1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Infrastructure for profiling code inserted by 'gcc -pg'. 4 * 5 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com> 6 * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com> 7 * 8 * Originally ported from the -rt patch by: 9 * Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com> 10 * 11 * Based on code in the latency_tracer, that is: 12 * 13 * Copyright (C) 2004-2006 Ingo Molnar 14 * Copyright (C) 2004 Nadia Yvette Chambers 15 */ 16 17 #include <linux/stop_machine.h> 18 #include <linux/clocksource.h> 19 #include <linux/sched/task.h> 20 #include <linux/kallsyms.h> 21 #include <linux/security.h> 22 #include <linux/seq_file.h> 23 #include <linux/tracefs.h> 24 #include <linux/hardirq.h> 25 #include <linux/kthread.h> 26 #include <linux/uaccess.h> 27 #include <linux/bsearch.h> 28 #include <linux/module.h> 29 #include <linux/ftrace.h> 30 #include <linux/sysctl.h> 31 #include <linux/slab.h> 32 #include <linux/ctype.h> 33 #include <linux/sort.h> 34 #include <linux/list.h> 35 #include <linux/hash.h> 36 #include <linux/rcupdate.h> 37 #include <linux/kprobes.h> 38 39 #include <trace/events/sched.h> 40 41 #include <asm/sections.h> 42 #include <asm/setup.h> 43 44 #include "ftrace_internal.h" 45 #include "trace_output.h" 46 #include "trace_stat.h" 47 48 /* Flags that do not get reset */ 49 #define FTRACE_NOCLEAR_FLAGS (FTRACE_FL_DISABLED | FTRACE_FL_TOUCHED | \ 50 FTRACE_FL_MODIFIED) 51 52 #define FTRACE_INVALID_FUNCTION "__ftrace_invalid_address__" 53 54 #define FTRACE_WARN_ON(cond) \ 55 ({ \ 56 int ___r = cond; \ 57 if (WARN_ON(___r)) \ 58 ftrace_kill(); \ 59 ___r; \ 60 }) 61 62 #define FTRACE_WARN_ON_ONCE(cond) \ 63 ({ \ 64 int ___r = cond; \ 65 if (WARN_ON_ONCE(___r)) \ 66 ftrace_kill(); \ 67 ___r; \ 68 }) 69 70 /* hash bits for specific function selection */ 71 #define FTRACE_HASH_DEFAULT_BITS 10 72 #define FTRACE_HASH_MAX_BITS 12 73 74 #ifdef CONFIG_DYNAMIC_FTRACE 75 #define INIT_OPS_HASH(opsname) \ 76 .func_hash = &opsname.local_hash, \ 77 .local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock), \ 78 .subop_list = LIST_HEAD_INIT(opsname.subop_list), 79 #else 80 #define INIT_OPS_HASH(opsname) 81 #endif 82 83 enum { 84 FTRACE_MODIFY_ENABLE_FL = (1 << 0), 85 FTRACE_MODIFY_MAY_SLEEP_FL = (1 << 1), 86 }; 87 88 struct ftrace_ops ftrace_list_end __read_mostly = { 89 .func = ftrace_stub, 90 .flags = FTRACE_OPS_FL_STUB, 91 INIT_OPS_HASH(ftrace_list_end) 92 }; 93 94 /* ftrace_enabled is a method to turn ftrace on or off */ 95 int ftrace_enabled __read_mostly; 96 static int __maybe_unused last_ftrace_enabled; 97 98 /* Current function tracing op */ 99 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end; 100 /* What to set function_trace_op to */ 101 static struct ftrace_ops *set_function_trace_op; 102 103 bool ftrace_pids_enabled(struct ftrace_ops *ops) 104 { 105 struct trace_array *tr; 106 107 if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private) 108 return false; 109 110 tr = ops->private; 111 112 return tr->function_pids != NULL || tr->function_no_pids != NULL; 113 } 114 115 static void ftrace_update_trampoline(struct ftrace_ops *ops); 116 117 /* 118 * ftrace_disabled is set when an anomaly is discovered. 119 * ftrace_disabled is much stronger than ftrace_enabled. 120 */ 121 static int ftrace_disabled __read_mostly; 122 123 DEFINE_MUTEX(ftrace_lock); 124 125 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = (struct ftrace_ops __rcu *)&ftrace_list_end; 126 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub; 127 struct ftrace_ops global_ops; 128 129 /* Defined by vmlinux.lds.h see the comment above arch_ftrace_ops_list_func for details */ 130 void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 131 struct ftrace_ops *op, struct ftrace_regs *fregs); 132 133 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_CALL_OPS 134 /* 135 * Stub used to invoke the list ops without requiring a separate trampoline. 136 */ 137 const struct ftrace_ops ftrace_list_ops = { 138 .func = ftrace_ops_list_func, 139 .flags = FTRACE_OPS_FL_STUB, 140 }; 141 142 static void ftrace_ops_nop_func(unsigned long ip, unsigned long parent_ip, 143 struct ftrace_ops *op, 144 struct ftrace_regs *fregs) 145 { 146 /* do nothing */ 147 } 148 149 /* 150 * Stub used when a call site is disabled. May be called transiently by threads 151 * which have made it into ftrace_caller but haven't yet recovered the ops at 152 * the point the call site is disabled. 153 */ 154 const struct ftrace_ops ftrace_nop_ops = { 155 .func = ftrace_ops_nop_func, 156 .flags = FTRACE_OPS_FL_STUB, 157 }; 158 #endif 159 160 static inline void ftrace_ops_init(struct ftrace_ops *ops) 161 { 162 #ifdef CONFIG_DYNAMIC_FTRACE 163 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) { 164 mutex_init(&ops->local_hash.regex_lock); 165 INIT_LIST_HEAD(&ops->subop_list); 166 ops->func_hash = &ops->local_hash; 167 ops->flags |= FTRACE_OPS_FL_INITIALIZED; 168 } 169 #endif 170 } 171 172 /* Call this function for when a callback filters on set_ftrace_pid */ 173 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip, 174 struct ftrace_ops *op, struct ftrace_regs *fregs) 175 { 176 struct trace_array *tr = op->private; 177 int pid; 178 179 if (tr) { 180 pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid); 181 if (pid == FTRACE_PID_IGNORE) 182 return; 183 if (pid != FTRACE_PID_TRACE && 184 pid != current->pid) 185 return; 186 } 187 188 op->saved_func(ip, parent_ip, op, fregs); 189 } 190 191 static void ftrace_sync_ipi(void *data) 192 { 193 /* Probably not needed, but do it anyway */ 194 smp_rmb(); 195 } 196 197 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops) 198 { 199 /* 200 * If this is a dynamic or RCU ops, or we force list func, 201 * then it needs to call the list anyway. 202 */ 203 if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) || 204 FTRACE_FORCE_LIST_FUNC) 205 return ftrace_ops_list_func; 206 207 return ftrace_ops_get_func(ops); 208 } 209 210 static void update_ftrace_function(void) 211 { 212 ftrace_func_t func; 213 214 /* 215 * Prepare the ftrace_ops that the arch callback will use. 216 * If there's only one ftrace_ops registered, the ftrace_ops_list 217 * will point to the ops we want. 218 */ 219 set_function_trace_op = rcu_dereference_protected(ftrace_ops_list, 220 lockdep_is_held(&ftrace_lock)); 221 222 /* If there's no ftrace_ops registered, just call the stub function */ 223 if (set_function_trace_op == &ftrace_list_end) { 224 func = ftrace_stub; 225 226 /* 227 * If we are at the end of the list and this ops is 228 * recursion safe and not dynamic and the arch supports passing ops, 229 * then have the mcount trampoline call the function directly. 230 */ 231 } else if (rcu_dereference_protected(ftrace_ops_list->next, 232 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 233 func = ftrace_ops_get_list_func(ftrace_ops_list); 234 235 } else { 236 /* Just use the default ftrace_ops */ 237 set_function_trace_op = &ftrace_list_end; 238 func = ftrace_ops_list_func; 239 } 240 241 /* If there's no change, then do nothing more here */ 242 if (ftrace_trace_function == func) 243 return; 244 245 /* 246 * If we are using the list function, it doesn't care 247 * about the function_trace_ops. 248 */ 249 if (func == ftrace_ops_list_func) { 250 ftrace_trace_function = func; 251 /* 252 * Don't even bother setting function_trace_ops, 253 * it would be racy to do so anyway. 254 */ 255 return; 256 } 257 258 #ifndef CONFIG_DYNAMIC_FTRACE 259 /* 260 * For static tracing, we need to be a bit more careful. 261 * The function change takes affect immediately. Thus, 262 * we need to coordinate the setting of the function_trace_ops 263 * with the setting of the ftrace_trace_function. 264 * 265 * Set the function to the list ops, which will call the 266 * function we want, albeit indirectly, but it handles the 267 * ftrace_ops and doesn't depend on function_trace_op. 268 */ 269 ftrace_trace_function = ftrace_ops_list_func; 270 /* 271 * Make sure all CPUs see this. Yes this is slow, but static 272 * tracing is slow and nasty to have enabled. 273 */ 274 synchronize_rcu_tasks_rude(); 275 /* Now all cpus are using the list ops. */ 276 function_trace_op = set_function_trace_op; 277 /* Make sure the function_trace_op is visible on all CPUs */ 278 smp_wmb(); 279 /* Nasty way to force a rmb on all cpus */ 280 smp_call_function(ftrace_sync_ipi, NULL, 1); 281 /* OK, we are all set to update the ftrace_trace_function now! */ 282 #endif /* !CONFIG_DYNAMIC_FTRACE */ 283 284 ftrace_trace_function = func; 285 } 286 287 static void add_ftrace_ops(struct ftrace_ops __rcu **list, 288 struct ftrace_ops *ops) 289 { 290 rcu_assign_pointer(ops->next, *list); 291 292 /* 293 * We are entering ops into the list but another 294 * CPU might be walking that list. We need to make sure 295 * the ops->next pointer is valid before another CPU sees 296 * the ops pointer included into the list. 297 */ 298 rcu_assign_pointer(*list, ops); 299 } 300 301 static int remove_ftrace_ops(struct ftrace_ops __rcu **list, 302 struct ftrace_ops *ops) 303 { 304 struct ftrace_ops **p; 305 306 /* 307 * If we are removing the last function, then simply point 308 * to the ftrace_stub. 309 */ 310 if (rcu_dereference_protected(*list, 311 lockdep_is_held(&ftrace_lock)) == ops && 312 rcu_dereference_protected(ops->next, 313 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 314 rcu_assign_pointer(*list, &ftrace_list_end); 315 return 0; 316 } 317 318 for (p = list; *p != &ftrace_list_end; p = &(*p)->next) 319 if (*p == ops) 320 break; 321 322 if (*p != ops) 323 return -1; 324 325 *p = (*p)->next; 326 return 0; 327 } 328 329 static void ftrace_update_trampoline(struct ftrace_ops *ops); 330 331 int __register_ftrace_function(struct ftrace_ops *ops) 332 { 333 if (ops->flags & FTRACE_OPS_FL_DELETED) 334 return -EINVAL; 335 336 if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED)) 337 return -EBUSY; 338 339 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS 340 /* 341 * If the ftrace_ops specifies SAVE_REGS, then it only can be used 342 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set. 343 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant. 344 */ 345 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS && 346 !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)) 347 return -EINVAL; 348 349 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED) 350 ops->flags |= FTRACE_OPS_FL_SAVE_REGS; 351 #endif 352 if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT)) 353 return -EBUSY; 354 355 if (!is_kernel_core_data((unsigned long)ops)) 356 ops->flags |= FTRACE_OPS_FL_DYNAMIC; 357 358 add_ftrace_ops(&ftrace_ops_list, ops); 359 360 /* Always save the function, and reset at unregistering */ 361 ops->saved_func = ops->func; 362 363 if (ftrace_pids_enabled(ops)) 364 ops->func = ftrace_pid_func; 365 366 ftrace_update_trampoline(ops); 367 368 if (ftrace_enabled) 369 update_ftrace_function(); 370 371 return 0; 372 } 373 374 int __unregister_ftrace_function(struct ftrace_ops *ops) 375 { 376 int ret; 377 378 if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED))) 379 return -EBUSY; 380 381 ret = remove_ftrace_ops(&ftrace_ops_list, ops); 382 383 if (ret < 0) 384 return ret; 385 386 if (ftrace_enabled) 387 update_ftrace_function(); 388 389 ops->func = ops->saved_func; 390 391 return 0; 392 } 393 394 static void ftrace_update_pid_func(void) 395 { 396 struct ftrace_ops *op; 397 398 /* Only do something if we are tracing something */ 399 if (ftrace_trace_function == ftrace_stub) 400 return; 401 402 do_for_each_ftrace_op(op, ftrace_ops_list) { 403 if (op->flags & FTRACE_OPS_FL_PID) { 404 op->func = ftrace_pids_enabled(op) ? 405 ftrace_pid_func : op->saved_func; 406 ftrace_update_trampoline(op); 407 } 408 } while_for_each_ftrace_op(op); 409 410 fgraph_update_pid_func(); 411 412 update_ftrace_function(); 413 } 414 415 #ifdef CONFIG_FUNCTION_PROFILER 416 struct ftrace_profile { 417 struct hlist_node node; 418 unsigned long ip; 419 unsigned long counter; 420 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 421 unsigned long long time; 422 unsigned long long time_squared; 423 #endif 424 }; 425 426 struct ftrace_profile_page { 427 struct ftrace_profile_page *next; 428 unsigned long index; 429 struct ftrace_profile records[]; 430 }; 431 432 struct ftrace_profile_stat { 433 atomic_t disabled; 434 struct hlist_head *hash; 435 struct ftrace_profile_page *pages; 436 struct ftrace_profile_page *start; 437 struct tracer_stat stat; 438 }; 439 440 #define PROFILE_RECORDS_SIZE \ 441 (PAGE_SIZE - offsetof(struct ftrace_profile_page, records)) 442 443 #define PROFILES_PER_PAGE \ 444 (PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile)) 445 446 static int ftrace_profile_enabled __read_mostly; 447 448 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */ 449 static DEFINE_MUTEX(ftrace_profile_lock); 450 451 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats); 452 453 #define FTRACE_PROFILE_HASH_BITS 10 454 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS) 455 456 static void * 457 function_stat_next(void *v, int idx) 458 { 459 struct ftrace_profile *rec = v; 460 struct ftrace_profile_page *pg; 461 462 pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK); 463 464 again: 465 if (idx != 0) 466 rec++; 467 468 if ((void *)rec >= (void *)&pg->records[pg->index]) { 469 pg = pg->next; 470 if (!pg) 471 return NULL; 472 rec = &pg->records[0]; 473 if (!rec->counter) 474 goto again; 475 } 476 477 return rec; 478 } 479 480 static void *function_stat_start(struct tracer_stat *trace) 481 { 482 struct ftrace_profile_stat *stat = 483 container_of(trace, struct ftrace_profile_stat, stat); 484 485 if (!stat || !stat->start) 486 return NULL; 487 488 return function_stat_next(&stat->start->records[0], 0); 489 } 490 491 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 492 /* function graph compares on total time */ 493 static int function_stat_cmp(const void *p1, const void *p2) 494 { 495 const struct ftrace_profile *a = p1; 496 const struct ftrace_profile *b = p2; 497 498 if (a->time < b->time) 499 return -1; 500 if (a->time > b->time) 501 return 1; 502 else 503 return 0; 504 } 505 #else 506 /* not function graph compares against hits */ 507 static int function_stat_cmp(const void *p1, const void *p2) 508 { 509 const struct ftrace_profile *a = p1; 510 const struct ftrace_profile *b = p2; 511 512 if (a->counter < b->counter) 513 return -1; 514 if (a->counter > b->counter) 515 return 1; 516 else 517 return 0; 518 } 519 #endif 520 521 static int function_stat_headers(struct seq_file *m) 522 { 523 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 524 seq_puts(m, " Function " 525 "Hit Time Avg s^2\n" 526 " -------- " 527 "--- ---- --- ---\n"); 528 #else 529 seq_puts(m, " Function Hit\n" 530 " -------- ---\n"); 531 #endif 532 return 0; 533 } 534 535 static int function_stat_show(struct seq_file *m, void *v) 536 { 537 struct ftrace_profile *rec = v; 538 char str[KSYM_SYMBOL_LEN]; 539 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 540 static struct trace_seq s; 541 unsigned long long avg; 542 unsigned long long stddev; 543 unsigned long long stddev_denom; 544 #endif 545 guard(mutex)(&ftrace_profile_lock); 546 547 /* we raced with function_profile_reset() */ 548 if (unlikely(rec->counter == 0)) 549 return -EBUSY; 550 551 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 552 avg = div64_ul(rec->time, rec->counter); 553 if (tracing_thresh && (avg < tracing_thresh)) 554 return 0; 555 #endif 556 557 kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); 558 seq_printf(m, " %-30.30s %10lu", str, rec->counter); 559 560 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 561 seq_puts(m, " "); 562 563 /* 564 * Variance formula: 565 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2) 566 * Maybe Welford's method is better here? 567 * Divide only by 1000 for ns^2 -> us^2 conversion. 568 * trace_print_graph_duration will divide by 1000 again. 569 */ 570 stddev = 0; 571 stddev_denom = rec->counter * (rec->counter - 1) * 1000; 572 if (stddev_denom) { 573 stddev = rec->counter * rec->time_squared - 574 rec->time * rec->time; 575 stddev = div64_ul(stddev, stddev_denom); 576 } 577 578 trace_seq_init(&s); 579 trace_print_graph_duration(rec->time, &s); 580 trace_seq_puts(&s, " "); 581 trace_print_graph_duration(avg, &s); 582 trace_seq_puts(&s, " "); 583 trace_print_graph_duration(stddev, &s); 584 trace_print_seq(m, &s); 585 #endif 586 seq_putc(m, '\n'); 587 588 return 0; 589 } 590 591 static void ftrace_profile_reset(struct ftrace_profile_stat *stat) 592 { 593 struct ftrace_profile_page *pg; 594 595 pg = stat->pages = stat->start; 596 597 while (pg) { 598 memset(pg->records, 0, PROFILE_RECORDS_SIZE); 599 pg->index = 0; 600 pg = pg->next; 601 } 602 603 memset(stat->hash, 0, 604 FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head)); 605 } 606 607 static int ftrace_profile_pages_init(struct ftrace_profile_stat *stat) 608 { 609 struct ftrace_profile_page *pg; 610 int functions; 611 int pages; 612 int i; 613 614 /* If we already allocated, do nothing */ 615 if (stat->pages) 616 return 0; 617 618 stat->pages = (void *)get_zeroed_page(GFP_KERNEL); 619 if (!stat->pages) 620 return -ENOMEM; 621 622 #ifdef CONFIG_DYNAMIC_FTRACE 623 functions = ftrace_update_tot_cnt; 624 #else 625 /* 626 * We do not know the number of functions that exist because 627 * dynamic tracing is what counts them. With past experience 628 * we have around 20K functions. That should be more than enough. 629 * It is highly unlikely we will execute every function in 630 * the kernel. 631 */ 632 functions = 20000; 633 #endif 634 635 pg = stat->start = stat->pages; 636 637 pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE); 638 639 for (i = 1; i < pages; i++) { 640 pg->next = (void *)get_zeroed_page(GFP_KERNEL); 641 if (!pg->next) 642 goto out_free; 643 pg = pg->next; 644 } 645 646 return 0; 647 648 out_free: 649 pg = stat->start; 650 while (pg) { 651 unsigned long tmp = (unsigned long)pg; 652 653 pg = pg->next; 654 free_page(tmp); 655 } 656 657 stat->pages = NULL; 658 stat->start = NULL; 659 660 return -ENOMEM; 661 } 662 663 static int ftrace_profile_init_cpu(int cpu) 664 { 665 struct ftrace_profile_stat *stat; 666 int size; 667 668 stat = &per_cpu(ftrace_profile_stats, cpu); 669 670 if (stat->hash) { 671 /* If the profile is already created, simply reset it */ 672 ftrace_profile_reset(stat); 673 return 0; 674 } 675 676 /* 677 * We are profiling all functions, but usually only a few thousand 678 * functions are hit. We'll make a hash of 1024 items. 679 */ 680 size = FTRACE_PROFILE_HASH_SIZE; 681 682 stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL); 683 684 if (!stat->hash) 685 return -ENOMEM; 686 687 /* Preallocate the function profiling pages */ 688 if (ftrace_profile_pages_init(stat) < 0) { 689 kfree(stat->hash); 690 stat->hash = NULL; 691 return -ENOMEM; 692 } 693 694 return 0; 695 } 696 697 static int ftrace_profile_init(void) 698 { 699 int cpu; 700 int ret = 0; 701 702 for_each_possible_cpu(cpu) { 703 ret = ftrace_profile_init_cpu(cpu); 704 if (ret) 705 break; 706 } 707 708 return ret; 709 } 710 711 /* interrupts must be disabled */ 712 static struct ftrace_profile * 713 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip) 714 { 715 struct ftrace_profile *rec; 716 struct hlist_head *hhd; 717 unsigned long key; 718 719 key = hash_long(ip, FTRACE_PROFILE_HASH_BITS); 720 hhd = &stat->hash[key]; 721 722 if (hlist_empty(hhd)) 723 return NULL; 724 725 hlist_for_each_entry_rcu_notrace(rec, hhd, node) { 726 if (rec->ip == ip) 727 return rec; 728 } 729 730 return NULL; 731 } 732 733 static void ftrace_add_profile(struct ftrace_profile_stat *stat, 734 struct ftrace_profile *rec) 735 { 736 unsigned long key; 737 738 key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS); 739 hlist_add_head_rcu(&rec->node, &stat->hash[key]); 740 } 741 742 /* 743 * The memory is already allocated, this simply finds a new record to use. 744 */ 745 static struct ftrace_profile * 746 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip) 747 { 748 struct ftrace_profile *rec = NULL; 749 750 /* prevent recursion (from NMIs) */ 751 if (atomic_inc_return(&stat->disabled) != 1) 752 goto out; 753 754 /* 755 * Try to find the function again since an NMI 756 * could have added it 757 */ 758 rec = ftrace_find_profiled_func(stat, ip); 759 if (rec) 760 goto out; 761 762 if (stat->pages->index == PROFILES_PER_PAGE) { 763 if (!stat->pages->next) 764 goto out; 765 stat->pages = stat->pages->next; 766 } 767 768 rec = &stat->pages->records[stat->pages->index++]; 769 rec->ip = ip; 770 ftrace_add_profile(stat, rec); 771 772 out: 773 atomic_dec(&stat->disabled); 774 775 return rec; 776 } 777 778 static void 779 function_profile_call(unsigned long ip, unsigned long parent_ip, 780 struct ftrace_ops *ops, struct ftrace_regs *fregs) 781 { 782 struct ftrace_profile_stat *stat; 783 struct ftrace_profile *rec; 784 785 if (!ftrace_profile_enabled) 786 return; 787 788 guard(preempt_notrace)(); 789 790 stat = this_cpu_ptr(&ftrace_profile_stats); 791 if (!stat->hash || !ftrace_profile_enabled) 792 return; 793 794 rec = ftrace_find_profiled_func(stat, ip); 795 if (!rec) { 796 rec = ftrace_profile_alloc(stat, ip); 797 if (!rec) 798 return; 799 } 800 801 rec->counter++; 802 } 803 804 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 805 static bool fgraph_graph_time = true; 806 807 void ftrace_graph_graph_time_control(bool enable) 808 { 809 fgraph_graph_time = enable; 810 } 811 812 struct profile_fgraph_data { 813 unsigned long long calltime; 814 unsigned long long subtime; 815 unsigned long long sleeptime; 816 }; 817 818 static int profile_graph_entry(struct ftrace_graph_ent *trace, 819 struct fgraph_ops *gops, 820 struct ftrace_regs *fregs) 821 { 822 struct profile_fgraph_data *profile_data; 823 824 function_profile_call(trace->func, 0, NULL, NULL); 825 826 /* If function graph is shutting down, ret_stack can be NULL */ 827 if (!current->ret_stack) 828 return 0; 829 830 profile_data = fgraph_reserve_data(gops->idx, sizeof(*profile_data)); 831 if (!profile_data) 832 return 0; 833 834 profile_data->subtime = 0; 835 profile_data->sleeptime = current->ftrace_sleeptime; 836 profile_data->calltime = trace_clock_local(); 837 838 return 1; 839 } 840 841 static void profile_graph_return(struct ftrace_graph_ret *trace, 842 struct fgraph_ops *gops, 843 struct ftrace_regs *fregs) 844 { 845 struct profile_fgraph_data *profile_data; 846 struct ftrace_profile_stat *stat; 847 unsigned long long calltime; 848 unsigned long long rettime = trace_clock_local(); 849 struct ftrace_profile *rec; 850 int size; 851 852 guard(preempt_notrace)(); 853 854 stat = this_cpu_ptr(&ftrace_profile_stats); 855 if (!stat->hash || !ftrace_profile_enabled) 856 return; 857 858 profile_data = fgraph_retrieve_data(gops->idx, &size); 859 860 /* If the calltime was zero'd ignore it */ 861 if (!profile_data || !profile_data->calltime) 862 return; 863 864 calltime = rettime - profile_data->calltime; 865 866 if (!fgraph_sleep_time) { 867 if (current->ftrace_sleeptime) 868 calltime -= current->ftrace_sleeptime - profile_data->sleeptime; 869 } 870 871 if (!fgraph_graph_time) { 872 struct profile_fgraph_data *parent_data; 873 874 /* Append this call time to the parent time to subtract */ 875 parent_data = fgraph_retrieve_parent_data(gops->idx, &size, 1); 876 if (parent_data) 877 parent_data->subtime += calltime; 878 879 if (profile_data->subtime && profile_data->subtime < calltime) 880 calltime -= profile_data->subtime; 881 else 882 calltime = 0; 883 } 884 885 rec = ftrace_find_profiled_func(stat, trace->func); 886 if (rec) { 887 rec->time += calltime; 888 rec->time_squared += calltime * calltime; 889 } 890 } 891 892 static struct fgraph_ops fprofiler_ops = { 893 .entryfunc = &profile_graph_entry, 894 .retfunc = &profile_graph_return, 895 }; 896 897 static int register_ftrace_profiler(void) 898 { 899 ftrace_ops_set_global_filter(&fprofiler_ops.ops); 900 return register_ftrace_graph(&fprofiler_ops); 901 } 902 903 static void unregister_ftrace_profiler(void) 904 { 905 unregister_ftrace_graph(&fprofiler_ops); 906 } 907 #else 908 static struct ftrace_ops ftrace_profile_ops __read_mostly = { 909 .func = function_profile_call, 910 }; 911 912 static int register_ftrace_profiler(void) 913 { 914 ftrace_ops_set_global_filter(&ftrace_profile_ops); 915 return register_ftrace_function(&ftrace_profile_ops); 916 } 917 918 static void unregister_ftrace_profiler(void) 919 { 920 unregister_ftrace_function(&ftrace_profile_ops); 921 } 922 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 923 924 static ssize_t 925 ftrace_profile_write(struct file *filp, const char __user *ubuf, 926 size_t cnt, loff_t *ppos) 927 { 928 unsigned long val; 929 int ret; 930 931 ret = kstrtoul_from_user(ubuf, cnt, 10, &val); 932 if (ret) 933 return ret; 934 935 val = !!val; 936 937 guard(mutex)(&ftrace_profile_lock); 938 if (ftrace_profile_enabled ^ val) { 939 if (val) { 940 ret = ftrace_profile_init(); 941 if (ret < 0) 942 return ret; 943 944 ret = register_ftrace_profiler(); 945 if (ret < 0) 946 return ret; 947 ftrace_profile_enabled = 1; 948 } else { 949 ftrace_profile_enabled = 0; 950 /* 951 * unregister_ftrace_profiler calls stop_machine 952 * so this acts like an synchronize_rcu. 953 */ 954 unregister_ftrace_profiler(); 955 } 956 } 957 958 *ppos += cnt; 959 960 return cnt; 961 } 962 963 static ssize_t 964 ftrace_profile_read(struct file *filp, char __user *ubuf, 965 size_t cnt, loff_t *ppos) 966 { 967 char buf[64]; /* big enough to hold a number */ 968 int r; 969 970 r = sprintf(buf, "%u\n", ftrace_profile_enabled); 971 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 972 } 973 974 static const struct file_operations ftrace_profile_fops = { 975 .open = tracing_open_generic, 976 .read = ftrace_profile_read, 977 .write = ftrace_profile_write, 978 .llseek = default_llseek, 979 }; 980 981 /* used to initialize the real stat files */ 982 static struct tracer_stat function_stats __initdata = { 983 .name = "functions", 984 .stat_start = function_stat_start, 985 .stat_next = function_stat_next, 986 .stat_cmp = function_stat_cmp, 987 .stat_headers = function_stat_headers, 988 .stat_show = function_stat_show 989 }; 990 991 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 992 { 993 struct ftrace_profile_stat *stat; 994 char *name; 995 int ret; 996 int cpu; 997 998 for_each_possible_cpu(cpu) { 999 stat = &per_cpu(ftrace_profile_stats, cpu); 1000 1001 name = kasprintf(GFP_KERNEL, "function%d", cpu); 1002 if (!name) { 1003 /* 1004 * The files created are permanent, if something happens 1005 * we still do not free memory. 1006 */ 1007 WARN(1, 1008 "Could not allocate stat file for cpu %d\n", 1009 cpu); 1010 return; 1011 } 1012 stat->stat = function_stats; 1013 stat->stat.name = name; 1014 ret = register_stat_tracer(&stat->stat); 1015 if (ret) { 1016 WARN(1, 1017 "Could not register function stat for cpu %d\n", 1018 cpu); 1019 kfree(name); 1020 return; 1021 } 1022 } 1023 1024 trace_create_file("function_profile_enabled", 1025 TRACE_MODE_WRITE, d_tracer, NULL, 1026 &ftrace_profile_fops); 1027 } 1028 1029 #else /* CONFIG_FUNCTION_PROFILER */ 1030 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 1031 { 1032 } 1033 #endif /* CONFIG_FUNCTION_PROFILER */ 1034 1035 #ifdef CONFIG_DYNAMIC_FTRACE 1036 1037 static struct ftrace_ops *removed_ops; 1038 1039 /* 1040 * Set when doing a global update, like enabling all recs or disabling them. 1041 * It is not set when just updating a single ftrace_ops. 1042 */ 1043 static bool update_all_ops; 1044 1045 #ifndef CONFIG_FTRACE_MCOUNT_RECORD 1046 # error Dynamic ftrace depends on MCOUNT_RECORD 1047 #endif 1048 1049 struct ftrace_func_probe { 1050 struct ftrace_probe_ops *probe_ops; 1051 struct ftrace_ops ops; 1052 struct trace_array *tr; 1053 struct list_head list; 1054 void *data; 1055 int ref; 1056 }; 1057 1058 /* 1059 * We make these constant because no one should touch them, 1060 * but they are used as the default "empty hash", to avoid allocating 1061 * it all the time. These are in a read only section such that if 1062 * anyone does try to modify it, it will cause an exception. 1063 */ 1064 static const struct hlist_head empty_buckets[1]; 1065 static const struct ftrace_hash empty_hash = { 1066 .buckets = (struct hlist_head *)empty_buckets, 1067 }; 1068 #define EMPTY_HASH ((struct ftrace_hash *)&empty_hash) 1069 1070 struct ftrace_ops global_ops = { 1071 .func = ftrace_stub, 1072 .local_hash.notrace_hash = EMPTY_HASH, 1073 .local_hash.filter_hash = EMPTY_HASH, 1074 INIT_OPS_HASH(global_ops) 1075 .flags = FTRACE_OPS_FL_INITIALIZED | 1076 FTRACE_OPS_FL_PID, 1077 }; 1078 1079 /* 1080 * Used by the stack unwinder to know about dynamic ftrace trampolines. 1081 */ 1082 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr) 1083 { 1084 struct ftrace_ops *op = NULL; 1085 1086 /* 1087 * Some of the ops may be dynamically allocated, 1088 * they are freed after a synchronize_rcu(). 1089 */ 1090 preempt_disable_notrace(); 1091 1092 do_for_each_ftrace_op(op, ftrace_ops_list) { 1093 /* 1094 * This is to check for dynamically allocated trampolines. 1095 * Trampolines that are in kernel text will have 1096 * core_kernel_text() return true. 1097 */ 1098 if (op->trampoline && op->trampoline_size) 1099 if (addr >= op->trampoline && 1100 addr < op->trampoline + op->trampoline_size) { 1101 preempt_enable_notrace(); 1102 return op; 1103 } 1104 } while_for_each_ftrace_op(op); 1105 preempt_enable_notrace(); 1106 1107 return NULL; 1108 } 1109 1110 /* 1111 * This is used by __kernel_text_address() to return true if the 1112 * address is on a dynamically allocated trampoline that would 1113 * not return true for either core_kernel_text() or 1114 * is_module_text_address(). 1115 */ 1116 bool is_ftrace_trampoline(unsigned long addr) 1117 { 1118 return ftrace_ops_trampoline(addr) != NULL; 1119 } 1120 1121 struct ftrace_page { 1122 struct ftrace_page *next; 1123 struct dyn_ftrace *records; 1124 int index; 1125 int order; 1126 }; 1127 1128 #define ENTRY_SIZE sizeof(struct dyn_ftrace) 1129 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE) 1130 1131 static struct ftrace_page *ftrace_pages_start; 1132 static struct ftrace_page *ftrace_pages; 1133 1134 static __always_inline unsigned long 1135 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip) 1136 { 1137 if (hash->size_bits > 0) 1138 return hash_long(ip, hash->size_bits); 1139 1140 return 0; 1141 } 1142 1143 /* Only use this function if ftrace_hash_empty() has already been tested */ 1144 static __always_inline struct ftrace_func_entry * 1145 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1146 { 1147 unsigned long key; 1148 struct ftrace_func_entry *entry; 1149 struct hlist_head *hhd; 1150 1151 key = ftrace_hash_key(hash, ip); 1152 hhd = &hash->buckets[key]; 1153 1154 hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) { 1155 if (entry->ip == ip) 1156 return entry; 1157 } 1158 return NULL; 1159 } 1160 1161 /** 1162 * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash 1163 * @hash: The hash to look at 1164 * @ip: The instruction pointer to test 1165 * 1166 * Search a given @hash to see if a given instruction pointer (@ip) 1167 * exists in it. 1168 * 1169 * Returns: the entry that holds the @ip if found. NULL otherwise. 1170 */ 1171 struct ftrace_func_entry * 1172 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1173 { 1174 if (ftrace_hash_empty(hash)) 1175 return NULL; 1176 1177 return __ftrace_lookup_ip(hash, ip); 1178 } 1179 1180 static void __add_hash_entry(struct ftrace_hash *hash, 1181 struct ftrace_func_entry *entry) 1182 { 1183 struct hlist_head *hhd; 1184 unsigned long key; 1185 1186 key = ftrace_hash_key(hash, entry->ip); 1187 hhd = &hash->buckets[key]; 1188 hlist_add_head(&entry->hlist, hhd); 1189 hash->count++; 1190 } 1191 1192 static struct ftrace_func_entry * 1193 add_hash_entry(struct ftrace_hash *hash, unsigned long ip) 1194 { 1195 struct ftrace_func_entry *entry; 1196 1197 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 1198 if (!entry) 1199 return NULL; 1200 1201 entry->ip = ip; 1202 __add_hash_entry(hash, entry); 1203 1204 return entry; 1205 } 1206 1207 static void 1208 free_hash_entry(struct ftrace_hash *hash, 1209 struct ftrace_func_entry *entry) 1210 { 1211 hlist_del(&entry->hlist); 1212 kfree(entry); 1213 hash->count--; 1214 } 1215 1216 static void 1217 remove_hash_entry(struct ftrace_hash *hash, 1218 struct ftrace_func_entry *entry) 1219 { 1220 hlist_del_rcu(&entry->hlist); 1221 hash->count--; 1222 } 1223 1224 static void ftrace_hash_clear(struct ftrace_hash *hash) 1225 { 1226 struct hlist_head *hhd; 1227 struct hlist_node *tn; 1228 struct ftrace_func_entry *entry; 1229 int size = 1 << hash->size_bits; 1230 int i; 1231 1232 if (!hash->count) 1233 return; 1234 1235 for (i = 0; i < size; i++) { 1236 hhd = &hash->buckets[i]; 1237 hlist_for_each_entry_safe(entry, tn, hhd, hlist) 1238 free_hash_entry(hash, entry); 1239 } 1240 FTRACE_WARN_ON(hash->count); 1241 } 1242 1243 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod) 1244 { 1245 list_del(&ftrace_mod->list); 1246 kfree(ftrace_mod->module); 1247 kfree(ftrace_mod->func); 1248 kfree(ftrace_mod); 1249 } 1250 1251 static void clear_ftrace_mod_list(struct list_head *head) 1252 { 1253 struct ftrace_mod_load *p, *n; 1254 1255 /* stack tracer isn't supported yet */ 1256 if (!head) 1257 return; 1258 1259 mutex_lock(&ftrace_lock); 1260 list_for_each_entry_safe(p, n, head, list) 1261 free_ftrace_mod(p); 1262 mutex_unlock(&ftrace_lock); 1263 } 1264 1265 static void free_ftrace_hash(struct ftrace_hash *hash) 1266 { 1267 if (!hash || hash == EMPTY_HASH) 1268 return; 1269 ftrace_hash_clear(hash); 1270 kfree(hash->buckets); 1271 kfree(hash); 1272 } 1273 1274 static void __free_ftrace_hash_rcu(struct rcu_head *rcu) 1275 { 1276 struct ftrace_hash *hash; 1277 1278 hash = container_of(rcu, struct ftrace_hash, rcu); 1279 free_ftrace_hash(hash); 1280 } 1281 1282 static void free_ftrace_hash_rcu(struct ftrace_hash *hash) 1283 { 1284 if (!hash || hash == EMPTY_HASH) 1285 return; 1286 call_rcu(&hash->rcu, __free_ftrace_hash_rcu); 1287 } 1288 1289 /** 1290 * ftrace_free_filter - remove all filters for an ftrace_ops 1291 * @ops: the ops to remove the filters from 1292 */ 1293 void ftrace_free_filter(struct ftrace_ops *ops) 1294 { 1295 ftrace_ops_init(ops); 1296 if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED)) 1297 return; 1298 free_ftrace_hash(ops->func_hash->filter_hash); 1299 free_ftrace_hash(ops->func_hash->notrace_hash); 1300 } 1301 EXPORT_SYMBOL_GPL(ftrace_free_filter); 1302 1303 static struct ftrace_hash *alloc_ftrace_hash(int size_bits) 1304 { 1305 struct ftrace_hash *hash; 1306 int size; 1307 1308 hash = kzalloc(sizeof(*hash), GFP_KERNEL); 1309 if (!hash) 1310 return NULL; 1311 1312 size = 1 << size_bits; 1313 hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL); 1314 1315 if (!hash->buckets) { 1316 kfree(hash); 1317 return NULL; 1318 } 1319 1320 hash->size_bits = size_bits; 1321 1322 return hash; 1323 } 1324 1325 /* Used to save filters on functions for modules not loaded yet */ 1326 static int ftrace_add_mod(struct trace_array *tr, 1327 const char *func, const char *module, 1328 int enable) 1329 { 1330 struct ftrace_mod_load *ftrace_mod; 1331 struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace; 1332 1333 ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL); 1334 if (!ftrace_mod) 1335 return -ENOMEM; 1336 1337 INIT_LIST_HEAD(&ftrace_mod->list); 1338 ftrace_mod->func = kstrdup(func, GFP_KERNEL); 1339 ftrace_mod->module = kstrdup(module, GFP_KERNEL); 1340 ftrace_mod->enable = enable; 1341 1342 if (!ftrace_mod->func || !ftrace_mod->module) 1343 goto out_free; 1344 1345 list_add(&ftrace_mod->list, mod_head); 1346 1347 return 0; 1348 1349 out_free: 1350 free_ftrace_mod(ftrace_mod); 1351 1352 return -ENOMEM; 1353 } 1354 1355 static struct ftrace_hash * 1356 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash) 1357 { 1358 struct ftrace_func_entry *entry; 1359 struct ftrace_hash *new_hash; 1360 int size; 1361 int i; 1362 1363 new_hash = alloc_ftrace_hash(size_bits); 1364 if (!new_hash) 1365 return NULL; 1366 1367 if (hash) 1368 new_hash->flags = hash->flags; 1369 1370 /* Empty hash? */ 1371 if (ftrace_hash_empty(hash)) 1372 return new_hash; 1373 1374 size = 1 << hash->size_bits; 1375 for (i = 0; i < size; i++) { 1376 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 1377 if (add_hash_entry(new_hash, entry->ip) == NULL) 1378 goto free_hash; 1379 } 1380 } 1381 1382 FTRACE_WARN_ON(new_hash->count != hash->count); 1383 1384 return new_hash; 1385 1386 free_hash: 1387 free_ftrace_hash(new_hash); 1388 return NULL; 1389 } 1390 1391 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops); 1392 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops); 1393 1394 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1395 struct ftrace_hash *new_hash); 1396 1397 /* 1398 * Allocate a new hash and remove entries from @src and move them to the new hash. 1399 * On success, the @src hash will be empty and should be freed. 1400 */ 1401 static struct ftrace_hash *__move_hash(struct ftrace_hash *src, int size) 1402 { 1403 struct ftrace_func_entry *entry; 1404 struct ftrace_hash *new_hash; 1405 struct hlist_head *hhd; 1406 struct hlist_node *tn; 1407 int bits = 0; 1408 int i; 1409 1410 /* 1411 * Use around half the size (max bit of it), but 1412 * a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits). 1413 */ 1414 bits = fls(size / 2); 1415 1416 /* Don't allocate too much */ 1417 if (bits > FTRACE_HASH_MAX_BITS) 1418 bits = FTRACE_HASH_MAX_BITS; 1419 1420 new_hash = alloc_ftrace_hash(bits); 1421 if (!new_hash) 1422 return NULL; 1423 1424 new_hash->flags = src->flags; 1425 1426 size = 1 << src->size_bits; 1427 for (i = 0; i < size; i++) { 1428 hhd = &src->buckets[i]; 1429 hlist_for_each_entry_safe(entry, tn, hhd, hlist) { 1430 remove_hash_entry(src, entry); 1431 __add_hash_entry(new_hash, entry); 1432 } 1433 } 1434 return new_hash; 1435 } 1436 1437 /* Move the @src entries to a newly allocated hash */ 1438 static struct ftrace_hash * 1439 __ftrace_hash_move(struct ftrace_hash *src) 1440 { 1441 int size = src->count; 1442 1443 /* 1444 * If the new source is empty, just return the empty_hash. 1445 */ 1446 if (ftrace_hash_empty(src)) 1447 return EMPTY_HASH; 1448 1449 return __move_hash(src, size); 1450 } 1451 1452 /** 1453 * ftrace_hash_move - move a new hash to a filter and do updates 1454 * @ops: The ops with the hash that @dst points to 1455 * @enable: True if for the filter hash, false for the notrace hash 1456 * @dst: Points to the @ops hash that should be updated 1457 * @src: The hash to update @dst with 1458 * 1459 * This is called when an ftrace_ops hash is being updated and the 1460 * the kernel needs to reflect this. Note, this only updates the kernel 1461 * function callbacks if the @ops is enabled (not to be confused with 1462 * @enable above). If the @ops is enabled, its hash determines what 1463 * callbacks get called. This function gets called when the @ops hash 1464 * is updated and it requires new callbacks. 1465 * 1466 * On success the elements of @src is moved to @dst, and @dst is updated 1467 * properly, as well as the functions determined by the @ops hashes 1468 * are now calling the @ops callback function. 1469 * 1470 * Regardless of return type, @src should be freed with free_ftrace_hash(). 1471 */ 1472 static int 1473 ftrace_hash_move(struct ftrace_ops *ops, int enable, 1474 struct ftrace_hash **dst, struct ftrace_hash *src) 1475 { 1476 struct ftrace_hash *new_hash; 1477 int ret; 1478 1479 /* Reject setting notrace hash on IPMODIFY ftrace_ops */ 1480 if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable) 1481 return -EINVAL; 1482 1483 new_hash = __ftrace_hash_move(src); 1484 if (!new_hash) 1485 return -ENOMEM; 1486 1487 /* Make sure this can be applied if it is IPMODIFY ftrace_ops */ 1488 if (enable) { 1489 /* IPMODIFY should be updated only when filter_hash updating */ 1490 ret = ftrace_hash_ipmodify_update(ops, new_hash); 1491 if (ret < 0) { 1492 free_ftrace_hash(new_hash); 1493 return ret; 1494 } 1495 } 1496 1497 /* 1498 * Remove the current set, update the hash and add 1499 * them back. 1500 */ 1501 ftrace_hash_rec_disable_modify(ops); 1502 1503 rcu_assign_pointer(*dst, new_hash); 1504 1505 ftrace_hash_rec_enable_modify(ops); 1506 1507 return 0; 1508 } 1509 1510 static bool hash_contains_ip(unsigned long ip, 1511 struct ftrace_ops_hash *hash) 1512 { 1513 /* 1514 * The function record is a match if it exists in the filter 1515 * hash and not in the notrace hash. Note, an empty hash is 1516 * considered a match for the filter hash, but an empty 1517 * notrace hash is considered not in the notrace hash. 1518 */ 1519 return (ftrace_hash_empty(hash->filter_hash) || 1520 __ftrace_lookup_ip(hash->filter_hash, ip)) && 1521 (ftrace_hash_empty(hash->notrace_hash) || 1522 !__ftrace_lookup_ip(hash->notrace_hash, ip)); 1523 } 1524 1525 /* 1526 * Test the hashes for this ops to see if we want to call 1527 * the ops->func or not. 1528 * 1529 * It's a match if the ip is in the ops->filter_hash or 1530 * the filter_hash does not exist or is empty, 1531 * AND 1532 * the ip is not in the ops->notrace_hash. 1533 * 1534 * This needs to be called with preemption disabled as 1535 * the hashes are freed with call_rcu(). 1536 */ 1537 int 1538 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs) 1539 { 1540 struct ftrace_ops_hash hash; 1541 int ret; 1542 1543 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS 1544 /* 1545 * There's a small race when adding ops that the ftrace handler 1546 * that wants regs, may be called without them. We can not 1547 * allow that handler to be called if regs is NULL. 1548 */ 1549 if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS)) 1550 return 0; 1551 #endif 1552 1553 rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash); 1554 rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash); 1555 1556 if (hash_contains_ip(ip, &hash)) 1557 ret = 1; 1558 else 1559 ret = 0; 1560 1561 return ret; 1562 } 1563 1564 /* 1565 * This is a double for. Do not use 'break' to break out of the loop, 1566 * you must use a goto. 1567 */ 1568 #define do_for_each_ftrace_rec(pg, rec) \ 1569 for (pg = ftrace_pages_start; pg; pg = pg->next) { \ 1570 int _____i; \ 1571 for (_____i = 0; _____i < pg->index; _____i++) { \ 1572 rec = &pg->records[_____i]; 1573 1574 #define while_for_each_ftrace_rec() \ 1575 } \ 1576 } 1577 1578 1579 static int ftrace_cmp_recs(const void *a, const void *b) 1580 { 1581 const struct dyn_ftrace *key = a; 1582 const struct dyn_ftrace *rec = b; 1583 1584 if (key->flags < rec->ip) 1585 return -1; 1586 if (key->ip >= rec->ip + MCOUNT_INSN_SIZE) 1587 return 1; 1588 return 0; 1589 } 1590 1591 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end) 1592 { 1593 struct ftrace_page *pg; 1594 struct dyn_ftrace *rec = NULL; 1595 struct dyn_ftrace key; 1596 1597 key.ip = start; 1598 key.flags = end; /* overload flags, as it is unsigned long */ 1599 1600 for (pg = ftrace_pages_start; pg; pg = pg->next) { 1601 if (pg->index == 0 || 1602 end < pg->records[0].ip || 1603 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 1604 continue; 1605 rec = bsearch(&key, pg->records, pg->index, 1606 sizeof(struct dyn_ftrace), 1607 ftrace_cmp_recs); 1608 if (rec) 1609 break; 1610 } 1611 return rec; 1612 } 1613 1614 /** 1615 * ftrace_location_range - return the first address of a traced location 1616 * if it touches the given ip range 1617 * @start: start of range to search. 1618 * @end: end of range to search (inclusive). @end points to the last byte 1619 * to check. 1620 * 1621 * Returns: rec->ip if the related ftrace location is a least partly within 1622 * the given address range. That is, the first address of the instruction 1623 * that is either a NOP or call to the function tracer. It checks the ftrace 1624 * internal tables to determine if the address belongs or not. 1625 */ 1626 unsigned long ftrace_location_range(unsigned long start, unsigned long end) 1627 { 1628 struct dyn_ftrace *rec; 1629 unsigned long ip = 0; 1630 1631 rcu_read_lock(); 1632 rec = lookup_rec(start, end); 1633 if (rec) 1634 ip = rec->ip; 1635 rcu_read_unlock(); 1636 1637 return ip; 1638 } 1639 1640 /** 1641 * ftrace_location - return the ftrace location 1642 * @ip: the instruction pointer to check 1643 * 1644 * Returns: 1645 * * If @ip matches the ftrace location, return @ip. 1646 * * If @ip matches sym+0, return sym's ftrace location. 1647 * * Otherwise, return 0. 1648 */ 1649 unsigned long ftrace_location(unsigned long ip) 1650 { 1651 unsigned long loc; 1652 unsigned long offset; 1653 unsigned long size; 1654 1655 loc = ftrace_location_range(ip, ip); 1656 if (!loc) { 1657 if (!kallsyms_lookup_size_offset(ip, &size, &offset)) 1658 return 0; 1659 1660 /* map sym+0 to __fentry__ */ 1661 if (!offset) 1662 loc = ftrace_location_range(ip, ip + size - 1); 1663 } 1664 return loc; 1665 } 1666 1667 /** 1668 * ftrace_text_reserved - return true if range contains an ftrace location 1669 * @start: start of range to search 1670 * @end: end of range to search (inclusive). @end points to the last byte to check. 1671 * 1672 * Returns: 1 if @start and @end contains a ftrace location. 1673 * That is, the instruction that is either a NOP or call to 1674 * the function tracer. It checks the ftrace internal tables to 1675 * determine if the address belongs or not. 1676 */ 1677 int ftrace_text_reserved(const void *start, const void *end) 1678 { 1679 unsigned long ret; 1680 1681 ret = ftrace_location_range((unsigned long)start, 1682 (unsigned long)end); 1683 1684 return (int)!!ret; 1685 } 1686 1687 /* Test if ops registered to this rec needs regs */ 1688 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec) 1689 { 1690 struct ftrace_ops *ops; 1691 bool keep_regs = false; 1692 1693 for (ops = ftrace_ops_list; 1694 ops != &ftrace_list_end; ops = ops->next) { 1695 /* pass rec in as regs to have non-NULL val */ 1696 if (ftrace_ops_test(ops, rec->ip, rec)) { 1697 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1698 keep_regs = true; 1699 break; 1700 } 1701 } 1702 } 1703 1704 return keep_regs; 1705 } 1706 1707 static struct ftrace_ops * 1708 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec); 1709 static struct ftrace_ops * 1710 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude); 1711 static struct ftrace_ops * 1712 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops); 1713 1714 static bool skip_record(struct dyn_ftrace *rec) 1715 { 1716 /* 1717 * At boot up, weak functions are set to disable. Function tracing 1718 * can be enabled before they are, and they still need to be disabled now. 1719 * If the record is disabled, still continue if it is marked as already 1720 * enabled (this is needed to keep the accounting working). 1721 */ 1722 return rec->flags & FTRACE_FL_DISABLED && 1723 !(rec->flags & FTRACE_FL_ENABLED); 1724 } 1725 1726 /* 1727 * This is the main engine to the ftrace updates to the dyn_ftrace records. 1728 * 1729 * It will iterate through all the available ftrace functions 1730 * (the ones that ftrace can have callbacks to) and set the flags 1731 * in the associated dyn_ftrace records. 1732 * 1733 * @inc: If true, the functions associated to @ops are added to 1734 * the dyn_ftrace records, otherwise they are removed. 1735 */ 1736 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops, 1737 bool inc) 1738 { 1739 struct ftrace_hash *hash; 1740 struct ftrace_hash *notrace_hash; 1741 struct ftrace_page *pg; 1742 struct dyn_ftrace *rec; 1743 bool update = false; 1744 int count = 0; 1745 int all = false; 1746 1747 /* Only update if the ops has been registered */ 1748 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1749 return false; 1750 1751 /* 1752 * If the count is zero, we update all records. 1753 * Otherwise we just update the items in the hash. 1754 */ 1755 hash = ops->func_hash->filter_hash; 1756 notrace_hash = ops->func_hash->notrace_hash; 1757 if (ftrace_hash_empty(hash)) 1758 all = true; 1759 1760 do_for_each_ftrace_rec(pg, rec) { 1761 int in_notrace_hash = 0; 1762 int in_hash = 0; 1763 int match = 0; 1764 1765 if (skip_record(rec)) 1766 continue; 1767 1768 if (all) { 1769 /* 1770 * Only the filter_hash affects all records. 1771 * Update if the record is not in the notrace hash. 1772 */ 1773 if (!notrace_hash || !ftrace_lookup_ip(notrace_hash, rec->ip)) 1774 match = 1; 1775 } else { 1776 in_hash = !!ftrace_lookup_ip(hash, rec->ip); 1777 in_notrace_hash = !!ftrace_lookup_ip(notrace_hash, rec->ip); 1778 1779 /* 1780 * We want to match all functions that are in the hash but 1781 * not in the other hash. 1782 */ 1783 if (in_hash && !in_notrace_hash) 1784 match = 1; 1785 } 1786 if (!match) 1787 continue; 1788 1789 if (inc) { 1790 rec->flags++; 1791 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX)) 1792 return false; 1793 1794 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1795 rec->flags |= FTRACE_FL_DIRECT; 1796 1797 /* 1798 * If there's only a single callback registered to a 1799 * function, and the ops has a trampoline registered 1800 * for it, then we can call it directly. 1801 */ 1802 if (ftrace_rec_count(rec) == 1 && ops->trampoline) 1803 rec->flags |= FTRACE_FL_TRAMP; 1804 else 1805 /* 1806 * If we are adding another function callback 1807 * to this function, and the previous had a 1808 * custom trampoline in use, then we need to go 1809 * back to the default trampoline. 1810 */ 1811 rec->flags &= ~FTRACE_FL_TRAMP; 1812 1813 /* 1814 * If any ops wants regs saved for this function 1815 * then all ops will get saved regs. 1816 */ 1817 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 1818 rec->flags |= FTRACE_FL_REGS; 1819 } else { 1820 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0)) 1821 return false; 1822 rec->flags--; 1823 1824 /* 1825 * Only the internal direct_ops should have the 1826 * DIRECT flag set. Thus, if it is removing a 1827 * function, then that function should no longer 1828 * be direct. 1829 */ 1830 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1831 rec->flags &= ~FTRACE_FL_DIRECT; 1832 1833 /* 1834 * If the rec had REGS enabled and the ops that is 1835 * being removed had REGS set, then see if there is 1836 * still any ops for this record that wants regs. 1837 * If not, we can stop recording them. 1838 */ 1839 if (ftrace_rec_count(rec) > 0 && 1840 rec->flags & FTRACE_FL_REGS && 1841 ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1842 if (!test_rec_ops_needs_regs(rec)) 1843 rec->flags &= ~FTRACE_FL_REGS; 1844 } 1845 1846 /* 1847 * The TRAMP needs to be set only if rec count 1848 * is decremented to one, and the ops that is 1849 * left has a trampoline. As TRAMP can only be 1850 * enabled if there is only a single ops attached 1851 * to it. 1852 */ 1853 if (ftrace_rec_count(rec) == 1 && 1854 ftrace_find_tramp_ops_any_other(rec, ops)) 1855 rec->flags |= FTRACE_FL_TRAMP; 1856 else 1857 rec->flags &= ~FTRACE_FL_TRAMP; 1858 1859 /* 1860 * flags will be cleared in ftrace_check_record() 1861 * if rec count is zero. 1862 */ 1863 } 1864 1865 /* 1866 * If the rec has a single associated ops, and ops->func can be 1867 * called directly, allow the call site to call via the ops. 1868 */ 1869 if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE_WITH_CALL_OPS) && 1870 ftrace_rec_count(rec) == 1 && 1871 ftrace_ops_get_func(ops) == ops->func) 1872 rec->flags |= FTRACE_FL_CALL_OPS; 1873 else 1874 rec->flags &= ~FTRACE_FL_CALL_OPS; 1875 1876 count++; 1877 1878 /* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */ 1879 update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE; 1880 1881 /* Shortcut, if we handled all records, we are done. */ 1882 if (!all && count == hash->count) 1883 return update; 1884 } while_for_each_ftrace_rec(); 1885 1886 return update; 1887 } 1888 1889 /* 1890 * This is called when an ops is removed from tracing. It will decrement 1891 * the counters of the dyn_ftrace records for all the functions that 1892 * the @ops attached to. 1893 */ 1894 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops) 1895 { 1896 return __ftrace_hash_rec_update(ops, false); 1897 } 1898 1899 /* 1900 * This is called when an ops is added to tracing. It will increment 1901 * the counters of the dyn_ftrace records for all the functions that 1902 * the @ops attached to. 1903 */ 1904 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops) 1905 { 1906 return __ftrace_hash_rec_update(ops, true); 1907 } 1908 1909 /* 1910 * This function will update what functions @ops traces when its filter 1911 * changes. 1912 * 1913 * The @inc states if the @ops callbacks are going to be added or removed. 1914 * When one of the @ops hashes are updated to a "new_hash" the dyn_ftrace 1915 * records are update via: 1916 * 1917 * ftrace_hash_rec_disable_modify(ops); 1918 * ops->hash = new_hash 1919 * ftrace_hash_rec_enable_modify(ops); 1920 * 1921 * Where the @ops is removed from all the records it is tracing using 1922 * its old hash. The @ops hash is updated to the new hash, and then 1923 * the @ops is added back to the records so that it is tracing all 1924 * the new functions. 1925 */ 1926 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops, bool inc) 1927 { 1928 struct ftrace_ops *op; 1929 1930 __ftrace_hash_rec_update(ops, inc); 1931 1932 if (ops->func_hash != &global_ops.local_hash) 1933 return; 1934 1935 /* 1936 * If the ops shares the global_ops hash, then we need to update 1937 * all ops that are enabled and use this hash. 1938 */ 1939 do_for_each_ftrace_op(op, ftrace_ops_list) { 1940 /* Already done */ 1941 if (op == ops) 1942 continue; 1943 if (op->func_hash == &global_ops.local_hash) 1944 __ftrace_hash_rec_update(op, inc); 1945 } while_for_each_ftrace_op(op); 1946 } 1947 1948 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops) 1949 { 1950 ftrace_hash_rec_update_modify(ops, false); 1951 } 1952 1953 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops) 1954 { 1955 ftrace_hash_rec_update_modify(ops, true); 1956 } 1957 1958 /* 1959 * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK 1960 * or no-needed to update, -EBUSY if it detects a conflict of the flag 1961 * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs. 1962 * Note that old_hash and new_hash has below meanings 1963 * - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected) 1964 * - If the hash is EMPTY_HASH, it hits nothing 1965 * - Anything else hits the recs which match the hash entries. 1966 * 1967 * DIRECT ops does not have IPMODIFY flag, but we still need to check it 1968 * against functions with FTRACE_FL_IPMODIFY. If there is any overlap, call 1969 * ops_func(SHARE_IPMODIFY_SELF) to make sure current ops can share with 1970 * IPMODIFY. If ops_func(SHARE_IPMODIFY_SELF) returns non-zero, propagate 1971 * the return value to the caller and eventually to the owner of the DIRECT 1972 * ops. 1973 */ 1974 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops, 1975 struct ftrace_hash *old_hash, 1976 struct ftrace_hash *new_hash) 1977 { 1978 struct ftrace_page *pg; 1979 struct dyn_ftrace *rec, *end = NULL; 1980 int in_old, in_new; 1981 bool is_ipmodify, is_direct; 1982 1983 /* Only update if the ops has been registered */ 1984 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1985 return 0; 1986 1987 is_ipmodify = ops->flags & FTRACE_OPS_FL_IPMODIFY; 1988 is_direct = ops->flags & FTRACE_OPS_FL_DIRECT; 1989 1990 /* neither IPMODIFY nor DIRECT, skip */ 1991 if (!is_ipmodify && !is_direct) 1992 return 0; 1993 1994 if (WARN_ON_ONCE(is_ipmodify && is_direct)) 1995 return 0; 1996 1997 /* 1998 * Since the IPMODIFY and DIRECT are very address sensitive 1999 * actions, we do not allow ftrace_ops to set all functions to new 2000 * hash. 2001 */ 2002 if (!new_hash || !old_hash) 2003 return -EINVAL; 2004 2005 /* Update rec->flags */ 2006 do_for_each_ftrace_rec(pg, rec) { 2007 2008 if (rec->flags & FTRACE_FL_DISABLED) 2009 continue; 2010 2011 /* We need to update only differences of filter_hash */ 2012 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 2013 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 2014 if (in_old == in_new) 2015 continue; 2016 2017 if (in_new) { 2018 if (rec->flags & FTRACE_FL_IPMODIFY) { 2019 int ret; 2020 2021 /* Cannot have two ipmodify on same rec */ 2022 if (is_ipmodify) 2023 goto rollback; 2024 2025 FTRACE_WARN_ON(rec->flags & FTRACE_FL_DIRECT); 2026 2027 /* 2028 * Another ops with IPMODIFY is already 2029 * attached. We are now attaching a direct 2030 * ops. Run SHARE_IPMODIFY_SELF, to check 2031 * whether sharing is supported. 2032 */ 2033 if (!ops->ops_func) 2034 return -EBUSY; 2035 ret = ops->ops_func(ops, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_SELF); 2036 if (ret) 2037 return ret; 2038 } else if (is_ipmodify) { 2039 rec->flags |= FTRACE_FL_IPMODIFY; 2040 } 2041 } else if (is_ipmodify) { 2042 rec->flags &= ~FTRACE_FL_IPMODIFY; 2043 } 2044 } while_for_each_ftrace_rec(); 2045 2046 return 0; 2047 2048 rollback: 2049 end = rec; 2050 2051 /* Roll back what we did above */ 2052 do_for_each_ftrace_rec(pg, rec) { 2053 2054 if (rec->flags & FTRACE_FL_DISABLED) 2055 continue; 2056 2057 if (rec == end) 2058 return -EBUSY; 2059 2060 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 2061 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 2062 if (in_old == in_new) 2063 continue; 2064 2065 if (in_new) 2066 rec->flags &= ~FTRACE_FL_IPMODIFY; 2067 else 2068 rec->flags |= FTRACE_FL_IPMODIFY; 2069 } while_for_each_ftrace_rec(); 2070 2071 return -EBUSY; 2072 } 2073 2074 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops) 2075 { 2076 struct ftrace_hash *hash = ops->func_hash->filter_hash; 2077 2078 if (ftrace_hash_empty(hash)) 2079 hash = NULL; 2080 2081 return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash); 2082 } 2083 2084 /* Disabling always succeeds */ 2085 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops) 2086 { 2087 struct ftrace_hash *hash = ops->func_hash->filter_hash; 2088 2089 if (ftrace_hash_empty(hash)) 2090 hash = NULL; 2091 2092 __ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH); 2093 } 2094 2095 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 2096 struct ftrace_hash *new_hash) 2097 { 2098 struct ftrace_hash *old_hash = ops->func_hash->filter_hash; 2099 2100 if (ftrace_hash_empty(old_hash)) 2101 old_hash = NULL; 2102 2103 if (ftrace_hash_empty(new_hash)) 2104 new_hash = NULL; 2105 2106 return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash); 2107 } 2108 2109 static void print_ip_ins(const char *fmt, const unsigned char *p) 2110 { 2111 char ins[MCOUNT_INSN_SIZE]; 2112 2113 if (copy_from_kernel_nofault(ins, p, MCOUNT_INSN_SIZE)) { 2114 printk(KERN_CONT "%s[FAULT] %px\n", fmt, p); 2115 return; 2116 } 2117 2118 printk(KERN_CONT "%s", fmt); 2119 pr_cont("%*phC", MCOUNT_INSN_SIZE, ins); 2120 } 2121 2122 enum ftrace_bug_type ftrace_bug_type; 2123 const void *ftrace_expected; 2124 2125 static void print_bug_type(void) 2126 { 2127 switch (ftrace_bug_type) { 2128 case FTRACE_BUG_UNKNOWN: 2129 break; 2130 case FTRACE_BUG_INIT: 2131 pr_info("Initializing ftrace call sites\n"); 2132 break; 2133 case FTRACE_BUG_NOP: 2134 pr_info("Setting ftrace call site to NOP\n"); 2135 break; 2136 case FTRACE_BUG_CALL: 2137 pr_info("Setting ftrace call site to call ftrace function\n"); 2138 break; 2139 case FTRACE_BUG_UPDATE: 2140 pr_info("Updating ftrace call site to call a different ftrace function\n"); 2141 break; 2142 } 2143 } 2144 2145 /** 2146 * ftrace_bug - report and shutdown function tracer 2147 * @failed: The failed type (EFAULT, EINVAL, EPERM) 2148 * @rec: The record that failed 2149 * 2150 * The arch code that enables or disables the function tracing 2151 * can call ftrace_bug() when it has detected a problem in 2152 * modifying the code. @failed should be one of either: 2153 * EFAULT - if the problem happens on reading the @ip address 2154 * EINVAL - if what is read at @ip is not what was expected 2155 * EPERM - if the problem happens on writing to the @ip address 2156 */ 2157 void ftrace_bug(int failed, struct dyn_ftrace *rec) 2158 { 2159 unsigned long ip = rec ? rec->ip : 0; 2160 2161 pr_info("------------[ ftrace bug ]------------\n"); 2162 2163 switch (failed) { 2164 case -EFAULT: 2165 pr_info("ftrace faulted on modifying "); 2166 print_ip_sym(KERN_INFO, ip); 2167 break; 2168 case -EINVAL: 2169 pr_info("ftrace failed to modify "); 2170 print_ip_sym(KERN_INFO, ip); 2171 print_ip_ins(" actual: ", (unsigned char *)ip); 2172 pr_cont("\n"); 2173 if (ftrace_expected) { 2174 print_ip_ins(" expected: ", ftrace_expected); 2175 pr_cont("\n"); 2176 } 2177 break; 2178 case -EPERM: 2179 pr_info("ftrace faulted on writing "); 2180 print_ip_sym(KERN_INFO, ip); 2181 break; 2182 default: 2183 pr_info("ftrace faulted on unknown error "); 2184 print_ip_sym(KERN_INFO, ip); 2185 } 2186 print_bug_type(); 2187 if (rec) { 2188 struct ftrace_ops *ops = NULL; 2189 2190 pr_info("ftrace record flags: %lx\n", rec->flags); 2191 pr_cont(" (%ld)%s%s", ftrace_rec_count(rec), 2192 rec->flags & FTRACE_FL_REGS ? " R" : " ", 2193 rec->flags & FTRACE_FL_CALL_OPS ? " O" : " "); 2194 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2195 ops = ftrace_find_tramp_ops_any(rec); 2196 if (ops) { 2197 do { 2198 pr_cont("\ttramp: %pS (%pS)", 2199 (void *)ops->trampoline, 2200 (void *)ops->func); 2201 ops = ftrace_find_tramp_ops_next(rec, ops); 2202 } while (ops); 2203 } else 2204 pr_cont("\ttramp: ERROR!"); 2205 2206 } 2207 ip = ftrace_get_addr_curr(rec); 2208 pr_cont("\n expected tramp: %lx\n", ip); 2209 } 2210 2211 FTRACE_WARN_ON_ONCE(1); 2212 } 2213 2214 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update) 2215 { 2216 unsigned long flag = 0UL; 2217 2218 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2219 2220 if (skip_record(rec)) 2221 return FTRACE_UPDATE_IGNORE; 2222 2223 /* 2224 * If we are updating calls: 2225 * 2226 * If the record has a ref count, then we need to enable it 2227 * because someone is using it. 2228 * 2229 * Otherwise we make sure its disabled. 2230 * 2231 * If we are disabling calls, then disable all records that 2232 * are enabled. 2233 */ 2234 if (enable && ftrace_rec_count(rec)) 2235 flag = FTRACE_FL_ENABLED; 2236 2237 /* 2238 * If enabling and the REGS flag does not match the REGS_EN, or 2239 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore 2240 * this record. Set flags to fail the compare against ENABLED. 2241 * Same for direct calls. 2242 */ 2243 if (flag) { 2244 if (!(rec->flags & FTRACE_FL_REGS) != 2245 !(rec->flags & FTRACE_FL_REGS_EN)) 2246 flag |= FTRACE_FL_REGS; 2247 2248 if (!(rec->flags & FTRACE_FL_TRAMP) != 2249 !(rec->flags & FTRACE_FL_TRAMP_EN)) 2250 flag |= FTRACE_FL_TRAMP; 2251 2252 /* 2253 * Direct calls are special, as count matters. 2254 * We must test the record for direct, if the 2255 * DIRECT and DIRECT_EN do not match, but only 2256 * if the count is 1. That's because, if the 2257 * count is something other than one, we do not 2258 * want the direct enabled (it will be done via the 2259 * direct helper). But if DIRECT_EN is set, and 2260 * the count is not one, we need to clear it. 2261 * 2262 */ 2263 if (ftrace_rec_count(rec) == 1) { 2264 if (!(rec->flags & FTRACE_FL_DIRECT) != 2265 !(rec->flags & FTRACE_FL_DIRECT_EN)) 2266 flag |= FTRACE_FL_DIRECT; 2267 } else if (rec->flags & FTRACE_FL_DIRECT_EN) { 2268 flag |= FTRACE_FL_DIRECT; 2269 } 2270 2271 /* 2272 * Ops calls are special, as count matters. 2273 * As with direct calls, they must only be enabled when count 2274 * is one, otherwise they'll be handled via the list ops. 2275 */ 2276 if (ftrace_rec_count(rec) == 1) { 2277 if (!(rec->flags & FTRACE_FL_CALL_OPS) != 2278 !(rec->flags & FTRACE_FL_CALL_OPS_EN)) 2279 flag |= FTRACE_FL_CALL_OPS; 2280 } else if (rec->flags & FTRACE_FL_CALL_OPS_EN) { 2281 flag |= FTRACE_FL_CALL_OPS; 2282 } 2283 } 2284 2285 /* If the state of this record hasn't changed, then do nothing */ 2286 if ((rec->flags & FTRACE_FL_ENABLED) == flag) 2287 return FTRACE_UPDATE_IGNORE; 2288 2289 if (flag) { 2290 /* Save off if rec is being enabled (for return value) */ 2291 flag ^= rec->flags & FTRACE_FL_ENABLED; 2292 2293 if (update) { 2294 rec->flags |= FTRACE_FL_ENABLED | FTRACE_FL_TOUCHED; 2295 if (flag & FTRACE_FL_REGS) { 2296 if (rec->flags & FTRACE_FL_REGS) 2297 rec->flags |= FTRACE_FL_REGS_EN; 2298 else 2299 rec->flags &= ~FTRACE_FL_REGS_EN; 2300 } 2301 if (flag & FTRACE_FL_TRAMP) { 2302 if (rec->flags & FTRACE_FL_TRAMP) 2303 rec->flags |= FTRACE_FL_TRAMP_EN; 2304 else 2305 rec->flags &= ~FTRACE_FL_TRAMP_EN; 2306 } 2307 2308 /* Keep track of anything that modifies the function */ 2309 if (rec->flags & (FTRACE_FL_DIRECT | FTRACE_FL_IPMODIFY)) 2310 rec->flags |= FTRACE_FL_MODIFIED; 2311 2312 if (flag & FTRACE_FL_DIRECT) { 2313 /* 2314 * If there's only one user (direct_ops helper) 2315 * then we can call the direct function 2316 * directly (no ftrace trampoline). 2317 */ 2318 if (ftrace_rec_count(rec) == 1) { 2319 if (rec->flags & FTRACE_FL_DIRECT) 2320 rec->flags |= FTRACE_FL_DIRECT_EN; 2321 else 2322 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2323 } else { 2324 /* 2325 * Can only call directly if there's 2326 * only one callback to the function. 2327 */ 2328 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2329 } 2330 } 2331 2332 if (flag & FTRACE_FL_CALL_OPS) { 2333 if (ftrace_rec_count(rec) == 1) { 2334 if (rec->flags & FTRACE_FL_CALL_OPS) 2335 rec->flags |= FTRACE_FL_CALL_OPS_EN; 2336 else 2337 rec->flags &= ~FTRACE_FL_CALL_OPS_EN; 2338 } else { 2339 /* 2340 * Can only call directly if there's 2341 * only one set of associated ops. 2342 */ 2343 rec->flags &= ~FTRACE_FL_CALL_OPS_EN; 2344 } 2345 } 2346 } 2347 2348 /* 2349 * If this record is being updated from a nop, then 2350 * return UPDATE_MAKE_CALL. 2351 * Otherwise, 2352 * return UPDATE_MODIFY_CALL to tell the caller to convert 2353 * from the save regs, to a non-save regs function or 2354 * vice versa, or from a trampoline call. 2355 */ 2356 if (flag & FTRACE_FL_ENABLED) { 2357 ftrace_bug_type = FTRACE_BUG_CALL; 2358 return FTRACE_UPDATE_MAKE_CALL; 2359 } 2360 2361 ftrace_bug_type = FTRACE_BUG_UPDATE; 2362 return FTRACE_UPDATE_MODIFY_CALL; 2363 } 2364 2365 if (update) { 2366 /* If there's no more users, clear all flags */ 2367 if (!ftrace_rec_count(rec)) 2368 rec->flags &= FTRACE_NOCLEAR_FLAGS; 2369 else 2370 /* 2371 * Just disable the record, but keep the ops TRAMP 2372 * and REGS states. The _EN flags must be disabled though. 2373 */ 2374 rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN | 2375 FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN | 2376 FTRACE_FL_CALL_OPS_EN); 2377 } 2378 2379 ftrace_bug_type = FTRACE_BUG_NOP; 2380 return FTRACE_UPDATE_MAKE_NOP; 2381 } 2382 2383 /** 2384 * ftrace_update_record - set a record that now is tracing or not 2385 * @rec: the record to update 2386 * @enable: set to true if the record is tracing, false to force disable 2387 * 2388 * The records that represent all functions that can be traced need 2389 * to be updated when tracing has been enabled. 2390 */ 2391 int ftrace_update_record(struct dyn_ftrace *rec, bool enable) 2392 { 2393 return ftrace_check_record(rec, enable, true); 2394 } 2395 2396 /** 2397 * ftrace_test_record - check if the record has been enabled or not 2398 * @rec: the record to test 2399 * @enable: set to true to check if enabled, false if it is disabled 2400 * 2401 * The arch code may need to test if a record is already set to 2402 * tracing to determine how to modify the function code that it 2403 * represents. 2404 */ 2405 int ftrace_test_record(struct dyn_ftrace *rec, bool enable) 2406 { 2407 return ftrace_check_record(rec, enable, false); 2408 } 2409 2410 static struct ftrace_ops * 2411 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec) 2412 { 2413 struct ftrace_ops *op; 2414 unsigned long ip = rec->ip; 2415 2416 do_for_each_ftrace_op(op, ftrace_ops_list) { 2417 2418 if (!op->trampoline) 2419 continue; 2420 2421 if (hash_contains_ip(ip, op->func_hash)) 2422 return op; 2423 } while_for_each_ftrace_op(op); 2424 2425 return NULL; 2426 } 2427 2428 static struct ftrace_ops * 2429 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude) 2430 { 2431 struct ftrace_ops *op; 2432 unsigned long ip = rec->ip; 2433 2434 do_for_each_ftrace_op(op, ftrace_ops_list) { 2435 2436 if (op == op_exclude || !op->trampoline) 2437 continue; 2438 2439 if (hash_contains_ip(ip, op->func_hash)) 2440 return op; 2441 } while_for_each_ftrace_op(op); 2442 2443 return NULL; 2444 } 2445 2446 static struct ftrace_ops * 2447 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, 2448 struct ftrace_ops *op) 2449 { 2450 unsigned long ip = rec->ip; 2451 2452 while_for_each_ftrace_op(op) { 2453 2454 if (!op->trampoline) 2455 continue; 2456 2457 if (hash_contains_ip(ip, op->func_hash)) 2458 return op; 2459 } 2460 2461 return NULL; 2462 } 2463 2464 static struct ftrace_ops * 2465 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec) 2466 { 2467 struct ftrace_ops *op; 2468 unsigned long ip = rec->ip; 2469 2470 /* 2471 * Need to check removed ops first. 2472 * If they are being removed, and this rec has a tramp, 2473 * and this rec is in the ops list, then it would be the 2474 * one with the tramp. 2475 */ 2476 if (removed_ops) { 2477 if (hash_contains_ip(ip, &removed_ops->old_hash)) 2478 return removed_ops; 2479 } 2480 2481 /* 2482 * Need to find the current trampoline for a rec. 2483 * Now, a trampoline is only attached to a rec if there 2484 * was a single 'ops' attached to it. But this can be called 2485 * when we are adding another op to the rec or removing the 2486 * current one. Thus, if the op is being added, we can 2487 * ignore it because it hasn't attached itself to the rec 2488 * yet. 2489 * 2490 * If an ops is being modified (hooking to different functions) 2491 * then we don't care about the new functions that are being 2492 * added, just the old ones (that are probably being removed). 2493 * 2494 * If we are adding an ops to a function that already is using 2495 * a trampoline, it needs to be removed (trampolines are only 2496 * for single ops connected), then an ops that is not being 2497 * modified also needs to be checked. 2498 */ 2499 do_for_each_ftrace_op(op, ftrace_ops_list) { 2500 2501 if (!op->trampoline) 2502 continue; 2503 2504 /* 2505 * If the ops is being added, it hasn't gotten to 2506 * the point to be removed from this tree yet. 2507 */ 2508 if (op->flags & FTRACE_OPS_FL_ADDING) 2509 continue; 2510 2511 2512 /* 2513 * If the ops is being modified and is in the old 2514 * hash, then it is probably being removed from this 2515 * function. 2516 */ 2517 if ((op->flags & FTRACE_OPS_FL_MODIFYING) && 2518 hash_contains_ip(ip, &op->old_hash)) 2519 return op; 2520 /* 2521 * If the ops is not being added or modified, and it's 2522 * in its normal filter hash, then this must be the one 2523 * we want! 2524 */ 2525 if (!(op->flags & FTRACE_OPS_FL_MODIFYING) && 2526 hash_contains_ip(ip, op->func_hash)) 2527 return op; 2528 2529 } while_for_each_ftrace_op(op); 2530 2531 return NULL; 2532 } 2533 2534 static struct ftrace_ops * 2535 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec) 2536 { 2537 struct ftrace_ops *op; 2538 unsigned long ip = rec->ip; 2539 2540 do_for_each_ftrace_op(op, ftrace_ops_list) { 2541 /* pass rec in as regs to have non-NULL val */ 2542 if (hash_contains_ip(ip, op->func_hash)) 2543 return op; 2544 } while_for_each_ftrace_op(op); 2545 2546 return NULL; 2547 } 2548 2549 struct ftrace_ops * 2550 ftrace_find_unique_ops(struct dyn_ftrace *rec) 2551 { 2552 struct ftrace_ops *op, *found = NULL; 2553 unsigned long ip = rec->ip; 2554 2555 do_for_each_ftrace_op(op, ftrace_ops_list) { 2556 2557 if (hash_contains_ip(ip, op->func_hash)) { 2558 if (found) 2559 return NULL; 2560 found = op; 2561 } 2562 2563 } while_for_each_ftrace_op(op); 2564 2565 return found; 2566 } 2567 2568 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 2569 /* Protected by rcu_tasks for reading, and direct_mutex for writing */ 2570 static struct ftrace_hash __rcu *direct_functions = EMPTY_HASH; 2571 static DEFINE_MUTEX(direct_mutex); 2572 2573 /* 2574 * Search the direct_functions hash to see if the given instruction pointer 2575 * has a direct caller attached to it. 2576 */ 2577 unsigned long ftrace_find_rec_direct(unsigned long ip) 2578 { 2579 struct ftrace_func_entry *entry; 2580 2581 entry = __ftrace_lookup_ip(direct_functions, ip); 2582 if (!entry) 2583 return 0; 2584 2585 return entry->direct; 2586 } 2587 2588 static void call_direct_funcs(unsigned long ip, unsigned long pip, 2589 struct ftrace_ops *ops, struct ftrace_regs *fregs) 2590 { 2591 unsigned long addr = READ_ONCE(ops->direct_call); 2592 2593 if (!addr) 2594 return; 2595 2596 arch_ftrace_set_direct_caller(fregs, addr); 2597 } 2598 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 2599 2600 /** 2601 * ftrace_get_addr_new - Get the call address to set to 2602 * @rec: The ftrace record descriptor 2603 * 2604 * If the record has the FTRACE_FL_REGS set, that means that it 2605 * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS 2606 * is not set, then it wants to convert to the normal callback. 2607 * 2608 * Returns: the address of the trampoline to set to 2609 */ 2610 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec) 2611 { 2612 struct ftrace_ops *ops; 2613 unsigned long addr; 2614 2615 if ((rec->flags & FTRACE_FL_DIRECT) && 2616 (ftrace_rec_count(rec) == 1)) { 2617 addr = ftrace_find_rec_direct(rec->ip); 2618 if (addr) 2619 return addr; 2620 WARN_ON_ONCE(1); 2621 } 2622 2623 /* Trampolines take precedence over regs */ 2624 if (rec->flags & FTRACE_FL_TRAMP) { 2625 ops = ftrace_find_tramp_ops_new(rec); 2626 if (FTRACE_WARN_ON(!ops || !ops->trampoline)) { 2627 pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n", 2628 (void *)rec->ip, (void *)rec->ip, rec->flags); 2629 /* Ftrace is shutting down, return anything */ 2630 return (unsigned long)FTRACE_ADDR; 2631 } 2632 return ops->trampoline; 2633 } 2634 2635 if (rec->flags & FTRACE_FL_REGS) 2636 return (unsigned long)FTRACE_REGS_ADDR; 2637 else 2638 return (unsigned long)FTRACE_ADDR; 2639 } 2640 2641 /** 2642 * ftrace_get_addr_curr - Get the call address that is already there 2643 * @rec: The ftrace record descriptor 2644 * 2645 * The FTRACE_FL_REGS_EN is set when the record already points to 2646 * a function that saves all the regs. Basically the '_EN' version 2647 * represents the current state of the function. 2648 * 2649 * Returns: the address of the trampoline that is currently being called 2650 */ 2651 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec) 2652 { 2653 struct ftrace_ops *ops; 2654 unsigned long addr; 2655 2656 /* Direct calls take precedence over trampolines */ 2657 if (rec->flags & FTRACE_FL_DIRECT_EN) { 2658 addr = ftrace_find_rec_direct(rec->ip); 2659 if (addr) 2660 return addr; 2661 WARN_ON_ONCE(1); 2662 } 2663 2664 /* Trampolines take precedence over regs */ 2665 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2666 ops = ftrace_find_tramp_ops_curr(rec); 2667 if (FTRACE_WARN_ON(!ops)) { 2668 pr_warn("Bad trampoline accounting at: %p (%pS)\n", 2669 (void *)rec->ip, (void *)rec->ip); 2670 /* Ftrace is shutting down, return anything */ 2671 return (unsigned long)FTRACE_ADDR; 2672 } 2673 return ops->trampoline; 2674 } 2675 2676 if (rec->flags & FTRACE_FL_REGS_EN) 2677 return (unsigned long)FTRACE_REGS_ADDR; 2678 else 2679 return (unsigned long)FTRACE_ADDR; 2680 } 2681 2682 static int 2683 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable) 2684 { 2685 unsigned long ftrace_old_addr; 2686 unsigned long ftrace_addr; 2687 int ret; 2688 2689 ftrace_addr = ftrace_get_addr_new(rec); 2690 2691 /* This needs to be done before we call ftrace_update_record */ 2692 ftrace_old_addr = ftrace_get_addr_curr(rec); 2693 2694 ret = ftrace_update_record(rec, enable); 2695 2696 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2697 2698 switch (ret) { 2699 case FTRACE_UPDATE_IGNORE: 2700 return 0; 2701 2702 case FTRACE_UPDATE_MAKE_CALL: 2703 ftrace_bug_type = FTRACE_BUG_CALL; 2704 return ftrace_make_call(rec, ftrace_addr); 2705 2706 case FTRACE_UPDATE_MAKE_NOP: 2707 ftrace_bug_type = FTRACE_BUG_NOP; 2708 return ftrace_make_nop(NULL, rec, ftrace_old_addr); 2709 2710 case FTRACE_UPDATE_MODIFY_CALL: 2711 ftrace_bug_type = FTRACE_BUG_UPDATE; 2712 return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr); 2713 } 2714 2715 return -1; /* unknown ftrace bug */ 2716 } 2717 2718 void __weak ftrace_replace_code(int mod_flags) 2719 { 2720 struct dyn_ftrace *rec; 2721 struct ftrace_page *pg; 2722 bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL; 2723 int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL; 2724 int failed; 2725 2726 if (unlikely(ftrace_disabled)) 2727 return; 2728 2729 do_for_each_ftrace_rec(pg, rec) { 2730 2731 if (skip_record(rec)) 2732 continue; 2733 2734 failed = __ftrace_replace_code(rec, enable); 2735 if (failed) { 2736 ftrace_bug(failed, rec); 2737 /* Stop processing */ 2738 return; 2739 } 2740 if (schedulable) 2741 cond_resched(); 2742 } while_for_each_ftrace_rec(); 2743 } 2744 2745 struct ftrace_rec_iter { 2746 struct ftrace_page *pg; 2747 int index; 2748 }; 2749 2750 /** 2751 * ftrace_rec_iter_start - start up iterating over traced functions 2752 * 2753 * Returns: an iterator handle that is used to iterate over all 2754 * the records that represent address locations where functions 2755 * are traced. 2756 * 2757 * May return NULL if no records are available. 2758 */ 2759 struct ftrace_rec_iter *ftrace_rec_iter_start(void) 2760 { 2761 /* 2762 * We only use a single iterator. 2763 * Protected by the ftrace_lock mutex. 2764 */ 2765 static struct ftrace_rec_iter ftrace_rec_iter; 2766 struct ftrace_rec_iter *iter = &ftrace_rec_iter; 2767 2768 iter->pg = ftrace_pages_start; 2769 iter->index = 0; 2770 2771 /* Could have empty pages */ 2772 while (iter->pg && !iter->pg->index) 2773 iter->pg = iter->pg->next; 2774 2775 if (!iter->pg) 2776 return NULL; 2777 2778 return iter; 2779 } 2780 2781 /** 2782 * ftrace_rec_iter_next - get the next record to process. 2783 * @iter: The handle to the iterator. 2784 * 2785 * Returns: the next iterator after the given iterator @iter. 2786 */ 2787 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter) 2788 { 2789 iter->index++; 2790 2791 if (iter->index >= iter->pg->index) { 2792 iter->pg = iter->pg->next; 2793 iter->index = 0; 2794 2795 /* Could have empty pages */ 2796 while (iter->pg && !iter->pg->index) 2797 iter->pg = iter->pg->next; 2798 } 2799 2800 if (!iter->pg) 2801 return NULL; 2802 2803 return iter; 2804 } 2805 2806 /** 2807 * ftrace_rec_iter_record - get the record at the iterator location 2808 * @iter: The current iterator location 2809 * 2810 * Returns: the record that the current @iter is at. 2811 */ 2812 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter) 2813 { 2814 return &iter->pg->records[iter->index]; 2815 } 2816 2817 static int 2818 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec) 2819 { 2820 int ret; 2821 2822 if (unlikely(ftrace_disabled)) 2823 return 0; 2824 2825 ret = ftrace_init_nop(mod, rec); 2826 if (ret) { 2827 ftrace_bug_type = FTRACE_BUG_INIT; 2828 ftrace_bug(ret, rec); 2829 return 0; 2830 } 2831 return 1; 2832 } 2833 2834 /* 2835 * archs can override this function if they must do something 2836 * before the modifying code is performed. 2837 */ 2838 void __weak ftrace_arch_code_modify_prepare(void) 2839 { 2840 } 2841 2842 /* 2843 * archs can override this function if they must do something 2844 * after the modifying code is performed. 2845 */ 2846 void __weak ftrace_arch_code_modify_post_process(void) 2847 { 2848 } 2849 2850 static int update_ftrace_func(ftrace_func_t func) 2851 { 2852 static ftrace_func_t save_func; 2853 2854 /* Avoid updating if it hasn't changed */ 2855 if (func == save_func) 2856 return 0; 2857 2858 save_func = func; 2859 2860 return ftrace_update_ftrace_func(func); 2861 } 2862 2863 void ftrace_modify_all_code(int command) 2864 { 2865 int update = command & FTRACE_UPDATE_TRACE_FUNC; 2866 int mod_flags = 0; 2867 int err = 0; 2868 2869 if (command & FTRACE_MAY_SLEEP) 2870 mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL; 2871 2872 /* 2873 * If the ftrace_caller calls a ftrace_ops func directly, 2874 * we need to make sure that it only traces functions it 2875 * expects to trace. When doing the switch of functions, 2876 * we need to update to the ftrace_ops_list_func first 2877 * before the transition between old and new calls are set, 2878 * as the ftrace_ops_list_func will check the ops hashes 2879 * to make sure the ops are having the right functions 2880 * traced. 2881 */ 2882 if (update) { 2883 err = update_ftrace_func(ftrace_ops_list_func); 2884 if (FTRACE_WARN_ON(err)) 2885 return; 2886 } 2887 2888 if (command & FTRACE_UPDATE_CALLS) 2889 ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL); 2890 else if (command & FTRACE_DISABLE_CALLS) 2891 ftrace_replace_code(mod_flags); 2892 2893 if (update && ftrace_trace_function != ftrace_ops_list_func) { 2894 function_trace_op = set_function_trace_op; 2895 smp_wmb(); 2896 /* If irqs are disabled, we are in stop machine */ 2897 if (!irqs_disabled()) 2898 smp_call_function(ftrace_sync_ipi, NULL, 1); 2899 err = update_ftrace_func(ftrace_trace_function); 2900 if (FTRACE_WARN_ON(err)) 2901 return; 2902 } 2903 2904 if (command & FTRACE_START_FUNC_RET) 2905 err = ftrace_enable_ftrace_graph_caller(); 2906 else if (command & FTRACE_STOP_FUNC_RET) 2907 err = ftrace_disable_ftrace_graph_caller(); 2908 FTRACE_WARN_ON(err); 2909 } 2910 2911 static int __ftrace_modify_code(void *data) 2912 { 2913 int *command = data; 2914 2915 ftrace_modify_all_code(*command); 2916 2917 return 0; 2918 } 2919 2920 /** 2921 * ftrace_run_stop_machine - go back to the stop machine method 2922 * @command: The command to tell ftrace what to do 2923 * 2924 * If an arch needs to fall back to the stop machine method, the 2925 * it can call this function. 2926 */ 2927 void ftrace_run_stop_machine(int command) 2928 { 2929 stop_machine(__ftrace_modify_code, &command, NULL); 2930 } 2931 2932 /** 2933 * arch_ftrace_update_code - modify the code to trace or not trace 2934 * @command: The command that needs to be done 2935 * 2936 * Archs can override this function if it does not need to 2937 * run stop_machine() to modify code. 2938 */ 2939 void __weak arch_ftrace_update_code(int command) 2940 { 2941 ftrace_run_stop_machine(command); 2942 } 2943 2944 static void ftrace_run_update_code(int command) 2945 { 2946 ftrace_arch_code_modify_prepare(); 2947 2948 /* 2949 * By default we use stop_machine() to modify the code. 2950 * But archs can do what ever they want as long as it 2951 * is safe. The stop_machine() is the safest, but also 2952 * produces the most overhead. 2953 */ 2954 arch_ftrace_update_code(command); 2955 2956 ftrace_arch_code_modify_post_process(); 2957 } 2958 2959 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command, 2960 struct ftrace_ops_hash *old_hash) 2961 { 2962 ops->flags |= FTRACE_OPS_FL_MODIFYING; 2963 ops->old_hash.filter_hash = old_hash->filter_hash; 2964 ops->old_hash.notrace_hash = old_hash->notrace_hash; 2965 ftrace_run_update_code(command); 2966 ops->old_hash.filter_hash = NULL; 2967 ops->old_hash.notrace_hash = NULL; 2968 ops->flags &= ~FTRACE_OPS_FL_MODIFYING; 2969 } 2970 2971 static ftrace_func_t saved_ftrace_func; 2972 static int ftrace_start_up; 2973 2974 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops) 2975 { 2976 } 2977 2978 /* List of trace_ops that have allocated trampolines */ 2979 static LIST_HEAD(ftrace_ops_trampoline_list); 2980 2981 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops) 2982 { 2983 lockdep_assert_held(&ftrace_lock); 2984 list_add_rcu(&ops->list, &ftrace_ops_trampoline_list); 2985 } 2986 2987 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops) 2988 { 2989 lockdep_assert_held(&ftrace_lock); 2990 list_del_rcu(&ops->list); 2991 synchronize_rcu(); 2992 } 2993 2994 /* 2995 * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols 2996 * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is 2997 * not a module. 2998 */ 2999 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace" 3000 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline" 3001 3002 static void ftrace_trampoline_free(struct ftrace_ops *ops) 3003 { 3004 if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) && 3005 ops->trampoline) { 3006 /* 3007 * Record the text poke event before the ksymbol unregister 3008 * event. 3009 */ 3010 perf_event_text_poke((void *)ops->trampoline, 3011 (void *)ops->trampoline, 3012 ops->trampoline_size, NULL, 0); 3013 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 3014 ops->trampoline, ops->trampoline_size, 3015 true, FTRACE_TRAMPOLINE_SYM); 3016 /* Remove from kallsyms after the perf events */ 3017 ftrace_remove_trampoline_from_kallsyms(ops); 3018 } 3019 3020 arch_ftrace_trampoline_free(ops); 3021 } 3022 3023 static void ftrace_startup_enable(int command) 3024 { 3025 if (saved_ftrace_func != ftrace_trace_function) { 3026 saved_ftrace_func = ftrace_trace_function; 3027 command |= FTRACE_UPDATE_TRACE_FUNC; 3028 } 3029 3030 if (!command || !ftrace_enabled) 3031 return; 3032 3033 ftrace_run_update_code(command); 3034 } 3035 3036 static void ftrace_startup_all(int command) 3037 { 3038 update_all_ops = true; 3039 ftrace_startup_enable(command); 3040 update_all_ops = false; 3041 } 3042 3043 int ftrace_startup(struct ftrace_ops *ops, int command) 3044 { 3045 int ret; 3046 3047 if (unlikely(ftrace_disabled)) 3048 return -ENODEV; 3049 3050 ret = __register_ftrace_function(ops); 3051 if (ret) 3052 return ret; 3053 3054 ftrace_start_up++; 3055 3056 /* 3057 * Note that ftrace probes uses this to start up 3058 * and modify functions it will probe. But we still 3059 * set the ADDING flag for modification, as probes 3060 * do not have trampolines. If they add them in the 3061 * future, then the probes will need to distinguish 3062 * between adding and updating probes. 3063 */ 3064 ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING; 3065 3066 ret = ftrace_hash_ipmodify_enable(ops); 3067 if (ret < 0) { 3068 /* Rollback registration process */ 3069 __unregister_ftrace_function(ops); 3070 ftrace_start_up--; 3071 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 3072 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 3073 ftrace_trampoline_free(ops); 3074 return ret; 3075 } 3076 3077 if (ftrace_hash_rec_enable(ops)) 3078 command |= FTRACE_UPDATE_CALLS; 3079 3080 ftrace_startup_enable(command); 3081 3082 /* 3083 * If ftrace is in an undefined state, we just remove ops from list 3084 * to prevent the NULL pointer, instead of totally rolling it back and 3085 * free trampoline, because those actions could cause further damage. 3086 */ 3087 if (unlikely(ftrace_disabled)) { 3088 __unregister_ftrace_function(ops); 3089 return -ENODEV; 3090 } 3091 3092 ops->flags &= ~FTRACE_OPS_FL_ADDING; 3093 3094 return 0; 3095 } 3096 3097 int ftrace_shutdown(struct ftrace_ops *ops, int command) 3098 { 3099 int ret; 3100 3101 if (unlikely(ftrace_disabled)) 3102 return -ENODEV; 3103 3104 ret = __unregister_ftrace_function(ops); 3105 if (ret) 3106 return ret; 3107 3108 ftrace_start_up--; 3109 /* 3110 * Just warn in case of unbalance, no need to kill ftrace, it's not 3111 * critical but the ftrace_call callers may be never nopped again after 3112 * further ftrace uses. 3113 */ 3114 WARN_ON_ONCE(ftrace_start_up < 0); 3115 3116 /* Disabling ipmodify never fails */ 3117 ftrace_hash_ipmodify_disable(ops); 3118 3119 if (ftrace_hash_rec_disable(ops)) 3120 command |= FTRACE_UPDATE_CALLS; 3121 3122 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 3123 3124 if (saved_ftrace_func != ftrace_trace_function) { 3125 saved_ftrace_func = ftrace_trace_function; 3126 command |= FTRACE_UPDATE_TRACE_FUNC; 3127 } 3128 3129 if (!command || !ftrace_enabled) 3130 goto out; 3131 3132 /* 3133 * If the ops uses a trampoline, then it needs to be 3134 * tested first on update. 3135 */ 3136 ops->flags |= FTRACE_OPS_FL_REMOVING; 3137 removed_ops = ops; 3138 3139 /* The trampoline logic checks the old hashes */ 3140 ops->old_hash.filter_hash = ops->func_hash->filter_hash; 3141 ops->old_hash.notrace_hash = ops->func_hash->notrace_hash; 3142 3143 ftrace_run_update_code(command); 3144 3145 /* 3146 * If there's no more ops registered with ftrace, run a 3147 * sanity check to make sure all rec flags are cleared. 3148 */ 3149 if (rcu_dereference_protected(ftrace_ops_list, 3150 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 3151 struct ftrace_page *pg; 3152 struct dyn_ftrace *rec; 3153 3154 do_for_each_ftrace_rec(pg, rec) { 3155 if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_NOCLEAR_FLAGS)) 3156 pr_warn(" %pS flags:%lx\n", 3157 (void *)rec->ip, rec->flags); 3158 } while_for_each_ftrace_rec(); 3159 } 3160 3161 ops->old_hash.filter_hash = NULL; 3162 ops->old_hash.notrace_hash = NULL; 3163 3164 removed_ops = NULL; 3165 ops->flags &= ~FTRACE_OPS_FL_REMOVING; 3166 3167 out: 3168 /* 3169 * Dynamic ops may be freed, we must make sure that all 3170 * callers are done before leaving this function. 3171 */ 3172 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) { 3173 /* 3174 * We need to do a hard force of sched synchronization. 3175 * This is because we use preempt_disable() to do RCU, but 3176 * the function tracers can be called where RCU is not watching 3177 * (like before user_exit()). We can not rely on the RCU 3178 * infrastructure to do the synchronization, thus we must do it 3179 * ourselves. 3180 */ 3181 synchronize_rcu_tasks_rude(); 3182 3183 /* 3184 * When the kernel is preemptive, tasks can be preempted 3185 * while on a ftrace trampoline. Just scheduling a task on 3186 * a CPU is not good enough to flush them. Calling 3187 * synchronize_rcu_tasks() will wait for those tasks to 3188 * execute and either schedule voluntarily or enter user space. 3189 */ 3190 synchronize_rcu_tasks(); 3191 3192 ftrace_trampoline_free(ops); 3193 } 3194 3195 return 0; 3196 } 3197 3198 /* Simply make a copy of @src and return it */ 3199 static struct ftrace_hash *copy_hash(struct ftrace_hash *src) 3200 { 3201 if (ftrace_hash_empty(src)) 3202 return EMPTY_HASH; 3203 3204 return alloc_and_copy_ftrace_hash(src->size_bits, src); 3205 } 3206 3207 /* 3208 * Append @new_hash entries to @hash: 3209 * 3210 * If @hash is the EMPTY_HASH then it traces all functions and nothing 3211 * needs to be done. 3212 * 3213 * If @new_hash is the EMPTY_HASH, then make *hash the EMPTY_HASH so 3214 * that it traces everything. 3215 * 3216 * Otherwise, go through all of @new_hash and add anything that @hash 3217 * doesn't already have, to @hash. 3218 * 3219 * The filter_hash updates uses just the append_hash() function 3220 * and the notrace_hash does not. 3221 */ 3222 static int append_hash(struct ftrace_hash **hash, struct ftrace_hash *new_hash, 3223 int size_bits) 3224 { 3225 struct ftrace_func_entry *entry; 3226 int size; 3227 int i; 3228 3229 if (*hash) { 3230 /* An empty hash does everything */ 3231 if (ftrace_hash_empty(*hash)) 3232 return 0; 3233 } else { 3234 *hash = alloc_ftrace_hash(size_bits); 3235 if (!*hash) 3236 return -ENOMEM; 3237 } 3238 3239 /* If new_hash has everything make hash have everything */ 3240 if (ftrace_hash_empty(new_hash)) { 3241 free_ftrace_hash(*hash); 3242 *hash = EMPTY_HASH; 3243 return 0; 3244 } 3245 3246 size = 1 << new_hash->size_bits; 3247 for (i = 0; i < size; i++) { 3248 hlist_for_each_entry(entry, &new_hash->buckets[i], hlist) { 3249 /* Only add if not already in hash */ 3250 if (!__ftrace_lookup_ip(*hash, entry->ip) && 3251 add_hash_entry(*hash, entry->ip) == NULL) 3252 return -ENOMEM; 3253 } 3254 } 3255 return 0; 3256 } 3257 3258 /* 3259 * Remove functions from @hash that are in @notrace_hash 3260 */ 3261 static void remove_hash(struct ftrace_hash *hash, struct ftrace_hash *notrace_hash) 3262 { 3263 struct ftrace_func_entry *entry; 3264 struct hlist_node *tmp; 3265 int size; 3266 int i; 3267 3268 /* If the notrace hash is empty, there's nothing to do */ 3269 if (ftrace_hash_empty(notrace_hash)) 3270 return; 3271 3272 size = 1 << hash->size_bits; 3273 for (i = 0; i < size; i++) { 3274 hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) { 3275 if (!__ftrace_lookup_ip(notrace_hash, entry->ip)) 3276 continue; 3277 remove_hash_entry(hash, entry); 3278 kfree(entry); 3279 } 3280 } 3281 } 3282 3283 /* 3284 * Add to @hash only those that are in both @new_hash1 and @new_hash2 3285 * 3286 * The notrace_hash updates uses just the intersect_hash() function 3287 * and the filter_hash does not. 3288 */ 3289 static int intersect_hash(struct ftrace_hash **hash, struct ftrace_hash *new_hash1, 3290 struct ftrace_hash *new_hash2) 3291 { 3292 struct ftrace_func_entry *entry; 3293 int size; 3294 int i; 3295 3296 /* 3297 * If new_hash1 or new_hash2 is the EMPTY_HASH then make the hash 3298 * empty as well as empty for notrace means none are notraced. 3299 */ 3300 if (ftrace_hash_empty(new_hash1) || ftrace_hash_empty(new_hash2)) { 3301 free_ftrace_hash(*hash); 3302 *hash = EMPTY_HASH; 3303 return 0; 3304 } 3305 3306 size = 1 << new_hash1->size_bits; 3307 for (i = 0; i < size; i++) { 3308 hlist_for_each_entry(entry, &new_hash1->buckets[i], hlist) { 3309 /* Only add if in both @new_hash1 and @new_hash2 */ 3310 if (__ftrace_lookup_ip(new_hash2, entry->ip) && 3311 add_hash_entry(*hash, entry->ip) == NULL) 3312 return -ENOMEM; 3313 } 3314 } 3315 /* If nothing intersects, make it the empty set */ 3316 if (ftrace_hash_empty(*hash)) { 3317 free_ftrace_hash(*hash); 3318 *hash = EMPTY_HASH; 3319 } 3320 return 0; 3321 } 3322 3323 static bool ops_equal(struct ftrace_hash *A, struct ftrace_hash *B) 3324 { 3325 struct ftrace_func_entry *entry; 3326 int size; 3327 int i; 3328 3329 if (ftrace_hash_empty(A)) 3330 return ftrace_hash_empty(B); 3331 3332 if (ftrace_hash_empty(B)) 3333 return ftrace_hash_empty(A); 3334 3335 if (A->count != B->count) 3336 return false; 3337 3338 size = 1 << A->size_bits; 3339 for (i = 0; i < size; i++) { 3340 hlist_for_each_entry(entry, &A->buckets[i], hlist) { 3341 if (!__ftrace_lookup_ip(B, entry->ip)) 3342 return false; 3343 } 3344 } 3345 3346 return true; 3347 } 3348 3349 static void ftrace_ops_update_code(struct ftrace_ops *ops, 3350 struct ftrace_ops_hash *old_hash); 3351 3352 static int __ftrace_hash_move_and_update_ops(struct ftrace_ops *ops, 3353 struct ftrace_hash **orig_hash, 3354 struct ftrace_hash *hash, 3355 int enable) 3356 { 3357 struct ftrace_ops_hash old_hash_ops; 3358 struct ftrace_hash *old_hash; 3359 int ret; 3360 3361 old_hash = *orig_hash; 3362 old_hash_ops.filter_hash = ops->func_hash->filter_hash; 3363 old_hash_ops.notrace_hash = ops->func_hash->notrace_hash; 3364 ret = ftrace_hash_move(ops, enable, orig_hash, hash); 3365 if (!ret) { 3366 ftrace_ops_update_code(ops, &old_hash_ops); 3367 free_ftrace_hash_rcu(old_hash); 3368 } 3369 return ret; 3370 } 3371 3372 static int ftrace_update_ops(struct ftrace_ops *ops, struct ftrace_hash *filter_hash, 3373 struct ftrace_hash *notrace_hash) 3374 { 3375 int ret; 3376 3377 if (!ops_equal(filter_hash, ops->func_hash->filter_hash)) { 3378 ret = __ftrace_hash_move_and_update_ops(ops, &ops->func_hash->filter_hash, 3379 filter_hash, 1); 3380 if (ret < 0) 3381 return ret; 3382 } 3383 3384 if (!ops_equal(notrace_hash, ops->func_hash->notrace_hash)) { 3385 ret = __ftrace_hash_move_and_update_ops(ops, &ops->func_hash->notrace_hash, 3386 notrace_hash, 0); 3387 if (ret < 0) 3388 return ret; 3389 } 3390 3391 return 0; 3392 } 3393 3394 static int add_first_hash(struct ftrace_hash **filter_hash, struct ftrace_hash **notrace_hash, 3395 struct ftrace_ops_hash *func_hash) 3396 { 3397 /* If the filter hash is not empty, simply remove the nohash from it */ 3398 if (!ftrace_hash_empty(func_hash->filter_hash)) { 3399 *filter_hash = copy_hash(func_hash->filter_hash); 3400 if (!*filter_hash) 3401 return -ENOMEM; 3402 remove_hash(*filter_hash, func_hash->notrace_hash); 3403 *notrace_hash = EMPTY_HASH; 3404 3405 } else { 3406 *notrace_hash = copy_hash(func_hash->notrace_hash); 3407 if (!*notrace_hash) 3408 return -ENOMEM; 3409 *filter_hash = EMPTY_HASH; 3410 } 3411 return 0; 3412 } 3413 3414 static int add_next_hash(struct ftrace_hash **filter_hash, struct ftrace_hash **notrace_hash, 3415 struct ftrace_ops_hash *ops_hash, struct ftrace_ops_hash *subops_hash) 3416 { 3417 int size_bits; 3418 int ret; 3419 3420 /* If the subops trace all functions so must the main ops */ 3421 if (ftrace_hash_empty(ops_hash->filter_hash) || 3422 ftrace_hash_empty(subops_hash->filter_hash)) { 3423 *filter_hash = EMPTY_HASH; 3424 } else { 3425 /* 3426 * The main ops filter hash is not empty, so its 3427 * notrace_hash had better be, as the notrace hash 3428 * is only used for empty main filter hashes. 3429 */ 3430 WARN_ON_ONCE(!ftrace_hash_empty(ops_hash->notrace_hash)); 3431 3432 size_bits = max(ops_hash->filter_hash->size_bits, 3433 subops_hash->filter_hash->size_bits); 3434 3435 /* Copy the subops hash */ 3436 *filter_hash = alloc_and_copy_ftrace_hash(size_bits, subops_hash->filter_hash); 3437 if (!filter_hash) 3438 return -ENOMEM; 3439 /* Remove any notrace functions from the copy */ 3440 remove_hash(*filter_hash, subops_hash->notrace_hash); 3441 3442 ret = append_hash(filter_hash, ops_hash->filter_hash, 3443 size_bits); 3444 if (ret < 0) { 3445 free_ftrace_hash(*filter_hash); 3446 return ret; 3447 } 3448 } 3449 3450 /* 3451 * Only process notrace hashes if the main filter hash is empty 3452 * (tracing all functions), otherwise the filter hash will just 3453 * remove the notrace hash functions, and the notrace hash is 3454 * not needed. 3455 */ 3456 if (ftrace_hash_empty(*filter_hash)) { 3457 /* 3458 * Intersect the notrace functions. That is, if two 3459 * subops are not tracing a set of functions, the 3460 * main ops will only not trace the functions that are 3461 * in both subops, but has to trace the functions that 3462 * are only notrace in one of the subops, for the other 3463 * subops to be able to trace them. 3464 */ 3465 size_bits = max(ops_hash->notrace_hash->size_bits, 3466 subops_hash->notrace_hash->size_bits); 3467 *notrace_hash = alloc_ftrace_hash(size_bits); 3468 if (!*notrace_hash) 3469 return -ENOMEM; 3470 3471 ret = intersect_hash(notrace_hash, ops_hash->notrace_hash, 3472 subops_hash->notrace_hash); 3473 if (ret < 0) { 3474 free_ftrace_hash(*notrace_hash); 3475 return ret; 3476 } 3477 } 3478 return 0; 3479 } 3480 3481 /** 3482 * ftrace_startup_subops - enable tracing for subops of an ops 3483 * @ops: Manager ops (used to pick all the functions of its subops) 3484 * @subops: A new ops to add to @ops 3485 * @command: Extra commands to use to enable tracing 3486 * 3487 * The @ops is a manager @ops that has the filter that includes all the functions 3488 * that its list of subops are tracing. Adding a new @subops will add the 3489 * functions of @subops to @ops. 3490 */ 3491 int ftrace_startup_subops(struct ftrace_ops *ops, struct ftrace_ops *subops, int command) 3492 { 3493 struct ftrace_hash *filter_hash; 3494 struct ftrace_hash *notrace_hash; 3495 struct ftrace_hash *save_filter_hash; 3496 struct ftrace_hash *save_notrace_hash; 3497 int ret; 3498 3499 if (unlikely(ftrace_disabled)) 3500 return -ENODEV; 3501 3502 ftrace_ops_init(ops); 3503 ftrace_ops_init(subops); 3504 3505 if (WARN_ON_ONCE(subops->flags & FTRACE_OPS_FL_ENABLED)) 3506 return -EBUSY; 3507 3508 /* Make everything canonical (Just in case!) */ 3509 if (!ops->func_hash->filter_hash) 3510 ops->func_hash->filter_hash = EMPTY_HASH; 3511 if (!ops->func_hash->notrace_hash) 3512 ops->func_hash->notrace_hash = EMPTY_HASH; 3513 if (!subops->func_hash->filter_hash) 3514 subops->func_hash->filter_hash = EMPTY_HASH; 3515 if (!subops->func_hash->notrace_hash) 3516 subops->func_hash->notrace_hash = EMPTY_HASH; 3517 3518 /* For the first subops to ops just enable it normally */ 3519 if (list_empty(&ops->subop_list)) { 3520 3521 /* The ops was empty, should have empty hashes */ 3522 WARN_ON_ONCE(!ftrace_hash_empty(ops->func_hash->filter_hash)); 3523 WARN_ON_ONCE(!ftrace_hash_empty(ops->func_hash->notrace_hash)); 3524 3525 ret = add_first_hash(&filter_hash, ¬race_hash, subops->func_hash); 3526 if (ret < 0) 3527 return ret; 3528 3529 save_filter_hash = ops->func_hash->filter_hash; 3530 save_notrace_hash = ops->func_hash->notrace_hash; 3531 3532 ops->func_hash->filter_hash = filter_hash; 3533 ops->func_hash->notrace_hash = notrace_hash; 3534 list_add(&subops->list, &ops->subop_list); 3535 ret = ftrace_startup(ops, command); 3536 if (ret < 0) { 3537 list_del(&subops->list); 3538 ops->func_hash->filter_hash = save_filter_hash; 3539 ops->func_hash->notrace_hash = save_notrace_hash; 3540 free_ftrace_hash(filter_hash); 3541 free_ftrace_hash(notrace_hash); 3542 } else { 3543 free_ftrace_hash(save_filter_hash); 3544 free_ftrace_hash(save_notrace_hash); 3545 subops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP; 3546 subops->managed = ops; 3547 } 3548 return ret; 3549 } 3550 3551 /* 3552 * Here there's already something attached. Here are the rules: 3553 * If the new subops and main ops filter hashes are not empty: 3554 * o Make a copy of the subops filter hash 3555 * o Remove all functions in the nohash from it. 3556 * o Add in the main hash filter functions 3557 * o Remove any of these functions from the main notrace hash 3558 */ 3559 3560 ret = add_next_hash(&filter_hash, ¬race_hash, ops->func_hash, subops->func_hash); 3561 if (ret < 0) 3562 return ret; 3563 3564 list_add(&subops->list, &ops->subop_list); 3565 3566 ret = ftrace_update_ops(ops, filter_hash, notrace_hash); 3567 free_ftrace_hash(filter_hash); 3568 free_ftrace_hash(notrace_hash); 3569 if (ret < 0) { 3570 list_del(&subops->list); 3571 } else { 3572 subops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP; 3573 subops->managed = ops; 3574 } 3575 return ret; 3576 } 3577 3578 static int rebuild_hashes(struct ftrace_hash **filter_hash, struct ftrace_hash **notrace_hash, 3579 struct ftrace_ops *ops) 3580 { 3581 struct ftrace_ops_hash temp_hash; 3582 struct ftrace_ops *subops; 3583 bool first = true; 3584 int ret; 3585 3586 temp_hash.filter_hash = EMPTY_HASH; 3587 temp_hash.notrace_hash = EMPTY_HASH; 3588 3589 list_for_each_entry(subops, &ops->subop_list, list) { 3590 *filter_hash = EMPTY_HASH; 3591 *notrace_hash = EMPTY_HASH; 3592 3593 if (first) { 3594 ret = add_first_hash(filter_hash, notrace_hash, subops->func_hash); 3595 if (ret < 0) 3596 return ret; 3597 first = false; 3598 } else { 3599 ret = add_next_hash(filter_hash, notrace_hash, 3600 &temp_hash, subops->func_hash); 3601 if (ret < 0) { 3602 free_ftrace_hash(temp_hash.filter_hash); 3603 free_ftrace_hash(temp_hash.notrace_hash); 3604 return ret; 3605 } 3606 } 3607 3608 temp_hash.filter_hash = *filter_hash; 3609 temp_hash.notrace_hash = *notrace_hash; 3610 } 3611 return 0; 3612 } 3613 3614 /** 3615 * ftrace_shutdown_subops - Remove a subops from a manager ops 3616 * @ops: A manager ops to remove @subops from 3617 * @subops: The subops to remove from @ops 3618 * @command: Any extra command flags to add to modifying the text 3619 * 3620 * Removes the functions being traced by the @subops from @ops. Note, it 3621 * will not affect functions that are being traced by other subops that 3622 * still exist in @ops. 3623 * 3624 * If the last subops is removed from @ops, then @ops is shutdown normally. 3625 */ 3626 int ftrace_shutdown_subops(struct ftrace_ops *ops, struct ftrace_ops *subops, int command) 3627 { 3628 struct ftrace_hash *filter_hash; 3629 struct ftrace_hash *notrace_hash; 3630 int ret; 3631 3632 if (unlikely(ftrace_disabled)) 3633 return -ENODEV; 3634 3635 if (WARN_ON_ONCE(!(subops->flags & FTRACE_OPS_FL_ENABLED))) 3636 return -EINVAL; 3637 3638 list_del(&subops->list); 3639 3640 if (list_empty(&ops->subop_list)) { 3641 /* Last one, just disable the current ops */ 3642 3643 ret = ftrace_shutdown(ops, command); 3644 if (ret < 0) { 3645 list_add(&subops->list, &ops->subop_list); 3646 return ret; 3647 } 3648 3649 subops->flags &= ~FTRACE_OPS_FL_ENABLED; 3650 3651 free_ftrace_hash(ops->func_hash->filter_hash); 3652 free_ftrace_hash(ops->func_hash->notrace_hash); 3653 ops->func_hash->filter_hash = EMPTY_HASH; 3654 ops->func_hash->notrace_hash = EMPTY_HASH; 3655 subops->flags &= ~(FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP); 3656 subops->managed = NULL; 3657 3658 return 0; 3659 } 3660 3661 /* Rebuild the hashes without subops */ 3662 ret = rebuild_hashes(&filter_hash, ¬race_hash, ops); 3663 if (ret < 0) 3664 return ret; 3665 3666 ret = ftrace_update_ops(ops, filter_hash, notrace_hash); 3667 if (ret < 0) { 3668 list_add(&subops->list, &ops->subop_list); 3669 } else { 3670 subops->flags &= ~(FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP); 3671 subops->managed = NULL; 3672 } 3673 free_ftrace_hash(filter_hash); 3674 free_ftrace_hash(notrace_hash); 3675 return ret; 3676 } 3677 3678 static int ftrace_hash_move_and_update_subops(struct ftrace_ops *subops, 3679 struct ftrace_hash **orig_subhash, 3680 struct ftrace_hash *hash) 3681 { 3682 struct ftrace_ops *ops = subops->managed; 3683 struct ftrace_hash *notrace_hash; 3684 struct ftrace_hash *filter_hash; 3685 struct ftrace_hash *save_hash; 3686 struct ftrace_hash *new_hash; 3687 int ret; 3688 3689 /* Manager ops can not be subops (yet) */ 3690 if (WARN_ON_ONCE(!ops || ops->flags & FTRACE_OPS_FL_SUBOP)) 3691 return -EINVAL; 3692 3693 /* Move the new hash over to the subops hash */ 3694 save_hash = *orig_subhash; 3695 *orig_subhash = __ftrace_hash_move(hash); 3696 if (!*orig_subhash) { 3697 *orig_subhash = save_hash; 3698 return -ENOMEM; 3699 } 3700 3701 ret = rebuild_hashes(&filter_hash, ¬race_hash, ops); 3702 if (!ret) 3703 ret = ftrace_update_ops(ops, filter_hash, notrace_hash); 3704 3705 if (ret) { 3706 /* Put back the original hash */ 3707 new_hash = *orig_subhash; 3708 *orig_subhash = save_hash; 3709 free_ftrace_hash_rcu(new_hash); 3710 } else { 3711 free_ftrace_hash_rcu(save_hash); 3712 } 3713 return ret; 3714 } 3715 3716 3717 u64 ftrace_update_time; 3718 u64 ftrace_total_mod_time; 3719 unsigned long ftrace_update_tot_cnt; 3720 unsigned long ftrace_number_of_pages; 3721 unsigned long ftrace_number_of_groups; 3722 3723 static inline int ops_traces_mod(struct ftrace_ops *ops) 3724 { 3725 /* 3726 * Filter_hash being empty will default to trace module. 3727 * But notrace hash requires a test of individual module functions. 3728 */ 3729 return ftrace_hash_empty(ops->func_hash->filter_hash) && 3730 ftrace_hash_empty(ops->func_hash->notrace_hash); 3731 } 3732 3733 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs) 3734 { 3735 bool init_nop = ftrace_need_init_nop(); 3736 struct ftrace_page *pg; 3737 struct dyn_ftrace *p; 3738 u64 start, stop, update_time; 3739 unsigned long update_cnt = 0; 3740 unsigned long rec_flags = 0; 3741 int i; 3742 3743 start = ftrace_now(raw_smp_processor_id()); 3744 3745 /* 3746 * When a module is loaded, this function is called to convert 3747 * the calls to mcount in its text to nops, and also to create 3748 * an entry in the ftrace data. Now, if ftrace is activated 3749 * after this call, but before the module sets its text to 3750 * read-only, the modification of enabling ftrace can fail if 3751 * the read-only is done while ftrace is converting the calls. 3752 * To prevent this, the module's records are set as disabled 3753 * and will be enabled after the call to set the module's text 3754 * to read-only. 3755 */ 3756 if (mod) 3757 rec_flags |= FTRACE_FL_DISABLED; 3758 3759 for (pg = new_pgs; pg; pg = pg->next) { 3760 3761 for (i = 0; i < pg->index; i++) { 3762 3763 /* If something went wrong, bail without enabling anything */ 3764 if (unlikely(ftrace_disabled)) 3765 return -1; 3766 3767 p = &pg->records[i]; 3768 p->flags = rec_flags; 3769 3770 /* 3771 * Do the initial record conversion from mcount jump 3772 * to the NOP instructions. 3773 */ 3774 if (init_nop && !ftrace_nop_initialize(mod, p)) 3775 break; 3776 3777 update_cnt++; 3778 } 3779 } 3780 3781 stop = ftrace_now(raw_smp_processor_id()); 3782 update_time = stop - start; 3783 if (mod) 3784 ftrace_total_mod_time += update_time; 3785 else 3786 ftrace_update_time = update_time; 3787 ftrace_update_tot_cnt += update_cnt; 3788 3789 return 0; 3790 } 3791 3792 static int ftrace_allocate_records(struct ftrace_page *pg, int count) 3793 { 3794 int order; 3795 int pages; 3796 int cnt; 3797 3798 if (WARN_ON(!count)) 3799 return -EINVAL; 3800 3801 /* We want to fill as much as possible, with no empty pages */ 3802 pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE); 3803 order = fls(pages) - 1; 3804 3805 again: 3806 pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 3807 3808 if (!pg->records) { 3809 /* if we can't allocate this size, try something smaller */ 3810 if (!order) 3811 return -ENOMEM; 3812 order--; 3813 goto again; 3814 } 3815 3816 ftrace_number_of_pages += 1 << order; 3817 ftrace_number_of_groups++; 3818 3819 cnt = (PAGE_SIZE << order) / ENTRY_SIZE; 3820 pg->order = order; 3821 3822 if (cnt > count) 3823 cnt = count; 3824 3825 return cnt; 3826 } 3827 3828 static void ftrace_free_pages(struct ftrace_page *pages) 3829 { 3830 struct ftrace_page *pg = pages; 3831 3832 while (pg) { 3833 if (pg->records) { 3834 free_pages((unsigned long)pg->records, pg->order); 3835 ftrace_number_of_pages -= 1 << pg->order; 3836 } 3837 pages = pg->next; 3838 kfree(pg); 3839 pg = pages; 3840 ftrace_number_of_groups--; 3841 } 3842 } 3843 3844 static struct ftrace_page * 3845 ftrace_allocate_pages(unsigned long num_to_init) 3846 { 3847 struct ftrace_page *start_pg; 3848 struct ftrace_page *pg; 3849 int cnt; 3850 3851 if (!num_to_init) 3852 return NULL; 3853 3854 start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL); 3855 if (!pg) 3856 return NULL; 3857 3858 /* 3859 * Try to allocate as much as possible in one continues 3860 * location that fills in all of the space. We want to 3861 * waste as little space as possible. 3862 */ 3863 for (;;) { 3864 cnt = ftrace_allocate_records(pg, num_to_init); 3865 if (cnt < 0) 3866 goto free_pages; 3867 3868 num_to_init -= cnt; 3869 if (!num_to_init) 3870 break; 3871 3872 pg->next = kzalloc(sizeof(*pg), GFP_KERNEL); 3873 if (!pg->next) 3874 goto free_pages; 3875 3876 pg = pg->next; 3877 } 3878 3879 return start_pg; 3880 3881 free_pages: 3882 ftrace_free_pages(start_pg); 3883 pr_info("ftrace: FAILED to allocate memory for functions\n"); 3884 return NULL; 3885 } 3886 3887 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */ 3888 3889 struct ftrace_iterator { 3890 loff_t pos; 3891 loff_t func_pos; 3892 loff_t mod_pos; 3893 struct ftrace_page *pg; 3894 struct dyn_ftrace *func; 3895 struct ftrace_func_probe *probe; 3896 struct ftrace_func_entry *probe_entry; 3897 struct trace_parser parser; 3898 struct ftrace_hash *hash; 3899 struct ftrace_ops *ops; 3900 struct trace_array *tr; 3901 struct list_head *mod_list; 3902 int pidx; 3903 int idx; 3904 unsigned flags; 3905 }; 3906 3907 static void * 3908 t_probe_next(struct seq_file *m, loff_t *pos) 3909 { 3910 struct ftrace_iterator *iter = m->private; 3911 struct trace_array *tr = iter->ops->private; 3912 struct list_head *func_probes; 3913 struct ftrace_hash *hash; 3914 struct list_head *next; 3915 struct hlist_node *hnd = NULL; 3916 struct hlist_head *hhd; 3917 int size; 3918 3919 (*pos)++; 3920 iter->pos = *pos; 3921 3922 if (!tr) 3923 return NULL; 3924 3925 func_probes = &tr->func_probes; 3926 if (list_empty(func_probes)) 3927 return NULL; 3928 3929 if (!iter->probe) { 3930 next = func_probes->next; 3931 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3932 } 3933 3934 if (iter->probe_entry) 3935 hnd = &iter->probe_entry->hlist; 3936 3937 hash = iter->probe->ops.func_hash->filter_hash; 3938 3939 /* 3940 * A probe being registered may temporarily have an empty hash 3941 * and it's at the end of the func_probes list. 3942 */ 3943 if (!hash || hash == EMPTY_HASH) 3944 return NULL; 3945 3946 size = 1 << hash->size_bits; 3947 3948 retry: 3949 if (iter->pidx >= size) { 3950 if (iter->probe->list.next == func_probes) 3951 return NULL; 3952 next = iter->probe->list.next; 3953 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3954 hash = iter->probe->ops.func_hash->filter_hash; 3955 size = 1 << hash->size_bits; 3956 iter->pidx = 0; 3957 } 3958 3959 hhd = &hash->buckets[iter->pidx]; 3960 3961 if (hlist_empty(hhd)) { 3962 iter->pidx++; 3963 hnd = NULL; 3964 goto retry; 3965 } 3966 3967 if (!hnd) 3968 hnd = hhd->first; 3969 else { 3970 hnd = hnd->next; 3971 if (!hnd) { 3972 iter->pidx++; 3973 goto retry; 3974 } 3975 } 3976 3977 if (WARN_ON_ONCE(!hnd)) 3978 return NULL; 3979 3980 iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist); 3981 3982 return iter; 3983 } 3984 3985 static void *t_probe_start(struct seq_file *m, loff_t *pos) 3986 { 3987 struct ftrace_iterator *iter = m->private; 3988 void *p = NULL; 3989 loff_t l; 3990 3991 if (!(iter->flags & FTRACE_ITER_DO_PROBES)) 3992 return NULL; 3993 3994 if (iter->mod_pos > *pos) 3995 return NULL; 3996 3997 iter->probe = NULL; 3998 iter->probe_entry = NULL; 3999 iter->pidx = 0; 4000 for (l = 0; l <= (*pos - iter->mod_pos); ) { 4001 p = t_probe_next(m, &l); 4002 if (!p) 4003 break; 4004 } 4005 if (!p) 4006 return NULL; 4007 4008 /* Only set this if we have an item */ 4009 iter->flags |= FTRACE_ITER_PROBE; 4010 4011 return iter; 4012 } 4013 4014 static int 4015 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter) 4016 { 4017 struct ftrace_func_entry *probe_entry; 4018 struct ftrace_probe_ops *probe_ops; 4019 struct ftrace_func_probe *probe; 4020 4021 probe = iter->probe; 4022 probe_entry = iter->probe_entry; 4023 4024 if (WARN_ON_ONCE(!probe || !probe_entry)) 4025 return -EIO; 4026 4027 probe_ops = probe->probe_ops; 4028 4029 if (probe_ops->print) 4030 return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data); 4031 4032 seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip, 4033 (void *)probe_ops->func); 4034 4035 return 0; 4036 } 4037 4038 static void * 4039 t_mod_next(struct seq_file *m, loff_t *pos) 4040 { 4041 struct ftrace_iterator *iter = m->private; 4042 struct trace_array *tr = iter->tr; 4043 4044 (*pos)++; 4045 iter->pos = *pos; 4046 4047 iter->mod_list = iter->mod_list->next; 4048 4049 if (iter->mod_list == &tr->mod_trace || 4050 iter->mod_list == &tr->mod_notrace) { 4051 iter->flags &= ~FTRACE_ITER_MOD; 4052 return NULL; 4053 } 4054 4055 iter->mod_pos = *pos; 4056 4057 return iter; 4058 } 4059 4060 static void *t_mod_start(struct seq_file *m, loff_t *pos) 4061 { 4062 struct ftrace_iterator *iter = m->private; 4063 void *p = NULL; 4064 loff_t l; 4065 4066 if (iter->func_pos > *pos) 4067 return NULL; 4068 4069 iter->mod_pos = iter->func_pos; 4070 4071 /* probes are only available if tr is set */ 4072 if (!iter->tr) 4073 return NULL; 4074 4075 for (l = 0; l <= (*pos - iter->func_pos); ) { 4076 p = t_mod_next(m, &l); 4077 if (!p) 4078 break; 4079 } 4080 if (!p) { 4081 iter->flags &= ~FTRACE_ITER_MOD; 4082 return t_probe_start(m, pos); 4083 } 4084 4085 /* Only set this if we have an item */ 4086 iter->flags |= FTRACE_ITER_MOD; 4087 4088 return iter; 4089 } 4090 4091 static int 4092 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter) 4093 { 4094 struct ftrace_mod_load *ftrace_mod; 4095 struct trace_array *tr = iter->tr; 4096 4097 if (WARN_ON_ONCE(!iter->mod_list) || 4098 iter->mod_list == &tr->mod_trace || 4099 iter->mod_list == &tr->mod_notrace) 4100 return -EIO; 4101 4102 ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list); 4103 4104 if (ftrace_mod->func) 4105 seq_printf(m, "%s", ftrace_mod->func); 4106 else 4107 seq_putc(m, '*'); 4108 4109 seq_printf(m, ":mod:%s\n", ftrace_mod->module); 4110 4111 return 0; 4112 } 4113 4114 static void * 4115 t_func_next(struct seq_file *m, loff_t *pos) 4116 { 4117 struct ftrace_iterator *iter = m->private; 4118 struct dyn_ftrace *rec = NULL; 4119 4120 (*pos)++; 4121 4122 retry: 4123 if (iter->idx >= iter->pg->index) { 4124 if (iter->pg->next) { 4125 iter->pg = iter->pg->next; 4126 iter->idx = 0; 4127 goto retry; 4128 } 4129 } else { 4130 rec = &iter->pg->records[iter->idx++]; 4131 if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 4132 !ftrace_lookup_ip(iter->hash, rec->ip)) || 4133 4134 ((iter->flags & FTRACE_ITER_ENABLED) && 4135 !(rec->flags & FTRACE_FL_ENABLED)) || 4136 4137 ((iter->flags & FTRACE_ITER_TOUCHED) && 4138 !(rec->flags & FTRACE_FL_TOUCHED))) { 4139 4140 rec = NULL; 4141 goto retry; 4142 } 4143 } 4144 4145 if (!rec) 4146 return NULL; 4147 4148 iter->pos = iter->func_pos = *pos; 4149 iter->func = rec; 4150 4151 return iter; 4152 } 4153 4154 static void * 4155 t_next(struct seq_file *m, void *v, loff_t *pos) 4156 { 4157 struct ftrace_iterator *iter = m->private; 4158 loff_t l = *pos; /* t_probe_start() must use original pos */ 4159 void *ret; 4160 4161 if (unlikely(ftrace_disabled)) 4162 return NULL; 4163 4164 if (iter->flags & FTRACE_ITER_PROBE) 4165 return t_probe_next(m, pos); 4166 4167 if (iter->flags & FTRACE_ITER_MOD) 4168 return t_mod_next(m, pos); 4169 4170 if (iter->flags & FTRACE_ITER_PRINTALL) { 4171 /* next must increment pos, and t_probe_start does not */ 4172 (*pos)++; 4173 return t_mod_start(m, &l); 4174 } 4175 4176 ret = t_func_next(m, pos); 4177 4178 if (!ret) 4179 return t_mod_start(m, &l); 4180 4181 return ret; 4182 } 4183 4184 static void reset_iter_read(struct ftrace_iterator *iter) 4185 { 4186 iter->pos = 0; 4187 iter->func_pos = 0; 4188 iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD); 4189 } 4190 4191 static void *t_start(struct seq_file *m, loff_t *pos) 4192 { 4193 struct ftrace_iterator *iter = m->private; 4194 void *p = NULL; 4195 loff_t l; 4196 4197 mutex_lock(&ftrace_lock); 4198 4199 if (unlikely(ftrace_disabled)) 4200 return NULL; 4201 4202 /* 4203 * If an lseek was done, then reset and start from beginning. 4204 */ 4205 if (*pos < iter->pos) 4206 reset_iter_read(iter); 4207 4208 /* 4209 * For set_ftrace_filter reading, if we have the filter 4210 * off, we can short cut and just print out that all 4211 * functions are enabled. 4212 */ 4213 if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 4214 ftrace_hash_empty(iter->hash)) { 4215 iter->func_pos = 1; /* Account for the message */ 4216 if (*pos > 0) 4217 return t_mod_start(m, pos); 4218 iter->flags |= FTRACE_ITER_PRINTALL; 4219 /* reset in case of seek/pread */ 4220 iter->flags &= ~FTRACE_ITER_PROBE; 4221 return iter; 4222 } 4223 4224 if (iter->flags & FTRACE_ITER_MOD) 4225 return t_mod_start(m, pos); 4226 4227 /* 4228 * Unfortunately, we need to restart at ftrace_pages_start 4229 * every time we let go of the ftrace_mutex. This is because 4230 * those pointers can change without the lock. 4231 */ 4232 iter->pg = ftrace_pages_start; 4233 iter->idx = 0; 4234 for (l = 0; l <= *pos; ) { 4235 p = t_func_next(m, &l); 4236 if (!p) 4237 break; 4238 } 4239 4240 if (!p) 4241 return t_mod_start(m, pos); 4242 4243 return iter; 4244 } 4245 4246 static void t_stop(struct seq_file *m, void *p) 4247 { 4248 mutex_unlock(&ftrace_lock); 4249 } 4250 4251 void * __weak 4252 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec) 4253 { 4254 return NULL; 4255 } 4256 4257 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops, 4258 struct dyn_ftrace *rec) 4259 { 4260 void *ptr; 4261 4262 ptr = arch_ftrace_trampoline_func(ops, rec); 4263 if (ptr) 4264 seq_printf(m, " ->%pS", ptr); 4265 } 4266 4267 #ifdef FTRACE_MCOUNT_MAX_OFFSET 4268 /* 4269 * Weak functions can still have an mcount/fentry that is saved in 4270 * the __mcount_loc section. These can be detected by having a 4271 * symbol offset of greater than FTRACE_MCOUNT_MAX_OFFSET, as the 4272 * symbol found by kallsyms is not the function that the mcount/fentry 4273 * is part of. The offset is much greater in these cases. 4274 * 4275 * Test the record to make sure that the ip points to a valid kallsyms 4276 * and if not, mark it disabled. 4277 */ 4278 static int test_for_valid_rec(struct dyn_ftrace *rec) 4279 { 4280 char str[KSYM_SYMBOL_LEN]; 4281 unsigned long offset; 4282 const char *ret; 4283 4284 ret = kallsyms_lookup(rec->ip, NULL, &offset, NULL, str); 4285 4286 /* Weak functions can cause invalid addresses */ 4287 if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) { 4288 rec->flags |= FTRACE_FL_DISABLED; 4289 return 0; 4290 } 4291 return 1; 4292 } 4293 4294 static struct workqueue_struct *ftrace_check_wq __initdata; 4295 static struct work_struct ftrace_check_work __initdata; 4296 4297 /* 4298 * Scan all the mcount/fentry entries to make sure they are valid. 4299 */ 4300 static __init void ftrace_check_work_func(struct work_struct *work) 4301 { 4302 struct ftrace_page *pg; 4303 struct dyn_ftrace *rec; 4304 4305 mutex_lock(&ftrace_lock); 4306 do_for_each_ftrace_rec(pg, rec) { 4307 test_for_valid_rec(rec); 4308 } while_for_each_ftrace_rec(); 4309 mutex_unlock(&ftrace_lock); 4310 } 4311 4312 static int __init ftrace_check_for_weak_functions(void) 4313 { 4314 INIT_WORK(&ftrace_check_work, ftrace_check_work_func); 4315 4316 ftrace_check_wq = alloc_workqueue("ftrace_check_wq", WQ_UNBOUND, 0); 4317 4318 queue_work(ftrace_check_wq, &ftrace_check_work); 4319 return 0; 4320 } 4321 4322 static int __init ftrace_check_sync(void) 4323 { 4324 /* Make sure the ftrace_check updates are finished */ 4325 if (ftrace_check_wq) 4326 destroy_workqueue(ftrace_check_wq); 4327 return 0; 4328 } 4329 4330 late_initcall_sync(ftrace_check_sync); 4331 subsys_initcall(ftrace_check_for_weak_functions); 4332 4333 static int print_rec(struct seq_file *m, unsigned long ip) 4334 { 4335 unsigned long offset; 4336 char str[KSYM_SYMBOL_LEN]; 4337 char *modname; 4338 const char *ret; 4339 4340 ret = kallsyms_lookup(ip, NULL, &offset, &modname, str); 4341 /* Weak functions can cause invalid addresses */ 4342 if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) { 4343 snprintf(str, KSYM_SYMBOL_LEN, "%s_%ld", 4344 FTRACE_INVALID_FUNCTION, offset); 4345 ret = NULL; 4346 } 4347 4348 seq_puts(m, str); 4349 if (modname) 4350 seq_printf(m, " [%s]", modname); 4351 return ret == NULL ? -1 : 0; 4352 } 4353 #else 4354 static inline int test_for_valid_rec(struct dyn_ftrace *rec) 4355 { 4356 return 1; 4357 } 4358 4359 static inline int print_rec(struct seq_file *m, unsigned long ip) 4360 { 4361 seq_printf(m, "%ps", (void *)ip); 4362 return 0; 4363 } 4364 #endif 4365 4366 static int t_show(struct seq_file *m, void *v) 4367 { 4368 struct ftrace_iterator *iter = m->private; 4369 struct dyn_ftrace *rec; 4370 4371 if (iter->flags & FTRACE_ITER_PROBE) 4372 return t_probe_show(m, iter); 4373 4374 if (iter->flags & FTRACE_ITER_MOD) 4375 return t_mod_show(m, iter); 4376 4377 if (iter->flags & FTRACE_ITER_PRINTALL) { 4378 if (iter->flags & FTRACE_ITER_NOTRACE) 4379 seq_puts(m, "#### no functions disabled ####\n"); 4380 else 4381 seq_puts(m, "#### all functions enabled ####\n"); 4382 return 0; 4383 } 4384 4385 rec = iter->func; 4386 4387 if (!rec) 4388 return 0; 4389 4390 if (iter->flags & FTRACE_ITER_ADDRS) 4391 seq_printf(m, "%lx ", rec->ip); 4392 4393 if (print_rec(m, rec->ip)) { 4394 /* This should only happen when a rec is disabled */ 4395 WARN_ON_ONCE(!(rec->flags & FTRACE_FL_DISABLED)); 4396 seq_putc(m, '\n'); 4397 return 0; 4398 } 4399 4400 if (iter->flags & (FTRACE_ITER_ENABLED | FTRACE_ITER_TOUCHED)) { 4401 struct ftrace_ops *ops; 4402 4403 seq_printf(m, " (%ld)%s%s%s%s%s", 4404 ftrace_rec_count(rec), 4405 rec->flags & FTRACE_FL_REGS ? " R" : " ", 4406 rec->flags & FTRACE_FL_IPMODIFY ? " I" : " ", 4407 rec->flags & FTRACE_FL_DIRECT ? " D" : " ", 4408 rec->flags & FTRACE_FL_CALL_OPS ? " O" : " ", 4409 rec->flags & FTRACE_FL_MODIFIED ? " M " : " "); 4410 if (rec->flags & FTRACE_FL_TRAMP_EN) { 4411 ops = ftrace_find_tramp_ops_any(rec); 4412 if (ops) { 4413 do { 4414 seq_printf(m, "\ttramp: %pS (%pS)", 4415 (void *)ops->trampoline, 4416 (void *)ops->func); 4417 add_trampoline_func(m, ops, rec); 4418 ops = ftrace_find_tramp_ops_next(rec, ops); 4419 } while (ops); 4420 } else 4421 seq_puts(m, "\ttramp: ERROR!"); 4422 } else { 4423 add_trampoline_func(m, NULL, rec); 4424 } 4425 if (rec->flags & FTRACE_FL_CALL_OPS_EN) { 4426 ops = ftrace_find_unique_ops(rec); 4427 if (ops) { 4428 seq_printf(m, "\tops: %pS (%pS)", 4429 ops, ops->func); 4430 } else { 4431 seq_puts(m, "\tops: ERROR!"); 4432 } 4433 } 4434 if (rec->flags & FTRACE_FL_DIRECT) { 4435 unsigned long direct; 4436 4437 direct = ftrace_find_rec_direct(rec->ip); 4438 if (direct) 4439 seq_printf(m, "\n\tdirect-->%pS", (void *)direct); 4440 } 4441 } 4442 4443 seq_putc(m, '\n'); 4444 4445 return 0; 4446 } 4447 4448 static const struct seq_operations show_ftrace_seq_ops = { 4449 .start = t_start, 4450 .next = t_next, 4451 .stop = t_stop, 4452 .show = t_show, 4453 }; 4454 4455 static int 4456 ftrace_avail_open(struct inode *inode, struct file *file) 4457 { 4458 struct ftrace_iterator *iter; 4459 int ret; 4460 4461 ret = security_locked_down(LOCKDOWN_TRACEFS); 4462 if (ret) 4463 return ret; 4464 4465 if (unlikely(ftrace_disabled)) 4466 return -ENODEV; 4467 4468 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 4469 if (!iter) 4470 return -ENOMEM; 4471 4472 iter->pg = ftrace_pages_start; 4473 iter->ops = &global_ops; 4474 4475 return 0; 4476 } 4477 4478 static int 4479 ftrace_enabled_open(struct inode *inode, struct file *file) 4480 { 4481 struct ftrace_iterator *iter; 4482 4483 /* 4484 * This shows us what functions are currently being 4485 * traced and by what. Not sure if we want lockdown 4486 * to hide such critical information for an admin. 4487 * Although, perhaps it can show information we don't 4488 * want people to see, but if something is tracing 4489 * something, we probably want to know about it. 4490 */ 4491 4492 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 4493 if (!iter) 4494 return -ENOMEM; 4495 4496 iter->pg = ftrace_pages_start; 4497 iter->flags = FTRACE_ITER_ENABLED; 4498 iter->ops = &global_ops; 4499 4500 return 0; 4501 } 4502 4503 static int 4504 ftrace_touched_open(struct inode *inode, struct file *file) 4505 { 4506 struct ftrace_iterator *iter; 4507 4508 /* 4509 * This shows us what functions have ever been enabled 4510 * (traced, direct, patched, etc). Not sure if we want lockdown 4511 * to hide such critical information for an admin. 4512 * Although, perhaps it can show information we don't 4513 * want people to see, but if something had traced 4514 * something, we probably want to know about it. 4515 */ 4516 4517 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 4518 if (!iter) 4519 return -ENOMEM; 4520 4521 iter->pg = ftrace_pages_start; 4522 iter->flags = FTRACE_ITER_TOUCHED; 4523 iter->ops = &global_ops; 4524 4525 return 0; 4526 } 4527 4528 static int 4529 ftrace_avail_addrs_open(struct inode *inode, struct file *file) 4530 { 4531 struct ftrace_iterator *iter; 4532 int ret; 4533 4534 ret = security_locked_down(LOCKDOWN_TRACEFS); 4535 if (ret) 4536 return ret; 4537 4538 if (unlikely(ftrace_disabled)) 4539 return -ENODEV; 4540 4541 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 4542 if (!iter) 4543 return -ENOMEM; 4544 4545 iter->pg = ftrace_pages_start; 4546 iter->flags = FTRACE_ITER_ADDRS; 4547 iter->ops = &global_ops; 4548 4549 return 0; 4550 } 4551 4552 /** 4553 * ftrace_regex_open - initialize function tracer filter files 4554 * @ops: The ftrace_ops that hold the hash filters 4555 * @flag: The type of filter to process 4556 * @inode: The inode, usually passed in to your open routine 4557 * @file: The file, usually passed in to your open routine 4558 * 4559 * ftrace_regex_open() initializes the filter files for the 4560 * @ops. Depending on @flag it may process the filter hash or 4561 * the notrace hash of @ops. With this called from the open 4562 * routine, you can use ftrace_filter_write() for the write 4563 * routine if @flag has FTRACE_ITER_FILTER set, or 4564 * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set. 4565 * tracing_lseek() should be used as the lseek routine, and 4566 * release must call ftrace_regex_release(). 4567 * 4568 * Returns: 0 on success or a negative errno value on failure 4569 */ 4570 int 4571 ftrace_regex_open(struct ftrace_ops *ops, int flag, 4572 struct inode *inode, struct file *file) 4573 { 4574 struct ftrace_iterator *iter; 4575 struct ftrace_hash *hash; 4576 struct list_head *mod_head; 4577 struct trace_array *tr = ops->private; 4578 int ret = -ENOMEM; 4579 4580 ftrace_ops_init(ops); 4581 4582 if (unlikely(ftrace_disabled)) 4583 return -ENODEV; 4584 4585 if (tracing_check_open_get_tr(tr)) 4586 return -ENODEV; 4587 4588 iter = kzalloc(sizeof(*iter), GFP_KERNEL); 4589 if (!iter) 4590 goto out; 4591 4592 if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) 4593 goto out; 4594 4595 iter->ops = ops; 4596 iter->flags = flag; 4597 iter->tr = tr; 4598 4599 mutex_lock(&ops->func_hash->regex_lock); 4600 4601 if (flag & FTRACE_ITER_NOTRACE) { 4602 hash = ops->func_hash->notrace_hash; 4603 mod_head = tr ? &tr->mod_notrace : NULL; 4604 } else { 4605 hash = ops->func_hash->filter_hash; 4606 mod_head = tr ? &tr->mod_trace : NULL; 4607 } 4608 4609 iter->mod_list = mod_head; 4610 4611 if (file->f_mode & FMODE_WRITE) { 4612 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 4613 4614 if (file->f_flags & O_TRUNC) { 4615 iter->hash = alloc_ftrace_hash(size_bits); 4616 clear_ftrace_mod_list(mod_head); 4617 } else { 4618 iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash); 4619 } 4620 4621 if (!iter->hash) { 4622 trace_parser_put(&iter->parser); 4623 goto out_unlock; 4624 } 4625 } else 4626 iter->hash = hash; 4627 4628 ret = 0; 4629 4630 if (file->f_mode & FMODE_READ) { 4631 iter->pg = ftrace_pages_start; 4632 4633 ret = seq_open(file, &show_ftrace_seq_ops); 4634 if (!ret) { 4635 struct seq_file *m = file->private_data; 4636 m->private = iter; 4637 } else { 4638 /* Failed */ 4639 free_ftrace_hash(iter->hash); 4640 trace_parser_put(&iter->parser); 4641 } 4642 } else 4643 file->private_data = iter; 4644 4645 out_unlock: 4646 mutex_unlock(&ops->func_hash->regex_lock); 4647 4648 out: 4649 if (ret) { 4650 kfree(iter); 4651 if (tr) 4652 trace_array_put(tr); 4653 } 4654 4655 return ret; 4656 } 4657 4658 static int 4659 ftrace_filter_open(struct inode *inode, struct file *file) 4660 { 4661 struct ftrace_ops *ops = inode->i_private; 4662 4663 /* Checks for tracefs lockdown */ 4664 return ftrace_regex_open(ops, 4665 FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES, 4666 inode, file); 4667 } 4668 4669 static int 4670 ftrace_notrace_open(struct inode *inode, struct file *file) 4671 { 4672 struct ftrace_ops *ops = inode->i_private; 4673 4674 /* Checks for tracefs lockdown */ 4675 return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE, 4676 inode, file); 4677 } 4678 4679 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */ 4680 struct ftrace_glob { 4681 char *search; 4682 unsigned len; 4683 int type; 4684 }; 4685 4686 /* 4687 * If symbols in an architecture don't correspond exactly to the user-visible 4688 * name of what they represent, it is possible to define this function to 4689 * perform the necessary adjustments. 4690 */ 4691 char * __weak arch_ftrace_match_adjust(char *str, const char *search) 4692 { 4693 return str; 4694 } 4695 4696 static int ftrace_match(char *str, struct ftrace_glob *g) 4697 { 4698 int matched = 0; 4699 int slen; 4700 4701 str = arch_ftrace_match_adjust(str, g->search); 4702 4703 switch (g->type) { 4704 case MATCH_FULL: 4705 if (strcmp(str, g->search) == 0) 4706 matched = 1; 4707 break; 4708 case MATCH_FRONT_ONLY: 4709 if (strncmp(str, g->search, g->len) == 0) 4710 matched = 1; 4711 break; 4712 case MATCH_MIDDLE_ONLY: 4713 if (strstr(str, g->search)) 4714 matched = 1; 4715 break; 4716 case MATCH_END_ONLY: 4717 slen = strlen(str); 4718 if (slen >= g->len && 4719 memcmp(str + slen - g->len, g->search, g->len) == 0) 4720 matched = 1; 4721 break; 4722 case MATCH_GLOB: 4723 if (glob_match(g->search, str)) 4724 matched = 1; 4725 break; 4726 } 4727 4728 return matched; 4729 } 4730 4731 static int 4732 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter) 4733 { 4734 struct ftrace_func_entry *entry; 4735 int ret = 0; 4736 4737 entry = ftrace_lookup_ip(hash, rec->ip); 4738 if (clear_filter) { 4739 /* Do nothing if it doesn't exist */ 4740 if (!entry) 4741 return 0; 4742 4743 free_hash_entry(hash, entry); 4744 } else { 4745 /* Do nothing if it exists */ 4746 if (entry) 4747 return 0; 4748 if (add_hash_entry(hash, rec->ip) == NULL) 4749 ret = -ENOMEM; 4750 } 4751 return ret; 4752 } 4753 4754 static int 4755 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g, 4756 int clear_filter) 4757 { 4758 long index; 4759 struct ftrace_page *pg; 4760 struct dyn_ftrace *rec; 4761 4762 /* The index starts at 1 */ 4763 if (kstrtoul(func_g->search, 0, &index) || --index < 0) 4764 return 0; 4765 4766 do_for_each_ftrace_rec(pg, rec) { 4767 if (pg->index <= index) { 4768 index -= pg->index; 4769 /* this is a double loop, break goes to the next page */ 4770 break; 4771 } 4772 rec = &pg->records[index]; 4773 enter_record(hash, rec, clear_filter); 4774 return 1; 4775 } while_for_each_ftrace_rec(); 4776 return 0; 4777 } 4778 4779 #ifdef FTRACE_MCOUNT_MAX_OFFSET 4780 static int lookup_ip(unsigned long ip, char **modname, char *str) 4781 { 4782 unsigned long offset; 4783 4784 kallsyms_lookup(ip, NULL, &offset, modname, str); 4785 if (offset > FTRACE_MCOUNT_MAX_OFFSET) 4786 return -1; 4787 return 0; 4788 } 4789 #else 4790 static int lookup_ip(unsigned long ip, char **modname, char *str) 4791 { 4792 kallsyms_lookup(ip, NULL, NULL, modname, str); 4793 return 0; 4794 } 4795 #endif 4796 4797 static int 4798 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g, 4799 struct ftrace_glob *mod_g, int exclude_mod) 4800 { 4801 char str[KSYM_SYMBOL_LEN]; 4802 char *modname; 4803 4804 if (lookup_ip(rec->ip, &modname, str)) { 4805 /* This should only happen when a rec is disabled */ 4806 WARN_ON_ONCE(system_state == SYSTEM_RUNNING && 4807 !(rec->flags & FTRACE_FL_DISABLED)); 4808 return 0; 4809 } 4810 4811 if (mod_g) { 4812 int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0; 4813 4814 /* blank module name to match all modules */ 4815 if (!mod_g->len) { 4816 /* blank module globbing: modname xor exclude_mod */ 4817 if (!exclude_mod != !modname) 4818 goto func_match; 4819 return 0; 4820 } 4821 4822 /* 4823 * exclude_mod is set to trace everything but the given 4824 * module. If it is set and the module matches, then 4825 * return 0. If it is not set, and the module doesn't match 4826 * also return 0. Otherwise, check the function to see if 4827 * that matches. 4828 */ 4829 if (!mod_matches == !exclude_mod) 4830 return 0; 4831 func_match: 4832 /* blank search means to match all funcs in the mod */ 4833 if (!func_g->len) 4834 return 1; 4835 } 4836 4837 return ftrace_match(str, func_g); 4838 } 4839 4840 static int 4841 match_records(struct ftrace_hash *hash, char *func, int len, char *mod) 4842 { 4843 struct ftrace_page *pg; 4844 struct dyn_ftrace *rec; 4845 struct ftrace_glob func_g = { .type = MATCH_FULL }; 4846 struct ftrace_glob mod_g = { .type = MATCH_FULL }; 4847 struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL; 4848 int exclude_mod = 0; 4849 int found = 0; 4850 int ret; 4851 int clear_filter = 0; 4852 4853 if (func) { 4854 func_g.type = filter_parse_regex(func, len, &func_g.search, 4855 &clear_filter); 4856 func_g.len = strlen(func_g.search); 4857 } 4858 4859 if (mod) { 4860 mod_g.type = filter_parse_regex(mod, strlen(mod), 4861 &mod_g.search, &exclude_mod); 4862 mod_g.len = strlen(mod_g.search); 4863 } 4864 4865 guard(mutex)(&ftrace_lock); 4866 4867 if (unlikely(ftrace_disabled)) 4868 return 0; 4869 4870 if (func_g.type == MATCH_INDEX) 4871 return add_rec_by_index(hash, &func_g, clear_filter); 4872 4873 do_for_each_ftrace_rec(pg, rec) { 4874 4875 if (rec->flags & FTRACE_FL_DISABLED) 4876 continue; 4877 4878 if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) { 4879 ret = enter_record(hash, rec, clear_filter); 4880 if (ret < 0) 4881 return ret; 4882 found = 1; 4883 } 4884 cond_resched(); 4885 } while_for_each_ftrace_rec(); 4886 4887 return found; 4888 } 4889 4890 static int 4891 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len) 4892 { 4893 return match_records(hash, buff, len, NULL); 4894 } 4895 4896 static void ftrace_ops_update_code(struct ftrace_ops *ops, 4897 struct ftrace_ops_hash *old_hash) 4898 { 4899 struct ftrace_ops *op; 4900 4901 if (!ftrace_enabled) 4902 return; 4903 4904 if (ops->flags & FTRACE_OPS_FL_ENABLED) { 4905 ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash); 4906 return; 4907 } 4908 4909 /* 4910 * If this is the shared global_ops filter, then we need to 4911 * check if there is another ops that shares it, is enabled. 4912 * If so, we still need to run the modify code. 4913 */ 4914 if (ops->func_hash != &global_ops.local_hash) 4915 return; 4916 4917 do_for_each_ftrace_op(op, ftrace_ops_list) { 4918 if (op->func_hash == &global_ops.local_hash && 4919 op->flags & FTRACE_OPS_FL_ENABLED) { 4920 ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash); 4921 /* Only need to do this once */ 4922 return; 4923 } 4924 } while_for_each_ftrace_op(op); 4925 } 4926 4927 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops, 4928 struct ftrace_hash **orig_hash, 4929 struct ftrace_hash *hash, 4930 int enable) 4931 { 4932 if (ops->flags & FTRACE_OPS_FL_SUBOP) 4933 return ftrace_hash_move_and_update_subops(ops, orig_hash, hash); 4934 4935 /* 4936 * If this ops is not enabled, it could be sharing its filters 4937 * with a subop. If that's the case, update the subop instead of 4938 * this ops. Shared filters are only allowed to have one ops set 4939 * at a time, and if we update the ops that is not enabled, 4940 * it will not affect subops that share it. 4941 */ 4942 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) { 4943 struct ftrace_ops *op; 4944 4945 /* Check if any other manager subops maps to this hash */ 4946 do_for_each_ftrace_op(op, ftrace_ops_list) { 4947 struct ftrace_ops *subops; 4948 4949 list_for_each_entry(subops, &op->subop_list, list) { 4950 if ((subops->flags & FTRACE_OPS_FL_ENABLED) && 4951 subops->func_hash == ops->func_hash) { 4952 return ftrace_hash_move_and_update_subops(subops, orig_hash, hash); 4953 } 4954 } 4955 } while_for_each_ftrace_op(op); 4956 } 4957 4958 return __ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable); 4959 } 4960 4961 static int cache_mod(struct trace_array *tr, 4962 const char *func, char *module, int enable) 4963 { 4964 struct ftrace_mod_load *ftrace_mod, *n; 4965 struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace; 4966 4967 guard(mutex)(&ftrace_lock); 4968 4969 /* We do not cache inverse filters */ 4970 if (func[0] == '!') { 4971 int ret = -EINVAL; 4972 4973 func++; 4974 4975 /* Look to remove this hash */ 4976 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4977 if (strcmp(ftrace_mod->module, module) != 0) 4978 continue; 4979 4980 /* no func matches all */ 4981 if (strcmp(func, "*") == 0 || 4982 (ftrace_mod->func && 4983 strcmp(ftrace_mod->func, func) == 0)) { 4984 ret = 0; 4985 free_ftrace_mod(ftrace_mod); 4986 continue; 4987 } 4988 } 4989 return ret; 4990 } 4991 4992 /* We only care about modules that have not been loaded yet */ 4993 if (module_exists(module)) 4994 return -EINVAL; 4995 4996 /* Save this string off, and execute it when the module is loaded */ 4997 return ftrace_add_mod(tr, func, module, enable); 4998 } 4999 5000 #ifdef CONFIG_MODULES 5001 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops, 5002 char *mod, bool enable) 5003 { 5004 struct ftrace_mod_load *ftrace_mod, *n; 5005 struct ftrace_hash **orig_hash, *new_hash; 5006 LIST_HEAD(process_mods); 5007 char *func; 5008 5009 mutex_lock(&ops->func_hash->regex_lock); 5010 5011 if (enable) 5012 orig_hash = &ops->func_hash->filter_hash; 5013 else 5014 orig_hash = &ops->func_hash->notrace_hash; 5015 5016 new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, 5017 *orig_hash); 5018 if (!new_hash) 5019 goto out; /* warn? */ 5020 5021 mutex_lock(&ftrace_lock); 5022 5023 list_for_each_entry_safe(ftrace_mod, n, head, list) { 5024 5025 if (strcmp(ftrace_mod->module, mod) != 0) 5026 continue; 5027 5028 if (ftrace_mod->func) 5029 func = kstrdup(ftrace_mod->func, GFP_KERNEL); 5030 else 5031 func = kstrdup("*", GFP_KERNEL); 5032 5033 if (!func) /* warn? */ 5034 continue; 5035 5036 list_move(&ftrace_mod->list, &process_mods); 5037 5038 /* Use the newly allocated func, as it may be "*" */ 5039 kfree(ftrace_mod->func); 5040 ftrace_mod->func = func; 5041 } 5042 5043 mutex_unlock(&ftrace_lock); 5044 5045 list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) { 5046 5047 func = ftrace_mod->func; 5048 5049 /* Grabs ftrace_lock, which is why we have this extra step */ 5050 match_records(new_hash, func, strlen(func), mod); 5051 free_ftrace_mod(ftrace_mod); 5052 } 5053 5054 if (enable && list_empty(head)) 5055 new_hash->flags &= ~FTRACE_HASH_FL_MOD; 5056 5057 mutex_lock(&ftrace_lock); 5058 5059 ftrace_hash_move_and_update_ops(ops, orig_hash, 5060 new_hash, enable); 5061 mutex_unlock(&ftrace_lock); 5062 5063 out: 5064 mutex_unlock(&ops->func_hash->regex_lock); 5065 5066 free_ftrace_hash(new_hash); 5067 } 5068 5069 static void process_cached_mods(const char *mod_name) 5070 { 5071 struct trace_array *tr; 5072 char *mod; 5073 5074 mod = kstrdup(mod_name, GFP_KERNEL); 5075 if (!mod) 5076 return; 5077 5078 mutex_lock(&trace_types_lock); 5079 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 5080 if (!list_empty(&tr->mod_trace)) 5081 process_mod_list(&tr->mod_trace, tr->ops, mod, true); 5082 if (!list_empty(&tr->mod_notrace)) 5083 process_mod_list(&tr->mod_notrace, tr->ops, mod, false); 5084 } 5085 mutex_unlock(&trace_types_lock); 5086 5087 kfree(mod); 5088 } 5089 #endif 5090 5091 /* 5092 * We register the module command as a template to show others how 5093 * to register the a command as well. 5094 */ 5095 5096 static int 5097 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash, 5098 char *func_orig, char *cmd, char *module, int enable) 5099 { 5100 char *func; 5101 int ret; 5102 5103 if (!tr) 5104 return -ENODEV; 5105 5106 /* match_records() modifies func, and we need the original */ 5107 func = kstrdup(func_orig, GFP_KERNEL); 5108 if (!func) 5109 return -ENOMEM; 5110 5111 /* 5112 * cmd == 'mod' because we only registered this func 5113 * for the 'mod' ftrace_func_command. 5114 * But if you register one func with multiple commands, 5115 * you can tell which command was used by the cmd 5116 * parameter. 5117 */ 5118 ret = match_records(hash, func, strlen(func), module); 5119 kfree(func); 5120 5121 if (!ret) 5122 return cache_mod(tr, func_orig, module, enable); 5123 if (ret < 0) 5124 return ret; 5125 return 0; 5126 } 5127 5128 static struct ftrace_func_command ftrace_mod_cmd = { 5129 .name = "mod", 5130 .func = ftrace_mod_callback, 5131 }; 5132 5133 static int __init ftrace_mod_cmd_init(void) 5134 { 5135 return register_ftrace_command(&ftrace_mod_cmd); 5136 } 5137 core_initcall(ftrace_mod_cmd_init); 5138 5139 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip, 5140 struct ftrace_ops *op, struct ftrace_regs *fregs) 5141 { 5142 struct ftrace_probe_ops *probe_ops; 5143 struct ftrace_func_probe *probe; 5144 5145 probe = container_of(op, struct ftrace_func_probe, ops); 5146 probe_ops = probe->probe_ops; 5147 5148 /* 5149 * Disable preemption for these calls to prevent a RCU grace 5150 * period. This syncs the hash iteration and freeing of items 5151 * on the hash. rcu_read_lock is too dangerous here. 5152 */ 5153 preempt_disable_notrace(); 5154 probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data); 5155 preempt_enable_notrace(); 5156 } 5157 5158 struct ftrace_func_map { 5159 struct ftrace_func_entry entry; 5160 void *data; 5161 }; 5162 5163 struct ftrace_func_mapper { 5164 struct ftrace_hash hash; 5165 }; 5166 5167 /** 5168 * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper 5169 * 5170 * Returns: a ftrace_func_mapper descriptor that can be used to map ips to data. 5171 */ 5172 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void) 5173 { 5174 struct ftrace_hash *hash; 5175 5176 /* 5177 * The mapper is simply a ftrace_hash, but since the entries 5178 * in the hash are not ftrace_func_entry type, we define it 5179 * as a separate structure. 5180 */ 5181 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 5182 return (struct ftrace_func_mapper *)hash; 5183 } 5184 5185 /** 5186 * ftrace_func_mapper_find_ip - Find some data mapped to an ip 5187 * @mapper: The mapper that has the ip maps 5188 * @ip: the instruction pointer to find the data for 5189 * 5190 * Returns: the data mapped to @ip if found otherwise NULL. The return 5191 * is actually the address of the mapper data pointer. The address is 5192 * returned for use cases where the data is no bigger than a long, and 5193 * the user can use the data pointer as its data instead of having to 5194 * allocate more memory for the reference. 5195 */ 5196 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper, 5197 unsigned long ip) 5198 { 5199 struct ftrace_func_entry *entry; 5200 struct ftrace_func_map *map; 5201 5202 entry = ftrace_lookup_ip(&mapper->hash, ip); 5203 if (!entry) 5204 return NULL; 5205 5206 map = (struct ftrace_func_map *)entry; 5207 return &map->data; 5208 } 5209 5210 /** 5211 * ftrace_func_mapper_add_ip - Map some data to an ip 5212 * @mapper: The mapper that has the ip maps 5213 * @ip: The instruction pointer address to map @data to 5214 * @data: The data to map to @ip 5215 * 5216 * Returns: 0 on success otherwise an error. 5217 */ 5218 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper, 5219 unsigned long ip, void *data) 5220 { 5221 struct ftrace_func_entry *entry; 5222 struct ftrace_func_map *map; 5223 5224 entry = ftrace_lookup_ip(&mapper->hash, ip); 5225 if (entry) 5226 return -EBUSY; 5227 5228 map = kmalloc(sizeof(*map), GFP_KERNEL); 5229 if (!map) 5230 return -ENOMEM; 5231 5232 map->entry.ip = ip; 5233 map->data = data; 5234 5235 __add_hash_entry(&mapper->hash, &map->entry); 5236 5237 return 0; 5238 } 5239 5240 /** 5241 * ftrace_func_mapper_remove_ip - Remove an ip from the mapping 5242 * @mapper: The mapper that has the ip maps 5243 * @ip: The instruction pointer address to remove the data from 5244 * 5245 * Returns: the data if it is found, otherwise NULL. 5246 * Note, if the data pointer is used as the data itself, (see 5247 * ftrace_func_mapper_find_ip(), then the return value may be meaningless, 5248 * if the data pointer was set to zero. 5249 */ 5250 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper, 5251 unsigned long ip) 5252 { 5253 struct ftrace_func_entry *entry; 5254 struct ftrace_func_map *map; 5255 void *data; 5256 5257 entry = ftrace_lookup_ip(&mapper->hash, ip); 5258 if (!entry) 5259 return NULL; 5260 5261 map = (struct ftrace_func_map *)entry; 5262 data = map->data; 5263 5264 remove_hash_entry(&mapper->hash, entry); 5265 kfree(entry); 5266 5267 return data; 5268 } 5269 5270 /** 5271 * free_ftrace_func_mapper - free a mapping of ips and data 5272 * @mapper: The mapper that has the ip maps 5273 * @free_func: A function to be called on each data item. 5274 * 5275 * This is used to free the function mapper. The @free_func is optional 5276 * and can be used if the data needs to be freed as well. 5277 */ 5278 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper, 5279 ftrace_mapper_func free_func) 5280 { 5281 struct ftrace_func_entry *entry; 5282 struct ftrace_func_map *map; 5283 struct hlist_head *hhd; 5284 int size, i; 5285 5286 if (!mapper) 5287 return; 5288 5289 if (free_func && mapper->hash.count) { 5290 size = 1 << mapper->hash.size_bits; 5291 for (i = 0; i < size; i++) { 5292 hhd = &mapper->hash.buckets[i]; 5293 hlist_for_each_entry(entry, hhd, hlist) { 5294 map = (struct ftrace_func_map *)entry; 5295 free_func(map); 5296 } 5297 } 5298 } 5299 free_ftrace_hash(&mapper->hash); 5300 } 5301 5302 static void release_probe(struct ftrace_func_probe *probe) 5303 { 5304 struct ftrace_probe_ops *probe_ops; 5305 5306 guard(mutex)(&ftrace_lock); 5307 5308 WARN_ON(probe->ref <= 0); 5309 5310 /* Subtract the ref that was used to protect this instance */ 5311 probe->ref--; 5312 5313 if (!probe->ref) { 5314 probe_ops = probe->probe_ops; 5315 /* 5316 * Sending zero as ip tells probe_ops to free 5317 * the probe->data itself 5318 */ 5319 if (probe_ops->free) 5320 probe_ops->free(probe_ops, probe->tr, 0, probe->data); 5321 list_del(&probe->list); 5322 kfree(probe); 5323 } 5324 } 5325 5326 static void acquire_probe_locked(struct ftrace_func_probe *probe) 5327 { 5328 /* 5329 * Add one ref to keep it from being freed when releasing the 5330 * ftrace_lock mutex. 5331 */ 5332 probe->ref++; 5333 } 5334 5335 int 5336 register_ftrace_function_probe(char *glob, struct trace_array *tr, 5337 struct ftrace_probe_ops *probe_ops, 5338 void *data) 5339 { 5340 struct ftrace_func_probe *probe = NULL, *iter; 5341 struct ftrace_func_entry *entry; 5342 struct ftrace_hash **orig_hash; 5343 struct ftrace_hash *old_hash; 5344 struct ftrace_hash *hash; 5345 int count = 0; 5346 int size; 5347 int ret; 5348 int i; 5349 5350 if (WARN_ON(!tr)) 5351 return -EINVAL; 5352 5353 /* We do not support '!' for function probes */ 5354 if (WARN_ON(glob[0] == '!')) 5355 return -EINVAL; 5356 5357 5358 mutex_lock(&ftrace_lock); 5359 /* Check if the probe_ops is already registered */ 5360 list_for_each_entry(iter, &tr->func_probes, list) { 5361 if (iter->probe_ops == probe_ops) { 5362 probe = iter; 5363 break; 5364 } 5365 } 5366 if (!probe) { 5367 probe = kzalloc(sizeof(*probe), GFP_KERNEL); 5368 if (!probe) { 5369 mutex_unlock(&ftrace_lock); 5370 return -ENOMEM; 5371 } 5372 probe->probe_ops = probe_ops; 5373 probe->ops.func = function_trace_probe_call; 5374 probe->tr = tr; 5375 ftrace_ops_init(&probe->ops); 5376 list_add(&probe->list, &tr->func_probes); 5377 } 5378 5379 acquire_probe_locked(probe); 5380 5381 mutex_unlock(&ftrace_lock); 5382 5383 /* 5384 * Note, there's a small window here that the func_hash->filter_hash 5385 * may be NULL or empty. Need to be careful when reading the loop. 5386 */ 5387 mutex_lock(&probe->ops.func_hash->regex_lock); 5388 5389 orig_hash = &probe->ops.func_hash->filter_hash; 5390 old_hash = *orig_hash; 5391 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 5392 5393 if (!hash) { 5394 ret = -ENOMEM; 5395 goto out; 5396 } 5397 5398 ret = ftrace_match_records(hash, glob, strlen(glob)); 5399 5400 /* Nothing found? */ 5401 if (!ret) 5402 ret = -EINVAL; 5403 5404 if (ret < 0) 5405 goto out; 5406 5407 size = 1 << hash->size_bits; 5408 for (i = 0; i < size; i++) { 5409 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5410 if (ftrace_lookup_ip(old_hash, entry->ip)) 5411 continue; 5412 /* 5413 * The caller might want to do something special 5414 * for each function we find. We call the callback 5415 * to give the caller an opportunity to do so. 5416 */ 5417 if (probe_ops->init) { 5418 ret = probe_ops->init(probe_ops, tr, 5419 entry->ip, data, 5420 &probe->data); 5421 if (ret < 0) { 5422 if (probe_ops->free && count) 5423 probe_ops->free(probe_ops, tr, 5424 0, probe->data); 5425 probe->data = NULL; 5426 goto out; 5427 } 5428 } 5429 count++; 5430 } 5431 } 5432 5433 mutex_lock(&ftrace_lock); 5434 5435 if (!count) { 5436 /* Nothing was added? */ 5437 ret = -EINVAL; 5438 goto out_unlock; 5439 } 5440 5441 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 5442 hash, 1); 5443 if (ret < 0) 5444 goto err_unlock; 5445 5446 /* One ref for each new function traced */ 5447 probe->ref += count; 5448 5449 if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED)) 5450 ret = ftrace_startup(&probe->ops, 0); 5451 5452 out_unlock: 5453 mutex_unlock(&ftrace_lock); 5454 5455 if (!ret) 5456 ret = count; 5457 out: 5458 mutex_unlock(&probe->ops.func_hash->regex_lock); 5459 free_ftrace_hash(hash); 5460 5461 release_probe(probe); 5462 5463 return ret; 5464 5465 err_unlock: 5466 if (!probe_ops->free || !count) 5467 goto out_unlock; 5468 5469 /* Failed to do the move, need to call the free functions */ 5470 for (i = 0; i < size; i++) { 5471 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5472 if (ftrace_lookup_ip(old_hash, entry->ip)) 5473 continue; 5474 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 5475 } 5476 } 5477 goto out_unlock; 5478 } 5479 5480 int 5481 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr, 5482 struct ftrace_probe_ops *probe_ops) 5483 { 5484 struct ftrace_func_probe *probe = NULL, *iter; 5485 struct ftrace_ops_hash old_hash_ops; 5486 struct ftrace_func_entry *entry; 5487 struct ftrace_glob func_g; 5488 struct ftrace_hash **orig_hash; 5489 struct ftrace_hash *old_hash; 5490 struct ftrace_hash *hash = NULL; 5491 struct hlist_node *tmp; 5492 struct hlist_head hhd; 5493 char str[KSYM_SYMBOL_LEN]; 5494 int count = 0; 5495 int i, ret = -ENODEV; 5496 int size; 5497 5498 if (!glob || !strlen(glob) || !strcmp(glob, "*")) 5499 func_g.search = NULL; 5500 else { 5501 int not; 5502 5503 func_g.type = filter_parse_regex(glob, strlen(glob), 5504 &func_g.search, ¬); 5505 func_g.len = strlen(func_g.search); 5506 5507 /* we do not support '!' for function probes */ 5508 if (WARN_ON(not)) 5509 return -EINVAL; 5510 } 5511 5512 mutex_lock(&ftrace_lock); 5513 /* Check if the probe_ops is already registered */ 5514 list_for_each_entry(iter, &tr->func_probes, list) { 5515 if (iter->probe_ops == probe_ops) { 5516 probe = iter; 5517 break; 5518 } 5519 } 5520 if (!probe) 5521 goto err_unlock_ftrace; 5522 5523 ret = -EINVAL; 5524 if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED)) 5525 goto err_unlock_ftrace; 5526 5527 acquire_probe_locked(probe); 5528 5529 mutex_unlock(&ftrace_lock); 5530 5531 mutex_lock(&probe->ops.func_hash->regex_lock); 5532 5533 orig_hash = &probe->ops.func_hash->filter_hash; 5534 old_hash = *orig_hash; 5535 5536 if (ftrace_hash_empty(old_hash)) 5537 goto out_unlock; 5538 5539 old_hash_ops.filter_hash = old_hash; 5540 /* Probes only have filters */ 5541 old_hash_ops.notrace_hash = NULL; 5542 5543 ret = -ENOMEM; 5544 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 5545 if (!hash) 5546 goto out_unlock; 5547 5548 INIT_HLIST_HEAD(&hhd); 5549 5550 size = 1 << hash->size_bits; 5551 for (i = 0; i < size; i++) { 5552 hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) { 5553 5554 if (func_g.search) { 5555 kallsyms_lookup(entry->ip, NULL, NULL, 5556 NULL, str); 5557 if (!ftrace_match(str, &func_g)) 5558 continue; 5559 } 5560 count++; 5561 remove_hash_entry(hash, entry); 5562 hlist_add_head(&entry->hlist, &hhd); 5563 } 5564 } 5565 5566 /* Nothing found? */ 5567 if (!count) { 5568 ret = -EINVAL; 5569 goto out_unlock; 5570 } 5571 5572 mutex_lock(&ftrace_lock); 5573 5574 WARN_ON(probe->ref < count); 5575 5576 probe->ref -= count; 5577 5578 if (ftrace_hash_empty(hash)) 5579 ftrace_shutdown(&probe->ops, 0); 5580 5581 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 5582 hash, 1); 5583 5584 /* still need to update the function call sites */ 5585 if (ftrace_enabled && !ftrace_hash_empty(hash)) 5586 ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS, 5587 &old_hash_ops); 5588 synchronize_rcu(); 5589 5590 hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) { 5591 hlist_del(&entry->hlist); 5592 if (probe_ops->free) 5593 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 5594 kfree(entry); 5595 } 5596 mutex_unlock(&ftrace_lock); 5597 5598 out_unlock: 5599 mutex_unlock(&probe->ops.func_hash->regex_lock); 5600 free_ftrace_hash(hash); 5601 5602 release_probe(probe); 5603 5604 return ret; 5605 5606 err_unlock_ftrace: 5607 mutex_unlock(&ftrace_lock); 5608 return ret; 5609 } 5610 5611 void clear_ftrace_function_probes(struct trace_array *tr) 5612 { 5613 struct ftrace_func_probe *probe, *n; 5614 5615 list_for_each_entry_safe(probe, n, &tr->func_probes, list) 5616 unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops); 5617 } 5618 5619 static LIST_HEAD(ftrace_commands); 5620 static DEFINE_MUTEX(ftrace_cmd_mutex); 5621 5622 /* 5623 * Currently we only register ftrace commands from __init, so mark this 5624 * __init too. 5625 */ 5626 __init int register_ftrace_command(struct ftrace_func_command *cmd) 5627 { 5628 struct ftrace_func_command *p; 5629 5630 guard(mutex)(&ftrace_cmd_mutex); 5631 list_for_each_entry(p, &ftrace_commands, list) { 5632 if (strcmp(cmd->name, p->name) == 0) 5633 return -EBUSY; 5634 } 5635 list_add(&cmd->list, &ftrace_commands); 5636 5637 return 0; 5638 } 5639 5640 /* 5641 * Currently we only unregister ftrace commands from __init, so mark 5642 * this __init too. 5643 */ 5644 __init int unregister_ftrace_command(struct ftrace_func_command *cmd) 5645 { 5646 struct ftrace_func_command *p, *n; 5647 5648 guard(mutex)(&ftrace_cmd_mutex); 5649 5650 list_for_each_entry_safe(p, n, &ftrace_commands, list) { 5651 if (strcmp(cmd->name, p->name) == 0) { 5652 list_del_init(&p->list); 5653 return 0; 5654 } 5655 } 5656 5657 return -ENODEV; 5658 } 5659 5660 static int ftrace_process_regex(struct ftrace_iterator *iter, 5661 char *buff, int len, int enable) 5662 { 5663 struct ftrace_hash *hash = iter->hash; 5664 struct trace_array *tr = iter->ops->private; 5665 char *func, *command, *next = buff; 5666 struct ftrace_func_command *p; 5667 int ret; 5668 5669 func = strsep(&next, ":"); 5670 5671 if (!next) { 5672 ret = ftrace_match_records(hash, func, len); 5673 if (!ret) 5674 ret = -EINVAL; 5675 if (ret < 0) 5676 return ret; 5677 return 0; 5678 } 5679 5680 /* command found */ 5681 5682 command = strsep(&next, ":"); 5683 5684 guard(mutex)(&ftrace_cmd_mutex); 5685 5686 list_for_each_entry(p, &ftrace_commands, list) { 5687 if (strcmp(p->name, command) == 0) 5688 return p->func(tr, hash, func, command, next, enable); 5689 } 5690 5691 return -EINVAL; 5692 } 5693 5694 static ssize_t 5695 ftrace_regex_write(struct file *file, const char __user *ubuf, 5696 size_t cnt, loff_t *ppos, int enable) 5697 { 5698 struct ftrace_iterator *iter; 5699 struct trace_parser *parser; 5700 ssize_t ret, read; 5701 5702 if (!cnt) 5703 return 0; 5704 5705 if (file->f_mode & FMODE_READ) { 5706 struct seq_file *m = file->private_data; 5707 iter = m->private; 5708 } else 5709 iter = file->private_data; 5710 5711 if (unlikely(ftrace_disabled)) 5712 return -ENODEV; 5713 5714 /* iter->hash is a local copy, so we don't need regex_lock */ 5715 5716 parser = &iter->parser; 5717 read = trace_get_user(parser, ubuf, cnt, ppos); 5718 5719 if (read >= 0 && trace_parser_loaded(parser) && 5720 !trace_parser_cont(parser)) { 5721 ret = ftrace_process_regex(iter, parser->buffer, 5722 parser->idx, enable); 5723 trace_parser_clear(parser); 5724 if (ret < 0) 5725 return ret; 5726 } 5727 5728 return read; 5729 } 5730 5731 ssize_t 5732 ftrace_filter_write(struct file *file, const char __user *ubuf, 5733 size_t cnt, loff_t *ppos) 5734 { 5735 return ftrace_regex_write(file, ubuf, cnt, ppos, 1); 5736 } 5737 5738 ssize_t 5739 ftrace_notrace_write(struct file *file, const char __user *ubuf, 5740 size_t cnt, loff_t *ppos) 5741 { 5742 return ftrace_regex_write(file, ubuf, cnt, ppos, 0); 5743 } 5744 5745 static int 5746 __ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove) 5747 { 5748 struct ftrace_func_entry *entry; 5749 5750 ip = ftrace_location(ip); 5751 if (!ip) 5752 return -EINVAL; 5753 5754 if (remove) { 5755 entry = ftrace_lookup_ip(hash, ip); 5756 if (!entry) 5757 return -ENOENT; 5758 free_hash_entry(hash, entry); 5759 return 0; 5760 } else if (__ftrace_lookup_ip(hash, ip) != NULL) { 5761 /* Already exists */ 5762 return 0; 5763 } 5764 5765 entry = add_hash_entry(hash, ip); 5766 return entry ? 0 : -ENOMEM; 5767 } 5768 5769 static int 5770 ftrace_match_addr(struct ftrace_hash *hash, unsigned long *ips, 5771 unsigned int cnt, int remove) 5772 { 5773 unsigned int i; 5774 int err; 5775 5776 for (i = 0; i < cnt; i++) { 5777 err = __ftrace_match_addr(hash, ips[i], remove); 5778 if (err) { 5779 /* 5780 * This expects the @hash is a temporary hash and if this 5781 * fails the caller must free the @hash. 5782 */ 5783 return err; 5784 } 5785 } 5786 return 0; 5787 } 5788 5789 static int 5790 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len, 5791 unsigned long *ips, unsigned int cnt, 5792 int remove, int reset, int enable, char *mod) 5793 { 5794 struct ftrace_hash **orig_hash; 5795 struct ftrace_hash *hash; 5796 int ret; 5797 5798 if (unlikely(ftrace_disabled)) 5799 return -ENODEV; 5800 5801 mutex_lock(&ops->func_hash->regex_lock); 5802 5803 if (enable) 5804 orig_hash = &ops->func_hash->filter_hash; 5805 else 5806 orig_hash = &ops->func_hash->notrace_hash; 5807 5808 if (reset) 5809 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 5810 else 5811 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash); 5812 5813 if (!hash) { 5814 ret = -ENOMEM; 5815 goto out_regex_unlock; 5816 } 5817 5818 if (buf && !match_records(hash, buf, len, mod)) { 5819 /* If this was for a module and nothing was enabled, flag it */ 5820 if (mod) 5821 (*orig_hash)->flags |= FTRACE_HASH_FL_MOD; 5822 5823 /* 5824 * Even if it is a mod, return error to let caller know 5825 * nothing was added 5826 */ 5827 ret = -EINVAL; 5828 goto out_regex_unlock; 5829 } 5830 if (ips) { 5831 ret = ftrace_match_addr(hash, ips, cnt, remove); 5832 if (ret < 0) 5833 goto out_regex_unlock; 5834 } 5835 5836 mutex_lock(&ftrace_lock); 5837 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable); 5838 mutex_unlock(&ftrace_lock); 5839 5840 out_regex_unlock: 5841 mutex_unlock(&ops->func_hash->regex_lock); 5842 5843 free_ftrace_hash(hash); 5844 return ret; 5845 } 5846 5847 static int 5848 ftrace_set_addr(struct ftrace_ops *ops, unsigned long *ips, unsigned int cnt, 5849 int remove, int reset, int enable) 5850 { 5851 return ftrace_set_hash(ops, NULL, 0, ips, cnt, remove, reset, enable, NULL); 5852 } 5853 5854 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 5855 5856 static int register_ftrace_function_nolock(struct ftrace_ops *ops); 5857 5858 /* 5859 * If there are multiple ftrace_ops, use SAVE_REGS by default, so that direct 5860 * call will be jumped from ftrace_regs_caller. Only if the architecture does 5861 * not support ftrace_regs_caller but direct_call, use SAVE_ARGS so that it 5862 * jumps from ftrace_caller for multiple ftrace_ops. 5863 */ 5864 #ifndef CONFIG_HAVE_DYNAMIC_FTRACE_WITH_REGS 5865 #define MULTI_FLAGS (FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_ARGS) 5866 #else 5867 #define MULTI_FLAGS (FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS) 5868 #endif 5869 5870 static int check_direct_multi(struct ftrace_ops *ops) 5871 { 5872 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) 5873 return -EINVAL; 5874 if ((ops->flags & MULTI_FLAGS) != MULTI_FLAGS) 5875 return -EINVAL; 5876 return 0; 5877 } 5878 5879 static void remove_direct_functions_hash(struct ftrace_hash *hash, unsigned long addr) 5880 { 5881 struct ftrace_func_entry *entry, *del; 5882 int size, i; 5883 5884 size = 1 << hash->size_bits; 5885 for (i = 0; i < size; i++) { 5886 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5887 del = __ftrace_lookup_ip(direct_functions, entry->ip); 5888 if (del && del->direct == addr) { 5889 remove_hash_entry(direct_functions, del); 5890 kfree(del); 5891 } 5892 } 5893 } 5894 } 5895 5896 static void register_ftrace_direct_cb(struct rcu_head *rhp) 5897 { 5898 struct ftrace_hash *fhp = container_of(rhp, struct ftrace_hash, rcu); 5899 5900 free_ftrace_hash(fhp); 5901 } 5902 5903 /** 5904 * register_ftrace_direct - Call a custom trampoline directly 5905 * for multiple functions registered in @ops 5906 * @ops: The address of the struct ftrace_ops object 5907 * @addr: The address of the trampoline to call at @ops functions 5908 * 5909 * This is used to connect a direct calls to @addr from the nop locations 5910 * of the functions registered in @ops (with by ftrace_set_filter_ip 5911 * function). 5912 * 5913 * The location that it calls (@addr) must be able to handle a direct call, 5914 * and save the parameters of the function being traced, and restore them 5915 * (or inject new ones if needed), before returning. 5916 * 5917 * Returns: 5918 * 0 on success 5919 * -EINVAL - The @ops object was already registered with this call or 5920 * when there are no functions in @ops object. 5921 * -EBUSY - Another direct function is already attached (there can be only one) 5922 * -ENODEV - @ip does not point to a ftrace nop location (or not supported) 5923 * -ENOMEM - There was an allocation failure. 5924 */ 5925 int register_ftrace_direct(struct ftrace_ops *ops, unsigned long addr) 5926 { 5927 struct ftrace_hash *hash, *new_hash = NULL, *free_hash = NULL; 5928 struct ftrace_func_entry *entry, *new; 5929 int err = -EBUSY, size, i; 5930 5931 if (ops->func || ops->trampoline) 5932 return -EINVAL; 5933 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) 5934 return -EINVAL; 5935 if (ops->flags & FTRACE_OPS_FL_ENABLED) 5936 return -EINVAL; 5937 5938 hash = ops->func_hash->filter_hash; 5939 if (ftrace_hash_empty(hash)) 5940 return -EINVAL; 5941 5942 mutex_lock(&direct_mutex); 5943 5944 /* Make sure requested entries are not already registered.. */ 5945 size = 1 << hash->size_bits; 5946 for (i = 0; i < size; i++) { 5947 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5948 if (ftrace_find_rec_direct(entry->ip)) 5949 goto out_unlock; 5950 } 5951 } 5952 5953 err = -ENOMEM; 5954 5955 /* Make a copy hash to place the new and the old entries in */ 5956 size = hash->count + direct_functions->count; 5957 if (size > 32) 5958 size = 32; 5959 new_hash = alloc_ftrace_hash(fls(size)); 5960 if (!new_hash) 5961 goto out_unlock; 5962 5963 /* Now copy over the existing direct entries */ 5964 size = 1 << direct_functions->size_bits; 5965 for (i = 0; i < size; i++) { 5966 hlist_for_each_entry(entry, &direct_functions->buckets[i], hlist) { 5967 new = add_hash_entry(new_hash, entry->ip); 5968 if (!new) 5969 goto out_unlock; 5970 new->direct = entry->direct; 5971 } 5972 } 5973 5974 /* ... and add the new entries */ 5975 size = 1 << hash->size_bits; 5976 for (i = 0; i < size; i++) { 5977 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5978 new = add_hash_entry(new_hash, entry->ip); 5979 if (!new) 5980 goto out_unlock; 5981 /* Update both the copy and the hash entry */ 5982 new->direct = addr; 5983 entry->direct = addr; 5984 } 5985 } 5986 5987 free_hash = direct_functions; 5988 rcu_assign_pointer(direct_functions, new_hash); 5989 new_hash = NULL; 5990 5991 ops->func = call_direct_funcs; 5992 ops->flags = MULTI_FLAGS; 5993 ops->trampoline = FTRACE_REGS_ADDR; 5994 ops->direct_call = addr; 5995 5996 err = register_ftrace_function_nolock(ops); 5997 5998 out_unlock: 5999 mutex_unlock(&direct_mutex); 6000 6001 if (free_hash && free_hash != EMPTY_HASH) 6002 call_rcu_tasks(&free_hash->rcu, register_ftrace_direct_cb); 6003 6004 if (new_hash) 6005 free_ftrace_hash(new_hash); 6006 6007 return err; 6008 } 6009 EXPORT_SYMBOL_GPL(register_ftrace_direct); 6010 6011 /** 6012 * unregister_ftrace_direct - Remove calls to custom trampoline 6013 * previously registered by register_ftrace_direct for @ops object. 6014 * @ops: The address of the struct ftrace_ops object 6015 * @addr: The address of the direct function that is called by the @ops functions 6016 * @free_filters: Set to true to remove all filters for the ftrace_ops, false otherwise 6017 * 6018 * This is used to remove a direct calls to @addr from the nop locations 6019 * of the functions registered in @ops (with by ftrace_set_filter_ip 6020 * function). 6021 * 6022 * Returns: 6023 * 0 on success 6024 * -EINVAL - The @ops object was not properly registered. 6025 */ 6026 int unregister_ftrace_direct(struct ftrace_ops *ops, unsigned long addr, 6027 bool free_filters) 6028 { 6029 struct ftrace_hash *hash = ops->func_hash->filter_hash; 6030 int err; 6031 6032 if (check_direct_multi(ops)) 6033 return -EINVAL; 6034 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 6035 return -EINVAL; 6036 6037 mutex_lock(&direct_mutex); 6038 err = unregister_ftrace_function(ops); 6039 remove_direct_functions_hash(hash, addr); 6040 mutex_unlock(&direct_mutex); 6041 6042 /* cleanup for possible another register call */ 6043 ops->func = NULL; 6044 ops->trampoline = 0; 6045 6046 if (free_filters) 6047 ftrace_free_filter(ops); 6048 return err; 6049 } 6050 EXPORT_SYMBOL_GPL(unregister_ftrace_direct); 6051 6052 static int 6053 __modify_ftrace_direct(struct ftrace_ops *ops, unsigned long addr) 6054 { 6055 struct ftrace_hash *hash; 6056 struct ftrace_func_entry *entry, *iter; 6057 static struct ftrace_ops tmp_ops = { 6058 .func = ftrace_stub, 6059 .flags = FTRACE_OPS_FL_STUB, 6060 }; 6061 int i, size; 6062 int err; 6063 6064 lockdep_assert_held_once(&direct_mutex); 6065 6066 /* Enable the tmp_ops to have the same functions as the direct ops */ 6067 ftrace_ops_init(&tmp_ops); 6068 tmp_ops.func_hash = ops->func_hash; 6069 tmp_ops.direct_call = addr; 6070 6071 err = register_ftrace_function_nolock(&tmp_ops); 6072 if (err) 6073 return err; 6074 6075 /* 6076 * Now the ftrace_ops_list_func() is called to do the direct callers. 6077 * We can safely change the direct functions attached to each entry. 6078 */ 6079 mutex_lock(&ftrace_lock); 6080 6081 hash = ops->func_hash->filter_hash; 6082 size = 1 << hash->size_bits; 6083 for (i = 0; i < size; i++) { 6084 hlist_for_each_entry(iter, &hash->buckets[i], hlist) { 6085 entry = __ftrace_lookup_ip(direct_functions, iter->ip); 6086 if (!entry) 6087 continue; 6088 entry->direct = addr; 6089 } 6090 } 6091 /* Prevent store tearing if a trampoline concurrently accesses the value */ 6092 WRITE_ONCE(ops->direct_call, addr); 6093 6094 mutex_unlock(&ftrace_lock); 6095 6096 /* Removing the tmp_ops will add the updated direct callers to the functions */ 6097 unregister_ftrace_function(&tmp_ops); 6098 6099 return err; 6100 } 6101 6102 /** 6103 * modify_ftrace_direct_nolock - Modify an existing direct 'multi' call 6104 * to call something else 6105 * @ops: The address of the struct ftrace_ops object 6106 * @addr: The address of the new trampoline to call at @ops functions 6107 * 6108 * This is used to unregister currently registered direct caller and 6109 * register new one @addr on functions registered in @ops object. 6110 * 6111 * Note there's window between ftrace_shutdown and ftrace_startup calls 6112 * where there will be no callbacks called. 6113 * 6114 * Caller should already have direct_mutex locked, so we don't lock 6115 * direct_mutex here. 6116 * 6117 * Returns: zero on success. Non zero on error, which includes: 6118 * -EINVAL - The @ops object was not properly registered. 6119 */ 6120 int modify_ftrace_direct_nolock(struct ftrace_ops *ops, unsigned long addr) 6121 { 6122 if (check_direct_multi(ops)) 6123 return -EINVAL; 6124 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 6125 return -EINVAL; 6126 6127 return __modify_ftrace_direct(ops, addr); 6128 } 6129 EXPORT_SYMBOL_GPL(modify_ftrace_direct_nolock); 6130 6131 /** 6132 * modify_ftrace_direct - Modify an existing direct 'multi' call 6133 * to call something else 6134 * @ops: The address of the struct ftrace_ops object 6135 * @addr: The address of the new trampoline to call at @ops functions 6136 * 6137 * This is used to unregister currently registered direct caller and 6138 * register new one @addr on functions registered in @ops object. 6139 * 6140 * Note there's window between ftrace_shutdown and ftrace_startup calls 6141 * where there will be no callbacks called. 6142 * 6143 * Returns: zero on success. Non zero on error, which includes: 6144 * -EINVAL - The @ops object was not properly registered. 6145 */ 6146 int modify_ftrace_direct(struct ftrace_ops *ops, unsigned long addr) 6147 { 6148 int err; 6149 6150 if (check_direct_multi(ops)) 6151 return -EINVAL; 6152 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 6153 return -EINVAL; 6154 6155 mutex_lock(&direct_mutex); 6156 err = __modify_ftrace_direct(ops, addr); 6157 mutex_unlock(&direct_mutex); 6158 return err; 6159 } 6160 EXPORT_SYMBOL_GPL(modify_ftrace_direct); 6161 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 6162 6163 /** 6164 * ftrace_set_filter_ip - set a function to filter on in ftrace by address 6165 * @ops: the ops to set the filter with 6166 * @ip: the address to add to or remove from the filter. 6167 * @remove: non zero to remove the ip from the filter 6168 * @reset: non zero to reset all filters before applying this filter. 6169 * 6170 * Filters denote which functions should be enabled when tracing is enabled 6171 * If @ip is NULL, it fails to update filter. 6172 * 6173 * This can allocate memory which must be freed before @ops can be freed, 6174 * either by removing each filtered addr or by using 6175 * ftrace_free_filter(@ops). 6176 */ 6177 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip, 6178 int remove, int reset) 6179 { 6180 ftrace_ops_init(ops); 6181 return ftrace_set_addr(ops, &ip, 1, remove, reset, 1); 6182 } 6183 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip); 6184 6185 /** 6186 * ftrace_set_filter_ips - set functions to filter on in ftrace by addresses 6187 * @ops: the ops to set the filter with 6188 * @ips: the array of addresses to add to or remove from the filter. 6189 * @cnt: the number of addresses in @ips 6190 * @remove: non zero to remove ips from the filter 6191 * @reset: non zero to reset all filters before applying this filter. 6192 * 6193 * Filters denote which functions should be enabled when tracing is enabled 6194 * If @ips array or any ip specified within is NULL , it fails to update filter. 6195 * 6196 * This can allocate memory which must be freed before @ops can be freed, 6197 * either by removing each filtered addr or by using 6198 * ftrace_free_filter(@ops). 6199 */ 6200 int ftrace_set_filter_ips(struct ftrace_ops *ops, unsigned long *ips, 6201 unsigned int cnt, int remove, int reset) 6202 { 6203 ftrace_ops_init(ops); 6204 return ftrace_set_addr(ops, ips, cnt, remove, reset, 1); 6205 } 6206 EXPORT_SYMBOL_GPL(ftrace_set_filter_ips); 6207 6208 /** 6209 * ftrace_ops_set_global_filter - setup ops to use global filters 6210 * @ops: the ops which will use the global filters 6211 * 6212 * ftrace users who need global function trace filtering should call this. 6213 * It can set the global filter only if ops were not initialized before. 6214 */ 6215 void ftrace_ops_set_global_filter(struct ftrace_ops *ops) 6216 { 6217 if (ops->flags & FTRACE_OPS_FL_INITIALIZED) 6218 return; 6219 6220 ftrace_ops_init(ops); 6221 ops->func_hash = &global_ops.local_hash; 6222 } 6223 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter); 6224 6225 static int 6226 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 6227 int reset, int enable) 6228 { 6229 char *mod = NULL, *func, *command, *next = buf; 6230 char *tmp __free(kfree) = NULL; 6231 struct trace_array *tr = ops->private; 6232 int ret; 6233 6234 func = strsep(&next, ":"); 6235 6236 /* This can also handle :mod: parsing */ 6237 if (next) { 6238 if (!tr) 6239 return -EINVAL; 6240 6241 command = strsep(&next, ":"); 6242 if (strcmp(command, "mod") != 0) 6243 return -EINVAL; 6244 6245 mod = next; 6246 len = command - func; 6247 /* Save the original func as ftrace_set_hash() can modify it */ 6248 tmp = kstrdup(func, GFP_KERNEL); 6249 } 6250 6251 ret = ftrace_set_hash(ops, func, len, NULL, 0, 0, reset, enable, mod); 6252 6253 if (tr && mod && ret < 0) { 6254 /* Did tmp fail to allocate? */ 6255 if (!tmp) 6256 return -ENOMEM; 6257 ret = cache_mod(tr, tmp, mod, enable); 6258 } 6259 6260 return ret; 6261 } 6262 6263 /** 6264 * ftrace_set_filter - set a function to filter on in ftrace 6265 * @ops: the ops to set the filter with 6266 * @buf: the string that holds the function filter text. 6267 * @len: the length of the string. 6268 * @reset: non-zero to reset all filters before applying this filter. 6269 * 6270 * Filters denote which functions should be enabled when tracing is enabled. 6271 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 6272 * 6273 * This can allocate memory which must be freed before @ops can be freed, 6274 * either by removing each filtered addr or by using 6275 * ftrace_free_filter(@ops). 6276 */ 6277 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf, 6278 int len, int reset) 6279 { 6280 ftrace_ops_init(ops); 6281 return ftrace_set_regex(ops, buf, len, reset, 1); 6282 } 6283 EXPORT_SYMBOL_GPL(ftrace_set_filter); 6284 6285 /** 6286 * ftrace_set_notrace - set a function to not trace in ftrace 6287 * @ops: the ops to set the notrace filter with 6288 * @buf: the string that holds the function notrace text. 6289 * @len: the length of the string. 6290 * @reset: non-zero to reset all filters before applying this filter. 6291 * 6292 * Notrace Filters denote which functions should not be enabled when tracing 6293 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 6294 * for tracing. 6295 * 6296 * This can allocate memory which must be freed before @ops can be freed, 6297 * either by removing each filtered addr or by using 6298 * ftrace_free_filter(@ops). 6299 */ 6300 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf, 6301 int len, int reset) 6302 { 6303 ftrace_ops_init(ops); 6304 return ftrace_set_regex(ops, buf, len, reset, 0); 6305 } 6306 EXPORT_SYMBOL_GPL(ftrace_set_notrace); 6307 /** 6308 * ftrace_set_global_filter - set a function to filter on with global tracers 6309 * @buf: the string that holds the function filter text. 6310 * @len: the length of the string. 6311 * @reset: non-zero to reset all filters before applying this filter. 6312 * 6313 * Filters denote which functions should be enabled when tracing is enabled. 6314 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 6315 */ 6316 void ftrace_set_global_filter(unsigned char *buf, int len, int reset) 6317 { 6318 ftrace_set_regex(&global_ops, buf, len, reset, 1); 6319 } 6320 EXPORT_SYMBOL_GPL(ftrace_set_global_filter); 6321 6322 /** 6323 * ftrace_set_global_notrace - set a function to not trace with global tracers 6324 * @buf: the string that holds the function notrace text. 6325 * @len: the length of the string. 6326 * @reset: non-zero to reset all filters before applying this filter. 6327 * 6328 * Notrace Filters denote which functions should not be enabled when tracing 6329 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 6330 * for tracing. 6331 */ 6332 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset) 6333 { 6334 ftrace_set_regex(&global_ops, buf, len, reset, 0); 6335 } 6336 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace); 6337 6338 /* 6339 * command line interface to allow users to set filters on boot up. 6340 */ 6341 #define FTRACE_FILTER_SIZE COMMAND_LINE_SIZE 6342 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 6343 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata; 6344 6345 /* Used by function selftest to not test if filter is set */ 6346 bool ftrace_filter_param __initdata; 6347 6348 static int __init set_ftrace_notrace(char *str) 6349 { 6350 ftrace_filter_param = true; 6351 strscpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE); 6352 return 1; 6353 } 6354 __setup("ftrace_notrace=", set_ftrace_notrace); 6355 6356 static int __init set_ftrace_filter(char *str) 6357 { 6358 ftrace_filter_param = true; 6359 strscpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE); 6360 return 1; 6361 } 6362 __setup("ftrace_filter=", set_ftrace_filter); 6363 6364 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6365 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata; 6366 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 6367 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer); 6368 6369 static int __init set_graph_function(char *str) 6370 { 6371 strscpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE); 6372 return 1; 6373 } 6374 __setup("ftrace_graph_filter=", set_graph_function); 6375 6376 static int __init set_graph_notrace_function(char *str) 6377 { 6378 strscpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE); 6379 return 1; 6380 } 6381 __setup("ftrace_graph_notrace=", set_graph_notrace_function); 6382 6383 static int __init set_graph_max_depth_function(char *str) 6384 { 6385 if (!str || kstrtouint(str, 0, &fgraph_max_depth)) 6386 return 0; 6387 return 1; 6388 } 6389 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function); 6390 6391 static void __init set_ftrace_early_graph(char *buf, int enable) 6392 { 6393 int ret; 6394 char *func; 6395 struct ftrace_hash *hash; 6396 6397 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 6398 if (MEM_FAIL(!hash, "Failed to allocate hash\n")) 6399 return; 6400 6401 while (buf) { 6402 func = strsep(&buf, ","); 6403 /* we allow only one expression at a time */ 6404 ret = ftrace_graph_set_hash(hash, func); 6405 if (ret) 6406 printk(KERN_DEBUG "ftrace: function %s not " 6407 "traceable\n", func); 6408 } 6409 6410 if (enable) 6411 ftrace_graph_hash = hash; 6412 else 6413 ftrace_graph_notrace_hash = hash; 6414 } 6415 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6416 6417 void __init 6418 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable) 6419 { 6420 char *func; 6421 6422 ftrace_ops_init(ops); 6423 6424 /* The trace_array is needed for caching module function filters */ 6425 if (!ops->private) { 6426 struct trace_array *tr = trace_get_global_array(); 6427 6428 ops->private = tr; 6429 ftrace_init_trace_array(tr); 6430 } 6431 6432 while (buf) { 6433 func = strsep(&buf, ","); 6434 ftrace_set_regex(ops, func, strlen(func), 0, enable); 6435 } 6436 } 6437 6438 static void __init set_ftrace_early_filters(void) 6439 { 6440 if (ftrace_filter_buf[0]) 6441 ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1); 6442 if (ftrace_notrace_buf[0]) 6443 ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0); 6444 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6445 if (ftrace_graph_buf[0]) 6446 set_ftrace_early_graph(ftrace_graph_buf, 1); 6447 if (ftrace_graph_notrace_buf[0]) 6448 set_ftrace_early_graph(ftrace_graph_notrace_buf, 0); 6449 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6450 } 6451 6452 int ftrace_regex_release(struct inode *inode, struct file *file) 6453 { 6454 struct seq_file *m = (struct seq_file *)file->private_data; 6455 struct ftrace_iterator *iter; 6456 struct ftrace_hash **orig_hash; 6457 struct trace_parser *parser; 6458 int filter_hash; 6459 6460 if (file->f_mode & FMODE_READ) { 6461 iter = m->private; 6462 seq_release(inode, file); 6463 } else 6464 iter = file->private_data; 6465 6466 parser = &iter->parser; 6467 if (trace_parser_loaded(parser)) { 6468 int enable = !(iter->flags & FTRACE_ITER_NOTRACE); 6469 6470 ftrace_process_regex(iter, parser->buffer, 6471 parser->idx, enable); 6472 } 6473 6474 trace_parser_put(parser); 6475 6476 mutex_lock(&iter->ops->func_hash->regex_lock); 6477 6478 if (file->f_mode & FMODE_WRITE) { 6479 filter_hash = !!(iter->flags & FTRACE_ITER_FILTER); 6480 6481 if (filter_hash) { 6482 orig_hash = &iter->ops->func_hash->filter_hash; 6483 if (iter->tr) { 6484 if (list_empty(&iter->tr->mod_trace)) 6485 iter->hash->flags &= ~FTRACE_HASH_FL_MOD; 6486 else 6487 iter->hash->flags |= FTRACE_HASH_FL_MOD; 6488 } 6489 } else 6490 orig_hash = &iter->ops->func_hash->notrace_hash; 6491 6492 mutex_lock(&ftrace_lock); 6493 ftrace_hash_move_and_update_ops(iter->ops, orig_hash, 6494 iter->hash, filter_hash); 6495 mutex_unlock(&ftrace_lock); 6496 } else { 6497 /* For read only, the hash is the ops hash */ 6498 iter->hash = NULL; 6499 } 6500 6501 mutex_unlock(&iter->ops->func_hash->regex_lock); 6502 free_ftrace_hash(iter->hash); 6503 if (iter->tr) 6504 trace_array_put(iter->tr); 6505 kfree(iter); 6506 6507 return 0; 6508 } 6509 6510 static const struct file_operations ftrace_avail_fops = { 6511 .open = ftrace_avail_open, 6512 .read = seq_read, 6513 .llseek = seq_lseek, 6514 .release = seq_release_private, 6515 }; 6516 6517 static const struct file_operations ftrace_enabled_fops = { 6518 .open = ftrace_enabled_open, 6519 .read = seq_read, 6520 .llseek = seq_lseek, 6521 .release = seq_release_private, 6522 }; 6523 6524 static const struct file_operations ftrace_touched_fops = { 6525 .open = ftrace_touched_open, 6526 .read = seq_read, 6527 .llseek = seq_lseek, 6528 .release = seq_release_private, 6529 }; 6530 6531 static const struct file_operations ftrace_avail_addrs_fops = { 6532 .open = ftrace_avail_addrs_open, 6533 .read = seq_read, 6534 .llseek = seq_lseek, 6535 .release = seq_release_private, 6536 }; 6537 6538 static const struct file_operations ftrace_filter_fops = { 6539 .open = ftrace_filter_open, 6540 .read = seq_read, 6541 .write = ftrace_filter_write, 6542 .llseek = tracing_lseek, 6543 .release = ftrace_regex_release, 6544 }; 6545 6546 static const struct file_operations ftrace_notrace_fops = { 6547 .open = ftrace_notrace_open, 6548 .read = seq_read, 6549 .write = ftrace_notrace_write, 6550 .llseek = tracing_lseek, 6551 .release = ftrace_regex_release, 6552 }; 6553 6554 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6555 6556 static DEFINE_MUTEX(graph_lock); 6557 6558 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH; 6559 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH; 6560 6561 enum graph_filter_type { 6562 GRAPH_FILTER_NOTRACE = 0, 6563 GRAPH_FILTER_FUNCTION, 6564 }; 6565 6566 #define FTRACE_GRAPH_EMPTY ((void *)1) 6567 6568 struct ftrace_graph_data { 6569 struct ftrace_hash *hash; 6570 struct ftrace_func_entry *entry; 6571 int idx; /* for hash table iteration */ 6572 enum graph_filter_type type; 6573 struct ftrace_hash *new_hash; 6574 const struct seq_operations *seq_ops; 6575 struct trace_parser parser; 6576 }; 6577 6578 static void * 6579 __g_next(struct seq_file *m, loff_t *pos) 6580 { 6581 struct ftrace_graph_data *fgd = m->private; 6582 struct ftrace_func_entry *entry = fgd->entry; 6583 struct hlist_head *head; 6584 int i, idx = fgd->idx; 6585 6586 if (*pos >= fgd->hash->count) 6587 return NULL; 6588 6589 if (entry) { 6590 hlist_for_each_entry_continue(entry, hlist) { 6591 fgd->entry = entry; 6592 return entry; 6593 } 6594 6595 idx++; 6596 } 6597 6598 for (i = idx; i < 1 << fgd->hash->size_bits; i++) { 6599 head = &fgd->hash->buckets[i]; 6600 hlist_for_each_entry(entry, head, hlist) { 6601 fgd->entry = entry; 6602 fgd->idx = i; 6603 return entry; 6604 } 6605 } 6606 return NULL; 6607 } 6608 6609 static void * 6610 g_next(struct seq_file *m, void *v, loff_t *pos) 6611 { 6612 (*pos)++; 6613 return __g_next(m, pos); 6614 } 6615 6616 static void *g_start(struct seq_file *m, loff_t *pos) 6617 { 6618 struct ftrace_graph_data *fgd = m->private; 6619 6620 mutex_lock(&graph_lock); 6621 6622 if (fgd->type == GRAPH_FILTER_FUNCTION) 6623 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 6624 lockdep_is_held(&graph_lock)); 6625 else 6626 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6627 lockdep_is_held(&graph_lock)); 6628 6629 /* Nothing, tell g_show to print all functions are enabled */ 6630 if (ftrace_hash_empty(fgd->hash) && !*pos) 6631 return FTRACE_GRAPH_EMPTY; 6632 6633 fgd->idx = 0; 6634 fgd->entry = NULL; 6635 return __g_next(m, pos); 6636 } 6637 6638 static void g_stop(struct seq_file *m, void *p) 6639 { 6640 mutex_unlock(&graph_lock); 6641 } 6642 6643 static int g_show(struct seq_file *m, void *v) 6644 { 6645 struct ftrace_func_entry *entry = v; 6646 6647 if (!entry) 6648 return 0; 6649 6650 if (entry == FTRACE_GRAPH_EMPTY) { 6651 struct ftrace_graph_data *fgd = m->private; 6652 6653 if (fgd->type == GRAPH_FILTER_FUNCTION) 6654 seq_puts(m, "#### all functions enabled ####\n"); 6655 else 6656 seq_puts(m, "#### no functions disabled ####\n"); 6657 return 0; 6658 } 6659 6660 seq_printf(m, "%ps\n", (void *)entry->ip); 6661 6662 return 0; 6663 } 6664 6665 static const struct seq_operations ftrace_graph_seq_ops = { 6666 .start = g_start, 6667 .next = g_next, 6668 .stop = g_stop, 6669 .show = g_show, 6670 }; 6671 6672 static int 6673 __ftrace_graph_open(struct inode *inode, struct file *file, 6674 struct ftrace_graph_data *fgd) 6675 { 6676 int ret; 6677 struct ftrace_hash *new_hash = NULL; 6678 6679 ret = security_locked_down(LOCKDOWN_TRACEFS); 6680 if (ret) 6681 return ret; 6682 6683 if (file->f_mode & FMODE_WRITE) { 6684 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 6685 6686 if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX)) 6687 return -ENOMEM; 6688 6689 if (file->f_flags & O_TRUNC) 6690 new_hash = alloc_ftrace_hash(size_bits); 6691 else 6692 new_hash = alloc_and_copy_ftrace_hash(size_bits, 6693 fgd->hash); 6694 if (!new_hash) { 6695 ret = -ENOMEM; 6696 goto out; 6697 } 6698 } 6699 6700 if (file->f_mode & FMODE_READ) { 6701 ret = seq_open(file, &ftrace_graph_seq_ops); 6702 if (!ret) { 6703 struct seq_file *m = file->private_data; 6704 m->private = fgd; 6705 } else { 6706 /* Failed */ 6707 free_ftrace_hash(new_hash); 6708 new_hash = NULL; 6709 } 6710 } else 6711 file->private_data = fgd; 6712 6713 out: 6714 if (ret < 0 && file->f_mode & FMODE_WRITE) 6715 trace_parser_put(&fgd->parser); 6716 6717 fgd->new_hash = new_hash; 6718 6719 /* 6720 * All uses of fgd->hash must be taken with the graph_lock 6721 * held. The graph_lock is going to be released, so force 6722 * fgd->hash to be reinitialized when it is taken again. 6723 */ 6724 fgd->hash = NULL; 6725 6726 return ret; 6727 } 6728 6729 static int 6730 ftrace_graph_open(struct inode *inode, struct file *file) 6731 { 6732 struct ftrace_graph_data *fgd; 6733 int ret; 6734 6735 if (unlikely(ftrace_disabled)) 6736 return -ENODEV; 6737 6738 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 6739 if (fgd == NULL) 6740 return -ENOMEM; 6741 6742 mutex_lock(&graph_lock); 6743 6744 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 6745 lockdep_is_held(&graph_lock)); 6746 fgd->type = GRAPH_FILTER_FUNCTION; 6747 fgd->seq_ops = &ftrace_graph_seq_ops; 6748 6749 ret = __ftrace_graph_open(inode, file, fgd); 6750 if (ret < 0) 6751 kfree(fgd); 6752 6753 mutex_unlock(&graph_lock); 6754 return ret; 6755 } 6756 6757 static int 6758 ftrace_graph_notrace_open(struct inode *inode, struct file *file) 6759 { 6760 struct ftrace_graph_data *fgd; 6761 int ret; 6762 6763 if (unlikely(ftrace_disabled)) 6764 return -ENODEV; 6765 6766 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 6767 if (fgd == NULL) 6768 return -ENOMEM; 6769 6770 mutex_lock(&graph_lock); 6771 6772 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6773 lockdep_is_held(&graph_lock)); 6774 fgd->type = GRAPH_FILTER_NOTRACE; 6775 fgd->seq_ops = &ftrace_graph_seq_ops; 6776 6777 ret = __ftrace_graph_open(inode, file, fgd); 6778 if (ret < 0) 6779 kfree(fgd); 6780 6781 mutex_unlock(&graph_lock); 6782 return ret; 6783 } 6784 6785 static int 6786 ftrace_graph_release(struct inode *inode, struct file *file) 6787 { 6788 struct ftrace_graph_data *fgd; 6789 struct ftrace_hash *old_hash, *new_hash; 6790 struct trace_parser *parser; 6791 int ret = 0; 6792 6793 if (file->f_mode & FMODE_READ) { 6794 struct seq_file *m = file->private_data; 6795 6796 fgd = m->private; 6797 seq_release(inode, file); 6798 } else { 6799 fgd = file->private_data; 6800 } 6801 6802 6803 if (file->f_mode & FMODE_WRITE) { 6804 6805 parser = &fgd->parser; 6806 6807 if (trace_parser_loaded((parser))) { 6808 ret = ftrace_graph_set_hash(fgd->new_hash, 6809 parser->buffer); 6810 } 6811 6812 trace_parser_put(parser); 6813 6814 new_hash = __ftrace_hash_move(fgd->new_hash); 6815 if (!new_hash) { 6816 ret = -ENOMEM; 6817 goto out; 6818 } 6819 6820 mutex_lock(&graph_lock); 6821 6822 if (fgd->type == GRAPH_FILTER_FUNCTION) { 6823 old_hash = rcu_dereference_protected(ftrace_graph_hash, 6824 lockdep_is_held(&graph_lock)); 6825 rcu_assign_pointer(ftrace_graph_hash, new_hash); 6826 } else { 6827 old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6828 lockdep_is_held(&graph_lock)); 6829 rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash); 6830 } 6831 6832 mutex_unlock(&graph_lock); 6833 6834 /* 6835 * We need to do a hard force of sched synchronization. 6836 * This is because we use preempt_disable() to do RCU, but 6837 * the function tracers can be called where RCU is not watching 6838 * (like before user_exit()). We can not rely on the RCU 6839 * infrastructure to do the synchronization, thus we must do it 6840 * ourselves. 6841 */ 6842 if (old_hash != EMPTY_HASH) 6843 synchronize_rcu_tasks_rude(); 6844 6845 free_ftrace_hash(old_hash); 6846 } 6847 6848 out: 6849 free_ftrace_hash(fgd->new_hash); 6850 kfree(fgd); 6851 6852 return ret; 6853 } 6854 6855 static int 6856 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer) 6857 { 6858 struct ftrace_glob func_g; 6859 struct dyn_ftrace *rec; 6860 struct ftrace_page *pg; 6861 struct ftrace_func_entry *entry; 6862 int fail = 1; 6863 int not; 6864 6865 /* decode regex */ 6866 func_g.type = filter_parse_regex(buffer, strlen(buffer), 6867 &func_g.search, ¬); 6868 6869 func_g.len = strlen(func_g.search); 6870 6871 guard(mutex)(&ftrace_lock); 6872 6873 if (unlikely(ftrace_disabled)) 6874 return -ENODEV; 6875 6876 do_for_each_ftrace_rec(pg, rec) { 6877 6878 if (rec->flags & FTRACE_FL_DISABLED) 6879 continue; 6880 6881 if (ftrace_match_record(rec, &func_g, NULL, 0)) { 6882 entry = ftrace_lookup_ip(hash, rec->ip); 6883 6884 if (!not) { 6885 fail = 0; 6886 6887 if (entry) 6888 continue; 6889 if (add_hash_entry(hash, rec->ip) == NULL) 6890 return 0; 6891 } else { 6892 if (entry) { 6893 free_hash_entry(hash, entry); 6894 fail = 0; 6895 } 6896 } 6897 } 6898 cond_resched(); 6899 } while_for_each_ftrace_rec(); 6900 6901 return fail ? -EINVAL : 0; 6902 } 6903 6904 static ssize_t 6905 ftrace_graph_write(struct file *file, const char __user *ubuf, 6906 size_t cnt, loff_t *ppos) 6907 { 6908 ssize_t read, ret = 0; 6909 struct ftrace_graph_data *fgd = file->private_data; 6910 struct trace_parser *parser; 6911 6912 if (!cnt) 6913 return 0; 6914 6915 /* Read mode uses seq functions */ 6916 if (file->f_mode & FMODE_READ) { 6917 struct seq_file *m = file->private_data; 6918 fgd = m->private; 6919 } 6920 6921 parser = &fgd->parser; 6922 6923 read = trace_get_user(parser, ubuf, cnt, ppos); 6924 6925 if (read >= 0 && trace_parser_loaded(parser) && 6926 !trace_parser_cont(parser)) { 6927 6928 ret = ftrace_graph_set_hash(fgd->new_hash, 6929 parser->buffer); 6930 trace_parser_clear(parser); 6931 } 6932 6933 if (!ret) 6934 ret = read; 6935 6936 return ret; 6937 } 6938 6939 static const struct file_operations ftrace_graph_fops = { 6940 .open = ftrace_graph_open, 6941 .read = seq_read, 6942 .write = ftrace_graph_write, 6943 .llseek = tracing_lseek, 6944 .release = ftrace_graph_release, 6945 }; 6946 6947 static const struct file_operations ftrace_graph_notrace_fops = { 6948 .open = ftrace_graph_notrace_open, 6949 .read = seq_read, 6950 .write = ftrace_graph_write, 6951 .llseek = tracing_lseek, 6952 .release = ftrace_graph_release, 6953 }; 6954 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6955 6956 void ftrace_create_filter_files(struct ftrace_ops *ops, 6957 struct dentry *parent) 6958 { 6959 6960 trace_create_file("set_ftrace_filter", TRACE_MODE_WRITE, parent, 6961 ops, &ftrace_filter_fops); 6962 6963 trace_create_file("set_ftrace_notrace", TRACE_MODE_WRITE, parent, 6964 ops, &ftrace_notrace_fops); 6965 } 6966 6967 /* 6968 * The name "destroy_filter_files" is really a misnomer. Although 6969 * in the future, it may actually delete the files, but this is 6970 * really intended to make sure the ops passed in are disabled 6971 * and that when this function returns, the caller is free to 6972 * free the ops. 6973 * 6974 * The "destroy" name is only to match the "create" name that this 6975 * should be paired with. 6976 */ 6977 void ftrace_destroy_filter_files(struct ftrace_ops *ops) 6978 { 6979 mutex_lock(&ftrace_lock); 6980 if (ops->flags & FTRACE_OPS_FL_ENABLED) 6981 ftrace_shutdown(ops, 0); 6982 ops->flags |= FTRACE_OPS_FL_DELETED; 6983 ftrace_free_filter(ops); 6984 mutex_unlock(&ftrace_lock); 6985 } 6986 6987 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer) 6988 { 6989 6990 trace_create_file("available_filter_functions", TRACE_MODE_READ, 6991 d_tracer, NULL, &ftrace_avail_fops); 6992 6993 trace_create_file("available_filter_functions_addrs", TRACE_MODE_READ, 6994 d_tracer, NULL, &ftrace_avail_addrs_fops); 6995 6996 trace_create_file("enabled_functions", TRACE_MODE_READ, 6997 d_tracer, NULL, &ftrace_enabled_fops); 6998 6999 trace_create_file("touched_functions", TRACE_MODE_READ, 7000 d_tracer, NULL, &ftrace_touched_fops); 7001 7002 ftrace_create_filter_files(&global_ops, d_tracer); 7003 7004 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 7005 trace_create_file("set_graph_function", TRACE_MODE_WRITE, d_tracer, 7006 NULL, 7007 &ftrace_graph_fops); 7008 trace_create_file("set_graph_notrace", TRACE_MODE_WRITE, d_tracer, 7009 NULL, 7010 &ftrace_graph_notrace_fops); 7011 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 7012 7013 return 0; 7014 } 7015 7016 static int ftrace_cmp_ips(const void *a, const void *b) 7017 { 7018 const unsigned long *ipa = a; 7019 const unsigned long *ipb = b; 7020 7021 if (*ipa > *ipb) 7022 return 1; 7023 if (*ipa < *ipb) 7024 return -1; 7025 return 0; 7026 } 7027 7028 #ifdef CONFIG_FTRACE_SORT_STARTUP_TEST 7029 static void test_is_sorted(unsigned long *start, unsigned long count) 7030 { 7031 int i; 7032 7033 for (i = 1; i < count; i++) { 7034 if (WARN(start[i - 1] > start[i], 7035 "[%d] %pS at %lx is not sorted with %pS at %lx\n", i, 7036 (void *)start[i - 1], start[i - 1], 7037 (void *)start[i], start[i])) 7038 break; 7039 } 7040 if (i == count) 7041 pr_info("ftrace section at %px sorted properly\n", start); 7042 } 7043 #else 7044 static void test_is_sorted(unsigned long *start, unsigned long count) 7045 { 7046 } 7047 #endif 7048 7049 static int ftrace_process_locs(struct module *mod, 7050 unsigned long *start, 7051 unsigned long *end) 7052 { 7053 struct ftrace_page *pg_unuse = NULL; 7054 struct ftrace_page *start_pg; 7055 struct ftrace_page *pg; 7056 struct dyn_ftrace *rec; 7057 unsigned long skipped = 0; 7058 unsigned long count; 7059 unsigned long *p; 7060 unsigned long addr; 7061 unsigned long flags = 0; /* Shut up gcc */ 7062 unsigned long pages; 7063 int ret = -ENOMEM; 7064 7065 count = end - start; 7066 7067 if (!count) 7068 return 0; 7069 7070 pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE); 7071 7072 /* 7073 * Sorting mcount in vmlinux at build time depend on 7074 * CONFIG_BUILDTIME_MCOUNT_SORT, while mcount loc in 7075 * modules can not be sorted at build time. 7076 */ 7077 if (!IS_ENABLED(CONFIG_BUILDTIME_MCOUNT_SORT) || mod) { 7078 sort(start, count, sizeof(*start), 7079 ftrace_cmp_ips, NULL); 7080 } else { 7081 test_is_sorted(start, count); 7082 } 7083 7084 start_pg = ftrace_allocate_pages(count); 7085 if (!start_pg) 7086 return -ENOMEM; 7087 7088 mutex_lock(&ftrace_lock); 7089 7090 /* 7091 * Core and each module needs their own pages, as 7092 * modules will free them when they are removed. 7093 * Force a new page to be allocated for modules. 7094 */ 7095 if (!mod) { 7096 WARN_ON(ftrace_pages || ftrace_pages_start); 7097 /* First initialization */ 7098 ftrace_pages = ftrace_pages_start = start_pg; 7099 } else { 7100 if (!ftrace_pages) 7101 goto out; 7102 7103 if (WARN_ON(ftrace_pages->next)) { 7104 /* Hmm, we have free pages? */ 7105 while (ftrace_pages->next) 7106 ftrace_pages = ftrace_pages->next; 7107 } 7108 7109 ftrace_pages->next = start_pg; 7110 } 7111 7112 p = start; 7113 pg = start_pg; 7114 while (p < end) { 7115 unsigned long end_offset; 7116 7117 addr = *p++; 7118 7119 /* 7120 * Some architecture linkers will pad between 7121 * the different mcount_loc sections of different 7122 * object files to satisfy alignments. 7123 * Skip any NULL pointers. 7124 */ 7125 if (!addr) { 7126 skipped++; 7127 continue; 7128 } 7129 7130 /* 7131 * If this is core kernel, make sure the address is in core 7132 * or inittext, as weak functions get zeroed and KASLR can 7133 * move them to something other than zero. It just will not 7134 * move it to an area where kernel text is. 7135 */ 7136 if (!mod && !(is_kernel_text(addr) || is_kernel_inittext(addr))) { 7137 skipped++; 7138 continue; 7139 } 7140 7141 addr = ftrace_call_adjust(addr); 7142 7143 end_offset = (pg->index+1) * sizeof(pg->records[0]); 7144 if (end_offset > PAGE_SIZE << pg->order) { 7145 /* We should have allocated enough */ 7146 if (WARN_ON(!pg->next)) 7147 break; 7148 pg = pg->next; 7149 } 7150 7151 rec = &pg->records[pg->index++]; 7152 rec->ip = addr; 7153 } 7154 7155 if (pg->next) { 7156 pg_unuse = pg->next; 7157 pg->next = NULL; 7158 } 7159 7160 /* Assign the last page to ftrace_pages */ 7161 ftrace_pages = pg; 7162 7163 /* 7164 * We only need to disable interrupts on start up 7165 * because we are modifying code that an interrupt 7166 * may execute, and the modification is not atomic. 7167 * But for modules, nothing runs the code we modify 7168 * until we are finished with it, and there's no 7169 * reason to cause large interrupt latencies while we do it. 7170 */ 7171 if (!mod) 7172 local_irq_save(flags); 7173 ftrace_update_code(mod, start_pg); 7174 if (!mod) 7175 local_irq_restore(flags); 7176 ret = 0; 7177 out: 7178 mutex_unlock(&ftrace_lock); 7179 7180 /* We should have used all pages unless we skipped some */ 7181 if (pg_unuse) { 7182 unsigned long pg_remaining, remaining = 0; 7183 unsigned long skip; 7184 7185 /* Count the number of entries unused and compare it to skipped. */ 7186 pg_remaining = (ENTRIES_PER_PAGE << pg->order) - pg->index; 7187 7188 if (!WARN(skipped < pg_remaining, "Extra allocated pages for ftrace")) { 7189 7190 skip = skipped - pg_remaining; 7191 7192 for (pg = pg_unuse; pg; pg = pg->next) 7193 remaining += 1 << pg->order; 7194 7195 pages -= remaining; 7196 7197 skip = DIV_ROUND_UP(skip, ENTRIES_PER_PAGE); 7198 7199 /* 7200 * Check to see if the number of pages remaining would 7201 * just fit the number of entries skipped. 7202 */ 7203 WARN(skip != remaining, "Extra allocated pages for ftrace: %lu with %lu skipped", 7204 remaining, skipped); 7205 } 7206 /* Need to synchronize with ftrace_location_range() */ 7207 synchronize_rcu(); 7208 ftrace_free_pages(pg_unuse); 7209 } 7210 7211 if (!mod) { 7212 count -= skipped; 7213 pr_info("ftrace: allocating %ld entries in %ld pages\n", 7214 count, pages); 7215 } 7216 7217 return ret; 7218 } 7219 7220 struct ftrace_mod_func { 7221 struct list_head list; 7222 char *name; 7223 unsigned long ip; 7224 unsigned int size; 7225 }; 7226 7227 struct ftrace_mod_map { 7228 struct rcu_head rcu; 7229 struct list_head list; 7230 struct module *mod; 7231 unsigned long start_addr; 7232 unsigned long end_addr; 7233 struct list_head funcs; 7234 unsigned int num_funcs; 7235 }; 7236 7237 static int ftrace_get_trampoline_kallsym(unsigned int symnum, 7238 unsigned long *value, char *type, 7239 char *name, char *module_name, 7240 int *exported) 7241 { 7242 struct ftrace_ops *op; 7243 7244 list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) { 7245 if (!op->trampoline || symnum--) 7246 continue; 7247 *value = op->trampoline; 7248 *type = 't'; 7249 strscpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN); 7250 strscpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN); 7251 *exported = 0; 7252 return 0; 7253 } 7254 7255 return -ERANGE; 7256 } 7257 7258 #if defined(CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS) || defined(CONFIG_MODULES) 7259 /* 7260 * Check if the current ops references the given ip. 7261 * 7262 * If the ops traces all functions, then it was already accounted for. 7263 * If the ops does not trace the current record function, skip it. 7264 * If the ops ignores the function via notrace filter, skip it. 7265 */ 7266 static bool 7267 ops_references_ip(struct ftrace_ops *ops, unsigned long ip) 7268 { 7269 /* If ops isn't enabled, ignore it */ 7270 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 7271 return false; 7272 7273 /* If ops traces all then it includes this function */ 7274 if (ops_traces_mod(ops)) 7275 return true; 7276 7277 /* The function must be in the filter */ 7278 if (!ftrace_hash_empty(ops->func_hash->filter_hash) && 7279 !__ftrace_lookup_ip(ops->func_hash->filter_hash, ip)) 7280 return false; 7281 7282 /* If in notrace hash, we ignore it too */ 7283 if (ftrace_lookup_ip(ops->func_hash->notrace_hash, ip)) 7284 return false; 7285 7286 return true; 7287 } 7288 #endif 7289 7290 #ifdef CONFIG_MODULES 7291 7292 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next) 7293 7294 static LIST_HEAD(ftrace_mod_maps); 7295 7296 static int referenced_filters(struct dyn_ftrace *rec) 7297 { 7298 struct ftrace_ops *ops; 7299 int cnt = 0; 7300 7301 for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) { 7302 if (ops_references_ip(ops, rec->ip)) { 7303 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT)) 7304 continue; 7305 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 7306 continue; 7307 cnt++; 7308 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 7309 rec->flags |= FTRACE_FL_REGS; 7310 if (cnt == 1 && ops->trampoline) 7311 rec->flags |= FTRACE_FL_TRAMP; 7312 else 7313 rec->flags &= ~FTRACE_FL_TRAMP; 7314 } 7315 } 7316 7317 return cnt; 7318 } 7319 7320 static void 7321 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash) 7322 { 7323 struct ftrace_func_entry *entry; 7324 struct dyn_ftrace *rec; 7325 int i; 7326 7327 if (ftrace_hash_empty(hash)) 7328 return; 7329 7330 for (i = 0; i < pg->index; i++) { 7331 rec = &pg->records[i]; 7332 entry = __ftrace_lookup_ip(hash, rec->ip); 7333 /* 7334 * Do not allow this rec to match again. 7335 * Yeah, it may waste some memory, but will be removed 7336 * if/when the hash is modified again. 7337 */ 7338 if (entry) 7339 entry->ip = 0; 7340 } 7341 } 7342 7343 /* Clear any records from hashes */ 7344 static void clear_mod_from_hashes(struct ftrace_page *pg) 7345 { 7346 struct trace_array *tr; 7347 7348 mutex_lock(&trace_types_lock); 7349 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 7350 if (!tr->ops || !tr->ops->func_hash) 7351 continue; 7352 mutex_lock(&tr->ops->func_hash->regex_lock); 7353 clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash); 7354 clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash); 7355 mutex_unlock(&tr->ops->func_hash->regex_lock); 7356 } 7357 mutex_unlock(&trace_types_lock); 7358 } 7359 7360 static void ftrace_free_mod_map(struct rcu_head *rcu) 7361 { 7362 struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu); 7363 struct ftrace_mod_func *mod_func; 7364 struct ftrace_mod_func *n; 7365 7366 /* All the contents of mod_map are now not visible to readers */ 7367 list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) { 7368 kfree(mod_func->name); 7369 list_del(&mod_func->list); 7370 kfree(mod_func); 7371 } 7372 7373 kfree(mod_map); 7374 } 7375 7376 void ftrace_release_mod(struct module *mod) 7377 { 7378 struct ftrace_mod_map *mod_map; 7379 struct ftrace_mod_map *n; 7380 struct dyn_ftrace *rec; 7381 struct ftrace_page **last_pg; 7382 struct ftrace_page *tmp_page = NULL; 7383 struct ftrace_page *pg; 7384 7385 mutex_lock(&ftrace_lock); 7386 7387 if (ftrace_disabled) 7388 goto out_unlock; 7389 7390 list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) { 7391 if (mod_map->mod == mod) { 7392 list_del_rcu(&mod_map->list); 7393 call_rcu(&mod_map->rcu, ftrace_free_mod_map); 7394 break; 7395 } 7396 } 7397 7398 /* 7399 * Each module has its own ftrace_pages, remove 7400 * them from the list. 7401 */ 7402 last_pg = &ftrace_pages_start; 7403 for (pg = ftrace_pages_start; pg; pg = *last_pg) { 7404 rec = &pg->records[0]; 7405 if (within_module(rec->ip, mod)) { 7406 /* 7407 * As core pages are first, the first 7408 * page should never be a module page. 7409 */ 7410 if (WARN_ON(pg == ftrace_pages_start)) 7411 goto out_unlock; 7412 7413 /* Check if we are deleting the last page */ 7414 if (pg == ftrace_pages) 7415 ftrace_pages = next_to_ftrace_page(last_pg); 7416 7417 ftrace_update_tot_cnt -= pg->index; 7418 *last_pg = pg->next; 7419 7420 pg->next = tmp_page; 7421 tmp_page = pg; 7422 } else 7423 last_pg = &pg->next; 7424 } 7425 out_unlock: 7426 mutex_unlock(&ftrace_lock); 7427 7428 /* Need to synchronize with ftrace_location_range() */ 7429 if (tmp_page) 7430 synchronize_rcu(); 7431 for (pg = tmp_page; pg; pg = tmp_page) { 7432 7433 /* Needs to be called outside of ftrace_lock */ 7434 clear_mod_from_hashes(pg); 7435 7436 if (pg->records) { 7437 free_pages((unsigned long)pg->records, pg->order); 7438 ftrace_number_of_pages -= 1 << pg->order; 7439 } 7440 tmp_page = pg->next; 7441 kfree(pg); 7442 ftrace_number_of_groups--; 7443 } 7444 } 7445 7446 void ftrace_module_enable(struct module *mod) 7447 { 7448 struct dyn_ftrace *rec; 7449 struct ftrace_page *pg; 7450 7451 mutex_lock(&ftrace_lock); 7452 7453 if (ftrace_disabled) 7454 goto out_unlock; 7455 7456 /* 7457 * If the tracing is enabled, go ahead and enable the record. 7458 * 7459 * The reason not to enable the record immediately is the 7460 * inherent check of ftrace_make_nop/ftrace_make_call for 7461 * correct previous instructions. Making first the NOP 7462 * conversion puts the module to the correct state, thus 7463 * passing the ftrace_make_call check. 7464 * 7465 * We also delay this to after the module code already set the 7466 * text to read-only, as we now need to set it back to read-write 7467 * so that we can modify the text. 7468 */ 7469 if (ftrace_start_up) 7470 ftrace_arch_code_modify_prepare(); 7471 7472 do_for_each_ftrace_rec(pg, rec) { 7473 int cnt; 7474 /* 7475 * do_for_each_ftrace_rec() is a double loop. 7476 * module text shares the pg. If a record is 7477 * not part of this module, then skip this pg, 7478 * which the "break" will do. 7479 */ 7480 if (!within_module(rec->ip, mod)) 7481 break; 7482 7483 /* Weak functions should still be ignored */ 7484 if (!test_for_valid_rec(rec)) { 7485 /* Clear all other flags. Should not be enabled anyway */ 7486 rec->flags = FTRACE_FL_DISABLED; 7487 continue; 7488 } 7489 7490 cnt = 0; 7491 7492 /* 7493 * When adding a module, we need to check if tracers are 7494 * currently enabled and if they are, and can trace this record, 7495 * we need to enable the module functions as well as update the 7496 * reference counts for those function records. 7497 */ 7498 if (ftrace_start_up) 7499 cnt += referenced_filters(rec); 7500 7501 rec->flags &= ~FTRACE_FL_DISABLED; 7502 rec->flags += cnt; 7503 7504 if (ftrace_start_up && cnt) { 7505 int failed = __ftrace_replace_code(rec, 1); 7506 if (failed) { 7507 ftrace_bug(failed, rec); 7508 goto out_loop; 7509 } 7510 } 7511 7512 } while_for_each_ftrace_rec(); 7513 7514 out_loop: 7515 if (ftrace_start_up) 7516 ftrace_arch_code_modify_post_process(); 7517 7518 out_unlock: 7519 mutex_unlock(&ftrace_lock); 7520 7521 process_cached_mods(mod->name); 7522 } 7523 7524 void ftrace_module_init(struct module *mod) 7525 { 7526 int ret; 7527 7528 if (ftrace_disabled || !mod->num_ftrace_callsites) 7529 return; 7530 7531 ret = ftrace_process_locs(mod, mod->ftrace_callsites, 7532 mod->ftrace_callsites + mod->num_ftrace_callsites); 7533 if (ret) 7534 pr_warn("ftrace: failed to allocate entries for module '%s' functions\n", 7535 mod->name); 7536 } 7537 7538 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 7539 struct dyn_ftrace *rec) 7540 { 7541 struct ftrace_mod_func *mod_func; 7542 unsigned long symsize; 7543 unsigned long offset; 7544 char str[KSYM_SYMBOL_LEN]; 7545 char *modname; 7546 const char *ret; 7547 7548 ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str); 7549 if (!ret) 7550 return; 7551 7552 mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL); 7553 if (!mod_func) 7554 return; 7555 7556 mod_func->name = kstrdup(str, GFP_KERNEL); 7557 if (!mod_func->name) { 7558 kfree(mod_func); 7559 return; 7560 } 7561 7562 mod_func->ip = rec->ip - offset; 7563 mod_func->size = symsize; 7564 7565 mod_map->num_funcs++; 7566 7567 list_add_rcu(&mod_func->list, &mod_map->funcs); 7568 } 7569 7570 static struct ftrace_mod_map * 7571 allocate_ftrace_mod_map(struct module *mod, 7572 unsigned long start, unsigned long end) 7573 { 7574 struct ftrace_mod_map *mod_map; 7575 7576 mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL); 7577 if (!mod_map) 7578 return NULL; 7579 7580 mod_map->mod = mod; 7581 mod_map->start_addr = start; 7582 mod_map->end_addr = end; 7583 mod_map->num_funcs = 0; 7584 7585 INIT_LIST_HEAD_RCU(&mod_map->funcs); 7586 7587 list_add_rcu(&mod_map->list, &ftrace_mod_maps); 7588 7589 return mod_map; 7590 } 7591 7592 static int 7593 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map, 7594 unsigned long addr, unsigned long *size, 7595 unsigned long *off, char *sym) 7596 { 7597 struct ftrace_mod_func *found_func = NULL; 7598 struct ftrace_mod_func *mod_func; 7599 7600 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 7601 if (addr >= mod_func->ip && 7602 addr < mod_func->ip + mod_func->size) { 7603 found_func = mod_func; 7604 break; 7605 } 7606 } 7607 7608 if (found_func) { 7609 if (size) 7610 *size = found_func->size; 7611 if (off) 7612 *off = addr - found_func->ip; 7613 return strscpy(sym, found_func->name, KSYM_NAME_LEN); 7614 } 7615 7616 return 0; 7617 } 7618 7619 int 7620 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size, 7621 unsigned long *off, char **modname, char *sym) 7622 { 7623 struct ftrace_mod_map *mod_map; 7624 int ret = 0; 7625 7626 /* mod_map is freed via call_rcu() */ 7627 preempt_disable(); 7628 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 7629 ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym); 7630 if (ret) { 7631 if (modname) 7632 *modname = mod_map->mod->name; 7633 break; 7634 } 7635 } 7636 preempt_enable(); 7637 7638 return ret; 7639 } 7640 7641 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 7642 char *type, char *name, 7643 char *module_name, int *exported) 7644 { 7645 struct ftrace_mod_map *mod_map; 7646 struct ftrace_mod_func *mod_func; 7647 int ret; 7648 7649 preempt_disable(); 7650 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 7651 7652 if (symnum >= mod_map->num_funcs) { 7653 symnum -= mod_map->num_funcs; 7654 continue; 7655 } 7656 7657 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 7658 if (symnum > 1) { 7659 symnum--; 7660 continue; 7661 } 7662 7663 *value = mod_func->ip; 7664 *type = 'T'; 7665 strscpy(name, mod_func->name, KSYM_NAME_LEN); 7666 strscpy(module_name, mod_map->mod->name, MODULE_NAME_LEN); 7667 *exported = 1; 7668 preempt_enable(); 7669 return 0; 7670 } 7671 WARN_ON(1); 7672 break; 7673 } 7674 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 7675 module_name, exported); 7676 preempt_enable(); 7677 return ret; 7678 } 7679 7680 #else 7681 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 7682 struct dyn_ftrace *rec) { } 7683 static inline struct ftrace_mod_map * 7684 allocate_ftrace_mod_map(struct module *mod, 7685 unsigned long start, unsigned long end) 7686 { 7687 return NULL; 7688 } 7689 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 7690 char *type, char *name, char *module_name, 7691 int *exported) 7692 { 7693 int ret; 7694 7695 preempt_disable(); 7696 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 7697 module_name, exported); 7698 preempt_enable(); 7699 return ret; 7700 } 7701 #endif /* CONFIG_MODULES */ 7702 7703 struct ftrace_init_func { 7704 struct list_head list; 7705 unsigned long ip; 7706 }; 7707 7708 /* Clear any init ips from hashes */ 7709 static void 7710 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash) 7711 { 7712 struct ftrace_func_entry *entry; 7713 7714 entry = ftrace_lookup_ip(hash, func->ip); 7715 /* 7716 * Do not allow this rec to match again. 7717 * Yeah, it may waste some memory, but will be removed 7718 * if/when the hash is modified again. 7719 */ 7720 if (entry) 7721 entry->ip = 0; 7722 } 7723 7724 static void 7725 clear_func_from_hashes(struct ftrace_init_func *func) 7726 { 7727 struct trace_array *tr; 7728 7729 mutex_lock(&trace_types_lock); 7730 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 7731 if (!tr->ops || !tr->ops->func_hash) 7732 continue; 7733 mutex_lock(&tr->ops->func_hash->regex_lock); 7734 clear_func_from_hash(func, tr->ops->func_hash->filter_hash); 7735 clear_func_from_hash(func, tr->ops->func_hash->notrace_hash); 7736 mutex_unlock(&tr->ops->func_hash->regex_lock); 7737 } 7738 mutex_unlock(&trace_types_lock); 7739 } 7740 7741 static void add_to_clear_hash_list(struct list_head *clear_list, 7742 struct dyn_ftrace *rec) 7743 { 7744 struct ftrace_init_func *func; 7745 7746 func = kmalloc(sizeof(*func), GFP_KERNEL); 7747 if (!func) { 7748 MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n"); 7749 return; 7750 } 7751 7752 func->ip = rec->ip; 7753 list_add(&func->list, clear_list); 7754 } 7755 7756 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr) 7757 { 7758 unsigned long start = (unsigned long)(start_ptr); 7759 unsigned long end = (unsigned long)(end_ptr); 7760 struct ftrace_page **last_pg = &ftrace_pages_start; 7761 struct ftrace_page *tmp_page = NULL; 7762 struct ftrace_page *pg; 7763 struct dyn_ftrace *rec; 7764 struct dyn_ftrace key; 7765 struct ftrace_mod_map *mod_map = NULL; 7766 struct ftrace_init_func *func, *func_next; 7767 LIST_HEAD(clear_hash); 7768 7769 key.ip = start; 7770 key.flags = end; /* overload flags, as it is unsigned long */ 7771 7772 mutex_lock(&ftrace_lock); 7773 7774 /* 7775 * If we are freeing module init memory, then check if 7776 * any tracer is active. If so, we need to save a mapping of 7777 * the module functions being freed with the address. 7778 */ 7779 if (mod && ftrace_ops_list != &ftrace_list_end) 7780 mod_map = allocate_ftrace_mod_map(mod, start, end); 7781 7782 for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) { 7783 if (end < pg->records[0].ip || 7784 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 7785 continue; 7786 again: 7787 rec = bsearch(&key, pg->records, pg->index, 7788 sizeof(struct dyn_ftrace), 7789 ftrace_cmp_recs); 7790 if (!rec) 7791 continue; 7792 7793 /* rec will be cleared from hashes after ftrace_lock unlock */ 7794 add_to_clear_hash_list(&clear_hash, rec); 7795 7796 if (mod_map) 7797 save_ftrace_mod_rec(mod_map, rec); 7798 7799 pg->index--; 7800 ftrace_update_tot_cnt--; 7801 if (!pg->index) { 7802 *last_pg = pg->next; 7803 pg->next = tmp_page; 7804 tmp_page = pg; 7805 pg = container_of(last_pg, struct ftrace_page, next); 7806 if (!(*last_pg)) 7807 ftrace_pages = pg; 7808 continue; 7809 } 7810 memmove(rec, rec + 1, 7811 (pg->index - (rec - pg->records)) * sizeof(*rec)); 7812 /* More than one function may be in this block */ 7813 goto again; 7814 } 7815 mutex_unlock(&ftrace_lock); 7816 7817 list_for_each_entry_safe(func, func_next, &clear_hash, list) { 7818 clear_func_from_hashes(func); 7819 kfree(func); 7820 } 7821 /* Need to synchronize with ftrace_location_range() */ 7822 if (tmp_page) { 7823 synchronize_rcu(); 7824 ftrace_free_pages(tmp_page); 7825 } 7826 } 7827 7828 void __init ftrace_free_init_mem(void) 7829 { 7830 void *start = (void *)(&__init_begin); 7831 void *end = (void *)(&__init_end); 7832 7833 ftrace_boot_snapshot(); 7834 7835 ftrace_free_mem(NULL, start, end); 7836 } 7837 7838 int __init __weak ftrace_dyn_arch_init(void) 7839 { 7840 return 0; 7841 } 7842 7843 void __init ftrace_init(void) 7844 { 7845 extern unsigned long __start_mcount_loc[]; 7846 extern unsigned long __stop_mcount_loc[]; 7847 unsigned long count, flags; 7848 int ret; 7849 7850 local_irq_save(flags); 7851 ret = ftrace_dyn_arch_init(); 7852 local_irq_restore(flags); 7853 if (ret) 7854 goto failed; 7855 7856 count = __stop_mcount_loc - __start_mcount_loc; 7857 if (!count) { 7858 pr_info("ftrace: No functions to be traced?\n"); 7859 goto failed; 7860 } 7861 7862 ret = ftrace_process_locs(NULL, 7863 __start_mcount_loc, 7864 __stop_mcount_loc); 7865 if (ret) { 7866 pr_warn("ftrace: failed to allocate entries for functions\n"); 7867 goto failed; 7868 } 7869 7870 pr_info("ftrace: allocated %ld pages with %ld groups\n", 7871 ftrace_number_of_pages, ftrace_number_of_groups); 7872 7873 last_ftrace_enabled = ftrace_enabled = 1; 7874 7875 set_ftrace_early_filters(); 7876 7877 return; 7878 failed: 7879 ftrace_disabled = 1; 7880 } 7881 7882 /* Do nothing if arch does not support this */ 7883 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops) 7884 { 7885 } 7886 7887 static void ftrace_update_trampoline(struct ftrace_ops *ops) 7888 { 7889 unsigned long trampoline = ops->trampoline; 7890 7891 arch_ftrace_update_trampoline(ops); 7892 if (ops->trampoline && ops->trampoline != trampoline && 7893 (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) { 7894 /* Add to kallsyms before the perf events */ 7895 ftrace_add_trampoline_to_kallsyms(ops); 7896 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 7897 ops->trampoline, ops->trampoline_size, false, 7898 FTRACE_TRAMPOLINE_SYM); 7899 /* 7900 * Record the perf text poke event after the ksymbol register 7901 * event. 7902 */ 7903 perf_event_text_poke((void *)ops->trampoline, NULL, 0, 7904 (void *)ops->trampoline, 7905 ops->trampoline_size); 7906 } 7907 } 7908 7909 void ftrace_init_trace_array(struct trace_array *tr) 7910 { 7911 if (tr->flags & TRACE_ARRAY_FL_MOD_INIT) 7912 return; 7913 7914 INIT_LIST_HEAD(&tr->func_probes); 7915 INIT_LIST_HEAD(&tr->mod_trace); 7916 INIT_LIST_HEAD(&tr->mod_notrace); 7917 7918 tr->flags |= TRACE_ARRAY_FL_MOD_INIT; 7919 } 7920 #else 7921 7922 struct ftrace_ops global_ops = { 7923 .func = ftrace_stub, 7924 .flags = FTRACE_OPS_FL_INITIALIZED | 7925 FTRACE_OPS_FL_PID, 7926 }; 7927 7928 static int __init ftrace_nodyn_init(void) 7929 { 7930 ftrace_enabled = 1; 7931 return 0; 7932 } 7933 core_initcall(ftrace_nodyn_init); 7934 7935 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; } 7936 static inline void ftrace_startup_all(int command) { } 7937 7938 static void ftrace_update_trampoline(struct ftrace_ops *ops) 7939 { 7940 } 7941 7942 #endif /* CONFIG_DYNAMIC_FTRACE */ 7943 7944 __init void ftrace_init_global_array_ops(struct trace_array *tr) 7945 { 7946 tr->ops = &global_ops; 7947 if (!global_ops.private) 7948 global_ops.private = tr; 7949 ftrace_init_trace_array(tr); 7950 init_array_fgraph_ops(tr, tr->ops); 7951 } 7952 7953 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func) 7954 { 7955 /* If we filter on pids, update to use the pid function */ 7956 if (tr->flags & TRACE_ARRAY_FL_GLOBAL) { 7957 if (WARN_ON(tr->ops->func != ftrace_stub)) 7958 printk("ftrace ops had %pS for function\n", 7959 tr->ops->func); 7960 } 7961 tr->ops->func = func; 7962 tr->ops->private = tr; 7963 } 7964 7965 void ftrace_reset_array_ops(struct trace_array *tr) 7966 { 7967 tr->ops->func = ftrace_stub; 7968 } 7969 7970 static nokprobe_inline void 7971 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 7972 struct ftrace_ops *ignored, struct ftrace_regs *fregs) 7973 { 7974 struct pt_regs *regs = ftrace_get_regs(fregs); 7975 struct ftrace_ops *op; 7976 int bit; 7977 7978 /* 7979 * The ftrace_test_and_set_recursion() will disable preemption, 7980 * which is required since some of the ops may be dynamically 7981 * allocated, they must be freed after a synchronize_rcu(). 7982 */ 7983 bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START); 7984 if (bit < 0) 7985 return; 7986 7987 do_for_each_ftrace_op(op, ftrace_ops_list) { 7988 /* Stub functions don't need to be called nor tested */ 7989 if (op->flags & FTRACE_OPS_FL_STUB) 7990 continue; 7991 /* 7992 * Check the following for each ops before calling their func: 7993 * if RCU flag is set, then rcu_is_watching() must be true 7994 * Otherwise test if the ip matches the ops filter 7995 * 7996 * If any of the above fails then the op->func() is not executed. 7997 */ 7998 if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) && 7999 ftrace_ops_test(op, ip, regs)) { 8000 if (FTRACE_WARN_ON(!op->func)) { 8001 pr_warn("op=%p %pS\n", op, op); 8002 goto out; 8003 } 8004 op->func(ip, parent_ip, op, fregs); 8005 } 8006 } while_for_each_ftrace_op(op); 8007 out: 8008 trace_clear_recursion(bit); 8009 } 8010 8011 /* 8012 * Some archs only support passing ip and parent_ip. Even though 8013 * the list function ignores the op parameter, we do not want any 8014 * C side effects, where a function is called without the caller 8015 * sending a third parameter. 8016 * Archs are to support both the regs and ftrace_ops at the same time. 8017 * If they support ftrace_ops, it is assumed they support regs. 8018 * If call backs want to use regs, they must either check for regs 8019 * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS. 8020 * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved. 8021 * An architecture can pass partial regs with ftrace_ops and still 8022 * set the ARCH_SUPPORTS_FTRACE_OPS. 8023 * 8024 * In vmlinux.lds.h, ftrace_ops_list_func() is defined to be 8025 * arch_ftrace_ops_list_func. 8026 */ 8027 #if ARCH_SUPPORTS_FTRACE_OPS 8028 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 8029 struct ftrace_ops *op, struct ftrace_regs *fregs) 8030 { 8031 kmsan_unpoison_memory(fregs, ftrace_regs_size()); 8032 __ftrace_ops_list_func(ip, parent_ip, NULL, fregs); 8033 } 8034 #else 8035 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip) 8036 { 8037 __ftrace_ops_list_func(ip, parent_ip, NULL, NULL); 8038 } 8039 #endif 8040 NOKPROBE_SYMBOL(arch_ftrace_ops_list_func); 8041 8042 /* 8043 * If there's only one function registered but it does not support 8044 * recursion, needs RCU protection, then this function will be called 8045 * by the mcount trampoline. 8046 */ 8047 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip, 8048 struct ftrace_ops *op, struct ftrace_regs *fregs) 8049 { 8050 int bit; 8051 8052 bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START); 8053 if (bit < 0) 8054 return; 8055 8056 if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) 8057 op->func(ip, parent_ip, op, fregs); 8058 8059 trace_clear_recursion(bit); 8060 } 8061 NOKPROBE_SYMBOL(ftrace_ops_assist_func); 8062 8063 /** 8064 * ftrace_ops_get_func - get the function a trampoline should call 8065 * @ops: the ops to get the function for 8066 * 8067 * Normally the mcount trampoline will call the ops->func, but there 8068 * are times that it should not. For example, if the ops does not 8069 * have its own recursion protection, then it should call the 8070 * ftrace_ops_assist_func() instead. 8071 * 8072 * Returns: the function that the trampoline should call for @ops. 8073 */ 8074 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops) 8075 { 8076 /* 8077 * If the function does not handle recursion or needs to be RCU safe, 8078 * then we need to call the assist handler. 8079 */ 8080 if (ops->flags & (FTRACE_OPS_FL_RECURSION | 8081 FTRACE_OPS_FL_RCU)) 8082 return ftrace_ops_assist_func; 8083 8084 return ops->func; 8085 } 8086 8087 static void 8088 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt, 8089 struct task_struct *prev, 8090 struct task_struct *next, 8091 unsigned int prev_state) 8092 { 8093 struct trace_array *tr = data; 8094 struct trace_pid_list *pid_list; 8095 struct trace_pid_list *no_pid_list; 8096 8097 pid_list = rcu_dereference_sched(tr->function_pids); 8098 no_pid_list = rcu_dereference_sched(tr->function_no_pids); 8099 8100 if (trace_ignore_this_task(pid_list, no_pid_list, next)) 8101 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 8102 FTRACE_PID_IGNORE); 8103 else 8104 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 8105 next->pid); 8106 } 8107 8108 static void 8109 ftrace_pid_follow_sched_process_fork(void *data, 8110 struct task_struct *self, 8111 struct task_struct *task) 8112 { 8113 struct trace_pid_list *pid_list; 8114 struct trace_array *tr = data; 8115 8116 pid_list = rcu_dereference_sched(tr->function_pids); 8117 trace_filter_add_remove_task(pid_list, self, task); 8118 8119 pid_list = rcu_dereference_sched(tr->function_no_pids); 8120 trace_filter_add_remove_task(pid_list, self, task); 8121 } 8122 8123 static void 8124 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task) 8125 { 8126 struct trace_pid_list *pid_list; 8127 struct trace_array *tr = data; 8128 8129 pid_list = rcu_dereference_sched(tr->function_pids); 8130 trace_filter_add_remove_task(pid_list, NULL, task); 8131 8132 pid_list = rcu_dereference_sched(tr->function_no_pids); 8133 trace_filter_add_remove_task(pid_list, NULL, task); 8134 } 8135 8136 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable) 8137 { 8138 if (enable) { 8139 register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 8140 tr); 8141 register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 8142 tr); 8143 } else { 8144 unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 8145 tr); 8146 unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 8147 tr); 8148 } 8149 } 8150 8151 static void clear_ftrace_pids(struct trace_array *tr, int type) 8152 { 8153 struct trace_pid_list *pid_list; 8154 struct trace_pid_list *no_pid_list; 8155 int cpu; 8156 8157 pid_list = rcu_dereference_protected(tr->function_pids, 8158 lockdep_is_held(&ftrace_lock)); 8159 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 8160 lockdep_is_held(&ftrace_lock)); 8161 8162 /* Make sure there's something to do */ 8163 if (!pid_type_enabled(type, pid_list, no_pid_list)) 8164 return; 8165 8166 /* See if the pids still need to be checked after this */ 8167 if (!still_need_pid_events(type, pid_list, no_pid_list)) { 8168 unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 8169 for_each_possible_cpu(cpu) 8170 per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE; 8171 } 8172 8173 if (type & TRACE_PIDS) 8174 rcu_assign_pointer(tr->function_pids, NULL); 8175 8176 if (type & TRACE_NO_PIDS) 8177 rcu_assign_pointer(tr->function_no_pids, NULL); 8178 8179 /* Wait till all users are no longer using pid filtering */ 8180 synchronize_rcu(); 8181 8182 if ((type & TRACE_PIDS) && pid_list) 8183 trace_pid_list_free(pid_list); 8184 8185 if ((type & TRACE_NO_PIDS) && no_pid_list) 8186 trace_pid_list_free(no_pid_list); 8187 } 8188 8189 void ftrace_clear_pids(struct trace_array *tr) 8190 { 8191 mutex_lock(&ftrace_lock); 8192 8193 clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS); 8194 8195 mutex_unlock(&ftrace_lock); 8196 } 8197 8198 static void ftrace_pid_reset(struct trace_array *tr, int type) 8199 { 8200 mutex_lock(&ftrace_lock); 8201 clear_ftrace_pids(tr, type); 8202 8203 ftrace_update_pid_func(); 8204 ftrace_startup_all(0); 8205 8206 mutex_unlock(&ftrace_lock); 8207 } 8208 8209 /* Greater than any max PID */ 8210 #define FTRACE_NO_PIDS (void *)(PID_MAX_LIMIT + 1) 8211 8212 static void *fpid_start(struct seq_file *m, loff_t *pos) 8213 __acquires(RCU) 8214 { 8215 struct trace_pid_list *pid_list; 8216 struct trace_array *tr = m->private; 8217 8218 mutex_lock(&ftrace_lock); 8219 rcu_read_lock_sched(); 8220 8221 pid_list = rcu_dereference_sched(tr->function_pids); 8222 8223 if (!pid_list) 8224 return !(*pos) ? FTRACE_NO_PIDS : NULL; 8225 8226 return trace_pid_start(pid_list, pos); 8227 } 8228 8229 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos) 8230 { 8231 struct trace_array *tr = m->private; 8232 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids); 8233 8234 if (v == FTRACE_NO_PIDS) { 8235 (*pos)++; 8236 return NULL; 8237 } 8238 return trace_pid_next(pid_list, v, pos); 8239 } 8240 8241 static void fpid_stop(struct seq_file *m, void *p) 8242 __releases(RCU) 8243 { 8244 rcu_read_unlock_sched(); 8245 mutex_unlock(&ftrace_lock); 8246 } 8247 8248 static int fpid_show(struct seq_file *m, void *v) 8249 { 8250 if (v == FTRACE_NO_PIDS) { 8251 seq_puts(m, "no pid\n"); 8252 return 0; 8253 } 8254 8255 return trace_pid_show(m, v); 8256 } 8257 8258 static const struct seq_operations ftrace_pid_sops = { 8259 .start = fpid_start, 8260 .next = fpid_next, 8261 .stop = fpid_stop, 8262 .show = fpid_show, 8263 }; 8264 8265 static void *fnpid_start(struct seq_file *m, loff_t *pos) 8266 __acquires(RCU) 8267 { 8268 struct trace_pid_list *pid_list; 8269 struct trace_array *tr = m->private; 8270 8271 mutex_lock(&ftrace_lock); 8272 rcu_read_lock_sched(); 8273 8274 pid_list = rcu_dereference_sched(tr->function_no_pids); 8275 8276 if (!pid_list) 8277 return !(*pos) ? FTRACE_NO_PIDS : NULL; 8278 8279 return trace_pid_start(pid_list, pos); 8280 } 8281 8282 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos) 8283 { 8284 struct trace_array *tr = m->private; 8285 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids); 8286 8287 if (v == FTRACE_NO_PIDS) { 8288 (*pos)++; 8289 return NULL; 8290 } 8291 return trace_pid_next(pid_list, v, pos); 8292 } 8293 8294 static const struct seq_operations ftrace_no_pid_sops = { 8295 .start = fnpid_start, 8296 .next = fnpid_next, 8297 .stop = fpid_stop, 8298 .show = fpid_show, 8299 }; 8300 8301 static int pid_open(struct inode *inode, struct file *file, int type) 8302 { 8303 const struct seq_operations *seq_ops; 8304 struct trace_array *tr = inode->i_private; 8305 struct seq_file *m; 8306 int ret = 0; 8307 8308 ret = tracing_check_open_get_tr(tr); 8309 if (ret) 8310 return ret; 8311 8312 if ((file->f_mode & FMODE_WRITE) && 8313 (file->f_flags & O_TRUNC)) 8314 ftrace_pid_reset(tr, type); 8315 8316 switch (type) { 8317 case TRACE_PIDS: 8318 seq_ops = &ftrace_pid_sops; 8319 break; 8320 case TRACE_NO_PIDS: 8321 seq_ops = &ftrace_no_pid_sops; 8322 break; 8323 default: 8324 trace_array_put(tr); 8325 WARN_ON_ONCE(1); 8326 return -EINVAL; 8327 } 8328 8329 ret = seq_open(file, seq_ops); 8330 if (ret < 0) { 8331 trace_array_put(tr); 8332 } else { 8333 m = file->private_data; 8334 /* copy tr over to seq ops */ 8335 m->private = tr; 8336 } 8337 8338 return ret; 8339 } 8340 8341 static int 8342 ftrace_pid_open(struct inode *inode, struct file *file) 8343 { 8344 return pid_open(inode, file, TRACE_PIDS); 8345 } 8346 8347 static int 8348 ftrace_no_pid_open(struct inode *inode, struct file *file) 8349 { 8350 return pid_open(inode, file, TRACE_NO_PIDS); 8351 } 8352 8353 static void ignore_task_cpu(void *data) 8354 { 8355 struct trace_array *tr = data; 8356 struct trace_pid_list *pid_list; 8357 struct trace_pid_list *no_pid_list; 8358 8359 /* 8360 * This function is called by on_each_cpu() while the 8361 * event_mutex is held. 8362 */ 8363 pid_list = rcu_dereference_protected(tr->function_pids, 8364 mutex_is_locked(&ftrace_lock)); 8365 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 8366 mutex_is_locked(&ftrace_lock)); 8367 8368 if (trace_ignore_this_task(pid_list, no_pid_list, current)) 8369 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 8370 FTRACE_PID_IGNORE); 8371 else 8372 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 8373 current->pid); 8374 } 8375 8376 static ssize_t 8377 pid_write(struct file *filp, const char __user *ubuf, 8378 size_t cnt, loff_t *ppos, int type) 8379 { 8380 struct seq_file *m = filp->private_data; 8381 struct trace_array *tr = m->private; 8382 struct trace_pid_list *filtered_pids; 8383 struct trace_pid_list *other_pids; 8384 struct trace_pid_list *pid_list; 8385 ssize_t ret; 8386 8387 if (!cnt) 8388 return 0; 8389 8390 guard(mutex)(&ftrace_lock); 8391 8392 switch (type) { 8393 case TRACE_PIDS: 8394 filtered_pids = rcu_dereference_protected(tr->function_pids, 8395 lockdep_is_held(&ftrace_lock)); 8396 other_pids = rcu_dereference_protected(tr->function_no_pids, 8397 lockdep_is_held(&ftrace_lock)); 8398 break; 8399 case TRACE_NO_PIDS: 8400 filtered_pids = rcu_dereference_protected(tr->function_no_pids, 8401 lockdep_is_held(&ftrace_lock)); 8402 other_pids = rcu_dereference_protected(tr->function_pids, 8403 lockdep_is_held(&ftrace_lock)); 8404 break; 8405 default: 8406 WARN_ON_ONCE(1); 8407 return -EINVAL; 8408 } 8409 8410 ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt); 8411 if (ret < 0) 8412 return ret; 8413 8414 switch (type) { 8415 case TRACE_PIDS: 8416 rcu_assign_pointer(tr->function_pids, pid_list); 8417 break; 8418 case TRACE_NO_PIDS: 8419 rcu_assign_pointer(tr->function_no_pids, pid_list); 8420 break; 8421 } 8422 8423 8424 if (filtered_pids) { 8425 synchronize_rcu(); 8426 trace_pid_list_free(filtered_pids); 8427 } else if (pid_list && !other_pids) { 8428 /* Register a probe to set whether to ignore the tracing of a task */ 8429 register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 8430 } 8431 8432 /* 8433 * Ignoring of pids is done at task switch. But we have to 8434 * check for those tasks that are currently running. 8435 * Always do this in case a pid was appended or removed. 8436 */ 8437 on_each_cpu(ignore_task_cpu, tr, 1); 8438 8439 ftrace_update_pid_func(); 8440 ftrace_startup_all(0); 8441 8442 *ppos += ret; 8443 8444 return ret; 8445 } 8446 8447 static ssize_t 8448 ftrace_pid_write(struct file *filp, const char __user *ubuf, 8449 size_t cnt, loff_t *ppos) 8450 { 8451 return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS); 8452 } 8453 8454 static ssize_t 8455 ftrace_no_pid_write(struct file *filp, const char __user *ubuf, 8456 size_t cnt, loff_t *ppos) 8457 { 8458 return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS); 8459 } 8460 8461 static int 8462 ftrace_pid_release(struct inode *inode, struct file *file) 8463 { 8464 struct trace_array *tr = inode->i_private; 8465 8466 trace_array_put(tr); 8467 8468 return seq_release(inode, file); 8469 } 8470 8471 static const struct file_operations ftrace_pid_fops = { 8472 .open = ftrace_pid_open, 8473 .write = ftrace_pid_write, 8474 .read = seq_read, 8475 .llseek = tracing_lseek, 8476 .release = ftrace_pid_release, 8477 }; 8478 8479 static const struct file_operations ftrace_no_pid_fops = { 8480 .open = ftrace_no_pid_open, 8481 .write = ftrace_no_pid_write, 8482 .read = seq_read, 8483 .llseek = tracing_lseek, 8484 .release = ftrace_pid_release, 8485 }; 8486 8487 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer) 8488 { 8489 trace_create_file("set_ftrace_pid", TRACE_MODE_WRITE, d_tracer, 8490 tr, &ftrace_pid_fops); 8491 trace_create_file("set_ftrace_notrace_pid", TRACE_MODE_WRITE, 8492 d_tracer, tr, &ftrace_no_pid_fops); 8493 } 8494 8495 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr, 8496 struct dentry *d_tracer) 8497 { 8498 /* Only the top level directory has the dyn_tracefs and profile */ 8499 WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL)); 8500 8501 ftrace_init_dyn_tracefs(d_tracer); 8502 ftrace_profile_tracefs(d_tracer); 8503 } 8504 8505 /** 8506 * ftrace_kill - kill ftrace 8507 * 8508 * This function should be used by panic code. It stops ftrace 8509 * but in a not so nice way. If you need to simply kill ftrace 8510 * from a non-atomic section, use ftrace_kill. 8511 */ 8512 void ftrace_kill(void) 8513 { 8514 ftrace_disabled = 1; 8515 ftrace_enabled = 0; 8516 ftrace_trace_function = ftrace_stub; 8517 kprobe_ftrace_kill(); 8518 } 8519 8520 /** 8521 * ftrace_is_dead - Test if ftrace is dead or not. 8522 * 8523 * Returns: 1 if ftrace is "dead", zero otherwise. 8524 */ 8525 int ftrace_is_dead(void) 8526 { 8527 return ftrace_disabled; 8528 } 8529 8530 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 8531 /* 8532 * When registering ftrace_ops with IPMODIFY, it is necessary to make sure 8533 * it doesn't conflict with any direct ftrace_ops. If there is existing 8534 * direct ftrace_ops on a kernel function being patched, call 8535 * FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER on it to enable sharing. 8536 * 8537 * @ops: ftrace_ops being registered. 8538 * 8539 * Returns: 8540 * 0 on success; 8541 * Negative on failure. 8542 */ 8543 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops) 8544 { 8545 struct ftrace_func_entry *entry; 8546 struct ftrace_hash *hash; 8547 struct ftrace_ops *op; 8548 int size, i, ret; 8549 8550 lockdep_assert_held_once(&direct_mutex); 8551 8552 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 8553 return 0; 8554 8555 hash = ops->func_hash->filter_hash; 8556 size = 1 << hash->size_bits; 8557 for (i = 0; i < size; i++) { 8558 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 8559 unsigned long ip = entry->ip; 8560 bool found_op = false; 8561 8562 mutex_lock(&ftrace_lock); 8563 do_for_each_ftrace_op(op, ftrace_ops_list) { 8564 if (!(op->flags & FTRACE_OPS_FL_DIRECT)) 8565 continue; 8566 if (ops_references_ip(op, ip)) { 8567 found_op = true; 8568 break; 8569 } 8570 } while_for_each_ftrace_op(op); 8571 mutex_unlock(&ftrace_lock); 8572 8573 if (found_op) { 8574 if (!op->ops_func) 8575 return -EBUSY; 8576 8577 ret = op->ops_func(op, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER); 8578 if (ret) 8579 return ret; 8580 } 8581 } 8582 } 8583 8584 return 0; 8585 } 8586 8587 /* 8588 * Similar to prepare_direct_functions_for_ipmodify, clean up after ops 8589 * with IPMODIFY is unregistered. The cleanup is optional for most DIRECT 8590 * ops. 8591 */ 8592 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops) 8593 { 8594 struct ftrace_func_entry *entry; 8595 struct ftrace_hash *hash; 8596 struct ftrace_ops *op; 8597 int size, i; 8598 8599 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 8600 return; 8601 8602 mutex_lock(&direct_mutex); 8603 8604 hash = ops->func_hash->filter_hash; 8605 size = 1 << hash->size_bits; 8606 for (i = 0; i < size; i++) { 8607 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 8608 unsigned long ip = entry->ip; 8609 bool found_op = false; 8610 8611 mutex_lock(&ftrace_lock); 8612 do_for_each_ftrace_op(op, ftrace_ops_list) { 8613 if (!(op->flags & FTRACE_OPS_FL_DIRECT)) 8614 continue; 8615 if (ops_references_ip(op, ip)) { 8616 found_op = true; 8617 break; 8618 } 8619 } while_for_each_ftrace_op(op); 8620 mutex_unlock(&ftrace_lock); 8621 8622 /* The cleanup is optional, ignore any errors */ 8623 if (found_op && op->ops_func) 8624 op->ops_func(op, FTRACE_OPS_CMD_DISABLE_SHARE_IPMODIFY_PEER); 8625 } 8626 } 8627 mutex_unlock(&direct_mutex); 8628 } 8629 8630 #define lock_direct_mutex() mutex_lock(&direct_mutex) 8631 #define unlock_direct_mutex() mutex_unlock(&direct_mutex) 8632 8633 #else /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 8634 8635 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops) 8636 { 8637 return 0; 8638 } 8639 8640 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops) 8641 { 8642 } 8643 8644 #define lock_direct_mutex() do { } while (0) 8645 #define unlock_direct_mutex() do { } while (0) 8646 8647 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 8648 8649 /* 8650 * Similar to register_ftrace_function, except we don't lock direct_mutex. 8651 */ 8652 static int register_ftrace_function_nolock(struct ftrace_ops *ops) 8653 { 8654 int ret; 8655 8656 ftrace_ops_init(ops); 8657 8658 mutex_lock(&ftrace_lock); 8659 8660 ret = ftrace_startup(ops, 0); 8661 8662 mutex_unlock(&ftrace_lock); 8663 8664 return ret; 8665 } 8666 8667 /** 8668 * register_ftrace_function - register a function for profiling 8669 * @ops: ops structure that holds the function for profiling. 8670 * 8671 * Register a function to be called by all functions in the 8672 * kernel. 8673 * 8674 * Note: @ops->func and all the functions it calls must be labeled 8675 * with "notrace", otherwise it will go into a 8676 * recursive loop. 8677 */ 8678 int register_ftrace_function(struct ftrace_ops *ops) 8679 { 8680 int ret; 8681 8682 lock_direct_mutex(); 8683 ret = prepare_direct_functions_for_ipmodify(ops); 8684 if (ret < 0) 8685 goto out_unlock; 8686 8687 ret = register_ftrace_function_nolock(ops); 8688 8689 out_unlock: 8690 unlock_direct_mutex(); 8691 return ret; 8692 } 8693 EXPORT_SYMBOL_GPL(register_ftrace_function); 8694 8695 /** 8696 * unregister_ftrace_function - unregister a function for profiling. 8697 * @ops: ops structure that holds the function to unregister 8698 * 8699 * Unregister a function that was added to be called by ftrace profiling. 8700 */ 8701 int unregister_ftrace_function(struct ftrace_ops *ops) 8702 { 8703 int ret; 8704 8705 mutex_lock(&ftrace_lock); 8706 ret = ftrace_shutdown(ops, 0); 8707 mutex_unlock(&ftrace_lock); 8708 8709 cleanup_direct_functions_after_ipmodify(ops); 8710 return ret; 8711 } 8712 EXPORT_SYMBOL_GPL(unregister_ftrace_function); 8713 8714 static int symbols_cmp(const void *a, const void *b) 8715 { 8716 const char **str_a = (const char **) a; 8717 const char **str_b = (const char **) b; 8718 8719 return strcmp(*str_a, *str_b); 8720 } 8721 8722 struct kallsyms_data { 8723 unsigned long *addrs; 8724 const char **syms; 8725 size_t cnt; 8726 size_t found; 8727 }; 8728 8729 /* This function gets called for all kernel and module symbols 8730 * and returns 1 in case we resolved all the requested symbols, 8731 * 0 otherwise. 8732 */ 8733 static int kallsyms_callback(void *data, const char *name, unsigned long addr) 8734 { 8735 struct kallsyms_data *args = data; 8736 const char **sym; 8737 int idx; 8738 8739 sym = bsearch(&name, args->syms, args->cnt, sizeof(*args->syms), symbols_cmp); 8740 if (!sym) 8741 return 0; 8742 8743 idx = sym - args->syms; 8744 if (args->addrs[idx]) 8745 return 0; 8746 8747 if (!ftrace_location(addr)) 8748 return 0; 8749 8750 args->addrs[idx] = addr; 8751 args->found++; 8752 return args->found == args->cnt ? 1 : 0; 8753 } 8754 8755 /** 8756 * ftrace_lookup_symbols - Lookup addresses for array of symbols 8757 * 8758 * @sorted_syms: array of symbols pointers symbols to resolve, 8759 * must be alphabetically sorted 8760 * @cnt: number of symbols/addresses in @syms/@addrs arrays 8761 * @addrs: array for storing resulting addresses 8762 * 8763 * This function looks up addresses for array of symbols provided in 8764 * @syms array (must be alphabetically sorted) and stores them in 8765 * @addrs array, which needs to be big enough to store at least @cnt 8766 * addresses. 8767 * 8768 * Returns: 0 if all provided symbols are found, -ESRCH otherwise. 8769 */ 8770 int ftrace_lookup_symbols(const char **sorted_syms, size_t cnt, unsigned long *addrs) 8771 { 8772 struct kallsyms_data args; 8773 int found_all; 8774 8775 memset(addrs, 0, sizeof(*addrs) * cnt); 8776 args.addrs = addrs; 8777 args.syms = sorted_syms; 8778 args.cnt = cnt; 8779 args.found = 0; 8780 8781 found_all = kallsyms_on_each_symbol(kallsyms_callback, &args); 8782 if (found_all) 8783 return 0; 8784 found_all = module_kallsyms_on_each_symbol(NULL, kallsyms_callback, &args); 8785 return found_all ? 0 : -ESRCH; 8786 } 8787 8788 #ifdef CONFIG_SYSCTL 8789 8790 #ifdef CONFIG_DYNAMIC_FTRACE 8791 static void ftrace_startup_sysctl(void) 8792 { 8793 int command; 8794 8795 if (unlikely(ftrace_disabled)) 8796 return; 8797 8798 /* Force update next time */ 8799 saved_ftrace_func = NULL; 8800 /* ftrace_start_up is true if we want ftrace running */ 8801 if (ftrace_start_up) { 8802 command = FTRACE_UPDATE_CALLS; 8803 if (ftrace_graph_active) 8804 command |= FTRACE_START_FUNC_RET; 8805 ftrace_startup_enable(command); 8806 } 8807 } 8808 8809 static void ftrace_shutdown_sysctl(void) 8810 { 8811 int command; 8812 8813 if (unlikely(ftrace_disabled)) 8814 return; 8815 8816 /* ftrace_start_up is true if ftrace is running */ 8817 if (ftrace_start_up) { 8818 command = FTRACE_DISABLE_CALLS; 8819 if (ftrace_graph_active) 8820 command |= FTRACE_STOP_FUNC_RET; 8821 ftrace_run_update_code(command); 8822 } 8823 } 8824 #else 8825 # define ftrace_startup_sysctl() do { } while (0) 8826 # define ftrace_shutdown_sysctl() do { } while (0) 8827 #endif /* CONFIG_DYNAMIC_FTRACE */ 8828 8829 static bool is_permanent_ops_registered(void) 8830 { 8831 struct ftrace_ops *op; 8832 8833 do_for_each_ftrace_op(op, ftrace_ops_list) { 8834 if (op->flags & FTRACE_OPS_FL_PERMANENT) 8835 return true; 8836 } while_for_each_ftrace_op(op); 8837 8838 return false; 8839 } 8840 8841 static int 8842 ftrace_enable_sysctl(const struct ctl_table *table, int write, 8843 void *buffer, size_t *lenp, loff_t *ppos) 8844 { 8845 int ret; 8846 8847 guard(mutex)(&ftrace_lock); 8848 8849 if (unlikely(ftrace_disabled)) 8850 return -ENODEV; 8851 8852 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8853 8854 if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) 8855 return ret; 8856 8857 if (ftrace_enabled) { 8858 8859 /* we are starting ftrace again */ 8860 if (rcu_dereference_protected(ftrace_ops_list, 8861 lockdep_is_held(&ftrace_lock)) != &ftrace_list_end) 8862 update_ftrace_function(); 8863 8864 ftrace_startup_sysctl(); 8865 8866 } else { 8867 if (is_permanent_ops_registered()) { 8868 ftrace_enabled = true; 8869 return -EBUSY; 8870 } 8871 8872 /* stopping ftrace calls (just send to ftrace_stub) */ 8873 ftrace_trace_function = ftrace_stub; 8874 8875 ftrace_shutdown_sysctl(); 8876 } 8877 8878 last_ftrace_enabled = !!ftrace_enabled; 8879 return 0; 8880 } 8881 8882 static const struct ctl_table ftrace_sysctls[] = { 8883 { 8884 .procname = "ftrace_enabled", 8885 .data = &ftrace_enabled, 8886 .maxlen = sizeof(int), 8887 .mode = 0644, 8888 .proc_handler = ftrace_enable_sysctl, 8889 }, 8890 }; 8891 8892 static int __init ftrace_sysctl_init(void) 8893 { 8894 register_sysctl_init("kernel", ftrace_sysctls); 8895 return 0; 8896 } 8897 late_initcall(ftrace_sysctl_init); 8898 #endif 8899