xref: /linux/kernel/trace/ring_buffer.c (revision 580bb355bcae7e9a6606ce9644af09b2a793f1bb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/cacheflush.h>
13 #include <linux/trace_seq.h>
14 #include <linux/spinlock.h>
15 #include <linux/irq_work.h>
16 #include <linux/security.h>
17 #include <linux/uaccess.h>
18 #include <linux/hardirq.h>
19 #include <linux/kthread.h>	/* for self test */
20 #include <linux/module.h>
21 #include <linux/percpu.h>
22 #include <linux/mutex.h>
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/list.h>
28 #include <linux/cpu.h>
29 #include <linux/oom.h>
30 #include <linux/mm.h>
31 
32 #include <asm/local64.h>
33 #include <asm/local.h>
34 
35 #include "trace.h"
36 
37 /*
38  * The "absolute" timestamp in the buffer is only 59 bits.
39  * If a clock has the 5 MSBs set, it needs to be saved and
40  * reinserted.
41  */
42 #define TS_MSB		(0xf8ULL << 56)
43 #define ABS_TS_MASK	(~TS_MSB)
44 
45 static void update_pages_handler(struct work_struct *work);
46 
47 #define RING_BUFFER_META_MAGIC	0xBADFEED
48 
49 struct ring_buffer_meta {
50 	int		magic;
51 	int		struct_size;
52 	unsigned long	text_addr;
53 	unsigned long	data_addr;
54 	unsigned long	first_buffer;
55 	unsigned long	head_buffer;
56 	unsigned long	commit_buffer;
57 	__u32		subbuf_size;
58 	__u32		nr_subbufs;
59 	int		buffers[];
60 };
61 
62 /*
63  * The ring buffer header is special. We must manually up keep it.
64  */
65 int ring_buffer_print_entry_header(struct trace_seq *s)
66 {
67 	trace_seq_puts(s, "# compressed entry header\n");
68 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
69 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
70 	trace_seq_puts(s, "\tarray       :   32 bits\n");
71 	trace_seq_putc(s, '\n');
72 	trace_seq_printf(s, "\tpadding     : type == %d\n",
73 			 RINGBUF_TYPE_PADDING);
74 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
75 			 RINGBUF_TYPE_TIME_EXTEND);
76 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
77 			 RINGBUF_TYPE_TIME_STAMP);
78 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
79 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
80 
81 	return !trace_seq_has_overflowed(s);
82 }
83 
84 /*
85  * The ring buffer is made up of a list of pages. A separate list of pages is
86  * allocated for each CPU. A writer may only write to a buffer that is
87  * associated with the CPU it is currently executing on.  A reader may read
88  * from any per cpu buffer.
89  *
90  * The reader is special. For each per cpu buffer, the reader has its own
91  * reader page. When a reader has read the entire reader page, this reader
92  * page is swapped with another page in the ring buffer.
93  *
94  * Now, as long as the writer is off the reader page, the reader can do what
95  * ever it wants with that page. The writer will never write to that page
96  * again (as long as it is out of the ring buffer).
97  *
98  * Here's some silly ASCII art.
99  *
100  *   +------+
101  *   |reader|          RING BUFFER
102  *   |page  |
103  *   +------+        +---+   +---+   +---+
104  *                   |   |-->|   |-->|   |
105  *                   +---+   +---+   +---+
106  *                     ^               |
107  *                     |               |
108  *                     +---------------+
109  *
110  *
111  *   +------+
112  *   |reader|          RING BUFFER
113  *   |page  |------------------v
114  *   +------+        +---+   +---+   +---+
115  *                   |   |-->|   |-->|   |
116  *                   +---+   +---+   +---+
117  *                     ^               |
118  *                     |               |
119  *                     +---------------+
120  *
121  *
122  *   +------+
123  *   |reader|          RING BUFFER
124  *   |page  |------------------v
125  *   +------+        +---+   +---+   +---+
126  *      ^            |   |-->|   |-->|   |
127  *      |            +---+   +---+   +---+
128  *      |                              |
129  *      |                              |
130  *      +------------------------------+
131  *
132  *
133  *   +------+
134  *   |buffer|          RING BUFFER
135  *   |page  |------------------v
136  *   +------+        +---+   +---+   +---+
137  *      ^            |   |   |   |-->|   |
138  *      |   New      +---+   +---+   +---+
139  *      |  Reader------^               |
140  *      |   page                       |
141  *      +------------------------------+
142  *
143  *
144  * After we make this swap, the reader can hand this page off to the splice
145  * code and be done with it. It can even allocate a new page if it needs to
146  * and swap that into the ring buffer.
147  *
148  * We will be using cmpxchg soon to make all this lockless.
149  *
150  */
151 
152 /* Used for individual buffers (after the counter) */
153 #define RB_BUFFER_OFF		(1 << 20)
154 
155 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
156 
157 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
158 #define RB_ALIGNMENT		4U
159 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
160 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
161 
162 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
163 # define RB_FORCE_8BYTE_ALIGNMENT	0
164 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
165 #else
166 # define RB_FORCE_8BYTE_ALIGNMENT	1
167 # define RB_ARCH_ALIGNMENT		8U
168 #endif
169 
170 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
171 
172 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
173 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
174 
175 enum {
176 	RB_LEN_TIME_EXTEND = 8,
177 	RB_LEN_TIME_STAMP =  8,
178 };
179 
180 #define skip_time_extend(event) \
181 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
182 
183 #define extended_time(event) \
184 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
185 
186 static inline bool rb_null_event(struct ring_buffer_event *event)
187 {
188 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
189 }
190 
191 static void rb_event_set_padding(struct ring_buffer_event *event)
192 {
193 	/* padding has a NULL time_delta */
194 	event->type_len = RINGBUF_TYPE_PADDING;
195 	event->time_delta = 0;
196 }
197 
198 static unsigned
199 rb_event_data_length(struct ring_buffer_event *event)
200 {
201 	unsigned length;
202 
203 	if (event->type_len)
204 		length = event->type_len * RB_ALIGNMENT;
205 	else
206 		length = event->array[0];
207 	return length + RB_EVNT_HDR_SIZE;
208 }
209 
210 /*
211  * Return the length of the given event. Will return
212  * the length of the time extend if the event is a
213  * time extend.
214  */
215 static inline unsigned
216 rb_event_length(struct ring_buffer_event *event)
217 {
218 	switch (event->type_len) {
219 	case RINGBUF_TYPE_PADDING:
220 		if (rb_null_event(event))
221 			/* undefined */
222 			return -1;
223 		return  event->array[0] + RB_EVNT_HDR_SIZE;
224 
225 	case RINGBUF_TYPE_TIME_EXTEND:
226 		return RB_LEN_TIME_EXTEND;
227 
228 	case RINGBUF_TYPE_TIME_STAMP:
229 		return RB_LEN_TIME_STAMP;
230 
231 	case RINGBUF_TYPE_DATA:
232 		return rb_event_data_length(event);
233 	default:
234 		WARN_ON_ONCE(1);
235 	}
236 	/* not hit */
237 	return 0;
238 }
239 
240 /*
241  * Return total length of time extend and data,
242  *   or just the event length for all other events.
243  */
244 static inline unsigned
245 rb_event_ts_length(struct ring_buffer_event *event)
246 {
247 	unsigned len = 0;
248 
249 	if (extended_time(event)) {
250 		/* time extends include the data event after it */
251 		len = RB_LEN_TIME_EXTEND;
252 		event = skip_time_extend(event);
253 	}
254 	return len + rb_event_length(event);
255 }
256 
257 /**
258  * ring_buffer_event_length - return the length of the event
259  * @event: the event to get the length of
260  *
261  * Returns the size of the data load of a data event.
262  * If the event is something other than a data event, it
263  * returns the size of the event itself. With the exception
264  * of a TIME EXTEND, where it still returns the size of the
265  * data load of the data event after it.
266  */
267 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
268 {
269 	unsigned length;
270 
271 	if (extended_time(event))
272 		event = skip_time_extend(event);
273 
274 	length = rb_event_length(event);
275 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
276 		return length;
277 	length -= RB_EVNT_HDR_SIZE;
278 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
279                 length -= sizeof(event->array[0]);
280 	return length;
281 }
282 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
283 
284 /* inline for ring buffer fast paths */
285 static __always_inline void *
286 rb_event_data(struct ring_buffer_event *event)
287 {
288 	if (extended_time(event))
289 		event = skip_time_extend(event);
290 	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
291 	/* If length is in len field, then array[0] has the data */
292 	if (event->type_len)
293 		return (void *)&event->array[0];
294 	/* Otherwise length is in array[0] and array[1] has the data */
295 	return (void *)&event->array[1];
296 }
297 
298 /**
299  * ring_buffer_event_data - return the data of the event
300  * @event: the event to get the data from
301  */
302 void *ring_buffer_event_data(struct ring_buffer_event *event)
303 {
304 	return rb_event_data(event);
305 }
306 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
307 
308 #define for_each_buffer_cpu(buffer, cpu)		\
309 	for_each_cpu(cpu, buffer->cpumask)
310 
311 #define for_each_online_buffer_cpu(buffer, cpu)		\
312 	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
313 
314 #define TS_SHIFT	27
315 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
316 #define TS_DELTA_TEST	(~TS_MASK)
317 
318 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
319 {
320 	u64 ts;
321 
322 	ts = event->array[0];
323 	ts <<= TS_SHIFT;
324 	ts += event->time_delta;
325 
326 	return ts;
327 }
328 
329 /* Flag when events were overwritten */
330 #define RB_MISSED_EVENTS	(1 << 31)
331 /* Missed count stored at end */
332 #define RB_MISSED_STORED	(1 << 30)
333 
334 #define RB_MISSED_MASK		(3 << 30)
335 
336 struct buffer_data_page {
337 	u64		 time_stamp;	/* page time stamp */
338 	local_t		 commit;	/* write committed index */
339 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
340 };
341 
342 struct buffer_data_read_page {
343 	unsigned		order;	/* order of the page */
344 	struct buffer_data_page	*data;	/* actual data, stored in this page */
345 };
346 
347 /*
348  * Note, the buffer_page list must be first. The buffer pages
349  * are allocated in cache lines, which means that each buffer
350  * page will be at the beginning of a cache line, and thus
351  * the least significant bits will be zero. We use this to
352  * add flags in the list struct pointers, to make the ring buffer
353  * lockless.
354  */
355 struct buffer_page {
356 	struct list_head list;		/* list of buffer pages */
357 	local_t		 write;		/* index for next write */
358 	unsigned	 read;		/* index for next read */
359 	local_t		 entries;	/* entries on this page */
360 	unsigned long	 real_end;	/* real end of data */
361 	unsigned	 order;		/* order of the page */
362 	u32		 id:30;		/* ID for external mapping */
363 	u32		 range:1;	/* Mapped via a range */
364 	struct buffer_data_page *page;	/* Actual data page */
365 };
366 
367 /*
368  * The buffer page counters, write and entries, must be reset
369  * atomically when crossing page boundaries. To synchronize this
370  * update, two counters are inserted into the number. One is
371  * the actual counter for the write position or count on the page.
372  *
373  * The other is a counter of updaters. Before an update happens
374  * the update partition of the counter is incremented. This will
375  * allow the updater to update the counter atomically.
376  *
377  * The counter is 20 bits, and the state data is 12.
378  */
379 #define RB_WRITE_MASK		0xfffff
380 #define RB_WRITE_INTCNT		(1 << 20)
381 
382 static void rb_init_page(struct buffer_data_page *bpage)
383 {
384 	local_set(&bpage->commit, 0);
385 }
386 
387 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
388 {
389 	return local_read(&bpage->page->commit);
390 }
391 
392 static void free_buffer_page(struct buffer_page *bpage)
393 {
394 	/* Range pages are not to be freed */
395 	if (!bpage->range)
396 		free_pages((unsigned long)bpage->page, bpage->order);
397 	kfree(bpage);
398 }
399 
400 /*
401  * We need to fit the time_stamp delta into 27 bits.
402  */
403 static inline bool test_time_stamp(u64 delta)
404 {
405 	return !!(delta & TS_DELTA_TEST);
406 }
407 
408 struct rb_irq_work {
409 	struct irq_work			work;
410 	wait_queue_head_t		waiters;
411 	wait_queue_head_t		full_waiters;
412 	atomic_t			seq;
413 	bool				waiters_pending;
414 	bool				full_waiters_pending;
415 	bool				wakeup_full;
416 };
417 
418 /*
419  * Structure to hold event state and handle nested events.
420  */
421 struct rb_event_info {
422 	u64			ts;
423 	u64			delta;
424 	u64			before;
425 	u64			after;
426 	unsigned long		length;
427 	struct buffer_page	*tail_page;
428 	int			add_timestamp;
429 };
430 
431 /*
432  * Used for the add_timestamp
433  *  NONE
434  *  EXTEND - wants a time extend
435  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
436  *  FORCE - force a full time stamp.
437  */
438 enum {
439 	RB_ADD_STAMP_NONE		= 0,
440 	RB_ADD_STAMP_EXTEND		= BIT(1),
441 	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
442 	RB_ADD_STAMP_FORCE		= BIT(3)
443 };
444 /*
445  * Used for which event context the event is in.
446  *  TRANSITION = 0
447  *  NMI     = 1
448  *  IRQ     = 2
449  *  SOFTIRQ = 3
450  *  NORMAL  = 4
451  *
452  * See trace_recursive_lock() comment below for more details.
453  */
454 enum {
455 	RB_CTX_TRANSITION,
456 	RB_CTX_NMI,
457 	RB_CTX_IRQ,
458 	RB_CTX_SOFTIRQ,
459 	RB_CTX_NORMAL,
460 	RB_CTX_MAX
461 };
462 
463 struct rb_time_struct {
464 	local64_t	time;
465 };
466 typedef struct rb_time_struct rb_time_t;
467 
468 #define MAX_NEST	5
469 
470 /*
471  * head_page == tail_page && head == tail then buffer is empty.
472  */
473 struct ring_buffer_per_cpu {
474 	int				cpu;
475 	atomic_t			record_disabled;
476 	atomic_t			resize_disabled;
477 	struct trace_buffer	*buffer;
478 	raw_spinlock_t			reader_lock;	/* serialize readers */
479 	arch_spinlock_t			lock;
480 	struct lock_class_key		lock_key;
481 	struct buffer_data_page		*free_page;
482 	unsigned long			nr_pages;
483 	unsigned int			current_context;
484 	struct list_head		*pages;
485 	struct buffer_page		*head_page;	/* read from head */
486 	struct buffer_page		*tail_page;	/* write to tail */
487 	struct buffer_page		*commit_page;	/* committed pages */
488 	struct buffer_page		*reader_page;
489 	unsigned long			lost_events;
490 	unsigned long			last_overrun;
491 	unsigned long			nest;
492 	local_t				entries_bytes;
493 	local_t				entries;
494 	local_t				overrun;
495 	local_t				commit_overrun;
496 	local_t				dropped_events;
497 	local_t				committing;
498 	local_t				commits;
499 	local_t				pages_touched;
500 	local_t				pages_lost;
501 	local_t				pages_read;
502 	long				last_pages_touch;
503 	size_t				shortest_full;
504 	unsigned long			read;
505 	unsigned long			read_bytes;
506 	rb_time_t			write_stamp;
507 	rb_time_t			before_stamp;
508 	u64				event_stamp[MAX_NEST];
509 	u64				read_stamp;
510 	/* pages removed since last reset */
511 	unsigned long			pages_removed;
512 
513 	unsigned int			mapped;
514 	unsigned int			user_mapped;	/* user space mapping */
515 	struct mutex			mapping_lock;
516 	unsigned long			*subbuf_ids;	/* ID to subbuf VA */
517 	struct trace_buffer_meta	*meta_page;
518 	struct ring_buffer_meta		*ring_meta;
519 
520 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
521 	long				nr_pages_to_update;
522 	struct list_head		new_pages; /* new pages to add */
523 	struct work_struct		update_pages_work;
524 	struct completion		update_done;
525 
526 	struct rb_irq_work		irq_work;
527 };
528 
529 struct trace_buffer {
530 	unsigned			flags;
531 	int				cpus;
532 	atomic_t			record_disabled;
533 	atomic_t			resizing;
534 	cpumask_var_t			cpumask;
535 
536 	struct lock_class_key		*reader_lock_key;
537 
538 	struct mutex			mutex;
539 
540 	struct ring_buffer_per_cpu	**buffers;
541 
542 	struct hlist_node		node;
543 	u64				(*clock)(void);
544 
545 	struct rb_irq_work		irq_work;
546 	bool				time_stamp_abs;
547 
548 	unsigned long			range_addr_start;
549 	unsigned long			range_addr_end;
550 
551 	long				last_text_delta;
552 	long				last_data_delta;
553 
554 	unsigned int			subbuf_size;
555 	unsigned int			subbuf_order;
556 	unsigned int			max_data_size;
557 };
558 
559 struct ring_buffer_iter {
560 	struct ring_buffer_per_cpu	*cpu_buffer;
561 	unsigned long			head;
562 	unsigned long			next_event;
563 	struct buffer_page		*head_page;
564 	struct buffer_page		*cache_reader_page;
565 	unsigned long			cache_read;
566 	unsigned long			cache_pages_removed;
567 	u64				read_stamp;
568 	u64				page_stamp;
569 	struct ring_buffer_event	*event;
570 	size_t				event_size;
571 	int				missed_events;
572 };
573 
574 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
575 {
576 	struct buffer_data_page field;
577 
578 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
579 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
580 			 (unsigned int)sizeof(field.time_stamp),
581 			 (unsigned int)is_signed_type(u64));
582 
583 	trace_seq_printf(s, "\tfield: local_t commit;\t"
584 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
585 			 (unsigned int)offsetof(typeof(field), commit),
586 			 (unsigned int)sizeof(field.commit),
587 			 (unsigned int)is_signed_type(long));
588 
589 	trace_seq_printf(s, "\tfield: int overwrite;\t"
590 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
591 			 (unsigned int)offsetof(typeof(field), commit),
592 			 1,
593 			 (unsigned int)is_signed_type(long));
594 
595 	trace_seq_printf(s, "\tfield: char data;\t"
596 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
597 			 (unsigned int)offsetof(typeof(field), data),
598 			 (unsigned int)buffer->subbuf_size,
599 			 (unsigned int)is_signed_type(char));
600 
601 	return !trace_seq_has_overflowed(s);
602 }
603 
604 static inline void rb_time_read(rb_time_t *t, u64 *ret)
605 {
606 	*ret = local64_read(&t->time);
607 }
608 static void rb_time_set(rb_time_t *t, u64 val)
609 {
610 	local64_set(&t->time, val);
611 }
612 
613 /*
614  * Enable this to make sure that the event passed to
615  * ring_buffer_event_time_stamp() is not committed and also
616  * is on the buffer that it passed in.
617  */
618 //#define RB_VERIFY_EVENT
619 #ifdef RB_VERIFY_EVENT
620 static struct list_head *rb_list_head(struct list_head *list);
621 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
622 			 void *event)
623 {
624 	struct buffer_page *page = cpu_buffer->commit_page;
625 	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
626 	struct list_head *next;
627 	long commit, write;
628 	unsigned long addr = (unsigned long)event;
629 	bool done = false;
630 	int stop = 0;
631 
632 	/* Make sure the event exists and is not committed yet */
633 	do {
634 		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
635 			done = true;
636 		commit = local_read(&page->page->commit);
637 		write = local_read(&page->write);
638 		if (addr >= (unsigned long)&page->page->data[commit] &&
639 		    addr < (unsigned long)&page->page->data[write])
640 			return;
641 
642 		next = rb_list_head(page->list.next);
643 		page = list_entry(next, struct buffer_page, list);
644 	} while (!done);
645 	WARN_ON_ONCE(1);
646 }
647 #else
648 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
649 			 void *event)
650 {
651 }
652 #endif
653 
654 /*
655  * The absolute time stamp drops the 5 MSBs and some clocks may
656  * require them. The rb_fix_abs_ts() will take a previous full
657  * time stamp, and add the 5 MSB of that time stamp on to the
658  * saved absolute time stamp. Then they are compared in case of
659  * the unlikely event that the latest time stamp incremented
660  * the 5 MSB.
661  */
662 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
663 {
664 	if (save_ts & TS_MSB) {
665 		abs |= save_ts & TS_MSB;
666 		/* Check for overflow */
667 		if (unlikely(abs < save_ts))
668 			abs += 1ULL << 59;
669 	}
670 	return abs;
671 }
672 
673 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
674 
675 /**
676  * ring_buffer_event_time_stamp - return the event's current time stamp
677  * @buffer: The buffer that the event is on
678  * @event: the event to get the time stamp of
679  *
680  * Note, this must be called after @event is reserved, and before it is
681  * committed to the ring buffer. And must be called from the same
682  * context where the event was reserved (normal, softirq, irq, etc).
683  *
684  * Returns the time stamp associated with the current event.
685  * If the event has an extended time stamp, then that is used as
686  * the time stamp to return.
687  * In the highly unlikely case that the event was nested more than
688  * the max nesting, then the write_stamp of the buffer is returned,
689  * otherwise  current time is returned, but that really neither of
690  * the last two cases should ever happen.
691  */
692 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
693 				 struct ring_buffer_event *event)
694 {
695 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
696 	unsigned int nest;
697 	u64 ts;
698 
699 	/* If the event includes an absolute time, then just use that */
700 	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
701 		ts = rb_event_time_stamp(event);
702 		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
703 	}
704 
705 	nest = local_read(&cpu_buffer->committing);
706 	verify_event(cpu_buffer, event);
707 	if (WARN_ON_ONCE(!nest))
708 		goto fail;
709 
710 	/* Read the current saved nesting level time stamp */
711 	if (likely(--nest < MAX_NEST))
712 		return cpu_buffer->event_stamp[nest];
713 
714 	/* Shouldn't happen, warn if it does */
715 	WARN_ONCE(1, "nest (%d) greater than max", nest);
716 
717  fail:
718 	rb_time_read(&cpu_buffer->write_stamp, &ts);
719 
720 	return ts;
721 }
722 
723 /**
724  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
725  * @buffer: The ring_buffer to get the number of pages from
726  * @cpu: The cpu of the ring_buffer to get the number of pages from
727  *
728  * Returns the number of pages that have content in the ring buffer.
729  */
730 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
731 {
732 	size_t read;
733 	size_t lost;
734 	size_t cnt;
735 
736 	read = local_read(&buffer->buffers[cpu]->pages_read);
737 	lost = local_read(&buffer->buffers[cpu]->pages_lost);
738 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
739 
740 	if (WARN_ON_ONCE(cnt < lost))
741 		return 0;
742 
743 	cnt -= lost;
744 
745 	/* The reader can read an empty page, but not more than that */
746 	if (cnt < read) {
747 		WARN_ON_ONCE(read > cnt + 1);
748 		return 0;
749 	}
750 
751 	return cnt - read;
752 }
753 
754 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
755 {
756 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
757 	size_t nr_pages;
758 	size_t dirty;
759 
760 	nr_pages = cpu_buffer->nr_pages;
761 	if (!nr_pages || !full)
762 		return true;
763 
764 	/*
765 	 * Add one as dirty will never equal nr_pages, as the sub-buffer
766 	 * that the writer is on is not counted as dirty.
767 	 * This is needed if "buffer_percent" is set to 100.
768 	 */
769 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
770 
771 	return (dirty * 100) >= (full * nr_pages);
772 }
773 
774 /*
775  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
776  *
777  * Schedules a delayed work to wake up any task that is blocked on the
778  * ring buffer waiters queue.
779  */
780 static void rb_wake_up_waiters(struct irq_work *work)
781 {
782 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
783 
784 	/* For waiters waiting for the first wake up */
785 	(void)atomic_fetch_inc_release(&rbwork->seq);
786 
787 	wake_up_all(&rbwork->waiters);
788 	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
789 		/* Only cpu_buffer sets the above flags */
790 		struct ring_buffer_per_cpu *cpu_buffer =
791 			container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
792 
793 		/* Called from interrupt context */
794 		raw_spin_lock(&cpu_buffer->reader_lock);
795 		rbwork->wakeup_full = false;
796 		rbwork->full_waiters_pending = false;
797 
798 		/* Waking up all waiters, they will reset the shortest full */
799 		cpu_buffer->shortest_full = 0;
800 		raw_spin_unlock(&cpu_buffer->reader_lock);
801 
802 		wake_up_all(&rbwork->full_waiters);
803 	}
804 }
805 
806 /**
807  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
808  * @buffer: The ring buffer to wake waiters on
809  * @cpu: The CPU buffer to wake waiters on
810  *
811  * In the case of a file that represents a ring buffer is closing,
812  * it is prudent to wake up any waiters that are on this.
813  */
814 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
815 {
816 	struct ring_buffer_per_cpu *cpu_buffer;
817 	struct rb_irq_work *rbwork;
818 
819 	if (!buffer)
820 		return;
821 
822 	if (cpu == RING_BUFFER_ALL_CPUS) {
823 
824 		/* Wake up individual ones too. One level recursion */
825 		for_each_buffer_cpu(buffer, cpu)
826 			ring_buffer_wake_waiters(buffer, cpu);
827 
828 		rbwork = &buffer->irq_work;
829 	} else {
830 		if (WARN_ON_ONCE(!buffer->buffers))
831 			return;
832 		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
833 			return;
834 
835 		cpu_buffer = buffer->buffers[cpu];
836 		/* The CPU buffer may not have been initialized yet */
837 		if (!cpu_buffer)
838 			return;
839 		rbwork = &cpu_buffer->irq_work;
840 	}
841 
842 	/* This can be called in any context */
843 	irq_work_queue(&rbwork->work);
844 }
845 
846 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
847 {
848 	struct ring_buffer_per_cpu *cpu_buffer;
849 	bool ret = false;
850 
851 	/* Reads of all CPUs always waits for any data */
852 	if (cpu == RING_BUFFER_ALL_CPUS)
853 		return !ring_buffer_empty(buffer);
854 
855 	cpu_buffer = buffer->buffers[cpu];
856 
857 	if (!ring_buffer_empty_cpu(buffer, cpu)) {
858 		unsigned long flags;
859 		bool pagebusy;
860 
861 		if (!full)
862 			return true;
863 
864 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
865 		pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
866 		ret = !pagebusy && full_hit(buffer, cpu, full);
867 
868 		if (!ret && (!cpu_buffer->shortest_full ||
869 			     cpu_buffer->shortest_full > full)) {
870 		    cpu_buffer->shortest_full = full;
871 		}
872 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
873 	}
874 	return ret;
875 }
876 
877 static inline bool
878 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer,
879 	     int cpu, int full, ring_buffer_cond_fn cond, void *data)
880 {
881 	if (rb_watermark_hit(buffer, cpu, full))
882 		return true;
883 
884 	if (cond(data))
885 		return true;
886 
887 	/*
888 	 * The events can happen in critical sections where
889 	 * checking a work queue can cause deadlocks.
890 	 * After adding a task to the queue, this flag is set
891 	 * only to notify events to try to wake up the queue
892 	 * using irq_work.
893 	 *
894 	 * We don't clear it even if the buffer is no longer
895 	 * empty. The flag only causes the next event to run
896 	 * irq_work to do the work queue wake up. The worse
897 	 * that can happen if we race with !trace_empty() is that
898 	 * an event will cause an irq_work to try to wake up
899 	 * an empty queue.
900 	 *
901 	 * There's no reason to protect this flag either, as
902 	 * the work queue and irq_work logic will do the necessary
903 	 * synchronization for the wake ups. The only thing
904 	 * that is necessary is that the wake up happens after
905 	 * a task has been queued. It's OK for spurious wake ups.
906 	 */
907 	if (full)
908 		rbwork->full_waiters_pending = true;
909 	else
910 		rbwork->waiters_pending = true;
911 
912 	return false;
913 }
914 
915 struct rb_wait_data {
916 	struct rb_irq_work		*irq_work;
917 	int				seq;
918 };
919 
920 /*
921  * The default wait condition for ring_buffer_wait() is to just to exit the
922  * wait loop the first time it is woken up.
923  */
924 static bool rb_wait_once(void *data)
925 {
926 	struct rb_wait_data *rdata = data;
927 	struct rb_irq_work *rbwork = rdata->irq_work;
928 
929 	return atomic_read_acquire(&rbwork->seq) != rdata->seq;
930 }
931 
932 /**
933  * ring_buffer_wait - wait for input to the ring buffer
934  * @buffer: buffer to wait on
935  * @cpu: the cpu buffer to wait on
936  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
937  * @cond: condition function to break out of wait (NULL to run once)
938  * @data: the data to pass to @cond.
939  *
940  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
941  * as data is added to any of the @buffer's cpu buffers. Otherwise
942  * it will wait for data to be added to a specific cpu buffer.
943  */
944 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full,
945 		     ring_buffer_cond_fn cond, void *data)
946 {
947 	struct ring_buffer_per_cpu *cpu_buffer;
948 	struct wait_queue_head *waitq;
949 	struct rb_irq_work *rbwork;
950 	struct rb_wait_data rdata;
951 	int ret = 0;
952 
953 	/*
954 	 * Depending on what the caller is waiting for, either any
955 	 * data in any cpu buffer, or a specific buffer, put the
956 	 * caller on the appropriate wait queue.
957 	 */
958 	if (cpu == RING_BUFFER_ALL_CPUS) {
959 		rbwork = &buffer->irq_work;
960 		/* Full only makes sense on per cpu reads */
961 		full = 0;
962 	} else {
963 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
964 			return -ENODEV;
965 		cpu_buffer = buffer->buffers[cpu];
966 		rbwork = &cpu_buffer->irq_work;
967 	}
968 
969 	if (full)
970 		waitq = &rbwork->full_waiters;
971 	else
972 		waitq = &rbwork->waiters;
973 
974 	/* Set up to exit loop as soon as it is woken */
975 	if (!cond) {
976 		cond = rb_wait_once;
977 		rdata.irq_work = rbwork;
978 		rdata.seq = atomic_read_acquire(&rbwork->seq);
979 		data = &rdata;
980 	}
981 
982 	ret = wait_event_interruptible((*waitq),
983 				rb_wait_cond(rbwork, buffer, cpu, full, cond, data));
984 
985 	return ret;
986 }
987 
988 /**
989  * ring_buffer_poll_wait - poll on buffer input
990  * @buffer: buffer to wait on
991  * @cpu: the cpu buffer to wait on
992  * @filp: the file descriptor
993  * @poll_table: The poll descriptor
994  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
995  *
996  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
997  * as data is added to any of the @buffer's cpu buffers. Otherwise
998  * it will wait for data to be added to a specific cpu buffer.
999  *
1000  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1001  * zero otherwise.
1002  */
1003 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1004 			  struct file *filp, poll_table *poll_table, int full)
1005 {
1006 	struct ring_buffer_per_cpu *cpu_buffer;
1007 	struct rb_irq_work *rbwork;
1008 
1009 	if (cpu == RING_BUFFER_ALL_CPUS) {
1010 		rbwork = &buffer->irq_work;
1011 		full = 0;
1012 	} else {
1013 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1014 			return EPOLLERR;
1015 
1016 		cpu_buffer = buffer->buffers[cpu];
1017 		rbwork = &cpu_buffer->irq_work;
1018 	}
1019 
1020 	if (full) {
1021 		poll_wait(filp, &rbwork->full_waiters, poll_table);
1022 
1023 		if (rb_watermark_hit(buffer, cpu, full))
1024 			return EPOLLIN | EPOLLRDNORM;
1025 		/*
1026 		 * Only allow full_waiters_pending update to be seen after
1027 		 * the shortest_full is set (in rb_watermark_hit). If the
1028 		 * writer sees the full_waiters_pending flag set, it will
1029 		 * compare the amount in the ring buffer to shortest_full.
1030 		 * If the amount in the ring buffer is greater than the
1031 		 * shortest_full percent, it will call the irq_work handler
1032 		 * to wake up this list. The irq_handler will reset shortest_full
1033 		 * back to zero. That's done under the reader_lock, but
1034 		 * the below smp_mb() makes sure that the update to
1035 		 * full_waiters_pending doesn't leak up into the above.
1036 		 */
1037 		smp_mb();
1038 		rbwork->full_waiters_pending = true;
1039 		return 0;
1040 	}
1041 
1042 	poll_wait(filp, &rbwork->waiters, poll_table);
1043 	rbwork->waiters_pending = true;
1044 
1045 	/*
1046 	 * There's a tight race between setting the waiters_pending and
1047 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1048 	 * is set, the next event will wake the task up, but we can get stuck
1049 	 * if there's only a single event in.
1050 	 *
1051 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1052 	 * but adding a memory barrier to all events will cause too much of a
1053 	 * performance hit in the fast path.  We only need a memory barrier when
1054 	 * the buffer goes from empty to having content.  But as this race is
1055 	 * extremely small, and it's not a problem if another event comes in, we
1056 	 * will fix it later.
1057 	 */
1058 	smp_mb();
1059 
1060 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1061 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1062 		return EPOLLIN | EPOLLRDNORM;
1063 	return 0;
1064 }
1065 
1066 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1067 #define RB_WARN_ON(b, cond)						\
1068 	({								\
1069 		int _____ret = unlikely(cond);				\
1070 		if (_____ret) {						\
1071 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1072 				struct ring_buffer_per_cpu *__b =	\
1073 					(void *)b;			\
1074 				atomic_inc(&__b->buffer->record_disabled); \
1075 			} else						\
1076 				atomic_inc(&b->record_disabled);	\
1077 			WARN_ON(1);					\
1078 		}							\
1079 		_____ret;						\
1080 	})
1081 
1082 /* Up this if you want to test the TIME_EXTENTS and normalization */
1083 #define DEBUG_SHIFT 0
1084 
1085 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1086 {
1087 	u64 ts;
1088 
1089 	/* Skip retpolines :-( */
1090 	if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1091 		ts = trace_clock_local();
1092 	else
1093 		ts = buffer->clock();
1094 
1095 	/* shift to debug/test normalization and TIME_EXTENTS */
1096 	return ts << DEBUG_SHIFT;
1097 }
1098 
1099 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1100 {
1101 	u64 time;
1102 
1103 	preempt_disable_notrace();
1104 	time = rb_time_stamp(buffer);
1105 	preempt_enable_notrace();
1106 
1107 	return time;
1108 }
1109 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1110 
1111 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1112 				      int cpu, u64 *ts)
1113 {
1114 	/* Just stupid testing the normalize function and deltas */
1115 	*ts >>= DEBUG_SHIFT;
1116 }
1117 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1118 
1119 /*
1120  * Making the ring buffer lockless makes things tricky.
1121  * Although writes only happen on the CPU that they are on,
1122  * and they only need to worry about interrupts. Reads can
1123  * happen on any CPU.
1124  *
1125  * The reader page is always off the ring buffer, but when the
1126  * reader finishes with a page, it needs to swap its page with
1127  * a new one from the buffer. The reader needs to take from
1128  * the head (writes go to the tail). But if a writer is in overwrite
1129  * mode and wraps, it must push the head page forward.
1130  *
1131  * Here lies the problem.
1132  *
1133  * The reader must be careful to replace only the head page, and
1134  * not another one. As described at the top of the file in the
1135  * ASCII art, the reader sets its old page to point to the next
1136  * page after head. It then sets the page after head to point to
1137  * the old reader page. But if the writer moves the head page
1138  * during this operation, the reader could end up with the tail.
1139  *
1140  * We use cmpxchg to help prevent this race. We also do something
1141  * special with the page before head. We set the LSB to 1.
1142  *
1143  * When the writer must push the page forward, it will clear the
1144  * bit that points to the head page, move the head, and then set
1145  * the bit that points to the new head page.
1146  *
1147  * We also don't want an interrupt coming in and moving the head
1148  * page on another writer. Thus we use the second LSB to catch
1149  * that too. Thus:
1150  *
1151  * head->list->prev->next        bit 1          bit 0
1152  *                              -------        -------
1153  * Normal page                     0              0
1154  * Points to head page             0              1
1155  * New head page                   1              0
1156  *
1157  * Note we can not trust the prev pointer of the head page, because:
1158  *
1159  * +----+       +-----+        +-----+
1160  * |    |------>|  T  |---X--->|  N  |
1161  * |    |<------|     |        |     |
1162  * +----+       +-----+        +-----+
1163  *   ^                           ^ |
1164  *   |          +-----+          | |
1165  *   +----------|  R  |----------+ |
1166  *              |     |<-----------+
1167  *              +-----+
1168  *
1169  * Key:  ---X-->  HEAD flag set in pointer
1170  *         T      Tail page
1171  *         R      Reader page
1172  *         N      Next page
1173  *
1174  * (see __rb_reserve_next() to see where this happens)
1175  *
1176  *  What the above shows is that the reader just swapped out
1177  *  the reader page with a page in the buffer, but before it
1178  *  could make the new header point back to the new page added
1179  *  it was preempted by a writer. The writer moved forward onto
1180  *  the new page added by the reader and is about to move forward
1181  *  again.
1182  *
1183  *  You can see, it is legitimate for the previous pointer of
1184  *  the head (or any page) not to point back to itself. But only
1185  *  temporarily.
1186  */
1187 
1188 #define RB_PAGE_NORMAL		0UL
1189 #define RB_PAGE_HEAD		1UL
1190 #define RB_PAGE_UPDATE		2UL
1191 
1192 
1193 #define RB_FLAG_MASK		3UL
1194 
1195 /* PAGE_MOVED is not part of the mask */
1196 #define RB_PAGE_MOVED		4UL
1197 
1198 /*
1199  * rb_list_head - remove any bit
1200  */
1201 static struct list_head *rb_list_head(struct list_head *list)
1202 {
1203 	unsigned long val = (unsigned long)list;
1204 
1205 	return (struct list_head *)(val & ~RB_FLAG_MASK);
1206 }
1207 
1208 /*
1209  * rb_is_head_page - test if the given page is the head page
1210  *
1211  * Because the reader may move the head_page pointer, we can
1212  * not trust what the head page is (it may be pointing to
1213  * the reader page). But if the next page is a header page,
1214  * its flags will be non zero.
1215  */
1216 static inline int
1217 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1218 {
1219 	unsigned long val;
1220 
1221 	val = (unsigned long)list->next;
1222 
1223 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1224 		return RB_PAGE_MOVED;
1225 
1226 	return val & RB_FLAG_MASK;
1227 }
1228 
1229 /*
1230  * rb_is_reader_page
1231  *
1232  * The unique thing about the reader page, is that, if the
1233  * writer is ever on it, the previous pointer never points
1234  * back to the reader page.
1235  */
1236 static bool rb_is_reader_page(struct buffer_page *page)
1237 {
1238 	struct list_head *list = page->list.prev;
1239 
1240 	return rb_list_head(list->next) != &page->list;
1241 }
1242 
1243 /*
1244  * rb_set_list_to_head - set a list_head to be pointing to head.
1245  */
1246 static void rb_set_list_to_head(struct list_head *list)
1247 {
1248 	unsigned long *ptr;
1249 
1250 	ptr = (unsigned long *)&list->next;
1251 	*ptr |= RB_PAGE_HEAD;
1252 	*ptr &= ~RB_PAGE_UPDATE;
1253 }
1254 
1255 /*
1256  * rb_head_page_activate - sets up head page
1257  */
1258 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1259 {
1260 	struct buffer_page *head;
1261 
1262 	head = cpu_buffer->head_page;
1263 	if (!head)
1264 		return;
1265 
1266 	/*
1267 	 * Set the previous list pointer to have the HEAD flag.
1268 	 */
1269 	rb_set_list_to_head(head->list.prev);
1270 
1271 	if (cpu_buffer->ring_meta) {
1272 		struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1273 		meta->head_buffer = (unsigned long)head->page;
1274 	}
1275 }
1276 
1277 static void rb_list_head_clear(struct list_head *list)
1278 {
1279 	unsigned long *ptr = (unsigned long *)&list->next;
1280 
1281 	*ptr &= ~RB_FLAG_MASK;
1282 }
1283 
1284 /*
1285  * rb_head_page_deactivate - clears head page ptr (for free list)
1286  */
1287 static void
1288 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1289 {
1290 	struct list_head *hd;
1291 
1292 	/* Go through the whole list and clear any pointers found. */
1293 	rb_list_head_clear(cpu_buffer->pages);
1294 
1295 	list_for_each(hd, cpu_buffer->pages)
1296 		rb_list_head_clear(hd);
1297 }
1298 
1299 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1300 			    struct buffer_page *head,
1301 			    struct buffer_page *prev,
1302 			    int old_flag, int new_flag)
1303 {
1304 	struct list_head *list;
1305 	unsigned long val = (unsigned long)&head->list;
1306 	unsigned long ret;
1307 
1308 	list = &prev->list;
1309 
1310 	val &= ~RB_FLAG_MASK;
1311 
1312 	ret = cmpxchg((unsigned long *)&list->next,
1313 		      val | old_flag, val | new_flag);
1314 
1315 	/* check if the reader took the page */
1316 	if ((ret & ~RB_FLAG_MASK) != val)
1317 		return RB_PAGE_MOVED;
1318 
1319 	return ret & RB_FLAG_MASK;
1320 }
1321 
1322 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1323 				   struct buffer_page *head,
1324 				   struct buffer_page *prev,
1325 				   int old_flag)
1326 {
1327 	return rb_head_page_set(cpu_buffer, head, prev,
1328 				old_flag, RB_PAGE_UPDATE);
1329 }
1330 
1331 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1332 				 struct buffer_page *head,
1333 				 struct buffer_page *prev,
1334 				 int old_flag)
1335 {
1336 	return rb_head_page_set(cpu_buffer, head, prev,
1337 				old_flag, RB_PAGE_HEAD);
1338 }
1339 
1340 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1341 				   struct buffer_page *head,
1342 				   struct buffer_page *prev,
1343 				   int old_flag)
1344 {
1345 	return rb_head_page_set(cpu_buffer, head, prev,
1346 				old_flag, RB_PAGE_NORMAL);
1347 }
1348 
1349 static inline void rb_inc_page(struct buffer_page **bpage)
1350 {
1351 	struct list_head *p = rb_list_head((*bpage)->list.next);
1352 
1353 	*bpage = list_entry(p, struct buffer_page, list);
1354 }
1355 
1356 static struct buffer_page *
1357 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1358 {
1359 	struct buffer_page *head;
1360 	struct buffer_page *page;
1361 	struct list_head *list;
1362 	int i;
1363 
1364 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1365 		return NULL;
1366 
1367 	/* sanity check */
1368 	list = cpu_buffer->pages;
1369 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1370 		return NULL;
1371 
1372 	page = head = cpu_buffer->head_page;
1373 	/*
1374 	 * It is possible that the writer moves the header behind
1375 	 * where we started, and we miss in one loop.
1376 	 * A second loop should grab the header, but we'll do
1377 	 * three loops just because I'm paranoid.
1378 	 */
1379 	for (i = 0; i < 3; i++) {
1380 		do {
1381 			if (rb_is_head_page(page, page->list.prev)) {
1382 				cpu_buffer->head_page = page;
1383 				return page;
1384 			}
1385 			rb_inc_page(&page);
1386 		} while (page != head);
1387 	}
1388 
1389 	RB_WARN_ON(cpu_buffer, 1);
1390 
1391 	return NULL;
1392 }
1393 
1394 static bool rb_head_page_replace(struct buffer_page *old,
1395 				struct buffer_page *new)
1396 {
1397 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1398 	unsigned long val;
1399 
1400 	val = *ptr & ~RB_FLAG_MASK;
1401 	val |= RB_PAGE_HEAD;
1402 
1403 	return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1404 }
1405 
1406 /*
1407  * rb_tail_page_update - move the tail page forward
1408  */
1409 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1410 			       struct buffer_page *tail_page,
1411 			       struct buffer_page *next_page)
1412 {
1413 	unsigned long old_entries;
1414 	unsigned long old_write;
1415 
1416 	/*
1417 	 * The tail page now needs to be moved forward.
1418 	 *
1419 	 * We need to reset the tail page, but without messing
1420 	 * with possible erasing of data brought in by interrupts
1421 	 * that have moved the tail page and are currently on it.
1422 	 *
1423 	 * We add a counter to the write field to denote this.
1424 	 */
1425 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1426 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1427 
1428 	/*
1429 	 * Just make sure we have seen our old_write and synchronize
1430 	 * with any interrupts that come in.
1431 	 */
1432 	barrier();
1433 
1434 	/*
1435 	 * If the tail page is still the same as what we think
1436 	 * it is, then it is up to us to update the tail
1437 	 * pointer.
1438 	 */
1439 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1440 		/* Zero the write counter */
1441 		unsigned long val = old_write & ~RB_WRITE_MASK;
1442 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1443 
1444 		/*
1445 		 * This will only succeed if an interrupt did
1446 		 * not come in and change it. In which case, we
1447 		 * do not want to modify it.
1448 		 *
1449 		 * We add (void) to let the compiler know that we do not care
1450 		 * about the return value of these functions. We use the
1451 		 * cmpxchg to only update if an interrupt did not already
1452 		 * do it for us. If the cmpxchg fails, we don't care.
1453 		 */
1454 		(void)local_cmpxchg(&next_page->write, old_write, val);
1455 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1456 
1457 		/*
1458 		 * No need to worry about races with clearing out the commit.
1459 		 * it only can increment when a commit takes place. But that
1460 		 * only happens in the outer most nested commit.
1461 		 */
1462 		local_set(&next_page->page->commit, 0);
1463 
1464 		/* Either we update tail_page or an interrupt does */
1465 		if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page))
1466 			local_inc(&cpu_buffer->pages_touched);
1467 	}
1468 }
1469 
1470 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1471 			  struct buffer_page *bpage)
1472 {
1473 	unsigned long val = (unsigned long)bpage;
1474 
1475 	RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1476 }
1477 
1478 /**
1479  * rb_check_pages - integrity check of buffer pages
1480  * @cpu_buffer: CPU buffer with pages to test
1481  *
1482  * As a safety measure we check to make sure the data pages have not
1483  * been corrupted.
1484  *
1485  * Callers of this function need to guarantee that the list of pages doesn't get
1486  * modified during the check. In particular, if it's possible that the function
1487  * is invoked with concurrent readers which can swap in a new reader page then
1488  * the caller should take cpu_buffer->reader_lock.
1489  */
1490 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1491 {
1492 	struct list_head *head = rb_list_head(cpu_buffer->pages);
1493 	struct list_head *tmp;
1494 
1495 	if (RB_WARN_ON(cpu_buffer,
1496 			rb_list_head(rb_list_head(head->next)->prev) != head))
1497 		return;
1498 
1499 	if (RB_WARN_ON(cpu_buffer,
1500 			rb_list_head(rb_list_head(head->prev)->next) != head))
1501 		return;
1502 
1503 	for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1504 		if (RB_WARN_ON(cpu_buffer,
1505 				rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1506 			return;
1507 
1508 		if (RB_WARN_ON(cpu_buffer,
1509 				rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1510 			return;
1511 	}
1512 }
1513 
1514 /*
1515  * Take an address, add the meta data size as well as the array of
1516  * array subbuffer indexes, then align it to a subbuffer size.
1517  *
1518  * This is used to help find the next per cpu subbuffer within a mapped range.
1519  */
1520 static unsigned long
1521 rb_range_align_subbuf(unsigned long addr, int subbuf_size, int nr_subbufs)
1522 {
1523 	addr += sizeof(struct ring_buffer_meta) +
1524 		sizeof(int) * nr_subbufs;
1525 	return ALIGN(addr, subbuf_size);
1526 }
1527 
1528 /*
1529  * Return the ring_buffer_meta for a given @cpu.
1530  */
1531 static void *rb_range_meta(struct trace_buffer *buffer, int nr_pages, int cpu)
1532 {
1533 	int subbuf_size = buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
1534 	unsigned long ptr = buffer->range_addr_start;
1535 	struct ring_buffer_meta *meta;
1536 	int nr_subbufs;
1537 
1538 	if (!ptr)
1539 		return NULL;
1540 
1541 	/* When nr_pages passed in is zero, the first meta has already been initialized */
1542 	if (!nr_pages) {
1543 		meta = (struct ring_buffer_meta *)ptr;
1544 		nr_subbufs = meta->nr_subbufs;
1545 	} else {
1546 		meta = NULL;
1547 		/* Include the reader page */
1548 		nr_subbufs = nr_pages + 1;
1549 	}
1550 
1551 	/*
1552 	 * The first chunk may not be subbuffer aligned, where as
1553 	 * the rest of the chunks are.
1554 	 */
1555 	if (cpu) {
1556 		ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1557 		ptr += subbuf_size * nr_subbufs;
1558 
1559 		/* We can use multiplication to find chunks greater than 1 */
1560 		if (cpu > 1) {
1561 			unsigned long size;
1562 			unsigned long p;
1563 
1564 			/* Save the beginning of this CPU chunk */
1565 			p = ptr;
1566 			ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1567 			ptr += subbuf_size * nr_subbufs;
1568 
1569 			/* Now all chunks after this are the same size */
1570 			size = ptr - p;
1571 			ptr += size * (cpu - 2);
1572 		}
1573 	}
1574 	return (void *)ptr;
1575 }
1576 
1577 /* Return the start of subbufs given the meta pointer */
1578 static void *rb_subbufs_from_meta(struct ring_buffer_meta *meta)
1579 {
1580 	int subbuf_size = meta->subbuf_size;
1581 	unsigned long ptr;
1582 
1583 	ptr = (unsigned long)meta;
1584 	ptr = rb_range_align_subbuf(ptr, subbuf_size, meta->nr_subbufs);
1585 
1586 	return (void *)ptr;
1587 }
1588 
1589 /*
1590  * Return a specific sub-buffer for a given @cpu defined by @idx.
1591  */
1592 static void *rb_range_buffer(struct ring_buffer_per_cpu *cpu_buffer, int idx)
1593 {
1594 	struct ring_buffer_meta *meta;
1595 	unsigned long ptr;
1596 	int subbuf_size;
1597 
1598 	meta = rb_range_meta(cpu_buffer->buffer, 0, cpu_buffer->cpu);
1599 	if (!meta)
1600 		return NULL;
1601 
1602 	if (WARN_ON_ONCE(idx >= meta->nr_subbufs))
1603 		return NULL;
1604 
1605 	subbuf_size = meta->subbuf_size;
1606 
1607 	/* Map this buffer to the order that's in meta->buffers[] */
1608 	idx = meta->buffers[idx];
1609 
1610 	ptr = (unsigned long)rb_subbufs_from_meta(meta);
1611 
1612 	ptr += subbuf_size * idx;
1613 	if (ptr + subbuf_size > cpu_buffer->buffer->range_addr_end)
1614 		return NULL;
1615 
1616 	return (void *)ptr;
1617 }
1618 
1619 /*
1620  * See if the existing memory contains valid ring buffer data.
1621  * As the previous kernel must be the same as this kernel, all
1622  * the calculations (size of buffers and number of buffers)
1623  * must be the same.
1624  */
1625 static bool rb_meta_valid(struct ring_buffer_meta *meta, int cpu,
1626 			  struct trace_buffer *buffer, int nr_pages)
1627 {
1628 	int subbuf_size = PAGE_SIZE;
1629 	struct buffer_data_page *subbuf;
1630 	unsigned long buffers_start;
1631 	unsigned long buffers_end;
1632 	int i;
1633 
1634 	/* Check the meta magic and meta struct size */
1635 	if (meta->magic != RING_BUFFER_META_MAGIC ||
1636 	    meta->struct_size != sizeof(*meta)) {
1637 		pr_info("Ring buffer boot meta[%d] mismatch of magic or struct size\n", cpu);
1638 		return false;
1639 	}
1640 
1641 	/* The subbuffer's size and number of subbuffers must match */
1642 	if (meta->subbuf_size != subbuf_size ||
1643 	    meta->nr_subbufs != nr_pages + 1) {
1644 		pr_info("Ring buffer boot meta [%d] mismatch of subbuf_size/nr_pages\n", cpu);
1645 		return false;
1646 	}
1647 
1648 	buffers_start = meta->first_buffer;
1649 	buffers_end = meta->first_buffer + (subbuf_size * meta->nr_subbufs);
1650 
1651 	/* Is the head and commit buffers within the range of buffers? */
1652 	if (meta->head_buffer < buffers_start ||
1653 	    meta->head_buffer >= buffers_end) {
1654 		pr_info("Ring buffer boot meta [%d] head buffer out of range\n", cpu);
1655 		return false;
1656 	}
1657 
1658 	if (meta->commit_buffer < buffers_start ||
1659 	    meta->commit_buffer >= buffers_end) {
1660 		pr_info("Ring buffer boot meta [%d] commit buffer out of range\n", cpu);
1661 		return false;
1662 	}
1663 
1664 	subbuf = rb_subbufs_from_meta(meta);
1665 
1666 	/* Is the meta buffers and the subbufs themselves have correct data? */
1667 	for (i = 0; i < meta->nr_subbufs; i++) {
1668 		if (meta->buffers[i] < 0 ||
1669 		    meta->buffers[i] >= meta->nr_subbufs) {
1670 			pr_info("Ring buffer boot meta [%d] array out of range\n", cpu);
1671 			return false;
1672 		}
1673 
1674 		if ((unsigned)local_read(&subbuf->commit) > subbuf_size) {
1675 			pr_info("Ring buffer boot meta [%d] buffer invalid commit\n", cpu);
1676 			return false;
1677 		}
1678 
1679 		subbuf = (void *)subbuf + subbuf_size;
1680 	}
1681 
1682 	return true;
1683 }
1684 
1685 static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf);
1686 
1687 static int rb_read_data_buffer(struct buffer_data_page *dpage, int tail, int cpu,
1688 			       unsigned long long *timestamp, u64 *delta_ptr)
1689 {
1690 	struct ring_buffer_event *event;
1691 	u64 ts, delta;
1692 	int events = 0;
1693 	int e;
1694 
1695 	*delta_ptr = 0;
1696 	*timestamp = 0;
1697 
1698 	ts = dpage->time_stamp;
1699 
1700 	for (e = 0; e < tail; e += rb_event_length(event)) {
1701 
1702 		event = (struct ring_buffer_event *)(dpage->data + e);
1703 
1704 		switch (event->type_len) {
1705 
1706 		case RINGBUF_TYPE_TIME_EXTEND:
1707 			delta = rb_event_time_stamp(event);
1708 			ts += delta;
1709 			break;
1710 
1711 		case RINGBUF_TYPE_TIME_STAMP:
1712 			delta = rb_event_time_stamp(event);
1713 			delta = rb_fix_abs_ts(delta, ts);
1714 			if (delta < ts) {
1715 				*delta_ptr = delta;
1716 				*timestamp = ts;
1717 				return -1;
1718 			}
1719 			ts = delta;
1720 			break;
1721 
1722 		case RINGBUF_TYPE_PADDING:
1723 			if (event->time_delta == 1)
1724 				break;
1725 			fallthrough;
1726 		case RINGBUF_TYPE_DATA:
1727 			events++;
1728 			ts += event->time_delta;
1729 			break;
1730 
1731 		default:
1732 			return -1;
1733 		}
1734 	}
1735 	*timestamp = ts;
1736 	return events;
1737 }
1738 
1739 static int rb_validate_buffer(struct buffer_data_page *dpage, int cpu)
1740 {
1741 	unsigned long long ts;
1742 	u64 delta;
1743 	int tail;
1744 
1745 	tail = local_read(&dpage->commit);
1746 	return rb_read_data_buffer(dpage, tail, cpu, &ts, &delta);
1747 }
1748 
1749 /* If the meta data has been validated, now validate the events */
1750 static void rb_meta_validate_events(struct ring_buffer_per_cpu *cpu_buffer)
1751 {
1752 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1753 	struct buffer_page *head_page;
1754 	unsigned long entry_bytes = 0;
1755 	unsigned long entries = 0;
1756 	int ret;
1757 	int i;
1758 
1759 	if (!meta || !meta->head_buffer)
1760 		return;
1761 
1762 	/* Do the reader page first */
1763 	ret = rb_validate_buffer(cpu_buffer->reader_page->page, cpu_buffer->cpu);
1764 	if (ret < 0) {
1765 		pr_info("Ring buffer reader page is invalid\n");
1766 		goto invalid;
1767 	}
1768 	entries += ret;
1769 	entry_bytes += local_read(&cpu_buffer->reader_page->page->commit);
1770 	local_set(&cpu_buffer->reader_page->entries, ret);
1771 
1772 	head_page = cpu_buffer->head_page;
1773 
1774 	/* If both the head and commit are on the reader_page then we are done. */
1775 	if (head_page == cpu_buffer->reader_page &&
1776 	    head_page == cpu_buffer->commit_page)
1777 		goto done;
1778 
1779 	/* Iterate until finding the commit page */
1780 	for (i = 0; i < meta->nr_subbufs + 1; i++, rb_inc_page(&head_page)) {
1781 
1782 		/* Reader page has already been done */
1783 		if (head_page == cpu_buffer->reader_page)
1784 			continue;
1785 
1786 		ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu);
1787 		if (ret < 0) {
1788 			pr_info("Ring buffer meta [%d] invalid buffer page\n",
1789 				cpu_buffer->cpu);
1790 			goto invalid;
1791 		}
1792 		entries += ret;
1793 		entry_bytes += local_read(&head_page->page->commit);
1794 		local_set(&cpu_buffer->head_page->entries, ret);
1795 
1796 		if (head_page == cpu_buffer->commit_page)
1797 			break;
1798 	}
1799 
1800 	if (head_page != cpu_buffer->commit_page) {
1801 		pr_info("Ring buffer meta [%d] commit page not found\n",
1802 			cpu_buffer->cpu);
1803 		goto invalid;
1804 	}
1805  done:
1806 	local_set(&cpu_buffer->entries, entries);
1807 	local_set(&cpu_buffer->entries_bytes, entry_bytes);
1808 
1809 	pr_info("Ring buffer meta [%d] is from previous boot!\n", cpu_buffer->cpu);
1810 	return;
1811 
1812  invalid:
1813 	/* The content of the buffers are invalid, reset the meta data */
1814 	meta->head_buffer = 0;
1815 	meta->commit_buffer = 0;
1816 
1817 	/* Reset the reader page */
1818 	local_set(&cpu_buffer->reader_page->entries, 0);
1819 	local_set(&cpu_buffer->reader_page->page->commit, 0);
1820 
1821 	/* Reset all the subbuffers */
1822 	for (i = 0; i < meta->nr_subbufs - 1; i++, rb_inc_page(&head_page)) {
1823 		local_set(&head_page->entries, 0);
1824 		local_set(&head_page->page->commit, 0);
1825 	}
1826 }
1827 
1828 /* Used to calculate data delta */
1829 static char rb_data_ptr[] = "";
1830 
1831 #define THIS_TEXT_PTR		((unsigned long)rb_meta_init_text_addr)
1832 #define THIS_DATA_PTR		((unsigned long)rb_data_ptr)
1833 
1834 static void rb_meta_init_text_addr(struct ring_buffer_meta *meta)
1835 {
1836 	meta->text_addr = THIS_TEXT_PTR;
1837 	meta->data_addr = THIS_DATA_PTR;
1838 }
1839 
1840 static void rb_range_meta_init(struct trace_buffer *buffer, int nr_pages)
1841 {
1842 	struct ring_buffer_meta *meta;
1843 	unsigned long delta;
1844 	void *subbuf;
1845 	int cpu;
1846 	int i;
1847 
1848 	for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1849 		void *next_meta;
1850 
1851 		meta = rb_range_meta(buffer, nr_pages, cpu);
1852 
1853 		if (rb_meta_valid(meta, cpu, buffer, nr_pages)) {
1854 			/* Make the mappings match the current address */
1855 			subbuf = rb_subbufs_from_meta(meta);
1856 			delta = (unsigned long)subbuf - meta->first_buffer;
1857 			meta->first_buffer += delta;
1858 			meta->head_buffer += delta;
1859 			meta->commit_buffer += delta;
1860 			buffer->last_text_delta = THIS_TEXT_PTR - meta->text_addr;
1861 			buffer->last_data_delta = THIS_DATA_PTR - meta->data_addr;
1862 			continue;
1863 		}
1864 
1865 		if (cpu < nr_cpu_ids - 1)
1866 			next_meta = rb_range_meta(buffer, nr_pages, cpu + 1);
1867 		else
1868 			next_meta = (void *)buffer->range_addr_end;
1869 
1870 		memset(meta, 0, next_meta - (void *)meta);
1871 
1872 		meta->magic = RING_BUFFER_META_MAGIC;
1873 		meta->struct_size = sizeof(*meta);
1874 
1875 		meta->nr_subbufs = nr_pages + 1;
1876 		meta->subbuf_size = PAGE_SIZE;
1877 
1878 		subbuf = rb_subbufs_from_meta(meta);
1879 
1880 		meta->first_buffer = (unsigned long)subbuf;
1881 		rb_meta_init_text_addr(meta);
1882 
1883 		/*
1884 		 * The buffers[] array holds the order of the sub-buffers
1885 		 * that are after the meta data. The sub-buffers may
1886 		 * be swapped out when read and inserted into a different
1887 		 * location of the ring buffer. Although their addresses
1888 		 * remain the same, the buffers[] array contains the
1889 		 * index into the sub-buffers holding their actual order.
1890 		 */
1891 		for (i = 0; i < meta->nr_subbufs; i++) {
1892 			meta->buffers[i] = i;
1893 			rb_init_page(subbuf);
1894 			subbuf += meta->subbuf_size;
1895 		}
1896 	}
1897 }
1898 
1899 static void *rbm_start(struct seq_file *m, loff_t *pos)
1900 {
1901 	struct ring_buffer_per_cpu *cpu_buffer = m->private;
1902 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1903 	unsigned long val;
1904 
1905 	if (!meta)
1906 		return NULL;
1907 
1908 	if (*pos > meta->nr_subbufs)
1909 		return NULL;
1910 
1911 	val = *pos;
1912 	val++;
1913 
1914 	return (void *)val;
1915 }
1916 
1917 static void *rbm_next(struct seq_file *m, void *v, loff_t *pos)
1918 {
1919 	(*pos)++;
1920 
1921 	return rbm_start(m, pos);
1922 }
1923 
1924 static int rbm_show(struct seq_file *m, void *v)
1925 {
1926 	struct ring_buffer_per_cpu *cpu_buffer = m->private;
1927 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1928 	unsigned long val = (unsigned long)v;
1929 
1930 	if (val == 1) {
1931 		seq_printf(m, "head_buffer:   %d\n",
1932 			   rb_meta_subbuf_idx(meta, (void *)meta->head_buffer));
1933 		seq_printf(m, "commit_buffer: %d\n",
1934 			   rb_meta_subbuf_idx(meta, (void *)meta->commit_buffer));
1935 		seq_printf(m, "subbuf_size:   %d\n", meta->subbuf_size);
1936 		seq_printf(m, "nr_subbufs:    %d\n", meta->nr_subbufs);
1937 		return 0;
1938 	}
1939 
1940 	val -= 2;
1941 	seq_printf(m, "buffer[%ld]:    %d\n", val, meta->buffers[val]);
1942 
1943 	return 0;
1944 }
1945 
1946 static void rbm_stop(struct seq_file *m, void *p)
1947 {
1948 }
1949 
1950 static const struct seq_operations rb_meta_seq_ops = {
1951 	.start		= rbm_start,
1952 	.next		= rbm_next,
1953 	.show		= rbm_show,
1954 	.stop		= rbm_stop,
1955 };
1956 
1957 int ring_buffer_meta_seq_init(struct file *file, struct trace_buffer *buffer, int cpu)
1958 {
1959 	struct seq_file *m;
1960 	int ret;
1961 
1962 	ret = seq_open(file, &rb_meta_seq_ops);
1963 	if (ret)
1964 		return ret;
1965 
1966 	m = file->private_data;
1967 	m->private = buffer->buffers[cpu];
1968 
1969 	return 0;
1970 }
1971 
1972 /* Map the buffer_pages to the previous head and commit pages */
1973 static void rb_meta_buffer_update(struct ring_buffer_per_cpu *cpu_buffer,
1974 				  struct buffer_page *bpage)
1975 {
1976 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1977 
1978 	if (meta->head_buffer == (unsigned long)bpage->page)
1979 		cpu_buffer->head_page = bpage;
1980 
1981 	if (meta->commit_buffer == (unsigned long)bpage->page) {
1982 		cpu_buffer->commit_page = bpage;
1983 		cpu_buffer->tail_page = bpage;
1984 	}
1985 }
1986 
1987 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1988 		long nr_pages, struct list_head *pages)
1989 {
1990 	struct trace_buffer *buffer = cpu_buffer->buffer;
1991 	struct ring_buffer_meta *meta = NULL;
1992 	struct buffer_page *bpage, *tmp;
1993 	bool user_thread = current->mm != NULL;
1994 	gfp_t mflags;
1995 	long i;
1996 
1997 	/*
1998 	 * Check if the available memory is there first.
1999 	 * Note, si_mem_available() only gives us a rough estimate of available
2000 	 * memory. It may not be accurate. But we don't care, we just want
2001 	 * to prevent doing any allocation when it is obvious that it is
2002 	 * not going to succeed.
2003 	 */
2004 	i = si_mem_available();
2005 	if (i < nr_pages)
2006 		return -ENOMEM;
2007 
2008 	/*
2009 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
2010 	 * gracefully without invoking oom-killer and the system is not
2011 	 * destabilized.
2012 	 */
2013 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
2014 
2015 	/*
2016 	 * If a user thread allocates too much, and si_mem_available()
2017 	 * reports there's enough memory, even though there is not.
2018 	 * Make sure the OOM killer kills this thread. This can happen
2019 	 * even with RETRY_MAYFAIL because another task may be doing
2020 	 * an allocation after this task has taken all memory.
2021 	 * This is the task the OOM killer needs to take out during this
2022 	 * loop, even if it was triggered by an allocation somewhere else.
2023 	 */
2024 	if (user_thread)
2025 		set_current_oom_origin();
2026 
2027 	if (buffer->range_addr_start)
2028 		meta = rb_range_meta(buffer, nr_pages, cpu_buffer->cpu);
2029 
2030 	for (i = 0; i < nr_pages; i++) {
2031 		struct page *page;
2032 
2033 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2034 				    mflags, cpu_to_node(cpu_buffer->cpu));
2035 		if (!bpage)
2036 			goto free_pages;
2037 
2038 		rb_check_bpage(cpu_buffer, bpage);
2039 
2040 		/*
2041 		 * Append the pages as for mapped buffers we want to keep
2042 		 * the order
2043 		 */
2044 		list_add_tail(&bpage->list, pages);
2045 
2046 		if (meta) {
2047 			/* A range was given. Use that for the buffer page */
2048 			bpage->page = rb_range_buffer(cpu_buffer, i + 1);
2049 			if (!bpage->page)
2050 				goto free_pages;
2051 			/* If this is valid from a previous boot */
2052 			if (meta->head_buffer)
2053 				rb_meta_buffer_update(cpu_buffer, bpage);
2054 			bpage->range = 1;
2055 			bpage->id = i + 1;
2056 		} else {
2057 			page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
2058 						mflags | __GFP_COMP | __GFP_ZERO,
2059 						cpu_buffer->buffer->subbuf_order);
2060 			if (!page)
2061 				goto free_pages;
2062 			bpage->page = page_address(page);
2063 			rb_init_page(bpage->page);
2064 		}
2065 		bpage->order = cpu_buffer->buffer->subbuf_order;
2066 
2067 		if (user_thread && fatal_signal_pending(current))
2068 			goto free_pages;
2069 	}
2070 	if (user_thread)
2071 		clear_current_oom_origin();
2072 
2073 	return 0;
2074 
2075 free_pages:
2076 	list_for_each_entry_safe(bpage, tmp, pages, list) {
2077 		list_del_init(&bpage->list);
2078 		free_buffer_page(bpage);
2079 	}
2080 	if (user_thread)
2081 		clear_current_oom_origin();
2082 
2083 	return -ENOMEM;
2084 }
2085 
2086 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2087 			     unsigned long nr_pages)
2088 {
2089 	LIST_HEAD(pages);
2090 
2091 	WARN_ON(!nr_pages);
2092 
2093 	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
2094 		return -ENOMEM;
2095 
2096 	/*
2097 	 * The ring buffer page list is a circular list that does not
2098 	 * start and end with a list head. All page list items point to
2099 	 * other pages.
2100 	 */
2101 	cpu_buffer->pages = pages.next;
2102 	list_del(&pages);
2103 
2104 	cpu_buffer->nr_pages = nr_pages;
2105 
2106 	rb_check_pages(cpu_buffer);
2107 
2108 	return 0;
2109 }
2110 
2111 static struct ring_buffer_per_cpu *
2112 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
2113 {
2114 	struct ring_buffer_per_cpu *cpu_buffer;
2115 	struct ring_buffer_meta *meta;
2116 	struct buffer_page *bpage;
2117 	struct page *page;
2118 	int ret;
2119 
2120 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
2121 				  GFP_KERNEL, cpu_to_node(cpu));
2122 	if (!cpu_buffer)
2123 		return NULL;
2124 
2125 	cpu_buffer->cpu = cpu;
2126 	cpu_buffer->buffer = buffer;
2127 	raw_spin_lock_init(&cpu_buffer->reader_lock);
2128 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
2129 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
2130 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
2131 	init_completion(&cpu_buffer->update_done);
2132 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
2133 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
2134 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
2135 	mutex_init(&cpu_buffer->mapping_lock);
2136 
2137 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2138 			    GFP_KERNEL, cpu_to_node(cpu));
2139 	if (!bpage)
2140 		goto fail_free_buffer;
2141 
2142 	rb_check_bpage(cpu_buffer, bpage);
2143 
2144 	cpu_buffer->reader_page = bpage;
2145 
2146 	if (buffer->range_addr_start) {
2147 		/*
2148 		 * Range mapped buffers have the same restrictions as memory
2149 		 * mapped ones do.
2150 		 */
2151 		cpu_buffer->mapped = 1;
2152 		cpu_buffer->ring_meta = rb_range_meta(buffer, nr_pages, cpu);
2153 		bpage->page = rb_range_buffer(cpu_buffer, 0);
2154 		if (!bpage->page)
2155 			goto fail_free_reader;
2156 		if (cpu_buffer->ring_meta->head_buffer)
2157 			rb_meta_buffer_update(cpu_buffer, bpage);
2158 		bpage->range = 1;
2159 	} else {
2160 		page = alloc_pages_node(cpu_to_node(cpu),
2161 					GFP_KERNEL | __GFP_COMP | __GFP_ZERO,
2162 					cpu_buffer->buffer->subbuf_order);
2163 		if (!page)
2164 			goto fail_free_reader;
2165 		bpage->page = page_address(page);
2166 		rb_init_page(bpage->page);
2167 	}
2168 
2169 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2170 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
2171 
2172 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
2173 	if (ret < 0)
2174 		goto fail_free_reader;
2175 
2176 	rb_meta_validate_events(cpu_buffer);
2177 
2178 	/* If the boot meta was valid then this has already been updated */
2179 	meta = cpu_buffer->ring_meta;
2180 	if (!meta || !meta->head_buffer ||
2181 	    !cpu_buffer->head_page || !cpu_buffer->commit_page || !cpu_buffer->tail_page) {
2182 		if (meta && meta->head_buffer &&
2183 		    (cpu_buffer->head_page || cpu_buffer->commit_page || cpu_buffer->tail_page)) {
2184 			pr_warn("Ring buffer meta buffers not all mapped\n");
2185 			if (!cpu_buffer->head_page)
2186 				pr_warn("   Missing head_page\n");
2187 			if (!cpu_buffer->commit_page)
2188 				pr_warn("   Missing commit_page\n");
2189 			if (!cpu_buffer->tail_page)
2190 				pr_warn("   Missing tail_page\n");
2191 		}
2192 
2193 		cpu_buffer->head_page
2194 			= list_entry(cpu_buffer->pages, struct buffer_page, list);
2195 		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
2196 
2197 		rb_head_page_activate(cpu_buffer);
2198 
2199 		if (cpu_buffer->ring_meta)
2200 			meta->commit_buffer = meta->head_buffer;
2201 	} else {
2202 		/* The valid meta buffer still needs to activate the head page */
2203 		rb_head_page_activate(cpu_buffer);
2204 	}
2205 
2206 	return cpu_buffer;
2207 
2208  fail_free_reader:
2209 	free_buffer_page(cpu_buffer->reader_page);
2210 
2211  fail_free_buffer:
2212 	kfree(cpu_buffer);
2213 	return NULL;
2214 }
2215 
2216 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
2217 {
2218 	struct list_head *head = cpu_buffer->pages;
2219 	struct buffer_page *bpage, *tmp;
2220 
2221 	irq_work_sync(&cpu_buffer->irq_work.work);
2222 
2223 	free_buffer_page(cpu_buffer->reader_page);
2224 
2225 	if (head) {
2226 		rb_head_page_deactivate(cpu_buffer);
2227 
2228 		list_for_each_entry_safe(bpage, tmp, head, list) {
2229 			list_del_init(&bpage->list);
2230 			free_buffer_page(bpage);
2231 		}
2232 		bpage = list_entry(head, struct buffer_page, list);
2233 		free_buffer_page(bpage);
2234 	}
2235 
2236 	free_page((unsigned long)cpu_buffer->free_page);
2237 
2238 	kfree(cpu_buffer);
2239 }
2240 
2241 static struct trace_buffer *alloc_buffer(unsigned long size, unsigned flags,
2242 					 int order, unsigned long start,
2243 					 unsigned long end,
2244 					 struct lock_class_key *key)
2245 {
2246 	struct trace_buffer *buffer;
2247 	long nr_pages;
2248 	int subbuf_size;
2249 	int bsize;
2250 	int cpu;
2251 	int ret;
2252 
2253 	/* keep it in its own cache line */
2254 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
2255 			 GFP_KERNEL);
2256 	if (!buffer)
2257 		return NULL;
2258 
2259 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
2260 		goto fail_free_buffer;
2261 
2262 	buffer->subbuf_order = order;
2263 	subbuf_size = (PAGE_SIZE << order);
2264 	buffer->subbuf_size = subbuf_size - BUF_PAGE_HDR_SIZE;
2265 
2266 	/* Max payload is buffer page size - header (8bytes) */
2267 	buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
2268 
2269 	buffer->flags = flags;
2270 	buffer->clock = trace_clock_local;
2271 	buffer->reader_lock_key = key;
2272 
2273 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
2274 	init_waitqueue_head(&buffer->irq_work.waiters);
2275 
2276 	buffer->cpus = nr_cpu_ids;
2277 
2278 	bsize = sizeof(void *) * nr_cpu_ids;
2279 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
2280 				  GFP_KERNEL);
2281 	if (!buffer->buffers)
2282 		goto fail_free_cpumask;
2283 
2284 	/* If start/end are specified, then that overrides size */
2285 	if (start && end) {
2286 		unsigned long ptr;
2287 		int n;
2288 
2289 		size = end - start;
2290 		size = size / nr_cpu_ids;
2291 
2292 		/*
2293 		 * The number of sub-buffers (nr_pages) is determined by the
2294 		 * total size allocated minus the meta data size.
2295 		 * Then that is divided by the number of per CPU buffers
2296 		 * needed, plus account for the integer array index that
2297 		 * will be appended to the meta data.
2298 		 */
2299 		nr_pages = (size - sizeof(struct ring_buffer_meta)) /
2300 			(subbuf_size + sizeof(int));
2301 		/* Need at least two pages plus the reader page */
2302 		if (nr_pages < 3)
2303 			goto fail_free_buffers;
2304 
2305  again:
2306 		/* Make sure that the size fits aligned */
2307 		for (n = 0, ptr = start; n < nr_cpu_ids; n++) {
2308 			ptr += sizeof(struct ring_buffer_meta) +
2309 				sizeof(int) * nr_pages;
2310 			ptr = ALIGN(ptr, subbuf_size);
2311 			ptr += subbuf_size * nr_pages;
2312 		}
2313 		if (ptr > end) {
2314 			if (nr_pages <= 3)
2315 				goto fail_free_buffers;
2316 			nr_pages--;
2317 			goto again;
2318 		}
2319 
2320 		/* nr_pages should not count the reader page */
2321 		nr_pages--;
2322 		buffer->range_addr_start = start;
2323 		buffer->range_addr_end = end;
2324 
2325 		rb_range_meta_init(buffer, nr_pages);
2326 	} else {
2327 
2328 		/* need at least two pages */
2329 		nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2330 		if (nr_pages < 2)
2331 			nr_pages = 2;
2332 	}
2333 
2334 	cpu = raw_smp_processor_id();
2335 	cpumask_set_cpu(cpu, buffer->cpumask);
2336 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
2337 	if (!buffer->buffers[cpu])
2338 		goto fail_free_buffers;
2339 
2340 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2341 	if (ret < 0)
2342 		goto fail_free_buffers;
2343 
2344 	mutex_init(&buffer->mutex);
2345 
2346 	return buffer;
2347 
2348  fail_free_buffers:
2349 	for_each_buffer_cpu(buffer, cpu) {
2350 		if (buffer->buffers[cpu])
2351 			rb_free_cpu_buffer(buffer->buffers[cpu]);
2352 	}
2353 	kfree(buffer->buffers);
2354 
2355  fail_free_cpumask:
2356 	free_cpumask_var(buffer->cpumask);
2357 
2358  fail_free_buffer:
2359 	kfree(buffer);
2360 	return NULL;
2361 }
2362 
2363 /**
2364  * __ring_buffer_alloc - allocate a new ring_buffer
2365  * @size: the size in bytes per cpu that is needed.
2366  * @flags: attributes to set for the ring buffer.
2367  * @key: ring buffer reader_lock_key.
2368  *
2369  * Currently the only flag that is available is the RB_FL_OVERWRITE
2370  * flag. This flag means that the buffer will overwrite old data
2371  * when the buffer wraps. If this flag is not set, the buffer will
2372  * drop data when the tail hits the head.
2373  */
2374 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
2375 					struct lock_class_key *key)
2376 {
2377 	/* Default buffer page size - one system page */
2378 	return alloc_buffer(size, flags, 0, 0, 0,key);
2379 
2380 }
2381 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
2382 
2383 /**
2384  * __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory
2385  * @size: the size in bytes per cpu that is needed.
2386  * @flags: attributes to set for the ring buffer.
2387  * @start: start of allocated range
2388  * @range_size: size of allocated range
2389  * @order: sub-buffer order
2390  * @key: ring buffer reader_lock_key.
2391  *
2392  * Currently the only flag that is available is the RB_FL_OVERWRITE
2393  * flag. This flag means that the buffer will overwrite old data
2394  * when the buffer wraps. If this flag is not set, the buffer will
2395  * drop data when the tail hits the head.
2396  */
2397 struct trace_buffer *__ring_buffer_alloc_range(unsigned long size, unsigned flags,
2398 					       int order, unsigned long start,
2399 					       unsigned long range_size,
2400 					       struct lock_class_key *key)
2401 {
2402 	return alloc_buffer(size, flags, order, start, start + range_size, key);
2403 }
2404 
2405 /**
2406  * ring_buffer_last_boot_delta - return the delta offset from last boot
2407  * @buffer: The buffer to return the delta from
2408  * @text: Return text delta
2409  * @data: Return data delta
2410  *
2411  * Returns: The true if the delta is non zero
2412  */
2413 bool ring_buffer_last_boot_delta(struct trace_buffer *buffer, long *text,
2414 				 long *data)
2415 {
2416 	if (!buffer)
2417 		return false;
2418 
2419 	if (!buffer->last_text_delta)
2420 		return false;
2421 
2422 	*text = buffer->last_text_delta;
2423 	*data = buffer->last_data_delta;
2424 
2425 	return true;
2426 }
2427 
2428 /**
2429  * ring_buffer_free - free a ring buffer.
2430  * @buffer: the buffer to free.
2431  */
2432 void
2433 ring_buffer_free(struct trace_buffer *buffer)
2434 {
2435 	int cpu;
2436 
2437 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2438 
2439 	irq_work_sync(&buffer->irq_work.work);
2440 
2441 	for_each_buffer_cpu(buffer, cpu)
2442 		rb_free_cpu_buffer(buffer->buffers[cpu]);
2443 
2444 	kfree(buffer->buffers);
2445 	free_cpumask_var(buffer->cpumask);
2446 
2447 	kfree(buffer);
2448 }
2449 EXPORT_SYMBOL_GPL(ring_buffer_free);
2450 
2451 void ring_buffer_set_clock(struct trace_buffer *buffer,
2452 			   u64 (*clock)(void))
2453 {
2454 	buffer->clock = clock;
2455 }
2456 
2457 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
2458 {
2459 	buffer->time_stamp_abs = abs;
2460 }
2461 
2462 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
2463 {
2464 	return buffer->time_stamp_abs;
2465 }
2466 
2467 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
2468 {
2469 	return local_read(&bpage->entries) & RB_WRITE_MASK;
2470 }
2471 
2472 static inline unsigned long rb_page_write(struct buffer_page *bpage)
2473 {
2474 	return local_read(&bpage->write) & RB_WRITE_MASK;
2475 }
2476 
2477 static bool
2478 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
2479 {
2480 	struct list_head *tail_page, *to_remove, *next_page;
2481 	struct buffer_page *to_remove_page, *tmp_iter_page;
2482 	struct buffer_page *last_page, *first_page;
2483 	unsigned long nr_removed;
2484 	unsigned long head_bit;
2485 	int page_entries;
2486 
2487 	head_bit = 0;
2488 
2489 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
2490 	atomic_inc(&cpu_buffer->record_disabled);
2491 	/*
2492 	 * We don't race with the readers since we have acquired the reader
2493 	 * lock. We also don't race with writers after disabling recording.
2494 	 * This makes it easy to figure out the first and the last page to be
2495 	 * removed from the list. We unlink all the pages in between including
2496 	 * the first and last pages. This is done in a busy loop so that we
2497 	 * lose the least number of traces.
2498 	 * The pages are freed after we restart recording and unlock readers.
2499 	 */
2500 	tail_page = &cpu_buffer->tail_page->list;
2501 
2502 	/*
2503 	 * tail page might be on reader page, we remove the next page
2504 	 * from the ring buffer
2505 	 */
2506 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2507 		tail_page = rb_list_head(tail_page->next);
2508 	to_remove = tail_page;
2509 
2510 	/* start of pages to remove */
2511 	first_page = list_entry(rb_list_head(to_remove->next),
2512 				struct buffer_page, list);
2513 
2514 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
2515 		to_remove = rb_list_head(to_remove)->next;
2516 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
2517 	}
2518 	/* Read iterators need to reset themselves when some pages removed */
2519 	cpu_buffer->pages_removed += nr_removed;
2520 
2521 	next_page = rb_list_head(to_remove)->next;
2522 
2523 	/*
2524 	 * Now we remove all pages between tail_page and next_page.
2525 	 * Make sure that we have head_bit value preserved for the
2526 	 * next page
2527 	 */
2528 	tail_page->next = (struct list_head *)((unsigned long)next_page |
2529 						head_bit);
2530 	next_page = rb_list_head(next_page);
2531 	next_page->prev = tail_page;
2532 
2533 	/* make sure pages points to a valid page in the ring buffer */
2534 	cpu_buffer->pages = next_page;
2535 
2536 	/* update head page */
2537 	if (head_bit)
2538 		cpu_buffer->head_page = list_entry(next_page,
2539 						struct buffer_page, list);
2540 
2541 	/* pages are removed, resume tracing and then free the pages */
2542 	atomic_dec(&cpu_buffer->record_disabled);
2543 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2544 
2545 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
2546 
2547 	/* last buffer page to remove */
2548 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2549 				list);
2550 	tmp_iter_page = first_page;
2551 
2552 	do {
2553 		cond_resched();
2554 
2555 		to_remove_page = tmp_iter_page;
2556 		rb_inc_page(&tmp_iter_page);
2557 
2558 		/* update the counters */
2559 		page_entries = rb_page_entries(to_remove_page);
2560 		if (page_entries) {
2561 			/*
2562 			 * If something was added to this page, it was full
2563 			 * since it is not the tail page. So we deduct the
2564 			 * bytes consumed in ring buffer from here.
2565 			 * Increment overrun to account for the lost events.
2566 			 */
2567 			local_add(page_entries, &cpu_buffer->overrun);
2568 			local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
2569 			local_inc(&cpu_buffer->pages_lost);
2570 		}
2571 
2572 		/*
2573 		 * We have already removed references to this list item, just
2574 		 * free up the buffer_page and its page
2575 		 */
2576 		free_buffer_page(to_remove_page);
2577 		nr_removed--;
2578 
2579 	} while (to_remove_page != last_page);
2580 
2581 	RB_WARN_ON(cpu_buffer, nr_removed);
2582 
2583 	return nr_removed == 0;
2584 }
2585 
2586 static bool
2587 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2588 {
2589 	struct list_head *pages = &cpu_buffer->new_pages;
2590 	unsigned long flags;
2591 	bool success;
2592 	int retries;
2593 
2594 	/* Can be called at early boot up, where interrupts must not been enabled */
2595 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2596 	/*
2597 	 * We are holding the reader lock, so the reader page won't be swapped
2598 	 * in the ring buffer. Now we are racing with the writer trying to
2599 	 * move head page and the tail page.
2600 	 * We are going to adapt the reader page update process where:
2601 	 * 1. We first splice the start and end of list of new pages between
2602 	 *    the head page and its previous page.
2603 	 * 2. We cmpxchg the prev_page->next to point from head page to the
2604 	 *    start of new pages list.
2605 	 * 3. Finally, we update the head->prev to the end of new list.
2606 	 *
2607 	 * We will try this process 10 times, to make sure that we don't keep
2608 	 * spinning.
2609 	 */
2610 	retries = 10;
2611 	success = false;
2612 	while (retries--) {
2613 		struct list_head *head_page, *prev_page;
2614 		struct list_head *last_page, *first_page;
2615 		struct list_head *head_page_with_bit;
2616 		struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2617 
2618 		if (!hpage)
2619 			break;
2620 		head_page = &hpage->list;
2621 		prev_page = head_page->prev;
2622 
2623 		first_page = pages->next;
2624 		last_page  = pages->prev;
2625 
2626 		head_page_with_bit = (struct list_head *)
2627 				     ((unsigned long)head_page | RB_PAGE_HEAD);
2628 
2629 		last_page->next = head_page_with_bit;
2630 		first_page->prev = prev_page;
2631 
2632 		/* caution: head_page_with_bit gets updated on cmpxchg failure */
2633 		if (try_cmpxchg(&prev_page->next,
2634 				&head_page_with_bit, first_page)) {
2635 			/*
2636 			 * yay, we replaced the page pointer to our new list,
2637 			 * now, we just have to update to head page's prev
2638 			 * pointer to point to end of list
2639 			 */
2640 			head_page->prev = last_page;
2641 			success = true;
2642 			break;
2643 		}
2644 	}
2645 
2646 	if (success)
2647 		INIT_LIST_HEAD(pages);
2648 	/*
2649 	 * If we weren't successful in adding in new pages, warn and stop
2650 	 * tracing
2651 	 */
2652 	RB_WARN_ON(cpu_buffer, !success);
2653 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2654 
2655 	/* free pages if they weren't inserted */
2656 	if (!success) {
2657 		struct buffer_page *bpage, *tmp;
2658 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2659 					 list) {
2660 			list_del_init(&bpage->list);
2661 			free_buffer_page(bpage);
2662 		}
2663 	}
2664 	return success;
2665 }
2666 
2667 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2668 {
2669 	bool success;
2670 
2671 	if (cpu_buffer->nr_pages_to_update > 0)
2672 		success = rb_insert_pages(cpu_buffer);
2673 	else
2674 		success = rb_remove_pages(cpu_buffer,
2675 					-cpu_buffer->nr_pages_to_update);
2676 
2677 	if (success)
2678 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2679 }
2680 
2681 static void update_pages_handler(struct work_struct *work)
2682 {
2683 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2684 			struct ring_buffer_per_cpu, update_pages_work);
2685 	rb_update_pages(cpu_buffer);
2686 	complete(&cpu_buffer->update_done);
2687 }
2688 
2689 /**
2690  * ring_buffer_resize - resize the ring buffer
2691  * @buffer: the buffer to resize.
2692  * @size: the new size.
2693  * @cpu_id: the cpu buffer to resize
2694  *
2695  * Minimum size is 2 * buffer->subbuf_size.
2696  *
2697  * Returns 0 on success and < 0 on failure.
2698  */
2699 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2700 			int cpu_id)
2701 {
2702 	struct ring_buffer_per_cpu *cpu_buffer;
2703 	unsigned long nr_pages;
2704 	int cpu, err;
2705 
2706 	/*
2707 	 * Always succeed at resizing a non-existent buffer:
2708 	 */
2709 	if (!buffer)
2710 		return 0;
2711 
2712 	/* Make sure the requested buffer exists */
2713 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2714 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2715 		return 0;
2716 
2717 	nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2718 
2719 	/* we need a minimum of two pages */
2720 	if (nr_pages < 2)
2721 		nr_pages = 2;
2722 
2723 	/* prevent another thread from changing buffer sizes */
2724 	mutex_lock(&buffer->mutex);
2725 	atomic_inc(&buffer->resizing);
2726 
2727 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2728 		/*
2729 		 * Don't succeed if resizing is disabled, as a reader might be
2730 		 * manipulating the ring buffer and is expecting a sane state while
2731 		 * this is true.
2732 		 */
2733 		for_each_buffer_cpu(buffer, cpu) {
2734 			cpu_buffer = buffer->buffers[cpu];
2735 			if (atomic_read(&cpu_buffer->resize_disabled)) {
2736 				err = -EBUSY;
2737 				goto out_err_unlock;
2738 			}
2739 		}
2740 
2741 		/* calculate the pages to update */
2742 		for_each_buffer_cpu(buffer, cpu) {
2743 			cpu_buffer = buffer->buffers[cpu];
2744 
2745 			cpu_buffer->nr_pages_to_update = nr_pages -
2746 							cpu_buffer->nr_pages;
2747 			/*
2748 			 * nothing more to do for removing pages or no update
2749 			 */
2750 			if (cpu_buffer->nr_pages_to_update <= 0)
2751 				continue;
2752 			/*
2753 			 * to add pages, make sure all new pages can be
2754 			 * allocated without receiving ENOMEM
2755 			 */
2756 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2757 			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2758 						&cpu_buffer->new_pages)) {
2759 				/* not enough memory for new pages */
2760 				err = -ENOMEM;
2761 				goto out_err;
2762 			}
2763 
2764 			cond_resched();
2765 		}
2766 
2767 		cpus_read_lock();
2768 		/*
2769 		 * Fire off all the required work handlers
2770 		 * We can't schedule on offline CPUs, but it's not necessary
2771 		 * since we can change their buffer sizes without any race.
2772 		 */
2773 		for_each_buffer_cpu(buffer, cpu) {
2774 			cpu_buffer = buffer->buffers[cpu];
2775 			if (!cpu_buffer->nr_pages_to_update)
2776 				continue;
2777 
2778 			/* Can't run something on an offline CPU. */
2779 			if (!cpu_online(cpu)) {
2780 				rb_update_pages(cpu_buffer);
2781 				cpu_buffer->nr_pages_to_update = 0;
2782 			} else {
2783 				/* Run directly if possible. */
2784 				migrate_disable();
2785 				if (cpu != smp_processor_id()) {
2786 					migrate_enable();
2787 					schedule_work_on(cpu,
2788 							 &cpu_buffer->update_pages_work);
2789 				} else {
2790 					update_pages_handler(&cpu_buffer->update_pages_work);
2791 					migrate_enable();
2792 				}
2793 			}
2794 		}
2795 
2796 		/* wait for all the updates to complete */
2797 		for_each_buffer_cpu(buffer, cpu) {
2798 			cpu_buffer = buffer->buffers[cpu];
2799 			if (!cpu_buffer->nr_pages_to_update)
2800 				continue;
2801 
2802 			if (cpu_online(cpu))
2803 				wait_for_completion(&cpu_buffer->update_done);
2804 			cpu_buffer->nr_pages_to_update = 0;
2805 		}
2806 
2807 		cpus_read_unlock();
2808 	} else {
2809 		cpu_buffer = buffer->buffers[cpu_id];
2810 
2811 		if (nr_pages == cpu_buffer->nr_pages)
2812 			goto out;
2813 
2814 		/*
2815 		 * Don't succeed if resizing is disabled, as a reader might be
2816 		 * manipulating the ring buffer and is expecting a sane state while
2817 		 * this is true.
2818 		 */
2819 		if (atomic_read(&cpu_buffer->resize_disabled)) {
2820 			err = -EBUSY;
2821 			goto out_err_unlock;
2822 		}
2823 
2824 		cpu_buffer->nr_pages_to_update = nr_pages -
2825 						cpu_buffer->nr_pages;
2826 
2827 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2828 		if (cpu_buffer->nr_pages_to_update > 0 &&
2829 			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2830 					    &cpu_buffer->new_pages)) {
2831 			err = -ENOMEM;
2832 			goto out_err;
2833 		}
2834 
2835 		cpus_read_lock();
2836 
2837 		/* Can't run something on an offline CPU. */
2838 		if (!cpu_online(cpu_id))
2839 			rb_update_pages(cpu_buffer);
2840 		else {
2841 			/* Run directly if possible. */
2842 			migrate_disable();
2843 			if (cpu_id == smp_processor_id()) {
2844 				rb_update_pages(cpu_buffer);
2845 				migrate_enable();
2846 			} else {
2847 				migrate_enable();
2848 				schedule_work_on(cpu_id,
2849 						 &cpu_buffer->update_pages_work);
2850 				wait_for_completion(&cpu_buffer->update_done);
2851 			}
2852 		}
2853 
2854 		cpu_buffer->nr_pages_to_update = 0;
2855 		cpus_read_unlock();
2856 	}
2857 
2858  out:
2859 	/*
2860 	 * The ring buffer resize can happen with the ring buffer
2861 	 * enabled, so that the update disturbs the tracing as little
2862 	 * as possible. But if the buffer is disabled, we do not need
2863 	 * to worry about that, and we can take the time to verify
2864 	 * that the buffer is not corrupt.
2865 	 */
2866 	if (atomic_read(&buffer->record_disabled)) {
2867 		atomic_inc(&buffer->record_disabled);
2868 		/*
2869 		 * Even though the buffer was disabled, we must make sure
2870 		 * that it is truly disabled before calling rb_check_pages.
2871 		 * There could have been a race between checking
2872 		 * record_disable and incrementing it.
2873 		 */
2874 		synchronize_rcu();
2875 		for_each_buffer_cpu(buffer, cpu) {
2876 			unsigned long flags;
2877 
2878 			cpu_buffer = buffer->buffers[cpu];
2879 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2880 			rb_check_pages(cpu_buffer);
2881 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2882 		}
2883 		atomic_dec(&buffer->record_disabled);
2884 	}
2885 
2886 	atomic_dec(&buffer->resizing);
2887 	mutex_unlock(&buffer->mutex);
2888 	return 0;
2889 
2890  out_err:
2891 	for_each_buffer_cpu(buffer, cpu) {
2892 		struct buffer_page *bpage, *tmp;
2893 
2894 		cpu_buffer = buffer->buffers[cpu];
2895 		cpu_buffer->nr_pages_to_update = 0;
2896 
2897 		if (list_empty(&cpu_buffer->new_pages))
2898 			continue;
2899 
2900 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2901 					list) {
2902 			list_del_init(&bpage->list);
2903 			free_buffer_page(bpage);
2904 		}
2905 	}
2906  out_err_unlock:
2907 	atomic_dec(&buffer->resizing);
2908 	mutex_unlock(&buffer->mutex);
2909 	return err;
2910 }
2911 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2912 
2913 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2914 {
2915 	mutex_lock(&buffer->mutex);
2916 	if (val)
2917 		buffer->flags |= RB_FL_OVERWRITE;
2918 	else
2919 		buffer->flags &= ~RB_FL_OVERWRITE;
2920 	mutex_unlock(&buffer->mutex);
2921 }
2922 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2923 
2924 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2925 {
2926 	return bpage->page->data + index;
2927 }
2928 
2929 static __always_inline struct ring_buffer_event *
2930 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2931 {
2932 	return __rb_page_index(cpu_buffer->reader_page,
2933 			       cpu_buffer->reader_page->read);
2934 }
2935 
2936 static struct ring_buffer_event *
2937 rb_iter_head_event(struct ring_buffer_iter *iter)
2938 {
2939 	struct ring_buffer_event *event;
2940 	struct buffer_page *iter_head_page = iter->head_page;
2941 	unsigned long commit;
2942 	unsigned length;
2943 
2944 	if (iter->head != iter->next_event)
2945 		return iter->event;
2946 
2947 	/*
2948 	 * When the writer goes across pages, it issues a cmpxchg which
2949 	 * is a mb(), which will synchronize with the rmb here.
2950 	 * (see rb_tail_page_update() and __rb_reserve_next())
2951 	 */
2952 	commit = rb_page_commit(iter_head_page);
2953 	smp_rmb();
2954 
2955 	/* An event needs to be at least 8 bytes in size */
2956 	if (iter->head > commit - 8)
2957 		goto reset;
2958 
2959 	event = __rb_page_index(iter_head_page, iter->head);
2960 	length = rb_event_length(event);
2961 
2962 	/*
2963 	 * READ_ONCE() doesn't work on functions and we don't want the
2964 	 * compiler doing any crazy optimizations with length.
2965 	 */
2966 	barrier();
2967 
2968 	if ((iter->head + length) > commit || length > iter->event_size)
2969 		/* Writer corrupted the read? */
2970 		goto reset;
2971 
2972 	memcpy(iter->event, event, length);
2973 	/*
2974 	 * If the page stamp is still the same after this rmb() then the
2975 	 * event was safely copied without the writer entering the page.
2976 	 */
2977 	smp_rmb();
2978 
2979 	/* Make sure the page didn't change since we read this */
2980 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
2981 	    commit > rb_page_commit(iter_head_page))
2982 		goto reset;
2983 
2984 	iter->next_event = iter->head + length;
2985 	return iter->event;
2986  reset:
2987 	/* Reset to the beginning */
2988 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2989 	iter->head = 0;
2990 	iter->next_event = 0;
2991 	iter->missed_events = 1;
2992 	return NULL;
2993 }
2994 
2995 /* Size is determined by what has been committed */
2996 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2997 {
2998 	return rb_page_commit(bpage) & ~RB_MISSED_MASK;
2999 }
3000 
3001 static __always_inline unsigned
3002 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
3003 {
3004 	return rb_page_commit(cpu_buffer->commit_page);
3005 }
3006 
3007 static __always_inline unsigned
3008 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
3009 {
3010 	unsigned long addr = (unsigned long)event;
3011 
3012 	addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
3013 
3014 	return addr - BUF_PAGE_HDR_SIZE;
3015 }
3016 
3017 static void rb_inc_iter(struct ring_buffer_iter *iter)
3018 {
3019 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3020 
3021 	/*
3022 	 * The iterator could be on the reader page (it starts there).
3023 	 * But the head could have moved, since the reader was
3024 	 * found. Check for this case and assign the iterator
3025 	 * to the head page instead of next.
3026 	 */
3027 	if (iter->head_page == cpu_buffer->reader_page)
3028 		iter->head_page = rb_set_head_page(cpu_buffer);
3029 	else
3030 		rb_inc_page(&iter->head_page);
3031 
3032 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3033 	iter->head = 0;
3034 	iter->next_event = 0;
3035 }
3036 
3037 /* Return the index into the sub-buffers for a given sub-buffer */
3038 static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf)
3039 {
3040 	void *subbuf_array;
3041 
3042 	subbuf_array = (void *)meta + sizeof(int) * meta->nr_subbufs;
3043 	subbuf_array = (void *)ALIGN((unsigned long)subbuf_array, meta->subbuf_size);
3044 	return (subbuf - subbuf_array) / meta->subbuf_size;
3045 }
3046 
3047 static void rb_update_meta_head(struct ring_buffer_per_cpu *cpu_buffer,
3048 				struct buffer_page *next_page)
3049 {
3050 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3051 	unsigned long old_head = (unsigned long)next_page->page;
3052 	unsigned long new_head;
3053 
3054 	rb_inc_page(&next_page);
3055 	new_head = (unsigned long)next_page->page;
3056 
3057 	/*
3058 	 * Only move it forward once, if something else came in and
3059 	 * moved it forward, then we don't want to touch it.
3060 	 */
3061 	(void)cmpxchg(&meta->head_buffer, old_head, new_head);
3062 }
3063 
3064 static void rb_update_meta_reader(struct ring_buffer_per_cpu *cpu_buffer,
3065 				  struct buffer_page *reader)
3066 {
3067 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3068 	void *old_reader = cpu_buffer->reader_page->page;
3069 	void *new_reader = reader->page;
3070 	int id;
3071 
3072 	id = reader->id;
3073 	cpu_buffer->reader_page->id = id;
3074 	reader->id = 0;
3075 
3076 	meta->buffers[0] = rb_meta_subbuf_idx(meta, new_reader);
3077 	meta->buffers[id] = rb_meta_subbuf_idx(meta, old_reader);
3078 
3079 	/* The head pointer is the one after the reader */
3080 	rb_update_meta_head(cpu_buffer, reader);
3081 }
3082 
3083 /*
3084  * rb_handle_head_page - writer hit the head page
3085  *
3086  * Returns: +1 to retry page
3087  *           0 to continue
3088  *          -1 on error
3089  */
3090 static int
3091 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
3092 		    struct buffer_page *tail_page,
3093 		    struct buffer_page *next_page)
3094 {
3095 	struct buffer_page *new_head;
3096 	int entries;
3097 	int type;
3098 	int ret;
3099 
3100 	entries = rb_page_entries(next_page);
3101 
3102 	/*
3103 	 * The hard part is here. We need to move the head
3104 	 * forward, and protect against both readers on
3105 	 * other CPUs and writers coming in via interrupts.
3106 	 */
3107 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
3108 				       RB_PAGE_HEAD);
3109 
3110 	/*
3111 	 * type can be one of four:
3112 	 *  NORMAL - an interrupt already moved it for us
3113 	 *  HEAD   - we are the first to get here.
3114 	 *  UPDATE - we are the interrupt interrupting
3115 	 *           a current move.
3116 	 *  MOVED  - a reader on another CPU moved the next
3117 	 *           pointer to its reader page. Give up
3118 	 *           and try again.
3119 	 */
3120 
3121 	switch (type) {
3122 	case RB_PAGE_HEAD:
3123 		/*
3124 		 * We changed the head to UPDATE, thus
3125 		 * it is our responsibility to update
3126 		 * the counters.
3127 		 */
3128 		local_add(entries, &cpu_buffer->overrun);
3129 		local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
3130 		local_inc(&cpu_buffer->pages_lost);
3131 
3132 		if (cpu_buffer->ring_meta)
3133 			rb_update_meta_head(cpu_buffer, next_page);
3134 		/*
3135 		 * The entries will be zeroed out when we move the
3136 		 * tail page.
3137 		 */
3138 
3139 		/* still more to do */
3140 		break;
3141 
3142 	case RB_PAGE_UPDATE:
3143 		/*
3144 		 * This is an interrupt that interrupt the
3145 		 * previous update. Still more to do.
3146 		 */
3147 		break;
3148 	case RB_PAGE_NORMAL:
3149 		/*
3150 		 * An interrupt came in before the update
3151 		 * and processed this for us.
3152 		 * Nothing left to do.
3153 		 */
3154 		return 1;
3155 	case RB_PAGE_MOVED:
3156 		/*
3157 		 * The reader is on another CPU and just did
3158 		 * a swap with our next_page.
3159 		 * Try again.
3160 		 */
3161 		return 1;
3162 	default:
3163 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
3164 		return -1;
3165 	}
3166 
3167 	/*
3168 	 * Now that we are here, the old head pointer is
3169 	 * set to UPDATE. This will keep the reader from
3170 	 * swapping the head page with the reader page.
3171 	 * The reader (on another CPU) will spin till
3172 	 * we are finished.
3173 	 *
3174 	 * We just need to protect against interrupts
3175 	 * doing the job. We will set the next pointer
3176 	 * to HEAD. After that, we set the old pointer
3177 	 * to NORMAL, but only if it was HEAD before.
3178 	 * otherwise we are an interrupt, and only
3179 	 * want the outer most commit to reset it.
3180 	 */
3181 	new_head = next_page;
3182 	rb_inc_page(&new_head);
3183 
3184 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
3185 				    RB_PAGE_NORMAL);
3186 
3187 	/*
3188 	 * Valid returns are:
3189 	 *  HEAD   - an interrupt came in and already set it.
3190 	 *  NORMAL - One of two things:
3191 	 *            1) We really set it.
3192 	 *            2) A bunch of interrupts came in and moved
3193 	 *               the page forward again.
3194 	 */
3195 	switch (ret) {
3196 	case RB_PAGE_HEAD:
3197 	case RB_PAGE_NORMAL:
3198 		/* OK */
3199 		break;
3200 	default:
3201 		RB_WARN_ON(cpu_buffer, 1);
3202 		return -1;
3203 	}
3204 
3205 	/*
3206 	 * It is possible that an interrupt came in,
3207 	 * set the head up, then more interrupts came in
3208 	 * and moved it again. When we get back here,
3209 	 * the page would have been set to NORMAL but we
3210 	 * just set it back to HEAD.
3211 	 *
3212 	 * How do you detect this? Well, if that happened
3213 	 * the tail page would have moved.
3214 	 */
3215 	if (ret == RB_PAGE_NORMAL) {
3216 		struct buffer_page *buffer_tail_page;
3217 
3218 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
3219 		/*
3220 		 * If the tail had moved passed next, then we need
3221 		 * to reset the pointer.
3222 		 */
3223 		if (buffer_tail_page != tail_page &&
3224 		    buffer_tail_page != next_page)
3225 			rb_head_page_set_normal(cpu_buffer, new_head,
3226 						next_page,
3227 						RB_PAGE_HEAD);
3228 	}
3229 
3230 	/*
3231 	 * If this was the outer most commit (the one that
3232 	 * changed the original pointer from HEAD to UPDATE),
3233 	 * then it is up to us to reset it to NORMAL.
3234 	 */
3235 	if (type == RB_PAGE_HEAD) {
3236 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
3237 					      tail_page,
3238 					      RB_PAGE_UPDATE);
3239 		if (RB_WARN_ON(cpu_buffer,
3240 			       ret != RB_PAGE_UPDATE))
3241 			return -1;
3242 	}
3243 
3244 	return 0;
3245 }
3246 
3247 static inline void
3248 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
3249 	      unsigned long tail, struct rb_event_info *info)
3250 {
3251 	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
3252 	struct buffer_page *tail_page = info->tail_page;
3253 	struct ring_buffer_event *event;
3254 	unsigned long length = info->length;
3255 
3256 	/*
3257 	 * Only the event that crossed the page boundary
3258 	 * must fill the old tail_page with padding.
3259 	 */
3260 	if (tail >= bsize) {
3261 		/*
3262 		 * If the page was filled, then we still need
3263 		 * to update the real_end. Reset it to zero
3264 		 * and the reader will ignore it.
3265 		 */
3266 		if (tail == bsize)
3267 			tail_page->real_end = 0;
3268 
3269 		local_sub(length, &tail_page->write);
3270 		return;
3271 	}
3272 
3273 	event = __rb_page_index(tail_page, tail);
3274 
3275 	/*
3276 	 * Save the original length to the meta data.
3277 	 * This will be used by the reader to add lost event
3278 	 * counter.
3279 	 */
3280 	tail_page->real_end = tail;
3281 
3282 	/*
3283 	 * If this event is bigger than the minimum size, then
3284 	 * we need to be careful that we don't subtract the
3285 	 * write counter enough to allow another writer to slip
3286 	 * in on this page.
3287 	 * We put in a discarded commit instead, to make sure
3288 	 * that this space is not used again, and this space will
3289 	 * not be accounted into 'entries_bytes'.
3290 	 *
3291 	 * If we are less than the minimum size, we don't need to
3292 	 * worry about it.
3293 	 */
3294 	if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
3295 		/* No room for any events */
3296 
3297 		/* Mark the rest of the page with padding */
3298 		rb_event_set_padding(event);
3299 
3300 		/* Make sure the padding is visible before the write update */
3301 		smp_wmb();
3302 
3303 		/* Set the write back to the previous setting */
3304 		local_sub(length, &tail_page->write);
3305 		return;
3306 	}
3307 
3308 	/* Put in a discarded event */
3309 	event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
3310 	event->type_len = RINGBUF_TYPE_PADDING;
3311 	/* time delta must be non zero */
3312 	event->time_delta = 1;
3313 
3314 	/* account for padding bytes */
3315 	local_add(bsize - tail, &cpu_buffer->entries_bytes);
3316 
3317 	/* Make sure the padding is visible before the tail_page->write update */
3318 	smp_wmb();
3319 
3320 	/* Set write to end of buffer */
3321 	length = (tail + length) - bsize;
3322 	local_sub(length, &tail_page->write);
3323 }
3324 
3325 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
3326 
3327 /*
3328  * This is the slow path, force gcc not to inline it.
3329  */
3330 static noinline struct ring_buffer_event *
3331 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
3332 	     unsigned long tail, struct rb_event_info *info)
3333 {
3334 	struct buffer_page *tail_page = info->tail_page;
3335 	struct buffer_page *commit_page = cpu_buffer->commit_page;
3336 	struct trace_buffer *buffer = cpu_buffer->buffer;
3337 	struct buffer_page *next_page;
3338 	int ret;
3339 
3340 	next_page = tail_page;
3341 
3342 	rb_inc_page(&next_page);
3343 
3344 	/*
3345 	 * If for some reason, we had an interrupt storm that made
3346 	 * it all the way around the buffer, bail, and warn
3347 	 * about it.
3348 	 */
3349 	if (unlikely(next_page == commit_page)) {
3350 		local_inc(&cpu_buffer->commit_overrun);
3351 		goto out_reset;
3352 	}
3353 
3354 	/*
3355 	 * This is where the fun begins!
3356 	 *
3357 	 * We are fighting against races between a reader that
3358 	 * could be on another CPU trying to swap its reader
3359 	 * page with the buffer head.
3360 	 *
3361 	 * We are also fighting against interrupts coming in and
3362 	 * moving the head or tail on us as well.
3363 	 *
3364 	 * If the next page is the head page then we have filled
3365 	 * the buffer, unless the commit page is still on the
3366 	 * reader page.
3367 	 */
3368 	if (rb_is_head_page(next_page, &tail_page->list)) {
3369 
3370 		/*
3371 		 * If the commit is not on the reader page, then
3372 		 * move the header page.
3373 		 */
3374 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
3375 			/*
3376 			 * If we are not in overwrite mode,
3377 			 * this is easy, just stop here.
3378 			 */
3379 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
3380 				local_inc(&cpu_buffer->dropped_events);
3381 				goto out_reset;
3382 			}
3383 
3384 			ret = rb_handle_head_page(cpu_buffer,
3385 						  tail_page,
3386 						  next_page);
3387 			if (ret < 0)
3388 				goto out_reset;
3389 			if (ret)
3390 				goto out_again;
3391 		} else {
3392 			/*
3393 			 * We need to be careful here too. The
3394 			 * commit page could still be on the reader
3395 			 * page. We could have a small buffer, and
3396 			 * have filled up the buffer with events
3397 			 * from interrupts and such, and wrapped.
3398 			 *
3399 			 * Note, if the tail page is also on the
3400 			 * reader_page, we let it move out.
3401 			 */
3402 			if (unlikely((cpu_buffer->commit_page !=
3403 				      cpu_buffer->tail_page) &&
3404 				     (cpu_buffer->commit_page ==
3405 				      cpu_buffer->reader_page))) {
3406 				local_inc(&cpu_buffer->commit_overrun);
3407 				goto out_reset;
3408 			}
3409 		}
3410 	}
3411 
3412 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
3413 
3414  out_again:
3415 
3416 	rb_reset_tail(cpu_buffer, tail, info);
3417 
3418 	/* Commit what we have for now. */
3419 	rb_end_commit(cpu_buffer);
3420 	/* rb_end_commit() decs committing */
3421 	local_inc(&cpu_buffer->committing);
3422 
3423 	/* fail and let the caller try again */
3424 	return ERR_PTR(-EAGAIN);
3425 
3426  out_reset:
3427 	/* reset write */
3428 	rb_reset_tail(cpu_buffer, tail, info);
3429 
3430 	return NULL;
3431 }
3432 
3433 /* Slow path */
3434 static struct ring_buffer_event *
3435 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3436 		  struct ring_buffer_event *event, u64 delta, bool abs)
3437 {
3438 	if (abs)
3439 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
3440 	else
3441 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
3442 
3443 	/* Not the first event on the page, or not delta? */
3444 	if (abs || rb_event_index(cpu_buffer, event)) {
3445 		event->time_delta = delta & TS_MASK;
3446 		event->array[0] = delta >> TS_SHIFT;
3447 	} else {
3448 		/* nope, just zero it */
3449 		event->time_delta = 0;
3450 		event->array[0] = 0;
3451 	}
3452 
3453 	return skip_time_extend(event);
3454 }
3455 
3456 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3457 static inline bool sched_clock_stable(void)
3458 {
3459 	return true;
3460 }
3461 #endif
3462 
3463 static void
3464 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3465 		   struct rb_event_info *info)
3466 {
3467 	u64 write_stamp;
3468 
3469 	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
3470 		  (unsigned long long)info->delta,
3471 		  (unsigned long long)info->ts,
3472 		  (unsigned long long)info->before,
3473 		  (unsigned long long)info->after,
3474 		  (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
3475 		  sched_clock_stable() ? "" :
3476 		  "If you just came from a suspend/resume,\n"
3477 		  "please switch to the trace global clock:\n"
3478 		  "  echo global > /sys/kernel/tracing/trace_clock\n"
3479 		  "or add trace_clock=global to the kernel command line\n");
3480 }
3481 
3482 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3483 				      struct ring_buffer_event **event,
3484 				      struct rb_event_info *info,
3485 				      u64 *delta,
3486 				      unsigned int *length)
3487 {
3488 	bool abs = info->add_timestamp &
3489 		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
3490 
3491 	if (unlikely(info->delta > (1ULL << 59))) {
3492 		/*
3493 		 * Some timers can use more than 59 bits, and when a timestamp
3494 		 * is added to the buffer, it will lose those bits.
3495 		 */
3496 		if (abs && (info->ts & TS_MSB)) {
3497 			info->delta &= ABS_TS_MASK;
3498 
3499 		/* did the clock go backwards */
3500 		} else if (info->before == info->after && info->before > info->ts) {
3501 			/* not interrupted */
3502 			static int once;
3503 
3504 			/*
3505 			 * This is possible with a recalibrating of the TSC.
3506 			 * Do not produce a call stack, but just report it.
3507 			 */
3508 			if (!once) {
3509 				once++;
3510 				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
3511 					info->before, info->ts);
3512 			}
3513 		} else
3514 			rb_check_timestamp(cpu_buffer, info);
3515 		if (!abs)
3516 			info->delta = 0;
3517 	}
3518 	*event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
3519 	*length -= RB_LEN_TIME_EXTEND;
3520 	*delta = 0;
3521 }
3522 
3523 /**
3524  * rb_update_event - update event type and data
3525  * @cpu_buffer: The per cpu buffer of the @event
3526  * @event: the event to update
3527  * @info: The info to update the @event with (contains length and delta)
3528  *
3529  * Update the type and data fields of the @event. The length
3530  * is the actual size that is written to the ring buffer,
3531  * and with this, we can determine what to place into the
3532  * data field.
3533  */
3534 static void
3535 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
3536 		struct ring_buffer_event *event,
3537 		struct rb_event_info *info)
3538 {
3539 	unsigned length = info->length;
3540 	u64 delta = info->delta;
3541 	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
3542 
3543 	if (!WARN_ON_ONCE(nest >= MAX_NEST))
3544 		cpu_buffer->event_stamp[nest] = info->ts;
3545 
3546 	/*
3547 	 * If we need to add a timestamp, then we
3548 	 * add it to the start of the reserved space.
3549 	 */
3550 	if (unlikely(info->add_timestamp))
3551 		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
3552 
3553 	event->time_delta = delta;
3554 	length -= RB_EVNT_HDR_SIZE;
3555 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
3556 		event->type_len = 0;
3557 		event->array[0] = length;
3558 	} else
3559 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
3560 }
3561 
3562 static unsigned rb_calculate_event_length(unsigned length)
3563 {
3564 	struct ring_buffer_event event; /* Used only for sizeof array */
3565 
3566 	/* zero length can cause confusions */
3567 	if (!length)
3568 		length++;
3569 
3570 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
3571 		length += sizeof(event.array[0]);
3572 
3573 	length += RB_EVNT_HDR_SIZE;
3574 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
3575 
3576 	/*
3577 	 * In case the time delta is larger than the 27 bits for it
3578 	 * in the header, we need to add a timestamp. If another
3579 	 * event comes in when trying to discard this one to increase
3580 	 * the length, then the timestamp will be added in the allocated
3581 	 * space of this event. If length is bigger than the size needed
3582 	 * for the TIME_EXTEND, then padding has to be used. The events
3583 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
3584 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
3585 	 * As length is a multiple of 4, we only need to worry if it
3586 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
3587 	 */
3588 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
3589 		length += RB_ALIGNMENT;
3590 
3591 	return length;
3592 }
3593 
3594 static inline bool
3595 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3596 		  struct ring_buffer_event *event)
3597 {
3598 	unsigned long new_index, old_index;
3599 	struct buffer_page *bpage;
3600 	unsigned long addr;
3601 
3602 	new_index = rb_event_index(cpu_buffer, event);
3603 	old_index = new_index + rb_event_ts_length(event);
3604 	addr = (unsigned long)event;
3605 	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3606 
3607 	bpage = READ_ONCE(cpu_buffer->tail_page);
3608 
3609 	/*
3610 	 * Make sure the tail_page is still the same and
3611 	 * the next write location is the end of this event
3612 	 */
3613 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3614 		unsigned long write_mask =
3615 			local_read(&bpage->write) & ~RB_WRITE_MASK;
3616 		unsigned long event_length = rb_event_length(event);
3617 
3618 		/*
3619 		 * For the before_stamp to be different than the write_stamp
3620 		 * to make sure that the next event adds an absolute
3621 		 * value and does not rely on the saved write stamp, which
3622 		 * is now going to be bogus.
3623 		 *
3624 		 * By setting the before_stamp to zero, the next event
3625 		 * is not going to use the write_stamp and will instead
3626 		 * create an absolute timestamp. This means there's no
3627 		 * reason to update the wirte_stamp!
3628 		 */
3629 		rb_time_set(&cpu_buffer->before_stamp, 0);
3630 
3631 		/*
3632 		 * If an event were to come in now, it would see that the
3633 		 * write_stamp and the before_stamp are different, and assume
3634 		 * that this event just added itself before updating
3635 		 * the write stamp. The interrupting event will fix the
3636 		 * write stamp for us, and use an absolute timestamp.
3637 		 */
3638 
3639 		/*
3640 		 * This is on the tail page. It is possible that
3641 		 * a write could come in and move the tail page
3642 		 * and write to the next page. That is fine
3643 		 * because we just shorten what is on this page.
3644 		 */
3645 		old_index += write_mask;
3646 		new_index += write_mask;
3647 
3648 		/* caution: old_index gets updated on cmpxchg failure */
3649 		if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3650 			/* update counters */
3651 			local_sub(event_length, &cpu_buffer->entries_bytes);
3652 			return true;
3653 		}
3654 	}
3655 
3656 	/* could not discard */
3657 	return false;
3658 }
3659 
3660 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3661 {
3662 	local_inc(&cpu_buffer->committing);
3663 	local_inc(&cpu_buffer->commits);
3664 }
3665 
3666 static __always_inline void
3667 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3668 {
3669 	unsigned long max_count;
3670 
3671 	/*
3672 	 * We only race with interrupts and NMIs on this CPU.
3673 	 * If we own the commit event, then we can commit
3674 	 * all others that interrupted us, since the interruptions
3675 	 * are in stack format (they finish before they come
3676 	 * back to us). This allows us to do a simple loop to
3677 	 * assign the commit to the tail.
3678 	 */
3679  again:
3680 	max_count = cpu_buffer->nr_pages * 100;
3681 
3682 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3683 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3684 			return;
3685 		if (RB_WARN_ON(cpu_buffer,
3686 			       rb_is_reader_page(cpu_buffer->tail_page)))
3687 			return;
3688 		/*
3689 		 * No need for a memory barrier here, as the update
3690 		 * of the tail_page did it for this page.
3691 		 */
3692 		local_set(&cpu_buffer->commit_page->page->commit,
3693 			  rb_page_write(cpu_buffer->commit_page));
3694 		rb_inc_page(&cpu_buffer->commit_page);
3695 		if (cpu_buffer->ring_meta) {
3696 			struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3697 			meta->commit_buffer = (unsigned long)cpu_buffer->commit_page->page;
3698 		}
3699 		/* add barrier to keep gcc from optimizing too much */
3700 		barrier();
3701 	}
3702 	while (rb_commit_index(cpu_buffer) !=
3703 	       rb_page_write(cpu_buffer->commit_page)) {
3704 
3705 		/* Make sure the readers see the content of what is committed. */
3706 		smp_wmb();
3707 		local_set(&cpu_buffer->commit_page->page->commit,
3708 			  rb_page_write(cpu_buffer->commit_page));
3709 		RB_WARN_ON(cpu_buffer,
3710 			   local_read(&cpu_buffer->commit_page->page->commit) &
3711 			   ~RB_WRITE_MASK);
3712 		barrier();
3713 	}
3714 
3715 	/* again, keep gcc from optimizing */
3716 	barrier();
3717 
3718 	/*
3719 	 * If an interrupt came in just after the first while loop
3720 	 * and pushed the tail page forward, we will be left with
3721 	 * a dangling commit that will never go forward.
3722 	 */
3723 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3724 		goto again;
3725 }
3726 
3727 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3728 {
3729 	unsigned long commits;
3730 
3731 	if (RB_WARN_ON(cpu_buffer,
3732 		       !local_read(&cpu_buffer->committing)))
3733 		return;
3734 
3735  again:
3736 	commits = local_read(&cpu_buffer->commits);
3737 	/* synchronize with interrupts */
3738 	barrier();
3739 	if (local_read(&cpu_buffer->committing) == 1)
3740 		rb_set_commit_to_write(cpu_buffer);
3741 
3742 	local_dec(&cpu_buffer->committing);
3743 
3744 	/* synchronize with interrupts */
3745 	barrier();
3746 
3747 	/*
3748 	 * Need to account for interrupts coming in between the
3749 	 * updating of the commit page and the clearing of the
3750 	 * committing counter.
3751 	 */
3752 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3753 	    !local_read(&cpu_buffer->committing)) {
3754 		local_inc(&cpu_buffer->committing);
3755 		goto again;
3756 	}
3757 }
3758 
3759 static inline void rb_event_discard(struct ring_buffer_event *event)
3760 {
3761 	if (extended_time(event))
3762 		event = skip_time_extend(event);
3763 
3764 	/* array[0] holds the actual length for the discarded event */
3765 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3766 	event->type_len = RINGBUF_TYPE_PADDING;
3767 	/* time delta must be non zero */
3768 	if (!event->time_delta)
3769 		event->time_delta = 1;
3770 }
3771 
3772 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3773 {
3774 	local_inc(&cpu_buffer->entries);
3775 	rb_end_commit(cpu_buffer);
3776 }
3777 
3778 static __always_inline void
3779 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3780 {
3781 	if (buffer->irq_work.waiters_pending) {
3782 		buffer->irq_work.waiters_pending = false;
3783 		/* irq_work_queue() supplies it's own memory barriers */
3784 		irq_work_queue(&buffer->irq_work.work);
3785 	}
3786 
3787 	if (cpu_buffer->irq_work.waiters_pending) {
3788 		cpu_buffer->irq_work.waiters_pending = false;
3789 		/* irq_work_queue() supplies it's own memory barriers */
3790 		irq_work_queue(&cpu_buffer->irq_work.work);
3791 	}
3792 
3793 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3794 		return;
3795 
3796 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3797 		return;
3798 
3799 	if (!cpu_buffer->irq_work.full_waiters_pending)
3800 		return;
3801 
3802 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3803 
3804 	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3805 		return;
3806 
3807 	cpu_buffer->irq_work.wakeup_full = true;
3808 	cpu_buffer->irq_work.full_waiters_pending = false;
3809 	/* irq_work_queue() supplies it's own memory barriers */
3810 	irq_work_queue(&cpu_buffer->irq_work.work);
3811 }
3812 
3813 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3814 # define do_ring_buffer_record_recursion()	\
3815 	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3816 #else
3817 # define do_ring_buffer_record_recursion() do { } while (0)
3818 #endif
3819 
3820 /*
3821  * The lock and unlock are done within a preempt disable section.
3822  * The current_context per_cpu variable can only be modified
3823  * by the current task between lock and unlock. But it can
3824  * be modified more than once via an interrupt. To pass this
3825  * information from the lock to the unlock without having to
3826  * access the 'in_interrupt()' functions again (which do show
3827  * a bit of overhead in something as critical as function tracing,
3828  * we use a bitmask trick.
3829  *
3830  *  bit 1 =  NMI context
3831  *  bit 2 =  IRQ context
3832  *  bit 3 =  SoftIRQ context
3833  *  bit 4 =  normal context.
3834  *
3835  * This works because this is the order of contexts that can
3836  * preempt other contexts. A SoftIRQ never preempts an IRQ
3837  * context.
3838  *
3839  * When the context is determined, the corresponding bit is
3840  * checked and set (if it was set, then a recursion of that context
3841  * happened).
3842  *
3843  * On unlock, we need to clear this bit. To do so, just subtract
3844  * 1 from the current_context and AND it to itself.
3845  *
3846  * (binary)
3847  *  101 - 1 = 100
3848  *  101 & 100 = 100 (clearing bit zero)
3849  *
3850  *  1010 - 1 = 1001
3851  *  1010 & 1001 = 1000 (clearing bit 1)
3852  *
3853  * The least significant bit can be cleared this way, and it
3854  * just so happens that it is the same bit corresponding to
3855  * the current context.
3856  *
3857  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3858  * is set when a recursion is detected at the current context, and if
3859  * the TRANSITION bit is already set, it will fail the recursion.
3860  * This is needed because there's a lag between the changing of
3861  * interrupt context and updating the preempt count. In this case,
3862  * a false positive will be found. To handle this, one extra recursion
3863  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3864  * bit is already set, then it is considered a recursion and the function
3865  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3866  *
3867  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3868  * to be cleared. Even if it wasn't the context that set it. That is,
3869  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3870  * is called before preempt_count() is updated, since the check will
3871  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3872  * NMI then comes in, it will set the NMI bit, but when the NMI code
3873  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3874  * and leave the NMI bit set. But this is fine, because the interrupt
3875  * code that set the TRANSITION bit will then clear the NMI bit when it
3876  * calls trace_recursive_unlock(). If another NMI comes in, it will
3877  * set the TRANSITION bit and continue.
3878  *
3879  * Note: The TRANSITION bit only handles a single transition between context.
3880  */
3881 
3882 static __always_inline bool
3883 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3884 {
3885 	unsigned int val = cpu_buffer->current_context;
3886 	int bit = interrupt_context_level();
3887 
3888 	bit = RB_CTX_NORMAL - bit;
3889 
3890 	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3891 		/*
3892 		 * It is possible that this was called by transitioning
3893 		 * between interrupt context, and preempt_count() has not
3894 		 * been updated yet. In this case, use the TRANSITION bit.
3895 		 */
3896 		bit = RB_CTX_TRANSITION;
3897 		if (val & (1 << (bit + cpu_buffer->nest))) {
3898 			do_ring_buffer_record_recursion();
3899 			return true;
3900 		}
3901 	}
3902 
3903 	val |= (1 << (bit + cpu_buffer->nest));
3904 	cpu_buffer->current_context = val;
3905 
3906 	return false;
3907 }
3908 
3909 static __always_inline void
3910 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3911 {
3912 	cpu_buffer->current_context &=
3913 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3914 }
3915 
3916 /* The recursive locking above uses 5 bits */
3917 #define NESTED_BITS 5
3918 
3919 /**
3920  * ring_buffer_nest_start - Allow to trace while nested
3921  * @buffer: The ring buffer to modify
3922  *
3923  * The ring buffer has a safety mechanism to prevent recursion.
3924  * But there may be a case where a trace needs to be done while
3925  * tracing something else. In this case, calling this function
3926  * will allow this function to nest within a currently active
3927  * ring_buffer_lock_reserve().
3928  *
3929  * Call this function before calling another ring_buffer_lock_reserve() and
3930  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3931  */
3932 void ring_buffer_nest_start(struct trace_buffer *buffer)
3933 {
3934 	struct ring_buffer_per_cpu *cpu_buffer;
3935 	int cpu;
3936 
3937 	/* Enabled by ring_buffer_nest_end() */
3938 	preempt_disable_notrace();
3939 	cpu = raw_smp_processor_id();
3940 	cpu_buffer = buffer->buffers[cpu];
3941 	/* This is the shift value for the above recursive locking */
3942 	cpu_buffer->nest += NESTED_BITS;
3943 }
3944 
3945 /**
3946  * ring_buffer_nest_end - Allow to trace while nested
3947  * @buffer: The ring buffer to modify
3948  *
3949  * Must be called after ring_buffer_nest_start() and after the
3950  * ring_buffer_unlock_commit().
3951  */
3952 void ring_buffer_nest_end(struct trace_buffer *buffer)
3953 {
3954 	struct ring_buffer_per_cpu *cpu_buffer;
3955 	int cpu;
3956 
3957 	/* disabled by ring_buffer_nest_start() */
3958 	cpu = raw_smp_processor_id();
3959 	cpu_buffer = buffer->buffers[cpu];
3960 	/* This is the shift value for the above recursive locking */
3961 	cpu_buffer->nest -= NESTED_BITS;
3962 	preempt_enable_notrace();
3963 }
3964 
3965 /**
3966  * ring_buffer_unlock_commit - commit a reserved
3967  * @buffer: The buffer to commit to
3968  *
3969  * This commits the data to the ring buffer, and releases any locks held.
3970  *
3971  * Must be paired with ring_buffer_lock_reserve.
3972  */
3973 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3974 {
3975 	struct ring_buffer_per_cpu *cpu_buffer;
3976 	int cpu = raw_smp_processor_id();
3977 
3978 	cpu_buffer = buffer->buffers[cpu];
3979 
3980 	rb_commit(cpu_buffer);
3981 
3982 	rb_wakeups(buffer, cpu_buffer);
3983 
3984 	trace_recursive_unlock(cpu_buffer);
3985 
3986 	preempt_enable_notrace();
3987 
3988 	return 0;
3989 }
3990 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3991 
3992 /* Special value to validate all deltas on a page. */
3993 #define CHECK_FULL_PAGE		1L
3994 
3995 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3996 
3997 static const char *show_irq_str(int bits)
3998 {
3999 	const char *type[] = {
4000 		".",	// 0
4001 		"s",	// 1
4002 		"h",	// 2
4003 		"Hs",	// 3
4004 		"n",	// 4
4005 		"Ns",	// 5
4006 		"Nh",	// 6
4007 		"NHs",	// 7
4008 	};
4009 
4010 	return type[bits];
4011 }
4012 
4013 /* Assume this is an trace event */
4014 static const char *show_flags(struct ring_buffer_event *event)
4015 {
4016 	struct trace_entry *entry;
4017 	int bits = 0;
4018 
4019 	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4020 		return "X";
4021 
4022 	entry = ring_buffer_event_data(event);
4023 
4024 	if (entry->flags & TRACE_FLAG_SOFTIRQ)
4025 		bits |= 1;
4026 
4027 	if (entry->flags & TRACE_FLAG_HARDIRQ)
4028 		bits |= 2;
4029 
4030 	if (entry->flags & TRACE_FLAG_NMI)
4031 		bits |= 4;
4032 
4033 	return show_irq_str(bits);
4034 }
4035 
4036 static const char *show_irq(struct ring_buffer_event *event)
4037 {
4038 	struct trace_entry *entry;
4039 
4040 	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4041 		return "";
4042 
4043 	entry = ring_buffer_event_data(event);
4044 	if (entry->flags & TRACE_FLAG_IRQS_OFF)
4045 		return "d";
4046 	return "";
4047 }
4048 
4049 static const char *show_interrupt_level(void)
4050 {
4051 	unsigned long pc = preempt_count();
4052 	unsigned char level = 0;
4053 
4054 	if (pc & SOFTIRQ_OFFSET)
4055 		level |= 1;
4056 
4057 	if (pc & HARDIRQ_MASK)
4058 		level |= 2;
4059 
4060 	if (pc & NMI_MASK)
4061 		level |= 4;
4062 
4063 	return show_irq_str(level);
4064 }
4065 
4066 static void dump_buffer_page(struct buffer_data_page *bpage,
4067 			     struct rb_event_info *info,
4068 			     unsigned long tail)
4069 {
4070 	struct ring_buffer_event *event;
4071 	u64 ts, delta;
4072 	int e;
4073 
4074 	ts = bpage->time_stamp;
4075 	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
4076 
4077 	for (e = 0; e < tail; e += rb_event_length(event)) {
4078 
4079 		event = (struct ring_buffer_event *)(bpage->data + e);
4080 
4081 		switch (event->type_len) {
4082 
4083 		case RINGBUF_TYPE_TIME_EXTEND:
4084 			delta = rb_event_time_stamp(event);
4085 			ts += delta;
4086 			pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
4087 				e, ts, delta);
4088 			break;
4089 
4090 		case RINGBUF_TYPE_TIME_STAMP:
4091 			delta = rb_event_time_stamp(event);
4092 			ts = rb_fix_abs_ts(delta, ts);
4093 			pr_warn(" 0x%x:  [%lld] absolute:%lld TIME STAMP\n",
4094 				e, ts, delta);
4095 			break;
4096 
4097 		case RINGBUF_TYPE_PADDING:
4098 			ts += event->time_delta;
4099 			pr_warn(" 0x%x:  [%lld] delta:%d PADDING\n",
4100 				e, ts, event->time_delta);
4101 			break;
4102 
4103 		case RINGBUF_TYPE_DATA:
4104 			ts += event->time_delta;
4105 			pr_warn(" 0x%x:  [%lld] delta:%d %s%s\n",
4106 				e, ts, event->time_delta,
4107 				show_flags(event), show_irq(event));
4108 			break;
4109 
4110 		default:
4111 			break;
4112 		}
4113 	}
4114 	pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
4115 }
4116 
4117 static DEFINE_PER_CPU(atomic_t, checking);
4118 static atomic_t ts_dump;
4119 
4120 #define buffer_warn_return(fmt, ...)					\
4121 	do {								\
4122 		/* If another report is happening, ignore this one */	\
4123 		if (atomic_inc_return(&ts_dump) != 1) {			\
4124 			atomic_dec(&ts_dump);				\
4125 			goto out;					\
4126 		}							\
4127 		atomic_inc(&cpu_buffer->record_disabled);		\
4128 		pr_warn(fmt, ##__VA_ARGS__);				\
4129 		dump_buffer_page(bpage, info, tail);			\
4130 		atomic_dec(&ts_dump);					\
4131 		/* There's some cases in boot up that this can happen */ \
4132 		if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING))	\
4133 			/* Do not re-enable checking */			\
4134 			return;						\
4135 	} while (0)
4136 
4137 /*
4138  * Check if the current event time stamp matches the deltas on
4139  * the buffer page.
4140  */
4141 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4142 			 struct rb_event_info *info,
4143 			 unsigned long tail)
4144 {
4145 	struct buffer_data_page *bpage;
4146 	u64 ts, delta;
4147 	bool full = false;
4148 	int ret;
4149 
4150 	bpage = info->tail_page->page;
4151 
4152 	if (tail == CHECK_FULL_PAGE) {
4153 		full = true;
4154 		tail = local_read(&bpage->commit);
4155 	} else if (info->add_timestamp &
4156 		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
4157 		/* Ignore events with absolute time stamps */
4158 		return;
4159 	}
4160 
4161 	/*
4162 	 * Do not check the first event (skip possible extends too).
4163 	 * Also do not check if previous events have not been committed.
4164 	 */
4165 	if (tail <= 8 || tail > local_read(&bpage->commit))
4166 		return;
4167 
4168 	/*
4169 	 * If this interrupted another event,
4170 	 */
4171 	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
4172 		goto out;
4173 
4174 	ret = rb_read_data_buffer(bpage, tail, cpu_buffer->cpu, &ts, &delta);
4175 	if (ret < 0) {
4176 		if (delta < ts) {
4177 			buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
4178 					   cpu_buffer->cpu, ts, delta);
4179 			goto out;
4180 		}
4181 	}
4182 	if ((full && ts > info->ts) ||
4183 	    (!full && ts + info->delta != info->ts)) {
4184 		buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
4185 				   cpu_buffer->cpu,
4186 				   ts + info->delta, info->ts, info->delta,
4187 				   info->before, info->after,
4188 				   full ? " (full)" : "", show_interrupt_level());
4189 	}
4190 out:
4191 	atomic_dec(this_cpu_ptr(&checking));
4192 }
4193 #else
4194 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4195 			 struct rb_event_info *info,
4196 			 unsigned long tail)
4197 {
4198 }
4199 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
4200 
4201 static struct ring_buffer_event *
4202 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
4203 		  struct rb_event_info *info)
4204 {
4205 	struct ring_buffer_event *event;
4206 	struct buffer_page *tail_page;
4207 	unsigned long tail, write, w;
4208 
4209 	/* Don't let the compiler play games with cpu_buffer->tail_page */
4210 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
4211 
4212  /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
4213 	barrier();
4214 	rb_time_read(&cpu_buffer->before_stamp, &info->before);
4215 	rb_time_read(&cpu_buffer->write_stamp, &info->after);
4216 	barrier();
4217 	info->ts = rb_time_stamp(cpu_buffer->buffer);
4218 
4219 	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
4220 		info->delta = info->ts;
4221 	} else {
4222 		/*
4223 		 * If interrupting an event time update, we may need an
4224 		 * absolute timestamp.
4225 		 * Don't bother if this is the start of a new page (w == 0).
4226 		 */
4227 		if (!w) {
4228 			/* Use the sub-buffer timestamp */
4229 			info->delta = 0;
4230 		} else if (unlikely(info->before != info->after)) {
4231 			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
4232 			info->length += RB_LEN_TIME_EXTEND;
4233 		} else {
4234 			info->delta = info->ts - info->after;
4235 			if (unlikely(test_time_stamp(info->delta))) {
4236 				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
4237 				info->length += RB_LEN_TIME_EXTEND;
4238 			}
4239 		}
4240 	}
4241 
4242  /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
4243 
4244  /*C*/	write = local_add_return(info->length, &tail_page->write);
4245 
4246 	/* set write to only the index of the write */
4247 	write &= RB_WRITE_MASK;
4248 
4249 	tail = write - info->length;
4250 
4251 	/* See if we shot pass the end of this buffer page */
4252 	if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
4253 		check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
4254 		return rb_move_tail(cpu_buffer, tail, info);
4255 	}
4256 
4257 	if (likely(tail == w)) {
4258 		/* Nothing interrupted us between A and C */
4259  /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
4260 		/*
4261 		 * If something came in between C and D, the write stamp
4262 		 * may now not be in sync. But that's fine as the before_stamp
4263 		 * will be different and then next event will just be forced
4264 		 * to use an absolute timestamp.
4265 		 */
4266 		if (likely(!(info->add_timestamp &
4267 			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4268 			/* This did not interrupt any time update */
4269 			info->delta = info->ts - info->after;
4270 		else
4271 			/* Just use full timestamp for interrupting event */
4272 			info->delta = info->ts;
4273 		check_buffer(cpu_buffer, info, tail);
4274 	} else {
4275 		u64 ts;
4276 		/* SLOW PATH - Interrupted between A and C */
4277 
4278 		/* Save the old before_stamp */
4279 		rb_time_read(&cpu_buffer->before_stamp, &info->before);
4280 
4281 		/*
4282 		 * Read a new timestamp and update the before_stamp to make
4283 		 * the next event after this one force using an absolute
4284 		 * timestamp. This is in case an interrupt were to come in
4285 		 * between E and F.
4286 		 */
4287 		ts = rb_time_stamp(cpu_buffer->buffer);
4288 		rb_time_set(&cpu_buffer->before_stamp, ts);
4289 
4290 		barrier();
4291  /*E*/		rb_time_read(&cpu_buffer->write_stamp, &info->after);
4292 		barrier();
4293  /*F*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
4294 		    info->after == info->before && info->after < ts) {
4295 			/*
4296 			 * Nothing came after this event between C and F, it is
4297 			 * safe to use info->after for the delta as it
4298 			 * matched info->before and is still valid.
4299 			 */
4300 			info->delta = ts - info->after;
4301 		} else {
4302 			/*
4303 			 * Interrupted between C and F:
4304 			 * Lost the previous events time stamp. Just set the
4305 			 * delta to zero, and this will be the same time as
4306 			 * the event this event interrupted. And the events that
4307 			 * came after this will still be correct (as they would
4308 			 * have built their delta on the previous event.
4309 			 */
4310 			info->delta = 0;
4311 		}
4312 		info->ts = ts;
4313 		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
4314 	}
4315 
4316 	/*
4317 	 * If this is the first commit on the page, then it has the same
4318 	 * timestamp as the page itself.
4319 	 */
4320 	if (unlikely(!tail && !(info->add_timestamp &
4321 				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4322 		info->delta = 0;
4323 
4324 	/* We reserved something on the buffer */
4325 
4326 	event = __rb_page_index(tail_page, tail);
4327 	rb_update_event(cpu_buffer, event, info);
4328 
4329 	local_inc(&tail_page->entries);
4330 
4331 	/*
4332 	 * If this is the first commit on the page, then update
4333 	 * its timestamp.
4334 	 */
4335 	if (unlikely(!tail))
4336 		tail_page->page->time_stamp = info->ts;
4337 
4338 	/* account for these added bytes */
4339 	local_add(info->length, &cpu_buffer->entries_bytes);
4340 
4341 	return event;
4342 }
4343 
4344 static __always_inline struct ring_buffer_event *
4345 rb_reserve_next_event(struct trace_buffer *buffer,
4346 		      struct ring_buffer_per_cpu *cpu_buffer,
4347 		      unsigned long length)
4348 {
4349 	struct ring_buffer_event *event;
4350 	struct rb_event_info info;
4351 	int nr_loops = 0;
4352 	int add_ts_default;
4353 
4354 	/* ring buffer does cmpxchg, make sure it is safe in NMI context */
4355 	if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) &&
4356 	    (unlikely(in_nmi()))) {
4357 		return NULL;
4358 	}
4359 
4360 	rb_start_commit(cpu_buffer);
4361 	/* The commit page can not change after this */
4362 
4363 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4364 	/*
4365 	 * Due to the ability to swap a cpu buffer from a buffer
4366 	 * it is possible it was swapped before we committed.
4367 	 * (committing stops a swap). We check for it here and
4368 	 * if it happened, we have to fail the write.
4369 	 */
4370 	barrier();
4371 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
4372 		local_dec(&cpu_buffer->committing);
4373 		local_dec(&cpu_buffer->commits);
4374 		return NULL;
4375 	}
4376 #endif
4377 
4378 	info.length = rb_calculate_event_length(length);
4379 
4380 	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
4381 		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
4382 		info.length += RB_LEN_TIME_EXTEND;
4383 		if (info.length > cpu_buffer->buffer->max_data_size)
4384 			goto out_fail;
4385 	} else {
4386 		add_ts_default = RB_ADD_STAMP_NONE;
4387 	}
4388 
4389  again:
4390 	info.add_timestamp = add_ts_default;
4391 	info.delta = 0;
4392 
4393 	/*
4394 	 * We allow for interrupts to reenter here and do a trace.
4395 	 * If one does, it will cause this original code to loop
4396 	 * back here. Even with heavy interrupts happening, this
4397 	 * should only happen a few times in a row. If this happens
4398 	 * 1000 times in a row, there must be either an interrupt
4399 	 * storm or we have something buggy.
4400 	 * Bail!
4401 	 */
4402 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
4403 		goto out_fail;
4404 
4405 	event = __rb_reserve_next(cpu_buffer, &info);
4406 
4407 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
4408 		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
4409 			info.length -= RB_LEN_TIME_EXTEND;
4410 		goto again;
4411 	}
4412 
4413 	if (likely(event))
4414 		return event;
4415  out_fail:
4416 	rb_end_commit(cpu_buffer);
4417 	return NULL;
4418 }
4419 
4420 /**
4421  * ring_buffer_lock_reserve - reserve a part of the buffer
4422  * @buffer: the ring buffer to reserve from
4423  * @length: the length of the data to reserve (excluding event header)
4424  *
4425  * Returns a reserved event on the ring buffer to copy directly to.
4426  * The user of this interface will need to get the body to write into
4427  * and can use the ring_buffer_event_data() interface.
4428  *
4429  * The length is the length of the data needed, not the event length
4430  * which also includes the event header.
4431  *
4432  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
4433  * If NULL is returned, then nothing has been allocated or locked.
4434  */
4435 struct ring_buffer_event *
4436 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
4437 {
4438 	struct ring_buffer_per_cpu *cpu_buffer;
4439 	struct ring_buffer_event *event;
4440 	int cpu;
4441 
4442 	/* If we are tracing schedule, we don't want to recurse */
4443 	preempt_disable_notrace();
4444 
4445 	if (unlikely(atomic_read(&buffer->record_disabled)))
4446 		goto out;
4447 
4448 	cpu = raw_smp_processor_id();
4449 
4450 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
4451 		goto out;
4452 
4453 	cpu_buffer = buffer->buffers[cpu];
4454 
4455 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
4456 		goto out;
4457 
4458 	if (unlikely(length > buffer->max_data_size))
4459 		goto out;
4460 
4461 	if (unlikely(trace_recursive_lock(cpu_buffer)))
4462 		goto out;
4463 
4464 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
4465 	if (!event)
4466 		goto out_unlock;
4467 
4468 	return event;
4469 
4470  out_unlock:
4471 	trace_recursive_unlock(cpu_buffer);
4472  out:
4473 	preempt_enable_notrace();
4474 	return NULL;
4475 }
4476 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
4477 
4478 /*
4479  * Decrement the entries to the page that an event is on.
4480  * The event does not even need to exist, only the pointer
4481  * to the page it is on. This may only be called before the commit
4482  * takes place.
4483  */
4484 static inline void
4485 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
4486 		   struct ring_buffer_event *event)
4487 {
4488 	unsigned long addr = (unsigned long)event;
4489 	struct buffer_page *bpage = cpu_buffer->commit_page;
4490 	struct buffer_page *start;
4491 
4492 	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
4493 
4494 	/* Do the likely case first */
4495 	if (likely(bpage->page == (void *)addr)) {
4496 		local_dec(&bpage->entries);
4497 		return;
4498 	}
4499 
4500 	/*
4501 	 * Because the commit page may be on the reader page we
4502 	 * start with the next page and check the end loop there.
4503 	 */
4504 	rb_inc_page(&bpage);
4505 	start = bpage;
4506 	do {
4507 		if (bpage->page == (void *)addr) {
4508 			local_dec(&bpage->entries);
4509 			return;
4510 		}
4511 		rb_inc_page(&bpage);
4512 	} while (bpage != start);
4513 
4514 	/* commit not part of this buffer?? */
4515 	RB_WARN_ON(cpu_buffer, 1);
4516 }
4517 
4518 /**
4519  * ring_buffer_discard_commit - discard an event that has not been committed
4520  * @buffer: the ring buffer
4521  * @event: non committed event to discard
4522  *
4523  * Sometimes an event that is in the ring buffer needs to be ignored.
4524  * This function lets the user discard an event in the ring buffer
4525  * and then that event will not be read later.
4526  *
4527  * This function only works if it is called before the item has been
4528  * committed. It will try to free the event from the ring buffer
4529  * if another event has not been added behind it.
4530  *
4531  * If another event has been added behind it, it will set the event
4532  * up as discarded, and perform the commit.
4533  *
4534  * If this function is called, do not call ring_buffer_unlock_commit on
4535  * the event.
4536  */
4537 void ring_buffer_discard_commit(struct trace_buffer *buffer,
4538 				struct ring_buffer_event *event)
4539 {
4540 	struct ring_buffer_per_cpu *cpu_buffer;
4541 	int cpu;
4542 
4543 	/* The event is discarded regardless */
4544 	rb_event_discard(event);
4545 
4546 	cpu = smp_processor_id();
4547 	cpu_buffer = buffer->buffers[cpu];
4548 
4549 	/*
4550 	 * This must only be called if the event has not been
4551 	 * committed yet. Thus we can assume that preemption
4552 	 * is still disabled.
4553 	 */
4554 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
4555 
4556 	rb_decrement_entry(cpu_buffer, event);
4557 	if (rb_try_to_discard(cpu_buffer, event))
4558 		goto out;
4559 
4560  out:
4561 	rb_end_commit(cpu_buffer);
4562 
4563 	trace_recursive_unlock(cpu_buffer);
4564 
4565 	preempt_enable_notrace();
4566 
4567 }
4568 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
4569 
4570 /**
4571  * ring_buffer_write - write data to the buffer without reserving
4572  * @buffer: The ring buffer to write to.
4573  * @length: The length of the data being written (excluding the event header)
4574  * @data: The data to write to the buffer.
4575  *
4576  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
4577  * one function. If you already have the data to write to the buffer, it
4578  * may be easier to simply call this function.
4579  *
4580  * Note, like ring_buffer_lock_reserve, the length is the length of the data
4581  * and not the length of the event which would hold the header.
4582  */
4583 int ring_buffer_write(struct trace_buffer *buffer,
4584 		      unsigned long length,
4585 		      void *data)
4586 {
4587 	struct ring_buffer_per_cpu *cpu_buffer;
4588 	struct ring_buffer_event *event;
4589 	void *body;
4590 	int ret = -EBUSY;
4591 	int cpu;
4592 
4593 	preempt_disable_notrace();
4594 
4595 	if (atomic_read(&buffer->record_disabled))
4596 		goto out;
4597 
4598 	cpu = raw_smp_processor_id();
4599 
4600 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4601 		goto out;
4602 
4603 	cpu_buffer = buffer->buffers[cpu];
4604 
4605 	if (atomic_read(&cpu_buffer->record_disabled))
4606 		goto out;
4607 
4608 	if (length > buffer->max_data_size)
4609 		goto out;
4610 
4611 	if (unlikely(trace_recursive_lock(cpu_buffer)))
4612 		goto out;
4613 
4614 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
4615 	if (!event)
4616 		goto out_unlock;
4617 
4618 	body = rb_event_data(event);
4619 
4620 	memcpy(body, data, length);
4621 
4622 	rb_commit(cpu_buffer);
4623 
4624 	rb_wakeups(buffer, cpu_buffer);
4625 
4626 	ret = 0;
4627 
4628  out_unlock:
4629 	trace_recursive_unlock(cpu_buffer);
4630 
4631  out:
4632 	preempt_enable_notrace();
4633 
4634 	return ret;
4635 }
4636 EXPORT_SYMBOL_GPL(ring_buffer_write);
4637 
4638 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
4639 {
4640 	struct buffer_page *reader = cpu_buffer->reader_page;
4641 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
4642 	struct buffer_page *commit = cpu_buffer->commit_page;
4643 
4644 	/* In case of error, head will be NULL */
4645 	if (unlikely(!head))
4646 		return true;
4647 
4648 	/* Reader should exhaust content in reader page */
4649 	if (reader->read != rb_page_size(reader))
4650 		return false;
4651 
4652 	/*
4653 	 * If writers are committing on the reader page, knowing all
4654 	 * committed content has been read, the ring buffer is empty.
4655 	 */
4656 	if (commit == reader)
4657 		return true;
4658 
4659 	/*
4660 	 * If writers are committing on a page other than reader page
4661 	 * and head page, there should always be content to read.
4662 	 */
4663 	if (commit != head)
4664 		return false;
4665 
4666 	/*
4667 	 * Writers are committing on the head page, we just need
4668 	 * to care about there're committed data, and the reader will
4669 	 * swap reader page with head page when it is to read data.
4670 	 */
4671 	return rb_page_commit(commit) == 0;
4672 }
4673 
4674 /**
4675  * ring_buffer_record_disable - stop all writes into the buffer
4676  * @buffer: The ring buffer to stop writes to.
4677  *
4678  * This prevents all writes to the buffer. Any attempt to write
4679  * to the buffer after this will fail and return NULL.
4680  *
4681  * The caller should call synchronize_rcu() after this.
4682  */
4683 void ring_buffer_record_disable(struct trace_buffer *buffer)
4684 {
4685 	atomic_inc(&buffer->record_disabled);
4686 }
4687 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4688 
4689 /**
4690  * ring_buffer_record_enable - enable writes to the buffer
4691  * @buffer: The ring buffer to enable writes
4692  *
4693  * Note, multiple disables will need the same number of enables
4694  * to truly enable the writing (much like preempt_disable).
4695  */
4696 void ring_buffer_record_enable(struct trace_buffer *buffer)
4697 {
4698 	atomic_dec(&buffer->record_disabled);
4699 }
4700 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4701 
4702 /**
4703  * ring_buffer_record_off - stop all writes into the buffer
4704  * @buffer: The ring buffer to stop writes to.
4705  *
4706  * This prevents all writes to the buffer. Any attempt to write
4707  * to the buffer after this will fail and return NULL.
4708  *
4709  * This is different than ring_buffer_record_disable() as
4710  * it works like an on/off switch, where as the disable() version
4711  * must be paired with a enable().
4712  */
4713 void ring_buffer_record_off(struct trace_buffer *buffer)
4714 {
4715 	unsigned int rd;
4716 	unsigned int new_rd;
4717 
4718 	rd = atomic_read(&buffer->record_disabled);
4719 	do {
4720 		new_rd = rd | RB_BUFFER_OFF;
4721 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4722 }
4723 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4724 
4725 /**
4726  * ring_buffer_record_on - restart writes into the buffer
4727  * @buffer: The ring buffer to start writes to.
4728  *
4729  * This enables all writes to the buffer that was disabled by
4730  * ring_buffer_record_off().
4731  *
4732  * This is different than ring_buffer_record_enable() as
4733  * it works like an on/off switch, where as the enable() version
4734  * must be paired with a disable().
4735  */
4736 void ring_buffer_record_on(struct trace_buffer *buffer)
4737 {
4738 	unsigned int rd;
4739 	unsigned int new_rd;
4740 
4741 	rd = atomic_read(&buffer->record_disabled);
4742 	do {
4743 		new_rd = rd & ~RB_BUFFER_OFF;
4744 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4745 }
4746 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4747 
4748 /**
4749  * ring_buffer_record_is_on - return true if the ring buffer can write
4750  * @buffer: The ring buffer to see if write is enabled
4751  *
4752  * Returns true if the ring buffer is in a state that it accepts writes.
4753  */
4754 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4755 {
4756 	return !atomic_read(&buffer->record_disabled);
4757 }
4758 
4759 /**
4760  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4761  * @buffer: The ring buffer to see if write is set enabled
4762  *
4763  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4764  * Note that this does NOT mean it is in a writable state.
4765  *
4766  * It may return true when the ring buffer has been disabled by
4767  * ring_buffer_record_disable(), as that is a temporary disabling of
4768  * the ring buffer.
4769  */
4770 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4771 {
4772 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4773 }
4774 
4775 /**
4776  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4777  * @buffer: The ring buffer to stop writes to.
4778  * @cpu: The CPU buffer to stop
4779  *
4780  * This prevents all writes to the buffer. Any attempt to write
4781  * to the buffer after this will fail and return NULL.
4782  *
4783  * The caller should call synchronize_rcu() after this.
4784  */
4785 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4786 {
4787 	struct ring_buffer_per_cpu *cpu_buffer;
4788 
4789 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4790 		return;
4791 
4792 	cpu_buffer = buffer->buffers[cpu];
4793 	atomic_inc(&cpu_buffer->record_disabled);
4794 }
4795 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4796 
4797 /**
4798  * ring_buffer_record_enable_cpu - enable writes to the buffer
4799  * @buffer: The ring buffer to enable writes
4800  * @cpu: The CPU to enable.
4801  *
4802  * Note, multiple disables will need the same number of enables
4803  * to truly enable the writing (much like preempt_disable).
4804  */
4805 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4806 {
4807 	struct ring_buffer_per_cpu *cpu_buffer;
4808 
4809 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4810 		return;
4811 
4812 	cpu_buffer = buffer->buffers[cpu];
4813 	atomic_dec(&cpu_buffer->record_disabled);
4814 }
4815 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4816 
4817 /*
4818  * The total entries in the ring buffer is the running counter
4819  * of entries entered into the ring buffer, minus the sum of
4820  * the entries read from the ring buffer and the number of
4821  * entries that were overwritten.
4822  */
4823 static inline unsigned long
4824 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4825 {
4826 	return local_read(&cpu_buffer->entries) -
4827 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4828 }
4829 
4830 /**
4831  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4832  * @buffer: The ring buffer
4833  * @cpu: The per CPU buffer to read from.
4834  */
4835 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4836 {
4837 	unsigned long flags;
4838 	struct ring_buffer_per_cpu *cpu_buffer;
4839 	struct buffer_page *bpage;
4840 	u64 ret = 0;
4841 
4842 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4843 		return 0;
4844 
4845 	cpu_buffer = buffer->buffers[cpu];
4846 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4847 	/*
4848 	 * if the tail is on reader_page, oldest time stamp is on the reader
4849 	 * page
4850 	 */
4851 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4852 		bpage = cpu_buffer->reader_page;
4853 	else
4854 		bpage = rb_set_head_page(cpu_buffer);
4855 	if (bpage)
4856 		ret = bpage->page->time_stamp;
4857 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4858 
4859 	return ret;
4860 }
4861 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4862 
4863 /**
4864  * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4865  * @buffer: The ring buffer
4866  * @cpu: The per CPU buffer to read from.
4867  */
4868 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4869 {
4870 	struct ring_buffer_per_cpu *cpu_buffer;
4871 	unsigned long ret;
4872 
4873 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4874 		return 0;
4875 
4876 	cpu_buffer = buffer->buffers[cpu];
4877 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4878 
4879 	return ret;
4880 }
4881 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4882 
4883 /**
4884  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4885  * @buffer: The ring buffer
4886  * @cpu: The per CPU buffer to get the entries from.
4887  */
4888 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4889 {
4890 	struct ring_buffer_per_cpu *cpu_buffer;
4891 
4892 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4893 		return 0;
4894 
4895 	cpu_buffer = buffer->buffers[cpu];
4896 
4897 	return rb_num_of_entries(cpu_buffer);
4898 }
4899 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4900 
4901 /**
4902  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4903  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4904  * @buffer: The ring buffer
4905  * @cpu: The per CPU buffer to get the number of overruns from
4906  */
4907 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4908 {
4909 	struct ring_buffer_per_cpu *cpu_buffer;
4910 	unsigned long ret;
4911 
4912 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4913 		return 0;
4914 
4915 	cpu_buffer = buffer->buffers[cpu];
4916 	ret = local_read(&cpu_buffer->overrun);
4917 
4918 	return ret;
4919 }
4920 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4921 
4922 /**
4923  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4924  * commits failing due to the buffer wrapping around while there are uncommitted
4925  * events, such as during an interrupt storm.
4926  * @buffer: The ring buffer
4927  * @cpu: The per CPU buffer to get the number of overruns from
4928  */
4929 unsigned long
4930 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4931 {
4932 	struct ring_buffer_per_cpu *cpu_buffer;
4933 	unsigned long ret;
4934 
4935 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4936 		return 0;
4937 
4938 	cpu_buffer = buffer->buffers[cpu];
4939 	ret = local_read(&cpu_buffer->commit_overrun);
4940 
4941 	return ret;
4942 }
4943 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4944 
4945 /**
4946  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4947  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4948  * @buffer: The ring buffer
4949  * @cpu: The per CPU buffer to get the number of overruns from
4950  */
4951 unsigned long
4952 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4953 {
4954 	struct ring_buffer_per_cpu *cpu_buffer;
4955 	unsigned long ret;
4956 
4957 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4958 		return 0;
4959 
4960 	cpu_buffer = buffer->buffers[cpu];
4961 	ret = local_read(&cpu_buffer->dropped_events);
4962 
4963 	return ret;
4964 }
4965 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4966 
4967 /**
4968  * ring_buffer_read_events_cpu - get the number of events successfully read
4969  * @buffer: The ring buffer
4970  * @cpu: The per CPU buffer to get the number of events read
4971  */
4972 unsigned long
4973 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4974 {
4975 	struct ring_buffer_per_cpu *cpu_buffer;
4976 
4977 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4978 		return 0;
4979 
4980 	cpu_buffer = buffer->buffers[cpu];
4981 	return cpu_buffer->read;
4982 }
4983 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4984 
4985 /**
4986  * ring_buffer_entries - get the number of entries in a buffer
4987  * @buffer: The ring buffer
4988  *
4989  * Returns the total number of entries in the ring buffer
4990  * (all CPU entries)
4991  */
4992 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4993 {
4994 	struct ring_buffer_per_cpu *cpu_buffer;
4995 	unsigned long entries = 0;
4996 	int cpu;
4997 
4998 	/* if you care about this being correct, lock the buffer */
4999 	for_each_buffer_cpu(buffer, cpu) {
5000 		cpu_buffer = buffer->buffers[cpu];
5001 		entries += rb_num_of_entries(cpu_buffer);
5002 	}
5003 
5004 	return entries;
5005 }
5006 EXPORT_SYMBOL_GPL(ring_buffer_entries);
5007 
5008 /**
5009  * ring_buffer_overruns - get the number of overruns in buffer
5010  * @buffer: The ring buffer
5011  *
5012  * Returns the total number of overruns in the ring buffer
5013  * (all CPU entries)
5014  */
5015 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
5016 {
5017 	struct ring_buffer_per_cpu *cpu_buffer;
5018 	unsigned long overruns = 0;
5019 	int cpu;
5020 
5021 	/* if you care about this being correct, lock the buffer */
5022 	for_each_buffer_cpu(buffer, cpu) {
5023 		cpu_buffer = buffer->buffers[cpu];
5024 		overruns += local_read(&cpu_buffer->overrun);
5025 	}
5026 
5027 	return overruns;
5028 }
5029 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
5030 
5031 static void rb_iter_reset(struct ring_buffer_iter *iter)
5032 {
5033 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5034 
5035 	/* Iterator usage is expected to have record disabled */
5036 	iter->head_page = cpu_buffer->reader_page;
5037 	iter->head = cpu_buffer->reader_page->read;
5038 	iter->next_event = iter->head;
5039 
5040 	iter->cache_reader_page = iter->head_page;
5041 	iter->cache_read = cpu_buffer->read;
5042 	iter->cache_pages_removed = cpu_buffer->pages_removed;
5043 
5044 	if (iter->head) {
5045 		iter->read_stamp = cpu_buffer->read_stamp;
5046 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
5047 	} else {
5048 		iter->read_stamp = iter->head_page->page->time_stamp;
5049 		iter->page_stamp = iter->read_stamp;
5050 	}
5051 }
5052 
5053 /**
5054  * ring_buffer_iter_reset - reset an iterator
5055  * @iter: The iterator to reset
5056  *
5057  * Resets the iterator, so that it will start from the beginning
5058  * again.
5059  */
5060 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
5061 {
5062 	struct ring_buffer_per_cpu *cpu_buffer;
5063 	unsigned long flags;
5064 
5065 	if (!iter)
5066 		return;
5067 
5068 	cpu_buffer = iter->cpu_buffer;
5069 
5070 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5071 	rb_iter_reset(iter);
5072 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5073 }
5074 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
5075 
5076 /**
5077  * ring_buffer_iter_empty - check if an iterator has no more to read
5078  * @iter: The iterator to check
5079  */
5080 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
5081 {
5082 	struct ring_buffer_per_cpu *cpu_buffer;
5083 	struct buffer_page *reader;
5084 	struct buffer_page *head_page;
5085 	struct buffer_page *commit_page;
5086 	struct buffer_page *curr_commit_page;
5087 	unsigned commit;
5088 	u64 curr_commit_ts;
5089 	u64 commit_ts;
5090 
5091 	cpu_buffer = iter->cpu_buffer;
5092 	reader = cpu_buffer->reader_page;
5093 	head_page = cpu_buffer->head_page;
5094 	commit_page = READ_ONCE(cpu_buffer->commit_page);
5095 	commit_ts = commit_page->page->time_stamp;
5096 
5097 	/*
5098 	 * When the writer goes across pages, it issues a cmpxchg which
5099 	 * is a mb(), which will synchronize with the rmb here.
5100 	 * (see rb_tail_page_update())
5101 	 */
5102 	smp_rmb();
5103 	commit = rb_page_commit(commit_page);
5104 	/* We want to make sure that the commit page doesn't change */
5105 	smp_rmb();
5106 
5107 	/* Make sure commit page didn't change */
5108 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
5109 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
5110 
5111 	/* If the commit page changed, then there's more data */
5112 	if (curr_commit_page != commit_page ||
5113 	    curr_commit_ts != commit_ts)
5114 		return 0;
5115 
5116 	/* Still racy, as it may return a false positive, but that's OK */
5117 	return ((iter->head_page == commit_page && iter->head >= commit) ||
5118 		(iter->head_page == reader && commit_page == head_page &&
5119 		 head_page->read == commit &&
5120 		 iter->head == rb_page_size(cpu_buffer->reader_page)));
5121 }
5122 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
5123 
5124 static void
5125 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
5126 		     struct ring_buffer_event *event)
5127 {
5128 	u64 delta;
5129 
5130 	switch (event->type_len) {
5131 	case RINGBUF_TYPE_PADDING:
5132 		return;
5133 
5134 	case RINGBUF_TYPE_TIME_EXTEND:
5135 		delta = rb_event_time_stamp(event);
5136 		cpu_buffer->read_stamp += delta;
5137 		return;
5138 
5139 	case RINGBUF_TYPE_TIME_STAMP:
5140 		delta = rb_event_time_stamp(event);
5141 		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
5142 		cpu_buffer->read_stamp = delta;
5143 		return;
5144 
5145 	case RINGBUF_TYPE_DATA:
5146 		cpu_buffer->read_stamp += event->time_delta;
5147 		return;
5148 
5149 	default:
5150 		RB_WARN_ON(cpu_buffer, 1);
5151 	}
5152 }
5153 
5154 static void
5155 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
5156 			  struct ring_buffer_event *event)
5157 {
5158 	u64 delta;
5159 
5160 	switch (event->type_len) {
5161 	case RINGBUF_TYPE_PADDING:
5162 		return;
5163 
5164 	case RINGBUF_TYPE_TIME_EXTEND:
5165 		delta = rb_event_time_stamp(event);
5166 		iter->read_stamp += delta;
5167 		return;
5168 
5169 	case RINGBUF_TYPE_TIME_STAMP:
5170 		delta = rb_event_time_stamp(event);
5171 		delta = rb_fix_abs_ts(delta, iter->read_stamp);
5172 		iter->read_stamp = delta;
5173 		return;
5174 
5175 	case RINGBUF_TYPE_DATA:
5176 		iter->read_stamp += event->time_delta;
5177 		return;
5178 
5179 	default:
5180 		RB_WARN_ON(iter->cpu_buffer, 1);
5181 	}
5182 }
5183 
5184 static struct buffer_page *
5185 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
5186 {
5187 	struct buffer_page *reader = NULL;
5188 	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
5189 	unsigned long overwrite;
5190 	unsigned long flags;
5191 	int nr_loops = 0;
5192 	bool ret;
5193 
5194 	local_irq_save(flags);
5195 	arch_spin_lock(&cpu_buffer->lock);
5196 
5197  again:
5198 	/*
5199 	 * This should normally only loop twice. But because the
5200 	 * start of the reader inserts an empty page, it causes
5201 	 * a case where we will loop three times. There should be no
5202 	 * reason to loop four times (that I know of).
5203 	 */
5204 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
5205 		reader = NULL;
5206 		goto out;
5207 	}
5208 
5209 	reader = cpu_buffer->reader_page;
5210 
5211 	/* If there's more to read, return this page */
5212 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
5213 		goto out;
5214 
5215 	/* Never should we have an index greater than the size */
5216 	if (RB_WARN_ON(cpu_buffer,
5217 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
5218 		goto out;
5219 
5220 	/* check if we caught up to the tail */
5221 	reader = NULL;
5222 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
5223 		goto out;
5224 
5225 	/* Don't bother swapping if the ring buffer is empty */
5226 	if (rb_num_of_entries(cpu_buffer) == 0)
5227 		goto out;
5228 
5229 	/*
5230 	 * Reset the reader page to size zero.
5231 	 */
5232 	local_set(&cpu_buffer->reader_page->write, 0);
5233 	local_set(&cpu_buffer->reader_page->entries, 0);
5234 	local_set(&cpu_buffer->reader_page->page->commit, 0);
5235 	cpu_buffer->reader_page->real_end = 0;
5236 
5237  spin:
5238 	/*
5239 	 * Splice the empty reader page into the list around the head.
5240 	 */
5241 	reader = rb_set_head_page(cpu_buffer);
5242 	if (!reader)
5243 		goto out;
5244 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
5245 	cpu_buffer->reader_page->list.prev = reader->list.prev;
5246 
5247 	/*
5248 	 * cpu_buffer->pages just needs to point to the buffer, it
5249 	 *  has no specific buffer page to point to. Lets move it out
5250 	 *  of our way so we don't accidentally swap it.
5251 	 */
5252 	cpu_buffer->pages = reader->list.prev;
5253 
5254 	/* The reader page will be pointing to the new head */
5255 	rb_set_list_to_head(&cpu_buffer->reader_page->list);
5256 
5257 	/*
5258 	 * We want to make sure we read the overruns after we set up our
5259 	 * pointers to the next object. The writer side does a
5260 	 * cmpxchg to cross pages which acts as the mb on the writer
5261 	 * side. Note, the reader will constantly fail the swap
5262 	 * while the writer is updating the pointers, so this
5263 	 * guarantees that the overwrite recorded here is the one we
5264 	 * want to compare with the last_overrun.
5265 	 */
5266 	smp_mb();
5267 	overwrite = local_read(&(cpu_buffer->overrun));
5268 
5269 	/*
5270 	 * Here's the tricky part.
5271 	 *
5272 	 * We need to move the pointer past the header page.
5273 	 * But we can only do that if a writer is not currently
5274 	 * moving it. The page before the header page has the
5275 	 * flag bit '1' set if it is pointing to the page we want.
5276 	 * but if the writer is in the process of moving it
5277 	 * than it will be '2' or already moved '0'.
5278 	 */
5279 
5280 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
5281 
5282 	/*
5283 	 * If we did not convert it, then we must try again.
5284 	 */
5285 	if (!ret)
5286 		goto spin;
5287 
5288 	if (cpu_buffer->ring_meta)
5289 		rb_update_meta_reader(cpu_buffer, reader);
5290 
5291 	/*
5292 	 * Yay! We succeeded in replacing the page.
5293 	 *
5294 	 * Now make the new head point back to the reader page.
5295 	 */
5296 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
5297 	rb_inc_page(&cpu_buffer->head_page);
5298 
5299 	local_inc(&cpu_buffer->pages_read);
5300 
5301 	/* Finally update the reader page to the new head */
5302 	cpu_buffer->reader_page = reader;
5303 	cpu_buffer->reader_page->read = 0;
5304 
5305 	if (overwrite != cpu_buffer->last_overrun) {
5306 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
5307 		cpu_buffer->last_overrun = overwrite;
5308 	}
5309 
5310 	goto again;
5311 
5312  out:
5313 	/* Update the read_stamp on the first event */
5314 	if (reader && reader->read == 0)
5315 		cpu_buffer->read_stamp = reader->page->time_stamp;
5316 
5317 	arch_spin_unlock(&cpu_buffer->lock);
5318 	local_irq_restore(flags);
5319 
5320 	/*
5321 	 * The writer has preempt disable, wait for it. But not forever
5322 	 * Although, 1 second is pretty much "forever"
5323 	 */
5324 #define USECS_WAIT	1000000
5325         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
5326 		/* If the write is past the end of page, a writer is still updating it */
5327 		if (likely(!reader || rb_page_write(reader) <= bsize))
5328 			break;
5329 
5330 		udelay(1);
5331 
5332 		/* Get the latest version of the reader write value */
5333 		smp_rmb();
5334 	}
5335 
5336 	/* The writer is not moving forward? Something is wrong */
5337 	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
5338 		reader = NULL;
5339 
5340 	/*
5341 	 * Make sure we see any padding after the write update
5342 	 * (see rb_reset_tail()).
5343 	 *
5344 	 * In addition, a writer may be writing on the reader page
5345 	 * if the page has not been fully filled, so the read barrier
5346 	 * is also needed to make sure we see the content of what is
5347 	 * committed by the writer (see rb_set_commit_to_write()).
5348 	 */
5349 	smp_rmb();
5350 
5351 
5352 	return reader;
5353 }
5354 
5355 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
5356 {
5357 	struct ring_buffer_event *event;
5358 	struct buffer_page *reader;
5359 	unsigned length;
5360 
5361 	reader = rb_get_reader_page(cpu_buffer);
5362 
5363 	/* This function should not be called when buffer is empty */
5364 	if (RB_WARN_ON(cpu_buffer, !reader))
5365 		return;
5366 
5367 	event = rb_reader_event(cpu_buffer);
5368 
5369 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
5370 		cpu_buffer->read++;
5371 
5372 	rb_update_read_stamp(cpu_buffer, event);
5373 
5374 	length = rb_event_length(event);
5375 	cpu_buffer->reader_page->read += length;
5376 	cpu_buffer->read_bytes += length;
5377 }
5378 
5379 static void rb_advance_iter(struct ring_buffer_iter *iter)
5380 {
5381 	struct ring_buffer_per_cpu *cpu_buffer;
5382 
5383 	cpu_buffer = iter->cpu_buffer;
5384 
5385 	/* If head == next_event then we need to jump to the next event */
5386 	if (iter->head == iter->next_event) {
5387 		/* If the event gets overwritten again, there's nothing to do */
5388 		if (rb_iter_head_event(iter) == NULL)
5389 			return;
5390 	}
5391 
5392 	iter->head = iter->next_event;
5393 
5394 	/*
5395 	 * Check if we are at the end of the buffer.
5396 	 */
5397 	if (iter->next_event >= rb_page_size(iter->head_page)) {
5398 		/* discarded commits can make the page empty */
5399 		if (iter->head_page == cpu_buffer->commit_page)
5400 			return;
5401 		rb_inc_iter(iter);
5402 		return;
5403 	}
5404 
5405 	rb_update_iter_read_stamp(iter, iter->event);
5406 }
5407 
5408 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
5409 {
5410 	return cpu_buffer->lost_events;
5411 }
5412 
5413 static struct ring_buffer_event *
5414 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
5415 	       unsigned long *lost_events)
5416 {
5417 	struct ring_buffer_event *event;
5418 	struct buffer_page *reader;
5419 	int nr_loops = 0;
5420 
5421 	if (ts)
5422 		*ts = 0;
5423  again:
5424 	/*
5425 	 * We repeat when a time extend is encountered.
5426 	 * Since the time extend is always attached to a data event,
5427 	 * we should never loop more than once.
5428 	 * (We never hit the following condition more than twice).
5429 	 */
5430 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
5431 		return NULL;
5432 
5433 	reader = rb_get_reader_page(cpu_buffer);
5434 	if (!reader)
5435 		return NULL;
5436 
5437 	event = rb_reader_event(cpu_buffer);
5438 
5439 	switch (event->type_len) {
5440 	case RINGBUF_TYPE_PADDING:
5441 		if (rb_null_event(event))
5442 			RB_WARN_ON(cpu_buffer, 1);
5443 		/*
5444 		 * Because the writer could be discarding every
5445 		 * event it creates (which would probably be bad)
5446 		 * if we were to go back to "again" then we may never
5447 		 * catch up, and will trigger the warn on, or lock
5448 		 * the box. Return the padding, and we will release
5449 		 * the current locks, and try again.
5450 		 */
5451 		return event;
5452 
5453 	case RINGBUF_TYPE_TIME_EXTEND:
5454 		/* Internal data, OK to advance */
5455 		rb_advance_reader(cpu_buffer);
5456 		goto again;
5457 
5458 	case RINGBUF_TYPE_TIME_STAMP:
5459 		if (ts) {
5460 			*ts = rb_event_time_stamp(event);
5461 			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
5462 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5463 							 cpu_buffer->cpu, ts);
5464 		}
5465 		/* Internal data, OK to advance */
5466 		rb_advance_reader(cpu_buffer);
5467 		goto again;
5468 
5469 	case RINGBUF_TYPE_DATA:
5470 		if (ts && !(*ts)) {
5471 			*ts = cpu_buffer->read_stamp + event->time_delta;
5472 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5473 							 cpu_buffer->cpu, ts);
5474 		}
5475 		if (lost_events)
5476 			*lost_events = rb_lost_events(cpu_buffer);
5477 		return event;
5478 
5479 	default:
5480 		RB_WARN_ON(cpu_buffer, 1);
5481 	}
5482 
5483 	return NULL;
5484 }
5485 EXPORT_SYMBOL_GPL(ring_buffer_peek);
5486 
5487 static struct ring_buffer_event *
5488 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5489 {
5490 	struct trace_buffer *buffer;
5491 	struct ring_buffer_per_cpu *cpu_buffer;
5492 	struct ring_buffer_event *event;
5493 	int nr_loops = 0;
5494 
5495 	if (ts)
5496 		*ts = 0;
5497 
5498 	cpu_buffer = iter->cpu_buffer;
5499 	buffer = cpu_buffer->buffer;
5500 
5501 	/*
5502 	 * Check if someone performed a consuming read to the buffer
5503 	 * or removed some pages from the buffer. In these cases,
5504 	 * iterator was invalidated and we need to reset it.
5505 	 */
5506 	if (unlikely(iter->cache_read != cpu_buffer->read ||
5507 		     iter->cache_reader_page != cpu_buffer->reader_page ||
5508 		     iter->cache_pages_removed != cpu_buffer->pages_removed))
5509 		rb_iter_reset(iter);
5510 
5511  again:
5512 	if (ring_buffer_iter_empty(iter))
5513 		return NULL;
5514 
5515 	/*
5516 	 * As the writer can mess with what the iterator is trying
5517 	 * to read, just give up if we fail to get an event after
5518 	 * three tries. The iterator is not as reliable when reading
5519 	 * the ring buffer with an active write as the consumer is.
5520 	 * Do not warn if the three failures is reached.
5521 	 */
5522 	if (++nr_loops > 3)
5523 		return NULL;
5524 
5525 	if (rb_per_cpu_empty(cpu_buffer))
5526 		return NULL;
5527 
5528 	if (iter->head >= rb_page_size(iter->head_page)) {
5529 		rb_inc_iter(iter);
5530 		goto again;
5531 	}
5532 
5533 	event = rb_iter_head_event(iter);
5534 	if (!event)
5535 		goto again;
5536 
5537 	switch (event->type_len) {
5538 	case RINGBUF_TYPE_PADDING:
5539 		if (rb_null_event(event)) {
5540 			rb_inc_iter(iter);
5541 			goto again;
5542 		}
5543 		rb_advance_iter(iter);
5544 		return event;
5545 
5546 	case RINGBUF_TYPE_TIME_EXTEND:
5547 		/* Internal data, OK to advance */
5548 		rb_advance_iter(iter);
5549 		goto again;
5550 
5551 	case RINGBUF_TYPE_TIME_STAMP:
5552 		if (ts) {
5553 			*ts = rb_event_time_stamp(event);
5554 			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
5555 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5556 							 cpu_buffer->cpu, ts);
5557 		}
5558 		/* Internal data, OK to advance */
5559 		rb_advance_iter(iter);
5560 		goto again;
5561 
5562 	case RINGBUF_TYPE_DATA:
5563 		if (ts && !(*ts)) {
5564 			*ts = iter->read_stamp + event->time_delta;
5565 			ring_buffer_normalize_time_stamp(buffer,
5566 							 cpu_buffer->cpu, ts);
5567 		}
5568 		return event;
5569 
5570 	default:
5571 		RB_WARN_ON(cpu_buffer, 1);
5572 	}
5573 
5574 	return NULL;
5575 }
5576 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
5577 
5578 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
5579 {
5580 	if (likely(!in_nmi())) {
5581 		raw_spin_lock(&cpu_buffer->reader_lock);
5582 		return true;
5583 	}
5584 
5585 	/*
5586 	 * If an NMI die dumps out the content of the ring buffer
5587 	 * trylock must be used to prevent a deadlock if the NMI
5588 	 * preempted a task that holds the ring buffer locks. If
5589 	 * we get the lock then all is fine, if not, then continue
5590 	 * to do the read, but this can corrupt the ring buffer,
5591 	 * so it must be permanently disabled from future writes.
5592 	 * Reading from NMI is a oneshot deal.
5593 	 */
5594 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
5595 		return true;
5596 
5597 	/* Continue without locking, but disable the ring buffer */
5598 	atomic_inc(&cpu_buffer->record_disabled);
5599 	return false;
5600 }
5601 
5602 static inline void
5603 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
5604 {
5605 	if (likely(locked))
5606 		raw_spin_unlock(&cpu_buffer->reader_lock);
5607 }
5608 
5609 /**
5610  * ring_buffer_peek - peek at the next event to be read
5611  * @buffer: The ring buffer to read
5612  * @cpu: The cpu to peak at
5613  * @ts: The timestamp counter of this event.
5614  * @lost_events: a variable to store if events were lost (may be NULL)
5615  *
5616  * This will return the event that will be read next, but does
5617  * not consume the data.
5618  */
5619 struct ring_buffer_event *
5620 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
5621 		 unsigned long *lost_events)
5622 {
5623 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5624 	struct ring_buffer_event *event;
5625 	unsigned long flags;
5626 	bool dolock;
5627 
5628 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5629 		return NULL;
5630 
5631  again:
5632 	local_irq_save(flags);
5633 	dolock = rb_reader_lock(cpu_buffer);
5634 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5635 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5636 		rb_advance_reader(cpu_buffer);
5637 	rb_reader_unlock(cpu_buffer, dolock);
5638 	local_irq_restore(flags);
5639 
5640 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5641 		goto again;
5642 
5643 	return event;
5644 }
5645 
5646 /** ring_buffer_iter_dropped - report if there are dropped events
5647  * @iter: The ring buffer iterator
5648  *
5649  * Returns true if there was dropped events since the last peek.
5650  */
5651 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5652 {
5653 	bool ret = iter->missed_events != 0;
5654 
5655 	iter->missed_events = 0;
5656 	return ret;
5657 }
5658 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5659 
5660 /**
5661  * ring_buffer_iter_peek - peek at the next event to be read
5662  * @iter: The ring buffer iterator
5663  * @ts: The timestamp counter of this event.
5664  *
5665  * This will return the event that will be read next, but does
5666  * not increment the iterator.
5667  */
5668 struct ring_buffer_event *
5669 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5670 {
5671 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5672 	struct ring_buffer_event *event;
5673 	unsigned long flags;
5674 
5675  again:
5676 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5677 	event = rb_iter_peek(iter, ts);
5678 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5679 
5680 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5681 		goto again;
5682 
5683 	return event;
5684 }
5685 
5686 /**
5687  * ring_buffer_consume - return an event and consume it
5688  * @buffer: The ring buffer to get the next event from
5689  * @cpu: the cpu to read the buffer from
5690  * @ts: a variable to store the timestamp (may be NULL)
5691  * @lost_events: a variable to store if events were lost (may be NULL)
5692  *
5693  * Returns the next event in the ring buffer, and that event is consumed.
5694  * Meaning, that sequential reads will keep returning a different event,
5695  * and eventually empty the ring buffer if the producer is slower.
5696  */
5697 struct ring_buffer_event *
5698 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5699 		    unsigned long *lost_events)
5700 {
5701 	struct ring_buffer_per_cpu *cpu_buffer;
5702 	struct ring_buffer_event *event = NULL;
5703 	unsigned long flags;
5704 	bool dolock;
5705 
5706  again:
5707 	/* might be called in atomic */
5708 	preempt_disable();
5709 
5710 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5711 		goto out;
5712 
5713 	cpu_buffer = buffer->buffers[cpu];
5714 	local_irq_save(flags);
5715 	dolock = rb_reader_lock(cpu_buffer);
5716 
5717 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5718 	if (event) {
5719 		cpu_buffer->lost_events = 0;
5720 		rb_advance_reader(cpu_buffer);
5721 	}
5722 
5723 	rb_reader_unlock(cpu_buffer, dolock);
5724 	local_irq_restore(flags);
5725 
5726  out:
5727 	preempt_enable();
5728 
5729 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5730 		goto again;
5731 
5732 	return event;
5733 }
5734 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5735 
5736 /**
5737  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5738  * @buffer: The ring buffer to read from
5739  * @cpu: The cpu buffer to iterate over
5740  * @flags: gfp flags to use for memory allocation
5741  *
5742  * This performs the initial preparations necessary to iterate
5743  * through the buffer.  Memory is allocated, buffer resizing
5744  * is disabled, and the iterator pointer is returned to the caller.
5745  *
5746  * After a sequence of ring_buffer_read_prepare calls, the user is
5747  * expected to make at least one call to ring_buffer_read_prepare_sync.
5748  * Afterwards, ring_buffer_read_start is invoked to get things going
5749  * for real.
5750  *
5751  * This overall must be paired with ring_buffer_read_finish.
5752  */
5753 struct ring_buffer_iter *
5754 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5755 {
5756 	struct ring_buffer_per_cpu *cpu_buffer;
5757 	struct ring_buffer_iter *iter;
5758 
5759 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5760 		return NULL;
5761 
5762 	iter = kzalloc(sizeof(*iter), flags);
5763 	if (!iter)
5764 		return NULL;
5765 
5766 	/* Holds the entire event: data and meta data */
5767 	iter->event_size = buffer->subbuf_size;
5768 	iter->event = kmalloc(iter->event_size, flags);
5769 	if (!iter->event) {
5770 		kfree(iter);
5771 		return NULL;
5772 	}
5773 
5774 	cpu_buffer = buffer->buffers[cpu];
5775 
5776 	iter->cpu_buffer = cpu_buffer;
5777 
5778 	atomic_inc(&cpu_buffer->resize_disabled);
5779 
5780 	return iter;
5781 }
5782 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5783 
5784 /**
5785  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5786  *
5787  * All previously invoked ring_buffer_read_prepare calls to prepare
5788  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5789  * calls on those iterators are allowed.
5790  */
5791 void
5792 ring_buffer_read_prepare_sync(void)
5793 {
5794 	synchronize_rcu();
5795 }
5796 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5797 
5798 /**
5799  * ring_buffer_read_start - start a non consuming read of the buffer
5800  * @iter: The iterator returned by ring_buffer_read_prepare
5801  *
5802  * This finalizes the startup of an iteration through the buffer.
5803  * The iterator comes from a call to ring_buffer_read_prepare and
5804  * an intervening ring_buffer_read_prepare_sync must have been
5805  * performed.
5806  *
5807  * Must be paired with ring_buffer_read_finish.
5808  */
5809 void
5810 ring_buffer_read_start(struct ring_buffer_iter *iter)
5811 {
5812 	struct ring_buffer_per_cpu *cpu_buffer;
5813 	unsigned long flags;
5814 
5815 	if (!iter)
5816 		return;
5817 
5818 	cpu_buffer = iter->cpu_buffer;
5819 
5820 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5821 	arch_spin_lock(&cpu_buffer->lock);
5822 	rb_iter_reset(iter);
5823 	arch_spin_unlock(&cpu_buffer->lock);
5824 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5825 }
5826 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5827 
5828 /**
5829  * ring_buffer_read_finish - finish reading the iterator of the buffer
5830  * @iter: The iterator retrieved by ring_buffer_start
5831  *
5832  * This re-enables resizing of the buffer, and frees the iterator.
5833  */
5834 void
5835 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5836 {
5837 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5838 	unsigned long flags;
5839 
5840 	/* Use this opportunity to check the integrity of the ring buffer. */
5841 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5842 	rb_check_pages(cpu_buffer);
5843 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5844 
5845 	atomic_dec(&cpu_buffer->resize_disabled);
5846 	kfree(iter->event);
5847 	kfree(iter);
5848 }
5849 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5850 
5851 /**
5852  * ring_buffer_iter_advance - advance the iterator to the next location
5853  * @iter: The ring buffer iterator
5854  *
5855  * Move the location of the iterator such that the next read will
5856  * be the next location of the iterator.
5857  */
5858 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5859 {
5860 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5861 	unsigned long flags;
5862 
5863 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5864 
5865 	rb_advance_iter(iter);
5866 
5867 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5868 }
5869 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5870 
5871 /**
5872  * ring_buffer_size - return the size of the ring buffer (in bytes)
5873  * @buffer: The ring buffer.
5874  * @cpu: The CPU to get ring buffer size from.
5875  */
5876 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5877 {
5878 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5879 		return 0;
5880 
5881 	return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
5882 }
5883 EXPORT_SYMBOL_GPL(ring_buffer_size);
5884 
5885 /**
5886  * ring_buffer_max_event_size - return the max data size of an event
5887  * @buffer: The ring buffer.
5888  *
5889  * Returns the maximum size an event can be.
5890  */
5891 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
5892 {
5893 	/* If abs timestamp is requested, events have a timestamp too */
5894 	if (ring_buffer_time_stamp_abs(buffer))
5895 		return buffer->max_data_size - RB_LEN_TIME_EXTEND;
5896 	return buffer->max_data_size;
5897 }
5898 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
5899 
5900 static void rb_clear_buffer_page(struct buffer_page *page)
5901 {
5902 	local_set(&page->write, 0);
5903 	local_set(&page->entries, 0);
5904 	rb_init_page(page->page);
5905 	page->read = 0;
5906 }
5907 
5908 static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
5909 {
5910 	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
5911 
5912 	if (!meta)
5913 		return;
5914 
5915 	meta->reader.read = cpu_buffer->reader_page->read;
5916 	meta->reader.id = cpu_buffer->reader_page->id;
5917 	meta->reader.lost_events = cpu_buffer->lost_events;
5918 
5919 	meta->entries = local_read(&cpu_buffer->entries);
5920 	meta->overrun = local_read(&cpu_buffer->overrun);
5921 	meta->read = cpu_buffer->read;
5922 
5923 	/* Some archs do not have data cache coherency between kernel and user-space */
5924 	flush_dcache_folio(virt_to_folio(cpu_buffer->meta_page));
5925 }
5926 
5927 static void
5928 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5929 {
5930 	struct buffer_page *page;
5931 
5932 	rb_head_page_deactivate(cpu_buffer);
5933 
5934 	cpu_buffer->head_page
5935 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
5936 	rb_clear_buffer_page(cpu_buffer->head_page);
5937 	list_for_each_entry(page, cpu_buffer->pages, list) {
5938 		rb_clear_buffer_page(page);
5939 	}
5940 
5941 	cpu_buffer->tail_page = cpu_buffer->head_page;
5942 	cpu_buffer->commit_page = cpu_buffer->head_page;
5943 
5944 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5945 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
5946 	rb_clear_buffer_page(cpu_buffer->reader_page);
5947 
5948 	local_set(&cpu_buffer->entries_bytes, 0);
5949 	local_set(&cpu_buffer->overrun, 0);
5950 	local_set(&cpu_buffer->commit_overrun, 0);
5951 	local_set(&cpu_buffer->dropped_events, 0);
5952 	local_set(&cpu_buffer->entries, 0);
5953 	local_set(&cpu_buffer->committing, 0);
5954 	local_set(&cpu_buffer->commits, 0);
5955 	local_set(&cpu_buffer->pages_touched, 0);
5956 	local_set(&cpu_buffer->pages_lost, 0);
5957 	local_set(&cpu_buffer->pages_read, 0);
5958 	cpu_buffer->last_pages_touch = 0;
5959 	cpu_buffer->shortest_full = 0;
5960 	cpu_buffer->read = 0;
5961 	cpu_buffer->read_bytes = 0;
5962 
5963 	rb_time_set(&cpu_buffer->write_stamp, 0);
5964 	rb_time_set(&cpu_buffer->before_stamp, 0);
5965 
5966 	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5967 
5968 	cpu_buffer->lost_events = 0;
5969 	cpu_buffer->last_overrun = 0;
5970 
5971 	rb_head_page_activate(cpu_buffer);
5972 	cpu_buffer->pages_removed = 0;
5973 
5974 	if (cpu_buffer->mapped) {
5975 		rb_update_meta_page(cpu_buffer);
5976 		if (cpu_buffer->ring_meta) {
5977 			struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
5978 			meta->commit_buffer = meta->head_buffer;
5979 		}
5980 	}
5981 }
5982 
5983 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5984 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5985 {
5986 	unsigned long flags;
5987 
5988 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5989 
5990 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5991 		goto out;
5992 
5993 	arch_spin_lock(&cpu_buffer->lock);
5994 
5995 	rb_reset_cpu(cpu_buffer);
5996 
5997 	arch_spin_unlock(&cpu_buffer->lock);
5998 
5999  out:
6000 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6001 }
6002 
6003 /**
6004  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
6005  * @buffer: The ring buffer to reset a per cpu buffer of
6006  * @cpu: The CPU buffer to be reset
6007  */
6008 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
6009 {
6010 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6011 	struct ring_buffer_meta *meta;
6012 
6013 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6014 		return;
6015 
6016 	/* prevent another thread from changing buffer sizes */
6017 	mutex_lock(&buffer->mutex);
6018 
6019 	atomic_inc(&cpu_buffer->resize_disabled);
6020 	atomic_inc(&cpu_buffer->record_disabled);
6021 
6022 	/* Make sure all commits have finished */
6023 	synchronize_rcu();
6024 
6025 	reset_disabled_cpu_buffer(cpu_buffer);
6026 
6027 	atomic_dec(&cpu_buffer->record_disabled);
6028 	atomic_dec(&cpu_buffer->resize_disabled);
6029 
6030 	/* Make sure persistent meta now uses this buffer's addresses */
6031 	meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6032 	if (meta)
6033 		rb_meta_init_text_addr(meta);
6034 
6035 	mutex_unlock(&buffer->mutex);
6036 }
6037 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
6038 
6039 /* Flag to ensure proper resetting of atomic variables */
6040 #define RESET_BIT	(1 << 30)
6041 
6042 /**
6043  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
6044  * @buffer: The ring buffer to reset a per cpu buffer of
6045  */
6046 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
6047 {
6048 	struct ring_buffer_per_cpu *cpu_buffer;
6049 	struct ring_buffer_meta *meta;
6050 	int cpu;
6051 
6052 	/* prevent another thread from changing buffer sizes */
6053 	mutex_lock(&buffer->mutex);
6054 
6055 	for_each_online_buffer_cpu(buffer, cpu) {
6056 		cpu_buffer = buffer->buffers[cpu];
6057 
6058 		atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
6059 		atomic_inc(&cpu_buffer->record_disabled);
6060 	}
6061 
6062 	/* Make sure all commits have finished */
6063 	synchronize_rcu();
6064 
6065 	for_each_buffer_cpu(buffer, cpu) {
6066 		cpu_buffer = buffer->buffers[cpu];
6067 
6068 		/*
6069 		 * If a CPU came online during the synchronize_rcu(), then
6070 		 * ignore it.
6071 		 */
6072 		if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
6073 			continue;
6074 
6075 		reset_disabled_cpu_buffer(cpu_buffer);
6076 
6077 		/* Make sure persistent meta now uses this buffer's addresses */
6078 		meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6079 		if (meta)
6080 			rb_meta_init_text_addr(meta);
6081 
6082 		atomic_dec(&cpu_buffer->record_disabled);
6083 		atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
6084 	}
6085 
6086 	mutex_unlock(&buffer->mutex);
6087 }
6088 
6089 /**
6090  * ring_buffer_reset - reset a ring buffer
6091  * @buffer: The ring buffer to reset all cpu buffers
6092  */
6093 void ring_buffer_reset(struct trace_buffer *buffer)
6094 {
6095 	struct ring_buffer_per_cpu *cpu_buffer;
6096 	int cpu;
6097 
6098 	/* prevent another thread from changing buffer sizes */
6099 	mutex_lock(&buffer->mutex);
6100 
6101 	for_each_buffer_cpu(buffer, cpu) {
6102 		cpu_buffer = buffer->buffers[cpu];
6103 
6104 		atomic_inc(&cpu_buffer->resize_disabled);
6105 		atomic_inc(&cpu_buffer->record_disabled);
6106 	}
6107 
6108 	/* Make sure all commits have finished */
6109 	synchronize_rcu();
6110 
6111 	for_each_buffer_cpu(buffer, cpu) {
6112 		cpu_buffer = buffer->buffers[cpu];
6113 
6114 		reset_disabled_cpu_buffer(cpu_buffer);
6115 
6116 		atomic_dec(&cpu_buffer->record_disabled);
6117 		atomic_dec(&cpu_buffer->resize_disabled);
6118 	}
6119 
6120 	mutex_unlock(&buffer->mutex);
6121 }
6122 EXPORT_SYMBOL_GPL(ring_buffer_reset);
6123 
6124 /**
6125  * ring_buffer_empty - is the ring buffer empty?
6126  * @buffer: The ring buffer to test
6127  */
6128 bool ring_buffer_empty(struct trace_buffer *buffer)
6129 {
6130 	struct ring_buffer_per_cpu *cpu_buffer;
6131 	unsigned long flags;
6132 	bool dolock;
6133 	bool ret;
6134 	int cpu;
6135 
6136 	/* yes this is racy, but if you don't like the race, lock the buffer */
6137 	for_each_buffer_cpu(buffer, cpu) {
6138 		cpu_buffer = buffer->buffers[cpu];
6139 		local_irq_save(flags);
6140 		dolock = rb_reader_lock(cpu_buffer);
6141 		ret = rb_per_cpu_empty(cpu_buffer);
6142 		rb_reader_unlock(cpu_buffer, dolock);
6143 		local_irq_restore(flags);
6144 
6145 		if (!ret)
6146 			return false;
6147 	}
6148 
6149 	return true;
6150 }
6151 EXPORT_SYMBOL_GPL(ring_buffer_empty);
6152 
6153 /**
6154  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
6155  * @buffer: The ring buffer
6156  * @cpu: The CPU buffer to test
6157  */
6158 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
6159 {
6160 	struct ring_buffer_per_cpu *cpu_buffer;
6161 	unsigned long flags;
6162 	bool dolock;
6163 	bool ret;
6164 
6165 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6166 		return true;
6167 
6168 	cpu_buffer = buffer->buffers[cpu];
6169 	local_irq_save(flags);
6170 	dolock = rb_reader_lock(cpu_buffer);
6171 	ret = rb_per_cpu_empty(cpu_buffer);
6172 	rb_reader_unlock(cpu_buffer, dolock);
6173 	local_irq_restore(flags);
6174 
6175 	return ret;
6176 }
6177 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
6178 
6179 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
6180 /**
6181  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
6182  * @buffer_a: One buffer to swap with
6183  * @buffer_b: The other buffer to swap with
6184  * @cpu: the CPU of the buffers to swap
6185  *
6186  * This function is useful for tracers that want to take a "snapshot"
6187  * of a CPU buffer and has another back up buffer lying around.
6188  * it is expected that the tracer handles the cpu buffer not being
6189  * used at the moment.
6190  */
6191 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
6192 			 struct trace_buffer *buffer_b, int cpu)
6193 {
6194 	struct ring_buffer_per_cpu *cpu_buffer_a;
6195 	struct ring_buffer_per_cpu *cpu_buffer_b;
6196 	int ret = -EINVAL;
6197 
6198 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
6199 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
6200 		goto out;
6201 
6202 	cpu_buffer_a = buffer_a->buffers[cpu];
6203 	cpu_buffer_b = buffer_b->buffers[cpu];
6204 
6205 	/* It's up to the callers to not try to swap mapped buffers */
6206 	if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped)) {
6207 		ret = -EBUSY;
6208 		goto out;
6209 	}
6210 
6211 	/* At least make sure the two buffers are somewhat the same */
6212 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
6213 		goto out;
6214 
6215 	if (buffer_a->subbuf_order != buffer_b->subbuf_order)
6216 		goto out;
6217 
6218 	ret = -EAGAIN;
6219 
6220 	if (atomic_read(&buffer_a->record_disabled))
6221 		goto out;
6222 
6223 	if (atomic_read(&buffer_b->record_disabled))
6224 		goto out;
6225 
6226 	if (atomic_read(&cpu_buffer_a->record_disabled))
6227 		goto out;
6228 
6229 	if (atomic_read(&cpu_buffer_b->record_disabled))
6230 		goto out;
6231 
6232 	/*
6233 	 * We can't do a synchronize_rcu here because this
6234 	 * function can be called in atomic context.
6235 	 * Normally this will be called from the same CPU as cpu.
6236 	 * If not it's up to the caller to protect this.
6237 	 */
6238 	atomic_inc(&cpu_buffer_a->record_disabled);
6239 	atomic_inc(&cpu_buffer_b->record_disabled);
6240 
6241 	ret = -EBUSY;
6242 	if (local_read(&cpu_buffer_a->committing))
6243 		goto out_dec;
6244 	if (local_read(&cpu_buffer_b->committing))
6245 		goto out_dec;
6246 
6247 	/*
6248 	 * When resize is in progress, we cannot swap it because
6249 	 * it will mess the state of the cpu buffer.
6250 	 */
6251 	if (atomic_read(&buffer_a->resizing))
6252 		goto out_dec;
6253 	if (atomic_read(&buffer_b->resizing))
6254 		goto out_dec;
6255 
6256 	buffer_a->buffers[cpu] = cpu_buffer_b;
6257 	buffer_b->buffers[cpu] = cpu_buffer_a;
6258 
6259 	cpu_buffer_b->buffer = buffer_a;
6260 	cpu_buffer_a->buffer = buffer_b;
6261 
6262 	ret = 0;
6263 
6264 out_dec:
6265 	atomic_dec(&cpu_buffer_a->record_disabled);
6266 	atomic_dec(&cpu_buffer_b->record_disabled);
6267 out:
6268 	return ret;
6269 }
6270 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
6271 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
6272 
6273 /**
6274  * ring_buffer_alloc_read_page - allocate a page to read from buffer
6275  * @buffer: the buffer to allocate for.
6276  * @cpu: the cpu buffer to allocate.
6277  *
6278  * This function is used in conjunction with ring_buffer_read_page.
6279  * When reading a full page from the ring buffer, these functions
6280  * can be used to speed up the process. The calling function should
6281  * allocate a few pages first with this function. Then when it
6282  * needs to get pages from the ring buffer, it passes the result
6283  * of this function into ring_buffer_read_page, which will swap
6284  * the page that was allocated, with the read page of the buffer.
6285  *
6286  * Returns:
6287  *  The page allocated, or ERR_PTR
6288  */
6289 struct buffer_data_read_page *
6290 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
6291 {
6292 	struct ring_buffer_per_cpu *cpu_buffer;
6293 	struct buffer_data_read_page *bpage = NULL;
6294 	unsigned long flags;
6295 	struct page *page;
6296 
6297 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6298 		return ERR_PTR(-ENODEV);
6299 
6300 	bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
6301 	if (!bpage)
6302 		return ERR_PTR(-ENOMEM);
6303 
6304 	bpage->order = buffer->subbuf_order;
6305 	cpu_buffer = buffer->buffers[cpu];
6306 	local_irq_save(flags);
6307 	arch_spin_lock(&cpu_buffer->lock);
6308 
6309 	if (cpu_buffer->free_page) {
6310 		bpage->data = cpu_buffer->free_page;
6311 		cpu_buffer->free_page = NULL;
6312 	}
6313 
6314 	arch_spin_unlock(&cpu_buffer->lock);
6315 	local_irq_restore(flags);
6316 
6317 	if (bpage->data)
6318 		goto out;
6319 
6320 	page = alloc_pages_node(cpu_to_node(cpu),
6321 				GFP_KERNEL | __GFP_NORETRY | __GFP_COMP | __GFP_ZERO,
6322 				cpu_buffer->buffer->subbuf_order);
6323 	if (!page) {
6324 		kfree(bpage);
6325 		return ERR_PTR(-ENOMEM);
6326 	}
6327 
6328 	bpage->data = page_address(page);
6329 
6330  out:
6331 	rb_init_page(bpage->data);
6332 
6333 	return bpage;
6334 }
6335 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
6336 
6337 /**
6338  * ring_buffer_free_read_page - free an allocated read page
6339  * @buffer: the buffer the page was allocate for
6340  * @cpu: the cpu buffer the page came from
6341  * @data_page: the page to free
6342  *
6343  * Free a page allocated from ring_buffer_alloc_read_page.
6344  */
6345 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
6346 				struct buffer_data_read_page *data_page)
6347 {
6348 	struct ring_buffer_per_cpu *cpu_buffer;
6349 	struct buffer_data_page *bpage = data_page->data;
6350 	struct page *page = virt_to_page(bpage);
6351 	unsigned long flags;
6352 
6353 	if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
6354 		return;
6355 
6356 	cpu_buffer = buffer->buffers[cpu];
6357 
6358 	/*
6359 	 * If the page is still in use someplace else, or order of the page
6360 	 * is different from the subbuffer order of the buffer -
6361 	 * we can't reuse it
6362 	 */
6363 	if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
6364 		goto out;
6365 
6366 	local_irq_save(flags);
6367 	arch_spin_lock(&cpu_buffer->lock);
6368 
6369 	if (!cpu_buffer->free_page) {
6370 		cpu_buffer->free_page = bpage;
6371 		bpage = NULL;
6372 	}
6373 
6374 	arch_spin_unlock(&cpu_buffer->lock);
6375 	local_irq_restore(flags);
6376 
6377  out:
6378 	free_pages((unsigned long)bpage, data_page->order);
6379 	kfree(data_page);
6380 }
6381 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
6382 
6383 /**
6384  * ring_buffer_read_page - extract a page from the ring buffer
6385  * @buffer: buffer to extract from
6386  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
6387  * @len: amount to extract
6388  * @cpu: the cpu of the buffer to extract
6389  * @full: should the extraction only happen when the page is full.
6390  *
6391  * This function will pull out a page from the ring buffer and consume it.
6392  * @data_page must be the address of the variable that was returned
6393  * from ring_buffer_alloc_read_page. This is because the page might be used
6394  * to swap with a page in the ring buffer.
6395  *
6396  * for example:
6397  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
6398  *	if (IS_ERR(rpage))
6399  *		return PTR_ERR(rpage);
6400  *	ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
6401  *	if (ret >= 0)
6402  *		process_page(ring_buffer_read_page_data(rpage), ret);
6403  *	ring_buffer_free_read_page(buffer, cpu, rpage);
6404  *
6405  * When @full is set, the function will not return true unless
6406  * the writer is off the reader page.
6407  *
6408  * Note: it is up to the calling functions to handle sleeps and wakeups.
6409  *  The ring buffer can be used anywhere in the kernel and can not
6410  *  blindly call wake_up. The layer that uses the ring buffer must be
6411  *  responsible for that.
6412  *
6413  * Returns:
6414  *  >=0 if data has been transferred, returns the offset of consumed data.
6415  *  <0 if no data has been transferred.
6416  */
6417 int ring_buffer_read_page(struct trace_buffer *buffer,
6418 			  struct buffer_data_read_page *data_page,
6419 			  size_t len, int cpu, int full)
6420 {
6421 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6422 	struct ring_buffer_event *event;
6423 	struct buffer_data_page *bpage;
6424 	struct buffer_page *reader;
6425 	unsigned long missed_events;
6426 	unsigned long flags;
6427 	unsigned int commit;
6428 	unsigned int read;
6429 	u64 save_timestamp;
6430 	int ret = -1;
6431 
6432 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6433 		goto out;
6434 
6435 	/*
6436 	 * If len is not big enough to hold the page header, then
6437 	 * we can not copy anything.
6438 	 */
6439 	if (len <= BUF_PAGE_HDR_SIZE)
6440 		goto out;
6441 
6442 	len -= BUF_PAGE_HDR_SIZE;
6443 
6444 	if (!data_page || !data_page->data)
6445 		goto out;
6446 	if (data_page->order != buffer->subbuf_order)
6447 		goto out;
6448 
6449 	bpage = data_page->data;
6450 	if (!bpage)
6451 		goto out;
6452 
6453 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6454 
6455 	reader = rb_get_reader_page(cpu_buffer);
6456 	if (!reader)
6457 		goto out_unlock;
6458 
6459 	event = rb_reader_event(cpu_buffer);
6460 
6461 	read = reader->read;
6462 	commit = rb_page_size(reader);
6463 
6464 	/* Check if any events were dropped */
6465 	missed_events = cpu_buffer->lost_events;
6466 
6467 	/*
6468 	 * If this page has been partially read or
6469 	 * if len is not big enough to read the rest of the page or
6470 	 * a writer is still on the page, then
6471 	 * we must copy the data from the page to the buffer.
6472 	 * Otherwise, we can simply swap the page with the one passed in.
6473 	 */
6474 	if (read || (len < (commit - read)) ||
6475 	    cpu_buffer->reader_page == cpu_buffer->commit_page ||
6476 	    cpu_buffer->mapped) {
6477 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
6478 		unsigned int rpos = read;
6479 		unsigned int pos = 0;
6480 		unsigned int size;
6481 
6482 		/*
6483 		 * If a full page is expected, this can still be returned
6484 		 * if there's been a previous partial read and the
6485 		 * rest of the page can be read and the commit page is off
6486 		 * the reader page.
6487 		 */
6488 		if (full &&
6489 		    (!read || (len < (commit - read)) ||
6490 		     cpu_buffer->reader_page == cpu_buffer->commit_page))
6491 			goto out_unlock;
6492 
6493 		if (len > (commit - read))
6494 			len = (commit - read);
6495 
6496 		/* Always keep the time extend and data together */
6497 		size = rb_event_ts_length(event);
6498 
6499 		if (len < size)
6500 			goto out_unlock;
6501 
6502 		/* save the current timestamp, since the user will need it */
6503 		save_timestamp = cpu_buffer->read_stamp;
6504 
6505 		/* Need to copy one event at a time */
6506 		do {
6507 			/* We need the size of one event, because
6508 			 * rb_advance_reader only advances by one event,
6509 			 * whereas rb_event_ts_length may include the size of
6510 			 * one or two events.
6511 			 * We have already ensured there's enough space if this
6512 			 * is a time extend. */
6513 			size = rb_event_length(event);
6514 			memcpy(bpage->data + pos, rpage->data + rpos, size);
6515 
6516 			len -= size;
6517 
6518 			rb_advance_reader(cpu_buffer);
6519 			rpos = reader->read;
6520 			pos += size;
6521 
6522 			if (rpos >= commit)
6523 				break;
6524 
6525 			event = rb_reader_event(cpu_buffer);
6526 			/* Always keep the time extend and data together */
6527 			size = rb_event_ts_length(event);
6528 		} while (len >= size);
6529 
6530 		/* update bpage */
6531 		local_set(&bpage->commit, pos);
6532 		bpage->time_stamp = save_timestamp;
6533 
6534 		/* we copied everything to the beginning */
6535 		read = 0;
6536 	} else {
6537 		/* update the entry counter */
6538 		cpu_buffer->read += rb_page_entries(reader);
6539 		cpu_buffer->read_bytes += rb_page_size(reader);
6540 
6541 		/* swap the pages */
6542 		rb_init_page(bpage);
6543 		bpage = reader->page;
6544 		reader->page = data_page->data;
6545 		local_set(&reader->write, 0);
6546 		local_set(&reader->entries, 0);
6547 		reader->read = 0;
6548 		data_page->data = bpage;
6549 
6550 		/*
6551 		 * Use the real_end for the data size,
6552 		 * This gives us a chance to store the lost events
6553 		 * on the page.
6554 		 */
6555 		if (reader->real_end)
6556 			local_set(&bpage->commit, reader->real_end);
6557 	}
6558 	ret = read;
6559 
6560 	cpu_buffer->lost_events = 0;
6561 
6562 	commit = local_read(&bpage->commit);
6563 	/*
6564 	 * Set a flag in the commit field if we lost events
6565 	 */
6566 	if (missed_events) {
6567 		/* If there is room at the end of the page to save the
6568 		 * missed events, then record it there.
6569 		 */
6570 		if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
6571 			memcpy(&bpage->data[commit], &missed_events,
6572 			       sizeof(missed_events));
6573 			local_add(RB_MISSED_STORED, &bpage->commit);
6574 			commit += sizeof(missed_events);
6575 		}
6576 		local_add(RB_MISSED_EVENTS, &bpage->commit);
6577 	}
6578 
6579 	/*
6580 	 * This page may be off to user land. Zero it out here.
6581 	 */
6582 	if (commit < buffer->subbuf_size)
6583 		memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
6584 
6585  out_unlock:
6586 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6587 
6588  out:
6589 	return ret;
6590 }
6591 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
6592 
6593 /**
6594  * ring_buffer_read_page_data - get pointer to the data in the page.
6595  * @page:  the page to get the data from
6596  *
6597  * Returns pointer to the actual data in this page.
6598  */
6599 void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
6600 {
6601 	return page->data;
6602 }
6603 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
6604 
6605 /**
6606  * ring_buffer_subbuf_size_get - get size of the sub buffer.
6607  * @buffer: the buffer to get the sub buffer size from
6608  *
6609  * Returns size of the sub buffer, in bytes.
6610  */
6611 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
6612 {
6613 	return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6614 }
6615 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
6616 
6617 /**
6618  * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
6619  * @buffer: The ring_buffer to get the system sub page order from
6620  *
6621  * By default, one ring buffer sub page equals to one system page. This parameter
6622  * is configurable, per ring buffer. The size of the ring buffer sub page can be
6623  * extended, but must be an order of system page size.
6624  *
6625  * Returns the order of buffer sub page size, in system pages:
6626  * 0 means the sub buffer size is 1 system page and so forth.
6627  * In case of an error < 0 is returned.
6628  */
6629 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
6630 {
6631 	if (!buffer)
6632 		return -EINVAL;
6633 
6634 	return buffer->subbuf_order;
6635 }
6636 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
6637 
6638 /**
6639  * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
6640  * @buffer: The ring_buffer to set the new page size.
6641  * @order: Order of the system pages in one sub buffer page
6642  *
6643  * By default, one ring buffer pages equals to one system page. This API can be
6644  * used to set new size of the ring buffer page. The size must be order of
6645  * system page size, that's why the input parameter @order is the order of
6646  * system pages that are allocated for one ring buffer page:
6647  *  0 - 1 system page
6648  *  1 - 2 system pages
6649  *  3 - 4 system pages
6650  *  ...
6651  *
6652  * Returns 0 on success or < 0 in case of an error.
6653  */
6654 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
6655 {
6656 	struct ring_buffer_per_cpu *cpu_buffer;
6657 	struct buffer_page *bpage, *tmp;
6658 	int old_order, old_size;
6659 	int nr_pages;
6660 	int psize;
6661 	int err;
6662 	int cpu;
6663 
6664 	if (!buffer || order < 0)
6665 		return -EINVAL;
6666 
6667 	if (buffer->subbuf_order == order)
6668 		return 0;
6669 
6670 	psize = (1 << order) * PAGE_SIZE;
6671 	if (psize <= BUF_PAGE_HDR_SIZE)
6672 		return -EINVAL;
6673 
6674 	/* Size of a subbuf cannot be greater than the write counter */
6675 	if (psize > RB_WRITE_MASK + 1)
6676 		return -EINVAL;
6677 
6678 	old_order = buffer->subbuf_order;
6679 	old_size = buffer->subbuf_size;
6680 
6681 	/* prevent another thread from changing buffer sizes */
6682 	mutex_lock(&buffer->mutex);
6683 	atomic_inc(&buffer->record_disabled);
6684 
6685 	/* Make sure all commits have finished */
6686 	synchronize_rcu();
6687 
6688 	buffer->subbuf_order = order;
6689 	buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
6690 
6691 	/* Make sure all new buffers are allocated, before deleting the old ones */
6692 	for_each_buffer_cpu(buffer, cpu) {
6693 
6694 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6695 			continue;
6696 
6697 		cpu_buffer = buffer->buffers[cpu];
6698 
6699 		if (cpu_buffer->mapped) {
6700 			err = -EBUSY;
6701 			goto error;
6702 		}
6703 
6704 		/* Update the number of pages to match the new size */
6705 		nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
6706 		nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
6707 
6708 		/* we need a minimum of two pages */
6709 		if (nr_pages < 2)
6710 			nr_pages = 2;
6711 
6712 		cpu_buffer->nr_pages_to_update = nr_pages;
6713 
6714 		/* Include the reader page */
6715 		nr_pages++;
6716 
6717 		/* Allocate the new size buffer */
6718 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
6719 		if (__rb_allocate_pages(cpu_buffer, nr_pages,
6720 					&cpu_buffer->new_pages)) {
6721 			/* not enough memory for new pages */
6722 			err = -ENOMEM;
6723 			goto error;
6724 		}
6725 	}
6726 
6727 	for_each_buffer_cpu(buffer, cpu) {
6728 		struct buffer_data_page *old_free_data_page;
6729 		struct list_head old_pages;
6730 		unsigned long flags;
6731 
6732 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6733 			continue;
6734 
6735 		cpu_buffer = buffer->buffers[cpu];
6736 
6737 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6738 
6739 		/* Clear the head bit to make the link list normal to read */
6740 		rb_head_page_deactivate(cpu_buffer);
6741 
6742 		/*
6743 		 * Collect buffers from the cpu_buffer pages list and the
6744 		 * reader_page on old_pages, so they can be freed later when not
6745 		 * under a spinlock. The pages list is a linked list with no
6746 		 * head, adding old_pages turns it into a regular list with
6747 		 * old_pages being the head.
6748 		 */
6749 		list_add(&old_pages, cpu_buffer->pages);
6750 		list_add(&cpu_buffer->reader_page->list, &old_pages);
6751 
6752 		/* One page was allocated for the reader page */
6753 		cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
6754 						     struct buffer_page, list);
6755 		list_del_init(&cpu_buffer->reader_page->list);
6756 
6757 		/* Install the new pages, remove the head from the list */
6758 		cpu_buffer->pages = cpu_buffer->new_pages.next;
6759 		list_del_init(&cpu_buffer->new_pages);
6760 
6761 		cpu_buffer->head_page
6762 			= list_entry(cpu_buffer->pages, struct buffer_page, list);
6763 		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
6764 
6765 		cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
6766 		cpu_buffer->nr_pages_to_update = 0;
6767 
6768 		old_free_data_page = cpu_buffer->free_page;
6769 		cpu_buffer->free_page = NULL;
6770 
6771 		rb_head_page_activate(cpu_buffer);
6772 
6773 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6774 
6775 		/* Free old sub buffers */
6776 		list_for_each_entry_safe(bpage, tmp, &old_pages, list) {
6777 			list_del_init(&bpage->list);
6778 			free_buffer_page(bpage);
6779 		}
6780 		free_pages((unsigned long)old_free_data_page, old_order);
6781 
6782 		rb_check_pages(cpu_buffer);
6783 	}
6784 
6785 	atomic_dec(&buffer->record_disabled);
6786 	mutex_unlock(&buffer->mutex);
6787 
6788 	return 0;
6789 
6790 error:
6791 	buffer->subbuf_order = old_order;
6792 	buffer->subbuf_size = old_size;
6793 
6794 	atomic_dec(&buffer->record_disabled);
6795 	mutex_unlock(&buffer->mutex);
6796 
6797 	for_each_buffer_cpu(buffer, cpu) {
6798 		cpu_buffer = buffer->buffers[cpu];
6799 
6800 		if (!cpu_buffer->nr_pages_to_update)
6801 			continue;
6802 
6803 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
6804 			list_del_init(&bpage->list);
6805 			free_buffer_page(bpage);
6806 		}
6807 	}
6808 
6809 	return err;
6810 }
6811 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
6812 
6813 static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6814 {
6815 	struct page *page;
6816 
6817 	if (cpu_buffer->meta_page)
6818 		return 0;
6819 
6820 	page = alloc_page(GFP_USER | __GFP_ZERO);
6821 	if (!page)
6822 		return -ENOMEM;
6823 
6824 	cpu_buffer->meta_page = page_to_virt(page);
6825 
6826 	return 0;
6827 }
6828 
6829 static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6830 {
6831 	unsigned long addr = (unsigned long)cpu_buffer->meta_page;
6832 
6833 	free_page(addr);
6834 	cpu_buffer->meta_page = NULL;
6835 }
6836 
6837 static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer,
6838 				   unsigned long *subbuf_ids)
6839 {
6840 	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6841 	unsigned int nr_subbufs = cpu_buffer->nr_pages + 1;
6842 	struct buffer_page *first_subbuf, *subbuf;
6843 	int id = 0;
6844 
6845 	subbuf_ids[id] = (unsigned long)cpu_buffer->reader_page->page;
6846 	cpu_buffer->reader_page->id = id++;
6847 
6848 	first_subbuf = subbuf = rb_set_head_page(cpu_buffer);
6849 	do {
6850 		if (WARN_ON(id >= nr_subbufs))
6851 			break;
6852 
6853 		subbuf_ids[id] = (unsigned long)subbuf->page;
6854 		subbuf->id = id;
6855 
6856 		rb_inc_page(&subbuf);
6857 		id++;
6858 	} while (subbuf != first_subbuf);
6859 
6860 	/* install subbuf ID to kern VA translation */
6861 	cpu_buffer->subbuf_ids = subbuf_ids;
6862 
6863 	meta->meta_struct_len = sizeof(*meta);
6864 	meta->nr_subbufs = nr_subbufs;
6865 	meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6866 	meta->meta_page_size = meta->subbuf_size;
6867 
6868 	rb_update_meta_page(cpu_buffer);
6869 }
6870 
6871 static struct ring_buffer_per_cpu *
6872 rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu)
6873 {
6874 	struct ring_buffer_per_cpu *cpu_buffer;
6875 
6876 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6877 		return ERR_PTR(-EINVAL);
6878 
6879 	cpu_buffer = buffer->buffers[cpu];
6880 
6881 	mutex_lock(&cpu_buffer->mapping_lock);
6882 
6883 	if (!cpu_buffer->user_mapped) {
6884 		mutex_unlock(&cpu_buffer->mapping_lock);
6885 		return ERR_PTR(-ENODEV);
6886 	}
6887 
6888 	return cpu_buffer;
6889 }
6890 
6891 static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6892 {
6893 	mutex_unlock(&cpu_buffer->mapping_lock);
6894 }
6895 
6896 /*
6897  * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need
6898  * to be set-up or torn-down.
6899  */
6900 static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer,
6901 			       bool inc)
6902 {
6903 	unsigned long flags;
6904 
6905 	lockdep_assert_held(&cpu_buffer->mapping_lock);
6906 
6907 	/* mapped is always greater or equal to user_mapped */
6908 	if (WARN_ON(cpu_buffer->mapped < cpu_buffer->user_mapped))
6909 		return -EINVAL;
6910 
6911 	if (inc && cpu_buffer->mapped == UINT_MAX)
6912 		return -EBUSY;
6913 
6914 	if (WARN_ON(!inc && cpu_buffer->user_mapped == 0))
6915 		return -EINVAL;
6916 
6917 	mutex_lock(&cpu_buffer->buffer->mutex);
6918 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6919 
6920 	if (inc) {
6921 		cpu_buffer->user_mapped++;
6922 		cpu_buffer->mapped++;
6923 	} else {
6924 		cpu_buffer->user_mapped--;
6925 		cpu_buffer->mapped--;
6926 	}
6927 
6928 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6929 	mutex_unlock(&cpu_buffer->buffer->mutex);
6930 
6931 	return 0;
6932 }
6933 
6934 /*
6935  *   +--------------+  pgoff == 0
6936  *   |   meta page  |
6937  *   +--------------+  pgoff == 1
6938  *   | subbuffer 0  |
6939  *   |              |
6940  *   +--------------+  pgoff == (1 + (1 << subbuf_order))
6941  *   | subbuffer 1  |
6942  *   |              |
6943  *         ...
6944  */
6945 #ifdef CONFIG_MMU
6946 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
6947 			struct vm_area_struct *vma)
6948 {
6949 	unsigned long nr_subbufs, nr_pages, nr_vma_pages, pgoff = vma->vm_pgoff;
6950 	unsigned int subbuf_pages, subbuf_order;
6951 	struct page **pages;
6952 	int p = 0, s = 0;
6953 	int err;
6954 
6955 	/* Refuse MP_PRIVATE or writable mappings */
6956 	if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC ||
6957 	    !(vma->vm_flags & VM_MAYSHARE))
6958 		return -EPERM;
6959 
6960 	subbuf_order = cpu_buffer->buffer->subbuf_order;
6961 	subbuf_pages = 1 << subbuf_order;
6962 
6963 	if (subbuf_order && pgoff % subbuf_pages)
6964 		return -EINVAL;
6965 
6966 	/*
6967 	 * Make sure the mapping cannot become writable later. Also tell the VM
6968 	 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND).
6969 	 */
6970 	vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP,
6971 		     VM_MAYWRITE);
6972 
6973 	lockdep_assert_held(&cpu_buffer->mapping_lock);
6974 
6975 	nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */
6976 	nr_pages = ((nr_subbufs + 1) << subbuf_order) - pgoff; /* + meta-page */
6977 
6978 	nr_vma_pages = vma_pages(vma);
6979 	if (!nr_vma_pages || nr_vma_pages > nr_pages)
6980 		return -EINVAL;
6981 
6982 	nr_pages = nr_vma_pages;
6983 
6984 	pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL);
6985 	if (!pages)
6986 		return -ENOMEM;
6987 
6988 	if (!pgoff) {
6989 		unsigned long meta_page_padding;
6990 
6991 		pages[p++] = virt_to_page(cpu_buffer->meta_page);
6992 
6993 		/*
6994 		 * Pad with the zero-page to align the meta-page with the
6995 		 * sub-buffers.
6996 		 */
6997 		meta_page_padding = subbuf_pages - 1;
6998 		while (meta_page_padding-- && p < nr_pages) {
6999 			unsigned long __maybe_unused zero_addr =
7000 				vma->vm_start + (PAGE_SIZE * p);
7001 
7002 			pages[p++] = ZERO_PAGE(zero_addr);
7003 		}
7004 	} else {
7005 		/* Skip the meta-page */
7006 		pgoff -= subbuf_pages;
7007 
7008 		s += pgoff / subbuf_pages;
7009 	}
7010 
7011 	while (p < nr_pages) {
7012 		struct page *page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]);
7013 		int off = 0;
7014 
7015 		if (WARN_ON_ONCE(s >= nr_subbufs)) {
7016 			err = -EINVAL;
7017 			goto out;
7018 		}
7019 
7020 		for (; off < (1 << (subbuf_order)); off++, page++) {
7021 			if (p >= nr_pages)
7022 				break;
7023 
7024 			pages[p++] = page;
7025 		}
7026 		s++;
7027 	}
7028 
7029 	err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
7030 
7031 out:
7032 	kfree(pages);
7033 
7034 	return err;
7035 }
7036 #else
7037 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7038 			struct vm_area_struct *vma)
7039 {
7040 	return -EOPNOTSUPP;
7041 }
7042 #endif
7043 
7044 int ring_buffer_map(struct trace_buffer *buffer, int cpu,
7045 		    struct vm_area_struct *vma)
7046 {
7047 	struct ring_buffer_per_cpu *cpu_buffer;
7048 	unsigned long flags, *subbuf_ids;
7049 	int err = 0;
7050 
7051 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7052 		return -EINVAL;
7053 
7054 	cpu_buffer = buffer->buffers[cpu];
7055 
7056 	mutex_lock(&cpu_buffer->mapping_lock);
7057 
7058 	if (cpu_buffer->user_mapped) {
7059 		err = __rb_map_vma(cpu_buffer, vma);
7060 		if (!err)
7061 			err = __rb_inc_dec_mapped(cpu_buffer, true);
7062 		mutex_unlock(&cpu_buffer->mapping_lock);
7063 		return err;
7064 	}
7065 
7066 	/* prevent another thread from changing buffer/sub-buffer sizes */
7067 	mutex_lock(&buffer->mutex);
7068 
7069 	err = rb_alloc_meta_page(cpu_buffer);
7070 	if (err)
7071 		goto unlock;
7072 
7073 	/* subbuf_ids include the reader while nr_pages does not */
7074 	subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL);
7075 	if (!subbuf_ids) {
7076 		rb_free_meta_page(cpu_buffer);
7077 		err = -ENOMEM;
7078 		goto unlock;
7079 	}
7080 
7081 	atomic_inc(&cpu_buffer->resize_disabled);
7082 
7083 	/*
7084 	 * Lock all readers to block any subbuf swap until the subbuf IDs are
7085 	 * assigned.
7086 	 */
7087 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7088 	rb_setup_ids_meta_page(cpu_buffer, subbuf_ids);
7089 
7090 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7091 
7092 	err = __rb_map_vma(cpu_buffer, vma);
7093 	if (!err) {
7094 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7095 		/* This is the first time it is mapped by user */
7096 		cpu_buffer->mapped++;
7097 		cpu_buffer->user_mapped = 1;
7098 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7099 	} else {
7100 		kfree(cpu_buffer->subbuf_ids);
7101 		cpu_buffer->subbuf_ids = NULL;
7102 		rb_free_meta_page(cpu_buffer);
7103 	}
7104 
7105 unlock:
7106 	mutex_unlock(&buffer->mutex);
7107 	mutex_unlock(&cpu_buffer->mapping_lock);
7108 
7109 	return err;
7110 }
7111 
7112 int ring_buffer_unmap(struct trace_buffer *buffer, int cpu)
7113 {
7114 	struct ring_buffer_per_cpu *cpu_buffer;
7115 	unsigned long flags;
7116 	int err = 0;
7117 
7118 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7119 		return -EINVAL;
7120 
7121 	cpu_buffer = buffer->buffers[cpu];
7122 
7123 	mutex_lock(&cpu_buffer->mapping_lock);
7124 
7125 	if (!cpu_buffer->user_mapped) {
7126 		err = -ENODEV;
7127 		goto out;
7128 	} else if (cpu_buffer->user_mapped > 1) {
7129 		__rb_inc_dec_mapped(cpu_buffer, false);
7130 		goto out;
7131 	}
7132 
7133 	mutex_lock(&buffer->mutex);
7134 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7135 
7136 	/* This is the last user space mapping */
7137 	if (!WARN_ON_ONCE(cpu_buffer->mapped < cpu_buffer->user_mapped))
7138 		cpu_buffer->mapped--;
7139 	cpu_buffer->user_mapped = 0;
7140 
7141 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7142 
7143 	kfree(cpu_buffer->subbuf_ids);
7144 	cpu_buffer->subbuf_ids = NULL;
7145 	rb_free_meta_page(cpu_buffer);
7146 	atomic_dec(&cpu_buffer->resize_disabled);
7147 
7148 	mutex_unlock(&buffer->mutex);
7149 
7150 out:
7151 	mutex_unlock(&cpu_buffer->mapping_lock);
7152 
7153 	return err;
7154 }
7155 
7156 int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu)
7157 {
7158 	struct ring_buffer_per_cpu *cpu_buffer;
7159 	struct buffer_page *reader;
7160 	unsigned long missed_events;
7161 	unsigned long reader_size;
7162 	unsigned long flags;
7163 
7164 	cpu_buffer = rb_get_mapped_buffer(buffer, cpu);
7165 	if (IS_ERR(cpu_buffer))
7166 		return (int)PTR_ERR(cpu_buffer);
7167 
7168 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7169 
7170 consume:
7171 	if (rb_per_cpu_empty(cpu_buffer))
7172 		goto out;
7173 
7174 	reader_size = rb_page_size(cpu_buffer->reader_page);
7175 
7176 	/*
7177 	 * There are data to be read on the current reader page, we can
7178 	 * return to the caller. But before that, we assume the latter will read
7179 	 * everything. Let's update the kernel reader accordingly.
7180 	 */
7181 	if (cpu_buffer->reader_page->read < reader_size) {
7182 		while (cpu_buffer->reader_page->read < reader_size)
7183 			rb_advance_reader(cpu_buffer);
7184 		goto out;
7185 	}
7186 
7187 	reader = rb_get_reader_page(cpu_buffer);
7188 	if (WARN_ON(!reader))
7189 		goto out;
7190 
7191 	/* Check if any events were dropped */
7192 	missed_events = cpu_buffer->lost_events;
7193 
7194 	if (cpu_buffer->reader_page != cpu_buffer->commit_page) {
7195 		if (missed_events) {
7196 			struct buffer_data_page *bpage = reader->page;
7197 			unsigned int commit;
7198 			/*
7199 			 * Use the real_end for the data size,
7200 			 * This gives us a chance to store the lost events
7201 			 * on the page.
7202 			 */
7203 			if (reader->real_end)
7204 				local_set(&bpage->commit, reader->real_end);
7205 			/*
7206 			 * If there is room at the end of the page to save the
7207 			 * missed events, then record it there.
7208 			 */
7209 			commit = rb_page_size(reader);
7210 			if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
7211 				memcpy(&bpage->data[commit], &missed_events,
7212 				       sizeof(missed_events));
7213 				local_add(RB_MISSED_STORED, &bpage->commit);
7214 			}
7215 			local_add(RB_MISSED_EVENTS, &bpage->commit);
7216 		}
7217 	} else {
7218 		/*
7219 		 * There really shouldn't be any missed events if the commit
7220 		 * is on the reader page.
7221 		 */
7222 		WARN_ON_ONCE(missed_events);
7223 	}
7224 
7225 	cpu_buffer->lost_events = 0;
7226 
7227 	goto consume;
7228 
7229 out:
7230 	/* Some archs do not have data cache coherency between kernel and user-space */
7231 	flush_dcache_folio(virt_to_folio(cpu_buffer->reader_page->page));
7232 
7233 	rb_update_meta_page(cpu_buffer);
7234 
7235 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7236 	rb_put_mapped_buffer(cpu_buffer);
7237 
7238 	return 0;
7239 }
7240 
7241 /*
7242  * We only allocate new buffers, never free them if the CPU goes down.
7243  * If we were to free the buffer, then the user would lose any trace that was in
7244  * the buffer.
7245  */
7246 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
7247 {
7248 	struct trace_buffer *buffer;
7249 	long nr_pages_same;
7250 	int cpu_i;
7251 	unsigned long nr_pages;
7252 
7253 	buffer = container_of(node, struct trace_buffer, node);
7254 	if (cpumask_test_cpu(cpu, buffer->cpumask))
7255 		return 0;
7256 
7257 	nr_pages = 0;
7258 	nr_pages_same = 1;
7259 	/* check if all cpu sizes are same */
7260 	for_each_buffer_cpu(buffer, cpu_i) {
7261 		/* fill in the size from first enabled cpu */
7262 		if (nr_pages == 0)
7263 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
7264 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
7265 			nr_pages_same = 0;
7266 			break;
7267 		}
7268 	}
7269 	/* allocate minimum pages, user can later expand it */
7270 	if (!nr_pages_same)
7271 		nr_pages = 2;
7272 	buffer->buffers[cpu] =
7273 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7274 	if (!buffer->buffers[cpu]) {
7275 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
7276 		     cpu);
7277 		return -ENOMEM;
7278 	}
7279 	smp_wmb();
7280 	cpumask_set_cpu(cpu, buffer->cpumask);
7281 	return 0;
7282 }
7283 
7284 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
7285 /*
7286  * This is a basic integrity check of the ring buffer.
7287  * Late in the boot cycle this test will run when configured in.
7288  * It will kick off a thread per CPU that will go into a loop
7289  * writing to the per cpu ring buffer various sizes of data.
7290  * Some of the data will be large items, some small.
7291  *
7292  * Another thread is created that goes into a spin, sending out
7293  * IPIs to the other CPUs to also write into the ring buffer.
7294  * this is to test the nesting ability of the buffer.
7295  *
7296  * Basic stats are recorded and reported. If something in the
7297  * ring buffer should happen that's not expected, a big warning
7298  * is displayed and all ring buffers are disabled.
7299  */
7300 static struct task_struct *rb_threads[NR_CPUS] __initdata;
7301 
7302 struct rb_test_data {
7303 	struct trace_buffer *buffer;
7304 	unsigned long		events;
7305 	unsigned long		bytes_written;
7306 	unsigned long		bytes_alloc;
7307 	unsigned long		bytes_dropped;
7308 	unsigned long		events_nested;
7309 	unsigned long		bytes_written_nested;
7310 	unsigned long		bytes_alloc_nested;
7311 	unsigned long		bytes_dropped_nested;
7312 	int			min_size_nested;
7313 	int			max_size_nested;
7314 	int			max_size;
7315 	int			min_size;
7316 	int			cpu;
7317 	int			cnt;
7318 };
7319 
7320 static struct rb_test_data rb_data[NR_CPUS] __initdata;
7321 
7322 /* 1 meg per cpu */
7323 #define RB_TEST_BUFFER_SIZE	1048576
7324 
7325 static char rb_string[] __initdata =
7326 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
7327 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
7328 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
7329 
7330 static bool rb_test_started __initdata;
7331 
7332 struct rb_item {
7333 	int size;
7334 	char str[];
7335 };
7336 
7337 static __init int rb_write_something(struct rb_test_data *data, bool nested)
7338 {
7339 	struct ring_buffer_event *event;
7340 	struct rb_item *item;
7341 	bool started;
7342 	int event_len;
7343 	int size;
7344 	int len;
7345 	int cnt;
7346 
7347 	/* Have nested writes different that what is written */
7348 	cnt = data->cnt + (nested ? 27 : 0);
7349 
7350 	/* Multiply cnt by ~e, to make some unique increment */
7351 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
7352 
7353 	len = size + sizeof(struct rb_item);
7354 
7355 	started = rb_test_started;
7356 	/* read rb_test_started before checking buffer enabled */
7357 	smp_rmb();
7358 
7359 	event = ring_buffer_lock_reserve(data->buffer, len);
7360 	if (!event) {
7361 		/* Ignore dropped events before test starts. */
7362 		if (started) {
7363 			if (nested)
7364 				data->bytes_dropped += len;
7365 			else
7366 				data->bytes_dropped_nested += len;
7367 		}
7368 		return len;
7369 	}
7370 
7371 	event_len = ring_buffer_event_length(event);
7372 
7373 	if (RB_WARN_ON(data->buffer, event_len < len))
7374 		goto out;
7375 
7376 	item = ring_buffer_event_data(event);
7377 	item->size = size;
7378 	memcpy(item->str, rb_string, size);
7379 
7380 	if (nested) {
7381 		data->bytes_alloc_nested += event_len;
7382 		data->bytes_written_nested += len;
7383 		data->events_nested++;
7384 		if (!data->min_size_nested || len < data->min_size_nested)
7385 			data->min_size_nested = len;
7386 		if (len > data->max_size_nested)
7387 			data->max_size_nested = len;
7388 	} else {
7389 		data->bytes_alloc += event_len;
7390 		data->bytes_written += len;
7391 		data->events++;
7392 		if (!data->min_size || len < data->min_size)
7393 			data->max_size = len;
7394 		if (len > data->max_size)
7395 			data->max_size = len;
7396 	}
7397 
7398  out:
7399 	ring_buffer_unlock_commit(data->buffer);
7400 
7401 	return 0;
7402 }
7403 
7404 static __init int rb_test(void *arg)
7405 {
7406 	struct rb_test_data *data = arg;
7407 
7408 	while (!kthread_should_stop()) {
7409 		rb_write_something(data, false);
7410 		data->cnt++;
7411 
7412 		set_current_state(TASK_INTERRUPTIBLE);
7413 		/* Now sleep between a min of 100-300us and a max of 1ms */
7414 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
7415 	}
7416 
7417 	return 0;
7418 }
7419 
7420 static __init void rb_ipi(void *ignore)
7421 {
7422 	struct rb_test_data *data;
7423 	int cpu = smp_processor_id();
7424 
7425 	data = &rb_data[cpu];
7426 	rb_write_something(data, true);
7427 }
7428 
7429 static __init int rb_hammer_test(void *arg)
7430 {
7431 	while (!kthread_should_stop()) {
7432 
7433 		/* Send an IPI to all cpus to write data! */
7434 		smp_call_function(rb_ipi, NULL, 1);
7435 		/* No sleep, but for non preempt, let others run */
7436 		schedule();
7437 	}
7438 
7439 	return 0;
7440 }
7441 
7442 static __init int test_ringbuffer(void)
7443 {
7444 	struct task_struct *rb_hammer;
7445 	struct trace_buffer *buffer;
7446 	int cpu;
7447 	int ret = 0;
7448 
7449 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
7450 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
7451 		return 0;
7452 	}
7453 
7454 	pr_info("Running ring buffer tests...\n");
7455 
7456 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
7457 	if (WARN_ON(!buffer))
7458 		return 0;
7459 
7460 	/* Disable buffer so that threads can't write to it yet */
7461 	ring_buffer_record_off(buffer);
7462 
7463 	for_each_online_cpu(cpu) {
7464 		rb_data[cpu].buffer = buffer;
7465 		rb_data[cpu].cpu = cpu;
7466 		rb_data[cpu].cnt = cpu;
7467 		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
7468 						     cpu, "rbtester/%u");
7469 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
7470 			pr_cont("FAILED\n");
7471 			ret = PTR_ERR(rb_threads[cpu]);
7472 			goto out_free;
7473 		}
7474 	}
7475 
7476 	/* Now create the rb hammer! */
7477 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
7478 	if (WARN_ON(IS_ERR(rb_hammer))) {
7479 		pr_cont("FAILED\n");
7480 		ret = PTR_ERR(rb_hammer);
7481 		goto out_free;
7482 	}
7483 
7484 	ring_buffer_record_on(buffer);
7485 	/*
7486 	 * Show buffer is enabled before setting rb_test_started.
7487 	 * Yes there's a small race window where events could be
7488 	 * dropped and the thread wont catch it. But when a ring
7489 	 * buffer gets enabled, there will always be some kind of
7490 	 * delay before other CPUs see it. Thus, we don't care about
7491 	 * those dropped events. We care about events dropped after
7492 	 * the threads see that the buffer is active.
7493 	 */
7494 	smp_wmb();
7495 	rb_test_started = true;
7496 
7497 	set_current_state(TASK_INTERRUPTIBLE);
7498 	/* Just run for 10 seconds */;
7499 	schedule_timeout(10 * HZ);
7500 
7501 	kthread_stop(rb_hammer);
7502 
7503  out_free:
7504 	for_each_online_cpu(cpu) {
7505 		if (!rb_threads[cpu])
7506 			break;
7507 		kthread_stop(rb_threads[cpu]);
7508 	}
7509 	if (ret) {
7510 		ring_buffer_free(buffer);
7511 		return ret;
7512 	}
7513 
7514 	/* Report! */
7515 	pr_info("finished\n");
7516 	for_each_online_cpu(cpu) {
7517 		struct ring_buffer_event *event;
7518 		struct rb_test_data *data = &rb_data[cpu];
7519 		struct rb_item *item;
7520 		unsigned long total_events;
7521 		unsigned long total_dropped;
7522 		unsigned long total_written;
7523 		unsigned long total_alloc;
7524 		unsigned long total_read = 0;
7525 		unsigned long total_size = 0;
7526 		unsigned long total_len = 0;
7527 		unsigned long total_lost = 0;
7528 		unsigned long lost;
7529 		int big_event_size;
7530 		int small_event_size;
7531 
7532 		ret = -1;
7533 
7534 		total_events = data->events + data->events_nested;
7535 		total_written = data->bytes_written + data->bytes_written_nested;
7536 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
7537 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
7538 
7539 		big_event_size = data->max_size + data->max_size_nested;
7540 		small_event_size = data->min_size + data->min_size_nested;
7541 
7542 		pr_info("CPU %d:\n", cpu);
7543 		pr_info("              events:    %ld\n", total_events);
7544 		pr_info("       dropped bytes:    %ld\n", total_dropped);
7545 		pr_info("       alloced bytes:    %ld\n", total_alloc);
7546 		pr_info("       written bytes:    %ld\n", total_written);
7547 		pr_info("       biggest event:    %d\n", big_event_size);
7548 		pr_info("      smallest event:    %d\n", small_event_size);
7549 
7550 		if (RB_WARN_ON(buffer, total_dropped))
7551 			break;
7552 
7553 		ret = 0;
7554 
7555 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
7556 			total_lost += lost;
7557 			item = ring_buffer_event_data(event);
7558 			total_len += ring_buffer_event_length(event);
7559 			total_size += item->size + sizeof(struct rb_item);
7560 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
7561 				pr_info("FAILED!\n");
7562 				pr_info("buffer had: %.*s\n", item->size, item->str);
7563 				pr_info("expected:   %.*s\n", item->size, rb_string);
7564 				RB_WARN_ON(buffer, 1);
7565 				ret = -1;
7566 				break;
7567 			}
7568 			total_read++;
7569 		}
7570 		if (ret)
7571 			break;
7572 
7573 		ret = -1;
7574 
7575 		pr_info("         read events:   %ld\n", total_read);
7576 		pr_info("         lost events:   %ld\n", total_lost);
7577 		pr_info("        total events:   %ld\n", total_lost + total_read);
7578 		pr_info("  recorded len bytes:   %ld\n", total_len);
7579 		pr_info(" recorded size bytes:   %ld\n", total_size);
7580 		if (total_lost) {
7581 			pr_info(" With dropped events, record len and size may not match\n"
7582 				" alloced and written from above\n");
7583 		} else {
7584 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
7585 				       total_size != total_written))
7586 				break;
7587 		}
7588 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
7589 			break;
7590 
7591 		ret = 0;
7592 	}
7593 	if (!ret)
7594 		pr_info("Ring buffer PASSED!\n");
7595 
7596 	ring_buffer_free(buffer);
7597 	return 0;
7598 }
7599 
7600 late_initcall(test_ringbuffer);
7601 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
7602