of page, a writer is still updating it */
4570 		if (likely(!reader || rb_page_write(reader) <= bsize))
4571 			break;
4572 
4573 		udelay(1);
4574 
4575 		/* Get the latest version of the reader write value */
4576 		smp_rmb();
4577 	}
4578 
4579 	/* The writer is not moving forward? Something is wrong */
4580 	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4581 		reader = NULL;
4582 
4583 	/*
4584 	 * Make sure we see any padding after the write update
4585 	 * (see rb_reset_tail()).
4586 	 *
4587 	 * In addition, a writer may be writing on the reader page
4588 	 * if the page has not been fully filled, so the read barrier
4589 	 * is also needed to make sure we see the content of what is
4590 	 * committed by the writer (see rb_set_commit_to_write()).
4591 	 */
4592 	smp_rmb();
4593 
4594 
4595 	return reader;
4596 }
4597 
4598 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4599 {
4600 	struct ring_buffer_event *event;
4601 	struct buffer_page *reader;
4602 	unsigned length;
4603 
4604 	reader = rb_get_reader_page(cpu_buffer);
4605 
4606 	/* This function should not be called when buffer is empty */
4607 	if (RB_WARN_ON(cpu_buffer, !reader))
4608 		return;
4609 
4610 	event = rb_reader_event(cpu_buffer);
4611 
4612 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4613 		cpu_buffer->read++;
4614 
4615 	rb_update_read_stamp(cpu_buffer, event);
4616 
4617 	length = rb_event_length(event);
4618 	cpu_buffer->reader_page->read += length;
4619 	cpu_buffer->read_bytes += length;
4620 }
4621 
4622 static void rb_advance_iter(struct ring_buffer_iter *iter)
4623 {
4624 	struct ring_buffer_per_cpu *cpu_buffer;
4625 
4626 	cpu_buffer = iter->cpu_buffer;
4627 
4628 	/* If head == next_event then we need to jump to the next event */
4629 	if (iter->head == iter->next_event) {
4630 		/* If the event gets overwritten again, there's nothing to do */
4631 		if (rb_iter_head_event(iter) == NULL)
4632 			return;
4633 	}
4634 
4635 	iter->head = iter->next_event;
4636 
4637 	/*
4638 	 * Check if we are at the end of the buffer.
4639 	 */
4640 	if (iter->next_event >= rb_page_size(iter->head_page)) {
4641 		/* discarded commits can make the page empty */
4642 		if (iter->head_page == cpu_buffer->commit_page)
4643 			return;
4644 		rb_inc_iter(iter);
4645 		return;
4646 	}
4647 
4648 	rb_update_iter_read_stamp(iter, iter->event);
4649 }
4650 
4651 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4652 {
4653 	return cpu_buffer->lost_events;
4654 }
4655 
4656 static struct ring_buffer_event *
4657 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4658 	       unsigned long *lost_events)
4659 {
4660 	struct ring_buffer_event *event;
4661 	struct buffer_page *reader;
4662 	int nr_loops = 0;
4663 
4664 	if (ts)
4665 		*ts = 0;
4666  again:
4667 	/*
4668 	 * We repeat when a time extend is encountered.
4669 	 * Since the time extend is always attached to a data event,
4670 	 * we should never loop more than once.
4671 	 * (We never hit the following condition more than twice).
4672 	 */
4673 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4674 		return NULL;
4675 
4676 	reader = rb_get_reader_page(cpu_buffer);
4677 	if (!reader)
4678 		return NULL;
4679 
4680 	event = rb_reader_event(cpu_buffer);
4681 
4682 	switch (event->type_len) {
4683 	case RINGBUF_TYPE_PADDING:
4684 		if (rb_null_event(event))
4685 			RB_WARN_ON(cpu_buffer, 1);
4686 		/*
4687 		 * Because the writer could be discarding every
4688 		 * event it creates (which would probably be bad)
4689 		 * if we were to go back to "again" then we may never
4690 		 * catch up, and will trigger the warn on, or lock
4691 		 * the box. Return the padding, and we will release
4692 		 * the current locks, and try again.
4693 		 */
4694 		return event;
4695 
4696 	case RINGBUF_TYPE_TIME_EXTEND:
4697 		/* Internal data, OK to advance */
4698 		rb_advance_reader(cpu_buffer);
4699 		goto again;
4700 
4701 	case RINGBUF_TYPE_TIME_STAMP:
4702 		if (ts) {
4703 			*ts = rb_event_time_stamp(event);
4704 			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4705 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4706 							 cpu_buffer->cpu, ts);
4707 		}
4708 		/* Internal data, OK to advance */
4709 		rb_advance_reader(cpu_buffer);
4710 		goto again;
4711 
4712 	case RINGBUF_TYPE_DATA:
4713 		if (ts && !(*ts)) {
4714 			*ts = cpu_buffer->read_stamp + event->time_delta;
4715 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4716 							 cpu_buffer->cpu, ts);
4717 		}
4718 		if (lost_events)
4719 			*lost_events = rb_lost_events(cpu_buffer);
4720 		return event;
4721 
4722 	default:
4723 		RB_WARN_ON(cpu_buffer, 1);
4724 	}
4725 
4726 	return NULL;
4727 }
4728 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4729 
4730 static struct ring_buffer_event *
4731 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4732 {
4733 	struct trace_buffer *buffer;
4734 	struct ring_buffer_per_cpu *cpu_buffer;
4735 	struct ring_buffer_event *event;
4736 	int nr_loops = 0;
4737 
4738 	if (ts)
4739 		*ts = 0;
4740 
4741 	cpu_buffer = iter->cpu_buffer;
4742 	buffer = cpu_buffer->buffer;
4743 
4744 	/*
4745 	 * Check if someone performed a consuming read to the buffer
4746 	 * or removed some pages from the buffer. In these cases,
4747 	 * iterator was invalidated and we need to reset it.
4748 	 */
4749 	if (unlikely(iter->cache_read != cpu_buffer->read ||
4750 		     iter->cache_reader_page != cpu_buffer->reader_page ||
4751 		     iter->cache_pages_removed != cpu_buffer->pages_removed))
4752 		rb_iter_reset(iter);
4753 
4754  again:
4755 	if (ring_buffer_iter_empty(iter))
4756 		return NULL;
4757 
4758 	/*
4759 	 * As the writer can mess with what the iterator is trying
4760 	 * to read, just give up if we fail to get an event after
4761 	 * three tries. The iterator is not as reliable when reading
4762 	 * the ring buffer with an active write as the consumer is.
4763 	 * Do not warn if the three failures is reached.
4764 	 */
4765 	if (++nr_loops > 3)
4766 		return NULL;
4767 
4768 	if (rb_per_cpu_empty(cpu_buffer))
4769 		return NULL;
4770 
4771 	if (iter->head >= rb_page_size(iter->head_page)) {
4772 		rb_inc_iter(iter);
4773 		goto again;
4774 	}
4775 
4776 	event = rb_iter_head_event(iter);
4777 	if (!event)
4778 		goto again;
4779 
4780 	switch (event->type_len) {
4781 	case RINGBUF_TYPE_PADDING:
4782 		if (rb_null_event(event)) {
4783 			rb_inc_iter(iter);
4784 			goto again;
4785 		}
4786 		rb_advance_iter(iter);
4787 		return event;
4788 
4789 	case RINGBUF_TYPE_TIME_EXTEND:
4790 		/* Internal data, OK to advance */
4791 		rb_advance_iter(iter);
4792 		goto again;
4793 
4794 	case RINGBUF_TYPE_TIME_STAMP:
4795 		if (ts) {
4796 			*ts = rb_event_time_stamp(event);
4797 			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4798 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4799 							 cpu_buffer->cpu, ts);
4800 		}
4801 		/* Internal data, OK to advance */
4802 		rb_advance_iter(iter);
4803 		goto again;
4804 
4805 	case RINGBUF_TYPE_DATA:
4806 		if (ts && !(*ts)) {
4807 			*ts = iter->read_stamp + event->time_delta;
4808 			ring_buffer_normalize_time_stamp(buffer,
4809 							 cpu_buffer->cpu, ts);
4810 		}
4811 		return event;
4812 
4813 	default:
4814 		RB_WARN_ON(cpu_buffer, 1);
4815 	}
4816 
4817 	return NULL;
4818 }
4819 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4820 
4821 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4822 {
4823 	if (likely(!in_nmi())) {
4824 		raw_spin_lock(&cpu_buffer->reader_lock);
4825 		return true;
4826 	}
4827 
4828 	/*
4829 	 * If an NMI die dumps out the content of the ring buffer
4830 	 * trylock must be used to prevent a deadlock if the NMI
4831 	 * preempted a task that holds the ring buffer locks. If
4832 	 * we get the lock then all is fine, if not, then continue
4833 	 * to do the read, but this can corrupt the ring buffer,
4834 	 * so it must be permanently disabled from future writes.
4835 	 * Reading from NMI is a oneshot deal.
4836 	 */
4837 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4838 		return true;
4839 
4840 	/* Continue without locking, but disable the ring buffer */
4841 	atomic_inc(&cpu_buffer->record_disabled);
4842 	return false;
4843 }
4844 
4845 static inline void
4846 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4847 {
4848 	if (likely(locked))
4849 		raw_spin_unlock(&cpu_buffer->reader_lock);
4850 }
4851 
4852 /**
4853  * ring_buffer_peek - peek at the next event to be read
4854  * @buffer: The ring buffer to read
4855  * @cpu: The cpu to peak at
4856  * @ts: The timestamp counter of this event.
4857  * @lost_events: a variable to store if events were lost (may be NULL)
4858  *
4859  * This will return the event that will be read next, but does
4860  * not consume the data.
4861  */
4862 struct ring_buffer_event *
4863 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4864 		 unsigned long *lost_events)
4865 {
4866 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4867 	struct ring_buffer_event *event;
4868 	unsigned long flags;
4869 	bool dolock;
4870 
4871 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4872 		return NULL;
4873 
4874  again:
4875 	local_irq_save(flags);
4876 	dolock = rb_reader_lock(cpu_buffer);
4877 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4878 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4879 		rb_advance_reader(cpu_buffer);
4880 	rb_reader_unlock(cpu_buffer, dolock);
4881 	local_irq_restore(flags);
4882 
4883 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4884 		goto again;
4885 
4886 	return event;
4887 }
4888 
4889 /** ring_buffer_iter_dropped - report if there are dropped events
4890  * @iter: The ring buffer iterator
4891  *
4892  * Returns true if there was dropped events since the last peek.
4893  */
4894 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4895 {
4896 	bool ret = iter->missed_events != 0;
4897 
4898 	iter->missed_events = 0;
4899 	return ret;
4900 }
4901 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4902 
4903 /**
4904  * ring_buffer_iter_peek - peek at the next event to be read
4905  * @iter: The ring buffer iterator
4906  * @ts: The timestamp counter of this event.
4907  *
4908  * This will return the event that will be read next, but does
4909  * not increment the iterator.
4910  */
4911 struct ring_buffer_event *
4912 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4913 {
4914 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4915 	struct ring_buffer_event *event;
4916 	unsigned long flags;
4917 
4918  again:
4919 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4920 	event = rb_iter_peek(iter, ts);
4921 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4922 
4923 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4924 		goto again;
4925 
4926 	return event;
4927 }
4928 
4929 /**
4930  * ring_buffer_consume - return an event and consume it
4931  * @buffer: The ring buffer to get the next event from
4932  * @cpu: the cpu to read the buffer from
4933  * @ts: a variable to store the timestamp (may be NULL)
4934  * @lost_events: a variable to store if events were lost (may be NULL)
4935  *
4936  * Returns the next event in the ring buffer, and that event is consumed.
4937  * Meaning, that sequential reads will keep returning a different event,
4938  * and eventually empty the ring buffer if the producer is slower.
4939  */
4940 struct ring_buffer_event *
4941 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4942 		    unsigned long *lost_events)
4943 {
4944 	struct ring_buffer_per_cpu *cpu_buffer;
4945 	struct ring_buffer_event *event = NULL;
4946 	unsigned long flags;
4947 	bool dolock;
4948 
4949  again:
4950 	/* might be called in atomic */
4951 	preempt_disable();
4952 
4953 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4954 		goto out;
4955 
4956 	cpu_buffer = buffer->buffers[cpu];
4957 	local_irq_save(flags);
4958 	dolock = rb_reader_lock(cpu_buffer);
4959 
4960 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4961 	if (event) {
4962 		cpu_buffer->lost_events = 0;
4963 		rb_advance_reader(cpu_buffer);
4964 	}
4965 
4966 	rb_reader_unlock(cpu_buffer, dolock);
4967 	local_irq_restore(flags);
4968 
4969  out:
4970 	preempt_enable();
4971 
4972 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4973 		goto again;
4974 
4975 	return event;
4976 }
4977 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4978 
4979 /**
4980  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4981  * @buffer: The ring buffer to read from
4982  * @cpu: The cpu buffer to iterate over
4983  * @flags: gfp flags to use for memory allocation
4984  *
4985  * This performs the initial preparations necessary to iterate
4986  * through the buffer.  Memory is allocated, buffer recording
4987  * is disabled, and the iterator pointer is returned to the caller.
4988  *
4989  * Disabling buffer recording prevents the reading from being
4990  * corrupted. This is not a consuming read, so a producer is not
4991  * expected.
4992  *
4993  * After a sequence of ring_buffer_read_prepare calls, the user is
4994  * expected to make at least one call to ring_buffer_read_prepare_sync.
4995  * Afterwards, ring_buffer_read_start is invoked to get things going
4996  * for real.
4997  *
4998  * This overall must be paired with ring_buffer_read_finish.
4999  */
5000 struct ring_buffer_iter *
5001 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5002 {
5003 	struct ring_buffer_per_cpu *cpu_buffer;
5004 	struct ring_buffer_iter *iter;
5005 
5006 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5007 		return NULL;
5008 
5009 	iter = kzalloc(sizeof(*iter), flags);
5010 	if (!iter)
5011 		return NULL;
5012 
5013 	/* Holds the entire event: data and meta data */
5014 	iter->event_size = buffer->subbuf_size;
5015 	iter->event = kmalloc(iter->event_size, flags);
5016 	if (!iter->event) {
5017 		kfree(iter);
5018 		return NULL;
5019 	}
5020 
5021 	cpu_buffer = buffer->buffers[cpu];
5022 
5023 	iter->cpu_buffer = cpu_buffer;
5024 
5025 	atomic_inc(&cpu_buffer->resize_disabled);
5026 
5027 	return iter;
5028 }
5029 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5030 
5031 /**
5032  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5033  *
5034  * All previously invoked ring_buffer_read_prepare calls to prepare
5035  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5036  * calls on those iterators are allowed.
5037  */
5038 void
5039 ring_buffer_read_prepare_sync(void)
5040 {
5041 	synchronize_rcu();
5042 }
5043 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5044 
5045 /**
5046  * ring_buffer_read_start - start a non consuming read of the buffer
5047  * @iter: The iterator returned by ring_buffer_read_prepare
5048  *
5049  * This finalizes the startup of an iteration through the buffer.
5050  * The iterator comes from a call to ring_buffer_read_prepare and
5051  * an intervening ring_buffer_read_prepare_sync must have been
5052  * performed.
5053  *
5054  * Must be paired with ring_buffer_read_finish.
5055  */
5056 void
5057 ring_buffer_read_start(struct ring_buffer_iter *iter)
5058 {
5059 	struct ring_buffer_per_cpu *cpu_buffer;
5060 	unsigned long flags;
5061 
5062 	if (!iter)
5063 		return;
5064 
5065 	cpu_buffer = iter->cpu_buffer;
5066 
5067 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5068 	arch_spin_lock(&cpu_buffer->lock);
5069 	rb_iter_reset(iter);
5070 	arch_spin_unlock(&cpu_buffer->lock);
5071 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5072 }
5073 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5074 
5075 /**
5076  * ring_buffer_read_finish - finish reading the iterator of the buffer
5077  * @iter: The iterator retrieved by ring_buffer_start
5078  *
5079  * This re-enables the recording to the buffer, and frees the
5080  * iterator.
5081  */
5082 void
5083 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5084 {
5085 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5086 	unsigned long flags;
5087 
5088 	/*
5089 	 * Ring buffer is disabled from recording, here's a good place
5090 	 * to check the integrity of the ring buffer.
5091 	 * Must prevent readers from trying to read, as the check
5092 	 * clears the HEAD page and readers require it.
5093 	 */
5094 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5095 	rb_check_pages(cpu_buffer);
5096 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5097 
5098 	atomic_dec(&cpu_buffer->resize_disabled);
5099 	kfree(iter->event);
5100 	kfree(iter);
5101 }
5102 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5103 
5104 /**
5105  * ring_buffer_iter_advance - advance the iterator to the next location
5106  * @iter: The ring buffer iterator
5107  *
5108  * Move the location of the iterator such that the next read will
5109  * be the next location of the iterator.
5110  */
5111 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5112 {
5113 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5114 	unsigned long flags;
5115 
5116 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5117 
5118 	rb_advance_iter(iter);
5119 
5120 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5121 }
5122 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5123 
5124 /**
5125  * ring_buffer_size - return the size of the ring buffer (in bytes)
5126  * @buffer: The ring buffer.
5127  * @cpu: The CPU to get ring buffer size from.
5128  */
5129 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5130 {
5131 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5132 		return 0;
5133 
5134 	return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
5135 }
5136 EXPORT_SYMBOL_GPL(ring_buffer_size);
5137 
5138 /**
5139  * ring_buffer_max_event_size - return the max data size of an event
5140  * @buffer: The ring buffer.
5141  *
5142  * Returns the maximum size an event can be.
5143  */
5144 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
5145 {
5146 	/* If abs timestamp is requested, events have a timestamp too */
5147 	if (ring_buffer_time_stamp_abs(buffer))
5148 		return buffer->max_data_size - RB_LEN_TIME_EXTEND;
5149 	return buffer->max_data_size;
5150 }
5151 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
5152 
5153 static void rb_clear_buffer_page(struct buffer_page *page)
5154 {
5155 	local_set(&page->write, 0);
5156 	local_set(&page->entries, 0);
5157 	rb_init_page(page->page);
5158 	page->read = 0;
5159 }
5160 
5161 static void
5162 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5163 {
5164 	struct buffer_page *page;
5165 
5166 	rb_head_page_deactivate(cpu_buffer);
5167 
5168 	cpu_buffer->head_page
5169 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
5170 	rb_clear_buffer_page(cpu_buffer->head_page);
5171 	list_for_each_entry(page, cpu_buffer->pages, list) {
5172 		rb_clear_buffer_page(page);
5173 	}
5174 
5175 	cpu_buffer->tail_page = cpu_buffer->head_page;
5176 	cpu_buffer->commit_page = cpu_buffer->head_page;
5177 
5178 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5179 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
5180 	rb_clear_buffer_page(cpu_buffer->reader_page);
5181 
5182 	local_set(&cpu_buffer->entries_bytes, 0);
5183 	local_set(&cpu_buffer->overrun, 0);
5184 	local_set(&cpu_buffer->commit_overrun, 0);
5185 	local_set(&cpu_buffer->dropped_events, 0);
5186 	local_set(&cpu_buffer->entries, 0);
5187 	local_set(&cpu_buffer->committing, 0);
5188 	local_set(&cpu_buffer->commits, 0);
5189 	local_set(&cpu_buffer->pages_touched, 0);
5190 	local_set(&cpu_buffer->pages_lost, 0);
5191 	local_set(&cpu_buffer->pages_read, 0);
5192 	cpu_buffer->last_pages_touch = 0;
5193 	cpu_buffer->shortest_full = 0;
5194 	cpu_buffer->read = 0;
5195 	cpu_buffer->read_bytes = 0;
5196 
5197 	rb_time_set(&cpu_buffer->write_stamp, 0);
5198 	rb_time_set(&cpu_buffer->before_stamp, 0);
5199 
5200 	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5201 
5202 	cpu_buffer->lost_events = 0;
5203 	cpu_buffer->last_overrun = 0;
5204 
5205 	rb_head_page_activate(cpu_buffer);
5206 	cpu_buffer->pages_removed = 0;
5207 }
5208 
5209 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5210 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5211 {
5212 	unsigned long flags;
5213 
5214 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5215 
5216 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5217 		goto out;
5218 
5219 	arch_spin_lock(&cpu_buffer->lock);
5220 
5221 	rb_reset_cpu(cpu_buffer);
5222 
5223 	arch_spin_unlock(&cpu_buffer->lock);
5224 
5225  out:
5226 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5227 }
5228 
5229 /**
5230  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5231  * @buffer: The ring buffer to reset a per cpu buffer of
5232  * @cpu: The CPU buffer to be reset
5233  */
5234 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5235 {
5236 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5237 
5238 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5239 		return;
5240 
5241 	/* prevent another thread from changing buffer sizes */
5242 	mutex_lock(&buffer->mutex);
5243 
5244 	atomic_inc(&cpu_buffer->resize_disabled);
5245 	atomic_inc(&cpu_buffer->record_disabled);
5246 
5247 	/* Make sure all commits have finished */
5248 	synchronize_rcu();
5249 
5250 	reset_disabled_cpu_buffer(cpu_buffer);
5251 
5252 	atomic_dec(&cpu_buffer->record_disabled);
5253 	atomic_dec(&cpu_buffer->resize_disabled);
5254 
5255 	mutex_unlock(&buffer->mutex);
5256 }
5257 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5258 
5259 /* Flag to ensure proper resetting of atomic variables */
5260 #define RESET_BIT	(1 << 30)
5261 
5262 /**
5263  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5264  * @buffer: The ring buffer to reset a per cpu buffer of
5265  */
5266 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5267 {
5268 	struct ring_buffer_per_cpu *cpu_buffer;
5269 	int cpu;
5270 
5271 	/* prevent another thread from changing buffer sizes */
5272 	mutex_lock(&buffer->mutex);
5273 
5274 	for_each_online_buffer_cpu(buffer, cpu) {
5275 		cpu_buffer = buffer->buffers[cpu];
5276 
5277 		atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
5278 		atomic_inc(&cpu_buffer->record_disabled);
5279 	}
5280 
5281 	/* Make sure all commits have finished */
5282 	synchronize_rcu();
5283 
5284 	for_each_buffer_cpu(buffer, cpu) {
5285 		cpu_buffer = buffer->buffers[cpu];
5286 
5287 		/*
5288 		 * If a CPU came online during the synchronize_rcu(), then
5289 		 * ignore it.
5290 		 */
5291 		if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
5292 			continue;
5293 
5294 		reset_disabled_cpu_buffer(cpu_buffer);
5295 
5296 		atomic_dec(&cpu_buffer->record_disabled);
5297 		atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
5298 	}
5299 
5300 	mutex_unlock(&buffer->mutex);
5301 }
5302 
5303 /**
5304  * ring_buffer_reset - reset a ring buffer
5305  * @buffer: The ring buffer to reset all cpu buffers
5306  */
5307 void ring_buffer_reset(struct trace_buffer *buffer)
5308 {
5309 	struct ring_buffer_per_cpu *cpu_buffer;
5310 	int cpu;
5311 
5312 	/* prevent another thread from changing buffer sizes */
5313 	mutex_lock(&buffer->mutex);
5314 
5315 	for_each_buffer_cpu(buffer, cpu) {
5316 		cpu_buffer = buffer->buffers[cpu];
5317 
5318 		atomic_inc(&cpu_buffer->resize_disabled);
5319 		atomic_inc(&cpu_buffer->record_disabled);
5320 	}
5321 
5322 	/* Make sure all commits have finished */
5323 	synchronize_rcu();
5324 
5325 	for_each_buffer_cpu(buffer, cpu) {
5326 		cpu_buffer = buffer->buffers[cpu];
5327 
5328 		reset_disabled_cpu_buffer(cpu_buffer);
5329 
5330 		atomic_dec(&cpu_buffer->record_disabled);
5331 		atomic_dec(&cpu_buffer->resize_disabled);
5332 	}
5333 
5334 	mutex_unlock(&buffer->mutex);
5335 }
5336 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5337 
5338 /**
5339  * ring_buffer_empty - is the ring buffer empty?
5340  * @buffer: The ring buffer to test
5341  */
5342 bool ring_buffer_empty(struct trace_buffer *buffer)
5343 {
5344 	struct ring_buffer_per_cpu *cpu_buffer;
5345 	unsigned long flags;
5346 	bool dolock;
5347 	bool ret;
5348 	int cpu;
5349 
5350 	/* yes this is racy, but if you don't like the race, lock the buffer */
5351 	for_each_buffer_cpu(buffer, cpu) {
5352 		cpu_buffer = buffer->buffers[cpu];
5353 		local_irq_save(flags);
5354 		dolock = rb_reader_lock(cpu_buffer);
5355 		ret = rb_per_cpu_empty(cpu_buffer);
5356 		rb_reader_unlock(cpu_buffer, dolock);
5357 		local_irq_restore(flags);
5358 
5359 		if (!ret)
5360 			return false;
5361 	}
5362 
5363 	return true;
5364 }
5365 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5366 
5367 /**
5368  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5369  * @buffer: The ring buffer
5370  * @cpu: The CPU buffer to test
5371  */
5372 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5373 {
5374 	struct ring_buffer_per_cpu *cpu_buffer;
5375 	unsigned long flags;
5376 	bool dolock;
5377 	bool ret;
5378 
5379 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5380 		return true;
5381 
5382 	cpu_buffer = buffer->buffers[cpu];
5383 	local_irq_save(flags);
5384 	dolock = rb_reader_lock(cpu_buffer);
5385 	ret = rb_per_cpu_empty(cpu_buffer);
5386 	rb_reader_unlock(cpu_buffer, dolock);
5387 	local_irq_restore(flags);
5388 
5389 	return ret;
5390 }
5391 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5392 
5393 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5394 /**
5395  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5396  * @buffer_a: One buffer to swap with
5397  * @buffer_b: The other buffer to swap with
5398  * @cpu: the CPU of the buffers to swap
5399  *
5400  * This function is useful for tracers that want to take a "snapshot"
5401  * of a CPU buffer and has another back up buffer lying around.
5402  * it is expected that the tracer handles the cpu buffer not being
5403  * used at the moment.
5404  */
5405 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5406 			 struct trace_buffer *buffer_b, int cpu)
5407 {
5408 	struct ring_buffer_per_cpu *cpu_buffer_a;
5409 	struct ring_buffer_per_cpu *cpu_buffer_b;
5410 	int ret = -EINVAL;
5411 
5412 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5413 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
5414 		goto out;
5415 
5416 	cpu_buffer_a = buffer_a->buffers[cpu];
5417 	cpu_buffer_b = buffer_b->buffers[cpu];
5418 
5419 	/* At least make sure the two buffers are somewhat the same */
5420 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5421 		goto out;
5422 
5423 	if (buffer_a->subbuf_order != buffer_b->subbuf_order)
5424 		goto out;
5425 
5426 	ret = -EAGAIN;
5427 
5428 	if (atomic_read(&buffer_a->record_disabled))
5429 		goto out;
5430 
5431 	if (atomic_read(&buffer_b->record_disabled))
5432 		goto out;
5433 
5434 	if (atomic_read(&cpu_buffer_a->record_disabled))
5435 		goto out;
5436 
5437 	if (atomic_read(&cpu_buffer_b->record_disabled))
5438 		goto out;
5439 
5440 	/*
5441 	 * We can't do a synchronize_rcu here because this
5442 	 * function can be called in atomic context.
5443 	 * Normally this will be called from the same CPU as cpu.
5444 	 * If not it's up to the caller to protect this.
5445 	 */
5446 	atomic_inc(&cpu_buffer_a->record_disabled);
5447 	atomic_inc(&cpu_buffer_b->record_disabled);
5448 
5449 	ret = -EBUSY;
5450 	if (local_read(&cpu_buffer_a->committing))
5451 		goto out_dec;
5452 	if (local_read(&cpu_buffer_b->committing))
5453 		goto out_dec;
5454 
5455 	/*
5456 	 * When resize is in progress, we cannot swap it because
5457 	 * it will mess the state of the cpu buffer.
5458 	 */
5459 	if (atomic_read(&buffer_a->resizing))
5460 		goto out_dec;
5461 	if (atomic_read(&buffer_b->resizing))
5462 		goto out_dec;
5463 
5464 	buffer_a->buffers[cpu] = cpu_buffer_b;
5465 	buffer_b->buffers[cpu] = cpu_buffer_a;
5466 
5467 	cpu_buffer_b->buffer = buffer_a;
5468 	cpu_buffer_a->buffer = buffer_b;
5469 
5470 	ret = 0;
5471 
5472 out_dec:
5473 	atomic_dec(&cpu_buffer_a->record_disabled);
5474 	atomic_dec(&cpu_buffer_b->record_disabled);
5475 out:
5476 	return ret;
5477 }
5478 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5479 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5480 
5481 /**
5482  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5483  * @buffer: the buffer to allocate for.
5484  * @cpu: the cpu buffer to allocate.
5485  *
5486  * This function is used in conjunction with ring_buffer_read_page.
5487  * When reading a full page from the ring buffer, these functions
5488  * can be used to speed up the process. The calling function should
5489  * allocate a few pages first with this function. Then when it
5490  * needs to get pages from the ring buffer, it passes the result
5491  * of this function into ring_buffer_read_page, which will swap
5492  * the page that was allocated, with the read page of the buffer.
5493  *
5494  * Returns:
5495  *  The page allocated, or ERR_PTR
5496  */
5497 struct buffer_data_read_page *
5498 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5499 {
5500 	struct ring_buffer_per_cpu *cpu_buffer;
5501 	struct buffer_data_read_page *bpage = NULL;
5502 	unsigned long flags;
5503 	struct page *page;
5504 
5505 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5506 		return ERR_PTR(-ENODEV);
5507 
5508 	bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
5509 	if (!bpage)
5510 		return ERR_PTR(-ENOMEM);
5511 
5512 	bpage->order = buffer->subbuf_order;
5513 	cpu_buffer = buffer->buffers[cpu];
5514 	local_irq_save(flags);
5515 	arch_spin_lock(&cpu_buffer->lock);
5516 
5517 	if (cpu_buffer->free_page) {
5518 		bpage->data = cpu_buffer->free_page;
5519 		cpu_buffer->free_page = NULL;
5520 	}
5521 
5522 	arch_spin_unlock(&cpu_buffer->lock);
5523 	local_irq_restore(flags);
5524 
5525 	if (bpage->data)
5526 		goto out;
5527 
5528 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL | __GFP_NORETRY,
5529 				cpu_buffer->buffer->subbuf_order);
5530 	if (!page) {
5531 		kfree(bpage);
5532 		return ERR_PTR(-ENOMEM);
5533 	}
5534 
5535 	bpage->data = page_address(page);
5536 
5537  out:
5538 	rb_init_page(bpage->data);
5539 
5540 	return bpage;
5541 }
5542 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5543 
5544 /**
5545  * ring_buffer_free_read_page - free an allocated read page
5546  * @buffer: the buffer the page was allocate for
5547  * @cpu: the cpu buffer the page came from
5548  * @data_page: the page to free
5549  *
5550  * Free a page allocated from ring_buffer_alloc_read_page.
5551  */
5552 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
5553 				struct buffer_data_read_page *data_page)
5554 {
5555 	struct ring_buffer_per_cpu *cpu_buffer;
5556 	struct buffer_data_page *bpage = data_page->data;
5557 	struct page *page = virt_to_page(bpage);
5558 	unsigned long flags;
5559 
5560 	if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
5561 		return;
5562 
5563 	cpu_buffer = buffer->buffers[cpu];
5564 
5565 	/*
5566 	 * If the page is still in use someplace else, or order of the page
5567 	 * is different from the subbuffer order of the buffer -
5568 	 * we can't reuse it
5569 	 */
5570 	if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
5571 		goto out;
5572 
5573 	local_irq_save(flags);
5574 	arch_spin_lock(&cpu_buffer->lock);
5575 
5576 	if (!cpu_buffer->free_page) {
5577 		cpu_buffer->free_page = bpage;
5578 		bpage = NULL;
5579 	}
5580 
5581 	arch_spin_unlock(&cpu_buffer->lock);
5582 	local_irq_restore(flags);
5583 
5584  out:
5585 	free_pages((unsigned long)bpage, data_page->order);
5586 	kfree(data_page);
5587 }
5588 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5589 
5590 /**
5591  * ring_buffer_read_page - extract a page from the ring buffer
5592  * @buffer: buffer to extract from
5593  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5594  * @len: amount to extract
5595  * @cpu: the cpu of the buffer to extract
5596  * @full: should the extraction only happen when the page is full.
5597  *
5598  * This function will pull out a page from the ring buffer and consume it.
5599  * @data_page must be the address of the variable that was returned
5600  * from ring_buffer_alloc_read_page. This is because the page might be used
5601  * to swap with a page in the ring buffer.
5602  *
5603  * for example:
5604  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
5605  *	if (IS_ERR(rpage))
5606  *		return PTR_ERR(rpage);
5607  *	ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
5608  *	if (ret >= 0)
5609  *		process_page(ring_buffer_read_page_data(rpage), ret);
5610  *	ring_buffer_free_read_page(buffer, cpu, rpage);
5611  *
5612  * When @full is set, the function will not return true unless
5613  * the writer is off the reader page.
5614  *
5615  * Note: it is up to the calling functions to handle sleeps and wakeups.
5616  *  The ring buffer can be used anywhere in the kernel and can not
5617  *  blindly call wake_up. The layer that uses the ring buffer must be
5618  *  responsible for that.
5619  *
5620  * Returns:
5621  *  >=0 if data has been transferred, returns the offset of consumed data.
5622  *  <0 if no data has been transferred.
5623  */
5624 int ring_buffer_read_page(struct trace_buffer *buffer,
5625 			  struct buffer_data_read_page *data_page,
5626 			  size_t len, int cpu, int full)
5627 {
5628 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5629 	struct ring_buffer_event *event;
5630 	struct buffer_data_page *bpage;
5631 	struct buffer_page *reader;
5632 	unsigned long missed_events;
5633 	unsigned long flags;
5634 	unsigned int commit;
5635 	unsigned int read;
5636 	u64 save_timestamp;
5637 	int ret = -1;
5638 
5639 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5640 		goto out;
5641 
5642 	/*
5643 	 * If len is not big enough to hold the page header, then
5644 	 * we can not copy anything.
5645 	 */
5646 	if (len <= BUF_PAGE_HDR_SIZE)
5647 		goto out;
5648 
5649 	len -= BUF_PAGE_HDR_SIZE;
5650 
5651 	if (!data_page || !data_page->data)
5652 		goto out;
5653 	if (data_page->order != buffer->subbuf_order)
5654 		goto out;
5655 
5656 	bpage = data_page->data;
5657 	if (!bpage)
5658 		goto out;
5659 
5660 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5661 
5662 	reader = rb_get_reader_page(cpu_buffer);
5663 	if (!reader)
5664 		goto out_unlock;
5665 
5666 	event = rb_reader_event(cpu_buffer);
5667 
5668 	read = reader->read;
5669 	commit = rb_page_commit(reader);
5670 
5671 	/* Check if any events were dropped */
5672 	missed_events = cpu_buffer->lost_events;
5673 
5674 	/*
5675 	 * If this page has been partially read or
5676 	 * if len is not big enough to read the rest of the page or
5677 	 * a writer is still on the page, then
5678 	 * we must copy the data from the page to the buffer.
5679 	 * Otherwise, we can simply swap the page with the one passed in.
5680 	 */
5681 	if (read || (len < (commit - read)) ||
5682 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
5683 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5684 		unsigned int rpos = read;
5685 		unsigned int pos = 0;
5686 		unsigned int size;
5687 
5688 		/*
5689 		 * If a full page is expected, this can still be returned
5690 		 * if there's been a previous partial read and the
5691 		 * rest of the page can be read and the commit page is off
5692 		 * the reader page.
5693 		 */
5694 		if (full &&
5695 		    (!read || (len < (commit - read)) ||
5696 		     cpu_buffer->reader_page == cpu_buffer->commit_page))
5697 			goto out_unlock;
5698 
5699 		if (len > (commit - read))
5700 			len = (commit - read);
5701 
5702 		/* Always keep the time extend and data together */
5703 		size = rb_event_ts_length(event);
5704 
5705 		if (len < size)
5706 			goto out_unlock;
5707 
5708 		/* save the current timestamp, since the user will need it */
5709 		save_timestamp = cpu_buffer->read_stamp;
5710 
5711 		/* Need to copy one event at a time */
5712 		do {
5713 			/* We need the size of one event, because
5714 			 * rb_advance_reader only advances by one event,
5715 			 * whereas rb_event_ts_length may include the size of
5716 			 * one or two events.
5717 			 * We have already ensured there's enough space if this
5718 			 * is a time extend. */
5719 			size = rb_event_length(event);
5720 			memcpy(bpage->data + pos, rpage->data + rpos, size);
5721 
5722 			len -= size;
5723 
5724 			rb_advance_reader(cpu_buffer);
5725 			rpos = reader->read;
5726 			pos += size;
5727 
5728 			if (rpos >= commit)
5729 				break;
5730 
5731 			event = rb_reader_event(cpu_buffer);
5732 			/* Always keep the time extend and data together */
5733 			size = rb_event_ts_length(event);
5734 		} while (len >= size);
5735 
5736 		/* update bpage */
5737 		local_set(&bpage->commit, pos);
5738 		bpage->time_stamp = save_timestamp;
5739 
5740 		/* we copied everything to the beginning */
5741 		read = 0;
5742 	} else {
5743 		/* update the entry counter */
5744 		cpu_buffer->read += rb_page_entries(reader);
5745 		cpu_buffer->read_bytes += rb_page_commit(reader);
5746 
5747 		/* swap the pages */
5748 		rb_init_page(bpage);
5749 		bpage = reader->page;
5750 		reader->page = data_page->data;
5751 		local_set(&reader->write, 0);
5752 		local_set(&reader->entries, 0);
5753 		reader->read = 0;
5754 		data_page->data = bpage;
5755 
5756 		/*
5757 		 * Use the real_end for the data size,
5758 		 * This gives us a chance to store the lost events
5759 		 * on the page.
5760 		 */
5761 		if (reader->real_end)
5762 			local_set(&bpage->commit, reader->real_end);
5763 	}
5764 	ret = read;
5765 
5766 	cpu_buffer->lost_events = 0;
5767 
5768 	commit = local_read(&bpage->commit);
5769 	/*
5770 	 * Set a flag in the commit field if we lost events
5771 	 */
5772 	if (missed_events) {
5773 		/* If there is room at the end of the page to save the
5774 		 * missed events, then record it there.
5775 		 */
5776 		if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
5777 			memcpy(&bpage->data[commit], &missed_events,
5778 			       sizeof(missed_events));
5779 			local_add(RB_MISSED_STORED, &bpage->commit);
5780 			commit += sizeof(missed_events);
5781 		}
5782 		local_add(RB_MISSED_EVENTS, &bpage->commit);
5783 	}
5784 
5785 	/*
5786 	 * This page may be off to user land. Zero it out here.
5787 	 */
5788 	if (commit < buffer->subbuf_size)
5789 		memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
5790 
5791  out_unlock:
5792 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5793 
5794  out:
5795 	return ret;
5796 }
5797 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5798 
5799 /**
5800  * ring_buffer_read_page_data - get pointer to the data in the page.
5801  * @page:  the page to get the data from
5802  *
5803  * Returns pointer to the actual data in this page.
5804  */
5805 void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
5806 {
5807 	return page->data;
5808 }
5809 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
5810 
5811 /**
5812  * ring_buffer_subbuf_size_get - get size of the sub buffer.
5813  * @buffer: the buffer to get the sub buffer size from
5814  *
5815  * Returns size of the sub buffer, in bytes.
5816  */
5817 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
5818 {
5819 	return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
5820 }
5821 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
5822 
5823 /**
5824  * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
5825  * @buffer: The ring_buffer to get the system sub page order from
5826  *
5827  * By default, one ring buffer sub page equals to one system page. This parameter
5828  * is configurable, per ring buffer. The size of the ring buffer sub page can be
5829  * extended, but must be an order of system page size.
5830  *
5831  * Returns the order of buffer sub page size, in system pages:
5832  * 0 means the sub buffer size is 1 system page and so forth.
5833  * In case of an error < 0 is returned.
5834  */
5835 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
5836 {
5837 	if (!buffer)
5838 		return -EINVAL;
5839 
5840 	return buffer->subbuf_order;
5841 }
5842 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
5843 
5844 /**
5845  * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
5846  * @buffer: The ring_buffer to set the new page size.
5847  * @order: Order of the system pages in one sub buffer page
5848  *
5849  * By default, one ring buffer pages equals to one system page. This API can be
5850  * used to set new size of the ring buffer page. The size must be order of
5851  * system page size, that's why the input parameter @order is the order of
5852  * system pages that are allocated for one ring buffer page:
5853  *  0 - 1 system page
5854  *  1 - 2 system pages
5855  *  3 - 4 system pages
5856  *  ...
5857  *
5858  * Returns 0 on success or < 0 in case of an error.
5859  */
5860 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
5861 {
5862 	struct ring_buffer_per_cpu *cpu_buffer;
5863 	struct buffer_page *bpage, *tmp;
5864 	int old_order, old_size;
5865 	int nr_pages;
5866 	int psize;
5867 	int err;
5868 	int cpu;
5869 
5870 	if (!buffer || order < 0)
5871 		return -EINVAL;
5872 
5873 	if (buffer->subbuf_order == order)
5874 		return 0;
5875 
5876 	psize = (1 << order) * PAGE_SIZE;
5877 	if (psize <= BUF_PAGE_HDR_SIZE)
5878 		return -EINVAL;
5879 
5880 	old_order = buffer->subbuf_order;
5881 	old_size = buffer->subbuf_size;
5882 
5883 	/* prevent another thread from changing buffer sizes */
5884 	mutex_lock(&buffer->mutex);
5885 	atomic_inc(&buffer->record_disabled);
5886 
5887 	/* Make sure all commits have finished */
5888 	synchronize_rcu();
5889 
5890 	buffer->subbuf_order = order;
5891 	buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
5892 
5893 	/* Make sure all new buffers are allocated, before deleting the old ones */
5894 	for_each_buffer_cpu(buffer, cpu) {
5895 
5896 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
5897 			continue;
5898 
5899 		cpu_buffer = buffer->buffers[cpu];
5900 
5901 		/* Update the number of pages to match the new size */
5902 		nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
5903 		nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
5904 
5905 		/* we need a minimum of two pages */
5906 		if (nr_pages < 2)
5907 			nr_pages = 2;
5908 
5909 		cpu_buffer->nr_pages_to_update = nr_pages;
5910 
5911 		/* Include the reader page */
5912 		nr_pages++;
5913 
5914 		/* Allocate the new size buffer */
5915 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
5916 		if (__rb_allocate_pages(cpu_buffer, nr_pages,
5917 					&cpu_buffer->new_pages)) {
5918 			/* not enough memory for new pages */
5919 			err = -ENOMEM;
5920 			goto error;
5921 		}
5922 	}
5923 
5924 	for_each_buffer_cpu(buffer, cpu) {
5925 
5926 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
5927 			continue;
5928 
5929 		cpu_buffer = buffer->buffers[cpu];
5930 
5931 		/* Clear the head bit to make the link list normal to read */
5932 		rb_head_page_deactivate(cpu_buffer);
5933 
5934 		/* Now walk the list and free all the old sub buffers */
5935 		list_for_each_entry_safe(bpage, tmp, cpu_buffer->pages, list) {
5936 			list_del_init(&bpage->list);
5937 			free_buffer_page(bpage);
5938 		}
5939 		/* The above loop stopped an the last page needing to be freed */
5940 		bpage = list_entry(cpu_buffer->pages, struct buffer_page, list);
5941 		free_buffer_page(bpage);
5942 
5943 		/* Free the current reader page */
5944 		free_buffer_page(cpu_buffer->reader_page);
5945 
5946 		/* One page was allocated for the reader page */
5947 		cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
5948 						     struct buffer_page, list);
5949 		list_del_init(&cpu_buffer->reader_page->list);
5950 
5951 		/* The cpu_buffer pages are a link list with no head */
5952 		cpu_buffer->pages = cpu_buffer->new_pages.next;
5953 		cpu_buffer->new_pages.next->prev = cpu_buffer->new_pages.prev;
5954 		cpu_buffer->new_pages.prev->next = cpu_buffer->new_pages.next;
5955 
5956 		/* Clear the new_pages list */
5957 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
5958 
5959 		cpu_buffer->head_page
5960 			= list_entry(cpu_buffer->pages, struct buffer_page, list);
5961 		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
5962 
5963 		cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
5964 		cpu_buffer->nr_pages_to_update = 0;
5965 
5966 		free_pages((unsigned long)cpu_buffer->free_page, old_order);
5967 		cpu_buffer->free_page = NULL;
5968 
5969 		rb_head_page_activate(cpu_buffer);
5970 
5971 		rb_check_pages(cpu_buffer);
5972 	}
5973 
5974 	atomic_dec(&buffer->record_disabled);
5975 	mutex_unlock(&buffer->mutex);
5976 
5977 	return 0;
5978 
5979 error:
5980 	buffer->subbuf_order = old_order;
5981 	buffer->subbuf_size = old_size;
5982 
5983 	atomic_dec(&buffer->record_disabled);
5984 	mutex_unlock(&buffer->mutex);
5985 
5986 	for_each_buffer_cpu(buffer, cpu) {
5987 		cpu_buffer = buffer->buffers[cpu];
5988 
5989 		if (!cpu_buffer->nr_pages_to_update)
5990 			continue;
5991 
5992 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
5993 			list_del_init(&bpage->list);
5994 			free_buffer_page(bpage);
5995 		}
5996 	}
5997 
5998 	return err;
5999 }
6000 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
6001 
6002 /*
6003  * We only allocate new buffers, never free them if the CPU goes down.
6004  * If we were to free the buffer, then the user would lose any trace that was in
6005  * the buffer.
6006  */
6007 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
6008 {
6009 	struct trace_buffer *buffer;
6010 	long nr_pages_same;
6011 	int cpu_i;
6012 	unsigned long nr_pages;
6013 
6014 	buffer = container_of(node, struct trace_buffer, node);
6015 	if (cpumask_test_cpu(cpu, buffer->cpumask))
6016 		return 0;
6017 
6018 	nr_pages = 0;
6019 	nr_pages_same = 1;
6020 	/* check if all cpu sizes are same */
6021 	for_each_buffer_cpu(buffer, cpu_i) {
6022 		/* fill in the size from first enabled cpu */
6023 		if (nr_pages == 0)
6024 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
6025 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
6026 			nr_pages_same = 0;
6027 			break;
6028 		}
6029 	}
6030 	/* allocate minimum pages, user can later expand it */
6031 	if (!nr_pages_same)
6032 		nr_pages = 2;
6033 	buffer->buffers[cpu] =
6034 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
6035 	if (!buffer->buffers[cpu]) {
6036 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
6037 		     cpu);
6038 		return -ENOMEM;
6039 	}
6040 	smp_wmb();
6041 	cpumask_set_cpu(cpu, buffer->cpumask);
6042 	return 0;
6043 }
6044 
6045 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
6046 /*
6047  * This is a basic integrity check of the ring buffer.
6048  * Late in the boot cycle this test will run when configured in.
6049  * It will kick off a thread per CPU that will go into a loop
6050  * writing to the per cpu ring buffer various sizes of data.
6051  * Some of the data will be large items, some small.
6052  *
6053  * Another thread is created that goes into a spin, sending out
6054  * IPIs to the other CPUs to also write into the ring buffer.
6055  * this is to test the nesting ability of the buffer.
6056  *
6057  * Basic stats are recorded and reported. If something in the
6058  * ring buffer should happen that's not expected, a big warning
6059  * is displayed and all ring buffers are disabled.
6060  */
6061 static struct task_struct *rb_threads[NR_CPUS] __initdata;
6062 
6063 struct rb_test_data {
6064 	struct trace_buffer *buffer;
6065 	unsigned long		events;
6066 	unsigned long		bytes_written;
6067 	unsigned long		bytes_alloc;
6068 	unsigned long		bytes_dropped;
6069 	unsigned long		events_nested;
6070 	unsigned long		bytes_written_nested;
6071 	unsigned long		bytes_alloc_nested;
6072 	unsigned long		bytes_dropped_nested;
6073 	int			min_size_nested;
6074 	int			max_size_nested;
6075 	int			max_size;
6076 	int			min_size;
6077 	int			cpu;
6078 	int			cnt;
6079 };
6080 
6081 static struct rb_test_data rb_data[NR_CPUS] __initdata;
6082 
6083 /* 1 meg per cpu */
6084 #define RB_TEST_BUFFER_SIZE	1048576
6085 
6086 static char rb_string[] __initdata =
6087 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
6088 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
6089 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
6090 
6091 static bool rb_test_started __initdata;
6092 
6093 struct rb_item {
6094 	int size;
6095 	char str[];
6096 };
6097 
6098 static __init int rb_write_something(struct rb_test_data *data, bool nested)
6099 {
6100 	struct ring_buffer_event *event;
6101 	struct rb_item *item;
6102 	bool started;
6103 	int event_len;
6104 	int size;
6105 	int len;
6106 	int cnt;
6107 
6108 	/* Have nested writes different that what is written */
6109 	cnt = data->cnt + (nested ? 27 : 0);
6110 
6111 	/* Multiply cnt by ~e, to make some unique increment */
6112 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
6113 
6114 	len = size + sizeof(struct rb_item);
6115 
6116 	started = rb_test_started;
6117 	/* read rb_test_started before checking buffer enabled */
6118 	smp_rmb();
6119 
6120 	event = ring_buffer_lock_reserve(data->buffer, len);
6121 	if (!event) {
6122 		/* Ignore dropped events before test starts. */
6123 		if (started) {
6124 			if (nested)
6125 				data->bytes_dropped += len;
6126 			else
6127 				data->bytes_dropped_nested += len;
6128 		}
6129 		return len;
6130 	}
6131 
6132 	event_len = ring_buffer_event_length(event);
6133 
6134 	if (RB_WARN_ON(data->buffer, event_len < len))
6135 		goto out;
6136 
6137 	item = ring_buffer_event_data(event);
6138 	item->size = size;
6139 	memcpy(item->str, rb_string, size);
6140 
6141 	if (nested) {
6142 		data->bytes_alloc_nested += event_len;
6143 		data->bytes_written_nested += len;
6144 		data->events_nested++;
6145 		if (!data->min_size_nested || len < data->min_size_nested)
6146 			data->min_size_nested = len;
6147 		if (len > data->max_size_nested)
6148 			data->max_size_nested = len;
6149 	} else {
6150 		data->bytes_alloc += event_len;
6151 		data->bytes_written += len;
6152 		data->events++;
6153 		if (!data->min_size || len < data->min_size)
6154 			data->max_size = len;
6155 		if (len > data->max_size)
6156 			data->max_size = len;
6157 	}
6158 
6159  out:
6160 	ring_buffer_unlock_commit(data->buffer);
6161 
6162 	return 0;
6163 }
6164 
6165 static __init int rb_test(void *arg)
6166 {
6167 	struct rb_test_data *data = arg;
6168 
6169 	while (!kthread_should_stop()) {
6170 		rb_write_something(data, false);
6171 		data->cnt++;
6172 
6173 		set_current_state(TASK_INTERRUPTIBLE);
6174 		/* Now sleep between a min of 100-300us and a max of 1ms */
6175 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
6176 	}
6177 
6178 	return 0;
6179 }
6180 
6181 static __init void rb_ipi(void *ignore)
6182 {
6183 	struct rb_test_data *data;
6184 	int cpu = smp_processor_id();
6185 
6186 	data = &rb_data[cpu];
6187 	rb_write_something(data, true);
6188 }
6189 
6190 static __init int rb_hammer_test(void *arg)
6191 {
6192 	while (!kthread_should_stop()) {
6193 
6194 		/* Send an IPI to all cpus to write data! */
6195 		smp_call_function(rb_ipi, NULL, 1);
6196 		/* No sleep, but for non preempt, let others run */
6197 		schedule();
6198 	}
6199 
6200 	return 0;
6201 }
6202 
6203 static __init int test_ringbuffer(void)
6204 {
6205 	struct task_struct *rb_hammer;
6206 	struct trace_buffer *buffer;
6207 	int cpu;
6208 	int ret = 0;
6209 
6210 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
6211 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6212 		return 0;
6213 	}
6214 
6215 	pr_info("Running ring buffer tests...\n");
6216 
6217 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6218 	if (WARN_ON(!buffer))
6219 		return 0;
6220 
6221 	/* Disable buffer so that threads can't write to it yet */
6222 	ring_buffer_record_off(buffer);
6223 
6224 	for_each_online_cpu(cpu) {
6225 		rb_data[cpu].buffer = buffer;
6226 		rb_data[cpu].cpu = cpu;
6227 		rb_data[cpu].cnt = cpu;
6228 		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6229 						     cpu, "rbtester/%u");
6230 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6231 			pr_cont("FAILED\n");
6232 			ret = PTR_ERR(rb_threads[cpu]);
6233 			goto out_free;
6234 		}
6235 	}
6236 
6237 	/* Now create the rb hammer! */
6238 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6239 	if (WARN_ON(IS_ERR(rb_hammer))) {
6240 		pr_cont("FAILED\n");
6241 		ret = PTR_ERR(rb_hammer);
6242 		goto out_free;
6243 	}
6244 
6245 	ring_buffer_record_on(buffer);
6246 	/*
6247 	 * Show buffer is enabled before setting rb_test_started.
6248 	 * Yes there's a small race window where events could be
6249 	 * dropped and the thread wont catch it. But when a ring
6250 	 * buffer gets enabled, there will always be some kind of
6251 	 * delay before other CPUs see it. Thus, we don't care about
6252 	 * those dropped events. We care about events dropped after
6253 	 * the threads see that the buffer is active.
6254 	 */
6255 	smp_wmb();
6256 	rb_test_started = true;
6257 
6258 	set_current_state(TASK_INTERRUPTIBLE);
6259 	/* Just run for 10 seconds */;
6260 	schedule_timeout(10 * HZ);
6261 
6262 	kthread_stop(rb_hammer);
6263 
6264  out_free:
6265 	for_each_online_cpu(cpu) {
6266 		if (!rb_threads[cpu])
6267 			break;
6268 		kthread_stop(rb_threads[cpu]);
6269 	}
6270 	if (ret) {
6271 		ring_buffer_free(buffer);
6272 		return ret;
6273 	}
6274 
6275 	/* Report! */
6276 	pr_info("finished\n");
6277 	for_each_online_cpu(cpu) {
6278 		struct ring_buffer_event *event;
6279 		struct rb_test_data *data = &rb_data[cpu];
6280 		struct rb_item *item;
6281 		unsigned long total_events;
6282 		unsigned long total_dropped;
6283 		unsigned long total_written;
6284 		unsigned long total_alloc;
6285 		unsigned long total_read = 0;
6286 		unsigned long total_size = 0;
6287 		unsigned long total_len = 0;
6288 		unsigned long total_lost = 0;
6289 		unsigned long lost;
6290 		int big_event_size;
6291 		int small_event_size;
6292 
6293 		ret = -1;
6294 
6295 		total_events = data->events + data->events_nested;
6296 		total_written = data->bytes_written + data->bytes_written_nested;
6297 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6298 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6299 
6300 		big_event_size = data->max_size + data->max_size_nested;
6301 		small_event_size = data->min_size + data->min_size_nested;
6302 
6303 		pr_info("CPU %d:\n", cpu);
6304 		pr_info("              events:    %ld\n", total_events);
6305 		pr_info("       dropped bytes:    %ld\n", total_dropped);
6306 		pr_info("       alloced bytes:    %ld\n", total_alloc);
6307 		pr_info("       written bytes:    %ld\n", total_written);
6308 		pr_info("       biggest event:    %d\n", big_event_size);
6309 		pr_info("      smallest event:    %d\n", small_event_size);
6310 
6311 		if (RB_WARN_ON(buffer, total_dropped))
6312 			break;
6313 
6314 		ret = 0;
6315 
6316 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6317 			total_lost += lost;
6318 			item = ring_buffer_event_data(event);
6319 			total_len += ring_buffer_event_length(event);
6320 			total_size += item->size + sizeof(struct rb_item);
6321 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6322 				pr_info("FAILED!\n");
6323 				pr_info("buffer had: %.*s\n", item->size, item->str);
6324 				pr_info("expected:   %.*s\n", item->size, rb_string);
6325 				RB_WARN_ON(buffer, 1);
6326 				ret = -1;
6327 				break;
6328 			}
6329 			total_read++;
6330 		}
6331 		if (ret)
6332 			break;
6333 
6334 		ret = -1;
6335 
6336 		pr_info("         read events:   %ld\n", total_read);
6337 		pr_info("         lost events:   %ld\n", total_lost);
6338 		pr_info("        total events:   %ld\n", total_lost + total_read);
6339 		pr_info("  recorded len bytes:   %ld\n", total_len);
6340 		pr_info(" recorded size bytes:   %ld\n", total_size);
6341 		if (total_lost) {
6342 			pr_info(" With dropped events, record len and size may not match\n"
6343 				" alloced and written from above\n");
6344 		} else {
6345 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
6346 				       total_size != total_written))
6347 				break;
6348 		}
6349 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6350 			break;
6351 
6352 		ret = 0;
6353 	}
6354 	if (!ret)
6355 		pr_info("Ring buffer PASSED!\n");
6356 
6357 	ring_buffer_free(buffer);
6358 	return 0;
6359 }
6360 
6361 late_initcall(test_ringbuffer);
6362 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
6363