xref: /linux/kernel/trace/ring_buffer.c (revision 1274b37ab31211beb0f1c6e12e059d6b58a6e40a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/trace_seq.h>
13 #include <linux/spinlock.h>
14 #include <linux/irq_work.h>
15 #include <linux/security.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kthread.h>	/* for self test */
19 #include <linux/module.h>
20 #include <linux/percpu.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/list.h>
27 #include <linux/cpu.h>
28 #include <linux/oom.h>
29 
30 #include <asm/local.h>
31 
32 /*
33  * The "absolute" timestamp in the buffer is only 59 bits.
34  * If a clock has the 5 MSBs set, it needs to be saved and
35  * reinserted.
36  */
37 #define TS_MSB		(0xf8ULL << 56)
38 #define ABS_TS_MASK	(~TS_MSB)
39 
40 static void update_pages_handler(struct work_struct *work);
41 
42 /*
43  * The ring buffer header is special. We must manually up keep it.
44  */
45 int ring_buffer_print_entry_header(struct trace_seq *s)
46 {
47 	trace_seq_puts(s, "# compressed entry header\n");
48 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
49 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
50 	trace_seq_puts(s, "\tarray       :   32 bits\n");
51 	trace_seq_putc(s, '\n');
52 	trace_seq_printf(s, "\tpadding     : type == %d\n",
53 			 RINGBUF_TYPE_PADDING);
54 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
55 			 RINGBUF_TYPE_TIME_EXTEND);
56 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
57 			 RINGBUF_TYPE_TIME_STAMP);
58 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
59 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
60 
61 	return !trace_seq_has_overflowed(s);
62 }
63 
64 /*
65  * The ring buffer is made up of a list of pages. A separate list of pages is
66  * allocated for each CPU. A writer may only write to a buffer that is
67  * associated with the CPU it is currently executing on.  A reader may read
68  * from any per cpu buffer.
69  *
70  * The reader is special. For each per cpu buffer, the reader has its own
71  * reader page. When a reader has read the entire reader page, this reader
72  * page is swapped with another page in the ring buffer.
73  *
74  * Now, as long as the writer is off the reader page, the reader can do what
75  * ever it wants with that page. The writer will never write to that page
76  * again (as long as it is out of the ring buffer).
77  *
78  * Here's some silly ASCII art.
79  *
80  *   +------+
81  *   |reader|          RING BUFFER
82  *   |page  |
83  *   +------+        +---+   +---+   +---+
84  *                   |   |-->|   |-->|   |
85  *                   +---+   +---+   +---+
86  *                     ^               |
87  *                     |               |
88  *                     +---------------+
89  *
90  *
91  *   +------+
92  *   |reader|          RING BUFFER
93  *   |page  |------------------v
94  *   +------+        +---+   +---+   +---+
95  *                   |   |-->|   |-->|   |
96  *                   +---+   +---+   +---+
97  *                     ^               |
98  *                     |               |
99  *                     +---------------+
100  *
101  *
102  *   +------+
103  *   |reader|          RING BUFFER
104  *   |page  |------------------v
105  *   +------+        +---+   +---+   +---+
106  *      ^            |   |-->|   |-->|   |
107  *      |            +---+   +---+   +---+
108  *      |                              |
109  *      |                              |
110  *      +------------------------------+
111  *
112  *
113  *   +------+
114  *   |buffer|          RING BUFFER
115  *   |page  |------------------v
116  *   +------+        +---+   +---+   +---+
117  *      ^            |   |   |   |-->|   |
118  *      |   New      +---+   +---+   +---+
119  *      |  Reader------^               |
120  *      |   page                       |
121  *      +------------------------------+
122  *
123  *
124  * After we make this swap, the reader can hand this page off to the splice
125  * code and be done with it. It can even allocate a new page if it needs to
126  * and swap that into the ring buffer.
127  *
128  * We will be using cmpxchg soon to make all this lockless.
129  *
130  */
131 
132 /* Used for individual buffers (after the counter) */
133 #define RB_BUFFER_OFF		(1 << 20)
134 
135 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
136 
137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
138 #define RB_ALIGNMENT		4U
139 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
140 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
141 
142 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
143 # define RB_FORCE_8BYTE_ALIGNMENT	0
144 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
145 #else
146 # define RB_FORCE_8BYTE_ALIGNMENT	1
147 # define RB_ARCH_ALIGNMENT		8U
148 #endif
149 
150 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
151 
152 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
153 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
154 
155 enum {
156 	RB_LEN_TIME_EXTEND = 8,
157 	RB_LEN_TIME_STAMP =  8,
158 };
159 
160 #define skip_time_extend(event) \
161 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
162 
163 #define extended_time(event) \
164 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
165 
166 static inline int rb_null_event(struct ring_buffer_event *event)
167 {
168 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
169 }
170 
171 static void rb_event_set_padding(struct ring_buffer_event *event)
172 {
173 	/* padding has a NULL time_delta */
174 	event->type_len = RINGBUF_TYPE_PADDING;
175 	event->time_delta = 0;
176 }
177 
178 static unsigned
179 rb_event_data_length(struct ring_buffer_event *event)
180 {
181 	unsigned length;
182 
183 	if (event->type_len)
184 		length = event->type_len * RB_ALIGNMENT;
185 	else
186 		length = event->array[0];
187 	return length + RB_EVNT_HDR_SIZE;
188 }
189 
190 /*
191  * Return the length of the given event. Will return
192  * the length of the time extend if the event is a
193  * time extend.
194  */
195 static inline unsigned
196 rb_event_length(struct ring_buffer_event *event)
197 {
198 	switch (event->type_len) {
199 	case RINGBUF_TYPE_PADDING:
200 		if (rb_null_event(event))
201 			/* undefined */
202 			return -1;
203 		return  event->array[0] + RB_EVNT_HDR_SIZE;
204 
205 	case RINGBUF_TYPE_TIME_EXTEND:
206 		return RB_LEN_TIME_EXTEND;
207 
208 	case RINGBUF_TYPE_TIME_STAMP:
209 		return RB_LEN_TIME_STAMP;
210 
211 	case RINGBUF_TYPE_DATA:
212 		return rb_event_data_length(event);
213 	default:
214 		WARN_ON_ONCE(1);
215 	}
216 	/* not hit */
217 	return 0;
218 }
219 
220 /*
221  * Return total length of time extend and data,
222  *   or just the event length for all other events.
223  */
224 static inline unsigned
225 rb_event_ts_length(struct ring_buffer_event *event)
226 {
227 	unsigned len = 0;
228 
229 	if (extended_time(event)) {
230 		/* time extends include the data event after it */
231 		len = RB_LEN_TIME_EXTEND;
232 		event = skip_time_extend(event);
233 	}
234 	return len + rb_event_length(event);
235 }
236 
237 /**
238  * ring_buffer_event_length - return the length of the event
239  * @event: the event to get the length of
240  *
241  * Returns the size of the data load of a data event.
242  * If the event is something other than a data event, it
243  * returns the size of the event itself. With the exception
244  * of a TIME EXTEND, where it still returns the size of the
245  * data load of the data event after it.
246  */
247 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
248 {
249 	unsigned length;
250 
251 	if (extended_time(event))
252 		event = skip_time_extend(event);
253 
254 	length = rb_event_length(event);
255 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
256 		return length;
257 	length -= RB_EVNT_HDR_SIZE;
258 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
259                 length -= sizeof(event->array[0]);
260 	return length;
261 }
262 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
263 
264 /* inline for ring buffer fast paths */
265 static __always_inline void *
266 rb_event_data(struct ring_buffer_event *event)
267 {
268 	if (extended_time(event))
269 		event = skip_time_extend(event);
270 	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
271 	/* If length is in len field, then array[0] has the data */
272 	if (event->type_len)
273 		return (void *)&event->array[0];
274 	/* Otherwise length is in array[0] and array[1] has the data */
275 	return (void *)&event->array[1];
276 }
277 
278 /**
279  * ring_buffer_event_data - return the data of the event
280  * @event: the event to get the data from
281  */
282 void *ring_buffer_event_data(struct ring_buffer_event *event)
283 {
284 	return rb_event_data(event);
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
287 
288 #define for_each_buffer_cpu(buffer, cpu)		\
289 	for_each_cpu(cpu, buffer->cpumask)
290 
291 #define for_each_online_buffer_cpu(buffer, cpu)		\
292 	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
293 
294 #define TS_SHIFT	27
295 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
296 #define TS_DELTA_TEST	(~TS_MASK)
297 
298 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
299 {
300 	u64 ts;
301 
302 	ts = event->array[0];
303 	ts <<= TS_SHIFT;
304 	ts += event->time_delta;
305 
306 	return ts;
307 }
308 
309 /* Flag when events were overwritten */
310 #define RB_MISSED_EVENTS	(1 << 31)
311 /* Missed count stored at end */
312 #define RB_MISSED_STORED	(1 << 30)
313 
314 struct buffer_data_page {
315 	u64		 time_stamp;	/* page time stamp */
316 	local_t		 commit;	/* write committed index */
317 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
318 };
319 
320 /*
321  * Note, the buffer_page list must be first. The buffer pages
322  * are allocated in cache lines, which means that each buffer
323  * page will be at the beginning of a cache line, and thus
324  * the least significant bits will be zero. We use this to
325  * add flags in the list struct pointers, to make the ring buffer
326  * lockless.
327  */
328 struct buffer_page {
329 	struct list_head list;		/* list of buffer pages */
330 	local_t		 write;		/* index for next write */
331 	unsigned	 read;		/* index for next read */
332 	local_t		 entries;	/* entries on this page */
333 	unsigned long	 real_end;	/* real end of data */
334 	struct buffer_data_page *page;	/* Actual data page */
335 };
336 
337 /*
338  * The buffer page counters, write and entries, must be reset
339  * atomically when crossing page boundaries. To synchronize this
340  * update, two counters are inserted into the number. One is
341  * the actual counter for the write position or count on the page.
342  *
343  * The other is a counter of updaters. Before an update happens
344  * the update partition of the counter is incremented. This will
345  * allow the updater to update the counter atomically.
346  *
347  * The counter is 20 bits, and the state data is 12.
348  */
349 #define RB_WRITE_MASK		0xfffff
350 #define RB_WRITE_INTCNT		(1 << 20)
351 
352 static void rb_init_page(struct buffer_data_page *bpage)
353 {
354 	local_set(&bpage->commit, 0);
355 }
356 
357 /*
358  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
359  * this issue out.
360  */
361 static void free_buffer_page(struct buffer_page *bpage)
362 {
363 	free_page((unsigned long)bpage->page);
364 	kfree(bpage);
365 }
366 
367 /*
368  * We need to fit the time_stamp delta into 27 bits.
369  */
370 static inline int test_time_stamp(u64 delta)
371 {
372 	if (delta & TS_DELTA_TEST)
373 		return 1;
374 	return 0;
375 }
376 
377 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
378 
379 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
380 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
381 
382 int ring_buffer_print_page_header(struct trace_seq *s)
383 {
384 	struct buffer_data_page field;
385 
386 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
387 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
388 			 (unsigned int)sizeof(field.time_stamp),
389 			 (unsigned int)is_signed_type(u64));
390 
391 	trace_seq_printf(s, "\tfield: local_t commit;\t"
392 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
393 			 (unsigned int)offsetof(typeof(field), commit),
394 			 (unsigned int)sizeof(field.commit),
395 			 (unsigned int)is_signed_type(long));
396 
397 	trace_seq_printf(s, "\tfield: int overwrite;\t"
398 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
399 			 (unsigned int)offsetof(typeof(field), commit),
400 			 1,
401 			 (unsigned int)is_signed_type(long));
402 
403 	trace_seq_printf(s, "\tfield: char data;\t"
404 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
405 			 (unsigned int)offsetof(typeof(field), data),
406 			 (unsigned int)BUF_PAGE_SIZE,
407 			 (unsigned int)is_signed_type(char));
408 
409 	return !trace_seq_has_overflowed(s);
410 }
411 
412 struct rb_irq_work {
413 	struct irq_work			work;
414 	wait_queue_head_t		waiters;
415 	wait_queue_head_t		full_waiters;
416 	long				wait_index;
417 	bool				waiters_pending;
418 	bool				full_waiters_pending;
419 	bool				wakeup_full;
420 };
421 
422 /*
423  * Structure to hold event state and handle nested events.
424  */
425 struct rb_event_info {
426 	u64			ts;
427 	u64			delta;
428 	u64			before;
429 	u64			after;
430 	unsigned long		length;
431 	struct buffer_page	*tail_page;
432 	int			add_timestamp;
433 };
434 
435 /*
436  * Used for the add_timestamp
437  *  NONE
438  *  EXTEND - wants a time extend
439  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
440  *  FORCE - force a full time stamp.
441  */
442 enum {
443 	RB_ADD_STAMP_NONE		= 0,
444 	RB_ADD_STAMP_EXTEND		= BIT(1),
445 	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
446 	RB_ADD_STAMP_FORCE		= BIT(3)
447 };
448 /*
449  * Used for which event context the event is in.
450  *  TRANSITION = 0
451  *  NMI     = 1
452  *  IRQ     = 2
453  *  SOFTIRQ = 3
454  *  NORMAL  = 4
455  *
456  * See trace_recursive_lock() comment below for more details.
457  */
458 enum {
459 	RB_CTX_TRANSITION,
460 	RB_CTX_NMI,
461 	RB_CTX_IRQ,
462 	RB_CTX_SOFTIRQ,
463 	RB_CTX_NORMAL,
464 	RB_CTX_MAX
465 };
466 
467 #if BITS_PER_LONG == 32
468 #define RB_TIME_32
469 #endif
470 
471 /* To test on 64 bit machines */
472 //#define RB_TIME_32
473 
474 #ifdef RB_TIME_32
475 
476 struct rb_time_struct {
477 	local_t		cnt;
478 	local_t		top;
479 	local_t		bottom;
480 	local_t		msb;
481 };
482 #else
483 #include <asm/local64.h>
484 struct rb_time_struct {
485 	local64_t	time;
486 };
487 #endif
488 typedef struct rb_time_struct rb_time_t;
489 
490 #define MAX_NEST	5
491 
492 /*
493  * head_page == tail_page && head == tail then buffer is empty.
494  */
495 struct ring_buffer_per_cpu {
496 	int				cpu;
497 	atomic_t			record_disabled;
498 	atomic_t			resize_disabled;
499 	struct trace_buffer	*buffer;
500 	raw_spinlock_t			reader_lock;	/* serialize readers */
501 	arch_spinlock_t			lock;
502 	struct lock_class_key		lock_key;
503 	struct buffer_data_page		*free_page;
504 	unsigned long			nr_pages;
505 	unsigned int			current_context;
506 	struct list_head		*pages;
507 	struct buffer_page		*head_page;	/* read from head */
508 	struct buffer_page		*tail_page;	/* write to tail */
509 	struct buffer_page		*commit_page;	/* committed pages */
510 	struct buffer_page		*reader_page;
511 	unsigned long			lost_events;
512 	unsigned long			last_overrun;
513 	unsigned long			nest;
514 	local_t				entries_bytes;
515 	local_t				entries;
516 	local_t				overrun;
517 	local_t				commit_overrun;
518 	local_t				dropped_events;
519 	local_t				committing;
520 	local_t				commits;
521 	local_t				pages_touched;
522 	local_t				pages_lost;
523 	local_t				pages_read;
524 	long				last_pages_touch;
525 	size_t				shortest_full;
526 	unsigned long			read;
527 	unsigned long			read_bytes;
528 	rb_time_t			write_stamp;
529 	rb_time_t			before_stamp;
530 	u64				event_stamp[MAX_NEST];
531 	u64				read_stamp;
532 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
533 	long				nr_pages_to_update;
534 	struct list_head		new_pages; /* new pages to add */
535 	struct work_struct		update_pages_work;
536 	struct completion		update_done;
537 
538 	struct rb_irq_work		irq_work;
539 };
540 
541 struct trace_buffer {
542 	unsigned			flags;
543 	int				cpus;
544 	atomic_t			record_disabled;
545 	cpumask_var_t			cpumask;
546 
547 	struct lock_class_key		*reader_lock_key;
548 
549 	struct mutex			mutex;
550 
551 	struct ring_buffer_per_cpu	**buffers;
552 
553 	struct hlist_node		node;
554 	u64				(*clock)(void);
555 
556 	struct rb_irq_work		irq_work;
557 	bool				time_stamp_abs;
558 };
559 
560 struct ring_buffer_iter {
561 	struct ring_buffer_per_cpu	*cpu_buffer;
562 	unsigned long			head;
563 	unsigned long			next_event;
564 	struct buffer_page		*head_page;
565 	struct buffer_page		*cache_reader_page;
566 	unsigned long			cache_read;
567 	u64				read_stamp;
568 	u64				page_stamp;
569 	struct ring_buffer_event	*event;
570 	int				missed_events;
571 };
572 
573 #ifdef RB_TIME_32
574 
575 /*
576  * On 32 bit machines, local64_t is very expensive. As the ring
577  * buffer doesn't need all the features of a true 64 bit atomic,
578  * on 32 bit, it uses these functions (64 still uses local64_t).
579  *
580  * For the ring buffer, 64 bit required operations for the time is
581  * the following:
582  *
583  *  - Reads may fail if it interrupted a modification of the time stamp.
584  *      It will succeed if it did not interrupt another write even if
585  *      the read itself is interrupted by a write.
586  *      It returns whether it was successful or not.
587  *
588  *  - Writes always succeed and will overwrite other writes and writes
589  *      that were done by events interrupting the current write.
590  *
591  *  - A write followed by a read of the same time stamp will always succeed,
592  *      but may not contain the same value.
593  *
594  *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
595  *      Other than that, it acts like a normal cmpxchg.
596  *
597  * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
598  *  (bottom being the least significant 30 bits of the 60 bit time stamp).
599  *
600  * The two most significant bits of each half holds a 2 bit counter (0-3).
601  * Each update will increment this counter by one.
602  * When reading the top and bottom, if the two counter bits match then the
603  *  top and bottom together make a valid 60 bit number.
604  */
605 #define RB_TIME_SHIFT	30
606 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
607 #define RB_TIME_MSB_SHIFT	 60
608 
609 static inline int rb_time_cnt(unsigned long val)
610 {
611 	return (val >> RB_TIME_SHIFT) & 3;
612 }
613 
614 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
615 {
616 	u64 val;
617 
618 	val = top & RB_TIME_VAL_MASK;
619 	val <<= RB_TIME_SHIFT;
620 	val |= bottom & RB_TIME_VAL_MASK;
621 
622 	return val;
623 }
624 
625 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
626 {
627 	unsigned long top, bottom, msb;
628 	unsigned long c;
629 
630 	/*
631 	 * If the read is interrupted by a write, then the cnt will
632 	 * be different. Loop until both top and bottom have been read
633 	 * without interruption.
634 	 */
635 	do {
636 		c = local_read(&t->cnt);
637 		top = local_read(&t->top);
638 		bottom = local_read(&t->bottom);
639 		msb = local_read(&t->msb);
640 	} while (c != local_read(&t->cnt));
641 
642 	*cnt = rb_time_cnt(top);
643 
644 	/* If top and bottom counts don't match, this interrupted a write */
645 	if (*cnt != rb_time_cnt(bottom))
646 		return false;
647 
648 	/* The shift to msb will lose its cnt bits */
649 	*ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT);
650 	return true;
651 }
652 
653 static bool rb_time_read(rb_time_t *t, u64 *ret)
654 {
655 	unsigned long cnt;
656 
657 	return __rb_time_read(t, ret, &cnt);
658 }
659 
660 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
661 {
662 	return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
663 }
664 
665 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom,
666 				 unsigned long *msb)
667 {
668 	*top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
669 	*bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
670 	*msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT);
671 }
672 
673 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
674 {
675 	val = rb_time_val_cnt(val, cnt);
676 	local_set(t, val);
677 }
678 
679 static void rb_time_set(rb_time_t *t, u64 val)
680 {
681 	unsigned long cnt, top, bottom, msb;
682 
683 	rb_time_split(val, &top, &bottom, &msb);
684 
685 	/* Writes always succeed with a valid number even if it gets interrupted. */
686 	do {
687 		cnt = local_inc_return(&t->cnt);
688 		rb_time_val_set(&t->top, top, cnt);
689 		rb_time_val_set(&t->bottom, bottom, cnt);
690 		rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt);
691 	} while (cnt != local_read(&t->cnt));
692 }
693 
694 static inline bool
695 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
696 {
697 	unsigned long ret;
698 
699 	ret = local_cmpxchg(l, expect, set);
700 	return ret == expect;
701 }
702 
703 static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
704 {
705 	unsigned long cnt, top, bottom, msb;
706 	unsigned long cnt2, top2, bottom2, msb2;
707 	u64 val;
708 
709 	/* The cmpxchg always fails if it interrupted an update */
710 	 if (!__rb_time_read(t, &val, &cnt2))
711 		 return false;
712 
713 	 if (val != expect)
714 		 return false;
715 
716 	 cnt = local_read(&t->cnt);
717 	 if ((cnt & 3) != cnt2)
718 		 return false;
719 
720 	 cnt2 = cnt + 1;
721 
722 	 rb_time_split(val, &top, &bottom, &msb);
723 	 top = rb_time_val_cnt(top, cnt);
724 	 bottom = rb_time_val_cnt(bottom, cnt);
725 
726 	 rb_time_split(set, &top2, &bottom2, &msb2);
727 	 top2 = rb_time_val_cnt(top2, cnt2);
728 	 bottom2 = rb_time_val_cnt(bottom2, cnt2);
729 
730 	if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
731 		return false;
732 	if (!rb_time_read_cmpxchg(&t->msb, msb, msb2))
733 		return false;
734 	if (!rb_time_read_cmpxchg(&t->top, top, top2))
735 		return false;
736 	if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
737 		return false;
738 	return true;
739 }
740 
741 #else /* 64 bits */
742 
743 /* local64_t always succeeds */
744 
745 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
746 {
747 	*ret = local64_read(&t->time);
748 	return true;
749 }
750 static void rb_time_set(rb_time_t *t, u64 val)
751 {
752 	local64_set(&t->time, val);
753 }
754 
755 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
756 {
757 	u64 val;
758 	val = local64_cmpxchg(&t->time, expect, set);
759 	return val == expect;
760 }
761 #endif
762 
763 /*
764  * Enable this to make sure that the event passed to
765  * ring_buffer_event_time_stamp() is not committed and also
766  * is on the buffer that it passed in.
767  */
768 //#define RB_VERIFY_EVENT
769 #ifdef RB_VERIFY_EVENT
770 static struct list_head *rb_list_head(struct list_head *list);
771 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
772 			 void *event)
773 {
774 	struct buffer_page *page = cpu_buffer->commit_page;
775 	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
776 	struct list_head *next;
777 	long commit, write;
778 	unsigned long addr = (unsigned long)event;
779 	bool done = false;
780 	int stop = 0;
781 
782 	/* Make sure the event exists and is not committed yet */
783 	do {
784 		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
785 			done = true;
786 		commit = local_read(&page->page->commit);
787 		write = local_read(&page->write);
788 		if (addr >= (unsigned long)&page->page->data[commit] &&
789 		    addr < (unsigned long)&page->page->data[write])
790 			return;
791 
792 		next = rb_list_head(page->list.next);
793 		page = list_entry(next, struct buffer_page, list);
794 	} while (!done);
795 	WARN_ON_ONCE(1);
796 }
797 #else
798 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
799 			 void *event)
800 {
801 }
802 #endif
803 
804 /*
805  * The absolute time stamp drops the 5 MSBs and some clocks may
806  * require them. The rb_fix_abs_ts() will take a previous full
807  * time stamp, and add the 5 MSB of that time stamp on to the
808  * saved absolute time stamp. Then they are compared in case of
809  * the unlikely event that the latest time stamp incremented
810  * the 5 MSB.
811  */
812 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
813 {
814 	if (save_ts & TS_MSB) {
815 		abs |= save_ts & TS_MSB;
816 		/* Check for overflow */
817 		if (unlikely(abs < save_ts))
818 			abs += 1ULL << 59;
819 	}
820 	return abs;
821 }
822 
823 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
824 
825 /**
826  * ring_buffer_event_time_stamp - return the event's current time stamp
827  * @buffer: The buffer that the event is on
828  * @event: the event to get the time stamp of
829  *
830  * Note, this must be called after @event is reserved, and before it is
831  * committed to the ring buffer. And must be called from the same
832  * context where the event was reserved (normal, softirq, irq, etc).
833  *
834  * Returns the time stamp associated with the current event.
835  * If the event has an extended time stamp, then that is used as
836  * the time stamp to return.
837  * In the highly unlikely case that the event was nested more than
838  * the max nesting, then the write_stamp of the buffer is returned,
839  * otherwise  current time is returned, but that really neither of
840  * the last two cases should ever happen.
841  */
842 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
843 				 struct ring_buffer_event *event)
844 {
845 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
846 	unsigned int nest;
847 	u64 ts;
848 
849 	/* If the event includes an absolute time, then just use that */
850 	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
851 		ts = rb_event_time_stamp(event);
852 		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
853 	}
854 
855 	nest = local_read(&cpu_buffer->committing);
856 	verify_event(cpu_buffer, event);
857 	if (WARN_ON_ONCE(!nest))
858 		goto fail;
859 
860 	/* Read the current saved nesting level time stamp */
861 	if (likely(--nest < MAX_NEST))
862 		return cpu_buffer->event_stamp[nest];
863 
864 	/* Shouldn't happen, warn if it does */
865 	WARN_ONCE(1, "nest (%d) greater than max", nest);
866 
867  fail:
868 	/* Can only fail on 32 bit */
869 	if (!rb_time_read(&cpu_buffer->write_stamp, &ts))
870 		/* Screw it, just read the current time */
871 		ts = rb_time_stamp(cpu_buffer->buffer);
872 
873 	return ts;
874 }
875 
876 /**
877  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
878  * @buffer: The ring_buffer to get the number of pages from
879  * @cpu: The cpu of the ring_buffer to get the number of pages from
880  *
881  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
882  */
883 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
884 {
885 	return buffer->buffers[cpu]->nr_pages;
886 }
887 
888 /**
889  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
890  * @buffer: The ring_buffer to get the number of pages from
891  * @cpu: The cpu of the ring_buffer to get the number of pages from
892  *
893  * Returns the number of pages that have content in the ring buffer.
894  */
895 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
896 {
897 	size_t read;
898 	size_t lost;
899 	size_t cnt;
900 
901 	read = local_read(&buffer->buffers[cpu]->pages_read);
902 	lost = local_read(&buffer->buffers[cpu]->pages_lost);
903 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
904 
905 	if (WARN_ON_ONCE(cnt < lost))
906 		return 0;
907 
908 	cnt -= lost;
909 
910 	/* The reader can read an empty page, but not more than that */
911 	if (cnt < read) {
912 		WARN_ON_ONCE(read > cnt + 1);
913 		return 0;
914 	}
915 
916 	return cnt - read;
917 }
918 
919 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
920 {
921 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
922 	size_t nr_pages;
923 	size_t dirty;
924 
925 	nr_pages = cpu_buffer->nr_pages;
926 	if (!nr_pages || !full)
927 		return true;
928 
929 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
930 
931 	return (dirty * 100) > (full * nr_pages);
932 }
933 
934 /*
935  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
936  *
937  * Schedules a delayed work to wake up any task that is blocked on the
938  * ring buffer waiters queue.
939  */
940 static void rb_wake_up_waiters(struct irq_work *work)
941 {
942 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
943 
944 	wake_up_all(&rbwork->waiters);
945 	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
946 		rbwork->wakeup_full = false;
947 		rbwork->full_waiters_pending = false;
948 		wake_up_all(&rbwork->full_waiters);
949 	}
950 }
951 
952 /**
953  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
954  * @buffer: The ring buffer to wake waiters on
955  *
956  * In the case of a file that represents a ring buffer is closing,
957  * it is prudent to wake up any waiters that are on this.
958  */
959 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
960 {
961 	struct ring_buffer_per_cpu *cpu_buffer;
962 	struct rb_irq_work *rbwork;
963 
964 	if (!buffer)
965 		return;
966 
967 	if (cpu == RING_BUFFER_ALL_CPUS) {
968 
969 		/* Wake up individual ones too. One level recursion */
970 		for_each_buffer_cpu(buffer, cpu)
971 			ring_buffer_wake_waiters(buffer, cpu);
972 
973 		rbwork = &buffer->irq_work;
974 	} else {
975 		if (WARN_ON_ONCE(!buffer->buffers))
976 			return;
977 		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
978 			return;
979 
980 		cpu_buffer = buffer->buffers[cpu];
981 		/* The CPU buffer may not have been initialized yet */
982 		if (!cpu_buffer)
983 			return;
984 		rbwork = &cpu_buffer->irq_work;
985 	}
986 
987 	rbwork->wait_index++;
988 	/* make sure the waiters see the new index */
989 	smp_wmb();
990 
991 	rb_wake_up_waiters(&rbwork->work);
992 }
993 
994 /**
995  * ring_buffer_wait - wait for input to the ring buffer
996  * @buffer: buffer to wait on
997  * @cpu: the cpu buffer to wait on
998  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
999  *
1000  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1001  * as data is added to any of the @buffer's cpu buffers. Otherwise
1002  * it will wait for data to be added to a specific cpu buffer.
1003  */
1004 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
1005 {
1006 	struct ring_buffer_per_cpu *cpu_buffer;
1007 	DEFINE_WAIT(wait);
1008 	struct rb_irq_work *work;
1009 	long wait_index;
1010 	int ret = 0;
1011 
1012 	/*
1013 	 * Depending on what the caller is waiting for, either any
1014 	 * data in any cpu buffer, or a specific buffer, put the
1015 	 * caller on the appropriate wait queue.
1016 	 */
1017 	if (cpu == RING_BUFFER_ALL_CPUS) {
1018 		work = &buffer->irq_work;
1019 		/* Full only makes sense on per cpu reads */
1020 		full = 0;
1021 	} else {
1022 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1023 			return -ENODEV;
1024 		cpu_buffer = buffer->buffers[cpu];
1025 		work = &cpu_buffer->irq_work;
1026 	}
1027 
1028 	wait_index = READ_ONCE(work->wait_index);
1029 
1030 	while (true) {
1031 		if (full)
1032 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
1033 		else
1034 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
1035 
1036 		/*
1037 		 * The events can happen in critical sections where
1038 		 * checking a work queue can cause deadlocks.
1039 		 * After adding a task to the queue, this flag is set
1040 		 * only to notify events to try to wake up the queue
1041 		 * using irq_work.
1042 		 *
1043 		 * We don't clear it even if the buffer is no longer
1044 		 * empty. The flag only causes the next event to run
1045 		 * irq_work to do the work queue wake up. The worse
1046 		 * that can happen if we race with !trace_empty() is that
1047 		 * an event will cause an irq_work to try to wake up
1048 		 * an empty queue.
1049 		 *
1050 		 * There's no reason to protect this flag either, as
1051 		 * the work queue and irq_work logic will do the necessary
1052 		 * synchronization for the wake ups. The only thing
1053 		 * that is necessary is that the wake up happens after
1054 		 * a task has been queued. It's OK for spurious wake ups.
1055 		 */
1056 		if (full)
1057 			work->full_waiters_pending = true;
1058 		else
1059 			work->waiters_pending = true;
1060 
1061 		if (signal_pending(current)) {
1062 			ret = -EINTR;
1063 			break;
1064 		}
1065 
1066 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
1067 			break;
1068 
1069 		if (cpu != RING_BUFFER_ALL_CPUS &&
1070 		    !ring_buffer_empty_cpu(buffer, cpu)) {
1071 			unsigned long flags;
1072 			bool pagebusy;
1073 			bool done;
1074 
1075 			if (!full)
1076 				break;
1077 
1078 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1079 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
1080 			done = !pagebusy && full_hit(buffer, cpu, full);
1081 
1082 			if (!cpu_buffer->shortest_full ||
1083 			    cpu_buffer->shortest_full > full)
1084 				cpu_buffer->shortest_full = full;
1085 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1086 			if (done)
1087 				break;
1088 		}
1089 
1090 		schedule();
1091 
1092 		/* Make sure to see the new wait index */
1093 		smp_rmb();
1094 		if (wait_index != work->wait_index)
1095 			break;
1096 	}
1097 
1098 	if (full)
1099 		finish_wait(&work->full_waiters, &wait);
1100 	else
1101 		finish_wait(&work->waiters, &wait);
1102 
1103 	return ret;
1104 }
1105 
1106 /**
1107  * ring_buffer_poll_wait - poll on buffer input
1108  * @buffer: buffer to wait on
1109  * @cpu: the cpu buffer to wait on
1110  * @filp: the file descriptor
1111  * @poll_table: The poll descriptor
1112  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1113  *
1114  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1115  * as data is added to any of the @buffer's cpu buffers. Otherwise
1116  * it will wait for data to be added to a specific cpu buffer.
1117  *
1118  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1119  * zero otherwise.
1120  */
1121 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1122 			  struct file *filp, poll_table *poll_table, int full)
1123 {
1124 	struct ring_buffer_per_cpu *cpu_buffer;
1125 	struct rb_irq_work *work;
1126 
1127 	if (cpu == RING_BUFFER_ALL_CPUS) {
1128 		work = &buffer->irq_work;
1129 		full = 0;
1130 	} else {
1131 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1132 			return -EINVAL;
1133 
1134 		cpu_buffer = buffer->buffers[cpu];
1135 		work = &cpu_buffer->irq_work;
1136 	}
1137 
1138 	if (full) {
1139 		poll_wait(filp, &work->full_waiters, poll_table);
1140 		work->full_waiters_pending = true;
1141 	} else {
1142 		poll_wait(filp, &work->waiters, poll_table);
1143 		work->waiters_pending = true;
1144 	}
1145 
1146 	/*
1147 	 * There's a tight race between setting the waiters_pending and
1148 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1149 	 * is set, the next event will wake the task up, but we can get stuck
1150 	 * if there's only a single event in.
1151 	 *
1152 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1153 	 * but adding a memory barrier to all events will cause too much of a
1154 	 * performance hit in the fast path.  We only need a memory barrier when
1155 	 * the buffer goes from empty to having content.  But as this race is
1156 	 * extremely small, and it's not a problem if another event comes in, we
1157 	 * will fix it later.
1158 	 */
1159 	smp_mb();
1160 
1161 	if (full)
1162 		return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0;
1163 
1164 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1165 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1166 		return EPOLLIN | EPOLLRDNORM;
1167 	return 0;
1168 }
1169 
1170 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1171 #define RB_WARN_ON(b, cond)						\
1172 	({								\
1173 		int _____ret = unlikely(cond);				\
1174 		if (_____ret) {						\
1175 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1176 				struct ring_buffer_per_cpu *__b =	\
1177 					(void *)b;			\
1178 				atomic_inc(&__b->buffer->record_disabled); \
1179 			} else						\
1180 				atomic_inc(&b->record_disabled);	\
1181 			WARN_ON(1);					\
1182 		}							\
1183 		_____ret;						\
1184 	})
1185 
1186 /* Up this if you want to test the TIME_EXTENTS and normalization */
1187 #define DEBUG_SHIFT 0
1188 
1189 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1190 {
1191 	u64 ts;
1192 
1193 	/* Skip retpolines :-( */
1194 	if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1195 		ts = trace_clock_local();
1196 	else
1197 		ts = buffer->clock();
1198 
1199 	/* shift to debug/test normalization and TIME_EXTENTS */
1200 	return ts << DEBUG_SHIFT;
1201 }
1202 
1203 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1204 {
1205 	u64 time;
1206 
1207 	preempt_disable_notrace();
1208 	time = rb_time_stamp(buffer);
1209 	preempt_enable_notrace();
1210 
1211 	return time;
1212 }
1213 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1214 
1215 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1216 				      int cpu, u64 *ts)
1217 {
1218 	/* Just stupid testing the normalize function and deltas */
1219 	*ts >>= DEBUG_SHIFT;
1220 }
1221 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1222 
1223 /*
1224  * Making the ring buffer lockless makes things tricky.
1225  * Although writes only happen on the CPU that they are on,
1226  * and they only need to worry about interrupts. Reads can
1227  * happen on any CPU.
1228  *
1229  * The reader page is always off the ring buffer, but when the
1230  * reader finishes with a page, it needs to swap its page with
1231  * a new one from the buffer. The reader needs to take from
1232  * the head (writes go to the tail). But if a writer is in overwrite
1233  * mode and wraps, it must push the head page forward.
1234  *
1235  * Here lies the problem.
1236  *
1237  * The reader must be careful to replace only the head page, and
1238  * not another one. As described at the top of the file in the
1239  * ASCII art, the reader sets its old page to point to the next
1240  * page after head. It then sets the page after head to point to
1241  * the old reader page. But if the writer moves the head page
1242  * during this operation, the reader could end up with the tail.
1243  *
1244  * We use cmpxchg to help prevent this race. We also do something
1245  * special with the page before head. We set the LSB to 1.
1246  *
1247  * When the writer must push the page forward, it will clear the
1248  * bit that points to the head page, move the head, and then set
1249  * the bit that points to the new head page.
1250  *
1251  * We also don't want an interrupt coming in and moving the head
1252  * page on another writer. Thus we use the second LSB to catch
1253  * that too. Thus:
1254  *
1255  * head->list->prev->next        bit 1          bit 0
1256  *                              -------        -------
1257  * Normal page                     0              0
1258  * Points to head page             0              1
1259  * New head page                   1              0
1260  *
1261  * Note we can not trust the prev pointer of the head page, because:
1262  *
1263  * +----+       +-----+        +-----+
1264  * |    |------>|  T  |---X--->|  N  |
1265  * |    |<------|     |        |     |
1266  * +----+       +-----+        +-----+
1267  *   ^                           ^ |
1268  *   |          +-----+          | |
1269  *   +----------|  R  |----------+ |
1270  *              |     |<-----------+
1271  *              +-----+
1272  *
1273  * Key:  ---X-->  HEAD flag set in pointer
1274  *         T      Tail page
1275  *         R      Reader page
1276  *         N      Next page
1277  *
1278  * (see __rb_reserve_next() to see where this happens)
1279  *
1280  *  What the above shows is that the reader just swapped out
1281  *  the reader page with a page in the buffer, but before it
1282  *  could make the new header point back to the new page added
1283  *  it was preempted by a writer. The writer moved forward onto
1284  *  the new page added by the reader and is about to move forward
1285  *  again.
1286  *
1287  *  You can see, it is legitimate for the previous pointer of
1288  *  the head (or any page) not to point back to itself. But only
1289  *  temporarily.
1290  */
1291 
1292 #define RB_PAGE_NORMAL		0UL
1293 #define RB_PAGE_HEAD		1UL
1294 #define RB_PAGE_UPDATE		2UL
1295 
1296 
1297 #define RB_FLAG_MASK		3UL
1298 
1299 /* PAGE_MOVED is not part of the mask */
1300 #define RB_PAGE_MOVED		4UL
1301 
1302 /*
1303  * rb_list_head - remove any bit
1304  */
1305 static struct list_head *rb_list_head(struct list_head *list)
1306 {
1307 	unsigned long val = (unsigned long)list;
1308 
1309 	return (struct list_head *)(val & ~RB_FLAG_MASK);
1310 }
1311 
1312 /*
1313  * rb_is_head_page - test if the given page is the head page
1314  *
1315  * Because the reader may move the head_page pointer, we can
1316  * not trust what the head page is (it may be pointing to
1317  * the reader page). But if the next page is a header page,
1318  * its flags will be non zero.
1319  */
1320 static inline int
1321 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1322 {
1323 	unsigned long val;
1324 
1325 	val = (unsigned long)list->next;
1326 
1327 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1328 		return RB_PAGE_MOVED;
1329 
1330 	return val & RB_FLAG_MASK;
1331 }
1332 
1333 /*
1334  * rb_is_reader_page
1335  *
1336  * The unique thing about the reader page, is that, if the
1337  * writer is ever on it, the previous pointer never points
1338  * back to the reader page.
1339  */
1340 static bool rb_is_reader_page(struct buffer_page *page)
1341 {
1342 	struct list_head *list = page->list.prev;
1343 
1344 	return rb_list_head(list->next) != &page->list;
1345 }
1346 
1347 /*
1348  * rb_set_list_to_head - set a list_head to be pointing to head.
1349  */
1350 static void rb_set_list_to_head(struct list_head *list)
1351 {
1352 	unsigned long *ptr;
1353 
1354 	ptr = (unsigned long *)&list->next;
1355 	*ptr |= RB_PAGE_HEAD;
1356 	*ptr &= ~RB_PAGE_UPDATE;
1357 }
1358 
1359 /*
1360  * rb_head_page_activate - sets up head page
1361  */
1362 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1363 {
1364 	struct buffer_page *head;
1365 
1366 	head = cpu_buffer->head_page;
1367 	if (!head)
1368 		return;
1369 
1370 	/*
1371 	 * Set the previous list pointer to have the HEAD flag.
1372 	 */
1373 	rb_set_list_to_head(head->list.prev);
1374 }
1375 
1376 static void rb_list_head_clear(struct list_head *list)
1377 {
1378 	unsigned long *ptr = (unsigned long *)&list->next;
1379 
1380 	*ptr &= ~RB_FLAG_MASK;
1381 }
1382 
1383 /*
1384  * rb_head_page_deactivate - clears head page ptr (for free list)
1385  */
1386 static void
1387 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1388 {
1389 	struct list_head *hd;
1390 
1391 	/* Go through the whole list and clear any pointers found. */
1392 	rb_list_head_clear(cpu_buffer->pages);
1393 
1394 	list_for_each(hd, cpu_buffer->pages)
1395 		rb_list_head_clear(hd);
1396 }
1397 
1398 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1399 			    struct buffer_page *head,
1400 			    struct buffer_page *prev,
1401 			    int old_flag, int new_flag)
1402 {
1403 	struct list_head *list;
1404 	unsigned long val = (unsigned long)&head->list;
1405 	unsigned long ret;
1406 
1407 	list = &prev->list;
1408 
1409 	val &= ~RB_FLAG_MASK;
1410 
1411 	ret = cmpxchg((unsigned long *)&list->next,
1412 		      val | old_flag, val | new_flag);
1413 
1414 	/* check if the reader took the page */
1415 	if ((ret & ~RB_FLAG_MASK) != val)
1416 		return RB_PAGE_MOVED;
1417 
1418 	return ret & RB_FLAG_MASK;
1419 }
1420 
1421 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1422 				   struct buffer_page *head,
1423 				   struct buffer_page *prev,
1424 				   int old_flag)
1425 {
1426 	return rb_head_page_set(cpu_buffer, head, prev,
1427 				old_flag, RB_PAGE_UPDATE);
1428 }
1429 
1430 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1431 				 struct buffer_page *head,
1432 				 struct buffer_page *prev,
1433 				 int old_flag)
1434 {
1435 	return rb_head_page_set(cpu_buffer, head, prev,
1436 				old_flag, RB_PAGE_HEAD);
1437 }
1438 
1439 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1440 				   struct buffer_page *head,
1441 				   struct buffer_page *prev,
1442 				   int old_flag)
1443 {
1444 	return rb_head_page_set(cpu_buffer, head, prev,
1445 				old_flag, RB_PAGE_NORMAL);
1446 }
1447 
1448 static inline void rb_inc_page(struct buffer_page **bpage)
1449 {
1450 	struct list_head *p = rb_list_head((*bpage)->list.next);
1451 
1452 	*bpage = list_entry(p, struct buffer_page, list);
1453 }
1454 
1455 static struct buffer_page *
1456 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1457 {
1458 	struct buffer_page *head;
1459 	struct buffer_page *page;
1460 	struct list_head *list;
1461 	int i;
1462 
1463 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1464 		return NULL;
1465 
1466 	/* sanity check */
1467 	list = cpu_buffer->pages;
1468 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1469 		return NULL;
1470 
1471 	page = head = cpu_buffer->head_page;
1472 	/*
1473 	 * It is possible that the writer moves the header behind
1474 	 * where we started, and we miss in one loop.
1475 	 * A second loop should grab the header, but we'll do
1476 	 * three loops just because I'm paranoid.
1477 	 */
1478 	for (i = 0; i < 3; i++) {
1479 		do {
1480 			if (rb_is_head_page(page, page->list.prev)) {
1481 				cpu_buffer->head_page = page;
1482 				return page;
1483 			}
1484 			rb_inc_page(&page);
1485 		} while (page != head);
1486 	}
1487 
1488 	RB_WARN_ON(cpu_buffer, 1);
1489 
1490 	return NULL;
1491 }
1492 
1493 static int rb_head_page_replace(struct buffer_page *old,
1494 				struct buffer_page *new)
1495 {
1496 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1497 	unsigned long val;
1498 	unsigned long ret;
1499 
1500 	val = *ptr & ~RB_FLAG_MASK;
1501 	val |= RB_PAGE_HEAD;
1502 
1503 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1504 
1505 	return ret == val;
1506 }
1507 
1508 /*
1509  * rb_tail_page_update - move the tail page forward
1510  */
1511 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1512 			       struct buffer_page *tail_page,
1513 			       struct buffer_page *next_page)
1514 {
1515 	unsigned long old_entries;
1516 	unsigned long old_write;
1517 
1518 	/*
1519 	 * The tail page now needs to be moved forward.
1520 	 *
1521 	 * We need to reset the tail page, but without messing
1522 	 * with possible erasing of data brought in by interrupts
1523 	 * that have moved the tail page and are currently on it.
1524 	 *
1525 	 * We add a counter to the write field to denote this.
1526 	 */
1527 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1528 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1529 
1530 	local_inc(&cpu_buffer->pages_touched);
1531 	/*
1532 	 * Just make sure we have seen our old_write and synchronize
1533 	 * with any interrupts that come in.
1534 	 */
1535 	barrier();
1536 
1537 	/*
1538 	 * If the tail page is still the same as what we think
1539 	 * it is, then it is up to us to update the tail
1540 	 * pointer.
1541 	 */
1542 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1543 		/* Zero the write counter */
1544 		unsigned long val = old_write & ~RB_WRITE_MASK;
1545 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1546 
1547 		/*
1548 		 * This will only succeed if an interrupt did
1549 		 * not come in and change it. In which case, we
1550 		 * do not want to modify it.
1551 		 *
1552 		 * We add (void) to let the compiler know that we do not care
1553 		 * about the return value of these functions. We use the
1554 		 * cmpxchg to only update if an interrupt did not already
1555 		 * do it for us. If the cmpxchg fails, we don't care.
1556 		 */
1557 		(void)local_cmpxchg(&next_page->write, old_write, val);
1558 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1559 
1560 		/*
1561 		 * No need to worry about races with clearing out the commit.
1562 		 * it only can increment when a commit takes place. But that
1563 		 * only happens in the outer most nested commit.
1564 		 */
1565 		local_set(&next_page->page->commit, 0);
1566 
1567 		/* Again, either we update tail_page or an interrupt does */
1568 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1569 	}
1570 }
1571 
1572 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1573 			  struct buffer_page *bpage)
1574 {
1575 	unsigned long val = (unsigned long)bpage;
1576 
1577 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1578 		return 1;
1579 
1580 	return 0;
1581 }
1582 
1583 /**
1584  * rb_check_pages - integrity check of buffer pages
1585  * @cpu_buffer: CPU buffer with pages to test
1586  *
1587  * As a safety measure we check to make sure the data pages have not
1588  * been corrupted.
1589  */
1590 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1591 {
1592 	struct list_head *head = rb_list_head(cpu_buffer->pages);
1593 	struct list_head *tmp;
1594 
1595 	if (RB_WARN_ON(cpu_buffer,
1596 			rb_list_head(rb_list_head(head->next)->prev) != head))
1597 		return -1;
1598 
1599 	if (RB_WARN_ON(cpu_buffer,
1600 			rb_list_head(rb_list_head(head->prev)->next) != head))
1601 		return -1;
1602 
1603 	for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1604 		if (RB_WARN_ON(cpu_buffer,
1605 				rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1606 			return -1;
1607 
1608 		if (RB_WARN_ON(cpu_buffer,
1609 				rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1610 			return -1;
1611 	}
1612 
1613 	return 0;
1614 }
1615 
1616 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1617 		long nr_pages, struct list_head *pages)
1618 {
1619 	struct buffer_page *bpage, *tmp;
1620 	bool user_thread = current->mm != NULL;
1621 	gfp_t mflags;
1622 	long i;
1623 
1624 	/*
1625 	 * Check if the available memory is there first.
1626 	 * Note, si_mem_available() only gives us a rough estimate of available
1627 	 * memory. It may not be accurate. But we don't care, we just want
1628 	 * to prevent doing any allocation when it is obvious that it is
1629 	 * not going to succeed.
1630 	 */
1631 	i = si_mem_available();
1632 	if (i < nr_pages)
1633 		return -ENOMEM;
1634 
1635 	/*
1636 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1637 	 * gracefully without invoking oom-killer and the system is not
1638 	 * destabilized.
1639 	 */
1640 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1641 
1642 	/*
1643 	 * If a user thread allocates too much, and si_mem_available()
1644 	 * reports there's enough memory, even though there is not.
1645 	 * Make sure the OOM killer kills this thread. This can happen
1646 	 * even with RETRY_MAYFAIL because another task may be doing
1647 	 * an allocation after this task has taken all memory.
1648 	 * This is the task the OOM killer needs to take out during this
1649 	 * loop, even if it was triggered by an allocation somewhere else.
1650 	 */
1651 	if (user_thread)
1652 		set_current_oom_origin();
1653 	for (i = 0; i < nr_pages; i++) {
1654 		struct page *page;
1655 
1656 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1657 				    mflags, cpu_to_node(cpu_buffer->cpu));
1658 		if (!bpage)
1659 			goto free_pages;
1660 
1661 		rb_check_bpage(cpu_buffer, bpage);
1662 
1663 		list_add(&bpage->list, pages);
1664 
1665 		page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
1666 		if (!page)
1667 			goto free_pages;
1668 		bpage->page = page_address(page);
1669 		rb_init_page(bpage->page);
1670 
1671 		if (user_thread && fatal_signal_pending(current))
1672 			goto free_pages;
1673 	}
1674 	if (user_thread)
1675 		clear_current_oom_origin();
1676 
1677 	return 0;
1678 
1679 free_pages:
1680 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1681 		list_del_init(&bpage->list);
1682 		free_buffer_page(bpage);
1683 	}
1684 	if (user_thread)
1685 		clear_current_oom_origin();
1686 
1687 	return -ENOMEM;
1688 }
1689 
1690 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1691 			     unsigned long nr_pages)
1692 {
1693 	LIST_HEAD(pages);
1694 
1695 	WARN_ON(!nr_pages);
1696 
1697 	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1698 		return -ENOMEM;
1699 
1700 	/*
1701 	 * The ring buffer page list is a circular list that does not
1702 	 * start and end with a list head. All page list items point to
1703 	 * other pages.
1704 	 */
1705 	cpu_buffer->pages = pages.next;
1706 	list_del(&pages);
1707 
1708 	cpu_buffer->nr_pages = nr_pages;
1709 
1710 	rb_check_pages(cpu_buffer);
1711 
1712 	return 0;
1713 }
1714 
1715 static struct ring_buffer_per_cpu *
1716 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1717 {
1718 	struct ring_buffer_per_cpu *cpu_buffer;
1719 	struct buffer_page *bpage;
1720 	struct page *page;
1721 	int ret;
1722 
1723 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1724 				  GFP_KERNEL, cpu_to_node(cpu));
1725 	if (!cpu_buffer)
1726 		return NULL;
1727 
1728 	cpu_buffer->cpu = cpu;
1729 	cpu_buffer->buffer = buffer;
1730 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1731 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1732 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1733 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1734 	init_completion(&cpu_buffer->update_done);
1735 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1736 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1737 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1738 
1739 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1740 			    GFP_KERNEL, cpu_to_node(cpu));
1741 	if (!bpage)
1742 		goto fail_free_buffer;
1743 
1744 	rb_check_bpage(cpu_buffer, bpage);
1745 
1746 	cpu_buffer->reader_page = bpage;
1747 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1748 	if (!page)
1749 		goto fail_free_reader;
1750 	bpage->page = page_address(page);
1751 	rb_init_page(bpage->page);
1752 
1753 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1754 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1755 
1756 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1757 	if (ret < 0)
1758 		goto fail_free_reader;
1759 
1760 	cpu_buffer->head_page
1761 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1762 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1763 
1764 	rb_head_page_activate(cpu_buffer);
1765 
1766 	return cpu_buffer;
1767 
1768  fail_free_reader:
1769 	free_buffer_page(cpu_buffer->reader_page);
1770 
1771  fail_free_buffer:
1772 	kfree(cpu_buffer);
1773 	return NULL;
1774 }
1775 
1776 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1777 {
1778 	struct list_head *head = cpu_buffer->pages;
1779 	struct buffer_page *bpage, *tmp;
1780 
1781 	free_buffer_page(cpu_buffer->reader_page);
1782 
1783 	if (head) {
1784 		rb_head_page_deactivate(cpu_buffer);
1785 
1786 		list_for_each_entry_safe(bpage, tmp, head, list) {
1787 			list_del_init(&bpage->list);
1788 			free_buffer_page(bpage);
1789 		}
1790 		bpage = list_entry(head, struct buffer_page, list);
1791 		free_buffer_page(bpage);
1792 	}
1793 
1794 	kfree(cpu_buffer);
1795 }
1796 
1797 /**
1798  * __ring_buffer_alloc - allocate a new ring_buffer
1799  * @size: the size in bytes per cpu that is needed.
1800  * @flags: attributes to set for the ring buffer.
1801  * @key: ring buffer reader_lock_key.
1802  *
1803  * Currently the only flag that is available is the RB_FL_OVERWRITE
1804  * flag. This flag means that the buffer will overwrite old data
1805  * when the buffer wraps. If this flag is not set, the buffer will
1806  * drop data when the tail hits the head.
1807  */
1808 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1809 					struct lock_class_key *key)
1810 {
1811 	struct trace_buffer *buffer;
1812 	long nr_pages;
1813 	int bsize;
1814 	int cpu;
1815 	int ret;
1816 
1817 	/* keep it in its own cache line */
1818 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1819 			 GFP_KERNEL);
1820 	if (!buffer)
1821 		return NULL;
1822 
1823 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1824 		goto fail_free_buffer;
1825 
1826 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1827 	buffer->flags = flags;
1828 	buffer->clock = trace_clock_local;
1829 	buffer->reader_lock_key = key;
1830 
1831 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1832 	init_waitqueue_head(&buffer->irq_work.waiters);
1833 
1834 	/* need at least two pages */
1835 	if (nr_pages < 2)
1836 		nr_pages = 2;
1837 
1838 	buffer->cpus = nr_cpu_ids;
1839 
1840 	bsize = sizeof(void *) * nr_cpu_ids;
1841 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1842 				  GFP_KERNEL);
1843 	if (!buffer->buffers)
1844 		goto fail_free_cpumask;
1845 
1846 	cpu = raw_smp_processor_id();
1847 	cpumask_set_cpu(cpu, buffer->cpumask);
1848 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1849 	if (!buffer->buffers[cpu])
1850 		goto fail_free_buffers;
1851 
1852 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1853 	if (ret < 0)
1854 		goto fail_free_buffers;
1855 
1856 	mutex_init(&buffer->mutex);
1857 
1858 	return buffer;
1859 
1860  fail_free_buffers:
1861 	for_each_buffer_cpu(buffer, cpu) {
1862 		if (buffer->buffers[cpu])
1863 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1864 	}
1865 	kfree(buffer->buffers);
1866 
1867  fail_free_cpumask:
1868 	free_cpumask_var(buffer->cpumask);
1869 
1870  fail_free_buffer:
1871 	kfree(buffer);
1872 	return NULL;
1873 }
1874 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1875 
1876 /**
1877  * ring_buffer_free - free a ring buffer.
1878  * @buffer: the buffer to free.
1879  */
1880 void
1881 ring_buffer_free(struct trace_buffer *buffer)
1882 {
1883 	int cpu;
1884 
1885 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1886 
1887 	for_each_buffer_cpu(buffer, cpu)
1888 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1889 
1890 	kfree(buffer->buffers);
1891 	free_cpumask_var(buffer->cpumask);
1892 
1893 	kfree(buffer);
1894 }
1895 EXPORT_SYMBOL_GPL(ring_buffer_free);
1896 
1897 void ring_buffer_set_clock(struct trace_buffer *buffer,
1898 			   u64 (*clock)(void))
1899 {
1900 	buffer->clock = clock;
1901 }
1902 
1903 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1904 {
1905 	buffer->time_stamp_abs = abs;
1906 }
1907 
1908 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1909 {
1910 	return buffer->time_stamp_abs;
1911 }
1912 
1913 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1914 
1915 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1916 {
1917 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1918 }
1919 
1920 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1921 {
1922 	return local_read(&bpage->write) & RB_WRITE_MASK;
1923 }
1924 
1925 static int
1926 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1927 {
1928 	struct list_head *tail_page, *to_remove, *next_page;
1929 	struct buffer_page *to_remove_page, *tmp_iter_page;
1930 	struct buffer_page *last_page, *first_page;
1931 	unsigned long nr_removed;
1932 	unsigned long head_bit;
1933 	int page_entries;
1934 
1935 	head_bit = 0;
1936 
1937 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1938 	atomic_inc(&cpu_buffer->record_disabled);
1939 	/*
1940 	 * We don't race with the readers since we have acquired the reader
1941 	 * lock. We also don't race with writers after disabling recording.
1942 	 * This makes it easy to figure out the first and the last page to be
1943 	 * removed from the list. We unlink all the pages in between including
1944 	 * the first and last pages. This is done in a busy loop so that we
1945 	 * lose the least number of traces.
1946 	 * The pages are freed after we restart recording and unlock readers.
1947 	 */
1948 	tail_page = &cpu_buffer->tail_page->list;
1949 
1950 	/*
1951 	 * tail page might be on reader page, we remove the next page
1952 	 * from the ring buffer
1953 	 */
1954 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1955 		tail_page = rb_list_head(tail_page->next);
1956 	to_remove = tail_page;
1957 
1958 	/* start of pages to remove */
1959 	first_page = list_entry(rb_list_head(to_remove->next),
1960 				struct buffer_page, list);
1961 
1962 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1963 		to_remove = rb_list_head(to_remove)->next;
1964 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1965 	}
1966 
1967 	next_page = rb_list_head(to_remove)->next;
1968 
1969 	/*
1970 	 * Now we remove all pages between tail_page and next_page.
1971 	 * Make sure that we have head_bit value preserved for the
1972 	 * next page
1973 	 */
1974 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1975 						head_bit);
1976 	next_page = rb_list_head(next_page);
1977 	next_page->prev = tail_page;
1978 
1979 	/* make sure pages points to a valid page in the ring buffer */
1980 	cpu_buffer->pages = next_page;
1981 
1982 	/* update head page */
1983 	if (head_bit)
1984 		cpu_buffer->head_page = list_entry(next_page,
1985 						struct buffer_page, list);
1986 
1987 	/*
1988 	 * change read pointer to make sure any read iterators reset
1989 	 * themselves
1990 	 */
1991 	cpu_buffer->read = 0;
1992 
1993 	/* pages are removed, resume tracing and then free the pages */
1994 	atomic_dec(&cpu_buffer->record_disabled);
1995 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1996 
1997 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1998 
1999 	/* last buffer page to remove */
2000 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2001 				list);
2002 	tmp_iter_page = first_page;
2003 
2004 	do {
2005 		cond_resched();
2006 
2007 		to_remove_page = tmp_iter_page;
2008 		rb_inc_page(&tmp_iter_page);
2009 
2010 		/* update the counters */
2011 		page_entries = rb_page_entries(to_remove_page);
2012 		if (page_entries) {
2013 			/*
2014 			 * If something was added to this page, it was full
2015 			 * since it is not the tail page. So we deduct the
2016 			 * bytes consumed in ring buffer from here.
2017 			 * Increment overrun to account for the lost events.
2018 			 */
2019 			local_add(page_entries, &cpu_buffer->overrun);
2020 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2021 			local_inc(&cpu_buffer->pages_lost);
2022 		}
2023 
2024 		/*
2025 		 * We have already removed references to this list item, just
2026 		 * free up the buffer_page and its page
2027 		 */
2028 		free_buffer_page(to_remove_page);
2029 		nr_removed--;
2030 
2031 	} while (to_remove_page != last_page);
2032 
2033 	RB_WARN_ON(cpu_buffer, nr_removed);
2034 
2035 	return nr_removed == 0;
2036 }
2037 
2038 static int
2039 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2040 {
2041 	struct list_head *pages = &cpu_buffer->new_pages;
2042 	int retries, success;
2043 	unsigned long flags;
2044 
2045 	/* Can be called at early boot up, where interrupts must not been enabled */
2046 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2047 	/*
2048 	 * We are holding the reader lock, so the reader page won't be swapped
2049 	 * in the ring buffer. Now we are racing with the writer trying to
2050 	 * move head page and the tail page.
2051 	 * We are going to adapt the reader page update process where:
2052 	 * 1. We first splice the start and end of list of new pages between
2053 	 *    the head page and its previous page.
2054 	 * 2. We cmpxchg the prev_page->next to point from head page to the
2055 	 *    start of new pages list.
2056 	 * 3. Finally, we update the head->prev to the end of new list.
2057 	 *
2058 	 * We will try this process 10 times, to make sure that we don't keep
2059 	 * spinning.
2060 	 */
2061 	retries = 10;
2062 	success = 0;
2063 	while (retries--) {
2064 		struct list_head *head_page, *prev_page, *r;
2065 		struct list_head *last_page, *first_page;
2066 		struct list_head *head_page_with_bit;
2067 
2068 		head_page = &rb_set_head_page(cpu_buffer)->list;
2069 		if (!head_page)
2070 			break;
2071 		prev_page = head_page->prev;
2072 
2073 		first_page = pages->next;
2074 		last_page  = pages->prev;
2075 
2076 		head_page_with_bit = (struct list_head *)
2077 				     ((unsigned long)head_page | RB_PAGE_HEAD);
2078 
2079 		last_page->next = head_page_with_bit;
2080 		first_page->prev = prev_page;
2081 
2082 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
2083 
2084 		if (r == head_page_with_bit) {
2085 			/*
2086 			 * yay, we replaced the page pointer to our new list,
2087 			 * now, we just have to update to head page's prev
2088 			 * pointer to point to end of list
2089 			 */
2090 			head_page->prev = last_page;
2091 			success = 1;
2092 			break;
2093 		}
2094 	}
2095 
2096 	if (success)
2097 		INIT_LIST_HEAD(pages);
2098 	/*
2099 	 * If we weren't successful in adding in new pages, warn and stop
2100 	 * tracing
2101 	 */
2102 	RB_WARN_ON(cpu_buffer, !success);
2103 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2104 
2105 	/* free pages if they weren't inserted */
2106 	if (!success) {
2107 		struct buffer_page *bpage, *tmp;
2108 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2109 					 list) {
2110 			list_del_init(&bpage->list);
2111 			free_buffer_page(bpage);
2112 		}
2113 	}
2114 	return success;
2115 }
2116 
2117 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2118 {
2119 	int success;
2120 
2121 	if (cpu_buffer->nr_pages_to_update > 0)
2122 		success = rb_insert_pages(cpu_buffer);
2123 	else
2124 		success = rb_remove_pages(cpu_buffer,
2125 					-cpu_buffer->nr_pages_to_update);
2126 
2127 	if (success)
2128 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2129 }
2130 
2131 static void update_pages_handler(struct work_struct *work)
2132 {
2133 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2134 			struct ring_buffer_per_cpu, update_pages_work);
2135 	rb_update_pages(cpu_buffer);
2136 	complete(&cpu_buffer->update_done);
2137 }
2138 
2139 /**
2140  * ring_buffer_resize - resize the ring buffer
2141  * @buffer: the buffer to resize.
2142  * @size: the new size.
2143  * @cpu_id: the cpu buffer to resize
2144  *
2145  * Minimum size is 2 * BUF_PAGE_SIZE.
2146  *
2147  * Returns 0 on success and < 0 on failure.
2148  */
2149 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2150 			int cpu_id)
2151 {
2152 	struct ring_buffer_per_cpu *cpu_buffer;
2153 	unsigned long nr_pages;
2154 	int cpu, err;
2155 
2156 	/*
2157 	 * Always succeed at resizing a non-existent buffer:
2158 	 */
2159 	if (!buffer)
2160 		return 0;
2161 
2162 	/* Make sure the requested buffer exists */
2163 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2164 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2165 		return 0;
2166 
2167 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
2168 
2169 	/* we need a minimum of two pages */
2170 	if (nr_pages < 2)
2171 		nr_pages = 2;
2172 
2173 	/* prevent another thread from changing buffer sizes */
2174 	mutex_lock(&buffer->mutex);
2175 
2176 
2177 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2178 		/*
2179 		 * Don't succeed if resizing is disabled, as a reader might be
2180 		 * manipulating the ring buffer and is expecting a sane state while
2181 		 * this is true.
2182 		 */
2183 		for_each_buffer_cpu(buffer, cpu) {
2184 			cpu_buffer = buffer->buffers[cpu];
2185 			if (atomic_read(&cpu_buffer->resize_disabled)) {
2186 				err = -EBUSY;
2187 				goto out_err_unlock;
2188 			}
2189 		}
2190 
2191 		/* calculate the pages to update */
2192 		for_each_buffer_cpu(buffer, cpu) {
2193 			cpu_buffer = buffer->buffers[cpu];
2194 
2195 			cpu_buffer->nr_pages_to_update = nr_pages -
2196 							cpu_buffer->nr_pages;
2197 			/*
2198 			 * nothing more to do for removing pages or no update
2199 			 */
2200 			if (cpu_buffer->nr_pages_to_update <= 0)
2201 				continue;
2202 			/*
2203 			 * to add pages, make sure all new pages can be
2204 			 * allocated without receiving ENOMEM
2205 			 */
2206 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2207 			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2208 						&cpu_buffer->new_pages)) {
2209 				/* not enough memory for new pages */
2210 				err = -ENOMEM;
2211 				goto out_err;
2212 			}
2213 		}
2214 
2215 		cpus_read_lock();
2216 		/*
2217 		 * Fire off all the required work handlers
2218 		 * We can't schedule on offline CPUs, but it's not necessary
2219 		 * since we can change their buffer sizes without any race.
2220 		 */
2221 		for_each_buffer_cpu(buffer, cpu) {
2222 			cpu_buffer = buffer->buffers[cpu];
2223 			if (!cpu_buffer->nr_pages_to_update)
2224 				continue;
2225 
2226 			/* Can't run something on an offline CPU. */
2227 			if (!cpu_online(cpu)) {
2228 				rb_update_pages(cpu_buffer);
2229 				cpu_buffer->nr_pages_to_update = 0;
2230 			} else {
2231 				/* Run directly if possible. */
2232 				migrate_disable();
2233 				if (cpu != smp_processor_id()) {
2234 					migrate_enable();
2235 					schedule_work_on(cpu,
2236 							 &cpu_buffer->update_pages_work);
2237 				} else {
2238 					update_pages_handler(&cpu_buffer->update_pages_work);
2239 					migrate_enable();
2240 				}
2241 			}
2242 		}
2243 
2244 		/* wait for all the updates to complete */
2245 		for_each_buffer_cpu(buffer, cpu) {
2246 			cpu_buffer = buffer->buffers[cpu];
2247 			if (!cpu_buffer->nr_pages_to_update)
2248 				continue;
2249 
2250 			if (cpu_online(cpu))
2251 				wait_for_completion(&cpu_buffer->update_done);
2252 			cpu_buffer->nr_pages_to_update = 0;
2253 		}
2254 
2255 		cpus_read_unlock();
2256 	} else {
2257 		cpu_buffer = buffer->buffers[cpu_id];
2258 
2259 		if (nr_pages == cpu_buffer->nr_pages)
2260 			goto out;
2261 
2262 		/*
2263 		 * Don't succeed if resizing is disabled, as a reader might be
2264 		 * manipulating the ring buffer and is expecting a sane state while
2265 		 * this is true.
2266 		 */
2267 		if (atomic_read(&cpu_buffer->resize_disabled)) {
2268 			err = -EBUSY;
2269 			goto out_err_unlock;
2270 		}
2271 
2272 		cpu_buffer->nr_pages_to_update = nr_pages -
2273 						cpu_buffer->nr_pages;
2274 
2275 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2276 		if (cpu_buffer->nr_pages_to_update > 0 &&
2277 			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2278 					    &cpu_buffer->new_pages)) {
2279 			err = -ENOMEM;
2280 			goto out_err;
2281 		}
2282 
2283 		cpus_read_lock();
2284 
2285 		/* Can't run something on an offline CPU. */
2286 		if (!cpu_online(cpu_id))
2287 			rb_update_pages(cpu_buffer);
2288 		else {
2289 			/* Run directly if possible. */
2290 			migrate_disable();
2291 			if (cpu_id == smp_processor_id()) {
2292 				rb_update_pages(cpu_buffer);
2293 				migrate_enable();
2294 			} else {
2295 				migrate_enable();
2296 				schedule_work_on(cpu_id,
2297 						 &cpu_buffer->update_pages_work);
2298 				wait_for_completion(&cpu_buffer->update_done);
2299 			}
2300 		}
2301 
2302 		cpu_buffer->nr_pages_to_update = 0;
2303 		cpus_read_unlock();
2304 	}
2305 
2306  out:
2307 	/*
2308 	 * The ring buffer resize can happen with the ring buffer
2309 	 * enabled, so that the update disturbs the tracing as little
2310 	 * as possible. But if the buffer is disabled, we do not need
2311 	 * to worry about that, and we can take the time to verify
2312 	 * that the buffer is not corrupt.
2313 	 */
2314 	if (atomic_read(&buffer->record_disabled)) {
2315 		atomic_inc(&buffer->record_disabled);
2316 		/*
2317 		 * Even though the buffer was disabled, we must make sure
2318 		 * that it is truly disabled before calling rb_check_pages.
2319 		 * There could have been a race between checking
2320 		 * record_disable and incrementing it.
2321 		 */
2322 		synchronize_rcu();
2323 		for_each_buffer_cpu(buffer, cpu) {
2324 			cpu_buffer = buffer->buffers[cpu];
2325 			rb_check_pages(cpu_buffer);
2326 		}
2327 		atomic_dec(&buffer->record_disabled);
2328 	}
2329 
2330 	mutex_unlock(&buffer->mutex);
2331 	return 0;
2332 
2333  out_err:
2334 	for_each_buffer_cpu(buffer, cpu) {
2335 		struct buffer_page *bpage, *tmp;
2336 
2337 		cpu_buffer = buffer->buffers[cpu];
2338 		cpu_buffer->nr_pages_to_update = 0;
2339 
2340 		if (list_empty(&cpu_buffer->new_pages))
2341 			continue;
2342 
2343 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2344 					list) {
2345 			list_del_init(&bpage->list);
2346 			free_buffer_page(bpage);
2347 		}
2348 	}
2349  out_err_unlock:
2350 	mutex_unlock(&buffer->mutex);
2351 	return err;
2352 }
2353 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2354 
2355 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2356 {
2357 	mutex_lock(&buffer->mutex);
2358 	if (val)
2359 		buffer->flags |= RB_FL_OVERWRITE;
2360 	else
2361 		buffer->flags &= ~RB_FL_OVERWRITE;
2362 	mutex_unlock(&buffer->mutex);
2363 }
2364 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2365 
2366 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2367 {
2368 	return bpage->page->data + index;
2369 }
2370 
2371 static __always_inline struct ring_buffer_event *
2372 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2373 {
2374 	return __rb_page_index(cpu_buffer->reader_page,
2375 			       cpu_buffer->reader_page->read);
2376 }
2377 
2378 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
2379 {
2380 	return local_read(&bpage->page->commit);
2381 }
2382 
2383 static struct ring_buffer_event *
2384 rb_iter_head_event(struct ring_buffer_iter *iter)
2385 {
2386 	struct ring_buffer_event *event;
2387 	struct buffer_page *iter_head_page = iter->head_page;
2388 	unsigned long commit;
2389 	unsigned length;
2390 
2391 	if (iter->head != iter->next_event)
2392 		return iter->event;
2393 
2394 	/*
2395 	 * When the writer goes across pages, it issues a cmpxchg which
2396 	 * is a mb(), which will synchronize with the rmb here.
2397 	 * (see rb_tail_page_update() and __rb_reserve_next())
2398 	 */
2399 	commit = rb_page_commit(iter_head_page);
2400 	smp_rmb();
2401 	event = __rb_page_index(iter_head_page, iter->head);
2402 	length = rb_event_length(event);
2403 
2404 	/*
2405 	 * READ_ONCE() doesn't work on functions and we don't want the
2406 	 * compiler doing any crazy optimizations with length.
2407 	 */
2408 	barrier();
2409 
2410 	if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2411 		/* Writer corrupted the read? */
2412 		goto reset;
2413 
2414 	memcpy(iter->event, event, length);
2415 	/*
2416 	 * If the page stamp is still the same after this rmb() then the
2417 	 * event was safely copied without the writer entering the page.
2418 	 */
2419 	smp_rmb();
2420 
2421 	/* Make sure the page didn't change since we read this */
2422 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
2423 	    commit > rb_page_commit(iter_head_page))
2424 		goto reset;
2425 
2426 	iter->next_event = iter->head + length;
2427 	return iter->event;
2428  reset:
2429 	/* Reset to the beginning */
2430 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2431 	iter->head = 0;
2432 	iter->next_event = 0;
2433 	iter->missed_events = 1;
2434 	return NULL;
2435 }
2436 
2437 /* Size is determined by what has been committed */
2438 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2439 {
2440 	return rb_page_commit(bpage);
2441 }
2442 
2443 static __always_inline unsigned
2444 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2445 {
2446 	return rb_page_commit(cpu_buffer->commit_page);
2447 }
2448 
2449 static __always_inline unsigned
2450 rb_event_index(struct ring_buffer_event *event)
2451 {
2452 	unsigned long addr = (unsigned long)event;
2453 
2454 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2455 }
2456 
2457 static void rb_inc_iter(struct ring_buffer_iter *iter)
2458 {
2459 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2460 
2461 	/*
2462 	 * The iterator could be on the reader page (it starts there).
2463 	 * But the head could have moved, since the reader was
2464 	 * found. Check for this case and assign the iterator
2465 	 * to the head page instead of next.
2466 	 */
2467 	if (iter->head_page == cpu_buffer->reader_page)
2468 		iter->head_page = rb_set_head_page(cpu_buffer);
2469 	else
2470 		rb_inc_page(&iter->head_page);
2471 
2472 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2473 	iter->head = 0;
2474 	iter->next_event = 0;
2475 }
2476 
2477 /*
2478  * rb_handle_head_page - writer hit the head page
2479  *
2480  * Returns: +1 to retry page
2481  *           0 to continue
2482  *          -1 on error
2483  */
2484 static int
2485 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2486 		    struct buffer_page *tail_page,
2487 		    struct buffer_page *next_page)
2488 {
2489 	struct buffer_page *new_head;
2490 	int entries;
2491 	int type;
2492 	int ret;
2493 
2494 	entries = rb_page_entries(next_page);
2495 
2496 	/*
2497 	 * The hard part is here. We need to move the head
2498 	 * forward, and protect against both readers on
2499 	 * other CPUs and writers coming in via interrupts.
2500 	 */
2501 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2502 				       RB_PAGE_HEAD);
2503 
2504 	/*
2505 	 * type can be one of four:
2506 	 *  NORMAL - an interrupt already moved it for us
2507 	 *  HEAD   - we are the first to get here.
2508 	 *  UPDATE - we are the interrupt interrupting
2509 	 *           a current move.
2510 	 *  MOVED  - a reader on another CPU moved the next
2511 	 *           pointer to its reader page. Give up
2512 	 *           and try again.
2513 	 */
2514 
2515 	switch (type) {
2516 	case RB_PAGE_HEAD:
2517 		/*
2518 		 * We changed the head to UPDATE, thus
2519 		 * it is our responsibility to update
2520 		 * the counters.
2521 		 */
2522 		local_add(entries, &cpu_buffer->overrun);
2523 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2524 		local_inc(&cpu_buffer->pages_lost);
2525 
2526 		/*
2527 		 * The entries will be zeroed out when we move the
2528 		 * tail page.
2529 		 */
2530 
2531 		/* still more to do */
2532 		break;
2533 
2534 	case RB_PAGE_UPDATE:
2535 		/*
2536 		 * This is an interrupt that interrupt the
2537 		 * previous update. Still more to do.
2538 		 */
2539 		break;
2540 	case RB_PAGE_NORMAL:
2541 		/*
2542 		 * An interrupt came in before the update
2543 		 * and processed this for us.
2544 		 * Nothing left to do.
2545 		 */
2546 		return 1;
2547 	case RB_PAGE_MOVED:
2548 		/*
2549 		 * The reader is on another CPU and just did
2550 		 * a swap with our next_page.
2551 		 * Try again.
2552 		 */
2553 		return 1;
2554 	default:
2555 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2556 		return -1;
2557 	}
2558 
2559 	/*
2560 	 * Now that we are here, the old head pointer is
2561 	 * set to UPDATE. This will keep the reader from
2562 	 * swapping the head page with the reader page.
2563 	 * The reader (on another CPU) will spin till
2564 	 * we are finished.
2565 	 *
2566 	 * We just need to protect against interrupts
2567 	 * doing the job. We will set the next pointer
2568 	 * to HEAD. After that, we set the old pointer
2569 	 * to NORMAL, but only if it was HEAD before.
2570 	 * otherwise we are an interrupt, and only
2571 	 * want the outer most commit to reset it.
2572 	 */
2573 	new_head = next_page;
2574 	rb_inc_page(&new_head);
2575 
2576 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2577 				    RB_PAGE_NORMAL);
2578 
2579 	/*
2580 	 * Valid returns are:
2581 	 *  HEAD   - an interrupt came in and already set it.
2582 	 *  NORMAL - One of two things:
2583 	 *            1) We really set it.
2584 	 *            2) A bunch of interrupts came in and moved
2585 	 *               the page forward again.
2586 	 */
2587 	switch (ret) {
2588 	case RB_PAGE_HEAD:
2589 	case RB_PAGE_NORMAL:
2590 		/* OK */
2591 		break;
2592 	default:
2593 		RB_WARN_ON(cpu_buffer, 1);
2594 		return -1;
2595 	}
2596 
2597 	/*
2598 	 * It is possible that an interrupt came in,
2599 	 * set the head up, then more interrupts came in
2600 	 * and moved it again. When we get back here,
2601 	 * the page would have been set to NORMAL but we
2602 	 * just set it back to HEAD.
2603 	 *
2604 	 * How do you detect this? Well, if that happened
2605 	 * the tail page would have moved.
2606 	 */
2607 	if (ret == RB_PAGE_NORMAL) {
2608 		struct buffer_page *buffer_tail_page;
2609 
2610 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2611 		/*
2612 		 * If the tail had moved passed next, then we need
2613 		 * to reset the pointer.
2614 		 */
2615 		if (buffer_tail_page != tail_page &&
2616 		    buffer_tail_page != next_page)
2617 			rb_head_page_set_normal(cpu_buffer, new_head,
2618 						next_page,
2619 						RB_PAGE_HEAD);
2620 	}
2621 
2622 	/*
2623 	 * If this was the outer most commit (the one that
2624 	 * changed the original pointer from HEAD to UPDATE),
2625 	 * then it is up to us to reset it to NORMAL.
2626 	 */
2627 	if (type == RB_PAGE_HEAD) {
2628 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2629 					      tail_page,
2630 					      RB_PAGE_UPDATE);
2631 		if (RB_WARN_ON(cpu_buffer,
2632 			       ret != RB_PAGE_UPDATE))
2633 			return -1;
2634 	}
2635 
2636 	return 0;
2637 }
2638 
2639 static inline void
2640 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2641 	      unsigned long tail, struct rb_event_info *info)
2642 {
2643 	struct buffer_page *tail_page = info->tail_page;
2644 	struct ring_buffer_event *event;
2645 	unsigned long length = info->length;
2646 
2647 	/*
2648 	 * Only the event that crossed the page boundary
2649 	 * must fill the old tail_page with padding.
2650 	 */
2651 	if (tail >= BUF_PAGE_SIZE) {
2652 		/*
2653 		 * If the page was filled, then we still need
2654 		 * to update the real_end. Reset it to zero
2655 		 * and the reader will ignore it.
2656 		 */
2657 		if (tail == BUF_PAGE_SIZE)
2658 			tail_page->real_end = 0;
2659 
2660 		local_sub(length, &tail_page->write);
2661 		return;
2662 	}
2663 
2664 	event = __rb_page_index(tail_page, tail);
2665 
2666 	/* account for padding bytes */
2667 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2668 
2669 	/*
2670 	 * Save the original length to the meta data.
2671 	 * This will be used by the reader to add lost event
2672 	 * counter.
2673 	 */
2674 	tail_page->real_end = tail;
2675 
2676 	/*
2677 	 * If this event is bigger than the minimum size, then
2678 	 * we need to be careful that we don't subtract the
2679 	 * write counter enough to allow another writer to slip
2680 	 * in on this page.
2681 	 * We put in a discarded commit instead, to make sure
2682 	 * that this space is not used again.
2683 	 *
2684 	 * If we are less than the minimum size, we don't need to
2685 	 * worry about it.
2686 	 */
2687 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2688 		/* No room for any events */
2689 
2690 		/* Mark the rest of the page with padding */
2691 		rb_event_set_padding(event);
2692 
2693 		/* Make sure the padding is visible before the write update */
2694 		smp_wmb();
2695 
2696 		/* Set the write back to the previous setting */
2697 		local_sub(length, &tail_page->write);
2698 		return;
2699 	}
2700 
2701 	/* Put in a discarded event */
2702 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2703 	event->type_len = RINGBUF_TYPE_PADDING;
2704 	/* time delta must be non zero */
2705 	event->time_delta = 1;
2706 
2707 	/* Make sure the padding is visible before the tail_page->write update */
2708 	smp_wmb();
2709 
2710 	/* Set write to end of buffer */
2711 	length = (tail + length) - BUF_PAGE_SIZE;
2712 	local_sub(length, &tail_page->write);
2713 }
2714 
2715 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2716 
2717 /*
2718  * This is the slow path, force gcc not to inline it.
2719  */
2720 static noinline struct ring_buffer_event *
2721 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2722 	     unsigned long tail, struct rb_event_info *info)
2723 {
2724 	struct buffer_page *tail_page = info->tail_page;
2725 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2726 	struct trace_buffer *buffer = cpu_buffer->buffer;
2727 	struct buffer_page *next_page;
2728 	int ret;
2729 
2730 	next_page = tail_page;
2731 
2732 	rb_inc_page(&next_page);
2733 
2734 	/*
2735 	 * If for some reason, we had an interrupt storm that made
2736 	 * it all the way around the buffer, bail, and warn
2737 	 * about it.
2738 	 */
2739 	if (unlikely(next_page == commit_page)) {
2740 		local_inc(&cpu_buffer->commit_overrun);
2741 		goto out_reset;
2742 	}
2743 
2744 	/*
2745 	 * This is where the fun begins!
2746 	 *
2747 	 * We are fighting against races between a reader that
2748 	 * could be on another CPU trying to swap its reader
2749 	 * page with the buffer head.
2750 	 *
2751 	 * We are also fighting against interrupts coming in and
2752 	 * moving the head or tail on us as well.
2753 	 *
2754 	 * If the next page is the head page then we have filled
2755 	 * the buffer, unless the commit page is still on the
2756 	 * reader page.
2757 	 */
2758 	if (rb_is_head_page(next_page, &tail_page->list)) {
2759 
2760 		/*
2761 		 * If the commit is not on the reader page, then
2762 		 * move the header page.
2763 		 */
2764 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2765 			/*
2766 			 * If we are not in overwrite mode,
2767 			 * this is easy, just stop here.
2768 			 */
2769 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2770 				local_inc(&cpu_buffer->dropped_events);
2771 				goto out_reset;
2772 			}
2773 
2774 			ret = rb_handle_head_page(cpu_buffer,
2775 						  tail_page,
2776 						  next_page);
2777 			if (ret < 0)
2778 				goto out_reset;
2779 			if (ret)
2780 				goto out_again;
2781 		} else {
2782 			/*
2783 			 * We need to be careful here too. The
2784 			 * commit page could still be on the reader
2785 			 * page. We could have a small buffer, and
2786 			 * have filled up the buffer with events
2787 			 * from interrupts and such, and wrapped.
2788 			 *
2789 			 * Note, if the tail page is also on the
2790 			 * reader_page, we let it move out.
2791 			 */
2792 			if (unlikely((cpu_buffer->commit_page !=
2793 				      cpu_buffer->tail_page) &&
2794 				     (cpu_buffer->commit_page ==
2795 				      cpu_buffer->reader_page))) {
2796 				local_inc(&cpu_buffer->commit_overrun);
2797 				goto out_reset;
2798 			}
2799 		}
2800 	}
2801 
2802 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2803 
2804  out_again:
2805 
2806 	rb_reset_tail(cpu_buffer, tail, info);
2807 
2808 	/* Commit what we have for now. */
2809 	rb_end_commit(cpu_buffer);
2810 	/* rb_end_commit() decs committing */
2811 	local_inc(&cpu_buffer->committing);
2812 
2813 	/* fail and let the caller try again */
2814 	return ERR_PTR(-EAGAIN);
2815 
2816  out_reset:
2817 	/* reset write */
2818 	rb_reset_tail(cpu_buffer, tail, info);
2819 
2820 	return NULL;
2821 }
2822 
2823 /* Slow path */
2824 static struct ring_buffer_event *
2825 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2826 {
2827 	if (abs)
2828 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2829 	else
2830 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2831 
2832 	/* Not the first event on the page, or not delta? */
2833 	if (abs || rb_event_index(event)) {
2834 		event->time_delta = delta & TS_MASK;
2835 		event->array[0] = delta >> TS_SHIFT;
2836 	} else {
2837 		/* nope, just zero it */
2838 		event->time_delta = 0;
2839 		event->array[0] = 0;
2840 	}
2841 
2842 	return skip_time_extend(event);
2843 }
2844 
2845 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2846 static inline bool sched_clock_stable(void)
2847 {
2848 	return true;
2849 }
2850 #endif
2851 
2852 static void
2853 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2854 		   struct rb_event_info *info)
2855 {
2856 	u64 write_stamp;
2857 
2858 	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2859 		  (unsigned long long)info->delta,
2860 		  (unsigned long long)info->ts,
2861 		  (unsigned long long)info->before,
2862 		  (unsigned long long)info->after,
2863 		  (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2864 		  sched_clock_stable() ? "" :
2865 		  "If you just came from a suspend/resume,\n"
2866 		  "please switch to the trace global clock:\n"
2867 		  "  echo global > /sys/kernel/tracing/trace_clock\n"
2868 		  "or add trace_clock=global to the kernel command line\n");
2869 }
2870 
2871 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2872 				      struct ring_buffer_event **event,
2873 				      struct rb_event_info *info,
2874 				      u64 *delta,
2875 				      unsigned int *length)
2876 {
2877 	bool abs = info->add_timestamp &
2878 		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2879 
2880 	if (unlikely(info->delta > (1ULL << 59))) {
2881 		/*
2882 		 * Some timers can use more than 59 bits, and when a timestamp
2883 		 * is added to the buffer, it will lose those bits.
2884 		 */
2885 		if (abs && (info->ts & TS_MSB)) {
2886 			info->delta &= ABS_TS_MASK;
2887 
2888 		/* did the clock go backwards */
2889 		} else if (info->before == info->after && info->before > info->ts) {
2890 			/* not interrupted */
2891 			static int once;
2892 
2893 			/*
2894 			 * This is possible with a recalibrating of the TSC.
2895 			 * Do not produce a call stack, but just report it.
2896 			 */
2897 			if (!once) {
2898 				once++;
2899 				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2900 					info->before, info->ts);
2901 			}
2902 		} else
2903 			rb_check_timestamp(cpu_buffer, info);
2904 		if (!abs)
2905 			info->delta = 0;
2906 	}
2907 	*event = rb_add_time_stamp(*event, info->delta, abs);
2908 	*length -= RB_LEN_TIME_EXTEND;
2909 	*delta = 0;
2910 }
2911 
2912 /**
2913  * rb_update_event - update event type and data
2914  * @cpu_buffer: The per cpu buffer of the @event
2915  * @event: the event to update
2916  * @info: The info to update the @event with (contains length and delta)
2917  *
2918  * Update the type and data fields of the @event. The length
2919  * is the actual size that is written to the ring buffer,
2920  * and with this, we can determine what to place into the
2921  * data field.
2922  */
2923 static void
2924 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2925 		struct ring_buffer_event *event,
2926 		struct rb_event_info *info)
2927 {
2928 	unsigned length = info->length;
2929 	u64 delta = info->delta;
2930 	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2931 
2932 	if (!WARN_ON_ONCE(nest >= MAX_NEST))
2933 		cpu_buffer->event_stamp[nest] = info->ts;
2934 
2935 	/*
2936 	 * If we need to add a timestamp, then we
2937 	 * add it to the start of the reserved space.
2938 	 */
2939 	if (unlikely(info->add_timestamp))
2940 		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2941 
2942 	event->time_delta = delta;
2943 	length -= RB_EVNT_HDR_SIZE;
2944 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2945 		event->type_len = 0;
2946 		event->array[0] = length;
2947 	} else
2948 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2949 }
2950 
2951 static unsigned rb_calculate_event_length(unsigned length)
2952 {
2953 	struct ring_buffer_event event; /* Used only for sizeof array */
2954 
2955 	/* zero length can cause confusions */
2956 	if (!length)
2957 		length++;
2958 
2959 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2960 		length += sizeof(event.array[0]);
2961 
2962 	length += RB_EVNT_HDR_SIZE;
2963 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2964 
2965 	/*
2966 	 * In case the time delta is larger than the 27 bits for it
2967 	 * in the header, we need to add a timestamp. If another
2968 	 * event comes in when trying to discard this one to increase
2969 	 * the length, then the timestamp will be added in the allocated
2970 	 * space of this event. If length is bigger than the size needed
2971 	 * for the TIME_EXTEND, then padding has to be used. The events
2972 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2973 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2974 	 * As length is a multiple of 4, we only need to worry if it
2975 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2976 	 */
2977 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2978 		length += RB_ALIGNMENT;
2979 
2980 	return length;
2981 }
2982 
2983 static u64 rb_time_delta(struct ring_buffer_event *event)
2984 {
2985 	switch (event->type_len) {
2986 	case RINGBUF_TYPE_PADDING:
2987 		return 0;
2988 
2989 	case RINGBUF_TYPE_TIME_EXTEND:
2990 		return rb_event_time_stamp(event);
2991 
2992 	case RINGBUF_TYPE_TIME_STAMP:
2993 		return 0;
2994 
2995 	case RINGBUF_TYPE_DATA:
2996 		return event->time_delta;
2997 	default:
2998 		return 0;
2999 	}
3000 }
3001 
3002 static inline int
3003 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3004 		  struct ring_buffer_event *event)
3005 {
3006 	unsigned long new_index, old_index;
3007 	struct buffer_page *bpage;
3008 	unsigned long index;
3009 	unsigned long addr;
3010 	u64 write_stamp;
3011 	u64 delta;
3012 
3013 	new_index = rb_event_index(event);
3014 	old_index = new_index + rb_event_ts_length(event);
3015 	addr = (unsigned long)event;
3016 	addr &= PAGE_MASK;
3017 
3018 	bpage = READ_ONCE(cpu_buffer->tail_page);
3019 
3020 	delta = rb_time_delta(event);
3021 
3022 	if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
3023 		return 0;
3024 
3025 	/* Make sure the write stamp is read before testing the location */
3026 	barrier();
3027 
3028 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3029 		unsigned long write_mask =
3030 			local_read(&bpage->write) & ~RB_WRITE_MASK;
3031 		unsigned long event_length = rb_event_length(event);
3032 
3033 		/* Something came in, can't discard */
3034 		if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
3035 				       write_stamp, write_stamp - delta))
3036 			return 0;
3037 
3038 		/*
3039 		 * It's possible that the event time delta is zero
3040 		 * (has the same time stamp as the previous event)
3041 		 * in which case write_stamp and before_stamp could
3042 		 * be the same. In such a case, force before_stamp
3043 		 * to be different than write_stamp. It doesn't
3044 		 * matter what it is, as long as its different.
3045 		 */
3046 		if (!delta)
3047 			rb_time_set(&cpu_buffer->before_stamp, 0);
3048 
3049 		/*
3050 		 * If an event were to come in now, it would see that the
3051 		 * write_stamp and the before_stamp are different, and assume
3052 		 * that this event just added itself before updating
3053 		 * the write stamp. The interrupting event will fix the
3054 		 * write stamp for us, and use the before stamp as its delta.
3055 		 */
3056 
3057 		/*
3058 		 * This is on the tail page. It is possible that
3059 		 * a write could come in and move the tail page
3060 		 * and write to the next page. That is fine
3061 		 * because we just shorten what is on this page.
3062 		 */
3063 		old_index += write_mask;
3064 		new_index += write_mask;
3065 		index = local_cmpxchg(&bpage->write, old_index, new_index);
3066 		if (index == old_index) {
3067 			/* update counters */
3068 			local_sub(event_length, &cpu_buffer->entries_bytes);
3069 			return 1;
3070 		}
3071 	}
3072 
3073 	/* could not discard */
3074 	return 0;
3075 }
3076 
3077 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3078 {
3079 	local_inc(&cpu_buffer->committing);
3080 	local_inc(&cpu_buffer->commits);
3081 }
3082 
3083 static __always_inline void
3084 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3085 {
3086 	unsigned long max_count;
3087 
3088 	/*
3089 	 * We only race with interrupts and NMIs on this CPU.
3090 	 * If we own the commit event, then we can commit
3091 	 * all others that interrupted us, since the interruptions
3092 	 * are in stack format (they finish before they come
3093 	 * back to us). This allows us to do a simple loop to
3094 	 * assign the commit to the tail.
3095 	 */
3096  again:
3097 	max_count = cpu_buffer->nr_pages * 100;
3098 
3099 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3100 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3101 			return;
3102 		if (RB_WARN_ON(cpu_buffer,
3103 			       rb_is_reader_page(cpu_buffer->tail_page)))
3104 			return;
3105 		local_set(&cpu_buffer->commit_page->page->commit,
3106 			  rb_page_write(cpu_buffer->commit_page));
3107 		rb_inc_page(&cpu_buffer->commit_page);
3108 		/* add barrier to keep gcc from optimizing too much */
3109 		barrier();
3110 	}
3111 	while (rb_commit_index(cpu_buffer) !=
3112 	       rb_page_write(cpu_buffer->commit_page)) {
3113 
3114 		local_set(&cpu_buffer->commit_page->page->commit,
3115 			  rb_page_write(cpu_buffer->commit_page));
3116 		RB_WARN_ON(cpu_buffer,
3117 			   local_read(&cpu_buffer->commit_page->page->commit) &
3118 			   ~RB_WRITE_MASK);
3119 		barrier();
3120 	}
3121 
3122 	/* again, keep gcc from optimizing */
3123 	barrier();
3124 
3125 	/*
3126 	 * If an interrupt came in just after the first while loop
3127 	 * and pushed the tail page forward, we will be left with
3128 	 * a dangling commit that will never go forward.
3129 	 */
3130 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3131 		goto again;
3132 }
3133 
3134 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3135 {
3136 	unsigned long commits;
3137 
3138 	if (RB_WARN_ON(cpu_buffer,
3139 		       !local_read(&cpu_buffer->committing)))
3140 		return;
3141 
3142  again:
3143 	commits = local_read(&cpu_buffer->commits);
3144 	/* synchronize with interrupts */
3145 	barrier();
3146 	if (local_read(&cpu_buffer->committing) == 1)
3147 		rb_set_commit_to_write(cpu_buffer);
3148 
3149 	local_dec(&cpu_buffer->committing);
3150 
3151 	/* synchronize with interrupts */
3152 	barrier();
3153 
3154 	/*
3155 	 * Need to account for interrupts coming in between the
3156 	 * updating of the commit page and the clearing of the
3157 	 * committing counter.
3158 	 */
3159 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3160 	    !local_read(&cpu_buffer->committing)) {
3161 		local_inc(&cpu_buffer->committing);
3162 		goto again;
3163 	}
3164 }
3165 
3166 static inline void rb_event_discard(struct ring_buffer_event *event)
3167 {
3168 	if (extended_time(event))
3169 		event = skip_time_extend(event);
3170 
3171 	/* array[0] holds the actual length for the discarded event */
3172 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3173 	event->type_len = RINGBUF_TYPE_PADDING;
3174 	/* time delta must be non zero */
3175 	if (!event->time_delta)
3176 		event->time_delta = 1;
3177 }
3178 
3179 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3180 {
3181 	local_inc(&cpu_buffer->entries);
3182 	rb_end_commit(cpu_buffer);
3183 }
3184 
3185 static __always_inline void
3186 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3187 {
3188 	if (buffer->irq_work.waiters_pending) {
3189 		buffer->irq_work.waiters_pending = false;
3190 		/* irq_work_queue() supplies it's own memory barriers */
3191 		irq_work_queue(&buffer->irq_work.work);
3192 	}
3193 
3194 	if (cpu_buffer->irq_work.waiters_pending) {
3195 		cpu_buffer->irq_work.waiters_pending = false;
3196 		/* irq_work_queue() supplies it's own memory barriers */
3197 		irq_work_queue(&cpu_buffer->irq_work.work);
3198 	}
3199 
3200 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3201 		return;
3202 
3203 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3204 		return;
3205 
3206 	if (!cpu_buffer->irq_work.full_waiters_pending)
3207 		return;
3208 
3209 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3210 
3211 	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3212 		return;
3213 
3214 	cpu_buffer->irq_work.wakeup_full = true;
3215 	cpu_buffer->irq_work.full_waiters_pending = false;
3216 	/* irq_work_queue() supplies it's own memory barriers */
3217 	irq_work_queue(&cpu_buffer->irq_work.work);
3218 }
3219 
3220 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3221 # define do_ring_buffer_record_recursion()	\
3222 	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3223 #else
3224 # define do_ring_buffer_record_recursion() do { } while (0)
3225 #endif
3226 
3227 /*
3228  * The lock and unlock are done within a preempt disable section.
3229  * The current_context per_cpu variable can only be modified
3230  * by the current task between lock and unlock. But it can
3231  * be modified more than once via an interrupt. To pass this
3232  * information from the lock to the unlock without having to
3233  * access the 'in_interrupt()' functions again (which do show
3234  * a bit of overhead in something as critical as function tracing,
3235  * we use a bitmask trick.
3236  *
3237  *  bit 1 =  NMI context
3238  *  bit 2 =  IRQ context
3239  *  bit 3 =  SoftIRQ context
3240  *  bit 4 =  normal context.
3241  *
3242  * This works because this is the order of contexts that can
3243  * preempt other contexts. A SoftIRQ never preempts an IRQ
3244  * context.
3245  *
3246  * When the context is determined, the corresponding bit is
3247  * checked and set (if it was set, then a recursion of that context
3248  * happened).
3249  *
3250  * On unlock, we need to clear this bit. To do so, just subtract
3251  * 1 from the current_context and AND it to itself.
3252  *
3253  * (binary)
3254  *  101 - 1 = 100
3255  *  101 & 100 = 100 (clearing bit zero)
3256  *
3257  *  1010 - 1 = 1001
3258  *  1010 & 1001 = 1000 (clearing bit 1)
3259  *
3260  * The least significant bit can be cleared this way, and it
3261  * just so happens that it is the same bit corresponding to
3262  * the current context.
3263  *
3264  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3265  * is set when a recursion is detected at the current context, and if
3266  * the TRANSITION bit is already set, it will fail the recursion.
3267  * This is needed because there's a lag between the changing of
3268  * interrupt context and updating the preempt count. In this case,
3269  * a false positive will be found. To handle this, one extra recursion
3270  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3271  * bit is already set, then it is considered a recursion and the function
3272  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3273  *
3274  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3275  * to be cleared. Even if it wasn't the context that set it. That is,
3276  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3277  * is called before preempt_count() is updated, since the check will
3278  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3279  * NMI then comes in, it will set the NMI bit, but when the NMI code
3280  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3281  * and leave the NMI bit set. But this is fine, because the interrupt
3282  * code that set the TRANSITION bit will then clear the NMI bit when it
3283  * calls trace_recursive_unlock(). If another NMI comes in, it will
3284  * set the TRANSITION bit and continue.
3285  *
3286  * Note: The TRANSITION bit only handles a single transition between context.
3287  */
3288 
3289 static __always_inline int
3290 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3291 {
3292 	unsigned int val = cpu_buffer->current_context;
3293 	int bit = interrupt_context_level();
3294 
3295 	bit = RB_CTX_NORMAL - bit;
3296 
3297 	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3298 		/*
3299 		 * It is possible that this was called by transitioning
3300 		 * between interrupt context, and preempt_count() has not
3301 		 * been updated yet. In this case, use the TRANSITION bit.
3302 		 */
3303 		bit = RB_CTX_TRANSITION;
3304 		if (val & (1 << (bit + cpu_buffer->nest))) {
3305 			do_ring_buffer_record_recursion();
3306 			return 1;
3307 		}
3308 	}
3309 
3310 	val |= (1 << (bit + cpu_buffer->nest));
3311 	cpu_buffer->current_context = val;
3312 
3313 	return 0;
3314 }
3315 
3316 static __always_inline void
3317 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3318 {
3319 	cpu_buffer->current_context &=
3320 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3321 }
3322 
3323 /* The recursive locking above uses 5 bits */
3324 #define NESTED_BITS 5
3325 
3326 /**
3327  * ring_buffer_nest_start - Allow to trace while nested
3328  * @buffer: The ring buffer to modify
3329  *
3330  * The ring buffer has a safety mechanism to prevent recursion.
3331  * But there may be a case where a trace needs to be done while
3332  * tracing something else. In this case, calling this function
3333  * will allow this function to nest within a currently active
3334  * ring_buffer_lock_reserve().
3335  *
3336  * Call this function before calling another ring_buffer_lock_reserve() and
3337  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3338  */
3339 void ring_buffer_nest_start(struct trace_buffer *buffer)
3340 {
3341 	struct ring_buffer_per_cpu *cpu_buffer;
3342 	int cpu;
3343 
3344 	/* Enabled by ring_buffer_nest_end() */
3345 	preempt_disable_notrace();
3346 	cpu = raw_smp_processor_id();
3347 	cpu_buffer = buffer->buffers[cpu];
3348 	/* This is the shift value for the above recursive locking */
3349 	cpu_buffer->nest += NESTED_BITS;
3350 }
3351 
3352 /**
3353  * ring_buffer_nest_end - Allow to trace while nested
3354  * @buffer: The ring buffer to modify
3355  *
3356  * Must be called after ring_buffer_nest_start() and after the
3357  * ring_buffer_unlock_commit().
3358  */
3359 void ring_buffer_nest_end(struct trace_buffer *buffer)
3360 {
3361 	struct ring_buffer_per_cpu *cpu_buffer;
3362 	int cpu;
3363 
3364 	/* disabled by ring_buffer_nest_start() */
3365 	cpu = raw_smp_processor_id();
3366 	cpu_buffer = buffer->buffers[cpu];
3367 	/* This is the shift value for the above recursive locking */
3368 	cpu_buffer->nest -= NESTED_BITS;
3369 	preempt_enable_notrace();
3370 }
3371 
3372 /**
3373  * ring_buffer_unlock_commit - commit a reserved
3374  * @buffer: The buffer to commit to
3375  * @event: The event pointer to commit.
3376  *
3377  * This commits the data to the ring buffer, and releases any locks held.
3378  *
3379  * Must be paired with ring_buffer_lock_reserve.
3380  */
3381 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3382 {
3383 	struct ring_buffer_per_cpu *cpu_buffer;
3384 	int cpu = raw_smp_processor_id();
3385 
3386 	cpu_buffer = buffer->buffers[cpu];
3387 
3388 	rb_commit(cpu_buffer);
3389 
3390 	rb_wakeups(buffer, cpu_buffer);
3391 
3392 	trace_recursive_unlock(cpu_buffer);
3393 
3394 	preempt_enable_notrace();
3395 
3396 	return 0;
3397 }
3398 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3399 
3400 /* Special value to validate all deltas on a page. */
3401 #define CHECK_FULL_PAGE		1L
3402 
3403 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3404 static void dump_buffer_page(struct buffer_data_page *bpage,
3405 			     struct rb_event_info *info,
3406 			     unsigned long tail)
3407 {
3408 	struct ring_buffer_event *event;
3409 	u64 ts, delta;
3410 	int e;
3411 
3412 	ts = bpage->time_stamp;
3413 	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3414 
3415 	for (e = 0; e < tail; e += rb_event_length(event)) {
3416 
3417 		event = (struct ring_buffer_event *)(bpage->data + e);
3418 
3419 		switch (event->type_len) {
3420 
3421 		case RINGBUF_TYPE_TIME_EXTEND:
3422 			delta = rb_event_time_stamp(event);
3423 			ts += delta;
3424 			pr_warn("  [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3425 			break;
3426 
3427 		case RINGBUF_TYPE_TIME_STAMP:
3428 			delta = rb_event_time_stamp(event);
3429 			ts = rb_fix_abs_ts(delta, ts);
3430 			pr_warn("  [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3431 			break;
3432 
3433 		case RINGBUF_TYPE_PADDING:
3434 			ts += event->time_delta;
3435 			pr_warn("  [%lld] delta:%d PADDING\n", ts, event->time_delta);
3436 			break;
3437 
3438 		case RINGBUF_TYPE_DATA:
3439 			ts += event->time_delta;
3440 			pr_warn("  [%lld] delta:%d\n", ts, event->time_delta);
3441 			break;
3442 
3443 		default:
3444 			break;
3445 		}
3446 	}
3447 }
3448 
3449 static DEFINE_PER_CPU(atomic_t, checking);
3450 static atomic_t ts_dump;
3451 
3452 /*
3453  * Check if the current event time stamp matches the deltas on
3454  * the buffer page.
3455  */
3456 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3457 			 struct rb_event_info *info,
3458 			 unsigned long tail)
3459 {
3460 	struct ring_buffer_event *event;
3461 	struct buffer_data_page *bpage;
3462 	u64 ts, delta;
3463 	bool full = false;
3464 	int e;
3465 
3466 	bpage = info->tail_page->page;
3467 
3468 	if (tail == CHECK_FULL_PAGE) {
3469 		full = true;
3470 		tail = local_read(&bpage->commit);
3471 	} else if (info->add_timestamp &
3472 		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3473 		/* Ignore events with absolute time stamps */
3474 		return;
3475 	}
3476 
3477 	/*
3478 	 * Do not check the first event (skip possible extends too).
3479 	 * Also do not check if previous events have not been committed.
3480 	 */
3481 	if (tail <= 8 || tail > local_read(&bpage->commit))
3482 		return;
3483 
3484 	/*
3485 	 * If this interrupted another event,
3486 	 */
3487 	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3488 		goto out;
3489 
3490 	ts = bpage->time_stamp;
3491 
3492 	for (e = 0; e < tail; e += rb_event_length(event)) {
3493 
3494 		event = (struct ring_buffer_event *)(bpage->data + e);
3495 
3496 		switch (event->type_len) {
3497 
3498 		case RINGBUF_TYPE_TIME_EXTEND:
3499 			delta = rb_event_time_stamp(event);
3500 			ts += delta;
3501 			break;
3502 
3503 		case RINGBUF_TYPE_TIME_STAMP:
3504 			delta = rb_event_time_stamp(event);
3505 			ts = rb_fix_abs_ts(delta, ts);
3506 			break;
3507 
3508 		case RINGBUF_TYPE_PADDING:
3509 			if (event->time_delta == 1)
3510 				break;
3511 			fallthrough;
3512 		case RINGBUF_TYPE_DATA:
3513 			ts += event->time_delta;
3514 			break;
3515 
3516 		default:
3517 			RB_WARN_ON(cpu_buffer, 1);
3518 		}
3519 	}
3520 	if ((full && ts > info->ts) ||
3521 	    (!full && ts + info->delta != info->ts)) {
3522 		/* If another report is happening, ignore this one */
3523 		if (atomic_inc_return(&ts_dump) != 1) {
3524 			atomic_dec(&ts_dump);
3525 			goto out;
3526 		}
3527 		atomic_inc(&cpu_buffer->record_disabled);
3528 		/* There's some cases in boot up that this can happen */
3529 		WARN_ON_ONCE(system_state != SYSTEM_BOOTING);
3530 		pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n",
3531 			cpu_buffer->cpu,
3532 			ts + info->delta, info->ts, info->delta,
3533 			info->before, info->after,
3534 			full ? " (full)" : "");
3535 		dump_buffer_page(bpage, info, tail);
3536 		atomic_dec(&ts_dump);
3537 		/* Do not re-enable checking */
3538 		return;
3539 	}
3540 out:
3541 	atomic_dec(this_cpu_ptr(&checking));
3542 }
3543 #else
3544 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3545 			 struct rb_event_info *info,
3546 			 unsigned long tail)
3547 {
3548 }
3549 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3550 
3551 static struct ring_buffer_event *
3552 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3553 		  struct rb_event_info *info)
3554 {
3555 	struct ring_buffer_event *event;
3556 	struct buffer_page *tail_page;
3557 	unsigned long tail, write, w;
3558 	bool a_ok;
3559 	bool b_ok;
3560 
3561 	/* Don't let the compiler play games with cpu_buffer->tail_page */
3562 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3563 
3564  /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
3565 	barrier();
3566 	b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3567 	a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3568 	barrier();
3569 	info->ts = rb_time_stamp(cpu_buffer->buffer);
3570 
3571 	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3572 		info->delta = info->ts;
3573 	} else {
3574 		/*
3575 		 * If interrupting an event time update, we may need an
3576 		 * absolute timestamp.
3577 		 * Don't bother if this is the start of a new page (w == 0).
3578 		 */
3579 		if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3580 			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3581 			info->length += RB_LEN_TIME_EXTEND;
3582 		} else {
3583 			info->delta = info->ts - info->after;
3584 			if (unlikely(test_time_stamp(info->delta))) {
3585 				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3586 				info->length += RB_LEN_TIME_EXTEND;
3587 			}
3588 		}
3589 	}
3590 
3591  /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
3592 
3593  /*C*/	write = local_add_return(info->length, &tail_page->write);
3594 
3595 	/* set write to only the index of the write */
3596 	write &= RB_WRITE_MASK;
3597 
3598 	tail = write - info->length;
3599 
3600 	/* See if we shot pass the end of this buffer page */
3601 	if (unlikely(write > BUF_PAGE_SIZE)) {
3602 		/* before and after may now different, fix it up*/
3603 		b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3604 		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3605 		if (a_ok && b_ok && info->before != info->after)
3606 			(void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3607 					      info->before, info->after);
3608 		if (a_ok && b_ok)
3609 			check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3610 		return rb_move_tail(cpu_buffer, tail, info);
3611 	}
3612 
3613 	if (likely(tail == w)) {
3614 		u64 save_before;
3615 		bool s_ok;
3616 
3617 		/* Nothing interrupted us between A and C */
3618  /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
3619 		barrier();
3620  /*E*/		s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3621 		RB_WARN_ON(cpu_buffer, !s_ok);
3622 		if (likely(!(info->add_timestamp &
3623 			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3624 			/* This did not interrupt any time update */
3625 			info->delta = info->ts - info->after;
3626 		else
3627 			/* Just use full timestamp for interrupting event */
3628 			info->delta = info->ts;
3629 		barrier();
3630 		check_buffer(cpu_buffer, info, tail);
3631 		if (unlikely(info->ts != save_before)) {
3632 			/* SLOW PATH - Interrupted between C and E */
3633 
3634 			a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3635 			RB_WARN_ON(cpu_buffer, !a_ok);
3636 
3637 			/* Write stamp must only go forward */
3638 			if (save_before > info->after) {
3639 				/*
3640 				 * We do not care about the result, only that
3641 				 * it gets updated atomically.
3642 				 */
3643 				(void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3644 						      info->after, save_before);
3645 			}
3646 		}
3647 	} else {
3648 		u64 ts;
3649 		/* SLOW PATH - Interrupted between A and C */
3650 		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3651 		/* Was interrupted before here, write_stamp must be valid */
3652 		RB_WARN_ON(cpu_buffer, !a_ok);
3653 		ts = rb_time_stamp(cpu_buffer->buffer);
3654 		barrier();
3655  /*E*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3656 		    info->after < ts &&
3657 		    rb_time_cmpxchg(&cpu_buffer->write_stamp,
3658 				    info->after, ts)) {
3659 			/* Nothing came after this event between C and E */
3660 			info->delta = ts - info->after;
3661 		} else {
3662 			/*
3663 			 * Interrupted between C and E:
3664 			 * Lost the previous events time stamp. Just set the
3665 			 * delta to zero, and this will be the same time as
3666 			 * the event this event interrupted. And the events that
3667 			 * came after this will still be correct (as they would
3668 			 * have built their delta on the previous event.
3669 			 */
3670 			info->delta = 0;
3671 		}
3672 		info->ts = ts;
3673 		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3674 	}
3675 
3676 	/*
3677 	 * If this is the first commit on the page, then it has the same
3678 	 * timestamp as the page itself.
3679 	 */
3680 	if (unlikely(!tail && !(info->add_timestamp &
3681 				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3682 		info->delta = 0;
3683 
3684 	/* We reserved something on the buffer */
3685 
3686 	event = __rb_page_index(tail_page, tail);
3687 	rb_update_event(cpu_buffer, event, info);
3688 
3689 	local_inc(&tail_page->entries);
3690 
3691 	/*
3692 	 * If this is the first commit on the page, then update
3693 	 * its timestamp.
3694 	 */
3695 	if (unlikely(!tail))
3696 		tail_page->page->time_stamp = info->ts;
3697 
3698 	/* account for these added bytes */
3699 	local_add(info->length, &cpu_buffer->entries_bytes);
3700 
3701 	return event;
3702 }
3703 
3704 static __always_inline struct ring_buffer_event *
3705 rb_reserve_next_event(struct trace_buffer *buffer,
3706 		      struct ring_buffer_per_cpu *cpu_buffer,
3707 		      unsigned long length)
3708 {
3709 	struct ring_buffer_event *event;
3710 	struct rb_event_info info;
3711 	int nr_loops = 0;
3712 	int add_ts_default;
3713 
3714 	rb_start_commit(cpu_buffer);
3715 	/* The commit page can not change after this */
3716 
3717 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3718 	/*
3719 	 * Due to the ability to swap a cpu buffer from a buffer
3720 	 * it is possible it was swapped before we committed.
3721 	 * (committing stops a swap). We check for it here and
3722 	 * if it happened, we have to fail the write.
3723 	 */
3724 	barrier();
3725 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3726 		local_dec(&cpu_buffer->committing);
3727 		local_dec(&cpu_buffer->commits);
3728 		return NULL;
3729 	}
3730 #endif
3731 
3732 	info.length = rb_calculate_event_length(length);
3733 
3734 	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3735 		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3736 		info.length += RB_LEN_TIME_EXTEND;
3737 	} else {
3738 		add_ts_default = RB_ADD_STAMP_NONE;
3739 	}
3740 
3741  again:
3742 	info.add_timestamp = add_ts_default;
3743 	info.delta = 0;
3744 
3745 	/*
3746 	 * We allow for interrupts to reenter here and do a trace.
3747 	 * If one does, it will cause this original code to loop
3748 	 * back here. Even with heavy interrupts happening, this
3749 	 * should only happen a few times in a row. If this happens
3750 	 * 1000 times in a row, there must be either an interrupt
3751 	 * storm or we have something buggy.
3752 	 * Bail!
3753 	 */
3754 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3755 		goto out_fail;
3756 
3757 	event = __rb_reserve_next(cpu_buffer, &info);
3758 
3759 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3760 		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3761 			info.length -= RB_LEN_TIME_EXTEND;
3762 		goto again;
3763 	}
3764 
3765 	if (likely(event))
3766 		return event;
3767  out_fail:
3768 	rb_end_commit(cpu_buffer);
3769 	return NULL;
3770 }
3771 
3772 /**
3773  * ring_buffer_lock_reserve - reserve a part of the buffer
3774  * @buffer: the ring buffer to reserve from
3775  * @length: the length of the data to reserve (excluding event header)
3776  *
3777  * Returns a reserved event on the ring buffer to copy directly to.
3778  * The user of this interface will need to get the body to write into
3779  * and can use the ring_buffer_event_data() interface.
3780  *
3781  * The length is the length of the data needed, not the event length
3782  * which also includes the event header.
3783  *
3784  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3785  * If NULL is returned, then nothing has been allocated or locked.
3786  */
3787 struct ring_buffer_event *
3788 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3789 {
3790 	struct ring_buffer_per_cpu *cpu_buffer;
3791 	struct ring_buffer_event *event;
3792 	int cpu;
3793 
3794 	/* If we are tracing schedule, we don't want to recurse */
3795 	preempt_disable_notrace();
3796 
3797 	if (unlikely(atomic_read(&buffer->record_disabled)))
3798 		goto out;
3799 
3800 	cpu = raw_smp_processor_id();
3801 
3802 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3803 		goto out;
3804 
3805 	cpu_buffer = buffer->buffers[cpu];
3806 
3807 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3808 		goto out;
3809 
3810 	if (unlikely(length > BUF_MAX_DATA_SIZE))
3811 		goto out;
3812 
3813 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3814 		goto out;
3815 
3816 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3817 	if (!event)
3818 		goto out_unlock;
3819 
3820 	return event;
3821 
3822  out_unlock:
3823 	trace_recursive_unlock(cpu_buffer);
3824  out:
3825 	preempt_enable_notrace();
3826 	return NULL;
3827 }
3828 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3829 
3830 /*
3831  * Decrement the entries to the page that an event is on.
3832  * The event does not even need to exist, only the pointer
3833  * to the page it is on. This may only be called before the commit
3834  * takes place.
3835  */
3836 static inline void
3837 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3838 		   struct ring_buffer_event *event)
3839 {
3840 	unsigned long addr = (unsigned long)event;
3841 	struct buffer_page *bpage = cpu_buffer->commit_page;
3842 	struct buffer_page *start;
3843 
3844 	addr &= PAGE_MASK;
3845 
3846 	/* Do the likely case first */
3847 	if (likely(bpage->page == (void *)addr)) {
3848 		local_dec(&bpage->entries);
3849 		return;
3850 	}
3851 
3852 	/*
3853 	 * Because the commit page may be on the reader page we
3854 	 * start with the next page and check the end loop there.
3855 	 */
3856 	rb_inc_page(&bpage);
3857 	start = bpage;
3858 	do {
3859 		if (bpage->page == (void *)addr) {
3860 			local_dec(&bpage->entries);
3861 			return;
3862 		}
3863 		rb_inc_page(&bpage);
3864 	} while (bpage != start);
3865 
3866 	/* commit not part of this buffer?? */
3867 	RB_WARN_ON(cpu_buffer, 1);
3868 }
3869 
3870 /**
3871  * ring_buffer_discard_commit - discard an event that has not been committed
3872  * @buffer: the ring buffer
3873  * @event: non committed event to discard
3874  *
3875  * Sometimes an event that is in the ring buffer needs to be ignored.
3876  * This function lets the user discard an event in the ring buffer
3877  * and then that event will not be read later.
3878  *
3879  * This function only works if it is called before the item has been
3880  * committed. It will try to free the event from the ring buffer
3881  * if another event has not been added behind it.
3882  *
3883  * If another event has been added behind it, it will set the event
3884  * up as discarded, and perform the commit.
3885  *
3886  * If this function is called, do not call ring_buffer_unlock_commit on
3887  * the event.
3888  */
3889 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3890 				struct ring_buffer_event *event)
3891 {
3892 	struct ring_buffer_per_cpu *cpu_buffer;
3893 	int cpu;
3894 
3895 	/* The event is discarded regardless */
3896 	rb_event_discard(event);
3897 
3898 	cpu = smp_processor_id();
3899 	cpu_buffer = buffer->buffers[cpu];
3900 
3901 	/*
3902 	 * This must only be called if the event has not been
3903 	 * committed yet. Thus we can assume that preemption
3904 	 * is still disabled.
3905 	 */
3906 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3907 
3908 	rb_decrement_entry(cpu_buffer, event);
3909 	if (rb_try_to_discard(cpu_buffer, event))
3910 		goto out;
3911 
3912  out:
3913 	rb_end_commit(cpu_buffer);
3914 
3915 	trace_recursive_unlock(cpu_buffer);
3916 
3917 	preempt_enable_notrace();
3918 
3919 }
3920 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3921 
3922 /**
3923  * ring_buffer_write - write data to the buffer without reserving
3924  * @buffer: The ring buffer to write to.
3925  * @length: The length of the data being written (excluding the event header)
3926  * @data: The data to write to the buffer.
3927  *
3928  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3929  * one function. If you already have the data to write to the buffer, it
3930  * may be easier to simply call this function.
3931  *
3932  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3933  * and not the length of the event which would hold the header.
3934  */
3935 int ring_buffer_write(struct trace_buffer *buffer,
3936 		      unsigned long length,
3937 		      void *data)
3938 {
3939 	struct ring_buffer_per_cpu *cpu_buffer;
3940 	struct ring_buffer_event *event;
3941 	void *body;
3942 	int ret = -EBUSY;
3943 	int cpu;
3944 
3945 	preempt_disable_notrace();
3946 
3947 	if (atomic_read(&buffer->record_disabled))
3948 		goto out;
3949 
3950 	cpu = raw_smp_processor_id();
3951 
3952 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3953 		goto out;
3954 
3955 	cpu_buffer = buffer->buffers[cpu];
3956 
3957 	if (atomic_read(&cpu_buffer->record_disabled))
3958 		goto out;
3959 
3960 	if (length > BUF_MAX_DATA_SIZE)
3961 		goto out;
3962 
3963 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3964 		goto out;
3965 
3966 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3967 	if (!event)
3968 		goto out_unlock;
3969 
3970 	body = rb_event_data(event);
3971 
3972 	memcpy(body, data, length);
3973 
3974 	rb_commit(cpu_buffer);
3975 
3976 	rb_wakeups(buffer, cpu_buffer);
3977 
3978 	ret = 0;
3979 
3980  out_unlock:
3981 	trace_recursive_unlock(cpu_buffer);
3982 
3983  out:
3984 	preempt_enable_notrace();
3985 
3986 	return ret;
3987 }
3988 EXPORT_SYMBOL_GPL(ring_buffer_write);
3989 
3990 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3991 {
3992 	struct buffer_page *reader = cpu_buffer->reader_page;
3993 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3994 	struct buffer_page *commit = cpu_buffer->commit_page;
3995 
3996 	/* In case of error, head will be NULL */
3997 	if (unlikely(!head))
3998 		return true;
3999 
4000 	/* Reader should exhaust content in reader page */
4001 	if (reader->read != rb_page_commit(reader))
4002 		return false;
4003 
4004 	/*
4005 	 * If writers are committing on the reader page, knowing all
4006 	 * committed content has been read, the ring buffer is empty.
4007 	 */
4008 	if (commit == reader)
4009 		return true;
4010 
4011 	/*
4012 	 * If writers are committing on a page other than reader page
4013 	 * and head page, there should always be content to read.
4014 	 */
4015 	if (commit != head)
4016 		return false;
4017 
4018 	/*
4019 	 * Writers are committing on the head page, we just need
4020 	 * to care about there're committed data, and the reader will
4021 	 * swap reader page with head page when it is to read data.
4022 	 */
4023 	return rb_page_commit(commit) == 0;
4024 }
4025 
4026 /**
4027  * ring_buffer_record_disable - stop all writes into the buffer
4028  * @buffer: The ring buffer to stop writes to.
4029  *
4030  * This prevents all writes to the buffer. Any attempt to write
4031  * to the buffer after this will fail and return NULL.
4032  *
4033  * The caller should call synchronize_rcu() after this.
4034  */
4035 void ring_buffer_record_disable(struct trace_buffer *buffer)
4036 {
4037 	atomic_inc(&buffer->record_disabled);
4038 }
4039 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4040 
4041 /**
4042  * ring_buffer_record_enable - enable writes to the buffer
4043  * @buffer: The ring buffer to enable writes
4044  *
4045  * Note, multiple disables will need the same number of enables
4046  * to truly enable the writing (much like preempt_disable).
4047  */
4048 void ring_buffer_record_enable(struct trace_buffer *buffer)
4049 {
4050 	atomic_dec(&buffer->record_disabled);
4051 }
4052 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4053 
4054 /**
4055  * ring_buffer_record_off - stop all writes into the buffer
4056  * @buffer: The ring buffer to stop writes to.
4057  *
4058  * This prevents all writes to the buffer. Any attempt to write
4059  * to the buffer after this will fail and return NULL.
4060  *
4061  * This is different than ring_buffer_record_disable() as
4062  * it works like an on/off switch, where as the disable() version
4063  * must be paired with a enable().
4064  */
4065 void ring_buffer_record_off(struct trace_buffer *buffer)
4066 {
4067 	unsigned int rd;
4068 	unsigned int new_rd;
4069 
4070 	do {
4071 		rd = atomic_read(&buffer->record_disabled);
4072 		new_rd = rd | RB_BUFFER_OFF;
4073 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
4074 }
4075 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4076 
4077 /**
4078  * ring_buffer_record_on - restart writes into the buffer
4079  * @buffer: The ring buffer to start writes to.
4080  *
4081  * This enables all writes to the buffer that was disabled by
4082  * ring_buffer_record_off().
4083  *
4084  * This is different than ring_buffer_record_enable() as
4085  * it works like an on/off switch, where as the enable() version
4086  * must be paired with a disable().
4087  */
4088 void ring_buffer_record_on(struct trace_buffer *buffer)
4089 {
4090 	unsigned int rd;
4091 	unsigned int new_rd;
4092 
4093 	do {
4094 		rd = atomic_read(&buffer->record_disabled);
4095 		new_rd = rd & ~RB_BUFFER_OFF;
4096 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
4097 }
4098 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4099 
4100 /**
4101  * ring_buffer_record_is_on - return true if the ring buffer can write
4102  * @buffer: The ring buffer to see if write is enabled
4103  *
4104  * Returns true if the ring buffer is in a state that it accepts writes.
4105  */
4106 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4107 {
4108 	return !atomic_read(&buffer->record_disabled);
4109 }
4110 
4111 /**
4112  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4113  * @buffer: The ring buffer to see if write is set enabled
4114  *
4115  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4116  * Note that this does NOT mean it is in a writable state.
4117  *
4118  * It may return true when the ring buffer has been disabled by
4119  * ring_buffer_record_disable(), as that is a temporary disabling of
4120  * the ring buffer.
4121  */
4122 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4123 {
4124 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4125 }
4126 
4127 /**
4128  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4129  * @buffer: The ring buffer to stop writes to.
4130  * @cpu: The CPU buffer to stop
4131  *
4132  * This prevents all writes to the buffer. Any attempt to write
4133  * to the buffer after this will fail and return NULL.
4134  *
4135  * The caller should call synchronize_rcu() after this.
4136  */
4137 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4138 {
4139 	struct ring_buffer_per_cpu *cpu_buffer;
4140 
4141 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4142 		return;
4143 
4144 	cpu_buffer = buffer->buffers[cpu];
4145 	atomic_inc(&cpu_buffer->record_disabled);
4146 }
4147 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4148 
4149 /**
4150  * ring_buffer_record_enable_cpu - enable writes to the buffer
4151  * @buffer: The ring buffer to enable writes
4152  * @cpu: The CPU to enable.
4153  *
4154  * Note, multiple disables will need the same number of enables
4155  * to truly enable the writing (much like preempt_disable).
4156  */
4157 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4158 {
4159 	struct ring_buffer_per_cpu *cpu_buffer;
4160 
4161 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4162 		return;
4163 
4164 	cpu_buffer = buffer->buffers[cpu];
4165 	atomic_dec(&cpu_buffer->record_disabled);
4166 }
4167 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4168 
4169 /*
4170  * The total entries in the ring buffer is the running counter
4171  * of entries entered into the ring buffer, minus the sum of
4172  * the entries read from the ring buffer and the number of
4173  * entries that were overwritten.
4174  */
4175 static inline unsigned long
4176 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4177 {
4178 	return local_read(&cpu_buffer->entries) -
4179 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4180 }
4181 
4182 /**
4183  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4184  * @buffer: The ring buffer
4185  * @cpu: The per CPU buffer to read from.
4186  */
4187 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4188 {
4189 	unsigned long flags;
4190 	struct ring_buffer_per_cpu *cpu_buffer;
4191 	struct buffer_page *bpage;
4192 	u64 ret = 0;
4193 
4194 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4195 		return 0;
4196 
4197 	cpu_buffer = buffer->buffers[cpu];
4198 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4199 	/*
4200 	 * if the tail is on reader_page, oldest time stamp is on the reader
4201 	 * page
4202 	 */
4203 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4204 		bpage = cpu_buffer->reader_page;
4205 	else
4206 		bpage = rb_set_head_page(cpu_buffer);
4207 	if (bpage)
4208 		ret = bpage->page->time_stamp;
4209 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4210 
4211 	return ret;
4212 }
4213 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4214 
4215 /**
4216  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
4217  * @buffer: The ring buffer
4218  * @cpu: The per CPU buffer to read from.
4219  */
4220 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4221 {
4222 	struct ring_buffer_per_cpu *cpu_buffer;
4223 	unsigned long ret;
4224 
4225 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4226 		return 0;
4227 
4228 	cpu_buffer = buffer->buffers[cpu];
4229 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4230 
4231 	return ret;
4232 }
4233 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4234 
4235 /**
4236  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4237  * @buffer: The ring buffer
4238  * @cpu: The per CPU buffer to get the entries from.
4239  */
4240 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4241 {
4242 	struct ring_buffer_per_cpu *cpu_buffer;
4243 
4244 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4245 		return 0;
4246 
4247 	cpu_buffer = buffer->buffers[cpu];
4248 
4249 	return rb_num_of_entries(cpu_buffer);
4250 }
4251 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4252 
4253 /**
4254  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4255  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4256  * @buffer: The ring buffer
4257  * @cpu: The per CPU buffer to get the number of overruns from
4258  */
4259 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4260 {
4261 	struct ring_buffer_per_cpu *cpu_buffer;
4262 	unsigned long ret;
4263 
4264 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4265 		return 0;
4266 
4267 	cpu_buffer = buffer->buffers[cpu];
4268 	ret = local_read(&cpu_buffer->overrun);
4269 
4270 	return ret;
4271 }
4272 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4273 
4274 /**
4275  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4276  * commits failing due to the buffer wrapping around while there are uncommitted
4277  * events, such as during an interrupt storm.
4278  * @buffer: The ring buffer
4279  * @cpu: The per CPU buffer to get the number of overruns from
4280  */
4281 unsigned long
4282 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4283 {
4284 	struct ring_buffer_per_cpu *cpu_buffer;
4285 	unsigned long ret;
4286 
4287 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4288 		return 0;
4289 
4290 	cpu_buffer = buffer->buffers[cpu];
4291 	ret = local_read(&cpu_buffer->commit_overrun);
4292 
4293 	return ret;
4294 }
4295 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4296 
4297 /**
4298  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4299  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4300  * @buffer: The ring buffer
4301  * @cpu: The per CPU buffer to get the number of overruns from
4302  */
4303 unsigned long
4304 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4305 {
4306 	struct ring_buffer_per_cpu *cpu_buffer;
4307 	unsigned long ret;
4308 
4309 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4310 		return 0;
4311 
4312 	cpu_buffer = buffer->buffers[cpu];
4313 	ret = local_read(&cpu_buffer->dropped_events);
4314 
4315 	return ret;
4316 }
4317 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4318 
4319 /**
4320  * ring_buffer_read_events_cpu - get the number of events successfully read
4321  * @buffer: The ring buffer
4322  * @cpu: The per CPU buffer to get the number of events read
4323  */
4324 unsigned long
4325 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4326 {
4327 	struct ring_buffer_per_cpu *cpu_buffer;
4328 
4329 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4330 		return 0;
4331 
4332 	cpu_buffer = buffer->buffers[cpu];
4333 	return cpu_buffer->read;
4334 }
4335 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4336 
4337 /**
4338  * ring_buffer_entries - get the number of entries in a buffer
4339  * @buffer: The ring buffer
4340  *
4341  * Returns the total number of entries in the ring buffer
4342  * (all CPU entries)
4343  */
4344 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4345 {
4346 	struct ring_buffer_per_cpu *cpu_buffer;
4347 	unsigned long entries = 0;
4348 	int cpu;
4349 
4350 	/* if you care about this being correct, lock the buffer */
4351 	for_each_buffer_cpu(buffer, cpu) {
4352 		cpu_buffer = buffer->buffers[cpu];
4353 		entries += rb_num_of_entries(cpu_buffer);
4354 	}
4355 
4356 	return entries;
4357 }
4358 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4359 
4360 /**
4361  * ring_buffer_overruns - get the number of overruns in buffer
4362  * @buffer: The ring buffer
4363  *
4364  * Returns the total number of overruns in the ring buffer
4365  * (all CPU entries)
4366  */
4367 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4368 {
4369 	struct ring_buffer_per_cpu *cpu_buffer;
4370 	unsigned long overruns = 0;
4371 	int cpu;
4372 
4373 	/* if you care about this being correct, lock the buffer */
4374 	for_each_buffer_cpu(buffer, cpu) {
4375 		cpu_buffer = buffer->buffers[cpu];
4376 		overruns += local_read(&cpu_buffer->overrun);
4377 	}
4378 
4379 	return overruns;
4380 }
4381 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4382 
4383 static void rb_iter_reset(struct ring_buffer_iter *iter)
4384 {
4385 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4386 
4387 	/* Iterator usage is expected to have record disabled */
4388 	iter->head_page = cpu_buffer->reader_page;
4389 	iter->head = cpu_buffer->reader_page->read;
4390 	iter->next_event = iter->head;
4391 
4392 	iter->cache_reader_page = iter->head_page;
4393 	iter->cache_read = cpu_buffer->read;
4394 
4395 	if (iter->head) {
4396 		iter->read_stamp = cpu_buffer->read_stamp;
4397 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4398 	} else {
4399 		iter->read_stamp = iter->head_page->page->time_stamp;
4400 		iter->page_stamp = iter->read_stamp;
4401 	}
4402 }
4403 
4404 /**
4405  * ring_buffer_iter_reset - reset an iterator
4406  * @iter: The iterator to reset
4407  *
4408  * Resets the iterator, so that it will start from the beginning
4409  * again.
4410  */
4411 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4412 {
4413 	struct ring_buffer_per_cpu *cpu_buffer;
4414 	unsigned long flags;
4415 
4416 	if (!iter)
4417 		return;
4418 
4419 	cpu_buffer = iter->cpu_buffer;
4420 
4421 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4422 	rb_iter_reset(iter);
4423 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4424 }
4425 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4426 
4427 /**
4428  * ring_buffer_iter_empty - check if an iterator has no more to read
4429  * @iter: The iterator to check
4430  */
4431 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4432 {
4433 	struct ring_buffer_per_cpu *cpu_buffer;
4434 	struct buffer_page *reader;
4435 	struct buffer_page *head_page;
4436 	struct buffer_page *commit_page;
4437 	struct buffer_page *curr_commit_page;
4438 	unsigned commit;
4439 	u64 curr_commit_ts;
4440 	u64 commit_ts;
4441 
4442 	cpu_buffer = iter->cpu_buffer;
4443 	reader = cpu_buffer->reader_page;
4444 	head_page = cpu_buffer->head_page;
4445 	commit_page = cpu_buffer->commit_page;
4446 	commit_ts = commit_page->page->time_stamp;
4447 
4448 	/*
4449 	 * When the writer goes across pages, it issues a cmpxchg which
4450 	 * is a mb(), which will synchronize with the rmb here.
4451 	 * (see rb_tail_page_update())
4452 	 */
4453 	smp_rmb();
4454 	commit = rb_page_commit(commit_page);
4455 	/* We want to make sure that the commit page doesn't change */
4456 	smp_rmb();
4457 
4458 	/* Make sure commit page didn't change */
4459 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4460 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4461 
4462 	/* If the commit page changed, then there's more data */
4463 	if (curr_commit_page != commit_page ||
4464 	    curr_commit_ts != commit_ts)
4465 		return 0;
4466 
4467 	/* Still racy, as it may return a false positive, but that's OK */
4468 	return ((iter->head_page == commit_page && iter->head >= commit) ||
4469 		(iter->head_page == reader && commit_page == head_page &&
4470 		 head_page->read == commit &&
4471 		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4472 }
4473 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4474 
4475 static void
4476 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4477 		     struct ring_buffer_event *event)
4478 {
4479 	u64 delta;
4480 
4481 	switch (event->type_len) {
4482 	case RINGBUF_TYPE_PADDING:
4483 		return;
4484 
4485 	case RINGBUF_TYPE_TIME_EXTEND:
4486 		delta = rb_event_time_stamp(event);
4487 		cpu_buffer->read_stamp += delta;
4488 		return;
4489 
4490 	case RINGBUF_TYPE_TIME_STAMP:
4491 		delta = rb_event_time_stamp(event);
4492 		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4493 		cpu_buffer->read_stamp = delta;
4494 		return;
4495 
4496 	case RINGBUF_TYPE_DATA:
4497 		cpu_buffer->read_stamp += event->time_delta;
4498 		return;
4499 
4500 	default:
4501 		RB_WARN_ON(cpu_buffer, 1);
4502 	}
4503 	return;
4504 }
4505 
4506 static void
4507 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4508 			  struct ring_buffer_event *event)
4509 {
4510 	u64 delta;
4511 
4512 	switch (event->type_len) {
4513 	case RINGBUF_TYPE_PADDING:
4514 		return;
4515 
4516 	case RINGBUF_TYPE_TIME_EXTEND:
4517 		delta = rb_event_time_stamp(event);
4518 		iter->read_stamp += delta;
4519 		return;
4520 
4521 	case RINGBUF_TYPE_TIME_STAMP:
4522 		delta = rb_event_time_stamp(event);
4523 		delta = rb_fix_abs_ts(delta, iter->read_stamp);
4524 		iter->read_stamp = delta;
4525 		return;
4526 
4527 	case RINGBUF_TYPE_DATA:
4528 		iter->read_stamp += event->time_delta;
4529 		return;
4530 
4531 	default:
4532 		RB_WARN_ON(iter->cpu_buffer, 1);
4533 	}
4534 	return;
4535 }
4536 
4537 static struct buffer_page *
4538 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4539 {
4540 	struct buffer_page *reader = NULL;
4541 	unsigned long overwrite;
4542 	unsigned long flags;
4543 	int nr_loops = 0;
4544 	int ret;
4545 
4546 	local_irq_save(flags);
4547 	arch_spin_lock(&cpu_buffer->lock);
4548 
4549  again:
4550 	/*
4551 	 * This should normally only loop twice. But because the
4552 	 * start of the reader inserts an empty page, it causes
4553 	 * a case where we will loop three times. There should be no
4554 	 * reason to loop four times (that I know of).
4555 	 */
4556 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4557 		reader = NULL;
4558 		goto out;
4559 	}
4560 
4561 	reader = cpu_buffer->reader_page;
4562 
4563 	/* If there's more to read, return this page */
4564 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
4565 		goto out;
4566 
4567 	/* Never should we have an index greater than the size */
4568 	if (RB_WARN_ON(cpu_buffer,
4569 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
4570 		goto out;
4571 
4572 	/* check if we caught up to the tail */
4573 	reader = NULL;
4574 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4575 		goto out;
4576 
4577 	/* Don't bother swapping if the ring buffer is empty */
4578 	if (rb_num_of_entries(cpu_buffer) == 0)
4579 		goto out;
4580 
4581 	/*
4582 	 * Reset the reader page to size zero.
4583 	 */
4584 	local_set(&cpu_buffer->reader_page->write, 0);
4585 	local_set(&cpu_buffer->reader_page->entries, 0);
4586 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4587 	cpu_buffer->reader_page->real_end = 0;
4588 
4589  spin:
4590 	/*
4591 	 * Splice the empty reader page into the list around the head.
4592 	 */
4593 	reader = rb_set_head_page(cpu_buffer);
4594 	if (!reader)
4595 		goto out;
4596 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4597 	cpu_buffer->reader_page->list.prev = reader->list.prev;
4598 
4599 	/*
4600 	 * cpu_buffer->pages just needs to point to the buffer, it
4601 	 *  has no specific buffer page to point to. Lets move it out
4602 	 *  of our way so we don't accidentally swap it.
4603 	 */
4604 	cpu_buffer->pages = reader->list.prev;
4605 
4606 	/* The reader page will be pointing to the new head */
4607 	rb_set_list_to_head(&cpu_buffer->reader_page->list);
4608 
4609 	/*
4610 	 * We want to make sure we read the overruns after we set up our
4611 	 * pointers to the next object. The writer side does a
4612 	 * cmpxchg to cross pages which acts as the mb on the writer
4613 	 * side. Note, the reader will constantly fail the swap
4614 	 * while the writer is updating the pointers, so this
4615 	 * guarantees that the overwrite recorded here is the one we
4616 	 * want to compare with the last_overrun.
4617 	 */
4618 	smp_mb();
4619 	overwrite = local_read(&(cpu_buffer->overrun));
4620 
4621 	/*
4622 	 * Here's the tricky part.
4623 	 *
4624 	 * We need to move the pointer past the header page.
4625 	 * But we can only do that if a writer is not currently
4626 	 * moving it. The page before the header page has the
4627 	 * flag bit '1' set if it is pointing to the page we want.
4628 	 * but if the writer is in the process of moving it
4629 	 * than it will be '2' or already moved '0'.
4630 	 */
4631 
4632 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4633 
4634 	/*
4635 	 * If we did not convert it, then we must try again.
4636 	 */
4637 	if (!ret)
4638 		goto spin;
4639 
4640 	/*
4641 	 * Yay! We succeeded in replacing the page.
4642 	 *
4643 	 * Now make the new head point back to the reader page.
4644 	 */
4645 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4646 	rb_inc_page(&cpu_buffer->head_page);
4647 
4648 	local_inc(&cpu_buffer->pages_read);
4649 
4650 	/* Finally update the reader page to the new head */
4651 	cpu_buffer->reader_page = reader;
4652 	cpu_buffer->reader_page->read = 0;
4653 
4654 	if (overwrite != cpu_buffer->last_overrun) {
4655 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4656 		cpu_buffer->last_overrun = overwrite;
4657 	}
4658 
4659 	goto again;
4660 
4661  out:
4662 	/* Update the read_stamp on the first event */
4663 	if (reader && reader->read == 0)
4664 		cpu_buffer->read_stamp = reader->page->time_stamp;
4665 
4666 	arch_spin_unlock(&cpu_buffer->lock);
4667 	local_irq_restore(flags);
4668 
4669 	/*
4670 	 * The writer has preempt disable, wait for it. But not forever
4671 	 * Although, 1 second is pretty much "forever"
4672 	 */
4673 #define USECS_WAIT	1000000
4674         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4675 		/* If the write is past the end of page, a writer is still updating it */
4676 		if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE))
4677 			break;
4678 
4679 		udelay(1);
4680 
4681 		/* Get the latest version of the reader write value */
4682 		smp_rmb();
4683 	}
4684 
4685 	/* The writer is not moving forward? Something is wrong */
4686 	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4687 		reader = NULL;
4688 
4689 	/*
4690 	 * Make sure we see any padding after the write update
4691 	 * (see rb_reset_tail())
4692 	 */
4693 	smp_rmb();
4694 
4695 
4696 	return reader;
4697 }
4698 
4699 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4700 {
4701 	struct ring_buffer_event *event;
4702 	struct buffer_page *reader;
4703 	unsigned length;
4704 
4705 	reader = rb_get_reader_page(cpu_buffer);
4706 
4707 	/* This function should not be called when buffer is empty */
4708 	if (RB_WARN_ON(cpu_buffer, !reader))
4709 		return;
4710 
4711 	event = rb_reader_event(cpu_buffer);
4712 
4713 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4714 		cpu_buffer->read++;
4715 
4716 	rb_update_read_stamp(cpu_buffer, event);
4717 
4718 	length = rb_event_length(event);
4719 	cpu_buffer->reader_page->read += length;
4720 }
4721 
4722 static void rb_advance_iter(struct ring_buffer_iter *iter)
4723 {
4724 	struct ring_buffer_per_cpu *cpu_buffer;
4725 
4726 	cpu_buffer = iter->cpu_buffer;
4727 
4728 	/* If head == next_event then we need to jump to the next event */
4729 	if (iter->head == iter->next_event) {
4730 		/* If the event gets overwritten again, there's nothing to do */
4731 		if (rb_iter_head_event(iter) == NULL)
4732 			return;
4733 	}
4734 
4735 	iter->head = iter->next_event;
4736 
4737 	/*
4738 	 * Check if we are at the end of the buffer.
4739 	 */
4740 	if (iter->next_event >= rb_page_size(iter->head_page)) {
4741 		/* discarded commits can make the page empty */
4742 		if (iter->head_page == cpu_buffer->commit_page)
4743 			return;
4744 		rb_inc_iter(iter);
4745 		return;
4746 	}
4747 
4748 	rb_update_iter_read_stamp(iter, iter->event);
4749 }
4750 
4751 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4752 {
4753 	return cpu_buffer->lost_events;
4754 }
4755 
4756 static struct ring_buffer_event *
4757 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4758 	       unsigned long *lost_events)
4759 {
4760 	struct ring_buffer_event *event;
4761 	struct buffer_page *reader;
4762 	int nr_loops = 0;
4763 
4764 	if (ts)
4765 		*ts = 0;
4766  again:
4767 	/*
4768 	 * We repeat when a time extend is encountered.
4769 	 * Since the time extend is always attached to a data event,
4770 	 * we should never loop more than once.
4771 	 * (We never hit the following condition more than twice).
4772 	 */
4773 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4774 		return NULL;
4775 
4776 	reader = rb_get_reader_page(cpu_buffer);
4777 	if (!reader)
4778 		return NULL;
4779 
4780 	event = rb_reader_event(cpu_buffer);
4781 
4782 	switch (event->type_len) {
4783 	case RINGBUF_TYPE_PADDING:
4784 		if (rb_null_event(event))
4785 			RB_WARN_ON(cpu_buffer, 1);
4786 		/*
4787 		 * Because the writer could be discarding every
4788 		 * event it creates (which would probably be bad)
4789 		 * if we were to go back to "again" then we may never
4790 		 * catch up, and will trigger the warn on, or lock
4791 		 * the box. Return the padding, and we will release
4792 		 * the current locks, and try again.
4793 		 */
4794 		return event;
4795 
4796 	case RINGBUF_TYPE_TIME_EXTEND:
4797 		/* Internal data, OK to advance */
4798 		rb_advance_reader(cpu_buffer);
4799 		goto again;
4800 
4801 	case RINGBUF_TYPE_TIME_STAMP:
4802 		if (ts) {
4803 			*ts = rb_event_time_stamp(event);
4804 			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4805 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4806 							 cpu_buffer->cpu, ts);
4807 		}
4808 		/* Internal data, OK to advance */
4809 		rb_advance_reader(cpu_buffer);
4810 		goto again;
4811 
4812 	case RINGBUF_TYPE_DATA:
4813 		if (ts && !(*ts)) {
4814 			*ts = cpu_buffer->read_stamp + event->time_delta;
4815 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4816 							 cpu_buffer->cpu, ts);
4817 		}
4818 		if (lost_events)
4819 			*lost_events = rb_lost_events(cpu_buffer);
4820 		return event;
4821 
4822 	default:
4823 		RB_WARN_ON(cpu_buffer, 1);
4824 	}
4825 
4826 	return NULL;
4827 }
4828 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4829 
4830 static struct ring_buffer_event *
4831 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4832 {
4833 	struct trace_buffer *buffer;
4834 	struct ring_buffer_per_cpu *cpu_buffer;
4835 	struct ring_buffer_event *event;
4836 	int nr_loops = 0;
4837 
4838 	if (ts)
4839 		*ts = 0;
4840 
4841 	cpu_buffer = iter->cpu_buffer;
4842 	buffer = cpu_buffer->buffer;
4843 
4844 	/*
4845 	 * Check if someone performed a consuming read to
4846 	 * the buffer. A consuming read invalidates the iterator
4847 	 * and we need to reset the iterator in this case.
4848 	 */
4849 	if (unlikely(iter->cache_read != cpu_buffer->read ||
4850 		     iter->cache_reader_page != cpu_buffer->reader_page))
4851 		rb_iter_reset(iter);
4852 
4853  again:
4854 	if (ring_buffer_iter_empty(iter))
4855 		return NULL;
4856 
4857 	/*
4858 	 * As the writer can mess with what the iterator is trying
4859 	 * to read, just give up if we fail to get an event after
4860 	 * three tries. The iterator is not as reliable when reading
4861 	 * the ring buffer with an active write as the consumer is.
4862 	 * Do not warn if the three failures is reached.
4863 	 */
4864 	if (++nr_loops > 3)
4865 		return NULL;
4866 
4867 	if (rb_per_cpu_empty(cpu_buffer))
4868 		return NULL;
4869 
4870 	if (iter->head >= rb_page_size(iter->head_page)) {
4871 		rb_inc_iter(iter);
4872 		goto again;
4873 	}
4874 
4875 	event = rb_iter_head_event(iter);
4876 	if (!event)
4877 		goto again;
4878 
4879 	switch (event->type_len) {
4880 	case RINGBUF_TYPE_PADDING:
4881 		if (rb_null_event(event)) {
4882 			rb_inc_iter(iter);
4883 			goto again;
4884 		}
4885 		rb_advance_iter(iter);
4886 		return event;
4887 
4888 	case RINGBUF_TYPE_TIME_EXTEND:
4889 		/* Internal data, OK to advance */
4890 		rb_advance_iter(iter);
4891 		goto again;
4892 
4893 	case RINGBUF_TYPE_TIME_STAMP:
4894 		if (ts) {
4895 			*ts = rb_event_time_stamp(event);
4896 			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4897 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4898 							 cpu_buffer->cpu, ts);
4899 		}
4900 		/* Internal data, OK to advance */
4901 		rb_advance_iter(iter);
4902 		goto again;
4903 
4904 	case RINGBUF_TYPE_DATA:
4905 		if (ts && !(*ts)) {
4906 			*ts = iter->read_stamp + event->time_delta;
4907 			ring_buffer_normalize_time_stamp(buffer,
4908 							 cpu_buffer->cpu, ts);
4909 		}
4910 		return event;
4911 
4912 	default:
4913 		RB_WARN_ON(cpu_buffer, 1);
4914 	}
4915 
4916 	return NULL;
4917 }
4918 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4919 
4920 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4921 {
4922 	if (likely(!in_nmi())) {
4923 		raw_spin_lock(&cpu_buffer->reader_lock);
4924 		return true;
4925 	}
4926 
4927 	/*
4928 	 * If an NMI die dumps out the content of the ring buffer
4929 	 * trylock must be used to prevent a deadlock if the NMI
4930 	 * preempted a task that holds the ring buffer locks. If
4931 	 * we get the lock then all is fine, if not, then continue
4932 	 * to do the read, but this can corrupt the ring buffer,
4933 	 * so it must be permanently disabled from future writes.
4934 	 * Reading from NMI is a oneshot deal.
4935 	 */
4936 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4937 		return true;
4938 
4939 	/* Continue without locking, but disable the ring buffer */
4940 	atomic_inc(&cpu_buffer->record_disabled);
4941 	return false;
4942 }
4943 
4944 static inline void
4945 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4946 {
4947 	if (likely(locked))
4948 		raw_spin_unlock(&cpu_buffer->reader_lock);
4949 	return;
4950 }
4951 
4952 /**
4953  * ring_buffer_peek - peek at the next event to be read
4954  * @buffer: The ring buffer to read
4955  * @cpu: The cpu to peak at
4956  * @ts: The timestamp counter of this event.
4957  * @lost_events: a variable to store if events were lost (may be NULL)
4958  *
4959  * This will return the event that will be read next, but does
4960  * not consume the data.
4961  */
4962 struct ring_buffer_event *
4963 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4964 		 unsigned long *lost_events)
4965 {
4966 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4967 	struct ring_buffer_event *event;
4968 	unsigned long flags;
4969 	bool dolock;
4970 
4971 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4972 		return NULL;
4973 
4974  again:
4975 	local_irq_save(flags);
4976 	dolock = rb_reader_lock(cpu_buffer);
4977 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4978 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4979 		rb_advance_reader(cpu_buffer);
4980 	rb_reader_unlock(cpu_buffer, dolock);
4981 	local_irq_restore(flags);
4982 
4983 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4984 		goto again;
4985 
4986 	return event;
4987 }
4988 
4989 /** ring_buffer_iter_dropped - report if there are dropped events
4990  * @iter: The ring buffer iterator
4991  *
4992  * Returns true if there was dropped events since the last peek.
4993  */
4994 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4995 {
4996 	bool ret = iter->missed_events != 0;
4997 
4998 	iter->missed_events = 0;
4999 	return ret;
5000 }
5001 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5002 
5003 /**
5004  * ring_buffer_iter_peek - peek at the next event to be read
5005  * @iter: The ring buffer iterator
5006  * @ts: The timestamp counter of this event.
5007  *
5008  * This will return the event that will be read next, but does
5009  * not increment the iterator.
5010  */
5011 struct ring_buffer_event *
5012 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5013 {
5014 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5015 	struct ring_buffer_event *event;
5016 	unsigned long flags;
5017 
5018  again:
5019 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5020 	event = rb_iter_peek(iter, ts);
5021 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5022 
5023 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5024 		goto again;
5025 
5026 	return event;
5027 }
5028 
5029 /**
5030  * ring_buffer_consume - return an event and consume it
5031  * @buffer: The ring buffer to get the next event from
5032  * @cpu: the cpu to read the buffer from
5033  * @ts: a variable to store the timestamp (may be NULL)
5034  * @lost_events: a variable to store if events were lost (may be NULL)
5035  *
5036  * Returns the next event in the ring buffer, and that event is consumed.
5037  * Meaning, that sequential reads will keep returning a different event,
5038  * and eventually empty the ring buffer if the producer is slower.
5039  */
5040 struct ring_buffer_event *
5041 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5042 		    unsigned long *lost_events)
5043 {
5044 	struct ring_buffer_per_cpu *cpu_buffer;
5045 	struct ring_buffer_event *event = NULL;
5046 	unsigned long flags;
5047 	bool dolock;
5048 
5049  again:
5050 	/* might be called in atomic */
5051 	preempt_disable();
5052 
5053 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5054 		goto out;
5055 
5056 	cpu_buffer = buffer->buffers[cpu];
5057 	local_irq_save(flags);
5058 	dolock = rb_reader_lock(cpu_buffer);
5059 
5060 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5061 	if (event) {
5062 		cpu_buffer->lost_events = 0;
5063 		rb_advance_reader(cpu_buffer);
5064 	}
5065 
5066 	rb_reader_unlock(cpu_buffer, dolock);
5067 	local_irq_restore(flags);
5068 
5069  out:
5070 	preempt_enable();
5071 
5072 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5073 		goto again;
5074 
5075 	return event;
5076 }
5077 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5078 
5079 /**
5080  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5081  * @buffer: The ring buffer to read from
5082  * @cpu: The cpu buffer to iterate over
5083  * @flags: gfp flags to use for memory allocation
5084  *
5085  * This performs the initial preparations necessary to iterate
5086  * through the buffer.  Memory is allocated, buffer recording
5087  * is disabled, and the iterator pointer is returned to the caller.
5088  *
5089  * Disabling buffer recording prevents the reading from being
5090  * corrupted. This is not a consuming read, so a producer is not
5091  * expected.
5092  *
5093  * After a sequence of ring_buffer_read_prepare calls, the user is
5094  * expected to make at least one call to ring_buffer_read_prepare_sync.
5095  * Afterwards, ring_buffer_read_start is invoked to get things going
5096  * for real.
5097  *
5098  * This overall must be paired with ring_buffer_read_finish.
5099  */
5100 struct ring_buffer_iter *
5101 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5102 {
5103 	struct ring_buffer_per_cpu *cpu_buffer;
5104 	struct ring_buffer_iter *iter;
5105 
5106 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5107 		return NULL;
5108 
5109 	iter = kzalloc(sizeof(*iter), flags);
5110 	if (!iter)
5111 		return NULL;
5112 
5113 	iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
5114 	if (!iter->event) {
5115 		kfree(iter);
5116 		return NULL;
5117 	}
5118 
5119 	cpu_buffer = buffer->buffers[cpu];
5120 
5121 	iter->cpu_buffer = cpu_buffer;
5122 
5123 	atomic_inc(&cpu_buffer->resize_disabled);
5124 
5125 	return iter;
5126 }
5127 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5128 
5129 /**
5130  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5131  *
5132  * All previously invoked ring_buffer_read_prepare calls to prepare
5133  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5134  * calls on those iterators are allowed.
5135  */
5136 void
5137 ring_buffer_read_prepare_sync(void)
5138 {
5139 	synchronize_rcu();
5140 }
5141 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5142 
5143 /**
5144  * ring_buffer_read_start - start a non consuming read of the buffer
5145  * @iter: The iterator returned by ring_buffer_read_prepare
5146  *
5147  * This finalizes the startup of an iteration through the buffer.
5148  * The iterator comes from a call to ring_buffer_read_prepare and
5149  * an intervening ring_buffer_read_prepare_sync must have been
5150  * performed.
5151  *
5152  * Must be paired with ring_buffer_read_finish.
5153  */
5154 void
5155 ring_buffer_read_start(struct ring_buffer_iter *iter)
5156 {
5157 	struct ring_buffer_per_cpu *cpu_buffer;
5158 	unsigned long flags;
5159 
5160 	if (!iter)
5161 		return;
5162 
5163 	cpu_buffer = iter->cpu_buffer;
5164 
5165 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5166 	arch_spin_lock(&cpu_buffer->lock);
5167 	rb_iter_reset(iter);
5168 	arch_spin_unlock(&cpu_buffer->lock);
5169 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5170 }
5171 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5172 
5173 /**
5174  * ring_buffer_read_finish - finish reading the iterator of the buffer
5175  * @iter: The iterator retrieved by ring_buffer_start
5176  *
5177  * This re-enables the recording to the buffer, and frees the
5178  * iterator.
5179  */
5180 void
5181 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5182 {
5183 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5184 	unsigned long flags;
5185 
5186 	/*
5187 	 * Ring buffer is disabled from recording, here's a good place
5188 	 * to check the integrity of the ring buffer.
5189 	 * Must prevent readers from trying to read, as the check
5190 	 * clears the HEAD page and readers require it.
5191 	 */
5192 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5193 	rb_check_pages(cpu_buffer);
5194 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5195 
5196 	atomic_dec(&cpu_buffer->resize_disabled);
5197 	kfree(iter->event);
5198 	kfree(iter);
5199 }
5200 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5201 
5202 /**
5203  * ring_buffer_iter_advance - advance the iterator to the next location
5204  * @iter: The ring buffer iterator
5205  *
5206  * Move the location of the iterator such that the next read will
5207  * be the next location of the iterator.
5208  */
5209 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5210 {
5211 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5212 	unsigned long flags;
5213 
5214 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5215 
5216 	rb_advance_iter(iter);
5217 
5218 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5219 }
5220 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5221 
5222 /**
5223  * ring_buffer_size - return the size of the ring buffer (in bytes)
5224  * @buffer: The ring buffer.
5225  * @cpu: The CPU to get ring buffer size from.
5226  */
5227 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5228 {
5229 	/*
5230 	 * Earlier, this method returned
5231 	 *	BUF_PAGE_SIZE * buffer->nr_pages
5232 	 * Since the nr_pages field is now removed, we have converted this to
5233 	 * return the per cpu buffer value.
5234 	 */
5235 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5236 		return 0;
5237 
5238 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
5239 }
5240 EXPORT_SYMBOL_GPL(ring_buffer_size);
5241 
5242 static void
5243 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5244 {
5245 	rb_head_page_deactivate(cpu_buffer);
5246 
5247 	cpu_buffer->head_page
5248 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
5249 	local_set(&cpu_buffer->head_page->write, 0);
5250 	local_set(&cpu_buffer->head_page->entries, 0);
5251 	local_set(&cpu_buffer->head_page->page->commit, 0);
5252 
5253 	cpu_buffer->head_page->read = 0;
5254 
5255 	cpu_buffer->tail_page = cpu_buffer->head_page;
5256 	cpu_buffer->commit_page = cpu_buffer->head_page;
5257 
5258 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5259 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
5260 	local_set(&cpu_buffer->reader_page->write, 0);
5261 	local_set(&cpu_buffer->reader_page->entries, 0);
5262 	local_set(&cpu_buffer->reader_page->page->commit, 0);
5263 	cpu_buffer->reader_page->read = 0;
5264 
5265 	local_set(&cpu_buffer->entries_bytes, 0);
5266 	local_set(&cpu_buffer->overrun, 0);
5267 	local_set(&cpu_buffer->commit_overrun, 0);
5268 	local_set(&cpu_buffer->dropped_events, 0);
5269 	local_set(&cpu_buffer->entries, 0);
5270 	local_set(&cpu_buffer->committing, 0);
5271 	local_set(&cpu_buffer->commits, 0);
5272 	local_set(&cpu_buffer->pages_touched, 0);
5273 	local_set(&cpu_buffer->pages_lost, 0);
5274 	local_set(&cpu_buffer->pages_read, 0);
5275 	cpu_buffer->last_pages_touch = 0;
5276 	cpu_buffer->shortest_full = 0;
5277 	cpu_buffer->read = 0;
5278 	cpu_buffer->read_bytes = 0;
5279 
5280 	rb_time_set(&cpu_buffer->write_stamp, 0);
5281 	rb_time_set(&cpu_buffer->before_stamp, 0);
5282 
5283 	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5284 
5285 	cpu_buffer->lost_events = 0;
5286 	cpu_buffer->last_overrun = 0;
5287 
5288 	rb_head_page_activate(cpu_buffer);
5289 }
5290 
5291 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5292 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5293 {
5294 	unsigned long flags;
5295 
5296 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5297 
5298 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5299 		goto out;
5300 
5301 	arch_spin_lock(&cpu_buffer->lock);
5302 
5303 	rb_reset_cpu(cpu_buffer);
5304 
5305 	arch_spin_unlock(&cpu_buffer->lock);
5306 
5307  out:
5308 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5309 }
5310 
5311 /**
5312  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5313  * @buffer: The ring buffer to reset a per cpu buffer of
5314  * @cpu: The CPU buffer to be reset
5315  */
5316 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5317 {
5318 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5319 
5320 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5321 		return;
5322 
5323 	/* prevent another thread from changing buffer sizes */
5324 	mutex_lock(&buffer->mutex);
5325 
5326 	atomic_inc(&cpu_buffer->resize_disabled);
5327 	atomic_inc(&cpu_buffer->record_disabled);
5328 
5329 	/* Make sure all commits have finished */
5330 	synchronize_rcu();
5331 
5332 	reset_disabled_cpu_buffer(cpu_buffer);
5333 
5334 	atomic_dec(&cpu_buffer->record_disabled);
5335 	atomic_dec(&cpu_buffer->resize_disabled);
5336 
5337 	mutex_unlock(&buffer->mutex);
5338 }
5339 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5340 
5341 /**
5342  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5343  * @buffer: The ring buffer to reset a per cpu buffer of
5344  * @cpu: The CPU buffer to be reset
5345  */
5346 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5347 {
5348 	struct ring_buffer_per_cpu *cpu_buffer;
5349 	int cpu;
5350 
5351 	/* prevent another thread from changing buffer sizes */
5352 	mutex_lock(&buffer->mutex);
5353 
5354 	for_each_online_buffer_cpu(buffer, cpu) {
5355 		cpu_buffer = buffer->buffers[cpu];
5356 
5357 		atomic_inc(&cpu_buffer->resize_disabled);
5358 		atomic_inc(&cpu_buffer->record_disabled);
5359 	}
5360 
5361 	/* Make sure all commits have finished */
5362 	synchronize_rcu();
5363 
5364 	for_each_online_buffer_cpu(buffer, cpu) {
5365 		cpu_buffer = buffer->buffers[cpu];
5366 
5367 		reset_disabled_cpu_buffer(cpu_buffer);
5368 
5369 		atomic_dec(&cpu_buffer->record_disabled);
5370 		atomic_dec(&cpu_buffer->resize_disabled);
5371 	}
5372 
5373 	mutex_unlock(&buffer->mutex);
5374 }
5375 
5376 /**
5377  * ring_buffer_reset - reset a ring buffer
5378  * @buffer: The ring buffer to reset all cpu buffers
5379  */
5380 void ring_buffer_reset(struct trace_buffer *buffer)
5381 {
5382 	struct ring_buffer_per_cpu *cpu_buffer;
5383 	int cpu;
5384 
5385 	/* prevent another thread from changing buffer sizes */
5386 	mutex_lock(&buffer->mutex);
5387 
5388 	for_each_buffer_cpu(buffer, cpu) {
5389 		cpu_buffer = buffer->buffers[cpu];
5390 
5391 		atomic_inc(&cpu_buffer->resize_disabled);
5392 		atomic_inc(&cpu_buffer->record_disabled);
5393 	}
5394 
5395 	/* Make sure all commits have finished */
5396 	synchronize_rcu();
5397 
5398 	for_each_buffer_cpu(buffer, cpu) {
5399 		cpu_buffer = buffer->buffers[cpu];
5400 
5401 		reset_disabled_cpu_buffer(cpu_buffer);
5402 
5403 		atomic_dec(&cpu_buffer->record_disabled);
5404 		atomic_dec(&cpu_buffer->resize_disabled);
5405 	}
5406 
5407 	mutex_unlock(&buffer->mutex);
5408 }
5409 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5410 
5411 /**
5412  * ring_buffer_empty - is the ring buffer empty?
5413  * @buffer: The ring buffer to test
5414  */
5415 bool ring_buffer_empty(struct trace_buffer *buffer)
5416 {
5417 	struct ring_buffer_per_cpu *cpu_buffer;
5418 	unsigned long flags;
5419 	bool dolock;
5420 	int cpu;
5421 	int ret;
5422 
5423 	/* yes this is racy, but if you don't like the race, lock the buffer */
5424 	for_each_buffer_cpu(buffer, cpu) {
5425 		cpu_buffer = buffer->buffers[cpu];
5426 		local_irq_save(flags);
5427 		dolock = rb_reader_lock(cpu_buffer);
5428 		ret = rb_per_cpu_empty(cpu_buffer);
5429 		rb_reader_unlock(cpu_buffer, dolock);
5430 		local_irq_restore(flags);
5431 
5432 		if (!ret)
5433 			return false;
5434 	}
5435 
5436 	return true;
5437 }
5438 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5439 
5440 /**
5441  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5442  * @buffer: The ring buffer
5443  * @cpu: The CPU buffer to test
5444  */
5445 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5446 {
5447 	struct ring_buffer_per_cpu *cpu_buffer;
5448 	unsigned long flags;
5449 	bool dolock;
5450 	int ret;
5451 
5452 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5453 		return true;
5454 
5455 	cpu_buffer = buffer->buffers[cpu];
5456 	local_irq_save(flags);
5457 	dolock = rb_reader_lock(cpu_buffer);
5458 	ret = rb_per_cpu_empty(cpu_buffer);
5459 	rb_reader_unlock(cpu_buffer, dolock);
5460 	local_irq_restore(flags);
5461 
5462 	return ret;
5463 }
5464 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5465 
5466 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5467 /**
5468  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5469  * @buffer_a: One buffer to swap with
5470  * @buffer_b: The other buffer to swap with
5471  * @cpu: the CPU of the buffers to swap
5472  *
5473  * This function is useful for tracers that want to take a "snapshot"
5474  * of a CPU buffer and has another back up buffer lying around.
5475  * it is expected that the tracer handles the cpu buffer not being
5476  * used at the moment.
5477  */
5478 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5479 			 struct trace_buffer *buffer_b, int cpu)
5480 {
5481 	struct ring_buffer_per_cpu *cpu_buffer_a;
5482 	struct ring_buffer_per_cpu *cpu_buffer_b;
5483 	int ret = -EINVAL;
5484 
5485 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5486 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
5487 		goto out;
5488 
5489 	cpu_buffer_a = buffer_a->buffers[cpu];
5490 	cpu_buffer_b = buffer_b->buffers[cpu];
5491 
5492 	/* At least make sure the two buffers are somewhat the same */
5493 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5494 		goto out;
5495 
5496 	ret = -EAGAIN;
5497 
5498 	if (atomic_read(&buffer_a->record_disabled))
5499 		goto out;
5500 
5501 	if (atomic_read(&buffer_b->record_disabled))
5502 		goto out;
5503 
5504 	if (atomic_read(&cpu_buffer_a->record_disabled))
5505 		goto out;
5506 
5507 	if (atomic_read(&cpu_buffer_b->record_disabled))
5508 		goto out;
5509 
5510 	/*
5511 	 * We can't do a synchronize_rcu here because this
5512 	 * function can be called in atomic context.
5513 	 * Normally this will be called from the same CPU as cpu.
5514 	 * If not it's up to the caller to protect this.
5515 	 */
5516 	atomic_inc(&cpu_buffer_a->record_disabled);
5517 	atomic_inc(&cpu_buffer_b->record_disabled);
5518 
5519 	ret = -EBUSY;
5520 	if (local_read(&cpu_buffer_a->committing))
5521 		goto out_dec;
5522 	if (local_read(&cpu_buffer_b->committing))
5523 		goto out_dec;
5524 
5525 	buffer_a->buffers[cpu] = cpu_buffer_b;
5526 	buffer_b->buffers[cpu] = cpu_buffer_a;
5527 
5528 	cpu_buffer_b->buffer = buffer_a;
5529 	cpu_buffer_a->buffer = buffer_b;
5530 
5531 	ret = 0;
5532 
5533 out_dec:
5534 	atomic_dec(&cpu_buffer_a->record_disabled);
5535 	atomic_dec(&cpu_buffer_b->record_disabled);
5536 out:
5537 	return ret;
5538 }
5539 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5540 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5541 
5542 /**
5543  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5544  * @buffer: the buffer to allocate for.
5545  * @cpu: the cpu buffer to allocate.
5546  *
5547  * This function is used in conjunction with ring_buffer_read_page.
5548  * When reading a full page from the ring buffer, these functions
5549  * can be used to speed up the process. The calling function should
5550  * allocate a few pages first with this function. Then when it
5551  * needs to get pages from the ring buffer, it passes the result
5552  * of this function into ring_buffer_read_page, which will swap
5553  * the page that was allocated, with the read page of the buffer.
5554  *
5555  * Returns:
5556  *  The page allocated, or ERR_PTR
5557  */
5558 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5559 {
5560 	struct ring_buffer_per_cpu *cpu_buffer;
5561 	struct buffer_data_page *bpage = NULL;
5562 	unsigned long flags;
5563 	struct page *page;
5564 
5565 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5566 		return ERR_PTR(-ENODEV);
5567 
5568 	cpu_buffer = buffer->buffers[cpu];
5569 	local_irq_save(flags);
5570 	arch_spin_lock(&cpu_buffer->lock);
5571 
5572 	if (cpu_buffer->free_page) {
5573 		bpage = cpu_buffer->free_page;
5574 		cpu_buffer->free_page = NULL;
5575 	}
5576 
5577 	arch_spin_unlock(&cpu_buffer->lock);
5578 	local_irq_restore(flags);
5579 
5580 	if (bpage)
5581 		goto out;
5582 
5583 	page = alloc_pages_node(cpu_to_node(cpu),
5584 				GFP_KERNEL | __GFP_NORETRY, 0);
5585 	if (!page)
5586 		return ERR_PTR(-ENOMEM);
5587 
5588 	bpage = page_address(page);
5589 
5590  out:
5591 	rb_init_page(bpage);
5592 
5593 	return bpage;
5594 }
5595 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5596 
5597 /**
5598  * ring_buffer_free_read_page - free an allocated read page
5599  * @buffer: the buffer the page was allocate for
5600  * @cpu: the cpu buffer the page came from
5601  * @data: the page to free
5602  *
5603  * Free a page allocated from ring_buffer_alloc_read_page.
5604  */
5605 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5606 {
5607 	struct ring_buffer_per_cpu *cpu_buffer;
5608 	struct buffer_data_page *bpage = data;
5609 	struct page *page = virt_to_page(bpage);
5610 	unsigned long flags;
5611 
5612 	if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
5613 		return;
5614 
5615 	cpu_buffer = buffer->buffers[cpu];
5616 
5617 	/* If the page is still in use someplace else, we can't reuse it */
5618 	if (page_ref_count(page) > 1)
5619 		goto out;
5620 
5621 	local_irq_save(flags);
5622 	arch_spin_lock(&cpu_buffer->lock);
5623 
5624 	if (!cpu_buffer->free_page) {
5625 		cpu_buffer->free_page = bpage;
5626 		bpage = NULL;
5627 	}
5628 
5629 	arch_spin_unlock(&cpu_buffer->lock);
5630 	local_irq_restore(flags);
5631 
5632  out:
5633 	free_page((unsigned long)bpage);
5634 }
5635 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5636 
5637 /**
5638  * ring_buffer_read_page - extract a page from the ring buffer
5639  * @buffer: buffer to extract from
5640  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5641  * @len: amount to extract
5642  * @cpu: the cpu of the buffer to extract
5643  * @full: should the extraction only happen when the page is full.
5644  *
5645  * This function will pull out a page from the ring buffer and consume it.
5646  * @data_page must be the address of the variable that was returned
5647  * from ring_buffer_alloc_read_page. This is because the page might be used
5648  * to swap with a page in the ring buffer.
5649  *
5650  * for example:
5651  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
5652  *	if (IS_ERR(rpage))
5653  *		return PTR_ERR(rpage);
5654  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5655  *	if (ret >= 0)
5656  *		process_page(rpage, ret);
5657  *
5658  * When @full is set, the function will not return true unless
5659  * the writer is off the reader page.
5660  *
5661  * Note: it is up to the calling functions to handle sleeps and wakeups.
5662  *  The ring buffer can be used anywhere in the kernel and can not
5663  *  blindly call wake_up. The layer that uses the ring buffer must be
5664  *  responsible for that.
5665  *
5666  * Returns:
5667  *  >=0 if data has been transferred, returns the offset of consumed data.
5668  *  <0 if no data has been transferred.
5669  */
5670 int ring_buffer_read_page(struct trace_buffer *buffer,
5671 			  void **data_page, size_t len, int cpu, int full)
5672 {
5673 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5674 	struct ring_buffer_event *event;
5675 	struct buffer_data_page *bpage;
5676 	struct buffer_page *reader;
5677 	unsigned long missed_events;
5678 	unsigned long flags;
5679 	unsigned int commit;
5680 	unsigned int read;
5681 	u64 save_timestamp;
5682 	int ret = -1;
5683 
5684 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5685 		goto out;
5686 
5687 	/*
5688 	 * If len is not big enough to hold the page header, then
5689 	 * we can not copy anything.
5690 	 */
5691 	if (len <= BUF_PAGE_HDR_SIZE)
5692 		goto out;
5693 
5694 	len -= BUF_PAGE_HDR_SIZE;
5695 
5696 	if (!data_page)
5697 		goto out;
5698 
5699 	bpage = *data_page;
5700 	if (!bpage)
5701 		goto out;
5702 
5703 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5704 
5705 	reader = rb_get_reader_page(cpu_buffer);
5706 	if (!reader)
5707 		goto out_unlock;
5708 
5709 	event = rb_reader_event(cpu_buffer);
5710 
5711 	read = reader->read;
5712 	commit = rb_page_commit(reader);
5713 
5714 	/* Check if any events were dropped */
5715 	missed_events = cpu_buffer->lost_events;
5716 
5717 	/*
5718 	 * If this page has been partially read or
5719 	 * if len is not big enough to read the rest of the page or
5720 	 * a writer is still on the page, then
5721 	 * we must copy the data from the page to the buffer.
5722 	 * Otherwise, we can simply swap the page with the one passed in.
5723 	 */
5724 	if (read || (len < (commit - read)) ||
5725 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
5726 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5727 		unsigned int rpos = read;
5728 		unsigned int pos = 0;
5729 		unsigned int size;
5730 
5731 		/*
5732 		 * If a full page is expected, this can still be returned
5733 		 * if there's been a previous partial read and the
5734 		 * rest of the page can be read and the commit page is off
5735 		 * the reader page.
5736 		 */
5737 		if (full &&
5738 		    (!read || (len < (commit - read)) ||
5739 		     cpu_buffer->reader_page == cpu_buffer->commit_page))
5740 			goto out_unlock;
5741 
5742 		if (len > (commit - read))
5743 			len = (commit - read);
5744 
5745 		/* Always keep the time extend and data together */
5746 		size = rb_event_ts_length(event);
5747 
5748 		if (len < size)
5749 			goto out_unlock;
5750 
5751 		/* save the current timestamp, since the user will need it */
5752 		save_timestamp = cpu_buffer->read_stamp;
5753 
5754 		/* Need to copy one event at a time */
5755 		do {
5756 			/* We need the size of one event, because
5757 			 * rb_advance_reader only advances by one event,
5758 			 * whereas rb_event_ts_length may include the size of
5759 			 * one or two events.
5760 			 * We have already ensured there's enough space if this
5761 			 * is a time extend. */
5762 			size = rb_event_length(event);
5763 			memcpy(bpage->data + pos, rpage->data + rpos, size);
5764 
5765 			len -= size;
5766 
5767 			rb_advance_reader(cpu_buffer);
5768 			rpos = reader->read;
5769 			pos += size;
5770 
5771 			if (rpos >= commit)
5772 				break;
5773 
5774 			event = rb_reader_event(cpu_buffer);
5775 			/* Always keep the time extend and data together */
5776 			size = rb_event_ts_length(event);
5777 		} while (len >= size);
5778 
5779 		/* update bpage */
5780 		local_set(&bpage->commit, pos);
5781 		bpage->time_stamp = save_timestamp;
5782 
5783 		/* we copied everything to the beginning */
5784 		read = 0;
5785 	} else {
5786 		/* update the entry counter */
5787 		cpu_buffer->read += rb_page_entries(reader);
5788 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5789 
5790 		/* swap the pages */
5791 		rb_init_page(bpage);
5792 		bpage = reader->page;
5793 		reader->page = *data_page;
5794 		local_set(&reader->write, 0);
5795 		local_set(&reader->entries, 0);
5796 		reader->read = 0;
5797 		*data_page = bpage;
5798 
5799 		/*
5800 		 * Use the real_end for the data size,
5801 		 * This gives us a chance to store the lost events
5802 		 * on the page.
5803 		 */
5804 		if (reader->real_end)
5805 			local_set(&bpage->commit, reader->real_end);
5806 	}
5807 	ret = read;
5808 
5809 	cpu_buffer->lost_events = 0;
5810 
5811 	commit = local_read(&bpage->commit);
5812 	/*
5813 	 * Set a flag in the commit field if we lost events
5814 	 */
5815 	if (missed_events) {
5816 		/* If there is room at the end of the page to save the
5817 		 * missed events, then record it there.
5818 		 */
5819 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5820 			memcpy(&bpage->data[commit], &missed_events,
5821 			       sizeof(missed_events));
5822 			local_add(RB_MISSED_STORED, &bpage->commit);
5823 			commit += sizeof(missed_events);
5824 		}
5825 		local_add(RB_MISSED_EVENTS, &bpage->commit);
5826 	}
5827 
5828 	/*
5829 	 * This page may be off to user land. Zero it out here.
5830 	 */
5831 	if (commit < BUF_PAGE_SIZE)
5832 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5833 
5834  out_unlock:
5835 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5836 
5837  out:
5838 	return ret;
5839 }
5840 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5841 
5842 /*
5843  * We only allocate new buffers, never free them if the CPU goes down.
5844  * If we were to free the buffer, then the user would lose any trace that was in
5845  * the buffer.
5846  */
5847 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5848 {
5849 	struct trace_buffer *buffer;
5850 	long nr_pages_same;
5851 	int cpu_i;
5852 	unsigned long nr_pages;
5853 
5854 	buffer = container_of(node, struct trace_buffer, node);
5855 	if (cpumask_test_cpu(cpu, buffer->cpumask))
5856 		return 0;
5857 
5858 	nr_pages = 0;
5859 	nr_pages_same = 1;
5860 	/* check if all cpu sizes are same */
5861 	for_each_buffer_cpu(buffer, cpu_i) {
5862 		/* fill in the size from first enabled cpu */
5863 		if (nr_pages == 0)
5864 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
5865 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5866 			nr_pages_same = 0;
5867 			break;
5868 		}
5869 	}
5870 	/* allocate minimum pages, user can later expand it */
5871 	if (!nr_pages_same)
5872 		nr_pages = 2;
5873 	buffer->buffers[cpu] =
5874 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5875 	if (!buffer->buffers[cpu]) {
5876 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
5877 		     cpu);
5878 		return -ENOMEM;
5879 	}
5880 	smp_wmb();
5881 	cpumask_set_cpu(cpu, buffer->cpumask);
5882 	return 0;
5883 }
5884 
5885 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5886 /*
5887  * This is a basic integrity check of the ring buffer.
5888  * Late in the boot cycle this test will run when configured in.
5889  * It will kick off a thread per CPU that will go into a loop
5890  * writing to the per cpu ring buffer various sizes of data.
5891  * Some of the data will be large items, some small.
5892  *
5893  * Another thread is created that goes into a spin, sending out
5894  * IPIs to the other CPUs to also write into the ring buffer.
5895  * this is to test the nesting ability of the buffer.
5896  *
5897  * Basic stats are recorded and reported. If something in the
5898  * ring buffer should happen that's not expected, a big warning
5899  * is displayed and all ring buffers are disabled.
5900  */
5901 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5902 
5903 struct rb_test_data {
5904 	struct trace_buffer *buffer;
5905 	unsigned long		events;
5906 	unsigned long		bytes_written;
5907 	unsigned long		bytes_alloc;
5908 	unsigned long		bytes_dropped;
5909 	unsigned long		events_nested;
5910 	unsigned long		bytes_written_nested;
5911 	unsigned long		bytes_alloc_nested;
5912 	unsigned long		bytes_dropped_nested;
5913 	int			min_size_nested;
5914 	int			max_size_nested;
5915 	int			max_size;
5916 	int			min_size;
5917 	int			cpu;
5918 	int			cnt;
5919 };
5920 
5921 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5922 
5923 /* 1 meg per cpu */
5924 #define RB_TEST_BUFFER_SIZE	1048576
5925 
5926 static char rb_string[] __initdata =
5927 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5928 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5929 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5930 
5931 static bool rb_test_started __initdata;
5932 
5933 struct rb_item {
5934 	int size;
5935 	char str[];
5936 };
5937 
5938 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5939 {
5940 	struct ring_buffer_event *event;
5941 	struct rb_item *item;
5942 	bool started;
5943 	int event_len;
5944 	int size;
5945 	int len;
5946 	int cnt;
5947 
5948 	/* Have nested writes different that what is written */
5949 	cnt = data->cnt + (nested ? 27 : 0);
5950 
5951 	/* Multiply cnt by ~e, to make some unique increment */
5952 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5953 
5954 	len = size + sizeof(struct rb_item);
5955 
5956 	started = rb_test_started;
5957 	/* read rb_test_started before checking buffer enabled */
5958 	smp_rmb();
5959 
5960 	event = ring_buffer_lock_reserve(data->buffer, len);
5961 	if (!event) {
5962 		/* Ignore dropped events before test starts. */
5963 		if (started) {
5964 			if (nested)
5965 				data->bytes_dropped += len;
5966 			else
5967 				data->bytes_dropped_nested += len;
5968 		}
5969 		return len;
5970 	}
5971 
5972 	event_len = ring_buffer_event_length(event);
5973 
5974 	if (RB_WARN_ON(data->buffer, event_len < len))
5975 		goto out;
5976 
5977 	item = ring_buffer_event_data(event);
5978 	item->size = size;
5979 	memcpy(item->str, rb_string, size);
5980 
5981 	if (nested) {
5982 		data->bytes_alloc_nested += event_len;
5983 		data->bytes_written_nested += len;
5984 		data->events_nested++;
5985 		if (!data->min_size_nested || len < data->min_size_nested)
5986 			data->min_size_nested = len;
5987 		if (len > data->max_size_nested)
5988 			data->max_size_nested = len;
5989 	} else {
5990 		data->bytes_alloc += event_len;
5991 		data->bytes_written += len;
5992 		data->events++;
5993 		if (!data->min_size || len < data->min_size)
5994 			data->max_size = len;
5995 		if (len > data->max_size)
5996 			data->max_size = len;
5997 	}
5998 
5999  out:
6000 	ring_buffer_unlock_commit(data->buffer);
6001 
6002 	return 0;
6003 }
6004 
6005 static __init int rb_test(void *arg)
6006 {
6007 	struct rb_test_data *data = arg;
6008 
6009 	while (!kthread_should_stop()) {
6010 		rb_write_something(data, false);
6011 		data->cnt++;
6012 
6013 		set_current_state(TASK_INTERRUPTIBLE);
6014 		/* Now sleep between a min of 100-300us and a max of 1ms */
6015 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
6016 	}
6017 
6018 	return 0;
6019 }
6020 
6021 static __init void rb_ipi(void *ignore)
6022 {
6023 	struct rb_test_data *data;
6024 	int cpu = smp_processor_id();
6025 
6026 	data = &rb_data[cpu];
6027 	rb_write_something(data, true);
6028 }
6029 
6030 static __init int rb_hammer_test(void *arg)
6031 {
6032 	while (!kthread_should_stop()) {
6033 
6034 		/* Send an IPI to all cpus to write data! */
6035 		smp_call_function(rb_ipi, NULL, 1);
6036 		/* No sleep, but for non preempt, let others run */
6037 		schedule();
6038 	}
6039 
6040 	return 0;
6041 }
6042 
6043 static __init int test_ringbuffer(void)
6044 {
6045 	struct task_struct *rb_hammer;
6046 	struct trace_buffer *buffer;
6047 	int cpu;
6048 	int ret = 0;
6049 
6050 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
6051 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6052 		return 0;
6053 	}
6054 
6055 	pr_info("Running ring buffer tests...\n");
6056 
6057 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6058 	if (WARN_ON(!buffer))
6059 		return 0;
6060 
6061 	/* Disable buffer so that threads can't write to it yet */
6062 	ring_buffer_record_off(buffer);
6063 
6064 	for_each_online_cpu(cpu) {
6065 		rb_data[cpu].buffer = buffer;
6066 		rb_data[cpu].cpu = cpu;
6067 		rb_data[cpu].cnt = cpu;
6068 		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6069 						     cpu, "rbtester/%u");
6070 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6071 			pr_cont("FAILED\n");
6072 			ret = PTR_ERR(rb_threads[cpu]);
6073 			goto out_free;
6074 		}
6075 	}
6076 
6077 	/* Now create the rb hammer! */
6078 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6079 	if (WARN_ON(IS_ERR(rb_hammer))) {
6080 		pr_cont("FAILED\n");
6081 		ret = PTR_ERR(rb_hammer);
6082 		goto out_free;
6083 	}
6084 
6085 	ring_buffer_record_on(buffer);
6086 	/*
6087 	 * Show buffer is enabled before setting rb_test_started.
6088 	 * Yes there's a small race window where events could be
6089 	 * dropped and the thread wont catch it. But when a ring
6090 	 * buffer gets enabled, there will always be some kind of
6091 	 * delay before other CPUs see it. Thus, we don't care about
6092 	 * those dropped events. We care about events dropped after
6093 	 * the threads see that the buffer is active.
6094 	 */
6095 	smp_wmb();
6096 	rb_test_started = true;
6097 
6098 	set_current_state(TASK_INTERRUPTIBLE);
6099 	/* Just run for 10 seconds */;
6100 	schedule_timeout(10 * HZ);
6101 
6102 	kthread_stop(rb_hammer);
6103 
6104  out_free:
6105 	for_each_online_cpu(cpu) {
6106 		if (!rb_threads[cpu])
6107 			break;
6108 		kthread_stop(rb_threads[cpu]);
6109 	}
6110 	if (ret) {
6111 		ring_buffer_free(buffer);
6112 		return ret;
6113 	}
6114 
6115 	/* Report! */
6116 	pr_info("finished\n");
6117 	for_each_online_cpu(cpu) {
6118 		struct ring_buffer_event *event;
6119 		struct rb_test_data *data = &rb_data[cpu];
6120 		struct rb_item *item;
6121 		unsigned long total_events;
6122 		unsigned long total_dropped;
6123 		unsigned long total_written;
6124 		unsigned long total_alloc;
6125 		unsigned long total_read = 0;
6126 		unsigned long total_size = 0;
6127 		unsigned long total_len = 0;
6128 		unsigned long total_lost = 0;
6129 		unsigned long lost;
6130 		int big_event_size;
6131 		int small_event_size;
6132 
6133 		ret = -1;
6134 
6135 		total_events = data->events + data->events_nested;
6136 		total_written = data->bytes_written + data->bytes_written_nested;
6137 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6138 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6139 
6140 		big_event_size = data->max_size + data->max_size_nested;
6141 		small_event_size = data->min_size + data->min_size_nested;
6142 
6143 		pr_info("CPU %d:\n", cpu);
6144 		pr_info("              events:    %ld\n", total_events);
6145 		pr_info("       dropped bytes:    %ld\n", total_dropped);
6146 		pr_info("       alloced bytes:    %ld\n", total_alloc);
6147 		pr_info("       written bytes:    %ld\n", total_written);
6148 		pr_info("       biggest event:    %d\n", big_event_size);
6149 		pr_info("      smallest event:    %d\n", small_event_size);
6150 
6151 		if (RB_WARN_ON(buffer, total_dropped))
6152 			break;
6153 
6154 		ret = 0;
6155 
6156 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6157 			total_lost += lost;
6158 			item = ring_buffer_event_data(event);
6159 			total_len += ring_buffer_event_length(event);
6160 			total_size += item->size + sizeof(struct rb_item);
6161 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6162 				pr_info("FAILED!\n");
6163 				pr_info("buffer had: %.*s\n", item->size, item->str);
6164 				pr_info("expected:   %.*s\n", item->size, rb_string);
6165 				RB_WARN_ON(buffer, 1);
6166 				ret = -1;
6167 				break;
6168 			}
6169 			total_read++;
6170 		}
6171 		if (ret)
6172 			break;
6173 
6174 		ret = -1;
6175 
6176 		pr_info("         read events:   %ld\n", total_read);
6177 		pr_info("         lost events:   %ld\n", total_lost);
6178 		pr_info("        total events:   %ld\n", total_lost + total_read);
6179 		pr_info("  recorded len bytes:   %ld\n", total_len);
6180 		pr_info(" recorded size bytes:   %ld\n", total_size);
6181 		if (total_lost) {
6182 			pr_info(" With dropped events, record len and size may not match\n"
6183 				" alloced and written from above\n");
6184 		} else {
6185 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
6186 				       total_size != total_written))
6187 				break;
6188 		}
6189 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6190 			break;
6191 
6192 		ret = 0;
6193 	}
6194 	if (!ret)
6195 		pr_info("Ring buffer PASSED!\n");
6196 
6197 	ring_buffer_free(buffer);
6198 	return 0;
6199 }
6200 
6201 late_initcall(test_ringbuffer);
6202 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
6203