xref: /linux/kernel/trace/ring_buffer.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/cacheflush.h>
13 #include <linux/trace_seq.h>
14 #include <linux/spinlock.h>
15 #include <linux/irq_work.h>
16 #include <linux/security.h>
17 #include <linux/uaccess.h>
18 #include <linux/hardirq.h>
19 #include <linux/kthread.h>	/* for self test */
20 #include <linux/module.h>
21 #include <linux/percpu.h>
22 #include <linux/mutex.h>
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/list.h>
28 #include <linux/cpu.h>
29 #include <linux/oom.h>
30 #include <linux/mm.h>
31 
32 #include <asm/local64.h>
33 #include <asm/local.h>
34 
35 /*
36  * The "absolute" timestamp in the buffer is only 59 bits.
37  * If a clock has the 5 MSBs set, it needs to be saved and
38  * reinserted.
39  */
40 #define TS_MSB		(0xf8ULL << 56)
41 #define ABS_TS_MASK	(~TS_MSB)
42 
43 static void update_pages_handler(struct work_struct *work);
44 
45 /*
46  * The ring buffer header is special. We must manually up keep it.
47  */
48 int ring_buffer_print_entry_header(struct trace_seq *s)
49 {
50 	trace_seq_puts(s, "# compressed entry header\n");
51 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
52 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
53 	trace_seq_puts(s, "\tarray       :   32 bits\n");
54 	trace_seq_putc(s, '\n');
55 	trace_seq_printf(s, "\tpadding     : type == %d\n",
56 			 RINGBUF_TYPE_PADDING);
57 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
58 			 RINGBUF_TYPE_TIME_EXTEND);
59 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
60 			 RINGBUF_TYPE_TIME_STAMP);
61 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
62 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
63 
64 	return !trace_seq_has_overflowed(s);
65 }
66 
67 /*
68  * The ring buffer is made up of a list of pages. A separate list of pages is
69  * allocated for each CPU. A writer may only write to a buffer that is
70  * associated with the CPU it is currently executing on.  A reader may read
71  * from any per cpu buffer.
72  *
73  * The reader is special. For each per cpu buffer, the reader has its own
74  * reader page. When a reader has read the entire reader page, this reader
75  * page is swapped with another page in the ring buffer.
76  *
77  * Now, as long as the writer is off the reader page, the reader can do what
78  * ever it wants with that page. The writer will never write to that page
79  * again (as long as it is out of the ring buffer).
80  *
81  * Here's some silly ASCII art.
82  *
83  *   +------+
84  *   |reader|          RING BUFFER
85  *   |page  |
86  *   +------+        +---+   +---+   +---+
87  *                   |   |-->|   |-->|   |
88  *                   +---+   +---+   +---+
89  *                     ^               |
90  *                     |               |
91  *                     +---------------+
92  *
93  *
94  *   +------+
95  *   |reader|          RING BUFFER
96  *   |page  |------------------v
97  *   +------+        +---+   +---+   +---+
98  *                   |   |-->|   |-->|   |
99  *                   +---+   +---+   +---+
100  *                     ^               |
101  *                     |               |
102  *                     +---------------+
103  *
104  *
105  *   +------+
106  *   |reader|          RING BUFFER
107  *   |page  |------------------v
108  *   +------+        +---+   +---+   +---+
109  *      ^            |   |-->|   |-->|   |
110  *      |            +---+   +---+   +---+
111  *      |                              |
112  *      |                              |
113  *      +------------------------------+
114  *
115  *
116  *   +------+
117  *   |buffer|          RING BUFFER
118  *   |page  |------------------v
119  *   +------+        +---+   +---+   +---+
120  *      ^            |   |   |   |-->|   |
121  *      |   New      +---+   +---+   +---+
122  *      |  Reader------^               |
123  *      |   page                       |
124  *      +------------------------------+
125  *
126  *
127  * After we make this swap, the reader can hand this page off to the splice
128  * code and be done with it. It can even allocate a new page if it needs to
129  * and swap that into the ring buffer.
130  *
131  * We will be using cmpxchg soon to make all this lockless.
132  *
133  */
134 
135 /* Used for individual buffers (after the counter) */
136 #define RB_BUFFER_OFF		(1 << 20)
137 
138 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
139 
140 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
141 #define RB_ALIGNMENT		4U
142 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
143 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
144 
145 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
146 # define RB_FORCE_8BYTE_ALIGNMENT	0
147 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
148 #else
149 # define RB_FORCE_8BYTE_ALIGNMENT	1
150 # define RB_ARCH_ALIGNMENT		8U
151 #endif
152 
153 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
154 
155 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
156 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
157 
158 enum {
159 	RB_LEN_TIME_EXTEND = 8,
160 	RB_LEN_TIME_STAMP =  8,
161 };
162 
163 #define skip_time_extend(event) \
164 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
165 
166 #define extended_time(event) \
167 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
168 
169 static inline bool rb_null_event(struct ring_buffer_event *event)
170 {
171 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
172 }
173 
174 static void rb_event_set_padding(struct ring_buffer_event *event)
175 {
176 	/* padding has a NULL time_delta */
177 	event->type_len = RINGBUF_TYPE_PADDING;
178 	event->time_delta = 0;
179 }
180 
181 static unsigned
182 rb_event_data_length(struct ring_buffer_event *event)
183 {
184 	unsigned length;
185 
186 	if (event->type_len)
187 		length = event->type_len * RB_ALIGNMENT;
188 	else
189 		length = event->array[0];
190 	return length + RB_EVNT_HDR_SIZE;
191 }
192 
193 /*
194  * Return the length of the given event. Will return
195  * the length of the time extend if the event is a
196  * time extend.
197  */
198 static inline unsigned
199 rb_event_length(struct ring_buffer_event *event)
200 {
201 	switch (event->type_len) {
202 	case RINGBUF_TYPE_PADDING:
203 		if (rb_null_event(event))
204 			/* undefined */
205 			return -1;
206 		return  event->array[0] + RB_EVNT_HDR_SIZE;
207 
208 	case RINGBUF_TYPE_TIME_EXTEND:
209 		return RB_LEN_TIME_EXTEND;
210 
211 	case RINGBUF_TYPE_TIME_STAMP:
212 		return RB_LEN_TIME_STAMP;
213 
214 	case RINGBUF_TYPE_DATA:
215 		return rb_event_data_length(event);
216 	default:
217 		WARN_ON_ONCE(1);
218 	}
219 	/* not hit */
220 	return 0;
221 }
222 
223 /*
224  * Return total length of time extend and data,
225  *   or just the event length for all other events.
226  */
227 static inline unsigned
228 rb_event_ts_length(struct ring_buffer_event *event)
229 {
230 	unsigned len = 0;
231 
232 	if (extended_time(event)) {
233 		/* time extends include the data event after it */
234 		len = RB_LEN_TIME_EXTEND;
235 		event = skip_time_extend(event);
236 	}
237 	return len + rb_event_length(event);
238 }
239 
240 /**
241  * ring_buffer_event_length - return the length of the event
242  * @event: the event to get the length of
243  *
244  * Returns the size of the data load of a data event.
245  * If the event is something other than a data event, it
246  * returns the size of the event itself. With the exception
247  * of a TIME EXTEND, where it still returns the size of the
248  * data load of the data event after it.
249  */
250 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
251 {
252 	unsigned length;
253 
254 	if (extended_time(event))
255 		event = skip_time_extend(event);
256 
257 	length = rb_event_length(event);
258 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
259 		return length;
260 	length -= RB_EVNT_HDR_SIZE;
261 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
262                 length -= sizeof(event->array[0]);
263 	return length;
264 }
265 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
266 
267 /* inline for ring buffer fast paths */
268 static __always_inline void *
269 rb_event_data(struct ring_buffer_event *event)
270 {
271 	if (extended_time(event))
272 		event = skip_time_extend(event);
273 	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
274 	/* If length is in len field, then array[0] has the data */
275 	if (event->type_len)
276 		return (void *)&event->array[0];
277 	/* Otherwise length is in array[0] and array[1] has the data */
278 	return (void *)&event->array[1];
279 }
280 
281 /**
282  * ring_buffer_event_data - return the data of the event
283  * @event: the event to get the data from
284  */
285 void *ring_buffer_event_data(struct ring_buffer_event *event)
286 {
287 	return rb_event_data(event);
288 }
289 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
290 
291 #define for_each_buffer_cpu(buffer, cpu)		\
292 	for_each_cpu(cpu, buffer->cpumask)
293 
294 #define for_each_online_buffer_cpu(buffer, cpu)		\
295 	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
296 
297 #define TS_SHIFT	27
298 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
299 #define TS_DELTA_TEST	(~TS_MASK)
300 
301 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
302 {
303 	u64 ts;
304 
305 	ts = event->array[0];
306 	ts <<= TS_SHIFT;
307 	ts += event->time_delta;
308 
309 	return ts;
310 }
311 
312 /* Flag when events were overwritten */
313 #define RB_MISSED_EVENTS	(1 << 31)
314 /* Missed count stored at end */
315 #define RB_MISSED_STORED	(1 << 30)
316 
317 #define RB_MISSED_MASK		(3 << 30)
318 
319 struct buffer_data_page {
320 	u64		 time_stamp;	/* page time stamp */
321 	local_t		 commit;	/* write committed index */
322 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
323 };
324 
325 struct buffer_data_read_page {
326 	unsigned		order;	/* order of the page */
327 	struct buffer_data_page	*data;	/* actual data, stored in this page */
328 };
329 
330 /*
331  * Note, the buffer_page list must be first. The buffer pages
332  * are allocated in cache lines, which means that each buffer
333  * page will be at the beginning of a cache line, and thus
334  * the least significant bits will be zero. We use this to
335  * add flags in the list struct pointers, to make the ring buffer
336  * lockless.
337  */
338 struct buffer_page {
339 	struct list_head list;		/* list of buffer pages */
340 	local_t		 write;		/* index for next write */
341 	unsigned	 read;		/* index for next read */
342 	local_t		 entries;	/* entries on this page */
343 	unsigned long	 real_end;	/* real end of data */
344 	unsigned	 order;		/* order of the page */
345 	u32		 id;		/* ID for external mapping */
346 	struct buffer_data_page *page;	/* Actual data page */
347 };
348 
349 /*
350  * The buffer page counters, write and entries, must be reset
351  * atomically when crossing page boundaries. To synchronize this
352  * update, two counters are inserted into the number. One is
353  * the actual counter for the write position or count on the page.
354  *
355  * The other is a counter of updaters. Before an update happens
356  * the update partition of the counter is incremented. This will
357  * allow the updater to update the counter atomically.
358  *
359  * The counter is 20 bits, and the state data is 12.
360  */
361 #define RB_WRITE_MASK		0xfffff
362 #define RB_WRITE_INTCNT		(1 << 20)
363 
364 static void rb_init_page(struct buffer_data_page *bpage)
365 {
366 	local_set(&bpage->commit, 0);
367 }
368 
369 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
370 {
371 	return local_read(&bpage->page->commit);
372 }
373 
374 static void free_buffer_page(struct buffer_page *bpage)
375 {
376 	free_pages((unsigned long)bpage->page, bpage->order);
377 	kfree(bpage);
378 }
379 
380 /*
381  * We need to fit the time_stamp delta into 27 bits.
382  */
383 static inline bool test_time_stamp(u64 delta)
384 {
385 	return !!(delta & TS_DELTA_TEST);
386 }
387 
388 struct rb_irq_work {
389 	struct irq_work			work;
390 	wait_queue_head_t		waiters;
391 	wait_queue_head_t		full_waiters;
392 	atomic_t			seq;
393 	bool				waiters_pending;
394 	bool				full_waiters_pending;
395 	bool				wakeup_full;
396 };
397 
398 /*
399  * Structure to hold event state and handle nested events.
400  */
401 struct rb_event_info {
402 	u64			ts;
403 	u64			delta;
404 	u64			before;
405 	u64			after;
406 	unsigned long		length;
407 	struct buffer_page	*tail_page;
408 	int			add_timestamp;
409 };
410 
411 /*
412  * Used for the add_timestamp
413  *  NONE
414  *  EXTEND - wants a time extend
415  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
416  *  FORCE - force a full time stamp.
417  */
418 enum {
419 	RB_ADD_STAMP_NONE		= 0,
420 	RB_ADD_STAMP_EXTEND		= BIT(1),
421 	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
422 	RB_ADD_STAMP_FORCE		= BIT(3)
423 };
424 /*
425  * Used for which event context the event is in.
426  *  TRANSITION = 0
427  *  NMI     = 1
428  *  IRQ     = 2
429  *  SOFTIRQ = 3
430  *  NORMAL  = 4
431  *
432  * See trace_recursive_lock() comment below for more details.
433  */
434 enum {
435 	RB_CTX_TRANSITION,
436 	RB_CTX_NMI,
437 	RB_CTX_IRQ,
438 	RB_CTX_SOFTIRQ,
439 	RB_CTX_NORMAL,
440 	RB_CTX_MAX
441 };
442 
443 struct rb_time_struct {
444 	local64_t	time;
445 };
446 typedef struct rb_time_struct rb_time_t;
447 
448 #define MAX_NEST	5
449 
450 /*
451  * head_page == tail_page && head == tail then buffer is empty.
452  */
453 struct ring_buffer_per_cpu {
454 	int				cpu;
455 	atomic_t			record_disabled;
456 	atomic_t			resize_disabled;
457 	struct trace_buffer	*buffer;
458 	raw_spinlock_t			reader_lock;	/* serialize readers */
459 	arch_spinlock_t			lock;
460 	struct lock_class_key		lock_key;
461 	struct buffer_data_page		*free_page;
462 	unsigned long			nr_pages;
463 	unsigned int			current_context;
464 	struct list_head		*pages;
465 	struct buffer_page		*head_page;	/* read from head */
466 	struct buffer_page		*tail_page;	/* write to tail */
467 	struct buffer_page		*commit_page;	/* committed pages */
468 	struct buffer_page		*reader_page;
469 	unsigned long			lost_events;
470 	unsigned long			last_overrun;
471 	unsigned long			nest;
472 	local_t				entries_bytes;
473 	local_t				entries;
474 	local_t				overrun;
475 	local_t				commit_overrun;
476 	local_t				dropped_events;
477 	local_t				committing;
478 	local_t				commits;
479 	local_t				pages_touched;
480 	local_t				pages_lost;
481 	local_t				pages_read;
482 	long				last_pages_touch;
483 	size_t				shortest_full;
484 	unsigned long			read;
485 	unsigned long			read_bytes;
486 	rb_time_t			write_stamp;
487 	rb_time_t			before_stamp;
488 	u64				event_stamp[MAX_NEST];
489 	u64				read_stamp;
490 	/* pages removed since last reset */
491 	unsigned long			pages_removed;
492 
493 	unsigned int			mapped;
494 	struct mutex			mapping_lock;
495 	unsigned long			*subbuf_ids;	/* ID to subbuf VA */
496 	struct trace_buffer_meta	*meta_page;
497 
498 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
499 	long				nr_pages_to_update;
500 	struct list_head		new_pages; /* new pages to add */
501 	struct work_struct		update_pages_work;
502 	struct completion		update_done;
503 
504 	struct rb_irq_work		irq_work;
505 };
506 
507 struct trace_buffer {
508 	unsigned			flags;
509 	int				cpus;
510 	atomic_t			record_disabled;
511 	atomic_t			resizing;
512 	cpumask_var_t			cpumask;
513 
514 	struct lock_class_key		*reader_lock_key;
515 
516 	struct mutex			mutex;
517 
518 	struct ring_buffer_per_cpu	**buffers;
519 
520 	struct hlist_node		node;
521 	u64				(*clock)(void);
522 
523 	struct rb_irq_work		irq_work;
524 	bool				time_stamp_abs;
525 
526 	unsigned int			subbuf_size;
527 	unsigned int			subbuf_order;
528 	unsigned int			max_data_size;
529 };
530 
531 struct ring_buffer_iter {
532 	struct ring_buffer_per_cpu	*cpu_buffer;
533 	unsigned long			head;
534 	unsigned long			next_event;
535 	struct buffer_page		*head_page;
536 	struct buffer_page		*cache_reader_page;
537 	unsigned long			cache_read;
538 	unsigned long			cache_pages_removed;
539 	u64				read_stamp;
540 	u64				page_stamp;
541 	struct ring_buffer_event	*event;
542 	size_t				event_size;
543 	int				missed_events;
544 };
545 
546 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
547 {
548 	struct buffer_data_page field;
549 
550 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
551 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
552 			 (unsigned int)sizeof(field.time_stamp),
553 			 (unsigned int)is_signed_type(u64));
554 
555 	trace_seq_printf(s, "\tfield: local_t commit;\t"
556 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
557 			 (unsigned int)offsetof(typeof(field), commit),
558 			 (unsigned int)sizeof(field.commit),
559 			 (unsigned int)is_signed_type(long));
560 
561 	trace_seq_printf(s, "\tfield: int overwrite;\t"
562 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
563 			 (unsigned int)offsetof(typeof(field), commit),
564 			 1,
565 			 (unsigned int)is_signed_type(long));
566 
567 	trace_seq_printf(s, "\tfield: char data;\t"
568 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
569 			 (unsigned int)offsetof(typeof(field), data),
570 			 (unsigned int)buffer->subbuf_size,
571 			 (unsigned int)is_signed_type(char));
572 
573 	return !trace_seq_has_overflowed(s);
574 }
575 
576 static inline void rb_time_read(rb_time_t *t, u64 *ret)
577 {
578 	*ret = local64_read(&t->time);
579 }
580 static void rb_time_set(rb_time_t *t, u64 val)
581 {
582 	local64_set(&t->time, val);
583 }
584 
585 /*
586  * Enable this to make sure that the event passed to
587  * ring_buffer_event_time_stamp() is not committed and also
588  * is on the buffer that it passed in.
589  */
590 //#define RB_VERIFY_EVENT
591 #ifdef RB_VERIFY_EVENT
592 static struct list_head *rb_list_head(struct list_head *list);
593 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
594 			 void *event)
595 {
596 	struct buffer_page *page = cpu_buffer->commit_page;
597 	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
598 	struct list_head *next;
599 	long commit, write;
600 	unsigned long addr = (unsigned long)event;
601 	bool done = false;
602 	int stop = 0;
603 
604 	/* Make sure the event exists and is not committed yet */
605 	do {
606 		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
607 			done = true;
608 		commit = local_read(&page->page->commit);
609 		write = local_read(&page->write);
610 		if (addr >= (unsigned long)&page->page->data[commit] &&
611 		    addr < (unsigned long)&page->page->data[write])
612 			return;
613 
614 		next = rb_list_head(page->list.next);
615 		page = list_entry(next, struct buffer_page, list);
616 	} while (!done);
617 	WARN_ON_ONCE(1);
618 }
619 #else
620 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
621 			 void *event)
622 {
623 }
624 #endif
625 
626 /*
627  * The absolute time stamp drops the 5 MSBs and some clocks may
628  * require them. The rb_fix_abs_ts() will take a previous full
629  * time stamp, and add the 5 MSB of that time stamp on to the
630  * saved absolute time stamp. Then they are compared in case of
631  * the unlikely event that the latest time stamp incremented
632  * the 5 MSB.
633  */
634 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
635 {
636 	if (save_ts & TS_MSB) {
637 		abs |= save_ts & TS_MSB;
638 		/* Check for overflow */
639 		if (unlikely(abs < save_ts))
640 			abs += 1ULL << 59;
641 	}
642 	return abs;
643 }
644 
645 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
646 
647 /**
648  * ring_buffer_event_time_stamp - return the event's current time stamp
649  * @buffer: The buffer that the event is on
650  * @event: the event to get the time stamp of
651  *
652  * Note, this must be called after @event is reserved, and before it is
653  * committed to the ring buffer. And must be called from the same
654  * context where the event was reserved (normal, softirq, irq, etc).
655  *
656  * Returns the time stamp associated with the current event.
657  * If the event has an extended time stamp, then that is used as
658  * the time stamp to return.
659  * In the highly unlikely case that the event was nested more than
660  * the max nesting, then the write_stamp of the buffer is returned,
661  * otherwise  current time is returned, but that really neither of
662  * the last two cases should ever happen.
663  */
664 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
665 				 struct ring_buffer_event *event)
666 {
667 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
668 	unsigned int nest;
669 	u64 ts;
670 
671 	/* If the event includes an absolute time, then just use that */
672 	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
673 		ts = rb_event_time_stamp(event);
674 		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
675 	}
676 
677 	nest = local_read(&cpu_buffer->committing);
678 	verify_event(cpu_buffer, event);
679 	if (WARN_ON_ONCE(!nest))
680 		goto fail;
681 
682 	/* Read the current saved nesting level time stamp */
683 	if (likely(--nest < MAX_NEST))
684 		return cpu_buffer->event_stamp[nest];
685 
686 	/* Shouldn't happen, warn if it does */
687 	WARN_ONCE(1, "nest (%d) greater than max", nest);
688 
689  fail:
690 	rb_time_read(&cpu_buffer->write_stamp, &ts);
691 
692 	return ts;
693 }
694 
695 /**
696  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
697  * @buffer: The ring_buffer to get the number of pages from
698  * @cpu: The cpu of the ring_buffer to get the number of pages from
699  *
700  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
701  */
702 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
703 {
704 	return buffer->buffers[cpu]->nr_pages;
705 }
706 
707 /**
708  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
709  * @buffer: The ring_buffer to get the number of pages from
710  * @cpu: The cpu of the ring_buffer to get the number of pages from
711  *
712  * Returns the number of pages that have content in the ring buffer.
713  */
714 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
715 {
716 	size_t read;
717 	size_t lost;
718 	size_t cnt;
719 
720 	read = local_read(&buffer->buffers[cpu]->pages_read);
721 	lost = local_read(&buffer->buffers[cpu]->pages_lost);
722 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
723 
724 	if (WARN_ON_ONCE(cnt < lost))
725 		return 0;
726 
727 	cnt -= lost;
728 
729 	/* The reader can read an empty page, but not more than that */
730 	if (cnt < read) {
731 		WARN_ON_ONCE(read > cnt + 1);
732 		return 0;
733 	}
734 
735 	return cnt - read;
736 }
737 
738 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
739 {
740 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
741 	size_t nr_pages;
742 	size_t dirty;
743 
744 	nr_pages = cpu_buffer->nr_pages;
745 	if (!nr_pages || !full)
746 		return true;
747 
748 	/*
749 	 * Add one as dirty will never equal nr_pages, as the sub-buffer
750 	 * that the writer is on is not counted as dirty.
751 	 * This is needed if "buffer_percent" is set to 100.
752 	 */
753 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
754 
755 	return (dirty * 100) >= (full * nr_pages);
756 }
757 
758 /*
759  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
760  *
761  * Schedules a delayed work to wake up any task that is blocked on the
762  * ring buffer waiters queue.
763  */
764 static void rb_wake_up_waiters(struct irq_work *work)
765 {
766 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
767 
768 	/* For waiters waiting for the first wake up */
769 	(void)atomic_fetch_inc_release(&rbwork->seq);
770 
771 	wake_up_all(&rbwork->waiters);
772 	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
773 		/* Only cpu_buffer sets the above flags */
774 		struct ring_buffer_per_cpu *cpu_buffer =
775 			container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
776 
777 		/* Called from interrupt context */
778 		raw_spin_lock(&cpu_buffer->reader_lock);
779 		rbwork->wakeup_full = false;
780 		rbwork->full_waiters_pending = false;
781 
782 		/* Waking up all waiters, they will reset the shortest full */
783 		cpu_buffer->shortest_full = 0;
784 		raw_spin_unlock(&cpu_buffer->reader_lock);
785 
786 		wake_up_all(&rbwork->full_waiters);
787 	}
788 }
789 
790 /**
791  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
792  * @buffer: The ring buffer to wake waiters on
793  * @cpu: The CPU buffer to wake waiters on
794  *
795  * In the case of a file that represents a ring buffer is closing,
796  * it is prudent to wake up any waiters that are on this.
797  */
798 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
799 {
800 	struct ring_buffer_per_cpu *cpu_buffer;
801 	struct rb_irq_work *rbwork;
802 
803 	if (!buffer)
804 		return;
805 
806 	if (cpu == RING_BUFFER_ALL_CPUS) {
807 
808 		/* Wake up individual ones too. One level recursion */
809 		for_each_buffer_cpu(buffer, cpu)
810 			ring_buffer_wake_waiters(buffer, cpu);
811 
812 		rbwork = &buffer->irq_work;
813 	} else {
814 		if (WARN_ON_ONCE(!buffer->buffers))
815 			return;
816 		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
817 			return;
818 
819 		cpu_buffer = buffer->buffers[cpu];
820 		/* The CPU buffer may not have been initialized yet */
821 		if (!cpu_buffer)
822 			return;
823 		rbwork = &cpu_buffer->irq_work;
824 	}
825 
826 	/* This can be called in any context */
827 	irq_work_queue(&rbwork->work);
828 }
829 
830 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
831 {
832 	struct ring_buffer_per_cpu *cpu_buffer;
833 	bool ret = false;
834 
835 	/* Reads of all CPUs always waits for any data */
836 	if (cpu == RING_BUFFER_ALL_CPUS)
837 		return !ring_buffer_empty(buffer);
838 
839 	cpu_buffer = buffer->buffers[cpu];
840 
841 	if (!ring_buffer_empty_cpu(buffer, cpu)) {
842 		unsigned long flags;
843 		bool pagebusy;
844 
845 		if (!full)
846 			return true;
847 
848 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
849 		pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
850 		ret = !pagebusy && full_hit(buffer, cpu, full);
851 
852 		if (!ret && (!cpu_buffer->shortest_full ||
853 			     cpu_buffer->shortest_full > full)) {
854 		    cpu_buffer->shortest_full = full;
855 		}
856 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
857 	}
858 	return ret;
859 }
860 
861 static inline bool
862 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer,
863 	     int cpu, int full, ring_buffer_cond_fn cond, void *data)
864 {
865 	if (rb_watermark_hit(buffer, cpu, full))
866 		return true;
867 
868 	if (cond(data))
869 		return true;
870 
871 	/*
872 	 * The events can happen in critical sections where
873 	 * checking a work queue can cause deadlocks.
874 	 * After adding a task to the queue, this flag is set
875 	 * only to notify events to try to wake up the queue
876 	 * using irq_work.
877 	 *
878 	 * We don't clear it even if the buffer is no longer
879 	 * empty. The flag only causes the next event to run
880 	 * irq_work to do the work queue wake up. The worse
881 	 * that can happen if we race with !trace_empty() is that
882 	 * an event will cause an irq_work to try to wake up
883 	 * an empty queue.
884 	 *
885 	 * There's no reason to protect this flag either, as
886 	 * the work queue and irq_work logic will do the necessary
887 	 * synchronization for the wake ups. The only thing
888 	 * that is necessary is that the wake up happens after
889 	 * a task has been queued. It's OK for spurious wake ups.
890 	 */
891 	if (full)
892 		rbwork->full_waiters_pending = true;
893 	else
894 		rbwork->waiters_pending = true;
895 
896 	return false;
897 }
898 
899 struct rb_wait_data {
900 	struct rb_irq_work		*irq_work;
901 	int				seq;
902 };
903 
904 /*
905  * The default wait condition for ring_buffer_wait() is to just to exit the
906  * wait loop the first time it is woken up.
907  */
908 static bool rb_wait_once(void *data)
909 {
910 	struct rb_wait_data *rdata = data;
911 	struct rb_irq_work *rbwork = rdata->irq_work;
912 
913 	return atomic_read_acquire(&rbwork->seq) != rdata->seq;
914 }
915 
916 /**
917  * ring_buffer_wait - wait for input to the ring buffer
918  * @buffer: buffer to wait on
919  * @cpu: the cpu buffer to wait on
920  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
921  * @cond: condition function to break out of wait (NULL to run once)
922  * @data: the data to pass to @cond.
923  *
924  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
925  * as data is added to any of the @buffer's cpu buffers. Otherwise
926  * it will wait for data to be added to a specific cpu buffer.
927  */
928 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full,
929 		     ring_buffer_cond_fn cond, void *data)
930 {
931 	struct ring_buffer_per_cpu *cpu_buffer;
932 	struct wait_queue_head *waitq;
933 	struct rb_irq_work *rbwork;
934 	struct rb_wait_data rdata;
935 	int ret = 0;
936 
937 	/*
938 	 * Depending on what the caller is waiting for, either any
939 	 * data in any cpu buffer, or a specific buffer, put the
940 	 * caller on the appropriate wait queue.
941 	 */
942 	if (cpu == RING_BUFFER_ALL_CPUS) {
943 		rbwork = &buffer->irq_work;
944 		/* Full only makes sense on per cpu reads */
945 		full = 0;
946 	} else {
947 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
948 			return -ENODEV;
949 		cpu_buffer = buffer->buffers[cpu];
950 		rbwork = &cpu_buffer->irq_work;
951 	}
952 
953 	if (full)
954 		waitq = &rbwork->full_waiters;
955 	else
956 		waitq = &rbwork->waiters;
957 
958 	/* Set up to exit loop as soon as it is woken */
959 	if (!cond) {
960 		cond = rb_wait_once;
961 		rdata.irq_work = rbwork;
962 		rdata.seq = atomic_read_acquire(&rbwork->seq);
963 		data = &rdata;
964 	}
965 
966 	ret = wait_event_interruptible((*waitq),
967 				rb_wait_cond(rbwork, buffer, cpu, full, cond, data));
968 
969 	return ret;
970 }
971 
972 /**
973  * ring_buffer_poll_wait - poll on buffer input
974  * @buffer: buffer to wait on
975  * @cpu: the cpu buffer to wait on
976  * @filp: the file descriptor
977  * @poll_table: The poll descriptor
978  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
979  *
980  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
981  * as data is added to any of the @buffer's cpu buffers. Otherwise
982  * it will wait for data to be added to a specific cpu buffer.
983  *
984  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
985  * zero otherwise.
986  */
987 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
988 			  struct file *filp, poll_table *poll_table, int full)
989 {
990 	struct ring_buffer_per_cpu *cpu_buffer;
991 	struct rb_irq_work *rbwork;
992 
993 	if (cpu == RING_BUFFER_ALL_CPUS) {
994 		rbwork = &buffer->irq_work;
995 		full = 0;
996 	} else {
997 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
998 			return EPOLLERR;
999 
1000 		cpu_buffer = buffer->buffers[cpu];
1001 		rbwork = &cpu_buffer->irq_work;
1002 	}
1003 
1004 	if (full) {
1005 		poll_wait(filp, &rbwork->full_waiters, poll_table);
1006 
1007 		if (rb_watermark_hit(buffer, cpu, full))
1008 			return EPOLLIN | EPOLLRDNORM;
1009 		/*
1010 		 * Only allow full_waiters_pending update to be seen after
1011 		 * the shortest_full is set (in rb_watermark_hit). If the
1012 		 * writer sees the full_waiters_pending flag set, it will
1013 		 * compare the amount in the ring buffer to shortest_full.
1014 		 * If the amount in the ring buffer is greater than the
1015 		 * shortest_full percent, it will call the irq_work handler
1016 		 * to wake up this list. The irq_handler will reset shortest_full
1017 		 * back to zero. That's done under the reader_lock, but
1018 		 * the below smp_mb() makes sure that the update to
1019 		 * full_waiters_pending doesn't leak up into the above.
1020 		 */
1021 		smp_mb();
1022 		rbwork->full_waiters_pending = true;
1023 		return 0;
1024 	}
1025 
1026 	poll_wait(filp, &rbwork->waiters, poll_table);
1027 	rbwork->waiters_pending = true;
1028 
1029 	/*
1030 	 * There's a tight race between setting the waiters_pending and
1031 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1032 	 * is set, the next event will wake the task up, but we can get stuck
1033 	 * if there's only a single event in.
1034 	 *
1035 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1036 	 * but adding a memory barrier to all events will cause too much of a
1037 	 * performance hit in the fast path.  We only need a memory barrier when
1038 	 * the buffer goes from empty to having content.  But as this race is
1039 	 * extremely small, and it's not a problem if another event comes in, we
1040 	 * will fix it later.
1041 	 */
1042 	smp_mb();
1043 
1044 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1045 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1046 		return EPOLLIN | EPOLLRDNORM;
1047 	return 0;
1048 }
1049 
1050 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1051 #define RB_WARN_ON(b, cond)						\
1052 	({								\
1053 		int _____ret = unlikely(cond);				\
1054 		if (_____ret) {						\
1055 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1056 				struct ring_buffer_per_cpu *__b =	\
1057 					(void *)b;			\
1058 				atomic_inc(&__b->buffer->record_disabled); \
1059 			} else						\
1060 				atomic_inc(&b->record_disabled);	\
1061 			WARN_ON(1);					\
1062 		}							\
1063 		_____ret;						\
1064 	})
1065 
1066 /* Up this if you want to test the TIME_EXTENTS and normalization */
1067 #define DEBUG_SHIFT 0
1068 
1069 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1070 {
1071 	u64 ts;
1072 
1073 	/* Skip retpolines :-( */
1074 	if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1075 		ts = trace_clock_local();
1076 	else
1077 		ts = buffer->clock();
1078 
1079 	/* shift to debug/test normalization and TIME_EXTENTS */
1080 	return ts << DEBUG_SHIFT;
1081 }
1082 
1083 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1084 {
1085 	u64 time;
1086 
1087 	preempt_disable_notrace();
1088 	time = rb_time_stamp(buffer);
1089 	preempt_enable_notrace();
1090 
1091 	return time;
1092 }
1093 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1094 
1095 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1096 				      int cpu, u64 *ts)
1097 {
1098 	/* Just stupid testing the normalize function and deltas */
1099 	*ts >>= DEBUG_SHIFT;
1100 }
1101 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1102 
1103 /*
1104  * Making the ring buffer lockless makes things tricky.
1105  * Although writes only happen on the CPU that they are on,
1106  * and they only need to worry about interrupts. Reads can
1107  * happen on any CPU.
1108  *
1109  * The reader page is always off the ring buffer, but when the
1110  * reader finishes with a page, it needs to swap its page with
1111  * a new one from the buffer. The reader needs to take from
1112  * the head (writes go to the tail). But if a writer is in overwrite
1113  * mode and wraps, it must push the head page forward.
1114  *
1115  * Here lies the problem.
1116  *
1117  * The reader must be careful to replace only the head page, and
1118  * not another one. As described at the top of the file in the
1119  * ASCII art, the reader sets its old page to point to the next
1120  * page after head. It then sets the page after head to point to
1121  * the old reader page. But if the writer moves the head page
1122  * during this operation, the reader could end up with the tail.
1123  *
1124  * We use cmpxchg to help prevent this race. We also do something
1125  * special with the page before head. We set the LSB to 1.
1126  *
1127  * When the writer must push the page forward, it will clear the
1128  * bit that points to the head page, move the head, and then set
1129  * the bit that points to the new head page.
1130  *
1131  * We also don't want an interrupt coming in and moving the head
1132  * page on another writer. Thus we use the second LSB to catch
1133  * that too. Thus:
1134  *
1135  * head->list->prev->next        bit 1          bit 0
1136  *                              -------        -------
1137  * Normal page                     0              0
1138  * Points to head page             0              1
1139  * New head page                   1              0
1140  *
1141  * Note we can not trust the prev pointer of the head page, because:
1142  *
1143  * +----+       +-----+        +-----+
1144  * |    |------>|  T  |---X--->|  N  |
1145  * |    |<------|     |        |     |
1146  * +----+       +-----+        +-----+
1147  *   ^                           ^ |
1148  *   |          +-----+          | |
1149  *   +----------|  R  |----------+ |
1150  *              |     |<-----------+
1151  *              +-----+
1152  *
1153  * Key:  ---X-->  HEAD flag set in pointer
1154  *         T      Tail page
1155  *         R      Reader page
1156  *         N      Next page
1157  *
1158  * (see __rb_reserve_next() to see where this happens)
1159  *
1160  *  What the above shows is that the reader just swapped out
1161  *  the reader page with a page in the buffer, but before it
1162  *  could make the new header point back to the new page added
1163  *  it was preempted by a writer. The writer moved forward onto
1164  *  the new page added by the reader and is about to move forward
1165  *  again.
1166  *
1167  *  You can see, it is legitimate for the previous pointer of
1168  *  the head (or any page) not to point back to itself. But only
1169  *  temporarily.
1170  */
1171 
1172 #define RB_PAGE_NORMAL		0UL
1173 #define RB_PAGE_HEAD		1UL
1174 #define RB_PAGE_UPDATE		2UL
1175 
1176 
1177 #define RB_FLAG_MASK		3UL
1178 
1179 /* PAGE_MOVED is not part of the mask */
1180 #define RB_PAGE_MOVED		4UL
1181 
1182 /*
1183  * rb_list_head - remove any bit
1184  */
1185 static struct list_head *rb_list_head(struct list_head *list)
1186 {
1187 	unsigned long val = (unsigned long)list;
1188 
1189 	return (struct list_head *)(val & ~RB_FLAG_MASK);
1190 }
1191 
1192 /*
1193  * rb_is_head_page - test if the given page is the head page
1194  *
1195  * Because the reader may move the head_page pointer, we can
1196  * not trust what the head page is (it may be pointing to
1197  * the reader page). But if the next page is a header page,
1198  * its flags will be non zero.
1199  */
1200 static inline int
1201 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1202 {
1203 	unsigned long val;
1204 
1205 	val = (unsigned long)list->next;
1206 
1207 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1208 		return RB_PAGE_MOVED;
1209 
1210 	return val & RB_FLAG_MASK;
1211 }
1212 
1213 /*
1214  * rb_is_reader_page
1215  *
1216  * The unique thing about the reader page, is that, if the
1217  * writer is ever on it, the previous pointer never points
1218  * back to the reader page.
1219  */
1220 static bool rb_is_reader_page(struct buffer_page *page)
1221 {
1222 	struct list_head *list = page->list.prev;
1223 
1224 	return rb_list_head(list->next) != &page->list;
1225 }
1226 
1227 /*
1228  * rb_set_list_to_head - set a list_head to be pointing to head.
1229  */
1230 static void rb_set_list_to_head(struct list_head *list)
1231 {
1232 	unsigned long *ptr;
1233 
1234 	ptr = (unsigned long *)&list->next;
1235 	*ptr |= RB_PAGE_HEAD;
1236 	*ptr &= ~RB_PAGE_UPDATE;
1237 }
1238 
1239 /*
1240  * rb_head_page_activate - sets up head page
1241  */
1242 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1243 {
1244 	struct buffer_page *head;
1245 
1246 	head = cpu_buffer->head_page;
1247 	if (!head)
1248 		return;
1249 
1250 	/*
1251 	 * Set the previous list pointer to have the HEAD flag.
1252 	 */
1253 	rb_set_list_to_head(head->list.prev);
1254 }
1255 
1256 static void rb_list_head_clear(struct list_head *list)
1257 {
1258 	unsigned long *ptr = (unsigned long *)&list->next;
1259 
1260 	*ptr &= ~RB_FLAG_MASK;
1261 }
1262 
1263 /*
1264  * rb_head_page_deactivate - clears head page ptr (for free list)
1265  */
1266 static void
1267 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1268 {
1269 	struct list_head *hd;
1270 
1271 	/* Go through the whole list and clear any pointers found. */
1272 	rb_list_head_clear(cpu_buffer->pages);
1273 
1274 	list_for_each(hd, cpu_buffer->pages)
1275 		rb_list_head_clear(hd);
1276 }
1277 
1278 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1279 			    struct buffer_page *head,
1280 			    struct buffer_page *prev,
1281 			    int old_flag, int new_flag)
1282 {
1283 	struct list_head *list;
1284 	unsigned long val = (unsigned long)&head->list;
1285 	unsigned long ret;
1286 
1287 	list = &prev->list;
1288 
1289 	val &= ~RB_FLAG_MASK;
1290 
1291 	ret = cmpxchg((unsigned long *)&list->next,
1292 		      val | old_flag, val | new_flag);
1293 
1294 	/* check if the reader took the page */
1295 	if ((ret & ~RB_FLAG_MASK) != val)
1296 		return RB_PAGE_MOVED;
1297 
1298 	return ret & RB_FLAG_MASK;
1299 }
1300 
1301 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1302 				   struct buffer_page *head,
1303 				   struct buffer_page *prev,
1304 				   int old_flag)
1305 {
1306 	return rb_head_page_set(cpu_buffer, head, prev,
1307 				old_flag, RB_PAGE_UPDATE);
1308 }
1309 
1310 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1311 				 struct buffer_page *head,
1312 				 struct buffer_page *prev,
1313 				 int old_flag)
1314 {
1315 	return rb_head_page_set(cpu_buffer, head, prev,
1316 				old_flag, RB_PAGE_HEAD);
1317 }
1318 
1319 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1320 				   struct buffer_page *head,
1321 				   struct buffer_page *prev,
1322 				   int old_flag)
1323 {
1324 	return rb_head_page_set(cpu_buffer, head, prev,
1325 				old_flag, RB_PAGE_NORMAL);
1326 }
1327 
1328 static inline void rb_inc_page(struct buffer_page **bpage)
1329 {
1330 	struct list_head *p = rb_list_head((*bpage)->list.next);
1331 
1332 	*bpage = list_entry(p, struct buffer_page, list);
1333 }
1334 
1335 static struct buffer_page *
1336 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1337 {
1338 	struct buffer_page *head;
1339 	struct buffer_page *page;
1340 	struct list_head *list;
1341 	int i;
1342 
1343 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1344 		return NULL;
1345 
1346 	/* sanity check */
1347 	list = cpu_buffer->pages;
1348 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1349 		return NULL;
1350 
1351 	page = head = cpu_buffer->head_page;
1352 	/*
1353 	 * It is possible that the writer moves the header behind
1354 	 * where we started, and we miss in one loop.
1355 	 * A second loop should grab the header, but we'll do
1356 	 * three loops just because I'm paranoid.
1357 	 */
1358 	for (i = 0; i < 3; i++) {
1359 		do {
1360 			if (rb_is_head_page(page, page->list.prev)) {
1361 				cpu_buffer->head_page = page;
1362 				return page;
1363 			}
1364 			rb_inc_page(&page);
1365 		} while (page != head);
1366 	}
1367 
1368 	RB_WARN_ON(cpu_buffer, 1);
1369 
1370 	return NULL;
1371 }
1372 
1373 static bool rb_head_page_replace(struct buffer_page *old,
1374 				struct buffer_page *new)
1375 {
1376 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1377 	unsigned long val;
1378 
1379 	val = *ptr & ~RB_FLAG_MASK;
1380 	val |= RB_PAGE_HEAD;
1381 
1382 	return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1383 }
1384 
1385 /*
1386  * rb_tail_page_update - move the tail page forward
1387  */
1388 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1389 			       struct buffer_page *tail_page,
1390 			       struct buffer_page *next_page)
1391 {
1392 	unsigned long old_entries;
1393 	unsigned long old_write;
1394 
1395 	/*
1396 	 * The tail page now needs to be moved forward.
1397 	 *
1398 	 * We need to reset the tail page, but without messing
1399 	 * with possible erasing of data brought in by interrupts
1400 	 * that have moved the tail page and are currently on it.
1401 	 *
1402 	 * We add a counter to the write field to denote this.
1403 	 */
1404 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1405 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1406 
1407 	/*
1408 	 * Just make sure we have seen our old_write and synchronize
1409 	 * with any interrupts that come in.
1410 	 */
1411 	barrier();
1412 
1413 	/*
1414 	 * If the tail page is still the same as what we think
1415 	 * it is, then it is up to us to update the tail
1416 	 * pointer.
1417 	 */
1418 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1419 		/* Zero the write counter */
1420 		unsigned long val = old_write & ~RB_WRITE_MASK;
1421 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1422 
1423 		/*
1424 		 * This will only succeed if an interrupt did
1425 		 * not come in and change it. In which case, we
1426 		 * do not want to modify it.
1427 		 *
1428 		 * We add (void) to let the compiler know that we do not care
1429 		 * about the return value of these functions. We use the
1430 		 * cmpxchg to only update if an interrupt did not already
1431 		 * do it for us. If the cmpxchg fails, we don't care.
1432 		 */
1433 		(void)local_cmpxchg(&next_page->write, old_write, val);
1434 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1435 
1436 		/*
1437 		 * No need to worry about races with clearing out the commit.
1438 		 * it only can increment when a commit takes place. But that
1439 		 * only happens in the outer most nested commit.
1440 		 */
1441 		local_set(&next_page->page->commit, 0);
1442 
1443 		/* Either we update tail_page or an interrupt does */
1444 		if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page))
1445 			local_inc(&cpu_buffer->pages_touched);
1446 	}
1447 }
1448 
1449 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1450 			  struct buffer_page *bpage)
1451 {
1452 	unsigned long val = (unsigned long)bpage;
1453 
1454 	RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1455 }
1456 
1457 /**
1458  * rb_check_pages - integrity check of buffer pages
1459  * @cpu_buffer: CPU buffer with pages to test
1460  *
1461  * As a safety measure we check to make sure the data pages have not
1462  * been corrupted.
1463  *
1464  * Callers of this function need to guarantee that the list of pages doesn't get
1465  * modified during the check. In particular, if it's possible that the function
1466  * is invoked with concurrent readers which can swap in a new reader page then
1467  * the caller should take cpu_buffer->reader_lock.
1468  */
1469 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1470 {
1471 	struct list_head *head = rb_list_head(cpu_buffer->pages);
1472 	struct list_head *tmp;
1473 
1474 	if (RB_WARN_ON(cpu_buffer,
1475 			rb_list_head(rb_list_head(head->next)->prev) != head))
1476 		return;
1477 
1478 	if (RB_WARN_ON(cpu_buffer,
1479 			rb_list_head(rb_list_head(head->prev)->next) != head))
1480 		return;
1481 
1482 	for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1483 		if (RB_WARN_ON(cpu_buffer,
1484 				rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1485 			return;
1486 
1487 		if (RB_WARN_ON(cpu_buffer,
1488 				rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1489 			return;
1490 	}
1491 }
1492 
1493 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1494 		long nr_pages, struct list_head *pages)
1495 {
1496 	struct buffer_page *bpage, *tmp;
1497 	bool user_thread = current->mm != NULL;
1498 	gfp_t mflags;
1499 	long i;
1500 
1501 	/*
1502 	 * Check if the available memory is there first.
1503 	 * Note, si_mem_available() only gives us a rough estimate of available
1504 	 * memory. It may not be accurate. But we don't care, we just want
1505 	 * to prevent doing any allocation when it is obvious that it is
1506 	 * not going to succeed.
1507 	 */
1508 	i = si_mem_available();
1509 	if (i < nr_pages)
1510 		return -ENOMEM;
1511 
1512 	/*
1513 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1514 	 * gracefully without invoking oom-killer and the system is not
1515 	 * destabilized.
1516 	 */
1517 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1518 
1519 	/*
1520 	 * If a user thread allocates too much, and si_mem_available()
1521 	 * reports there's enough memory, even though there is not.
1522 	 * Make sure the OOM killer kills this thread. This can happen
1523 	 * even with RETRY_MAYFAIL because another task may be doing
1524 	 * an allocation after this task has taken all memory.
1525 	 * This is the task the OOM killer needs to take out during this
1526 	 * loop, even if it was triggered by an allocation somewhere else.
1527 	 */
1528 	if (user_thread)
1529 		set_current_oom_origin();
1530 	for (i = 0; i < nr_pages; i++) {
1531 		struct page *page;
1532 
1533 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1534 				    mflags, cpu_to_node(cpu_buffer->cpu));
1535 		if (!bpage)
1536 			goto free_pages;
1537 
1538 		rb_check_bpage(cpu_buffer, bpage);
1539 
1540 		list_add(&bpage->list, pages);
1541 
1542 		page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
1543 					mflags | __GFP_COMP | __GFP_ZERO,
1544 					cpu_buffer->buffer->subbuf_order);
1545 		if (!page)
1546 			goto free_pages;
1547 		bpage->page = page_address(page);
1548 		bpage->order = cpu_buffer->buffer->subbuf_order;
1549 		rb_init_page(bpage->page);
1550 
1551 		if (user_thread && fatal_signal_pending(current))
1552 			goto free_pages;
1553 	}
1554 	if (user_thread)
1555 		clear_current_oom_origin();
1556 
1557 	return 0;
1558 
1559 free_pages:
1560 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1561 		list_del_init(&bpage->list);
1562 		free_buffer_page(bpage);
1563 	}
1564 	if (user_thread)
1565 		clear_current_oom_origin();
1566 
1567 	return -ENOMEM;
1568 }
1569 
1570 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1571 			     unsigned long nr_pages)
1572 {
1573 	LIST_HEAD(pages);
1574 
1575 	WARN_ON(!nr_pages);
1576 
1577 	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1578 		return -ENOMEM;
1579 
1580 	/*
1581 	 * The ring buffer page list is a circular list that does not
1582 	 * start and end with a list head. All page list items point to
1583 	 * other pages.
1584 	 */
1585 	cpu_buffer->pages = pages.next;
1586 	list_del(&pages);
1587 
1588 	cpu_buffer->nr_pages = nr_pages;
1589 
1590 	rb_check_pages(cpu_buffer);
1591 
1592 	return 0;
1593 }
1594 
1595 static struct ring_buffer_per_cpu *
1596 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1597 {
1598 	struct ring_buffer_per_cpu *cpu_buffer;
1599 	struct buffer_page *bpage;
1600 	struct page *page;
1601 	int ret;
1602 
1603 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1604 				  GFP_KERNEL, cpu_to_node(cpu));
1605 	if (!cpu_buffer)
1606 		return NULL;
1607 
1608 	cpu_buffer->cpu = cpu;
1609 	cpu_buffer->buffer = buffer;
1610 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1611 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1612 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1613 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1614 	init_completion(&cpu_buffer->update_done);
1615 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1616 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1617 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1618 	mutex_init(&cpu_buffer->mapping_lock);
1619 
1620 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1621 			    GFP_KERNEL, cpu_to_node(cpu));
1622 	if (!bpage)
1623 		goto fail_free_buffer;
1624 
1625 	rb_check_bpage(cpu_buffer, bpage);
1626 
1627 	cpu_buffer->reader_page = bpage;
1628 
1629 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL | __GFP_COMP | __GFP_ZERO,
1630 				cpu_buffer->buffer->subbuf_order);
1631 	if (!page)
1632 		goto fail_free_reader;
1633 	bpage->page = page_address(page);
1634 	rb_init_page(bpage->page);
1635 
1636 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1637 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1638 
1639 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1640 	if (ret < 0)
1641 		goto fail_free_reader;
1642 
1643 	cpu_buffer->head_page
1644 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1645 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1646 
1647 	rb_head_page_activate(cpu_buffer);
1648 
1649 	return cpu_buffer;
1650 
1651  fail_free_reader:
1652 	free_buffer_page(cpu_buffer->reader_page);
1653 
1654  fail_free_buffer:
1655 	kfree(cpu_buffer);
1656 	return NULL;
1657 }
1658 
1659 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1660 {
1661 	struct list_head *head = cpu_buffer->pages;
1662 	struct buffer_page *bpage, *tmp;
1663 
1664 	irq_work_sync(&cpu_buffer->irq_work.work);
1665 
1666 	free_buffer_page(cpu_buffer->reader_page);
1667 
1668 	if (head) {
1669 		rb_head_page_deactivate(cpu_buffer);
1670 
1671 		list_for_each_entry_safe(bpage, tmp, head, list) {
1672 			list_del_init(&bpage->list);
1673 			free_buffer_page(bpage);
1674 		}
1675 		bpage = list_entry(head, struct buffer_page, list);
1676 		free_buffer_page(bpage);
1677 	}
1678 
1679 	free_page((unsigned long)cpu_buffer->free_page);
1680 
1681 	kfree(cpu_buffer);
1682 }
1683 
1684 /**
1685  * __ring_buffer_alloc - allocate a new ring_buffer
1686  * @size: the size in bytes per cpu that is needed.
1687  * @flags: attributes to set for the ring buffer.
1688  * @key: ring buffer reader_lock_key.
1689  *
1690  * Currently the only flag that is available is the RB_FL_OVERWRITE
1691  * flag. This flag means that the buffer will overwrite old data
1692  * when the buffer wraps. If this flag is not set, the buffer will
1693  * drop data when the tail hits the head.
1694  */
1695 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1696 					struct lock_class_key *key)
1697 {
1698 	struct trace_buffer *buffer;
1699 	long nr_pages;
1700 	int bsize;
1701 	int cpu;
1702 	int ret;
1703 
1704 	/* keep it in its own cache line */
1705 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1706 			 GFP_KERNEL);
1707 	if (!buffer)
1708 		return NULL;
1709 
1710 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1711 		goto fail_free_buffer;
1712 
1713 	/* Default buffer page size - one system page */
1714 	buffer->subbuf_order = 0;
1715 	buffer->subbuf_size = PAGE_SIZE - BUF_PAGE_HDR_SIZE;
1716 
1717 	/* Max payload is buffer page size - header (8bytes) */
1718 	buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
1719 
1720 	nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
1721 	buffer->flags = flags;
1722 	buffer->clock = trace_clock_local;
1723 	buffer->reader_lock_key = key;
1724 
1725 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1726 	init_waitqueue_head(&buffer->irq_work.waiters);
1727 
1728 	/* need at least two pages */
1729 	if (nr_pages < 2)
1730 		nr_pages = 2;
1731 
1732 	buffer->cpus = nr_cpu_ids;
1733 
1734 	bsize = sizeof(void *) * nr_cpu_ids;
1735 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1736 				  GFP_KERNEL);
1737 	if (!buffer->buffers)
1738 		goto fail_free_cpumask;
1739 
1740 	cpu = raw_smp_processor_id();
1741 	cpumask_set_cpu(cpu, buffer->cpumask);
1742 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1743 	if (!buffer->buffers[cpu])
1744 		goto fail_free_buffers;
1745 
1746 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1747 	if (ret < 0)
1748 		goto fail_free_buffers;
1749 
1750 	mutex_init(&buffer->mutex);
1751 
1752 	return buffer;
1753 
1754  fail_free_buffers:
1755 	for_each_buffer_cpu(buffer, cpu) {
1756 		if (buffer->buffers[cpu])
1757 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1758 	}
1759 	kfree(buffer->buffers);
1760 
1761  fail_free_cpumask:
1762 	free_cpumask_var(buffer->cpumask);
1763 
1764  fail_free_buffer:
1765 	kfree(buffer);
1766 	return NULL;
1767 }
1768 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1769 
1770 /**
1771  * ring_buffer_free - free a ring buffer.
1772  * @buffer: the buffer to free.
1773  */
1774 void
1775 ring_buffer_free(struct trace_buffer *buffer)
1776 {
1777 	int cpu;
1778 
1779 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1780 
1781 	irq_work_sync(&buffer->irq_work.work);
1782 
1783 	for_each_buffer_cpu(buffer, cpu)
1784 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1785 
1786 	kfree(buffer->buffers);
1787 	free_cpumask_var(buffer->cpumask);
1788 
1789 	kfree(buffer);
1790 }
1791 EXPORT_SYMBOL_GPL(ring_buffer_free);
1792 
1793 void ring_buffer_set_clock(struct trace_buffer *buffer,
1794 			   u64 (*clock)(void))
1795 {
1796 	buffer->clock = clock;
1797 }
1798 
1799 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1800 {
1801 	buffer->time_stamp_abs = abs;
1802 }
1803 
1804 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1805 {
1806 	return buffer->time_stamp_abs;
1807 }
1808 
1809 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1810 {
1811 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1812 }
1813 
1814 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1815 {
1816 	return local_read(&bpage->write) & RB_WRITE_MASK;
1817 }
1818 
1819 static bool
1820 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1821 {
1822 	struct list_head *tail_page, *to_remove, *next_page;
1823 	struct buffer_page *to_remove_page, *tmp_iter_page;
1824 	struct buffer_page *last_page, *first_page;
1825 	unsigned long nr_removed;
1826 	unsigned long head_bit;
1827 	int page_entries;
1828 
1829 	head_bit = 0;
1830 
1831 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1832 	atomic_inc(&cpu_buffer->record_disabled);
1833 	/*
1834 	 * We don't race with the readers since we have acquired the reader
1835 	 * lock. We also don't race with writers after disabling recording.
1836 	 * This makes it easy to figure out the first and the last page to be
1837 	 * removed from the list. We unlink all the pages in between including
1838 	 * the first and last pages. This is done in a busy loop so that we
1839 	 * lose the least number of traces.
1840 	 * The pages are freed after we restart recording and unlock readers.
1841 	 */
1842 	tail_page = &cpu_buffer->tail_page->list;
1843 
1844 	/*
1845 	 * tail page might be on reader page, we remove the next page
1846 	 * from the ring buffer
1847 	 */
1848 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1849 		tail_page = rb_list_head(tail_page->next);
1850 	to_remove = tail_page;
1851 
1852 	/* start of pages to remove */
1853 	first_page = list_entry(rb_list_head(to_remove->next),
1854 				struct buffer_page, list);
1855 
1856 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1857 		to_remove = rb_list_head(to_remove)->next;
1858 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1859 	}
1860 	/* Read iterators need to reset themselves when some pages removed */
1861 	cpu_buffer->pages_removed += nr_removed;
1862 
1863 	next_page = rb_list_head(to_remove)->next;
1864 
1865 	/*
1866 	 * Now we remove all pages between tail_page and next_page.
1867 	 * Make sure that we have head_bit value preserved for the
1868 	 * next page
1869 	 */
1870 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1871 						head_bit);
1872 	next_page = rb_list_head(next_page);
1873 	next_page->prev = tail_page;
1874 
1875 	/* make sure pages points to a valid page in the ring buffer */
1876 	cpu_buffer->pages = next_page;
1877 
1878 	/* update head page */
1879 	if (head_bit)
1880 		cpu_buffer->head_page = list_entry(next_page,
1881 						struct buffer_page, list);
1882 
1883 	/* pages are removed, resume tracing and then free the pages */
1884 	atomic_dec(&cpu_buffer->record_disabled);
1885 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1886 
1887 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1888 
1889 	/* last buffer page to remove */
1890 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1891 				list);
1892 	tmp_iter_page = first_page;
1893 
1894 	do {
1895 		cond_resched();
1896 
1897 		to_remove_page = tmp_iter_page;
1898 		rb_inc_page(&tmp_iter_page);
1899 
1900 		/* update the counters */
1901 		page_entries = rb_page_entries(to_remove_page);
1902 		if (page_entries) {
1903 			/*
1904 			 * If something was added to this page, it was full
1905 			 * since it is not the tail page. So we deduct the
1906 			 * bytes consumed in ring buffer from here.
1907 			 * Increment overrun to account for the lost events.
1908 			 */
1909 			local_add(page_entries, &cpu_buffer->overrun);
1910 			local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
1911 			local_inc(&cpu_buffer->pages_lost);
1912 		}
1913 
1914 		/*
1915 		 * We have already removed references to this list item, just
1916 		 * free up the buffer_page and its page
1917 		 */
1918 		free_buffer_page(to_remove_page);
1919 		nr_removed--;
1920 
1921 	} while (to_remove_page != last_page);
1922 
1923 	RB_WARN_ON(cpu_buffer, nr_removed);
1924 
1925 	return nr_removed == 0;
1926 }
1927 
1928 static bool
1929 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1930 {
1931 	struct list_head *pages = &cpu_buffer->new_pages;
1932 	unsigned long flags;
1933 	bool success;
1934 	int retries;
1935 
1936 	/* Can be called at early boot up, where interrupts must not been enabled */
1937 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1938 	/*
1939 	 * We are holding the reader lock, so the reader page won't be swapped
1940 	 * in the ring buffer. Now we are racing with the writer trying to
1941 	 * move head page and the tail page.
1942 	 * We are going to adapt the reader page update process where:
1943 	 * 1. We first splice the start and end of list of new pages between
1944 	 *    the head page and its previous page.
1945 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1946 	 *    start of new pages list.
1947 	 * 3. Finally, we update the head->prev to the end of new list.
1948 	 *
1949 	 * We will try this process 10 times, to make sure that we don't keep
1950 	 * spinning.
1951 	 */
1952 	retries = 10;
1953 	success = false;
1954 	while (retries--) {
1955 		struct list_head *head_page, *prev_page;
1956 		struct list_head *last_page, *first_page;
1957 		struct list_head *head_page_with_bit;
1958 		struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
1959 
1960 		if (!hpage)
1961 			break;
1962 		head_page = &hpage->list;
1963 		prev_page = head_page->prev;
1964 
1965 		first_page = pages->next;
1966 		last_page  = pages->prev;
1967 
1968 		head_page_with_bit = (struct list_head *)
1969 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1970 
1971 		last_page->next = head_page_with_bit;
1972 		first_page->prev = prev_page;
1973 
1974 		/* caution: head_page_with_bit gets updated on cmpxchg failure */
1975 		if (try_cmpxchg(&prev_page->next,
1976 				&head_page_with_bit, first_page)) {
1977 			/*
1978 			 * yay, we replaced the page pointer to our new list,
1979 			 * now, we just have to update to head page's prev
1980 			 * pointer to point to end of list
1981 			 */
1982 			head_page->prev = last_page;
1983 			success = true;
1984 			break;
1985 		}
1986 	}
1987 
1988 	if (success)
1989 		INIT_LIST_HEAD(pages);
1990 	/*
1991 	 * If we weren't successful in adding in new pages, warn and stop
1992 	 * tracing
1993 	 */
1994 	RB_WARN_ON(cpu_buffer, !success);
1995 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1996 
1997 	/* free pages if they weren't inserted */
1998 	if (!success) {
1999 		struct buffer_page *bpage, *tmp;
2000 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2001 					 list) {
2002 			list_del_init(&bpage->list);
2003 			free_buffer_page(bpage);
2004 		}
2005 	}
2006 	return success;
2007 }
2008 
2009 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2010 {
2011 	bool success;
2012 
2013 	if (cpu_buffer->nr_pages_to_update > 0)
2014 		success = rb_insert_pages(cpu_buffer);
2015 	else
2016 		success = rb_remove_pages(cpu_buffer,
2017 					-cpu_buffer->nr_pages_to_update);
2018 
2019 	if (success)
2020 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2021 }
2022 
2023 static void update_pages_handler(struct work_struct *work)
2024 {
2025 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2026 			struct ring_buffer_per_cpu, update_pages_work);
2027 	rb_update_pages(cpu_buffer);
2028 	complete(&cpu_buffer->update_done);
2029 }
2030 
2031 /**
2032  * ring_buffer_resize - resize the ring buffer
2033  * @buffer: the buffer to resize.
2034  * @size: the new size.
2035  * @cpu_id: the cpu buffer to resize
2036  *
2037  * Minimum size is 2 * buffer->subbuf_size.
2038  *
2039  * Returns 0 on success and < 0 on failure.
2040  */
2041 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2042 			int cpu_id)
2043 {
2044 	struct ring_buffer_per_cpu *cpu_buffer;
2045 	unsigned long nr_pages;
2046 	int cpu, err;
2047 
2048 	/*
2049 	 * Always succeed at resizing a non-existent buffer:
2050 	 */
2051 	if (!buffer)
2052 		return 0;
2053 
2054 	/* Make sure the requested buffer exists */
2055 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2056 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2057 		return 0;
2058 
2059 	nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2060 
2061 	/* we need a minimum of two pages */
2062 	if (nr_pages < 2)
2063 		nr_pages = 2;
2064 
2065 	/* prevent another thread from changing buffer sizes */
2066 	mutex_lock(&buffer->mutex);
2067 	atomic_inc(&buffer->resizing);
2068 
2069 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2070 		/*
2071 		 * Don't succeed if resizing is disabled, as a reader might be
2072 		 * manipulating the ring buffer and is expecting a sane state while
2073 		 * this is true.
2074 		 */
2075 		for_each_buffer_cpu(buffer, cpu) {
2076 			cpu_buffer = buffer->buffers[cpu];
2077 			if (atomic_read(&cpu_buffer->resize_disabled)) {
2078 				err = -EBUSY;
2079 				goto out_err_unlock;
2080 			}
2081 		}
2082 
2083 		/* calculate the pages to update */
2084 		for_each_buffer_cpu(buffer, cpu) {
2085 			cpu_buffer = buffer->buffers[cpu];
2086 
2087 			cpu_buffer->nr_pages_to_update = nr_pages -
2088 							cpu_buffer->nr_pages;
2089 			/*
2090 			 * nothing more to do for removing pages or no update
2091 			 */
2092 			if (cpu_buffer->nr_pages_to_update <= 0)
2093 				continue;
2094 			/*
2095 			 * to add pages, make sure all new pages can be
2096 			 * allocated without receiving ENOMEM
2097 			 */
2098 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2099 			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2100 						&cpu_buffer->new_pages)) {
2101 				/* not enough memory for new pages */
2102 				err = -ENOMEM;
2103 				goto out_err;
2104 			}
2105 
2106 			cond_resched();
2107 		}
2108 
2109 		cpus_read_lock();
2110 		/*
2111 		 * Fire off all the required work handlers
2112 		 * We can't schedule on offline CPUs, but it's not necessary
2113 		 * since we can change their buffer sizes without any race.
2114 		 */
2115 		for_each_buffer_cpu(buffer, cpu) {
2116 			cpu_buffer = buffer->buffers[cpu];
2117 			if (!cpu_buffer->nr_pages_to_update)
2118 				continue;
2119 
2120 			/* Can't run something on an offline CPU. */
2121 			if (!cpu_online(cpu)) {
2122 				rb_update_pages(cpu_buffer);
2123 				cpu_buffer->nr_pages_to_update = 0;
2124 			} else {
2125 				/* Run directly if possible. */
2126 				migrate_disable();
2127 				if (cpu != smp_processor_id()) {
2128 					migrate_enable();
2129 					schedule_work_on(cpu,
2130 							 &cpu_buffer->update_pages_work);
2131 				} else {
2132 					update_pages_handler(&cpu_buffer->update_pages_work);
2133 					migrate_enable();
2134 				}
2135 			}
2136 		}
2137 
2138 		/* wait for all the updates to complete */
2139 		for_each_buffer_cpu(buffer, cpu) {
2140 			cpu_buffer = buffer->buffers[cpu];
2141 			if (!cpu_buffer->nr_pages_to_update)
2142 				continue;
2143 
2144 			if (cpu_online(cpu))
2145 				wait_for_completion(&cpu_buffer->update_done);
2146 			cpu_buffer->nr_pages_to_update = 0;
2147 		}
2148 
2149 		cpus_read_unlock();
2150 	} else {
2151 		cpu_buffer = buffer->buffers[cpu_id];
2152 
2153 		if (nr_pages == cpu_buffer->nr_pages)
2154 			goto out;
2155 
2156 		/*
2157 		 * Don't succeed if resizing is disabled, as a reader might be
2158 		 * manipulating the ring buffer and is expecting a sane state while
2159 		 * this is true.
2160 		 */
2161 		if (atomic_read(&cpu_buffer->resize_disabled)) {
2162 			err = -EBUSY;
2163 			goto out_err_unlock;
2164 		}
2165 
2166 		cpu_buffer->nr_pages_to_update = nr_pages -
2167 						cpu_buffer->nr_pages;
2168 
2169 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2170 		if (cpu_buffer->nr_pages_to_update > 0 &&
2171 			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2172 					    &cpu_buffer->new_pages)) {
2173 			err = -ENOMEM;
2174 			goto out_err;
2175 		}
2176 
2177 		cpus_read_lock();
2178 
2179 		/* Can't run something on an offline CPU. */
2180 		if (!cpu_online(cpu_id))
2181 			rb_update_pages(cpu_buffer);
2182 		else {
2183 			/* Run directly if possible. */
2184 			migrate_disable();
2185 			if (cpu_id == smp_processor_id()) {
2186 				rb_update_pages(cpu_buffer);
2187 				migrate_enable();
2188 			} else {
2189 				migrate_enable();
2190 				schedule_work_on(cpu_id,
2191 						 &cpu_buffer->update_pages_work);
2192 				wait_for_completion(&cpu_buffer->update_done);
2193 			}
2194 		}
2195 
2196 		cpu_buffer->nr_pages_to_update = 0;
2197 		cpus_read_unlock();
2198 	}
2199 
2200  out:
2201 	/*
2202 	 * The ring buffer resize can happen with the ring buffer
2203 	 * enabled, so that the update disturbs the tracing as little
2204 	 * as possible. But if the buffer is disabled, we do not need
2205 	 * to worry about that, and we can take the time to verify
2206 	 * that the buffer is not corrupt.
2207 	 */
2208 	if (atomic_read(&buffer->record_disabled)) {
2209 		atomic_inc(&buffer->record_disabled);
2210 		/*
2211 		 * Even though the buffer was disabled, we must make sure
2212 		 * that it is truly disabled before calling rb_check_pages.
2213 		 * There could have been a race between checking
2214 		 * record_disable and incrementing it.
2215 		 */
2216 		synchronize_rcu();
2217 		for_each_buffer_cpu(buffer, cpu) {
2218 			unsigned long flags;
2219 
2220 			cpu_buffer = buffer->buffers[cpu];
2221 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2222 			rb_check_pages(cpu_buffer);
2223 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2224 		}
2225 		atomic_dec(&buffer->record_disabled);
2226 	}
2227 
2228 	atomic_dec(&buffer->resizing);
2229 	mutex_unlock(&buffer->mutex);
2230 	return 0;
2231 
2232  out_err:
2233 	for_each_buffer_cpu(buffer, cpu) {
2234 		struct buffer_page *bpage, *tmp;
2235 
2236 		cpu_buffer = buffer->buffers[cpu];
2237 		cpu_buffer->nr_pages_to_update = 0;
2238 
2239 		if (list_empty(&cpu_buffer->new_pages))
2240 			continue;
2241 
2242 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2243 					list) {
2244 			list_del_init(&bpage->list);
2245 			free_buffer_page(bpage);
2246 		}
2247 	}
2248  out_err_unlock:
2249 	atomic_dec(&buffer->resizing);
2250 	mutex_unlock(&buffer->mutex);
2251 	return err;
2252 }
2253 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2254 
2255 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2256 {
2257 	mutex_lock(&buffer->mutex);
2258 	if (val)
2259 		buffer->flags |= RB_FL_OVERWRITE;
2260 	else
2261 		buffer->flags &= ~RB_FL_OVERWRITE;
2262 	mutex_unlock(&buffer->mutex);
2263 }
2264 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2265 
2266 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2267 {
2268 	return bpage->page->data + index;
2269 }
2270 
2271 static __always_inline struct ring_buffer_event *
2272 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2273 {
2274 	return __rb_page_index(cpu_buffer->reader_page,
2275 			       cpu_buffer->reader_page->read);
2276 }
2277 
2278 static struct ring_buffer_event *
2279 rb_iter_head_event(struct ring_buffer_iter *iter)
2280 {
2281 	struct ring_buffer_event *event;
2282 	struct buffer_page *iter_head_page = iter->head_page;
2283 	unsigned long commit;
2284 	unsigned length;
2285 
2286 	if (iter->head != iter->next_event)
2287 		return iter->event;
2288 
2289 	/*
2290 	 * When the writer goes across pages, it issues a cmpxchg which
2291 	 * is a mb(), which will synchronize with the rmb here.
2292 	 * (see rb_tail_page_update() and __rb_reserve_next())
2293 	 */
2294 	commit = rb_page_commit(iter_head_page);
2295 	smp_rmb();
2296 
2297 	/* An event needs to be at least 8 bytes in size */
2298 	if (iter->head > commit - 8)
2299 		goto reset;
2300 
2301 	event = __rb_page_index(iter_head_page, iter->head);
2302 	length = rb_event_length(event);
2303 
2304 	/*
2305 	 * READ_ONCE() doesn't work on functions and we don't want the
2306 	 * compiler doing any crazy optimizations with length.
2307 	 */
2308 	barrier();
2309 
2310 	if ((iter->head + length) > commit || length > iter->event_size)
2311 		/* Writer corrupted the read? */
2312 		goto reset;
2313 
2314 	memcpy(iter->event, event, length);
2315 	/*
2316 	 * If the page stamp is still the same after this rmb() then the
2317 	 * event was safely copied without the writer entering the page.
2318 	 */
2319 	smp_rmb();
2320 
2321 	/* Make sure the page didn't change since we read this */
2322 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
2323 	    commit > rb_page_commit(iter_head_page))
2324 		goto reset;
2325 
2326 	iter->next_event = iter->head + length;
2327 	return iter->event;
2328  reset:
2329 	/* Reset to the beginning */
2330 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2331 	iter->head = 0;
2332 	iter->next_event = 0;
2333 	iter->missed_events = 1;
2334 	return NULL;
2335 }
2336 
2337 /* Size is determined by what has been committed */
2338 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2339 {
2340 	return rb_page_commit(bpage) & ~RB_MISSED_MASK;
2341 }
2342 
2343 static __always_inline unsigned
2344 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2345 {
2346 	return rb_page_commit(cpu_buffer->commit_page);
2347 }
2348 
2349 static __always_inline unsigned
2350 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
2351 {
2352 	unsigned long addr = (unsigned long)event;
2353 
2354 	addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
2355 
2356 	return addr - BUF_PAGE_HDR_SIZE;
2357 }
2358 
2359 static void rb_inc_iter(struct ring_buffer_iter *iter)
2360 {
2361 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2362 
2363 	/*
2364 	 * The iterator could be on the reader page (it starts there).
2365 	 * But the head could have moved, since the reader was
2366 	 * found. Check for this case and assign the iterator
2367 	 * to the head page instead of next.
2368 	 */
2369 	if (iter->head_page == cpu_buffer->reader_page)
2370 		iter->head_page = rb_set_head_page(cpu_buffer);
2371 	else
2372 		rb_inc_page(&iter->head_page);
2373 
2374 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2375 	iter->head = 0;
2376 	iter->next_event = 0;
2377 }
2378 
2379 /*
2380  * rb_handle_head_page - writer hit the head page
2381  *
2382  * Returns: +1 to retry page
2383  *           0 to continue
2384  *          -1 on error
2385  */
2386 static int
2387 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2388 		    struct buffer_page *tail_page,
2389 		    struct buffer_page *next_page)
2390 {
2391 	struct buffer_page *new_head;
2392 	int entries;
2393 	int type;
2394 	int ret;
2395 
2396 	entries = rb_page_entries(next_page);
2397 
2398 	/*
2399 	 * The hard part is here. We need to move the head
2400 	 * forward, and protect against both readers on
2401 	 * other CPUs and writers coming in via interrupts.
2402 	 */
2403 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2404 				       RB_PAGE_HEAD);
2405 
2406 	/*
2407 	 * type can be one of four:
2408 	 *  NORMAL - an interrupt already moved it for us
2409 	 *  HEAD   - we are the first to get here.
2410 	 *  UPDATE - we are the interrupt interrupting
2411 	 *           a current move.
2412 	 *  MOVED  - a reader on another CPU moved the next
2413 	 *           pointer to its reader page. Give up
2414 	 *           and try again.
2415 	 */
2416 
2417 	switch (type) {
2418 	case RB_PAGE_HEAD:
2419 		/*
2420 		 * We changed the head to UPDATE, thus
2421 		 * it is our responsibility to update
2422 		 * the counters.
2423 		 */
2424 		local_add(entries, &cpu_buffer->overrun);
2425 		local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
2426 		local_inc(&cpu_buffer->pages_lost);
2427 
2428 		/*
2429 		 * The entries will be zeroed out when we move the
2430 		 * tail page.
2431 		 */
2432 
2433 		/* still more to do */
2434 		break;
2435 
2436 	case RB_PAGE_UPDATE:
2437 		/*
2438 		 * This is an interrupt that interrupt the
2439 		 * previous update. Still more to do.
2440 		 */
2441 		break;
2442 	case RB_PAGE_NORMAL:
2443 		/*
2444 		 * An interrupt came in before the update
2445 		 * and processed this for us.
2446 		 * Nothing left to do.
2447 		 */
2448 		return 1;
2449 	case RB_PAGE_MOVED:
2450 		/*
2451 		 * The reader is on another CPU and just did
2452 		 * a swap with our next_page.
2453 		 * Try again.
2454 		 */
2455 		return 1;
2456 	default:
2457 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2458 		return -1;
2459 	}
2460 
2461 	/*
2462 	 * Now that we are here, the old head pointer is
2463 	 * set to UPDATE. This will keep the reader from
2464 	 * swapping the head page with the reader page.
2465 	 * The reader (on another CPU) will spin till
2466 	 * we are finished.
2467 	 *
2468 	 * We just need to protect against interrupts
2469 	 * doing the job. We will set the next pointer
2470 	 * to HEAD. After that, we set the old pointer
2471 	 * to NORMAL, but only if it was HEAD before.
2472 	 * otherwise we are an interrupt, and only
2473 	 * want the outer most commit to reset it.
2474 	 */
2475 	new_head = next_page;
2476 	rb_inc_page(&new_head);
2477 
2478 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2479 				    RB_PAGE_NORMAL);
2480 
2481 	/*
2482 	 * Valid returns are:
2483 	 *  HEAD   - an interrupt came in and already set it.
2484 	 *  NORMAL - One of two things:
2485 	 *            1) We really set it.
2486 	 *            2) A bunch of interrupts came in and moved
2487 	 *               the page forward again.
2488 	 */
2489 	switch (ret) {
2490 	case RB_PAGE_HEAD:
2491 	case RB_PAGE_NORMAL:
2492 		/* OK */
2493 		break;
2494 	default:
2495 		RB_WARN_ON(cpu_buffer, 1);
2496 		return -1;
2497 	}
2498 
2499 	/*
2500 	 * It is possible that an interrupt came in,
2501 	 * set the head up, then more interrupts came in
2502 	 * and moved it again. When we get back here,
2503 	 * the page would have been set to NORMAL but we
2504 	 * just set it back to HEAD.
2505 	 *
2506 	 * How do you detect this? Well, if that happened
2507 	 * the tail page would have moved.
2508 	 */
2509 	if (ret == RB_PAGE_NORMAL) {
2510 		struct buffer_page *buffer_tail_page;
2511 
2512 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2513 		/*
2514 		 * If the tail had moved passed next, then we need
2515 		 * to reset the pointer.
2516 		 */
2517 		if (buffer_tail_page != tail_page &&
2518 		    buffer_tail_page != next_page)
2519 			rb_head_page_set_normal(cpu_buffer, new_head,
2520 						next_page,
2521 						RB_PAGE_HEAD);
2522 	}
2523 
2524 	/*
2525 	 * If this was the outer most commit (the one that
2526 	 * changed the original pointer from HEAD to UPDATE),
2527 	 * then it is up to us to reset it to NORMAL.
2528 	 */
2529 	if (type == RB_PAGE_HEAD) {
2530 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2531 					      tail_page,
2532 					      RB_PAGE_UPDATE);
2533 		if (RB_WARN_ON(cpu_buffer,
2534 			       ret != RB_PAGE_UPDATE))
2535 			return -1;
2536 	}
2537 
2538 	return 0;
2539 }
2540 
2541 static inline void
2542 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2543 	      unsigned long tail, struct rb_event_info *info)
2544 {
2545 	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
2546 	struct buffer_page *tail_page = info->tail_page;
2547 	struct ring_buffer_event *event;
2548 	unsigned long length = info->length;
2549 
2550 	/*
2551 	 * Only the event that crossed the page boundary
2552 	 * must fill the old tail_page with padding.
2553 	 */
2554 	if (tail >= bsize) {
2555 		/*
2556 		 * If the page was filled, then we still need
2557 		 * to update the real_end. Reset it to zero
2558 		 * and the reader will ignore it.
2559 		 */
2560 		if (tail == bsize)
2561 			tail_page->real_end = 0;
2562 
2563 		local_sub(length, &tail_page->write);
2564 		return;
2565 	}
2566 
2567 	event = __rb_page_index(tail_page, tail);
2568 
2569 	/*
2570 	 * Save the original length to the meta data.
2571 	 * This will be used by the reader to add lost event
2572 	 * counter.
2573 	 */
2574 	tail_page->real_end = tail;
2575 
2576 	/*
2577 	 * If this event is bigger than the minimum size, then
2578 	 * we need to be careful that we don't subtract the
2579 	 * write counter enough to allow another writer to slip
2580 	 * in on this page.
2581 	 * We put in a discarded commit instead, to make sure
2582 	 * that this space is not used again, and this space will
2583 	 * not be accounted into 'entries_bytes'.
2584 	 *
2585 	 * If we are less than the minimum size, we don't need to
2586 	 * worry about it.
2587 	 */
2588 	if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
2589 		/* No room for any events */
2590 
2591 		/* Mark the rest of the page with padding */
2592 		rb_event_set_padding(event);
2593 
2594 		/* Make sure the padding is visible before the write update */
2595 		smp_wmb();
2596 
2597 		/* Set the write back to the previous setting */
2598 		local_sub(length, &tail_page->write);
2599 		return;
2600 	}
2601 
2602 	/* Put in a discarded event */
2603 	event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
2604 	event->type_len = RINGBUF_TYPE_PADDING;
2605 	/* time delta must be non zero */
2606 	event->time_delta = 1;
2607 
2608 	/* account for padding bytes */
2609 	local_add(bsize - tail, &cpu_buffer->entries_bytes);
2610 
2611 	/* Make sure the padding is visible before the tail_page->write update */
2612 	smp_wmb();
2613 
2614 	/* Set write to end of buffer */
2615 	length = (tail + length) - bsize;
2616 	local_sub(length, &tail_page->write);
2617 }
2618 
2619 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2620 
2621 /*
2622  * This is the slow path, force gcc not to inline it.
2623  */
2624 static noinline struct ring_buffer_event *
2625 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2626 	     unsigned long tail, struct rb_event_info *info)
2627 {
2628 	struct buffer_page *tail_page = info->tail_page;
2629 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2630 	struct trace_buffer *buffer = cpu_buffer->buffer;
2631 	struct buffer_page *next_page;
2632 	int ret;
2633 
2634 	next_page = tail_page;
2635 
2636 	rb_inc_page(&next_page);
2637 
2638 	/*
2639 	 * If for some reason, we had an interrupt storm that made
2640 	 * it all the way around the buffer, bail, and warn
2641 	 * about it.
2642 	 */
2643 	if (unlikely(next_page == commit_page)) {
2644 		local_inc(&cpu_buffer->commit_overrun);
2645 		goto out_reset;
2646 	}
2647 
2648 	/*
2649 	 * This is where the fun begins!
2650 	 *
2651 	 * We are fighting against races between a reader that
2652 	 * could be on another CPU trying to swap its reader
2653 	 * page with the buffer head.
2654 	 *
2655 	 * We are also fighting against interrupts coming in and
2656 	 * moving the head or tail on us as well.
2657 	 *
2658 	 * If the next page is the head page then we have filled
2659 	 * the buffer, unless the commit page is still on the
2660 	 * reader page.
2661 	 */
2662 	if (rb_is_head_page(next_page, &tail_page->list)) {
2663 
2664 		/*
2665 		 * If the commit is not on the reader page, then
2666 		 * move the header page.
2667 		 */
2668 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2669 			/*
2670 			 * If we are not in overwrite mode,
2671 			 * this is easy, just stop here.
2672 			 */
2673 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2674 				local_inc(&cpu_buffer->dropped_events);
2675 				goto out_reset;
2676 			}
2677 
2678 			ret = rb_handle_head_page(cpu_buffer,
2679 						  tail_page,
2680 						  next_page);
2681 			if (ret < 0)
2682 				goto out_reset;
2683 			if (ret)
2684 				goto out_again;
2685 		} else {
2686 			/*
2687 			 * We need to be careful here too. The
2688 			 * commit page could still be on the reader
2689 			 * page. We could have a small buffer, and
2690 			 * have filled up the buffer with events
2691 			 * from interrupts and such, and wrapped.
2692 			 *
2693 			 * Note, if the tail page is also on the
2694 			 * reader_page, we let it move out.
2695 			 */
2696 			if (unlikely((cpu_buffer->commit_page !=
2697 				      cpu_buffer->tail_page) &&
2698 				     (cpu_buffer->commit_page ==
2699 				      cpu_buffer->reader_page))) {
2700 				local_inc(&cpu_buffer->commit_overrun);
2701 				goto out_reset;
2702 			}
2703 		}
2704 	}
2705 
2706 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2707 
2708  out_again:
2709 
2710 	rb_reset_tail(cpu_buffer, tail, info);
2711 
2712 	/* Commit what we have for now. */
2713 	rb_end_commit(cpu_buffer);
2714 	/* rb_end_commit() decs committing */
2715 	local_inc(&cpu_buffer->committing);
2716 
2717 	/* fail and let the caller try again */
2718 	return ERR_PTR(-EAGAIN);
2719 
2720  out_reset:
2721 	/* reset write */
2722 	rb_reset_tail(cpu_buffer, tail, info);
2723 
2724 	return NULL;
2725 }
2726 
2727 /* Slow path */
2728 static struct ring_buffer_event *
2729 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2730 		  struct ring_buffer_event *event, u64 delta, bool abs)
2731 {
2732 	if (abs)
2733 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2734 	else
2735 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2736 
2737 	/* Not the first event on the page, or not delta? */
2738 	if (abs || rb_event_index(cpu_buffer, event)) {
2739 		event->time_delta = delta & TS_MASK;
2740 		event->array[0] = delta >> TS_SHIFT;
2741 	} else {
2742 		/* nope, just zero it */
2743 		event->time_delta = 0;
2744 		event->array[0] = 0;
2745 	}
2746 
2747 	return skip_time_extend(event);
2748 }
2749 
2750 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2751 static inline bool sched_clock_stable(void)
2752 {
2753 	return true;
2754 }
2755 #endif
2756 
2757 static void
2758 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2759 		   struct rb_event_info *info)
2760 {
2761 	u64 write_stamp;
2762 
2763 	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2764 		  (unsigned long long)info->delta,
2765 		  (unsigned long long)info->ts,
2766 		  (unsigned long long)info->before,
2767 		  (unsigned long long)info->after,
2768 		  (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
2769 		  sched_clock_stable() ? "" :
2770 		  "If you just came from a suspend/resume,\n"
2771 		  "please switch to the trace global clock:\n"
2772 		  "  echo global > /sys/kernel/tracing/trace_clock\n"
2773 		  "or add trace_clock=global to the kernel command line\n");
2774 }
2775 
2776 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2777 				      struct ring_buffer_event **event,
2778 				      struct rb_event_info *info,
2779 				      u64 *delta,
2780 				      unsigned int *length)
2781 {
2782 	bool abs = info->add_timestamp &
2783 		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2784 
2785 	if (unlikely(info->delta > (1ULL << 59))) {
2786 		/*
2787 		 * Some timers can use more than 59 bits, and when a timestamp
2788 		 * is added to the buffer, it will lose those bits.
2789 		 */
2790 		if (abs && (info->ts & TS_MSB)) {
2791 			info->delta &= ABS_TS_MASK;
2792 
2793 		/* did the clock go backwards */
2794 		} else if (info->before == info->after && info->before > info->ts) {
2795 			/* not interrupted */
2796 			static int once;
2797 
2798 			/*
2799 			 * This is possible with a recalibrating of the TSC.
2800 			 * Do not produce a call stack, but just report it.
2801 			 */
2802 			if (!once) {
2803 				once++;
2804 				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2805 					info->before, info->ts);
2806 			}
2807 		} else
2808 			rb_check_timestamp(cpu_buffer, info);
2809 		if (!abs)
2810 			info->delta = 0;
2811 	}
2812 	*event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
2813 	*length -= RB_LEN_TIME_EXTEND;
2814 	*delta = 0;
2815 }
2816 
2817 /**
2818  * rb_update_event - update event type and data
2819  * @cpu_buffer: The per cpu buffer of the @event
2820  * @event: the event to update
2821  * @info: The info to update the @event with (contains length and delta)
2822  *
2823  * Update the type and data fields of the @event. The length
2824  * is the actual size that is written to the ring buffer,
2825  * and with this, we can determine what to place into the
2826  * data field.
2827  */
2828 static void
2829 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2830 		struct ring_buffer_event *event,
2831 		struct rb_event_info *info)
2832 {
2833 	unsigned length = info->length;
2834 	u64 delta = info->delta;
2835 	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2836 
2837 	if (!WARN_ON_ONCE(nest >= MAX_NEST))
2838 		cpu_buffer->event_stamp[nest] = info->ts;
2839 
2840 	/*
2841 	 * If we need to add a timestamp, then we
2842 	 * add it to the start of the reserved space.
2843 	 */
2844 	if (unlikely(info->add_timestamp))
2845 		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2846 
2847 	event->time_delta = delta;
2848 	length -= RB_EVNT_HDR_SIZE;
2849 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2850 		event->type_len = 0;
2851 		event->array[0] = length;
2852 	} else
2853 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2854 }
2855 
2856 static unsigned rb_calculate_event_length(unsigned length)
2857 {
2858 	struct ring_buffer_event event; /* Used only for sizeof array */
2859 
2860 	/* zero length can cause confusions */
2861 	if (!length)
2862 		length++;
2863 
2864 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2865 		length += sizeof(event.array[0]);
2866 
2867 	length += RB_EVNT_HDR_SIZE;
2868 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2869 
2870 	/*
2871 	 * In case the time delta is larger than the 27 bits for it
2872 	 * in the header, we need to add a timestamp. If another
2873 	 * event comes in when trying to discard this one to increase
2874 	 * the length, then the timestamp will be added in the allocated
2875 	 * space of this event. If length is bigger than the size needed
2876 	 * for the TIME_EXTEND, then padding has to be used. The events
2877 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2878 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2879 	 * As length is a multiple of 4, we only need to worry if it
2880 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2881 	 */
2882 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2883 		length += RB_ALIGNMENT;
2884 
2885 	return length;
2886 }
2887 
2888 static inline bool
2889 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2890 		  struct ring_buffer_event *event)
2891 {
2892 	unsigned long new_index, old_index;
2893 	struct buffer_page *bpage;
2894 	unsigned long addr;
2895 
2896 	new_index = rb_event_index(cpu_buffer, event);
2897 	old_index = new_index + rb_event_ts_length(event);
2898 	addr = (unsigned long)event;
2899 	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
2900 
2901 	bpage = READ_ONCE(cpu_buffer->tail_page);
2902 
2903 	/*
2904 	 * Make sure the tail_page is still the same and
2905 	 * the next write location is the end of this event
2906 	 */
2907 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2908 		unsigned long write_mask =
2909 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2910 		unsigned long event_length = rb_event_length(event);
2911 
2912 		/*
2913 		 * For the before_stamp to be different than the write_stamp
2914 		 * to make sure that the next event adds an absolute
2915 		 * value and does not rely on the saved write stamp, which
2916 		 * is now going to be bogus.
2917 		 *
2918 		 * By setting the before_stamp to zero, the next event
2919 		 * is not going to use the write_stamp and will instead
2920 		 * create an absolute timestamp. This means there's no
2921 		 * reason to update the wirte_stamp!
2922 		 */
2923 		rb_time_set(&cpu_buffer->before_stamp, 0);
2924 
2925 		/*
2926 		 * If an event were to come in now, it would see that the
2927 		 * write_stamp and the before_stamp are different, and assume
2928 		 * that this event just added itself before updating
2929 		 * the write stamp. The interrupting event will fix the
2930 		 * write stamp for us, and use an absolute timestamp.
2931 		 */
2932 
2933 		/*
2934 		 * This is on the tail page. It is possible that
2935 		 * a write could come in and move the tail page
2936 		 * and write to the next page. That is fine
2937 		 * because we just shorten what is on this page.
2938 		 */
2939 		old_index += write_mask;
2940 		new_index += write_mask;
2941 
2942 		/* caution: old_index gets updated on cmpxchg failure */
2943 		if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
2944 			/* update counters */
2945 			local_sub(event_length, &cpu_buffer->entries_bytes);
2946 			return true;
2947 		}
2948 	}
2949 
2950 	/* could not discard */
2951 	return false;
2952 }
2953 
2954 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2955 {
2956 	local_inc(&cpu_buffer->committing);
2957 	local_inc(&cpu_buffer->commits);
2958 }
2959 
2960 static __always_inline void
2961 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2962 {
2963 	unsigned long max_count;
2964 
2965 	/*
2966 	 * We only race with interrupts and NMIs on this CPU.
2967 	 * If we own the commit event, then we can commit
2968 	 * all others that interrupted us, since the interruptions
2969 	 * are in stack format (they finish before they come
2970 	 * back to us). This allows us to do a simple loop to
2971 	 * assign the commit to the tail.
2972 	 */
2973  again:
2974 	max_count = cpu_buffer->nr_pages * 100;
2975 
2976 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2977 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2978 			return;
2979 		if (RB_WARN_ON(cpu_buffer,
2980 			       rb_is_reader_page(cpu_buffer->tail_page)))
2981 			return;
2982 		/*
2983 		 * No need for a memory barrier here, as the update
2984 		 * of the tail_page did it for this page.
2985 		 */
2986 		local_set(&cpu_buffer->commit_page->page->commit,
2987 			  rb_page_write(cpu_buffer->commit_page));
2988 		rb_inc_page(&cpu_buffer->commit_page);
2989 		/* add barrier to keep gcc from optimizing too much */
2990 		barrier();
2991 	}
2992 	while (rb_commit_index(cpu_buffer) !=
2993 	       rb_page_write(cpu_buffer->commit_page)) {
2994 
2995 		/* Make sure the readers see the content of what is committed. */
2996 		smp_wmb();
2997 		local_set(&cpu_buffer->commit_page->page->commit,
2998 			  rb_page_write(cpu_buffer->commit_page));
2999 		RB_WARN_ON(cpu_buffer,
3000 			   local_read(&cpu_buffer->commit_page->page->commit) &
3001 			   ~RB_WRITE_MASK);
3002 		barrier();
3003 	}
3004 
3005 	/* again, keep gcc from optimizing */
3006 	barrier();
3007 
3008 	/*
3009 	 * If an interrupt came in just after the first while loop
3010 	 * and pushed the tail page forward, we will be left with
3011 	 * a dangling commit that will never go forward.
3012 	 */
3013 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3014 		goto again;
3015 }
3016 
3017 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3018 {
3019 	unsigned long commits;
3020 
3021 	if (RB_WARN_ON(cpu_buffer,
3022 		       !local_read(&cpu_buffer->committing)))
3023 		return;
3024 
3025  again:
3026 	commits = local_read(&cpu_buffer->commits);
3027 	/* synchronize with interrupts */
3028 	barrier();
3029 	if (local_read(&cpu_buffer->committing) == 1)
3030 		rb_set_commit_to_write(cpu_buffer);
3031 
3032 	local_dec(&cpu_buffer->committing);
3033 
3034 	/* synchronize with interrupts */
3035 	barrier();
3036 
3037 	/*
3038 	 * Need to account for interrupts coming in between the
3039 	 * updating of the commit page and the clearing of the
3040 	 * committing counter.
3041 	 */
3042 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3043 	    !local_read(&cpu_buffer->committing)) {
3044 		local_inc(&cpu_buffer->committing);
3045 		goto again;
3046 	}
3047 }
3048 
3049 static inline void rb_event_discard(struct ring_buffer_event *event)
3050 {
3051 	if (extended_time(event))
3052 		event = skip_time_extend(event);
3053 
3054 	/* array[0] holds the actual length for the discarded event */
3055 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3056 	event->type_len = RINGBUF_TYPE_PADDING;
3057 	/* time delta must be non zero */
3058 	if (!event->time_delta)
3059 		event->time_delta = 1;
3060 }
3061 
3062 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3063 {
3064 	local_inc(&cpu_buffer->entries);
3065 	rb_end_commit(cpu_buffer);
3066 }
3067 
3068 static __always_inline void
3069 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3070 {
3071 	if (buffer->irq_work.waiters_pending) {
3072 		buffer->irq_work.waiters_pending = false;
3073 		/* irq_work_queue() supplies it's own memory barriers */
3074 		irq_work_queue(&buffer->irq_work.work);
3075 	}
3076 
3077 	if (cpu_buffer->irq_work.waiters_pending) {
3078 		cpu_buffer->irq_work.waiters_pending = false;
3079 		/* irq_work_queue() supplies it's own memory barriers */
3080 		irq_work_queue(&cpu_buffer->irq_work.work);
3081 	}
3082 
3083 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3084 		return;
3085 
3086 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3087 		return;
3088 
3089 	if (!cpu_buffer->irq_work.full_waiters_pending)
3090 		return;
3091 
3092 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3093 
3094 	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3095 		return;
3096 
3097 	cpu_buffer->irq_work.wakeup_full = true;
3098 	cpu_buffer->irq_work.full_waiters_pending = false;
3099 	/* irq_work_queue() supplies it's own memory barriers */
3100 	irq_work_queue(&cpu_buffer->irq_work.work);
3101 }
3102 
3103 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3104 # define do_ring_buffer_record_recursion()	\
3105 	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3106 #else
3107 # define do_ring_buffer_record_recursion() do { } while (0)
3108 #endif
3109 
3110 /*
3111  * The lock and unlock are done within a preempt disable section.
3112  * The current_context per_cpu variable can only be modified
3113  * by the current task between lock and unlock. But it can
3114  * be modified more than once via an interrupt. To pass this
3115  * information from the lock to the unlock without having to
3116  * access the 'in_interrupt()' functions again (which do show
3117  * a bit of overhead in something as critical as function tracing,
3118  * we use a bitmask trick.
3119  *
3120  *  bit 1 =  NMI context
3121  *  bit 2 =  IRQ context
3122  *  bit 3 =  SoftIRQ context
3123  *  bit 4 =  normal context.
3124  *
3125  * This works because this is the order of contexts that can
3126  * preempt other contexts. A SoftIRQ never preempts an IRQ
3127  * context.
3128  *
3129  * When the context is determined, the corresponding bit is
3130  * checked and set (if it was set, then a recursion of that context
3131  * happened).
3132  *
3133  * On unlock, we need to clear this bit. To do so, just subtract
3134  * 1 from the current_context and AND it to itself.
3135  *
3136  * (binary)
3137  *  101 - 1 = 100
3138  *  101 & 100 = 100 (clearing bit zero)
3139  *
3140  *  1010 - 1 = 1001
3141  *  1010 & 1001 = 1000 (clearing bit 1)
3142  *
3143  * The least significant bit can be cleared this way, and it
3144  * just so happens that it is the same bit corresponding to
3145  * the current context.
3146  *
3147  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3148  * is set when a recursion is detected at the current context, and if
3149  * the TRANSITION bit is already set, it will fail the recursion.
3150  * This is needed because there's a lag between the changing of
3151  * interrupt context and updating the preempt count. In this case,
3152  * a false positive will be found. To handle this, one extra recursion
3153  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3154  * bit is already set, then it is considered a recursion and the function
3155  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3156  *
3157  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3158  * to be cleared. Even if it wasn't the context that set it. That is,
3159  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3160  * is called before preempt_count() is updated, since the check will
3161  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3162  * NMI then comes in, it will set the NMI bit, but when the NMI code
3163  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3164  * and leave the NMI bit set. But this is fine, because the interrupt
3165  * code that set the TRANSITION bit will then clear the NMI bit when it
3166  * calls trace_recursive_unlock(). If another NMI comes in, it will
3167  * set the TRANSITION bit and continue.
3168  *
3169  * Note: The TRANSITION bit only handles a single transition between context.
3170  */
3171 
3172 static __always_inline bool
3173 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3174 {
3175 	unsigned int val = cpu_buffer->current_context;
3176 	int bit = interrupt_context_level();
3177 
3178 	bit = RB_CTX_NORMAL - bit;
3179 
3180 	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3181 		/*
3182 		 * It is possible that this was called by transitioning
3183 		 * between interrupt context, and preempt_count() has not
3184 		 * been updated yet. In this case, use the TRANSITION bit.
3185 		 */
3186 		bit = RB_CTX_TRANSITION;
3187 		if (val & (1 << (bit + cpu_buffer->nest))) {
3188 			do_ring_buffer_record_recursion();
3189 			return true;
3190 		}
3191 	}
3192 
3193 	val |= (1 << (bit + cpu_buffer->nest));
3194 	cpu_buffer->current_context = val;
3195 
3196 	return false;
3197 }
3198 
3199 static __always_inline void
3200 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3201 {
3202 	cpu_buffer->current_context &=
3203 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3204 }
3205 
3206 /* The recursive locking above uses 5 bits */
3207 #define NESTED_BITS 5
3208 
3209 /**
3210  * ring_buffer_nest_start - Allow to trace while nested
3211  * @buffer: The ring buffer to modify
3212  *
3213  * The ring buffer has a safety mechanism to prevent recursion.
3214  * But there may be a case where a trace needs to be done while
3215  * tracing something else. In this case, calling this function
3216  * will allow this function to nest within a currently active
3217  * ring_buffer_lock_reserve().
3218  *
3219  * Call this function before calling another ring_buffer_lock_reserve() and
3220  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3221  */
3222 void ring_buffer_nest_start(struct trace_buffer *buffer)
3223 {
3224 	struct ring_buffer_per_cpu *cpu_buffer;
3225 	int cpu;
3226 
3227 	/* Enabled by ring_buffer_nest_end() */
3228 	preempt_disable_notrace();
3229 	cpu = raw_smp_processor_id();
3230 	cpu_buffer = buffer->buffers[cpu];
3231 	/* This is the shift value for the above recursive locking */
3232 	cpu_buffer->nest += NESTED_BITS;
3233 }
3234 
3235 /**
3236  * ring_buffer_nest_end - Allow to trace while nested
3237  * @buffer: The ring buffer to modify
3238  *
3239  * Must be called after ring_buffer_nest_start() and after the
3240  * ring_buffer_unlock_commit().
3241  */
3242 void ring_buffer_nest_end(struct trace_buffer *buffer)
3243 {
3244 	struct ring_buffer_per_cpu *cpu_buffer;
3245 	int cpu;
3246 
3247 	/* disabled by ring_buffer_nest_start() */
3248 	cpu = raw_smp_processor_id();
3249 	cpu_buffer = buffer->buffers[cpu];
3250 	/* This is the shift value for the above recursive locking */
3251 	cpu_buffer->nest -= NESTED_BITS;
3252 	preempt_enable_notrace();
3253 }
3254 
3255 /**
3256  * ring_buffer_unlock_commit - commit a reserved
3257  * @buffer: The buffer to commit to
3258  *
3259  * This commits the data to the ring buffer, and releases any locks held.
3260  *
3261  * Must be paired with ring_buffer_lock_reserve.
3262  */
3263 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3264 {
3265 	struct ring_buffer_per_cpu *cpu_buffer;
3266 	int cpu = raw_smp_processor_id();
3267 
3268 	cpu_buffer = buffer->buffers[cpu];
3269 
3270 	rb_commit(cpu_buffer);
3271 
3272 	rb_wakeups(buffer, cpu_buffer);
3273 
3274 	trace_recursive_unlock(cpu_buffer);
3275 
3276 	preempt_enable_notrace();
3277 
3278 	return 0;
3279 }
3280 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3281 
3282 /* Special value to validate all deltas on a page. */
3283 #define CHECK_FULL_PAGE		1L
3284 
3285 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3286 
3287 static const char *show_irq_str(int bits)
3288 {
3289 	const char *type[] = {
3290 		".",	// 0
3291 		"s",	// 1
3292 		"h",	// 2
3293 		"Hs",	// 3
3294 		"n",	// 4
3295 		"Ns",	// 5
3296 		"Nh",	// 6
3297 		"NHs",	// 7
3298 	};
3299 
3300 	return type[bits];
3301 }
3302 
3303 /* Assume this is an trace event */
3304 static const char *show_flags(struct ring_buffer_event *event)
3305 {
3306 	struct trace_entry *entry;
3307 	int bits = 0;
3308 
3309 	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
3310 		return "X";
3311 
3312 	entry = ring_buffer_event_data(event);
3313 
3314 	if (entry->flags & TRACE_FLAG_SOFTIRQ)
3315 		bits |= 1;
3316 
3317 	if (entry->flags & TRACE_FLAG_HARDIRQ)
3318 		bits |= 2;
3319 
3320 	if (entry->flags & TRACE_FLAG_NMI)
3321 		bits |= 4;
3322 
3323 	return show_irq_str(bits);
3324 }
3325 
3326 static const char *show_irq(struct ring_buffer_event *event)
3327 {
3328 	struct trace_entry *entry;
3329 
3330 	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
3331 		return "";
3332 
3333 	entry = ring_buffer_event_data(event);
3334 	if (entry->flags & TRACE_FLAG_IRQS_OFF)
3335 		return "d";
3336 	return "";
3337 }
3338 
3339 static const char *show_interrupt_level(void)
3340 {
3341 	unsigned long pc = preempt_count();
3342 	unsigned char level = 0;
3343 
3344 	if (pc & SOFTIRQ_OFFSET)
3345 		level |= 1;
3346 
3347 	if (pc & HARDIRQ_MASK)
3348 		level |= 2;
3349 
3350 	if (pc & NMI_MASK)
3351 		level |= 4;
3352 
3353 	return show_irq_str(level);
3354 }
3355 
3356 static void dump_buffer_page(struct buffer_data_page *bpage,
3357 			     struct rb_event_info *info,
3358 			     unsigned long tail)
3359 {
3360 	struct ring_buffer_event *event;
3361 	u64 ts, delta;
3362 	int e;
3363 
3364 	ts = bpage->time_stamp;
3365 	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3366 
3367 	for (e = 0; e < tail; e += rb_event_length(event)) {
3368 
3369 		event = (struct ring_buffer_event *)(bpage->data + e);
3370 
3371 		switch (event->type_len) {
3372 
3373 		case RINGBUF_TYPE_TIME_EXTEND:
3374 			delta = rb_event_time_stamp(event);
3375 			ts += delta;
3376 			pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
3377 				e, ts, delta);
3378 			break;
3379 
3380 		case RINGBUF_TYPE_TIME_STAMP:
3381 			delta = rb_event_time_stamp(event);
3382 			ts = rb_fix_abs_ts(delta, ts);
3383 			pr_warn(" 0x%x:  [%lld] absolute:%lld TIME STAMP\n",
3384 				e, ts, delta);
3385 			break;
3386 
3387 		case RINGBUF_TYPE_PADDING:
3388 			ts += event->time_delta;
3389 			pr_warn(" 0x%x:  [%lld] delta:%d PADDING\n",
3390 				e, ts, event->time_delta);
3391 			break;
3392 
3393 		case RINGBUF_TYPE_DATA:
3394 			ts += event->time_delta;
3395 			pr_warn(" 0x%x:  [%lld] delta:%d %s%s\n",
3396 				e, ts, event->time_delta,
3397 				show_flags(event), show_irq(event));
3398 			break;
3399 
3400 		default:
3401 			break;
3402 		}
3403 	}
3404 	pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
3405 }
3406 
3407 static DEFINE_PER_CPU(atomic_t, checking);
3408 static atomic_t ts_dump;
3409 
3410 #define buffer_warn_return(fmt, ...)					\
3411 	do {								\
3412 		/* If another report is happening, ignore this one */	\
3413 		if (atomic_inc_return(&ts_dump) != 1) {			\
3414 			atomic_dec(&ts_dump);				\
3415 			goto out;					\
3416 		}							\
3417 		atomic_inc(&cpu_buffer->record_disabled);		\
3418 		pr_warn(fmt, ##__VA_ARGS__);				\
3419 		dump_buffer_page(bpage, info, tail);			\
3420 		atomic_dec(&ts_dump);					\
3421 		/* There's some cases in boot up that this can happen */ \
3422 		if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING))	\
3423 			/* Do not re-enable checking */			\
3424 			return;						\
3425 	} while (0)
3426 
3427 /*
3428  * Check if the current event time stamp matches the deltas on
3429  * the buffer page.
3430  */
3431 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3432 			 struct rb_event_info *info,
3433 			 unsigned long tail)
3434 {
3435 	struct ring_buffer_event *event;
3436 	struct buffer_data_page *bpage;
3437 	u64 ts, delta;
3438 	bool full = false;
3439 	int e;
3440 
3441 	bpage = info->tail_page->page;
3442 
3443 	if (tail == CHECK_FULL_PAGE) {
3444 		full = true;
3445 		tail = local_read(&bpage->commit);
3446 	} else if (info->add_timestamp &
3447 		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3448 		/* Ignore events with absolute time stamps */
3449 		return;
3450 	}
3451 
3452 	/*
3453 	 * Do not check the first event (skip possible extends too).
3454 	 * Also do not check if previous events have not been committed.
3455 	 */
3456 	if (tail <= 8 || tail > local_read(&bpage->commit))
3457 		return;
3458 
3459 	/*
3460 	 * If this interrupted another event,
3461 	 */
3462 	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3463 		goto out;
3464 
3465 	ts = bpage->time_stamp;
3466 
3467 	for (e = 0; e < tail; e += rb_event_length(event)) {
3468 
3469 		event = (struct ring_buffer_event *)(bpage->data + e);
3470 
3471 		switch (event->type_len) {
3472 
3473 		case RINGBUF_TYPE_TIME_EXTEND:
3474 			delta = rb_event_time_stamp(event);
3475 			ts += delta;
3476 			break;
3477 
3478 		case RINGBUF_TYPE_TIME_STAMP:
3479 			delta = rb_event_time_stamp(event);
3480 			delta = rb_fix_abs_ts(delta, ts);
3481 			if (delta < ts) {
3482 				buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
3483 						   cpu_buffer->cpu, ts, delta);
3484 			}
3485 			ts = delta;
3486 			break;
3487 
3488 		case RINGBUF_TYPE_PADDING:
3489 			if (event->time_delta == 1)
3490 				break;
3491 			fallthrough;
3492 		case RINGBUF_TYPE_DATA:
3493 			ts += event->time_delta;
3494 			break;
3495 
3496 		default:
3497 			RB_WARN_ON(cpu_buffer, 1);
3498 		}
3499 	}
3500 	if ((full && ts > info->ts) ||
3501 	    (!full && ts + info->delta != info->ts)) {
3502 		buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
3503 				   cpu_buffer->cpu,
3504 				   ts + info->delta, info->ts, info->delta,
3505 				   info->before, info->after,
3506 				   full ? " (full)" : "", show_interrupt_level());
3507 	}
3508 out:
3509 	atomic_dec(this_cpu_ptr(&checking));
3510 }
3511 #else
3512 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3513 			 struct rb_event_info *info,
3514 			 unsigned long tail)
3515 {
3516 }
3517 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3518 
3519 static struct ring_buffer_event *
3520 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3521 		  struct rb_event_info *info)
3522 {
3523 	struct ring_buffer_event *event;
3524 	struct buffer_page *tail_page;
3525 	unsigned long tail, write, w;
3526 
3527 	/* Don't let the compiler play games with cpu_buffer->tail_page */
3528 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3529 
3530  /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
3531 	barrier();
3532 	rb_time_read(&cpu_buffer->before_stamp, &info->before);
3533 	rb_time_read(&cpu_buffer->write_stamp, &info->after);
3534 	barrier();
3535 	info->ts = rb_time_stamp(cpu_buffer->buffer);
3536 
3537 	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3538 		info->delta = info->ts;
3539 	} else {
3540 		/*
3541 		 * If interrupting an event time update, we may need an
3542 		 * absolute timestamp.
3543 		 * Don't bother if this is the start of a new page (w == 0).
3544 		 */
3545 		if (!w) {
3546 			/* Use the sub-buffer timestamp */
3547 			info->delta = 0;
3548 		} else if (unlikely(info->before != info->after)) {
3549 			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3550 			info->length += RB_LEN_TIME_EXTEND;
3551 		} else {
3552 			info->delta = info->ts - info->after;
3553 			if (unlikely(test_time_stamp(info->delta))) {
3554 				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3555 				info->length += RB_LEN_TIME_EXTEND;
3556 			}
3557 		}
3558 	}
3559 
3560  /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
3561 
3562  /*C*/	write = local_add_return(info->length, &tail_page->write);
3563 
3564 	/* set write to only the index of the write */
3565 	write &= RB_WRITE_MASK;
3566 
3567 	tail = write - info->length;
3568 
3569 	/* See if we shot pass the end of this buffer page */
3570 	if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
3571 		check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3572 		return rb_move_tail(cpu_buffer, tail, info);
3573 	}
3574 
3575 	if (likely(tail == w)) {
3576 		/* Nothing interrupted us between A and C */
3577  /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
3578 		/*
3579 		 * If something came in between C and D, the write stamp
3580 		 * may now not be in sync. But that's fine as the before_stamp
3581 		 * will be different and then next event will just be forced
3582 		 * to use an absolute timestamp.
3583 		 */
3584 		if (likely(!(info->add_timestamp &
3585 			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3586 			/* This did not interrupt any time update */
3587 			info->delta = info->ts - info->after;
3588 		else
3589 			/* Just use full timestamp for interrupting event */
3590 			info->delta = info->ts;
3591 		check_buffer(cpu_buffer, info, tail);
3592 	} else {
3593 		u64 ts;
3594 		/* SLOW PATH - Interrupted between A and C */
3595 
3596 		/* Save the old before_stamp */
3597 		rb_time_read(&cpu_buffer->before_stamp, &info->before);
3598 
3599 		/*
3600 		 * Read a new timestamp and update the before_stamp to make
3601 		 * the next event after this one force using an absolute
3602 		 * timestamp. This is in case an interrupt were to come in
3603 		 * between E and F.
3604 		 */
3605 		ts = rb_time_stamp(cpu_buffer->buffer);
3606 		rb_time_set(&cpu_buffer->before_stamp, ts);
3607 
3608 		barrier();
3609  /*E*/		rb_time_read(&cpu_buffer->write_stamp, &info->after);
3610 		barrier();
3611  /*F*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3612 		    info->after == info->before && info->after < ts) {
3613 			/*
3614 			 * Nothing came after this event between C and F, it is
3615 			 * safe to use info->after for the delta as it
3616 			 * matched info->before and is still valid.
3617 			 */
3618 			info->delta = ts - info->after;
3619 		} else {
3620 			/*
3621 			 * Interrupted between C and F:
3622 			 * Lost the previous events time stamp. Just set the
3623 			 * delta to zero, and this will be the same time as
3624 			 * the event this event interrupted. And the events that
3625 			 * came after this will still be correct (as they would
3626 			 * have built their delta on the previous event.
3627 			 */
3628 			info->delta = 0;
3629 		}
3630 		info->ts = ts;
3631 		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3632 	}
3633 
3634 	/*
3635 	 * If this is the first commit on the page, then it has the same
3636 	 * timestamp as the page itself.
3637 	 */
3638 	if (unlikely(!tail && !(info->add_timestamp &
3639 				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3640 		info->delta = 0;
3641 
3642 	/* We reserved something on the buffer */
3643 
3644 	event = __rb_page_index(tail_page, tail);
3645 	rb_update_event(cpu_buffer, event, info);
3646 
3647 	local_inc(&tail_page->entries);
3648 
3649 	/*
3650 	 * If this is the first commit on the page, then update
3651 	 * its timestamp.
3652 	 */
3653 	if (unlikely(!tail))
3654 		tail_page->page->time_stamp = info->ts;
3655 
3656 	/* account for these added bytes */
3657 	local_add(info->length, &cpu_buffer->entries_bytes);
3658 
3659 	return event;
3660 }
3661 
3662 static __always_inline struct ring_buffer_event *
3663 rb_reserve_next_event(struct trace_buffer *buffer,
3664 		      struct ring_buffer_per_cpu *cpu_buffer,
3665 		      unsigned long length)
3666 {
3667 	struct ring_buffer_event *event;
3668 	struct rb_event_info info;
3669 	int nr_loops = 0;
3670 	int add_ts_default;
3671 
3672 	/* ring buffer does cmpxchg, make sure it is safe in NMI context */
3673 	if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) &&
3674 	    (unlikely(in_nmi()))) {
3675 		return NULL;
3676 	}
3677 
3678 	rb_start_commit(cpu_buffer);
3679 	/* The commit page can not change after this */
3680 
3681 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3682 	/*
3683 	 * Due to the ability to swap a cpu buffer from a buffer
3684 	 * it is possible it was swapped before we committed.
3685 	 * (committing stops a swap). We check for it here and
3686 	 * if it happened, we have to fail the write.
3687 	 */
3688 	barrier();
3689 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3690 		local_dec(&cpu_buffer->committing);
3691 		local_dec(&cpu_buffer->commits);
3692 		return NULL;
3693 	}
3694 #endif
3695 
3696 	info.length = rb_calculate_event_length(length);
3697 
3698 	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3699 		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3700 		info.length += RB_LEN_TIME_EXTEND;
3701 		if (info.length > cpu_buffer->buffer->max_data_size)
3702 			goto out_fail;
3703 	} else {
3704 		add_ts_default = RB_ADD_STAMP_NONE;
3705 	}
3706 
3707  again:
3708 	info.add_timestamp = add_ts_default;
3709 	info.delta = 0;
3710 
3711 	/*
3712 	 * We allow for interrupts to reenter here and do a trace.
3713 	 * If one does, it will cause this original code to loop
3714 	 * back here. Even with heavy interrupts happening, this
3715 	 * should only happen a few times in a row. If this happens
3716 	 * 1000 times in a row, there must be either an interrupt
3717 	 * storm or we have something buggy.
3718 	 * Bail!
3719 	 */
3720 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3721 		goto out_fail;
3722 
3723 	event = __rb_reserve_next(cpu_buffer, &info);
3724 
3725 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3726 		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3727 			info.length -= RB_LEN_TIME_EXTEND;
3728 		goto again;
3729 	}
3730 
3731 	if (likely(event))
3732 		return event;
3733  out_fail:
3734 	rb_end_commit(cpu_buffer);
3735 	return NULL;
3736 }
3737 
3738 /**
3739  * ring_buffer_lock_reserve - reserve a part of the buffer
3740  * @buffer: the ring buffer to reserve from
3741  * @length: the length of the data to reserve (excluding event header)
3742  *
3743  * Returns a reserved event on the ring buffer to copy directly to.
3744  * The user of this interface will need to get the body to write into
3745  * and can use the ring_buffer_event_data() interface.
3746  *
3747  * The length is the length of the data needed, not the event length
3748  * which also includes the event header.
3749  *
3750  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3751  * If NULL is returned, then nothing has been allocated or locked.
3752  */
3753 struct ring_buffer_event *
3754 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3755 {
3756 	struct ring_buffer_per_cpu *cpu_buffer;
3757 	struct ring_buffer_event *event;
3758 	int cpu;
3759 
3760 	/* If we are tracing schedule, we don't want to recurse */
3761 	preempt_disable_notrace();
3762 
3763 	if (unlikely(atomic_read(&buffer->record_disabled)))
3764 		goto out;
3765 
3766 	cpu = raw_smp_processor_id();
3767 
3768 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3769 		goto out;
3770 
3771 	cpu_buffer = buffer->buffers[cpu];
3772 
3773 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3774 		goto out;
3775 
3776 	if (unlikely(length > buffer->max_data_size))
3777 		goto out;
3778 
3779 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3780 		goto out;
3781 
3782 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3783 	if (!event)
3784 		goto out_unlock;
3785 
3786 	return event;
3787 
3788  out_unlock:
3789 	trace_recursive_unlock(cpu_buffer);
3790  out:
3791 	preempt_enable_notrace();
3792 	return NULL;
3793 }
3794 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3795 
3796 /*
3797  * Decrement the entries to the page that an event is on.
3798  * The event does not even need to exist, only the pointer
3799  * to the page it is on. This may only be called before the commit
3800  * takes place.
3801  */
3802 static inline void
3803 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3804 		   struct ring_buffer_event *event)
3805 {
3806 	unsigned long addr = (unsigned long)event;
3807 	struct buffer_page *bpage = cpu_buffer->commit_page;
3808 	struct buffer_page *start;
3809 
3810 	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3811 
3812 	/* Do the likely case first */
3813 	if (likely(bpage->page == (void *)addr)) {
3814 		local_dec(&bpage->entries);
3815 		return;
3816 	}
3817 
3818 	/*
3819 	 * Because the commit page may be on the reader page we
3820 	 * start with the next page and check the end loop there.
3821 	 */
3822 	rb_inc_page(&bpage);
3823 	start = bpage;
3824 	do {
3825 		if (bpage->page == (void *)addr) {
3826 			local_dec(&bpage->entries);
3827 			return;
3828 		}
3829 		rb_inc_page(&bpage);
3830 	} while (bpage != start);
3831 
3832 	/* commit not part of this buffer?? */
3833 	RB_WARN_ON(cpu_buffer, 1);
3834 }
3835 
3836 /**
3837  * ring_buffer_discard_commit - discard an event that has not been committed
3838  * @buffer: the ring buffer
3839  * @event: non committed event to discard
3840  *
3841  * Sometimes an event that is in the ring buffer needs to be ignored.
3842  * This function lets the user discard an event in the ring buffer
3843  * and then that event will not be read later.
3844  *
3845  * This function only works if it is called before the item has been
3846  * committed. It will try to free the event from the ring buffer
3847  * if another event has not been added behind it.
3848  *
3849  * If another event has been added behind it, it will set the event
3850  * up as discarded, and perform the commit.
3851  *
3852  * If this function is called, do not call ring_buffer_unlock_commit on
3853  * the event.
3854  */
3855 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3856 				struct ring_buffer_event *event)
3857 {
3858 	struct ring_buffer_per_cpu *cpu_buffer;
3859 	int cpu;
3860 
3861 	/* The event is discarded regardless */
3862 	rb_event_discard(event);
3863 
3864 	cpu = smp_processor_id();
3865 	cpu_buffer = buffer->buffers[cpu];
3866 
3867 	/*
3868 	 * This must only be called if the event has not been
3869 	 * committed yet. Thus we can assume that preemption
3870 	 * is still disabled.
3871 	 */
3872 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3873 
3874 	rb_decrement_entry(cpu_buffer, event);
3875 	if (rb_try_to_discard(cpu_buffer, event))
3876 		goto out;
3877 
3878  out:
3879 	rb_end_commit(cpu_buffer);
3880 
3881 	trace_recursive_unlock(cpu_buffer);
3882 
3883 	preempt_enable_notrace();
3884 
3885 }
3886 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3887 
3888 /**
3889  * ring_buffer_write - write data to the buffer without reserving
3890  * @buffer: The ring buffer to write to.
3891  * @length: The length of the data being written (excluding the event header)
3892  * @data: The data to write to the buffer.
3893  *
3894  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3895  * one function. If you already have the data to write to the buffer, it
3896  * may be easier to simply call this function.
3897  *
3898  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3899  * and not the length of the event which would hold the header.
3900  */
3901 int ring_buffer_write(struct trace_buffer *buffer,
3902 		      unsigned long length,
3903 		      void *data)
3904 {
3905 	struct ring_buffer_per_cpu *cpu_buffer;
3906 	struct ring_buffer_event *event;
3907 	void *body;
3908 	int ret = -EBUSY;
3909 	int cpu;
3910 
3911 	preempt_disable_notrace();
3912 
3913 	if (atomic_read(&buffer->record_disabled))
3914 		goto out;
3915 
3916 	cpu = raw_smp_processor_id();
3917 
3918 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3919 		goto out;
3920 
3921 	cpu_buffer = buffer->buffers[cpu];
3922 
3923 	if (atomic_read(&cpu_buffer->record_disabled))
3924 		goto out;
3925 
3926 	if (length > buffer->max_data_size)
3927 		goto out;
3928 
3929 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3930 		goto out;
3931 
3932 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3933 	if (!event)
3934 		goto out_unlock;
3935 
3936 	body = rb_event_data(event);
3937 
3938 	memcpy(body, data, length);
3939 
3940 	rb_commit(cpu_buffer);
3941 
3942 	rb_wakeups(buffer, cpu_buffer);
3943 
3944 	ret = 0;
3945 
3946  out_unlock:
3947 	trace_recursive_unlock(cpu_buffer);
3948 
3949  out:
3950 	preempt_enable_notrace();
3951 
3952 	return ret;
3953 }
3954 EXPORT_SYMBOL_GPL(ring_buffer_write);
3955 
3956 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3957 {
3958 	struct buffer_page *reader = cpu_buffer->reader_page;
3959 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3960 	struct buffer_page *commit = cpu_buffer->commit_page;
3961 
3962 	/* In case of error, head will be NULL */
3963 	if (unlikely(!head))
3964 		return true;
3965 
3966 	/* Reader should exhaust content in reader page */
3967 	if (reader->read != rb_page_size(reader))
3968 		return false;
3969 
3970 	/*
3971 	 * If writers are committing on the reader page, knowing all
3972 	 * committed content has been read, the ring buffer is empty.
3973 	 */
3974 	if (commit == reader)
3975 		return true;
3976 
3977 	/*
3978 	 * If writers are committing on a page other than reader page
3979 	 * and head page, there should always be content to read.
3980 	 */
3981 	if (commit != head)
3982 		return false;
3983 
3984 	/*
3985 	 * Writers are committing on the head page, we just need
3986 	 * to care about there're committed data, and the reader will
3987 	 * swap reader page with head page when it is to read data.
3988 	 */
3989 	return rb_page_commit(commit) == 0;
3990 }
3991 
3992 /**
3993  * ring_buffer_record_disable - stop all writes into the buffer
3994  * @buffer: The ring buffer to stop writes to.
3995  *
3996  * This prevents all writes to the buffer. Any attempt to write
3997  * to the buffer after this will fail and return NULL.
3998  *
3999  * The caller should call synchronize_rcu() after this.
4000  */
4001 void ring_buffer_record_disable(struct trace_buffer *buffer)
4002 {
4003 	atomic_inc(&buffer->record_disabled);
4004 }
4005 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4006 
4007 /**
4008  * ring_buffer_record_enable - enable writes to the buffer
4009  * @buffer: The ring buffer to enable writes
4010  *
4011  * Note, multiple disables will need the same number of enables
4012  * to truly enable the writing (much like preempt_disable).
4013  */
4014 void ring_buffer_record_enable(struct trace_buffer *buffer)
4015 {
4016 	atomic_dec(&buffer->record_disabled);
4017 }
4018 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4019 
4020 /**
4021  * ring_buffer_record_off - stop all writes into the buffer
4022  * @buffer: The ring buffer to stop writes to.
4023  *
4024  * This prevents all writes to the buffer. Any attempt to write
4025  * to the buffer after this will fail and return NULL.
4026  *
4027  * This is different than ring_buffer_record_disable() as
4028  * it works like an on/off switch, where as the disable() version
4029  * must be paired with a enable().
4030  */
4031 void ring_buffer_record_off(struct trace_buffer *buffer)
4032 {
4033 	unsigned int rd;
4034 	unsigned int new_rd;
4035 
4036 	rd = atomic_read(&buffer->record_disabled);
4037 	do {
4038 		new_rd = rd | RB_BUFFER_OFF;
4039 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4040 }
4041 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4042 
4043 /**
4044  * ring_buffer_record_on - restart writes into the buffer
4045  * @buffer: The ring buffer to start writes to.
4046  *
4047  * This enables all writes to the buffer that was disabled by
4048  * ring_buffer_record_off().
4049  *
4050  * This is different than ring_buffer_record_enable() as
4051  * it works like an on/off switch, where as the enable() version
4052  * must be paired with a disable().
4053  */
4054 void ring_buffer_record_on(struct trace_buffer *buffer)
4055 {
4056 	unsigned int rd;
4057 	unsigned int new_rd;
4058 
4059 	rd = atomic_read(&buffer->record_disabled);
4060 	do {
4061 		new_rd = rd & ~RB_BUFFER_OFF;
4062 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4063 }
4064 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4065 
4066 /**
4067  * ring_buffer_record_is_on - return true if the ring buffer can write
4068  * @buffer: The ring buffer to see if write is enabled
4069  *
4070  * Returns true if the ring buffer is in a state that it accepts writes.
4071  */
4072 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4073 {
4074 	return !atomic_read(&buffer->record_disabled);
4075 }
4076 
4077 /**
4078  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4079  * @buffer: The ring buffer to see if write is set enabled
4080  *
4081  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4082  * Note that this does NOT mean it is in a writable state.
4083  *
4084  * It may return true when the ring buffer has been disabled by
4085  * ring_buffer_record_disable(), as that is a temporary disabling of
4086  * the ring buffer.
4087  */
4088 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4089 {
4090 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4091 }
4092 
4093 /**
4094  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4095  * @buffer: The ring buffer to stop writes to.
4096  * @cpu: The CPU buffer to stop
4097  *
4098  * This prevents all writes to the buffer. Any attempt to write
4099  * to the buffer after this will fail and return NULL.
4100  *
4101  * The caller should call synchronize_rcu() after this.
4102  */
4103 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4104 {
4105 	struct ring_buffer_per_cpu *cpu_buffer;
4106 
4107 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4108 		return;
4109 
4110 	cpu_buffer = buffer->buffers[cpu];
4111 	atomic_inc(&cpu_buffer->record_disabled);
4112 }
4113 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4114 
4115 /**
4116  * ring_buffer_record_enable_cpu - enable writes to the buffer
4117  * @buffer: The ring buffer to enable writes
4118  * @cpu: The CPU to enable.
4119  *
4120  * Note, multiple disables will need the same number of enables
4121  * to truly enable the writing (much like preempt_disable).
4122  */
4123 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4124 {
4125 	struct ring_buffer_per_cpu *cpu_buffer;
4126 
4127 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4128 		return;
4129 
4130 	cpu_buffer = buffer->buffers[cpu];
4131 	atomic_dec(&cpu_buffer->record_disabled);
4132 }
4133 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4134 
4135 /*
4136  * The total entries in the ring buffer is the running counter
4137  * of entries entered into the ring buffer, minus the sum of
4138  * the entries read from the ring buffer and the number of
4139  * entries that were overwritten.
4140  */
4141 static inline unsigned long
4142 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4143 {
4144 	return local_read(&cpu_buffer->entries) -
4145 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4146 }
4147 
4148 /**
4149  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4150  * @buffer: The ring buffer
4151  * @cpu: The per CPU buffer to read from.
4152  */
4153 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4154 {
4155 	unsigned long flags;
4156 	struct ring_buffer_per_cpu *cpu_buffer;
4157 	struct buffer_page *bpage;
4158 	u64 ret = 0;
4159 
4160 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4161 		return 0;
4162 
4163 	cpu_buffer = buffer->buffers[cpu];
4164 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4165 	/*
4166 	 * if the tail is on reader_page, oldest time stamp is on the reader
4167 	 * page
4168 	 */
4169 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4170 		bpage = cpu_buffer->reader_page;
4171 	else
4172 		bpage = rb_set_head_page(cpu_buffer);
4173 	if (bpage)
4174 		ret = bpage->page->time_stamp;
4175 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4176 
4177 	return ret;
4178 }
4179 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4180 
4181 /**
4182  * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4183  * @buffer: The ring buffer
4184  * @cpu: The per CPU buffer to read from.
4185  */
4186 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4187 {
4188 	struct ring_buffer_per_cpu *cpu_buffer;
4189 	unsigned long ret;
4190 
4191 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4192 		return 0;
4193 
4194 	cpu_buffer = buffer->buffers[cpu];
4195 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4196 
4197 	return ret;
4198 }
4199 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4200 
4201 /**
4202  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4203  * @buffer: The ring buffer
4204  * @cpu: The per CPU buffer to get the entries from.
4205  */
4206 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4207 {
4208 	struct ring_buffer_per_cpu *cpu_buffer;
4209 
4210 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4211 		return 0;
4212 
4213 	cpu_buffer = buffer->buffers[cpu];
4214 
4215 	return rb_num_of_entries(cpu_buffer);
4216 }
4217 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4218 
4219 /**
4220  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4221  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4222  * @buffer: The ring buffer
4223  * @cpu: The per CPU buffer to get the number of overruns from
4224  */
4225 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4226 {
4227 	struct ring_buffer_per_cpu *cpu_buffer;
4228 	unsigned long ret;
4229 
4230 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4231 		return 0;
4232 
4233 	cpu_buffer = buffer->buffers[cpu];
4234 	ret = local_read(&cpu_buffer->overrun);
4235 
4236 	return ret;
4237 }
4238 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4239 
4240 /**
4241  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4242  * commits failing due to the buffer wrapping around while there are uncommitted
4243  * events, such as during an interrupt storm.
4244  * @buffer: The ring buffer
4245  * @cpu: The per CPU buffer to get the number of overruns from
4246  */
4247 unsigned long
4248 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4249 {
4250 	struct ring_buffer_per_cpu *cpu_buffer;
4251 	unsigned long ret;
4252 
4253 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4254 		return 0;
4255 
4256 	cpu_buffer = buffer->buffers[cpu];
4257 	ret = local_read(&cpu_buffer->commit_overrun);
4258 
4259 	return ret;
4260 }
4261 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4262 
4263 /**
4264  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4265  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4266  * @buffer: The ring buffer
4267  * @cpu: The per CPU buffer to get the number of overruns from
4268  */
4269 unsigned long
4270 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4271 {
4272 	struct ring_buffer_per_cpu *cpu_buffer;
4273 	unsigned long ret;
4274 
4275 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4276 		return 0;
4277 
4278 	cpu_buffer = buffer->buffers[cpu];
4279 	ret = local_read(&cpu_buffer->dropped_events);
4280 
4281 	return ret;
4282 }
4283 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4284 
4285 /**
4286  * ring_buffer_read_events_cpu - get the number of events successfully read
4287  * @buffer: The ring buffer
4288  * @cpu: The per CPU buffer to get the number of events read
4289  */
4290 unsigned long
4291 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4292 {
4293 	struct ring_buffer_per_cpu *cpu_buffer;
4294 
4295 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4296 		return 0;
4297 
4298 	cpu_buffer = buffer->buffers[cpu];
4299 	return cpu_buffer->read;
4300 }
4301 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4302 
4303 /**
4304  * ring_buffer_entries - get the number of entries in a buffer
4305  * @buffer: The ring buffer
4306  *
4307  * Returns the total number of entries in the ring buffer
4308  * (all CPU entries)
4309  */
4310 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4311 {
4312 	struct ring_buffer_per_cpu *cpu_buffer;
4313 	unsigned long entries = 0;
4314 	int cpu;
4315 
4316 	/* if you care about this being correct, lock the buffer */
4317 	for_each_buffer_cpu(buffer, cpu) {
4318 		cpu_buffer = buffer->buffers[cpu];
4319 		entries += rb_num_of_entries(cpu_buffer);
4320 	}
4321 
4322 	return entries;
4323 }
4324 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4325 
4326 /**
4327  * ring_buffer_overruns - get the number of overruns in buffer
4328  * @buffer: The ring buffer
4329  *
4330  * Returns the total number of overruns in the ring buffer
4331  * (all CPU entries)
4332  */
4333 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4334 {
4335 	struct ring_buffer_per_cpu *cpu_buffer;
4336 	unsigned long overruns = 0;
4337 	int cpu;
4338 
4339 	/* if you care about this being correct, lock the buffer */
4340 	for_each_buffer_cpu(buffer, cpu) {
4341 		cpu_buffer = buffer->buffers[cpu];
4342 		overruns += local_read(&cpu_buffer->overrun);
4343 	}
4344 
4345 	return overruns;
4346 }
4347 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4348 
4349 static void rb_iter_reset(struct ring_buffer_iter *iter)
4350 {
4351 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4352 
4353 	/* Iterator usage is expected to have record disabled */
4354 	iter->head_page = cpu_buffer->reader_page;
4355 	iter->head = cpu_buffer->reader_page->read;
4356 	iter->next_event = iter->head;
4357 
4358 	iter->cache_reader_page = iter->head_page;
4359 	iter->cache_read = cpu_buffer->read;
4360 	iter->cache_pages_removed = cpu_buffer->pages_removed;
4361 
4362 	if (iter->head) {
4363 		iter->read_stamp = cpu_buffer->read_stamp;
4364 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4365 	} else {
4366 		iter->read_stamp = iter->head_page->page->time_stamp;
4367 		iter->page_stamp = iter->read_stamp;
4368 	}
4369 }
4370 
4371 /**
4372  * ring_buffer_iter_reset - reset an iterator
4373  * @iter: The iterator to reset
4374  *
4375  * Resets the iterator, so that it will start from the beginning
4376  * again.
4377  */
4378 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4379 {
4380 	struct ring_buffer_per_cpu *cpu_buffer;
4381 	unsigned long flags;
4382 
4383 	if (!iter)
4384 		return;
4385 
4386 	cpu_buffer = iter->cpu_buffer;
4387 
4388 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4389 	rb_iter_reset(iter);
4390 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4391 }
4392 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4393 
4394 /**
4395  * ring_buffer_iter_empty - check if an iterator has no more to read
4396  * @iter: The iterator to check
4397  */
4398 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4399 {
4400 	struct ring_buffer_per_cpu *cpu_buffer;
4401 	struct buffer_page *reader;
4402 	struct buffer_page *head_page;
4403 	struct buffer_page *commit_page;
4404 	struct buffer_page *curr_commit_page;
4405 	unsigned commit;
4406 	u64 curr_commit_ts;
4407 	u64 commit_ts;
4408 
4409 	cpu_buffer = iter->cpu_buffer;
4410 	reader = cpu_buffer->reader_page;
4411 	head_page = cpu_buffer->head_page;
4412 	commit_page = READ_ONCE(cpu_buffer->commit_page);
4413 	commit_ts = commit_page->page->time_stamp;
4414 
4415 	/*
4416 	 * When the writer goes across pages, it issues a cmpxchg which
4417 	 * is a mb(), which will synchronize with the rmb here.
4418 	 * (see rb_tail_page_update())
4419 	 */
4420 	smp_rmb();
4421 	commit = rb_page_commit(commit_page);
4422 	/* We want to make sure that the commit page doesn't change */
4423 	smp_rmb();
4424 
4425 	/* Make sure commit page didn't change */
4426 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4427 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4428 
4429 	/* If the commit page changed, then there's more data */
4430 	if (curr_commit_page != commit_page ||
4431 	    curr_commit_ts != commit_ts)
4432 		return 0;
4433 
4434 	/* Still racy, as it may return a false positive, but that's OK */
4435 	return ((iter->head_page == commit_page && iter->head >= commit) ||
4436 		(iter->head_page == reader && commit_page == head_page &&
4437 		 head_page->read == commit &&
4438 		 iter->head == rb_page_size(cpu_buffer->reader_page)));
4439 }
4440 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4441 
4442 static void
4443 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4444 		     struct ring_buffer_event *event)
4445 {
4446 	u64 delta;
4447 
4448 	switch (event->type_len) {
4449 	case RINGBUF_TYPE_PADDING:
4450 		return;
4451 
4452 	case RINGBUF_TYPE_TIME_EXTEND:
4453 		delta = rb_event_time_stamp(event);
4454 		cpu_buffer->read_stamp += delta;
4455 		return;
4456 
4457 	case RINGBUF_TYPE_TIME_STAMP:
4458 		delta = rb_event_time_stamp(event);
4459 		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4460 		cpu_buffer->read_stamp = delta;
4461 		return;
4462 
4463 	case RINGBUF_TYPE_DATA:
4464 		cpu_buffer->read_stamp += event->time_delta;
4465 		return;
4466 
4467 	default:
4468 		RB_WARN_ON(cpu_buffer, 1);
4469 	}
4470 }
4471 
4472 static void
4473 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4474 			  struct ring_buffer_event *event)
4475 {
4476 	u64 delta;
4477 
4478 	switch (event->type_len) {
4479 	case RINGBUF_TYPE_PADDING:
4480 		return;
4481 
4482 	case RINGBUF_TYPE_TIME_EXTEND:
4483 		delta = rb_event_time_stamp(event);
4484 		iter->read_stamp += delta;
4485 		return;
4486 
4487 	case RINGBUF_TYPE_TIME_STAMP:
4488 		delta = rb_event_time_stamp(event);
4489 		delta = rb_fix_abs_ts(delta, iter->read_stamp);
4490 		iter->read_stamp = delta;
4491 		return;
4492 
4493 	case RINGBUF_TYPE_DATA:
4494 		iter->read_stamp += event->time_delta;
4495 		return;
4496 
4497 	default:
4498 		RB_WARN_ON(iter->cpu_buffer, 1);
4499 	}
4500 }
4501 
4502 static struct buffer_page *
4503 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4504 {
4505 	struct buffer_page *reader = NULL;
4506 	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
4507 	unsigned long overwrite;
4508 	unsigned long flags;
4509 	int nr_loops = 0;
4510 	bool ret;
4511 
4512 	local_irq_save(flags);
4513 	arch_spin_lock(&cpu_buffer->lock);
4514 
4515  again:
4516 	/*
4517 	 * This should normally only loop twice. But because the
4518 	 * start of the reader inserts an empty page, it causes
4519 	 * a case where we will loop three times. There should be no
4520 	 * reason to loop four times (that I know of).
4521 	 */
4522 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4523 		reader = NULL;
4524 		goto out;
4525 	}
4526 
4527 	reader = cpu_buffer->reader_page;
4528 
4529 	/* If there's more to read, return this page */
4530 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
4531 		goto out;
4532 
4533 	/* Never should we have an index greater than the size */
4534 	if (RB_WARN_ON(cpu_buffer,
4535 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
4536 		goto out;
4537 
4538 	/* check if we caught up to the tail */
4539 	reader = NULL;
4540 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4541 		goto out;
4542 
4543 	/* Don't bother swapping if the ring buffer is empty */
4544 	if (rb_num_of_entries(cpu_buffer) == 0)
4545 		goto out;
4546 
4547 	/*
4548 	 * Reset the reader page to size zero.
4549 	 */
4550 	local_set(&cpu_buffer->reader_page->write, 0);
4551 	local_set(&cpu_buffer->reader_page->entries, 0);
4552 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4553 	cpu_buffer->reader_page->real_end = 0;
4554 
4555  spin:
4556 	/*
4557 	 * Splice the empty reader page into the list around the head.
4558 	 */
4559 	reader = rb_set_head_page(cpu_buffer);
4560 	if (!reader)
4561 		goto out;
4562 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4563 	cpu_buffer->reader_page->list.prev = reader->list.prev;
4564 
4565 	/*
4566 	 * cpu_buffer->pages just needs to point to the buffer, it
4567 	 *  has no specific buffer page to point to. Lets move it out
4568 	 *  of our way so we don't accidentally swap it.
4569 	 */
4570 	cpu_buffer->pages = reader->list.prev;
4571 
4572 	/* The reader page will be pointing to the new head */
4573 	rb_set_list_to_head(&cpu_buffer->reader_page->list);
4574 
4575 	/*
4576 	 * We want to make sure we read the overruns after we set up our
4577 	 * pointers to the next object. The writer side does a
4578 	 * cmpxchg to cross pages which acts as the mb on the writer
4579 	 * side. Note, the reader will constantly fail the swap
4580 	 * while the writer is updating the pointers, so this
4581 	 * guarantees that the overwrite recorded here is the one we
4582 	 * want to compare with the last_overrun.
4583 	 */
4584 	smp_mb();
4585 	overwrite = local_read(&(cpu_buffer->overrun));
4586 
4587 	/*
4588 	 * Here's the tricky part.
4589 	 *
4590 	 * We need to move the pointer past the header page.
4591 	 * But we can only do that if a writer is not currently
4592 	 * moving it. The page before the header page has the
4593 	 * flag bit '1' set if it is pointing to the page we want.
4594 	 * but if the writer is in the process of moving it
4595 	 * than it will be '2' or already moved '0'.
4596 	 */
4597 
4598 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4599 
4600 	/*
4601 	 * If we did not convert it, then we must try again.
4602 	 */
4603 	if (!ret)
4604 		goto spin;
4605 
4606 	/*
4607 	 * Yay! We succeeded in replacing the page.
4608 	 *
4609 	 * Now make the new head point back to the reader page.
4610 	 */
4611 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4612 	rb_inc_page(&cpu_buffer->head_page);
4613 
4614 	local_inc(&cpu_buffer->pages_read);
4615 
4616 	/* Finally update the reader page to the new head */
4617 	cpu_buffer->reader_page = reader;
4618 	cpu_buffer->reader_page->read = 0;
4619 
4620 	if (overwrite != cpu_buffer->last_overrun) {
4621 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4622 		cpu_buffer->last_overrun = overwrite;
4623 	}
4624 
4625 	goto again;
4626 
4627  out:
4628 	/* Update the read_stamp on the first event */
4629 	if (reader && reader->read == 0)
4630 		cpu_buffer->read_stamp = reader->page->time_stamp;
4631 
4632 	arch_spin_unlock(&cpu_buffer->lock);
4633 	local_irq_restore(flags);
4634 
4635 	/*
4636 	 * The writer has preempt disable, wait for it. But not forever
4637 	 * Although, 1 second is pretty much "forever"
4638 	 */
4639 #define USECS_WAIT	1000000
4640         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4641 		/* If the write is past the end of page, a writer is still updating it */
4642 		if (likely(!reader || rb_page_write(reader) <= bsize))
4643 			break;
4644 
4645 		udelay(1);
4646 
4647 		/* Get the latest version of the reader write value */
4648 		smp_rmb();
4649 	}
4650 
4651 	/* The writer is not moving forward? Something is wrong */
4652 	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4653 		reader = NULL;
4654 
4655 	/*
4656 	 * Make sure we see any padding after the write update
4657 	 * (see rb_reset_tail()).
4658 	 *
4659 	 * In addition, a writer may be writing on the reader page
4660 	 * if the page has not been fully filled, so the read barrier
4661 	 * is also needed to make sure we see the content of what is
4662 	 * committed by the writer (see rb_set_commit_to_write()).
4663 	 */
4664 	smp_rmb();
4665 
4666 
4667 	return reader;
4668 }
4669 
4670 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4671 {
4672 	struct ring_buffer_event *event;
4673 	struct buffer_page *reader;
4674 	unsigned length;
4675 
4676 	reader = rb_get_reader_page(cpu_buffer);
4677 
4678 	/* This function should not be called when buffer is empty */
4679 	if (RB_WARN_ON(cpu_buffer, !reader))
4680 		return;
4681 
4682 	event = rb_reader_event(cpu_buffer);
4683 
4684 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4685 		cpu_buffer->read++;
4686 
4687 	rb_update_read_stamp(cpu_buffer, event);
4688 
4689 	length = rb_event_length(event);
4690 	cpu_buffer->reader_page->read += length;
4691 	cpu_buffer->read_bytes += length;
4692 }
4693 
4694 static void rb_advance_iter(struct ring_buffer_iter *iter)
4695 {
4696 	struct ring_buffer_per_cpu *cpu_buffer;
4697 
4698 	cpu_buffer = iter->cpu_buffer;
4699 
4700 	/* If head == next_event then we need to jump to the next event */
4701 	if (iter->head == iter->next_event) {
4702 		/* If the event gets overwritten again, there's nothing to do */
4703 		if (rb_iter_head_event(iter) == NULL)
4704 			return;
4705 	}
4706 
4707 	iter->head = iter->next_event;
4708 
4709 	/*
4710 	 * Check if we are at the end of the buffer.
4711 	 */
4712 	if (iter->next_event >= rb_page_size(iter->head_page)) {
4713 		/* discarded commits can make the page empty */
4714 		if (iter->head_page == cpu_buffer->commit_page)
4715 			return;
4716 		rb_inc_iter(iter);
4717 		return;
4718 	}
4719 
4720 	rb_update_iter_read_stamp(iter, iter->event);
4721 }
4722 
4723 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4724 {
4725 	return cpu_buffer->lost_events;
4726 }
4727 
4728 static struct ring_buffer_event *
4729 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4730 	       unsigned long *lost_events)
4731 {
4732 	struct ring_buffer_event *event;
4733 	struct buffer_page *reader;
4734 	int nr_loops = 0;
4735 
4736 	if (ts)
4737 		*ts = 0;
4738  again:
4739 	/*
4740 	 * We repeat when a time extend is encountered.
4741 	 * Since the time extend is always attached to a data event,
4742 	 * we should never loop more than once.
4743 	 * (We never hit the following condition more than twice).
4744 	 */
4745 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4746 		return NULL;
4747 
4748 	reader = rb_get_reader_page(cpu_buffer);
4749 	if (!reader)
4750 		return NULL;
4751 
4752 	event = rb_reader_event(cpu_buffer);
4753 
4754 	switch (event->type_len) {
4755 	case RINGBUF_TYPE_PADDING:
4756 		if (rb_null_event(event))
4757 			RB_WARN_ON(cpu_buffer, 1);
4758 		/*
4759 		 * Because the writer could be discarding every
4760 		 * event it creates (which would probably be bad)
4761 		 * if we were to go back to "again" then we may never
4762 		 * catch up, and will trigger the warn on, or lock
4763 		 * the box. Return the padding, and we will release
4764 		 * the current locks, and try again.
4765 		 */
4766 		return event;
4767 
4768 	case RINGBUF_TYPE_TIME_EXTEND:
4769 		/* Internal data, OK to advance */
4770 		rb_advance_reader(cpu_buffer);
4771 		goto again;
4772 
4773 	case RINGBUF_TYPE_TIME_STAMP:
4774 		if (ts) {
4775 			*ts = rb_event_time_stamp(event);
4776 			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4777 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4778 							 cpu_buffer->cpu, ts);
4779 		}
4780 		/* Internal data, OK to advance */
4781 		rb_advance_reader(cpu_buffer);
4782 		goto again;
4783 
4784 	case RINGBUF_TYPE_DATA:
4785 		if (ts && !(*ts)) {
4786 			*ts = cpu_buffer->read_stamp + event->time_delta;
4787 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4788 							 cpu_buffer->cpu, ts);
4789 		}
4790 		if (lost_events)
4791 			*lost_events = rb_lost_events(cpu_buffer);
4792 		return event;
4793 
4794 	default:
4795 		RB_WARN_ON(cpu_buffer, 1);
4796 	}
4797 
4798 	return NULL;
4799 }
4800 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4801 
4802 static struct ring_buffer_event *
4803 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4804 {
4805 	struct trace_buffer *buffer;
4806 	struct ring_buffer_per_cpu *cpu_buffer;
4807 	struct ring_buffer_event *event;
4808 	int nr_loops = 0;
4809 
4810 	if (ts)
4811 		*ts = 0;
4812 
4813 	cpu_buffer = iter->cpu_buffer;
4814 	buffer = cpu_buffer->buffer;
4815 
4816 	/*
4817 	 * Check if someone performed a consuming read to the buffer
4818 	 * or removed some pages from the buffer. In these cases,
4819 	 * iterator was invalidated and we need to reset it.
4820 	 */
4821 	if (unlikely(iter->cache_read != cpu_buffer->read ||
4822 		     iter->cache_reader_page != cpu_buffer->reader_page ||
4823 		     iter->cache_pages_removed != cpu_buffer->pages_removed))
4824 		rb_iter_reset(iter);
4825 
4826  again:
4827 	if (ring_buffer_iter_empty(iter))
4828 		return NULL;
4829 
4830 	/*
4831 	 * As the writer can mess with what the iterator is trying
4832 	 * to read, just give up if we fail to get an event after
4833 	 * three tries. The iterator is not as reliable when reading
4834 	 * the ring buffer with an active write as the consumer is.
4835 	 * Do not warn if the three failures is reached.
4836 	 */
4837 	if (++nr_loops > 3)
4838 		return NULL;
4839 
4840 	if (rb_per_cpu_empty(cpu_buffer))
4841 		return NULL;
4842 
4843 	if (iter->head >= rb_page_size(iter->head_page)) {
4844 		rb_inc_iter(iter);
4845 		goto again;
4846 	}
4847 
4848 	event = rb_iter_head_event(iter);
4849 	if (!event)
4850 		goto again;
4851 
4852 	switch (event->type_len) {
4853 	case RINGBUF_TYPE_PADDING:
4854 		if (rb_null_event(event)) {
4855 			rb_inc_iter(iter);
4856 			goto again;
4857 		}
4858 		rb_advance_iter(iter);
4859 		return event;
4860 
4861 	case RINGBUF_TYPE_TIME_EXTEND:
4862 		/* Internal data, OK to advance */
4863 		rb_advance_iter(iter);
4864 		goto again;
4865 
4866 	case RINGBUF_TYPE_TIME_STAMP:
4867 		if (ts) {
4868 			*ts = rb_event_time_stamp(event);
4869 			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4870 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4871 							 cpu_buffer->cpu, ts);
4872 		}
4873 		/* Internal data, OK to advance */
4874 		rb_advance_iter(iter);
4875 		goto again;
4876 
4877 	case RINGBUF_TYPE_DATA:
4878 		if (ts && !(*ts)) {
4879 			*ts = iter->read_stamp + event->time_delta;
4880 			ring_buffer_normalize_time_stamp(buffer,
4881 							 cpu_buffer->cpu, ts);
4882 		}
4883 		return event;
4884 
4885 	default:
4886 		RB_WARN_ON(cpu_buffer, 1);
4887 	}
4888 
4889 	return NULL;
4890 }
4891 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4892 
4893 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4894 {
4895 	if (likely(!in_nmi())) {
4896 		raw_spin_lock(&cpu_buffer->reader_lock);
4897 		return true;
4898 	}
4899 
4900 	/*
4901 	 * If an NMI die dumps out the content of the ring buffer
4902 	 * trylock must be used to prevent a deadlock if the NMI
4903 	 * preempted a task that holds the ring buffer locks. If
4904 	 * we get the lock then all is fine, if not, then continue
4905 	 * to do the read, but this can corrupt the ring buffer,
4906 	 * so it must be permanently disabled from future writes.
4907 	 * Reading from NMI is a oneshot deal.
4908 	 */
4909 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4910 		return true;
4911 
4912 	/* Continue without locking, but disable the ring buffer */
4913 	atomic_inc(&cpu_buffer->record_disabled);
4914 	return false;
4915 }
4916 
4917 static inline void
4918 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4919 {
4920 	if (likely(locked))
4921 		raw_spin_unlock(&cpu_buffer->reader_lock);
4922 }
4923 
4924 /**
4925  * ring_buffer_peek - peek at the next event to be read
4926  * @buffer: The ring buffer to read
4927  * @cpu: The cpu to peak at
4928  * @ts: The timestamp counter of this event.
4929  * @lost_events: a variable to store if events were lost (may be NULL)
4930  *
4931  * This will return the event that will be read next, but does
4932  * not consume the data.
4933  */
4934 struct ring_buffer_event *
4935 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4936 		 unsigned long *lost_events)
4937 {
4938 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4939 	struct ring_buffer_event *event;
4940 	unsigned long flags;
4941 	bool dolock;
4942 
4943 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4944 		return NULL;
4945 
4946  again:
4947 	local_irq_save(flags);
4948 	dolock = rb_reader_lock(cpu_buffer);
4949 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4950 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4951 		rb_advance_reader(cpu_buffer);
4952 	rb_reader_unlock(cpu_buffer, dolock);
4953 	local_irq_restore(flags);
4954 
4955 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4956 		goto again;
4957 
4958 	return event;
4959 }
4960 
4961 /** ring_buffer_iter_dropped - report if there are dropped events
4962  * @iter: The ring buffer iterator
4963  *
4964  * Returns true if there was dropped events since the last peek.
4965  */
4966 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4967 {
4968 	bool ret = iter->missed_events != 0;
4969 
4970 	iter->missed_events = 0;
4971 	return ret;
4972 }
4973 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4974 
4975 /**
4976  * ring_buffer_iter_peek - peek at the next event to be read
4977  * @iter: The ring buffer iterator
4978  * @ts: The timestamp counter of this event.
4979  *
4980  * This will return the event that will be read next, but does
4981  * not increment the iterator.
4982  */
4983 struct ring_buffer_event *
4984 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4985 {
4986 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4987 	struct ring_buffer_event *event;
4988 	unsigned long flags;
4989 
4990  again:
4991 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4992 	event = rb_iter_peek(iter, ts);
4993 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4994 
4995 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4996 		goto again;
4997 
4998 	return event;
4999 }
5000 
5001 /**
5002  * ring_buffer_consume - return an event and consume it
5003  * @buffer: The ring buffer to get the next event from
5004  * @cpu: the cpu to read the buffer from
5005  * @ts: a variable to store the timestamp (may be NULL)
5006  * @lost_events: a variable to store if events were lost (may be NULL)
5007  *
5008  * Returns the next event in the ring buffer, and that event is consumed.
5009  * Meaning, that sequential reads will keep returning a different event,
5010  * and eventually empty the ring buffer if the producer is slower.
5011  */
5012 struct ring_buffer_event *
5013 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5014 		    unsigned long *lost_events)
5015 {
5016 	struct ring_buffer_per_cpu *cpu_buffer;
5017 	struct ring_buffer_event *event = NULL;
5018 	unsigned long flags;
5019 	bool dolock;
5020 
5021  again:
5022 	/* might be called in atomic */
5023 	preempt_disable();
5024 
5025 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5026 		goto out;
5027 
5028 	cpu_buffer = buffer->buffers[cpu];
5029 	local_irq_save(flags);
5030 	dolock = rb_reader_lock(cpu_buffer);
5031 
5032 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5033 	if (event) {
5034 		cpu_buffer->lost_events = 0;
5035 		rb_advance_reader(cpu_buffer);
5036 	}
5037 
5038 	rb_reader_unlock(cpu_buffer, dolock);
5039 	local_irq_restore(flags);
5040 
5041  out:
5042 	preempt_enable();
5043 
5044 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5045 		goto again;
5046 
5047 	return event;
5048 }
5049 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5050 
5051 /**
5052  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5053  * @buffer: The ring buffer to read from
5054  * @cpu: The cpu buffer to iterate over
5055  * @flags: gfp flags to use for memory allocation
5056  *
5057  * This performs the initial preparations necessary to iterate
5058  * through the buffer.  Memory is allocated, buffer resizing
5059  * is disabled, and the iterator pointer is returned to the caller.
5060  *
5061  * After a sequence of ring_buffer_read_prepare calls, the user is
5062  * expected to make at least one call to ring_buffer_read_prepare_sync.
5063  * Afterwards, ring_buffer_read_start is invoked to get things going
5064  * for real.
5065  *
5066  * This overall must be paired with ring_buffer_read_finish.
5067  */
5068 struct ring_buffer_iter *
5069 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5070 {
5071 	struct ring_buffer_per_cpu *cpu_buffer;
5072 	struct ring_buffer_iter *iter;
5073 
5074 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5075 		return NULL;
5076 
5077 	iter = kzalloc(sizeof(*iter), flags);
5078 	if (!iter)
5079 		return NULL;
5080 
5081 	/* Holds the entire event: data and meta data */
5082 	iter->event_size = buffer->subbuf_size;
5083 	iter->event = kmalloc(iter->event_size, flags);
5084 	if (!iter->event) {
5085 		kfree(iter);
5086 		return NULL;
5087 	}
5088 
5089 	cpu_buffer = buffer->buffers[cpu];
5090 
5091 	iter->cpu_buffer = cpu_buffer;
5092 
5093 	atomic_inc(&cpu_buffer->resize_disabled);
5094 
5095 	return iter;
5096 }
5097 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5098 
5099 /**
5100  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5101  *
5102  * All previously invoked ring_buffer_read_prepare calls to prepare
5103  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5104  * calls on those iterators are allowed.
5105  */
5106 void
5107 ring_buffer_read_prepare_sync(void)
5108 {
5109 	synchronize_rcu();
5110 }
5111 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5112 
5113 /**
5114  * ring_buffer_read_start - start a non consuming read of the buffer
5115  * @iter: The iterator returned by ring_buffer_read_prepare
5116  *
5117  * This finalizes the startup of an iteration through the buffer.
5118  * The iterator comes from a call to ring_buffer_read_prepare and
5119  * an intervening ring_buffer_read_prepare_sync must have been
5120  * performed.
5121  *
5122  * Must be paired with ring_buffer_read_finish.
5123  */
5124 void
5125 ring_buffer_read_start(struct ring_buffer_iter *iter)
5126 {
5127 	struct ring_buffer_per_cpu *cpu_buffer;
5128 	unsigned long flags;
5129 
5130 	if (!iter)
5131 		return;
5132 
5133 	cpu_buffer = iter->cpu_buffer;
5134 
5135 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5136 	arch_spin_lock(&cpu_buffer->lock);
5137 	rb_iter_reset(iter);
5138 	arch_spin_unlock(&cpu_buffer->lock);
5139 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5140 }
5141 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5142 
5143 /**
5144  * ring_buffer_read_finish - finish reading the iterator of the buffer
5145  * @iter: The iterator retrieved by ring_buffer_start
5146  *
5147  * This re-enables resizing of the buffer, and frees the iterator.
5148  */
5149 void
5150 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5151 {
5152 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5153 	unsigned long flags;
5154 
5155 	/* Use this opportunity to check the integrity of the ring buffer. */
5156 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5157 	rb_check_pages(cpu_buffer);
5158 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5159 
5160 	atomic_dec(&cpu_buffer->resize_disabled);
5161 	kfree(iter->event);
5162 	kfree(iter);
5163 }
5164 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5165 
5166 /**
5167  * ring_buffer_iter_advance - advance the iterator to the next location
5168  * @iter: The ring buffer iterator
5169  *
5170  * Move the location of the iterator such that the next read will
5171  * be the next location of the iterator.
5172  */
5173 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5174 {
5175 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5176 	unsigned long flags;
5177 
5178 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5179 
5180 	rb_advance_iter(iter);
5181 
5182 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5183 }
5184 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5185 
5186 /**
5187  * ring_buffer_size - return the size of the ring buffer (in bytes)
5188  * @buffer: The ring buffer.
5189  * @cpu: The CPU to get ring buffer size from.
5190  */
5191 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5192 {
5193 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5194 		return 0;
5195 
5196 	return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
5197 }
5198 EXPORT_SYMBOL_GPL(ring_buffer_size);
5199 
5200 /**
5201  * ring_buffer_max_event_size - return the max data size of an event
5202  * @buffer: The ring buffer.
5203  *
5204  * Returns the maximum size an event can be.
5205  */
5206 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
5207 {
5208 	/* If abs timestamp is requested, events have a timestamp too */
5209 	if (ring_buffer_time_stamp_abs(buffer))
5210 		return buffer->max_data_size - RB_LEN_TIME_EXTEND;
5211 	return buffer->max_data_size;
5212 }
5213 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
5214 
5215 static void rb_clear_buffer_page(struct buffer_page *page)
5216 {
5217 	local_set(&page->write, 0);
5218 	local_set(&page->entries, 0);
5219 	rb_init_page(page->page);
5220 	page->read = 0;
5221 }
5222 
5223 static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
5224 {
5225 	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
5226 
5227 	meta->reader.read = cpu_buffer->reader_page->read;
5228 	meta->reader.id = cpu_buffer->reader_page->id;
5229 	meta->reader.lost_events = cpu_buffer->lost_events;
5230 
5231 	meta->entries = local_read(&cpu_buffer->entries);
5232 	meta->overrun = local_read(&cpu_buffer->overrun);
5233 	meta->read = cpu_buffer->read;
5234 
5235 	/* Some archs do not have data cache coherency between kernel and user-space */
5236 	flush_dcache_folio(virt_to_folio(cpu_buffer->meta_page));
5237 }
5238 
5239 static void
5240 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5241 {
5242 	struct buffer_page *page;
5243 
5244 	rb_head_page_deactivate(cpu_buffer);
5245 
5246 	cpu_buffer->head_page
5247 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
5248 	rb_clear_buffer_page(cpu_buffer->head_page);
5249 	list_for_each_entry(page, cpu_buffer->pages, list) {
5250 		rb_clear_buffer_page(page);
5251 	}
5252 
5253 	cpu_buffer->tail_page = cpu_buffer->head_page;
5254 	cpu_buffer->commit_page = cpu_buffer->head_page;
5255 
5256 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5257 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
5258 	rb_clear_buffer_page(cpu_buffer->reader_page);
5259 
5260 	local_set(&cpu_buffer->entries_bytes, 0);
5261 	local_set(&cpu_buffer->overrun, 0);
5262 	local_set(&cpu_buffer->commit_overrun, 0);
5263 	local_set(&cpu_buffer->dropped_events, 0);
5264 	local_set(&cpu_buffer->entries, 0);
5265 	local_set(&cpu_buffer->committing, 0);
5266 	local_set(&cpu_buffer->commits, 0);
5267 	local_set(&cpu_buffer->pages_touched, 0);
5268 	local_set(&cpu_buffer->pages_lost, 0);
5269 	local_set(&cpu_buffer->pages_read, 0);
5270 	cpu_buffer->last_pages_touch = 0;
5271 	cpu_buffer->shortest_full = 0;
5272 	cpu_buffer->read = 0;
5273 	cpu_buffer->read_bytes = 0;
5274 
5275 	rb_time_set(&cpu_buffer->write_stamp, 0);
5276 	rb_time_set(&cpu_buffer->before_stamp, 0);
5277 
5278 	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5279 
5280 	cpu_buffer->lost_events = 0;
5281 	cpu_buffer->last_overrun = 0;
5282 
5283 	if (cpu_buffer->mapped)
5284 		rb_update_meta_page(cpu_buffer);
5285 
5286 	rb_head_page_activate(cpu_buffer);
5287 	cpu_buffer->pages_removed = 0;
5288 }
5289 
5290 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5291 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5292 {
5293 	unsigned long flags;
5294 
5295 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5296 
5297 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5298 		goto out;
5299 
5300 	arch_spin_lock(&cpu_buffer->lock);
5301 
5302 	rb_reset_cpu(cpu_buffer);
5303 
5304 	arch_spin_unlock(&cpu_buffer->lock);
5305 
5306  out:
5307 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5308 }
5309 
5310 /**
5311  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5312  * @buffer: The ring buffer to reset a per cpu buffer of
5313  * @cpu: The CPU buffer to be reset
5314  */
5315 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5316 {
5317 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5318 
5319 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5320 		return;
5321 
5322 	/* prevent another thread from changing buffer sizes */
5323 	mutex_lock(&buffer->mutex);
5324 
5325 	atomic_inc(&cpu_buffer->resize_disabled);
5326 	atomic_inc(&cpu_buffer->record_disabled);
5327 
5328 	/* Make sure all commits have finished */
5329 	synchronize_rcu();
5330 
5331 	reset_disabled_cpu_buffer(cpu_buffer);
5332 
5333 	atomic_dec(&cpu_buffer->record_disabled);
5334 	atomic_dec(&cpu_buffer->resize_disabled);
5335 
5336 	mutex_unlock(&buffer->mutex);
5337 }
5338 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5339 
5340 /* Flag to ensure proper resetting of atomic variables */
5341 #define RESET_BIT	(1 << 30)
5342 
5343 /**
5344  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5345  * @buffer: The ring buffer to reset a per cpu buffer of
5346  */
5347 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5348 {
5349 	struct ring_buffer_per_cpu *cpu_buffer;
5350 	int cpu;
5351 
5352 	/* prevent another thread from changing buffer sizes */
5353 	mutex_lock(&buffer->mutex);
5354 
5355 	for_each_online_buffer_cpu(buffer, cpu) {
5356 		cpu_buffer = buffer->buffers[cpu];
5357 
5358 		atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
5359 		atomic_inc(&cpu_buffer->record_disabled);
5360 	}
5361 
5362 	/* Make sure all commits have finished */
5363 	synchronize_rcu();
5364 
5365 	for_each_buffer_cpu(buffer, cpu) {
5366 		cpu_buffer = buffer->buffers[cpu];
5367 
5368 		/*
5369 		 * If a CPU came online during the synchronize_rcu(), then
5370 		 * ignore it.
5371 		 */
5372 		if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
5373 			continue;
5374 
5375 		reset_disabled_cpu_buffer(cpu_buffer);
5376 
5377 		atomic_dec(&cpu_buffer->record_disabled);
5378 		atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
5379 	}
5380 
5381 	mutex_unlock(&buffer->mutex);
5382 }
5383 
5384 /**
5385  * ring_buffer_reset - reset a ring buffer
5386  * @buffer: The ring buffer to reset all cpu buffers
5387  */
5388 void ring_buffer_reset(struct trace_buffer *buffer)
5389 {
5390 	struct ring_buffer_per_cpu *cpu_buffer;
5391 	int cpu;
5392 
5393 	/* prevent another thread from changing buffer sizes */
5394 	mutex_lock(&buffer->mutex);
5395 
5396 	for_each_buffer_cpu(buffer, cpu) {
5397 		cpu_buffer = buffer->buffers[cpu];
5398 
5399 		atomic_inc(&cpu_buffer->resize_disabled);
5400 		atomic_inc(&cpu_buffer->record_disabled);
5401 	}
5402 
5403 	/* Make sure all commits have finished */
5404 	synchronize_rcu();
5405 
5406 	for_each_buffer_cpu(buffer, cpu) {
5407 		cpu_buffer = buffer->buffers[cpu];
5408 
5409 		reset_disabled_cpu_buffer(cpu_buffer);
5410 
5411 		atomic_dec(&cpu_buffer->record_disabled);
5412 		atomic_dec(&cpu_buffer->resize_disabled);
5413 	}
5414 
5415 	mutex_unlock(&buffer->mutex);
5416 }
5417 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5418 
5419 /**
5420  * ring_buffer_empty - is the ring buffer empty?
5421  * @buffer: The ring buffer to test
5422  */
5423 bool ring_buffer_empty(struct trace_buffer *buffer)
5424 {
5425 	struct ring_buffer_per_cpu *cpu_buffer;
5426 	unsigned long flags;
5427 	bool dolock;
5428 	bool ret;
5429 	int cpu;
5430 
5431 	/* yes this is racy, but if you don't like the race, lock the buffer */
5432 	for_each_buffer_cpu(buffer, cpu) {
5433 		cpu_buffer = buffer->buffers[cpu];
5434 		local_irq_save(flags);
5435 		dolock = rb_reader_lock(cpu_buffer);
5436 		ret = rb_per_cpu_empty(cpu_buffer);
5437 		rb_reader_unlock(cpu_buffer, dolock);
5438 		local_irq_restore(flags);
5439 
5440 		if (!ret)
5441 			return false;
5442 	}
5443 
5444 	return true;
5445 }
5446 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5447 
5448 /**
5449  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5450  * @buffer: The ring buffer
5451  * @cpu: The CPU buffer to test
5452  */
5453 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5454 {
5455 	struct ring_buffer_per_cpu *cpu_buffer;
5456 	unsigned long flags;
5457 	bool dolock;
5458 	bool ret;
5459 
5460 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5461 		return true;
5462 
5463 	cpu_buffer = buffer->buffers[cpu];
5464 	local_irq_save(flags);
5465 	dolock = rb_reader_lock(cpu_buffer);
5466 	ret = rb_per_cpu_empty(cpu_buffer);
5467 	rb_reader_unlock(cpu_buffer, dolock);
5468 	local_irq_restore(flags);
5469 
5470 	return ret;
5471 }
5472 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5473 
5474 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5475 /**
5476  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5477  * @buffer_a: One buffer to swap with
5478  * @buffer_b: The other buffer to swap with
5479  * @cpu: the CPU of the buffers to swap
5480  *
5481  * This function is useful for tracers that want to take a "snapshot"
5482  * of a CPU buffer and has another back up buffer lying around.
5483  * it is expected that the tracer handles the cpu buffer not being
5484  * used at the moment.
5485  */
5486 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5487 			 struct trace_buffer *buffer_b, int cpu)
5488 {
5489 	struct ring_buffer_per_cpu *cpu_buffer_a;
5490 	struct ring_buffer_per_cpu *cpu_buffer_b;
5491 	int ret = -EINVAL;
5492 
5493 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5494 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
5495 		goto out;
5496 
5497 	cpu_buffer_a = buffer_a->buffers[cpu];
5498 	cpu_buffer_b = buffer_b->buffers[cpu];
5499 
5500 	/* It's up to the callers to not try to swap mapped buffers */
5501 	if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped)) {
5502 		ret = -EBUSY;
5503 		goto out;
5504 	}
5505 
5506 	/* At least make sure the two buffers are somewhat the same */
5507 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5508 		goto out;
5509 
5510 	if (buffer_a->subbuf_order != buffer_b->subbuf_order)
5511 		goto out;
5512 
5513 	ret = -EAGAIN;
5514 
5515 	if (atomic_read(&buffer_a->record_disabled))
5516 		goto out;
5517 
5518 	if (atomic_read(&buffer_b->record_disabled))
5519 		goto out;
5520 
5521 	if (atomic_read(&cpu_buffer_a->record_disabled))
5522 		goto out;
5523 
5524 	if (atomic_read(&cpu_buffer_b->record_disabled))
5525 		goto out;
5526 
5527 	/*
5528 	 * We can't do a synchronize_rcu here because this
5529 	 * function can be called in atomic context.
5530 	 * Normally this will be called from the same CPU as cpu.
5531 	 * If not it's up to the caller to protect this.
5532 	 */
5533 	atomic_inc(&cpu_buffer_a->record_disabled);
5534 	atomic_inc(&cpu_buffer_b->record_disabled);
5535 
5536 	ret = -EBUSY;
5537 	if (local_read(&cpu_buffer_a->committing))
5538 		goto out_dec;
5539 	if (local_read(&cpu_buffer_b->committing))
5540 		goto out_dec;
5541 
5542 	/*
5543 	 * When resize is in progress, we cannot swap it because
5544 	 * it will mess the state of the cpu buffer.
5545 	 */
5546 	if (atomic_read(&buffer_a->resizing))
5547 		goto out_dec;
5548 	if (atomic_read(&buffer_b->resizing))
5549 		goto out_dec;
5550 
5551 	buffer_a->buffers[cpu] = cpu_buffer_b;
5552 	buffer_b->buffers[cpu] = cpu_buffer_a;
5553 
5554 	cpu_buffer_b->buffer = buffer_a;
5555 	cpu_buffer_a->buffer = buffer_b;
5556 
5557 	ret = 0;
5558 
5559 out_dec:
5560 	atomic_dec(&cpu_buffer_a->record_disabled);
5561 	atomic_dec(&cpu_buffer_b->record_disabled);
5562 out:
5563 	return ret;
5564 }
5565 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5566 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5567 
5568 /**
5569  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5570  * @buffer: the buffer to allocate for.
5571  * @cpu: the cpu buffer to allocate.
5572  *
5573  * This function is used in conjunction with ring_buffer_read_page.
5574  * When reading a full page from the ring buffer, these functions
5575  * can be used to speed up the process. The calling function should
5576  * allocate a few pages first with this function. Then when it
5577  * needs to get pages from the ring buffer, it passes the result
5578  * of this function into ring_buffer_read_page, which will swap
5579  * the page that was allocated, with the read page of the buffer.
5580  *
5581  * Returns:
5582  *  The page allocated, or ERR_PTR
5583  */
5584 struct buffer_data_read_page *
5585 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5586 {
5587 	struct ring_buffer_per_cpu *cpu_buffer;
5588 	struct buffer_data_read_page *bpage = NULL;
5589 	unsigned long flags;
5590 	struct page *page;
5591 
5592 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5593 		return ERR_PTR(-ENODEV);
5594 
5595 	bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
5596 	if (!bpage)
5597 		return ERR_PTR(-ENOMEM);
5598 
5599 	bpage->order = buffer->subbuf_order;
5600 	cpu_buffer = buffer->buffers[cpu];
5601 	local_irq_save(flags);
5602 	arch_spin_lock(&cpu_buffer->lock);
5603 
5604 	if (cpu_buffer->free_page) {
5605 		bpage->data = cpu_buffer->free_page;
5606 		cpu_buffer->free_page = NULL;
5607 	}
5608 
5609 	arch_spin_unlock(&cpu_buffer->lock);
5610 	local_irq_restore(flags);
5611 
5612 	if (bpage->data)
5613 		goto out;
5614 
5615 	page = alloc_pages_node(cpu_to_node(cpu),
5616 				GFP_KERNEL | __GFP_NORETRY | __GFP_COMP | __GFP_ZERO,
5617 				cpu_buffer->buffer->subbuf_order);
5618 	if (!page) {
5619 		kfree(bpage);
5620 		return ERR_PTR(-ENOMEM);
5621 	}
5622 
5623 	bpage->data = page_address(page);
5624 
5625  out:
5626 	rb_init_page(bpage->data);
5627 
5628 	return bpage;
5629 }
5630 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5631 
5632 /**
5633  * ring_buffer_free_read_page - free an allocated read page
5634  * @buffer: the buffer the page was allocate for
5635  * @cpu: the cpu buffer the page came from
5636  * @data_page: the page to free
5637  *
5638  * Free a page allocated from ring_buffer_alloc_read_page.
5639  */
5640 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
5641 				struct buffer_data_read_page *data_page)
5642 {
5643 	struct ring_buffer_per_cpu *cpu_buffer;
5644 	struct buffer_data_page *bpage = data_page->data;
5645 	struct page *page = virt_to_page(bpage);
5646 	unsigned long flags;
5647 
5648 	if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
5649 		return;
5650 
5651 	cpu_buffer = buffer->buffers[cpu];
5652 
5653 	/*
5654 	 * If the page is still in use someplace else, or order of the page
5655 	 * is different from the subbuffer order of the buffer -
5656 	 * we can't reuse it
5657 	 */
5658 	if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
5659 		goto out;
5660 
5661 	local_irq_save(flags);
5662 	arch_spin_lock(&cpu_buffer->lock);
5663 
5664 	if (!cpu_buffer->free_page) {
5665 		cpu_buffer->free_page = bpage;
5666 		bpage = NULL;
5667 	}
5668 
5669 	arch_spin_unlock(&cpu_buffer->lock);
5670 	local_irq_restore(flags);
5671 
5672  out:
5673 	free_pages((unsigned long)bpage, data_page->order);
5674 	kfree(data_page);
5675 }
5676 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5677 
5678 /**
5679  * ring_buffer_read_page - extract a page from the ring buffer
5680  * @buffer: buffer to extract from
5681  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5682  * @len: amount to extract
5683  * @cpu: the cpu of the buffer to extract
5684  * @full: should the extraction only happen when the page is full.
5685  *
5686  * This function will pull out a page from the ring buffer and consume it.
5687  * @data_page must be the address of the variable that was returned
5688  * from ring_buffer_alloc_read_page. This is because the page might be used
5689  * to swap with a page in the ring buffer.
5690  *
5691  * for example:
5692  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
5693  *	if (IS_ERR(rpage))
5694  *		return PTR_ERR(rpage);
5695  *	ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
5696  *	if (ret >= 0)
5697  *		process_page(ring_buffer_read_page_data(rpage), ret);
5698  *	ring_buffer_free_read_page(buffer, cpu, rpage);
5699  *
5700  * When @full is set, the function will not return true unless
5701  * the writer is off the reader page.
5702  *
5703  * Note: it is up to the calling functions to handle sleeps and wakeups.
5704  *  The ring buffer can be used anywhere in the kernel and can not
5705  *  blindly call wake_up. The layer that uses the ring buffer must be
5706  *  responsible for that.
5707  *
5708  * Returns:
5709  *  >=0 if data has been transferred, returns the offset of consumed data.
5710  *  <0 if no data has been transferred.
5711  */
5712 int ring_buffer_read_page(struct trace_buffer *buffer,
5713 			  struct buffer_data_read_page *data_page,
5714 			  size_t len, int cpu, int full)
5715 {
5716 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5717 	struct ring_buffer_event *event;
5718 	struct buffer_data_page *bpage;
5719 	struct buffer_page *reader;
5720 	unsigned long missed_events;
5721 	unsigned long flags;
5722 	unsigned int commit;
5723 	unsigned int read;
5724 	u64 save_timestamp;
5725 	int ret = -1;
5726 
5727 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5728 		goto out;
5729 
5730 	/*
5731 	 * If len is not big enough to hold the page header, then
5732 	 * we can not copy anything.
5733 	 */
5734 	if (len <= BUF_PAGE_HDR_SIZE)
5735 		goto out;
5736 
5737 	len -= BUF_PAGE_HDR_SIZE;
5738 
5739 	if (!data_page || !data_page->data)
5740 		goto out;
5741 	if (data_page->order != buffer->subbuf_order)
5742 		goto out;
5743 
5744 	bpage = data_page->data;
5745 	if (!bpage)
5746 		goto out;
5747 
5748 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5749 
5750 	reader = rb_get_reader_page(cpu_buffer);
5751 	if (!reader)
5752 		goto out_unlock;
5753 
5754 	event = rb_reader_event(cpu_buffer);
5755 
5756 	read = reader->read;
5757 	commit = rb_page_size(reader);
5758 
5759 	/* Check if any events were dropped */
5760 	missed_events = cpu_buffer->lost_events;
5761 
5762 	/*
5763 	 * If this page has been partially read or
5764 	 * if len is not big enough to read the rest of the page or
5765 	 * a writer is still on the page, then
5766 	 * we must copy the data from the page to the buffer.
5767 	 * Otherwise, we can simply swap the page with the one passed in.
5768 	 */
5769 	if (read || (len < (commit - read)) ||
5770 	    cpu_buffer->reader_page == cpu_buffer->commit_page ||
5771 	    cpu_buffer->mapped) {
5772 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5773 		unsigned int rpos = read;
5774 		unsigned int pos = 0;
5775 		unsigned int size;
5776 
5777 		/*
5778 		 * If a full page is expected, this can still be returned
5779 		 * if there's been a previous partial read and the
5780 		 * rest of the page can be read and the commit page is off
5781 		 * the reader page.
5782 		 */
5783 		if (full &&
5784 		    (!read || (len < (commit - read)) ||
5785 		     cpu_buffer->reader_page == cpu_buffer->commit_page))
5786 			goto out_unlock;
5787 
5788 		if (len > (commit - read))
5789 			len = (commit - read);
5790 
5791 		/* Always keep the time extend and data together */
5792 		size = rb_event_ts_length(event);
5793 
5794 		if (len < size)
5795 			goto out_unlock;
5796 
5797 		/* save the current timestamp, since the user will need it */
5798 		save_timestamp = cpu_buffer->read_stamp;
5799 
5800 		/* Need to copy one event at a time */
5801 		do {
5802 			/* We need the size of one event, because
5803 			 * rb_advance_reader only advances by one event,
5804 			 * whereas rb_event_ts_length may include the size of
5805 			 * one or two events.
5806 			 * We have already ensured there's enough space if this
5807 			 * is a time extend. */
5808 			size = rb_event_length(event);
5809 			memcpy(bpage->data + pos, rpage->data + rpos, size);
5810 
5811 			len -= size;
5812 
5813 			rb_advance_reader(cpu_buffer);
5814 			rpos = reader->read;
5815 			pos += size;
5816 
5817 			if (rpos >= commit)
5818 				break;
5819 
5820 			event = rb_reader_event(cpu_buffer);
5821 			/* Always keep the time extend and data together */
5822 			size = rb_event_ts_length(event);
5823 		} while (len >= size);
5824 
5825 		/* update bpage */
5826 		local_set(&bpage->commit, pos);
5827 		bpage->time_stamp = save_timestamp;
5828 
5829 		/* we copied everything to the beginning */
5830 		read = 0;
5831 	} else {
5832 		/* update the entry counter */
5833 		cpu_buffer->read += rb_page_entries(reader);
5834 		cpu_buffer->read_bytes += rb_page_size(reader);
5835 
5836 		/* swap the pages */
5837 		rb_init_page(bpage);
5838 		bpage = reader->page;
5839 		reader->page = data_page->data;
5840 		local_set(&reader->write, 0);
5841 		local_set(&reader->entries, 0);
5842 		reader->read = 0;
5843 		data_page->data = bpage;
5844 
5845 		/*
5846 		 * Use the real_end for the data size,
5847 		 * This gives us a chance to store the lost events
5848 		 * on the page.
5849 		 */
5850 		if (reader->real_end)
5851 			local_set(&bpage->commit, reader->real_end);
5852 	}
5853 	ret = read;
5854 
5855 	cpu_buffer->lost_events = 0;
5856 
5857 	commit = local_read(&bpage->commit);
5858 	/*
5859 	 * Set a flag in the commit field if we lost events
5860 	 */
5861 	if (missed_events) {
5862 		/* If there is room at the end of the page to save the
5863 		 * missed events, then record it there.
5864 		 */
5865 		if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
5866 			memcpy(&bpage->data[commit], &missed_events,
5867 			       sizeof(missed_events));
5868 			local_add(RB_MISSED_STORED, &bpage->commit);
5869 			commit += sizeof(missed_events);
5870 		}
5871 		local_add(RB_MISSED_EVENTS, &bpage->commit);
5872 	}
5873 
5874 	/*
5875 	 * This page may be off to user land. Zero it out here.
5876 	 */
5877 	if (commit < buffer->subbuf_size)
5878 		memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
5879 
5880  out_unlock:
5881 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5882 
5883  out:
5884 	return ret;
5885 }
5886 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5887 
5888 /**
5889  * ring_buffer_read_page_data - get pointer to the data in the page.
5890  * @page:  the page to get the data from
5891  *
5892  * Returns pointer to the actual data in this page.
5893  */
5894 void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
5895 {
5896 	return page->data;
5897 }
5898 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
5899 
5900 /**
5901  * ring_buffer_subbuf_size_get - get size of the sub buffer.
5902  * @buffer: the buffer to get the sub buffer size from
5903  *
5904  * Returns size of the sub buffer, in bytes.
5905  */
5906 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
5907 {
5908 	return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
5909 }
5910 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
5911 
5912 /**
5913  * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
5914  * @buffer: The ring_buffer to get the system sub page order from
5915  *
5916  * By default, one ring buffer sub page equals to one system page. This parameter
5917  * is configurable, per ring buffer. The size of the ring buffer sub page can be
5918  * extended, but must be an order of system page size.
5919  *
5920  * Returns the order of buffer sub page size, in system pages:
5921  * 0 means the sub buffer size is 1 system page and so forth.
5922  * In case of an error < 0 is returned.
5923  */
5924 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
5925 {
5926 	if (!buffer)
5927 		return -EINVAL;
5928 
5929 	return buffer->subbuf_order;
5930 }
5931 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
5932 
5933 /**
5934  * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
5935  * @buffer: The ring_buffer to set the new page size.
5936  * @order: Order of the system pages in one sub buffer page
5937  *
5938  * By default, one ring buffer pages equals to one system page. This API can be
5939  * used to set new size of the ring buffer page. The size must be order of
5940  * system page size, that's why the input parameter @order is the order of
5941  * system pages that are allocated for one ring buffer page:
5942  *  0 - 1 system page
5943  *  1 - 2 system pages
5944  *  3 - 4 system pages
5945  *  ...
5946  *
5947  * Returns 0 on success or < 0 in case of an error.
5948  */
5949 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
5950 {
5951 	struct ring_buffer_per_cpu *cpu_buffer;
5952 	struct buffer_page *bpage, *tmp;
5953 	int old_order, old_size;
5954 	int nr_pages;
5955 	int psize;
5956 	int err;
5957 	int cpu;
5958 
5959 	if (!buffer || order < 0)
5960 		return -EINVAL;
5961 
5962 	if (buffer->subbuf_order == order)
5963 		return 0;
5964 
5965 	psize = (1 << order) * PAGE_SIZE;
5966 	if (psize <= BUF_PAGE_HDR_SIZE)
5967 		return -EINVAL;
5968 
5969 	/* Size of a subbuf cannot be greater than the write counter */
5970 	if (psize > RB_WRITE_MASK + 1)
5971 		return -EINVAL;
5972 
5973 	old_order = buffer->subbuf_order;
5974 	old_size = buffer->subbuf_size;
5975 
5976 	/* prevent another thread from changing buffer sizes */
5977 	mutex_lock(&buffer->mutex);
5978 	atomic_inc(&buffer->record_disabled);
5979 
5980 	/* Make sure all commits have finished */
5981 	synchronize_rcu();
5982 
5983 	buffer->subbuf_order = order;
5984 	buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
5985 
5986 	/* Make sure all new buffers are allocated, before deleting the old ones */
5987 	for_each_buffer_cpu(buffer, cpu) {
5988 
5989 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
5990 			continue;
5991 
5992 		cpu_buffer = buffer->buffers[cpu];
5993 
5994 		if (cpu_buffer->mapped) {
5995 			err = -EBUSY;
5996 			goto error;
5997 		}
5998 
5999 		/* Update the number of pages to match the new size */
6000 		nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
6001 		nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
6002 
6003 		/* we need a minimum of two pages */
6004 		if (nr_pages < 2)
6005 			nr_pages = 2;
6006 
6007 		cpu_buffer->nr_pages_to_update = nr_pages;
6008 
6009 		/* Include the reader page */
6010 		nr_pages++;
6011 
6012 		/* Allocate the new size buffer */
6013 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
6014 		if (__rb_allocate_pages(cpu_buffer, nr_pages,
6015 					&cpu_buffer->new_pages)) {
6016 			/* not enough memory for new pages */
6017 			err = -ENOMEM;
6018 			goto error;
6019 		}
6020 	}
6021 
6022 	for_each_buffer_cpu(buffer, cpu) {
6023 
6024 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6025 			continue;
6026 
6027 		cpu_buffer = buffer->buffers[cpu];
6028 
6029 		/* Clear the head bit to make the link list normal to read */
6030 		rb_head_page_deactivate(cpu_buffer);
6031 
6032 		/* Now walk the list and free all the old sub buffers */
6033 		list_for_each_entry_safe(bpage, tmp, cpu_buffer->pages, list) {
6034 			list_del_init(&bpage->list);
6035 			free_buffer_page(bpage);
6036 		}
6037 		/* The above loop stopped an the last page needing to be freed */
6038 		bpage = list_entry(cpu_buffer->pages, struct buffer_page, list);
6039 		free_buffer_page(bpage);
6040 
6041 		/* Free the current reader page */
6042 		free_buffer_page(cpu_buffer->reader_page);
6043 
6044 		/* One page was allocated for the reader page */
6045 		cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
6046 						     struct buffer_page, list);
6047 		list_del_init(&cpu_buffer->reader_page->list);
6048 
6049 		/* The cpu_buffer pages are a link list with no head */
6050 		cpu_buffer->pages = cpu_buffer->new_pages.next;
6051 		cpu_buffer->new_pages.next->prev = cpu_buffer->new_pages.prev;
6052 		cpu_buffer->new_pages.prev->next = cpu_buffer->new_pages.next;
6053 
6054 		/* Clear the new_pages list */
6055 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
6056 
6057 		cpu_buffer->head_page
6058 			= list_entry(cpu_buffer->pages, struct buffer_page, list);
6059 		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
6060 
6061 		cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
6062 		cpu_buffer->nr_pages_to_update = 0;
6063 
6064 		free_pages((unsigned long)cpu_buffer->free_page, old_order);
6065 		cpu_buffer->free_page = NULL;
6066 
6067 		rb_head_page_activate(cpu_buffer);
6068 
6069 		rb_check_pages(cpu_buffer);
6070 	}
6071 
6072 	atomic_dec(&buffer->record_disabled);
6073 	mutex_unlock(&buffer->mutex);
6074 
6075 	return 0;
6076 
6077 error:
6078 	buffer->subbuf_order = old_order;
6079 	buffer->subbuf_size = old_size;
6080 
6081 	atomic_dec(&buffer->record_disabled);
6082 	mutex_unlock(&buffer->mutex);
6083 
6084 	for_each_buffer_cpu(buffer, cpu) {
6085 		cpu_buffer = buffer->buffers[cpu];
6086 
6087 		if (!cpu_buffer->nr_pages_to_update)
6088 			continue;
6089 
6090 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
6091 			list_del_init(&bpage->list);
6092 			free_buffer_page(bpage);
6093 		}
6094 	}
6095 
6096 	return err;
6097 }
6098 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
6099 
6100 static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6101 {
6102 	struct page *page;
6103 
6104 	if (cpu_buffer->meta_page)
6105 		return 0;
6106 
6107 	page = alloc_page(GFP_USER | __GFP_ZERO);
6108 	if (!page)
6109 		return -ENOMEM;
6110 
6111 	cpu_buffer->meta_page = page_to_virt(page);
6112 
6113 	return 0;
6114 }
6115 
6116 static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6117 {
6118 	unsigned long addr = (unsigned long)cpu_buffer->meta_page;
6119 
6120 	free_page(addr);
6121 	cpu_buffer->meta_page = NULL;
6122 }
6123 
6124 static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer,
6125 				   unsigned long *subbuf_ids)
6126 {
6127 	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6128 	unsigned int nr_subbufs = cpu_buffer->nr_pages + 1;
6129 	struct buffer_page *first_subbuf, *subbuf;
6130 	int id = 0;
6131 
6132 	subbuf_ids[id] = (unsigned long)cpu_buffer->reader_page->page;
6133 	cpu_buffer->reader_page->id = id++;
6134 
6135 	first_subbuf = subbuf = rb_set_head_page(cpu_buffer);
6136 	do {
6137 		if (WARN_ON(id >= nr_subbufs))
6138 			break;
6139 
6140 		subbuf_ids[id] = (unsigned long)subbuf->page;
6141 		subbuf->id = id;
6142 
6143 		rb_inc_page(&subbuf);
6144 		id++;
6145 	} while (subbuf != first_subbuf);
6146 
6147 	/* install subbuf ID to kern VA translation */
6148 	cpu_buffer->subbuf_ids = subbuf_ids;
6149 
6150 	meta->meta_page_size = PAGE_SIZE;
6151 	meta->meta_struct_len = sizeof(*meta);
6152 	meta->nr_subbufs = nr_subbufs;
6153 	meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6154 
6155 	rb_update_meta_page(cpu_buffer);
6156 }
6157 
6158 static struct ring_buffer_per_cpu *
6159 rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu)
6160 {
6161 	struct ring_buffer_per_cpu *cpu_buffer;
6162 
6163 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6164 		return ERR_PTR(-EINVAL);
6165 
6166 	cpu_buffer = buffer->buffers[cpu];
6167 
6168 	mutex_lock(&cpu_buffer->mapping_lock);
6169 
6170 	if (!cpu_buffer->mapped) {
6171 		mutex_unlock(&cpu_buffer->mapping_lock);
6172 		return ERR_PTR(-ENODEV);
6173 	}
6174 
6175 	return cpu_buffer;
6176 }
6177 
6178 static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6179 {
6180 	mutex_unlock(&cpu_buffer->mapping_lock);
6181 }
6182 
6183 /*
6184  * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need
6185  * to be set-up or torn-down.
6186  */
6187 static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer,
6188 			       bool inc)
6189 {
6190 	unsigned long flags;
6191 
6192 	lockdep_assert_held(&cpu_buffer->mapping_lock);
6193 
6194 	if (inc && cpu_buffer->mapped == UINT_MAX)
6195 		return -EBUSY;
6196 
6197 	if (WARN_ON(!inc && cpu_buffer->mapped == 0))
6198 		return -EINVAL;
6199 
6200 	mutex_lock(&cpu_buffer->buffer->mutex);
6201 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6202 
6203 	if (inc)
6204 		cpu_buffer->mapped++;
6205 	else
6206 		cpu_buffer->mapped--;
6207 
6208 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6209 	mutex_unlock(&cpu_buffer->buffer->mutex);
6210 
6211 	return 0;
6212 }
6213 
6214 /*
6215  *   +--------------+  pgoff == 0
6216  *   |   meta page  |
6217  *   +--------------+  pgoff == 1
6218  *   | subbuffer 0  |
6219  *   |              |
6220  *   +--------------+  pgoff == (1 + (1 << subbuf_order))
6221  *   | subbuffer 1  |
6222  *   |              |
6223  *         ...
6224  */
6225 #ifdef CONFIG_MMU
6226 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
6227 			struct vm_area_struct *vma)
6228 {
6229 	unsigned long nr_subbufs, nr_pages, vma_pages, pgoff = vma->vm_pgoff;
6230 	unsigned int subbuf_pages, subbuf_order;
6231 	struct page **pages;
6232 	int p = 0, s = 0;
6233 	int err;
6234 
6235 	/* Refuse MP_PRIVATE or writable mappings */
6236 	if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC ||
6237 	    !(vma->vm_flags & VM_MAYSHARE))
6238 		return -EPERM;
6239 
6240 	/*
6241 	 * Make sure the mapping cannot become writable later. Also tell the VM
6242 	 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND).
6243 	 */
6244 	vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP,
6245 		     VM_MAYWRITE);
6246 
6247 	lockdep_assert_held(&cpu_buffer->mapping_lock);
6248 
6249 	subbuf_order = cpu_buffer->buffer->subbuf_order;
6250 	subbuf_pages = 1 << subbuf_order;
6251 
6252 	nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */
6253 	nr_pages = ((nr_subbufs) << subbuf_order) - pgoff + 1; /* + meta-page */
6254 
6255 	vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
6256 	if (!vma_pages || vma_pages > nr_pages)
6257 		return -EINVAL;
6258 
6259 	nr_pages = vma_pages;
6260 
6261 	pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL);
6262 	if (!pages)
6263 		return -ENOMEM;
6264 
6265 	if (!pgoff) {
6266 		pages[p++] = virt_to_page(cpu_buffer->meta_page);
6267 
6268 		/*
6269 		 * TODO: Align sub-buffers on their size, once
6270 		 * vm_insert_pages() supports the zero-page.
6271 		 */
6272 	} else {
6273 		/* Skip the meta-page */
6274 		pgoff--;
6275 
6276 		if (pgoff % subbuf_pages) {
6277 			err = -EINVAL;
6278 			goto out;
6279 		}
6280 
6281 		s += pgoff / subbuf_pages;
6282 	}
6283 
6284 	while (p < nr_pages) {
6285 		struct page *page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]);
6286 		int off = 0;
6287 
6288 		if (WARN_ON_ONCE(s >= nr_subbufs)) {
6289 			err = -EINVAL;
6290 			goto out;
6291 		}
6292 
6293 		for (; off < (1 << (subbuf_order)); off++, page++) {
6294 			if (p >= nr_pages)
6295 				break;
6296 
6297 			pages[p++] = page;
6298 		}
6299 		s++;
6300 	}
6301 
6302 	err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
6303 
6304 out:
6305 	kfree(pages);
6306 
6307 	return err;
6308 }
6309 #else
6310 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
6311 			struct vm_area_struct *vma)
6312 {
6313 	return -EOPNOTSUPP;
6314 }
6315 #endif
6316 
6317 int ring_buffer_map(struct trace_buffer *buffer, int cpu,
6318 		    struct vm_area_struct *vma)
6319 {
6320 	struct ring_buffer_per_cpu *cpu_buffer;
6321 	unsigned long flags, *subbuf_ids;
6322 	int err = 0;
6323 
6324 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6325 		return -EINVAL;
6326 
6327 	cpu_buffer = buffer->buffers[cpu];
6328 
6329 	mutex_lock(&cpu_buffer->mapping_lock);
6330 
6331 	if (cpu_buffer->mapped) {
6332 		err = __rb_map_vma(cpu_buffer, vma);
6333 		if (!err)
6334 			err = __rb_inc_dec_mapped(cpu_buffer, true);
6335 		mutex_unlock(&cpu_buffer->mapping_lock);
6336 		return err;
6337 	}
6338 
6339 	/* prevent another thread from changing buffer/sub-buffer sizes */
6340 	mutex_lock(&buffer->mutex);
6341 
6342 	err = rb_alloc_meta_page(cpu_buffer);
6343 	if (err)
6344 		goto unlock;
6345 
6346 	/* subbuf_ids include the reader while nr_pages does not */
6347 	subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL);
6348 	if (!subbuf_ids) {
6349 		rb_free_meta_page(cpu_buffer);
6350 		err = -ENOMEM;
6351 		goto unlock;
6352 	}
6353 
6354 	atomic_inc(&cpu_buffer->resize_disabled);
6355 
6356 	/*
6357 	 * Lock all readers to block any subbuf swap until the subbuf IDs are
6358 	 * assigned.
6359 	 */
6360 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6361 	rb_setup_ids_meta_page(cpu_buffer, subbuf_ids);
6362 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6363 
6364 	err = __rb_map_vma(cpu_buffer, vma);
6365 	if (!err) {
6366 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6367 		cpu_buffer->mapped = 1;
6368 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6369 	} else {
6370 		kfree(cpu_buffer->subbuf_ids);
6371 		cpu_buffer->subbuf_ids = NULL;
6372 		rb_free_meta_page(cpu_buffer);
6373 	}
6374 
6375 unlock:
6376 	mutex_unlock(&buffer->mutex);
6377 	mutex_unlock(&cpu_buffer->mapping_lock);
6378 
6379 	return err;
6380 }
6381 
6382 int ring_buffer_unmap(struct trace_buffer *buffer, int cpu)
6383 {
6384 	struct ring_buffer_per_cpu *cpu_buffer;
6385 	unsigned long flags;
6386 	int err = 0;
6387 
6388 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6389 		return -EINVAL;
6390 
6391 	cpu_buffer = buffer->buffers[cpu];
6392 
6393 	mutex_lock(&cpu_buffer->mapping_lock);
6394 
6395 	if (!cpu_buffer->mapped) {
6396 		err = -ENODEV;
6397 		goto out;
6398 	} else if (cpu_buffer->mapped > 1) {
6399 		__rb_inc_dec_mapped(cpu_buffer, false);
6400 		goto out;
6401 	}
6402 
6403 	mutex_lock(&buffer->mutex);
6404 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6405 
6406 	cpu_buffer->mapped = 0;
6407 
6408 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6409 
6410 	kfree(cpu_buffer->subbuf_ids);
6411 	cpu_buffer->subbuf_ids = NULL;
6412 	rb_free_meta_page(cpu_buffer);
6413 	atomic_dec(&cpu_buffer->resize_disabled);
6414 
6415 	mutex_unlock(&buffer->mutex);
6416 
6417 out:
6418 	mutex_unlock(&cpu_buffer->mapping_lock);
6419 
6420 	return err;
6421 }
6422 
6423 int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu)
6424 {
6425 	struct ring_buffer_per_cpu *cpu_buffer;
6426 	struct buffer_page *reader;
6427 	unsigned long missed_events;
6428 	unsigned long reader_size;
6429 	unsigned long flags;
6430 
6431 	cpu_buffer = rb_get_mapped_buffer(buffer, cpu);
6432 	if (IS_ERR(cpu_buffer))
6433 		return (int)PTR_ERR(cpu_buffer);
6434 
6435 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6436 
6437 consume:
6438 	if (rb_per_cpu_empty(cpu_buffer))
6439 		goto out;
6440 
6441 	reader_size = rb_page_size(cpu_buffer->reader_page);
6442 
6443 	/*
6444 	 * There are data to be read on the current reader page, we can
6445 	 * return to the caller. But before that, we assume the latter will read
6446 	 * everything. Let's update the kernel reader accordingly.
6447 	 */
6448 	if (cpu_buffer->reader_page->read < reader_size) {
6449 		while (cpu_buffer->reader_page->read < reader_size)
6450 			rb_advance_reader(cpu_buffer);
6451 		goto out;
6452 	}
6453 
6454 	reader = rb_get_reader_page(cpu_buffer);
6455 	if (WARN_ON(!reader))
6456 		goto out;
6457 
6458 	/* Check if any events were dropped */
6459 	missed_events = cpu_buffer->lost_events;
6460 
6461 	if (cpu_buffer->reader_page != cpu_buffer->commit_page) {
6462 		if (missed_events) {
6463 			struct buffer_data_page *bpage = reader->page;
6464 			unsigned int commit;
6465 			/*
6466 			 * Use the real_end for the data size,
6467 			 * This gives us a chance to store the lost events
6468 			 * on the page.
6469 			 */
6470 			if (reader->real_end)
6471 				local_set(&bpage->commit, reader->real_end);
6472 			/*
6473 			 * If there is room at the end of the page to save the
6474 			 * missed events, then record it there.
6475 			 */
6476 			commit = rb_page_size(reader);
6477 			if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
6478 				memcpy(&bpage->data[commit], &missed_events,
6479 				       sizeof(missed_events));
6480 				local_add(RB_MISSED_STORED, &bpage->commit);
6481 			}
6482 			local_add(RB_MISSED_EVENTS, &bpage->commit);
6483 		}
6484 	} else {
6485 		/*
6486 		 * There really shouldn't be any missed events if the commit
6487 		 * is on the reader page.
6488 		 */
6489 		WARN_ON_ONCE(missed_events);
6490 	}
6491 
6492 	cpu_buffer->lost_events = 0;
6493 
6494 	goto consume;
6495 
6496 out:
6497 	/* Some archs do not have data cache coherency between kernel and user-space */
6498 	flush_dcache_folio(virt_to_folio(cpu_buffer->reader_page->page));
6499 
6500 	rb_update_meta_page(cpu_buffer);
6501 
6502 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6503 	rb_put_mapped_buffer(cpu_buffer);
6504 
6505 	return 0;
6506 }
6507 
6508 /*
6509  * We only allocate new buffers, never free them if the CPU goes down.
6510  * If we were to free the buffer, then the user would lose any trace that was in
6511  * the buffer.
6512  */
6513 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
6514 {
6515 	struct trace_buffer *buffer;
6516 	long nr_pages_same;
6517 	int cpu_i;
6518 	unsigned long nr_pages;
6519 
6520 	buffer = container_of(node, struct trace_buffer, node);
6521 	if (cpumask_test_cpu(cpu, buffer->cpumask))
6522 		return 0;
6523 
6524 	nr_pages = 0;
6525 	nr_pages_same = 1;
6526 	/* check if all cpu sizes are same */
6527 	for_each_buffer_cpu(buffer, cpu_i) {
6528 		/* fill in the size from first enabled cpu */
6529 		if (nr_pages == 0)
6530 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
6531 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
6532 			nr_pages_same = 0;
6533 			break;
6534 		}
6535 	}
6536 	/* allocate minimum pages, user can later expand it */
6537 	if (!nr_pages_same)
6538 		nr_pages = 2;
6539 	buffer->buffers[cpu] =
6540 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
6541 	if (!buffer->buffers[cpu]) {
6542 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
6543 		     cpu);
6544 		return -ENOMEM;
6545 	}
6546 	smp_wmb();
6547 	cpumask_set_cpu(cpu, buffer->cpumask);
6548 	return 0;
6549 }
6550 
6551 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
6552 /*
6553  * This is a basic integrity check of the ring buffer.
6554  * Late in the boot cycle this test will run when configured in.
6555  * It will kick off a thread per CPU that will go into a loop
6556  * writing to the per cpu ring buffer various sizes of data.
6557  * Some of the data will be large items, some small.
6558  *
6559  * Another thread is created that goes into a spin, sending out
6560  * IPIs to the other CPUs to also write into the ring buffer.
6561  * this is to test the nesting ability of the buffer.
6562  *
6563  * Basic stats are recorded and reported. If something in the
6564  * ring buffer should happen that's not expected, a big warning
6565  * is displayed and all ring buffers are disabled.
6566  */
6567 static struct task_struct *rb_threads[NR_CPUS] __initdata;
6568 
6569 struct rb_test_data {
6570 	struct trace_buffer *buffer;
6571 	unsigned long		events;
6572 	unsigned long		bytes_written;
6573 	unsigned long		bytes_alloc;
6574 	unsigned long		bytes_dropped;
6575 	unsigned long		events_nested;
6576 	unsigned long		bytes_written_nested;
6577 	unsigned long		bytes_alloc_nested;
6578 	unsigned long		bytes_dropped_nested;
6579 	int			min_size_nested;
6580 	int			max_size_nested;
6581 	int			max_size;
6582 	int			min_size;
6583 	int			cpu;
6584 	int			cnt;
6585 };
6586 
6587 static struct rb_test_data rb_data[NR_CPUS] __initdata;
6588 
6589 /* 1 meg per cpu */
6590 #define RB_TEST_BUFFER_SIZE	1048576
6591 
6592 static char rb_string[] __initdata =
6593 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
6594 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
6595 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
6596 
6597 static bool rb_test_started __initdata;
6598 
6599 struct rb_item {
6600 	int size;
6601 	char str[];
6602 };
6603 
6604 static __init int rb_write_something(struct rb_test_data *data, bool nested)
6605 {
6606 	struct ring_buffer_event *event;
6607 	struct rb_item *item;
6608 	bool started;
6609 	int event_len;
6610 	int size;
6611 	int len;
6612 	int cnt;
6613 
6614 	/* Have nested writes different that what is written */
6615 	cnt = data->cnt + (nested ? 27 : 0);
6616 
6617 	/* Multiply cnt by ~e, to make some unique increment */
6618 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
6619 
6620 	len = size + sizeof(struct rb_item);
6621 
6622 	started = rb_test_started;
6623 	/* read rb_test_started before checking buffer enabled */
6624 	smp_rmb();
6625 
6626 	event = ring_buffer_lock_reserve(data->buffer, len);
6627 	if (!event) {
6628 		/* Ignore dropped events before test starts. */
6629 		if (started) {
6630 			if (nested)
6631 				data->bytes_dropped += len;
6632 			else
6633 				data->bytes_dropped_nested += len;
6634 		}
6635 		return len;
6636 	}
6637 
6638 	event_len = ring_buffer_event_length(event);
6639 
6640 	if (RB_WARN_ON(data->buffer, event_len < len))
6641 		goto out;
6642 
6643 	item = ring_buffer_event_data(event);
6644 	item->size = size;
6645 	memcpy(item->str, rb_string, size);
6646 
6647 	if (nested) {
6648 		data->bytes_alloc_nested += event_len;
6649 		data->bytes_written_nested += len;
6650 		data->events_nested++;
6651 		if (!data->min_size_nested || len < data->min_size_nested)
6652 			data->min_size_nested = len;
6653 		if (len > data->max_size_nested)
6654 			data->max_size_nested = len;
6655 	} else {
6656 		data->bytes_alloc += event_len;
6657 		data->bytes_written += len;
6658 		data->events++;
6659 		if (!data->min_size || len < data->min_size)
6660 			data->max_size = len;
6661 		if (len > data->max_size)
6662 			data->max_size = len;
6663 	}
6664 
6665  out:
6666 	ring_buffer_unlock_commit(data->buffer);
6667 
6668 	return 0;
6669 }
6670 
6671 static __init int rb_test(void *arg)
6672 {
6673 	struct rb_test_data *data = arg;
6674 
6675 	while (!kthread_should_stop()) {
6676 		rb_write_something(data, false);
6677 		data->cnt++;
6678 
6679 		set_current_state(TASK_INTERRUPTIBLE);
6680 		/* Now sleep between a min of 100-300us and a max of 1ms */
6681 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
6682 	}
6683 
6684 	return 0;
6685 }
6686 
6687 static __init void rb_ipi(void *ignore)
6688 {
6689 	struct rb_test_data *data;
6690 	int cpu = smp_processor_id();
6691 
6692 	data = &rb_data[cpu];
6693 	rb_write_something(data, true);
6694 }
6695 
6696 static __init int rb_hammer_test(void *arg)
6697 {
6698 	while (!kthread_should_stop()) {
6699 
6700 		/* Send an IPI to all cpus to write data! */
6701 		smp_call_function(rb_ipi, NULL, 1);
6702 		/* No sleep, but for non preempt, let others run */
6703 		schedule();
6704 	}
6705 
6706 	return 0;
6707 }
6708 
6709 static __init int test_ringbuffer(void)
6710 {
6711 	struct task_struct *rb_hammer;
6712 	struct trace_buffer *buffer;
6713 	int cpu;
6714 	int ret = 0;
6715 
6716 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
6717 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6718 		return 0;
6719 	}
6720 
6721 	pr_info("Running ring buffer tests...\n");
6722 
6723 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6724 	if (WARN_ON(!buffer))
6725 		return 0;
6726 
6727 	/* Disable buffer so that threads can't write to it yet */
6728 	ring_buffer_record_off(buffer);
6729 
6730 	for_each_online_cpu(cpu) {
6731 		rb_data[cpu].buffer = buffer;
6732 		rb_data[cpu].cpu = cpu;
6733 		rb_data[cpu].cnt = cpu;
6734 		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6735 						     cpu, "rbtester/%u");
6736 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6737 			pr_cont("FAILED\n");
6738 			ret = PTR_ERR(rb_threads[cpu]);
6739 			goto out_free;
6740 		}
6741 	}
6742 
6743 	/* Now create the rb hammer! */
6744 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6745 	if (WARN_ON(IS_ERR(rb_hammer))) {
6746 		pr_cont("FAILED\n");
6747 		ret = PTR_ERR(rb_hammer);
6748 		goto out_free;
6749 	}
6750 
6751 	ring_buffer_record_on(buffer);
6752 	/*
6753 	 * Show buffer is enabled before setting rb_test_started.
6754 	 * Yes there's a small race window where events could be
6755 	 * dropped and the thread wont catch it. But when a ring
6756 	 * buffer gets enabled, there will always be some kind of
6757 	 * delay before other CPUs see it. Thus, we don't care about
6758 	 * those dropped events. We care about events dropped after
6759 	 * the threads see that the buffer is active.
6760 	 */
6761 	smp_wmb();
6762 	rb_test_started = true;
6763 
6764 	set_current_state(TASK_INTERRUPTIBLE);
6765 	/* Just run for 10 seconds */;
6766 	schedule_timeout(10 * HZ);
6767 
6768 	kthread_stop(rb_hammer);
6769 
6770  out_free:
6771 	for_each_online_cpu(cpu) {
6772 		if (!rb_threads[cpu])
6773 			break;
6774 		kthread_stop(rb_threads[cpu]);
6775 	}
6776 	if (ret) {
6777 		ring_buffer_free(buffer);
6778 		return ret;
6779 	}
6780 
6781 	/* Report! */
6782 	pr_info("finished\n");
6783 	for_each_online_cpu(cpu) {
6784 		struct ring_buffer_event *event;
6785 		struct rb_test_data *data = &rb_data[cpu];
6786 		struct rb_item *item;
6787 		unsigned long total_events;
6788 		unsigned long total_dropped;
6789 		unsigned long total_written;
6790 		unsigned long total_alloc;
6791 		unsigned long total_read = 0;
6792 		unsigned long total_size = 0;
6793 		unsigned long total_len = 0;
6794 		unsigned long total_lost = 0;
6795 		unsigned long lost;
6796 		int big_event_size;
6797 		int small_event_size;
6798 
6799 		ret = -1;
6800 
6801 		total_events = data->events + data->events_nested;
6802 		total_written = data->bytes_written + data->bytes_written_nested;
6803 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6804 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6805 
6806 		big_event_size = data->max_size + data->max_size_nested;
6807 		small_event_size = data->min_size + data->min_size_nested;
6808 
6809 		pr_info("CPU %d:\n", cpu);
6810 		pr_info("              events:    %ld\n", total_events);
6811 		pr_info("       dropped bytes:    %ld\n", total_dropped);
6812 		pr_info("       alloced bytes:    %ld\n", total_alloc);
6813 		pr_info("       written bytes:    %ld\n", total_written);
6814 		pr_info("       biggest event:    %d\n", big_event_size);
6815 		pr_info("      smallest event:    %d\n", small_event_size);
6816 
6817 		if (RB_WARN_ON(buffer, total_dropped))
6818 			break;
6819 
6820 		ret = 0;
6821 
6822 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6823 			total_lost += lost;
6824 			item = ring_buffer_event_data(event);
6825 			total_len += ring_buffer_event_length(event);
6826 			total_size += item->size + sizeof(struct rb_item);
6827 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6828 				pr_info("FAILED!\n");
6829 				pr_info("buffer had: %.*s\n", item->size, item->str);
6830 				pr_info("expected:   %.*s\n", item->size, rb_string);
6831 				RB_WARN_ON(buffer, 1);
6832 				ret = -1;
6833 				break;
6834 			}
6835 			total_read++;
6836 		}
6837 		if (ret)
6838 			break;
6839 
6840 		ret = -1;
6841 
6842 		pr_info("         read events:   %ld\n", total_read);
6843 		pr_info("         lost events:   %ld\n", total_lost);
6844 		pr_info("        total events:   %ld\n", total_lost + total_read);
6845 		pr_info("  recorded len bytes:   %ld\n", total_len);
6846 		pr_info(" recorded size bytes:   %ld\n", total_size);
6847 		if (total_lost) {
6848 			pr_info(" With dropped events, record len and size may not match\n"
6849 				" alloced and written from above\n");
6850 		} else {
6851 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
6852 				       total_size != total_written))
6853 				break;
6854 		}
6855 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6856 			break;
6857 
6858 		ret = 0;
6859 	}
6860 	if (!ret)
6861 		pr_info("Ring buffer PASSED!\n");
6862 
6863 	ring_buffer_free(buffer);
6864 	return 0;
6865 }
6866 
6867 late_initcall(test_ringbuffer);
6868 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
6869