1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Infrastructure for profiling code inserted by 'gcc -pg'. 4 * 5 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com> 6 * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com> 7 * 8 * Originally ported from the -rt patch by: 9 * Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com> 10 * 11 * Based on code in the latency_tracer, that is: 12 * 13 * Copyright (C) 2004-2006 Ingo Molnar 14 * Copyright (C) 2004 Nadia Yvette Chambers 15 */ 16 17 #include <linux/stop_machine.h> 18 #include <linux/clocksource.h> 19 #include <linux/sched/task.h> 20 #include <linux/kallsyms.h> 21 #include <linux/security.h> 22 #include <linux/seq_file.h> 23 #include <linux/tracefs.h> 24 #include <linux/hardirq.h> 25 #include <linux/kthread.h> 26 #include <linux/uaccess.h> 27 #include <linux/bsearch.h> 28 #include <linux/module.h> 29 #include <linux/ftrace.h> 30 #include <linux/sysctl.h> 31 #include <linux/slab.h> 32 #include <linux/ctype.h> 33 #include <linux/sort.h> 34 #include <linux/list.h> 35 #include <linux/hash.h> 36 #include <linux/rcupdate.h> 37 #include <linux/kprobes.h> 38 39 #include <trace/events/sched.h> 40 41 #include <asm/sections.h> 42 #include <asm/setup.h> 43 44 #include "ftrace_internal.h" 45 #include "trace_output.h" 46 #include "trace_stat.h" 47 48 #define FTRACE_WARN_ON(cond) \ 49 ({ \ 50 int ___r = cond; \ 51 if (WARN_ON(___r)) \ 52 ftrace_kill(); \ 53 ___r; \ 54 }) 55 56 #define FTRACE_WARN_ON_ONCE(cond) \ 57 ({ \ 58 int ___r = cond; \ 59 if (WARN_ON_ONCE(___r)) \ 60 ftrace_kill(); \ 61 ___r; \ 62 }) 63 64 /* hash bits for specific function selection */ 65 #define FTRACE_HASH_DEFAULT_BITS 10 66 #define FTRACE_HASH_MAX_BITS 12 67 68 #ifdef CONFIG_DYNAMIC_FTRACE 69 #define INIT_OPS_HASH(opsname) \ 70 .func_hash = &opsname.local_hash, \ 71 .local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock), 72 #else 73 #define INIT_OPS_HASH(opsname) 74 #endif 75 76 enum { 77 FTRACE_MODIFY_ENABLE_FL = (1 << 0), 78 FTRACE_MODIFY_MAY_SLEEP_FL = (1 << 1), 79 }; 80 81 struct ftrace_ops ftrace_list_end __read_mostly = { 82 .func = ftrace_stub, 83 .flags = FTRACE_OPS_FL_STUB, 84 INIT_OPS_HASH(ftrace_list_end) 85 }; 86 87 /* ftrace_enabled is a method to turn ftrace on or off */ 88 int ftrace_enabled __read_mostly; 89 static int __maybe_unused last_ftrace_enabled; 90 91 /* Current function tracing op */ 92 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end; 93 /* What to set function_trace_op to */ 94 static struct ftrace_ops *set_function_trace_op; 95 96 static bool ftrace_pids_enabled(struct ftrace_ops *ops) 97 { 98 struct trace_array *tr; 99 100 if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private) 101 return false; 102 103 tr = ops->private; 104 105 return tr->function_pids != NULL || tr->function_no_pids != NULL; 106 } 107 108 static void ftrace_update_trampoline(struct ftrace_ops *ops); 109 110 /* 111 * ftrace_disabled is set when an anomaly is discovered. 112 * ftrace_disabled is much stronger than ftrace_enabled. 113 */ 114 static int ftrace_disabled __read_mostly; 115 116 DEFINE_MUTEX(ftrace_lock); 117 118 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end; 119 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub; 120 struct ftrace_ops global_ops; 121 122 /* Defined by vmlinux.lds.h see the commment above arch_ftrace_ops_list_func for details */ 123 void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 124 struct ftrace_ops *op, struct ftrace_regs *fregs); 125 126 static inline void ftrace_ops_init(struct ftrace_ops *ops) 127 { 128 #ifdef CONFIG_DYNAMIC_FTRACE 129 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) { 130 mutex_init(&ops->local_hash.regex_lock); 131 ops->func_hash = &ops->local_hash; 132 ops->flags |= FTRACE_OPS_FL_INITIALIZED; 133 } 134 #endif 135 } 136 137 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip, 138 struct ftrace_ops *op, struct ftrace_regs *fregs) 139 { 140 struct trace_array *tr = op->private; 141 int pid; 142 143 if (tr) { 144 pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid); 145 if (pid == FTRACE_PID_IGNORE) 146 return; 147 if (pid != FTRACE_PID_TRACE && 148 pid != current->pid) 149 return; 150 } 151 152 op->saved_func(ip, parent_ip, op, fregs); 153 } 154 155 static void ftrace_sync_ipi(void *data) 156 { 157 /* Probably not needed, but do it anyway */ 158 smp_rmb(); 159 } 160 161 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops) 162 { 163 /* 164 * If this is a dynamic, RCU, or per CPU ops, or we force list func, 165 * then it needs to call the list anyway. 166 */ 167 if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) || 168 FTRACE_FORCE_LIST_FUNC) 169 return ftrace_ops_list_func; 170 171 return ftrace_ops_get_func(ops); 172 } 173 174 static void update_ftrace_function(void) 175 { 176 ftrace_func_t func; 177 178 /* 179 * Prepare the ftrace_ops that the arch callback will use. 180 * If there's only one ftrace_ops registered, the ftrace_ops_list 181 * will point to the ops we want. 182 */ 183 set_function_trace_op = rcu_dereference_protected(ftrace_ops_list, 184 lockdep_is_held(&ftrace_lock)); 185 186 /* If there's no ftrace_ops registered, just call the stub function */ 187 if (set_function_trace_op == &ftrace_list_end) { 188 func = ftrace_stub; 189 190 /* 191 * If we are at the end of the list and this ops is 192 * recursion safe and not dynamic and the arch supports passing ops, 193 * then have the mcount trampoline call the function directly. 194 */ 195 } else if (rcu_dereference_protected(ftrace_ops_list->next, 196 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 197 func = ftrace_ops_get_list_func(ftrace_ops_list); 198 199 } else { 200 /* Just use the default ftrace_ops */ 201 set_function_trace_op = &ftrace_list_end; 202 func = ftrace_ops_list_func; 203 } 204 205 update_function_graph_func(); 206 207 /* If there's no change, then do nothing more here */ 208 if (ftrace_trace_function == func) 209 return; 210 211 /* 212 * If we are using the list function, it doesn't care 213 * about the function_trace_ops. 214 */ 215 if (func == ftrace_ops_list_func) { 216 ftrace_trace_function = func; 217 /* 218 * Don't even bother setting function_trace_ops, 219 * it would be racy to do so anyway. 220 */ 221 return; 222 } 223 224 #ifndef CONFIG_DYNAMIC_FTRACE 225 /* 226 * For static tracing, we need to be a bit more careful. 227 * The function change takes affect immediately. Thus, 228 * we need to coordinate the setting of the function_trace_ops 229 * with the setting of the ftrace_trace_function. 230 * 231 * Set the function to the list ops, which will call the 232 * function we want, albeit indirectly, but it handles the 233 * ftrace_ops and doesn't depend on function_trace_op. 234 */ 235 ftrace_trace_function = ftrace_ops_list_func; 236 /* 237 * Make sure all CPUs see this. Yes this is slow, but static 238 * tracing is slow and nasty to have enabled. 239 */ 240 synchronize_rcu_tasks_rude(); 241 /* Now all cpus are using the list ops. */ 242 function_trace_op = set_function_trace_op; 243 /* Make sure the function_trace_op is visible on all CPUs */ 244 smp_wmb(); 245 /* Nasty way to force a rmb on all cpus */ 246 smp_call_function(ftrace_sync_ipi, NULL, 1); 247 /* OK, we are all set to update the ftrace_trace_function now! */ 248 #endif /* !CONFIG_DYNAMIC_FTRACE */ 249 250 ftrace_trace_function = func; 251 } 252 253 static void add_ftrace_ops(struct ftrace_ops __rcu **list, 254 struct ftrace_ops *ops) 255 { 256 rcu_assign_pointer(ops->next, *list); 257 258 /* 259 * We are entering ops into the list but another 260 * CPU might be walking that list. We need to make sure 261 * the ops->next pointer is valid before another CPU sees 262 * the ops pointer included into the list. 263 */ 264 rcu_assign_pointer(*list, ops); 265 } 266 267 static int remove_ftrace_ops(struct ftrace_ops __rcu **list, 268 struct ftrace_ops *ops) 269 { 270 struct ftrace_ops **p; 271 272 /* 273 * If we are removing the last function, then simply point 274 * to the ftrace_stub. 275 */ 276 if (rcu_dereference_protected(*list, 277 lockdep_is_held(&ftrace_lock)) == ops && 278 rcu_dereference_protected(ops->next, 279 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 280 *list = &ftrace_list_end; 281 return 0; 282 } 283 284 for (p = list; *p != &ftrace_list_end; p = &(*p)->next) 285 if (*p == ops) 286 break; 287 288 if (*p != ops) 289 return -1; 290 291 *p = (*p)->next; 292 return 0; 293 } 294 295 static void ftrace_update_trampoline(struct ftrace_ops *ops); 296 297 int __register_ftrace_function(struct ftrace_ops *ops) 298 { 299 if (ops->flags & FTRACE_OPS_FL_DELETED) 300 return -EINVAL; 301 302 if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED)) 303 return -EBUSY; 304 305 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS 306 /* 307 * If the ftrace_ops specifies SAVE_REGS, then it only can be used 308 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set. 309 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant. 310 */ 311 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS && 312 !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)) 313 return -EINVAL; 314 315 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED) 316 ops->flags |= FTRACE_OPS_FL_SAVE_REGS; 317 #endif 318 if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT)) 319 return -EBUSY; 320 321 if (!is_kernel_core_data((unsigned long)ops)) 322 ops->flags |= FTRACE_OPS_FL_DYNAMIC; 323 324 add_ftrace_ops(&ftrace_ops_list, ops); 325 326 /* Always save the function, and reset at unregistering */ 327 ops->saved_func = ops->func; 328 329 if (ftrace_pids_enabled(ops)) 330 ops->func = ftrace_pid_func; 331 332 ftrace_update_trampoline(ops); 333 334 if (ftrace_enabled) 335 update_ftrace_function(); 336 337 return 0; 338 } 339 340 int __unregister_ftrace_function(struct ftrace_ops *ops) 341 { 342 int ret; 343 344 if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED))) 345 return -EBUSY; 346 347 ret = remove_ftrace_ops(&ftrace_ops_list, ops); 348 349 if (ret < 0) 350 return ret; 351 352 if (ftrace_enabled) 353 update_ftrace_function(); 354 355 ops->func = ops->saved_func; 356 357 return 0; 358 } 359 360 static void ftrace_update_pid_func(void) 361 { 362 struct ftrace_ops *op; 363 364 /* Only do something if we are tracing something */ 365 if (ftrace_trace_function == ftrace_stub) 366 return; 367 368 do_for_each_ftrace_op(op, ftrace_ops_list) { 369 if (op->flags & FTRACE_OPS_FL_PID) { 370 op->func = ftrace_pids_enabled(op) ? 371 ftrace_pid_func : op->saved_func; 372 ftrace_update_trampoline(op); 373 } 374 } while_for_each_ftrace_op(op); 375 376 update_ftrace_function(); 377 } 378 379 #ifdef CONFIG_FUNCTION_PROFILER 380 struct ftrace_profile { 381 struct hlist_node node; 382 unsigned long ip; 383 unsigned long counter; 384 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 385 unsigned long long time; 386 unsigned long long time_squared; 387 #endif 388 }; 389 390 struct ftrace_profile_page { 391 struct ftrace_profile_page *next; 392 unsigned long index; 393 struct ftrace_profile records[]; 394 }; 395 396 struct ftrace_profile_stat { 397 atomic_t disabled; 398 struct hlist_head *hash; 399 struct ftrace_profile_page *pages; 400 struct ftrace_profile_page *start; 401 struct tracer_stat stat; 402 }; 403 404 #define PROFILE_RECORDS_SIZE \ 405 (PAGE_SIZE - offsetof(struct ftrace_profile_page, records)) 406 407 #define PROFILES_PER_PAGE \ 408 (PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile)) 409 410 static int ftrace_profile_enabled __read_mostly; 411 412 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */ 413 static DEFINE_MUTEX(ftrace_profile_lock); 414 415 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats); 416 417 #define FTRACE_PROFILE_HASH_BITS 10 418 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS) 419 420 static void * 421 function_stat_next(void *v, int idx) 422 { 423 struct ftrace_profile *rec = v; 424 struct ftrace_profile_page *pg; 425 426 pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK); 427 428 again: 429 if (idx != 0) 430 rec++; 431 432 if ((void *)rec >= (void *)&pg->records[pg->index]) { 433 pg = pg->next; 434 if (!pg) 435 return NULL; 436 rec = &pg->records[0]; 437 if (!rec->counter) 438 goto again; 439 } 440 441 return rec; 442 } 443 444 static void *function_stat_start(struct tracer_stat *trace) 445 { 446 struct ftrace_profile_stat *stat = 447 container_of(trace, struct ftrace_profile_stat, stat); 448 449 if (!stat || !stat->start) 450 return NULL; 451 452 return function_stat_next(&stat->start->records[0], 0); 453 } 454 455 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 456 /* function graph compares on total time */ 457 static int function_stat_cmp(const void *p1, const void *p2) 458 { 459 const struct ftrace_profile *a = p1; 460 const struct ftrace_profile *b = p2; 461 462 if (a->time < b->time) 463 return -1; 464 if (a->time > b->time) 465 return 1; 466 else 467 return 0; 468 } 469 #else 470 /* not function graph compares against hits */ 471 static int function_stat_cmp(const void *p1, const void *p2) 472 { 473 const struct ftrace_profile *a = p1; 474 const struct ftrace_profile *b = p2; 475 476 if (a->counter < b->counter) 477 return -1; 478 if (a->counter > b->counter) 479 return 1; 480 else 481 return 0; 482 } 483 #endif 484 485 static int function_stat_headers(struct seq_file *m) 486 { 487 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 488 seq_puts(m, " Function " 489 "Hit Time Avg s^2\n" 490 " -------- " 491 "--- ---- --- ---\n"); 492 #else 493 seq_puts(m, " Function Hit\n" 494 " -------- ---\n"); 495 #endif 496 return 0; 497 } 498 499 static int function_stat_show(struct seq_file *m, void *v) 500 { 501 struct ftrace_profile *rec = v; 502 char str[KSYM_SYMBOL_LEN]; 503 int ret = 0; 504 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 505 static struct trace_seq s; 506 unsigned long long avg; 507 unsigned long long stddev; 508 #endif 509 mutex_lock(&ftrace_profile_lock); 510 511 /* we raced with function_profile_reset() */ 512 if (unlikely(rec->counter == 0)) { 513 ret = -EBUSY; 514 goto out; 515 } 516 517 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 518 avg = div64_ul(rec->time, rec->counter); 519 if (tracing_thresh && (avg < tracing_thresh)) 520 goto out; 521 #endif 522 523 kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); 524 seq_printf(m, " %-30.30s %10lu", str, rec->counter); 525 526 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 527 seq_puts(m, " "); 528 529 /* Sample standard deviation (s^2) */ 530 if (rec->counter <= 1) 531 stddev = 0; 532 else { 533 /* 534 * Apply Welford's method: 535 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2) 536 */ 537 stddev = rec->counter * rec->time_squared - 538 rec->time * rec->time; 539 540 /* 541 * Divide only 1000 for ns^2 -> us^2 conversion. 542 * trace_print_graph_duration will divide 1000 again. 543 */ 544 stddev = div64_ul(stddev, 545 rec->counter * (rec->counter - 1) * 1000); 546 } 547 548 trace_seq_init(&s); 549 trace_print_graph_duration(rec->time, &s); 550 trace_seq_puts(&s, " "); 551 trace_print_graph_duration(avg, &s); 552 trace_seq_puts(&s, " "); 553 trace_print_graph_duration(stddev, &s); 554 trace_print_seq(m, &s); 555 #endif 556 seq_putc(m, '\n'); 557 out: 558 mutex_unlock(&ftrace_profile_lock); 559 560 return ret; 561 } 562 563 static void ftrace_profile_reset(struct ftrace_profile_stat *stat) 564 { 565 struct ftrace_profile_page *pg; 566 567 pg = stat->pages = stat->start; 568 569 while (pg) { 570 memset(pg->records, 0, PROFILE_RECORDS_SIZE); 571 pg->index = 0; 572 pg = pg->next; 573 } 574 575 memset(stat->hash, 0, 576 FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head)); 577 } 578 579 static int ftrace_profile_pages_init(struct ftrace_profile_stat *stat) 580 { 581 struct ftrace_profile_page *pg; 582 int functions; 583 int pages; 584 int i; 585 586 /* If we already allocated, do nothing */ 587 if (stat->pages) 588 return 0; 589 590 stat->pages = (void *)get_zeroed_page(GFP_KERNEL); 591 if (!stat->pages) 592 return -ENOMEM; 593 594 #ifdef CONFIG_DYNAMIC_FTRACE 595 functions = ftrace_update_tot_cnt; 596 #else 597 /* 598 * We do not know the number of functions that exist because 599 * dynamic tracing is what counts them. With past experience 600 * we have around 20K functions. That should be more than enough. 601 * It is highly unlikely we will execute every function in 602 * the kernel. 603 */ 604 functions = 20000; 605 #endif 606 607 pg = stat->start = stat->pages; 608 609 pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE); 610 611 for (i = 1; i < pages; i++) { 612 pg->next = (void *)get_zeroed_page(GFP_KERNEL); 613 if (!pg->next) 614 goto out_free; 615 pg = pg->next; 616 } 617 618 return 0; 619 620 out_free: 621 pg = stat->start; 622 while (pg) { 623 unsigned long tmp = (unsigned long)pg; 624 625 pg = pg->next; 626 free_page(tmp); 627 } 628 629 stat->pages = NULL; 630 stat->start = NULL; 631 632 return -ENOMEM; 633 } 634 635 static int ftrace_profile_init_cpu(int cpu) 636 { 637 struct ftrace_profile_stat *stat; 638 int size; 639 640 stat = &per_cpu(ftrace_profile_stats, cpu); 641 642 if (stat->hash) { 643 /* If the profile is already created, simply reset it */ 644 ftrace_profile_reset(stat); 645 return 0; 646 } 647 648 /* 649 * We are profiling all functions, but usually only a few thousand 650 * functions are hit. We'll make a hash of 1024 items. 651 */ 652 size = FTRACE_PROFILE_HASH_SIZE; 653 654 stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL); 655 656 if (!stat->hash) 657 return -ENOMEM; 658 659 /* Preallocate the function profiling pages */ 660 if (ftrace_profile_pages_init(stat) < 0) { 661 kfree(stat->hash); 662 stat->hash = NULL; 663 return -ENOMEM; 664 } 665 666 return 0; 667 } 668 669 static int ftrace_profile_init(void) 670 { 671 int cpu; 672 int ret = 0; 673 674 for_each_possible_cpu(cpu) { 675 ret = ftrace_profile_init_cpu(cpu); 676 if (ret) 677 break; 678 } 679 680 return ret; 681 } 682 683 /* interrupts must be disabled */ 684 static struct ftrace_profile * 685 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip) 686 { 687 struct ftrace_profile *rec; 688 struct hlist_head *hhd; 689 unsigned long key; 690 691 key = hash_long(ip, FTRACE_PROFILE_HASH_BITS); 692 hhd = &stat->hash[key]; 693 694 if (hlist_empty(hhd)) 695 return NULL; 696 697 hlist_for_each_entry_rcu_notrace(rec, hhd, node) { 698 if (rec->ip == ip) 699 return rec; 700 } 701 702 return NULL; 703 } 704 705 static void ftrace_add_profile(struct ftrace_profile_stat *stat, 706 struct ftrace_profile *rec) 707 { 708 unsigned long key; 709 710 key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS); 711 hlist_add_head_rcu(&rec->node, &stat->hash[key]); 712 } 713 714 /* 715 * The memory is already allocated, this simply finds a new record to use. 716 */ 717 static struct ftrace_profile * 718 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip) 719 { 720 struct ftrace_profile *rec = NULL; 721 722 /* prevent recursion (from NMIs) */ 723 if (atomic_inc_return(&stat->disabled) != 1) 724 goto out; 725 726 /* 727 * Try to find the function again since an NMI 728 * could have added it 729 */ 730 rec = ftrace_find_profiled_func(stat, ip); 731 if (rec) 732 goto out; 733 734 if (stat->pages->index == PROFILES_PER_PAGE) { 735 if (!stat->pages->next) 736 goto out; 737 stat->pages = stat->pages->next; 738 } 739 740 rec = &stat->pages->records[stat->pages->index++]; 741 rec->ip = ip; 742 ftrace_add_profile(stat, rec); 743 744 out: 745 atomic_dec(&stat->disabled); 746 747 return rec; 748 } 749 750 static void 751 function_profile_call(unsigned long ip, unsigned long parent_ip, 752 struct ftrace_ops *ops, struct ftrace_regs *fregs) 753 { 754 struct ftrace_profile_stat *stat; 755 struct ftrace_profile *rec; 756 unsigned long flags; 757 758 if (!ftrace_profile_enabled) 759 return; 760 761 local_irq_save(flags); 762 763 stat = this_cpu_ptr(&ftrace_profile_stats); 764 if (!stat->hash || !ftrace_profile_enabled) 765 goto out; 766 767 rec = ftrace_find_profiled_func(stat, ip); 768 if (!rec) { 769 rec = ftrace_profile_alloc(stat, ip); 770 if (!rec) 771 goto out; 772 } 773 774 rec->counter++; 775 out: 776 local_irq_restore(flags); 777 } 778 779 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 780 static bool fgraph_graph_time = true; 781 782 void ftrace_graph_graph_time_control(bool enable) 783 { 784 fgraph_graph_time = enable; 785 } 786 787 static int profile_graph_entry(struct ftrace_graph_ent *trace) 788 { 789 struct ftrace_ret_stack *ret_stack; 790 791 function_profile_call(trace->func, 0, NULL, NULL); 792 793 /* If function graph is shutting down, ret_stack can be NULL */ 794 if (!current->ret_stack) 795 return 0; 796 797 ret_stack = ftrace_graph_get_ret_stack(current, 0); 798 if (ret_stack) 799 ret_stack->subtime = 0; 800 801 return 1; 802 } 803 804 static void profile_graph_return(struct ftrace_graph_ret *trace) 805 { 806 struct ftrace_ret_stack *ret_stack; 807 struct ftrace_profile_stat *stat; 808 unsigned long long calltime; 809 struct ftrace_profile *rec; 810 unsigned long flags; 811 812 local_irq_save(flags); 813 stat = this_cpu_ptr(&ftrace_profile_stats); 814 if (!stat->hash || !ftrace_profile_enabled) 815 goto out; 816 817 /* If the calltime was zero'd ignore it */ 818 if (!trace->calltime) 819 goto out; 820 821 calltime = trace->rettime - trace->calltime; 822 823 if (!fgraph_graph_time) { 824 825 /* Append this call time to the parent time to subtract */ 826 ret_stack = ftrace_graph_get_ret_stack(current, 1); 827 if (ret_stack) 828 ret_stack->subtime += calltime; 829 830 ret_stack = ftrace_graph_get_ret_stack(current, 0); 831 if (ret_stack && ret_stack->subtime < calltime) 832 calltime -= ret_stack->subtime; 833 else 834 calltime = 0; 835 } 836 837 rec = ftrace_find_profiled_func(stat, trace->func); 838 if (rec) { 839 rec->time += calltime; 840 rec->time_squared += calltime * calltime; 841 } 842 843 out: 844 local_irq_restore(flags); 845 } 846 847 static struct fgraph_ops fprofiler_ops = { 848 .entryfunc = &profile_graph_entry, 849 .retfunc = &profile_graph_return, 850 }; 851 852 static int register_ftrace_profiler(void) 853 { 854 return register_ftrace_graph(&fprofiler_ops); 855 } 856 857 static void unregister_ftrace_profiler(void) 858 { 859 unregister_ftrace_graph(&fprofiler_ops); 860 } 861 #else 862 static struct ftrace_ops ftrace_profile_ops __read_mostly = { 863 .func = function_profile_call, 864 .flags = FTRACE_OPS_FL_INITIALIZED, 865 INIT_OPS_HASH(ftrace_profile_ops) 866 }; 867 868 static int register_ftrace_profiler(void) 869 { 870 return register_ftrace_function(&ftrace_profile_ops); 871 } 872 873 static void unregister_ftrace_profiler(void) 874 { 875 unregister_ftrace_function(&ftrace_profile_ops); 876 } 877 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 878 879 static ssize_t 880 ftrace_profile_write(struct file *filp, const char __user *ubuf, 881 size_t cnt, loff_t *ppos) 882 { 883 unsigned long val; 884 int ret; 885 886 ret = kstrtoul_from_user(ubuf, cnt, 10, &val); 887 if (ret) 888 return ret; 889 890 val = !!val; 891 892 mutex_lock(&ftrace_profile_lock); 893 if (ftrace_profile_enabled ^ val) { 894 if (val) { 895 ret = ftrace_profile_init(); 896 if (ret < 0) { 897 cnt = ret; 898 goto out; 899 } 900 901 ret = register_ftrace_profiler(); 902 if (ret < 0) { 903 cnt = ret; 904 goto out; 905 } 906 ftrace_profile_enabled = 1; 907 } else { 908 ftrace_profile_enabled = 0; 909 /* 910 * unregister_ftrace_profiler calls stop_machine 911 * so this acts like an synchronize_rcu. 912 */ 913 unregister_ftrace_profiler(); 914 } 915 } 916 out: 917 mutex_unlock(&ftrace_profile_lock); 918 919 *ppos += cnt; 920 921 return cnt; 922 } 923 924 static ssize_t 925 ftrace_profile_read(struct file *filp, char __user *ubuf, 926 size_t cnt, loff_t *ppos) 927 { 928 char buf[64]; /* big enough to hold a number */ 929 int r; 930 931 r = sprintf(buf, "%u\n", ftrace_profile_enabled); 932 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 933 } 934 935 static const struct file_operations ftrace_profile_fops = { 936 .open = tracing_open_generic, 937 .read = ftrace_profile_read, 938 .write = ftrace_profile_write, 939 .llseek = default_llseek, 940 }; 941 942 /* used to initialize the real stat files */ 943 static struct tracer_stat function_stats __initdata = { 944 .name = "functions", 945 .stat_start = function_stat_start, 946 .stat_next = function_stat_next, 947 .stat_cmp = function_stat_cmp, 948 .stat_headers = function_stat_headers, 949 .stat_show = function_stat_show 950 }; 951 952 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 953 { 954 struct ftrace_profile_stat *stat; 955 struct dentry *entry; 956 char *name; 957 int ret; 958 int cpu; 959 960 for_each_possible_cpu(cpu) { 961 stat = &per_cpu(ftrace_profile_stats, cpu); 962 963 name = kasprintf(GFP_KERNEL, "function%d", cpu); 964 if (!name) { 965 /* 966 * The files created are permanent, if something happens 967 * we still do not free memory. 968 */ 969 WARN(1, 970 "Could not allocate stat file for cpu %d\n", 971 cpu); 972 return; 973 } 974 stat->stat = function_stats; 975 stat->stat.name = name; 976 ret = register_stat_tracer(&stat->stat); 977 if (ret) { 978 WARN(1, 979 "Could not register function stat for cpu %d\n", 980 cpu); 981 kfree(name); 982 return; 983 } 984 } 985 986 entry = tracefs_create_file("function_profile_enabled", 987 TRACE_MODE_WRITE, d_tracer, NULL, 988 &ftrace_profile_fops); 989 if (!entry) 990 pr_warn("Could not create tracefs 'function_profile_enabled' entry\n"); 991 } 992 993 #else /* CONFIG_FUNCTION_PROFILER */ 994 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 995 { 996 } 997 #endif /* CONFIG_FUNCTION_PROFILER */ 998 999 #ifdef CONFIG_DYNAMIC_FTRACE 1000 1001 static struct ftrace_ops *removed_ops; 1002 1003 /* 1004 * Set when doing a global update, like enabling all recs or disabling them. 1005 * It is not set when just updating a single ftrace_ops. 1006 */ 1007 static bool update_all_ops; 1008 1009 #ifndef CONFIG_FTRACE_MCOUNT_RECORD 1010 # error Dynamic ftrace depends on MCOUNT_RECORD 1011 #endif 1012 1013 struct ftrace_func_probe { 1014 struct ftrace_probe_ops *probe_ops; 1015 struct ftrace_ops ops; 1016 struct trace_array *tr; 1017 struct list_head list; 1018 void *data; 1019 int ref; 1020 }; 1021 1022 /* 1023 * We make these constant because no one should touch them, 1024 * but they are used as the default "empty hash", to avoid allocating 1025 * it all the time. These are in a read only section such that if 1026 * anyone does try to modify it, it will cause an exception. 1027 */ 1028 static const struct hlist_head empty_buckets[1]; 1029 static const struct ftrace_hash empty_hash = { 1030 .buckets = (struct hlist_head *)empty_buckets, 1031 }; 1032 #define EMPTY_HASH ((struct ftrace_hash *)&empty_hash) 1033 1034 struct ftrace_ops global_ops = { 1035 .func = ftrace_stub, 1036 .local_hash.notrace_hash = EMPTY_HASH, 1037 .local_hash.filter_hash = EMPTY_HASH, 1038 INIT_OPS_HASH(global_ops) 1039 .flags = FTRACE_OPS_FL_INITIALIZED | 1040 FTRACE_OPS_FL_PID, 1041 }; 1042 1043 /* 1044 * Used by the stack unwinder to know about dynamic ftrace trampolines. 1045 */ 1046 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr) 1047 { 1048 struct ftrace_ops *op = NULL; 1049 1050 /* 1051 * Some of the ops may be dynamically allocated, 1052 * they are freed after a synchronize_rcu(). 1053 */ 1054 preempt_disable_notrace(); 1055 1056 do_for_each_ftrace_op(op, ftrace_ops_list) { 1057 /* 1058 * This is to check for dynamically allocated trampolines. 1059 * Trampolines that are in kernel text will have 1060 * core_kernel_text() return true. 1061 */ 1062 if (op->trampoline && op->trampoline_size) 1063 if (addr >= op->trampoline && 1064 addr < op->trampoline + op->trampoline_size) { 1065 preempt_enable_notrace(); 1066 return op; 1067 } 1068 } while_for_each_ftrace_op(op); 1069 preempt_enable_notrace(); 1070 1071 return NULL; 1072 } 1073 1074 /* 1075 * This is used by __kernel_text_address() to return true if the 1076 * address is on a dynamically allocated trampoline that would 1077 * not return true for either core_kernel_text() or 1078 * is_module_text_address(). 1079 */ 1080 bool is_ftrace_trampoline(unsigned long addr) 1081 { 1082 return ftrace_ops_trampoline(addr) != NULL; 1083 } 1084 1085 struct ftrace_page { 1086 struct ftrace_page *next; 1087 struct dyn_ftrace *records; 1088 int index; 1089 int order; 1090 }; 1091 1092 #define ENTRY_SIZE sizeof(struct dyn_ftrace) 1093 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE) 1094 1095 static struct ftrace_page *ftrace_pages_start; 1096 static struct ftrace_page *ftrace_pages; 1097 1098 static __always_inline unsigned long 1099 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip) 1100 { 1101 if (hash->size_bits > 0) 1102 return hash_long(ip, hash->size_bits); 1103 1104 return 0; 1105 } 1106 1107 /* Only use this function if ftrace_hash_empty() has already been tested */ 1108 static __always_inline struct ftrace_func_entry * 1109 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1110 { 1111 unsigned long key; 1112 struct ftrace_func_entry *entry; 1113 struct hlist_head *hhd; 1114 1115 key = ftrace_hash_key(hash, ip); 1116 hhd = &hash->buckets[key]; 1117 1118 hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) { 1119 if (entry->ip == ip) 1120 return entry; 1121 } 1122 return NULL; 1123 } 1124 1125 /** 1126 * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash 1127 * @hash: The hash to look at 1128 * @ip: The instruction pointer to test 1129 * 1130 * Search a given @hash to see if a given instruction pointer (@ip) 1131 * exists in it. 1132 * 1133 * Returns the entry that holds the @ip if found. NULL otherwise. 1134 */ 1135 struct ftrace_func_entry * 1136 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1137 { 1138 if (ftrace_hash_empty(hash)) 1139 return NULL; 1140 1141 return __ftrace_lookup_ip(hash, ip); 1142 } 1143 1144 static void __add_hash_entry(struct ftrace_hash *hash, 1145 struct ftrace_func_entry *entry) 1146 { 1147 struct hlist_head *hhd; 1148 unsigned long key; 1149 1150 key = ftrace_hash_key(hash, entry->ip); 1151 hhd = &hash->buckets[key]; 1152 hlist_add_head(&entry->hlist, hhd); 1153 hash->count++; 1154 } 1155 1156 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip) 1157 { 1158 struct ftrace_func_entry *entry; 1159 1160 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 1161 if (!entry) 1162 return -ENOMEM; 1163 1164 entry->ip = ip; 1165 __add_hash_entry(hash, entry); 1166 1167 return 0; 1168 } 1169 1170 static void 1171 free_hash_entry(struct ftrace_hash *hash, 1172 struct ftrace_func_entry *entry) 1173 { 1174 hlist_del(&entry->hlist); 1175 kfree(entry); 1176 hash->count--; 1177 } 1178 1179 static void 1180 remove_hash_entry(struct ftrace_hash *hash, 1181 struct ftrace_func_entry *entry) 1182 { 1183 hlist_del_rcu(&entry->hlist); 1184 hash->count--; 1185 } 1186 1187 static void ftrace_hash_clear(struct ftrace_hash *hash) 1188 { 1189 struct hlist_head *hhd; 1190 struct hlist_node *tn; 1191 struct ftrace_func_entry *entry; 1192 int size = 1 << hash->size_bits; 1193 int i; 1194 1195 if (!hash->count) 1196 return; 1197 1198 for (i = 0; i < size; i++) { 1199 hhd = &hash->buckets[i]; 1200 hlist_for_each_entry_safe(entry, tn, hhd, hlist) 1201 free_hash_entry(hash, entry); 1202 } 1203 FTRACE_WARN_ON(hash->count); 1204 } 1205 1206 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod) 1207 { 1208 list_del(&ftrace_mod->list); 1209 kfree(ftrace_mod->module); 1210 kfree(ftrace_mod->func); 1211 kfree(ftrace_mod); 1212 } 1213 1214 static void clear_ftrace_mod_list(struct list_head *head) 1215 { 1216 struct ftrace_mod_load *p, *n; 1217 1218 /* stack tracer isn't supported yet */ 1219 if (!head) 1220 return; 1221 1222 mutex_lock(&ftrace_lock); 1223 list_for_each_entry_safe(p, n, head, list) 1224 free_ftrace_mod(p); 1225 mutex_unlock(&ftrace_lock); 1226 } 1227 1228 static void free_ftrace_hash(struct ftrace_hash *hash) 1229 { 1230 if (!hash || hash == EMPTY_HASH) 1231 return; 1232 ftrace_hash_clear(hash); 1233 kfree(hash->buckets); 1234 kfree(hash); 1235 } 1236 1237 static void __free_ftrace_hash_rcu(struct rcu_head *rcu) 1238 { 1239 struct ftrace_hash *hash; 1240 1241 hash = container_of(rcu, struct ftrace_hash, rcu); 1242 free_ftrace_hash(hash); 1243 } 1244 1245 static void free_ftrace_hash_rcu(struct ftrace_hash *hash) 1246 { 1247 if (!hash || hash == EMPTY_HASH) 1248 return; 1249 call_rcu(&hash->rcu, __free_ftrace_hash_rcu); 1250 } 1251 1252 void ftrace_free_filter(struct ftrace_ops *ops) 1253 { 1254 ftrace_ops_init(ops); 1255 free_ftrace_hash(ops->func_hash->filter_hash); 1256 free_ftrace_hash(ops->func_hash->notrace_hash); 1257 } 1258 1259 static struct ftrace_hash *alloc_ftrace_hash(int size_bits) 1260 { 1261 struct ftrace_hash *hash; 1262 int size; 1263 1264 hash = kzalloc(sizeof(*hash), GFP_KERNEL); 1265 if (!hash) 1266 return NULL; 1267 1268 size = 1 << size_bits; 1269 hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL); 1270 1271 if (!hash->buckets) { 1272 kfree(hash); 1273 return NULL; 1274 } 1275 1276 hash->size_bits = size_bits; 1277 1278 return hash; 1279 } 1280 1281 1282 static int ftrace_add_mod(struct trace_array *tr, 1283 const char *func, const char *module, 1284 int enable) 1285 { 1286 struct ftrace_mod_load *ftrace_mod; 1287 struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace; 1288 1289 ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL); 1290 if (!ftrace_mod) 1291 return -ENOMEM; 1292 1293 ftrace_mod->func = kstrdup(func, GFP_KERNEL); 1294 ftrace_mod->module = kstrdup(module, GFP_KERNEL); 1295 ftrace_mod->enable = enable; 1296 1297 if (!ftrace_mod->func || !ftrace_mod->module) 1298 goto out_free; 1299 1300 list_add(&ftrace_mod->list, mod_head); 1301 1302 return 0; 1303 1304 out_free: 1305 free_ftrace_mod(ftrace_mod); 1306 1307 return -ENOMEM; 1308 } 1309 1310 static struct ftrace_hash * 1311 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash) 1312 { 1313 struct ftrace_func_entry *entry; 1314 struct ftrace_hash *new_hash; 1315 int size; 1316 int ret; 1317 int i; 1318 1319 new_hash = alloc_ftrace_hash(size_bits); 1320 if (!new_hash) 1321 return NULL; 1322 1323 if (hash) 1324 new_hash->flags = hash->flags; 1325 1326 /* Empty hash? */ 1327 if (ftrace_hash_empty(hash)) 1328 return new_hash; 1329 1330 size = 1 << hash->size_bits; 1331 for (i = 0; i < size; i++) { 1332 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 1333 ret = add_hash_entry(new_hash, entry->ip); 1334 if (ret < 0) 1335 goto free_hash; 1336 } 1337 } 1338 1339 FTRACE_WARN_ON(new_hash->count != hash->count); 1340 1341 return new_hash; 1342 1343 free_hash: 1344 free_ftrace_hash(new_hash); 1345 return NULL; 1346 } 1347 1348 static void 1349 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash); 1350 static void 1351 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash); 1352 1353 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1354 struct ftrace_hash *new_hash); 1355 1356 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size) 1357 { 1358 struct ftrace_func_entry *entry; 1359 struct ftrace_hash *new_hash; 1360 struct hlist_head *hhd; 1361 struct hlist_node *tn; 1362 int bits = 0; 1363 int i; 1364 1365 /* 1366 * Use around half the size (max bit of it), but 1367 * a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits). 1368 */ 1369 bits = fls(size / 2); 1370 1371 /* Don't allocate too much */ 1372 if (bits > FTRACE_HASH_MAX_BITS) 1373 bits = FTRACE_HASH_MAX_BITS; 1374 1375 new_hash = alloc_ftrace_hash(bits); 1376 if (!new_hash) 1377 return NULL; 1378 1379 new_hash->flags = src->flags; 1380 1381 size = 1 << src->size_bits; 1382 for (i = 0; i < size; i++) { 1383 hhd = &src->buckets[i]; 1384 hlist_for_each_entry_safe(entry, tn, hhd, hlist) { 1385 remove_hash_entry(src, entry); 1386 __add_hash_entry(new_hash, entry); 1387 } 1388 } 1389 return new_hash; 1390 } 1391 1392 static struct ftrace_hash * 1393 __ftrace_hash_move(struct ftrace_hash *src) 1394 { 1395 int size = src->count; 1396 1397 /* 1398 * If the new source is empty, just return the empty_hash. 1399 */ 1400 if (ftrace_hash_empty(src)) 1401 return EMPTY_HASH; 1402 1403 return dup_hash(src, size); 1404 } 1405 1406 static int 1407 ftrace_hash_move(struct ftrace_ops *ops, int enable, 1408 struct ftrace_hash **dst, struct ftrace_hash *src) 1409 { 1410 struct ftrace_hash *new_hash; 1411 int ret; 1412 1413 /* Reject setting notrace hash on IPMODIFY ftrace_ops */ 1414 if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable) 1415 return -EINVAL; 1416 1417 new_hash = __ftrace_hash_move(src); 1418 if (!new_hash) 1419 return -ENOMEM; 1420 1421 /* Make sure this can be applied if it is IPMODIFY ftrace_ops */ 1422 if (enable) { 1423 /* IPMODIFY should be updated only when filter_hash updating */ 1424 ret = ftrace_hash_ipmodify_update(ops, new_hash); 1425 if (ret < 0) { 1426 free_ftrace_hash(new_hash); 1427 return ret; 1428 } 1429 } 1430 1431 /* 1432 * Remove the current set, update the hash and add 1433 * them back. 1434 */ 1435 ftrace_hash_rec_disable_modify(ops, enable); 1436 1437 rcu_assign_pointer(*dst, new_hash); 1438 1439 ftrace_hash_rec_enable_modify(ops, enable); 1440 1441 return 0; 1442 } 1443 1444 static bool hash_contains_ip(unsigned long ip, 1445 struct ftrace_ops_hash *hash) 1446 { 1447 /* 1448 * The function record is a match if it exists in the filter 1449 * hash and not in the notrace hash. Note, an empty hash is 1450 * considered a match for the filter hash, but an empty 1451 * notrace hash is considered not in the notrace hash. 1452 */ 1453 return (ftrace_hash_empty(hash->filter_hash) || 1454 __ftrace_lookup_ip(hash->filter_hash, ip)) && 1455 (ftrace_hash_empty(hash->notrace_hash) || 1456 !__ftrace_lookup_ip(hash->notrace_hash, ip)); 1457 } 1458 1459 /* 1460 * Test the hashes for this ops to see if we want to call 1461 * the ops->func or not. 1462 * 1463 * It's a match if the ip is in the ops->filter_hash or 1464 * the filter_hash does not exist or is empty, 1465 * AND 1466 * the ip is not in the ops->notrace_hash. 1467 * 1468 * This needs to be called with preemption disabled as 1469 * the hashes are freed with call_rcu(). 1470 */ 1471 int 1472 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs) 1473 { 1474 struct ftrace_ops_hash hash; 1475 int ret; 1476 1477 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS 1478 /* 1479 * There's a small race when adding ops that the ftrace handler 1480 * that wants regs, may be called without them. We can not 1481 * allow that handler to be called if regs is NULL. 1482 */ 1483 if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS)) 1484 return 0; 1485 #endif 1486 1487 rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash); 1488 rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash); 1489 1490 if (hash_contains_ip(ip, &hash)) 1491 ret = 1; 1492 else 1493 ret = 0; 1494 1495 return ret; 1496 } 1497 1498 /* 1499 * This is a double for. Do not use 'break' to break out of the loop, 1500 * you must use a goto. 1501 */ 1502 #define do_for_each_ftrace_rec(pg, rec) \ 1503 for (pg = ftrace_pages_start; pg; pg = pg->next) { \ 1504 int _____i; \ 1505 for (_____i = 0; _____i < pg->index; _____i++) { \ 1506 rec = &pg->records[_____i]; 1507 1508 #define while_for_each_ftrace_rec() \ 1509 } \ 1510 } 1511 1512 1513 static int ftrace_cmp_recs(const void *a, const void *b) 1514 { 1515 const struct dyn_ftrace *key = a; 1516 const struct dyn_ftrace *rec = b; 1517 1518 if (key->flags < rec->ip) 1519 return -1; 1520 if (key->ip >= rec->ip + MCOUNT_INSN_SIZE) 1521 return 1; 1522 return 0; 1523 } 1524 1525 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end) 1526 { 1527 struct ftrace_page *pg; 1528 struct dyn_ftrace *rec = NULL; 1529 struct dyn_ftrace key; 1530 1531 key.ip = start; 1532 key.flags = end; /* overload flags, as it is unsigned long */ 1533 1534 for (pg = ftrace_pages_start; pg; pg = pg->next) { 1535 if (end < pg->records[0].ip || 1536 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 1537 continue; 1538 rec = bsearch(&key, pg->records, pg->index, 1539 sizeof(struct dyn_ftrace), 1540 ftrace_cmp_recs); 1541 if (rec) 1542 break; 1543 } 1544 return rec; 1545 } 1546 1547 /** 1548 * ftrace_location_range - return the first address of a traced location 1549 * if it touches the given ip range 1550 * @start: start of range to search. 1551 * @end: end of range to search (inclusive). @end points to the last byte 1552 * to check. 1553 * 1554 * Returns rec->ip if the related ftrace location is a least partly within 1555 * the given address range. That is, the first address of the instruction 1556 * that is either a NOP or call to the function tracer. It checks the ftrace 1557 * internal tables to determine if the address belongs or not. 1558 */ 1559 unsigned long ftrace_location_range(unsigned long start, unsigned long end) 1560 { 1561 struct dyn_ftrace *rec; 1562 1563 rec = lookup_rec(start, end); 1564 if (rec) 1565 return rec->ip; 1566 1567 return 0; 1568 } 1569 1570 /** 1571 * ftrace_location - return the ftrace location 1572 * @ip: the instruction pointer to check 1573 * 1574 * If @ip matches the ftrace location, return @ip. 1575 * If @ip matches sym+0, return sym's ftrace location. 1576 * Otherwise, return 0. 1577 */ 1578 unsigned long ftrace_location(unsigned long ip) 1579 { 1580 struct dyn_ftrace *rec; 1581 unsigned long offset; 1582 unsigned long size; 1583 1584 rec = lookup_rec(ip, ip); 1585 if (!rec) { 1586 if (!kallsyms_lookup_size_offset(ip, &size, &offset)) 1587 goto out; 1588 1589 /* map sym+0 to __fentry__ */ 1590 if (!offset) 1591 rec = lookup_rec(ip, ip + size - 1); 1592 } 1593 1594 if (rec) 1595 return rec->ip; 1596 1597 out: 1598 return 0; 1599 } 1600 1601 /** 1602 * ftrace_text_reserved - return true if range contains an ftrace location 1603 * @start: start of range to search 1604 * @end: end of range to search (inclusive). @end points to the last byte to check. 1605 * 1606 * Returns 1 if @start and @end contains a ftrace location. 1607 * That is, the instruction that is either a NOP or call to 1608 * the function tracer. It checks the ftrace internal tables to 1609 * determine if the address belongs or not. 1610 */ 1611 int ftrace_text_reserved(const void *start, const void *end) 1612 { 1613 unsigned long ret; 1614 1615 ret = ftrace_location_range((unsigned long)start, 1616 (unsigned long)end); 1617 1618 return (int)!!ret; 1619 } 1620 1621 /* Test if ops registered to this rec needs regs */ 1622 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec) 1623 { 1624 struct ftrace_ops *ops; 1625 bool keep_regs = false; 1626 1627 for (ops = ftrace_ops_list; 1628 ops != &ftrace_list_end; ops = ops->next) { 1629 /* pass rec in as regs to have non-NULL val */ 1630 if (ftrace_ops_test(ops, rec->ip, rec)) { 1631 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1632 keep_regs = true; 1633 break; 1634 } 1635 } 1636 } 1637 1638 return keep_regs; 1639 } 1640 1641 static struct ftrace_ops * 1642 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec); 1643 static struct ftrace_ops * 1644 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude); 1645 static struct ftrace_ops * 1646 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops); 1647 1648 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops, 1649 int filter_hash, 1650 bool inc) 1651 { 1652 struct ftrace_hash *hash; 1653 struct ftrace_hash *other_hash; 1654 struct ftrace_page *pg; 1655 struct dyn_ftrace *rec; 1656 bool update = false; 1657 int count = 0; 1658 int all = false; 1659 1660 /* Only update if the ops has been registered */ 1661 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1662 return false; 1663 1664 /* 1665 * In the filter_hash case: 1666 * If the count is zero, we update all records. 1667 * Otherwise we just update the items in the hash. 1668 * 1669 * In the notrace_hash case: 1670 * We enable the update in the hash. 1671 * As disabling notrace means enabling the tracing, 1672 * and enabling notrace means disabling, the inc variable 1673 * gets inversed. 1674 */ 1675 if (filter_hash) { 1676 hash = ops->func_hash->filter_hash; 1677 other_hash = ops->func_hash->notrace_hash; 1678 if (ftrace_hash_empty(hash)) 1679 all = true; 1680 } else { 1681 inc = !inc; 1682 hash = ops->func_hash->notrace_hash; 1683 other_hash = ops->func_hash->filter_hash; 1684 /* 1685 * If the notrace hash has no items, 1686 * then there's nothing to do. 1687 */ 1688 if (ftrace_hash_empty(hash)) 1689 return false; 1690 } 1691 1692 do_for_each_ftrace_rec(pg, rec) { 1693 int in_other_hash = 0; 1694 int in_hash = 0; 1695 int match = 0; 1696 1697 if (rec->flags & FTRACE_FL_DISABLED) 1698 continue; 1699 1700 if (all) { 1701 /* 1702 * Only the filter_hash affects all records. 1703 * Update if the record is not in the notrace hash. 1704 */ 1705 if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip)) 1706 match = 1; 1707 } else { 1708 in_hash = !!ftrace_lookup_ip(hash, rec->ip); 1709 in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip); 1710 1711 /* 1712 * If filter_hash is set, we want to match all functions 1713 * that are in the hash but not in the other hash. 1714 * 1715 * If filter_hash is not set, then we are decrementing. 1716 * That means we match anything that is in the hash 1717 * and also in the other_hash. That is, we need to turn 1718 * off functions in the other hash because they are disabled 1719 * by this hash. 1720 */ 1721 if (filter_hash && in_hash && !in_other_hash) 1722 match = 1; 1723 else if (!filter_hash && in_hash && 1724 (in_other_hash || ftrace_hash_empty(other_hash))) 1725 match = 1; 1726 } 1727 if (!match) 1728 continue; 1729 1730 if (inc) { 1731 rec->flags++; 1732 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX)) 1733 return false; 1734 1735 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1736 rec->flags |= FTRACE_FL_DIRECT; 1737 1738 /* 1739 * If there's only a single callback registered to a 1740 * function, and the ops has a trampoline registered 1741 * for it, then we can call it directly. 1742 */ 1743 if (ftrace_rec_count(rec) == 1 && ops->trampoline) 1744 rec->flags |= FTRACE_FL_TRAMP; 1745 else 1746 /* 1747 * If we are adding another function callback 1748 * to this function, and the previous had a 1749 * custom trampoline in use, then we need to go 1750 * back to the default trampoline. 1751 */ 1752 rec->flags &= ~FTRACE_FL_TRAMP; 1753 1754 /* 1755 * If any ops wants regs saved for this function 1756 * then all ops will get saved regs. 1757 */ 1758 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 1759 rec->flags |= FTRACE_FL_REGS; 1760 } else { 1761 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0)) 1762 return false; 1763 rec->flags--; 1764 1765 /* 1766 * Only the internal direct_ops should have the 1767 * DIRECT flag set. Thus, if it is removing a 1768 * function, then that function should no longer 1769 * be direct. 1770 */ 1771 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1772 rec->flags &= ~FTRACE_FL_DIRECT; 1773 1774 /* 1775 * If the rec had REGS enabled and the ops that is 1776 * being removed had REGS set, then see if there is 1777 * still any ops for this record that wants regs. 1778 * If not, we can stop recording them. 1779 */ 1780 if (ftrace_rec_count(rec) > 0 && 1781 rec->flags & FTRACE_FL_REGS && 1782 ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1783 if (!test_rec_ops_needs_regs(rec)) 1784 rec->flags &= ~FTRACE_FL_REGS; 1785 } 1786 1787 /* 1788 * The TRAMP needs to be set only if rec count 1789 * is decremented to one, and the ops that is 1790 * left has a trampoline. As TRAMP can only be 1791 * enabled if there is only a single ops attached 1792 * to it. 1793 */ 1794 if (ftrace_rec_count(rec) == 1 && 1795 ftrace_find_tramp_ops_any_other(rec, ops)) 1796 rec->flags |= FTRACE_FL_TRAMP; 1797 else 1798 rec->flags &= ~FTRACE_FL_TRAMP; 1799 1800 /* 1801 * flags will be cleared in ftrace_check_record() 1802 * if rec count is zero. 1803 */ 1804 } 1805 count++; 1806 1807 /* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */ 1808 update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE; 1809 1810 /* Shortcut, if we handled all records, we are done. */ 1811 if (!all && count == hash->count) 1812 return update; 1813 } while_for_each_ftrace_rec(); 1814 1815 return update; 1816 } 1817 1818 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops, 1819 int filter_hash) 1820 { 1821 return __ftrace_hash_rec_update(ops, filter_hash, 0); 1822 } 1823 1824 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops, 1825 int filter_hash) 1826 { 1827 return __ftrace_hash_rec_update(ops, filter_hash, 1); 1828 } 1829 1830 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops, 1831 int filter_hash, int inc) 1832 { 1833 struct ftrace_ops *op; 1834 1835 __ftrace_hash_rec_update(ops, filter_hash, inc); 1836 1837 if (ops->func_hash != &global_ops.local_hash) 1838 return; 1839 1840 /* 1841 * If the ops shares the global_ops hash, then we need to update 1842 * all ops that are enabled and use this hash. 1843 */ 1844 do_for_each_ftrace_op(op, ftrace_ops_list) { 1845 /* Already done */ 1846 if (op == ops) 1847 continue; 1848 if (op->func_hash == &global_ops.local_hash) 1849 __ftrace_hash_rec_update(op, filter_hash, inc); 1850 } while_for_each_ftrace_op(op); 1851 } 1852 1853 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, 1854 int filter_hash) 1855 { 1856 ftrace_hash_rec_update_modify(ops, filter_hash, 0); 1857 } 1858 1859 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, 1860 int filter_hash) 1861 { 1862 ftrace_hash_rec_update_modify(ops, filter_hash, 1); 1863 } 1864 1865 /* 1866 * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK 1867 * or no-needed to update, -EBUSY if it detects a conflict of the flag 1868 * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs. 1869 * Note that old_hash and new_hash has below meanings 1870 * - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected) 1871 * - If the hash is EMPTY_HASH, it hits nothing 1872 * - Anything else hits the recs which match the hash entries. 1873 */ 1874 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops, 1875 struct ftrace_hash *old_hash, 1876 struct ftrace_hash *new_hash) 1877 { 1878 struct ftrace_page *pg; 1879 struct dyn_ftrace *rec, *end = NULL; 1880 int in_old, in_new; 1881 1882 /* Only update if the ops has been registered */ 1883 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1884 return 0; 1885 1886 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 1887 return 0; 1888 1889 /* 1890 * Since the IPMODIFY is a very address sensitive action, we do not 1891 * allow ftrace_ops to set all functions to new hash. 1892 */ 1893 if (!new_hash || !old_hash) 1894 return -EINVAL; 1895 1896 /* Update rec->flags */ 1897 do_for_each_ftrace_rec(pg, rec) { 1898 1899 if (rec->flags & FTRACE_FL_DISABLED) 1900 continue; 1901 1902 /* We need to update only differences of filter_hash */ 1903 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1904 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1905 if (in_old == in_new) 1906 continue; 1907 1908 if (in_new) { 1909 /* New entries must ensure no others are using it */ 1910 if (rec->flags & FTRACE_FL_IPMODIFY) 1911 goto rollback; 1912 rec->flags |= FTRACE_FL_IPMODIFY; 1913 } else /* Removed entry */ 1914 rec->flags &= ~FTRACE_FL_IPMODIFY; 1915 } while_for_each_ftrace_rec(); 1916 1917 return 0; 1918 1919 rollback: 1920 end = rec; 1921 1922 /* Roll back what we did above */ 1923 do_for_each_ftrace_rec(pg, rec) { 1924 1925 if (rec->flags & FTRACE_FL_DISABLED) 1926 continue; 1927 1928 if (rec == end) 1929 goto err_out; 1930 1931 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1932 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1933 if (in_old == in_new) 1934 continue; 1935 1936 if (in_new) 1937 rec->flags &= ~FTRACE_FL_IPMODIFY; 1938 else 1939 rec->flags |= FTRACE_FL_IPMODIFY; 1940 } while_for_each_ftrace_rec(); 1941 1942 err_out: 1943 return -EBUSY; 1944 } 1945 1946 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops) 1947 { 1948 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1949 1950 if (ftrace_hash_empty(hash)) 1951 hash = NULL; 1952 1953 return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash); 1954 } 1955 1956 /* Disabling always succeeds */ 1957 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops) 1958 { 1959 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1960 1961 if (ftrace_hash_empty(hash)) 1962 hash = NULL; 1963 1964 __ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH); 1965 } 1966 1967 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1968 struct ftrace_hash *new_hash) 1969 { 1970 struct ftrace_hash *old_hash = ops->func_hash->filter_hash; 1971 1972 if (ftrace_hash_empty(old_hash)) 1973 old_hash = NULL; 1974 1975 if (ftrace_hash_empty(new_hash)) 1976 new_hash = NULL; 1977 1978 return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash); 1979 } 1980 1981 static void print_ip_ins(const char *fmt, const unsigned char *p) 1982 { 1983 char ins[MCOUNT_INSN_SIZE]; 1984 int i; 1985 1986 if (copy_from_kernel_nofault(ins, p, MCOUNT_INSN_SIZE)) { 1987 printk(KERN_CONT "%s[FAULT] %px\n", fmt, p); 1988 return; 1989 } 1990 1991 printk(KERN_CONT "%s", fmt); 1992 1993 for (i = 0; i < MCOUNT_INSN_SIZE; i++) 1994 printk(KERN_CONT "%s%02x", i ? ":" : "", ins[i]); 1995 } 1996 1997 enum ftrace_bug_type ftrace_bug_type; 1998 const void *ftrace_expected; 1999 2000 static void print_bug_type(void) 2001 { 2002 switch (ftrace_bug_type) { 2003 case FTRACE_BUG_UNKNOWN: 2004 break; 2005 case FTRACE_BUG_INIT: 2006 pr_info("Initializing ftrace call sites\n"); 2007 break; 2008 case FTRACE_BUG_NOP: 2009 pr_info("Setting ftrace call site to NOP\n"); 2010 break; 2011 case FTRACE_BUG_CALL: 2012 pr_info("Setting ftrace call site to call ftrace function\n"); 2013 break; 2014 case FTRACE_BUG_UPDATE: 2015 pr_info("Updating ftrace call site to call a different ftrace function\n"); 2016 break; 2017 } 2018 } 2019 2020 /** 2021 * ftrace_bug - report and shutdown function tracer 2022 * @failed: The failed type (EFAULT, EINVAL, EPERM) 2023 * @rec: The record that failed 2024 * 2025 * The arch code that enables or disables the function tracing 2026 * can call ftrace_bug() when it has detected a problem in 2027 * modifying the code. @failed should be one of either: 2028 * EFAULT - if the problem happens on reading the @ip address 2029 * EINVAL - if what is read at @ip is not what was expected 2030 * EPERM - if the problem happens on writing to the @ip address 2031 */ 2032 void ftrace_bug(int failed, struct dyn_ftrace *rec) 2033 { 2034 unsigned long ip = rec ? rec->ip : 0; 2035 2036 pr_info("------------[ ftrace bug ]------------\n"); 2037 2038 switch (failed) { 2039 case -EFAULT: 2040 pr_info("ftrace faulted on modifying "); 2041 print_ip_sym(KERN_INFO, ip); 2042 break; 2043 case -EINVAL: 2044 pr_info("ftrace failed to modify "); 2045 print_ip_sym(KERN_INFO, ip); 2046 print_ip_ins(" actual: ", (unsigned char *)ip); 2047 pr_cont("\n"); 2048 if (ftrace_expected) { 2049 print_ip_ins(" expected: ", ftrace_expected); 2050 pr_cont("\n"); 2051 } 2052 break; 2053 case -EPERM: 2054 pr_info("ftrace faulted on writing "); 2055 print_ip_sym(KERN_INFO, ip); 2056 break; 2057 default: 2058 pr_info("ftrace faulted on unknown error "); 2059 print_ip_sym(KERN_INFO, ip); 2060 } 2061 print_bug_type(); 2062 if (rec) { 2063 struct ftrace_ops *ops = NULL; 2064 2065 pr_info("ftrace record flags: %lx\n", rec->flags); 2066 pr_cont(" (%ld)%s", ftrace_rec_count(rec), 2067 rec->flags & FTRACE_FL_REGS ? " R" : " "); 2068 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2069 ops = ftrace_find_tramp_ops_any(rec); 2070 if (ops) { 2071 do { 2072 pr_cont("\ttramp: %pS (%pS)", 2073 (void *)ops->trampoline, 2074 (void *)ops->func); 2075 ops = ftrace_find_tramp_ops_next(rec, ops); 2076 } while (ops); 2077 } else 2078 pr_cont("\ttramp: ERROR!"); 2079 2080 } 2081 ip = ftrace_get_addr_curr(rec); 2082 pr_cont("\n expected tramp: %lx\n", ip); 2083 } 2084 2085 FTRACE_WARN_ON_ONCE(1); 2086 } 2087 2088 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update) 2089 { 2090 unsigned long flag = 0UL; 2091 2092 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2093 2094 if (rec->flags & FTRACE_FL_DISABLED) 2095 return FTRACE_UPDATE_IGNORE; 2096 2097 /* 2098 * If we are updating calls: 2099 * 2100 * If the record has a ref count, then we need to enable it 2101 * because someone is using it. 2102 * 2103 * Otherwise we make sure its disabled. 2104 * 2105 * If we are disabling calls, then disable all records that 2106 * are enabled. 2107 */ 2108 if (enable && ftrace_rec_count(rec)) 2109 flag = FTRACE_FL_ENABLED; 2110 2111 /* 2112 * If enabling and the REGS flag does not match the REGS_EN, or 2113 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore 2114 * this record. Set flags to fail the compare against ENABLED. 2115 * Same for direct calls. 2116 */ 2117 if (flag) { 2118 if (!(rec->flags & FTRACE_FL_REGS) != 2119 !(rec->flags & FTRACE_FL_REGS_EN)) 2120 flag |= FTRACE_FL_REGS; 2121 2122 if (!(rec->flags & FTRACE_FL_TRAMP) != 2123 !(rec->flags & FTRACE_FL_TRAMP_EN)) 2124 flag |= FTRACE_FL_TRAMP; 2125 2126 /* 2127 * Direct calls are special, as count matters. 2128 * We must test the record for direct, if the 2129 * DIRECT and DIRECT_EN do not match, but only 2130 * if the count is 1. That's because, if the 2131 * count is something other than one, we do not 2132 * want the direct enabled (it will be done via the 2133 * direct helper). But if DIRECT_EN is set, and 2134 * the count is not one, we need to clear it. 2135 */ 2136 if (ftrace_rec_count(rec) == 1) { 2137 if (!(rec->flags & FTRACE_FL_DIRECT) != 2138 !(rec->flags & FTRACE_FL_DIRECT_EN)) 2139 flag |= FTRACE_FL_DIRECT; 2140 } else if (rec->flags & FTRACE_FL_DIRECT_EN) { 2141 flag |= FTRACE_FL_DIRECT; 2142 } 2143 } 2144 2145 /* If the state of this record hasn't changed, then do nothing */ 2146 if ((rec->flags & FTRACE_FL_ENABLED) == flag) 2147 return FTRACE_UPDATE_IGNORE; 2148 2149 if (flag) { 2150 /* Save off if rec is being enabled (for return value) */ 2151 flag ^= rec->flags & FTRACE_FL_ENABLED; 2152 2153 if (update) { 2154 rec->flags |= FTRACE_FL_ENABLED; 2155 if (flag & FTRACE_FL_REGS) { 2156 if (rec->flags & FTRACE_FL_REGS) 2157 rec->flags |= FTRACE_FL_REGS_EN; 2158 else 2159 rec->flags &= ~FTRACE_FL_REGS_EN; 2160 } 2161 if (flag & FTRACE_FL_TRAMP) { 2162 if (rec->flags & FTRACE_FL_TRAMP) 2163 rec->flags |= FTRACE_FL_TRAMP_EN; 2164 else 2165 rec->flags &= ~FTRACE_FL_TRAMP_EN; 2166 } 2167 2168 if (flag & FTRACE_FL_DIRECT) { 2169 /* 2170 * If there's only one user (direct_ops helper) 2171 * then we can call the direct function 2172 * directly (no ftrace trampoline). 2173 */ 2174 if (ftrace_rec_count(rec) == 1) { 2175 if (rec->flags & FTRACE_FL_DIRECT) 2176 rec->flags |= FTRACE_FL_DIRECT_EN; 2177 else 2178 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2179 } else { 2180 /* 2181 * Can only call directly if there's 2182 * only one callback to the function. 2183 */ 2184 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2185 } 2186 } 2187 } 2188 2189 /* 2190 * If this record is being updated from a nop, then 2191 * return UPDATE_MAKE_CALL. 2192 * Otherwise, 2193 * return UPDATE_MODIFY_CALL to tell the caller to convert 2194 * from the save regs, to a non-save regs function or 2195 * vice versa, or from a trampoline call. 2196 */ 2197 if (flag & FTRACE_FL_ENABLED) { 2198 ftrace_bug_type = FTRACE_BUG_CALL; 2199 return FTRACE_UPDATE_MAKE_CALL; 2200 } 2201 2202 ftrace_bug_type = FTRACE_BUG_UPDATE; 2203 return FTRACE_UPDATE_MODIFY_CALL; 2204 } 2205 2206 if (update) { 2207 /* If there's no more users, clear all flags */ 2208 if (!ftrace_rec_count(rec)) 2209 rec->flags = 0; 2210 else 2211 /* 2212 * Just disable the record, but keep the ops TRAMP 2213 * and REGS states. The _EN flags must be disabled though. 2214 */ 2215 rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN | 2216 FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN); 2217 } 2218 2219 ftrace_bug_type = FTRACE_BUG_NOP; 2220 return FTRACE_UPDATE_MAKE_NOP; 2221 } 2222 2223 /** 2224 * ftrace_update_record - set a record that now is tracing or not 2225 * @rec: the record to update 2226 * @enable: set to true if the record is tracing, false to force disable 2227 * 2228 * The records that represent all functions that can be traced need 2229 * to be updated when tracing has been enabled. 2230 */ 2231 int ftrace_update_record(struct dyn_ftrace *rec, bool enable) 2232 { 2233 return ftrace_check_record(rec, enable, true); 2234 } 2235 2236 /** 2237 * ftrace_test_record - check if the record has been enabled or not 2238 * @rec: the record to test 2239 * @enable: set to true to check if enabled, false if it is disabled 2240 * 2241 * The arch code may need to test if a record is already set to 2242 * tracing to determine how to modify the function code that it 2243 * represents. 2244 */ 2245 int ftrace_test_record(struct dyn_ftrace *rec, bool enable) 2246 { 2247 return ftrace_check_record(rec, enable, false); 2248 } 2249 2250 static struct ftrace_ops * 2251 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec) 2252 { 2253 struct ftrace_ops *op; 2254 unsigned long ip = rec->ip; 2255 2256 do_for_each_ftrace_op(op, ftrace_ops_list) { 2257 2258 if (!op->trampoline) 2259 continue; 2260 2261 if (hash_contains_ip(ip, op->func_hash)) 2262 return op; 2263 } while_for_each_ftrace_op(op); 2264 2265 return NULL; 2266 } 2267 2268 static struct ftrace_ops * 2269 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude) 2270 { 2271 struct ftrace_ops *op; 2272 unsigned long ip = rec->ip; 2273 2274 do_for_each_ftrace_op(op, ftrace_ops_list) { 2275 2276 if (op == op_exclude || !op->trampoline) 2277 continue; 2278 2279 if (hash_contains_ip(ip, op->func_hash)) 2280 return op; 2281 } while_for_each_ftrace_op(op); 2282 2283 return NULL; 2284 } 2285 2286 static struct ftrace_ops * 2287 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, 2288 struct ftrace_ops *op) 2289 { 2290 unsigned long ip = rec->ip; 2291 2292 while_for_each_ftrace_op(op) { 2293 2294 if (!op->trampoline) 2295 continue; 2296 2297 if (hash_contains_ip(ip, op->func_hash)) 2298 return op; 2299 } 2300 2301 return NULL; 2302 } 2303 2304 static struct ftrace_ops * 2305 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec) 2306 { 2307 struct ftrace_ops *op; 2308 unsigned long ip = rec->ip; 2309 2310 /* 2311 * Need to check removed ops first. 2312 * If they are being removed, and this rec has a tramp, 2313 * and this rec is in the ops list, then it would be the 2314 * one with the tramp. 2315 */ 2316 if (removed_ops) { 2317 if (hash_contains_ip(ip, &removed_ops->old_hash)) 2318 return removed_ops; 2319 } 2320 2321 /* 2322 * Need to find the current trampoline for a rec. 2323 * Now, a trampoline is only attached to a rec if there 2324 * was a single 'ops' attached to it. But this can be called 2325 * when we are adding another op to the rec or removing the 2326 * current one. Thus, if the op is being added, we can 2327 * ignore it because it hasn't attached itself to the rec 2328 * yet. 2329 * 2330 * If an ops is being modified (hooking to different functions) 2331 * then we don't care about the new functions that are being 2332 * added, just the old ones (that are probably being removed). 2333 * 2334 * If we are adding an ops to a function that already is using 2335 * a trampoline, it needs to be removed (trampolines are only 2336 * for single ops connected), then an ops that is not being 2337 * modified also needs to be checked. 2338 */ 2339 do_for_each_ftrace_op(op, ftrace_ops_list) { 2340 2341 if (!op->trampoline) 2342 continue; 2343 2344 /* 2345 * If the ops is being added, it hasn't gotten to 2346 * the point to be removed from this tree yet. 2347 */ 2348 if (op->flags & FTRACE_OPS_FL_ADDING) 2349 continue; 2350 2351 2352 /* 2353 * If the ops is being modified and is in the old 2354 * hash, then it is probably being removed from this 2355 * function. 2356 */ 2357 if ((op->flags & FTRACE_OPS_FL_MODIFYING) && 2358 hash_contains_ip(ip, &op->old_hash)) 2359 return op; 2360 /* 2361 * If the ops is not being added or modified, and it's 2362 * in its normal filter hash, then this must be the one 2363 * we want! 2364 */ 2365 if (!(op->flags & FTRACE_OPS_FL_MODIFYING) && 2366 hash_contains_ip(ip, op->func_hash)) 2367 return op; 2368 2369 } while_for_each_ftrace_op(op); 2370 2371 return NULL; 2372 } 2373 2374 static struct ftrace_ops * 2375 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec) 2376 { 2377 struct ftrace_ops *op; 2378 unsigned long ip = rec->ip; 2379 2380 do_for_each_ftrace_op(op, ftrace_ops_list) { 2381 /* pass rec in as regs to have non-NULL val */ 2382 if (hash_contains_ip(ip, op->func_hash)) 2383 return op; 2384 } while_for_each_ftrace_op(op); 2385 2386 return NULL; 2387 } 2388 2389 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 2390 /* Protected by rcu_tasks for reading, and direct_mutex for writing */ 2391 static struct ftrace_hash *direct_functions = EMPTY_HASH; 2392 static DEFINE_MUTEX(direct_mutex); 2393 int ftrace_direct_func_count; 2394 2395 /* 2396 * Search the direct_functions hash to see if the given instruction pointer 2397 * has a direct caller attached to it. 2398 */ 2399 unsigned long ftrace_find_rec_direct(unsigned long ip) 2400 { 2401 struct ftrace_func_entry *entry; 2402 2403 entry = __ftrace_lookup_ip(direct_functions, ip); 2404 if (!entry) 2405 return 0; 2406 2407 return entry->direct; 2408 } 2409 2410 static struct ftrace_func_entry* 2411 ftrace_add_rec_direct(unsigned long ip, unsigned long addr, 2412 struct ftrace_hash **free_hash) 2413 { 2414 struct ftrace_func_entry *entry; 2415 2416 if (ftrace_hash_empty(direct_functions) || 2417 direct_functions->count > 2 * (1 << direct_functions->size_bits)) { 2418 struct ftrace_hash *new_hash; 2419 int size = ftrace_hash_empty(direct_functions) ? 0 : 2420 direct_functions->count + 1; 2421 2422 if (size < 32) 2423 size = 32; 2424 2425 new_hash = dup_hash(direct_functions, size); 2426 if (!new_hash) 2427 return NULL; 2428 2429 *free_hash = direct_functions; 2430 direct_functions = new_hash; 2431 } 2432 2433 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2434 if (!entry) 2435 return NULL; 2436 2437 entry->ip = ip; 2438 entry->direct = addr; 2439 __add_hash_entry(direct_functions, entry); 2440 return entry; 2441 } 2442 2443 static void call_direct_funcs(unsigned long ip, unsigned long pip, 2444 struct ftrace_ops *ops, struct ftrace_regs *fregs) 2445 { 2446 struct pt_regs *regs = ftrace_get_regs(fregs); 2447 unsigned long addr; 2448 2449 addr = ftrace_find_rec_direct(ip); 2450 if (!addr) 2451 return; 2452 2453 arch_ftrace_set_direct_caller(regs, addr); 2454 } 2455 2456 struct ftrace_ops direct_ops = { 2457 .func = call_direct_funcs, 2458 .flags = FTRACE_OPS_FL_IPMODIFY 2459 | FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS 2460 | FTRACE_OPS_FL_PERMANENT, 2461 /* 2462 * By declaring the main trampoline as this trampoline 2463 * it will never have one allocated for it. Allocated 2464 * trampolines should not call direct functions. 2465 * The direct_ops should only be called by the builtin 2466 * ftrace_regs_caller trampoline. 2467 */ 2468 .trampoline = FTRACE_REGS_ADDR, 2469 }; 2470 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 2471 2472 /** 2473 * ftrace_get_addr_new - Get the call address to set to 2474 * @rec: The ftrace record descriptor 2475 * 2476 * If the record has the FTRACE_FL_REGS set, that means that it 2477 * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS 2478 * is not set, then it wants to convert to the normal callback. 2479 * 2480 * Returns the address of the trampoline to set to 2481 */ 2482 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec) 2483 { 2484 struct ftrace_ops *ops; 2485 unsigned long addr; 2486 2487 if ((rec->flags & FTRACE_FL_DIRECT) && 2488 (ftrace_rec_count(rec) == 1)) { 2489 addr = ftrace_find_rec_direct(rec->ip); 2490 if (addr) 2491 return addr; 2492 WARN_ON_ONCE(1); 2493 } 2494 2495 /* Trampolines take precedence over regs */ 2496 if (rec->flags & FTRACE_FL_TRAMP) { 2497 ops = ftrace_find_tramp_ops_new(rec); 2498 if (FTRACE_WARN_ON(!ops || !ops->trampoline)) { 2499 pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n", 2500 (void *)rec->ip, (void *)rec->ip, rec->flags); 2501 /* Ftrace is shutting down, return anything */ 2502 return (unsigned long)FTRACE_ADDR; 2503 } 2504 return ops->trampoline; 2505 } 2506 2507 if (rec->flags & FTRACE_FL_REGS) 2508 return (unsigned long)FTRACE_REGS_ADDR; 2509 else 2510 return (unsigned long)FTRACE_ADDR; 2511 } 2512 2513 /** 2514 * ftrace_get_addr_curr - Get the call address that is already there 2515 * @rec: The ftrace record descriptor 2516 * 2517 * The FTRACE_FL_REGS_EN is set when the record already points to 2518 * a function that saves all the regs. Basically the '_EN' version 2519 * represents the current state of the function. 2520 * 2521 * Returns the address of the trampoline that is currently being called 2522 */ 2523 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec) 2524 { 2525 struct ftrace_ops *ops; 2526 unsigned long addr; 2527 2528 /* Direct calls take precedence over trampolines */ 2529 if (rec->flags & FTRACE_FL_DIRECT_EN) { 2530 addr = ftrace_find_rec_direct(rec->ip); 2531 if (addr) 2532 return addr; 2533 WARN_ON_ONCE(1); 2534 } 2535 2536 /* Trampolines take precedence over regs */ 2537 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2538 ops = ftrace_find_tramp_ops_curr(rec); 2539 if (FTRACE_WARN_ON(!ops)) { 2540 pr_warn("Bad trampoline accounting at: %p (%pS)\n", 2541 (void *)rec->ip, (void *)rec->ip); 2542 /* Ftrace is shutting down, return anything */ 2543 return (unsigned long)FTRACE_ADDR; 2544 } 2545 return ops->trampoline; 2546 } 2547 2548 if (rec->flags & FTRACE_FL_REGS_EN) 2549 return (unsigned long)FTRACE_REGS_ADDR; 2550 else 2551 return (unsigned long)FTRACE_ADDR; 2552 } 2553 2554 static int 2555 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable) 2556 { 2557 unsigned long ftrace_old_addr; 2558 unsigned long ftrace_addr; 2559 int ret; 2560 2561 ftrace_addr = ftrace_get_addr_new(rec); 2562 2563 /* This needs to be done before we call ftrace_update_record */ 2564 ftrace_old_addr = ftrace_get_addr_curr(rec); 2565 2566 ret = ftrace_update_record(rec, enable); 2567 2568 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2569 2570 switch (ret) { 2571 case FTRACE_UPDATE_IGNORE: 2572 return 0; 2573 2574 case FTRACE_UPDATE_MAKE_CALL: 2575 ftrace_bug_type = FTRACE_BUG_CALL; 2576 return ftrace_make_call(rec, ftrace_addr); 2577 2578 case FTRACE_UPDATE_MAKE_NOP: 2579 ftrace_bug_type = FTRACE_BUG_NOP; 2580 return ftrace_make_nop(NULL, rec, ftrace_old_addr); 2581 2582 case FTRACE_UPDATE_MODIFY_CALL: 2583 ftrace_bug_type = FTRACE_BUG_UPDATE; 2584 return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr); 2585 } 2586 2587 return -1; /* unknown ftrace bug */ 2588 } 2589 2590 void __weak ftrace_replace_code(int mod_flags) 2591 { 2592 struct dyn_ftrace *rec; 2593 struct ftrace_page *pg; 2594 bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL; 2595 int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL; 2596 int failed; 2597 2598 if (unlikely(ftrace_disabled)) 2599 return; 2600 2601 do_for_each_ftrace_rec(pg, rec) { 2602 2603 if (rec->flags & FTRACE_FL_DISABLED) 2604 continue; 2605 2606 failed = __ftrace_replace_code(rec, enable); 2607 if (failed) { 2608 ftrace_bug(failed, rec); 2609 /* Stop processing */ 2610 return; 2611 } 2612 if (schedulable) 2613 cond_resched(); 2614 } while_for_each_ftrace_rec(); 2615 } 2616 2617 struct ftrace_rec_iter { 2618 struct ftrace_page *pg; 2619 int index; 2620 }; 2621 2622 /** 2623 * ftrace_rec_iter_start - start up iterating over traced functions 2624 * 2625 * Returns an iterator handle that is used to iterate over all 2626 * the records that represent address locations where functions 2627 * are traced. 2628 * 2629 * May return NULL if no records are available. 2630 */ 2631 struct ftrace_rec_iter *ftrace_rec_iter_start(void) 2632 { 2633 /* 2634 * We only use a single iterator. 2635 * Protected by the ftrace_lock mutex. 2636 */ 2637 static struct ftrace_rec_iter ftrace_rec_iter; 2638 struct ftrace_rec_iter *iter = &ftrace_rec_iter; 2639 2640 iter->pg = ftrace_pages_start; 2641 iter->index = 0; 2642 2643 /* Could have empty pages */ 2644 while (iter->pg && !iter->pg->index) 2645 iter->pg = iter->pg->next; 2646 2647 if (!iter->pg) 2648 return NULL; 2649 2650 return iter; 2651 } 2652 2653 /** 2654 * ftrace_rec_iter_next - get the next record to process. 2655 * @iter: The handle to the iterator. 2656 * 2657 * Returns the next iterator after the given iterator @iter. 2658 */ 2659 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter) 2660 { 2661 iter->index++; 2662 2663 if (iter->index >= iter->pg->index) { 2664 iter->pg = iter->pg->next; 2665 iter->index = 0; 2666 2667 /* Could have empty pages */ 2668 while (iter->pg && !iter->pg->index) 2669 iter->pg = iter->pg->next; 2670 } 2671 2672 if (!iter->pg) 2673 return NULL; 2674 2675 return iter; 2676 } 2677 2678 /** 2679 * ftrace_rec_iter_record - get the record at the iterator location 2680 * @iter: The current iterator location 2681 * 2682 * Returns the record that the current @iter is at. 2683 */ 2684 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter) 2685 { 2686 return &iter->pg->records[iter->index]; 2687 } 2688 2689 static int 2690 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec) 2691 { 2692 int ret; 2693 2694 if (unlikely(ftrace_disabled)) 2695 return 0; 2696 2697 ret = ftrace_init_nop(mod, rec); 2698 if (ret) { 2699 ftrace_bug_type = FTRACE_BUG_INIT; 2700 ftrace_bug(ret, rec); 2701 return 0; 2702 } 2703 return 1; 2704 } 2705 2706 /* 2707 * archs can override this function if they must do something 2708 * before the modifying code is performed. 2709 */ 2710 int __weak ftrace_arch_code_modify_prepare(void) 2711 { 2712 return 0; 2713 } 2714 2715 /* 2716 * archs can override this function if they must do something 2717 * after the modifying code is performed. 2718 */ 2719 int __weak ftrace_arch_code_modify_post_process(void) 2720 { 2721 return 0; 2722 } 2723 2724 void ftrace_modify_all_code(int command) 2725 { 2726 int update = command & FTRACE_UPDATE_TRACE_FUNC; 2727 int mod_flags = 0; 2728 int err = 0; 2729 2730 if (command & FTRACE_MAY_SLEEP) 2731 mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL; 2732 2733 /* 2734 * If the ftrace_caller calls a ftrace_ops func directly, 2735 * we need to make sure that it only traces functions it 2736 * expects to trace. When doing the switch of functions, 2737 * we need to update to the ftrace_ops_list_func first 2738 * before the transition between old and new calls are set, 2739 * as the ftrace_ops_list_func will check the ops hashes 2740 * to make sure the ops are having the right functions 2741 * traced. 2742 */ 2743 if (update) { 2744 err = ftrace_update_ftrace_func(ftrace_ops_list_func); 2745 if (FTRACE_WARN_ON(err)) 2746 return; 2747 } 2748 2749 if (command & FTRACE_UPDATE_CALLS) 2750 ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL); 2751 else if (command & FTRACE_DISABLE_CALLS) 2752 ftrace_replace_code(mod_flags); 2753 2754 if (update && ftrace_trace_function != ftrace_ops_list_func) { 2755 function_trace_op = set_function_trace_op; 2756 smp_wmb(); 2757 /* If irqs are disabled, we are in stop machine */ 2758 if (!irqs_disabled()) 2759 smp_call_function(ftrace_sync_ipi, NULL, 1); 2760 err = ftrace_update_ftrace_func(ftrace_trace_function); 2761 if (FTRACE_WARN_ON(err)) 2762 return; 2763 } 2764 2765 if (command & FTRACE_START_FUNC_RET) 2766 err = ftrace_enable_ftrace_graph_caller(); 2767 else if (command & FTRACE_STOP_FUNC_RET) 2768 err = ftrace_disable_ftrace_graph_caller(); 2769 FTRACE_WARN_ON(err); 2770 } 2771 2772 static int __ftrace_modify_code(void *data) 2773 { 2774 int *command = data; 2775 2776 ftrace_modify_all_code(*command); 2777 2778 return 0; 2779 } 2780 2781 /** 2782 * ftrace_run_stop_machine - go back to the stop machine method 2783 * @command: The command to tell ftrace what to do 2784 * 2785 * If an arch needs to fall back to the stop machine method, the 2786 * it can call this function. 2787 */ 2788 void ftrace_run_stop_machine(int command) 2789 { 2790 stop_machine(__ftrace_modify_code, &command, NULL); 2791 } 2792 2793 /** 2794 * arch_ftrace_update_code - modify the code to trace or not trace 2795 * @command: The command that needs to be done 2796 * 2797 * Archs can override this function if it does not need to 2798 * run stop_machine() to modify code. 2799 */ 2800 void __weak arch_ftrace_update_code(int command) 2801 { 2802 ftrace_run_stop_machine(command); 2803 } 2804 2805 static void ftrace_run_update_code(int command) 2806 { 2807 int ret; 2808 2809 ret = ftrace_arch_code_modify_prepare(); 2810 FTRACE_WARN_ON(ret); 2811 if (ret) 2812 return; 2813 2814 /* 2815 * By default we use stop_machine() to modify the code. 2816 * But archs can do what ever they want as long as it 2817 * is safe. The stop_machine() is the safest, but also 2818 * produces the most overhead. 2819 */ 2820 arch_ftrace_update_code(command); 2821 2822 ret = ftrace_arch_code_modify_post_process(); 2823 FTRACE_WARN_ON(ret); 2824 } 2825 2826 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command, 2827 struct ftrace_ops_hash *old_hash) 2828 { 2829 ops->flags |= FTRACE_OPS_FL_MODIFYING; 2830 ops->old_hash.filter_hash = old_hash->filter_hash; 2831 ops->old_hash.notrace_hash = old_hash->notrace_hash; 2832 ftrace_run_update_code(command); 2833 ops->old_hash.filter_hash = NULL; 2834 ops->old_hash.notrace_hash = NULL; 2835 ops->flags &= ~FTRACE_OPS_FL_MODIFYING; 2836 } 2837 2838 static ftrace_func_t saved_ftrace_func; 2839 static int ftrace_start_up; 2840 2841 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops) 2842 { 2843 } 2844 2845 /* List of trace_ops that have allocated trampolines */ 2846 static LIST_HEAD(ftrace_ops_trampoline_list); 2847 2848 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops) 2849 { 2850 lockdep_assert_held(&ftrace_lock); 2851 list_add_rcu(&ops->list, &ftrace_ops_trampoline_list); 2852 } 2853 2854 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops) 2855 { 2856 lockdep_assert_held(&ftrace_lock); 2857 list_del_rcu(&ops->list); 2858 synchronize_rcu(); 2859 } 2860 2861 /* 2862 * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols 2863 * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is 2864 * not a module. 2865 */ 2866 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace" 2867 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline" 2868 2869 static void ftrace_trampoline_free(struct ftrace_ops *ops) 2870 { 2871 if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) && 2872 ops->trampoline) { 2873 /* 2874 * Record the text poke event before the ksymbol unregister 2875 * event. 2876 */ 2877 perf_event_text_poke((void *)ops->trampoline, 2878 (void *)ops->trampoline, 2879 ops->trampoline_size, NULL, 0); 2880 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 2881 ops->trampoline, ops->trampoline_size, 2882 true, FTRACE_TRAMPOLINE_SYM); 2883 /* Remove from kallsyms after the perf events */ 2884 ftrace_remove_trampoline_from_kallsyms(ops); 2885 } 2886 2887 arch_ftrace_trampoline_free(ops); 2888 } 2889 2890 static void ftrace_startup_enable(int command) 2891 { 2892 if (saved_ftrace_func != ftrace_trace_function) { 2893 saved_ftrace_func = ftrace_trace_function; 2894 command |= FTRACE_UPDATE_TRACE_FUNC; 2895 } 2896 2897 if (!command || !ftrace_enabled) 2898 return; 2899 2900 ftrace_run_update_code(command); 2901 } 2902 2903 static void ftrace_startup_all(int command) 2904 { 2905 update_all_ops = true; 2906 ftrace_startup_enable(command); 2907 update_all_ops = false; 2908 } 2909 2910 int ftrace_startup(struct ftrace_ops *ops, int command) 2911 { 2912 int ret; 2913 2914 if (unlikely(ftrace_disabled)) 2915 return -ENODEV; 2916 2917 ret = __register_ftrace_function(ops); 2918 if (ret) 2919 return ret; 2920 2921 ftrace_start_up++; 2922 2923 /* 2924 * Note that ftrace probes uses this to start up 2925 * and modify functions it will probe. But we still 2926 * set the ADDING flag for modification, as probes 2927 * do not have trampolines. If they add them in the 2928 * future, then the probes will need to distinguish 2929 * between adding and updating probes. 2930 */ 2931 ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING; 2932 2933 ret = ftrace_hash_ipmodify_enable(ops); 2934 if (ret < 0) { 2935 /* Rollback registration process */ 2936 __unregister_ftrace_function(ops); 2937 ftrace_start_up--; 2938 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2939 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 2940 ftrace_trampoline_free(ops); 2941 return ret; 2942 } 2943 2944 if (ftrace_hash_rec_enable(ops, 1)) 2945 command |= FTRACE_UPDATE_CALLS; 2946 2947 ftrace_startup_enable(command); 2948 2949 ops->flags &= ~FTRACE_OPS_FL_ADDING; 2950 2951 return 0; 2952 } 2953 2954 int ftrace_shutdown(struct ftrace_ops *ops, int command) 2955 { 2956 int ret; 2957 2958 if (unlikely(ftrace_disabled)) 2959 return -ENODEV; 2960 2961 ret = __unregister_ftrace_function(ops); 2962 if (ret) 2963 return ret; 2964 2965 ftrace_start_up--; 2966 /* 2967 * Just warn in case of unbalance, no need to kill ftrace, it's not 2968 * critical but the ftrace_call callers may be never nopped again after 2969 * further ftrace uses. 2970 */ 2971 WARN_ON_ONCE(ftrace_start_up < 0); 2972 2973 /* Disabling ipmodify never fails */ 2974 ftrace_hash_ipmodify_disable(ops); 2975 2976 if (ftrace_hash_rec_disable(ops, 1)) 2977 command |= FTRACE_UPDATE_CALLS; 2978 2979 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2980 2981 if (saved_ftrace_func != ftrace_trace_function) { 2982 saved_ftrace_func = ftrace_trace_function; 2983 command |= FTRACE_UPDATE_TRACE_FUNC; 2984 } 2985 2986 if (!command || !ftrace_enabled) { 2987 /* 2988 * If these are dynamic or per_cpu ops, they still 2989 * need their data freed. Since, function tracing is 2990 * not currently active, we can just free them 2991 * without synchronizing all CPUs. 2992 */ 2993 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 2994 goto free_ops; 2995 2996 return 0; 2997 } 2998 2999 /* 3000 * If the ops uses a trampoline, then it needs to be 3001 * tested first on update. 3002 */ 3003 ops->flags |= FTRACE_OPS_FL_REMOVING; 3004 removed_ops = ops; 3005 3006 /* The trampoline logic checks the old hashes */ 3007 ops->old_hash.filter_hash = ops->func_hash->filter_hash; 3008 ops->old_hash.notrace_hash = ops->func_hash->notrace_hash; 3009 3010 ftrace_run_update_code(command); 3011 3012 /* 3013 * If there's no more ops registered with ftrace, run a 3014 * sanity check to make sure all rec flags are cleared. 3015 */ 3016 if (rcu_dereference_protected(ftrace_ops_list, 3017 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 3018 struct ftrace_page *pg; 3019 struct dyn_ftrace *rec; 3020 3021 do_for_each_ftrace_rec(pg, rec) { 3022 if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED)) 3023 pr_warn(" %pS flags:%lx\n", 3024 (void *)rec->ip, rec->flags); 3025 } while_for_each_ftrace_rec(); 3026 } 3027 3028 ops->old_hash.filter_hash = NULL; 3029 ops->old_hash.notrace_hash = NULL; 3030 3031 removed_ops = NULL; 3032 ops->flags &= ~FTRACE_OPS_FL_REMOVING; 3033 3034 /* 3035 * Dynamic ops may be freed, we must make sure that all 3036 * callers are done before leaving this function. 3037 * The same goes for freeing the per_cpu data of the per_cpu 3038 * ops. 3039 */ 3040 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) { 3041 /* 3042 * We need to do a hard force of sched synchronization. 3043 * This is because we use preempt_disable() to do RCU, but 3044 * the function tracers can be called where RCU is not watching 3045 * (like before user_exit()). We can not rely on the RCU 3046 * infrastructure to do the synchronization, thus we must do it 3047 * ourselves. 3048 */ 3049 synchronize_rcu_tasks_rude(); 3050 3051 /* 3052 * When the kernel is preemptive, tasks can be preempted 3053 * while on a ftrace trampoline. Just scheduling a task on 3054 * a CPU is not good enough to flush them. Calling 3055 * synchronize_rcu_tasks() will wait for those tasks to 3056 * execute and either schedule voluntarily or enter user space. 3057 */ 3058 if (IS_ENABLED(CONFIG_PREEMPTION)) 3059 synchronize_rcu_tasks(); 3060 3061 free_ops: 3062 ftrace_trampoline_free(ops); 3063 } 3064 3065 return 0; 3066 } 3067 3068 static u64 ftrace_update_time; 3069 unsigned long ftrace_update_tot_cnt; 3070 unsigned long ftrace_number_of_pages; 3071 unsigned long ftrace_number_of_groups; 3072 3073 static inline int ops_traces_mod(struct ftrace_ops *ops) 3074 { 3075 /* 3076 * Filter_hash being empty will default to trace module. 3077 * But notrace hash requires a test of individual module functions. 3078 */ 3079 return ftrace_hash_empty(ops->func_hash->filter_hash) && 3080 ftrace_hash_empty(ops->func_hash->notrace_hash); 3081 } 3082 3083 /* 3084 * Check if the current ops references the record. 3085 * 3086 * If the ops traces all functions, then it was already accounted for. 3087 * If the ops does not trace the current record function, skip it. 3088 * If the ops ignores the function via notrace filter, skip it. 3089 */ 3090 static inline bool 3091 ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3092 { 3093 /* If ops isn't enabled, ignore it */ 3094 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 3095 return false; 3096 3097 /* If ops traces all then it includes this function */ 3098 if (ops_traces_mod(ops)) 3099 return true; 3100 3101 /* The function must be in the filter */ 3102 if (!ftrace_hash_empty(ops->func_hash->filter_hash) && 3103 !__ftrace_lookup_ip(ops->func_hash->filter_hash, rec->ip)) 3104 return false; 3105 3106 /* If in notrace hash, we ignore it too */ 3107 if (ftrace_lookup_ip(ops->func_hash->notrace_hash, rec->ip)) 3108 return false; 3109 3110 return true; 3111 } 3112 3113 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs) 3114 { 3115 bool init_nop = ftrace_need_init_nop(); 3116 struct ftrace_page *pg; 3117 struct dyn_ftrace *p; 3118 u64 start, stop; 3119 unsigned long update_cnt = 0; 3120 unsigned long rec_flags = 0; 3121 int i; 3122 3123 start = ftrace_now(raw_smp_processor_id()); 3124 3125 /* 3126 * When a module is loaded, this function is called to convert 3127 * the calls to mcount in its text to nops, and also to create 3128 * an entry in the ftrace data. Now, if ftrace is activated 3129 * after this call, but before the module sets its text to 3130 * read-only, the modification of enabling ftrace can fail if 3131 * the read-only is done while ftrace is converting the calls. 3132 * To prevent this, the module's records are set as disabled 3133 * and will be enabled after the call to set the module's text 3134 * to read-only. 3135 */ 3136 if (mod) 3137 rec_flags |= FTRACE_FL_DISABLED; 3138 3139 for (pg = new_pgs; pg; pg = pg->next) { 3140 3141 for (i = 0; i < pg->index; i++) { 3142 3143 /* If something went wrong, bail without enabling anything */ 3144 if (unlikely(ftrace_disabled)) 3145 return -1; 3146 3147 p = &pg->records[i]; 3148 p->flags = rec_flags; 3149 3150 /* 3151 * Do the initial record conversion from mcount jump 3152 * to the NOP instructions. 3153 */ 3154 if (init_nop && !ftrace_nop_initialize(mod, p)) 3155 break; 3156 3157 update_cnt++; 3158 } 3159 } 3160 3161 stop = ftrace_now(raw_smp_processor_id()); 3162 ftrace_update_time = stop - start; 3163 ftrace_update_tot_cnt += update_cnt; 3164 3165 return 0; 3166 } 3167 3168 static int ftrace_allocate_records(struct ftrace_page *pg, int count) 3169 { 3170 int order; 3171 int pages; 3172 int cnt; 3173 3174 if (WARN_ON(!count)) 3175 return -EINVAL; 3176 3177 /* We want to fill as much as possible, with no empty pages */ 3178 pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE); 3179 order = fls(pages) - 1; 3180 3181 again: 3182 pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 3183 3184 if (!pg->records) { 3185 /* if we can't allocate this size, try something smaller */ 3186 if (!order) 3187 return -ENOMEM; 3188 order >>= 1; 3189 goto again; 3190 } 3191 3192 ftrace_number_of_pages += 1 << order; 3193 ftrace_number_of_groups++; 3194 3195 cnt = (PAGE_SIZE << order) / ENTRY_SIZE; 3196 pg->order = order; 3197 3198 if (cnt > count) 3199 cnt = count; 3200 3201 return cnt; 3202 } 3203 3204 static struct ftrace_page * 3205 ftrace_allocate_pages(unsigned long num_to_init) 3206 { 3207 struct ftrace_page *start_pg; 3208 struct ftrace_page *pg; 3209 int cnt; 3210 3211 if (!num_to_init) 3212 return NULL; 3213 3214 start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL); 3215 if (!pg) 3216 return NULL; 3217 3218 /* 3219 * Try to allocate as much as possible in one continues 3220 * location that fills in all of the space. We want to 3221 * waste as little space as possible. 3222 */ 3223 for (;;) { 3224 cnt = ftrace_allocate_records(pg, num_to_init); 3225 if (cnt < 0) 3226 goto free_pages; 3227 3228 num_to_init -= cnt; 3229 if (!num_to_init) 3230 break; 3231 3232 pg->next = kzalloc(sizeof(*pg), GFP_KERNEL); 3233 if (!pg->next) 3234 goto free_pages; 3235 3236 pg = pg->next; 3237 } 3238 3239 return start_pg; 3240 3241 free_pages: 3242 pg = start_pg; 3243 while (pg) { 3244 if (pg->records) { 3245 free_pages((unsigned long)pg->records, pg->order); 3246 ftrace_number_of_pages -= 1 << pg->order; 3247 } 3248 start_pg = pg->next; 3249 kfree(pg); 3250 pg = start_pg; 3251 ftrace_number_of_groups--; 3252 } 3253 pr_info("ftrace: FAILED to allocate memory for functions\n"); 3254 return NULL; 3255 } 3256 3257 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */ 3258 3259 struct ftrace_iterator { 3260 loff_t pos; 3261 loff_t func_pos; 3262 loff_t mod_pos; 3263 struct ftrace_page *pg; 3264 struct dyn_ftrace *func; 3265 struct ftrace_func_probe *probe; 3266 struct ftrace_func_entry *probe_entry; 3267 struct trace_parser parser; 3268 struct ftrace_hash *hash; 3269 struct ftrace_ops *ops; 3270 struct trace_array *tr; 3271 struct list_head *mod_list; 3272 int pidx; 3273 int idx; 3274 unsigned flags; 3275 }; 3276 3277 static void * 3278 t_probe_next(struct seq_file *m, loff_t *pos) 3279 { 3280 struct ftrace_iterator *iter = m->private; 3281 struct trace_array *tr = iter->ops->private; 3282 struct list_head *func_probes; 3283 struct ftrace_hash *hash; 3284 struct list_head *next; 3285 struct hlist_node *hnd = NULL; 3286 struct hlist_head *hhd; 3287 int size; 3288 3289 (*pos)++; 3290 iter->pos = *pos; 3291 3292 if (!tr) 3293 return NULL; 3294 3295 func_probes = &tr->func_probes; 3296 if (list_empty(func_probes)) 3297 return NULL; 3298 3299 if (!iter->probe) { 3300 next = func_probes->next; 3301 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3302 } 3303 3304 if (iter->probe_entry) 3305 hnd = &iter->probe_entry->hlist; 3306 3307 hash = iter->probe->ops.func_hash->filter_hash; 3308 3309 /* 3310 * A probe being registered may temporarily have an empty hash 3311 * and it's at the end of the func_probes list. 3312 */ 3313 if (!hash || hash == EMPTY_HASH) 3314 return NULL; 3315 3316 size = 1 << hash->size_bits; 3317 3318 retry: 3319 if (iter->pidx >= size) { 3320 if (iter->probe->list.next == func_probes) 3321 return NULL; 3322 next = iter->probe->list.next; 3323 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3324 hash = iter->probe->ops.func_hash->filter_hash; 3325 size = 1 << hash->size_bits; 3326 iter->pidx = 0; 3327 } 3328 3329 hhd = &hash->buckets[iter->pidx]; 3330 3331 if (hlist_empty(hhd)) { 3332 iter->pidx++; 3333 hnd = NULL; 3334 goto retry; 3335 } 3336 3337 if (!hnd) 3338 hnd = hhd->first; 3339 else { 3340 hnd = hnd->next; 3341 if (!hnd) { 3342 iter->pidx++; 3343 goto retry; 3344 } 3345 } 3346 3347 if (WARN_ON_ONCE(!hnd)) 3348 return NULL; 3349 3350 iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist); 3351 3352 return iter; 3353 } 3354 3355 static void *t_probe_start(struct seq_file *m, loff_t *pos) 3356 { 3357 struct ftrace_iterator *iter = m->private; 3358 void *p = NULL; 3359 loff_t l; 3360 3361 if (!(iter->flags & FTRACE_ITER_DO_PROBES)) 3362 return NULL; 3363 3364 if (iter->mod_pos > *pos) 3365 return NULL; 3366 3367 iter->probe = NULL; 3368 iter->probe_entry = NULL; 3369 iter->pidx = 0; 3370 for (l = 0; l <= (*pos - iter->mod_pos); ) { 3371 p = t_probe_next(m, &l); 3372 if (!p) 3373 break; 3374 } 3375 if (!p) 3376 return NULL; 3377 3378 /* Only set this if we have an item */ 3379 iter->flags |= FTRACE_ITER_PROBE; 3380 3381 return iter; 3382 } 3383 3384 static int 3385 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter) 3386 { 3387 struct ftrace_func_entry *probe_entry; 3388 struct ftrace_probe_ops *probe_ops; 3389 struct ftrace_func_probe *probe; 3390 3391 probe = iter->probe; 3392 probe_entry = iter->probe_entry; 3393 3394 if (WARN_ON_ONCE(!probe || !probe_entry)) 3395 return -EIO; 3396 3397 probe_ops = probe->probe_ops; 3398 3399 if (probe_ops->print) 3400 return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data); 3401 3402 seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip, 3403 (void *)probe_ops->func); 3404 3405 return 0; 3406 } 3407 3408 static void * 3409 t_mod_next(struct seq_file *m, loff_t *pos) 3410 { 3411 struct ftrace_iterator *iter = m->private; 3412 struct trace_array *tr = iter->tr; 3413 3414 (*pos)++; 3415 iter->pos = *pos; 3416 3417 iter->mod_list = iter->mod_list->next; 3418 3419 if (iter->mod_list == &tr->mod_trace || 3420 iter->mod_list == &tr->mod_notrace) { 3421 iter->flags &= ~FTRACE_ITER_MOD; 3422 return NULL; 3423 } 3424 3425 iter->mod_pos = *pos; 3426 3427 return iter; 3428 } 3429 3430 static void *t_mod_start(struct seq_file *m, loff_t *pos) 3431 { 3432 struct ftrace_iterator *iter = m->private; 3433 void *p = NULL; 3434 loff_t l; 3435 3436 if (iter->func_pos > *pos) 3437 return NULL; 3438 3439 iter->mod_pos = iter->func_pos; 3440 3441 /* probes are only available if tr is set */ 3442 if (!iter->tr) 3443 return NULL; 3444 3445 for (l = 0; l <= (*pos - iter->func_pos); ) { 3446 p = t_mod_next(m, &l); 3447 if (!p) 3448 break; 3449 } 3450 if (!p) { 3451 iter->flags &= ~FTRACE_ITER_MOD; 3452 return t_probe_start(m, pos); 3453 } 3454 3455 /* Only set this if we have an item */ 3456 iter->flags |= FTRACE_ITER_MOD; 3457 3458 return iter; 3459 } 3460 3461 static int 3462 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter) 3463 { 3464 struct ftrace_mod_load *ftrace_mod; 3465 struct trace_array *tr = iter->tr; 3466 3467 if (WARN_ON_ONCE(!iter->mod_list) || 3468 iter->mod_list == &tr->mod_trace || 3469 iter->mod_list == &tr->mod_notrace) 3470 return -EIO; 3471 3472 ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list); 3473 3474 if (ftrace_mod->func) 3475 seq_printf(m, "%s", ftrace_mod->func); 3476 else 3477 seq_putc(m, '*'); 3478 3479 seq_printf(m, ":mod:%s\n", ftrace_mod->module); 3480 3481 return 0; 3482 } 3483 3484 static void * 3485 t_func_next(struct seq_file *m, loff_t *pos) 3486 { 3487 struct ftrace_iterator *iter = m->private; 3488 struct dyn_ftrace *rec = NULL; 3489 3490 (*pos)++; 3491 3492 retry: 3493 if (iter->idx >= iter->pg->index) { 3494 if (iter->pg->next) { 3495 iter->pg = iter->pg->next; 3496 iter->idx = 0; 3497 goto retry; 3498 } 3499 } else { 3500 rec = &iter->pg->records[iter->idx++]; 3501 if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3502 !ftrace_lookup_ip(iter->hash, rec->ip)) || 3503 3504 ((iter->flags & FTRACE_ITER_ENABLED) && 3505 !(rec->flags & FTRACE_FL_ENABLED))) { 3506 3507 rec = NULL; 3508 goto retry; 3509 } 3510 } 3511 3512 if (!rec) 3513 return NULL; 3514 3515 iter->pos = iter->func_pos = *pos; 3516 iter->func = rec; 3517 3518 return iter; 3519 } 3520 3521 static void * 3522 t_next(struct seq_file *m, void *v, loff_t *pos) 3523 { 3524 struct ftrace_iterator *iter = m->private; 3525 loff_t l = *pos; /* t_probe_start() must use original pos */ 3526 void *ret; 3527 3528 if (unlikely(ftrace_disabled)) 3529 return NULL; 3530 3531 if (iter->flags & FTRACE_ITER_PROBE) 3532 return t_probe_next(m, pos); 3533 3534 if (iter->flags & FTRACE_ITER_MOD) 3535 return t_mod_next(m, pos); 3536 3537 if (iter->flags & FTRACE_ITER_PRINTALL) { 3538 /* next must increment pos, and t_probe_start does not */ 3539 (*pos)++; 3540 return t_mod_start(m, &l); 3541 } 3542 3543 ret = t_func_next(m, pos); 3544 3545 if (!ret) 3546 return t_mod_start(m, &l); 3547 3548 return ret; 3549 } 3550 3551 static void reset_iter_read(struct ftrace_iterator *iter) 3552 { 3553 iter->pos = 0; 3554 iter->func_pos = 0; 3555 iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD); 3556 } 3557 3558 static void *t_start(struct seq_file *m, loff_t *pos) 3559 { 3560 struct ftrace_iterator *iter = m->private; 3561 void *p = NULL; 3562 loff_t l; 3563 3564 mutex_lock(&ftrace_lock); 3565 3566 if (unlikely(ftrace_disabled)) 3567 return NULL; 3568 3569 /* 3570 * If an lseek was done, then reset and start from beginning. 3571 */ 3572 if (*pos < iter->pos) 3573 reset_iter_read(iter); 3574 3575 /* 3576 * For set_ftrace_filter reading, if we have the filter 3577 * off, we can short cut and just print out that all 3578 * functions are enabled. 3579 */ 3580 if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3581 ftrace_hash_empty(iter->hash)) { 3582 iter->func_pos = 1; /* Account for the message */ 3583 if (*pos > 0) 3584 return t_mod_start(m, pos); 3585 iter->flags |= FTRACE_ITER_PRINTALL; 3586 /* reset in case of seek/pread */ 3587 iter->flags &= ~FTRACE_ITER_PROBE; 3588 return iter; 3589 } 3590 3591 if (iter->flags & FTRACE_ITER_MOD) 3592 return t_mod_start(m, pos); 3593 3594 /* 3595 * Unfortunately, we need to restart at ftrace_pages_start 3596 * every time we let go of the ftrace_mutex. This is because 3597 * those pointers can change without the lock. 3598 */ 3599 iter->pg = ftrace_pages_start; 3600 iter->idx = 0; 3601 for (l = 0; l <= *pos; ) { 3602 p = t_func_next(m, &l); 3603 if (!p) 3604 break; 3605 } 3606 3607 if (!p) 3608 return t_mod_start(m, pos); 3609 3610 return iter; 3611 } 3612 3613 static void t_stop(struct seq_file *m, void *p) 3614 { 3615 mutex_unlock(&ftrace_lock); 3616 } 3617 3618 void * __weak 3619 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3620 { 3621 return NULL; 3622 } 3623 3624 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops, 3625 struct dyn_ftrace *rec) 3626 { 3627 void *ptr; 3628 3629 ptr = arch_ftrace_trampoline_func(ops, rec); 3630 if (ptr) 3631 seq_printf(m, " ->%pS", ptr); 3632 } 3633 3634 static int t_show(struct seq_file *m, void *v) 3635 { 3636 struct ftrace_iterator *iter = m->private; 3637 struct dyn_ftrace *rec; 3638 3639 if (iter->flags & FTRACE_ITER_PROBE) 3640 return t_probe_show(m, iter); 3641 3642 if (iter->flags & FTRACE_ITER_MOD) 3643 return t_mod_show(m, iter); 3644 3645 if (iter->flags & FTRACE_ITER_PRINTALL) { 3646 if (iter->flags & FTRACE_ITER_NOTRACE) 3647 seq_puts(m, "#### no functions disabled ####\n"); 3648 else 3649 seq_puts(m, "#### all functions enabled ####\n"); 3650 return 0; 3651 } 3652 3653 rec = iter->func; 3654 3655 if (!rec) 3656 return 0; 3657 3658 seq_printf(m, "%ps", (void *)rec->ip); 3659 if (iter->flags & FTRACE_ITER_ENABLED) { 3660 struct ftrace_ops *ops; 3661 3662 seq_printf(m, " (%ld)%s%s%s", 3663 ftrace_rec_count(rec), 3664 rec->flags & FTRACE_FL_REGS ? " R" : " ", 3665 rec->flags & FTRACE_FL_IPMODIFY ? " I" : " ", 3666 rec->flags & FTRACE_FL_DIRECT ? " D" : " "); 3667 if (rec->flags & FTRACE_FL_TRAMP_EN) { 3668 ops = ftrace_find_tramp_ops_any(rec); 3669 if (ops) { 3670 do { 3671 seq_printf(m, "\ttramp: %pS (%pS)", 3672 (void *)ops->trampoline, 3673 (void *)ops->func); 3674 add_trampoline_func(m, ops, rec); 3675 ops = ftrace_find_tramp_ops_next(rec, ops); 3676 } while (ops); 3677 } else 3678 seq_puts(m, "\ttramp: ERROR!"); 3679 } else { 3680 add_trampoline_func(m, NULL, rec); 3681 } 3682 if (rec->flags & FTRACE_FL_DIRECT) { 3683 unsigned long direct; 3684 3685 direct = ftrace_find_rec_direct(rec->ip); 3686 if (direct) 3687 seq_printf(m, "\n\tdirect-->%pS", (void *)direct); 3688 } 3689 } 3690 3691 seq_putc(m, '\n'); 3692 3693 return 0; 3694 } 3695 3696 static const struct seq_operations show_ftrace_seq_ops = { 3697 .start = t_start, 3698 .next = t_next, 3699 .stop = t_stop, 3700 .show = t_show, 3701 }; 3702 3703 static int 3704 ftrace_avail_open(struct inode *inode, struct file *file) 3705 { 3706 struct ftrace_iterator *iter; 3707 int ret; 3708 3709 ret = security_locked_down(LOCKDOWN_TRACEFS); 3710 if (ret) 3711 return ret; 3712 3713 if (unlikely(ftrace_disabled)) 3714 return -ENODEV; 3715 3716 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3717 if (!iter) 3718 return -ENOMEM; 3719 3720 iter->pg = ftrace_pages_start; 3721 iter->ops = &global_ops; 3722 3723 return 0; 3724 } 3725 3726 static int 3727 ftrace_enabled_open(struct inode *inode, struct file *file) 3728 { 3729 struct ftrace_iterator *iter; 3730 3731 /* 3732 * This shows us what functions are currently being 3733 * traced and by what. Not sure if we want lockdown 3734 * to hide such critical information for an admin. 3735 * Although, perhaps it can show information we don't 3736 * want people to see, but if something is tracing 3737 * something, we probably want to know about it. 3738 */ 3739 3740 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3741 if (!iter) 3742 return -ENOMEM; 3743 3744 iter->pg = ftrace_pages_start; 3745 iter->flags = FTRACE_ITER_ENABLED; 3746 iter->ops = &global_ops; 3747 3748 return 0; 3749 } 3750 3751 /** 3752 * ftrace_regex_open - initialize function tracer filter files 3753 * @ops: The ftrace_ops that hold the hash filters 3754 * @flag: The type of filter to process 3755 * @inode: The inode, usually passed in to your open routine 3756 * @file: The file, usually passed in to your open routine 3757 * 3758 * ftrace_regex_open() initializes the filter files for the 3759 * @ops. Depending on @flag it may process the filter hash or 3760 * the notrace hash of @ops. With this called from the open 3761 * routine, you can use ftrace_filter_write() for the write 3762 * routine if @flag has FTRACE_ITER_FILTER set, or 3763 * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set. 3764 * tracing_lseek() should be used as the lseek routine, and 3765 * release must call ftrace_regex_release(). 3766 */ 3767 int 3768 ftrace_regex_open(struct ftrace_ops *ops, int flag, 3769 struct inode *inode, struct file *file) 3770 { 3771 struct ftrace_iterator *iter; 3772 struct ftrace_hash *hash; 3773 struct list_head *mod_head; 3774 struct trace_array *tr = ops->private; 3775 int ret = -ENOMEM; 3776 3777 ftrace_ops_init(ops); 3778 3779 if (unlikely(ftrace_disabled)) 3780 return -ENODEV; 3781 3782 if (tracing_check_open_get_tr(tr)) 3783 return -ENODEV; 3784 3785 iter = kzalloc(sizeof(*iter), GFP_KERNEL); 3786 if (!iter) 3787 goto out; 3788 3789 if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) 3790 goto out; 3791 3792 iter->ops = ops; 3793 iter->flags = flag; 3794 iter->tr = tr; 3795 3796 mutex_lock(&ops->func_hash->regex_lock); 3797 3798 if (flag & FTRACE_ITER_NOTRACE) { 3799 hash = ops->func_hash->notrace_hash; 3800 mod_head = tr ? &tr->mod_notrace : NULL; 3801 } else { 3802 hash = ops->func_hash->filter_hash; 3803 mod_head = tr ? &tr->mod_trace : NULL; 3804 } 3805 3806 iter->mod_list = mod_head; 3807 3808 if (file->f_mode & FMODE_WRITE) { 3809 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 3810 3811 if (file->f_flags & O_TRUNC) { 3812 iter->hash = alloc_ftrace_hash(size_bits); 3813 clear_ftrace_mod_list(mod_head); 3814 } else { 3815 iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash); 3816 } 3817 3818 if (!iter->hash) { 3819 trace_parser_put(&iter->parser); 3820 goto out_unlock; 3821 } 3822 } else 3823 iter->hash = hash; 3824 3825 ret = 0; 3826 3827 if (file->f_mode & FMODE_READ) { 3828 iter->pg = ftrace_pages_start; 3829 3830 ret = seq_open(file, &show_ftrace_seq_ops); 3831 if (!ret) { 3832 struct seq_file *m = file->private_data; 3833 m->private = iter; 3834 } else { 3835 /* Failed */ 3836 free_ftrace_hash(iter->hash); 3837 trace_parser_put(&iter->parser); 3838 } 3839 } else 3840 file->private_data = iter; 3841 3842 out_unlock: 3843 mutex_unlock(&ops->func_hash->regex_lock); 3844 3845 out: 3846 if (ret) { 3847 kfree(iter); 3848 if (tr) 3849 trace_array_put(tr); 3850 } 3851 3852 return ret; 3853 } 3854 3855 static int 3856 ftrace_filter_open(struct inode *inode, struct file *file) 3857 { 3858 struct ftrace_ops *ops = inode->i_private; 3859 3860 /* Checks for tracefs lockdown */ 3861 return ftrace_regex_open(ops, 3862 FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES, 3863 inode, file); 3864 } 3865 3866 static int 3867 ftrace_notrace_open(struct inode *inode, struct file *file) 3868 { 3869 struct ftrace_ops *ops = inode->i_private; 3870 3871 /* Checks for tracefs lockdown */ 3872 return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE, 3873 inode, file); 3874 } 3875 3876 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */ 3877 struct ftrace_glob { 3878 char *search; 3879 unsigned len; 3880 int type; 3881 }; 3882 3883 /* 3884 * If symbols in an architecture don't correspond exactly to the user-visible 3885 * name of what they represent, it is possible to define this function to 3886 * perform the necessary adjustments. 3887 */ 3888 char * __weak arch_ftrace_match_adjust(char *str, const char *search) 3889 { 3890 return str; 3891 } 3892 3893 static int ftrace_match(char *str, struct ftrace_glob *g) 3894 { 3895 int matched = 0; 3896 int slen; 3897 3898 str = arch_ftrace_match_adjust(str, g->search); 3899 3900 switch (g->type) { 3901 case MATCH_FULL: 3902 if (strcmp(str, g->search) == 0) 3903 matched = 1; 3904 break; 3905 case MATCH_FRONT_ONLY: 3906 if (strncmp(str, g->search, g->len) == 0) 3907 matched = 1; 3908 break; 3909 case MATCH_MIDDLE_ONLY: 3910 if (strstr(str, g->search)) 3911 matched = 1; 3912 break; 3913 case MATCH_END_ONLY: 3914 slen = strlen(str); 3915 if (slen >= g->len && 3916 memcmp(str + slen - g->len, g->search, g->len) == 0) 3917 matched = 1; 3918 break; 3919 case MATCH_GLOB: 3920 if (glob_match(g->search, str)) 3921 matched = 1; 3922 break; 3923 } 3924 3925 return matched; 3926 } 3927 3928 static int 3929 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter) 3930 { 3931 struct ftrace_func_entry *entry; 3932 int ret = 0; 3933 3934 entry = ftrace_lookup_ip(hash, rec->ip); 3935 if (clear_filter) { 3936 /* Do nothing if it doesn't exist */ 3937 if (!entry) 3938 return 0; 3939 3940 free_hash_entry(hash, entry); 3941 } else { 3942 /* Do nothing if it exists */ 3943 if (entry) 3944 return 0; 3945 3946 ret = add_hash_entry(hash, rec->ip); 3947 } 3948 return ret; 3949 } 3950 3951 static int 3952 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g, 3953 int clear_filter) 3954 { 3955 long index = simple_strtoul(func_g->search, NULL, 0); 3956 struct ftrace_page *pg; 3957 struct dyn_ftrace *rec; 3958 3959 /* The index starts at 1 */ 3960 if (--index < 0) 3961 return 0; 3962 3963 do_for_each_ftrace_rec(pg, rec) { 3964 if (pg->index <= index) { 3965 index -= pg->index; 3966 /* this is a double loop, break goes to the next page */ 3967 break; 3968 } 3969 rec = &pg->records[index]; 3970 enter_record(hash, rec, clear_filter); 3971 return 1; 3972 } while_for_each_ftrace_rec(); 3973 return 0; 3974 } 3975 3976 static int 3977 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g, 3978 struct ftrace_glob *mod_g, int exclude_mod) 3979 { 3980 char str[KSYM_SYMBOL_LEN]; 3981 char *modname; 3982 3983 kallsyms_lookup(rec->ip, NULL, NULL, &modname, str); 3984 3985 if (mod_g) { 3986 int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0; 3987 3988 /* blank module name to match all modules */ 3989 if (!mod_g->len) { 3990 /* blank module globbing: modname xor exclude_mod */ 3991 if (!exclude_mod != !modname) 3992 goto func_match; 3993 return 0; 3994 } 3995 3996 /* 3997 * exclude_mod is set to trace everything but the given 3998 * module. If it is set and the module matches, then 3999 * return 0. If it is not set, and the module doesn't match 4000 * also return 0. Otherwise, check the function to see if 4001 * that matches. 4002 */ 4003 if (!mod_matches == !exclude_mod) 4004 return 0; 4005 func_match: 4006 /* blank search means to match all funcs in the mod */ 4007 if (!func_g->len) 4008 return 1; 4009 } 4010 4011 return ftrace_match(str, func_g); 4012 } 4013 4014 static int 4015 match_records(struct ftrace_hash *hash, char *func, int len, char *mod) 4016 { 4017 struct ftrace_page *pg; 4018 struct dyn_ftrace *rec; 4019 struct ftrace_glob func_g = { .type = MATCH_FULL }; 4020 struct ftrace_glob mod_g = { .type = MATCH_FULL }; 4021 struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL; 4022 int exclude_mod = 0; 4023 int found = 0; 4024 int ret; 4025 int clear_filter = 0; 4026 4027 if (func) { 4028 func_g.type = filter_parse_regex(func, len, &func_g.search, 4029 &clear_filter); 4030 func_g.len = strlen(func_g.search); 4031 } 4032 4033 if (mod) { 4034 mod_g.type = filter_parse_regex(mod, strlen(mod), 4035 &mod_g.search, &exclude_mod); 4036 mod_g.len = strlen(mod_g.search); 4037 } 4038 4039 mutex_lock(&ftrace_lock); 4040 4041 if (unlikely(ftrace_disabled)) 4042 goto out_unlock; 4043 4044 if (func_g.type == MATCH_INDEX) { 4045 found = add_rec_by_index(hash, &func_g, clear_filter); 4046 goto out_unlock; 4047 } 4048 4049 do_for_each_ftrace_rec(pg, rec) { 4050 4051 if (rec->flags & FTRACE_FL_DISABLED) 4052 continue; 4053 4054 if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) { 4055 ret = enter_record(hash, rec, clear_filter); 4056 if (ret < 0) { 4057 found = ret; 4058 goto out_unlock; 4059 } 4060 found = 1; 4061 } 4062 } while_for_each_ftrace_rec(); 4063 out_unlock: 4064 mutex_unlock(&ftrace_lock); 4065 4066 return found; 4067 } 4068 4069 static int 4070 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len) 4071 { 4072 return match_records(hash, buff, len, NULL); 4073 } 4074 4075 static void ftrace_ops_update_code(struct ftrace_ops *ops, 4076 struct ftrace_ops_hash *old_hash) 4077 { 4078 struct ftrace_ops *op; 4079 4080 if (!ftrace_enabled) 4081 return; 4082 4083 if (ops->flags & FTRACE_OPS_FL_ENABLED) { 4084 ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash); 4085 return; 4086 } 4087 4088 /* 4089 * If this is the shared global_ops filter, then we need to 4090 * check if there is another ops that shares it, is enabled. 4091 * If so, we still need to run the modify code. 4092 */ 4093 if (ops->func_hash != &global_ops.local_hash) 4094 return; 4095 4096 do_for_each_ftrace_op(op, ftrace_ops_list) { 4097 if (op->func_hash == &global_ops.local_hash && 4098 op->flags & FTRACE_OPS_FL_ENABLED) { 4099 ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash); 4100 /* Only need to do this once */ 4101 return; 4102 } 4103 } while_for_each_ftrace_op(op); 4104 } 4105 4106 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops, 4107 struct ftrace_hash **orig_hash, 4108 struct ftrace_hash *hash, 4109 int enable) 4110 { 4111 struct ftrace_ops_hash old_hash_ops; 4112 struct ftrace_hash *old_hash; 4113 int ret; 4114 4115 old_hash = *orig_hash; 4116 old_hash_ops.filter_hash = ops->func_hash->filter_hash; 4117 old_hash_ops.notrace_hash = ops->func_hash->notrace_hash; 4118 ret = ftrace_hash_move(ops, enable, orig_hash, hash); 4119 if (!ret) { 4120 ftrace_ops_update_code(ops, &old_hash_ops); 4121 free_ftrace_hash_rcu(old_hash); 4122 } 4123 return ret; 4124 } 4125 4126 static bool module_exists(const char *module) 4127 { 4128 /* All modules have the symbol __this_module */ 4129 static const char this_mod[] = "__this_module"; 4130 char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2]; 4131 unsigned long val; 4132 int n; 4133 4134 n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod); 4135 4136 if (n > sizeof(modname) - 1) 4137 return false; 4138 4139 val = module_kallsyms_lookup_name(modname); 4140 return val != 0; 4141 } 4142 4143 static int cache_mod(struct trace_array *tr, 4144 const char *func, char *module, int enable) 4145 { 4146 struct ftrace_mod_load *ftrace_mod, *n; 4147 struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace; 4148 int ret; 4149 4150 mutex_lock(&ftrace_lock); 4151 4152 /* We do not cache inverse filters */ 4153 if (func[0] == '!') { 4154 func++; 4155 ret = -EINVAL; 4156 4157 /* Look to remove this hash */ 4158 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4159 if (strcmp(ftrace_mod->module, module) != 0) 4160 continue; 4161 4162 /* no func matches all */ 4163 if (strcmp(func, "*") == 0 || 4164 (ftrace_mod->func && 4165 strcmp(ftrace_mod->func, func) == 0)) { 4166 ret = 0; 4167 free_ftrace_mod(ftrace_mod); 4168 continue; 4169 } 4170 } 4171 goto out; 4172 } 4173 4174 ret = -EINVAL; 4175 /* We only care about modules that have not been loaded yet */ 4176 if (module_exists(module)) 4177 goto out; 4178 4179 /* Save this string off, and execute it when the module is loaded */ 4180 ret = ftrace_add_mod(tr, func, module, enable); 4181 out: 4182 mutex_unlock(&ftrace_lock); 4183 4184 return ret; 4185 } 4186 4187 static int 4188 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 4189 int reset, int enable); 4190 4191 #ifdef CONFIG_MODULES 4192 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops, 4193 char *mod, bool enable) 4194 { 4195 struct ftrace_mod_load *ftrace_mod, *n; 4196 struct ftrace_hash **orig_hash, *new_hash; 4197 LIST_HEAD(process_mods); 4198 char *func; 4199 4200 mutex_lock(&ops->func_hash->regex_lock); 4201 4202 if (enable) 4203 orig_hash = &ops->func_hash->filter_hash; 4204 else 4205 orig_hash = &ops->func_hash->notrace_hash; 4206 4207 new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, 4208 *orig_hash); 4209 if (!new_hash) 4210 goto out; /* warn? */ 4211 4212 mutex_lock(&ftrace_lock); 4213 4214 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4215 4216 if (strcmp(ftrace_mod->module, mod) != 0) 4217 continue; 4218 4219 if (ftrace_mod->func) 4220 func = kstrdup(ftrace_mod->func, GFP_KERNEL); 4221 else 4222 func = kstrdup("*", GFP_KERNEL); 4223 4224 if (!func) /* warn? */ 4225 continue; 4226 4227 list_move(&ftrace_mod->list, &process_mods); 4228 4229 /* Use the newly allocated func, as it may be "*" */ 4230 kfree(ftrace_mod->func); 4231 ftrace_mod->func = func; 4232 } 4233 4234 mutex_unlock(&ftrace_lock); 4235 4236 list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) { 4237 4238 func = ftrace_mod->func; 4239 4240 /* Grabs ftrace_lock, which is why we have this extra step */ 4241 match_records(new_hash, func, strlen(func), mod); 4242 free_ftrace_mod(ftrace_mod); 4243 } 4244 4245 if (enable && list_empty(head)) 4246 new_hash->flags &= ~FTRACE_HASH_FL_MOD; 4247 4248 mutex_lock(&ftrace_lock); 4249 4250 ftrace_hash_move_and_update_ops(ops, orig_hash, 4251 new_hash, enable); 4252 mutex_unlock(&ftrace_lock); 4253 4254 out: 4255 mutex_unlock(&ops->func_hash->regex_lock); 4256 4257 free_ftrace_hash(new_hash); 4258 } 4259 4260 static void process_cached_mods(const char *mod_name) 4261 { 4262 struct trace_array *tr; 4263 char *mod; 4264 4265 mod = kstrdup(mod_name, GFP_KERNEL); 4266 if (!mod) 4267 return; 4268 4269 mutex_lock(&trace_types_lock); 4270 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 4271 if (!list_empty(&tr->mod_trace)) 4272 process_mod_list(&tr->mod_trace, tr->ops, mod, true); 4273 if (!list_empty(&tr->mod_notrace)) 4274 process_mod_list(&tr->mod_notrace, tr->ops, mod, false); 4275 } 4276 mutex_unlock(&trace_types_lock); 4277 4278 kfree(mod); 4279 } 4280 #endif 4281 4282 /* 4283 * We register the module command as a template to show others how 4284 * to register the a command as well. 4285 */ 4286 4287 static int 4288 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash, 4289 char *func_orig, char *cmd, char *module, int enable) 4290 { 4291 char *func; 4292 int ret; 4293 4294 /* match_records() modifies func, and we need the original */ 4295 func = kstrdup(func_orig, GFP_KERNEL); 4296 if (!func) 4297 return -ENOMEM; 4298 4299 /* 4300 * cmd == 'mod' because we only registered this func 4301 * for the 'mod' ftrace_func_command. 4302 * But if you register one func with multiple commands, 4303 * you can tell which command was used by the cmd 4304 * parameter. 4305 */ 4306 ret = match_records(hash, func, strlen(func), module); 4307 kfree(func); 4308 4309 if (!ret) 4310 return cache_mod(tr, func_orig, module, enable); 4311 if (ret < 0) 4312 return ret; 4313 return 0; 4314 } 4315 4316 static struct ftrace_func_command ftrace_mod_cmd = { 4317 .name = "mod", 4318 .func = ftrace_mod_callback, 4319 }; 4320 4321 static int __init ftrace_mod_cmd_init(void) 4322 { 4323 return register_ftrace_command(&ftrace_mod_cmd); 4324 } 4325 core_initcall(ftrace_mod_cmd_init); 4326 4327 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip, 4328 struct ftrace_ops *op, struct ftrace_regs *fregs) 4329 { 4330 struct ftrace_probe_ops *probe_ops; 4331 struct ftrace_func_probe *probe; 4332 4333 probe = container_of(op, struct ftrace_func_probe, ops); 4334 probe_ops = probe->probe_ops; 4335 4336 /* 4337 * Disable preemption for these calls to prevent a RCU grace 4338 * period. This syncs the hash iteration and freeing of items 4339 * on the hash. rcu_read_lock is too dangerous here. 4340 */ 4341 preempt_disable_notrace(); 4342 probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data); 4343 preempt_enable_notrace(); 4344 } 4345 4346 struct ftrace_func_map { 4347 struct ftrace_func_entry entry; 4348 void *data; 4349 }; 4350 4351 struct ftrace_func_mapper { 4352 struct ftrace_hash hash; 4353 }; 4354 4355 /** 4356 * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper 4357 * 4358 * Returns a ftrace_func_mapper descriptor that can be used to map ips to data. 4359 */ 4360 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void) 4361 { 4362 struct ftrace_hash *hash; 4363 4364 /* 4365 * The mapper is simply a ftrace_hash, but since the entries 4366 * in the hash are not ftrace_func_entry type, we define it 4367 * as a separate structure. 4368 */ 4369 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4370 return (struct ftrace_func_mapper *)hash; 4371 } 4372 4373 /** 4374 * ftrace_func_mapper_find_ip - Find some data mapped to an ip 4375 * @mapper: The mapper that has the ip maps 4376 * @ip: the instruction pointer to find the data for 4377 * 4378 * Returns the data mapped to @ip if found otherwise NULL. The return 4379 * is actually the address of the mapper data pointer. The address is 4380 * returned for use cases where the data is no bigger than a long, and 4381 * the user can use the data pointer as its data instead of having to 4382 * allocate more memory for the reference. 4383 */ 4384 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper, 4385 unsigned long ip) 4386 { 4387 struct ftrace_func_entry *entry; 4388 struct ftrace_func_map *map; 4389 4390 entry = ftrace_lookup_ip(&mapper->hash, ip); 4391 if (!entry) 4392 return NULL; 4393 4394 map = (struct ftrace_func_map *)entry; 4395 return &map->data; 4396 } 4397 4398 /** 4399 * ftrace_func_mapper_add_ip - Map some data to an ip 4400 * @mapper: The mapper that has the ip maps 4401 * @ip: The instruction pointer address to map @data to 4402 * @data: The data to map to @ip 4403 * 4404 * Returns 0 on success otherwise an error. 4405 */ 4406 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper, 4407 unsigned long ip, void *data) 4408 { 4409 struct ftrace_func_entry *entry; 4410 struct ftrace_func_map *map; 4411 4412 entry = ftrace_lookup_ip(&mapper->hash, ip); 4413 if (entry) 4414 return -EBUSY; 4415 4416 map = kmalloc(sizeof(*map), GFP_KERNEL); 4417 if (!map) 4418 return -ENOMEM; 4419 4420 map->entry.ip = ip; 4421 map->data = data; 4422 4423 __add_hash_entry(&mapper->hash, &map->entry); 4424 4425 return 0; 4426 } 4427 4428 /** 4429 * ftrace_func_mapper_remove_ip - Remove an ip from the mapping 4430 * @mapper: The mapper that has the ip maps 4431 * @ip: The instruction pointer address to remove the data from 4432 * 4433 * Returns the data if it is found, otherwise NULL. 4434 * Note, if the data pointer is used as the data itself, (see 4435 * ftrace_func_mapper_find_ip(), then the return value may be meaningless, 4436 * if the data pointer was set to zero. 4437 */ 4438 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper, 4439 unsigned long ip) 4440 { 4441 struct ftrace_func_entry *entry; 4442 struct ftrace_func_map *map; 4443 void *data; 4444 4445 entry = ftrace_lookup_ip(&mapper->hash, ip); 4446 if (!entry) 4447 return NULL; 4448 4449 map = (struct ftrace_func_map *)entry; 4450 data = map->data; 4451 4452 remove_hash_entry(&mapper->hash, entry); 4453 kfree(entry); 4454 4455 return data; 4456 } 4457 4458 /** 4459 * free_ftrace_func_mapper - free a mapping of ips and data 4460 * @mapper: The mapper that has the ip maps 4461 * @free_func: A function to be called on each data item. 4462 * 4463 * This is used to free the function mapper. The @free_func is optional 4464 * and can be used if the data needs to be freed as well. 4465 */ 4466 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper, 4467 ftrace_mapper_func free_func) 4468 { 4469 struct ftrace_func_entry *entry; 4470 struct ftrace_func_map *map; 4471 struct hlist_head *hhd; 4472 int size, i; 4473 4474 if (!mapper) 4475 return; 4476 4477 if (free_func && mapper->hash.count) { 4478 size = 1 << mapper->hash.size_bits; 4479 for (i = 0; i < size; i++) { 4480 hhd = &mapper->hash.buckets[i]; 4481 hlist_for_each_entry(entry, hhd, hlist) { 4482 map = (struct ftrace_func_map *)entry; 4483 free_func(map); 4484 } 4485 } 4486 } 4487 free_ftrace_hash(&mapper->hash); 4488 } 4489 4490 static void release_probe(struct ftrace_func_probe *probe) 4491 { 4492 struct ftrace_probe_ops *probe_ops; 4493 4494 mutex_lock(&ftrace_lock); 4495 4496 WARN_ON(probe->ref <= 0); 4497 4498 /* Subtract the ref that was used to protect this instance */ 4499 probe->ref--; 4500 4501 if (!probe->ref) { 4502 probe_ops = probe->probe_ops; 4503 /* 4504 * Sending zero as ip tells probe_ops to free 4505 * the probe->data itself 4506 */ 4507 if (probe_ops->free) 4508 probe_ops->free(probe_ops, probe->tr, 0, probe->data); 4509 list_del(&probe->list); 4510 kfree(probe); 4511 } 4512 mutex_unlock(&ftrace_lock); 4513 } 4514 4515 static void acquire_probe_locked(struct ftrace_func_probe *probe) 4516 { 4517 /* 4518 * Add one ref to keep it from being freed when releasing the 4519 * ftrace_lock mutex. 4520 */ 4521 probe->ref++; 4522 } 4523 4524 int 4525 register_ftrace_function_probe(char *glob, struct trace_array *tr, 4526 struct ftrace_probe_ops *probe_ops, 4527 void *data) 4528 { 4529 struct ftrace_func_entry *entry; 4530 struct ftrace_func_probe *probe; 4531 struct ftrace_hash **orig_hash; 4532 struct ftrace_hash *old_hash; 4533 struct ftrace_hash *hash; 4534 int count = 0; 4535 int size; 4536 int ret; 4537 int i; 4538 4539 if (WARN_ON(!tr)) 4540 return -EINVAL; 4541 4542 /* We do not support '!' for function probes */ 4543 if (WARN_ON(glob[0] == '!')) 4544 return -EINVAL; 4545 4546 4547 mutex_lock(&ftrace_lock); 4548 /* Check if the probe_ops is already registered */ 4549 list_for_each_entry(probe, &tr->func_probes, list) { 4550 if (probe->probe_ops == probe_ops) 4551 break; 4552 } 4553 if (&probe->list == &tr->func_probes) { 4554 probe = kzalloc(sizeof(*probe), GFP_KERNEL); 4555 if (!probe) { 4556 mutex_unlock(&ftrace_lock); 4557 return -ENOMEM; 4558 } 4559 probe->probe_ops = probe_ops; 4560 probe->ops.func = function_trace_probe_call; 4561 probe->tr = tr; 4562 ftrace_ops_init(&probe->ops); 4563 list_add(&probe->list, &tr->func_probes); 4564 } 4565 4566 acquire_probe_locked(probe); 4567 4568 mutex_unlock(&ftrace_lock); 4569 4570 /* 4571 * Note, there's a small window here that the func_hash->filter_hash 4572 * may be NULL or empty. Need to be careful when reading the loop. 4573 */ 4574 mutex_lock(&probe->ops.func_hash->regex_lock); 4575 4576 orig_hash = &probe->ops.func_hash->filter_hash; 4577 old_hash = *orig_hash; 4578 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4579 4580 if (!hash) { 4581 ret = -ENOMEM; 4582 goto out; 4583 } 4584 4585 ret = ftrace_match_records(hash, glob, strlen(glob)); 4586 4587 /* Nothing found? */ 4588 if (!ret) 4589 ret = -EINVAL; 4590 4591 if (ret < 0) 4592 goto out; 4593 4594 size = 1 << hash->size_bits; 4595 for (i = 0; i < size; i++) { 4596 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4597 if (ftrace_lookup_ip(old_hash, entry->ip)) 4598 continue; 4599 /* 4600 * The caller might want to do something special 4601 * for each function we find. We call the callback 4602 * to give the caller an opportunity to do so. 4603 */ 4604 if (probe_ops->init) { 4605 ret = probe_ops->init(probe_ops, tr, 4606 entry->ip, data, 4607 &probe->data); 4608 if (ret < 0) { 4609 if (probe_ops->free && count) 4610 probe_ops->free(probe_ops, tr, 4611 0, probe->data); 4612 probe->data = NULL; 4613 goto out; 4614 } 4615 } 4616 count++; 4617 } 4618 } 4619 4620 mutex_lock(&ftrace_lock); 4621 4622 if (!count) { 4623 /* Nothing was added? */ 4624 ret = -EINVAL; 4625 goto out_unlock; 4626 } 4627 4628 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4629 hash, 1); 4630 if (ret < 0) 4631 goto err_unlock; 4632 4633 /* One ref for each new function traced */ 4634 probe->ref += count; 4635 4636 if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED)) 4637 ret = ftrace_startup(&probe->ops, 0); 4638 4639 out_unlock: 4640 mutex_unlock(&ftrace_lock); 4641 4642 if (!ret) 4643 ret = count; 4644 out: 4645 mutex_unlock(&probe->ops.func_hash->regex_lock); 4646 free_ftrace_hash(hash); 4647 4648 release_probe(probe); 4649 4650 return ret; 4651 4652 err_unlock: 4653 if (!probe_ops->free || !count) 4654 goto out_unlock; 4655 4656 /* Failed to do the move, need to call the free functions */ 4657 for (i = 0; i < size; i++) { 4658 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4659 if (ftrace_lookup_ip(old_hash, entry->ip)) 4660 continue; 4661 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4662 } 4663 } 4664 goto out_unlock; 4665 } 4666 4667 int 4668 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr, 4669 struct ftrace_probe_ops *probe_ops) 4670 { 4671 struct ftrace_ops_hash old_hash_ops; 4672 struct ftrace_func_entry *entry; 4673 struct ftrace_func_probe *probe; 4674 struct ftrace_glob func_g; 4675 struct ftrace_hash **orig_hash; 4676 struct ftrace_hash *old_hash; 4677 struct ftrace_hash *hash = NULL; 4678 struct hlist_node *tmp; 4679 struct hlist_head hhd; 4680 char str[KSYM_SYMBOL_LEN]; 4681 int count = 0; 4682 int i, ret = -ENODEV; 4683 int size; 4684 4685 if (!glob || !strlen(glob) || !strcmp(glob, "*")) 4686 func_g.search = NULL; 4687 else { 4688 int not; 4689 4690 func_g.type = filter_parse_regex(glob, strlen(glob), 4691 &func_g.search, ¬); 4692 func_g.len = strlen(func_g.search); 4693 4694 /* we do not support '!' for function probes */ 4695 if (WARN_ON(not)) 4696 return -EINVAL; 4697 } 4698 4699 mutex_lock(&ftrace_lock); 4700 /* Check if the probe_ops is already registered */ 4701 list_for_each_entry(probe, &tr->func_probes, list) { 4702 if (probe->probe_ops == probe_ops) 4703 break; 4704 } 4705 if (&probe->list == &tr->func_probes) 4706 goto err_unlock_ftrace; 4707 4708 ret = -EINVAL; 4709 if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED)) 4710 goto err_unlock_ftrace; 4711 4712 acquire_probe_locked(probe); 4713 4714 mutex_unlock(&ftrace_lock); 4715 4716 mutex_lock(&probe->ops.func_hash->regex_lock); 4717 4718 orig_hash = &probe->ops.func_hash->filter_hash; 4719 old_hash = *orig_hash; 4720 4721 if (ftrace_hash_empty(old_hash)) 4722 goto out_unlock; 4723 4724 old_hash_ops.filter_hash = old_hash; 4725 /* Probes only have filters */ 4726 old_hash_ops.notrace_hash = NULL; 4727 4728 ret = -ENOMEM; 4729 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4730 if (!hash) 4731 goto out_unlock; 4732 4733 INIT_HLIST_HEAD(&hhd); 4734 4735 size = 1 << hash->size_bits; 4736 for (i = 0; i < size; i++) { 4737 hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) { 4738 4739 if (func_g.search) { 4740 kallsyms_lookup(entry->ip, NULL, NULL, 4741 NULL, str); 4742 if (!ftrace_match(str, &func_g)) 4743 continue; 4744 } 4745 count++; 4746 remove_hash_entry(hash, entry); 4747 hlist_add_head(&entry->hlist, &hhd); 4748 } 4749 } 4750 4751 /* Nothing found? */ 4752 if (!count) { 4753 ret = -EINVAL; 4754 goto out_unlock; 4755 } 4756 4757 mutex_lock(&ftrace_lock); 4758 4759 WARN_ON(probe->ref < count); 4760 4761 probe->ref -= count; 4762 4763 if (ftrace_hash_empty(hash)) 4764 ftrace_shutdown(&probe->ops, 0); 4765 4766 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4767 hash, 1); 4768 4769 /* still need to update the function call sites */ 4770 if (ftrace_enabled && !ftrace_hash_empty(hash)) 4771 ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS, 4772 &old_hash_ops); 4773 synchronize_rcu(); 4774 4775 hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) { 4776 hlist_del(&entry->hlist); 4777 if (probe_ops->free) 4778 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4779 kfree(entry); 4780 } 4781 mutex_unlock(&ftrace_lock); 4782 4783 out_unlock: 4784 mutex_unlock(&probe->ops.func_hash->regex_lock); 4785 free_ftrace_hash(hash); 4786 4787 release_probe(probe); 4788 4789 return ret; 4790 4791 err_unlock_ftrace: 4792 mutex_unlock(&ftrace_lock); 4793 return ret; 4794 } 4795 4796 void clear_ftrace_function_probes(struct trace_array *tr) 4797 { 4798 struct ftrace_func_probe *probe, *n; 4799 4800 list_for_each_entry_safe(probe, n, &tr->func_probes, list) 4801 unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops); 4802 } 4803 4804 static LIST_HEAD(ftrace_commands); 4805 static DEFINE_MUTEX(ftrace_cmd_mutex); 4806 4807 /* 4808 * Currently we only register ftrace commands from __init, so mark this 4809 * __init too. 4810 */ 4811 __init int register_ftrace_command(struct ftrace_func_command *cmd) 4812 { 4813 struct ftrace_func_command *p; 4814 int ret = 0; 4815 4816 mutex_lock(&ftrace_cmd_mutex); 4817 list_for_each_entry(p, &ftrace_commands, list) { 4818 if (strcmp(cmd->name, p->name) == 0) { 4819 ret = -EBUSY; 4820 goto out_unlock; 4821 } 4822 } 4823 list_add(&cmd->list, &ftrace_commands); 4824 out_unlock: 4825 mutex_unlock(&ftrace_cmd_mutex); 4826 4827 return ret; 4828 } 4829 4830 /* 4831 * Currently we only unregister ftrace commands from __init, so mark 4832 * this __init too. 4833 */ 4834 __init int unregister_ftrace_command(struct ftrace_func_command *cmd) 4835 { 4836 struct ftrace_func_command *p, *n; 4837 int ret = -ENODEV; 4838 4839 mutex_lock(&ftrace_cmd_mutex); 4840 list_for_each_entry_safe(p, n, &ftrace_commands, list) { 4841 if (strcmp(cmd->name, p->name) == 0) { 4842 ret = 0; 4843 list_del_init(&p->list); 4844 goto out_unlock; 4845 } 4846 } 4847 out_unlock: 4848 mutex_unlock(&ftrace_cmd_mutex); 4849 4850 return ret; 4851 } 4852 4853 static int ftrace_process_regex(struct ftrace_iterator *iter, 4854 char *buff, int len, int enable) 4855 { 4856 struct ftrace_hash *hash = iter->hash; 4857 struct trace_array *tr = iter->ops->private; 4858 char *func, *command, *next = buff; 4859 struct ftrace_func_command *p; 4860 int ret = -EINVAL; 4861 4862 func = strsep(&next, ":"); 4863 4864 if (!next) { 4865 ret = ftrace_match_records(hash, func, len); 4866 if (!ret) 4867 ret = -EINVAL; 4868 if (ret < 0) 4869 return ret; 4870 return 0; 4871 } 4872 4873 /* command found */ 4874 4875 command = strsep(&next, ":"); 4876 4877 mutex_lock(&ftrace_cmd_mutex); 4878 list_for_each_entry(p, &ftrace_commands, list) { 4879 if (strcmp(p->name, command) == 0) { 4880 ret = p->func(tr, hash, func, command, next, enable); 4881 goto out_unlock; 4882 } 4883 } 4884 out_unlock: 4885 mutex_unlock(&ftrace_cmd_mutex); 4886 4887 return ret; 4888 } 4889 4890 static ssize_t 4891 ftrace_regex_write(struct file *file, const char __user *ubuf, 4892 size_t cnt, loff_t *ppos, int enable) 4893 { 4894 struct ftrace_iterator *iter; 4895 struct trace_parser *parser; 4896 ssize_t ret, read; 4897 4898 if (!cnt) 4899 return 0; 4900 4901 if (file->f_mode & FMODE_READ) { 4902 struct seq_file *m = file->private_data; 4903 iter = m->private; 4904 } else 4905 iter = file->private_data; 4906 4907 if (unlikely(ftrace_disabled)) 4908 return -ENODEV; 4909 4910 /* iter->hash is a local copy, so we don't need regex_lock */ 4911 4912 parser = &iter->parser; 4913 read = trace_get_user(parser, ubuf, cnt, ppos); 4914 4915 if (read >= 0 && trace_parser_loaded(parser) && 4916 !trace_parser_cont(parser)) { 4917 ret = ftrace_process_regex(iter, parser->buffer, 4918 parser->idx, enable); 4919 trace_parser_clear(parser); 4920 if (ret < 0) 4921 goto out; 4922 } 4923 4924 ret = read; 4925 out: 4926 return ret; 4927 } 4928 4929 ssize_t 4930 ftrace_filter_write(struct file *file, const char __user *ubuf, 4931 size_t cnt, loff_t *ppos) 4932 { 4933 return ftrace_regex_write(file, ubuf, cnt, ppos, 1); 4934 } 4935 4936 ssize_t 4937 ftrace_notrace_write(struct file *file, const char __user *ubuf, 4938 size_t cnt, loff_t *ppos) 4939 { 4940 return ftrace_regex_write(file, ubuf, cnt, ppos, 0); 4941 } 4942 4943 static int 4944 __ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove) 4945 { 4946 struct ftrace_func_entry *entry; 4947 4948 ip = ftrace_location(ip); 4949 if (!ip) 4950 return -EINVAL; 4951 4952 if (remove) { 4953 entry = ftrace_lookup_ip(hash, ip); 4954 if (!entry) 4955 return -ENOENT; 4956 free_hash_entry(hash, entry); 4957 return 0; 4958 } 4959 4960 return add_hash_entry(hash, ip); 4961 } 4962 4963 static int 4964 ftrace_match_addr(struct ftrace_hash *hash, unsigned long *ips, 4965 unsigned int cnt, int remove) 4966 { 4967 unsigned int i; 4968 int err; 4969 4970 for (i = 0; i < cnt; i++) { 4971 err = __ftrace_match_addr(hash, ips[i], remove); 4972 if (err) { 4973 /* 4974 * This expects the @hash is a temporary hash and if this 4975 * fails the caller must free the @hash. 4976 */ 4977 return err; 4978 } 4979 } 4980 return 0; 4981 } 4982 4983 static int 4984 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len, 4985 unsigned long *ips, unsigned int cnt, 4986 int remove, int reset, int enable) 4987 { 4988 struct ftrace_hash **orig_hash; 4989 struct ftrace_hash *hash; 4990 int ret; 4991 4992 if (unlikely(ftrace_disabled)) 4993 return -ENODEV; 4994 4995 mutex_lock(&ops->func_hash->regex_lock); 4996 4997 if (enable) 4998 orig_hash = &ops->func_hash->filter_hash; 4999 else 5000 orig_hash = &ops->func_hash->notrace_hash; 5001 5002 if (reset) 5003 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 5004 else 5005 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash); 5006 5007 if (!hash) { 5008 ret = -ENOMEM; 5009 goto out_regex_unlock; 5010 } 5011 5012 if (buf && !ftrace_match_records(hash, buf, len)) { 5013 ret = -EINVAL; 5014 goto out_regex_unlock; 5015 } 5016 if (ips) { 5017 ret = ftrace_match_addr(hash, ips, cnt, remove); 5018 if (ret < 0) 5019 goto out_regex_unlock; 5020 } 5021 5022 mutex_lock(&ftrace_lock); 5023 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable); 5024 mutex_unlock(&ftrace_lock); 5025 5026 out_regex_unlock: 5027 mutex_unlock(&ops->func_hash->regex_lock); 5028 5029 free_ftrace_hash(hash); 5030 return ret; 5031 } 5032 5033 static int 5034 ftrace_set_addr(struct ftrace_ops *ops, unsigned long *ips, unsigned int cnt, 5035 int remove, int reset, int enable) 5036 { 5037 return ftrace_set_hash(ops, NULL, 0, ips, cnt, remove, reset, enable); 5038 } 5039 5040 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 5041 5042 struct ftrace_direct_func { 5043 struct list_head next; 5044 unsigned long addr; 5045 int count; 5046 }; 5047 5048 static LIST_HEAD(ftrace_direct_funcs); 5049 5050 /** 5051 * ftrace_find_direct_func - test an address if it is a registered direct caller 5052 * @addr: The address of a registered direct caller 5053 * 5054 * This searches to see if a ftrace direct caller has been registered 5055 * at a specific address, and if so, it returns a descriptor for it. 5056 * 5057 * This can be used by architecture code to see if an address is 5058 * a direct caller (trampoline) attached to a fentry/mcount location. 5059 * This is useful for the function_graph tracer, as it may need to 5060 * do adjustments if it traced a location that also has a direct 5061 * trampoline attached to it. 5062 */ 5063 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr) 5064 { 5065 struct ftrace_direct_func *entry; 5066 bool found = false; 5067 5068 /* May be called by fgraph trampoline (protected by rcu tasks) */ 5069 list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) { 5070 if (entry->addr == addr) { 5071 found = true; 5072 break; 5073 } 5074 } 5075 if (found) 5076 return entry; 5077 5078 return NULL; 5079 } 5080 5081 static struct ftrace_direct_func *ftrace_alloc_direct_func(unsigned long addr) 5082 { 5083 struct ftrace_direct_func *direct; 5084 5085 direct = kmalloc(sizeof(*direct), GFP_KERNEL); 5086 if (!direct) 5087 return NULL; 5088 direct->addr = addr; 5089 direct->count = 0; 5090 list_add_rcu(&direct->next, &ftrace_direct_funcs); 5091 ftrace_direct_func_count++; 5092 return direct; 5093 } 5094 5095 /** 5096 * register_ftrace_direct - Call a custom trampoline directly 5097 * @ip: The address of the nop at the beginning of a function 5098 * @addr: The address of the trampoline to call at @ip 5099 * 5100 * This is used to connect a direct call from the nop location (@ip) 5101 * at the start of ftrace traced functions. The location that it calls 5102 * (@addr) must be able to handle a direct call, and save the parameters 5103 * of the function being traced, and restore them (or inject new ones 5104 * if needed), before returning. 5105 * 5106 * Returns: 5107 * 0 on success 5108 * -EBUSY - Another direct function is already attached (there can be only one) 5109 * -ENODEV - @ip does not point to a ftrace nop location (or not supported) 5110 * -ENOMEM - There was an allocation failure. 5111 */ 5112 int register_ftrace_direct(unsigned long ip, unsigned long addr) 5113 { 5114 struct ftrace_direct_func *direct; 5115 struct ftrace_func_entry *entry; 5116 struct ftrace_hash *free_hash = NULL; 5117 struct dyn_ftrace *rec; 5118 int ret = -ENODEV; 5119 5120 mutex_lock(&direct_mutex); 5121 5122 ip = ftrace_location(ip); 5123 if (!ip) 5124 goto out_unlock; 5125 5126 /* See if there's a direct function at @ip already */ 5127 ret = -EBUSY; 5128 if (ftrace_find_rec_direct(ip)) 5129 goto out_unlock; 5130 5131 ret = -ENODEV; 5132 rec = lookup_rec(ip, ip); 5133 if (!rec) 5134 goto out_unlock; 5135 5136 /* 5137 * Check if the rec says it has a direct call but we didn't 5138 * find one earlier? 5139 */ 5140 if (WARN_ON(rec->flags & FTRACE_FL_DIRECT)) 5141 goto out_unlock; 5142 5143 /* Make sure the ip points to the exact record */ 5144 if (ip != rec->ip) { 5145 ip = rec->ip; 5146 /* Need to check this ip for a direct. */ 5147 if (ftrace_find_rec_direct(ip)) 5148 goto out_unlock; 5149 } 5150 5151 ret = -ENOMEM; 5152 direct = ftrace_find_direct_func(addr); 5153 if (!direct) { 5154 direct = ftrace_alloc_direct_func(addr); 5155 if (!direct) 5156 goto out_unlock; 5157 } 5158 5159 entry = ftrace_add_rec_direct(ip, addr, &free_hash); 5160 if (!entry) 5161 goto out_unlock; 5162 5163 ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0); 5164 if (ret) 5165 remove_hash_entry(direct_functions, entry); 5166 5167 if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) { 5168 ret = register_ftrace_function(&direct_ops); 5169 if (ret) 5170 ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5171 } 5172 5173 if (ret) { 5174 kfree(entry); 5175 if (!direct->count) { 5176 list_del_rcu(&direct->next); 5177 synchronize_rcu_tasks(); 5178 kfree(direct); 5179 if (free_hash) 5180 free_ftrace_hash(free_hash); 5181 free_hash = NULL; 5182 ftrace_direct_func_count--; 5183 } 5184 } else { 5185 direct->count++; 5186 } 5187 out_unlock: 5188 mutex_unlock(&direct_mutex); 5189 5190 if (free_hash) { 5191 synchronize_rcu_tasks(); 5192 free_ftrace_hash(free_hash); 5193 } 5194 5195 return ret; 5196 } 5197 EXPORT_SYMBOL_GPL(register_ftrace_direct); 5198 5199 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip, 5200 struct dyn_ftrace **recp) 5201 { 5202 struct ftrace_func_entry *entry; 5203 struct dyn_ftrace *rec; 5204 5205 rec = lookup_rec(*ip, *ip); 5206 if (!rec) 5207 return NULL; 5208 5209 entry = __ftrace_lookup_ip(direct_functions, rec->ip); 5210 if (!entry) { 5211 WARN_ON(rec->flags & FTRACE_FL_DIRECT); 5212 return NULL; 5213 } 5214 5215 WARN_ON(!(rec->flags & FTRACE_FL_DIRECT)); 5216 5217 /* Passed in ip just needs to be on the call site */ 5218 *ip = rec->ip; 5219 5220 if (recp) 5221 *recp = rec; 5222 5223 return entry; 5224 } 5225 5226 int unregister_ftrace_direct(unsigned long ip, unsigned long addr) 5227 { 5228 struct ftrace_direct_func *direct; 5229 struct ftrace_func_entry *entry; 5230 struct ftrace_hash *hash; 5231 int ret = -ENODEV; 5232 5233 mutex_lock(&direct_mutex); 5234 5235 ip = ftrace_location(ip); 5236 if (!ip) 5237 goto out_unlock; 5238 5239 entry = find_direct_entry(&ip, NULL); 5240 if (!entry) 5241 goto out_unlock; 5242 5243 hash = direct_ops.func_hash->filter_hash; 5244 if (hash->count == 1) 5245 unregister_ftrace_function(&direct_ops); 5246 5247 ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5248 5249 WARN_ON(ret); 5250 5251 remove_hash_entry(direct_functions, entry); 5252 5253 direct = ftrace_find_direct_func(addr); 5254 if (!WARN_ON(!direct)) { 5255 /* This is the good path (see the ! before WARN) */ 5256 direct->count--; 5257 WARN_ON(direct->count < 0); 5258 if (!direct->count) { 5259 list_del_rcu(&direct->next); 5260 synchronize_rcu_tasks(); 5261 kfree(direct); 5262 kfree(entry); 5263 ftrace_direct_func_count--; 5264 } 5265 } 5266 out_unlock: 5267 mutex_unlock(&direct_mutex); 5268 5269 return ret; 5270 } 5271 EXPORT_SYMBOL_GPL(unregister_ftrace_direct); 5272 5273 static struct ftrace_ops stub_ops = { 5274 .func = ftrace_stub, 5275 }; 5276 5277 /** 5278 * ftrace_modify_direct_caller - modify ftrace nop directly 5279 * @entry: The ftrace hash entry of the direct helper for @rec 5280 * @rec: The record representing the function site to patch 5281 * @old_addr: The location that the site at @rec->ip currently calls 5282 * @new_addr: The location that the site at @rec->ip should call 5283 * 5284 * An architecture may overwrite this function to optimize the 5285 * changing of the direct callback on an ftrace nop location. 5286 * This is called with the ftrace_lock mutex held, and no other 5287 * ftrace callbacks are on the associated record (@rec). Thus, 5288 * it is safe to modify the ftrace record, where it should be 5289 * currently calling @old_addr directly, to call @new_addr. 5290 * 5291 * Safety checks should be made to make sure that the code at 5292 * @rec->ip is currently calling @old_addr. And this must 5293 * also update entry->direct to @new_addr. 5294 */ 5295 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry, 5296 struct dyn_ftrace *rec, 5297 unsigned long old_addr, 5298 unsigned long new_addr) 5299 { 5300 unsigned long ip = rec->ip; 5301 int ret; 5302 5303 /* 5304 * The ftrace_lock was used to determine if the record 5305 * had more than one registered user to it. If it did, 5306 * we needed to prevent that from changing to do the quick 5307 * switch. But if it did not (only a direct caller was attached) 5308 * then this function is called. But this function can deal 5309 * with attached callers to the rec that we care about, and 5310 * since this function uses standard ftrace calls that take 5311 * the ftrace_lock mutex, we need to release it. 5312 */ 5313 mutex_unlock(&ftrace_lock); 5314 5315 /* 5316 * By setting a stub function at the same address, we force 5317 * the code to call the iterator and the direct_ops helper. 5318 * This means that @ip does not call the direct call, and 5319 * we can simply modify it. 5320 */ 5321 ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0); 5322 if (ret) 5323 goto out_lock; 5324 5325 ret = register_ftrace_function(&stub_ops); 5326 if (ret) { 5327 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5328 goto out_lock; 5329 } 5330 5331 entry->direct = new_addr; 5332 5333 /* 5334 * By removing the stub, we put back the direct call, calling 5335 * the @new_addr. 5336 */ 5337 unregister_ftrace_function(&stub_ops); 5338 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5339 5340 out_lock: 5341 mutex_lock(&ftrace_lock); 5342 5343 return ret; 5344 } 5345 5346 /** 5347 * modify_ftrace_direct - Modify an existing direct call to call something else 5348 * @ip: The instruction pointer to modify 5349 * @old_addr: The address that the current @ip calls directly 5350 * @new_addr: The address that the @ip should call 5351 * 5352 * This modifies a ftrace direct caller at an instruction pointer without 5353 * having to disable it first. The direct call will switch over to the 5354 * @new_addr without missing anything. 5355 * 5356 * Returns: zero on success. Non zero on error, which includes: 5357 * -ENODEV : the @ip given has no direct caller attached 5358 * -EINVAL : the @old_addr does not match the current direct caller 5359 */ 5360 int modify_ftrace_direct(unsigned long ip, 5361 unsigned long old_addr, unsigned long new_addr) 5362 { 5363 struct ftrace_direct_func *direct, *new_direct = NULL; 5364 struct ftrace_func_entry *entry; 5365 struct dyn_ftrace *rec; 5366 int ret = -ENODEV; 5367 5368 mutex_lock(&direct_mutex); 5369 5370 mutex_lock(&ftrace_lock); 5371 5372 ip = ftrace_location(ip); 5373 if (!ip) 5374 goto out_unlock; 5375 5376 entry = find_direct_entry(&ip, &rec); 5377 if (!entry) 5378 goto out_unlock; 5379 5380 ret = -EINVAL; 5381 if (entry->direct != old_addr) 5382 goto out_unlock; 5383 5384 direct = ftrace_find_direct_func(old_addr); 5385 if (WARN_ON(!direct)) 5386 goto out_unlock; 5387 if (direct->count > 1) { 5388 ret = -ENOMEM; 5389 new_direct = ftrace_alloc_direct_func(new_addr); 5390 if (!new_direct) 5391 goto out_unlock; 5392 direct->count--; 5393 new_direct->count++; 5394 } else { 5395 direct->addr = new_addr; 5396 } 5397 5398 /* 5399 * If there's no other ftrace callback on the rec->ip location, 5400 * then it can be changed directly by the architecture. 5401 * If there is another caller, then we just need to change the 5402 * direct caller helper to point to @new_addr. 5403 */ 5404 if (ftrace_rec_count(rec) == 1) { 5405 ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr); 5406 } else { 5407 entry->direct = new_addr; 5408 ret = 0; 5409 } 5410 5411 if (unlikely(ret && new_direct)) { 5412 direct->count++; 5413 list_del_rcu(&new_direct->next); 5414 synchronize_rcu_tasks(); 5415 kfree(new_direct); 5416 ftrace_direct_func_count--; 5417 } 5418 5419 out_unlock: 5420 mutex_unlock(&ftrace_lock); 5421 mutex_unlock(&direct_mutex); 5422 return ret; 5423 } 5424 EXPORT_SYMBOL_GPL(modify_ftrace_direct); 5425 5426 #define MULTI_FLAGS (FTRACE_OPS_FL_IPMODIFY | FTRACE_OPS_FL_DIRECT | \ 5427 FTRACE_OPS_FL_SAVE_REGS) 5428 5429 static int check_direct_multi(struct ftrace_ops *ops) 5430 { 5431 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) 5432 return -EINVAL; 5433 if ((ops->flags & MULTI_FLAGS) != MULTI_FLAGS) 5434 return -EINVAL; 5435 return 0; 5436 } 5437 5438 static void remove_direct_functions_hash(struct ftrace_hash *hash, unsigned long addr) 5439 { 5440 struct ftrace_func_entry *entry, *del; 5441 int size, i; 5442 5443 size = 1 << hash->size_bits; 5444 for (i = 0; i < size; i++) { 5445 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5446 del = __ftrace_lookup_ip(direct_functions, entry->ip); 5447 if (del && del->direct == addr) { 5448 remove_hash_entry(direct_functions, del); 5449 kfree(del); 5450 } 5451 } 5452 } 5453 } 5454 5455 /** 5456 * register_ftrace_direct_multi - Call a custom trampoline directly 5457 * for multiple functions registered in @ops 5458 * @ops: The address of the struct ftrace_ops object 5459 * @addr: The address of the trampoline to call at @ops functions 5460 * 5461 * This is used to connect a direct calls to @addr from the nop locations 5462 * of the functions registered in @ops (with by ftrace_set_filter_ip 5463 * function). 5464 * 5465 * The location that it calls (@addr) must be able to handle a direct call, 5466 * and save the parameters of the function being traced, and restore them 5467 * (or inject new ones if needed), before returning. 5468 * 5469 * Returns: 5470 * 0 on success 5471 * -EINVAL - The @ops object was already registered with this call or 5472 * when there are no functions in @ops object. 5473 * -EBUSY - Another direct function is already attached (there can be only one) 5474 * -ENODEV - @ip does not point to a ftrace nop location (or not supported) 5475 * -ENOMEM - There was an allocation failure. 5476 */ 5477 int register_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr) 5478 { 5479 struct ftrace_hash *hash, *free_hash = NULL; 5480 struct ftrace_func_entry *entry, *new; 5481 int err = -EBUSY, size, i; 5482 5483 if (ops->func || ops->trampoline) 5484 return -EINVAL; 5485 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) 5486 return -EINVAL; 5487 if (ops->flags & FTRACE_OPS_FL_ENABLED) 5488 return -EINVAL; 5489 5490 hash = ops->func_hash->filter_hash; 5491 if (ftrace_hash_empty(hash)) 5492 return -EINVAL; 5493 5494 mutex_lock(&direct_mutex); 5495 5496 /* Make sure requested entries are not already registered.. */ 5497 size = 1 << hash->size_bits; 5498 for (i = 0; i < size; i++) { 5499 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5500 if (ftrace_find_rec_direct(entry->ip)) 5501 goto out_unlock; 5502 } 5503 } 5504 5505 /* ... and insert them to direct_functions hash. */ 5506 err = -ENOMEM; 5507 for (i = 0; i < size; i++) { 5508 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5509 new = ftrace_add_rec_direct(entry->ip, addr, &free_hash); 5510 if (!new) 5511 goto out_remove; 5512 entry->direct = addr; 5513 } 5514 } 5515 5516 ops->func = call_direct_funcs; 5517 ops->flags = MULTI_FLAGS; 5518 ops->trampoline = FTRACE_REGS_ADDR; 5519 5520 err = register_ftrace_function(ops); 5521 5522 out_remove: 5523 if (err) 5524 remove_direct_functions_hash(hash, addr); 5525 5526 out_unlock: 5527 mutex_unlock(&direct_mutex); 5528 5529 if (free_hash) { 5530 synchronize_rcu_tasks(); 5531 free_ftrace_hash(free_hash); 5532 } 5533 return err; 5534 } 5535 EXPORT_SYMBOL_GPL(register_ftrace_direct_multi); 5536 5537 /** 5538 * unregister_ftrace_direct_multi - Remove calls to custom trampoline 5539 * previously registered by register_ftrace_direct_multi for @ops object. 5540 * @ops: The address of the struct ftrace_ops object 5541 * 5542 * This is used to remove a direct calls to @addr from the nop locations 5543 * of the functions registered in @ops (with by ftrace_set_filter_ip 5544 * function). 5545 * 5546 * Returns: 5547 * 0 on success 5548 * -EINVAL - The @ops object was not properly registered. 5549 */ 5550 int unregister_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr) 5551 { 5552 struct ftrace_hash *hash = ops->func_hash->filter_hash; 5553 int err; 5554 5555 if (check_direct_multi(ops)) 5556 return -EINVAL; 5557 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 5558 return -EINVAL; 5559 5560 mutex_lock(&direct_mutex); 5561 err = unregister_ftrace_function(ops); 5562 remove_direct_functions_hash(hash, addr); 5563 mutex_unlock(&direct_mutex); 5564 5565 /* cleanup for possible another register call */ 5566 ops->func = NULL; 5567 ops->trampoline = 0; 5568 return err; 5569 } 5570 EXPORT_SYMBOL_GPL(unregister_ftrace_direct_multi); 5571 5572 /** 5573 * modify_ftrace_direct_multi - Modify an existing direct 'multi' call 5574 * to call something else 5575 * @ops: The address of the struct ftrace_ops object 5576 * @addr: The address of the new trampoline to call at @ops functions 5577 * 5578 * This is used to unregister currently registered direct caller and 5579 * register new one @addr on functions registered in @ops object. 5580 * 5581 * Note there's window between ftrace_shutdown and ftrace_startup calls 5582 * where there will be no callbacks called. 5583 * 5584 * Returns: zero on success. Non zero on error, which includes: 5585 * -EINVAL - The @ops object was not properly registered. 5586 */ 5587 int modify_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr) 5588 { 5589 struct ftrace_hash *hash; 5590 struct ftrace_func_entry *entry, *iter; 5591 static struct ftrace_ops tmp_ops = { 5592 .func = ftrace_stub, 5593 .flags = FTRACE_OPS_FL_STUB, 5594 }; 5595 int i, size; 5596 int err; 5597 5598 if (check_direct_multi(ops)) 5599 return -EINVAL; 5600 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 5601 return -EINVAL; 5602 5603 mutex_lock(&direct_mutex); 5604 5605 /* Enable the tmp_ops to have the same functions as the direct ops */ 5606 ftrace_ops_init(&tmp_ops); 5607 tmp_ops.func_hash = ops->func_hash; 5608 5609 err = register_ftrace_function(&tmp_ops); 5610 if (err) 5611 goto out_direct; 5612 5613 /* 5614 * Now the ftrace_ops_list_func() is called to do the direct callers. 5615 * We can safely change the direct functions attached to each entry. 5616 */ 5617 mutex_lock(&ftrace_lock); 5618 5619 hash = ops->func_hash->filter_hash; 5620 size = 1 << hash->size_bits; 5621 for (i = 0; i < size; i++) { 5622 hlist_for_each_entry(iter, &hash->buckets[i], hlist) { 5623 entry = __ftrace_lookup_ip(direct_functions, iter->ip); 5624 if (!entry) 5625 continue; 5626 entry->direct = addr; 5627 } 5628 } 5629 5630 mutex_unlock(&ftrace_lock); 5631 5632 /* Removing the tmp_ops will add the updated direct callers to the functions */ 5633 unregister_ftrace_function(&tmp_ops); 5634 5635 out_direct: 5636 mutex_unlock(&direct_mutex); 5637 return err; 5638 } 5639 EXPORT_SYMBOL_GPL(modify_ftrace_direct_multi); 5640 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 5641 5642 /** 5643 * ftrace_set_filter_ip - set a function to filter on in ftrace by address 5644 * @ops - the ops to set the filter with 5645 * @ip - the address to add to or remove from the filter. 5646 * @remove - non zero to remove the ip from the filter 5647 * @reset - non zero to reset all filters before applying this filter. 5648 * 5649 * Filters denote which functions should be enabled when tracing is enabled 5650 * If @ip is NULL, it fails to update filter. 5651 */ 5652 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip, 5653 int remove, int reset) 5654 { 5655 ftrace_ops_init(ops); 5656 return ftrace_set_addr(ops, &ip, 1, remove, reset, 1); 5657 } 5658 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip); 5659 5660 /** 5661 * ftrace_set_filter_ips - set functions to filter on in ftrace by addresses 5662 * @ops - the ops to set the filter with 5663 * @ips - the array of addresses to add to or remove from the filter. 5664 * @cnt - the number of addresses in @ips 5665 * @remove - non zero to remove ips from the filter 5666 * @reset - non zero to reset all filters before applying this filter. 5667 * 5668 * Filters denote which functions should be enabled when tracing is enabled 5669 * If @ips array or any ip specified within is NULL , it fails to update filter. 5670 */ 5671 int ftrace_set_filter_ips(struct ftrace_ops *ops, unsigned long *ips, 5672 unsigned int cnt, int remove, int reset) 5673 { 5674 ftrace_ops_init(ops); 5675 return ftrace_set_addr(ops, ips, cnt, remove, reset, 1); 5676 } 5677 EXPORT_SYMBOL_GPL(ftrace_set_filter_ips); 5678 5679 /** 5680 * ftrace_ops_set_global_filter - setup ops to use global filters 5681 * @ops - the ops which will use the global filters 5682 * 5683 * ftrace users who need global function trace filtering should call this. 5684 * It can set the global filter only if ops were not initialized before. 5685 */ 5686 void ftrace_ops_set_global_filter(struct ftrace_ops *ops) 5687 { 5688 if (ops->flags & FTRACE_OPS_FL_INITIALIZED) 5689 return; 5690 5691 ftrace_ops_init(ops); 5692 ops->func_hash = &global_ops.local_hash; 5693 } 5694 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter); 5695 5696 static int 5697 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 5698 int reset, int enable) 5699 { 5700 return ftrace_set_hash(ops, buf, len, NULL, 0, 0, reset, enable); 5701 } 5702 5703 /** 5704 * ftrace_set_filter - set a function to filter on in ftrace 5705 * @ops - the ops to set the filter with 5706 * @buf - the string that holds the function filter text. 5707 * @len - the length of the string. 5708 * @reset - non zero to reset all filters before applying this filter. 5709 * 5710 * Filters denote which functions should be enabled when tracing is enabled. 5711 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5712 */ 5713 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf, 5714 int len, int reset) 5715 { 5716 ftrace_ops_init(ops); 5717 return ftrace_set_regex(ops, buf, len, reset, 1); 5718 } 5719 EXPORT_SYMBOL_GPL(ftrace_set_filter); 5720 5721 /** 5722 * ftrace_set_notrace - set a function to not trace in ftrace 5723 * @ops - the ops to set the notrace filter with 5724 * @buf - the string that holds the function notrace text. 5725 * @len - the length of the string. 5726 * @reset - non zero to reset all filters before applying this filter. 5727 * 5728 * Notrace Filters denote which functions should not be enabled when tracing 5729 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5730 * for tracing. 5731 */ 5732 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf, 5733 int len, int reset) 5734 { 5735 ftrace_ops_init(ops); 5736 return ftrace_set_regex(ops, buf, len, reset, 0); 5737 } 5738 EXPORT_SYMBOL_GPL(ftrace_set_notrace); 5739 /** 5740 * ftrace_set_global_filter - set a function to filter on with global tracers 5741 * @buf - the string that holds the function filter text. 5742 * @len - the length of the string. 5743 * @reset - non zero to reset all filters before applying this filter. 5744 * 5745 * Filters denote which functions should be enabled when tracing is enabled. 5746 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5747 */ 5748 void ftrace_set_global_filter(unsigned char *buf, int len, int reset) 5749 { 5750 ftrace_set_regex(&global_ops, buf, len, reset, 1); 5751 } 5752 EXPORT_SYMBOL_GPL(ftrace_set_global_filter); 5753 5754 /** 5755 * ftrace_set_global_notrace - set a function to not trace with global tracers 5756 * @buf - the string that holds the function notrace text. 5757 * @len - the length of the string. 5758 * @reset - non zero to reset all filters before applying this filter. 5759 * 5760 * Notrace Filters denote which functions should not be enabled when tracing 5761 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5762 * for tracing. 5763 */ 5764 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset) 5765 { 5766 ftrace_set_regex(&global_ops, buf, len, reset, 0); 5767 } 5768 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace); 5769 5770 /* 5771 * command line interface to allow users to set filters on boot up. 5772 */ 5773 #define FTRACE_FILTER_SIZE COMMAND_LINE_SIZE 5774 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5775 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata; 5776 5777 /* Used by function selftest to not test if filter is set */ 5778 bool ftrace_filter_param __initdata; 5779 5780 static int __init set_ftrace_notrace(char *str) 5781 { 5782 ftrace_filter_param = true; 5783 strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE); 5784 return 1; 5785 } 5786 __setup("ftrace_notrace=", set_ftrace_notrace); 5787 5788 static int __init set_ftrace_filter(char *str) 5789 { 5790 ftrace_filter_param = true; 5791 strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE); 5792 return 1; 5793 } 5794 __setup("ftrace_filter=", set_ftrace_filter); 5795 5796 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5797 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata; 5798 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5799 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer); 5800 5801 static int __init set_graph_function(char *str) 5802 { 5803 strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE); 5804 return 1; 5805 } 5806 __setup("ftrace_graph_filter=", set_graph_function); 5807 5808 static int __init set_graph_notrace_function(char *str) 5809 { 5810 strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE); 5811 return 1; 5812 } 5813 __setup("ftrace_graph_notrace=", set_graph_notrace_function); 5814 5815 static int __init set_graph_max_depth_function(char *str) 5816 { 5817 if (!str) 5818 return 0; 5819 fgraph_max_depth = simple_strtoul(str, NULL, 0); 5820 return 1; 5821 } 5822 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function); 5823 5824 static void __init set_ftrace_early_graph(char *buf, int enable) 5825 { 5826 int ret; 5827 char *func; 5828 struct ftrace_hash *hash; 5829 5830 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 5831 if (MEM_FAIL(!hash, "Failed to allocate hash\n")) 5832 return; 5833 5834 while (buf) { 5835 func = strsep(&buf, ","); 5836 /* we allow only one expression at a time */ 5837 ret = ftrace_graph_set_hash(hash, func); 5838 if (ret) 5839 printk(KERN_DEBUG "ftrace: function %s not " 5840 "traceable\n", func); 5841 } 5842 5843 if (enable) 5844 ftrace_graph_hash = hash; 5845 else 5846 ftrace_graph_notrace_hash = hash; 5847 } 5848 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5849 5850 void __init 5851 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable) 5852 { 5853 char *func; 5854 5855 ftrace_ops_init(ops); 5856 5857 while (buf) { 5858 func = strsep(&buf, ","); 5859 ftrace_set_regex(ops, func, strlen(func), 0, enable); 5860 } 5861 } 5862 5863 static void __init set_ftrace_early_filters(void) 5864 { 5865 if (ftrace_filter_buf[0]) 5866 ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1); 5867 if (ftrace_notrace_buf[0]) 5868 ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0); 5869 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5870 if (ftrace_graph_buf[0]) 5871 set_ftrace_early_graph(ftrace_graph_buf, 1); 5872 if (ftrace_graph_notrace_buf[0]) 5873 set_ftrace_early_graph(ftrace_graph_notrace_buf, 0); 5874 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5875 } 5876 5877 int ftrace_regex_release(struct inode *inode, struct file *file) 5878 { 5879 struct seq_file *m = (struct seq_file *)file->private_data; 5880 struct ftrace_iterator *iter; 5881 struct ftrace_hash **orig_hash; 5882 struct trace_parser *parser; 5883 int filter_hash; 5884 5885 if (file->f_mode & FMODE_READ) { 5886 iter = m->private; 5887 seq_release(inode, file); 5888 } else 5889 iter = file->private_data; 5890 5891 parser = &iter->parser; 5892 if (trace_parser_loaded(parser)) { 5893 int enable = !(iter->flags & FTRACE_ITER_NOTRACE); 5894 5895 ftrace_process_regex(iter, parser->buffer, 5896 parser->idx, enable); 5897 } 5898 5899 trace_parser_put(parser); 5900 5901 mutex_lock(&iter->ops->func_hash->regex_lock); 5902 5903 if (file->f_mode & FMODE_WRITE) { 5904 filter_hash = !!(iter->flags & FTRACE_ITER_FILTER); 5905 5906 if (filter_hash) { 5907 orig_hash = &iter->ops->func_hash->filter_hash; 5908 if (iter->tr && !list_empty(&iter->tr->mod_trace)) 5909 iter->hash->flags |= FTRACE_HASH_FL_MOD; 5910 } else 5911 orig_hash = &iter->ops->func_hash->notrace_hash; 5912 5913 mutex_lock(&ftrace_lock); 5914 ftrace_hash_move_and_update_ops(iter->ops, orig_hash, 5915 iter->hash, filter_hash); 5916 mutex_unlock(&ftrace_lock); 5917 } else { 5918 /* For read only, the hash is the ops hash */ 5919 iter->hash = NULL; 5920 } 5921 5922 mutex_unlock(&iter->ops->func_hash->regex_lock); 5923 free_ftrace_hash(iter->hash); 5924 if (iter->tr) 5925 trace_array_put(iter->tr); 5926 kfree(iter); 5927 5928 return 0; 5929 } 5930 5931 static const struct file_operations ftrace_avail_fops = { 5932 .open = ftrace_avail_open, 5933 .read = seq_read, 5934 .llseek = seq_lseek, 5935 .release = seq_release_private, 5936 }; 5937 5938 static const struct file_operations ftrace_enabled_fops = { 5939 .open = ftrace_enabled_open, 5940 .read = seq_read, 5941 .llseek = seq_lseek, 5942 .release = seq_release_private, 5943 }; 5944 5945 static const struct file_operations ftrace_filter_fops = { 5946 .open = ftrace_filter_open, 5947 .read = seq_read, 5948 .write = ftrace_filter_write, 5949 .llseek = tracing_lseek, 5950 .release = ftrace_regex_release, 5951 }; 5952 5953 static const struct file_operations ftrace_notrace_fops = { 5954 .open = ftrace_notrace_open, 5955 .read = seq_read, 5956 .write = ftrace_notrace_write, 5957 .llseek = tracing_lseek, 5958 .release = ftrace_regex_release, 5959 }; 5960 5961 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5962 5963 static DEFINE_MUTEX(graph_lock); 5964 5965 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH; 5966 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH; 5967 5968 enum graph_filter_type { 5969 GRAPH_FILTER_NOTRACE = 0, 5970 GRAPH_FILTER_FUNCTION, 5971 }; 5972 5973 #define FTRACE_GRAPH_EMPTY ((void *)1) 5974 5975 struct ftrace_graph_data { 5976 struct ftrace_hash *hash; 5977 struct ftrace_func_entry *entry; 5978 int idx; /* for hash table iteration */ 5979 enum graph_filter_type type; 5980 struct ftrace_hash *new_hash; 5981 const struct seq_operations *seq_ops; 5982 struct trace_parser parser; 5983 }; 5984 5985 static void * 5986 __g_next(struct seq_file *m, loff_t *pos) 5987 { 5988 struct ftrace_graph_data *fgd = m->private; 5989 struct ftrace_func_entry *entry = fgd->entry; 5990 struct hlist_head *head; 5991 int i, idx = fgd->idx; 5992 5993 if (*pos >= fgd->hash->count) 5994 return NULL; 5995 5996 if (entry) { 5997 hlist_for_each_entry_continue(entry, hlist) { 5998 fgd->entry = entry; 5999 return entry; 6000 } 6001 6002 idx++; 6003 } 6004 6005 for (i = idx; i < 1 << fgd->hash->size_bits; i++) { 6006 head = &fgd->hash->buckets[i]; 6007 hlist_for_each_entry(entry, head, hlist) { 6008 fgd->entry = entry; 6009 fgd->idx = i; 6010 return entry; 6011 } 6012 } 6013 return NULL; 6014 } 6015 6016 static void * 6017 g_next(struct seq_file *m, void *v, loff_t *pos) 6018 { 6019 (*pos)++; 6020 return __g_next(m, pos); 6021 } 6022 6023 static void *g_start(struct seq_file *m, loff_t *pos) 6024 { 6025 struct ftrace_graph_data *fgd = m->private; 6026 6027 mutex_lock(&graph_lock); 6028 6029 if (fgd->type == GRAPH_FILTER_FUNCTION) 6030 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 6031 lockdep_is_held(&graph_lock)); 6032 else 6033 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6034 lockdep_is_held(&graph_lock)); 6035 6036 /* Nothing, tell g_show to print all functions are enabled */ 6037 if (ftrace_hash_empty(fgd->hash) && !*pos) 6038 return FTRACE_GRAPH_EMPTY; 6039 6040 fgd->idx = 0; 6041 fgd->entry = NULL; 6042 return __g_next(m, pos); 6043 } 6044 6045 static void g_stop(struct seq_file *m, void *p) 6046 { 6047 mutex_unlock(&graph_lock); 6048 } 6049 6050 static int g_show(struct seq_file *m, void *v) 6051 { 6052 struct ftrace_func_entry *entry = v; 6053 6054 if (!entry) 6055 return 0; 6056 6057 if (entry == FTRACE_GRAPH_EMPTY) { 6058 struct ftrace_graph_data *fgd = m->private; 6059 6060 if (fgd->type == GRAPH_FILTER_FUNCTION) 6061 seq_puts(m, "#### all functions enabled ####\n"); 6062 else 6063 seq_puts(m, "#### no functions disabled ####\n"); 6064 return 0; 6065 } 6066 6067 seq_printf(m, "%ps\n", (void *)entry->ip); 6068 6069 return 0; 6070 } 6071 6072 static const struct seq_operations ftrace_graph_seq_ops = { 6073 .start = g_start, 6074 .next = g_next, 6075 .stop = g_stop, 6076 .show = g_show, 6077 }; 6078 6079 static int 6080 __ftrace_graph_open(struct inode *inode, struct file *file, 6081 struct ftrace_graph_data *fgd) 6082 { 6083 int ret; 6084 struct ftrace_hash *new_hash = NULL; 6085 6086 ret = security_locked_down(LOCKDOWN_TRACEFS); 6087 if (ret) 6088 return ret; 6089 6090 if (file->f_mode & FMODE_WRITE) { 6091 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 6092 6093 if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX)) 6094 return -ENOMEM; 6095 6096 if (file->f_flags & O_TRUNC) 6097 new_hash = alloc_ftrace_hash(size_bits); 6098 else 6099 new_hash = alloc_and_copy_ftrace_hash(size_bits, 6100 fgd->hash); 6101 if (!new_hash) { 6102 ret = -ENOMEM; 6103 goto out; 6104 } 6105 } 6106 6107 if (file->f_mode & FMODE_READ) { 6108 ret = seq_open(file, &ftrace_graph_seq_ops); 6109 if (!ret) { 6110 struct seq_file *m = file->private_data; 6111 m->private = fgd; 6112 } else { 6113 /* Failed */ 6114 free_ftrace_hash(new_hash); 6115 new_hash = NULL; 6116 } 6117 } else 6118 file->private_data = fgd; 6119 6120 out: 6121 if (ret < 0 && file->f_mode & FMODE_WRITE) 6122 trace_parser_put(&fgd->parser); 6123 6124 fgd->new_hash = new_hash; 6125 6126 /* 6127 * All uses of fgd->hash must be taken with the graph_lock 6128 * held. The graph_lock is going to be released, so force 6129 * fgd->hash to be reinitialized when it is taken again. 6130 */ 6131 fgd->hash = NULL; 6132 6133 return ret; 6134 } 6135 6136 static int 6137 ftrace_graph_open(struct inode *inode, struct file *file) 6138 { 6139 struct ftrace_graph_data *fgd; 6140 int ret; 6141 6142 if (unlikely(ftrace_disabled)) 6143 return -ENODEV; 6144 6145 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 6146 if (fgd == NULL) 6147 return -ENOMEM; 6148 6149 mutex_lock(&graph_lock); 6150 6151 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 6152 lockdep_is_held(&graph_lock)); 6153 fgd->type = GRAPH_FILTER_FUNCTION; 6154 fgd->seq_ops = &ftrace_graph_seq_ops; 6155 6156 ret = __ftrace_graph_open(inode, file, fgd); 6157 if (ret < 0) 6158 kfree(fgd); 6159 6160 mutex_unlock(&graph_lock); 6161 return ret; 6162 } 6163 6164 static int 6165 ftrace_graph_notrace_open(struct inode *inode, struct file *file) 6166 { 6167 struct ftrace_graph_data *fgd; 6168 int ret; 6169 6170 if (unlikely(ftrace_disabled)) 6171 return -ENODEV; 6172 6173 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 6174 if (fgd == NULL) 6175 return -ENOMEM; 6176 6177 mutex_lock(&graph_lock); 6178 6179 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6180 lockdep_is_held(&graph_lock)); 6181 fgd->type = GRAPH_FILTER_NOTRACE; 6182 fgd->seq_ops = &ftrace_graph_seq_ops; 6183 6184 ret = __ftrace_graph_open(inode, file, fgd); 6185 if (ret < 0) 6186 kfree(fgd); 6187 6188 mutex_unlock(&graph_lock); 6189 return ret; 6190 } 6191 6192 static int 6193 ftrace_graph_release(struct inode *inode, struct file *file) 6194 { 6195 struct ftrace_graph_data *fgd; 6196 struct ftrace_hash *old_hash, *new_hash; 6197 struct trace_parser *parser; 6198 int ret = 0; 6199 6200 if (file->f_mode & FMODE_READ) { 6201 struct seq_file *m = file->private_data; 6202 6203 fgd = m->private; 6204 seq_release(inode, file); 6205 } else { 6206 fgd = file->private_data; 6207 } 6208 6209 6210 if (file->f_mode & FMODE_WRITE) { 6211 6212 parser = &fgd->parser; 6213 6214 if (trace_parser_loaded((parser))) { 6215 ret = ftrace_graph_set_hash(fgd->new_hash, 6216 parser->buffer); 6217 } 6218 6219 trace_parser_put(parser); 6220 6221 new_hash = __ftrace_hash_move(fgd->new_hash); 6222 if (!new_hash) { 6223 ret = -ENOMEM; 6224 goto out; 6225 } 6226 6227 mutex_lock(&graph_lock); 6228 6229 if (fgd->type == GRAPH_FILTER_FUNCTION) { 6230 old_hash = rcu_dereference_protected(ftrace_graph_hash, 6231 lockdep_is_held(&graph_lock)); 6232 rcu_assign_pointer(ftrace_graph_hash, new_hash); 6233 } else { 6234 old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6235 lockdep_is_held(&graph_lock)); 6236 rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash); 6237 } 6238 6239 mutex_unlock(&graph_lock); 6240 6241 /* 6242 * We need to do a hard force of sched synchronization. 6243 * This is because we use preempt_disable() to do RCU, but 6244 * the function tracers can be called where RCU is not watching 6245 * (like before user_exit()). We can not rely on the RCU 6246 * infrastructure to do the synchronization, thus we must do it 6247 * ourselves. 6248 */ 6249 if (old_hash != EMPTY_HASH) 6250 synchronize_rcu_tasks_rude(); 6251 6252 free_ftrace_hash(old_hash); 6253 } 6254 6255 out: 6256 free_ftrace_hash(fgd->new_hash); 6257 kfree(fgd); 6258 6259 return ret; 6260 } 6261 6262 static int 6263 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer) 6264 { 6265 struct ftrace_glob func_g; 6266 struct dyn_ftrace *rec; 6267 struct ftrace_page *pg; 6268 struct ftrace_func_entry *entry; 6269 int fail = 1; 6270 int not; 6271 6272 /* decode regex */ 6273 func_g.type = filter_parse_regex(buffer, strlen(buffer), 6274 &func_g.search, ¬); 6275 6276 func_g.len = strlen(func_g.search); 6277 6278 mutex_lock(&ftrace_lock); 6279 6280 if (unlikely(ftrace_disabled)) { 6281 mutex_unlock(&ftrace_lock); 6282 return -ENODEV; 6283 } 6284 6285 do_for_each_ftrace_rec(pg, rec) { 6286 6287 if (rec->flags & FTRACE_FL_DISABLED) 6288 continue; 6289 6290 if (ftrace_match_record(rec, &func_g, NULL, 0)) { 6291 entry = ftrace_lookup_ip(hash, rec->ip); 6292 6293 if (!not) { 6294 fail = 0; 6295 6296 if (entry) 6297 continue; 6298 if (add_hash_entry(hash, rec->ip) < 0) 6299 goto out; 6300 } else { 6301 if (entry) { 6302 free_hash_entry(hash, entry); 6303 fail = 0; 6304 } 6305 } 6306 } 6307 } while_for_each_ftrace_rec(); 6308 out: 6309 mutex_unlock(&ftrace_lock); 6310 6311 if (fail) 6312 return -EINVAL; 6313 6314 return 0; 6315 } 6316 6317 static ssize_t 6318 ftrace_graph_write(struct file *file, const char __user *ubuf, 6319 size_t cnt, loff_t *ppos) 6320 { 6321 ssize_t read, ret = 0; 6322 struct ftrace_graph_data *fgd = file->private_data; 6323 struct trace_parser *parser; 6324 6325 if (!cnt) 6326 return 0; 6327 6328 /* Read mode uses seq functions */ 6329 if (file->f_mode & FMODE_READ) { 6330 struct seq_file *m = file->private_data; 6331 fgd = m->private; 6332 } 6333 6334 parser = &fgd->parser; 6335 6336 read = trace_get_user(parser, ubuf, cnt, ppos); 6337 6338 if (read >= 0 && trace_parser_loaded(parser) && 6339 !trace_parser_cont(parser)) { 6340 6341 ret = ftrace_graph_set_hash(fgd->new_hash, 6342 parser->buffer); 6343 trace_parser_clear(parser); 6344 } 6345 6346 if (!ret) 6347 ret = read; 6348 6349 return ret; 6350 } 6351 6352 static const struct file_operations ftrace_graph_fops = { 6353 .open = ftrace_graph_open, 6354 .read = seq_read, 6355 .write = ftrace_graph_write, 6356 .llseek = tracing_lseek, 6357 .release = ftrace_graph_release, 6358 }; 6359 6360 static const struct file_operations ftrace_graph_notrace_fops = { 6361 .open = ftrace_graph_notrace_open, 6362 .read = seq_read, 6363 .write = ftrace_graph_write, 6364 .llseek = tracing_lseek, 6365 .release = ftrace_graph_release, 6366 }; 6367 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6368 6369 void ftrace_create_filter_files(struct ftrace_ops *ops, 6370 struct dentry *parent) 6371 { 6372 6373 trace_create_file("set_ftrace_filter", TRACE_MODE_WRITE, parent, 6374 ops, &ftrace_filter_fops); 6375 6376 trace_create_file("set_ftrace_notrace", TRACE_MODE_WRITE, parent, 6377 ops, &ftrace_notrace_fops); 6378 } 6379 6380 /* 6381 * The name "destroy_filter_files" is really a misnomer. Although 6382 * in the future, it may actually delete the files, but this is 6383 * really intended to make sure the ops passed in are disabled 6384 * and that when this function returns, the caller is free to 6385 * free the ops. 6386 * 6387 * The "destroy" name is only to match the "create" name that this 6388 * should be paired with. 6389 */ 6390 void ftrace_destroy_filter_files(struct ftrace_ops *ops) 6391 { 6392 mutex_lock(&ftrace_lock); 6393 if (ops->flags & FTRACE_OPS_FL_ENABLED) 6394 ftrace_shutdown(ops, 0); 6395 ops->flags |= FTRACE_OPS_FL_DELETED; 6396 ftrace_free_filter(ops); 6397 mutex_unlock(&ftrace_lock); 6398 } 6399 6400 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer) 6401 { 6402 6403 trace_create_file("available_filter_functions", TRACE_MODE_READ, 6404 d_tracer, NULL, &ftrace_avail_fops); 6405 6406 trace_create_file("enabled_functions", TRACE_MODE_READ, 6407 d_tracer, NULL, &ftrace_enabled_fops); 6408 6409 ftrace_create_filter_files(&global_ops, d_tracer); 6410 6411 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6412 trace_create_file("set_graph_function", TRACE_MODE_WRITE, d_tracer, 6413 NULL, 6414 &ftrace_graph_fops); 6415 trace_create_file("set_graph_notrace", TRACE_MODE_WRITE, d_tracer, 6416 NULL, 6417 &ftrace_graph_notrace_fops); 6418 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6419 6420 return 0; 6421 } 6422 6423 static int ftrace_cmp_ips(const void *a, const void *b) 6424 { 6425 const unsigned long *ipa = a; 6426 const unsigned long *ipb = b; 6427 6428 if (*ipa > *ipb) 6429 return 1; 6430 if (*ipa < *ipb) 6431 return -1; 6432 return 0; 6433 } 6434 6435 #ifdef CONFIG_FTRACE_SORT_STARTUP_TEST 6436 static void test_is_sorted(unsigned long *start, unsigned long count) 6437 { 6438 int i; 6439 6440 for (i = 1; i < count; i++) { 6441 if (WARN(start[i - 1] > start[i], 6442 "[%d] %pS at %lx is not sorted with %pS at %lx\n", i, 6443 (void *)start[i - 1], start[i - 1], 6444 (void *)start[i], start[i])) 6445 break; 6446 } 6447 if (i == count) 6448 pr_info("ftrace section at %px sorted properly\n", start); 6449 } 6450 #else 6451 static void test_is_sorted(unsigned long *start, unsigned long count) 6452 { 6453 } 6454 #endif 6455 6456 static int ftrace_process_locs(struct module *mod, 6457 unsigned long *start, 6458 unsigned long *end) 6459 { 6460 struct ftrace_page *start_pg; 6461 struct ftrace_page *pg; 6462 struct dyn_ftrace *rec; 6463 unsigned long count; 6464 unsigned long *p; 6465 unsigned long addr; 6466 unsigned long flags = 0; /* Shut up gcc */ 6467 int ret = -ENOMEM; 6468 6469 count = end - start; 6470 6471 if (!count) 6472 return 0; 6473 6474 /* 6475 * Sorting mcount in vmlinux at build time depend on 6476 * CONFIG_BUILDTIME_MCOUNT_SORT, while mcount loc in 6477 * modules can not be sorted at build time. 6478 */ 6479 if (!IS_ENABLED(CONFIG_BUILDTIME_MCOUNT_SORT) || mod) { 6480 sort(start, count, sizeof(*start), 6481 ftrace_cmp_ips, NULL); 6482 } else { 6483 test_is_sorted(start, count); 6484 } 6485 6486 start_pg = ftrace_allocate_pages(count); 6487 if (!start_pg) 6488 return -ENOMEM; 6489 6490 mutex_lock(&ftrace_lock); 6491 6492 /* 6493 * Core and each module needs their own pages, as 6494 * modules will free them when they are removed. 6495 * Force a new page to be allocated for modules. 6496 */ 6497 if (!mod) { 6498 WARN_ON(ftrace_pages || ftrace_pages_start); 6499 /* First initialization */ 6500 ftrace_pages = ftrace_pages_start = start_pg; 6501 } else { 6502 if (!ftrace_pages) 6503 goto out; 6504 6505 if (WARN_ON(ftrace_pages->next)) { 6506 /* Hmm, we have free pages? */ 6507 while (ftrace_pages->next) 6508 ftrace_pages = ftrace_pages->next; 6509 } 6510 6511 ftrace_pages->next = start_pg; 6512 } 6513 6514 p = start; 6515 pg = start_pg; 6516 while (p < end) { 6517 unsigned long end_offset; 6518 addr = ftrace_call_adjust(*p++); 6519 /* 6520 * Some architecture linkers will pad between 6521 * the different mcount_loc sections of different 6522 * object files to satisfy alignments. 6523 * Skip any NULL pointers. 6524 */ 6525 if (!addr) 6526 continue; 6527 6528 end_offset = (pg->index+1) * sizeof(pg->records[0]); 6529 if (end_offset > PAGE_SIZE << pg->order) { 6530 /* We should have allocated enough */ 6531 if (WARN_ON(!pg->next)) 6532 break; 6533 pg = pg->next; 6534 } 6535 6536 rec = &pg->records[pg->index++]; 6537 rec->ip = addr; 6538 } 6539 6540 /* We should have used all pages */ 6541 WARN_ON(pg->next); 6542 6543 /* Assign the last page to ftrace_pages */ 6544 ftrace_pages = pg; 6545 6546 /* 6547 * We only need to disable interrupts on start up 6548 * because we are modifying code that an interrupt 6549 * may execute, and the modification is not atomic. 6550 * But for modules, nothing runs the code we modify 6551 * until we are finished with it, and there's no 6552 * reason to cause large interrupt latencies while we do it. 6553 */ 6554 if (!mod) 6555 local_irq_save(flags); 6556 ftrace_update_code(mod, start_pg); 6557 if (!mod) 6558 local_irq_restore(flags); 6559 ret = 0; 6560 out: 6561 mutex_unlock(&ftrace_lock); 6562 6563 return ret; 6564 } 6565 6566 struct ftrace_mod_func { 6567 struct list_head list; 6568 char *name; 6569 unsigned long ip; 6570 unsigned int size; 6571 }; 6572 6573 struct ftrace_mod_map { 6574 struct rcu_head rcu; 6575 struct list_head list; 6576 struct module *mod; 6577 unsigned long start_addr; 6578 unsigned long end_addr; 6579 struct list_head funcs; 6580 unsigned int num_funcs; 6581 }; 6582 6583 static int ftrace_get_trampoline_kallsym(unsigned int symnum, 6584 unsigned long *value, char *type, 6585 char *name, char *module_name, 6586 int *exported) 6587 { 6588 struct ftrace_ops *op; 6589 6590 list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) { 6591 if (!op->trampoline || symnum--) 6592 continue; 6593 *value = op->trampoline; 6594 *type = 't'; 6595 strlcpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN); 6596 strlcpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN); 6597 *exported = 0; 6598 return 0; 6599 } 6600 6601 return -ERANGE; 6602 } 6603 6604 #ifdef CONFIG_MODULES 6605 6606 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next) 6607 6608 static LIST_HEAD(ftrace_mod_maps); 6609 6610 static int referenced_filters(struct dyn_ftrace *rec) 6611 { 6612 struct ftrace_ops *ops; 6613 int cnt = 0; 6614 6615 for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) { 6616 if (ops_references_rec(ops, rec)) { 6617 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT)) 6618 continue; 6619 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 6620 continue; 6621 cnt++; 6622 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 6623 rec->flags |= FTRACE_FL_REGS; 6624 if (cnt == 1 && ops->trampoline) 6625 rec->flags |= FTRACE_FL_TRAMP; 6626 else 6627 rec->flags &= ~FTRACE_FL_TRAMP; 6628 } 6629 } 6630 6631 return cnt; 6632 } 6633 6634 static void 6635 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash) 6636 { 6637 struct ftrace_func_entry *entry; 6638 struct dyn_ftrace *rec; 6639 int i; 6640 6641 if (ftrace_hash_empty(hash)) 6642 return; 6643 6644 for (i = 0; i < pg->index; i++) { 6645 rec = &pg->records[i]; 6646 entry = __ftrace_lookup_ip(hash, rec->ip); 6647 /* 6648 * Do not allow this rec to match again. 6649 * Yeah, it may waste some memory, but will be removed 6650 * if/when the hash is modified again. 6651 */ 6652 if (entry) 6653 entry->ip = 0; 6654 } 6655 } 6656 6657 /* Clear any records from hashes */ 6658 static void clear_mod_from_hashes(struct ftrace_page *pg) 6659 { 6660 struct trace_array *tr; 6661 6662 mutex_lock(&trace_types_lock); 6663 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 6664 if (!tr->ops || !tr->ops->func_hash) 6665 continue; 6666 mutex_lock(&tr->ops->func_hash->regex_lock); 6667 clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash); 6668 clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash); 6669 mutex_unlock(&tr->ops->func_hash->regex_lock); 6670 } 6671 mutex_unlock(&trace_types_lock); 6672 } 6673 6674 static void ftrace_free_mod_map(struct rcu_head *rcu) 6675 { 6676 struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu); 6677 struct ftrace_mod_func *mod_func; 6678 struct ftrace_mod_func *n; 6679 6680 /* All the contents of mod_map are now not visible to readers */ 6681 list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) { 6682 kfree(mod_func->name); 6683 list_del(&mod_func->list); 6684 kfree(mod_func); 6685 } 6686 6687 kfree(mod_map); 6688 } 6689 6690 void ftrace_release_mod(struct module *mod) 6691 { 6692 struct ftrace_mod_map *mod_map; 6693 struct ftrace_mod_map *n; 6694 struct dyn_ftrace *rec; 6695 struct ftrace_page **last_pg; 6696 struct ftrace_page *tmp_page = NULL; 6697 struct ftrace_page *pg; 6698 6699 mutex_lock(&ftrace_lock); 6700 6701 if (ftrace_disabled) 6702 goto out_unlock; 6703 6704 list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) { 6705 if (mod_map->mod == mod) { 6706 list_del_rcu(&mod_map->list); 6707 call_rcu(&mod_map->rcu, ftrace_free_mod_map); 6708 break; 6709 } 6710 } 6711 6712 /* 6713 * Each module has its own ftrace_pages, remove 6714 * them from the list. 6715 */ 6716 last_pg = &ftrace_pages_start; 6717 for (pg = ftrace_pages_start; pg; pg = *last_pg) { 6718 rec = &pg->records[0]; 6719 if (within_module_core(rec->ip, mod) || 6720 within_module_init(rec->ip, mod)) { 6721 /* 6722 * As core pages are first, the first 6723 * page should never be a module page. 6724 */ 6725 if (WARN_ON(pg == ftrace_pages_start)) 6726 goto out_unlock; 6727 6728 /* Check if we are deleting the last page */ 6729 if (pg == ftrace_pages) 6730 ftrace_pages = next_to_ftrace_page(last_pg); 6731 6732 ftrace_update_tot_cnt -= pg->index; 6733 *last_pg = pg->next; 6734 6735 pg->next = tmp_page; 6736 tmp_page = pg; 6737 } else 6738 last_pg = &pg->next; 6739 } 6740 out_unlock: 6741 mutex_unlock(&ftrace_lock); 6742 6743 for (pg = tmp_page; pg; pg = tmp_page) { 6744 6745 /* Needs to be called outside of ftrace_lock */ 6746 clear_mod_from_hashes(pg); 6747 6748 if (pg->records) { 6749 free_pages((unsigned long)pg->records, pg->order); 6750 ftrace_number_of_pages -= 1 << pg->order; 6751 } 6752 tmp_page = pg->next; 6753 kfree(pg); 6754 ftrace_number_of_groups--; 6755 } 6756 } 6757 6758 void ftrace_module_enable(struct module *mod) 6759 { 6760 struct dyn_ftrace *rec; 6761 struct ftrace_page *pg; 6762 6763 mutex_lock(&ftrace_lock); 6764 6765 if (ftrace_disabled) 6766 goto out_unlock; 6767 6768 /* 6769 * If the tracing is enabled, go ahead and enable the record. 6770 * 6771 * The reason not to enable the record immediately is the 6772 * inherent check of ftrace_make_nop/ftrace_make_call for 6773 * correct previous instructions. Making first the NOP 6774 * conversion puts the module to the correct state, thus 6775 * passing the ftrace_make_call check. 6776 * 6777 * We also delay this to after the module code already set the 6778 * text to read-only, as we now need to set it back to read-write 6779 * so that we can modify the text. 6780 */ 6781 if (ftrace_start_up) 6782 ftrace_arch_code_modify_prepare(); 6783 6784 do_for_each_ftrace_rec(pg, rec) { 6785 int cnt; 6786 /* 6787 * do_for_each_ftrace_rec() is a double loop. 6788 * module text shares the pg. If a record is 6789 * not part of this module, then skip this pg, 6790 * which the "break" will do. 6791 */ 6792 if (!within_module_core(rec->ip, mod) && 6793 !within_module_init(rec->ip, mod)) 6794 break; 6795 6796 cnt = 0; 6797 6798 /* 6799 * When adding a module, we need to check if tracers are 6800 * currently enabled and if they are, and can trace this record, 6801 * we need to enable the module functions as well as update the 6802 * reference counts for those function records. 6803 */ 6804 if (ftrace_start_up) 6805 cnt += referenced_filters(rec); 6806 6807 rec->flags &= ~FTRACE_FL_DISABLED; 6808 rec->flags += cnt; 6809 6810 if (ftrace_start_up && cnt) { 6811 int failed = __ftrace_replace_code(rec, 1); 6812 if (failed) { 6813 ftrace_bug(failed, rec); 6814 goto out_loop; 6815 } 6816 } 6817 6818 } while_for_each_ftrace_rec(); 6819 6820 out_loop: 6821 if (ftrace_start_up) 6822 ftrace_arch_code_modify_post_process(); 6823 6824 out_unlock: 6825 mutex_unlock(&ftrace_lock); 6826 6827 process_cached_mods(mod->name); 6828 } 6829 6830 void ftrace_module_init(struct module *mod) 6831 { 6832 if (ftrace_disabled || !mod->num_ftrace_callsites) 6833 return; 6834 6835 ftrace_process_locs(mod, mod->ftrace_callsites, 6836 mod->ftrace_callsites + mod->num_ftrace_callsites); 6837 } 6838 6839 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 6840 struct dyn_ftrace *rec) 6841 { 6842 struct ftrace_mod_func *mod_func; 6843 unsigned long symsize; 6844 unsigned long offset; 6845 char str[KSYM_SYMBOL_LEN]; 6846 char *modname; 6847 const char *ret; 6848 6849 ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str); 6850 if (!ret) 6851 return; 6852 6853 mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL); 6854 if (!mod_func) 6855 return; 6856 6857 mod_func->name = kstrdup(str, GFP_KERNEL); 6858 if (!mod_func->name) { 6859 kfree(mod_func); 6860 return; 6861 } 6862 6863 mod_func->ip = rec->ip - offset; 6864 mod_func->size = symsize; 6865 6866 mod_map->num_funcs++; 6867 6868 list_add_rcu(&mod_func->list, &mod_map->funcs); 6869 } 6870 6871 static struct ftrace_mod_map * 6872 allocate_ftrace_mod_map(struct module *mod, 6873 unsigned long start, unsigned long end) 6874 { 6875 struct ftrace_mod_map *mod_map; 6876 6877 mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL); 6878 if (!mod_map) 6879 return NULL; 6880 6881 mod_map->mod = mod; 6882 mod_map->start_addr = start; 6883 mod_map->end_addr = end; 6884 mod_map->num_funcs = 0; 6885 6886 INIT_LIST_HEAD_RCU(&mod_map->funcs); 6887 6888 list_add_rcu(&mod_map->list, &ftrace_mod_maps); 6889 6890 return mod_map; 6891 } 6892 6893 static const char * 6894 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map, 6895 unsigned long addr, unsigned long *size, 6896 unsigned long *off, char *sym) 6897 { 6898 struct ftrace_mod_func *found_func = NULL; 6899 struct ftrace_mod_func *mod_func; 6900 6901 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 6902 if (addr >= mod_func->ip && 6903 addr < mod_func->ip + mod_func->size) { 6904 found_func = mod_func; 6905 break; 6906 } 6907 } 6908 6909 if (found_func) { 6910 if (size) 6911 *size = found_func->size; 6912 if (off) 6913 *off = addr - found_func->ip; 6914 if (sym) 6915 strlcpy(sym, found_func->name, KSYM_NAME_LEN); 6916 6917 return found_func->name; 6918 } 6919 6920 return NULL; 6921 } 6922 6923 const char * 6924 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size, 6925 unsigned long *off, char **modname, char *sym) 6926 { 6927 struct ftrace_mod_map *mod_map; 6928 const char *ret = NULL; 6929 6930 /* mod_map is freed via call_rcu() */ 6931 preempt_disable(); 6932 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 6933 ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym); 6934 if (ret) { 6935 if (modname) 6936 *modname = mod_map->mod->name; 6937 break; 6938 } 6939 } 6940 preempt_enable(); 6941 6942 return ret; 6943 } 6944 6945 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 6946 char *type, char *name, 6947 char *module_name, int *exported) 6948 { 6949 struct ftrace_mod_map *mod_map; 6950 struct ftrace_mod_func *mod_func; 6951 int ret; 6952 6953 preempt_disable(); 6954 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 6955 6956 if (symnum >= mod_map->num_funcs) { 6957 symnum -= mod_map->num_funcs; 6958 continue; 6959 } 6960 6961 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 6962 if (symnum > 1) { 6963 symnum--; 6964 continue; 6965 } 6966 6967 *value = mod_func->ip; 6968 *type = 'T'; 6969 strlcpy(name, mod_func->name, KSYM_NAME_LEN); 6970 strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN); 6971 *exported = 1; 6972 preempt_enable(); 6973 return 0; 6974 } 6975 WARN_ON(1); 6976 break; 6977 } 6978 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 6979 module_name, exported); 6980 preempt_enable(); 6981 return ret; 6982 } 6983 6984 #else 6985 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 6986 struct dyn_ftrace *rec) { } 6987 static inline struct ftrace_mod_map * 6988 allocate_ftrace_mod_map(struct module *mod, 6989 unsigned long start, unsigned long end) 6990 { 6991 return NULL; 6992 } 6993 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 6994 char *type, char *name, char *module_name, 6995 int *exported) 6996 { 6997 int ret; 6998 6999 preempt_disable(); 7000 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 7001 module_name, exported); 7002 preempt_enable(); 7003 return ret; 7004 } 7005 #endif /* CONFIG_MODULES */ 7006 7007 struct ftrace_init_func { 7008 struct list_head list; 7009 unsigned long ip; 7010 }; 7011 7012 /* Clear any init ips from hashes */ 7013 static void 7014 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash) 7015 { 7016 struct ftrace_func_entry *entry; 7017 7018 entry = ftrace_lookup_ip(hash, func->ip); 7019 /* 7020 * Do not allow this rec to match again. 7021 * Yeah, it may waste some memory, but will be removed 7022 * if/when the hash is modified again. 7023 */ 7024 if (entry) 7025 entry->ip = 0; 7026 } 7027 7028 static void 7029 clear_func_from_hashes(struct ftrace_init_func *func) 7030 { 7031 struct trace_array *tr; 7032 7033 mutex_lock(&trace_types_lock); 7034 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 7035 if (!tr->ops || !tr->ops->func_hash) 7036 continue; 7037 mutex_lock(&tr->ops->func_hash->regex_lock); 7038 clear_func_from_hash(func, tr->ops->func_hash->filter_hash); 7039 clear_func_from_hash(func, tr->ops->func_hash->notrace_hash); 7040 mutex_unlock(&tr->ops->func_hash->regex_lock); 7041 } 7042 mutex_unlock(&trace_types_lock); 7043 } 7044 7045 static void add_to_clear_hash_list(struct list_head *clear_list, 7046 struct dyn_ftrace *rec) 7047 { 7048 struct ftrace_init_func *func; 7049 7050 func = kmalloc(sizeof(*func), GFP_KERNEL); 7051 if (!func) { 7052 MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n"); 7053 return; 7054 } 7055 7056 func->ip = rec->ip; 7057 list_add(&func->list, clear_list); 7058 } 7059 7060 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr) 7061 { 7062 unsigned long start = (unsigned long)(start_ptr); 7063 unsigned long end = (unsigned long)(end_ptr); 7064 struct ftrace_page **last_pg = &ftrace_pages_start; 7065 struct ftrace_page *pg; 7066 struct dyn_ftrace *rec; 7067 struct dyn_ftrace key; 7068 struct ftrace_mod_map *mod_map = NULL; 7069 struct ftrace_init_func *func, *func_next; 7070 struct list_head clear_hash; 7071 7072 INIT_LIST_HEAD(&clear_hash); 7073 7074 key.ip = start; 7075 key.flags = end; /* overload flags, as it is unsigned long */ 7076 7077 mutex_lock(&ftrace_lock); 7078 7079 /* 7080 * If we are freeing module init memory, then check if 7081 * any tracer is active. If so, we need to save a mapping of 7082 * the module functions being freed with the address. 7083 */ 7084 if (mod && ftrace_ops_list != &ftrace_list_end) 7085 mod_map = allocate_ftrace_mod_map(mod, start, end); 7086 7087 for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) { 7088 if (end < pg->records[0].ip || 7089 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 7090 continue; 7091 again: 7092 rec = bsearch(&key, pg->records, pg->index, 7093 sizeof(struct dyn_ftrace), 7094 ftrace_cmp_recs); 7095 if (!rec) 7096 continue; 7097 7098 /* rec will be cleared from hashes after ftrace_lock unlock */ 7099 add_to_clear_hash_list(&clear_hash, rec); 7100 7101 if (mod_map) 7102 save_ftrace_mod_rec(mod_map, rec); 7103 7104 pg->index--; 7105 ftrace_update_tot_cnt--; 7106 if (!pg->index) { 7107 *last_pg = pg->next; 7108 if (pg->records) { 7109 free_pages((unsigned long)pg->records, pg->order); 7110 ftrace_number_of_pages -= 1 << pg->order; 7111 } 7112 ftrace_number_of_groups--; 7113 kfree(pg); 7114 pg = container_of(last_pg, struct ftrace_page, next); 7115 if (!(*last_pg)) 7116 ftrace_pages = pg; 7117 continue; 7118 } 7119 memmove(rec, rec + 1, 7120 (pg->index - (rec - pg->records)) * sizeof(*rec)); 7121 /* More than one function may be in this block */ 7122 goto again; 7123 } 7124 mutex_unlock(&ftrace_lock); 7125 7126 list_for_each_entry_safe(func, func_next, &clear_hash, list) { 7127 clear_func_from_hashes(func); 7128 kfree(func); 7129 } 7130 } 7131 7132 void __init ftrace_free_init_mem(void) 7133 { 7134 void *start = (void *)(&__init_begin); 7135 void *end = (void *)(&__init_end); 7136 7137 ftrace_boot_snapshot(); 7138 7139 ftrace_free_mem(NULL, start, end); 7140 } 7141 7142 int __init __weak ftrace_dyn_arch_init(void) 7143 { 7144 return 0; 7145 } 7146 7147 void __init ftrace_init(void) 7148 { 7149 extern unsigned long __start_mcount_loc[]; 7150 extern unsigned long __stop_mcount_loc[]; 7151 unsigned long count, flags; 7152 int ret; 7153 7154 local_irq_save(flags); 7155 ret = ftrace_dyn_arch_init(); 7156 local_irq_restore(flags); 7157 if (ret) 7158 goto failed; 7159 7160 count = __stop_mcount_loc - __start_mcount_loc; 7161 if (!count) { 7162 pr_info("ftrace: No functions to be traced?\n"); 7163 goto failed; 7164 } 7165 7166 pr_info("ftrace: allocating %ld entries in %ld pages\n", 7167 count, count / ENTRIES_PER_PAGE + 1); 7168 7169 last_ftrace_enabled = ftrace_enabled = 1; 7170 7171 ret = ftrace_process_locs(NULL, 7172 __start_mcount_loc, 7173 __stop_mcount_loc); 7174 7175 pr_info("ftrace: allocated %ld pages with %ld groups\n", 7176 ftrace_number_of_pages, ftrace_number_of_groups); 7177 7178 set_ftrace_early_filters(); 7179 7180 return; 7181 failed: 7182 ftrace_disabled = 1; 7183 } 7184 7185 /* Do nothing if arch does not support this */ 7186 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops) 7187 { 7188 } 7189 7190 static void ftrace_update_trampoline(struct ftrace_ops *ops) 7191 { 7192 unsigned long trampoline = ops->trampoline; 7193 7194 arch_ftrace_update_trampoline(ops); 7195 if (ops->trampoline && ops->trampoline != trampoline && 7196 (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) { 7197 /* Add to kallsyms before the perf events */ 7198 ftrace_add_trampoline_to_kallsyms(ops); 7199 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 7200 ops->trampoline, ops->trampoline_size, false, 7201 FTRACE_TRAMPOLINE_SYM); 7202 /* 7203 * Record the perf text poke event after the ksymbol register 7204 * event. 7205 */ 7206 perf_event_text_poke((void *)ops->trampoline, NULL, 0, 7207 (void *)ops->trampoline, 7208 ops->trampoline_size); 7209 } 7210 } 7211 7212 void ftrace_init_trace_array(struct trace_array *tr) 7213 { 7214 INIT_LIST_HEAD(&tr->func_probes); 7215 INIT_LIST_HEAD(&tr->mod_trace); 7216 INIT_LIST_HEAD(&tr->mod_notrace); 7217 } 7218 #else 7219 7220 struct ftrace_ops global_ops = { 7221 .func = ftrace_stub, 7222 .flags = FTRACE_OPS_FL_INITIALIZED | 7223 FTRACE_OPS_FL_PID, 7224 }; 7225 7226 static int __init ftrace_nodyn_init(void) 7227 { 7228 ftrace_enabled = 1; 7229 return 0; 7230 } 7231 core_initcall(ftrace_nodyn_init); 7232 7233 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; } 7234 static inline void ftrace_startup_all(int command) { } 7235 7236 static void ftrace_update_trampoline(struct ftrace_ops *ops) 7237 { 7238 } 7239 7240 #endif /* CONFIG_DYNAMIC_FTRACE */ 7241 7242 __init void ftrace_init_global_array_ops(struct trace_array *tr) 7243 { 7244 tr->ops = &global_ops; 7245 tr->ops->private = tr; 7246 ftrace_init_trace_array(tr); 7247 } 7248 7249 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func) 7250 { 7251 /* If we filter on pids, update to use the pid function */ 7252 if (tr->flags & TRACE_ARRAY_FL_GLOBAL) { 7253 if (WARN_ON(tr->ops->func != ftrace_stub)) 7254 printk("ftrace ops had %pS for function\n", 7255 tr->ops->func); 7256 } 7257 tr->ops->func = func; 7258 tr->ops->private = tr; 7259 } 7260 7261 void ftrace_reset_array_ops(struct trace_array *tr) 7262 { 7263 tr->ops->func = ftrace_stub; 7264 } 7265 7266 static nokprobe_inline void 7267 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 7268 struct ftrace_ops *ignored, struct ftrace_regs *fregs) 7269 { 7270 struct pt_regs *regs = ftrace_get_regs(fregs); 7271 struct ftrace_ops *op; 7272 int bit; 7273 7274 /* 7275 * The ftrace_test_and_set_recursion() will disable preemption, 7276 * which is required since some of the ops may be dynamically 7277 * allocated, they must be freed after a synchronize_rcu(). 7278 */ 7279 bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START); 7280 if (bit < 0) 7281 return; 7282 7283 do_for_each_ftrace_op(op, ftrace_ops_list) { 7284 /* Stub functions don't need to be called nor tested */ 7285 if (op->flags & FTRACE_OPS_FL_STUB) 7286 continue; 7287 /* 7288 * Check the following for each ops before calling their func: 7289 * if RCU flag is set, then rcu_is_watching() must be true 7290 * if PER_CPU is set, then ftrace_function_local_disable() 7291 * must be false 7292 * Otherwise test if the ip matches the ops filter 7293 * 7294 * If any of the above fails then the op->func() is not executed. 7295 */ 7296 if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) && 7297 ftrace_ops_test(op, ip, regs)) { 7298 if (FTRACE_WARN_ON(!op->func)) { 7299 pr_warn("op=%p %pS\n", op, op); 7300 goto out; 7301 } 7302 op->func(ip, parent_ip, op, fregs); 7303 } 7304 } while_for_each_ftrace_op(op); 7305 out: 7306 trace_clear_recursion(bit); 7307 } 7308 7309 /* 7310 * Some archs only support passing ip and parent_ip. Even though 7311 * the list function ignores the op parameter, we do not want any 7312 * C side effects, where a function is called without the caller 7313 * sending a third parameter. 7314 * Archs are to support both the regs and ftrace_ops at the same time. 7315 * If they support ftrace_ops, it is assumed they support regs. 7316 * If call backs want to use regs, they must either check for regs 7317 * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS. 7318 * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved. 7319 * An architecture can pass partial regs with ftrace_ops and still 7320 * set the ARCH_SUPPORTS_FTRACE_OPS. 7321 * 7322 * In vmlinux.lds.h, ftrace_ops_list_func() is defined to be 7323 * arch_ftrace_ops_list_func. 7324 */ 7325 #if ARCH_SUPPORTS_FTRACE_OPS 7326 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 7327 struct ftrace_ops *op, struct ftrace_regs *fregs) 7328 { 7329 __ftrace_ops_list_func(ip, parent_ip, NULL, fregs); 7330 } 7331 #else 7332 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip) 7333 { 7334 __ftrace_ops_list_func(ip, parent_ip, NULL, NULL); 7335 } 7336 #endif 7337 NOKPROBE_SYMBOL(arch_ftrace_ops_list_func); 7338 7339 /* 7340 * If there's only one function registered but it does not support 7341 * recursion, needs RCU protection and/or requires per cpu handling, then 7342 * this function will be called by the mcount trampoline. 7343 */ 7344 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip, 7345 struct ftrace_ops *op, struct ftrace_regs *fregs) 7346 { 7347 int bit; 7348 7349 bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START); 7350 if (bit < 0) 7351 return; 7352 7353 if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) 7354 op->func(ip, parent_ip, op, fregs); 7355 7356 trace_clear_recursion(bit); 7357 } 7358 NOKPROBE_SYMBOL(ftrace_ops_assist_func); 7359 7360 /** 7361 * ftrace_ops_get_func - get the function a trampoline should call 7362 * @ops: the ops to get the function for 7363 * 7364 * Normally the mcount trampoline will call the ops->func, but there 7365 * are times that it should not. For example, if the ops does not 7366 * have its own recursion protection, then it should call the 7367 * ftrace_ops_assist_func() instead. 7368 * 7369 * Returns the function that the trampoline should call for @ops. 7370 */ 7371 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops) 7372 { 7373 /* 7374 * If the function does not handle recursion or needs to be RCU safe, 7375 * then we need to call the assist handler. 7376 */ 7377 if (ops->flags & (FTRACE_OPS_FL_RECURSION | 7378 FTRACE_OPS_FL_RCU)) 7379 return ftrace_ops_assist_func; 7380 7381 return ops->func; 7382 } 7383 7384 static void 7385 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt, 7386 struct task_struct *prev, 7387 struct task_struct *next, 7388 unsigned int prev_state) 7389 { 7390 struct trace_array *tr = data; 7391 struct trace_pid_list *pid_list; 7392 struct trace_pid_list *no_pid_list; 7393 7394 pid_list = rcu_dereference_sched(tr->function_pids); 7395 no_pid_list = rcu_dereference_sched(tr->function_no_pids); 7396 7397 if (trace_ignore_this_task(pid_list, no_pid_list, next)) 7398 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7399 FTRACE_PID_IGNORE); 7400 else 7401 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7402 next->pid); 7403 } 7404 7405 static void 7406 ftrace_pid_follow_sched_process_fork(void *data, 7407 struct task_struct *self, 7408 struct task_struct *task) 7409 { 7410 struct trace_pid_list *pid_list; 7411 struct trace_array *tr = data; 7412 7413 pid_list = rcu_dereference_sched(tr->function_pids); 7414 trace_filter_add_remove_task(pid_list, self, task); 7415 7416 pid_list = rcu_dereference_sched(tr->function_no_pids); 7417 trace_filter_add_remove_task(pid_list, self, task); 7418 } 7419 7420 static void 7421 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task) 7422 { 7423 struct trace_pid_list *pid_list; 7424 struct trace_array *tr = data; 7425 7426 pid_list = rcu_dereference_sched(tr->function_pids); 7427 trace_filter_add_remove_task(pid_list, NULL, task); 7428 7429 pid_list = rcu_dereference_sched(tr->function_no_pids); 7430 trace_filter_add_remove_task(pid_list, NULL, task); 7431 } 7432 7433 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable) 7434 { 7435 if (enable) { 7436 register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 7437 tr); 7438 register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 7439 tr); 7440 } else { 7441 unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 7442 tr); 7443 unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 7444 tr); 7445 } 7446 } 7447 7448 static void clear_ftrace_pids(struct trace_array *tr, int type) 7449 { 7450 struct trace_pid_list *pid_list; 7451 struct trace_pid_list *no_pid_list; 7452 int cpu; 7453 7454 pid_list = rcu_dereference_protected(tr->function_pids, 7455 lockdep_is_held(&ftrace_lock)); 7456 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 7457 lockdep_is_held(&ftrace_lock)); 7458 7459 /* Make sure there's something to do */ 7460 if (!pid_type_enabled(type, pid_list, no_pid_list)) 7461 return; 7462 7463 /* See if the pids still need to be checked after this */ 7464 if (!still_need_pid_events(type, pid_list, no_pid_list)) { 7465 unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7466 for_each_possible_cpu(cpu) 7467 per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE; 7468 } 7469 7470 if (type & TRACE_PIDS) 7471 rcu_assign_pointer(tr->function_pids, NULL); 7472 7473 if (type & TRACE_NO_PIDS) 7474 rcu_assign_pointer(tr->function_no_pids, NULL); 7475 7476 /* Wait till all users are no longer using pid filtering */ 7477 synchronize_rcu(); 7478 7479 if ((type & TRACE_PIDS) && pid_list) 7480 trace_pid_list_free(pid_list); 7481 7482 if ((type & TRACE_NO_PIDS) && no_pid_list) 7483 trace_pid_list_free(no_pid_list); 7484 } 7485 7486 void ftrace_clear_pids(struct trace_array *tr) 7487 { 7488 mutex_lock(&ftrace_lock); 7489 7490 clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS); 7491 7492 mutex_unlock(&ftrace_lock); 7493 } 7494 7495 static void ftrace_pid_reset(struct trace_array *tr, int type) 7496 { 7497 mutex_lock(&ftrace_lock); 7498 clear_ftrace_pids(tr, type); 7499 7500 ftrace_update_pid_func(); 7501 ftrace_startup_all(0); 7502 7503 mutex_unlock(&ftrace_lock); 7504 } 7505 7506 /* Greater than any max PID */ 7507 #define FTRACE_NO_PIDS (void *)(PID_MAX_LIMIT + 1) 7508 7509 static void *fpid_start(struct seq_file *m, loff_t *pos) 7510 __acquires(RCU) 7511 { 7512 struct trace_pid_list *pid_list; 7513 struct trace_array *tr = m->private; 7514 7515 mutex_lock(&ftrace_lock); 7516 rcu_read_lock_sched(); 7517 7518 pid_list = rcu_dereference_sched(tr->function_pids); 7519 7520 if (!pid_list) 7521 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7522 7523 return trace_pid_start(pid_list, pos); 7524 } 7525 7526 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos) 7527 { 7528 struct trace_array *tr = m->private; 7529 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids); 7530 7531 if (v == FTRACE_NO_PIDS) { 7532 (*pos)++; 7533 return NULL; 7534 } 7535 return trace_pid_next(pid_list, v, pos); 7536 } 7537 7538 static void fpid_stop(struct seq_file *m, void *p) 7539 __releases(RCU) 7540 { 7541 rcu_read_unlock_sched(); 7542 mutex_unlock(&ftrace_lock); 7543 } 7544 7545 static int fpid_show(struct seq_file *m, void *v) 7546 { 7547 if (v == FTRACE_NO_PIDS) { 7548 seq_puts(m, "no pid\n"); 7549 return 0; 7550 } 7551 7552 return trace_pid_show(m, v); 7553 } 7554 7555 static const struct seq_operations ftrace_pid_sops = { 7556 .start = fpid_start, 7557 .next = fpid_next, 7558 .stop = fpid_stop, 7559 .show = fpid_show, 7560 }; 7561 7562 static void *fnpid_start(struct seq_file *m, loff_t *pos) 7563 __acquires(RCU) 7564 { 7565 struct trace_pid_list *pid_list; 7566 struct trace_array *tr = m->private; 7567 7568 mutex_lock(&ftrace_lock); 7569 rcu_read_lock_sched(); 7570 7571 pid_list = rcu_dereference_sched(tr->function_no_pids); 7572 7573 if (!pid_list) 7574 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7575 7576 return trace_pid_start(pid_list, pos); 7577 } 7578 7579 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos) 7580 { 7581 struct trace_array *tr = m->private; 7582 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids); 7583 7584 if (v == FTRACE_NO_PIDS) { 7585 (*pos)++; 7586 return NULL; 7587 } 7588 return trace_pid_next(pid_list, v, pos); 7589 } 7590 7591 static const struct seq_operations ftrace_no_pid_sops = { 7592 .start = fnpid_start, 7593 .next = fnpid_next, 7594 .stop = fpid_stop, 7595 .show = fpid_show, 7596 }; 7597 7598 static int pid_open(struct inode *inode, struct file *file, int type) 7599 { 7600 const struct seq_operations *seq_ops; 7601 struct trace_array *tr = inode->i_private; 7602 struct seq_file *m; 7603 int ret = 0; 7604 7605 ret = tracing_check_open_get_tr(tr); 7606 if (ret) 7607 return ret; 7608 7609 if ((file->f_mode & FMODE_WRITE) && 7610 (file->f_flags & O_TRUNC)) 7611 ftrace_pid_reset(tr, type); 7612 7613 switch (type) { 7614 case TRACE_PIDS: 7615 seq_ops = &ftrace_pid_sops; 7616 break; 7617 case TRACE_NO_PIDS: 7618 seq_ops = &ftrace_no_pid_sops; 7619 break; 7620 default: 7621 trace_array_put(tr); 7622 WARN_ON_ONCE(1); 7623 return -EINVAL; 7624 } 7625 7626 ret = seq_open(file, seq_ops); 7627 if (ret < 0) { 7628 trace_array_put(tr); 7629 } else { 7630 m = file->private_data; 7631 /* copy tr over to seq ops */ 7632 m->private = tr; 7633 } 7634 7635 return ret; 7636 } 7637 7638 static int 7639 ftrace_pid_open(struct inode *inode, struct file *file) 7640 { 7641 return pid_open(inode, file, TRACE_PIDS); 7642 } 7643 7644 static int 7645 ftrace_no_pid_open(struct inode *inode, struct file *file) 7646 { 7647 return pid_open(inode, file, TRACE_NO_PIDS); 7648 } 7649 7650 static void ignore_task_cpu(void *data) 7651 { 7652 struct trace_array *tr = data; 7653 struct trace_pid_list *pid_list; 7654 struct trace_pid_list *no_pid_list; 7655 7656 /* 7657 * This function is called by on_each_cpu() while the 7658 * event_mutex is held. 7659 */ 7660 pid_list = rcu_dereference_protected(tr->function_pids, 7661 mutex_is_locked(&ftrace_lock)); 7662 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 7663 mutex_is_locked(&ftrace_lock)); 7664 7665 if (trace_ignore_this_task(pid_list, no_pid_list, current)) 7666 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7667 FTRACE_PID_IGNORE); 7668 else 7669 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7670 current->pid); 7671 } 7672 7673 static ssize_t 7674 pid_write(struct file *filp, const char __user *ubuf, 7675 size_t cnt, loff_t *ppos, int type) 7676 { 7677 struct seq_file *m = filp->private_data; 7678 struct trace_array *tr = m->private; 7679 struct trace_pid_list *filtered_pids; 7680 struct trace_pid_list *other_pids; 7681 struct trace_pid_list *pid_list; 7682 ssize_t ret; 7683 7684 if (!cnt) 7685 return 0; 7686 7687 mutex_lock(&ftrace_lock); 7688 7689 switch (type) { 7690 case TRACE_PIDS: 7691 filtered_pids = rcu_dereference_protected(tr->function_pids, 7692 lockdep_is_held(&ftrace_lock)); 7693 other_pids = rcu_dereference_protected(tr->function_no_pids, 7694 lockdep_is_held(&ftrace_lock)); 7695 break; 7696 case TRACE_NO_PIDS: 7697 filtered_pids = rcu_dereference_protected(tr->function_no_pids, 7698 lockdep_is_held(&ftrace_lock)); 7699 other_pids = rcu_dereference_protected(tr->function_pids, 7700 lockdep_is_held(&ftrace_lock)); 7701 break; 7702 default: 7703 ret = -EINVAL; 7704 WARN_ON_ONCE(1); 7705 goto out; 7706 } 7707 7708 ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt); 7709 if (ret < 0) 7710 goto out; 7711 7712 switch (type) { 7713 case TRACE_PIDS: 7714 rcu_assign_pointer(tr->function_pids, pid_list); 7715 break; 7716 case TRACE_NO_PIDS: 7717 rcu_assign_pointer(tr->function_no_pids, pid_list); 7718 break; 7719 } 7720 7721 7722 if (filtered_pids) { 7723 synchronize_rcu(); 7724 trace_pid_list_free(filtered_pids); 7725 } else if (pid_list && !other_pids) { 7726 /* Register a probe to set whether to ignore the tracing of a task */ 7727 register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7728 } 7729 7730 /* 7731 * Ignoring of pids is done at task switch. But we have to 7732 * check for those tasks that are currently running. 7733 * Always do this in case a pid was appended or removed. 7734 */ 7735 on_each_cpu(ignore_task_cpu, tr, 1); 7736 7737 ftrace_update_pid_func(); 7738 ftrace_startup_all(0); 7739 out: 7740 mutex_unlock(&ftrace_lock); 7741 7742 if (ret > 0) 7743 *ppos += ret; 7744 7745 return ret; 7746 } 7747 7748 static ssize_t 7749 ftrace_pid_write(struct file *filp, const char __user *ubuf, 7750 size_t cnt, loff_t *ppos) 7751 { 7752 return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS); 7753 } 7754 7755 static ssize_t 7756 ftrace_no_pid_write(struct file *filp, const char __user *ubuf, 7757 size_t cnt, loff_t *ppos) 7758 { 7759 return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS); 7760 } 7761 7762 static int 7763 ftrace_pid_release(struct inode *inode, struct file *file) 7764 { 7765 struct trace_array *tr = inode->i_private; 7766 7767 trace_array_put(tr); 7768 7769 return seq_release(inode, file); 7770 } 7771 7772 static const struct file_operations ftrace_pid_fops = { 7773 .open = ftrace_pid_open, 7774 .write = ftrace_pid_write, 7775 .read = seq_read, 7776 .llseek = tracing_lseek, 7777 .release = ftrace_pid_release, 7778 }; 7779 7780 static const struct file_operations ftrace_no_pid_fops = { 7781 .open = ftrace_no_pid_open, 7782 .write = ftrace_no_pid_write, 7783 .read = seq_read, 7784 .llseek = tracing_lseek, 7785 .release = ftrace_pid_release, 7786 }; 7787 7788 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer) 7789 { 7790 trace_create_file("set_ftrace_pid", TRACE_MODE_WRITE, d_tracer, 7791 tr, &ftrace_pid_fops); 7792 trace_create_file("set_ftrace_notrace_pid", TRACE_MODE_WRITE, 7793 d_tracer, tr, &ftrace_no_pid_fops); 7794 } 7795 7796 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr, 7797 struct dentry *d_tracer) 7798 { 7799 /* Only the top level directory has the dyn_tracefs and profile */ 7800 WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL)); 7801 7802 ftrace_init_dyn_tracefs(d_tracer); 7803 ftrace_profile_tracefs(d_tracer); 7804 } 7805 7806 /** 7807 * ftrace_kill - kill ftrace 7808 * 7809 * This function should be used by panic code. It stops ftrace 7810 * but in a not so nice way. If you need to simply kill ftrace 7811 * from a non-atomic section, use ftrace_kill. 7812 */ 7813 void ftrace_kill(void) 7814 { 7815 ftrace_disabled = 1; 7816 ftrace_enabled = 0; 7817 ftrace_trace_function = ftrace_stub; 7818 } 7819 7820 /** 7821 * ftrace_is_dead - Test if ftrace is dead or not. 7822 * 7823 * Returns 1 if ftrace is "dead", zero otherwise. 7824 */ 7825 int ftrace_is_dead(void) 7826 { 7827 return ftrace_disabled; 7828 } 7829 7830 /** 7831 * register_ftrace_function - register a function for profiling 7832 * @ops: ops structure that holds the function for profiling. 7833 * 7834 * Register a function to be called by all functions in the 7835 * kernel. 7836 * 7837 * Note: @ops->func and all the functions it calls must be labeled 7838 * with "notrace", otherwise it will go into a 7839 * recursive loop. 7840 */ 7841 int register_ftrace_function(struct ftrace_ops *ops) 7842 { 7843 int ret; 7844 7845 ftrace_ops_init(ops); 7846 7847 mutex_lock(&ftrace_lock); 7848 7849 ret = ftrace_startup(ops, 0); 7850 7851 mutex_unlock(&ftrace_lock); 7852 7853 return ret; 7854 } 7855 EXPORT_SYMBOL_GPL(register_ftrace_function); 7856 7857 /** 7858 * unregister_ftrace_function - unregister a function for profiling. 7859 * @ops: ops structure that holds the function to unregister 7860 * 7861 * Unregister a function that was added to be called by ftrace profiling. 7862 */ 7863 int unregister_ftrace_function(struct ftrace_ops *ops) 7864 { 7865 int ret; 7866 7867 mutex_lock(&ftrace_lock); 7868 ret = ftrace_shutdown(ops, 0); 7869 mutex_unlock(&ftrace_lock); 7870 7871 return ret; 7872 } 7873 EXPORT_SYMBOL_GPL(unregister_ftrace_function); 7874 7875 static int symbols_cmp(const void *a, const void *b) 7876 { 7877 const char **str_a = (const char **) a; 7878 const char **str_b = (const char **) b; 7879 7880 return strcmp(*str_a, *str_b); 7881 } 7882 7883 struct kallsyms_data { 7884 unsigned long *addrs; 7885 const char **syms; 7886 size_t cnt; 7887 size_t found; 7888 }; 7889 7890 static int kallsyms_callback(void *data, const char *name, 7891 struct module *mod, unsigned long addr) 7892 { 7893 struct kallsyms_data *args = data; 7894 7895 if (!bsearch(&name, args->syms, args->cnt, sizeof(*args->syms), symbols_cmp)) 7896 return 0; 7897 7898 addr = ftrace_location(addr); 7899 if (!addr) 7900 return 0; 7901 7902 args->addrs[args->found++] = addr; 7903 return args->found == args->cnt ? 1 : 0; 7904 } 7905 7906 /** 7907 * ftrace_lookup_symbols - Lookup addresses for array of symbols 7908 * 7909 * @sorted_syms: array of symbols pointers symbols to resolve, 7910 * must be alphabetically sorted 7911 * @cnt: number of symbols/addresses in @syms/@addrs arrays 7912 * @addrs: array for storing resulting addresses 7913 * 7914 * This function looks up addresses for array of symbols provided in 7915 * @syms array (must be alphabetically sorted) and stores them in 7916 * @addrs array, which needs to be big enough to store at least @cnt 7917 * addresses. 7918 * 7919 * This function returns 0 if all provided symbols are found, 7920 * -ESRCH otherwise. 7921 */ 7922 int ftrace_lookup_symbols(const char **sorted_syms, size_t cnt, unsigned long *addrs) 7923 { 7924 struct kallsyms_data args; 7925 int err; 7926 7927 args.addrs = addrs; 7928 args.syms = sorted_syms; 7929 args.cnt = cnt; 7930 args.found = 0; 7931 err = kallsyms_on_each_symbol(kallsyms_callback, &args); 7932 if (err < 0) 7933 return err; 7934 return args.found == args.cnt ? 0 : -ESRCH; 7935 } 7936 7937 #ifdef CONFIG_SYSCTL 7938 7939 #ifdef CONFIG_DYNAMIC_FTRACE 7940 static void ftrace_startup_sysctl(void) 7941 { 7942 int command; 7943 7944 if (unlikely(ftrace_disabled)) 7945 return; 7946 7947 /* Force update next time */ 7948 saved_ftrace_func = NULL; 7949 /* ftrace_start_up is true if we want ftrace running */ 7950 if (ftrace_start_up) { 7951 command = FTRACE_UPDATE_CALLS; 7952 if (ftrace_graph_active) 7953 command |= FTRACE_START_FUNC_RET; 7954 ftrace_startup_enable(command); 7955 } 7956 } 7957 7958 static void ftrace_shutdown_sysctl(void) 7959 { 7960 int command; 7961 7962 if (unlikely(ftrace_disabled)) 7963 return; 7964 7965 /* ftrace_start_up is true if ftrace is running */ 7966 if (ftrace_start_up) { 7967 command = FTRACE_DISABLE_CALLS; 7968 if (ftrace_graph_active) 7969 command |= FTRACE_STOP_FUNC_RET; 7970 ftrace_run_update_code(command); 7971 } 7972 } 7973 #else 7974 # define ftrace_startup_sysctl() do { } while (0) 7975 # define ftrace_shutdown_sysctl() do { } while (0) 7976 #endif /* CONFIG_DYNAMIC_FTRACE */ 7977 7978 static bool is_permanent_ops_registered(void) 7979 { 7980 struct ftrace_ops *op; 7981 7982 do_for_each_ftrace_op(op, ftrace_ops_list) { 7983 if (op->flags & FTRACE_OPS_FL_PERMANENT) 7984 return true; 7985 } while_for_each_ftrace_op(op); 7986 7987 return false; 7988 } 7989 7990 static int 7991 ftrace_enable_sysctl(struct ctl_table *table, int write, 7992 void *buffer, size_t *lenp, loff_t *ppos) 7993 { 7994 int ret = -ENODEV; 7995 7996 mutex_lock(&ftrace_lock); 7997 7998 if (unlikely(ftrace_disabled)) 7999 goto out; 8000 8001 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8002 8003 if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) 8004 goto out; 8005 8006 if (ftrace_enabled) { 8007 8008 /* we are starting ftrace again */ 8009 if (rcu_dereference_protected(ftrace_ops_list, 8010 lockdep_is_held(&ftrace_lock)) != &ftrace_list_end) 8011 update_ftrace_function(); 8012 8013 ftrace_startup_sysctl(); 8014 8015 } else { 8016 if (is_permanent_ops_registered()) { 8017 ftrace_enabled = true; 8018 ret = -EBUSY; 8019 goto out; 8020 } 8021 8022 /* stopping ftrace calls (just send to ftrace_stub) */ 8023 ftrace_trace_function = ftrace_stub; 8024 8025 ftrace_shutdown_sysctl(); 8026 } 8027 8028 last_ftrace_enabled = !!ftrace_enabled; 8029 out: 8030 mutex_unlock(&ftrace_lock); 8031 return ret; 8032 } 8033 8034 static struct ctl_table ftrace_sysctls[] = { 8035 { 8036 .procname = "ftrace_enabled", 8037 .data = &ftrace_enabled, 8038 .maxlen = sizeof(int), 8039 .mode = 0644, 8040 .proc_handler = ftrace_enable_sysctl, 8041 }, 8042 {} 8043 }; 8044 8045 static int __init ftrace_sysctl_init(void) 8046 { 8047 register_sysctl_init("kernel", ftrace_sysctls); 8048 return 0; 8049 } 8050 late_initcall(ftrace_sysctl_init); 8051 #endif 8052