1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic ring buffer 4 * 5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 6 */ 7 #include <linux/trace_recursion.h> 8 #include <linux/trace_events.h> 9 #include <linux/ring_buffer.h> 10 #include <linux/trace_clock.h> 11 #include <linux/sched/clock.h> 12 #include <linux/cacheflush.h> 13 #include <linux/trace_seq.h> 14 #include <linux/spinlock.h> 15 #include <linux/irq_work.h> 16 #include <linux/security.h> 17 #include <linux/uaccess.h> 18 #include <linux/hardirq.h> 19 #include <linux/kthread.h> /* for self test */ 20 #include <linux/module.h> 21 #include <linux/percpu.h> 22 #include <linux/mutex.h> 23 #include <linux/delay.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/hash.h> 27 #include <linux/list.h> 28 #include <linux/cpu.h> 29 #include <linux/oom.h> 30 #include <linux/mm.h> 31 32 #include <asm/local64.h> 33 #include <asm/local.h> 34 #include <asm/setup.h> 35 36 #include "trace.h" 37 38 /* 39 * The "absolute" timestamp in the buffer is only 59 bits. 40 * If a clock has the 5 MSBs set, it needs to be saved and 41 * reinserted. 42 */ 43 #define TS_MSB (0xf8ULL << 56) 44 #define ABS_TS_MASK (~TS_MSB) 45 46 static void update_pages_handler(struct work_struct *work); 47 48 #define RING_BUFFER_META_MAGIC 0xBADFEED 49 50 struct ring_buffer_meta { 51 int magic; 52 int struct_sizes; 53 unsigned long total_size; 54 unsigned long buffers_offset; 55 }; 56 57 struct ring_buffer_cpu_meta { 58 unsigned long first_buffer; 59 unsigned long head_buffer; 60 unsigned long commit_buffer; 61 __u32 subbuf_size; 62 __u32 nr_subbufs; 63 int buffers[]; 64 }; 65 66 /* 67 * The ring buffer header is special. We must manually up keep it. 68 */ 69 int ring_buffer_print_entry_header(struct trace_seq *s) 70 { 71 trace_seq_puts(s, "# compressed entry header\n"); 72 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 73 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 74 trace_seq_puts(s, "\tarray : 32 bits\n"); 75 trace_seq_putc(s, '\n'); 76 trace_seq_printf(s, "\tpadding : type == %d\n", 77 RINGBUF_TYPE_PADDING); 78 trace_seq_printf(s, "\ttime_extend : type == %d\n", 79 RINGBUF_TYPE_TIME_EXTEND); 80 trace_seq_printf(s, "\ttime_stamp : type == %d\n", 81 RINGBUF_TYPE_TIME_STAMP); 82 trace_seq_printf(s, "\tdata max type_len == %d\n", 83 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 84 85 return !trace_seq_has_overflowed(s); 86 } 87 88 /* 89 * The ring buffer is made up of a list of pages. A separate list of pages is 90 * allocated for each CPU. A writer may only write to a buffer that is 91 * associated with the CPU it is currently executing on. A reader may read 92 * from any per cpu buffer. 93 * 94 * The reader is special. For each per cpu buffer, the reader has its own 95 * reader page. When a reader has read the entire reader page, this reader 96 * page is swapped with another page in the ring buffer. 97 * 98 * Now, as long as the writer is off the reader page, the reader can do what 99 * ever it wants with that page. The writer will never write to that page 100 * again (as long as it is out of the ring buffer). 101 * 102 * Here's some silly ASCII art. 103 * 104 * +------+ 105 * |reader| RING BUFFER 106 * |page | 107 * +------+ +---+ +---+ +---+ 108 * | |-->| |-->| | 109 * +---+ +---+ +---+ 110 * ^ | 111 * | | 112 * +---------------+ 113 * 114 * 115 * +------+ 116 * |reader| RING BUFFER 117 * |page |------------------v 118 * +------+ +---+ +---+ +---+ 119 * | |-->| |-->| | 120 * +---+ +---+ +---+ 121 * ^ | 122 * | | 123 * +---------------+ 124 * 125 * 126 * +------+ 127 * |reader| RING BUFFER 128 * |page |------------------v 129 * +------+ +---+ +---+ +---+ 130 * ^ | |-->| |-->| | 131 * | +---+ +---+ +---+ 132 * | | 133 * | | 134 * +------------------------------+ 135 * 136 * 137 * +------+ 138 * |buffer| RING BUFFER 139 * |page |------------------v 140 * +------+ +---+ +---+ +---+ 141 * ^ | | | |-->| | 142 * | New +---+ +---+ +---+ 143 * | Reader------^ | 144 * | page | 145 * +------------------------------+ 146 * 147 * 148 * After we make this swap, the reader can hand this page off to the splice 149 * code and be done with it. It can even allocate a new page if it needs to 150 * and swap that into the ring buffer. 151 * 152 * We will be using cmpxchg soon to make all this lockless. 153 * 154 */ 155 156 /* Used for individual buffers (after the counter) */ 157 #define RB_BUFFER_OFF (1 << 20) 158 159 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 160 161 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 162 #define RB_ALIGNMENT 4U 163 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 164 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 165 166 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 167 # define RB_FORCE_8BYTE_ALIGNMENT 0 168 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 169 #else 170 # define RB_FORCE_8BYTE_ALIGNMENT 1 171 # define RB_ARCH_ALIGNMENT 8U 172 #endif 173 174 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 175 176 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 177 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 178 179 enum { 180 RB_LEN_TIME_EXTEND = 8, 181 RB_LEN_TIME_STAMP = 8, 182 }; 183 184 #define skip_time_extend(event) \ 185 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 186 187 #define extended_time(event) \ 188 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) 189 190 static inline bool rb_null_event(struct ring_buffer_event *event) 191 { 192 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 193 } 194 195 static void rb_event_set_padding(struct ring_buffer_event *event) 196 { 197 /* padding has a NULL time_delta */ 198 event->type_len = RINGBUF_TYPE_PADDING; 199 event->time_delta = 0; 200 } 201 202 static unsigned 203 rb_event_data_length(struct ring_buffer_event *event) 204 { 205 unsigned length; 206 207 if (event->type_len) 208 length = event->type_len * RB_ALIGNMENT; 209 else 210 length = event->array[0]; 211 return length + RB_EVNT_HDR_SIZE; 212 } 213 214 /* 215 * Return the length of the given event. Will return 216 * the length of the time extend if the event is a 217 * time extend. 218 */ 219 static inline unsigned 220 rb_event_length(struct ring_buffer_event *event) 221 { 222 switch (event->type_len) { 223 case RINGBUF_TYPE_PADDING: 224 if (rb_null_event(event)) 225 /* undefined */ 226 return -1; 227 return event->array[0] + RB_EVNT_HDR_SIZE; 228 229 case RINGBUF_TYPE_TIME_EXTEND: 230 return RB_LEN_TIME_EXTEND; 231 232 case RINGBUF_TYPE_TIME_STAMP: 233 return RB_LEN_TIME_STAMP; 234 235 case RINGBUF_TYPE_DATA: 236 return rb_event_data_length(event); 237 default: 238 WARN_ON_ONCE(1); 239 } 240 /* not hit */ 241 return 0; 242 } 243 244 /* 245 * Return total length of time extend and data, 246 * or just the event length for all other events. 247 */ 248 static inline unsigned 249 rb_event_ts_length(struct ring_buffer_event *event) 250 { 251 unsigned len = 0; 252 253 if (extended_time(event)) { 254 /* time extends include the data event after it */ 255 len = RB_LEN_TIME_EXTEND; 256 event = skip_time_extend(event); 257 } 258 return len + rb_event_length(event); 259 } 260 261 /** 262 * ring_buffer_event_length - return the length of the event 263 * @event: the event to get the length of 264 * 265 * Returns the size of the data load of a data event. 266 * If the event is something other than a data event, it 267 * returns the size of the event itself. With the exception 268 * of a TIME EXTEND, where it still returns the size of the 269 * data load of the data event after it. 270 */ 271 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 272 { 273 unsigned length; 274 275 if (extended_time(event)) 276 event = skip_time_extend(event); 277 278 length = rb_event_length(event); 279 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 280 return length; 281 length -= RB_EVNT_HDR_SIZE; 282 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 283 length -= sizeof(event->array[0]); 284 return length; 285 } 286 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 287 288 /* inline for ring buffer fast paths */ 289 static __always_inline void * 290 rb_event_data(struct ring_buffer_event *event) 291 { 292 if (extended_time(event)) 293 event = skip_time_extend(event); 294 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 295 /* If length is in len field, then array[0] has the data */ 296 if (event->type_len) 297 return (void *)&event->array[0]; 298 /* Otherwise length is in array[0] and array[1] has the data */ 299 return (void *)&event->array[1]; 300 } 301 302 /** 303 * ring_buffer_event_data - return the data of the event 304 * @event: the event to get the data from 305 */ 306 void *ring_buffer_event_data(struct ring_buffer_event *event) 307 { 308 return rb_event_data(event); 309 } 310 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 311 312 #define for_each_buffer_cpu(buffer, cpu) \ 313 for_each_cpu(cpu, buffer->cpumask) 314 315 #define for_each_online_buffer_cpu(buffer, cpu) \ 316 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask) 317 318 #define TS_SHIFT 27 319 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 320 #define TS_DELTA_TEST (~TS_MASK) 321 322 static u64 rb_event_time_stamp(struct ring_buffer_event *event) 323 { 324 u64 ts; 325 326 ts = event->array[0]; 327 ts <<= TS_SHIFT; 328 ts += event->time_delta; 329 330 return ts; 331 } 332 333 /* Flag when events were overwritten */ 334 #define RB_MISSED_EVENTS (1 << 31) 335 /* Missed count stored at end */ 336 #define RB_MISSED_STORED (1 << 30) 337 338 #define RB_MISSED_MASK (3 << 30) 339 340 struct buffer_data_page { 341 u64 time_stamp; /* page time stamp */ 342 local_t commit; /* write committed index */ 343 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 344 }; 345 346 struct buffer_data_read_page { 347 unsigned order; /* order of the page */ 348 struct buffer_data_page *data; /* actual data, stored in this page */ 349 }; 350 351 /* 352 * Note, the buffer_page list must be first. The buffer pages 353 * are allocated in cache lines, which means that each buffer 354 * page will be at the beginning of a cache line, and thus 355 * the least significant bits will be zero. We use this to 356 * add flags in the list struct pointers, to make the ring buffer 357 * lockless. 358 */ 359 struct buffer_page { 360 struct list_head list; /* list of buffer pages */ 361 local_t write; /* index for next write */ 362 unsigned read; /* index for next read */ 363 local_t entries; /* entries on this page */ 364 unsigned long real_end; /* real end of data */ 365 unsigned order; /* order of the page */ 366 u32 id:30; /* ID for external mapping */ 367 u32 range:1; /* Mapped via a range */ 368 struct buffer_data_page *page; /* Actual data page */ 369 }; 370 371 /* 372 * The buffer page counters, write and entries, must be reset 373 * atomically when crossing page boundaries. To synchronize this 374 * update, two counters are inserted into the number. One is 375 * the actual counter for the write position or count on the page. 376 * 377 * The other is a counter of updaters. Before an update happens 378 * the update partition of the counter is incremented. This will 379 * allow the updater to update the counter atomically. 380 * 381 * The counter is 20 bits, and the state data is 12. 382 */ 383 #define RB_WRITE_MASK 0xfffff 384 #define RB_WRITE_INTCNT (1 << 20) 385 386 static void rb_init_page(struct buffer_data_page *bpage) 387 { 388 local_set(&bpage->commit, 0); 389 } 390 391 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage) 392 { 393 return local_read(&bpage->page->commit); 394 } 395 396 static void free_buffer_page(struct buffer_page *bpage) 397 { 398 /* Range pages are not to be freed */ 399 if (!bpage->range) 400 free_pages((unsigned long)bpage->page, bpage->order); 401 kfree(bpage); 402 } 403 404 /* 405 * We need to fit the time_stamp delta into 27 bits. 406 */ 407 static inline bool test_time_stamp(u64 delta) 408 { 409 return !!(delta & TS_DELTA_TEST); 410 } 411 412 struct rb_irq_work { 413 struct irq_work work; 414 wait_queue_head_t waiters; 415 wait_queue_head_t full_waiters; 416 atomic_t seq; 417 bool waiters_pending; 418 bool full_waiters_pending; 419 bool wakeup_full; 420 }; 421 422 /* 423 * Structure to hold event state and handle nested events. 424 */ 425 struct rb_event_info { 426 u64 ts; 427 u64 delta; 428 u64 before; 429 u64 after; 430 unsigned long length; 431 struct buffer_page *tail_page; 432 int add_timestamp; 433 }; 434 435 /* 436 * Used for the add_timestamp 437 * NONE 438 * EXTEND - wants a time extend 439 * ABSOLUTE - the buffer requests all events to have absolute time stamps 440 * FORCE - force a full time stamp. 441 */ 442 enum { 443 RB_ADD_STAMP_NONE = 0, 444 RB_ADD_STAMP_EXTEND = BIT(1), 445 RB_ADD_STAMP_ABSOLUTE = BIT(2), 446 RB_ADD_STAMP_FORCE = BIT(3) 447 }; 448 /* 449 * Used for which event context the event is in. 450 * TRANSITION = 0 451 * NMI = 1 452 * IRQ = 2 453 * SOFTIRQ = 3 454 * NORMAL = 4 455 * 456 * See trace_recursive_lock() comment below for more details. 457 */ 458 enum { 459 RB_CTX_TRANSITION, 460 RB_CTX_NMI, 461 RB_CTX_IRQ, 462 RB_CTX_SOFTIRQ, 463 RB_CTX_NORMAL, 464 RB_CTX_MAX 465 }; 466 467 struct rb_time_struct { 468 local64_t time; 469 }; 470 typedef struct rb_time_struct rb_time_t; 471 472 #define MAX_NEST 5 473 474 /* 475 * head_page == tail_page && head == tail then buffer is empty. 476 */ 477 struct ring_buffer_per_cpu { 478 int cpu; 479 atomic_t record_disabled; 480 atomic_t resize_disabled; 481 struct trace_buffer *buffer; 482 raw_spinlock_t reader_lock; /* serialize readers */ 483 arch_spinlock_t lock; 484 struct lock_class_key lock_key; 485 struct buffer_data_page *free_page; 486 unsigned long nr_pages; 487 unsigned int current_context; 488 struct list_head *pages; 489 /* pages generation counter, incremented when the list changes */ 490 unsigned long cnt; 491 struct buffer_page *head_page; /* read from head */ 492 struct buffer_page *tail_page; /* write to tail */ 493 struct buffer_page *commit_page; /* committed pages */ 494 struct buffer_page *reader_page; 495 unsigned long lost_events; 496 unsigned long last_overrun; 497 unsigned long nest; 498 local_t entries_bytes; 499 local_t entries; 500 local_t overrun; 501 local_t commit_overrun; 502 local_t dropped_events; 503 local_t committing; 504 local_t commits; 505 local_t pages_touched; 506 local_t pages_lost; 507 local_t pages_read; 508 long last_pages_touch; 509 size_t shortest_full; 510 unsigned long read; 511 unsigned long read_bytes; 512 rb_time_t write_stamp; 513 rb_time_t before_stamp; 514 u64 event_stamp[MAX_NEST]; 515 u64 read_stamp; 516 /* pages removed since last reset */ 517 unsigned long pages_removed; 518 519 unsigned int mapped; 520 unsigned int user_mapped; /* user space mapping */ 521 struct mutex mapping_lock; 522 unsigned long *subbuf_ids; /* ID to subbuf VA */ 523 struct trace_buffer_meta *meta_page; 524 struct ring_buffer_cpu_meta *ring_meta; 525 526 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 527 long nr_pages_to_update; 528 struct list_head new_pages; /* new pages to add */ 529 struct work_struct update_pages_work; 530 struct completion update_done; 531 532 struct rb_irq_work irq_work; 533 }; 534 535 struct trace_buffer { 536 unsigned flags; 537 int cpus; 538 atomic_t record_disabled; 539 atomic_t resizing; 540 cpumask_var_t cpumask; 541 542 struct lock_class_key *reader_lock_key; 543 544 struct mutex mutex; 545 546 struct ring_buffer_per_cpu **buffers; 547 548 struct hlist_node node; 549 u64 (*clock)(void); 550 551 struct rb_irq_work irq_work; 552 bool time_stamp_abs; 553 554 unsigned long range_addr_start; 555 unsigned long range_addr_end; 556 557 struct ring_buffer_meta *meta; 558 559 unsigned int subbuf_size; 560 unsigned int subbuf_order; 561 unsigned int max_data_size; 562 }; 563 564 struct ring_buffer_iter { 565 struct ring_buffer_per_cpu *cpu_buffer; 566 unsigned long head; 567 unsigned long next_event; 568 struct buffer_page *head_page; 569 struct buffer_page *cache_reader_page; 570 unsigned long cache_read; 571 unsigned long cache_pages_removed; 572 u64 read_stamp; 573 u64 page_stamp; 574 struct ring_buffer_event *event; 575 size_t event_size; 576 int missed_events; 577 }; 578 579 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s) 580 { 581 struct buffer_data_page field; 582 583 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 584 "offset:0;\tsize:%u;\tsigned:%u;\n", 585 (unsigned int)sizeof(field.time_stamp), 586 (unsigned int)is_signed_type(u64)); 587 588 trace_seq_printf(s, "\tfield: local_t commit;\t" 589 "offset:%u;\tsize:%u;\tsigned:%u;\n", 590 (unsigned int)offsetof(typeof(field), commit), 591 (unsigned int)sizeof(field.commit), 592 (unsigned int)is_signed_type(long)); 593 594 trace_seq_printf(s, "\tfield: int overwrite;\t" 595 "offset:%u;\tsize:%u;\tsigned:%u;\n", 596 (unsigned int)offsetof(typeof(field), commit), 597 1, 598 (unsigned int)is_signed_type(long)); 599 600 trace_seq_printf(s, "\tfield: char data;\t" 601 "offset:%u;\tsize:%u;\tsigned:%u;\n", 602 (unsigned int)offsetof(typeof(field), data), 603 (unsigned int)buffer->subbuf_size, 604 (unsigned int)is_signed_type(char)); 605 606 return !trace_seq_has_overflowed(s); 607 } 608 609 static inline void rb_time_read(rb_time_t *t, u64 *ret) 610 { 611 *ret = local64_read(&t->time); 612 } 613 static void rb_time_set(rb_time_t *t, u64 val) 614 { 615 local64_set(&t->time, val); 616 } 617 618 /* 619 * Enable this to make sure that the event passed to 620 * ring_buffer_event_time_stamp() is not committed and also 621 * is on the buffer that it passed in. 622 */ 623 //#define RB_VERIFY_EVENT 624 #ifdef RB_VERIFY_EVENT 625 static struct list_head *rb_list_head(struct list_head *list); 626 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 627 void *event) 628 { 629 struct buffer_page *page = cpu_buffer->commit_page; 630 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page); 631 struct list_head *next; 632 long commit, write; 633 unsigned long addr = (unsigned long)event; 634 bool done = false; 635 int stop = 0; 636 637 /* Make sure the event exists and is not committed yet */ 638 do { 639 if (page == tail_page || WARN_ON_ONCE(stop++ > 100)) 640 done = true; 641 commit = local_read(&page->page->commit); 642 write = local_read(&page->write); 643 if (addr >= (unsigned long)&page->page->data[commit] && 644 addr < (unsigned long)&page->page->data[write]) 645 return; 646 647 next = rb_list_head(page->list.next); 648 page = list_entry(next, struct buffer_page, list); 649 } while (!done); 650 WARN_ON_ONCE(1); 651 } 652 #else 653 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 654 void *event) 655 { 656 } 657 #endif 658 659 /* 660 * The absolute time stamp drops the 5 MSBs and some clocks may 661 * require them. The rb_fix_abs_ts() will take a previous full 662 * time stamp, and add the 5 MSB of that time stamp on to the 663 * saved absolute time stamp. Then they are compared in case of 664 * the unlikely event that the latest time stamp incremented 665 * the 5 MSB. 666 */ 667 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts) 668 { 669 if (save_ts & TS_MSB) { 670 abs |= save_ts & TS_MSB; 671 /* Check for overflow */ 672 if (unlikely(abs < save_ts)) 673 abs += 1ULL << 59; 674 } 675 return abs; 676 } 677 678 static inline u64 rb_time_stamp(struct trace_buffer *buffer); 679 680 /** 681 * ring_buffer_event_time_stamp - return the event's current time stamp 682 * @buffer: The buffer that the event is on 683 * @event: the event to get the time stamp of 684 * 685 * Note, this must be called after @event is reserved, and before it is 686 * committed to the ring buffer. And must be called from the same 687 * context where the event was reserved (normal, softirq, irq, etc). 688 * 689 * Returns the time stamp associated with the current event. 690 * If the event has an extended time stamp, then that is used as 691 * the time stamp to return. 692 * In the highly unlikely case that the event was nested more than 693 * the max nesting, then the write_stamp of the buffer is returned, 694 * otherwise current time is returned, but that really neither of 695 * the last two cases should ever happen. 696 */ 697 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer, 698 struct ring_buffer_event *event) 699 { 700 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()]; 701 unsigned int nest; 702 u64 ts; 703 704 /* If the event includes an absolute time, then just use that */ 705 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) { 706 ts = rb_event_time_stamp(event); 707 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp); 708 } 709 710 nest = local_read(&cpu_buffer->committing); 711 verify_event(cpu_buffer, event); 712 if (WARN_ON_ONCE(!nest)) 713 goto fail; 714 715 /* Read the current saved nesting level time stamp */ 716 if (likely(--nest < MAX_NEST)) 717 return cpu_buffer->event_stamp[nest]; 718 719 /* Shouldn't happen, warn if it does */ 720 WARN_ONCE(1, "nest (%d) greater than max", nest); 721 722 fail: 723 rb_time_read(&cpu_buffer->write_stamp, &ts); 724 725 return ts; 726 } 727 728 /** 729 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer 730 * @buffer: The ring_buffer to get the number of pages from 731 * @cpu: The cpu of the ring_buffer to get the number of pages from 732 * 733 * Returns the number of pages that have content in the ring buffer. 734 */ 735 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu) 736 { 737 size_t read; 738 size_t lost; 739 size_t cnt; 740 741 read = local_read(&buffer->buffers[cpu]->pages_read); 742 lost = local_read(&buffer->buffers[cpu]->pages_lost); 743 cnt = local_read(&buffer->buffers[cpu]->pages_touched); 744 745 if (WARN_ON_ONCE(cnt < lost)) 746 return 0; 747 748 cnt -= lost; 749 750 /* The reader can read an empty page, but not more than that */ 751 if (cnt < read) { 752 WARN_ON_ONCE(read > cnt + 1); 753 return 0; 754 } 755 756 return cnt - read; 757 } 758 759 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full) 760 { 761 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 762 size_t nr_pages; 763 size_t dirty; 764 765 nr_pages = cpu_buffer->nr_pages; 766 if (!nr_pages || !full) 767 return true; 768 769 /* 770 * Add one as dirty will never equal nr_pages, as the sub-buffer 771 * that the writer is on is not counted as dirty. 772 * This is needed if "buffer_percent" is set to 100. 773 */ 774 dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1; 775 776 return (dirty * 100) >= (full * nr_pages); 777 } 778 779 /* 780 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 781 * 782 * Schedules a delayed work to wake up any task that is blocked on the 783 * ring buffer waiters queue. 784 */ 785 static void rb_wake_up_waiters(struct irq_work *work) 786 { 787 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 788 789 /* For waiters waiting for the first wake up */ 790 (void)atomic_fetch_inc_release(&rbwork->seq); 791 792 wake_up_all(&rbwork->waiters); 793 if (rbwork->full_waiters_pending || rbwork->wakeup_full) { 794 /* Only cpu_buffer sets the above flags */ 795 struct ring_buffer_per_cpu *cpu_buffer = 796 container_of(rbwork, struct ring_buffer_per_cpu, irq_work); 797 798 /* Called from interrupt context */ 799 raw_spin_lock(&cpu_buffer->reader_lock); 800 rbwork->wakeup_full = false; 801 rbwork->full_waiters_pending = false; 802 803 /* Waking up all waiters, they will reset the shortest full */ 804 cpu_buffer->shortest_full = 0; 805 raw_spin_unlock(&cpu_buffer->reader_lock); 806 807 wake_up_all(&rbwork->full_waiters); 808 } 809 } 810 811 /** 812 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer 813 * @buffer: The ring buffer to wake waiters on 814 * @cpu: The CPU buffer to wake waiters on 815 * 816 * In the case of a file that represents a ring buffer is closing, 817 * it is prudent to wake up any waiters that are on this. 818 */ 819 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu) 820 { 821 struct ring_buffer_per_cpu *cpu_buffer; 822 struct rb_irq_work *rbwork; 823 824 if (!buffer) 825 return; 826 827 if (cpu == RING_BUFFER_ALL_CPUS) { 828 829 /* Wake up individual ones too. One level recursion */ 830 for_each_buffer_cpu(buffer, cpu) 831 ring_buffer_wake_waiters(buffer, cpu); 832 833 rbwork = &buffer->irq_work; 834 } else { 835 if (WARN_ON_ONCE(!buffer->buffers)) 836 return; 837 if (WARN_ON_ONCE(cpu >= nr_cpu_ids)) 838 return; 839 840 cpu_buffer = buffer->buffers[cpu]; 841 /* The CPU buffer may not have been initialized yet */ 842 if (!cpu_buffer) 843 return; 844 rbwork = &cpu_buffer->irq_work; 845 } 846 847 /* This can be called in any context */ 848 irq_work_queue(&rbwork->work); 849 } 850 851 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full) 852 { 853 struct ring_buffer_per_cpu *cpu_buffer; 854 bool ret = false; 855 856 /* Reads of all CPUs always waits for any data */ 857 if (cpu == RING_BUFFER_ALL_CPUS) 858 return !ring_buffer_empty(buffer); 859 860 cpu_buffer = buffer->buffers[cpu]; 861 862 if (!ring_buffer_empty_cpu(buffer, cpu)) { 863 unsigned long flags; 864 bool pagebusy; 865 866 if (!full) 867 return true; 868 869 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 870 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 871 ret = !pagebusy && full_hit(buffer, cpu, full); 872 873 if (!ret && (!cpu_buffer->shortest_full || 874 cpu_buffer->shortest_full > full)) { 875 cpu_buffer->shortest_full = full; 876 } 877 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 878 } 879 return ret; 880 } 881 882 static inline bool 883 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer, 884 int cpu, int full, ring_buffer_cond_fn cond, void *data) 885 { 886 if (rb_watermark_hit(buffer, cpu, full)) 887 return true; 888 889 if (cond(data)) 890 return true; 891 892 /* 893 * The events can happen in critical sections where 894 * checking a work queue can cause deadlocks. 895 * After adding a task to the queue, this flag is set 896 * only to notify events to try to wake up the queue 897 * using irq_work. 898 * 899 * We don't clear it even if the buffer is no longer 900 * empty. The flag only causes the next event to run 901 * irq_work to do the work queue wake up. The worse 902 * that can happen if we race with !trace_empty() is that 903 * an event will cause an irq_work to try to wake up 904 * an empty queue. 905 * 906 * There's no reason to protect this flag either, as 907 * the work queue and irq_work logic will do the necessary 908 * synchronization for the wake ups. The only thing 909 * that is necessary is that the wake up happens after 910 * a task has been queued. It's OK for spurious wake ups. 911 */ 912 if (full) 913 rbwork->full_waiters_pending = true; 914 else 915 rbwork->waiters_pending = true; 916 917 return false; 918 } 919 920 struct rb_wait_data { 921 struct rb_irq_work *irq_work; 922 int seq; 923 }; 924 925 /* 926 * The default wait condition for ring_buffer_wait() is to just to exit the 927 * wait loop the first time it is woken up. 928 */ 929 static bool rb_wait_once(void *data) 930 { 931 struct rb_wait_data *rdata = data; 932 struct rb_irq_work *rbwork = rdata->irq_work; 933 934 return atomic_read_acquire(&rbwork->seq) != rdata->seq; 935 } 936 937 /** 938 * ring_buffer_wait - wait for input to the ring buffer 939 * @buffer: buffer to wait on 940 * @cpu: the cpu buffer to wait on 941 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 942 * @cond: condition function to break out of wait (NULL to run once) 943 * @data: the data to pass to @cond. 944 * 945 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 946 * as data is added to any of the @buffer's cpu buffers. Otherwise 947 * it will wait for data to be added to a specific cpu buffer. 948 */ 949 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full, 950 ring_buffer_cond_fn cond, void *data) 951 { 952 struct ring_buffer_per_cpu *cpu_buffer; 953 struct wait_queue_head *waitq; 954 struct rb_irq_work *rbwork; 955 struct rb_wait_data rdata; 956 int ret = 0; 957 958 /* 959 * Depending on what the caller is waiting for, either any 960 * data in any cpu buffer, or a specific buffer, put the 961 * caller on the appropriate wait queue. 962 */ 963 if (cpu == RING_BUFFER_ALL_CPUS) { 964 rbwork = &buffer->irq_work; 965 /* Full only makes sense on per cpu reads */ 966 full = 0; 967 } else { 968 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 969 return -ENODEV; 970 cpu_buffer = buffer->buffers[cpu]; 971 rbwork = &cpu_buffer->irq_work; 972 } 973 974 if (full) 975 waitq = &rbwork->full_waiters; 976 else 977 waitq = &rbwork->waiters; 978 979 /* Set up to exit loop as soon as it is woken */ 980 if (!cond) { 981 cond = rb_wait_once; 982 rdata.irq_work = rbwork; 983 rdata.seq = atomic_read_acquire(&rbwork->seq); 984 data = &rdata; 985 } 986 987 ret = wait_event_interruptible((*waitq), 988 rb_wait_cond(rbwork, buffer, cpu, full, cond, data)); 989 990 return ret; 991 } 992 993 /** 994 * ring_buffer_poll_wait - poll on buffer input 995 * @buffer: buffer to wait on 996 * @cpu: the cpu buffer to wait on 997 * @filp: the file descriptor 998 * @poll_table: The poll descriptor 999 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 1000 * 1001 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 1002 * as data is added to any of the @buffer's cpu buffers. Otherwise 1003 * it will wait for data to be added to a specific cpu buffer. 1004 * 1005 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, 1006 * zero otherwise. 1007 */ 1008 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu, 1009 struct file *filp, poll_table *poll_table, int full) 1010 { 1011 struct ring_buffer_per_cpu *cpu_buffer; 1012 struct rb_irq_work *rbwork; 1013 1014 if (cpu == RING_BUFFER_ALL_CPUS) { 1015 rbwork = &buffer->irq_work; 1016 full = 0; 1017 } else { 1018 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 1019 return EPOLLERR; 1020 1021 cpu_buffer = buffer->buffers[cpu]; 1022 rbwork = &cpu_buffer->irq_work; 1023 } 1024 1025 if (full) { 1026 poll_wait(filp, &rbwork->full_waiters, poll_table); 1027 1028 if (rb_watermark_hit(buffer, cpu, full)) 1029 return EPOLLIN | EPOLLRDNORM; 1030 /* 1031 * Only allow full_waiters_pending update to be seen after 1032 * the shortest_full is set (in rb_watermark_hit). If the 1033 * writer sees the full_waiters_pending flag set, it will 1034 * compare the amount in the ring buffer to shortest_full. 1035 * If the amount in the ring buffer is greater than the 1036 * shortest_full percent, it will call the irq_work handler 1037 * to wake up this list. The irq_handler will reset shortest_full 1038 * back to zero. That's done under the reader_lock, but 1039 * the below smp_mb() makes sure that the update to 1040 * full_waiters_pending doesn't leak up into the above. 1041 */ 1042 smp_mb(); 1043 rbwork->full_waiters_pending = true; 1044 return 0; 1045 } 1046 1047 poll_wait(filp, &rbwork->waiters, poll_table); 1048 rbwork->waiters_pending = true; 1049 1050 /* 1051 * There's a tight race between setting the waiters_pending and 1052 * checking if the ring buffer is empty. Once the waiters_pending bit 1053 * is set, the next event will wake the task up, but we can get stuck 1054 * if there's only a single event in. 1055 * 1056 * FIXME: Ideally, we need a memory barrier on the writer side as well, 1057 * but adding a memory barrier to all events will cause too much of a 1058 * performance hit in the fast path. We only need a memory barrier when 1059 * the buffer goes from empty to having content. But as this race is 1060 * extremely small, and it's not a problem if another event comes in, we 1061 * will fix it later. 1062 */ 1063 smp_mb(); 1064 1065 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 1066 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 1067 return EPOLLIN | EPOLLRDNORM; 1068 return 0; 1069 } 1070 1071 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 1072 #define RB_WARN_ON(b, cond) \ 1073 ({ \ 1074 int _____ret = unlikely(cond); \ 1075 if (_____ret) { \ 1076 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 1077 struct ring_buffer_per_cpu *__b = \ 1078 (void *)b; \ 1079 atomic_inc(&__b->buffer->record_disabled); \ 1080 } else \ 1081 atomic_inc(&b->record_disabled); \ 1082 WARN_ON(1); \ 1083 } \ 1084 _____ret; \ 1085 }) 1086 1087 /* Up this if you want to test the TIME_EXTENTS and normalization */ 1088 #define DEBUG_SHIFT 0 1089 1090 static inline u64 rb_time_stamp(struct trace_buffer *buffer) 1091 { 1092 u64 ts; 1093 1094 /* Skip retpolines :-( */ 1095 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local)) 1096 ts = trace_clock_local(); 1097 else 1098 ts = buffer->clock(); 1099 1100 /* shift to debug/test normalization and TIME_EXTENTS */ 1101 return ts << DEBUG_SHIFT; 1102 } 1103 1104 u64 ring_buffer_time_stamp(struct trace_buffer *buffer) 1105 { 1106 u64 time; 1107 1108 preempt_disable_notrace(); 1109 time = rb_time_stamp(buffer); 1110 preempt_enable_notrace(); 1111 1112 return time; 1113 } 1114 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 1115 1116 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer, 1117 int cpu, u64 *ts) 1118 { 1119 /* Just stupid testing the normalize function and deltas */ 1120 *ts >>= DEBUG_SHIFT; 1121 } 1122 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 1123 1124 /* 1125 * Making the ring buffer lockless makes things tricky. 1126 * Although writes only happen on the CPU that they are on, 1127 * and they only need to worry about interrupts. Reads can 1128 * happen on any CPU. 1129 * 1130 * The reader page is always off the ring buffer, but when the 1131 * reader finishes with a page, it needs to swap its page with 1132 * a new one from the buffer. The reader needs to take from 1133 * the head (writes go to the tail). But if a writer is in overwrite 1134 * mode and wraps, it must push the head page forward. 1135 * 1136 * Here lies the problem. 1137 * 1138 * The reader must be careful to replace only the head page, and 1139 * not another one. As described at the top of the file in the 1140 * ASCII art, the reader sets its old page to point to the next 1141 * page after head. It then sets the page after head to point to 1142 * the old reader page. But if the writer moves the head page 1143 * during this operation, the reader could end up with the tail. 1144 * 1145 * We use cmpxchg to help prevent this race. We also do something 1146 * special with the page before head. We set the LSB to 1. 1147 * 1148 * When the writer must push the page forward, it will clear the 1149 * bit that points to the head page, move the head, and then set 1150 * the bit that points to the new head page. 1151 * 1152 * We also don't want an interrupt coming in and moving the head 1153 * page on another writer. Thus we use the second LSB to catch 1154 * that too. Thus: 1155 * 1156 * head->list->prev->next bit 1 bit 0 1157 * ------- ------- 1158 * Normal page 0 0 1159 * Points to head page 0 1 1160 * New head page 1 0 1161 * 1162 * Note we can not trust the prev pointer of the head page, because: 1163 * 1164 * +----+ +-----+ +-----+ 1165 * | |------>| T |---X--->| N | 1166 * | |<------| | | | 1167 * +----+ +-----+ +-----+ 1168 * ^ ^ | 1169 * | +-----+ | | 1170 * +----------| R |----------+ | 1171 * | |<-----------+ 1172 * +-----+ 1173 * 1174 * Key: ---X--> HEAD flag set in pointer 1175 * T Tail page 1176 * R Reader page 1177 * N Next page 1178 * 1179 * (see __rb_reserve_next() to see where this happens) 1180 * 1181 * What the above shows is that the reader just swapped out 1182 * the reader page with a page in the buffer, but before it 1183 * could make the new header point back to the new page added 1184 * it was preempted by a writer. The writer moved forward onto 1185 * the new page added by the reader and is about to move forward 1186 * again. 1187 * 1188 * You can see, it is legitimate for the previous pointer of 1189 * the head (or any page) not to point back to itself. But only 1190 * temporarily. 1191 */ 1192 1193 #define RB_PAGE_NORMAL 0UL 1194 #define RB_PAGE_HEAD 1UL 1195 #define RB_PAGE_UPDATE 2UL 1196 1197 1198 #define RB_FLAG_MASK 3UL 1199 1200 /* PAGE_MOVED is not part of the mask */ 1201 #define RB_PAGE_MOVED 4UL 1202 1203 /* 1204 * rb_list_head - remove any bit 1205 */ 1206 static struct list_head *rb_list_head(struct list_head *list) 1207 { 1208 unsigned long val = (unsigned long)list; 1209 1210 return (struct list_head *)(val & ~RB_FLAG_MASK); 1211 } 1212 1213 /* 1214 * rb_is_head_page - test if the given page is the head page 1215 * 1216 * Because the reader may move the head_page pointer, we can 1217 * not trust what the head page is (it may be pointing to 1218 * the reader page). But if the next page is a header page, 1219 * its flags will be non zero. 1220 */ 1221 static inline int 1222 rb_is_head_page(struct buffer_page *page, struct list_head *list) 1223 { 1224 unsigned long val; 1225 1226 val = (unsigned long)list->next; 1227 1228 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 1229 return RB_PAGE_MOVED; 1230 1231 return val & RB_FLAG_MASK; 1232 } 1233 1234 /* 1235 * rb_is_reader_page 1236 * 1237 * The unique thing about the reader page, is that, if the 1238 * writer is ever on it, the previous pointer never points 1239 * back to the reader page. 1240 */ 1241 static bool rb_is_reader_page(struct buffer_page *page) 1242 { 1243 struct list_head *list = page->list.prev; 1244 1245 return rb_list_head(list->next) != &page->list; 1246 } 1247 1248 /* 1249 * rb_set_list_to_head - set a list_head to be pointing to head. 1250 */ 1251 static void rb_set_list_to_head(struct list_head *list) 1252 { 1253 unsigned long *ptr; 1254 1255 ptr = (unsigned long *)&list->next; 1256 *ptr |= RB_PAGE_HEAD; 1257 *ptr &= ~RB_PAGE_UPDATE; 1258 } 1259 1260 /* 1261 * rb_head_page_activate - sets up head page 1262 */ 1263 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 1264 { 1265 struct buffer_page *head; 1266 1267 head = cpu_buffer->head_page; 1268 if (!head) 1269 return; 1270 1271 /* 1272 * Set the previous list pointer to have the HEAD flag. 1273 */ 1274 rb_set_list_to_head(head->list.prev); 1275 1276 if (cpu_buffer->ring_meta) { 1277 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta; 1278 meta->head_buffer = (unsigned long)head->page; 1279 } 1280 } 1281 1282 static void rb_list_head_clear(struct list_head *list) 1283 { 1284 unsigned long *ptr = (unsigned long *)&list->next; 1285 1286 *ptr &= ~RB_FLAG_MASK; 1287 } 1288 1289 /* 1290 * rb_head_page_deactivate - clears head page ptr (for free list) 1291 */ 1292 static void 1293 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 1294 { 1295 struct list_head *hd; 1296 1297 /* Go through the whole list and clear any pointers found. */ 1298 rb_list_head_clear(cpu_buffer->pages); 1299 1300 list_for_each(hd, cpu_buffer->pages) 1301 rb_list_head_clear(hd); 1302 } 1303 1304 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 1305 struct buffer_page *head, 1306 struct buffer_page *prev, 1307 int old_flag, int new_flag) 1308 { 1309 struct list_head *list; 1310 unsigned long val = (unsigned long)&head->list; 1311 unsigned long ret; 1312 1313 list = &prev->list; 1314 1315 val &= ~RB_FLAG_MASK; 1316 1317 ret = cmpxchg((unsigned long *)&list->next, 1318 val | old_flag, val | new_flag); 1319 1320 /* check if the reader took the page */ 1321 if ((ret & ~RB_FLAG_MASK) != val) 1322 return RB_PAGE_MOVED; 1323 1324 return ret & RB_FLAG_MASK; 1325 } 1326 1327 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 1328 struct buffer_page *head, 1329 struct buffer_page *prev, 1330 int old_flag) 1331 { 1332 return rb_head_page_set(cpu_buffer, head, prev, 1333 old_flag, RB_PAGE_UPDATE); 1334 } 1335 1336 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 1337 struct buffer_page *head, 1338 struct buffer_page *prev, 1339 int old_flag) 1340 { 1341 return rb_head_page_set(cpu_buffer, head, prev, 1342 old_flag, RB_PAGE_HEAD); 1343 } 1344 1345 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 1346 struct buffer_page *head, 1347 struct buffer_page *prev, 1348 int old_flag) 1349 { 1350 return rb_head_page_set(cpu_buffer, head, prev, 1351 old_flag, RB_PAGE_NORMAL); 1352 } 1353 1354 static inline void rb_inc_page(struct buffer_page **bpage) 1355 { 1356 struct list_head *p = rb_list_head((*bpage)->list.next); 1357 1358 *bpage = list_entry(p, struct buffer_page, list); 1359 } 1360 1361 static struct buffer_page * 1362 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 1363 { 1364 struct buffer_page *head; 1365 struct buffer_page *page; 1366 struct list_head *list; 1367 int i; 1368 1369 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 1370 return NULL; 1371 1372 /* sanity check */ 1373 list = cpu_buffer->pages; 1374 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 1375 return NULL; 1376 1377 page = head = cpu_buffer->head_page; 1378 /* 1379 * It is possible that the writer moves the header behind 1380 * where we started, and we miss in one loop. 1381 * A second loop should grab the header, but we'll do 1382 * three loops just because I'm paranoid. 1383 */ 1384 for (i = 0; i < 3; i++) { 1385 do { 1386 if (rb_is_head_page(page, page->list.prev)) { 1387 cpu_buffer->head_page = page; 1388 return page; 1389 } 1390 rb_inc_page(&page); 1391 } while (page != head); 1392 } 1393 1394 RB_WARN_ON(cpu_buffer, 1); 1395 1396 return NULL; 1397 } 1398 1399 static bool rb_head_page_replace(struct buffer_page *old, 1400 struct buffer_page *new) 1401 { 1402 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1403 unsigned long val; 1404 1405 val = *ptr & ~RB_FLAG_MASK; 1406 val |= RB_PAGE_HEAD; 1407 1408 return try_cmpxchg(ptr, &val, (unsigned long)&new->list); 1409 } 1410 1411 /* 1412 * rb_tail_page_update - move the tail page forward 1413 */ 1414 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1415 struct buffer_page *tail_page, 1416 struct buffer_page *next_page) 1417 { 1418 unsigned long old_entries; 1419 unsigned long old_write; 1420 1421 /* 1422 * The tail page now needs to be moved forward. 1423 * 1424 * We need to reset the tail page, but without messing 1425 * with possible erasing of data brought in by interrupts 1426 * that have moved the tail page and are currently on it. 1427 * 1428 * We add a counter to the write field to denote this. 1429 */ 1430 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1431 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1432 1433 /* 1434 * Just make sure we have seen our old_write and synchronize 1435 * with any interrupts that come in. 1436 */ 1437 barrier(); 1438 1439 /* 1440 * If the tail page is still the same as what we think 1441 * it is, then it is up to us to update the tail 1442 * pointer. 1443 */ 1444 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1445 /* Zero the write counter */ 1446 unsigned long val = old_write & ~RB_WRITE_MASK; 1447 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1448 1449 /* 1450 * This will only succeed if an interrupt did 1451 * not come in and change it. In which case, we 1452 * do not want to modify it. 1453 * 1454 * We add (void) to let the compiler know that we do not care 1455 * about the return value of these functions. We use the 1456 * cmpxchg to only update if an interrupt did not already 1457 * do it for us. If the cmpxchg fails, we don't care. 1458 */ 1459 (void)local_cmpxchg(&next_page->write, old_write, val); 1460 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1461 1462 /* 1463 * No need to worry about races with clearing out the commit. 1464 * it only can increment when a commit takes place. But that 1465 * only happens in the outer most nested commit. 1466 */ 1467 local_set(&next_page->page->commit, 0); 1468 1469 /* Either we update tail_page or an interrupt does */ 1470 if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page)) 1471 local_inc(&cpu_buffer->pages_touched); 1472 } 1473 } 1474 1475 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1476 struct buffer_page *bpage) 1477 { 1478 unsigned long val = (unsigned long)bpage; 1479 1480 RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK); 1481 } 1482 1483 static bool rb_check_links(struct ring_buffer_per_cpu *cpu_buffer, 1484 struct list_head *list) 1485 { 1486 if (RB_WARN_ON(cpu_buffer, 1487 rb_list_head(rb_list_head(list->next)->prev) != list)) 1488 return false; 1489 1490 if (RB_WARN_ON(cpu_buffer, 1491 rb_list_head(rb_list_head(list->prev)->next) != list)) 1492 return false; 1493 1494 return true; 1495 } 1496 1497 /** 1498 * rb_check_pages - integrity check of buffer pages 1499 * @cpu_buffer: CPU buffer with pages to test 1500 * 1501 * As a safety measure we check to make sure the data pages have not 1502 * been corrupted. 1503 */ 1504 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1505 { 1506 struct list_head *head, *tmp; 1507 unsigned long buffer_cnt; 1508 unsigned long flags; 1509 int nr_loops = 0; 1510 1511 /* 1512 * Walk the linked list underpinning the ring buffer and validate all 1513 * its next and prev links. 1514 * 1515 * The check acquires the reader_lock to avoid concurrent processing 1516 * with code that could be modifying the list. However, the lock cannot 1517 * be held for the entire duration of the walk, as this would make the 1518 * time when interrupts are disabled non-deterministic, dependent on the 1519 * ring buffer size. Therefore, the code releases and re-acquires the 1520 * lock after checking each page. The ring_buffer_per_cpu.cnt variable 1521 * is then used to detect if the list was modified while the lock was 1522 * not held, in which case the check needs to be restarted. 1523 * 1524 * The code attempts to perform the check at most three times before 1525 * giving up. This is acceptable because this is only a self-validation 1526 * to detect problems early on. In practice, the list modification 1527 * operations are fairly spaced, and so this check typically succeeds at 1528 * most on the second try. 1529 */ 1530 again: 1531 if (++nr_loops > 3) 1532 return; 1533 1534 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 1535 head = rb_list_head(cpu_buffer->pages); 1536 if (!rb_check_links(cpu_buffer, head)) 1537 goto out_locked; 1538 buffer_cnt = cpu_buffer->cnt; 1539 tmp = head; 1540 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 1541 1542 while (true) { 1543 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 1544 1545 if (buffer_cnt != cpu_buffer->cnt) { 1546 /* The list was updated, try again. */ 1547 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 1548 goto again; 1549 } 1550 1551 tmp = rb_list_head(tmp->next); 1552 if (tmp == head) 1553 /* The iteration circled back, all is done. */ 1554 goto out_locked; 1555 1556 if (!rb_check_links(cpu_buffer, tmp)) 1557 goto out_locked; 1558 1559 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 1560 } 1561 1562 out_locked: 1563 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 1564 } 1565 1566 /* 1567 * Take an address, add the meta data size as well as the array of 1568 * array subbuffer indexes, then align it to a subbuffer size. 1569 * 1570 * This is used to help find the next per cpu subbuffer within a mapped range. 1571 */ 1572 static unsigned long 1573 rb_range_align_subbuf(unsigned long addr, int subbuf_size, int nr_subbufs) 1574 { 1575 addr += sizeof(struct ring_buffer_cpu_meta) + 1576 sizeof(int) * nr_subbufs; 1577 return ALIGN(addr, subbuf_size); 1578 } 1579 1580 /* 1581 * Return the ring_buffer_meta for a given @cpu. 1582 */ 1583 static void *rb_range_meta(struct trace_buffer *buffer, int nr_pages, int cpu) 1584 { 1585 int subbuf_size = buffer->subbuf_size + BUF_PAGE_HDR_SIZE; 1586 struct ring_buffer_cpu_meta *meta; 1587 struct ring_buffer_meta *bmeta; 1588 unsigned long ptr; 1589 int nr_subbufs; 1590 1591 bmeta = buffer->meta; 1592 if (!bmeta) 1593 return NULL; 1594 1595 ptr = (unsigned long)bmeta + bmeta->buffers_offset; 1596 meta = (struct ring_buffer_cpu_meta *)ptr; 1597 1598 /* When nr_pages passed in is zero, the first meta has already been initialized */ 1599 if (!nr_pages) { 1600 nr_subbufs = meta->nr_subbufs; 1601 } else { 1602 /* Include the reader page */ 1603 nr_subbufs = nr_pages + 1; 1604 } 1605 1606 /* 1607 * The first chunk may not be subbuffer aligned, where as 1608 * the rest of the chunks are. 1609 */ 1610 if (cpu) { 1611 ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs); 1612 ptr += subbuf_size * nr_subbufs; 1613 1614 /* We can use multiplication to find chunks greater than 1 */ 1615 if (cpu > 1) { 1616 unsigned long size; 1617 unsigned long p; 1618 1619 /* Save the beginning of this CPU chunk */ 1620 p = ptr; 1621 ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs); 1622 ptr += subbuf_size * nr_subbufs; 1623 1624 /* Now all chunks after this are the same size */ 1625 size = ptr - p; 1626 ptr += size * (cpu - 2); 1627 } 1628 } 1629 return (void *)ptr; 1630 } 1631 1632 /* Return the start of subbufs given the meta pointer */ 1633 static void *rb_subbufs_from_meta(struct ring_buffer_cpu_meta *meta) 1634 { 1635 int subbuf_size = meta->subbuf_size; 1636 unsigned long ptr; 1637 1638 ptr = (unsigned long)meta; 1639 ptr = rb_range_align_subbuf(ptr, subbuf_size, meta->nr_subbufs); 1640 1641 return (void *)ptr; 1642 } 1643 1644 /* 1645 * Return a specific sub-buffer for a given @cpu defined by @idx. 1646 */ 1647 static void *rb_range_buffer(struct ring_buffer_per_cpu *cpu_buffer, int idx) 1648 { 1649 struct ring_buffer_cpu_meta *meta; 1650 unsigned long ptr; 1651 int subbuf_size; 1652 1653 meta = rb_range_meta(cpu_buffer->buffer, 0, cpu_buffer->cpu); 1654 if (!meta) 1655 return NULL; 1656 1657 if (WARN_ON_ONCE(idx >= meta->nr_subbufs)) 1658 return NULL; 1659 1660 subbuf_size = meta->subbuf_size; 1661 1662 /* Map this buffer to the order that's in meta->buffers[] */ 1663 idx = meta->buffers[idx]; 1664 1665 ptr = (unsigned long)rb_subbufs_from_meta(meta); 1666 1667 ptr += subbuf_size * idx; 1668 if (ptr + subbuf_size > cpu_buffer->buffer->range_addr_end) 1669 return NULL; 1670 1671 return (void *)ptr; 1672 } 1673 1674 /* 1675 * See if the existing memory contains a valid meta section. 1676 * if so, use that, otherwise initialize it. 1677 */ 1678 static bool rb_meta_init(struct trace_buffer *buffer, int scratch_size) 1679 { 1680 unsigned long ptr = buffer->range_addr_start; 1681 struct ring_buffer_meta *bmeta; 1682 unsigned long total_size; 1683 int struct_sizes; 1684 1685 bmeta = (struct ring_buffer_meta *)ptr; 1686 buffer->meta = bmeta; 1687 1688 total_size = buffer->range_addr_end - buffer->range_addr_start; 1689 1690 struct_sizes = sizeof(struct ring_buffer_cpu_meta); 1691 struct_sizes |= sizeof(*bmeta) << 16; 1692 1693 /* The first buffer will start word size after the meta page */ 1694 ptr += sizeof(*bmeta); 1695 ptr = ALIGN(ptr, sizeof(long)); 1696 ptr += scratch_size; 1697 1698 if (bmeta->magic != RING_BUFFER_META_MAGIC) { 1699 pr_info("Ring buffer boot meta mismatch of magic\n"); 1700 goto init; 1701 } 1702 1703 if (bmeta->struct_sizes != struct_sizes) { 1704 pr_info("Ring buffer boot meta mismatch of struct size\n"); 1705 goto init; 1706 } 1707 1708 if (bmeta->total_size != total_size) { 1709 pr_info("Ring buffer boot meta mismatch of total size\n"); 1710 goto init; 1711 } 1712 1713 if (bmeta->buffers_offset > bmeta->total_size) { 1714 pr_info("Ring buffer boot meta mismatch of offset outside of total size\n"); 1715 goto init; 1716 } 1717 1718 if (bmeta->buffers_offset != (void *)ptr - (void *)bmeta) { 1719 pr_info("Ring buffer boot meta mismatch of first buffer offset\n"); 1720 goto init; 1721 } 1722 1723 return true; 1724 1725 init: 1726 bmeta->magic = RING_BUFFER_META_MAGIC; 1727 bmeta->struct_sizes = struct_sizes; 1728 bmeta->total_size = total_size; 1729 bmeta->buffers_offset = (void *)ptr - (void *)bmeta; 1730 1731 /* Zero out the scatch pad */ 1732 memset((void *)bmeta + sizeof(*bmeta), 0, bmeta->buffers_offset - sizeof(*bmeta)); 1733 1734 return false; 1735 } 1736 1737 /* 1738 * See if the existing memory contains valid ring buffer data. 1739 * As the previous kernel must be the same as this kernel, all 1740 * the calculations (size of buffers and number of buffers) 1741 * must be the same. 1742 */ 1743 static bool rb_cpu_meta_valid(struct ring_buffer_cpu_meta *meta, int cpu, 1744 struct trace_buffer *buffer, int nr_pages, 1745 unsigned long *subbuf_mask) 1746 { 1747 int subbuf_size = PAGE_SIZE; 1748 struct buffer_data_page *subbuf; 1749 unsigned long buffers_start; 1750 unsigned long buffers_end; 1751 int i; 1752 1753 if (!subbuf_mask) 1754 return false; 1755 1756 buffers_start = meta->first_buffer; 1757 buffers_end = meta->first_buffer + (subbuf_size * meta->nr_subbufs); 1758 1759 /* Is the head and commit buffers within the range of buffers? */ 1760 if (meta->head_buffer < buffers_start || 1761 meta->head_buffer >= buffers_end) { 1762 pr_info("Ring buffer boot meta [%d] head buffer out of range\n", cpu); 1763 return false; 1764 } 1765 1766 if (meta->commit_buffer < buffers_start || 1767 meta->commit_buffer >= buffers_end) { 1768 pr_info("Ring buffer boot meta [%d] commit buffer out of range\n", cpu); 1769 return false; 1770 } 1771 1772 subbuf = rb_subbufs_from_meta(meta); 1773 1774 bitmap_clear(subbuf_mask, 0, meta->nr_subbufs); 1775 1776 /* Is the meta buffers and the subbufs themselves have correct data? */ 1777 for (i = 0; i < meta->nr_subbufs; i++) { 1778 if (meta->buffers[i] < 0 || 1779 meta->buffers[i] >= meta->nr_subbufs) { 1780 pr_info("Ring buffer boot meta [%d] array out of range\n", cpu); 1781 return false; 1782 } 1783 1784 if ((unsigned)local_read(&subbuf->commit) > subbuf_size) { 1785 pr_info("Ring buffer boot meta [%d] buffer invalid commit\n", cpu); 1786 return false; 1787 } 1788 1789 if (test_bit(meta->buffers[i], subbuf_mask)) { 1790 pr_info("Ring buffer boot meta [%d] array has duplicates\n", cpu); 1791 return false; 1792 } 1793 1794 set_bit(meta->buffers[i], subbuf_mask); 1795 subbuf = (void *)subbuf + subbuf_size; 1796 } 1797 1798 return true; 1799 } 1800 1801 static int rb_meta_subbuf_idx(struct ring_buffer_cpu_meta *meta, void *subbuf); 1802 1803 static int rb_read_data_buffer(struct buffer_data_page *dpage, int tail, int cpu, 1804 unsigned long long *timestamp, u64 *delta_ptr) 1805 { 1806 struct ring_buffer_event *event; 1807 u64 ts, delta; 1808 int events = 0; 1809 int e; 1810 1811 *delta_ptr = 0; 1812 *timestamp = 0; 1813 1814 ts = dpage->time_stamp; 1815 1816 for (e = 0; e < tail; e += rb_event_length(event)) { 1817 1818 event = (struct ring_buffer_event *)(dpage->data + e); 1819 1820 switch (event->type_len) { 1821 1822 case RINGBUF_TYPE_TIME_EXTEND: 1823 delta = rb_event_time_stamp(event); 1824 ts += delta; 1825 break; 1826 1827 case RINGBUF_TYPE_TIME_STAMP: 1828 delta = rb_event_time_stamp(event); 1829 delta = rb_fix_abs_ts(delta, ts); 1830 if (delta < ts) { 1831 *delta_ptr = delta; 1832 *timestamp = ts; 1833 return -1; 1834 } 1835 ts = delta; 1836 break; 1837 1838 case RINGBUF_TYPE_PADDING: 1839 if (event->time_delta == 1) 1840 break; 1841 fallthrough; 1842 case RINGBUF_TYPE_DATA: 1843 events++; 1844 ts += event->time_delta; 1845 break; 1846 1847 default: 1848 return -1; 1849 } 1850 } 1851 *timestamp = ts; 1852 return events; 1853 } 1854 1855 static int rb_validate_buffer(struct buffer_data_page *dpage, int cpu) 1856 { 1857 unsigned long long ts; 1858 u64 delta; 1859 int tail; 1860 1861 tail = local_read(&dpage->commit); 1862 return rb_read_data_buffer(dpage, tail, cpu, &ts, &delta); 1863 } 1864 1865 /* If the meta data has been validated, now validate the events */ 1866 static void rb_meta_validate_events(struct ring_buffer_per_cpu *cpu_buffer) 1867 { 1868 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta; 1869 struct buffer_page *head_page; 1870 unsigned long entry_bytes = 0; 1871 unsigned long entries = 0; 1872 int ret; 1873 int i; 1874 1875 if (!meta || !meta->head_buffer) 1876 return; 1877 1878 /* Do the reader page first */ 1879 ret = rb_validate_buffer(cpu_buffer->reader_page->page, cpu_buffer->cpu); 1880 if (ret < 0) { 1881 pr_info("Ring buffer reader page is invalid\n"); 1882 goto invalid; 1883 } 1884 entries += ret; 1885 entry_bytes += local_read(&cpu_buffer->reader_page->page->commit); 1886 local_set(&cpu_buffer->reader_page->entries, ret); 1887 1888 head_page = cpu_buffer->head_page; 1889 1890 /* If both the head and commit are on the reader_page then we are done. */ 1891 if (head_page == cpu_buffer->reader_page && 1892 head_page == cpu_buffer->commit_page) 1893 goto done; 1894 1895 /* Iterate until finding the commit page */ 1896 for (i = 0; i < meta->nr_subbufs + 1; i++, rb_inc_page(&head_page)) { 1897 1898 /* Reader page has already been done */ 1899 if (head_page == cpu_buffer->reader_page) 1900 continue; 1901 1902 ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu); 1903 if (ret < 0) { 1904 pr_info("Ring buffer meta [%d] invalid buffer page\n", 1905 cpu_buffer->cpu); 1906 goto invalid; 1907 } 1908 1909 /* If the buffer has content, update pages_touched */ 1910 if (ret) 1911 local_inc(&cpu_buffer->pages_touched); 1912 1913 entries += ret; 1914 entry_bytes += local_read(&head_page->page->commit); 1915 local_set(&cpu_buffer->head_page->entries, ret); 1916 1917 if (head_page == cpu_buffer->commit_page) 1918 break; 1919 } 1920 1921 if (head_page != cpu_buffer->commit_page) { 1922 pr_info("Ring buffer meta [%d] commit page not found\n", 1923 cpu_buffer->cpu); 1924 goto invalid; 1925 } 1926 done: 1927 local_set(&cpu_buffer->entries, entries); 1928 local_set(&cpu_buffer->entries_bytes, entry_bytes); 1929 1930 pr_info("Ring buffer meta [%d] is from previous boot!\n", cpu_buffer->cpu); 1931 return; 1932 1933 invalid: 1934 /* The content of the buffers are invalid, reset the meta data */ 1935 meta->head_buffer = 0; 1936 meta->commit_buffer = 0; 1937 1938 /* Reset the reader page */ 1939 local_set(&cpu_buffer->reader_page->entries, 0); 1940 local_set(&cpu_buffer->reader_page->page->commit, 0); 1941 1942 /* Reset all the subbuffers */ 1943 for (i = 0; i < meta->nr_subbufs - 1; i++, rb_inc_page(&head_page)) { 1944 local_set(&head_page->entries, 0); 1945 local_set(&head_page->page->commit, 0); 1946 } 1947 } 1948 1949 static void rb_range_meta_init(struct trace_buffer *buffer, int nr_pages, int scratch_size) 1950 { 1951 struct ring_buffer_cpu_meta *meta; 1952 unsigned long *subbuf_mask; 1953 unsigned long delta; 1954 void *subbuf; 1955 bool valid = false; 1956 int cpu; 1957 int i; 1958 1959 /* Create a mask to test the subbuf array */ 1960 subbuf_mask = bitmap_alloc(nr_pages + 1, GFP_KERNEL); 1961 /* If subbuf_mask fails to allocate, then rb_meta_valid() will return false */ 1962 1963 if (rb_meta_init(buffer, scratch_size)) 1964 valid = true; 1965 1966 for (cpu = 0; cpu < nr_cpu_ids; cpu++) { 1967 void *next_meta; 1968 1969 meta = rb_range_meta(buffer, nr_pages, cpu); 1970 1971 if (valid && rb_cpu_meta_valid(meta, cpu, buffer, nr_pages, subbuf_mask)) { 1972 /* Make the mappings match the current address */ 1973 subbuf = rb_subbufs_from_meta(meta); 1974 delta = (unsigned long)subbuf - meta->first_buffer; 1975 meta->first_buffer += delta; 1976 meta->head_buffer += delta; 1977 meta->commit_buffer += delta; 1978 continue; 1979 } 1980 1981 if (cpu < nr_cpu_ids - 1) 1982 next_meta = rb_range_meta(buffer, nr_pages, cpu + 1); 1983 else 1984 next_meta = (void *)buffer->range_addr_end; 1985 1986 memset(meta, 0, next_meta - (void *)meta); 1987 1988 meta->nr_subbufs = nr_pages + 1; 1989 meta->subbuf_size = PAGE_SIZE; 1990 1991 subbuf = rb_subbufs_from_meta(meta); 1992 1993 meta->first_buffer = (unsigned long)subbuf; 1994 1995 /* 1996 * The buffers[] array holds the order of the sub-buffers 1997 * that are after the meta data. The sub-buffers may 1998 * be swapped out when read and inserted into a different 1999 * location of the ring buffer. Although their addresses 2000 * remain the same, the buffers[] array contains the 2001 * index into the sub-buffers holding their actual order. 2002 */ 2003 for (i = 0; i < meta->nr_subbufs; i++) { 2004 meta->buffers[i] = i; 2005 rb_init_page(subbuf); 2006 subbuf += meta->subbuf_size; 2007 } 2008 } 2009 bitmap_free(subbuf_mask); 2010 } 2011 2012 static void *rbm_start(struct seq_file *m, loff_t *pos) 2013 { 2014 struct ring_buffer_per_cpu *cpu_buffer = m->private; 2015 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta; 2016 unsigned long val; 2017 2018 if (!meta) 2019 return NULL; 2020 2021 if (*pos > meta->nr_subbufs) 2022 return NULL; 2023 2024 val = *pos; 2025 val++; 2026 2027 return (void *)val; 2028 } 2029 2030 static void *rbm_next(struct seq_file *m, void *v, loff_t *pos) 2031 { 2032 (*pos)++; 2033 2034 return rbm_start(m, pos); 2035 } 2036 2037 static int rbm_show(struct seq_file *m, void *v) 2038 { 2039 struct ring_buffer_per_cpu *cpu_buffer = m->private; 2040 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta; 2041 unsigned long val = (unsigned long)v; 2042 2043 if (val == 1) { 2044 seq_printf(m, "head_buffer: %d\n", 2045 rb_meta_subbuf_idx(meta, (void *)meta->head_buffer)); 2046 seq_printf(m, "commit_buffer: %d\n", 2047 rb_meta_subbuf_idx(meta, (void *)meta->commit_buffer)); 2048 seq_printf(m, "subbuf_size: %d\n", meta->subbuf_size); 2049 seq_printf(m, "nr_subbufs: %d\n", meta->nr_subbufs); 2050 return 0; 2051 } 2052 2053 val -= 2; 2054 seq_printf(m, "buffer[%ld]: %d\n", val, meta->buffers[val]); 2055 2056 return 0; 2057 } 2058 2059 static void rbm_stop(struct seq_file *m, void *p) 2060 { 2061 } 2062 2063 static const struct seq_operations rb_meta_seq_ops = { 2064 .start = rbm_start, 2065 .next = rbm_next, 2066 .show = rbm_show, 2067 .stop = rbm_stop, 2068 }; 2069 2070 int ring_buffer_meta_seq_init(struct file *file, struct trace_buffer *buffer, int cpu) 2071 { 2072 struct seq_file *m; 2073 int ret; 2074 2075 ret = seq_open(file, &rb_meta_seq_ops); 2076 if (ret) 2077 return ret; 2078 2079 m = file->private_data; 2080 m->private = buffer->buffers[cpu]; 2081 2082 return 0; 2083 } 2084 2085 /* Map the buffer_pages to the previous head and commit pages */ 2086 static void rb_meta_buffer_update(struct ring_buffer_per_cpu *cpu_buffer, 2087 struct buffer_page *bpage) 2088 { 2089 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta; 2090 2091 if (meta->head_buffer == (unsigned long)bpage->page) 2092 cpu_buffer->head_page = bpage; 2093 2094 if (meta->commit_buffer == (unsigned long)bpage->page) { 2095 cpu_buffer->commit_page = bpage; 2096 cpu_buffer->tail_page = bpage; 2097 } 2098 } 2099 2100 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 2101 long nr_pages, struct list_head *pages) 2102 { 2103 struct trace_buffer *buffer = cpu_buffer->buffer; 2104 struct ring_buffer_cpu_meta *meta = NULL; 2105 struct buffer_page *bpage, *tmp; 2106 bool user_thread = current->mm != NULL; 2107 gfp_t mflags; 2108 long i; 2109 2110 /* 2111 * Check if the available memory is there first. 2112 * Note, si_mem_available() only gives us a rough estimate of available 2113 * memory. It may not be accurate. But we don't care, we just want 2114 * to prevent doing any allocation when it is obvious that it is 2115 * not going to succeed. 2116 */ 2117 i = si_mem_available(); 2118 if (i < nr_pages) 2119 return -ENOMEM; 2120 2121 /* 2122 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 2123 * gracefully without invoking oom-killer and the system is not 2124 * destabilized. 2125 */ 2126 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; 2127 2128 /* 2129 * If a user thread allocates too much, and si_mem_available() 2130 * reports there's enough memory, even though there is not. 2131 * Make sure the OOM killer kills this thread. This can happen 2132 * even with RETRY_MAYFAIL because another task may be doing 2133 * an allocation after this task has taken all memory. 2134 * This is the task the OOM killer needs to take out during this 2135 * loop, even if it was triggered by an allocation somewhere else. 2136 */ 2137 if (user_thread) 2138 set_current_oom_origin(); 2139 2140 if (buffer->range_addr_start) 2141 meta = rb_range_meta(buffer, nr_pages, cpu_buffer->cpu); 2142 2143 for (i = 0; i < nr_pages; i++) { 2144 struct page *page; 2145 2146 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 2147 mflags, cpu_to_node(cpu_buffer->cpu)); 2148 if (!bpage) 2149 goto free_pages; 2150 2151 rb_check_bpage(cpu_buffer, bpage); 2152 2153 /* 2154 * Append the pages as for mapped buffers we want to keep 2155 * the order 2156 */ 2157 list_add_tail(&bpage->list, pages); 2158 2159 if (meta) { 2160 /* A range was given. Use that for the buffer page */ 2161 bpage->page = rb_range_buffer(cpu_buffer, i + 1); 2162 if (!bpage->page) 2163 goto free_pages; 2164 /* If this is valid from a previous boot */ 2165 if (meta->head_buffer) 2166 rb_meta_buffer_update(cpu_buffer, bpage); 2167 bpage->range = 1; 2168 bpage->id = i + 1; 2169 } else { 2170 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), 2171 mflags | __GFP_COMP | __GFP_ZERO, 2172 cpu_buffer->buffer->subbuf_order); 2173 if (!page) 2174 goto free_pages; 2175 bpage->page = page_address(page); 2176 rb_init_page(bpage->page); 2177 } 2178 bpage->order = cpu_buffer->buffer->subbuf_order; 2179 2180 if (user_thread && fatal_signal_pending(current)) 2181 goto free_pages; 2182 } 2183 if (user_thread) 2184 clear_current_oom_origin(); 2185 2186 return 0; 2187 2188 free_pages: 2189 list_for_each_entry_safe(bpage, tmp, pages, list) { 2190 list_del_init(&bpage->list); 2191 free_buffer_page(bpage); 2192 } 2193 if (user_thread) 2194 clear_current_oom_origin(); 2195 2196 return -ENOMEM; 2197 } 2198 2199 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 2200 unsigned long nr_pages) 2201 { 2202 LIST_HEAD(pages); 2203 2204 WARN_ON(!nr_pages); 2205 2206 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages)) 2207 return -ENOMEM; 2208 2209 /* 2210 * The ring buffer page list is a circular list that does not 2211 * start and end with a list head. All page list items point to 2212 * other pages. 2213 */ 2214 cpu_buffer->pages = pages.next; 2215 list_del(&pages); 2216 2217 cpu_buffer->nr_pages = nr_pages; 2218 2219 rb_check_pages(cpu_buffer); 2220 2221 return 0; 2222 } 2223 2224 static struct ring_buffer_per_cpu * 2225 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu) 2226 { 2227 struct ring_buffer_per_cpu *cpu_buffer; 2228 struct ring_buffer_cpu_meta *meta; 2229 struct buffer_page *bpage; 2230 struct page *page; 2231 int ret; 2232 2233 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 2234 GFP_KERNEL, cpu_to_node(cpu)); 2235 if (!cpu_buffer) 2236 return NULL; 2237 2238 cpu_buffer->cpu = cpu; 2239 cpu_buffer->buffer = buffer; 2240 raw_spin_lock_init(&cpu_buffer->reader_lock); 2241 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 2242 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 2243 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 2244 init_completion(&cpu_buffer->update_done); 2245 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 2246 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 2247 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 2248 mutex_init(&cpu_buffer->mapping_lock); 2249 2250 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 2251 GFP_KERNEL, cpu_to_node(cpu)); 2252 if (!bpage) 2253 goto fail_free_buffer; 2254 2255 rb_check_bpage(cpu_buffer, bpage); 2256 2257 cpu_buffer->reader_page = bpage; 2258 2259 if (buffer->range_addr_start) { 2260 /* 2261 * Range mapped buffers have the same restrictions as memory 2262 * mapped ones do. 2263 */ 2264 cpu_buffer->mapped = 1; 2265 cpu_buffer->ring_meta = rb_range_meta(buffer, nr_pages, cpu); 2266 bpage->page = rb_range_buffer(cpu_buffer, 0); 2267 if (!bpage->page) 2268 goto fail_free_reader; 2269 if (cpu_buffer->ring_meta->head_buffer) 2270 rb_meta_buffer_update(cpu_buffer, bpage); 2271 bpage->range = 1; 2272 } else { 2273 page = alloc_pages_node(cpu_to_node(cpu), 2274 GFP_KERNEL | __GFP_COMP | __GFP_ZERO, 2275 cpu_buffer->buffer->subbuf_order); 2276 if (!page) 2277 goto fail_free_reader; 2278 bpage->page = page_address(page); 2279 rb_init_page(bpage->page); 2280 } 2281 2282 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 2283 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2284 2285 ret = rb_allocate_pages(cpu_buffer, nr_pages); 2286 if (ret < 0) 2287 goto fail_free_reader; 2288 2289 rb_meta_validate_events(cpu_buffer); 2290 2291 /* If the boot meta was valid then this has already been updated */ 2292 meta = cpu_buffer->ring_meta; 2293 if (!meta || !meta->head_buffer || 2294 !cpu_buffer->head_page || !cpu_buffer->commit_page || !cpu_buffer->tail_page) { 2295 if (meta && meta->head_buffer && 2296 (cpu_buffer->head_page || cpu_buffer->commit_page || cpu_buffer->tail_page)) { 2297 pr_warn("Ring buffer meta buffers not all mapped\n"); 2298 if (!cpu_buffer->head_page) 2299 pr_warn(" Missing head_page\n"); 2300 if (!cpu_buffer->commit_page) 2301 pr_warn(" Missing commit_page\n"); 2302 if (!cpu_buffer->tail_page) 2303 pr_warn(" Missing tail_page\n"); 2304 } 2305 2306 cpu_buffer->head_page 2307 = list_entry(cpu_buffer->pages, struct buffer_page, list); 2308 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 2309 2310 rb_head_page_activate(cpu_buffer); 2311 2312 if (cpu_buffer->ring_meta) 2313 meta->commit_buffer = meta->head_buffer; 2314 } else { 2315 /* The valid meta buffer still needs to activate the head page */ 2316 rb_head_page_activate(cpu_buffer); 2317 } 2318 2319 return cpu_buffer; 2320 2321 fail_free_reader: 2322 free_buffer_page(cpu_buffer->reader_page); 2323 2324 fail_free_buffer: 2325 kfree(cpu_buffer); 2326 return NULL; 2327 } 2328 2329 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 2330 { 2331 struct list_head *head = cpu_buffer->pages; 2332 struct buffer_page *bpage, *tmp; 2333 2334 irq_work_sync(&cpu_buffer->irq_work.work); 2335 2336 free_buffer_page(cpu_buffer->reader_page); 2337 2338 if (head) { 2339 rb_head_page_deactivate(cpu_buffer); 2340 2341 list_for_each_entry_safe(bpage, tmp, head, list) { 2342 list_del_init(&bpage->list); 2343 free_buffer_page(bpage); 2344 } 2345 bpage = list_entry(head, struct buffer_page, list); 2346 free_buffer_page(bpage); 2347 } 2348 2349 free_page((unsigned long)cpu_buffer->free_page); 2350 2351 kfree(cpu_buffer); 2352 } 2353 2354 static struct trace_buffer *alloc_buffer(unsigned long size, unsigned flags, 2355 int order, unsigned long start, 2356 unsigned long end, 2357 unsigned long scratch_size, 2358 struct lock_class_key *key) 2359 { 2360 struct trace_buffer *buffer; 2361 long nr_pages; 2362 int subbuf_size; 2363 int bsize; 2364 int cpu; 2365 int ret; 2366 2367 /* keep it in its own cache line */ 2368 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 2369 GFP_KERNEL); 2370 if (!buffer) 2371 return NULL; 2372 2373 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 2374 goto fail_free_buffer; 2375 2376 buffer->subbuf_order = order; 2377 subbuf_size = (PAGE_SIZE << order); 2378 buffer->subbuf_size = subbuf_size - BUF_PAGE_HDR_SIZE; 2379 2380 /* Max payload is buffer page size - header (8bytes) */ 2381 buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2); 2382 2383 buffer->flags = flags; 2384 buffer->clock = trace_clock_local; 2385 buffer->reader_lock_key = key; 2386 2387 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 2388 init_waitqueue_head(&buffer->irq_work.waiters); 2389 2390 buffer->cpus = nr_cpu_ids; 2391 2392 bsize = sizeof(void *) * nr_cpu_ids; 2393 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 2394 GFP_KERNEL); 2395 if (!buffer->buffers) 2396 goto fail_free_cpumask; 2397 2398 /* If start/end are specified, then that overrides size */ 2399 if (start && end) { 2400 unsigned long buffers_start; 2401 unsigned long ptr; 2402 int n; 2403 2404 /* Make sure that start is word aligned */ 2405 start = ALIGN(start, sizeof(long)); 2406 2407 /* scratch_size needs to be aligned too */ 2408 scratch_size = ALIGN(scratch_size, sizeof(long)); 2409 2410 /* Subtract the buffer meta data and word aligned */ 2411 buffers_start = start + sizeof(struct ring_buffer_cpu_meta); 2412 buffers_start = ALIGN(buffers_start, sizeof(long)); 2413 buffers_start += scratch_size; 2414 2415 /* Calculate the size for the per CPU data */ 2416 size = end - buffers_start; 2417 size = size / nr_cpu_ids; 2418 2419 /* 2420 * The number of sub-buffers (nr_pages) is determined by the 2421 * total size allocated minus the meta data size. 2422 * Then that is divided by the number of per CPU buffers 2423 * needed, plus account for the integer array index that 2424 * will be appended to the meta data. 2425 */ 2426 nr_pages = (size - sizeof(struct ring_buffer_cpu_meta)) / 2427 (subbuf_size + sizeof(int)); 2428 /* Need at least two pages plus the reader page */ 2429 if (nr_pages < 3) 2430 goto fail_free_buffers; 2431 2432 again: 2433 /* Make sure that the size fits aligned */ 2434 for (n = 0, ptr = buffers_start; n < nr_cpu_ids; n++) { 2435 ptr += sizeof(struct ring_buffer_cpu_meta) + 2436 sizeof(int) * nr_pages; 2437 ptr = ALIGN(ptr, subbuf_size); 2438 ptr += subbuf_size * nr_pages; 2439 } 2440 if (ptr > end) { 2441 if (nr_pages <= 3) 2442 goto fail_free_buffers; 2443 nr_pages--; 2444 goto again; 2445 } 2446 2447 /* nr_pages should not count the reader page */ 2448 nr_pages--; 2449 buffer->range_addr_start = start; 2450 buffer->range_addr_end = end; 2451 2452 rb_range_meta_init(buffer, nr_pages, scratch_size); 2453 } else { 2454 2455 /* need at least two pages */ 2456 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size); 2457 if (nr_pages < 2) 2458 nr_pages = 2; 2459 } 2460 2461 cpu = raw_smp_processor_id(); 2462 cpumask_set_cpu(cpu, buffer->cpumask); 2463 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 2464 if (!buffer->buffers[cpu]) 2465 goto fail_free_buffers; 2466 2467 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 2468 if (ret < 0) 2469 goto fail_free_buffers; 2470 2471 mutex_init(&buffer->mutex); 2472 2473 return buffer; 2474 2475 fail_free_buffers: 2476 for_each_buffer_cpu(buffer, cpu) { 2477 if (buffer->buffers[cpu]) 2478 rb_free_cpu_buffer(buffer->buffers[cpu]); 2479 } 2480 kfree(buffer->buffers); 2481 2482 fail_free_cpumask: 2483 free_cpumask_var(buffer->cpumask); 2484 2485 fail_free_buffer: 2486 kfree(buffer); 2487 return NULL; 2488 } 2489 2490 /** 2491 * __ring_buffer_alloc - allocate a new ring_buffer 2492 * @size: the size in bytes per cpu that is needed. 2493 * @flags: attributes to set for the ring buffer. 2494 * @key: ring buffer reader_lock_key. 2495 * 2496 * Currently the only flag that is available is the RB_FL_OVERWRITE 2497 * flag. This flag means that the buffer will overwrite old data 2498 * when the buffer wraps. If this flag is not set, the buffer will 2499 * drop data when the tail hits the head. 2500 */ 2501 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 2502 struct lock_class_key *key) 2503 { 2504 /* Default buffer page size - one system page */ 2505 return alloc_buffer(size, flags, 0, 0, 0, 0, key); 2506 2507 } 2508 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 2509 2510 /** 2511 * __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory 2512 * @size: the size in bytes per cpu that is needed. 2513 * @flags: attributes to set for the ring buffer. 2514 * @order: sub-buffer order 2515 * @start: start of allocated range 2516 * @range_size: size of allocated range 2517 * @scratch_size: size of scratch area (for preallocated memory buffers) 2518 * @key: ring buffer reader_lock_key. 2519 * 2520 * Currently the only flag that is available is the RB_FL_OVERWRITE 2521 * flag. This flag means that the buffer will overwrite old data 2522 * when the buffer wraps. If this flag is not set, the buffer will 2523 * drop data when the tail hits the head. 2524 */ 2525 struct trace_buffer *__ring_buffer_alloc_range(unsigned long size, unsigned flags, 2526 int order, unsigned long start, 2527 unsigned long range_size, 2528 unsigned long scratch_size, 2529 struct lock_class_key *key) 2530 { 2531 return alloc_buffer(size, flags, order, start, start + range_size, 2532 scratch_size, key); 2533 } 2534 2535 void *ring_buffer_meta_scratch(struct trace_buffer *buffer, unsigned int *size) 2536 { 2537 struct ring_buffer_meta *meta; 2538 void *ptr; 2539 2540 if (!buffer || !buffer->meta) 2541 return NULL; 2542 2543 meta = buffer->meta; 2544 2545 ptr = (void *)ALIGN((unsigned long)meta + sizeof(*meta), sizeof(long)); 2546 2547 if (size) 2548 *size = (void *)meta + meta->buffers_offset - ptr; 2549 2550 return ptr; 2551 } 2552 2553 /** 2554 * ring_buffer_free - free a ring buffer. 2555 * @buffer: the buffer to free. 2556 */ 2557 void 2558 ring_buffer_free(struct trace_buffer *buffer) 2559 { 2560 int cpu; 2561 2562 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 2563 2564 irq_work_sync(&buffer->irq_work.work); 2565 2566 for_each_buffer_cpu(buffer, cpu) 2567 rb_free_cpu_buffer(buffer->buffers[cpu]); 2568 2569 kfree(buffer->buffers); 2570 free_cpumask_var(buffer->cpumask); 2571 2572 kfree(buffer); 2573 } 2574 EXPORT_SYMBOL_GPL(ring_buffer_free); 2575 2576 void ring_buffer_set_clock(struct trace_buffer *buffer, 2577 u64 (*clock)(void)) 2578 { 2579 buffer->clock = clock; 2580 } 2581 2582 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs) 2583 { 2584 buffer->time_stamp_abs = abs; 2585 } 2586 2587 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer) 2588 { 2589 return buffer->time_stamp_abs; 2590 } 2591 2592 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 2593 { 2594 return local_read(&bpage->entries) & RB_WRITE_MASK; 2595 } 2596 2597 static inline unsigned long rb_page_write(struct buffer_page *bpage) 2598 { 2599 return local_read(&bpage->write) & RB_WRITE_MASK; 2600 } 2601 2602 static bool 2603 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 2604 { 2605 struct list_head *tail_page, *to_remove, *next_page; 2606 struct buffer_page *to_remove_page, *tmp_iter_page; 2607 struct buffer_page *last_page, *first_page; 2608 unsigned long nr_removed; 2609 unsigned long head_bit; 2610 int page_entries; 2611 2612 head_bit = 0; 2613 2614 raw_spin_lock_irq(&cpu_buffer->reader_lock); 2615 atomic_inc(&cpu_buffer->record_disabled); 2616 /* 2617 * We don't race with the readers since we have acquired the reader 2618 * lock. We also don't race with writers after disabling recording. 2619 * This makes it easy to figure out the first and the last page to be 2620 * removed from the list. We unlink all the pages in between including 2621 * the first and last pages. This is done in a busy loop so that we 2622 * lose the least number of traces. 2623 * The pages are freed after we restart recording and unlock readers. 2624 */ 2625 tail_page = &cpu_buffer->tail_page->list; 2626 2627 /* 2628 * tail page might be on reader page, we remove the next page 2629 * from the ring buffer 2630 */ 2631 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 2632 tail_page = rb_list_head(tail_page->next); 2633 to_remove = tail_page; 2634 2635 /* start of pages to remove */ 2636 first_page = list_entry(rb_list_head(to_remove->next), 2637 struct buffer_page, list); 2638 2639 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 2640 to_remove = rb_list_head(to_remove)->next; 2641 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 2642 } 2643 /* Read iterators need to reset themselves when some pages removed */ 2644 cpu_buffer->pages_removed += nr_removed; 2645 2646 next_page = rb_list_head(to_remove)->next; 2647 2648 /* 2649 * Now we remove all pages between tail_page and next_page. 2650 * Make sure that we have head_bit value preserved for the 2651 * next page 2652 */ 2653 tail_page->next = (struct list_head *)((unsigned long)next_page | 2654 head_bit); 2655 next_page = rb_list_head(next_page); 2656 next_page->prev = tail_page; 2657 2658 /* make sure pages points to a valid page in the ring buffer */ 2659 cpu_buffer->pages = next_page; 2660 cpu_buffer->cnt++; 2661 2662 /* update head page */ 2663 if (head_bit) 2664 cpu_buffer->head_page = list_entry(next_page, 2665 struct buffer_page, list); 2666 2667 /* pages are removed, resume tracing and then free the pages */ 2668 atomic_dec(&cpu_buffer->record_disabled); 2669 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 2670 2671 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 2672 2673 /* last buffer page to remove */ 2674 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 2675 list); 2676 tmp_iter_page = first_page; 2677 2678 do { 2679 cond_resched(); 2680 2681 to_remove_page = tmp_iter_page; 2682 rb_inc_page(&tmp_iter_page); 2683 2684 /* update the counters */ 2685 page_entries = rb_page_entries(to_remove_page); 2686 if (page_entries) { 2687 /* 2688 * If something was added to this page, it was full 2689 * since it is not the tail page. So we deduct the 2690 * bytes consumed in ring buffer from here. 2691 * Increment overrun to account for the lost events. 2692 */ 2693 local_add(page_entries, &cpu_buffer->overrun); 2694 local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes); 2695 local_inc(&cpu_buffer->pages_lost); 2696 } 2697 2698 /* 2699 * We have already removed references to this list item, just 2700 * free up the buffer_page and its page 2701 */ 2702 free_buffer_page(to_remove_page); 2703 nr_removed--; 2704 2705 } while (to_remove_page != last_page); 2706 2707 RB_WARN_ON(cpu_buffer, nr_removed); 2708 2709 return nr_removed == 0; 2710 } 2711 2712 static bool 2713 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 2714 { 2715 struct list_head *pages = &cpu_buffer->new_pages; 2716 unsigned long flags; 2717 bool success; 2718 int retries; 2719 2720 /* Can be called at early boot up, where interrupts must not been enabled */ 2721 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2722 /* 2723 * We are holding the reader lock, so the reader page won't be swapped 2724 * in the ring buffer. Now we are racing with the writer trying to 2725 * move head page and the tail page. 2726 * We are going to adapt the reader page update process where: 2727 * 1. We first splice the start and end of list of new pages between 2728 * the head page and its previous page. 2729 * 2. We cmpxchg the prev_page->next to point from head page to the 2730 * start of new pages list. 2731 * 3. Finally, we update the head->prev to the end of new list. 2732 * 2733 * We will try this process 10 times, to make sure that we don't keep 2734 * spinning. 2735 */ 2736 retries = 10; 2737 success = false; 2738 while (retries--) { 2739 struct list_head *head_page, *prev_page; 2740 struct list_head *last_page, *first_page; 2741 struct list_head *head_page_with_bit; 2742 struct buffer_page *hpage = rb_set_head_page(cpu_buffer); 2743 2744 if (!hpage) 2745 break; 2746 head_page = &hpage->list; 2747 prev_page = head_page->prev; 2748 2749 first_page = pages->next; 2750 last_page = pages->prev; 2751 2752 head_page_with_bit = (struct list_head *) 2753 ((unsigned long)head_page | RB_PAGE_HEAD); 2754 2755 last_page->next = head_page_with_bit; 2756 first_page->prev = prev_page; 2757 2758 /* caution: head_page_with_bit gets updated on cmpxchg failure */ 2759 if (try_cmpxchg(&prev_page->next, 2760 &head_page_with_bit, first_page)) { 2761 /* 2762 * yay, we replaced the page pointer to our new list, 2763 * now, we just have to update to head page's prev 2764 * pointer to point to end of list 2765 */ 2766 head_page->prev = last_page; 2767 cpu_buffer->cnt++; 2768 success = true; 2769 break; 2770 } 2771 } 2772 2773 if (success) 2774 INIT_LIST_HEAD(pages); 2775 /* 2776 * If we weren't successful in adding in new pages, warn and stop 2777 * tracing 2778 */ 2779 RB_WARN_ON(cpu_buffer, !success); 2780 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2781 2782 /* free pages if they weren't inserted */ 2783 if (!success) { 2784 struct buffer_page *bpage, *tmp; 2785 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2786 list) { 2787 list_del_init(&bpage->list); 2788 free_buffer_page(bpage); 2789 } 2790 } 2791 return success; 2792 } 2793 2794 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 2795 { 2796 bool success; 2797 2798 if (cpu_buffer->nr_pages_to_update > 0) 2799 success = rb_insert_pages(cpu_buffer); 2800 else 2801 success = rb_remove_pages(cpu_buffer, 2802 -cpu_buffer->nr_pages_to_update); 2803 2804 if (success) 2805 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 2806 } 2807 2808 static void update_pages_handler(struct work_struct *work) 2809 { 2810 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 2811 struct ring_buffer_per_cpu, update_pages_work); 2812 rb_update_pages(cpu_buffer); 2813 complete(&cpu_buffer->update_done); 2814 } 2815 2816 /** 2817 * ring_buffer_resize - resize the ring buffer 2818 * @buffer: the buffer to resize. 2819 * @size: the new size. 2820 * @cpu_id: the cpu buffer to resize 2821 * 2822 * Minimum size is 2 * buffer->subbuf_size. 2823 * 2824 * Returns 0 on success and < 0 on failure. 2825 */ 2826 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size, 2827 int cpu_id) 2828 { 2829 struct ring_buffer_per_cpu *cpu_buffer; 2830 unsigned long nr_pages; 2831 int cpu, err; 2832 2833 /* 2834 * Always succeed at resizing a non-existent buffer: 2835 */ 2836 if (!buffer) 2837 return 0; 2838 2839 /* Make sure the requested buffer exists */ 2840 if (cpu_id != RING_BUFFER_ALL_CPUS && 2841 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 2842 return 0; 2843 2844 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size); 2845 2846 /* we need a minimum of two pages */ 2847 if (nr_pages < 2) 2848 nr_pages = 2; 2849 2850 /* prevent another thread from changing buffer sizes */ 2851 mutex_lock(&buffer->mutex); 2852 atomic_inc(&buffer->resizing); 2853 2854 if (cpu_id == RING_BUFFER_ALL_CPUS) { 2855 /* 2856 * Don't succeed if resizing is disabled, as a reader might be 2857 * manipulating the ring buffer and is expecting a sane state while 2858 * this is true. 2859 */ 2860 for_each_buffer_cpu(buffer, cpu) { 2861 cpu_buffer = buffer->buffers[cpu]; 2862 if (atomic_read(&cpu_buffer->resize_disabled)) { 2863 err = -EBUSY; 2864 goto out_err_unlock; 2865 } 2866 } 2867 2868 /* calculate the pages to update */ 2869 for_each_buffer_cpu(buffer, cpu) { 2870 cpu_buffer = buffer->buffers[cpu]; 2871 2872 cpu_buffer->nr_pages_to_update = nr_pages - 2873 cpu_buffer->nr_pages; 2874 /* 2875 * nothing more to do for removing pages or no update 2876 */ 2877 if (cpu_buffer->nr_pages_to_update <= 0) 2878 continue; 2879 /* 2880 * to add pages, make sure all new pages can be 2881 * allocated without receiving ENOMEM 2882 */ 2883 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2884 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2885 &cpu_buffer->new_pages)) { 2886 /* not enough memory for new pages */ 2887 err = -ENOMEM; 2888 goto out_err; 2889 } 2890 2891 cond_resched(); 2892 } 2893 2894 cpus_read_lock(); 2895 /* 2896 * Fire off all the required work handlers 2897 * We can't schedule on offline CPUs, but it's not necessary 2898 * since we can change their buffer sizes without any race. 2899 */ 2900 for_each_buffer_cpu(buffer, cpu) { 2901 cpu_buffer = buffer->buffers[cpu]; 2902 if (!cpu_buffer->nr_pages_to_update) 2903 continue; 2904 2905 /* Can't run something on an offline CPU. */ 2906 if (!cpu_online(cpu)) { 2907 rb_update_pages(cpu_buffer); 2908 cpu_buffer->nr_pages_to_update = 0; 2909 } else { 2910 /* Run directly if possible. */ 2911 migrate_disable(); 2912 if (cpu != smp_processor_id()) { 2913 migrate_enable(); 2914 schedule_work_on(cpu, 2915 &cpu_buffer->update_pages_work); 2916 } else { 2917 update_pages_handler(&cpu_buffer->update_pages_work); 2918 migrate_enable(); 2919 } 2920 } 2921 } 2922 2923 /* wait for all the updates to complete */ 2924 for_each_buffer_cpu(buffer, cpu) { 2925 cpu_buffer = buffer->buffers[cpu]; 2926 if (!cpu_buffer->nr_pages_to_update) 2927 continue; 2928 2929 if (cpu_online(cpu)) 2930 wait_for_completion(&cpu_buffer->update_done); 2931 cpu_buffer->nr_pages_to_update = 0; 2932 } 2933 2934 cpus_read_unlock(); 2935 } else { 2936 cpu_buffer = buffer->buffers[cpu_id]; 2937 2938 if (nr_pages == cpu_buffer->nr_pages) 2939 goto out; 2940 2941 /* 2942 * Don't succeed if resizing is disabled, as a reader might be 2943 * manipulating the ring buffer and is expecting a sane state while 2944 * this is true. 2945 */ 2946 if (atomic_read(&cpu_buffer->resize_disabled)) { 2947 err = -EBUSY; 2948 goto out_err_unlock; 2949 } 2950 2951 cpu_buffer->nr_pages_to_update = nr_pages - 2952 cpu_buffer->nr_pages; 2953 2954 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2955 if (cpu_buffer->nr_pages_to_update > 0 && 2956 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2957 &cpu_buffer->new_pages)) { 2958 err = -ENOMEM; 2959 goto out_err; 2960 } 2961 2962 cpus_read_lock(); 2963 2964 /* Can't run something on an offline CPU. */ 2965 if (!cpu_online(cpu_id)) 2966 rb_update_pages(cpu_buffer); 2967 else { 2968 /* Run directly if possible. */ 2969 migrate_disable(); 2970 if (cpu_id == smp_processor_id()) { 2971 rb_update_pages(cpu_buffer); 2972 migrate_enable(); 2973 } else { 2974 migrate_enable(); 2975 schedule_work_on(cpu_id, 2976 &cpu_buffer->update_pages_work); 2977 wait_for_completion(&cpu_buffer->update_done); 2978 } 2979 } 2980 2981 cpu_buffer->nr_pages_to_update = 0; 2982 cpus_read_unlock(); 2983 } 2984 2985 out: 2986 /* 2987 * The ring buffer resize can happen with the ring buffer 2988 * enabled, so that the update disturbs the tracing as little 2989 * as possible. But if the buffer is disabled, we do not need 2990 * to worry about that, and we can take the time to verify 2991 * that the buffer is not corrupt. 2992 */ 2993 if (atomic_read(&buffer->record_disabled)) { 2994 atomic_inc(&buffer->record_disabled); 2995 /* 2996 * Even though the buffer was disabled, we must make sure 2997 * that it is truly disabled before calling rb_check_pages. 2998 * There could have been a race between checking 2999 * record_disable and incrementing it. 3000 */ 3001 synchronize_rcu(); 3002 for_each_buffer_cpu(buffer, cpu) { 3003 cpu_buffer = buffer->buffers[cpu]; 3004 rb_check_pages(cpu_buffer); 3005 } 3006 atomic_dec(&buffer->record_disabled); 3007 } 3008 3009 atomic_dec(&buffer->resizing); 3010 mutex_unlock(&buffer->mutex); 3011 return 0; 3012 3013 out_err: 3014 for_each_buffer_cpu(buffer, cpu) { 3015 struct buffer_page *bpage, *tmp; 3016 3017 cpu_buffer = buffer->buffers[cpu]; 3018 cpu_buffer->nr_pages_to_update = 0; 3019 3020 if (list_empty(&cpu_buffer->new_pages)) 3021 continue; 3022 3023 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 3024 list) { 3025 list_del_init(&bpage->list); 3026 free_buffer_page(bpage); 3027 } 3028 } 3029 out_err_unlock: 3030 atomic_dec(&buffer->resizing); 3031 mutex_unlock(&buffer->mutex); 3032 return err; 3033 } 3034 EXPORT_SYMBOL_GPL(ring_buffer_resize); 3035 3036 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val) 3037 { 3038 mutex_lock(&buffer->mutex); 3039 if (val) 3040 buffer->flags |= RB_FL_OVERWRITE; 3041 else 3042 buffer->flags &= ~RB_FL_OVERWRITE; 3043 mutex_unlock(&buffer->mutex); 3044 } 3045 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 3046 3047 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 3048 { 3049 return bpage->page->data + index; 3050 } 3051 3052 static __always_inline struct ring_buffer_event * 3053 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 3054 { 3055 return __rb_page_index(cpu_buffer->reader_page, 3056 cpu_buffer->reader_page->read); 3057 } 3058 3059 static struct ring_buffer_event * 3060 rb_iter_head_event(struct ring_buffer_iter *iter) 3061 { 3062 struct ring_buffer_event *event; 3063 struct buffer_page *iter_head_page = iter->head_page; 3064 unsigned long commit; 3065 unsigned length; 3066 3067 if (iter->head != iter->next_event) 3068 return iter->event; 3069 3070 /* 3071 * When the writer goes across pages, it issues a cmpxchg which 3072 * is a mb(), which will synchronize with the rmb here. 3073 * (see rb_tail_page_update() and __rb_reserve_next()) 3074 */ 3075 commit = rb_page_commit(iter_head_page); 3076 smp_rmb(); 3077 3078 /* An event needs to be at least 8 bytes in size */ 3079 if (iter->head > commit - 8) 3080 goto reset; 3081 3082 event = __rb_page_index(iter_head_page, iter->head); 3083 length = rb_event_length(event); 3084 3085 /* 3086 * READ_ONCE() doesn't work on functions and we don't want the 3087 * compiler doing any crazy optimizations with length. 3088 */ 3089 barrier(); 3090 3091 if ((iter->head + length) > commit || length > iter->event_size) 3092 /* Writer corrupted the read? */ 3093 goto reset; 3094 3095 memcpy(iter->event, event, length); 3096 /* 3097 * If the page stamp is still the same after this rmb() then the 3098 * event was safely copied without the writer entering the page. 3099 */ 3100 smp_rmb(); 3101 3102 /* Make sure the page didn't change since we read this */ 3103 if (iter->page_stamp != iter_head_page->page->time_stamp || 3104 commit > rb_page_commit(iter_head_page)) 3105 goto reset; 3106 3107 iter->next_event = iter->head + length; 3108 return iter->event; 3109 reset: 3110 /* Reset to the beginning */ 3111 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 3112 iter->head = 0; 3113 iter->next_event = 0; 3114 iter->missed_events = 1; 3115 return NULL; 3116 } 3117 3118 /* Size is determined by what has been committed */ 3119 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 3120 { 3121 return rb_page_commit(bpage) & ~RB_MISSED_MASK; 3122 } 3123 3124 static __always_inline unsigned 3125 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 3126 { 3127 return rb_page_commit(cpu_buffer->commit_page); 3128 } 3129 3130 static __always_inline unsigned 3131 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event) 3132 { 3133 unsigned long addr = (unsigned long)event; 3134 3135 addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1; 3136 3137 return addr - BUF_PAGE_HDR_SIZE; 3138 } 3139 3140 static void rb_inc_iter(struct ring_buffer_iter *iter) 3141 { 3142 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3143 3144 /* 3145 * The iterator could be on the reader page (it starts there). 3146 * But the head could have moved, since the reader was 3147 * found. Check for this case and assign the iterator 3148 * to the head page instead of next. 3149 */ 3150 if (iter->head_page == cpu_buffer->reader_page) 3151 iter->head_page = rb_set_head_page(cpu_buffer); 3152 else 3153 rb_inc_page(&iter->head_page); 3154 3155 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 3156 iter->head = 0; 3157 iter->next_event = 0; 3158 } 3159 3160 /* Return the index into the sub-buffers for a given sub-buffer */ 3161 static int rb_meta_subbuf_idx(struct ring_buffer_cpu_meta *meta, void *subbuf) 3162 { 3163 void *subbuf_array; 3164 3165 subbuf_array = (void *)meta + sizeof(int) * meta->nr_subbufs; 3166 subbuf_array = (void *)ALIGN((unsigned long)subbuf_array, meta->subbuf_size); 3167 return (subbuf - subbuf_array) / meta->subbuf_size; 3168 } 3169 3170 static void rb_update_meta_head(struct ring_buffer_per_cpu *cpu_buffer, 3171 struct buffer_page *next_page) 3172 { 3173 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta; 3174 unsigned long old_head = (unsigned long)next_page->page; 3175 unsigned long new_head; 3176 3177 rb_inc_page(&next_page); 3178 new_head = (unsigned long)next_page->page; 3179 3180 /* 3181 * Only move it forward once, if something else came in and 3182 * moved it forward, then we don't want to touch it. 3183 */ 3184 (void)cmpxchg(&meta->head_buffer, old_head, new_head); 3185 } 3186 3187 static void rb_update_meta_reader(struct ring_buffer_per_cpu *cpu_buffer, 3188 struct buffer_page *reader) 3189 { 3190 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta; 3191 void *old_reader = cpu_buffer->reader_page->page; 3192 void *new_reader = reader->page; 3193 int id; 3194 3195 id = reader->id; 3196 cpu_buffer->reader_page->id = id; 3197 reader->id = 0; 3198 3199 meta->buffers[0] = rb_meta_subbuf_idx(meta, new_reader); 3200 meta->buffers[id] = rb_meta_subbuf_idx(meta, old_reader); 3201 3202 /* The head pointer is the one after the reader */ 3203 rb_update_meta_head(cpu_buffer, reader); 3204 } 3205 3206 /* 3207 * rb_handle_head_page - writer hit the head page 3208 * 3209 * Returns: +1 to retry page 3210 * 0 to continue 3211 * -1 on error 3212 */ 3213 static int 3214 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 3215 struct buffer_page *tail_page, 3216 struct buffer_page *next_page) 3217 { 3218 struct buffer_page *new_head; 3219 int entries; 3220 int type; 3221 int ret; 3222 3223 entries = rb_page_entries(next_page); 3224 3225 /* 3226 * The hard part is here. We need to move the head 3227 * forward, and protect against both readers on 3228 * other CPUs and writers coming in via interrupts. 3229 */ 3230 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 3231 RB_PAGE_HEAD); 3232 3233 /* 3234 * type can be one of four: 3235 * NORMAL - an interrupt already moved it for us 3236 * HEAD - we are the first to get here. 3237 * UPDATE - we are the interrupt interrupting 3238 * a current move. 3239 * MOVED - a reader on another CPU moved the next 3240 * pointer to its reader page. Give up 3241 * and try again. 3242 */ 3243 3244 switch (type) { 3245 case RB_PAGE_HEAD: 3246 /* 3247 * We changed the head to UPDATE, thus 3248 * it is our responsibility to update 3249 * the counters. 3250 */ 3251 local_add(entries, &cpu_buffer->overrun); 3252 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes); 3253 local_inc(&cpu_buffer->pages_lost); 3254 3255 if (cpu_buffer->ring_meta) 3256 rb_update_meta_head(cpu_buffer, next_page); 3257 /* 3258 * The entries will be zeroed out when we move the 3259 * tail page. 3260 */ 3261 3262 /* still more to do */ 3263 break; 3264 3265 case RB_PAGE_UPDATE: 3266 /* 3267 * This is an interrupt that interrupt the 3268 * previous update. Still more to do. 3269 */ 3270 break; 3271 case RB_PAGE_NORMAL: 3272 /* 3273 * An interrupt came in before the update 3274 * and processed this for us. 3275 * Nothing left to do. 3276 */ 3277 return 1; 3278 case RB_PAGE_MOVED: 3279 /* 3280 * The reader is on another CPU and just did 3281 * a swap with our next_page. 3282 * Try again. 3283 */ 3284 return 1; 3285 default: 3286 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 3287 return -1; 3288 } 3289 3290 /* 3291 * Now that we are here, the old head pointer is 3292 * set to UPDATE. This will keep the reader from 3293 * swapping the head page with the reader page. 3294 * The reader (on another CPU) will spin till 3295 * we are finished. 3296 * 3297 * We just need to protect against interrupts 3298 * doing the job. We will set the next pointer 3299 * to HEAD. After that, we set the old pointer 3300 * to NORMAL, but only if it was HEAD before. 3301 * otherwise we are an interrupt, and only 3302 * want the outer most commit to reset it. 3303 */ 3304 new_head = next_page; 3305 rb_inc_page(&new_head); 3306 3307 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 3308 RB_PAGE_NORMAL); 3309 3310 /* 3311 * Valid returns are: 3312 * HEAD - an interrupt came in and already set it. 3313 * NORMAL - One of two things: 3314 * 1) We really set it. 3315 * 2) A bunch of interrupts came in and moved 3316 * the page forward again. 3317 */ 3318 switch (ret) { 3319 case RB_PAGE_HEAD: 3320 case RB_PAGE_NORMAL: 3321 /* OK */ 3322 break; 3323 default: 3324 RB_WARN_ON(cpu_buffer, 1); 3325 return -1; 3326 } 3327 3328 /* 3329 * It is possible that an interrupt came in, 3330 * set the head up, then more interrupts came in 3331 * and moved it again. When we get back here, 3332 * the page would have been set to NORMAL but we 3333 * just set it back to HEAD. 3334 * 3335 * How do you detect this? Well, if that happened 3336 * the tail page would have moved. 3337 */ 3338 if (ret == RB_PAGE_NORMAL) { 3339 struct buffer_page *buffer_tail_page; 3340 3341 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 3342 /* 3343 * If the tail had moved passed next, then we need 3344 * to reset the pointer. 3345 */ 3346 if (buffer_tail_page != tail_page && 3347 buffer_tail_page != next_page) 3348 rb_head_page_set_normal(cpu_buffer, new_head, 3349 next_page, 3350 RB_PAGE_HEAD); 3351 } 3352 3353 /* 3354 * If this was the outer most commit (the one that 3355 * changed the original pointer from HEAD to UPDATE), 3356 * then it is up to us to reset it to NORMAL. 3357 */ 3358 if (type == RB_PAGE_HEAD) { 3359 ret = rb_head_page_set_normal(cpu_buffer, next_page, 3360 tail_page, 3361 RB_PAGE_UPDATE); 3362 if (RB_WARN_ON(cpu_buffer, 3363 ret != RB_PAGE_UPDATE)) 3364 return -1; 3365 } 3366 3367 return 0; 3368 } 3369 3370 static inline void 3371 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 3372 unsigned long tail, struct rb_event_info *info) 3373 { 3374 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size); 3375 struct buffer_page *tail_page = info->tail_page; 3376 struct ring_buffer_event *event; 3377 unsigned long length = info->length; 3378 3379 /* 3380 * Only the event that crossed the page boundary 3381 * must fill the old tail_page with padding. 3382 */ 3383 if (tail >= bsize) { 3384 /* 3385 * If the page was filled, then we still need 3386 * to update the real_end. Reset it to zero 3387 * and the reader will ignore it. 3388 */ 3389 if (tail == bsize) 3390 tail_page->real_end = 0; 3391 3392 local_sub(length, &tail_page->write); 3393 return; 3394 } 3395 3396 event = __rb_page_index(tail_page, tail); 3397 3398 /* 3399 * Save the original length to the meta data. 3400 * This will be used by the reader to add lost event 3401 * counter. 3402 */ 3403 tail_page->real_end = tail; 3404 3405 /* 3406 * If this event is bigger than the minimum size, then 3407 * we need to be careful that we don't subtract the 3408 * write counter enough to allow another writer to slip 3409 * in on this page. 3410 * We put in a discarded commit instead, to make sure 3411 * that this space is not used again, and this space will 3412 * not be accounted into 'entries_bytes'. 3413 * 3414 * If we are less than the minimum size, we don't need to 3415 * worry about it. 3416 */ 3417 if (tail > (bsize - RB_EVNT_MIN_SIZE)) { 3418 /* No room for any events */ 3419 3420 /* Mark the rest of the page with padding */ 3421 rb_event_set_padding(event); 3422 3423 /* Make sure the padding is visible before the write update */ 3424 smp_wmb(); 3425 3426 /* Set the write back to the previous setting */ 3427 local_sub(length, &tail_page->write); 3428 return; 3429 } 3430 3431 /* Put in a discarded event */ 3432 event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE; 3433 event->type_len = RINGBUF_TYPE_PADDING; 3434 /* time delta must be non zero */ 3435 event->time_delta = 1; 3436 3437 /* account for padding bytes */ 3438 local_add(bsize - tail, &cpu_buffer->entries_bytes); 3439 3440 /* Make sure the padding is visible before the tail_page->write update */ 3441 smp_wmb(); 3442 3443 /* Set write to end of buffer */ 3444 length = (tail + length) - bsize; 3445 local_sub(length, &tail_page->write); 3446 } 3447 3448 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 3449 3450 /* 3451 * This is the slow path, force gcc not to inline it. 3452 */ 3453 static noinline struct ring_buffer_event * 3454 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 3455 unsigned long tail, struct rb_event_info *info) 3456 { 3457 struct buffer_page *tail_page = info->tail_page; 3458 struct buffer_page *commit_page = cpu_buffer->commit_page; 3459 struct trace_buffer *buffer = cpu_buffer->buffer; 3460 struct buffer_page *next_page; 3461 int ret; 3462 3463 next_page = tail_page; 3464 3465 rb_inc_page(&next_page); 3466 3467 /* 3468 * If for some reason, we had an interrupt storm that made 3469 * it all the way around the buffer, bail, and warn 3470 * about it. 3471 */ 3472 if (unlikely(next_page == commit_page)) { 3473 local_inc(&cpu_buffer->commit_overrun); 3474 goto out_reset; 3475 } 3476 3477 /* 3478 * This is where the fun begins! 3479 * 3480 * We are fighting against races between a reader that 3481 * could be on another CPU trying to swap its reader 3482 * page with the buffer head. 3483 * 3484 * We are also fighting against interrupts coming in and 3485 * moving the head or tail on us as well. 3486 * 3487 * If the next page is the head page then we have filled 3488 * the buffer, unless the commit page is still on the 3489 * reader page. 3490 */ 3491 if (rb_is_head_page(next_page, &tail_page->list)) { 3492 3493 /* 3494 * If the commit is not on the reader page, then 3495 * move the header page. 3496 */ 3497 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 3498 /* 3499 * If we are not in overwrite mode, 3500 * this is easy, just stop here. 3501 */ 3502 if (!(buffer->flags & RB_FL_OVERWRITE)) { 3503 local_inc(&cpu_buffer->dropped_events); 3504 goto out_reset; 3505 } 3506 3507 ret = rb_handle_head_page(cpu_buffer, 3508 tail_page, 3509 next_page); 3510 if (ret < 0) 3511 goto out_reset; 3512 if (ret) 3513 goto out_again; 3514 } else { 3515 /* 3516 * We need to be careful here too. The 3517 * commit page could still be on the reader 3518 * page. We could have a small buffer, and 3519 * have filled up the buffer with events 3520 * from interrupts and such, and wrapped. 3521 * 3522 * Note, if the tail page is also on the 3523 * reader_page, we let it move out. 3524 */ 3525 if (unlikely((cpu_buffer->commit_page != 3526 cpu_buffer->tail_page) && 3527 (cpu_buffer->commit_page == 3528 cpu_buffer->reader_page))) { 3529 local_inc(&cpu_buffer->commit_overrun); 3530 goto out_reset; 3531 } 3532 } 3533 } 3534 3535 rb_tail_page_update(cpu_buffer, tail_page, next_page); 3536 3537 out_again: 3538 3539 rb_reset_tail(cpu_buffer, tail, info); 3540 3541 /* Commit what we have for now. */ 3542 rb_end_commit(cpu_buffer); 3543 /* rb_end_commit() decs committing */ 3544 local_inc(&cpu_buffer->committing); 3545 3546 /* fail and let the caller try again */ 3547 return ERR_PTR(-EAGAIN); 3548 3549 out_reset: 3550 /* reset write */ 3551 rb_reset_tail(cpu_buffer, tail, info); 3552 3553 return NULL; 3554 } 3555 3556 /* Slow path */ 3557 static struct ring_buffer_event * 3558 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3559 struct ring_buffer_event *event, u64 delta, bool abs) 3560 { 3561 if (abs) 3562 event->type_len = RINGBUF_TYPE_TIME_STAMP; 3563 else 3564 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 3565 3566 /* Not the first event on the page, or not delta? */ 3567 if (abs || rb_event_index(cpu_buffer, event)) { 3568 event->time_delta = delta & TS_MASK; 3569 event->array[0] = delta >> TS_SHIFT; 3570 } else { 3571 /* nope, just zero it */ 3572 event->time_delta = 0; 3573 event->array[0] = 0; 3574 } 3575 3576 return skip_time_extend(event); 3577 } 3578 3579 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 3580 static inline bool sched_clock_stable(void) 3581 { 3582 return true; 3583 } 3584 #endif 3585 3586 static void 3587 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 3588 struct rb_event_info *info) 3589 { 3590 u64 write_stamp; 3591 3592 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s", 3593 (unsigned long long)info->delta, 3594 (unsigned long long)info->ts, 3595 (unsigned long long)info->before, 3596 (unsigned long long)info->after, 3597 (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}), 3598 sched_clock_stable() ? "" : 3599 "If you just came from a suspend/resume,\n" 3600 "please switch to the trace global clock:\n" 3601 " echo global > /sys/kernel/tracing/trace_clock\n" 3602 "or add trace_clock=global to the kernel command line\n"); 3603 } 3604 3605 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 3606 struct ring_buffer_event **event, 3607 struct rb_event_info *info, 3608 u64 *delta, 3609 unsigned int *length) 3610 { 3611 bool abs = info->add_timestamp & 3612 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE); 3613 3614 if (unlikely(info->delta > (1ULL << 59))) { 3615 /* 3616 * Some timers can use more than 59 bits, and when a timestamp 3617 * is added to the buffer, it will lose those bits. 3618 */ 3619 if (abs && (info->ts & TS_MSB)) { 3620 info->delta &= ABS_TS_MASK; 3621 3622 /* did the clock go backwards */ 3623 } else if (info->before == info->after && info->before > info->ts) { 3624 /* not interrupted */ 3625 static int once; 3626 3627 /* 3628 * This is possible with a recalibrating of the TSC. 3629 * Do not produce a call stack, but just report it. 3630 */ 3631 if (!once) { 3632 once++; 3633 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n", 3634 info->before, info->ts); 3635 } 3636 } else 3637 rb_check_timestamp(cpu_buffer, info); 3638 if (!abs) 3639 info->delta = 0; 3640 } 3641 *event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs); 3642 *length -= RB_LEN_TIME_EXTEND; 3643 *delta = 0; 3644 } 3645 3646 /** 3647 * rb_update_event - update event type and data 3648 * @cpu_buffer: The per cpu buffer of the @event 3649 * @event: the event to update 3650 * @info: The info to update the @event with (contains length and delta) 3651 * 3652 * Update the type and data fields of the @event. The length 3653 * is the actual size that is written to the ring buffer, 3654 * and with this, we can determine what to place into the 3655 * data field. 3656 */ 3657 static void 3658 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 3659 struct ring_buffer_event *event, 3660 struct rb_event_info *info) 3661 { 3662 unsigned length = info->length; 3663 u64 delta = info->delta; 3664 unsigned int nest = local_read(&cpu_buffer->committing) - 1; 3665 3666 if (!WARN_ON_ONCE(nest >= MAX_NEST)) 3667 cpu_buffer->event_stamp[nest] = info->ts; 3668 3669 /* 3670 * If we need to add a timestamp, then we 3671 * add it to the start of the reserved space. 3672 */ 3673 if (unlikely(info->add_timestamp)) 3674 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length); 3675 3676 event->time_delta = delta; 3677 length -= RB_EVNT_HDR_SIZE; 3678 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 3679 event->type_len = 0; 3680 event->array[0] = length; 3681 } else 3682 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 3683 } 3684 3685 static unsigned rb_calculate_event_length(unsigned length) 3686 { 3687 struct ring_buffer_event event; /* Used only for sizeof array */ 3688 3689 /* zero length can cause confusions */ 3690 if (!length) 3691 length++; 3692 3693 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 3694 length += sizeof(event.array[0]); 3695 3696 length += RB_EVNT_HDR_SIZE; 3697 length = ALIGN(length, RB_ARCH_ALIGNMENT); 3698 3699 /* 3700 * In case the time delta is larger than the 27 bits for it 3701 * in the header, we need to add a timestamp. If another 3702 * event comes in when trying to discard this one to increase 3703 * the length, then the timestamp will be added in the allocated 3704 * space of this event. If length is bigger than the size needed 3705 * for the TIME_EXTEND, then padding has to be used. The events 3706 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 3707 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 3708 * As length is a multiple of 4, we only need to worry if it 3709 * is 12 (RB_LEN_TIME_EXTEND + 4). 3710 */ 3711 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 3712 length += RB_ALIGNMENT; 3713 3714 return length; 3715 } 3716 3717 static inline bool 3718 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 3719 struct ring_buffer_event *event) 3720 { 3721 unsigned long new_index, old_index; 3722 struct buffer_page *bpage; 3723 unsigned long addr; 3724 3725 new_index = rb_event_index(cpu_buffer, event); 3726 old_index = new_index + rb_event_ts_length(event); 3727 addr = (unsigned long)event; 3728 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1); 3729 3730 bpage = READ_ONCE(cpu_buffer->tail_page); 3731 3732 /* 3733 * Make sure the tail_page is still the same and 3734 * the next write location is the end of this event 3735 */ 3736 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 3737 unsigned long write_mask = 3738 local_read(&bpage->write) & ~RB_WRITE_MASK; 3739 unsigned long event_length = rb_event_length(event); 3740 3741 /* 3742 * For the before_stamp to be different than the write_stamp 3743 * to make sure that the next event adds an absolute 3744 * value and does not rely on the saved write stamp, which 3745 * is now going to be bogus. 3746 * 3747 * By setting the before_stamp to zero, the next event 3748 * is not going to use the write_stamp and will instead 3749 * create an absolute timestamp. This means there's no 3750 * reason to update the wirte_stamp! 3751 */ 3752 rb_time_set(&cpu_buffer->before_stamp, 0); 3753 3754 /* 3755 * If an event were to come in now, it would see that the 3756 * write_stamp and the before_stamp are different, and assume 3757 * that this event just added itself before updating 3758 * the write stamp. The interrupting event will fix the 3759 * write stamp for us, and use an absolute timestamp. 3760 */ 3761 3762 /* 3763 * This is on the tail page. It is possible that 3764 * a write could come in and move the tail page 3765 * and write to the next page. That is fine 3766 * because we just shorten what is on this page. 3767 */ 3768 old_index += write_mask; 3769 new_index += write_mask; 3770 3771 /* caution: old_index gets updated on cmpxchg failure */ 3772 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) { 3773 /* update counters */ 3774 local_sub(event_length, &cpu_buffer->entries_bytes); 3775 return true; 3776 } 3777 } 3778 3779 /* could not discard */ 3780 return false; 3781 } 3782 3783 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 3784 { 3785 local_inc(&cpu_buffer->committing); 3786 local_inc(&cpu_buffer->commits); 3787 } 3788 3789 static __always_inline void 3790 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 3791 { 3792 unsigned long max_count; 3793 3794 /* 3795 * We only race with interrupts and NMIs on this CPU. 3796 * If we own the commit event, then we can commit 3797 * all others that interrupted us, since the interruptions 3798 * are in stack format (they finish before they come 3799 * back to us). This allows us to do a simple loop to 3800 * assign the commit to the tail. 3801 */ 3802 again: 3803 max_count = cpu_buffer->nr_pages * 100; 3804 3805 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 3806 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 3807 return; 3808 if (RB_WARN_ON(cpu_buffer, 3809 rb_is_reader_page(cpu_buffer->tail_page))) 3810 return; 3811 /* 3812 * No need for a memory barrier here, as the update 3813 * of the tail_page did it for this page. 3814 */ 3815 local_set(&cpu_buffer->commit_page->page->commit, 3816 rb_page_write(cpu_buffer->commit_page)); 3817 rb_inc_page(&cpu_buffer->commit_page); 3818 if (cpu_buffer->ring_meta) { 3819 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta; 3820 meta->commit_buffer = (unsigned long)cpu_buffer->commit_page->page; 3821 } 3822 /* add barrier to keep gcc from optimizing too much */ 3823 barrier(); 3824 } 3825 while (rb_commit_index(cpu_buffer) != 3826 rb_page_write(cpu_buffer->commit_page)) { 3827 3828 /* Make sure the readers see the content of what is committed. */ 3829 smp_wmb(); 3830 local_set(&cpu_buffer->commit_page->page->commit, 3831 rb_page_write(cpu_buffer->commit_page)); 3832 RB_WARN_ON(cpu_buffer, 3833 local_read(&cpu_buffer->commit_page->page->commit) & 3834 ~RB_WRITE_MASK); 3835 barrier(); 3836 } 3837 3838 /* again, keep gcc from optimizing */ 3839 barrier(); 3840 3841 /* 3842 * If an interrupt came in just after the first while loop 3843 * and pushed the tail page forward, we will be left with 3844 * a dangling commit that will never go forward. 3845 */ 3846 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 3847 goto again; 3848 } 3849 3850 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 3851 { 3852 unsigned long commits; 3853 3854 if (RB_WARN_ON(cpu_buffer, 3855 !local_read(&cpu_buffer->committing))) 3856 return; 3857 3858 again: 3859 commits = local_read(&cpu_buffer->commits); 3860 /* synchronize with interrupts */ 3861 barrier(); 3862 if (local_read(&cpu_buffer->committing) == 1) 3863 rb_set_commit_to_write(cpu_buffer); 3864 3865 local_dec(&cpu_buffer->committing); 3866 3867 /* synchronize with interrupts */ 3868 barrier(); 3869 3870 /* 3871 * Need to account for interrupts coming in between the 3872 * updating of the commit page and the clearing of the 3873 * committing counter. 3874 */ 3875 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 3876 !local_read(&cpu_buffer->committing)) { 3877 local_inc(&cpu_buffer->committing); 3878 goto again; 3879 } 3880 } 3881 3882 static inline void rb_event_discard(struct ring_buffer_event *event) 3883 { 3884 if (extended_time(event)) 3885 event = skip_time_extend(event); 3886 3887 /* array[0] holds the actual length for the discarded event */ 3888 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 3889 event->type_len = RINGBUF_TYPE_PADDING; 3890 /* time delta must be non zero */ 3891 if (!event->time_delta) 3892 event->time_delta = 1; 3893 } 3894 3895 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer) 3896 { 3897 local_inc(&cpu_buffer->entries); 3898 rb_end_commit(cpu_buffer); 3899 } 3900 3901 static __always_inline void 3902 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 3903 { 3904 if (buffer->irq_work.waiters_pending) { 3905 buffer->irq_work.waiters_pending = false; 3906 /* irq_work_queue() supplies it's own memory barriers */ 3907 irq_work_queue(&buffer->irq_work.work); 3908 } 3909 3910 if (cpu_buffer->irq_work.waiters_pending) { 3911 cpu_buffer->irq_work.waiters_pending = false; 3912 /* irq_work_queue() supplies it's own memory barriers */ 3913 irq_work_queue(&cpu_buffer->irq_work.work); 3914 } 3915 3916 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched)) 3917 return; 3918 3919 if (cpu_buffer->reader_page == cpu_buffer->commit_page) 3920 return; 3921 3922 if (!cpu_buffer->irq_work.full_waiters_pending) 3923 return; 3924 3925 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched); 3926 3927 if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full)) 3928 return; 3929 3930 cpu_buffer->irq_work.wakeup_full = true; 3931 cpu_buffer->irq_work.full_waiters_pending = false; 3932 /* irq_work_queue() supplies it's own memory barriers */ 3933 irq_work_queue(&cpu_buffer->irq_work.work); 3934 } 3935 3936 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION 3937 # define do_ring_buffer_record_recursion() \ 3938 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_) 3939 #else 3940 # define do_ring_buffer_record_recursion() do { } while (0) 3941 #endif 3942 3943 /* 3944 * The lock and unlock are done within a preempt disable section. 3945 * The current_context per_cpu variable can only be modified 3946 * by the current task between lock and unlock. But it can 3947 * be modified more than once via an interrupt. To pass this 3948 * information from the lock to the unlock without having to 3949 * access the 'in_interrupt()' functions again (which do show 3950 * a bit of overhead in something as critical as function tracing, 3951 * we use a bitmask trick. 3952 * 3953 * bit 1 = NMI context 3954 * bit 2 = IRQ context 3955 * bit 3 = SoftIRQ context 3956 * bit 4 = normal context. 3957 * 3958 * This works because this is the order of contexts that can 3959 * preempt other contexts. A SoftIRQ never preempts an IRQ 3960 * context. 3961 * 3962 * When the context is determined, the corresponding bit is 3963 * checked and set (if it was set, then a recursion of that context 3964 * happened). 3965 * 3966 * On unlock, we need to clear this bit. To do so, just subtract 3967 * 1 from the current_context and AND it to itself. 3968 * 3969 * (binary) 3970 * 101 - 1 = 100 3971 * 101 & 100 = 100 (clearing bit zero) 3972 * 3973 * 1010 - 1 = 1001 3974 * 1010 & 1001 = 1000 (clearing bit 1) 3975 * 3976 * The least significant bit can be cleared this way, and it 3977 * just so happens that it is the same bit corresponding to 3978 * the current context. 3979 * 3980 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit 3981 * is set when a recursion is detected at the current context, and if 3982 * the TRANSITION bit is already set, it will fail the recursion. 3983 * This is needed because there's a lag between the changing of 3984 * interrupt context and updating the preempt count. In this case, 3985 * a false positive will be found. To handle this, one extra recursion 3986 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION 3987 * bit is already set, then it is considered a recursion and the function 3988 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned. 3989 * 3990 * On the trace_recursive_unlock(), the TRANSITION bit will be the first 3991 * to be cleared. Even if it wasn't the context that set it. That is, 3992 * if an interrupt comes in while NORMAL bit is set and the ring buffer 3993 * is called before preempt_count() is updated, since the check will 3994 * be on the NORMAL bit, the TRANSITION bit will then be set. If an 3995 * NMI then comes in, it will set the NMI bit, but when the NMI code 3996 * does the trace_recursive_unlock() it will clear the TRANSITION bit 3997 * and leave the NMI bit set. But this is fine, because the interrupt 3998 * code that set the TRANSITION bit will then clear the NMI bit when it 3999 * calls trace_recursive_unlock(). If another NMI comes in, it will 4000 * set the TRANSITION bit and continue. 4001 * 4002 * Note: The TRANSITION bit only handles a single transition between context. 4003 */ 4004 4005 static __always_inline bool 4006 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 4007 { 4008 unsigned int val = cpu_buffer->current_context; 4009 int bit = interrupt_context_level(); 4010 4011 bit = RB_CTX_NORMAL - bit; 4012 4013 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) { 4014 /* 4015 * It is possible that this was called by transitioning 4016 * between interrupt context, and preempt_count() has not 4017 * been updated yet. In this case, use the TRANSITION bit. 4018 */ 4019 bit = RB_CTX_TRANSITION; 4020 if (val & (1 << (bit + cpu_buffer->nest))) { 4021 do_ring_buffer_record_recursion(); 4022 return true; 4023 } 4024 } 4025 4026 val |= (1 << (bit + cpu_buffer->nest)); 4027 cpu_buffer->current_context = val; 4028 4029 return false; 4030 } 4031 4032 static __always_inline void 4033 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 4034 { 4035 cpu_buffer->current_context &= 4036 cpu_buffer->current_context - (1 << cpu_buffer->nest); 4037 } 4038 4039 /* The recursive locking above uses 5 bits */ 4040 #define NESTED_BITS 5 4041 4042 /** 4043 * ring_buffer_nest_start - Allow to trace while nested 4044 * @buffer: The ring buffer to modify 4045 * 4046 * The ring buffer has a safety mechanism to prevent recursion. 4047 * But there may be a case where a trace needs to be done while 4048 * tracing something else. In this case, calling this function 4049 * will allow this function to nest within a currently active 4050 * ring_buffer_lock_reserve(). 4051 * 4052 * Call this function before calling another ring_buffer_lock_reserve() and 4053 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). 4054 */ 4055 void ring_buffer_nest_start(struct trace_buffer *buffer) 4056 { 4057 struct ring_buffer_per_cpu *cpu_buffer; 4058 int cpu; 4059 4060 /* Enabled by ring_buffer_nest_end() */ 4061 preempt_disable_notrace(); 4062 cpu = raw_smp_processor_id(); 4063 cpu_buffer = buffer->buffers[cpu]; 4064 /* This is the shift value for the above recursive locking */ 4065 cpu_buffer->nest += NESTED_BITS; 4066 } 4067 4068 /** 4069 * ring_buffer_nest_end - Allow to trace while nested 4070 * @buffer: The ring buffer to modify 4071 * 4072 * Must be called after ring_buffer_nest_start() and after the 4073 * ring_buffer_unlock_commit(). 4074 */ 4075 void ring_buffer_nest_end(struct trace_buffer *buffer) 4076 { 4077 struct ring_buffer_per_cpu *cpu_buffer; 4078 int cpu; 4079 4080 /* disabled by ring_buffer_nest_start() */ 4081 cpu = raw_smp_processor_id(); 4082 cpu_buffer = buffer->buffers[cpu]; 4083 /* This is the shift value for the above recursive locking */ 4084 cpu_buffer->nest -= NESTED_BITS; 4085 preempt_enable_notrace(); 4086 } 4087 4088 /** 4089 * ring_buffer_unlock_commit - commit a reserved 4090 * @buffer: The buffer to commit to 4091 * 4092 * This commits the data to the ring buffer, and releases any locks held. 4093 * 4094 * Must be paired with ring_buffer_lock_reserve. 4095 */ 4096 int ring_buffer_unlock_commit(struct trace_buffer *buffer) 4097 { 4098 struct ring_buffer_per_cpu *cpu_buffer; 4099 int cpu = raw_smp_processor_id(); 4100 4101 cpu_buffer = buffer->buffers[cpu]; 4102 4103 rb_commit(cpu_buffer); 4104 4105 rb_wakeups(buffer, cpu_buffer); 4106 4107 trace_recursive_unlock(cpu_buffer); 4108 4109 preempt_enable_notrace(); 4110 4111 return 0; 4112 } 4113 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 4114 4115 /* Special value to validate all deltas on a page. */ 4116 #define CHECK_FULL_PAGE 1L 4117 4118 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS 4119 4120 static const char *show_irq_str(int bits) 4121 { 4122 const char *type[] = { 4123 ".", // 0 4124 "s", // 1 4125 "h", // 2 4126 "Hs", // 3 4127 "n", // 4 4128 "Ns", // 5 4129 "Nh", // 6 4130 "NHs", // 7 4131 }; 4132 4133 return type[bits]; 4134 } 4135 4136 /* Assume this is a trace event */ 4137 static const char *show_flags(struct ring_buffer_event *event) 4138 { 4139 struct trace_entry *entry; 4140 int bits = 0; 4141 4142 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry)) 4143 return "X"; 4144 4145 entry = ring_buffer_event_data(event); 4146 4147 if (entry->flags & TRACE_FLAG_SOFTIRQ) 4148 bits |= 1; 4149 4150 if (entry->flags & TRACE_FLAG_HARDIRQ) 4151 bits |= 2; 4152 4153 if (entry->flags & TRACE_FLAG_NMI) 4154 bits |= 4; 4155 4156 return show_irq_str(bits); 4157 } 4158 4159 static const char *show_irq(struct ring_buffer_event *event) 4160 { 4161 struct trace_entry *entry; 4162 4163 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry)) 4164 return ""; 4165 4166 entry = ring_buffer_event_data(event); 4167 if (entry->flags & TRACE_FLAG_IRQS_OFF) 4168 return "d"; 4169 return ""; 4170 } 4171 4172 static const char *show_interrupt_level(void) 4173 { 4174 unsigned long pc = preempt_count(); 4175 unsigned char level = 0; 4176 4177 if (pc & SOFTIRQ_OFFSET) 4178 level |= 1; 4179 4180 if (pc & HARDIRQ_MASK) 4181 level |= 2; 4182 4183 if (pc & NMI_MASK) 4184 level |= 4; 4185 4186 return show_irq_str(level); 4187 } 4188 4189 static void dump_buffer_page(struct buffer_data_page *bpage, 4190 struct rb_event_info *info, 4191 unsigned long tail) 4192 { 4193 struct ring_buffer_event *event; 4194 u64 ts, delta; 4195 int e; 4196 4197 ts = bpage->time_stamp; 4198 pr_warn(" [%lld] PAGE TIME STAMP\n", ts); 4199 4200 for (e = 0; e < tail; e += rb_event_length(event)) { 4201 4202 event = (struct ring_buffer_event *)(bpage->data + e); 4203 4204 switch (event->type_len) { 4205 4206 case RINGBUF_TYPE_TIME_EXTEND: 4207 delta = rb_event_time_stamp(event); 4208 ts += delta; 4209 pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n", 4210 e, ts, delta); 4211 break; 4212 4213 case RINGBUF_TYPE_TIME_STAMP: 4214 delta = rb_event_time_stamp(event); 4215 ts = rb_fix_abs_ts(delta, ts); 4216 pr_warn(" 0x%x: [%lld] absolute:%lld TIME STAMP\n", 4217 e, ts, delta); 4218 break; 4219 4220 case RINGBUF_TYPE_PADDING: 4221 ts += event->time_delta; 4222 pr_warn(" 0x%x: [%lld] delta:%d PADDING\n", 4223 e, ts, event->time_delta); 4224 break; 4225 4226 case RINGBUF_TYPE_DATA: 4227 ts += event->time_delta; 4228 pr_warn(" 0x%x: [%lld] delta:%d %s%s\n", 4229 e, ts, event->time_delta, 4230 show_flags(event), show_irq(event)); 4231 break; 4232 4233 default: 4234 break; 4235 } 4236 } 4237 pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e); 4238 } 4239 4240 static DEFINE_PER_CPU(atomic_t, checking); 4241 static atomic_t ts_dump; 4242 4243 #define buffer_warn_return(fmt, ...) \ 4244 do { \ 4245 /* If another report is happening, ignore this one */ \ 4246 if (atomic_inc_return(&ts_dump) != 1) { \ 4247 atomic_dec(&ts_dump); \ 4248 goto out; \ 4249 } \ 4250 atomic_inc(&cpu_buffer->record_disabled); \ 4251 pr_warn(fmt, ##__VA_ARGS__); \ 4252 dump_buffer_page(bpage, info, tail); \ 4253 atomic_dec(&ts_dump); \ 4254 /* There's some cases in boot up that this can happen */ \ 4255 if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING)) \ 4256 /* Do not re-enable checking */ \ 4257 return; \ 4258 } while (0) 4259 4260 /* 4261 * Check if the current event time stamp matches the deltas on 4262 * the buffer page. 4263 */ 4264 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 4265 struct rb_event_info *info, 4266 unsigned long tail) 4267 { 4268 struct buffer_data_page *bpage; 4269 u64 ts, delta; 4270 bool full = false; 4271 int ret; 4272 4273 bpage = info->tail_page->page; 4274 4275 if (tail == CHECK_FULL_PAGE) { 4276 full = true; 4277 tail = local_read(&bpage->commit); 4278 } else if (info->add_timestamp & 4279 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) { 4280 /* Ignore events with absolute time stamps */ 4281 return; 4282 } 4283 4284 /* 4285 * Do not check the first event (skip possible extends too). 4286 * Also do not check if previous events have not been committed. 4287 */ 4288 if (tail <= 8 || tail > local_read(&bpage->commit)) 4289 return; 4290 4291 /* 4292 * If this interrupted another event, 4293 */ 4294 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1) 4295 goto out; 4296 4297 ret = rb_read_data_buffer(bpage, tail, cpu_buffer->cpu, &ts, &delta); 4298 if (ret < 0) { 4299 if (delta < ts) { 4300 buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n", 4301 cpu_buffer->cpu, ts, delta); 4302 goto out; 4303 } 4304 } 4305 if ((full && ts > info->ts) || 4306 (!full && ts + info->delta != info->ts)) { 4307 buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n", 4308 cpu_buffer->cpu, 4309 ts + info->delta, info->ts, info->delta, 4310 info->before, info->after, 4311 full ? " (full)" : "", show_interrupt_level()); 4312 } 4313 out: 4314 atomic_dec(this_cpu_ptr(&checking)); 4315 } 4316 #else 4317 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 4318 struct rb_event_info *info, 4319 unsigned long tail) 4320 { 4321 } 4322 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */ 4323 4324 static struct ring_buffer_event * 4325 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 4326 struct rb_event_info *info) 4327 { 4328 struct ring_buffer_event *event; 4329 struct buffer_page *tail_page; 4330 unsigned long tail, write, w; 4331 4332 /* Don't let the compiler play games with cpu_buffer->tail_page */ 4333 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 4334 4335 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK; 4336 barrier(); 4337 rb_time_read(&cpu_buffer->before_stamp, &info->before); 4338 rb_time_read(&cpu_buffer->write_stamp, &info->after); 4339 barrier(); 4340 info->ts = rb_time_stamp(cpu_buffer->buffer); 4341 4342 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) { 4343 info->delta = info->ts; 4344 } else { 4345 /* 4346 * If interrupting an event time update, we may need an 4347 * absolute timestamp. 4348 * Don't bother if this is the start of a new page (w == 0). 4349 */ 4350 if (!w) { 4351 /* Use the sub-buffer timestamp */ 4352 info->delta = 0; 4353 } else if (unlikely(info->before != info->after)) { 4354 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND; 4355 info->length += RB_LEN_TIME_EXTEND; 4356 } else { 4357 info->delta = info->ts - info->after; 4358 if (unlikely(test_time_stamp(info->delta))) { 4359 info->add_timestamp |= RB_ADD_STAMP_EXTEND; 4360 info->length += RB_LEN_TIME_EXTEND; 4361 } 4362 } 4363 } 4364 4365 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts); 4366 4367 /*C*/ write = local_add_return(info->length, &tail_page->write); 4368 4369 /* set write to only the index of the write */ 4370 write &= RB_WRITE_MASK; 4371 4372 tail = write - info->length; 4373 4374 /* See if we shot pass the end of this buffer page */ 4375 if (unlikely(write > cpu_buffer->buffer->subbuf_size)) { 4376 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE); 4377 return rb_move_tail(cpu_buffer, tail, info); 4378 } 4379 4380 if (likely(tail == w)) { 4381 /* Nothing interrupted us between A and C */ 4382 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts); 4383 /* 4384 * If something came in between C and D, the write stamp 4385 * may now not be in sync. But that's fine as the before_stamp 4386 * will be different and then next event will just be forced 4387 * to use an absolute timestamp. 4388 */ 4389 if (likely(!(info->add_timestamp & 4390 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 4391 /* This did not interrupt any time update */ 4392 info->delta = info->ts - info->after; 4393 else 4394 /* Just use full timestamp for interrupting event */ 4395 info->delta = info->ts; 4396 check_buffer(cpu_buffer, info, tail); 4397 } else { 4398 u64 ts; 4399 /* SLOW PATH - Interrupted between A and C */ 4400 4401 /* Save the old before_stamp */ 4402 rb_time_read(&cpu_buffer->before_stamp, &info->before); 4403 4404 /* 4405 * Read a new timestamp and update the before_stamp to make 4406 * the next event after this one force using an absolute 4407 * timestamp. This is in case an interrupt were to come in 4408 * between E and F. 4409 */ 4410 ts = rb_time_stamp(cpu_buffer->buffer); 4411 rb_time_set(&cpu_buffer->before_stamp, ts); 4412 4413 barrier(); 4414 /*E*/ rb_time_read(&cpu_buffer->write_stamp, &info->after); 4415 barrier(); 4416 /*F*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) && 4417 info->after == info->before && info->after < ts) { 4418 /* 4419 * Nothing came after this event between C and F, it is 4420 * safe to use info->after for the delta as it 4421 * matched info->before and is still valid. 4422 */ 4423 info->delta = ts - info->after; 4424 } else { 4425 /* 4426 * Interrupted between C and F: 4427 * Lost the previous events time stamp. Just set the 4428 * delta to zero, and this will be the same time as 4429 * the event this event interrupted. And the events that 4430 * came after this will still be correct (as they would 4431 * have built their delta on the previous event. 4432 */ 4433 info->delta = 0; 4434 } 4435 info->ts = ts; 4436 info->add_timestamp &= ~RB_ADD_STAMP_FORCE; 4437 } 4438 4439 /* 4440 * If this is the first commit on the page, then it has the same 4441 * timestamp as the page itself. 4442 */ 4443 if (unlikely(!tail && !(info->add_timestamp & 4444 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 4445 info->delta = 0; 4446 4447 /* We reserved something on the buffer */ 4448 4449 event = __rb_page_index(tail_page, tail); 4450 rb_update_event(cpu_buffer, event, info); 4451 4452 local_inc(&tail_page->entries); 4453 4454 /* 4455 * If this is the first commit on the page, then update 4456 * its timestamp. 4457 */ 4458 if (unlikely(!tail)) 4459 tail_page->page->time_stamp = info->ts; 4460 4461 /* account for these added bytes */ 4462 local_add(info->length, &cpu_buffer->entries_bytes); 4463 4464 return event; 4465 } 4466 4467 static __always_inline struct ring_buffer_event * 4468 rb_reserve_next_event(struct trace_buffer *buffer, 4469 struct ring_buffer_per_cpu *cpu_buffer, 4470 unsigned long length) 4471 { 4472 struct ring_buffer_event *event; 4473 struct rb_event_info info; 4474 int nr_loops = 0; 4475 int add_ts_default; 4476 4477 /* 4478 * ring buffer does cmpxchg as well as atomic64 operations 4479 * (which some archs use locking for atomic64), make sure this 4480 * is safe in NMI context 4481 */ 4482 if ((!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) || 4483 IS_ENABLED(CONFIG_GENERIC_ATOMIC64)) && 4484 (unlikely(in_nmi()))) { 4485 return NULL; 4486 } 4487 4488 rb_start_commit(cpu_buffer); 4489 /* The commit page can not change after this */ 4490 4491 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4492 /* 4493 * Due to the ability to swap a cpu buffer from a buffer 4494 * it is possible it was swapped before we committed. 4495 * (committing stops a swap). We check for it here and 4496 * if it happened, we have to fail the write. 4497 */ 4498 barrier(); 4499 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 4500 local_dec(&cpu_buffer->committing); 4501 local_dec(&cpu_buffer->commits); 4502 return NULL; 4503 } 4504 #endif 4505 4506 info.length = rb_calculate_event_length(length); 4507 4508 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) { 4509 add_ts_default = RB_ADD_STAMP_ABSOLUTE; 4510 info.length += RB_LEN_TIME_EXTEND; 4511 if (info.length > cpu_buffer->buffer->max_data_size) 4512 goto out_fail; 4513 } else { 4514 add_ts_default = RB_ADD_STAMP_NONE; 4515 } 4516 4517 again: 4518 info.add_timestamp = add_ts_default; 4519 info.delta = 0; 4520 4521 /* 4522 * We allow for interrupts to reenter here and do a trace. 4523 * If one does, it will cause this original code to loop 4524 * back here. Even with heavy interrupts happening, this 4525 * should only happen a few times in a row. If this happens 4526 * 1000 times in a row, there must be either an interrupt 4527 * storm or we have something buggy. 4528 * Bail! 4529 */ 4530 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 4531 goto out_fail; 4532 4533 event = __rb_reserve_next(cpu_buffer, &info); 4534 4535 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 4536 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND)) 4537 info.length -= RB_LEN_TIME_EXTEND; 4538 goto again; 4539 } 4540 4541 if (likely(event)) 4542 return event; 4543 out_fail: 4544 rb_end_commit(cpu_buffer); 4545 return NULL; 4546 } 4547 4548 /** 4549 * ring_buffer_lock_reserve - reserve a part of the buffer 4550 * @buffer: the ring buffer to reserve from 4551 * @length: the length of the data to reserve (excluding event header) 4552 * 4553 * Returns a reserved event on the ring buffer to copy directly to. 4554 * The user of this interface will need to get the body to write into 4555 * and can use the ring_buffer_event_data() interface. 4556 * 4557 * The length is the length of the data needed, not the event length 4558 * which also includes the event header. 4559 * 4560 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 4561 * If NULL is returned, then nothing has been allocated or locked. 4562 */ 4563 struct ring_buffer_event * 4564 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length) 4565 { 4566 struct ring_buffer_per_cpu *cpu_buffer; 4567 struct ring_buffer_event *event; 4568 int cpu; 4569 4570 /* If we are tracing schedule, we don't want to recurse */ 4571 preempt_disable_notrace(); 4572 4573 if (unlikely(atomic_read(&buffer->record_disabled))) 4574 goto out; 4575 4576 cpu = raw_smp_processor_id(); 4577 4578 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 4579 goto out; 4580 4581 cpu_buffer = buffer->buffers[cpu]; 4582 4583 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 4584 goto out; 4585 4586 if (unlikely(length > buffer->max_data_size)) 4587 goto out; 4588 4589 if (unlikely(trace_recursive_lock(cpu_buffer))) 4590 goto out; 4591 4592 event = rb_reserve_next_event(buffer, cpu_buffer, length); 4593 if (!event) 4594 goto out_unlock; 4595 4596 return event; 4597 4598 out_unlock: 4599 trace_recursive_unlock(cpu_buffer); 4600 out: 4601 preempt_enable_notrace(); 4602 return NULL; 4603 } 4604 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 4605 4606 /* 4607 * Decrement the entries to the page that an event is on. 4608 * The event does not even need to exist, only the pointer 4609 * to the page it is on. This may only be called before the commit 4610 * takes place. 4611 */ 4612 static inline void 4613 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 4614 struct ring_buffer_event *event) 4615 { 4616 unsigned long addr = (unsigned long)event; 4617 struct buffer_page *bpage = cpu_buffer->commit_page; 4618 struct buffer_page *start; 4619 4620 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1); 4621 4622 /* Do the likely case first */ 4623 if (likely(bpage->page == (void *)addr)) { 4624 local_dec(&bpage->entries); 4625 return; 4626 } 4627 4628 /* 4629 * Because the commit page may be on the reader page we 4630 * start with the next page and check the end loop there. 4631 */ 4632 rb_inc_page(&bpage); 4633 start = bpage; 4634 do { 4635 if (bpage->page == (void *)addr) { 4636 local_dec(&bpage->entries); 4637 return; 4638 } 4639 rb_inc_page(&bpage); 4640 } while (bpage != start); 4641 4642 /* commit not part of this buffer?? */ 4643 RB_WARN_ON(cpu_buffer, 1); 4644 } 4645 4646 /** 4647 * ring_buffer_discard_commit - discard an event that has not been committed 4648 * @buffer: the ring buffer 4649 * @event: non committed event to discard 4650 * 4651 * Sometimes an event that is in the ring buffer needs to be ignored. 4652 * This function lets the user discard an event in the ring buffer 4653 * and then that event will not be read later. 4654 * 4655 * This function only works if it is called before the item has been 4656 * committed. It will try to free the event from the ring buffer 4657 * if another event has not been added behind it. 4658 * 4659 * If another event has been added behind it, it will set the event 4660 * up as discarded, and perform the commit. 4661 * 4662 * If this function is called, do not call ring_buffer_unlock_commit on 4663 * the event. 4664 */ 4665 void ring_buffer_discard_commit(struct trace_buffer *buffer, 4666 struct ring_buffer_event *event) 4667 { 4668 struct ring_buffer_per_cpu *cpu_buffer; 4669 int cpu; 4670 4671 /* The event is discarded regardless */ 4672 rb_event_discard(event); 4673 4674 cpu = smp_processor_id(); 4675 cpu_buffer = buffer->buffers[cpu]; 4676 4677 /* 4678 * This must only be called if the event has not been 4679 * committed yet. Thus we can assume that preemption 4680 * is still disabled. 4681 */ 4682 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 4683 4684 rb_decrement_entry(cpu_buffer, event); 4685 if (rb_try_to_discard(cpu_buffer, event)) 4686 goto out; 4687 4688 out: 4689 rb_end_commit(cpu_buffer); 4690 4691 trace_recursive_unlock(cpu_buffer); 4692 4693 preempt_enable_notrace(); 4694 4695 } 4696 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 4697 4698 /** 4699 * ring_buffer_write - write data to the buffer without reserving 4700 * @buffer: The ring buffer to write to. 4701 * @length: The length of the data being written (excluding the event header) 4702 * @data: The data to write to the buffer. 4703 * 4704 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 4705 * one function. If you already have the data to write to the buffer, it 4706 * may be easier to simply call this function. 4707 * 4708 * Note, like ring_buffer_lock_reserve, the length is the length of the data 4709 * and not the length of the event which would hold the header. 4710 */ 4711 int ring_buffer_write(struct trace_buffer *buffer, 4712 unsigned long length, 4713 void *data) 4714 { 4715 struct ring_buffer_per_cpu *cpu_buffer; 4716 struct ring_buffer_event *event; 4717 void *body; 4718 int ret = -EBUSY; 4719 int cpu; 4720 4721 preempt_disable_notrace(); 4722 4723 if (atomic_read(&buffer->record_disabled)) 4724 goto out; 4725 4726 cpu = raw_smp_processor_id(); 4727 4728 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4729 goto out; 4730 4731 cpu_buffer = buffer->buffers[cpu]; 4732 4733 if (atomic_read(&cpu_buffer->record_disabled)) 4734 goto out; 4735 4736 if (length > buffer->max_data_size) 4737 goto out; 4738 4739 if (unlikely(trace_recursive_lock(cpu_buffer))) 4740 goto out; 4741 4742 event = rb_reserve_next_event(buffer, cpu_buffer, length); 4743 if (!event) 4744 goto out_unlock; 4745 4746 body = rb_event_data(event); 4747 4748 memcpy(body, data, length); 4749 4750 rb_commit(cpu_buffer); 4751 4752 rb_wakeups(buffer, cpu_buffer); 4753 4754 ret = 0; 4755 4756 out_unlock: 4757 trace_recursive_unlock(cpu_buffer); 4758 4759 out: 4760 preempt_enable_notrace(); 4761 4762 return ret; 4763 } 4764 EXPORT_SYMBOL_GPL(ring_buffer_write); 4765 4766 /* 4767 * The total entries in the ring buffer is the running counter 4768 * of entries entered into the ring buffer, minus the sum of 4769 * the entries read from the ring buffer and the number of 4770 * entries that were overwritten. 4771 */ 4772 static inline unsigned long 4773 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 4774 { 4775 return local_read(&cpu_buffer->entries) - 4776 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 4777 } 4778 4779 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 4780 { 4781 return !rb_num_of_entries(cpu_buffer); 4782 } 4783 4784 /** 4785 * ring_buffer_record_disable - stop all writes into the buffer 4786 * @buffer: The ring buffer to stop writes to. 4787 * 4788 * This prevents all writes to the buffer. Any attempt to write 4789 * to the buffer after this will fail and return NULL. 4790 * 4791 * The caller should call synchronize_rcu() after this. 4792 */ 4793 void ring_buffer_record_disable(struct trace_buffer *buffer) 4794 { 4795 atomic_inc(&buffer->record_disabled); 4796 } 4797 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 4798 4799 /** 4800 * ring_buffer_record_enable - enable writes to the buffer 4801 * @buffer: The ring buffer to enable writes 4802 * 4803 * Note, multiple disables will need the same number of enables 4804 * to truly enable the writing (much like preempt_disable). 4805 */ 4806 void ring_buffer_record_enable(struct trace_buffer *buffer) 4807 { 4808 atomic_dec(&buffer->record_disabled); 4809 } 4810 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 4811 4812 /** 4813 * ring_buffer_record_off - stop all writes into the buffer 4814 * @buffer: The ring buffer to stop writes to. 4815 * 4816 * This prevents all writes to the buffer. Any attempt to write 4817 * to the buffer after this will fail and return NULL. 4818 * 4819 * This is different than ring_buffer_record_disable() as 4820 * it works like an on/off switch, where as the disable() version 4821 * must be paired with a enable(). 4822 */ 4823 void ring_buffer_record_off(struct trace_buffer *buffer) 4824 { 4825 unsigned int rd; 4826 unsigned int new_rd; 4827 4828 rd = atomic_read(&buffer->record_disabled); 4829 do { 4830 new_rd = rd | RB_BUFFER_OFF; 4831 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd)); 4832 } 4833 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 4834 4835 /** 4836 * ring_buffer_record_on - restart writes into the buffer 4837 * @buffer: The ring buffer to start writes to. 4838 * 4839 * This enables all writes to the buffer that was disabled by 4840 * ring_buffer_record_off(). 4841 * 4842 * This is different than ring_buffer_record_enable() as 4843 * it works like an on/off switch, where as the enable() version 4844 * must be paired with a disable(). 4845 */ 4846 void ring_buffer_record_on(struct trace_buffer *buffer) 4847 { 4848 unsigned int rd; 4849 unsigned int new_rd; 4850 4851 rd = atomic_read(&buffer->record_disabled); 4852 do { 4853 new_rd = rd & ~RB_BUFFER_OFF; 4854 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd)); 4855 } 4856 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 4857 4858 /** 4859 * ring_buffer_record_is_on - return true if the ring buffer can write 4860 * @buffer: The ring buffer to see if write is enabled 4861 * 4862 * Returns true if the ring buffer is in a state that it accepts writes. 4863 */ 4864 bool ring_buffer_record_is_on(struct trace_buffer *buffer) 4865 { 4866 return !atomic_read(&buffer->record_disabled); 4867 } 4868 4869 /** 4870 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable 4871 * @buffer: The ring buffer to see if write is set enabled 4872 * 4873 * Returns true if the ring buffer is set writable by ring_buffer_record_on(). 4874 * Note that this does NOT mean it is in a writable state. 4875 * 4876 * It may return true when the ring buffer has been disabled by 4877 * ring_buffer_record_disable(), as that is a temporary disabling of 4878 * the ring buffer. 4879 */ 4880 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer) 4881 { 4882 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); 4883 } 4884 4885 /** 4886 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 4887 * @buffer: The ring buffer to stop writes to. 4888 * @cpu: The CPU buffer to stop 4889 * 4890 * This prevents all writes to the buffer. Any attempt to write 4891 * to the buffer after this will fail and return NULL. 4892 * 4893 * The caller should call synchronize_rcu() after this. 4894 */ 4895 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu) 4896 { 4897 struct ring_buffer_per_cpu *cpu_buffer; 4898 4899 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4900 return; 4901 4902 cpu_buffer = buffer->buffers[cpu]; 4903 atomic_inc(&cpu_buffer->record_disabled); 4904 } 4905 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 4906 4907 /** 4908 * ring_buffer_record_enable_cpu - enable writes to the buffer 4909 * @buffer: The ring buffer to enable writes 4910 * @cpu: The CPU to enable. 4911 * 4912 * Note, multiple disables will need the same number of enables 4913 * to truly enable the writing (much like preempt_disable). 4914 */ 4915 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu) 4916 { 4917 struct ring_buffer_per_cpu *cpu_buffer; 4918 4919 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4920 return; 4921 4922 cpu_buffer = buffer->buffers[cpu]; 4923 atomic_dec(&cpu_buffer->record_disabled); 4924 } 4925 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 4926 4927 /** 4928 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 4929 * @buffer: The ring buffer 4930 * @cpu: The per CPU buffer to read from. 4931 */ 4932 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu) 4933 { 4934 unsigned long flags; 4935 struct ring_buffer_per_cpu *cpu_buffer; 4936 struct buffer_page *bpage; 4937 u64 ret = 0; 4938 4939 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4940 return 0; 4941 4942 cpu_buffer = buffer->buffers[cpu]; 4943 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4944 /* 4945 * if the tail is on reader_page, oldest time stamp is on the reader 4946 * page 4947 */ 4948 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 4949 bpage = cpu_buffer->reader_page; 4950 else 4951 bpage = rb_set_head_page(cpu_buffer); 4952 if (bpage) 4953 ret = bpage->page->time_stamp; 4954 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4955 4956 return ret; 4957 } 4958 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 4959 4960 /** 4961 * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer 4962 * @buffer: The ring buffer 4963 * @cpu: The per CPU buffer to read from. 4964 */ 4965 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu) 4966 { 4967 struct ring_buffer_per_cpu *cpu_buffer; 4968 unsigned long ret; 4969 4970 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4971 return 0; 4972 4973 cpu_buffer = buffer->buffers[cpu]; 4974 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 4975 4976 return ret; 4977 } 4978 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 4979 4980 /** 4981 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 4982 * @buffer: The ring buffer 4983 * @cpu: The per CPU buffer to get the entries from. 4984 */ 4985 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu) 4986 { 4987 struct ring_buffer_per_cpu *cpu_buffer; 4988 4989 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4990 return 0; 4991 4992 cpu_buffer = buffer->buffers[cpu]; 4993 4994 return rb_num_of_entries(cpu_buffer); 4995 } 4996 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 4997 4998 /** 4999 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 5000 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 5001 * @buffer: The ring buffer 5002 * @cpu: The per CPU buffer to get the number of overruns from 5003 */ 5004 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu) 5005 { 5006 struct ring_buffer_per_cpu *cpu_buffer; 5007 unsigned long ret; 5008 5009 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5010 return 0; 5011 5012 cpu_buffer = buffer->buffers[cpu]; 5013 ret = local_read(&cpu_buffer->overrun); 5014 5015 return ret; 5016 } 5017 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 5018 5019 /** 5020 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 5021 * commits failing due to the buffer wrapping around while there are uncommitted 5022 * events, such as during an interrupt storm. 5023 * @buffer: The ring buffer 5024 * @cpu: The per CPU buffer to get the number of overruns from 5025 */ 5026 unsigned long 5027 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu) 5028 { 5029 struct ring_buffer_per_cpu *cpu_buffer; 5030 unsigned long ret; 5031 5032 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5033 return 0; 5034 5035 cpu_buffer = buffer->buffers[cpu]; 5036 ret = local_read(&cpu_buffer->commit_overrun); 5037 5038 return ret; 5039 } 5040 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 5041 5042 /** 5043 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 5044 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 5045 * @buffer: The ring buffer 5046 * @cpu: The per CPU buffer to get the number of overruns from 5047 */ 5048 unsigned long 5049 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu) 5050 { 5051 struct ring_buffer_per_cpu *cpu_buffer; 5052 unsigned long ret; 5053 5054 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5055 return 0; 5056 5057 cpu_buffer = buffer->buffers[cpu]; 5058 ret = local_read(&cpu_buffer->dropped_events); 5059 5060 return ret; 5061 } 5062 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 5063 5064 /** 5065 * ring_buffer_read_events_cpu - get the number of events successfully read 5066 * @buffer: The ring buffer 5067 * @cpu: The per CPU buffer to get the number of events read 5068 */ 5069 unsigned long 5070 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu) 5071 { 5072 struct ring_buffer_per_cpu *cpu_buffer; 5073 5074 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5075 return 0; 5076 5077 cpu_buffer = buffer->buffers[cpu]; 5078 return cpu_buffer->read; 5079 } 5080 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 5081 5082 /** 5083 * ring_buffer_entries - get the number of entries in a buffer 5084 * @buffer: The ring buffer 5085 * 5086 * Returns the total number of entries in the ring buffer 5087 * (all CPU entries) 5088 */ 5089 unsigned long ring_buffer_entries(struct trace_buffer *buffer) 5090 { 5091 struct ring_buffer_per_cpu *cpu_buffer; 5092 unsigned long entries = 0; 5093 int cpu; 5094 5095 /* if you care about this being correct, lock the buffer */ 5096 for_each_buffer_cpu(buffer, cpu) { 5097 cpu_buffer = buffer->buffers[cpu]; 5098 entries += rb_num_of_entries(cpu_buffer); 5099 } 5100 5101 return entries; 5102 } 5103 EXPORT_SYMBOL_GPL(ring_buffer_entries); 5104 5105 /** 5106 * ring_buffer_overruns - get the number of overruns in buffer 5107 * @buffer: The ring buffer 5108 * 5109 * Returns the total number of overruns in the ring buffer 5110 * (all CPU entries) 5111 */ 5112 unsigned long ring_buffer_overruns(struct trace_buffer *buffer) 5113 { 5114 struct ring_buffer_per_cpu *cpu_buffer; 5115 unsigned long overruns = 0; 5116 int cpu; 5117 5118 /* if you care about this being correct, lock the buffer */ 5119 for_each_buffer_cpu(buffer, cpu) { 5120 cpu_buffer = buffer->buffers[cpu]; 5121 overruns += local_read(&cpu_buffer->overrun); 5122 } 5123 5124 return overruns; 5125 } 5126 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 5127 5128 static void rb_iter_reset(struct ring_buffer_iter *iter) 5129 { 5130 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5131 5132 /* Iterator usage is expected to have record disabled */ 5133 iter->head_page = cpu_buffer->reader_page; 5134 iter->head = cpu_buffer->reader_page->read; 5135 iter->next_event = iter->head; 5136 5137 iter->cache_reader_page = iter->head_page; 5138 iter->cache_read = cpu_buffer->read; 5139 iter->cache_pages_removed = cpu_buffer->pages_removed; 5140 5141 if (iter->head) { 5142 iter->read_stamp = cpu_buffer->read_stamp; 5143 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp; 5144 } else { 5145 iter->read_stamp = iter->head_page->page->time_stamp; 5146 iter->page_stamp = iter->read_stamp; 5147 } 5148 } 5149 5150 /** 5151 * ring_buffer_iter_reset - reset an iterator 5152 * @iter: The iterator to reset 5153 * 5154 * Resets the iterator, so that it will start from the beginning 5155 * again. 5156 */ 5157 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 5158 { 5159 struct ring_buffer_per_cpu *cpu_buffer; 5160 unsigned long flags; 5161 5162 if (!iter) 5163 return; 5164 5165 cpu_buffer = iter->cpu_buffer; 5166 5167 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5168 rb_iter_reset(iter); 5169 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5170 } 5171 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 5172 5173 /** 5174 * ring_buffer_iter_empty - check if an iterator has no more to read 5175 * @iter: The iterator to check 5176 */ 5177 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 5178 { 5179 struct ring_buffer_per_cpu *cpu_buffer; 5180 struct buffer_page *reader; 5181 struct buffer_page *head_page; 5182 struct buffer_page *commit_page; 5183 struct buffer_page *curr_commit_page; 5184 unsigned commit; 5185 u64 curr_commit_ts; 5186 u64 commit_ts; 5187 5188 cpu_buffer = iter->cpu_buffer; 5189 reader = cpu_buffer->reader_page; 5190 head_page = cpu_buffer->head_page; 5191 commit_page = READ_ONCE(cpu_buffer->commit_page); 5192 commit_ts = commit_page->page->time_stamp; 5193 5194 /* 5195 * When the writer goes across pages, it issues a cmpxchg which 5196 * is a mb(), which will synchronize with the rmb here. 5197 * (see rb_tail_page_update()) 5198 */ 5199 smp_rmb(); 5200 commit = rb_page_commit(commit_page); 5201 /* We want to make sure that the commit page doesn't change */ 5202 smp_rmb(); 5203 5204 /* Make sure commit page didn't change */ 5205 curr_commit_page = READ_ONCE(cpu_buffer->commit_page); 5206 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp); 5207 5208 /* If the commit page changed, then there's more data */ 5209 if (curr_commit_page != commit_page || 5210 curr_commit_ts != commit_ts) 5211 return 0; 5212 5213 /* Still racy, as it may return a false positive, but that's OK */ 5214 return ((iter->head_page == commit_page && iter->head >= commit) || 5215 (iter->head_page == reader && commit_page == head_page && 5216 head_page->read == commit && 5217 iter->head == rb_page_size(cpu_buffer->reader_page))); 5218 } 5219 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 5220 5221 static void 5222 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 5223 struct ring_buffer_event *event) 5224 { 5225 u64 delta; 5226 5227 switch (event->type_len) { 5228 case RINGBUF_TYPE_PADDING: 5229 return; 5230 5231 case RINGBUF_TYPE_TIME_EXTEND: 5232 delta = rb_event_time_stamp(event); 5233 cpu_buffer->read_stamp += delta; 5234 return; 5235 5236 case RINGBUF_TYPE_TIME_STAMP: 5237 delta = rb_event_time_stamp(event); 5238 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp); 5239 cpu_buffer->read_stamp = delta; 5240 return; 5241 5242 case RINGBUF_TYPE_DATA: 5243 cpu_buffer->read_stamp += event->time_delta; 5244 return; 5245 5246 default: 5247 RB_WARN_ON(cpu_buffer, 1); 5248 } 5249 } 5250 5251 static void 5252 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 5253 struct ring_buffer_event *event) 5254 { 5255 u64 delta; 5256 5257 switch (event->type_len) { 5258 case RINGBUF_TYPE_PADDING: 5259 return; 5260 5261 case RINGBUF_TYPE_TIME_EXTEND: 5262 delta = rb_event_time_stamp(event); 5263 iter->read_stamp += delta; 5264 return; 5265 5266 case RINGBUF_TYPE_TIME_STAMP: 5267 delta = rb_event_time_stamp(event); 5268 delta = rb_fix_abs_ts(delta, iter->read_stamp); 5269 iter->read_stamp = delta; 5270 return; 5271 5272 case RINGBUF_TYPE_DATA: 5273 iter->read_stamp += event->time_delta; 5274 return; 5275 5276 default: 5277 RB_WARN_ON(iter->cpu_buffer, 1); 5278 } 5279 } 5280 5281 static struct buffer_page * 5282 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 5283 { 5284 struct buffer_page *reader = NULL; 5285 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size); 5286 unsigned long overwrite; 5287 unsigned long flags; 5288 int nr_loops = 0; 5289 bool ret; 5290 5291 local_irq_save(flags); 5292 arch_spin_lock(&cpu_buffer->lock); 5293 5294 again: 5295 /* 5296 * This should normally only loop twice. But because the 5297 * start of the reader inserts an empty page, it causes 5298 * a case where we will loop three times. There should be no 5299 * reason to loop four times (that I know of). 5300 */ 5301 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 5302 reader = NULL; 5303 goto out; 5304 } 5305 5306 reader = cpu_buffer->reader_page; 5307 5308 /* If there's more to read, return this page */ 5309 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 5310 goto out; 5311 5312 /* Never should we have an index greater than the size */ 5313 if (RB_WARN_ON(cpu_buffer, 5314 cpu_buffer->reader_page->read > rb_page_size(reader))) 5315 goto out; 5316 5317 /* check if we caught up to the tail */ 5318 reader = NULL; 5319 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 5320 goto out; 5321 5322 /* Don't bother swapping if the ring buffer is empty */ 5323 if (rb_num_of_entries(cpu_buffer) == 0) 5324 goto out; 5325 5326 /* 5327 * Reset the reader page to size zero. 5328 */ 5329 local_set(&cpu_buffer->reader_page->write, 0); 5330 local_set(&cpu_buffer->reader_page->entries, 0); 5331 local_set(&cpu_buffer->reader_page->page->commit, 0); 5332 cpu_buffer->reader_page->real_end = 0; 5333 5334 spin: 5335 /* 5336 * Splice the empty reader page into the list around the head. 5337 */ 5338 reader = rb_set_head_page(cpu_buffer); 5339 if (!reader) 5340 goto out; 5341 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 5342 cpu_buffer->reader_page->list.prev = reader->list.prev; 5343 5344 /* 5345 * cpu_buffer->pages just needs to point to the buffer, it 5346 * has no specific buffer page to point to. Lets move it out 5347 * of our way so we don't accidentally swap it. 5348 */ 5349 cpu_buffer->pages = reader->list.prev; 5350 5351 /* The reader page will be pointing to the new head */ 5352 rb_set_list_to_head(&cpu_buffer->reader_page->list); 5353 5354 /* 5355 * We want to make sure we read the overruns after we set up our 5356 * pointers to the next object. The writer side does a 5357 * cmpxchg to cross pages which acts as the mb on the writer 5358 * side. Note, the reader will constantly fail the swap 5359 * while the writer is updating the pointers, so this 5360 * guarantees that the overwrite recorded here is the one we 5361 * want to compare with the last_overrun. 5362 */ 5363 smp_mb(); 5364 overwrite = local_read(&(cpu_buffer->overrun)); 5365 5366 /* 5367 * Here's the tricky part. 5368 * 5369 * We need to move the pointer past the header page. 5370 * But we can only do that if a writer is not currently 5371 * moving it. The page before the header page has the 5372 * flag bit '1' set if it is pointing to the page we want. 5373 * but if the writer is in the process of moving it 5374 * then it will be '2' or already moved '0'. 5375 */ 5376 5377 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 5378 5379 /* 5380 * If we did not convert it, then we must try again. 5381 */ 5382 if (!ret) 5383 goto spin; 5384 5385 if (cpu_buffer->ring_meta) 5386 rb_update_meta_reader(cpu_buffer, reader); 5387 5388 /* 5389 * Yay! We succeeded in replacing the page. 5390 * 5391 * Now make the new head point back to the reader page. 5392 */ 5393 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 5394 rb_inc_page(&cpu_buffer->head_page); 5395 5396 cpu_buffer->cnt++; 5397 local_inc(&cpu_buffer->pages_read); 5398 5399 /* Finally update the reader page to the new head */ 5400 cpu_buffer->reader_page = reader; 5401 cpu_buffer->reader_page->read = 0; 5402 5403 if (overwrite != cpu_buffer->last_overrun) { 5404 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 5405 cpu_buffer->last_overrun = overwrite; 5406 } 5407 5408 goto again; 5409 5410 out: 5411 /* Update the read_stamp on the first event */ 5412 if (reader && reader->read == 0) 5413 cpu_buffer->read_stamp = reader->page->time_stamp; 5414 5415 arch_spin_unlock(&cpu_buffer->lock); 5416 local_irq_restore(flags); 5417 5418 /* 5419 * The writer has preempt disable, wait for it. But not forever 5420 * Although, 1 second is pretty much "forever" 5421 */ 5422 #define USECS_WAIT 1000000 5423 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) { 5424 /* If the write is past the end of page, a writer is still updating it */ 5425 if (likely(!reader || rb_page_write(reader) <= bsize)) 5426 break; 5427 5428 udelay(1); 5429 5430 /* Get the latest version of the reader write value */ 5431 smp_rmb(); 5432 } 5433 5434 /* The writer is not moving forward? Something is wrong */ 5435 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT)) 5436 reader = NULL; 5437 5438 /* 5439 * Make sure we see any padding after the write update 5440 * (see rb_reset_tail()). 5441 * 5442 * In addition, a writer may be writing on the reader page 5443 * if the page has not been fully filled, so the read barrier 5444 * is also needed to make sure we see the content of what is 5445 * committed by the writer (see rb_set_commit_to_write()). 5446 */ 5447 smp_rmb(); 5448 5449 5450 return reader; 5451 } 5452 5453 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 5454 { 5455 struct ring_buffer_event *event; 5456 struct buffer_page *reader; 5457 unsigned length; 5458 5459 reader = rb_get_reader_page(cpu_buffer); 5460 5461 /* This function should not be called when buffer is empty */ 5462 if (RB_WARN_ON(cpu_buffer, !reader)) 5463 return; 5464 5465 event = rb_reader_event(cpu_buffer); 5466 5467 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 5468 cpu_buffer->read++; 5469 5470 rb_update_read_stamp(cpu_buffer, event); 5471 5472 length = rb_event_length(event); 5473 cpu_buffer->reader_page->read += length; 5474 cpu_buffer->read_bytes += length; 5475 } 5476 5477 static void rb_advance_iter(struct ring_buffer_iter *iter) 5478 { 5479 struct ring_buffer_per_cpu *cpu_buffer; 5480 5481 cpu_buffer = iter->cpu_buffer; 5482 5483 /* If head == next_event then we need to jump to the next event */ 5484 if (iter->head == iter->next_event) { 5485 /* If the event gets overwritten again, there's nothing to do */ 5486 if (rb_iter_head_event(iter) == NULL) 5487 return; 5488 } 5489 5490 iter->head = iter->next_event; 5491 5492 /* 5493 * Check if we are at the end of the buffer. 5494 */ 5495 if (iter->next_event >= rb_page_size(iter->head_page)) { 5496 /* discarded commits can make the page empty */ 5497 if (iter->head_page == cpu_buffer->commit_page) 5498 return; 5499 rb_inc_iter(iter); 5500 return; 5501 } 5502 5503 rb_update_iter_read_stamp(iter, iter->event); 5504 } 5505 5506 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 5507 { 5508 return cpu_buffer->lost_events; 5509 } 5510 5511 static struct ring_buffer_event * 5512 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 5513 unsigned long *lost_events) 5514 { 5515 struct ring_buffer_event *event; 5516 struct buffer_page *reader; 5517 int nr_loops = 0; 5518 5519 if (ts) 5520 *ts = 0; 5521 again: 5522 /* 5523 * We repeat when a time extend is encountered. 5524 * Since the time extend is always attached to a data event, 5525 * we should never loop more than once. 5526 * (We never hit the following condition more than twice). 5527 */ 5528 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 5529 return NULL; 5530 5531 reader = rb_get_reader_page(cpu_buffer); 5532 if (!reader) 5533 return NULL; 5534 5535 event = rb_reader_event(cpu_buffer); 5536 5537 switch (event->type_len) { 5538 case RINGBUF_TYPE_PADDING: 5539 if (rb_null_event(event)) 5540 RB_WARN_ON(cpu_buffer, 1); 5541 /* 5542 * Because the writer could be discarding every 5543 * event it creates (which would probably be bad) 5544 * if we were to go back to "again" then we may never 5545 * catch up, and will trigger the warn on, or lock 5546 * the box. Return the padding, and we will release 5547 * the current locks, and try again. 5548 */ 5549 return event; 5550 5551 case RINGBUF_TYPE_TIME_EXTEND: 5552 /* Internal data, OK to advance */ 5553 rb_advance_reader(cpu_buffer); 5554 goto again; 5555 5556 case RINGBUF_TYPE_TIME_STAMP: 5557 if (ts) { 5558 *ts = rb_event_time_stamp(event); 5559 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp); 5560 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 5561 cpu_buffer->cpu, ts); 5562 } 5563 /* Internal data, OK to advance */ 5564 rb_advance_reader(cpu_buffer); 5565 goto again; 5566 5567 case RINGBUF_TYPE_DATA: 5568 if (ts && !(*ts)) { 5569 *ts = cpu_buffer->read_stamp + event->time_delta; 5570 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 5571 cpu_buffer->cpu, ts); 5572 } 5573 if (lost_events) 5574 *lost_events = rb_lost_events(cpu_buffer); 5575 return event; 5576 5577 default: 5578 RB_WARN_ON(cpu_buffer, 1); 5579 } 5580 5581 return NULL; 5582 } 5583 EXPORT_SYMBOL_GPL(ring_buffer_peek); 5584 5585 static struct ring_buffer_event * 5586 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 5587 { 5588 struct trace_buffer *buffer; 5589 struct ring_buffer_per_cpu *cpu_buffer; 5590 struct ring_buffer_event *event; 5591 int nr_loops = 0; 5592 5593 if (ts) 5594 *ts = 0; 5595 5596 cpu_buffer = iter->cpu_buffer; 5597 buffer = cpu_buffer->buffer; 5598 5599 /* 5600 * Check if someone performed a consuming read to the buffer 5601 * or removed some pages from the buffer. In these cases, 5602 * iterator was invalidated and we need to reset it. 5603 */ 5604 if (unlikely(iter->cache_read != cpu_buffer->read || 5605 iter->cache_reader_page != cpu_buffer->reader_page || 5606 iter->cache_pages_removed != cpu_buffer->pages_removed)) 5607 rb_iter_reset(iter); 5608 5609 again: 5610 if (ring_buffer_iter_empty(iter)) 5611 return NULL; 5612 5613 /* 5614 * As the writer can mess with what the iterator is trying 5615 * to read, just give up if we fail to get an event after 5616 * three tries. The iterator is not as reliable when reading 5617 * the ring buffer with an active write as the consumer is. 5618 * Do not warn if the three failures is reached. 5619 */ 5620 if (++nr_loops > 3) 5621 return NULL; 5622 5623 if (rb_per_cpu_empty(cpu_buffer)) 5624 return NULL; 5625 5626 if (iter->head >= rb_page_size(iter->head_page)) { 5627 rb_inc_iter(iter); 5628 goto again; 5629 } 5630 5631 event = rb_iter_head_event(iter); 5632 if (!event) 5633 goto again; 5634 5635 switch (event->type_len) { 5636 case RINGBUF_TYPE_PADDING: 5637 if (rb_null_event(event)) { 5638 rb_inc_iter(iter); 5639 goto again; 5640 } 5641 rb_advance_iter(iter); 5642 return event; 5643 5644 case RINGBUF_TYPE_TIME_EXTEND: 5645 /* Internal data, OK to advance */ 5646 rb_advance_iter(iter); 5647 goto again; 5648 5649 case RINGBUF_TYPE_TIME_STAMP: 5650 if (ts) { 5651 *ts = rb_event_time_stamp(event); 5652 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp); 5653 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 5654 cpu_buffer->cpu, ts); 5655 } 5656 /* Internal data, OK to advance */ 5657 rb_advance_iter(iter); 5658 goto again; 5659 5660 case RINGBUF_TYPE_DATA: 5661 if (ts && !(*ts)) { 5662 *ts = iter->read_stamp + event->time_delta; 5663 ring_buffer_normalize_time_stamp(buffer, 5664 cpu_buffer->cpu, ts); 5665 } 5666 return event; 5667 5668 default: 5669 RB_WARN_ON(cpu_buffer, 1); 5670 } 5671 5672 return NULL; 5673 } 5674 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 5675 5676 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 5677 { 5678 if (likely(!in_nmi())) { 5679 raw_spin_lock(&cpu_buffer->reader_lock); 5680 return true; 5681 } 5682 5683 /* 5684 * If an NMI die dumps out the content of the ring buffer 5685 * trylock must be used to prevent a deadlock if the NMI 5686 * preempted a task that holds the ring buffer locks. If 5687 * we get the lock then all is fine, if not, then continue 5688 * to do the read, but this can corrupt the ring buffer, 5689 * so it must be permanently disabled from future writes. 5690 * Reading from NMI is a oneshot deal. 5691 */ 5692 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 5693 return true; 5694 5695 /* Continue without locking, but disable the ring buffer */ 5696 atomic_inc(&cpu_buffer->record_disabled); 5697 return false; 5698 } 5699 5700 static inline void 5701 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 5702 { 5703 if (likely(locked)) 5704 raw_spin_unlock(&cpu_buffer->reader_lock); 5705 } 5706 5707 /** 5708 * ring_buffer_peek - peek at the next event to be read 5709 * @buffer: The ring buffer to read 5710 * @cpu: The cpu to peak at 5711 * @ts: The timestamp counter of this event. 5712 * @lost_events: a variable to store if events were lost (may be NULL) 5713 * 5714 * This will return the event that will be read next, but does 5715 * not consume the data. 5716 */ 5717 struct ring_buffer_event * 5718 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts, 5719 unsigned long *lost_events) 5720 { 5721 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5722 struct ring_buffer_event *event; 5723 unsigned long flags; 5724 bool dolock; 5725 5726 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5727 return NULL; 5728 5729 again: 5730 local_irq_save(flags); 5731 dolock = rb_reader_lock(cpu_buffer); 5732 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 5733 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5734 rb_advance_reader(cpu_buffer); 5735 rb_reader_unlock(cpu_buffer, dolock); 5736 local_irq_restore(flags); 5737 5738 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5739 goto again; 5740 5741 return event; 5742 } 5743 5744 /** ring_buffer_iter_dropped - report if there are dropped events 5745 * @iter: The ring buffer iterator 5746 * 5747 * Returns true if there was dropped events since the last peek. 5748 */ 5749 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter) 5750 { 5751 bool ret = iter->missed_events != 0; 5752 5753 iter->missed_events = 0; 5754 return ret; 5755 } 5756 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped); 5757 5758 /** 5759 * ring_buffer_iter_peek - peek at the next event to be read 5760 * @iter: The ring buffer iterator 5761 * @ts: The timestamp counter of this event. 5762 * 5763 * This will return the event that will be read next, but does 5764 * not increment the iterator. 5765 */ 5766 struct ring_buffer_event * 5767 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 5768 { 5769 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5770 struct ring_buffer_event *event; 5771 unsigned long flags; 5772 5773 again: 5774 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5775 event = rb_iter_peek(iter, ts); 5776 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5777 5778 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5779 goto again; 5780 5781 return event; 5782 } 5783 5784 /** 5785 * ring_buffer_consume - return an event and consume it 5786 * @buffer: The ring buffer to get the next event from 5787 * @cpu: the cpu to read the buffer from 5788 * @ts: a variable to store the timestamp (may be NULL) 5789 * @lost_events: a variable to store if events were lost (may be NULL) 5790 * 5791 * Returns the next event in the ring buffer, and that event is consumed. 5792 * Meaning, that sequential reads will keep returning a different event, 5793 * and eventually empty the ring buffer if the producer is slower. 5794 */ 5795 struct ring_buffer_event * 5796 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts, 5797 unsigned long *lost_events) 5798 { 5799 struct ring_buffer_per_cpu *cpu_buffer; 5800 struct ring_buffer_event *event = NULL; 5801 unsigned long flags; 5802 bool dolock; 5803 5804 again: 5805 /* might be called in atomic */ 5806 preempt_disable(); 5807 5808 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5809 goto out; 5810 5811 cpu_buffer = buffer->buffers[cpu]; 5812 local_irq_save(flags); 5813 dolock = rb_reader_lock(cpu_buffer); 5814 5815 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 5816 if (event) { 5817 cpu_buffer->lost_events = 0; 5818 rb_advance_reader(cpu_buffer); 5819 } 5820 5821 rb_reader_unlock(cpu_buffer, dolock); 5822 local_irq_restore(flags); 5823 5824 out: 5825 preempt_enable(); 5826 5827 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5828 goto again; 5829 5830 return event; 5831 } 5832 EXPORT_SYMBOL_GPL(ring_buffer_consume); 5833 5834 /** 5835 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 5836 * @buffer: The ring buffer to read from 5837 * @cpu: The cpu buffer to iterate over 5838 * @flags: gfp flags to use for memory allocation 5839 * 5840 * This performs the initial preparations necessary to iterate 5841 * through the buffer. Memory is allocated, buffer resizing 5842 * is disabled, and the iterator pointer is returned to the caller. 5843 * 5844 * After a sequence of ring_buffer_read_prepare calls, the user is 5845 * expected to make at least one call to ring_buffer_read_prepare_sync. 5846 * Afterwards, ring_buffer_read_start is invoked to get things going 5847 * for real. 5848 * 5849 * This overall must be paired with ring_buffer_read_finish. 5850 */ 5851 struct ring_buffer_iter * 5852 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags) 5853 { 5854 struct ring_buffer_per_cpu *cpu_buffer; 5855 struct ring_buffer_iter *iter; 5856 5857 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5858 return NULL; 5859 5860 iter = kzalloc(sizeof(*iter), flags); 5861 if (!iter) 5862 return NULL; 5863 5864 /* Holds the entire event: data and meta data */ 5865 iter->event_size = buffer->subbuf_size; 5866 iter->event = kmalloc(iter->event_size, flags); 5867 if (!iter->event) { 5868 kfree(iter); 5869 return NULL; 5870 } 5871 5872 cpu_buffer = buffer->buffers[cpu]; 5873 5874 iter->cpu_buffer = cpu_buffer; 5875 5876 atomic_inc(&cpu_buffer->resize_disabled); 5877 5878 return iter; 5879 } 5880 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 5881 5882 /** 5883 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 5884 * 5885 * All previously invoked ring_buffer_read_prepare calls to prepare 5886 * iterators will be synchronized. Afterwards, read_buffer_read_start 5887 * calls on those iterators are allowed. 5888 */ 5889 void 5890 ring_buffer_read_prepare_sync(void) 5891 { 5892 synchronize_rcu(); 5893 } 5894 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 5895 5896 /** 5897 * ring_buffer_read_start - start a non consuming read of the buffer 5898 * @iter: The iterator returned by ring_buffer_read_prepare 5899 * 5900 * This finalizes the startup of an iteration through the buffer. 5901 * The iterator comes from a call to ring_buffer_read_prepare and 5902 * an intervening ring_buffer_read_prepare_sync must have been 5903 * performed. 5904 * 5905 * Must be paired with ring_buffer_read_finish. 5906 */ 5907 void 5908 ring_buffer_read_start(struct ring_buffer_iter *iter) 5909 { 5910 struct ring_buffer_per_cpu *cpu_buffer; 5911 unsigned long flags; 5912 5913 if (!iter) 5914 return; 5915 5916 cpu_buffer = iter->cpu_buffer; 5917 5918 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5919 arch_spin_lock(&cpu_buffer->lock); 5920 rb_iter_reset(iter); 5921 arch_spin_unlock(&cpu_buffer->lock); 5922 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5923 } 5924 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 5925 5926 /** 5927 * ring_buffer_read_finish - finish reading the iterator of the buffer 5928 * @iter: The iterator retrieved by ring_buffer_start 5929 * 5930 * This re-enables resizing of the buffer, and frees the iterator. 5931 */ 5932 void 5933 ring_buffer_read_finish(struct ring_buffer_iter *iter) 5934 { 5935 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5936 5937 /* Use this opportunity to check the integrity of the ring buffer. */ 5938 rb_check_pages(cpu_buffer); 5939 5940 atomic_dec(&cpu_buffer->resize_disabled); 5941 kfree(iter->event); 5942 kfree(iter); 5943 } 5944 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 5945 5946 /** 5947 * ring_buffer_iter_advance - advance the iterator to the next location 5948 * @iter: The ring buffer iterator 5949 * 5950 * Move the location of the iterator such that the next read will 5951 * be the next location of the iterator. 5952 */ 5953 void ring_buffer_iter_advance(struct ring_buffer_iter *iter) 5954 { 5955 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5956 unsigned long flags; 5957 5958 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5959 5960 rb_advance_iter(iter); 5961 5962 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5963 } 5964 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance); 5965 5966 /** 5967 * ring_buffer_size - return the size of the ring buffer (in bytes) 5968 * @buffer: The ring buffer. 5969 * @cpu: The CPU to get ring buffer size from. 5970 */ 5971 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu) 5972 { 5973 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5974 return 0; 5975 5976 return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages; 5977 } 5978 EXPORT_SYMBOL_GPL(ring_buffer_size); 5979 5980 /** 5981 * ring_buffer_max_event_size - return the max data size of an event 5982 * @buffer: The ring buffer. 5983 * 5984 * Returns the maximum size an event can be. 5985 */ 5986 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer) 5987 { 5988 /* If abs timestamp is requested, events have a timestamp too */ 5989 if (ring_buffer_time_stamp_abs(buffer)) 5990 return buffer->max_data_size - RB_LEN_TIME_EXTEND; 5991 return buffer->max_data_size; 5992 } 5993 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size); 5994 5995 static void rb_clear_buffer_page(struct buffer_page *page) 5996 { 5997 local_set(&page->write, 0); 5998 local_set(&page->entries, 0); 5999 rb_init_page(page->page); 6000 page->read = 0; 6001 } 6002 6003 static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer) 6004 { 6005 struct trace_buffer_meta *meta = cpu_buffer->meta_page; 6006 6007 if (!meta) 6008 return; 6009 6010 meta->reader.read = cpu_buffer->reader_page->read; 6011 meta->reader.id = cpu_buffer->reader_page->id; 6012 meta->reader.lost_events = cpu_buffer->lost_events; 6013 6014 meta->entries = local_read(&cpu_buffer->entries); 6015 meta->overrun = local_read(&cpu_buffer->overrun); 6016 meta->read = cpu_buffer->read; 6017 6018 /* Some archs do not have data cache coherency between kernel and user-space */ 6019 flush_kernel_vmap_range(cpu_buffer->meta_page, PAGE_SIZE); 6020 } 6021 6022 static void 6023 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 6024 { 6025 struct buffer_page *page; 6026 6027 rb_head_page_deactivate(cpu_buffer); 6028 6029 cpu_buffer->head_page 6030 = list_entry(cpu_buffer->pages, struct buffer_page, list); 6031 rb_clear_buffer_page(cpu_buffer->head_page); 6032 list_for_each_entry(page, cpu_buffer->pages, list) { 6033 rb_clear_buffer_page(page); 6034 } 6035 6036 cpu_buffer->tail_page = cpu_buffer->head_page; 6037 cpu_buffer->commit_page = cpu_buffer->head_page; 6038 6039 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 6040 INIT_LIST_HEAD(&cpu_buffer->new_pages); 6041 rb_clear_buffer_page(cpu_buffer->reader_page); 6042 6043 local_set(&cpu_buffer->entries_bytes, 0); 6044 local_set(&cpu_buffer->overrun, 0); 6045 local_set(&cpu_buffer->commit_overrun, 0); 6046 local_set(&cpu_buffer->dropped_events, 0); 6047 local_set(&cpu_buffer->entries, 0); 6048 local_set(&cpu_buffer->committing, 0); 6049 local_set(&cpu_buffer->commits, 0); 6050 local_set(&cpu_buffer->pages_touched, 0); 6051 local_set(&cpu_buffer->pages_lost, 0); 6052 local_set(&cpu_buffer->pages_read, 0); 6053 cpu_buffer->last_pages_touch = 0; 6054 cpu_buffer->shortest_full = 0; 6055 cpu_buffer->read = 0; 6056 cpu_buffer->read_bytes = 0; 6057 6058 rb_time_set(&cpu_buffer->write_stamp, 0); 6059 rb_time_set(&cpu_buffer->before_stamp, 0); 6060 6061 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp)); 6062 6063 cpu_buffer->lost_events = 0; 6064 cpu_buffer->last_overrun = 0; 6065 6066 rb_head_page_activate(cpu_buffer); 6067 cpu_buffer->pages_removed = 0; 6068 6069 if (cpu_buffer->mapped) { 6070 rb_update_meta_page(cpu_buffer); 6071 if (cpu_buffer->ring_meta) { 6072 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta; 6073 meta->commit_buffer = meta->head_buffer; 6074 } 6075 } 6076 } 6077 6078 /* Must have disabled the cpu buffer then done a synchronize_rcu */ 6079 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 6080 { 6081 unsigned long flags; 6082 6083 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 6084 6085 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 6086 goto out; 6087 6088 arch_spin_lock(&cpu_buffer->lock); 6089 6090 rb_reset_cpu(cpu_buffer); 6091 6092 arch_spin_unlock(&cpu_buffer->lock); 6093 6094 out: 6095 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 6096 } 6097 6098 /** 6099 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 6100 * @buffer: The ring buffer to reset a per cpu buffer of 6101 * @cpu: The CPU buffer to be reset 6102 */ 6103 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu) 6104 { 6105 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 6106 6107 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6108 return; 6109 6110 /* prevent another thread from changing buffer sizes */ 6111 mutex_lock(&buffer->mutex); 6112 6113 atomic_inc(&cpu_buffer->resize_disabled); 6114 atomic_inc(&cpu_buffer->record_disabled); 6115 6116 /* Make sure all commits have finished */ 6117 synchronize_rcu(); 6118 6119 reset_disabled_cpu_buffer(cpu_buffer); 6120 6121 atomic_dec(&cpu_buffer->record_disabled); 6122 atomic_dec(&cpu_buffer->resize_disabled); 6123 6124 mutex_unlock(&buffer->mutex); 6125 } 6126 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 6127 6128 /* Flag to ensure proper resetting of atomic variables */ 6129 #define RESET_BIT (1 << 30) 6130 6131 /** 6132 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer 6133 * @buffer: The ring buffer to reset a per cpu buffer of 6134 */ 6135 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer) 6136 { 6137 struct ring_buffer_per_cpu *cpu_buffer; 6138 int cpu; 6139 6140 /* prevent another thread from changing buffer sizes */ 6141 mutex_lock(&buffer->mutex); 6142 6143 for_each_online_buffer_cpu(buffer, cpu) { 6144 cpu_buffer = buffer->buffers[cpu]; 6145 6146 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled); 6147 atomic_inc(&cpu_buffer->record_disabled); 6148 } 6149 6150 /* Make sure all commits have finished */ 6151 synchronize_rcu(); 6152 6153 for_each_buffer_cpu(buffer, cpu) { 6154 cpu_buffer = buffer->buffers[cpu]; 6155 6156 /* 6157 * If a CPU came online during the synchronize_rcu(), then 6158 * ignore it. 6159 */ 6160 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT)) 6161 continue; 6162 6163 reset_disabled_cpu_buffer(cpu_buffer); 6164 6165 atomic_dec(&cpu_buffer->record_disabled); 6166 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled); 6167 } 6168 6169 mutex_unlock(&buffer->mutex); 6170 } 6171 6172 /** 6173 * ring_buffer_reset - reset a ring buffer 6174 * @buffer: The ring buffer to reset all cpu buffers 6175 */ 6176 void ring_buffer_reset(struct trace_buffer *buffer) 6177 { 6178 struct ring_buffer_per_cpu *cpu_buffer; 6179 int cpu; 6180 6181 /* prevent another thread from changing buffer sizes */ 6182 mutex_lock(&buffer->mutex); 6183 6184 for_each_buffer_cpu(buffer, cpu) { 6185 cpu_buffer = buffer->buffers[cpu]; 6186 6187 atomic_inc(&cpu_buffer->resize_disabled); 6188 atomic_inc(&cpu_buffer->record_disabled); 6189 } 6190 6191 /* Make sure all commits have finished */ 6192 synchronize_rcu(); 6193 6194 for_each_buffer_cpu(buffer, cpu) { 6195 cpu_buffer = buffer->buffers[cpu]; 6196 6197 reset_disabled_cpu_buffer(cpu_buffer); 6198 6199 atomic_dec(&cpu_buffer->record_disabled); 6200 atomic_dec(&cpu_buffer->resize_disabled); 6201 } 6202 6203 mutex_unlock(&buffer->mutex); 6204 } 6205 EXPORT_SYMBOL_GPL(ring_buffer_reset); 6206 6207 /** 6208 * ring_buffer_empty - is the ring buffer empty? 6209 * @buffer: The ring buffer to test 6210 */ 6211 bool ring_buffer_empty(struct trace_buffer *buffer) 6212 { 6213 struct ring_buffer_per_cpu *cpu_buffer; 6214 unsigned long flags; 6215 bool dolock; 6216 bool ret; 6217 int cpu; 6218 6219 /* yes this is racy, but if you don't like the race, lock the buffer */ 6220 for_each_buffer_cpu(buffer, cpu) { 6221 cpu_buffer = buffer->buffers[cpu]; 6222 local_irq_save(flags); 6223 dolock = rb_reader_lock(cpu_buffer); 6224 ret = rb_per_cpu_empty(cpu_buffer); 6225 rb_reader_unlock(cpu_buffer, dolock); 6226 local_irq_restore(flags); 6227 6228 if (!ret) 6229 return false; 6230 } 6231 6232 return true; 6233 } 6234 EXPORT_SYMBOL_GPL(ring_buffer_empty); 6235 6236 /** 6237 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 6238 * @buffer: The ring buffer 6239 * @cpu: The CPU buffer to test 6240 */ 6241 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu) 6242 { 6243 struct ring_buffer_per_cpu *cpu_buffer; 6244 unsigned long flags; 6245 bool dolock; 6246 bool ret; 6247 6248 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6249 return true; 6250 6251 cpu_buffer = buffer->buffers[cpu]; 6252 local_irq_save(flags); 6253 dolock = rb_reader_lock(cpu_buffer); 6254 ret = rb_per_cpu_empty(cpu_buffer); 6255 rb_reader_unlock(cpu_buffer, dolock); 6256 local_irq_restore(flags); 6257 6258 return ret; 6259 } 6260 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 6261 6262 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 6263 /** 6264 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 6265 * @buffer_a: One buffer to swap with 6266 * @buffer_b: The other buffer to swap with 6267 * @cpu: the CPU of the buffers to swap 6268 * 6269 * This function is useful for tracers that want to take a "snapshot" 6270 * of a CPU buffer and has another back up buffer lying around. 6271 * it is expected that the tracer handles the cpu buffer not being 6272 * used at the moment. 6273 */ 6274 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a, 6275 struct trace_buffer *buffer_b, int cpu) 6276 { 6277 struct ring_buffer_per_cpu *cpu_buffer_a; 6278 struct ring_buffer_per_cpu *cpu_buffer_b; 6279 int ret = -EINVAL; 6280 6281 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 6282 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 6283 goto out; 6284 6285 cpu_buffer_a = buffer_a->buffers[cpu]; 6286 cpu_buffer_b = buffer_b->buffers[cpu]; 6287 6288 /* It's up to the callers to not try to swap mapped buffers */ 6289 if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped)) { 6290 ret = -EBUSY; 6291 goto out; 6292 } 6293 6294 /* At least make sure the two buffers are somewhat the same */ 6295 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 6296 goto out; 6297 6298 if (buffer_a->subbuf_order != buffer_b->subbuf_order) 6299 goto out; 6300 6301 ret = -EAGAIN; 6302 6303 if (atomic_read(&buffer_a->record_disabled)) 6304 goto out; 6305 6306 if (atomic_read(&buffer_b->record_disabled)) 6307 goto out; 6308 6309 if (atomic_read(&cpu_buffer_a->record_disabled)) 6310 goto out; 6311 6312 if (atomic_read(&cpu_buffer_b->record_disabled)) 6313 goto out; 6314 6315 /* 6316 * We can't do a synchronize_rcu here because this 6317 * function can be called in atomic context. 6318 * Normally this will be called from the same CPU as cpu. 6319 * If not it's up to the caller to protect this. 6320 */ 6321 atomic_inc(&cpu_buffer_a->record_disabled); 6322 atomic_inc(&cpu_buffer_b->record_disabled); 6323 6324 ret = -EBUSY; 6325 if (local_read(&cpu_buffer_a->committing)) 6326 goto out_dec; 6327 if (local_read(&cpu_buffer_b->committing)) 6328 goto out_dec; 6329 6330 /* 6331 * When resize is in progress, we cannot swap it because 6332 * it will mess the state of the cpu buffer. 6333 */ 6334 if (atomic_read(&buffer_a->resizing)) 6335 goto out_dec; 6336 if (atomic_read(&buffer_b->resizing)) 6337 goto out_dec; 6338 6339 buffer_a->buffers[cpu] = cpu_buffer_b; 6340 buffer_b->buffers[cpu] = cpu_buffer_a; 6341 6342 cpu_buffer_b->buffer = buffer_a; 6343 cpu_buffer_a->buffer = buffer_b; 6344 6345 ret = 0; 6346 6347 out_dec: 6348 atomic_dec(&cpu_buffer_a->record_disabled); 6349 atomic_dec(&cpu_buffer_b->record_disabled); 6350 out: 6351 return ret; 6352 } 6353 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 6354 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 6355 6356 /** 6357 * ring_buffer_alloc_read_page - allocate a page to read from buffer 6358 * @buffer: the buffer to allocate for. 6359 * @cpu: the cpu buffer to allocate. 6360 * 6361 * This function is used in conjunction with ring_buffer_read_page. 6362 * When reading a full page from the ring buffer, these functions 6363 * can be used to speed up the process. The calling function should 6364 * allocate a few pages first with this function. Then when it 6365 * needs to get pages from the ring buffer, it passes the result 6366 * of this function into ring_buffer_read_page, which will swap 6367 * the page that was allocated, with the read page of the buffer. 6368 * 6369 * Returns: 6370 * The page allocated, or ERR_PTR 6371 */ 6372 struct buffer_data_read_page * 6373 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu) 6374 { 6375 struct ring_buffer_per_cpu *cpu_buffer; 6376 struct buffer_data_read_page *bpage = NULL; 6377 unsigned long flags; 6378 struct page *page; 6379 6380 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6381 return ERR_PTR(-ENODEV); 6382 6383 bpage = kzalloc(sizeof(*bpage), GFP_KERNEL); 6384 if (!bpage) 6385 return ERR_PTR(-ENOMEM); 6386 6387 bpage->order = buffer->subbuf_order; 6388 cpu_buffer = buffer->buffers[cpu]; 6389 local_irq_save(flags); 6390 arch_spin_lock(&cpu_buffer->lock); 6391 6392 if (cpu_buffer->free_page) { 6393 bpage->data = cpu_buffer->free_page; 6394 cpu_buffer->free_page = NULL; 6395 } 6396 6397 arch_spin_unlock(&cpu_buffer->lock); 6398 local_irq_restore(flags); 6399 6400 if (bpage->data) 6401 goto out; 6402 6403 page = alloc_pages_node(cpu_to_node(cpu), 6404 GFP_KERNEL | __GFP_NORETRY | __GFP_COMP | __GFP_ZERO, 6405 cpu_buffer->buffer->subbuf_order); 6406 if (!page) { 6407 kfree(bpage); 6408 return ERR_PTR(-ENOMEM); 6409 } 6410 6411 bpage->data = page_address(page); 6412 6413 out: 6414 rb_init_page(bpage->data); 6415 6416 return bpage; 6417 } 6418 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 6419 6420 /** 6421 * ring_buffer_free_read_page - free an allocated read page 6422 * @buffer: the buffer the page was allocate for 6423 * @cpu: the cpu buffer the page came from 6424 * @data_page: the page to free 6425 * 6426 * Free a page allocated from ring_buffer_alloc_read_page. 6427 */ 6428 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, 6429 struct buffer_data_read_page *data_page) 6430 { 6431 struct ring_buffer_per_cpu *cpu_buffer; 6432 struct buffer_data_page *bpage = data_page->data; 6433 struct page *page = virt_to_page(bpage); 6434 unsigned long flags; 6435 6436 if (!buffer || !buffer->buffers || !buffer->buffers[cpu]) 6437 return; 6438 6439 cpu_buffer = buffer->buffers[cpu]; 6440 6441 /* 6442 * If the page is still in use someplace else, or order of the page 6443 * is different from the subbuffer order of the buffer - 6444 * we can't reuse it 6445 */ 6446 if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order) 6447 goto out; 6448 6449 local_irq_save(flags); 6450 arch_spin_lock(&cpu_buffer->lock); 6451 6452 if (!cpu_buffer->free_page) { 6453 cpu_buffer->free_page = bpage; 6454 bpage = NULL; 6455 } 6456 6457 arch_spin_unlock(&cpu_buffer->lock); 6458 local_irq_restore(flags); 6459 6460 out: 6461 free_pages((unsigned long)bpage, data_page->order); 6462 kfree(data_page); 6463 } 6464 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 6465 6466 /** 6467 * ring_buffer_read_page - extract a page from the ring buffer 6468 * @buffer: buffer to extract from 6469 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 6470 * @len: amount to extract 6471 * @cpu: the cpu of the buffer to extract 6472 * @full: should the extraction only happen when the page is full. 6473 * 6474 * This function will pull out a page from the ring buffer and consume it. 6475 * @data_page must be the address of the variable that was returned 6476 * from ring_buffer_alloc_read_page. This is because the page might be used 6477 * to swap with a page in the ring buffer. 6478 * 6479 * for example: 6480 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 6481 * if (IS_ERR(rpage)) 6482 * return PTR_ERR(rpage); 6483 * ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0); 6484 * if (ret >= 0) 6485 * process_page(ring_buffer_read_page_data(rpage), ret); 6486 * ring_buffer_free_read_page(buffer, cpu, rpage); 6487 * 6488 * When @full is set, the function will not return true unless 6489 * the writer is off the reader page. 6490 * 6491 * Note: it is up to the calling functions to handle sleeps and wakeups. 6492 * The ring buffer can be used anywhere in the kernel and can not 6493 * blindly call wake_up. The layer that uses the ring buffer must be 6494 * responsible for that. 6495 * 6496 * Returns: 6497 * >=0 if data has been transferred, returns the offset of consumed data. 6498 * <0 if no data has been transferred. 6499 */ 6500 int ring_buffer_read_page(struct trace_buffer *buffer, 6501 struct buffer_data_read_page *data_page, 6502 size_t len, int cpu, int full) 6503 { 6504 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 6505 struct ring_buffer_event *event; 6506 struct buffer_data_page *bpage; 6507 struct buffer_page *reader; 6508 unsigned long missed_events; 6509 unsigned long flags; 6510 unsigned int commit; 6511 unsigned int read; 6512 u64 save_timestamp; 6513 int ret = -1; 6514 6515 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6516 goto out; 6517 6518 /* 6519 * If len is not big enough to hold the page header, then 6520 * we can not copy anything. 6521 */ 6522 if (len <= BUF_PAGE_HDR_SIZE) 6523 goto out; 6524 6525 len -= BUF_PAGE_HDR_SIZE; 6526 6527 if (!data_page || !data_page->data) 6528 goto out; 6529 if (data_page->order != buffer->subbuf_order) 6530 goto out; 6531 6532 bpage = data_page->data; 6533 if (!bpage) 6534 goto out; 6535 6536 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 6537 6538 reader = rb_get_reader_page(cpu_buffer); 6539 if (!reader) 6540 goto out_unlock; 6541 6542 event = rb_reader_event(cpu_buffer); 6543 6544 read = reader->read; 6545 commit = rb_page_size(reader); 6546 6547 /* Check if any events were dropped */ 6548 missed_events = cpu_buffer->lost_events; 6549 6550 /* 6551 * If this page has been partially read or 6552 * if len is not big enough to read the rest of the page or 6553 * a writer is still on the page, then 6554 * we must copy the data from the page to the buffer. 6555 * Otherwise, we can simply swap the page with the one passed in. 6556 */ 6557 if (read || (len < (commit - read)) || 6558 cpu_buffer->reader_page == cpu_buffer->commit_page || 6559 cpu_buffer->mapped) { 6560 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 6561 unsigned int rpos = read; 6562 unsigned int pos = 0; 6563 unsigned int size; 6564 6565 /* 6566 * If a full page is expected, this can still be returned 6567 * if there's been a previous partial read and the 6568 * rest of the page can be read and the commit page is off 6569 * the reader page. 6570 */ 6571 if (full && 6572 (!read || (len < (commit - read)) || 6573 cpu_buffer->reader_page == cpu_buffer->commit_page)) 6574 goto out_unlock; 6575 6576 if (len > (commit - read)) 6577 len = (commit - read); 6578 6579 /* Always keep the time extend and data together */ 6580 size = rb_event_ts_length(event); 6581 6582 if (len < size) 6583 goto out_unlock; 6584 6585 /* save the current timestamp, since the user will need it */ 6586 save_timestamp = cpu_buffer->read_stamp; 6587 6588 /* Need to copy one event at a time */ 6589 do { 6590 /* We need the size of one event, because 6591 * rb_advance_reader only advances by one event, 6592 * whereas rb_event_ts_length may include the size of 6593 * one or two events. 6594 * We have already ensured there's enough space if this 6595 * is a time extend. */ 6596 size = rb_event_length(event); 6597 memcpy(bpage->data + pos, rpage->data + rpos, size); 6598 6599 len -= size; 6600 6601 rb_advance_reader(cpu_buffer); 6602 rpos = reader->read; 6603 pos += size; 6604 6605 if (rpos >= commit) 6606 break; 6607 6608 event = rb_reader_event(cpu_buffer); 6609 /* Always keep the time extend and data together */ 6610 size = rb_event_ts_length(event); 6611 } while (len >= size); 6612 6613 /* update bpage */ 6614 local_set(&bpage->commit, pos); 6615 bpage->time_stamp = save_timestamp; 6616 6617 /* we copied everything to the beginning */ 6618 read = 0; 6619 } else { 6620 /* update the entry counter */ 6621 cpu_buffer->read += rb_page_entries(reader); 6622 cpu_buffer->read_bytes += rb_page_size(reader); 6623 6624 /* swap the pages */ 6625 rb_init_page(bpage); 6626 bpage = reader->page; 6627 reader->page = data_page->data; 6628 local_set(&reader->write, 0); 6629 local_set(&reader->entries, 0); 6630 reader->read = 0; 6631 data_page->data = bpage; 6632 6633 /* 6634 * Use the real_end for the data size, 6635 * This gives us a chance to store the lost events 6636 * on the page. 6637 */ 6638 if (reader->real_end) 6639 local_set(&bpage->commit, reader->real_end); 6640 } 6641 ret = read; 6642 6643 cpu_buffer->lost_events = 0; 6644 6645 commit = local_read(&bpage->commit); 6646 /* 6647 * Set a flag in the commit field if we lost events 6648 */ 6649 if (missed_events) { 6650 /* If there is room at the end of the page to save the 6651 * missed events, then record it there. 6652 */ 6653 if (buffer->subbuf_size - commit >= sizeof(missed_events)) { 6654 memcpy(&bpage->data[commit], &missed_events, 6655 sizeof(missed_events)); 6656 local_add(RB_MISSED_STORED, &bpage->commit); 6657 commit += sizeof(missed_events); 6658 } 6659 local_add(RB_MISSED_EVENTS, &bpage->commit); 6660 } 6661 6662 /* 6663 * This page may be off to user land. Zero it out here. 6664 */ 6665 if (commit < buffer->subbuf_size) 6666 memset(&bpage->data[commit], 0, buffer->subbuf_size - commit); 6667 6668 out_unlock: 6669 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 6670 6671 out: 6672 return ret; 6673 } 6674 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 6675 6676 /** 6677 * ring_buffer_read_page_data - get pointer to the data in the page. 6678 * @page: the page to get the data from 6679 * 6680 * Returns pointer to the actual data in this page. 6681 */ 6682 void *ring_buffer_read_page_data(struct buffer_data_read_page *page) 6683 { 6684 return page->data; 6685 } 6686 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data); 6687 6688 /** 6689 * ring_buffer_subbuf_size_get - get size of the sub buffer. 6690 * @buffer: the buffer to get the sub buffer size from 6691 * 6692 * Returns size of the sub buffer, in bytes. 6693 */ 6694 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer) 6695 { 6696 return buffer->subbuf_size + BUF_PAGE_HDR_SIZE; 6697 } 6698 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get); 6699 6700 /** 6701 * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page. 6702 * @buffer: The ring_buffer to get the system sub page order from 6703 * 6704 * By default, one ring buffer sub page equals to one system page. This parameter 6705 * is configurable, per ring buffer. The size of the ring buffer sub page can be 6706 * extended, but must be an order of system page size. 6707 * 6708 * Returns the order of buffer sub page size, in system pages: 6709 * 0 means the sub buffer size is 1 system page and so forth. 6710 * In case of an error < 0 is returned. 6711 */ 6712 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer) 6713 { 6714 if (!buffer) 6715 return -EINVAL; 6716 6717 return buffer->subbuf_order; 6718 } 6719 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get); 6720 6721 /** 6722 * ring_buffer_subbuf_order_set - set the size of ring buffer sub page. 6723 * @buffer: The ring_buffer to set the new page size. 6724 * @order: Order of the system pages in one sub buffer page 6725 * 6726 * By default, one ring buffer pages equals to one system page. This API can be 6727 * used to set new size of the ring buffer page. The size must be order of 6728 * system page size, that's why the input parameter @order is the order of 6729 * system pages that are allocated for one ring buffer page: 6730 * 0 - 1 system page 6731 * 1 - 2 system pages 6732 * 3 - 4 system pages 6733 * ... 6734 * 6735 * Returns 0 on success or < 0 in case of an error. 6736 */ 6737 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order) 6738 { 6739 struct ring_buffer_per_cpu *cpu_buffer; 6740 struct buffer_page *bpage, *tmp; 6741 int old_order, old_size; 6742 int nr_pages; 6743 int psize; 6744 int err; 6745 int cpu; 6746 6747 if (!buffer || order < 0) 6748 return -EINVAL; 6749 6750 if (buffer->subbuf_order == order) 6751 return 0; 6752 6753 psize = (1 << order) * PAGE_SIZE; 6754 if (psize <= BUF_PAGE_HDR_SIZE) 6755 return -EINVAL; 6756 6757 /* Size of a subbuf cannot be greater than the write counter */ 6758 if (psize > RB_WRITE_MASK + 1) 6759 return -EINVAL; 6760 6761 old_order = buffer->subbuf_order; 6762 old_size = buffer->subbuf_size; 6763 6764 /* prevent another thread from changing buffer sizes */ 6765 mutex_lock(&buffer->mutex); 6766 atomic_inc(&buffer->record_disabled); 6767 6768 /* Make sure all commits have finished */ 6769 synchronize_rcu(); 6770 6771 buffer->subbuf_order = order; 6772 buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE; 6773 6774 /* Make sure all new buffers are allocated, before deleting the old ones */ 6775 for_each_buffer_cpu(buffer, cpu) { 6776 6777 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6778 continue; 6779 6780 cpu_buffer = buffer->buffers[cpu]; 6781 6782 if (cpu_buffer->mapped) { 6783 err = -EBUSY; 6784 goto error; 6785 } 6786 6787 /* Update the number of pages to match the new size */ 6788 nr_pages = old_size * buffer->buffers[cpu]->nr_pages; 6789 nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size); 6790 6791 /* we need a minimum of two pages */ 6792 if (nr_pages < 2) 6793 nr_pages = 2; 6794 6795 cpu_buffer->nr_pages_to_update = nr_pages; 6796 6797 /* Include the reader page */ 6798 nr_pages++; 6799 6800 /* Allocate the new size buffer */ 6801 INIT_LIST_HEAD(&cpu_buffer->new_pages); 6802 if (__rb_allocate_pages(cpu_buffer, nr_pages, 6803 &cpu_buffer->new_pages)) { 6804 /* not enough memory for new pages */ 6805 err = -ENOMEM; 6806 goto error; 6807 } 6808 } 6809 6810 for_each_buffer_cpu(buffer, cpu) { 6811 struct buffer_data_page *old_free_data_page; 6812 struct list_head old_pages; 6813 unsigned long flags; 6814 6815 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6816 continue; 6817 6818 cpu_buffer = buffer->buffers[cpu]; 6819 6820 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 6821 6822 /* Clear the head bit to make the link list normal to read */ 6823 rb_head_page_deactivate(cpu_buffer); 6824 6825 /* 6826 * Collect buffers from the cpu_buffer pages list and the 6827 * reader_page on old_pages, so they can be freed later when not 6828 * under a spinlock. The pages list is a linked list with no 6829 * head, adding old_pages turns it into a regular list with 6830 * old_pages being the head. 6831 */ 6832 list_add(&old_pages, cpu_buffer->pages); 6833 list_add(&cpu_buffer->reader_page->list, &old_pages); 6834 6835 /* One page was allocated for the reader page */ 6836 cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next, 6837 struct buffer_page, list); 6838 list_del_init(&cpu_buffer->reader_page->list); 6839 6840 /* Install the new pages, remove the head from the list */ 6841 cpu_buffer->pages = cpu_buffer->new_pages.next; 6842 list_del_init(&cpu_buffer->new_pages); 6843 cpu_buffer->cnt++; 6844 6845 cpu_buffer->head_page 6846 = list_entry(cpu_buffer->pages, struct buffer_page, list); 6847 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 6848 6849 cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update; 6850 cpu_buffer->nr_pages_to_update = 0; 6851 6852 old_free_data_page = cpu_buffer->free_page; 6853 cpu_buffer->free_page = NULL; 6854 6855 rb_head_page_activate(cpu_buffer); 6856 6857 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 6858 6859 /* Free old sub buffers */ 6860 list_for_each_entry_safe(bpage, tmp, &old_pages, list) { 6861 list_del_init(&bpage->list); 6862 free_buffer_page(bpage); 6863 } 6864 free_pages((unsigned long)old_free_data_page, old_order); 6865 6866 rb_check_pages(cpu_buffer); 6867 } 6868 6869 atomic_dec(&buffer->record_disabled); 6870 mutex_unlock(&buffer->mutex); 6871 6872 return 0; 6873 6874 error: 6875 buffer->subbuf_order = old_order; 6876 buffer->subbuf_size = old_size; 6877 6878 atomic_dec(&buffer->record_disabled); 6879 mutex_unlock(&buffer->mutex); 6880 6881 for_each_buffer_cpu(buffer, cpu) { 6882 cpu_buffer = buffer->buffers[cpu]; 6883 6884 if (!cpu_buffer->nr_pages_to_update) 6885 continue; 6886 6887 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) { 6888 list_del_init(&bpage->list); 6889 free_buffer_page(bpage); 6890 } 6891 } 6892 6893 return err; 6894 } 6895 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set); 6896 6897 static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer) 6898 { 6899 struct page *page; 6900 6901 if (cpu_buffer->meta_page) 6902 return 0; 6903 6904 page = alloc_page(GFP_USER | __GFP_ZERO); 6905 if (!page) 6906 return -ENOMEM; 6907 6908 cpu_buffer->meta_page = page_to_virt(page); 6909 6910 return 0; 6911 } 6912 6913 static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer) 6914 { 6915 unsigned long addr = (unsigned long)cpu_buffer->meta_page; 6916 6917 free_page(addr); 6918 cpu_buffer->meta_page = NULL; 6919 } 6920 6921 static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer, 6922 unsigned long *subbuf_ids) 6923 { 6924 struct trace_buffer_meta *meta = cpu_buffer->meta_page; 6925 unsigned int nr_subbufs = cpu_buffer->nr_pages + 1; 6926 struct buffer_page *first_subbuf, *subbuf; 6927 int id = 0; 6928 6929 subbuf_ids[id] = (unsigned long)cpu_buffer->reader_page->page; 6930 cpu_buffer->reader_page->id = id++; 6931 6932 first_subbuf = subbuf = rb_set_head_page(cpu_buffer); 6933 do { 6934 if (WARN_ON(id >= nr_subbufs)) 6935 break; 6936 6937 subbuf_ids[id] = (unsigned long)subbuf->page; 6938 subbuf->id = id; 6939 6940 rb_inc_page(&subbuf); 6941 id++; 6942 } while (subbuf != first_subbuf); 6943 6944 /* install subbuf ID to kern VA translation */ 6945 cpu_buffer->subbuf_ids = subbuf_ids; 6946 6947 meta->meta_struct_len = sizeof(*meta); 6948 meta->nr_subbufs = nr_subbufs; 6949 meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE; 6950 meta->meta_page_size = meta->subbuf_size; 6951 6952 rb_update_meta_page(cpu_buffer); 6953 } 6954 6955 static struct ring_buffer_per_cpu * 6956 rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu) 6957 { 6958 struct ring_buffer_per_cpu *cpu_buffer; 6959 6960 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6961 return ERR_PTR(-EINVAL); 6962 6963 cpu_buffer = buffer->buffers[cpu]; 6964 6965 mutex_lock(&cpu_buffer->mapping_lock); 6966 6967 if (!cpu_buffer->user_mapped) { 6968 mutex_unlock(&cpu_buffer->mapping_lock); 6969 return ERR_PTR(-ENODEV); 6970 } 6971 6972 return cpu_buffer; 6973 } 6974 6975 static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer) 6976 { 6977 mutex_unlock(&cpu_buffer->mapping_lock); 6978 } 6979 6980 /* 6981 * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need 6982 * to be set-up or torn-down. 6983 */ 6984 static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer, 6985 bool inc) 6986 { 6987 unsigned long flags; 6988 6989 lockdep_assert_held(&cpu_buffer->mapping_lock); 6990 6991 /* mapped is always greater or equal to user_mapped */ 6992 if (WARN_ON(cpu_buffer->mapped < cpu_buffer->user_mapped)) 6993 return -EINVAL; 6994 6995 if (inc && cpu_buffer->mapped == UINT_MAX) 6996 return -EBUSY; 6997 6998 if (WARN_ON(!inc && cpu_buffer->user_mapped == 0)) 6999 return -EINVAL; 7000 7001 mutex_lock(&cpu_buffer->buffer->mutex); 7002 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 7003 7004 if (inc) { 7005 cpu_buffer->user_mapped++; 7006 cpu_buffer->mapped++; 7007 } else { 7008 cpu_buffer->user_mapped--; 7009 cpu_buffer->mapped--; 7010 } 7011 7012 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 7013 mutex_unlock(&cpu_buffer->buffer->mutex); 7014 7015 return 0; 7016 } 7017 7018 /* 7019 * +--------------+ pgoff == 0 7020 * | meta page | 7021 * +--------------+ pgoff == 1 7022 * | subbuffer 0 | 7023 * | | 7024 * +--------------+ pgoff == (1 + (1 << subbuf_order)) 7025 * | subbuffer 1 | 7026 * | | 7027 * ... 7028 */ 7029 #ifdef CONFIG_MMU 7030 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer, 7031 struct vm_area_struct *vma) 7032 { 7033 unsigned long nr_subbufs, nr_pages, nr_vma_pages, pgoff = vma->vm_pgoff; 7034 unsigned int subbuf_pages, subbuf_order; 7035 struct page **pages; 7036 int p = 0, s = 0; 7037 int err; 7038 7039 /* Refuse MP_PRIVATE or writable mappings */ 7040 if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC || 7041 !(vma->vm_flags & VM_MAYSHARE)) 7042 return -EPERM; 7043 7044 subbuf_order = cpu_buffer->buffer->subbuf_order; 7045 subbuf_pages = 1 << subbuf_order; 7046 7047 if (subbuf_order && pgoff % subbuf_pages) 7048 return -EINVAL; 7049 7050 /* 7051 * Make sure the mapping cannot become writable later. Also tell the VM 7052 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND). 7053 */ 7054 vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP, 7055 VM_MAYWRITE); 7056 7057 lockdep_assert_held(&cpu_buffer->mapping_lock); 7058 7059 nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */ 7060 nr_pages = ((nr_subbufs + 1) << subbuf_order); /* + meta-page */ 7061 if (nr_pages <= pgoff) 7062 return -EINVAL; 7063 7064 nr_pages -= pgoff; 7065 7066 nr_vma_pages = vma_pages(vma); 7067 if (!nr_vma_pages || nr_vma_pages > nr_pages) 7068 return -EINVAL; 7069 7070 nr_pages = nr_vma_pages; 7071 7072 pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL); 7073 if (!pages) 7074 return -ENOMEM; 7075 7076 if (!pgoff) { 7077 unsigned long meta_page_padding; 7078 7079 pages[p++] = virt_to_page(cpu_buffer->meta_page); 7080 7081 /* 7082 * Pad with the zero-page to align the meta-page with the 7083 * sub-buffers. 7084 */ 7085 meta_page_padding = subbuf_pages - 1; 7086 while (meta_page_padding-- && p < nr_pages) { 7087 unsigned long __maybe_unused zero_addr = 7088 vma->vm_start + (PAGE_SIZE * p); 7089 7090 pages[p++] = ZERO_PAGE(zero_addr); 7091 } 7092 } else { 7093 /* Skip the meta-page */ 7094 pgoff -= subbuf_pages; 7095 7096 s += pgoff / subbuf_pages; 7097 } 7098 7099 while (p < nr_pages) { 7100 struct page *page; 7101 int off = 0; 7102 7103 if (WARN_ON_ONCE(s >= nr_subbufs)) { 7104 err = -EINVAL; 7105 goto out; 7106 } 7107 7108 page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]); 7109 7110 for (; off < (1 << (subbuf_order)); off++, page++) { 7111 if (p >= nr_pages) 7112 break; 7113 7114 pages[p++] = page; 7115 } 7116 s++; 7117 } 7118 7119 err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages); 7120 7121 out: 7122 kfree(pages); 7123 7124 return err; 7125 } 7126 #else 7127 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer, 7128 struct vm_area_struct *vma) 7129 { 7130 return -EOPNOTSUPP; 7131 } 7132 #endif 7133 7134 int ring_buffer_map(struct trace_buffer *buffer, int cpu, 7135 struct vm_area_struct *vma) 7136 { 7137 struct ring_buffer_per_cpu *cpu_buffer; 7138 unsigned long flags, *subbuf_ids; 7139 int err = 0; 7140 7141 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 7142 return -EINVAL; 7143 7144 cpu_buffer = buffer->buffers[cpu]; 7145 7146 mutex_lock(&cpu_buffer->mapping_lock); 7147 7148 if (cpu_buffer->user_mapped) { 7149 err = __rb_map_vma(cpu_buffer, vma); 7150 if (!err) 7151 err = __rb_inc_dec_mapped(cpu_buffer, true); 7152 mutex_unlock(&cpu_buffer->mapping_lock); 7153 return err; 7154 } 7155 7156 /* prevent another thread from changing buffer/sub-buffer sizes */ 7157 mutex_lock(&buffer->mutex); 7158 7159 err = rb_alloc_meta_page(cpu_buffer); 7160 if (err) 7161 goto unlock; 7162 7163 /* subbuf_ids include the reader while nr_pages does not */ 7164 subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL); 7165 if (!subbuf_ids) { 7166 rb_free_meta_page(cpu_buffer); 7167 err = -ENOMEM; 7168 goto unlock; 7169 } 7170 7171 atomic_inc(&cpu_buffer->resize_disabled); 7172 7173 /* 7174 * Lock all readers to block any subbuf swap until the subbuf IDs are 7175 * assigned. 7176 */ 7177 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 7178 rb_setup_ids_meta_page(cpu_buffer, subbuf_ids); 7179 7180 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 7181 7182 err = __rb_map_vma(cpu_buffer, vma); 7183 if (!err) { 7184 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 7185 /* This is the first time it is mapped by user */ 7186 cpu_buffer->mapped++; 7187 cpu_buffer->user_mapped = 1; 7188 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 7189 } else { 7190 kfree(cpu_buffer->subbuf_ids); 7191 cpu_buffer->subbuf_ids = NULL; 7192 rb_free_meta_page(cpu_buffer); 7193 atomic_dec(&cpu_buffer->resize_disabled); 7194 } 7195 7196 unlock: 7197 mutex_unlock(&buffer->mutex); 7198 mutex_unlock(&cpu_buffer->mapping_lock); 7199 7200 return err; 7201 } 7202 7203 int ring_buffer_unmap(struct trace_buffer *buffer, int cpu) 7204 { 7205 struct ring_buffer_per_cpu *cpu_buffer; 7206 unsigned long flags; 7207 int err = 0; 7208 7209 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 7210 return -EINVAL; 7211 7212 cpu_buffer = buffer->buffers[cpu]; 7213 7214 mutex_lock(&cpu_buffer->mapping_lock); 7215 7216 if (!cpu_buffer->user_mapped) { 7217 err = -ENODEV; 7218 goto out; 7219 } else if (cpu_buffer->user_mapped > 1) { 7220 __rb_inc_dec_mapped(cpu_buffer, false); 7221 goto out; 7222 } 7223 7224 mutex_lock(&buffer->mutex); 7225 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 7226 7227 /* This is the last user space mapping */ 7228 if (!WARN_ON_ONCE(cpu_buffer->mapped < cpu_buffer->user_mapped)) 7229 cpu_buffer->mapped--; 7230 cpu_buffer->user_mapped = 0; 7231 7232 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 7233 7234 kfree(cpu_buffer->subbuf_ids); 7235 cpu_buffer->subbuf_ids = NULL; 7236 rb_free_meta_page(cpu_buffer); 7237 atomic_dec(&cpu_buffer->resize_disabled); 7238 7239 mutex_unlock(&buffer->mutex); 7240 7241 out: 7242 mutex_unlock(&cpu_buffer->mapping_lock); 7243 7244 return err; 7245 } 7246 7247 int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu) 7248 { 7249 struct ring_buffer_per_cpu *cpu_buffer; 7250 struct buffer_page *reader; 7251 unsigned long missed_events; 7252 unsigned long reader_size; 7253 unsigned long flags; 7254 7255 cpu_buffer = rb_get_mapped_buffer(buffer, cpu); 7256 if (IS_ERR(cpu_buffer)) 7257 return (int)PTR_ERR(cpu_buffer); 7258 7259 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 7260 7261 consume: 7262 if (rb_per_cpu_empty(cpu_buffer)) 7263 goto out; 7264 7265 reader_size = rb_page_size(cpu_buffer->reader_page); 7266 7267 /* 7268 * There are data to be read on the current reader page, we can 7269 * return to the caller. But before that, we assume the latter will read 7270 * everything. Let's update the kernel reader accordingly. 7271 */ 7272 if (cpu_buffer->reader_page->read < reader_size) { 7273 while (cpu_buffer->reader_page->read < reader_size) 7274 rb_advance_reader(cpu_buffer); 7275 goto out; 7276 } 7277 7278 reader = rb_get_reader_page(cpu_buffer); 7279 if (WARN_ON(!reader)) 7280 goto out; 7281 7282 /* Check if any events were dropped */ 7283 missed_events = cpu_buffer->lost_events; 7284 7285 if (cpu_buffer->reader_page != cpu_buffer->commit_page) { 7286 if (missed_events) { 7287 struct buffer_data_page *bpage = reader->page; 7288 unsigned int commit; 7289 /* 7290 * Use the real_end for the data size, 7291 * This gives us a chance to store the lost events 7292 * on the page. 7293 */ 7294 if (reader->real_end) 7295 local_set(&bpage->commit, reader->real_end); 7296 /* 7297 * If there is room at the end of the page to save the 7298 * missed events, then record it there. 7299 */ 7300 commit = rb_page_size(reader); 7301 if (buffer->subbuf_size - commit >= sizeof(missed_events)) { 7302 memcpy(&bpage->data[commit], &missed_events, 7303 sizeof(missed_events)); 7304 local_add(RB_MISSED_STORED, &bpage->commit); 7305 } 7306 local_add(RB_MISSED_EVENTS, &bpage->commit); 7307 } 7308 } else { 7309 /* 7310 * There really shouldn't be any missed events if the commit 7311 * is on the reader page. 7312 */ 7313 WARN_ON_ONCE(missed_events); 7314 } 7315 7316 cpu_buffer->lost_events = 0; 7317 7318 goto consume; 7319 7320 out: 7321 /* Some archs do not have data cache coherency between kernel and user-space */ 7322 flush_kernel_vmap_range(cpu_buffer->reader_page->page, 7323 buffer->subbuf_size + BUF_PAGE_HDR_SIZE); 7324 7325 rb_update_meta_page(cpu_buffer); 7326 7327 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 7328 rb_put_mapped_buffer(cpu_buffer); 7329 7330 return 0; 7331 } 7332 7333 /* 7334 * We only allocate new buffers, never free them if the CPU goes down. 7335 * If we were to free the buffer, then the user would lose any trace that was in 7336 * the buffer. 7337 */ 7338 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 7339 { 7340 struct trace_buffer *buffer; 7341 long nr_pages_same; 7342 int cpu_i; 7343 unsigned long nr_pages; 7344 7345 buffer = container_of(node, struct trace_buffer, node); 7346 if (cpumask_test_cpu(cpu, buffer->cpumask)) 7347 return 0; 7348 7349 nr_pages = 0; 7350 nr_pages_same = 1; 7351 /* check if all cpu sizes are same */ 7352 for_each_buffer_cpu(buffer, cpu_i) { 7353 /* fill in the size from first enabled cpu */ 7354 if (nr_pages == 0) 7355 nr_pages = buffer->buffers[cpu_i]->nr_pages; 7356 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 7357 nr_pages_same = 0; 7358 break; 7359 } 7360 } 7361 /* allocate minimum pages, user can later expand it */ 7362 if (!nr_pages_same) 7363 nr_pages = 2; 7364 buffer->buffers[cpu] = 7365 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 7366 if (!buffer->buffers[cpu]) { 7367 WARN(1, "failed to allocate ring buffer on CPU %u\n", 7368 cpu); 7369 return -ENOMEM; 7370 } 7371 smp_wmb(); 7372 cpumask_set_cpu(cpu, buffer->cpumask); 7373 return 0; 7374 } 7375 7376 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 7377 /* 7378 * This is a basic integrity check of the ring buffer. 7379 * Late in the boot cycle this test will run when configured in. 7380 * It will kick off a thread per CPU that will go into a loop 7381 * writing to the per cpu ring buffer various sizes of data. 7382 * Some of the data will be large items, some small. 7383 * 7384 * Another thread is created that goes into a spin, sending out 7385 * IPIs to the other CPUs to also write into the ring buffer. 7386 * this is to test the nesting ability of the buffer. 7387 * 7388 * Basic stats are recorded and reported. If something in the 7389 * ring buffer should happen that's not expected, a big warning 7390 * is displayed and all ring buffers are disabled. 7391 */ 7392 static struct task_struct *rb_threads[NR_CPUS] __initdata; 7393 7394 struct rb_test_data { 7395 struct trace_buffer *buffer; 7396 unsigned long events; 7397 unsigned long bytes_written; 7398 unsigned long bytes_alloc; 7399 unsigned long bytes_dropped; 7400 unsigned long events_nested; 7401 unsigned long bytes_written_nested; 7402 unsigned long bytes_alloc_nested; 7403 unsigned long bytes_dropped_nested; 7404 int min_size_nested; 7405 int max_size_nested; 7406 int max_size; 7407 int min_size; 7408 int cpu; 7409 int cnt; 7410 }; 7411 7412 static struct rb_test_data rb_data[NR_CPUS] __initdata; 7413 7414 /* 1 meg per cpu */ 7415 #define RB_TEST_BUFFER_SIZE 1048576 7416 7417 static char rb_string[] __initdata = 7418 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 7419 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 7420 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 7421 7422 static bool rb_test_started __initdata; 7423 7424 struct rb_item { 7425 int size; 7426 char str[]; 7427 }; 7428 7429 static __init int rb_write_something(struct rb_test_data *data, bool nested) 7430 { 7431 struct ring_buffer_event *event; 7432 struct rb_item *item; 7433 bool started; 7434 int event_len; 7435 int size; 7436 int len; 7437 int cnt; 7438 7439 /* Have nested writes different that what is written */ 7440 cnt = data->cnt + (nested ? 27 : 0); 7441 7442 /* Multiply cnt by ~e, to make some unique increment */ 7443 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1); 7444 7445 len = size + sizeof(struct rb_item); 7446 7447 started = rb_test_started; 7448 /* read rb_test_started before checking buffer enabled */ 7449 smp_rmb(); 7450 7451 event = ring_buffer_lock_reserve(data->buffer, len); 7452 if (!event) { 7453 /* Ignore dropped events before test starts. */ 7454 if (started) { 7455 if (nested) 7456 data->bytes_dropped_nested += len; 7457 else 7458 data->bytes_dropped += len; 7459 } 7460 return len; 7461 } 7462 7463 event_len = ring_buffer_event_length(event); 7464 7465 if (RB_WARN_ON(data->buffer, event_len < len)) 7466 goto out; 7467 7468 item = ring_buffer_event_data(event); 7469 item->size = size; 7470 memcpy(item->str, rb_string, size); 7471 7472 if (nested) { 7473 data->bytes_alloc_nested += event_len; 7474 data->bytes_written_nested += len; 7475 data->events_nested++; 7476 if (!data->min_size_nested || len < data->min_size_nested) 7477 data->min_size_nested = len; 7478 if (len > data->max_size_nested) 7479 data->max_size_nested = len; 7480 } else { 7481 data->bytes_alloc += event_len; 7482 data->bytes_written += len; 7483 data->events++; 7484 if (!data->min_size || len < data->min_size) 7485 data->max_size = len; 7486 if (len > data->max_size) 7487 data->max_size = len; 7488 } 7489 7490 out: 7491 ring_buffer_unlock_commit(data->buffer); 7492 7493 return 0; 7494 } 7495 7496 static __init int rb_test(void *arg) 7497 { 7498 struct rb_test_data *data = arg; 7499 7500 while (!kthread_should_stop()) { 7501 rb_write_something(data, false); 7502 data->cnt++; 7503 7504 set_current_state(TASK_INTERRUPTIBLE); 7505 /* Now sleep between a min of 100-300us and a max of 1ms */ 7506 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 7507 } 7508 7509 return 0; 7510 } 7511 7512 static __init void rb_ipi(void *ignore) 7513 { 7514 struct rb_test_data *data; 7515 int cpu = smp_processor_id(); 7516 7517 data = &rb_data[cpu]; 7518 rb_write_something(data, true); 7519 } 7520 7521 static __init int rb_hammer_test(void *arg) 7522 { 7523 while (!kthread_should_stop()) { 7524 7525 /* Send an IPI to all cpus to write data! */ 7526 smp_call_function(rb_ipi, NULL, 1); 7527 /* No sleep, but for non preempt, let others run */ 7528 schedule(); 7529 } 7530 7531 return 0; 7532 } 7533 7534 static __init int test_ringbuffer(void) 7535 { 7536 struct task_struct *rb_hammer; 7537 struct trace_buffer *buffer; 7538 int cpu; 7539 int ret = 0; 7540 7541 if (security_locked_down(LOCKDOWN_TRACEFS)) { 7542 pr_warn("Lockdown is enabled, skipping ring buffer tests\n"); 7543 return 0; 7544 } 7545 7546 pr_info("Running ring buffer tests...\n"); 7547 7548 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 7549 if (WARN_ON(!buffer)) 7550 return 0; 7551 7552 /* Disable buffer so that threads can't write to it yet */ 7553 ring_buffer_record_off(buffer); 7554 7555 for_each_online_cpu(cpu) { 7556 rb_data[cpu].buffer = buffer; 7557 rb_data[cpu].cpu = cpu; 7558 rb_data[cpu].cnt = cpu; 7559 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu], 7560 cpu, "rbtester/%u"); 7561 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 7562 pr_cont("FAILED\n"); 7563 ret = PTR_ERR(rb_threads[cpu]); 7564 goto out_free; 7565 } 7566 } 7567 7568 /* Now create the rb hammer! */ 7569 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 7570 if (WARN_ON(IS_ERR(rb_hammer))) { 7571 pr_cont("FAILED\n"); 7572 ret = PTR_ERR(rb_hammer); 7573 goto out_free; 7574 } 7575 7576 ring_buffer_record_on(buffer); 7577 /* 7578 * Show buffer is enabled before setting rb_test_started. 7579 * Yes there's a small race window where events could be 7580 * dropped and the thread wont catch it. But when a ring 7581 * buffer gets enabled, there will always be some kind of 7582 * delay before other CPUs see it. Thus, we don't care about 7583 * those dropped events. We care about events dropped after 7584 * the threads see that the buffer is active. 7585 */ 7586 smp_wmb(); 7587 rb_test_started = true; 7588 7589 set_current_state(TASK_INTERRUPTIBLE); 7590 /* Just run for 10 seconds */; 7591 schedule_timeout(10 * HZ); 7592 7593 kthread_stop(rb_hammer); 7594 7595 out_free: 7596 for_each_online_cpu(cpu) { 7597 if (!rb_threads[cpu]) 7598 break; 7599 kthread_stop(rb_threads[cpu]); 7600 } 7601 if (ret) { 7602 ring_buffer_free(buffer); 7603 return ret; 7604 } 7605 7606 /* Report! */ 7607 pr_info("finished\n"); 7608 for_each_online_cpu(cpu) { 7609 struct ring_buffer_event *event; 7610 struct rb_test_data *data = &rb_data[cpu]; 7611 struct rb_item *item; 7612 unsigned long total_events; 7613 unsigned long total_dropped; 7614 unsigned long total_written; 7615 unsigned long total_alloc; 7616 unsigned long total_read = 0; 7617 unsigned long total_size = 0; 7618 unsigned long total_len = 0; 7619 unsigned long total_lost = 0; 7620 unsigned long lost; 7621 int big_event_size; 7622 int small_event_size; 7623 7624 ret = -1; 7625 7626 total_events = data->events + data->events_nested; 7627 total_written = data->bytes_written + data->bytes_written_nested; 7628 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 7629 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 7630 7631 big_event_size = data->max_size + data->max_size_nested; 7632 small_event_size = data->min_size + data->min_size_nested; 7633 7634 pr_info("CPU %d:\n", cpu); 7635 pr_info(" events: %ld\n", total_events); 7636 pr_info(" dropped bytes: %ld\n", total_dropped); 7637 pr_info(" alloced bytes: %ld\n", total_alloc); 7638 pr_info(" written bytes: %ld\n", total_written); 7639 pr_info(" biggest event: %d\n", big_event_size); 7640 pr_info(" smallest event: %d\n", small_event_size); 7641 7642 if (RB_WARN_ON(buffer, total_dropped)) 7643 break; 7644 7645 ret = 0; 7646 7647 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 7648 total_lost += lost; 7649 item = ring_buffer_event_data(event); 7650 total_len += ring_buffer_event_length(event); 7651 total_size += item->size + sizeof(struct rb_item); 7652 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 7653 pr_info("FAILED!\n"); 7654 pr_info("buffer had: %.*s\n", item->size, item->str); 7655 pr_info("expected: %.*s\n", item->size, rb_string); 7656 RB_WARN_ON(buffer, 1); 7657 ret = -1; 7658 break; 7659 } 7660 total_read++; 7661 } 7662 if (ret) 7663 break; 7664 7665 ret = -1; 7666 7667 pr_info(" read events: %ld\n", total_read); 7668 pr_info(" lost events: %ld\n", total_lost); 7669 pr_info(" total events: %ld\n", total_lost + total_read); 7670 pr_info(" recorded len bytes: %ld\n", total_len); 7671 pr_info(" recorded size bytes: %ld\n", total_size); 7672 if (total_lost) { 7673 pr_info(" With dropped events, record len and size may not match\n" 7674 " alloced and written from above\n"); 7675 } else { 7676 if (RB_WARN_ON(buffer, total_len != total_alloc || 7677 total_size != total_written)) 7678 break; 7679 } 7680 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 7681 break; 7682 7683 ret = 0; 7684 } 7685 if (!ret) 7686 pr_info("Ring buffer PASSED!\n"); 7687 7688 ring_buffer_free(buffer); 7689 return 0; 7690 } 7691 7692 late_initcall(test_ringbuffer); 7693 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 7694