1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic ring buffer 4 * 5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 6 */ 7 #include <linux/trace_events.h> 8 #include <linux/ring_buffer.h> 9 #include <linux/trace_clock.h> 10 #include <linux/sched/clock.h> 11 #include <linux/trace_seq.h> 12 #include <linux/spinlock.h> 13 #include <linux/irq_work.h> 14 #include <linux/uaccess.h> 15 #include <linux/hardirq.h> 16 #include <linux/kthread.h> /* for self test */ 17 #include <linux/module.h> 18 #include <linux/percpu.h> 19 #include <linux/mutex.h> 20 #include <linux/delay.h> 21 #include <linux/slab.h> 22 #include <linux/init.h> 23 #include <linux/hash.h> 24 #include <linux/list.h> 25 #include <linux/cpu.h> 26 #include <linux/oom.h> 27 28 #include <asm/local.h> 29 30 static void update_pages_handler(struct work_struct *work); 31 32 /* 33 * The ring buffer header is special. We must manually up keep it. 34 */ 35 int ring_buffer_print_entry_header(struct trace_seq *s) 36 { 37 trace_seq_puts(s, "# compressed entry header\n"); 38 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 39 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 40 trace_seq_puts(s, "\tarray : 32 bits\n"); 41 trace_seq_putc(s, '\n'); 42 trace_seq_printf(s, "\tpadding : type == %d\n", 43 RINGBUF_TYPE_PADDING); 44 trace_seq_printf(s, "\ttime_extend : type == %d\n", 45 RINGBUF_TYPE_TIME_EXTEND); 46 trace_seq_printf(s, "\ttime_stamp : type == %d\n", 47 RINGBUF_TYPE_TIME_STAMP); 48 trace_seq_printf(s, "\tdata max type_len == %d\n", 49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 50 51 return !trace_seq_has_overflowed(s); 52 } 53 54 /* 55 * The ring buffer is made up of a list of pages. A separate list of pages is 56 * allocated for each CPU. A writer may only write to a buffer that is 57 * associated with the CPU it is currently executing on. A reader may read 58 * from any per cpu buffer. 59 * 60 * The reader is special. For each per cpu buffer, the reader has its own 61 * reader page. When a reader has read the entire reader page, this reader 62 * page is swapped with another page in the ring buffer. 63 * 64 * Now, as long as the writer is off the reader page, the reader can do what 65 * ever it wants with that page. The writer will never write to that page 66 * again (as long as it is out of the ring buffer). 67 * 68 * Here's some silly ASCII art. 69 * 70 * +------+ 71 * |reader| RING BUFFER 72 * |page | 73 * +------+ +---+ +---+ +---+ 74 * | |-->| |-->| | 75 * +---+ +---+ +---+ 76 * ^ | 77 * | | 78 * +---------------+ 79 * 80 * 81 * +------+ 82 * |reader| RING BUFFER 83 * |page |------------------v 84 * +------+ +---+ +---+ +---+ 85 * | |-->| |-->| | 86 * +---+ +---+ +---+ 87 * ^ | 88 * | | 89 * +---------------+ 90 * 91 * 92 * +------+ 93 * |reader| RING BUFFER 94 * |page |------------------v 95 * +------+ +---+ +---+ +---+ 96 * ^ | |-->| |-->| | 97 * | +---+ +---+ +---+ 98 * | | 99 * | | 100 * +------------------------------+ 101 * 102 * 103 * +------+ 104 * |buffer| RING BUFFER 105 * |page |------------------v 106 * +------+ +---+ +---+ +---+ 107 * ^ | | | |-->| | 108 * | New +---+ +---+ +---+ 109 * | Reader------^ | 110 * | page | 111 * +------------------------------+ 112 * 113 * 114 * After we make this swap, the reader can hand this page off to the splice 115 * code and be done with it. It can even allocate a new page if it needs to 116 * and swap that into the ring buffer. 117 * 118 * We will be using cmpxchg soon to make all this lockless. 119 * 120 */ 121 122 /* Used for individual buffers (after the counter) */ 123 #define RB_BUFFER_OFF (1 << 20) 124 125 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 126 127 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 128 #define RB_ALIGNMENT 4U 129 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 130 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 131 132 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 133 # define RB_FORCE_8BYTE_ALIGNMENT 0 134 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 135 #else 136 # define RB_FORCE_8BYTE_ALIGNMENT 1 137 # define RB_ARCH_ALIGNMENT 8U 138 #endif 139 140 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 141 142 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 143 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 144 145 enum { 146 RB_LEN_TIME_EXTEND = 8, 147 RB_LEN_TIME_STAMP = 8, 148 }; 149 150 #define skip_time_extend(event) \ 151 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 152 153 #define extended_time(event) \ 154 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) 155 156 static inline int rb_null_event(struct ring_buffer_event *event) 157 { 158 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 159 } 160 161 static void rb_event_set_padding(struct ring_buffer_event *event) 162 { 163 /* padding has a NULL time_delta */ 164 event->type_len = RINGBUF_TYPE_PADDING; 165 event->time_delta = 0; 166 } 167 168 static unsigned 169 rb_event_data_length(struct ring_buffer_event *event) 170 { 171 unsigned length; 172 173 if (event->type_len) 174 length = event->type_len * RB_ALIGNMENT; 175 else 176 length = event->array[0]; 177 return length + RB_EVNT_HDR_SIZE; 178 } 179 180 /* 181 * Return the length of the given event. Will return 182 * the length of the time extend if the event is a 183 * time extend. 184 */ 185 static inline unsigned 186 rb_event_length(struct ring_buffer_event *event) 187 { 188 switch (event->type_len) { 189 case RINGBUF_TYPE_PADDING: 190 if (rb_null_event(event)) 191 /* undefined */ 192 return -1; 193 return event->array[0] + RB_EVNT_HDR_SIZE; 194 195 case RINGBUF_TYPE_TIME_EXTEND: 196 return RB_LEN_TIME_EXTEND; 197 198 case RINGBUF_TYPE_TIME_STAMP: 199 return RB_LEN_TIME_STAMP; 200 201 case RINGBUF_TYPE_DATA: 202 return rb_event_data_length(event); 203 default: 204 BUG(); 205 } 206 /* not hit */ 207 return 0; 208 } 209 210 /* 211 * Return total length of time extend and data, 212 * or just the event length for all other events. 213 */ 214 static inline unsigned 215 rb_event_ts_length(struct ring_buffer_event *event) 216 { 217 unsigned len = 0; 218 219 if (extended_time(event)) { 220 /* time extends include the data event after it */ 221 len = RB_LEN_TIME_EXTEND; 222 event = skip_time_extend(event); 223 } 224 return len + rb_event_length(event); 225 } 226 227 /** 228 * ring_buffer_event_length - return the length of the event 229 * @event: the event to get the length of 230 * 231 * Returns the size of the data load of a data event. 232 * If the event is something other than a data event, it 233 * returns the size of the event itself. With the exception 234 * of a TIME EXTEND, where it still returns the size of the 235 * data load of the data event after it. 236 */ 237 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 238 { 239 unsigned length; 240 241 if (extended_time(event)) 242 event = skip_time_extend(event); 243 244 length = rb_event_length(event); 245 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 246 return length; 247 length -= RB_EVNT_HDR_SIZE; 248 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 249 length -= sizeof(event->array[0]); 250 return length; 251 } 252 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 253 254 /* inline for ring buffer fast paths */ 255 static __always_inline void * 256 rb_event_data(struct ring_buffer_event *event) 257 { 258 if (extended_time(event)) 259 event = skip_time_extend(event); 260 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 261 /* If length is in len field, then array[0] has the data */ 262 if (event->type_len) 263 return (void *)&event->array[0]; 264 /* Otherwise length is in array[0] and array[1] has the data */ 265 return (void *)&event->array[1]; 266 } 267 268 /** 269 * ring_buffer_event_data - return the data of the event 270 * @event: the event to get the data from 271 */ 272 void *ring_buffer_event_data(struct ring_buffer_event *event) 273 { 274 return rb_event_data(event); 275 } 276 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 277 278 #define for_each_buffer_cpu(buffer, cpu) \ 279 for_each_cpu(cpu, buffer->cpumask) 280 281 #define TS_SHIFT 27 282 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 283 #define TS_DELTA_TEST (~TS_MASK) 284 285 /** 286 * ring_buffer_event_time_stamp - return the event's extended timestamp 287 * @event: the event to get the timestamp of 288 * 289 * Returns the extended timestamp associated with a data event. 290 * An extended time_stamp is a 64-bit timestamp represented 291 * internally in a special way that makes the best use of space 292 * contained within a ring buffer event. This function decodes 293 * it and maps it to a straight u64 value. 294 */ 295 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event) 296 { 297 u64 ts; 298 299 ts = event->array[0]; 300 ts <<= TS_SHIFT; 301 ts += event->time_delta; 302 303 return ts; 304 } 305 306 /* Flag when events were overwritten */ 307 #define RB_MISSED_EVENTS (1 << 31) 308 /* Missed count stored at end */ 309 #define RB_MISSED_STORED (1 << 30) 310 311 #define RB_MISSED_FLAGS (RB_MISSED_EVENTS|RB_MISSED_STORED) 312 313 struct buffer_data_page { 314 u64 time_stamp; /* page time stamp */ 315 local_t commit; /* write committed index */ 316 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 317 }; 318 319 /* 320 * Note, the buffer_page list must be first. The buffer pages 321 * are allocated in cache lines, which means that each buffer 322 * page will be at the beginning of a cache line, and thus 323 * the least significant bits will be zero. We use this to 324 * add flags in the list struct pointers, to make the ring buffer 325 * lockless. 326 */ 327 struct buffer_page { 328 struct list_head list; /* list of buffer pages */ 329 local_t write; /* index for next write */ 330 unsigned read; /* index for next read */ 331 local_t entries; /* entries on this page */ 332 unsigned long real_end; /* real end of data */ 333 struct buffer_data_page *page; /* Actual data page */ 334 }; 335 336 /* 337 * The buffer page counters, write and entries, must be reset 338 * atomically when crossing page boundaries. To synchronize this 339 * update, two counters are inserted into the number. One is 340 * the actual counter for the write position or count on the page. 341 * 342 * The other is a counter of updaters. Before an update happens 343 * the update partition of the counter is incremented. This will 344 * allow the updater to update the counter atomically. 345 * 346 * The counter is 20 bits, and the state data is 12. 347 */ 348 #define RB_WRITE_MASK 0xfffff 349 #define RB_WRITE_INTCNT (1 << 20) 350 351 static void rb_init_page(struct buffer_data_page *bpage) 352 { 353 local_set(&bpage->commit, 0); 354 } 355 356 /* 357 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 358 * this issue out. 359 */ 360 static void free_buffer_page(struct buffer_page *bpage) 361 { 362 free_page((unsigned long)bpage->page); 363 kfree(bpage); 364 } 365 366 /* 367 * We need to fit the time_stamp delta into 27 bits. 368 */ 369 static inline int test_time_stamp(u64 delta) 370 { 371 if (delta & TS_DELTA_TEST) 372 return 1; 373 return 0; 374 } 375 376 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 377 378 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 379 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 380 381 int ring_buffer_print_page_header(struct trace_seq *s) 382 { 383 struct buffer_data_page field; 384 385 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 386 "offset:0;\tsize:%u;\tsigned:%u;\n", 387 (unsigned int)sizeof(field.time_stamp), 388 (unsigned int)is_signed_type(u64)); 389 390 trace_seq_printf(s, "\tfield: local_t commit;\t" 391 "offset:%u;\tsize:%u;\tsigned:%u;\n", 392 (unsigned int)offsetof(typeof(field), commit), 393 (unsigned int)sizeof(field.commit), 394 (unsigned int)is_signed_type(long)); 395 396 trace_seq_printf(s, "\tfield: int overwrite;\t" 397 "offset:%u;\tsize:%u;\tsigned:%u;\n", 398 (unsigned int)offsetof(typeof(field), commit), 399 1, 400 (unsigned int)is_signed_type(long)); 401 402 trace_seq_printf(s, "\tfield: char data;\t" 403 "offset:%u;\tsize:%u;\tsigned:%u;\n", 404 (unsigned int)offsetof(typeof(field), data), 405 (unsigned int)BUF_PAGE_SIZE, 406 (unsigned int)is_signed_type(char)); 407 408 return !trace_seq_has_overflowed(s); 409 } 410 411 struct rb_irq_work { 412 struct irq_work work; 413 wait_queue_head_t waiters; 414 wait_queue_head_t full_waiters; 415 bool waiters_pending; 416 bool full_waiters_pending; 417 bool wakeup_full; 418 }; 419 420 /* 421 * Structure to hold event state and handle nested events. 422 */ 423 struct rb_event_info { 424 u64 ts; 425 u64 delta; 426 unsigned long length; 427 struct buffer_page *tail_page; 428 int add_timestamp; 429 }; 430 431 /* 432 * Used for which event context the event is in. 433 * NMI = 0 434 * IRQ = 1 435 * SOFTIRQ = 2 436 * NORMAL = 3 437 * 438 * See trace_recursive_lock() comment below for more details. 439 */ 440 enum { 441 RB_CTX_NMI, 442 RB_CTX_IRQ, 443 RB_CTX_SOFTIRQ, 444 RB_CTX_NORMAL, 445 RB_CTX_MAX 446 }; 447 448 /* 449 * head_page == tail_page && head == tail then buffer is empty. 450 */ 451 struct ring_buffer_per_cpu { 452 int cpu; 453 atomic_t record_disabled; 454 struct ring_buffer *buffer; 455 raw_spinlock_t reader_lock; /* serialize readers */ 456 arch_spinlock_t lock; 457 struct lock_class_key lock_key; 458 struct buffer_data_page *free_page; 459 unsigned long nr_pages; 460 unsigned int current_context; 461 struct list_head *pages; 462 struct buffer_page *head_page; /* read from head */ 463 struct buffer_page *tail_page; /* write to tail */ 464 struct buffer_page *commit_page; /* committed pages */ 465 struct buffer_page *reader_page; 466 unsigned long lost_events; 467 unsigned long last_overrun; 468 unsigned long nest; 469 local_t entries_bytes; 470 local_t entries; 471 local_t overrun; 472 local_t commit_overrun; 473 local_t dropped_events; 474 local_t committing; 475 local_t commits; 476 local_t pages_touched; 477 local_t pages_read; 478 long last_pages_touch; 479 size_t shortest_full; 480 unsigned long read; 481 unsigned long read_bytes; 482 u64 write_stamp; 483 u64 read_stamp; 484 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 485 long nr_pages_to_update; 486 struct list_head new_pages; /* new pages to add */ 487 struct work_struct update_pages_work; 488 struct completion update_done; 489 490 struct rb_irq_work irq_work; 491 }; 492 493 struct ring_buffer { 494 unsigned flags; 495 int cpus; 496 atomic_t record_disabled; 497 atomic_t resize_disabled; 498 cpumask_var_t cpumask; 499 500 struct lock_class_key *reader_lock_key; 501 502 struct mutex mutex; 503 504 struct ring_buffer_per_cpu **buffers; 505 506 struct hlist_node node; 507 u64 (*clock)(void); 508 509 struct rb_irq_work irq_work; 510 bool time_stamp_abs; 511 }; 512 513 struct ring_buffer_iter { 514 struct ring_buffer_per_cpu *cpu_buffer; 515 unsigned long head; 516 struct buffer_page *head_page; 517 struct buffer_page *cache_reader_page; 518 unsigned long cache_read; 519 u64 read_stamp; 520 }; 521 522 /** 523 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer 524 * @buffer: The ring_buffer to get the number of pages from 525 * @cpu: The cpu of the ring_buffer to get the number of pages from 526 * 527 * Returns the number of pages used by a per_cpu buffer of the ring buffer. 528 */ 529 size_t ring_buffer_nr_pages(struct ring_buffer *buffer, int cpu) 530 { 531 return buffer->buffers[cpu]->nr_pages; 532 } 533 534 /** 535 * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer 536 * @buffer: The ring_buffer to get the number of pages from 537 * @cpu: The cpu of the ring_buffer to get the number of pages from 538 * 539 * Returns the number of pages that have content in the ring buffer. 540 */ 541 size_t ring_buffer_nr_dirty_pages(struct ring_buffer *buffer, int cpu) 542 { 543 size_t read; 544 size_t cnt; 545 546 read = local_read(&buffer->buffers[cpu]->pages_read); 547 cnt = local_read(&buffer->buffers[cpu]->pages_touched); 548 /* The reader can read an empty page, but not more than that */ 549 if (cnt < read) { 550 WARN_ON_ONCE(read > cnt + 1); 551 return 0; 552 } 553 554 return cnt - read; 555 } 556 557 /* 558 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 559 * 560 * Schedules a delayed work to wake up any task that is blocked on the 561 * ring buffer waiters queue. 562 */ 563 static void rb_wake_up_waiters(struct irq_work *work) 564 { 565 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 566 567 wake_up_all(&rbwork->waiters); 568 if (rbwork->wakeup_full) { 569 rbwork->wakeup_full = false; 570 wake_up_all(&rbwork->full_waiters); 571 } 572 } 573 574 /** 575 * ring_buffer_wait - wait for input to the ring buffer 576 * @buffer: buffer to wait on 577 * @cpu: the cpu buffer to wait on 578 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS 579 * 580 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 581 * as data is added to any of the @buffer's cpu buffers. Otherwise 582 * it will wait for data to be added to a specific cpu buffer. 583 */ 584 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, int full) 585 { 586 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer); 587 DEFINE_WAIT(wait); 588 struct rb_irq_work *work; 589 int ret = 0; 590 591 /* 592 * Depending on what the caller is waiting for, either any 593 * data in any cpu buffer, or a specific buffer, put the 594 * caller on the appropriate wait queue. 595 */ 596 if (cpu == RING_BUFFER_ALL_CPUS) { 597 work = &buffer->irq_work; 598 /* Full only makes sense on per cpu reads */ 599 full = 0; 600 } else { 601 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 602 return -ENODEV; 603 cpu_buffer = buffer->buffers[cpu]; 604 work = &cpu_buffer->irq_work; 605 } 606 607 608 while (true) { 609 if (full) 610 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE); 611 else 612 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 613 614 /* 615 * The events can happen in critical sections where 616 * checking a work queue can cause deadlocks. 617 * After adding a task to the queue, this flag is set 618 * only to notify events to try to wake up the queue 619 * using irq_work. 620 * 621 * We don't clear it even if the buffer is no longer 622 * empty. The flag only causes the next event to run 623 * irq_work to do the work queue wake up. The worse 624 * that can happen if we race with !trace_empty() is that 625 * an event will cause an irq_work to try to wake up 626 * an empty queue. 627 * 628 * There's no reason to protect this flag either, as 629 * the work queue and irq_work logic will do the necessary 630 * synchronization for the wake ups. The only thing 631 * that is necessary is that the wake up happens after 632 * a task has been queued. It's OK for spurious wake ups. 633 */ 634 if (full) 635 work->full_waiters_pending = true; 636 else 637 work->waiters_pending = true; 638 639 if (signal_pending(current)) { 640 ret = -EINTR; 641 break; 642 } 643 644 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) 645 break; 646 647 if (cpu != RING_BUFFER_ALL_CPUS && 648 !ring_buffer_empty_cpu(buffer, cpu)) { 649 unsigned long flags; 650 bool pagebusy; 651 size_t nr_pages; 652 size_t dirty; 653 654 if (!full) 655 break; 656 657 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 658 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 659 nr_pages = cpu_buffer->nr_pages; 660 dirty = ring_buffer_nr_dirty_pages(buffer, cpu); 661 if (!cpu_buffer->shortest_full || 662 cpu_buffer->shortest_full < full) 663 cpu_buffer->shortest_full = full; 664 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 665 if (!pagebusy && 666 (!nr_pages || (dirty * 100) > full * nr_pages)) 667 break; 668 } 669 670 schedule(); 671 } 672 673 if (full) 674 finish_wait(&work->full_waiters, &wait); 675 else 676 finish_wait(&work->waiters, &wait); 677 678 return ret; 679 } 680 681 /** 682 * ring_buffer_poll_wait - poll on buffer input 683 * @buffer: buffer to wait on 684 * @cpu: the cpu buffer to wait on 685 * @filp: the file descriptor 686 * @poll_table: The poll descriptor 687 * 688 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 689 * as data is added to any of the @buffer's cpu buffers. Otherwise 690 * it will wait for data to be added to a specific cpu buffer. 691 * 692 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, 693 * zero otherwise. 694 */ 695 __poll_t ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu, 696 struct file *filp, poll_table *poll_table) 697 { 698 struct ring_buffer_per_cpu *cpu_buffer; 699 struct rb_irq_work *work; 700 701 if (cpu == RING_BUFFER_ALL_CPUS) 702 work = &buffer->irq_work; 703 else { 704 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 705 return -EINVAL; 706 707 cpu_buffer = buffer->buffers[cpu]; 708 work = &cpu_buffer->irq_work; 709 } 710 711 poll_wait(filp, &work->waiters, poll_table); 712 work->waiters_pending = true; 713 /* 714 * There's a tight race between setting the waiters_pending and 715 * checking if the ring buffer is empty. Once the waiters_pending bit 716 * is set, the next event will wake the task up, but we can get stuck 717 * if there's only a single event in. 718 * 719 * FIXME: Ideally, we need a memory barrier on the writer side as well, 720 * but adding a memory barrier to all events will cause too much of a 721 * performance hit in the fast path. We only need a memory barrier when 722 * the buffer goes from empty to having content. But as this race is 723 * extremely small, and it's not a problem if another event comes in, we 724 * will fix it later. 725 */ 726 smp_mb(); 727 728 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 729 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 730 return EPOLLIN | EPOLLRDNORM; 731 return 0; 732 } 733 734 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 735 #define RB_WARN_ON(b, cond) \ 736 ({ \ 737 int _____ret = unlikely(cond); \ 738 if (_____ret) { \ 739 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 740 struct ring_buffer_per_cpu *__b = \ 741 (void *)b; \ 742 atomic_inc(&__b->buffer->record_disabled); \ 743 } else \ 744 atomic_inc(&b->record_disabled); \ 745 WARN_ON(1); \ 746 } \ 747 _____ret; \ 748 }) 749 750 /* Up this if you want to test the TIME_EXTENTS and normalization */ 751 #define DEBUG_SHIFT 0 752 753 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 754 { 755 /* shift to debug/test normalization and TIME_EXTENTS */ 756 return buffer->clock() << DEBUG_SHIFT; 757 } 758 759 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 760 { 761 u64 time; 762 763 preempt_disable_notrace(); 764 time = rb_time_stamp(buffer); 765 preempt_enable_notrace(); 766 767 return time; 768 } 769 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 770 771 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 772 int cpu, u64 *ts) 773 { 774 /* Just stupid testing the normalize function and deltas */ 775 *ts >>= DEBUG_SHIFT; 776 } 777 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 778 779 /* 780 * Making the ring buffer lockless makes things tricky. 781 * Although writes only happen on the CPU that they are on, 782 * and they only need to worry about interrupts. Reads can 783 * happen on any CPU. 784 * 785 * The reader page is always off the ring buffer, but when the 786 * reader finishes with a page, it needs to swap its page with 787 * a new one from the buffer. The reader needs to take from 788 * the head (writes go to the tail). But if a writer is in overwrite 789 * mode and wraps, it must push the head page forward. 790 * 791 * Here lies the problem. 792 * 793 * The reader must be careful to replace only the head page, and 794 * not another one. As described at the top of the file in the 795 * ASCII art, the reader sets its old page to point to the next 796 * page after head. It then sets the page after head to point to 797 * the old reader page. But if the writer moves the head page 798 * during this operation, the reader could end up with the tail. 799 * 800 * We use cmpxchg to help prevent this race. We also do something 801 * special with the page before head. We set the LSB to 1. 802 * 803 * When the writer must push the page forward, it will clear the 804 * bit that points to the head page, move the head, and then set 805 * the bit that points to the new head page. 806 * 807 * We also don't want an interrupt coming in and moving the head 808 * page on another writer. Thus we use the second LSB to catch 809 * that too. Thus: 810 * 811 * head->list->prev->next bit 1 bit 0 812 * ------- ------- 813 * Normal page 0 0 814 * Points to head page 0 1 815 * New head page 1 0 816 * 817 * Note we can not trust the prev pointer of the head page, because: 818 * 819 * +----+ +-----+ +-----+ 820 * | |------>| T |---X--->| N | 821 * | |<------| | | | 822 * +----+ +-----+ +-----+ 823 * ^ ^ | 824 * | +-----+ | | 825 * +----------| R |----------+ | 826 * | |<-----------+ 827 * +-----+ 828 * 829 * Key: ---X--> HEAD flag set in pointer 830 * T Tail page 831 * R Reader page 832 * N Next page 833 * 834 * (see __rb_reserve_next() to see where this happens) 835 * 836 * What the above shows is that the reader just swapped out 837 * the reader page with a page in the buffer, but before it 838 * could make the new header point back to the new page added 839 * it was preempted by a writer. The writer moved forward onto 840 * the new page added by the reader and is about to move forward 841 * again. 842 * 843 * You can see, it is legitimate for the previous pointer of 844 * the head (or any page) not to point back to itself. But only 845 * temporarily. 846 */ 847 848 #define RB_PAGE_NORMAL 0UL 849 #define RB_PAGE_HEAD 1UL 850 #define RB_PAGE_UPDATE 2UL 851 852 853 #define RB_FLAG_MASK 3UL 854 855 /* PAGE_MOVED is not part of the mask */ 856 #define RB_PAGE_MOVED 4UL 857 858 /* 859 * rb_list_head - remove any bit 860 */ 861 static struct list_head *rb_list_head(struct list_head *list) 862 { 863 unsigned long val = (unsigned long)list; 864 865 return (struct list_head *)(val & ~RB_FLAG_MASK); 866 } 867 868 /* 869 * rb_is_head_page - test if the given page is the head page 870 * 871 * Because the reader may move the head_page pointer, we can 872 * not trust what the head page is (it may be pointing to 873 * the reader page). But if the next page is a header page, 874 * its flags will be non zero. 875 */ 876 static inline int 877 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 878 struct buffer_page *page, struct list_head *list) 879 { 880 unsigned long val; 881 882 val = (unsigned long)list->next; 883 884 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 885 return RB_PAGE_MOVED; 886 887 return val & RB_FLAG_MASK; 888 } 889 890 /* 891 * rb_is_reader_page 892 * 893 * The unique thing about the reader page, is that, if the 894 * writer is ever on it, the previous pointer never points 895 * back to the reader page. 896 */ 897 static bool rb_is_reader_page(struct buffer_page *page) 898 { 899 struct list_head *list = page->list.prev; 900 901 return rb_list_head(list->next) != &page->list; 902 } 903 904 /* 905 * rb_set_list_to_head - set a list_head to be pointing to head. 906 */ 907 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 908 struct list_head *list) 909 { 910 unsigned long *ptr; 911 912 ptr = (unsigned long *)&list->next; 913 *ptr |= RB_PAGE_HEAD; 914 *ptr &= ~RB_PAGE_UPDATE; 915 } 916 917 /* 918 * rb_head_page_activate - sets up head page 919 */ 920 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 921 { 922 struct buffer_page *head; 923 924 head = cpu_buffer->head_page; 925 if (!head) 926 return; 927 928 /* 929 * Set the previous list pointer to have the HEAD flag. 930 */ 931 rb_set_list_to_head(cpu_buffer, head->list.prev); 932 } 933 934 static void rb_list_head_clear(struct list_head *list) 935 { 936 unsigned long *ptr = (unsigned long *)&list->next; 937 938 *ptr &= ~RB_FLAG_MASK; 939 } 940 941 /* 942 * rb_head_page_deactivate - clears head page ptr (for free list) 943 */ 944 static void 945 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 946 { 947 struct list_head *hd; 948 949 /* Go through the whole list and clear any pointers found. */ 950 rb_list_head_clear(cpu_buffer->pages); 951 952 list_for_each(hd, cpu_buffer->pages) 953 rb_list_head_clear(hd); 954 } 955 956 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 957 struct buffer_page *head, 958 struct buffer_page *prev, 959 int old_flag, int new_flag) 960 { 961 struct list_head *list; 962 unsigned long val = (unsigned long)&head->list; 963 unsigned long ret; 964 965 list = &prev->list; 966 967 val &= ~RB_FLAG_MASK; 968 969 ret = cmpxchg((unsigned long *)&list->next, 970 val | old_flag, val | new_flag); 971 972 /* check if the reader took the page */ 973 if ((ret & ~RB_FLAG_MASK) != val) 974 return RB_PAGE_MOVED; 975 976 return ret & RB_FLAG_MASK; 977 } 978 979 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 980 struct buffer_page *head, 981 struct buffer_page *prev, 982 int old_flag) 983 { 984 return rb_head_page_set(cpu_buffer, head, prev, 985 old_flag, RB_PAGE_UPDATE); 986 } 987 988 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 989 struct buffer_page *head, 990 struct buffer_page *prev, 991 int old_flag) 992 { 993 return rb_head_page_set(cpu_buffer, head, prev, 994 old_flag, RB_PAGE_HEAD); 995 } 996 997 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 998 struct buffer_page *head, 999 struct buffer_page *prev, 1000 int old_flag) 1001 { 1002 return rb_head_page_set(cpu_buffer, head, prev, 1003 old_flag, RB_PAGE_NORMAL); 1004 } 1005 1006 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 1007 struct buffer_page **bpage) 1008 { 1009 struct list_head *p = rb_list_head((*bpage)->list.next); 1010 1011 *bpage = list_entry(p, struct buffer_page, list); 1012 } 1013 1014 static struct buffer_page * 1015 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 1016 { 1017 struct buffer_page *head; 1018 struct buffer_page *page; 1019 struct list_head *list; 1020 int i; 1021 1022 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 1023 return NULL; 1024 1025 /* sanity check */ 1026 list = cpu_buffer->pages; 1027 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 1028 return NULL; 1029 1030 page = head = cpu_buffer->head_page; 1031 /* 1032 * It is possible that the writer moves the header behind 1033 * where we started, and we miss in one loop. 1034 * A second loop should grab the header, but we'll do 1035 * three loops just because I'm paranoid. 1036 */ 1037 for (i = 0; i < 3; i++) { 1038 do { 1039 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 1040 cpu_buffer->head_page = page; 1041 return page; 1042 } 1043 rb_inc_page(cpu_buffer, &page); 1044 } while (page != head); 1045 } 1046 1047 RB_WARN_ON(cpu_buffer, 1); 1048 1049 return NULL; 1050 } 1051 1052 static int rb_head_page_replace(struct buffer_page *old, 1053 struct buffer_page *new) 1054 { 1055 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1056 unsigned long val; 1057 unsigned long ret; 1058 1059 val = *ptr & ~RB_FLAG_MASK; 1060 val |= RB_PAGE_HEAD; 1061 1062 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 1063 1064 return ret == val; 1065 } 1066 1067 /* 1068 * rb_tail_page_update - move the tail page forward 1069 */ 1070 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1071 struct buffer_page *tail_page, 1072 struct buffer_page *next_page) 1073 { 1074 unsigned long old_entries; 1075 unsigned long old_write; 1076 1077 /* 1078 * The tail page now needs to be moved forward. 1079 * 1080 * We need to reset the tail page, but without messing 1081 * with possible erasing of data brought in by interrupts 1082 * that have moved the tail page and are currently on it. 1083 * 1084 * We add a counter to the write field to denote this. 1085 */ 1086 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1087 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1088 1089 local_inc(&cpu_buffer->pages_touched); 1090 /* 1091 * Just make sure we have seen our old_write and synchronize 1092 * with any interrupts that come in. 1093 */ 1094 barrier(); 1095 1096 /* 1097 * If the tail page is still the same as what we think 1098 * it is, then it is up to us to update the tail 1099 * pointer. 1100 */ 1101 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1102 /* Zero the write counter */ 1103 unsigned long val = old_write & ~RB_WRITE_MASK; 1104 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1105 1106 /* 1107 * This will only succeed if an interrupt did 1108 * not come in and change it. In which case, we 1109 * do not want to modify it. 1110 * 1111 * We add (void) to let the compiler know that we do not care 1112 * about the return value of these functions. We use the 1113 * cmpxchg to only update if an interrupt did not already 1114 * do it for us. If the cmpxchg fails, we don't care. 1115 */ 1116 (void)local_cmpxchg(&next_page->write, old_write, val); 1117 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1118 1119 /* 1120 * No need to worry about races with clearing out the commit. 1121 * it only can increment when a commit takes place. But that 1122 * only happens in the outer most nested commit. 1123 */ 1124 local_set(&next_page->page->commit, 0); 1125 1126 /* Again, either we update tail_page or an interrupt does */ 1127 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page); 1128 } 1129 } 1130 1131 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1132 struct buffer_page *bpage) 1133 { 1134 unsigned long val = (unsigned long)bpage; 1135 1136 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1137 return 1; 1138 1139 return 0; 1140 } 1141 1142 /** 1143 * rb_check_list - make sure a pointer to a list has the last bits zero 1144 */ 1145 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1146 struct list_head *list) 1147 { 1148 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1149 return 1; 1150 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1151 return 1; 1152 return 0; 1153 } 1154 1155 /** 1156 * rb_check_pages - integrity check of buffer pages 1157 * @cpu_buffer: CPU buffer with pages to test 1158 * 1159 * As a safety measure we check to make sure the data pages have not 1160 * been corrupted. 1161 */ 1162 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1163 { 1164 struct list_head *head = cpu_buffer->pages; 1165 struct buffer_page *bpage, *tmp; 1166 1167 /* Reset the head page if it exists */ 1168 if (cpu_buffer->head_page) 1169 rb_set_head_page(cpu_buffer); 1170 1171 rb_head_page_deactivate(cpu_buffer); 1172 1173 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1174 return -1; 1175 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1176 return -1; 1177 1178 if (rb_check_list(cpu_buffer, head)) 1179 return -1; 1180 1181 list_for_each_entry_safe(bpage, tmp, head, list) { 1182 if (RB_WARN_ON(cpu_buffer, 1183 bpage->list.next->prev != &bpage->list)) 1184 return -1; 1185 if (RB_WARN_ON(cpu_buffer, 1186 bpage->list.prev->next != &bpage->list)) 1187 return -1; 1188 if (rb_check_list(cpu_buffer, &bpage->list)) 1189 return -1; 1190 } 1191 1192 rb_head_page_activate(cpu_buffer); 1193 1194 return 0; 1195 } 1196 1197 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu) 1198 { 1199 struct buffer_page *bpage, *tmp; 1200 bool user_thread = current->mm != NULL; 1201 gfp_t mflags; 1202 long i; 1203 1204 /* 1205 * Check if the available memory is there first. 1206 * Note, si_mem_available() only gives us a rough estimate of available 1207 * memory. It may not be accurate. But we don't care, we just want 1208 * to prevent doing any allocation when it is obvious that it is 1209 * not going to succeed. 1210 */ 1211 i = si_mem_available(); 1212 if (i < nr_pages) 1213 return -ENOMEM; 1214 1215 /* 1216 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 1217 * gracefully without invoking oom-killer and the system is not 1218 * destabilized. 1219 */ 1220 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; 1221 1222 /* 1223 * If a user thread allocates too much, and si_mem_available() 1224 * reports there's enough memory, even though there is not. 1225 * Make sure the OOM killer kills this thread. This can happen 1226 * even with RETRY_MAYFAIL because another task may be doing 1227 * an allocation after this task has taken all memory. 1228 * This is the task the OOM killer needs to take out during this 1229 * loop, even if it was triggered by an allocation somewhere else. 1230 */ 1231 if (user_thread) 1232 set_current_oom_origin(); 1233 for (i = 0; i < nr_pages; i++) { 1234 struct page *page; 1235 1236 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1237 mflags, cpu_to_node(cpu)); 1238 if (!bpage) 1239 goto free_pages; 1240 1241 list_add(&bpage->list, pages); 1242 1243 page = alloc_pages_node(cpu_to_node(cpu), mflags, 0); 1244 if (!page) 1245 goto free_pages; 1246 bpage->page = page_address(page); 1247 rb_init_page(bpage->page); 1248 1249 if (user_thread && fatal_signal_pending(current)) 1250 goto free_pages; 1251 } 1252 if (user_thread) 1253 clear_current_oom_origin(); 1254 1255 return 0; 1256 1257 free_pages: 1258 list_for_each_entry_safe(bpage, tmp, pages, list) { 1259 list_del_init(&bpage->list); 1260 free_buffer_page(bpage); 1261 } 1262 if (user_thread) 1263 clear_current_oom_origin(); 1264 1265 return -ENOMEM; 1266 } 1267 1268 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1269 unsigned long nr_pages) 1270 { 1271 LIST_HEAD(pages); 1272 1273 WARN_ON(!nr_pages); 1274 1275 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu)) 1276 return -ENOMEM; 1277 1278 /* 1279 * The ring buffer page list is a circular list that does not 1280 * start and end with a list head. All page list items point to 1281 * other pages. 1282 */ 1283 cpu_buffer->pages = pages.next; 1284 list_del(&pages); 1285 1286 cpu_buffer->nr_pages = nr_pages; 1287 1288 rb_check_pages(cpu_buffer); 1289 1290 return 0; 1291 } 1292 1293 static struct ring_buffer_per_cpu * 1294 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu) 1295 { 1296 struct ring_buffer_per_cpu *cpu_buffer; 1297 struct buffer_page *bpage; 1298 struct page *page; 1299 int ret; 1300 1301 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1302 GFP_KERNEL, cpu_to_node(cpu)); 1303 if (!cpu_buffer) 1304 return NULL; 1305 1306 cpu_buffer->cpu = cpu; 1307 cpu_buffer->buffer = buffer; 1308 raw_spin_lock_init(&cpu_buffer->reader_lock); 1309 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1310 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1311 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1312 init_completion(&cpu_buffer->update_done); 1313 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1314 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1315 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1316 1317 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1318 GFP_KERNEL, cpu_to_node(cpu)); 1319 if (!bpage) 1320 goto fail_free_buffer; 1321 1322 rb_check_bpage(cpu_buffer, bpage); 1323 1324 cpu_buffer->reader_page = bpage; 1325 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1326 if (!page) 1327 goto fail_free_reader; 1328 bpage->page = page_address(page); 1329 rb_init_page(bpage->page); 1330 1331 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1332 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1333 1334 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1335 if (ret < 0) 1336 goto fail_free_reader; 1337 1338 cpu_buffer->head_page 1339 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1340 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1341 1342 rb_head_page_activate(cpu_buffer); 1343 1344 return cpu_buffer; 1345 1346 fail_free_reader: 1347 free_buffer_page(cpu_buffer->reader_page); 1348 1349 fail_free_buffer: 1350 kfree(cpu_buffer); 1351 return NULL; 1352 } 1353 1354 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1355 { 1356 struct list_head *head = cpu_buffer->pages; 1357 struct buffer_page *bpage, *tmp; 1358 1359 free_buffer_page(cpu_buffer->reader_page); 1360 1361 rb_head_page_deactivate(cpu_buffer); 1362 1363 if (head) { 1364 list_for_each_entry_safe(bpage, tmp, head, list) { 1365 list_del_init(&bpage->list); 1366 free_buffer_page(bpage); 1367 } 1368 bpage = list_entry(head, struct buffer_page, list); 1369 free_buffer_page(bpage); 1370 } 1371 1372 kfree(cpu_buffer); 1373 } 1374 1375 /** 1376 * __ring_buffer_alloc - allocate a new ring_buffer 1377 * @size: the size in bytes per cpu that is needed. 1378 * @flags: attributes to set for the ring buffer. 1379 * 1380 * Currently the only flag that is available is the RB_FL_OVERWRITE 1381 * flag. This flag means that the buffer will overwrite old data 1382 * when the buffer wraps. If this flag is not set, the buffer will 1383 * drop data when the tail hits the head. 1384 */ 1385 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1386 struct lock_class_key *key) 1387 { 1388 struct ring_buffer *buffer; 1389 long nr_pages; 1390 int bsize; 1391 int cpu; 1392 int ret; 1393 1394 /* keep it in its own cache line */ 1395 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1396 GFP_KERNEL); 1397 if (!buffer) 1398 return NULL; 1399 1400 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1401 goto fail_free_buffer; 1402 1403 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1404 buffer->flags = flags; 1405 buffer->clock = trace_clock_local; 1406 buffer->reader_lock_key = key; 1407 1408 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1409 init_waitqueue_head(&buffer->irq_work.waiters); 1410 1411 /* need at least two pages */ 1412 if (nr_pages < 2) 1413 nr_pages = 2; 1414 1415 buffer->cpus = nr_cpu_ids; 1416 1417 bsize = sizeof(void *) * nr_cpu_ids; 1418 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1419 GFP_KERNEL); 1420 if (!buffer->buffers) 1421 goto fail_free_cpumask; 1422 1423 cpu = raw_smp_processor_id(); 1424 cpumask_set_cpu(cpu, buffer->cpumask); 1425 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1426 if (!buffer->buffers[cpu]) 1427 goto fail_free_buffers; 1428 1429 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1430 if (ret < 0) 1431 goto fail_free_buffers; 1432 1433 mutex_init(&buffer->mutex); 1434 1435 return buffer; 1436 1437 fail_free_buffers: 1438 for_each_buffer_cpu(buffer, cpu) { 1439 if (buffer->buffers[cpu]) 1440 rb_free_cpu_buffer(buffer->buffers[cpu]); 1441 } 1442 kfree(buffer->buffers); 1443 1444 fail_free_cpumask: 1445 free_cpumask_var(buffer->cpumask); 1446 1447 fail_free_buffer: 1448 kfree(buffer); 1449 return NULL; 1450 } 1451 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1452 1453 /** 1454 * ring_buffer_free - free a ring buffer. 1455 * @buffer: the buffer to free. 1456 */ 1457 void 1458 ring_buffer_free(struct ring_buffer *buffer) 1459 { 1460 int cpu; 1461 1462 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1463 1464 for_each_buffer_cpu(buffer, cpu) 1465 rb_free_cpu_buffer(buffer->buffers[cpu]); 1466 1467 kfree(buffer->buffers); 1468 free_cpumask_var(buffer->cpumask); 1469 1470 kfree(buffer); 1471 } 1472 EXPORT_SYMBOL_GPL(ring_buffer_free); 1473 1474 void ring_buffer_set_clock(struct ring_buffer *buffer, 1475 u64 (*clock)(void)) 1476 { 1477 buffer->clock = clock; 1478 } 1479 1480 void ring_buffer_set_time_stamp_abs(struct ring_buffer *buffer, bool abs) 1481 { 1482 buffer->time_stamp_abs = abs; 1483 } 1484 1485 bool ring_buffer_time_stamp_abs(struct ring_buffer *buffer) 1486 { 1487 return buffer->time_stamp_abs; 1488 } 1489 1490 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1491 1492 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1493 { 1494 return local_read(&bpage->entries) & RB_WRITE_MASK; 1495 } 1496 1497 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1498 { 1499 return local_read(&bpage->write) & RB_WRITE_MASK; 1500 } 1501 1502 static int 1503 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 1504 { 1505 struct list_head *tail_page, *to_remove, *next_page; 1506 struct buffer_page *to_remove_page, *tmp_iter_page; 1507 struct buffer_page *last_page, *first_page; 1508 unsigned long nr_removed; 1509 unsigned long head_bit; 1510 int page_entries; 1511 1512 head_bit = 0; 1513 1514 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1515 atomic_inc(&cpu_buffer->record_disabled); 1516 /* 1517 * We don't race with the readers since we have acquired the reader 1518 * lock. We also don't race with writers after disabling recording. 1519 * This makes it easy to figure out the first and the last page to be 1520 * removed from the list. We unlink all the pages in between including 1521 * the first and last pages. This is done in a busy loop so that we 1522 * lose the least number of traces. 1523 * The pages are freed after we restart recording and unlock readers. 1524 */ 1525 tail_page = &cpu_buffer->tail_page->list; 1526 1527 /* 1528 * tail page might be on reader page, we remove the next page 1529 * from the ring buffer 1530 */ 1531 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1532 tail_page = rb_list_head(tail_page->next); 1533 to_remove = tail_page; 1534 1535 /* start of pages to remove */ 1536 first_page = list_entry(rb_list_head(to_remove->next), 1537 struct buffer_page, list); 1538 1539 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1540 to_remove = rb_list_head(to_remove)->next; 1541 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1542 } 1543 1544 next_page = rb_list_head(to_remove)->next; 1545 1546 /* 1547 * Now we remove all pages between tail_page and next_page. 1548 * Make sure that we have head_bit value preserved for the 1549 * next page 1550 */ 1551 tail_page->next = (struct list_head *)((unsigned long)next_page | 1552 head_bit); 1553 next_page = rb_list_head(next_page); 1554 next_page->prev = tail_page; 1555 1556 /* make sure pages points to a valid page in the ring buffer */ 1557 cpu_buffer->pages = next_page; 1558 1559 /* update head page */ 1560 if (head_bit) 1561 cpu_buffer->head_page = list_entry(next_page, 1562 struct buffer_page, list); 1563 1564 /* 1565 * change read pointer to make sure any read iterators reset 1566 * themselves 1567 */ 1568 cpu_buffer->read = 0; 1569 1570 /* pages are removed, resume tracing and then free the pages */ 1571 atomic_dec(&cpu_buffer->record_disabled); 1572 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1573 1574 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1575 1576 /* last buffer page to remove */ 1577 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1578 list); 1579 tmp_iter_page = first_page; 1580 1581 do { 1582 cond_resched(); 1583 1584 to_remove_page = tmp_iter_page; 1585 rb_inc_page(cpu_buffer, &tmp_iter_page); 1586 1587 /* update the counters */ 1588 page_entries = rb_page_entries(to_remove_page); 1589 if (page_entries) { 1590 /* 1591 * If something was added to this page, it was full 1592 * since it is not the tail page. So we deduct the 1593 * bytes consumed in ring buffer from here. 1594 * Increment overrun to account for the lost events. 1595 */ 1596 local_add(page_entries, &cpu_buffer->overrun); 1597 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1598 } 1599 1600 /* 1601 * We have already removed references to this list item, just 1602 * free up the buffer_page and its page 1603 */ 1604 free_buffer_page(to_remove_page); 1605 nr_removed--; 1606 1607 } while (to_remove_page != last_page); 1608 1609 RB_WARN_ON(cpu_buffer, nr_removed); 1610 1611 return nr_removed == 0; 1612 } 1613 1614 static int 1615 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1616 { 1617 struct list_head *pages = &cpu_buffer->new_pages; 1618 int retries, success; 1619 1620 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1621 /* 1622 * We are holding the reader lock, so the reader page won't be swapped 1623 * in the ring buffer. Now we are racing with the writer trying to 1624 * move head page and the tail page. 1625 * We are going to adapt the reader page update process where: 1626 * 1. We first splice the start and end of list of new pages between 1627 * the head page and its previous page. 1628 * 2. We cmpxchg the prev_page->next to point from head page to the 1629 * start of new pages list. 1630 * 3. Finally, we update the head->prev to the end of new list. 1631 * 1632 * We will try this process 10 times, to make sure that we don't keep 1633 * spinning. 1634 */ 1635 retries = 10; 1636 success = 0; 1637 while (retries--) { 1638 struct list_head *head_page, *prev_page, *r; 1639 struct list_head *last_page, *first_page; 1640 struct list_head *head_page_with_bit; 1641 1642 head_page = &rb_set_head_page(cpu_buffer)->list; 1643 if (!head_page) 1644 break; 1645 prev_page = head_page->prev; 1646 1647 first_page = pages->next; 1648 last_page = pages->prev; 1649 1650 head_page_with_bit = (struct list_head *) 1651 ((unsigned long)head_page | RB_PAGE_HEAD); 1652 1653 last_page->next = head_page_with_bit; 1654 first_page->prev = prev_page; 1655 1656 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1657 1658 if (r == head_page_with_bit) { 1659 /* 1660 * yay, we replaced the page pointer to our new list, 1661 * now, we just have to update to head page's prev 1662 * pointer to point to end of list 1663 */ 1664 head_page->prev = last_page; 1665 success = 1; 1666 break; 1667 } 1668 } 1669 1670 if (success) 1671 INIT_LIST_HEAD(pages); 1672 /* 1673 * If we weren't successful in adding in new pages, warn and stop 1674 * tracing 1675 */ 1676 RB_WARN_ON(cpu_buffer, !success); 1677 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1678 1679 /* free pages if they weren't inserted */ 1680 if (!success) { 1681 struct buffer_page *bpage, *tmp; 1682 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1683 list) { 1684 list_del_init(&bpage->list); 1685 free_buffer_page(bpage); 1686 } 1687 } 1688 return success; 1689 } 1690 1691 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1692 { 1693 int success; 1694 1695 if (cpu_buffer->nr_pages_to_update > 0) 1696 success = rb_insert_pages(cpu_buffer); 1697 else 1698 success = rb_remove_pages(cpu_buffer, 1699 -cpu_buffer->nr_pages_to_update); 1700 1701 if (success) 1702 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1703 } 1704 1705 static void update_pages_handler(struct work_struct *work) 1706 { 1707 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1708 struct ring_buffer_per_cpu, update_pages_work); 1709 rb_update_pages(cpu_buffer); 1710 complete(&cpu_buffer->update_done); 1711 } 1712 1713 /** 1714 * ring_buffer_resize - resize the ring buffer 1715 * @buffer: the buffer to resize. 1716 * @size: the new size. 1717 * @cpu_id: the cpu buffer to resize 1718 * 1719 * Minimum size is 2 * BUF_PAGE_SIZE. 1720 * 1721 * Returns 0 on success and < 0 on failure. 1722 */ 1723 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size, 1724 int cpu_id) 1725 { 1726 struct ring_buffer_per_cpu *cpu_buffer; 1727 unsigned long nr_pages; 1728 int cpu, err = 0; 1729 1730 /* 1731 * Always succeed at resizing a non-existent buffer: 1732 */ 1733 if (!buffer) 1734 return size; 1735 1736 /* Make sure the requested buffer exists */ 1737 if (cpu_id != RING_BUFFER_ALL_CPUS && 1738 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1739 return size; 1740 1741 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1742 1743 /* we need a minimum of two pages */ 1744 if (nr_pages < 2) 1745 nr_pages = 2; 1746 1747 size = nr_pages * BUF_PAGE_SIZE; 1748 1749 /* 1750 * Don't succeed if resizing is disabled, as a reader might be 1751 * manipulating the ring buffer and is expecting a sane state while 1752 * this is true. 1753 */ 1754 if (atomic_read(&buffer->resize_disabled)) 1755 return -EBUSY; 1756 1757 /* prevent another thread from changing buffer sizes */ 1758 mutex_lock(&buffer->mutex); 1759 1760 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1761 /* calculate the pages to update */ 1762 for_each_buffer_cpu(buffer, cpu) { 1763 cpu_buffer = buffer->buffers[cpu]; 1764 1765 cpu_buffer->nr_pages_to_update = nr_pages - 1766 cpu_buffer->nr_pages; 1767 /* 1768 * nothing more to do for removing pages or no update 1769 */ 1770 if (cpu_buffer->nr_pages_to_update <= 0) 1771 continue; 1772 /* 1773 * to add pages, make sure all new pages can be 1774 * allocated without receiving ENOMEM 1775 */ 1776 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1777 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1778 &cpu_buffer->new_pages, cpu)) { 1779 /* not enough memory for new pages */ 1780 err = -ENOMEM; 1781 goto out_err; 1782 } 1783 } 1784 1785 get_online_cpus(); 1786 /* 1787 * Fire off all the required work handlers 1788 * We can't schedule on offline CPUs, but it's not necessary 1789 * since we can change their buffer sizes without any race. 1790 */ 1791 for_each_buffer_cpu(buffer, cpu) { 1792 cpu_buffer = buffer->buffers[cpu]; 1793 if (!cpu_buffer->nr_pages_to_update) 1794 continue; 1795 1796 /* Can't run something on an offline CPU. */ 1797 if (!cpu_online(cpu)) { 1798 rb_update_pages(cpu_buffer); 1799 cpu_buffer->nr_pages_to_update = 0; 1800 } else { 1801 schedule_work_on(cpu, 1802 &cpu_buffer->update_pages_work); 1803 } 1804 } 1805 1806 /* wait for all the updates to complete */ 1807 for_each_buffer_cpu(buffer, cpu) { 1808 cpu_buffer = buffer->buffers[cpu]; 1809 if (!cpu_buffer->nr_pages_to_update) 1810 continue; 1811 1812 if (cpu_online(cpu)) 1813 wait_for_completion(&cpu_buffer->update_done); 1814 cpu_buffer->nr_pages_to_update = 0; 1815 } 1816 1817 put_online_cpus(); 1818 } else { 1819 /* Make sure this CPU has been initialized */ 1820 if (!cpumask_test_cpu(cpu_id, buffer->cpumask)) 1821 goto out; 1822 1823 cpu_buffer = buffer->buffers[cpu_id]; 1824 1825 if (nr_pages == cpu_buffer->nr_pages) 1826 goto out; 1827 1828 cpu_buffer->nr_pages_to_update = nr_pages - 1829 cpu_buffer->nr_pages; 1830 1831 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1832 if (cpu_buffer->nr_pages_to_update > 0 && 1833 __rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1834 &cpu_buffer->new_pages, cpu_id)) { 1835 err = -ENOMEM; 1836 goto out_err; 1837 } 1838 1839 get_online_cpus(); 1840 1841 /* Can't run something on an offline CPU. */ 1842 if (!cpu_online(cpu_id)) 1843 rb_update_pages(cpu_buffer); 1844 else { 1845 schedule_work_on(cpu_id, 1846 &cpu_buffer->update_pages_work); 1847 wait_for_completion(&cpu_buffer->update_done); 1848 } 1849 1850 cpu_buffer->nr_pages_to_update = 0; 1851 put_online_cpus(); 1852 } 1853 1854 out: 1855 /* 1856 * The ring buffer resize can happen with the ring buffer 1857 * enabled, so that the update disturbs the tracing as little 1858 * as possible. But if the buffer is disabled, we do not need 1859 * to worry about that, and we can take the time to verify 1860 * that the buffer is not corrupt. 1861 */ 1862 if (atomic_read(&buffer->record_disabled)) { 1863 atomic_inc(&buffer->record_disabled); 1864 /* 1865 * Even though the buffer was disabled, we must make sure 1866 * that it is truly disabled before calling rb_check_pages. 1867 * There could have been a race between checking 1868 * record_disable and incrementing it. 1869 */ 1870 synchronize_rcu(); 1871 for_each_buffer_cpu(buffer, cpu) { 1872 cpu_buffer = buffer->buffers[cpu]; 1873 rb_check_pages(cpu_buffer); 1874 } 1875 atomic_dec(&buffer->record_disabled); 1876 } 1877 1878 mutex_unlock(&buffer->mutex); 1879 return size; 1880 1881 out_err: 1882 for_each_buffer_cpu(buffer, cpu) { 1883 struct buffer_page *bpage, *tmp; 1884 1885 cpu_buffer = buffer->buffers[cpu]; 1886 cpu_buffer->nr_pages_to_update = 0; 1887 1888 if (list_empty(&cpu_buffer->new_pages)) 1889 continue; 1890 1891 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1892 list) { 1893 list_del_init(&bpage->list); 1894 free_buffer_page(bpage); 1895 } 1896 } 1897 mutex_unlock(&buffer->mutex); 1898 return err; 1899 } 1900 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1901 1902 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val) 1903 { 1904 mutex_lock(&buffer->mutex); 1905 if (val) 1906 buffer->flags |= RB_FL_OVERWRITE; 1907 else 1908 buffer->flags &= ~RB_FL_OVERWRITE; 1909 mutex_unlock(&buffer->mutex); 1910 } 1911 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1912 1913 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1914 { 1915 return bpage->page->data + index; 1916 } 1917 1918 static __always_inline struct ring_buffer_event * 1919 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1920 { 1921 return __rb_page_index(cpu_buffer->reader_page, 1922 cpu_buffer->reader_page->read); 1923 } 1924 1925 static __always_inline struct ring_buffer_event * 1926 rb_iter_head_event(struct ring_buffer_iter *iter) 1927 { 1928 return __rb_page_index(iter->head_page, iter->head); 1929 } 1930 1931 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage) 1932 { 1933 return local_read(&bpage->page->commit); 1934 } 1935 1936 /* Size is determined by what has been committed */ 1937 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 1938 { 1939 return rb_page_commit(bpage); 1940 } 1941 1942 static __always_inline unsigned 1943 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1944 { 1945 return rb_page_commit(cpu_buffer->commit_page); 1946 } 1947 1948 static __always_inline unsigned 1949 rb_event_index(struct ring_buffer_event *event) 1950 { 1951 unsigned long addr = (unsigned long)event; 1952 1953 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1954 } 1955 1956 static void rb_inc_iter(struct ring_buffer_iter *iter) 1957 { 1958 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1959 1960 /* 1961 * The iterator could be on the reader page (it starts there). 1962 * But the head could have moved, since the reader was 1963 * found. Check for this case and assign the iterator 1964 * to the head page instead of next. 1965 */ 1966 if (iter->head_page == cpu_buffer->reader_page) 1967 iter->head_page = rb_set_head_page(cpu_buffer); 1968 else 1969 rb_inc_page(cpu_buffer, &iter->head_page); 1970 1971 iter->read_stamp = iter->head_page->page->time_stamp; 1972 iter->head = 0; 1973 } 1974 1975 /* 1976 * rb_handle_head_page - writer hit the head page 1977 * 1978 * Returns: +1 to retry page 1979 * 0 to continue 1980 * -1 on error 1981 */ 1982 static int 1983 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 1984 struct buffer_page *tail_page, 1985 struct buffer_page *next_page) 1986 { 1987 struct buffer_page *new_head; 1988 int entries; 1989 int type; 1990 int ret; 1991 1992 entries = rb_page_entries(next_page); 1993 1994 /* 1995 * The hard part is here. We need to move the head 1996 * forward, and protect against both readers on 1997 * other CPUs and writers coming in via interrupts. 1998 */ 1999 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 2000 RB_PAGE_HEAD); 2001 2002 /* 2003 * type can be one of four: 2004 * NORMAL - an interrupt already moved it for us 2005 * HEAD - we are the first to get here. 2006 * UPDATE - we are the interrupt interrupting 2007 * a current move. 2008 * MOVED - a reader on another CPU moved the next 2009 * pointer to its reader page. Give up 2010 * and try again. 2011 */ 2012 2013 switch (type) { 2014 case RB_PAGE_HEAD: 2015 /* 2016 * We changed the head to UPDATE, thus 2017 * it is our responsibility to update 2018 * the counters. 2019 */ 2020 local_add(entries, &cpu_buffer->overrun); 2021 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 2022 2023 /* 2024 * The entries will be zeroed out when we move the 2025 * tail page. 2026 */ 2027 2028 /* still more to do */ 2029 break; 2030 2031 case RB_PAGE_UPDATE: 2032 /* 2033 * This is an interrupt that interrupt the 2034 * previous update. Still more to do. 2035 */ 2036 break; 2037 case RB_PAGE_NORMAL: 2038 /* 2039 * An interrupt came in before the update 2040 * and processed this for us. 2041 * Nothing left to do. 2042 */ 2043 return 1; 2044 case RB_PAGE_MOVED: 2045 /* 2046 * The reader is on another CPU and just did 2047 * a swap with our next_page. 2048 * Try again. 2049 */ 2050 return 1; 2051 default: 2052 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2053 return -1; 2054 } 2055 2056 /* 2057 * Now that we are here, the old head pointer is 2058 * set to UPDATE. This will keep the reader from 2059 * swapping the head page with the reader page. 2060 * The reader (on another CPU) will spin till 2061 * we are finished. 2062 * 2063 * We just need to protect against interrupts 2064 * doing the job. We will set the next pointer 2065 * to HEAD. After that, we set the old pointer 2066 * to NORMAL, but only if it was HEAD before. 2067 * otherwise we are an interrupt, and only 2068 * want the outer most commit to reset it. 2069 */ 2070 new_head = next_page; 2071 rb_inc_page(cpu_buffer, &new_head); 2072 2073 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2074 RB_PAGE_NORMAL); 2075 2076 /* 2077 * Valid returns are: 2078 * HEAD - an interrupt came in and already set it. 2079 * NORMAL - One of two things: 2080 * 1) We really set it. 2081 * 2) A bunch of interrupts came in and moved 2082 * the page forward again. 2083 */ 2084 switch (ret) { 2085 case RB_PAGE_HEAD: 2086 case RB_PAGE_NORMAL: 2087 /* OK */ 2088 break; 2089 default: 2090 RB_WARN_ON(cpu_buffer, 1); 2091 return -1; 2092 } 2093 2094 /* 2095 * It is possible that an interrupt came in, 2096 * set the head up, then more interrupts came in 2097 * and moved it again. When we get back here, 2098 * the page would have been set to NORMAL but we 2099 * just set it back to HEAD. 2100 * 2101 * How do you detect this? Well, if that happened 2102 * the tail page would have moved. 2103 */ 2104 if (ret == RB_PAGE_NORMAL) { 2105 struct buffer_page *buffer_tail_page; 2106 2107 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 2108 /* 2109 * If the tail had moved passed next, then we need 2110 * to reset the pointer. 2111 */ 2112 if (buffer_tail_page != tail_page && 2113 buffer_tail_page != next_page) 2114 rb_head_page_set_normal(cpu_buffer, new_head, 2115 next_page, 2116 RB_PAGE_HEAD); 2117 } 2118 2119 /* 2120 * If this was the outer most commit (the one that 2121 * changed the original pointer from HEAD to UPDATE), 2122 * then it is up to us to reset it to NORMAL. 2123 */ 2124 if (type == RB_PAGE_HEAD) { 2125 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2126 tail_page, 2127 RB_PAGE_UPDATE); 2128 if (RB_WARN_ON(cpu_buffer, 2129 ret != RB_PAGE_UPDATE)) 2130 return -1; 2131 } 2132 2133 return 0; 2134 } 2135 2136 static inline void 2137 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2138 unsigned long tail, struct rb_event_info *info) 2139 { 2140 struct buffer_page *tail_page = info->tail_page; 2141 struct ring_buffer_event *event; 2142 unsigned long length = info->length; 2143 2144 /* 2145 * Only the event that crossed the page boundary 2146 * must fill the old tail_page with padding. 2147 */ 2148 if (tail >= BUF_PAGE_SIZE) { 2149 /* 2150 * If the page was filled, then we still need 2151 * to update the real_end. Reset it to zero 2152 * and the reader will ignore it. 2153 */ 2154 if (tail == BUF_PAGE_SIZE) 2155 tail_page->real_end = 0; 2156 2157 local_sub(length, &tail_page->write); 2158 return; 2159 } 2160 2161 event = __rb_page_index(tail_page, tail); 2162 2163 /* account for padding bytes */ 2164 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2165 2166 /* 2167 * Save the original length to the meta data. 2168 * This will be used by the reader to add lost event 2169 * counter. 2170 */ 2171 tail_page->real_end = tail; 2172 2173 /* 2174 * If this event is bigger than the minimum size, then 2175 * we need to be careful that we don't subtract the 2176 * write counter enough to allow another writer to slip 2177 * in on this page. 2178 * We put in a discarded commit instead, to make sure 2179 * that this space is not used again. 2180 * 2181 * If we are less than the minimum size, we don't need to 2182 * worry about it. 2183 */ 2184 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2185 /* No room for any events */ 2186 2187 /* Mark the rest of the page with padding */ 2188 rb_event_set_padding(event); 2189 2190 /* Set the write back to the previous setting */ 2191 local_sub(length, &tail_page->write); 2192 return; 2193 } 2194 2195 /* Put in a discarded event */ 2196 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2197 event->type_len = RINGBUF_TYPE_PADDING; 2198 /* time delta must be non zero */ 2199 event->time_delta = 1; 2200 2201 /* Set write to end of buffer */ 2202 length = (tail + length) - BUF_PAGE_SIZE; 2203 local_sub(length, &tail_page->write); 2204 } 2205 2206 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 2207 2208 /* 2209 * This is the slow path, force gcc not to inline it. 2210 */ 2211 static noinline struct ring_buffer_event * 2212 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2213 unsigned long tail, struct rb_event_info *info) 2214 { 2215 struct buffer_page *tail_page = info->tail_page; 2216 struct buffer_page *commit_page = cpu_buffer->commit_page; 2217 struct ring_buffer *buffer = cpu_buffer->buffer; 2218 struct buffer_page *next_page; 2219 int ret; 2220 2221 next_page = tail_page; 2222 2223 rb_inc_page(cpu_buffer, &next_page); 2224 2225 /* 2226 * If for some reason, we had an interrupt storm that made 2227 * it all the way around the buffer, bail, and warn 2228 * about it. 2229 */ 2230 if (unlikely(next_page == commit_page)) { 2231 local_inc(&cpu_buffer->commit_overrun); 2232 goto out_reset; 2233 } 2234 2235 /* 2236 * This is where the fun begins! 2237 * 2238 * We are fighting against races between a reader that 2239 * could be on another CPU trying to swap its reader 2240 * page with the buffer head. 2241 * 2242 * We are also fighting against interrupts coming in and 2243 * moving the head or tail on us as well. 2244 * 2245 * If the next page is the head page then we have filled 2246 * the buffer, unless the commit page is still on the 2247 * reader page. 2248 */ 2249 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2250 2251 /* 2252 * If the commit is not on the reader page, then 2253 * move the header page. 2254 */ 2255 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2256 /* 2257 * If we are not in overwrite mode, 2258 * this is easy, just stop here. 2259 */ 2260 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2261 local_inc(&cpu_buffer->dropped_events); 2262 goto out_reset; 2263 } 2264 2265 ret = rb_handle_head_page(cpu_buffer, 2266 tail_page, 2267 next_page); 2268 if (ret < 0) 2269 goto out_reset; 2270 if (ret) 2271 goto out_again; 2272 } else { 2273 /* 2274 * We need to be careful here too. The 2275 * commit page could still be on the reader 2276 * page. We could have a small buffer, and 2277 * have filled up the buffer with events 2278 * from interrupts and such, and wrapped. 2279 * 2280 * Note, if the tail page is also the on the 2281 * reader_page, we let it move out. 2282 */ 2283 if (unlikely((cpu_buffer->commit_page != 2284 cpu_buffer->tail_page) && 2285 (cpu_buffer->commit_page == 2286 cpu_buffer->reader_page))) { 2287 local_inc(&cpu_buffer->commit_overrun); 2288 goto out_reset; 2289 } 2290 } 2291 } 2292 2293 rb_tail_page_update(cpu_buffer, tail_page, next_page); 2294 2295 out_again: 2296 2297 rb_reset_tail(cpu_buffer, tail, info); 2298 2299 /* Commit what we have for now. */ 2300 rb_end_commit(cpu_buffer); 2301 /* rb_end_commit() decs committing */ 2302 local_inc(&cpu_buffer->committing); 2303 2304 /* fail and let the caller try again */ 2305 return ERR_PTR(-EAGAIN); 2306 2307 out_reset: 2308 /* reset write */ 2309 rb_reset_tail(cpu_buffer, tail, info); 2310 2311 return NULL; 2312 } 2313 2314 /* Slow path, do not inline */ 2315 static noinline struct ring_buffer_event * 2316 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs) 2317 { 2318 if (abs) 2319 event->type_len = RINGBUF_TYPE_TIME_STAMP; 2320 else 2321 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2322 2323 /* Not the first event on the page, or not delta? */ 2324 if (abs || rb_event_index(event)) { 2325 event->time_delta = delta & TS_MASK; 2326 event->array[0] = delta >> TS_SHIFT; 2327 } else { 2328 /* nope, just zero it */ 2329 event->time_delta = 0; 2330 event->array[0] = 0; 2331 } 2332 2333 return skip_time_extend(event); 2334 } 2335 2336 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2337 struct ring_buffer_event *event); 2338 2339 /** 2340 * rb_update_event - update event type and data 2341 * @event: the event to update 2342 * @type: the type of event 2343 * @length: the size of the event field in the ring buffer 2344 * 2345 * Update the type and data fields of the event. The length 2346 * is the actual size that is written to the ring buffer, 2347 * and with this, we can determine what to place into the 2348 * data field. 2349 */ 2350 static void 2351 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2352 struct ring_buffer_event *event, 2353 struct rb_event_info *info) 2354 { 2355 unsigned length = info->length; 2356 u64 delta = info->delta; 2357 2358 /* Only a commit updates the timestamp */ 2359 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 2360 delta = 0; 2361 2362 /* 2363 * If we need to add a timestamp, then we 2364 * add it to the start of the reserved space. 2365 */ 2366 if (unlikely(info->add_timestamp)) { 2367 bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer); 2368 2369 event = rb_add_time_stamp(event, info->delta, abs); 2370 length -= RB_LEN_TIME_EXTEND; 2371 delta = 0; 2372 } 2373 2374 event->time_delta = delta; 2375 length -= RB_EVNT_HDR_SIZE; 2376 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2377 event->type_len = 0; 2378 event->array[0] = length; 2379 } else 2380 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2381 } 2382 2383 static unsigned rb_calculate_event_length(unsigned length) 2384 { 2385 struct ring_buffer_event event; /* Used only for sizeof array */ 2386 2387 /* zero length can cause confusions */ 2388 if (!length) 2389 length++; 2390 2391 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2392 length += sizeof(event.array[0]); 2393 2394 length += RB_EVNT_HDR_SIZE; 2395 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2396 2397 /* 2398 * In case the time delta is larger than the 27 bits for it 2399 * in the header, we need to add a timestamp. If another 2400 * event comes in when trying to discard this one to increase 2401 * the length, then the timestamp will be added in the allocated 2402 * space of this event. If length is bigger than the size needed 2403 * for the TIME_EXTEND, then padding has to be used. The events 2404 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 2405 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 2406 * As length is a multiple of 4, we only need to worry if it 2407 * is 12 (RB_LEN_TIME_EXTEND + 4). 2408 */ 2409 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 2410 length += RB_ALIGNMENT; 2411 2412 return length; 2413 } 2414 2415 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2416 static inline bool sched_clock_stable(void) 2417 { 2418 return true; 2419 } 2420 #endif 2421 2422 static inline int 2423 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2424 struct ring_buffer_event *event) 2425 { 2426 unsigned long new_index, old_index; 2427 struct buffer_page *bpage; 2428 unsigned long index; 2429 unsigned long addr; 2430 2431 new_index = rb_event_index(event); 2432 old_index = new_index + rb_event_ts_length(event); 2433 addr = (unsigned long)event; 2434 addr &= PAGE_MASK; 2435 2436 bpage = READ_ONCE(cpu_buffer->tail_page); 2437 2438 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2439 unsigned long write_mask = 2440 local_read(&bpage->write) & ~RB_WRITE_MASK; 2441 unsigned long event_length = rb_event_length(event); 2442 /* 2443 * This is on the tail page. It is possible that 2444 * a write could come in and move the tail page 2445 * and write to the next page. That is fine 2446 * because we just shorten what is on this page. 2447 */ 2448 old_index += write_mask; 2449 new_index += write_mask; 2450 index = local_cmpxchg(&bpage->write, old_index, new_index); 2451 if (index == old_index) { 2452 /* update counters */ 2453 local_sub(event_length, &cpu_buffer->entries_bytes); 2454 return 1; 2455 } 2456 } 2457 2458 /* could not discard */ 2459 return 0; 2460 } 2461 2462 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2463 { 2464 local_inc(&cpu_buffer->committing); 2465 local_inc(&cpu_buffer->commits); 2466 } 2467 2468 static __always_inline void 2469 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 2470 { 2471 unsigned long max_count; 2472 2473 /* 2474 * We only race with interrupts and NMIs on this CPU. 2475 * If we own the commit event, then we can commit 2476 * all others that interrupted us, since the interruptions 2477 * are in stack format (they finish before they come 2478 * back to us). This allows us to do a simple loop to 2479 * assign the commit to the tail. 2480 */ 2481 again: 2482 max_count = cpu_buffer->nr_pages * 100; 2483 2484 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 2485 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 2486 return; 2487 if (RB_WARN_ON(cpu_buffer, 2488 rb_is_reader_page(cpu_buffer->tail_page))) 2489 return; 2490 local_set(&cpu_buffer->commit_page->page->commit, 2491 rb_page_write(cpu_buffer->commit_page)); 2492 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 2493 /* Only update the write stamp if the page has an event */ 2494 if (rb_page_write(cpu_buffer->commit_page)) 2495 cpu_buffer->write_stamp = 2496 cpu_buffer->commit_page->page->time_stamp; 2497 /* add barrier to keep gcc from optimizing too much */ 2498 barrier(); 2499 } 2500 while (rb_commit_index(cpu_buffer) != 2501 rb_page_write(cpu_buffer->commit_page)) { 2502 2503 local_set(&cpu_buffer->commit_page->page->commit, 2504 rb_page_write(cpu_buffer->commit_page)); 2505 RB_WARN_ON(cpu_buffer, 2506 local_read(&cpu_buffer->commit_page->page->commit) & 2507 ~RB_WRITE_MASK); 2508 barrier(); 2509 } 2510 2511 /* again, keep gcc from optimizing */ 2512 barrier(); 2513 2514 /* 2515 * If an interrupt came in just after the first while loop 2516 * and pushed the tail page forward, we will be left with 2517 * a dangling commit that will never go forward. 2518 */ 2519 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 2520 goto again; 2521 } 2522 2523 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2524 { 2525 unsigned long commits; 2526 2527 if (RB_WARN_ON(cpu_buffer, 2528 !local_read(&cpu_buffer->committing))) 2529 return; 2530 2531 again: 2532 commits = local_read(&cpu_buffer->commits); 2533 /* synchronize with interrupts */ 2534 barrier(); 2535 if (local_read(&cpu_buffer->committing) == 1) 2536 rb_set_commit_to_write(cpu_buffer); 2537 2538 local_dec(&cpu_buffer->committing); 2539 2540 /* synchronize with interrupts */ 2541 barrier(); 2542 2543 /* 2544 * Need to account for interrupts coming in between the 2545 * updating of the commit page and the clearing of the 2546 * committing counter. 2547 */ 2548 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2549 !local_read(&cpu_buffer->committing)) { 2550 local_inc(&cpu_buffer->committing); 2551 goto again; 2552 } 2553 } 2554 2555 static inline void rb_event_discard(struct ring_buffer_event *event) 2556 { 2557 if (extended_time(event)) 2558 event = skip_time_extend(event); 2559 2560 /* array[0] holds the actual length for the discarded event */ 2561 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2562 event->type_len = RINGBUF_TYPE_PADDING; 2563 /* time delta must be non zero */ 2564 if (!event->time_delta) 2565 event->time_delta = 1; 2566 } 2567 2568 static __always_inline bool 2569 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2570 struct ring_buffer_event *event) 2571 { 2572 unsigned long addr = (unsigned long)event; 2573 unsigned long index; 2574 2575 index = rb_event_index(event); 2576 addr &= PAGE_MASK; 2577 2578 return cpu_buffer->commit_page->page == (void *)addr && 2579 rb_commit_index(cpu_buffer) == index; 2580 } 2581 2582 static __always_inline void 2583 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2584 struct ring_buffer_event *event) 2585 { 2586 u64 delta; 2587 2588 /* 2589 * The event first in the commit queue updates the 2590 * time stamp. 2591 */ 2592 if (rb_event_is_commit(cpu_buffer, event)) { 2593 /* 2594 * A commit event that is first on a page 2595 * updates the write timestamp with the page stamp 2596 */ 2597 if (!rb_event_index(event)) 2598 cpu_buffer->write_stamp = 2599 cpu_buffer->commit_page->page->time_stamp; 2600 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2601 delta = ring_buffer_event_time_stamp(event); 2602 cpu_buffer->write_stamp += delta; 2603 } else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) { 2604 delta = ring_buffer_event_time_stamp(event); 2605 cpu_buffer->write_stamp = delta; 2606 } else 2607 cpu_buffer->write_stamp += event->time_delta; 2608 } 2609 } 2610 2611 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2612 struct ring_buffer_event *event) 2613 { 2614 local_inc(&cpu_buffer->entries); 2615 rb_update_write_stamp(cpu_buffer, event); 2616 rb_end_commit(cpu_buffer); 2617 } 2618 2619 static __always_inline void 2620 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 2621 { 2622 size_t nr_pages; 2623 size_t dirty; 2624 size_t full; 2625 2626 if (buffer->irq_work.waiters_pending) { 2627 buffer->irq_work.waiters_pending = false; 2628 /* irq_work_queue() supplies it's own memory barriers */ 2629 irq_work_queue(&buffer->irq_work.work); 2630 } 2631 2632 if (cpu_buffer->irq_work.waiters_pending) { 2633 cpu_buffer->irq_work.waiters_pending = false; 2634 /* irq_work_queue() supplies it's own memory barriers */ 2635 irq_work_queue(&cpu_buffer->irq_work.work); 2636 } 2637 2638 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched)) 2639 return; 2640 2641 if (cpu_buffer->reader_page == cpu_buffer->commit_page) 2642 return; 2643 2644 if (!cpu_buffer->irq_work.full_waiters_pending) 2645 return; 2646 2647 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched); 2648 2649 full = cpu_buffer->shortest_full; 2650 nr_pages = cpu_buffer->nr_pages; 2651 dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu); 2652 if (full && nr_pages && (dirty * 100) <= full * nr_pages) 2653 return; 2654 2655 cpu_buffer->irq_work.wakeup_full = true; 2656 cpu_buffer->irq_work.full_waiters_pending = false; 2657 /* irq_work_queue() supplies it's own memory barriers */ 2658 irq_work_queue(&cpu_buffer->irq_work.work); 2659 } 2660 2661 /* 2662 * The lock and unlock are done within a preempt disable section. 2663 * The current_context per_cpu variable can only be modified 2664 * by the current task between lock and unlock. But it can 2665 * be modified more than once via an interrupt. To pass this 2666 * information from the lock to the unlock without having to 2667 * access the 'in_interrupt()' functions again (which do show 2668 * a bit of overhead in something as critical as function tracing, 2669 * we use a bitmask trick. 2670 * 2671 * bit 0 = NMI context 2672 * bit 1 = IRQ context 2673 * bit 2 = SoftIRQ context 2674 * bit 3 = normal context. 2675 * 2676 * This works because this is the order of contexts that can 2677 * preempt other contexts. A SoftIRQ never preempts an IRQ 2678 * context. 2679 * 2680 * When the context is determined, the corresponding bit is 2681 * checked and set (if it was set, then a recursion of that context 2682 * happened). 2683 * 2684 * On unlock, we need to clear this bit. To do so, just subtract 2685 * 1 from the current_context and AND it to itself. 2686 * 2687 * (binary) 2688 * 101 - 1 = 100 2689 * 101 & 100 = 100 (clearing bit zero) 2690 * 2691 * 1010 - 1 = 1001 2692 * 1010 & 1001 = 1000 (clearing bit 1) 2693 * 2694 * The least significant bit can be cleared this way, and it 2695 * just so happens that it is the same bit corresponding to 2696 * the current context. 2697 */ 2698 2699 static __always_inline int 2700 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 2701 { 2702 unsigned int val = cpu_buffer->current_context; 2703 unsigned long pc = preempt_count(); 2704 int bit; 2705 2706 if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET))) 2707 bit = RB_CTX_NORMAL; 2708 else 2709 bit = pc & NMI_MASK ? RB_CTX_NMI : 2710 pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ; 2711 2712 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) 2713 return 1; 2714 2715 val |= (1 << (bit + cpu_buffer->nest)); 2716 cpu_buffer->current_context = val; 2717 2718 return 0; 2719 } 2720 2721 static __always_inline void 2722 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 2723 { 2724 cpu_buffer->current_context &= 2725 cpu_buffer->current_context - (1 << cpu_buffer->nest); 2726 } 2727 2728 /* The recursive locking above uses 4 bits */ 2729 #define NESTED_BITS 4 2730 2731 /** 2732 * ring_buffer_nest_start - Allow to trace while nested 2733 * @buffer: The ring buffer to modify 2734 * 2735 * The ring buffer has a safety mechanism to prevent recursion. 2736 * But there may be a case where a trace needs to be done while 2737 * tracing something else. In this case, calling this function 2738 * will allow this function to nest within a currently active 2739 * ring_buffer_lock_reserve(). 2740 * 2741 * Call this function before calling another ring_buffer_lock_reserve() and 2742 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). 2743 */ 2744 void ring_buffer_nest_start(struct ring_buffer *buffer) 2745 { 2746 struct ring_buffer_per_cpu *cpu_buffer; 2747 int cpu; 2748 2749 /* Enabled by ring_buffer_nest_end() */ 2750 preempt_disable_notrace(); 2751 cpu = raw_smp_processor_id(); 2752 cpu_buffer = buffer->buffers[cpu]; 2753 /* This is the shift value for the above recursive locking */ 2754 cpu_buffer->nest += NESTED_BITS; 2755 } 2756 2757 /** 2758 * ring_buffer_nest_end - Allow to trace while nested 2759 * @buffer: The ring buffer to modify 2760 * 2761 * Must be called after ring_buffer_nest_start() and after the 2762 * ring_buffer_unlock_commit(). 2763 */ 2764 void ring_buffer_nest_end(struct ring_buffer *buffer) 2765 { 2766 struct ring_buffer_per_cpu *cpu_buffer; 2767 int cpu; 2768 2769 /* disabled by ring_buffer_nest_start() */ 2770 cpu = raw_smp_processor_id(); 2771 cpu_buffer = buffer->buffers[cpu]; 2772 /* This is the shift value for the above recursive locking */ 2773 cpu_buffer->nest -= NESTED_BITS; 2774 preempt_enable_notrace(); 2775 } 2776 2777 /** 2778 * ring_buffer_unlock_commit - commit a reserved 2779 * @buffer: The buffer to commit to 2780 * @event: The event pointer to commit. 2781 * 2782 * This commits the data to the ring buffer, and releases any locks held. 2783 * 2784 * Must be paired with ring_buffer_lock_reserve. 2785 */ 2786 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2787 struct ring_buffer_event *event) 2788 { 2789 struct ring_buffer_per_cpu *cpu_buffer; 2790 int cpu = raw_smp_processor_id(); 2791 2792 cpu_buffer = buffer->buffers[cpu]; 2793 2794 rb_commit(cpu_buffer, event); 2795 2796 rb_wakeups(buffer, cpu_buffer); 2797 2798 trace_recursive_unlock(cpu_buffer); 2799 2800 preempt_enable_notrace(); 2801 2802 return 0; 2803 } 2804 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2805 2806 static noinline void 2807 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2808 struct rb_event_info *info) 2809 { 2810 WARN_ONCE(info->delta > (1ULL << 59), 2811 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2812 (unsigned long long)info->delta, 2813 (unsigned long long)info->ts, 2814 (unsigned long long)cpu_buffer->write_stamp, 2815 sched_clock_stable() ? "" : 2816 "If you just came from a suspend/resume,\n" 2817 "please switch to the trace global clock:\n" 2818 " echo global > /sys/kernel/debug/tracing/trace_clock\n" 2819 "or add trace_clock=global to the kernel command line\n"); 2820 info->add_timestamp = 1; 2821 } 2822 2823 static struct ring_buffer_event * 2824 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 2825 struct rb_event_info *info) 2826 { 2827 struct ring_buffer_event *event; 2828 struct buffer_page *tail_page; 2829 unsigned long tail, write; 2830 2831 /* 2832 * If the time delta since the last event is too big to 2833 * hold in the time field of the event, then we append a 2834 * TIME EXTEND event ahead of the data event. 2835 */ 2836 if (unlikely(info->add_timestamp)) 2837 info->length += RB_LEN_TIME_EXTEND; 2838 2839 /* Don't let the compiler play games with cpu_buffer->tail_page */ 2840 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 2841 write = local_add_return(info->length, &tail_page->write); 2842 2843 /* set write to only the index of the write */ 2844 write &= RB_WRITE_MASK; 2845 tail = write - info->length; 2846 2847 /* 2848 * If this is the first commit on the page, then it has the same 2849 * timestamp as the page itself. 2850 */ 2851 if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer)) 2852 info->delta = 0; 2853 2854 /* See if we shot pass the end of this buffer page */ 2855 if (unlikely(write > BUF_PAGE_SIZE)) 2856 return rb_move_tail(cpu_buffer, tail, info); 2857 2858 /* We reserved something on the buffer */ 2859 2860 event = __rb_page_index(tail_page, tail); 2861 rb_update_event(cpu_buffer, event, info); 2862 2863 local_inc(&tail_page->entries); 2864 2865 /* 2866 * If this is the first commit on the page, then update 2867 * its timestamp. 2868 */ 2869 if (!tail) 2870 tail_page->page->time_stamp = info->ts; 2871 2872 /* account for these added bytes */ 2873 local_add(info->length, &cpu_buffer->entries_bytes); 2874 2875 return event; 2876 } 2877 2878 static __always_inline struct ring_buffer_event * 2879 rb_reserve_next_event(struct ring_buffer *buffer, 2880 struct ring_buffer_per_cpu *cpu_buffer, 2881 unsigned long length) 2882 { 2883 struct ring_buffer_event *event; 2884 struct rb_event_info info; 2885 int nr_loops = 0; 2886 u64 diff; 2887 2888 rb_start_commit(cpu_buffer); 2889 2890 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2891 /* 2892 * Due to the ability to swap a cpu buffer from a buffer 2893 * it is possible it was swapped before we committed. 2894 * (committing stops a swap). We check for it here and 2895 * if it happened, we have to fail the write. 2896 */ 2897 barrier(); 2898 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 2899 local_dec(&cpu_buffer->committing); 2900 local_dec(&cpu_buffer->commits); 2901 return NULL; 2902 } 2903 #endif 2904 2905 info.length = rb_calculate_event_length(length); 2906 again: 2907 info.add_timestamp = 0; 2908 info.delta = 0; 2909 2910 /* 2911 * We allow for interrupts to reenter here and do a trace. 2912 * If one does, it will cause this original code to loop 2913 * back here. Even with heavy interrupts happening, this 2914 * should only happen a few times in a row. If this happens 2915 * 1000 times in a row, there must be either an interrupt 2916 * storm or we have something buggy. 2917 * Bail! 2918 */ 2919 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2920 goto out_fail; 2921 2922 info.ts = rb_time_stamp(cpu_buffer->buffer); 2923 diff = info.ts - cpu_buffer->write_stamp; 2924 2925 /* make sure this diff is calculated here */ 2926 barrier(); 2927 2928 if (ring_buffer_time_stamp_abs(buffer)) { 2929 info.delta = info.ts; 2930 rb_handle_timestamp(cpu_buffer, &info); 2931 } else /* Did the write stamp get updated already? */ 2932 if (likely(info.ts >= cpu_buffer->write_stamp)) { 2933 info.delta = diff; 2934 if (unlikely(test_time_stamp(info.delta))) 2935 rb_handle_timestamp(cpu_buffer, &info); 2936 } 2937 2938 event = __rb_reserve_next(cpu_buffer, &info); 2939 2940 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 2941 if (info.add_timestamp) 2942 info.length -= RB_LEN_TIME_EXTEND; 2943 goto again; 2944 } 2945 2946 if (!event) 2947 goto out_fail; 2948 2949 return event; 2950 2951 out_fail: 2952 rb_end_commit(cpu_buffer); 2953 return NULL; 2954 } 2955 2956 /** 2957 * ring_buffer_lock_reserve - reserve a part of the buffer 2958 * @buffer: the ring buffer to reserve from 2959 * @length: the length of the data to reserve (excluding event header) 2960 * 2961 * Returns a reserved event on the ring buffer to copy directly to. 2962 * The user of this interface will need to get the body to write into 2963 * and can use the ring_buffer_event_data() interface. 2964 * 2965 * The length is the length of the data needed, not the event length 2966 * which also includes the event header. 2967 * 2968 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2969 * If NULL is returned, then nothing has been allocated or locked. 2970 */ 2971 struct ring_buffer_event * 2972 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2973 { 2974 struct ring_buffer_per_cpu *cpu_buffer; 2975 struct ring_buffer_event *event; 2976 int cpu; 2977 2978 /* If we are tracing schedule, we don't want to recurse */ 2979 preempt_disable_notrace(); 2980 2981 if (unlikely(atomic_read(&buffer->record_disabled))) 2982 goto out; 2983 2984 cpu = raw_smp_processor_id(); 2985 2986 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 2987 goto out; 2988 2989 cpu_buffer = buffer->buffers[cpu]; 2990 2991 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 2992 goto out; 2993 2994 if (unlikely(length > BUF_MAX_DATA_SIZE)) 2995 goto out; 2996 2997 if (unlikely(trace_recursive_lock(cpu_buffer))) 2998 goto out; 2999 3000 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3001 if (!event) 3002 goto out_unlock; 3003 3004 return event; 3005 3006 out_unlock: 3007 trace_recursive_unlock(cpu_buffer); 3008 out: 3009 preempt_enable_notrace(); 3010 return NULL; 3011 } 3012 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 3013 3014 /* 3015 * Decrement the entries to the page that an event is on. 3016 * The event does not even need to exist, only the pointer 3017 * to the page it is on. This may only be called before the commit 3018 * takes place. 3019 */ 3020 static inline void 3021 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 3022 struct ring_buffer_event *event) 3023 { 3024 unsigned long addr = (unsigned long)event; 3025 struct buffer_page *bpage = cpu_buffer->commit_page; 3026 struct buffer_page *start; 3027 3028 addr &= PAGE_MASK; 3029 3030 /* Do the likely case first */ 3031 if (likely(bpage->page == (void *)addr)) { 3032 local_dec(&bpage->entries); 3033 return; 3034 } 3035 3036 /* 3037 * Because the commit page may be on the reader page we 3038 * start with the next page and check the end loop there. 3039 */ 3040 rb_inc_page(cpu_buffer, &bpage); 3041 start = bpage; 3042 do { 3043 if (bpage->page == (void *)addr) { 3044 local_dec(&bpage->entries); 3045 return; 3046 } 3047 rb_inc_page(cpu_buffer, &bpage); 3048 } while (bpage != start); 3049 3050 /* commit not part of this buffer?? */ 3051 RB_WARN_ON(cpu_buffer, 1); 3052 } 3053 3054 /** 3055 * ring_buffer_commit_discard - discard an event that has not been committed 3056 * @buffer: the ring buffer 3057 * @event: non committed event to discard 3058 * 3059 * Sometimes an event that is in the ring buffer needs to be ignored. 3060 * This function lets the user discard an event in the ring buffer 3061 * and then that event will not be read later. 3062 * 3063 * This function only works if it is called before the item has been 3064 * committed. It will try to free the event from the ring buffer 3065 * if another event has not been added behind it. 3066 * 3067 * If another event has been added behind it, it will set the event 3068 * up as discarded, and perform the commit. 3069 * 3070 * If this function is called, do not call ring_buffer_unlock_commit on 3071 * the event. 3072 */ 3073 void ring_buffer_discard_commit(struct ring_buffer *buffer, 3074 struct ring_buffer_event *event) 3075 { 3076 struct ring_buffer_per_cpu *cpu_buffer; 3077 int cpu; 3078 3079 /* The event is discarded regardless */ 3080 rb_event_discard(event); 3081 3082 cpu = smp_processor_id(); 3083 cpu_buffer = buffer->buffers[cpu]; 3084 3085 /* 3086 * This must only be called if the event has not been 3087 * committed yet. Thus we can assume that preemption 3088 * is still disabled. 3089 */ 3090 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 3091 3092 rb_decrement_entry(cpu_buffer, event); 3093 if (rb_try_to_discard(cpu_buffer, event)) 3094 goto out; 3095 3096 /* 3097 * The commit is still visible by the reader, so we 3098 * must still update the timestamp. 3099 */ 3100 rb_update_write_stamp(cpu_buffer, event); 3101 out: 3102 rb_end_commit(cpu_buffer); 3103 3104 trace_recursive_unlock(cpu_buffer); 3105 3106 preempt_enable_notrace(); 3107 3108 } 3109 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 3110 3111 /** 3112 * ring_buffer_write - write data to the buffer without reserving 3113 * @buffer: The ring buffer to write to. 3114 * @length: The length of the data being written (excluding the event header) 3115 * @data: The data to write to the buffer. 3116 * 3117 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 3118 * one function. If you already have the data to write to the buffer, it 3119 * may be easier to simply call this function. 3120 * 3121 * Note, like ring_buffer_lock_reserve, the length is the length of the data 3122 * and not the length of the event which would hold the header. 3123 */ 3124 int ring_buffer_write(struct ring_buffer *buffer, 3125 unsigned long length, 3126 void *data) 3127 { 3128 struct ring_buffer_per_cpu *cpu_buffer; 3129 struct ring_buffer_event *event; 3130 void *body; 3131 int ret = -EBUSY; 3132 int cpu; 3133 3134 preempt_disable_notrace(); 3135 3136 if (atomic_read(&buffer->record_disabled)) 3137 goto out; 3138 3139 cpu = raw_smp_processor_id(); 3140 3141 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3142 goto out; 3143 3144 cpu_buffer = buffer->buffers[cpu]; 3145 3146 if (atomic_read(&cpu_buffer->record_disabled)) 3147 goto out; 3148 3149 if (length > BUF_MAX_DATA_SIZE) 3150 goto out; 3151 3152 if (unlikely(trace_recursive_lock(cpu_buffer))) 3153 goto out; 3154 3155 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3156 if (!event) 3157 goto out_unlock; 3158 3159 body = rb_event_data(event); 3160 3161 memcpy(body, data, length); 3162 3163 rb_commit(cpu_buffer, event); 3164 3165 rb_wakeups(buffer, cpu_buffer); 3166 3167 ret = 0; 3168 3169 out_unlock: 3170 trace_recursive_unlock(cpu_buffer); 3171 3172 out: 3173 preempt_enable_notrace(); 3174 3175 return ret; 3176 } 3177 EXPORT_SYMBOL_GPL(ring_buffer_write); 3178 3179 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3180 { 3181 struct buffer_page *reader = cpu_buffer->reader_page; 3182 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3183 struct buffer_page *commit = cpu_buffer->commit_page; 3184 3185 /* In case of error, head will be NULL */ 3186 if (unlikely(!head)) 3187 return true; 3188 3189 return reader->read == rb_page_commit(reader) && 3190 (commit == reader || 3191 (commit == head && 3192 head->read == rb_page_commit(commit))); 3193 } 3194 3195 /** 3196 * ring_buffer_record_disable - stop all writes into the buffer 3197 * @buffer: The ring buffer to stop writes to. 3198 * 3199 * This prevents all writes to the buffer. Any attempt to write 3200 * to the buffer after this will fail and return NULL. 3201 * 3202 * The caller should call synchronize_rcu() after this. 3203 */ 3204 void ring_buffer_record_disable(struct ring_buffer *buffer) 3205 { 3206 atomic_inc(&buffer->record_disabled); 3207 } 3208 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3209 3210 /** 3211 * ring_buffer_record_enable - enable writes to the buffer 3212 * @buffer: The ring buffer to enable writes 3213 * 3214 * Note, multiple disables will need the same number of enables 3215 * to truly enable the writing (much like preempt_disable). 3216 */ 3217 void ring_buffer_record_enable(struct ring_buffer *buffer) 3218 { 3219 atomic_dec(&buffer->record_disabled); 3220 } 3221 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3222 3223 /** 3224 * ring_buffer_record_off - stop all writes into the buffer 3225 * @buffer: The ring buffer to stop writes to. 3226 * 3227 * This prevents all writes to the buffer. Any attempt to write 3228 * to the buffer after this will fail and return NULL. 3229 * 3230 * This is different than ring_buffer_record_disable() as 3231 * it works like an on/off switch, where as the disable() version 3232 * must be paired with a enable(). 3233 */ 3234 void ring_buffer_record_off(struct ring_buffer *buffer) 3235 { 3236 unsigned int rd; 3237 unsigned int new_rd; 3238 3239 do { 3240 rd = atomic_read(&buffer->record_disabled); 3241 new_rd = rd | RB_BUFFER_OFF; 3242 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3243 } 3244 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3245 3246 /** 3247 * ring_buffer_record_on - restart writes into the buffer 3248 * @buffer: The ring buffer to start writes to. 3249 * 3250 * This enables all writes to the buffer that was disabled by 3251 * ring_buffer_record_off(). 3252 * 3253 * This is different than ring_buffer_record_enable() as 3254 * it works like an on/off switch, where as the enable() version 3255 * must be paired with a disable(). 3256 */ 3257 void ring_buffer_record_on(struct ring_buffer *buffer) 3258 { 3259 unsigned int rd; 3260 unsigned int new_rd; 3261 3262 do { 3263 rd = atomic_read(&buffer->record_disabled); 3264 new_rd = rd & ~RB_BUFFER_OFF; 3265 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3266 } 3267 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 3268 3269 /** 3270 * ring_buffer_record_is_on - return true if the ring buffer can write 3271 * @buffer: The ring buffer to see if write is enabled 3272 * 3273 * Returns true if the ring buffer is in a state that it accepts writes. 3274 */ 3275 bool ring_buffer_record_is_on(struct ring_buffer *buffer) 3276 { 3277 return !atomic_read(&buffer->record_disabled); 3278 } 3279 3280 /** 3281 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable 3282 * @buffer: The ring buffer to see if write is set enabled 3283 * 3284 * Returns true if the ring buffer is set writable by ring_buffer_record_on(). 3285 * Note that this does NOT mean it is in a writable state. 3286 * 3287 * It may return true when the ring buffer has been disabled by 3288 * ring_buffer_record_disable(), as that is a temporary disabling of 3289 * the ring buffer. 3290 */ 3291 bool ring_buffer_record_is_set_on(struct ring_buffer *buffer) 3292 { 3293 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); 3294 } 3295 3296 /** 3297 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 3298 * @buffer: The ring buffer to stop writes to. 3299 * @cpu: The CPU buffer to stop 3300 * 3301 * This prevents all writes to the buffer. Any attempt to write 3302 * to the buffer after this will fail and return NULL. 3303 * 3304 * The caller should call synchronize_rcu() after this. 3305 */ 3306 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 3307 { 3308 struct ring_buffer_per_cpu *cpu_buffer; 3309 3310 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3311 return; 3312 3313 cpu_buffer = buffer->buffers[cpu]; 3314 atomic_inc(&cpu_buffer->record_disabled); 3315 } 3316 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 3317 3318 /** 3319 * ring_buffer_record_enable_cpu - enable writes to the buffer 3320 * @buffer: The ring buffer to enable writes 3321 * @cpu: The CPU to enable. 3322 * 3323 * Note, multiple disables will need the same number of enables 3324 * to truly enable the writing (much like preempt_disable). 3325 */ 3326 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 3327 { 3328 struct ring_buffer_per_cpu *cpu_buffer; 3329 3330 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3331 return; 3332 3333 cpu_buffer = buffer->buffers[cpu]; 3334 atomic_dec(&cpu_buffer->record_disabled); 3335 } 3336 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 3337 3338 /* 3339 * The total entries in the ring buffer is the running counter 3340 * of entries entered into the ring buffer, minus the sum of 3341 * the entries read from the ring buffer and the number of 3342 * entries that were overwritten. 3343 */ 3344 static inline unsigned long 3345 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 3346 { 3347 return local_read(&cpu_buffer->entries) - 3348 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 3349 } 3350 3351 /** 3352 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 3353 * @buffer: The ring buffer 3354 * @cpu: The per CPU buffer to read from. 3355 */ 3356 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu) 3357 { 3358 unsigned long flags; 3359 struct ring_buffer_per_cpu *cpu_buffer; 3360 struct buffer_page *bpage; 3361 u64 ret = 0; 3362 3363 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3364 return 0; 3365 3366 cpu_buffer = buffer->buffers[cpu]; 3367 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3368 /* 3369 * if the tail is on reader_page, oldest time stamp is on the reader 3370 * page 3371 */ 3372 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 3373 bpage = cpu_buffer->reader_page; 3374 else 3375 bpage = rb_set_head_page(cpu_buffer); 3376 if (bpage) 3377 ret = bpage->page->time_stamp; 3378 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3379 3380 return ret; 3381 } 3382 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3383 3384 /** 3385 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3386 * @buffer: The ring buffer 3387 * @cpu: The per CPU buffer to read from. 3388 */ 3389 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu) 3390 { 3391 struct ring_buffer_per_cpu *cpu_buffer; 3392 unsigned long ret; 3393 3394 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3395 return 0; 3396 3397 cpu_buffer = buffer->buffers[cpu]; 3398 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 3399 3400 return ret; 3401 } 3402 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 3403 3404 /** 3405 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 3406 * @buffer: The ring buffer 3407 * @cpu: The per CPU buffer to get the entries from. 3408 */ 3409 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 3410 { 3411 struct ring_buffer_per_cpu *cpu_buffer; 3412 3413 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3414 return 0; 3415 3416 cpu_buffer = buffer->buffers[cpu]; 3417 3418 return rb_num_of_entries(cpu_buffer); 3419 } 3420 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 3421 3422 /** 3423 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 3424 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 3425 * @buffer: The ring buffer 3426 * @cpu: The per CPU buffer to get the number of overruns from 3427 */ 3428 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 3429 { 3430 struct ring_buffer_per_cpu *cpu_buffer; 3431 unsigned long ret; 3432 3433 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3434 return 0; 3435 3436 cpu_buffer = buffer->buffers[cpu]; 3437 ret = local_read(&cpu_buffer->overrun); 3438 3439 return ret; 3440 } 3441 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 3442 3443 /** 3444 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 3445 * commits failing due to the buffer wrapping around while there are uncommitted 3446 * events, such as during an interrupt storm. 3447 * @buffer: The ring buffer 3448 * @cpu: The per CPU buffer to get the number of overruns from 3449 */ 3450 unsigned long 3451 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 3452 { 3453 struct ring_buffer_per_cpu *cpu_buffer; 3454 unsigned long ret; 3455 3456 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3457 return 0; 3458 3459 cpu_buffer = buffer->buffers[cpu]; 3460 ret = local_read(&cpu_buffer->commit_overrun); 3461 3462 return ret; 3463 } 3464 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 3465 3466 /** 3467 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 3468 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 3469 * @buffer: The ring buffer 3470 * @cpu: The per CPU buffer to get the number of overruns from 3471 */ 3472 unsigned long 3473 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu) 3474 { 3475 struct ring_buffer_per_cpu *cpu_buffer; 3476 unsigned long ret; 3477 3478 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3479 return 0; 3480 3481 cpu_buffer = buffer->buffers[cpu]; 3482 ret = local_read(&cpu_buffer->dropped_events); 3483 3484 return ret; 3485 } 3486 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 3487 3488 /** 3489 * ring_buffer_read_events_cpu - get the number of events successfully read 3490 * @buffer: The ring buffer 3491 * @cpu: The per CPU buffer to get the number of events read 3492 */ 3493 unsigned long 3494 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu) 3495 { 3496 struct ring_buffer_per_cpu *cpu_buffer; 3497 3498 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3499 return 0; 3500 3501 cpu_buffer = buffer->buffers[cpu]; 3502 return cpu_buffer->read; 3503 } 3504 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 3505 3506 /** 3507 * ring_buffer_entries - get the number of entries in a buffer 3508 * @buffer: The ring buffer 3509 * 3510 * Returns the total number of entries in the ring buffer 3511 * (all CPU entries) 3512 */ 3513 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 3514 { 3515 struct ring_buffer_per_cpu *cpu_buffer; 3516 unsigned long entries = 0; 3517 int cpu; 3518 3519 /* if you care about this being correct, lock the buffer */ 3520 for_each_buffer_cpu(buffer, cpu) { 3521 cpu_buffer = buffer->buffers[cpu]; 3522 entries += rb_num_of_entries(cpu_buffer); 3523 } 3524 3525 return entries; 3526 } 3527 EXPORT_SYMBOL_GPL(ring_buffer_entries); 3528 3529 /** 3530 * ring_buffer_overruns - get the number of overruns in buffer 3531 * @buffer: The ring buffer 3532 * 3533 * Returns the total number of overruns in the ring buffer 3534 * (all CPU entries) 3535 */ 3536 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 3537 { 3538 struct ring_buffer_per_cpu *cpu_buffer; 3539 unsigned long overruns = 0; 3540 int cpu; 3541 3542 /* if you care about this being correct, lock the buffer */ 3543 for_each_buffer_cpu(buffer, cpu) { 3544 cpu_buffer = buffer->buffers[cpu]; 3545 overruns += local_read(&cpu_buffer->overrun); 3546 } 3547 3548 return overruns; 3549 } 3550 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 3551 3552 static void rb_iter_reset(struct ring_buffer_iter *iter) 3553 { 3554 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3555 3556 /* Iterator usage is expected to have record disabled */ 3557 iter->head_page = cpu_buffer->reader_page; 3558 iter->head = cpu_buffer->reader_page->read; 3559 3560 iter->cache_reader_page = iter->head_page; 3561 iter->cache_read = cpu_buffer->read; 3562 3563 if (iter->head) 3564 iter->read_stamp = cpu_buffer->read_stamp; 3565 else 3566 iter->read_stamp = iter->head_page->page->time_stamp; 3567 } 3568 3569 /** 3570 * ring_buffer_iter_reset - reset an iterator 3571 * @iter: The iterator to reset 3572 * 3573 * Resets the iterator, so that it will start from the beginning 3574 * again. 3575 */ 3576 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 3577 { 3578 struct ring_buffer_per_cpu *cpu_buffer; 3579 unsigned long flags; 3580 3581 if (!iter) 3582 return; 3583 3584 cpu_buffer = iter->cpu_buffer; 3585 3586 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3587 rb_iter_reset(iter); 3588 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3589 } 3590 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 3591 3592 /** 3593 * ring_buffer_iter_empty - check if an iterator has no more to read 3594 * @iter: The iterator to check 3595 */ 3596 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 3597 { 3598 struct ring_buffer_per_cpu *cpu_buffer; 3599 struct buffer_page *reader; 3600 struct buffer_page *head_page; 3601 struct buffer_page *commit_page; 3602 unsigned commit; 3603 3604 cpu_buffer = iter->cpu_buffer; 3605 3606 /* Remember, trace recording is off when iterator is in use */ 3607 reader = cpu_buffer->reader_page; 3608 head_page = cpu_buffer->head_page; 3609 commit_page = cpu_buffer->commit_page; 3610 commit = rb_page_commit(commit_page); 3611 3612 return ((iter->head_page == commit_page && iter->head == commit) || 3613 (iter->head_page == reader && commit_page == head_page && 3614 head_page->read == commit && 3615 iter->head == rb_page_commit(cpu_buffer->reader_page))); 3616 } 3617 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 3618 3619 static void 3620 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3621 struct ring_buffer_event *event) 3622 { 3623 u64 delta; 3624 3625 switch (event->type_len) { 3626 case RINGBUF_TYPE_PADDING: 3627 return; 3628 3629 case RINGBUF_TYPE_TIME_EXTEND: 3630 delta = ring_buffer_event_time_stamp(event); 3631 cpu_buffer->read_stamp += delta; 3632 return; 3633 3634 case RINGBUF_TYPE_TIME_STAMP: 3635 delta = ring_buffer_event_time_stamp(event); 3636 cpu_buffer->read_stamp = delta; 3637 return; 3638 3639 case RINGBUF_TYPE_DATA: 3640 cpu_buffer->read_stamp += event->time_delta; 3641 return; 3642 3643 default: 3644 BUG(); 3645 } 3646 return; 3647 } 3648 3649 static void 3650 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 3651 struct ring_buffer_event *event) 3652 { 3653 u64 delta; 3654 3655 switch (event->type_len) { 3656 case RINGBUF_TYPE_PADDING: 3657 return; 3658 3659 case RINGBUF_TYPE_TIME_EXTEND: 3660 delta = ring_buffer_event_time_stamp(event); 3661 iter->read_stamp += delta; 3662 return; 3663 3664 case RINGBUF_TYPE_TIME_STAMP: 3665 delta = ring_buffer_event_time_stamp(event); 3666 iter->read_stamp = delta; 3667 return; 3668 3669 case RINGBUF_TYPE_DATA: 3670 iter->read_stamp += event->time_delta; 3671 return; 3672 3673 default: 3674 BUG(); 3675 } 3676 return; 3677 } 3678 3679 static struct buffer_page * 3680 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 3681 { 3682 struct buffer_page *reader = NULL; 3683 unsigned long overwrite; 3684 unsigned long flags; 3685 int nr_loops = 0; 3686 int ret; 3687 3688 local_irq_save(flags); 3689 arch_spin_lock(&cpu_buffer->lock); 3690 3691 again: 3692 /* 3693 * This should normally only loop twice. But because the 3694 * start of the reader inserts an empty page, it causes 3695 * a case where we will loop three times. There should be no 3696 * reason to loop four times (that I know of). 3697 */ 3698 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 3699 reader = NULL; 3700 goto out; 3701 } 3702 3703 reader = cpu_buffer->reader_page; 3704 3705 /* If there's more to read, return this page */ 3706 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 3707 goto out; 3708 3709 /* Never should we have an index greater than the size */ 3710 if (RB_WARN_ON(cpu_buffer, 3711 cpu_buffer->reader_page->read > rb_page_size(reader))) 3712 goto out; 3713 3714 /* check if we caught up to the tail */ 3715 reader = NULL; 3716 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 3717 goto out; 3718 3719 /* Don't bother swapping if the ring buffer is empty */ 3720 if (rb_num_of_entries(cpu_buffer) == 0) 3721 goto out; 3722 3723 /* 3724 * Reset the reader page to size zero. 3725 */ 3726 local_set(&cpu_buffer->reader_page->write, 0); 3727 local_set(&cpu_buffer->reader_page->entries, 0); 3728 local_set(&cpu_buffer->reader_page->page->commit, 0); 3729 cpu_buffer->reader_page->real_end = 0; 3730 3731 spin: 3732 /* 3733 * Splice the empty reader page into the list around the head. 3734 */ 3735 reader = rb_set_head_page(cpu_buffer); 3736 if (!reader) 3737 goto out; 3738 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 3739 cpu_buffer->reader_page->list.prev = reader->list.prev; 3740 3741 /* 3742 * cpu_buffer->pages just needs to point to the buffer, it 3743 * has no specific buffer page to point to. Lets move it out 3744 * of our way so we don't accidentally swap it. 3745 */ 3746 cpu_buffer->pages = reader->list.prev; 3747 3748 /* The reader page will be pointing to the new head */ 3749 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 3750 3751 /* 3752 * We want to make sure we read the overruns after we set up our 3753 * pointers to the next object. The writer side does a 3754 * cmpxchg to cross pages which acts as the mb on the writer 3755 * side. Note, the reader will constantly fail the swap 3756 * while the writer is updating the pointers, so this 3757 * guarantees that the overwrite recorded here is the one we 3758 * want to compare with the last_overrun. 3759 */ 3760 smp_mb(); 3761 overwrite = local_read(&(cpu_buffer->overrun)); 3762 3763 /* 3764 * Here's the tricky part. 3765 * 3766 * We need to move the pointer past the header page. 3767 * But we can only do that if a writer is not currently 3768 * moving it. The page before the header page has the 3769 * flag bit '1' set if it is pointing to the page we want. 3770 * but if the writer is in the process of moving it 3771 * than it will be '2' or already moved '0'. 3772 */ 3773 3774 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 3775 3776 /* 3777 * If we did not convert it, then we must try again. 3778 */ 3779 if (!ret) 3780 goto spin; 3781 3782 /* 3783 * Yay! We succeeded in replacing the page. 3784 * 3785 * Now make the new head point back to the reader page. 3786 */ 3787 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 3788 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 3789 3790 local_inc(&cpu_buffer->pages_read); 3791 3792 /* Finally update the reader page to the new head */ 3793 cpu_buffer->reader_page = reader; 3794 cpu_buffer->reader_page->read = 0; 3795 3796 if (overwrite != cpu_buffer->last_overrun) { 3797 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 3798 cpu_buffer->last_overrun = overwrite; 3799 } 3800 3801 goto again; 3802 3803 out: 3804 /* Update the read_stamp on the first event */ 3805 if (reader && reader->read == 0) 3806 cpu_buffer->read_stamp = reader->page->time_stamp; 3807 3808 arch_spin_unlock(&cpu_buffer->lock); 3809 local_irq_restore(flags); 3810 3811 return reader; 3812 } 3813 3814 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3815 { 3816 struct ring_buffer_event *event; 3817 struct buffer_page *reader; 3818 unsigned length; 3819 3820 reader = rb_get_reader_page(cpu_buffer); 3821 3822 /* This function should not be called when buffer is empty */ 3823 if (RB_WARN_ON(cpu_buffer, !reader)) 3824 return; 3825 3826 event = rb_reader_event(cpu_buffer); 3827 3828 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3829 cpu_buffer->read++; 3830 3831 rb_update_read_stamp(cpu_buffer, event); 3832 3833 length = rb_event_length(event); 3834 cpu_buffer->reader_page->read += length; 3835 } 3836 3837 static void rb_advance_iter(struct ring_buffer_iter *iter) 3838 { 3839 struct ring_buffer_per_cpu *cpu_buffer; 3840 struct ring_buffer_event *event; 3841 unsigned length; 3842 3843 cpu_buffer = iter->cpu_buffer; 3844 3845 /* 3846 * Check if we are at the end of the buffer. 3847 */ 3848 if (iter->head >= rb_page_size(iter->head_page)) { 3849 /* discarded commits can make the page empty */ 3850 if (iter->head_page == cpu_buffer->commit_page) 3851 return; 3852 rb_inc_iter(iter); 3853 return; 3854 } 3855 3856 event = rb_iter_head_event(iter); 3857 3858 length = rb_event_length(event); 3859 3860 /* 3861 * This should not be called to advance the header if we are 3862 * at the tail of the buffer. 3863 */ 3864 if (RB_WARN_ON(cpu_buffer, 3865 (iter->head_page == cpu_buffer->commit_page) && 3866 (iter->head + length > rb_commit_index(cpu_buffer)))) 3867 return; 3868 3869 rb_update_iter_read_stamp(iter, event); 3870 3871 iter->head += length; 3872 3873 /* check for end of page padding */ 3874 if ((iter->head >= rb_page_size(iter->head_page)) && 3875 (iter->head_page != cpu_buffer->commit_page)) 3876 rb_inc_iter(iter); 3877 } 3878 3879 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3880 { 3881 return cpu_buffer->lost_events; 3882 } 3883 3884 static struct ring_buffer_event * 3885 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3886 unsigned long *lost_events) 3887 { 3888 struct ring_buffer_event *event; 3889 struct buffer_page *reader; 3890 int nr_loops = 0; 3891 3892 if (ts) 3893 *ts = 0; 3894 again: 3895 /* 3896 * We repeat when a time extend is encountered. 3897 * Since the time extend is always attached to a data event, 3898 * we should never loop more than once. 3899 * (We never hit the following condition more than twice). 3900 */ 3901 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3902 return NULL; 3903 3904 reader = rb_get_reader_page(cpu_buffer); 3905 if (!reader) 3906 return NULL; 3907 3908 event = rb_reader_event(cpu_buffer); 3909 3910 switch (event->type_len) { 3911 case RINGBUF_TYPE_PADDING: 3912 if (rb_null_event(event)) 3913 RB_WARN_ON(cpu_buffer, 1); 3914 /* 3915 * Because the writer could be discarding every 3916 * event it creates (which would probably be bad) 3917 * if we were to go back to "again" then we may never 3918 * catch up, and will trigger the warn on, or lock 3919 * the box. Return the padding, and we will release 3920 * the current locks, and try again. 3921 */ 3922 return event; 3923 3924 case RINGBUF_TYPE_TIME_EXTEND: 3925 /* Internal data, OK to advance */ 3926 rb_advance_reader(cpu_buffer); 3927 goto again; 3928 3929 case RINGBUF_TYPE_TIME_STAMP: 3930 if (ts) { 3931 *ts = ring_buffer_event_time_stamp(event); 3932 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3933 cpu_buffer->cpu, ts); 3934 } 3935 /* Internal data, OK to advance */ 3936 rb_advance_reader(cpu_buffer); 3937 goto again; 3938 3939 case RINGBUF_TYPE_DATA: 3940 if (ts && !(*ts)) { 3941 *ts = cpu_buffer->read_stamp + event->time_delta; 3942 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3943 cpu_buffer->cpu, ts); 3944 } 3945 if (lost_events) 3946 *lost_events = rb_lost_events(cpu_buffer); 3947 return event; 3948 3949 default: 3950 BUG(); 3951 } 3952 3953 return NULL; 3954 } 3955 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3956 3957 static struct ring_buffer_event * 3958 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3959 { 3960 struct ring_buffer *buffer; 3961 struct ring_buffer_per_cpu *cpu_buffer; 3962 struct ring_buffer_event *event; 3963 int nr_loops = 0; 3964 3965 if (ts) 3966 *ts = 0; 3967 3968 cpu_buffer = iter->cpu_buffer; 3969 buffer = cpu_buffer->buffer; 3970 3971 /* 3972 * Check if someone performed a consuming read to 3973 * the buffer. A consuming read invalidates the iterator 3974 * and we need to reset the iterator in this case. 3975 */ 3976 if (unlikely(iter->cache_read != cpu_buffer->read || 3977 iter->cache_reader_page != cpu_buffer->reader_page)) 3978 rb_iter_reset(iter); 3979 3980 again: 3981 if (ring_buffer_iter_empty(iter)) 3982 return NULL; 3983 3984 /* 3985 * We repeat when a time extend is encountered or we hit 3986 * the end of the page. Since the time extend is always attached 3987 * to a data event, we should never loop more than three times. 3988 * Once for going to next page, once on time extend, and 3989 * finally once to get the event. 3990 * (We never hit the following condition more than thrice). 3991 */ 3992 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) 3993 return NULL; 3994 3995 if (rb_per_cpu_empty(cpu_buffer)) 3996 return NULL; 3997 3998 if (iter->head >= rb_page_size(iter->head_page)) { 3999 rb_inc_iter(iter); 4000 goto again; 4001 } 4002 4003 event = rb_iter_head_event(iter); 4004 4005 switch (event->type_len) { 4006 case RINGBUF_TYPE_PADDING: 4007 if (rb_null_event(event)) { 4008 rb_inc_iter(iter); 4009 goto again; 4010 } 4011 rb_advance_iter(iter); 4012 return event; 4013 4014 case RINGBUF_TYPE_TIME_EXTEND: 4015 /* Internal data, OK to advance */ 4016 rb_advance_iter(iter); 4017 goto again; 4018 4019 case RINGBUF_TYPE_TIME_STAMP: 4020 if (ts) { 4021 *ts = ring_buffer_event_time_stamp(event); 4022 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4023 cpu_buffer->cpu, ts); 4024 } 4025 /* Internal data, OK to advance */ 4026 rb_advance_iter(iter); 4027 goto again; 4028 4029 case RINGBUF_TYPE_DATA: 4030 if (ts && !(*ts)) { 4031 *ts = iter->read_stamp + event->time_delta; 4032 ring_buffer_normalize_time_stamp(buffer, 4033 cpu_buffer->cpu, ts); 4034 } 4035 return event; 4036 4037 default: 4038 BUG(); 4039 } 4040 4041 return NULL; 4042 } 4043 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 4044 4045 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 4046 { 4047 if (likely(!in_nmi())) { 4048 raw_spin_lock(&cpu_buffer->reader_lock); 4049 return true; 4050 } 4051 4052 /* 4053 * If an NMI die dumps out the content of the ring buffer 4054 * trylock must be used to prevent a deadlock if the NMI 4055 * preempted a task that holds the ring buffer locks. If 4056 * we get the lock then all is fine, if not, then continue 4057 * to do the read, but this can corrupt the ring buffer, 4058 * so it must be permanently disabled from future writes. 4059 * Reading from NMI is a oneshot deal. 4060 */ 4061 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 4062 return true; 4063 4064 /* Continue without locking, but disable the ring buffer */ 4065 atomic_inc(&cpu_buffer->record_disabled); 4066 return false; 4067 } 4068 4069 static inline void 4070 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 4071 { 4072 if (likely(locked)) 4073 raw_spin_unlock(&cpu_buffer->reader_lock); 4074 return; 4075 } 4076 4077 /** 4078 * ring_buffer_peek - peek at the next event to be read 4079 * @buffer: The ring buffer to read 4080 * @cpu: The cpu to peak at 4081 * @ts: The timestamp counter of this event. 4082 * @lost_events: a variable to store if events were lost (may be NULL) 4083 * 4084 * This will return the event that will be read next, but does 4085 * not consume the data. 4086 */ 4087 struct ring_buffer_event * 4088 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, 4089 unsigned long *lost_events) 4090 { 4091 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4092 struct ring_buffer_event *event; 4093 unsigned long flags; 4094 bool dolock; 4095 4096 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4097 return NULL; 4098 4099 again: 4100 local_irq_save(flags); 4101 dolock = rb_reader_lock(cpu_buffer); 4102 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4103 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4104 rb_advance_reader(cpu_buffer); 4105 rb_reader_unlock(cpu_buffer, dolock); 4106 local_irq_restore(flags); 4107 4108 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4109 goto again; 4110 4111 return event; 4112 } 4113 4114 /** 4115 * ring_buffer_iter_peek - peek at the next event to be read 4116 * @iter: The ring buffer iterator 4117 * @ts: The timestamp counter of this event. 4118 * 4119 * This will return the event that will be read next, but does 4120 * not increment the iterator. 4121 */ 4122 struct ring_buffer_event * 4123 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4124 { 4125 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4126 struct ring_buffer_event *event; 4127 unsigned long flags; 4128 4129 again: 4130 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4131 event = rb_iter_peek(iter, ts); 4132 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4133 4134 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4135 goto again; 4136 4137 return event; 4138 } 4139 4140 /** 4141 * ring_buffer_consume - return an event and consume it 4142 * @buffer: The ring buffer to get the next event from 4143 * @cpu: the cpu to read the buffer from 4144 * @ts: a variable to store the timestamp (may be NULL) 4145 * @lost_events: a variable to store if events were lost (may be NULL) 4146 * 4147 * Returns the next event in the ring buffer, and that event is consumed. 4148 * Meaning, that sequential reads will keep returning a different event, 4149 * and eventually empty the ring buffer if the producer is slower. 4150 */ 4151 struct ring_buffer_event * 4152 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, 4153 unsigned long *lost_events) 4154 { 4155 struct ring_buffer_per_cpu *cpu_buffer; 4156 struct ring_buffer_event *event = NULL; 4157 unsigned long flags; 4158 bool dolock; 4159 4160 again: 4161 /* might be called in atomic */ 4162 preempt_disable(); 4163 4164 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4165 goto out; 4166 4167 cpu_buffer = buffer->buffers[cpu]; 4168 local_irq_save(flags); 4169 dolock = rb_reader_lock(cpu_buffer); 4170 4171 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4172 if (event) { 4173 cpu_buffer->lost_events = 0; 4174 rb_advance_reader(cpu_buffer); 4175 } 4176 4177 rb_reader_unlock(cpu_buffer, dolock); 4178 local_irq_restore(flags); 4179 4180 out: 4181 preempt_enable(); 4182 4183 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4184 goto again; 4185 4186 return event; 4187 } 4188 EXPORT_SYMBOL_GPL(ring_buffer_consume); 4189 4190 /** 4191 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 4192 * @buffer: The ring buffer to read from 4193 * @cpu: The cpu buffer to iterate over 4194 * @flags: gfp flags to use for memory allocation 4195 * 4196 * This performs the initial preparations necessary to iterate 4197 * through the buffer. Memory is allocated, buffer recording 4198 * is disabled, and the iterator pointer is returned to the caller. 4199 * 4200 * Disabling buffer recording prevents the reading from being 4201 * corrupted. This is not a consuming read, so a producer is not 4202 * expected. 4203 * 4204 * After a sequence of ring_buffer_read_prepare calls, the user is 4205 * expected to make at least one call to ring_buffer_read_prepare_sync. 4206 * Afterwards, ring_buffer_read_start is invoked to get things going 4207 * for real. 4208 * 4209 * This overall must be paired with ring_buffer_read_finish. 4210 */ 4211 struct ring_buffer_iter * 4212 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu, gfp_t flags) 4213 { 4214 struct ring_buffer_per_cpu *cpu_buffer; 4215 struct ring_buffer_iter *iter; 4216 4217 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4218 return NULL; 4219 4220 iter = kmalloc(sizeof(*iter), flags); 4221 if (!iter) 4222 return NULL; 4223 4224 cpu_buffer = buffer->buffers[cpu]; 4225 4226 iter->cpu_buffer = cpu_buffer; 4227 4228 atomic_inc(&buffer->resize_disabled); 4229 atomic_inc(&cpu_buffer->record_disabled); 4230 4231 return iter; 4232 } 4233 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 4234 4235 /** 4236 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 4237 * 4238 * All previously invoked ring_buffer_read_prepare calls to prepare 4239 * iterators will be synchronized. Afterwards, read_buffer_read_start 4240 * calls on those iterators are allowed. 4241 */ 4242 void 4243 ring_buffer_read_prepare_sync(void) 4244 { 4245 synchronize_rcu(); 4246 } 4247 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 4248 4249 /** 4250 * ring_buffer_read_start - start a non consuming read of the buffer 4251 * @iter: The iterator returned by ring_buffer_read_prepare 4252 * 4253 * This finalizes the startup of an iteration through the buffer. 4254 * The iterator comes from a call to ring_buffer_read_prepare and 4255 * an intervening ring_buffer_read_prepare_sync must have been 4256 * performed. 4257 * 4258 * Must be paired with ring_buffer_read_finish. 4259 */ 4260 void 4261 ring_buffer_read_start(struct ring_buffer_iter *iter) 4262 { 4263 struct ring_buffer_per_cpu *cpu_buffer; 4264 unsigned long flags; 4265 4266 if (!iter) 4267 return; 4268 4269 cpu_buffer = iter->cpu_buffer; 4270 4271 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4272 arch_spin_lock(&cpu_buffer->lock); 4273 rb_iter_reset(iter); 4274 arch_spin_unlock(&cpu_buffer->lock); 4275 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4276 } 4277 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 4278 4279 /** 4280 * ring_buffer_read_finish - finish reading the iterator of the buffer 4281 * @iter: The iterator retrieved by ring_buffer_start 4282 * 4283 * This re-enables the recording to the buffer, and frees the 4284 * iterator. 4285 */ 4286 void 4287 ring_buffer_read_finish(struct ring_buffer_iter *iter) 4288 { 4289 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4290 unsigned long flags; 4291 4292 /* 4293 * Ring buffer is disabled from recording, here's a good place 4294 * to check the integrity of the ring buffer. 4295 * Must prevent readers from trying to read, as the check 4296 * clears the HEAD page and readers require it. 4297 */ 4298 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4299 rb_check_pages(cpu_buffer); 4300 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4301 4302 atomic_dec(&cpu_buffer->record_disabled); 4303 atomic_dec(&cpu_buffer->buffer->resize_disabled); 4304 kfree(iter); 4305 } 4306 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 4307 4308 /** 4309 * ring_buffer_read - read the next item in the ring buffer by the iterator 4310 * @iter: The ring buffer iterator 4311 * @ts: The time stamp of the event read. 4312 * 4313 * This reads the next event in the ring buffer and increments the iterator. 4314 */ 4315 struct ring_buffer_event * 4316 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 4317 { 4318 struct ring_buffer_event *event; 4319 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4320 unsigned long flags; 4321 4322 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4323 again: 4324 event = rb_iter_peek(iter, ts); 4325 if (!event) 4326 goto out; 4327 4328 if (event->type_len == RINGBUF_TYPE_PADDING) 4329 goto again; 4330 4331 rb_advance_iter(iter); 4332 out: 4333 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4334 4335 return event; 4336 } 4337 EXPORT_SYMBOL_GPL(ring_buffer_read); 4338 4339 /** 4340 * ring_buffer_size - return the size of the ring buffer (in bytes) 4341 * @buffer: The ring buffer. 4342 */ 4343 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu) 4344 { 4345 /* 4346 * Earlier, this method returned 4347 * BUF_PAGE_SIZE * buffer->nr_pages 4348 * Since the nr_pages field is now removed, we have converted this to 4349 * return the per cpu buffer value. 4350 */ 4351 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4352 return 0; 4353 4354 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 4355 } 4356 EXPORT_SYMBOL_GPL(ring_buffer_size); 4357 4358 static void 4359 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 4360 { 4361 rb_head_page_deactivate(cpu_buffer); 4362 4363 cpu_buffer->head_page 4364 = list_entry(cpu_buffer->pages, struct buffer_page, list); 4365 local_set(&cpu_buffer->head_page->write, 0); 4366 local_set(&cpu_buffer->head_page->entries, 0); 4367 local_set(&cpu_buffer->head_page->page->commit, 0); 4368 4369 cpu_buffer->head_page->read = 0; 4370 4371 cpu_buffer->tail_page = cpu_buffer->head_page; 4372 cpu_buffer->commit_page = cpu_buffer->head_page; 4373 4374 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 4375 INIT_LIST_HEAD(&cpu_buffer->new_pages); 4376 local_set(&cpu_buffer->reader_page->write, 0); 4377 local_set(&cpu_buffer->reader_page->entries, 0); 4378 local_set(&cpu_buffer->reader_page->page->commit, 0); 4379 cpu_buffer->reader_page->read = 0; 4380 4381 local_set(&cpu_buffer->entries_bytes, 0); 4382 local_set(&cpu_buffer->overrun, 0); 4383 local_set(&cpu_buffer->commit_overrun, 0); 4384 local_set(&cpu_buffer->dropped_events, 0); 4385 local_set(&cpu_buffer->entries, 0); 4386 local_set(&cpu_buffer->committing, 0); 4387 local_set(&cpu_buffer->commits, 0); 4388 local_set(&cpu_buffer->pages_touched, 0); 4389 local_set(&cpu_buffer->pages_read, 0); 4390 cpu_buffer->last_pages_touch = 0; 4391 cpu_buffer->shortest_full = 0; 4392 cpu_buffer->read = 0; 4393 cpu_buffer->read_bytes = 0; 4394 4395 cpu_buffer->write_stamp = 0; 4396 cpu_buffer->read_stamp = 0; 4397 4398 cpu_buffer->lost_events = 0; 4399 cpu_buffer->last_overrun = 0; 4400 4401 rb_head_page_activate(cpu_buffer); 4402 } 4403 4404 /** 4405 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 4406 * @buffer: The ring buffer to reset a per cpu buffer of 4407 * @cpu: The CPU buffer to be reset 4408 */ 4409 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 4410 { 4411 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4412 unsigned long flags; 4413 4414 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4415 return; 4416 4417 atomic_inc(&buffer->resize_disabled); 4418 atomic_inc(&cpu_buffer->record_disabled); 4419 4420 /* Make sure all commits have finished */ 4421 synchronize_rcu(); 4422 4423 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4424 4425 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 4426 goto out; 4427 4428 arch_spin_lock(&cpu_buffer->lock); 4429 4430 rb_reset_cpu(cpu_buffer); 4431 4432 arch_spin_unlock(&cpu_buffer->lock); 4433 4434 out: 4435 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4436 4437 atomic_dec(&cpu_buffer->record_disabled); 4438 atomic_dec(&buffer->resize_disabled); 4439 } 4440 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 4441 4442 /** 4443 * ring_buffer_reset - reset a ring buffer 4444 * @buffer: The ring buffer to reset all cpu buffers 4445 */ 4446 void ring_buffer_reset(struct ring_buffer *buffer) 4447 { 4448 int cpu; 4449 4450 for_each_buffer_cpu(buffer, cpu) 4451 ring_buffer_reset_cpu(buffer, cpu); 4452 } 4453 EXPORT_SYMBOL_GPL(ring_buffer_reset); 4454 4455 /** 4456 * rind_buffer_empty - is the ring buffer empty? 4457 * @buffer: The ring buffer to test 4458 */ 4459 bool ring_buffer_empty(struct ring_buffer *buffer) 4460 { 4461 struct ring_buffer_per_cpu *cpu_buffer; 4462 unsigned long flags; 4463 bool dolock; 4464 int cpu; 4465 int ret; 4466 4467 /* yes this is racy, but if you don't like the race, lock the buffer */ 4468 for_each_buffer_cpu(buffer, cpu) { 4469 cpu_buffer = buffer->buffers[cpu]; 4470 local_irq_save(flags); 4471 dolock = rb_reader_lock(cpu_buffer); 4472 ret = rb_per_cpu_empty(cpu_buffer); 4473 rb_reader_unlock(cpu_buffer, dolock); 4474 local_irq_restore(flags); 4475 4476 if (!ret) 4477 return false; 4478 } 4479 4480 return true; 4481 } 4482 EXPORT_SYMBOL_GPL(ring_buffer_empty); 4483 4484 /** 4485 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 4486 * @buffer: The ring buffer 4487 * @cpu: The CPU buffer to test 4488 */ 4489 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 4490 { 4491 struct ring_buffer_per_cpu *cpu_buffer; 4492 unsigned long flags; 4493 bool dolock; 4494 int ret; 4495 4496 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4497 return true; 4498 4499 cpu_buffer = buffer->buffers[cpu]; 4500 local_irq_save(flags); 4501 dolock = rb_reader_lock(cpu_buffer); 4502 ret = rb_per_cpu_empty(cpu_buffer); 4503 rb_reader_unlock(cpu_buffer, dolock); 4504 local_irq_restore(flags); 4505 4506 return ret; 4507 } 4508 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 4509 4510 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4511 /** 4512 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 4513 * @buffer_a: One buffer to swap with 4514 * @buffer_b: The other buffer to swap with 4515 * 4516 * This function is useful for tracers that want to take a "snapshot" 4517 * of a CPU buffer and has another back up buffer lying around. 4518 * it is expected that the tracer handles the cpu buffer not being 4519 * used at the moment. 4520 */ 4521 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 4522 struct ring_buffer *buffer_b, int cpu) 4523 { 4524 struct ring_buffer_per_cpu *cpu_buffer_a; 4525 struct ring_buffer_per_cpu *cpu_buffer_b; 4526 int ret = -EINVAL; 4527 4528 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 4529 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 4530 goto out; 4531 4532 cpu_buffer_a = buffer_a->buffers[cpu]; 4533 cpu_buffer_b = buffer_b->buffers[cpu]; 4534 4535 /* At least make sure the two buffers are somewhat the same */ 4536 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 4537 goto out; 4538 4539 ret = -EAGAIN; 4540 4541 if (atomic_read(&buffer_a->record_disabled)) 4542 goto out; 4543 4544 if (atomic_read(&buffer_b->record_disabled)) 4545 goto out; 4546 4547 if (atomic_read(&cpu_buffer_a->record_disabled)) 4548 goto out; 4549 4550 if (atomic_read(&cpu_buffer_b->record_disabled)) 4551 goto out; 4552 4553 /* 4554 * We can't do a synchronize_rcu here because this 4555 * function can be called in atomic context. 4556 * Normally this will be called from the same CPU as cpu. 4557 * If not it's up to the caller to protect this. 4558 */ 4559 atomic_inc(&cpu_buffer_a->record_disabled); 4560 atomic_inc(&cpu_buffer_b->record_disabled); 4561 4562 ret = -EBUSY; 4563 if (local_read(&cpu_buffer_a->committing)) 4564 goto out_dec; 4565 if (local_read(&cpu_buffer_b->committing)) 4566 goto out_dec; 4567 4568 buffer_a->buffers[cpu] = cpu_buffer_b; 4569 buffer_b->buffers[cpu] = cpu_buffer_a; 4570 4571 cpu_buffer_b->buffer = buffer_a; 4572 cpu_buffer_a->buffer = buffer_b; 4573 4574 ret = 0; 4575 4576 out_dec: 4577 atomic_dec(&cpu_buffer_a->record_disabled); 4578 atomic_dec(&cpu_buffer_b->record_disabled); 4579 out: 4580 return ret; 4581 } 4582 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 4583 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 4584 4585 /** 4586 * ring_buffer_alloc_read_page - allocate a page to read from buffer 4587 * @buffer: the buffer to allocate for. 4588 * @cpu: the cpu buffer to allocate. 4589 * 4590 * This function is used in conjunction with ring_buffer_read_page. 4591 * When reading a full page from the ring buffer, these functions 4592 * can be used to speed up the process. The calling function should 4593 * allocate a few pages first with this function. Then when it 4594 * needs to get pages from the ring buffer, it passes the result 4595 * of this function into ring_buffer_read_page, which will swap 4596 * the page that was allocated, with the read page of the buffer. 4597 * 4598 * Returns: 4599 * The page allocated, or ERR_PTR 4600 */ 4601 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu) 4602 { 4603 struct ring_buffer_per_cpu *cpu_buffer; 4604 struct buffer_data_page *bpage = NULL; 4605 unsigned long flags; 4606 struct page *page; 4607 4608 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4609 return ERR_PTR(-ENODEV); 4610 4611 cpu_buffer = buffer->buffers[cpu]; 4612 local_irq_save(flags); 4613 arch_spin_lock(&cpu_buffer->lock); 4614 4615 if (cpu_buffer->free_page) { 4616 bpage = cpu_buffer->free_page; 4617 cpu_buffer->free_page = NULL; 4618 } 4619 4620 arch_spin_unlock(&cpu_buffer->lock); 4621 local_irq_restore(flags); 4622 4623 if (bpage) 4624 goto out; 4625 4626 page = alloc_pages_node(cpu_to_node(cpu), 4627 GFP_KERNEL | __GFP_NORETRY, 0); 4628 if (!page) 4629 return ERR_PTR(-ENOMEM); 4630 4631 bpage = page_address(page); 4632 4633 out: 4634 rb_init_page(bpage); 4635 4636 return bpage; 4637 } 4638 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 4639 4640 /** 4641 * ring_buffer_free_read_page - free an allocated read page 4642 * @buffer: the buffer the page was allocate for 4643 * @cpu: the cpu buffer the page came from 4644 * @data: the page to free 4645 * 4646 * Free a page allocated from ring_buffer_alloc_read_page. 4647 */ 4648 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data) 4649 { 4650 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4651 struct buffer_data_page *bpage = data; 4652 struct page *page = virt_to_page(bpage); 4653 unsigned long flags; 4654 4655 /* If the page is still in use someplace else, we can't reuse it */ 4656 if (page_ref_count(page) > 1) 4657 goto out; 4658 4659 local_irq_save(flags); 4660 arch_spin_lock(&cpu_buffer->lock); 4661 4662 if (!cpu_buffer->free_page) { 4663 cpu_buffer->free_page = bpage; 4664 bpage = NULL; 4665 } 4666 4667 arch_spin_unlock(&cpu_buffer->lock); 4668 local_irq_restore(flags); 4669 4670 out: 4671 free_page((unsigned long)bpage); 4672 } 4673 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 4674 4675 /** 4676 * ring_buffer_read_page - extract a page from the ring buffer 4677 * @buffer: buffer to extract from 4678 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 4679 * @len: amount to extract 4680 * @cpu: the cpu of the buffer to extract 4681 * @full: should the extraction only happen when the page is full. 4682 * 4683 * This function will pull out a page from the ring buffer and consume it. 4684 * @data_page must be the address of the variable that was returned 4685 * from ring_buffer_alloc_read_page. This is because the page might be used 4686 * to swap with a page in the ring buffer. 4687 * 4688 * for example: 4689 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 4690 * if (IS_ERR(rpage)) 4691 * return PTR_ERR(rpage); 4692 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 4693 * if (ret >= 0) 4694 * process_page(rpage, ret); 4695 * 4696 * When @full is set, the function will not return true unless 4697 * the writer is off the reader page. 4698 * 4699 * Note: it is up to the calling functions to handle sleeps and wakeups. 4700 * The ring buffer can be used anywhere in the kernel and can not 4701 * blindly call wake_up. The layer that uses the ring buffer must be 4702 * responsible for that. 4703 * 4704 * Returns: 4705 * >=0 if data has been transferred, returns the offset of consumed data. 4706 * <0 if no data has been transferred. 4707 */ 4708 int ring_buffer_read_page(struct ring_buffer *buffer, 4709 void **data_page, size_t len, int cpu, int full) 4710 { 4711 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4712 struct ring_buffer_event *event; 4713 struct buffer_data_page *bpage; 4714 struct buffer_page *reader; 4715 unsigned long missed_events; 4716 unsigned long flags; 4717 unsigned int commit; 4718 unsigned int read; 4719 u64 save_timestamp; 4720 int ret = -1; 4721 4722 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4723 goto out; 4724 4725 /* 4726 * If len is not big enough to hold the page header, then 4727 * we can not copy anything. 4728 */ 4729 if (len <= BUF_PAGE_HDR_SIZE) 4730 goto out; 4731 4732 len -= BUF_PAGE_HDR_SIZE; 4733 4734 if (!data_page) 4735 goto out; 4736 4737 bpage = *data_page; 4738 if (!bpage) 4739 goto out; 4740 4741 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4742 4743 reader = rb_get_reader_page(cpu_buffer); 4744 if (!reader) 4745 goto out_unlock; 4746 4747 event = rb_reader_event(cpu_buffer); 4748 4749 read = reader->read; 4750 commit = rb_page_commit(reader); 4751 4752 /* Check if any events were dropped */ 4753 missed_events = cpu_buffer->lost_events; 4754 4755 /* 4756 * If this page has been partially read or 4757 * if len is not big enough to read the rest of the page or 4758 * a writer is still on the page, then 4759 * we must copy the data from the page to the buffer. 4760 * Otherwise, we can simply swap the page with the one passed in. 4761 */ 4762 if (read || (len < (commit - read)) || 4763 cpu_buffer->reader_page == cpu_buffer->commit_page) { 4764 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 4765 unsigned int rpos = read; 4766 unsigned int pos = 0; 4767 unsigned int size; 4768 4769 if (full) 4770 goto out_unlock; 4771 4772 if (len > (commit - read)) 4773 len = (commit - read); 4774 4775 /* Always keep the time extend and data together */ 4776 size = rb_event_ts_length(event); 4777 4778 if (len < size) 4779 goto out_unlock; 4780 4781 /* save the current timestamp, since the user will need it */ 4782 save_timestamp = cpu_buffer->read_stamp; 4783 4784 /* Need to copy one event at a time */ 4785 do { 4786 /* We need the size of one event, because 4787 * rb_advance_reader only advances by one event, 4788 * whereas rb_event_ts_length may include the size of 4789 * one or two events. 4790 * We have already ensured there's enough space if this 4791 * is a time extend. */ 4792 size = rb_event_length(event); 4793 memcpy(bpage->data + pos, rpage->data + rpos, size); 4794 4795 len -= size; 4796 4797 rb_advance_reader(cpu_buffer); 4798 rpos = reader->read; 4799 pos += size; 4800 4801 if (rpos >= commit) 4802 break; 4803 4804 event = rb_reader_event(cpu_buffer); 4805 /* Always keep the time extend and data together */ 4806 size = rb_event_ts_length(event); 4807 } while (len >= size); 4808 4809 /* update bpage */ 4810 local_set(&bpage->commit, pos); 4811 bpage->time_stamp = save_timestamp; 4812 4813 /* we copied everything to the beginning */ 4814 read = 0; 4815 } else { 4816 /* update the entry counter */ 4817 cpu_buffer->read += rb_page_entries(reader); 4818 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 4819 4820 /* swap the pages */ 4821 rb_init_page(bpage); 4822 bpage = reader->page; 4823 reader->page = *data_page; 4824 local_set(&reader->write, 0); 4825 local_set(&reader->entries, 0); 4826 reader->read = 0; 4827 *data_page = bpage; 4828 4829 /* 4830 * Use the real_end for the data size, 4831 * This gives us a chance to store the lost events 4832 * on the page. 4833 */ 4834 if (reader->real_end) 4835 local_set(&bpage->commit, reader->real_end); 4836 } 4837 ret = read; 4838 4839 cpu_buffer->lost_events = 0; 4840 4841 commit = local_read(&bpage->commit); 4842 /* 4843 * Set a flag in the commit field if we lost events 4844 */ 4845 if (missed_events) { 4846 /* If there is room at the end of the page to save the 4847 * missed events, then record it there. 4848 */ 4849 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 4850 memcpy(&bpage->data[commit], &missed_events, 4851 sizeof(missed_events)); 4852 local_add(RB_MISSED_STORED, &bpage->commit); 4853 commit += sizeof(missed_events); 4854 } 4855 local_add(RB_MISSED_EVENTS, &bpage->commit); 4856 } 4857 4858 /* 4859 * This page may be off to user land. Zero it out here. 4860 */ 4861 if (commit < BUF_PAGE_SIZE) 4862 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 4863 4864 out_unlock: 4865 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4866 4867 out: 4868 return ret; 4869 } 4870 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 4871 4872 /* 4873 * We only allocate new buffers, never free them if the CPU goes down. 4874 * If we were to free the buffer, then the user would lose any trace that was in 4875 * the buffer. 4876 */ 4877 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 4878 { 4879 struct ring_buffer *buffer; 4880 long nr_pages_same; 4881 int cpu_i; 4882 unsigned long nr_pages; 4883 4884 buffer = container_of(node, struct ring_buffer, node); 4885 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4886 return 0; 4887 4888 nr_pages = 0; 4889 nr_pages_same = 1; 4890 /* check if all cpu sizes are same */ 4891 for_each_buffer_cpu(buffer, cpu_i) { 4892 /* fill in the size from first enabled cpu */ 4893 if (nr_pages == 0) 4894 nr_pages = buffer->buffers[cpu_i]->nr_pages; 4895 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 4896 nr_pages_same = 0; 4897 break; 4898 } 4899 } 4900 /* allocate minimum pages, user can later expand it */ 4901 if (!nr_pages_same) 4902 nr_pages = 2; 4903 buffer->buffers[cpu] = 4904 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 4905 if (!buffer->buffers[cpu]) { 4906 WARN(1, "failed to allocate ring buffer on CPU %u\n", 4907 cpu); 4908 return -ENOMEM; 4909 } 4910 smp_wmb(); 4911 cpumask_set_cpu(cpu, buffer->cpumask); 4912 return 0; 4913 } 4914 4915 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 4916 /* 4917 * This is a basic integrity check of the ring buffer. 4918 * Late in the boot cycle this test will run when configured in. 4919 * It will kick off a thread per CPU that will go into a loop 4920 * writing to the per cpu ring buffer various sizes of data. 4921 * Some of the data will be large items, some small. 4922 * 4923 * Another thread is created that goes into a spin, sending out 4924 * IPIs to the other CPUs to also write into the ring buffer. 4925 * this is to test the nesting ability of the buffer. 4926 * 4927 * Basic stats are recorded and reported. If something in the 4928 * ring buffer should happen that's not expected, a big warning 4929 * is displayed and all ring buffers are disabled. 4930 */ 4931 static struct task_struct *rb_threads[NR_CPUS] __initdata; 4932 4933 struct rb_test_data { 4934 struct ring_buffer *buffer; 4935 unsigned long events; 4936 unsigned long bytes_written; 4937 unsigned long bytes_alloc; 4938 unsigned long bytes_dropped; 4939 unsigned long events_nested; 4940 unsigned long bytes_written_nested; 4941 unsigned long bytes_alloc_nested; 4942 unsigned long bytes_dropped_nested; 4943 int min_size_nested; 4944 int max_size_nested; 4945 int max_size; 4946 int min_size; 4947 int cpu; 4948 int cnt; 4949 }; 4950 4951 static struct rb_test_data rb_data[NR_CPUS] __initdata; 4952 4953 /* 1 meg per cpu */ 4954 #define RB_TEST_BUFFER_SIZE 1048576 4955 4956 static char rb_string[] __initdata = 4957 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 4958 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 4959 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 4960 4961 static bool rb_test_started __initdata; 4962 4963 struct rb_item { 4964 int size; 4965 char str[]; 4966 }; 4967 4968 static __init int rb_write_something(struct rb_test_data *data, bool nested) 4969 { 4970 struct ring_buffer_event *event; 4971 struct rb_item *item; 4972 bool started; 4973 int event_len; 4974 int size; 4975 int len; 4976 int cnt; 4977 4978 /* Have nested writes different that what is written */ 4979 cnt = data->cnt + (nested ? 27 : 0); 4980 4981 /* Multiply cnt by ~e, to make some unique increment */ 4982 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1); 4983 4984 len = size + sizeof(struct rb_item); 4985 4986 started = rb_test_started; 4987 /* read rb_test_started before checking buffer enabled */ 4988 smp_rmb(); 4989 4990 event = ring_buffer_lock_reserve(data->buffer, len); 4991 if (!event) { 4992 /* Ignore dropped events before test starts. */ 4993 if (started) { 4994 if (nested) 4995 data->bytes_dropped += len; 4996 else 4997 data->bytes_dropped_nested += len; 4998 } 4999 return len; 5000 } 5001 5002 event_len = ring_buffer_event_length(event); 5003 5004 if (RB_WARN_ON(data->buffer, event_len < len)) 5005 goto out; 5006 5007 item = ring_buffer_event_data(event); 5008 item->size = size; 5009 memcpy(item->str, rb_string, size); 5010 5011 if (nested) { 5012 data->bytes_alloc_nested += event_len; 5013 data->bytes_written_nested += len; 5014 data->events_nested++; 5015 if (!data->min_size_nested || len < data->min_size_nested) 5016 data->min_size_nested = len; 5017 if (len > data->max_size_nested) 5018 data->max_size_nested = len; 5019 } else { 5020 data->bytes_alloc += event_len; 5021 data->bytes_written += len; 5022 data->events++; 5023 if (!data->min_size || len < data->min_size) 5024 data->max_size = len; 5025 if (len > data->max_size) 5026 data->max_size = len; 5027 } 5028 5029 out: 5030 ring_buffer_unlock_commit(data->buffer, event); 5031 5032 return 0; 5033 } 5034 5035 static __init int rb_test(void *arg) 5036 { 5037 struct rb_test_data *data = arg; 5038 5039 while (!kthread_should_stop()) { 5040 rb_write_something(data, false); 5041 data->cnt++; 5042 5043 set_current_state(TASK_INTERRUPTIBLE); 5044 /* Now sleep between a min of 100-300us and a max of 1ms */ 5045 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 5046 } 5047 5048 return 0; 5049 } 5050 5051 static __init void rb_ipi(void *ignore) 5052 { 5053 struct rb_test_data *data; 5054 int cpu = smp_processor_id(); 5055 5056 data = &rb_data[cpu]; 5057 rb_write_something(data, true); 5058 } 5059 5060 static __init int rb_hammer_test(void *arg) 5061 { 5062 while (!kthread_should_stop()) { 5063 5064 /* Send an IPI to all cpus to write data! */ 5065 smp_call_function(rb_ipi, NULL, 1); 5066 /* No sleep, but for non preempt, let others run */ 5067 schedule(); 5068 } 5069 5070 return 0; 5071 } 5072 5073 static __init int test_ringbuffer(void) 5074 { 5075 struct task_struct *rb_hammer; 5076 struct ring_buffer *buffer; 5077 int cpu; 5078 int ret = 0; 5079 5080 pr_info("Running ring buffer tests...\n"); 5081 5082 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 5083 if (WARN_ON(!buffer)) 5084 return 0; 5085 5086 /* Disable buffer so that threads can't write to it yet */ 5087 ring_buffer_record_off(buffer); 5088 5089 for_each_online_cpu(cpu) { 5090 rb_data[cpu].buffer = buffer; 5091 rb_data[cpu].cpu = cpu; 5092 rb_data[cpu].cnt = cpu; 5093 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu], 5094 "rbtester/%d", cpu); 5095 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 5096 pr_cont("FAILED\n"); 5097 ret = PTR_ERR(rb_threads[cpu]); 5098 goto out_free; 5099 } 5100 5101 kthread_bind(rb_threads[cpu], cpu); 5102 wake_up_process(rb_threads[cpu]); 5103 } 5104 5105 /* Now create the rb hammer! */ 5106 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 5107 if (WARN_ON(IS_ERR(rb_hammer))) { 5108 pr_cont("FAILED\n"); 5109 ret = PTR_ERR(rb_hammer); 5110 goto out_free; 5111 } 5112 5113 ring_buffer_record_on(buffer); 5114 /* 5115 * Show buffer is enabled before setting rb_test_started. 5116 * Yes there's a small race window where events could be 5117 * dropped and the thread wont catch it. But when a ring 5118 * buffer gets enabled, there will always be some kind of 5119 * delay before other CPUs see it. Thus, we don't care about 5120 * those dropped events. We care about events dropped after 5121 * the threads see that the buffer is active. 5122 */ 5123 smp_wmb(); 5124 rb_test_started = true; 5125 5126 set_current_state(TASK_INTERRUPTIBLE); 5127 /* Just run for 10 seconds */; 5128 schedule_timeout(10 * HZ); 5129 5130 kthread_stop(rb_hammer); 5131 5132 out_free: 5133 for_each_online_cpu(cpu) { 5134 if (!rb_threads[cpu]) 5135 break; 5136 kthread_stop(rb_threads[cpu]); 5137 } 5138 if (ret) { 5139 ring_buffer_free(buffer); 5140 return ret; 5141 } 5142 5143 /* Report! */ 5144 pr_info("finished\n"); 5145 for_each_online_cpu(cpu) { 5146 struct ring_buffer_event *event; 5147 struct rb_test_data *data = &rb_data[cpu]; 5148 struct rb_item *item; 5149 unsigned long total_events; 5150 unsigned long total_dropped; 5151 unsigned long total_written; 5152 unsigned long total_alloc; 5153 unsigned long total_read = 0; 5154 unsigned long total_size = 0; 5155 unsigned long total_len = 0; 5156 unsigned long total_lost = 0; 5157 unsigned long lost; 5158 int big_event_size; 5159 int small_event_size; 5160 5161 ret = -1; 5162 5163 total_events = data->events + data->events_nested; 5164 total_written = data->bytes_written + data->bytes_written_nested; 5165 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 5166 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 5167 5168 big_event_size = data->max_size + data->max_size_nested; 5169 small_event_size = data->min_size + data->min_size_nested; 5170 5171 pr_info("CPU %d:\n", cpu); 5172 pr_info(" events: %ld\n", total_events); 5173 pr_info(" dropped bytes: %ld\n", total_dropped); 5174 pr_info(" alloced bytes: %ld\n", total_alloc); 5175 pr_info(" written bytes: %ld\n", total_written); 5176 pr_info(" biggest event: %d\n", big_event_size); 5177 pr_info(" smallest event: %d\n", small_event_size); 5178 5179 if (RB_WARN_ON(buffer, total_dropped)) 5180 break; 5181 5182 ret = 0; 5183 5184 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 5185 total_lost += lost; 5186 item = ring_buffer_event_data(event); 5187 total_len += ring_buffer_event_length(event); 5188 total_size += item->size + sizeof(struct rb_item); 5189 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 5190 pr_info("FAILED!\n"); 5191 pr_info("buffer had: %.*s\n", item->size, item->str); 5192 pr_info("expected: %.*s\n", item->size, rb_string); 5193 RB_WARN_ON(buffer, 1); 5194 ret = -1; 5195 break; 5196 } 5197 total_read++; 5198 } 5199 if (ret) 5200 break; 5201 5202 ret = -1; 5203 5204 pr_info(" read events: %ld\n", total_read); 5205 pr_info(" lost events: %ld\n", total_lost); 5206 pr_info(" total events: %ld\n", total_lost + total_read); 5207 pr_info(" recorded len bytes: %ld\n", total_len); 5208 pr_info(" recorded size bytes: %ld\n", total_size); 5209 if (total_lost) 5210 pr_info(" With dropped events, record len and size may not match\n" 5211 " alloced and written from above\n"); 5212 if (!total_lost) { 5213 if (RB_WARN_ON(buffer, total_len != total_alloc || 5214 total_size != total_written)) 5215 break; 5216 } 5217 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 5218 break; 5219 5220 ret = 0; 5221 } 5222 if (!ret) 5223 pr_info("Ring buffer PASSED!\n"); 5224 5225 ring_buffer_free(buffer); 5226 return 0; 5227 } 5228 5229 late_initcall(test_ringbuffer); 5230 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 5231