1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2021 VMware Inc, Steven Rostedt <rostedt@goodmis.org> 4 */ 5 #include <linux/spinlock.h> 6 #include <linux/seqlock.h> 7 #include <linux/irq_work.h> 8 #include <linux/slab.h> 9 #include "trace.h" 10 11 /* See pid_list.h for details */ 12 13 static inline union lower_chunk *get_lower_chunk(struct trace_pid_list *pid_list) 14 { 15 union lower_chunk *chunk; 16 17 lockdep_assert_held(&pid_list->lock); 18 19 if (!pid_list->lower_list) 20 return NULL; 21 22 chunk = pid_list->lower_list; 23 pid_list->lower_list = chunk->next; 24 pid_list->free_lower_chunks--; 25 WARN_ON_ONCE(pid_list->free_lower_chunks < 0); 26 chunk->next = NULL; 27 /* 28 * If a refill needs to happen, it can not happen here 29 * as the scheduler run queue locks are held. 30 */ 31 if (pid_list->free_lower_chunks <= CHUNK_REALLOC) 32 irq_work_queue(&pid_list->refill_irqwork); 33 34 return chunk; 35 } 36 37 static inline union upper_chunk *get_upper_chunk(struct trace_pid_list *pid_list) 38 { 39 union upper_chunk *chunk; 40 41 lockdep_assert_held(&pid_list->lock); 42 43 if (!pid_list->upper_list) 44 return NULL; 45 46 chunk = pid_list->upper_list; 47 pid_list->upper_list = chunk->next; 48 pid_list->free_upper_chunks--; 49 WARN_ON_ONCE(pid_list->free_upper_chunks < 0); 50 chunk->next = NULL; 51 /* 52 * If a refill needs to happen, it can not happen here 53 * as the scheduler run queue locks are held. 54 */ 55 if (pid_list->free_upper_chunks <= CHUNK_REALLOC) 56 irq_work_queue(&pid_list->refill_irqwork); 57 58 return chunk; 59 } 60 61 static inline void put_lower_chunk(struct trace_pid_list *pid_list, 62 union lower_chunk *chunk) 63 { 64 lockdep_assert_held(&pid_list->lock); 65 66 chunk->next = pid_list->lower_list; 67 pid_list->lower_list = chunk; 68 pid_list->free_lower_chunks++; 69 } 70 71 static inline void put_upper_chunk(struct trace_pid_list *pid_list, 72 union upper_chunk *chunk) 73 { 74 lockdep_assert_held(&pid_list->lock); 75 76 chunk->next = pid_list->upper_list; 77 pid_list->upper_list = chunk; 78 pid_list->free_upper_chunks++; 79 } 80 81 static inline bool upper_empty(union upper_chunk *chunk) 82 { 83 /* 84 * If chunk->data has no lower chunks, it will be the same 85 * as a zeroed bitmask. 86 */ 87 return bitmap_empty((unsigned long *)chunk->data, BITS_PER_TYPE(chunk->data)); 88 } 89 90 static inline int pid_split(unsigned int pid, unsigned int *upper1, 91 unsigned int *upper2, unsigned int *lower) 92 { 93 /* MAX_PID should cover all pids */ 94 BUILD_BUG_ON(MAX_PID < PID_MAX_LIMIT); 95 96 /* In case a bad pid is passed in, then fail */ 97 if (unlikely(pid >= MAX_PID)) 98 return -1; 99 100 *upper1 = (pid >> UPPER1_SHIFT) & UPPER_MASK; 101 *upper2 = (pid >> UPPER2_SHIFT) & UPPER_MASK; 102 *lower = pid & LOWER_MASK; 103 104 return 0; 105 } 106 107 static inline unsigned int pid_join(unsigned int upper1, 108 unsigned int upper2, unsigned int lower) 109 { 110 return ((upper1 & UPPER_MASK) << UPPER1_SHIFT) | 111 ((upper2 & UPPER_MASK) << UPPER2_SHIFT) | 112 (lower & LOWER_MASK); 113 } 114 115 /** 116 * trace_pid_list_is_set - test if the pid is set in the list 117 * @pid_list: The pid list to test 118 * @pid: The pid to see if set in the list. 119 * 120 * Tests if @pid is set in the @pid_list. This is usually called 121 * from the scheduler when a task is scheduled. Its pid is checked 122 * if it should be traced or not. 123 * 124 * Return true if the pid is in the list, false otherwise. 125 */ 126 bool trace_pid_list_is_set(struct trace_pid_list *pid_list, unsigned int pid) 127 { 128 union upper_chunk *upper_chunk; 129 union lower_chunk *lower_chunk; 130 unsigned int seq; 131 unsigned int upper1; 132 unsigned int upper2; 133 unsigned int lower; 134 bool ret = false; 135 136 if (!pid_list) 137 return false; 138 139 if (pid_split(pid, &upper1, &upper2, &lower) < 0) 140 return false; 141 142 do { 143 seq = read_seqcount_begin(&pid_list->seqcount); 144 ret = false; 145 upper_chunk = pid_list->upper[upper1]; 146 if (upper_chunk) { 147 lower_chunk = upper_chunk->data[upper2]; 148 if (lower_chunk) 149 ret = test_bit(lower, lower_chunk->data); 150 } 151 } while (read_seqcount_retry(&pid_list->seqcount, seq)); 152 153 return ret; 154 } 155 156 /** 157 * trace_pid_list_set - add a pid to the list 158 * @pid_list: The pid list to add the @pid to. 159 * @pid: The pid to add. 160 * 161 * Adds @pid to @pid_list. This is usually done explicitly by a user 162 * adding a task to be traced, or indirectly by the fork function 163 * when children should be traced and a task's pid is in the list. 164 * 165 * Return 0 on success, negative otherwise. 166 */ 167 int trace_pid_list_set(struct trace_pid_list *pid_list, unsigned int pid) 168 { 169 union upper_chunk *upper_chunk; 170 union lower_chunk *lower_chunk; 171 unsigned long flags; 172 unsigned int upper1; 173 unsigned int upper2; 174 unsigned int lower; 175 int ret; 176 177 if (!pid_list) 178 return -ENODEV; 179 180 if (pid_split(pid, &upper1, &upper2, &lower) < 0) 181 return -EINVAL; 182 183 raw_spin_lock_irqsave(&pid_list->lock, flags); 184 write_seqcount_begin(&pid_list->seqcount); 185 upper_chunk = pid_list->upper[upper1]; 186 if (!upper_chunk) { 187 upper_chunk = get_upper_chunk(pid_list); 188 if (!upper_chunk) { 189 ret = -ENOMEM; 190 goto out; 191 } 192 pid_list->upper[upper1] = upper_chunk; 193 } 194 lower_chunk = upper_chunk->data[upper2]; 195 if (!lower_chunk) { 196 lower_chunk = get_lower_chunk(pid_list); 197 if (!lower_chunk) { 198 ret = -ENOMEM; 199 goto out; 200 } 201 upper_chunk->data[upper2] = lower_chunk; 202 } 203 set_bit(lower, lower_chunk->data); 204 ret = 0; 205 out: 206 write_seqcount_end(&pid_list->seqcount); 207 raw_spin_unlock_irqrestore(&pid_list->lock, flags); 208 return ret; 209 } 210 211 /** 212 * trace_pid_list_clear - remove a pid from the list 213 * @pid_list: The pid list to remove the @pid from. 214 * @pid: The pid to remove. 215 * 216 * Removes @pid from @pid_list. This is usually done explicitly by a user 217 * removing tasks from tracing, or indirectly by the exit function 218 * when a task that is set to be traced exits. 219 * 220 * Return 0 on success, negative otherwise. 221 */ 222 int trace_pid_list_clear(struct trace_pid_list *pid_list, unsigned int pid) 223 { 224 union upper_chunk *upper_chunk; 225 union lower_chunk *lower_chunk; 226 unsigned long flags; 227 unsigned int upper1; 228 unsigned int upper2; 229 unsigned int lower; 230 231 if (!pid_list) 232 return -ENODEV; 233 234 if (pid_split(pid, &upper1, &upper2, &lower) < 0) 235 return -EINVAL; 236 237 raw_spin_lock_irqsave(&pid_list->lock, flags); 238 write_seqcount_begin(&pid_list->seqcount); 239 upper_chunk = pid_list->upper[upper1]; 240 if (!upper_chunk) 241 goto out; 242 243 lower_chunk = upper_chunk->data[upper2]; 244 if (!lower_chunk) 245 goto out; 246 247 clear_bit(lower, lower_chunk->data); 248 249 /* if there's no more bits set, add it to the free list */ 250 if (find_first_bit(lower_chunk->data, LOWER_MAX) >= LOWER_MAX) { 251 put_lower_chunk(pid_list, lower_chunk); 252 upper_chunk->data[upper2] = NULL; 253 if (upper_empty(upper_chunk)) { 254 put_upper_chunk(pid_list, upper_chunk); 255 pid_list->upper[upper1] = NULL; 256 } 257 } 258 out: 259 write_seqcount_end(&pid_list->seqcount); 260 raw_spin_unlock_irqrestore(&pid_list->lock, flags); 261 return 0; 262 } 263 264 /** 265 * trace_pid_list_next - return the next pid in the list 266 * @pid_list: The pid list to examine. 267 * @pid: The pid to start from 268 * @next: The pointer to place the pid that is set starting from @pid. 269 * 270 * Looks for the next consecutive pid that is in @pid_list starting 271 * at the pid specified by @pid. If one is set (including @pid), then 272 * that pid is placed into @next. 273 * 274 * Return 0 when a pid is found, -1 if there are no more pids included. 275 */ 276 int trace_pid_list_next(struct trace_pid_list *pid_list, unsigned int pid, 277 unsigned int *next) 278 { 279 union upper_chunk *upper_chunk; 280 union lower_chunk *lower_chunk; 281 unsigned long flags; 282 unsigned int upper1; 283 unsigned int upper2; 284 unsigned int lower; 285 286 if (!pid_list) 287 return -ENODEV; 288 289 if (pid_split(pid, &upper1, &upper2, &lower) < 0) 290 return -EINVAL; 291 292 raw_spin_lock_irqsave(&pid_list->lock, flags); 293 for (; upper1 <= UPPER_MASK; upper1++, upper2 = 0) { 294 upper_chunk = pid_list->upper[upper1]; 295 296 if (!upper_chunk) 297 continue; 298 299 for (; upper2 <= UPPER_MASK; upper2++, lower = 0) { 300 lower_chunk = upper_chunk->data[upper2]; 301 if (!lower_chunk) 302 continue; 303 304 lower = find_next_bit(lower_chunk->data, LOWER_MAX, 305 lower); 306 if (lower < LOWER_MAX) 307 goto found; 308 } 309 } 310 311 found: 312 raw_spin_unlock_irqrestore(&pid_list->lock, flags); 313 if (upper1 > UPPER_MASK) 314 return -1; 315 316 *next = pid_join(upper1, upper2, lower); 317 return 0; 318 } 319 320 /** 321 * trace_pid_list_first - return the first pid in the list 322 * @pid_list: The pid list to examine. 323 * @pid: The pointer to place the pid first found pid that is set. 324 * 325 * Looks for the first pid that is set in @pid_list, and places it 326 * into @pid if found. 327 * 328 * Return 0 when a pid is found, -1 if there are no pids set. 329 */ 330 int trace_pid_list_first(struct trace_pid_list *pid_list, unsigned int *pid) 331 { 332 return trace_pid_list_next(pid_list, 0, pid); 333 } 334 335 static void pid_list_refill_irq(struct irq_work *iwork) 336 { 337 struct trace_pid_list *pid_list = container_of(iwork, struct trace_pid_list, 338 refill_irqwork); 339 union upper_chunk *upper = NULL; 340 union lower_chunk *lower = NULL; 341 union upper_chunk **upper_next = &upper; 342 union lower_chunk **lower_next = &lower; 343 int upper_count; 344 int lower_count; 345 int ucnt = 0; 346 int lcnt = 0; 347 348 again: 349 raw_spin_lock(&pid_list->lock); 350 write_seqcount_begin(&pid_list->seqcount); 351 upper_count = CHUNK_ALLOC - pid_list->free_upper_chunks; 352 lower_count = CHUNK_ALLOC - pid_list->free_lower_chunks; 353 write_seqcount_end(&pid_list->seqcount); 354 raw_spin_unlock(&pid_list->lock); 355 356 if (upper_count <= 0 && lower_count <= 0) 357 return; 358 359 while (upper_count-- > 0) { 360 union upper_chunk *chunk; 361 362 chunk = kzalloc(sizeof(*chunk), GFP_NOWAIT); 363 if (!chunk) 364 break; 365 *upper_next = chunk; 366 upper_next = &chunk->next; 367 ucnt++; 368 } 369 370 while (lower_count-- > 0) { 371 union lower_chunk *chunk; 372 373 chunk = kzalloc(sizeof(*chunk), GFP_NOWAIT); 374 if (!chunk) 375 break; 376 *lower_next = chunk; 377 lower_next = &chunk->next; 378 lcnt++; 379 } 380 381 raw_spin_lock(&pid_list->lock); 382 write_seqcount_begin(&pid_list->seqcount); 383 if (upper) { 384 *upper_next = pid_list->upper_list; 385 pid_list->upper_list = upper; 386 pid_list->free_upper_chunks += ucnt; 387 } 388 if (lower) { 389 *lower_next = pid_list->lower_list; 390 pid_list->lower_list = lower; 391 pid_list->free_lower_chunks += lcnt; 392 } 393 write_seqcount_end(&pid_list->seqcount); 394 raw_spin_unlock(&pid_list->lock); 395 396 /* 397 * On success of allocating all the chunks, both counters 398 * will be less than zero. If they are not, then an allocation 399 * failed, and we should not try again. 400 */ 401 if (upper_count >= 0 || lower_count >= 0) 402 return; 403 /* 404 * When the locks were released, free chunks could have 405 * been used and allocation needs to be done again. Might as 406 * well allocate it now. 407 */ 408 goto again; 409 } 410 411 /** 412 * trace_pid_list_alloc - create a new pid_list 413 * 414 * Allocates a new pid_list to store pids into. 415 * 416 * Returns the pid_list on success, NULL otherwise. 417 */ 418 struct trace_pid_list *trace_pid_list_alloc(void) 419 { 420 struct trace_pid_list *pid_list; 421 int i; 422 423 /* According to linux/thread.h, pids can be no bigger that 30 bits */ 424 WARN_ON_ONCE(init_pid_ns.pid_max > (1 << 30)); 425 426 pid_list = kzalloc(sizeof(*pid_list), GFP_KERNEL); 427 if (!pid_list) 428 return NULL; 429 430 init_irq_work(&pid_list->refill_irqwork, pid_list_refill_irq); 431 432 raw_spin_lock_init(&pid_list->lock); 433 seqcount_raw_spinlock_init(&pid_list->seqcount, &pid_list->lock); 434 435 for (i = 0; i < CHUNK_ALLOC; i++) { 436 union upper_chunk *chunk; 437 438 chunk = kzalloc(sizeof(*chunk), GFP_KERNEL); 439 if (!chunk) 440 break; 441 chunk->next = pid_list->upper_list; 442 pid_list->upper_list = chunk; 443 pid_list->free_upper_chunks++; 444 } 445 446 for (i = 0; i < CHUNK_ALLOC; i++) { 447 union lower_chunk *chunk; 448 449 chunk = kzalloc(sizeof(*chunk), GFP_KERNEL); 450 if (!chunk) 451 break; 452 chunk->next = pid_list->lower_list; 453 pid_list->lower_list = chunk; 454 pid_list->free_lower_chunks++; 455 } 456 457 return pid_list; 458 } 459 460 /** 461 * trace_pid_list_free - Frees an allocated pid_list. 462 * @pid_list: The pid list to free. 463 * 464 * Frees the memory for a pid_list that was allocated. 465 */ 466 void trace_pid_list_free(struct trace_pid_list *pid_list) 467 { 468 union upper_chunk *upper; 469 union lower_chunk *lower; 470 int i, j; 471 472 if (!pid_list) 473 return; 474 475 irq_work_sync(&pid_list->refill_irqwork); 476 477 while (pid_list->lower_list) { 478 union lower_chunk *chunk; 479 480 chunk = pid_list->lower_list; 481 pid_list->lower_list = pid_list->lower_list->next; 482 kfree(chunk); 483 } 484 485 while (pid_list->upper_list) { 486 union upper_chunk *chunk; 487 488 chunk = pid_list->upper_list; 489 pid_list->upper_list = pid_list->upper_list->next; 490 kfree(chunk); 491 } 492 493 for (i = 0; i < UPPER1_SIZE; i++) { 494 upper = pid_list->upper[i]; 495 if (upper) { 496 for (j = 0; j < UPPER2_SIZE; j++) { 497 lower = upper->data[j]; 498 kfree(lower); 499 } 500 kfree(upper); 501 } 502 } 503 kfree(pid_list); 504 } 505