1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Infrastructure for profiling code inserted by 'gcc -pg'. 4 * 5 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com> 6 * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com> 7 * 8 * Originally ported from the -rt patch by: 9 * Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com> 10 * 11 * Based on code in the latency_tracer, that is: 12 * 13 * Copyright (C) 2004-2006 Ingo Molnar 14 * Copyright (C) 2004 Nadia Yvette Chambers 15 */ 16 17 #include <linux/stop_machine.h> 18 #include <linux/clocksource.h> 19 #include <linux/sched/task.h> 20 #include <linux/kallsyms.h> 21 #include <linux/security.h> 22 #include <linux/seq_file.h> 23 #include <linux/tracefs.h> 24 #include <linux/hardirq.h> 25 #include <linux/kthread.h> 26 #include <linux/uaccess.h> 27 #include <linux/bsearch.h> 28 #include <linux/module.h> 29 #include <linux/ftrace.h> 30 #include <linux/sysctl.h> 31 #include <linux/slab.h> 32 #include <linux/ctype.h> 33 #include <linux/sort.h> 34 #include <linux/list.h> 35 #include <linux/hash.h> 36 #include <linux/rcupdate.h> 37 #include <linux/kprobes.h> 38 39 #include <trace/events/sched.h> 40 41 #include <asm/sections.h> 42 #include <asm/setup.h> 43 44 #include "ftrace_internal.h" 45 #include "trace_output.h" 46 #include "trace_stat.h" 47 48 #define FTRACE_WARN_ON(cond) \ 49 ({ \ 50 int ___r = cond; \ 51 if (WARN_ON(___r)) \ 52 ftrace_kill(); \ 53 ___r; \ 54 }) 55 56 #define FTRACE_WARN_ON_ONCE(cond) \ 57 ({ \ 58 int ___r = cond; \ 59 if (WARN_ON_ONCE(___r)) \ 60 ftrace_kill(); \ 61 ___r; \ 62 }) 63 64 /* hash bits for specific function selection */ 65 #define FTRACE_HASH_BITS 7 66 #define FTRACE_FUNC_HASHSIZE (1 << FTRACE_HASH_BITS) 67 #define FTRACE_HASH_DEFAULT_BITS 10 68 #define FTRACE_HASH_MAX_BITS 12 69 70 #ifdef CONFIG_DYNAMIC_FTRACE 71 #define INIT_OPS_HASH(opsname) \ 72 .func_hash = &opsname.local_hash, \ 73 .local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock), 74 #else 75 #define INIT_OPS_HASH(opsname) 76 #endif 77 78 enum { 79 FTRACE_MODIFY_ENABLE_FL = (1 << 0), 80 FTRACE_MODIFY_MAY_SLEEP_FL = (1 << 1), 81 }; 82 83 struct ftrace_ops ftrace_list_end __read_mostly = { 84 .func = ftrace_stub, 85 .flags = FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_STUB, 86 INIT_OPS_HASH(ftrace_list_end) 87 }; 88 89 /* ftrace_enabled is a method to turn ftrace on or off */ 90 int ftrace_enabled __read_mostly; 91 static int last_ftrace_enabled; 92 93 /* Current function tracing op */ 94 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end; 95 /* What to set function_trace_op to */ 96 static struct ftrace_ops *set_function_trace_op; 97 98 static bool ftrace_pids_enabled(struct ftrace_ops *ops) 99 { 100 struct trace_array *tr; 101 102 if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private) 103 return false; 104 105 tr = ops->private; 106 107 return tr->function_pids != NULL; 108 } 109 110 static void ftrace_update_trampoline(struct ftrace_ops *ops); 111 112 /* 113 * ftrace_disabled is set when an anomaly is discovered. 114 * ftrace_disabled is much stronger than ftrace_enabled. 115 */ 116 static int ftrace_disabled __read_mostly; 117 118 DEFINE_MUTEX(ftrace_lock); 119 120 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end; 121 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub; 122 struct ftrace_ops global_ops; 123 124 #if ARCH_SUPPORTS_FTRACE_OPS 125 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 126 struct ftrace_ops *op, struct pt_regs *regs); 127 #else 128 /* See comment below, where ftrace_ops_list_func is defined */ 129 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip); 130 #define ftrace_ops_list_func ((ftrace_func_t)ftrace_ops_no_ops) 131 #endif 132 133 static inline void ftrace_ops_init(struct ftrace_ops *ops) 134 { 135 #ifdef CONFIG_DYNAMIC_FTRACE 136 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) { 137 mutex_init(&ops->local_hash.regex_lock); 138 ops->func_hash = &ops->local_hash; 139 ops->flags |= FTRACE_OPS_FL_INITIALIZED; 140 } 141 #endif 142 } 143 144 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip, 145 struct ftrace_ops *op, struct pt_regs *regs) 146 { 147 struct trace_array *tr = op->private; 148 149 if (tr && this_cpu_read(tr->trace_buffer.data->ftrace_ignore_pid)) 150 return; 151 152 op->saved_func(ip, parent_ip, op, regs); 153 } 154 155 static void ftrace_sync(struct work_struct *work) 156 { 157 /* 158 * This function is just a stub to implement a hard force 159 * of synchronize_rcu(). This requires synchronizing 160 * tasks even in userspace and idle. 161 * 162 * Yes, function tracing is rude. 163 */ 164 } 165 166 static void ftrace_sync_ipi(void *data) 167 { 168 /* Probably not needed, but do it anyway */ 169 smp_rmb(); 170 } 171 172 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops) 173 { 174 /* 175 * If this is a dynamic, RCU, or per CPU ops, or we force list func, 176 * then it needs to call the list anyway. 177 */ 178 if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) || 179 FTRACE_FORCE_LIST_FUNC) 180 return ftrace_ops_list_func; 181 182 return ftrace_ops_get_func(ops); 183 } 184 185 static void update_ftrace_function(void) 186 { 187 ftrace_func_t func; 188 189 /* 190 * Prepare the ftrace_ops that the arch callback will use. 191 * If there's only one ftrace_ops registered, the ftrace_ops_list 192 * will point to the ops we want. 193 */ 194 set_function_trace_op = rcu_dereference_protected(ftrace_ops_list, 195 lockdep_is_held(&ftrace_lock)); 196 197 /* If there's no ftrace_ops registered, just call the stub function */ 198 if (set_function_trace_op == &ftrace_list_end) { 199 func = ftrace_stub; 200 201 /* 202 * If we are at the end of the list and this ops is 203 * recursion safe and not dynamic and the arch supports passing ops, 204 * then have the mcount trampoline call the function directly. 205 */ 206 } else if (rcu_dereference_protected(ftrace_ops_list->next, 207 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 208 func = ftrace_ops_get_list_func(ftrace_ops_list); 209 210 } else { 211 /* Just use the default ftrace_ops */ 212 set_function_trace_op = &ftrace_list_end; 213 func = ftrace_ops_list_func; 214 } 215 216 update_function_graph_func(); 217 218 /* If there's no change, then do nothing more here */ 219 if (ftrace_trace_function == func) 220 return; 221 222 /* 223 * If we are using the list function, it doesn't care 224 * about the function_trace_ops. 225 */ 226 if (func == ftrace_ops_list_func) { 227 ftrace_trace_function = func; 228 /* 229 * Don't even bother setting function_trace_ops, 230 * it would be racy to do so anyway. 231 */ 232 return; 233 } 234 235 #ifndef CONFIG_DYNAMIC_FTRACE 236 /* 237 * For static tracing, we need to be a bit more careful. 238 * The function change takes affect immediately. Thus, 239 * we need to coorditate the setting of the function_trace_ops 240 * with the setting of the ftrace_trace_function. 241 * 242 * Set the function to the list ops, which will call the 243 * function we want, albeit indirectly, but it handles the 244 * ftrace_ops and doesn't depend on function_trace_op. 245 */ 246 ftrace_trace_function = ftrace_ops_list_func; 247 /* 248 * Make sure all CPUs see this. Yes this is slow, but static 249 * tracing is slow and nasty to have enabled. 250 */ 251 schedule_on_each_cpu(ftrace_sync); 252 /* Now all cpus are using the list ops. */ 253 function_trace_op = set_function_trace_op; 254 /* Make sure the function_trace_op is visible on all CPUs */ 255 smp_wmb(); 256 /* Nasty way to force a rmb on all cpus */ 257 smp_call_function(ftrace_sync_ipi, NULL, 1); 258 /* OK, we are all set to update the ftrace_trace_function now! */ 259 #endif /* !CONFIG_DYNAMIC_FTRACE */ 260 261 ftrace_trace_function = func; 262 } 263 264 static void add_ftrace_ops(struct ftrace_ops __rcu **list, 265 struct ftrace_ops *ops) 266 { 267 rcu_assign_pointer(ops->next, *list); 268 269 /* 270 * We are entering ops into the list but another 271 * CPU might be walking that list. We need to make sure 272 * the ops->next pointer is valid before another CPU sees 273 * the ops pointer included into the list. 274 */ 275 rcu_assign_pointer(*list, ops); 276 } 277 278 static int remove_ftrace_ops(struct ftrace_ops __rcu **list, 279 struct ftrace_ops *ops) 280 { 281 struct ftrace_ops **p; 282 283 /* 284 * If we are removing the last function, then simply point 285 * to the ftrace_stub. 286 */ 287 if (rcu_dereference_protected(*list, 288 lockdep_is_held(&ftrace_lock)) == ops && 289 rcu_dereference_protected(ops->next, 290 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 291 *list = &ftrace_list_end; 292 return 0; 293 } 294 295 for (p = list; *p != &ftrace_list_end; p = &(*p)->next) 296 if (*p == ops) 297 break; 298 299 if (*p != ops) 300 return -1; 301 302 *p = (*p)->next; 303 return 0; 304 } 305 306 static void ftrace_update_trampoline(struct ftrace_ops *ops); 307 308 int __register_ftrace_function(struct ftrace_ops *ops) 309 { 310 if (ops->flags & FTRACE_OPS_FL_DELETED) 311 return -EINVAL; 312 313 if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED)) 314 return -EBUSY; 315 316 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS 317 /* 318 * If the ftrace_ops specifies SAVE_REGS, then it only can be used 319 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set. 320 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant. 321 */ 322 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS && 323 !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)) 324 return -EINVAL; 325 326 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED) 327 ops->flags |= FTRACE_OPS_FL_SAVE_REGS; 328 #endif 329 if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT)) 330 return -EBUSY; 331 332 if (!core_kernel_data((unsigned long)ops)) 333 ops->flags |= FTRACE_OPS_FL_DYNAMIC; 334 335 add_ftrace_ops(&ftrace_ops_list, ops); 336 337 /* Always save the function, and reset at unregistering */ 338 ops->saved_func = ops->func; 339 340 if (ftrace_pids_enabled(ops)) 341 ops->func = ftrace_pid_func; 342 343 ftrace_update_trampoline(ops); 344 345 if (ftrace_enabled) 346 update_ftrace_function(); 347 348 return 0; 349 } 350 351 int __unregister_ftrace_function(struct ftrace_ops *ops) 352 { 353 int ret; 354 355 if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED))) 356 return -EBUSY; 357 358 ret = remove_ftrace_ops(&ftrace_ops_list, ops); 359 360 if (ret < 0) 361 return ret; 362 363 if (ftrace_enabled) 364 update_ftrace_function(); 365 366 ops->func = ops->saved_func; 367 368 return 0; 369 } 370 371 static void ftrace_update_pid_func(void) 372 { 373 struct ftrace_ops *op; 374 375 /* Only do something if we are tracing something */ 376 if (ftrace_trace_function == ftrace_stub) 377 return; 378 379 do_for_each_ftrace_op(op, ftrace_ops_list) { 380 if (op->flags & FTRACE_OPS_FL_PID) { 381 op->func = ftrace_pids_enabled(op) ? 382 ftrace_pid_func : op->saved_func; 383 ftrace_update_trampoline(op); 384 } 385 } while_for_each_ftrace_op(op); 386 387 update_ftrace_function(); 388 } 389 390 #ifdef CONFIG_FUNCTION_PROFILER 391 struct ftrace_profile { 392 struct hlist_node node; 393 unsigned long ip; 394 unsigned long counter; 395 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 396 unsigned long long time; 397 unsigned long long time_squared; 398 #endif 399 }; 400 401 struct ftrace_profile_page { 402 struct ftrace_profile_page *next; 403 unsigned long index; 404 struct ftrace_profile records[]; 405 }; 406 407 struct ftrace_profile_stat { 408 atomic_t disabled; 409 struct hlist_head *hash; 410 struct ftrace_profile_page *pages; 411 struct ftrace_profile_page *start; 412 struct tracer_stat stat; 413 }; 414 415 #define PROFILE_RECORDS_SIZE \ 416 (PAGE_SIZE - offsetof(struct ftrace_profile_page, records)) 417 418 #define PROFILES_PER_PAGE \ 419 (PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile)) 420 421 static int ftrace_profile_enabled __read_mostly; 422 423 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */ 424 static DEFINE_MUTEX(ftrace_profile_lock); 425 426 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats); 427 428 #define FTRACE_PROFILE_HASH_BITS 10 429 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS) 430 431 static void * 432 function_stat_next(void *v, int idx) 433 { 434 struct ftrace_profile *rec = v; 435 struct ftrace_profile_page *pg; 436 437 pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK); 438 439 again: 440 if (idx != 0) 441 rec++; 442 443 if ((void *)rec >= (void *)&pg->records[pg->index]) { 444 pg = pg->next; 445 if (!pg) 446 return NULL; 447 rec = &pg->records[0]; 448 if (!rec->counter) 449 goto again; 450 } 451 452 return rec; 453 } 454 455 static void *function_stat_start(struct tracer_stat *trace) 456 { 457 struct ftrace_profile_stat *stat = 458 container_of(trace, struct ftrace_profile_stat, stat); 459 460 if (!stat || !stat->start) 461 return NULL; 462 463 return function_stat_next(&stat->start->records[0], 0); 464 } 465 466 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 467 /* function graph compares on total time */ 468 static int function_stat_cmp(const void *p1, const void *p2) 469 { 470 const struct ftrace_profile *a = p1; 471 const struct ftrace_profile *b = p2; 472 473 if (a->time < b->time) 474 return -1; 475 if (a->time > b->time) 476 return 1; 477 else 478 return 0; 479 } 480 #else 481 /* not function graph compares against hits */ 482 static int function_stat_cmp(const void *p1, const void *p2) 483 { 484 const struct ftrace_profile *a = p1; 485 const struct ftrace_profile *b = p2; 486 487 if (a->counter < b->counter) 488 return -1; 489 if (a->counter > b->counter) 490 return 1; 491 else 492 return 0; 493 } 494 #endif 495 496 static int function_stat_headers(struct seq_file *m) 497 { 498 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 499 seq_puts(m, " Function " 500 "Hit Time Avg s^2\n" 501 " -------- " 502 "--- ---- --- ---\n"); 503 #else 504 seq_puts(m, " Function Hit\n" 505 " -------- ---\n"); 506 #endif 507 return 0; 508 } 509 510 static int function_stat_show(struct seq_file *m, void *v) 511 { 512 struct ftrace_profile *rec = v; 513 char str[KSYM_SYMBOL_LEN]; 514 int ret = 0; 515 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 516 static struct trace_seq s; 517 unsigned long long avg; 518 unsigned long long stddev; 519 #endif 520 mutex_lock(&ftrace_profile_lock); 521 522 /* we raced with function_profile_reset() */ 523 if (unlikely(rec->counter == 0)) { 524 ret = -EBUSY; 525 goto out; 526 } 527 528 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 529 avg = rec->time; 530 do_div(avg, rec->counter); 531 if (tracing_thresh && (avg < tracing_thresh)) 532 goto out; 533 #endif 534 535 kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); 536 seq_printf(m, " %-30.30s %10lu", str, rec->counter); 537 538 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 539 seq_puts(m, " "); 540 541 /* Sample standard deviation (s^2) */ 542 if (rec->counter <= 1) 543 stddev = 0; 544 else { 545 /* 546 * Apply Welford's method: 547 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2) 548 */ 549 stddev = rec->counter * rec->time_squared - 550 rec->time * rec->time; 551 552 /* 553 * Divide only 1000 for ns^2 -> us^2 conversion. 554 * trace_print_graph_duration will divide 1000 again. 555 */ 556 do_div(stddev, rec->counter * (rec->counter - 1) * 1000); 557 } 558 559 trace_seq_init(&s); 560 trace_print_graph_duration(rec->time, &s); 561 trace_seq_puts(&s, " "); 562 trace_print_graph_duration(avg, &s); 563 trace_seq_puts(&s, " "); 564 trace_print_graph_duration(stddev, &s); 565 trace_print_seq(m, &s); 566 #endif 567 seq_putc(m, '\n'); 568 out: 569 mutex_unlock(&ftrace_profile_lock); 570 571 return ret; 572 } 573 574 static void ftrace_profile_reset(struct ftrace_profile_stat *stat) 575 { 576 struct ftrace_profile_page *pg; 577 578 pg = stat->pages = stat->start; 579 580 while (pg) { 581 memset(pg->records, 0, PROFILE_RECORDS_SIZE); 582 pg->index = 0; 583 pg = pg->next; 584 } 585 586 memset(stat->hash, 0, 587 FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head)); 588 } 589 590 int ftrace_profile_pages_init(struct ftrace_profile_stat *stat) 591 { 592 struct ftrace_profile_page *pg; 593 int functions; 594 int pages; 595 int i; 596 597 /* If we already allocated, do nothing */ 598 if (stat->pages) 599 return 0; 600 601 stat->pages = (void *)get_zeroed_page(GFP_KERNEL); 602 if (!stat->pages) 603 return -ENOMEM; 604 605 #ifdef CONFIG_DYNAMIC_FTRACE 606 functions = ftrace_update_tot_cnt; 607 #else 608 /* 609 * We do not know the number of functions that exist because 610 * dynamic tracing is what counts them. With past experience 611 * we have around 20K functions. That should be more than enough. 612 * It is highly unlikely we will execute every function in 613 * the kernel. 614 */ 615 functions = 20000; 616 #endif 617 618 pg = stat->start = stat->pages; 619 620 pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE); 621 622 for (i = 1; i < pages; i++) { 623 pg->next = (void *)get_zeroed_page(GFP_KERNEL); 624 if (!pg->next) 625 goto out_free; 626 pg = pg->next; 627 } 628 629 return 0; 630 631 out_free: 632 pg = stat->start; 633 while (pg) { 634 unsigned long tmp = (unsigned long)pg; 635 636 pg = pg->next; 637 free_page(tmp); 638 } 639 640 stat->pages = NULL; 641 stat->start = NULL; 642 643 return -ENOMEM; 644 } 645 646 static int ftrace_profile_init_cpu(int cpu) 647 { 648 struct ftrace_profile_stat *stat; 649 int size; 650 651 stat = &per_cpu(ftrace_profile_stats, cpu); 652 653 if (stat->hash) { 654 /* If the profile is already created, simply reset it */ 655 ftrace_profile_reset(stat); 656 return 0; 657 } 658 659 /* 660 * We are profiling all functions, but usually only a few thousand 661 * functions are hit. We'll make a hash of 1024 items. 662 */ 663 size = FTRACE_PROFILE_HASH_SIZE; 664 665 stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL); 666 667 if (!stat->hash) 668 return -ENOMEM; 669 670 /* Preallocate the function profiling pages */ 671 if (ftrace_profile_pages_init(stat) < 0) { 672 kfree(stat->hash); 673 stat->hash = NULL; 674 return -ENOMEM; 675 } 676 677 return 0; 678 } 679 680 static int ftrace_profile_init(void) 681 { 682 int cpu; 683 int ret = 0; 684 685 for_each_possible_cpu(cpu) { 686 ret = ftrace_profile_init_cpu(cpu); 687 if (ret) 688 break; 689 } 690 691 return ret; 692 } 693 694 /* interrupts must be disabled */ 695 static struct ftrace_profile * 696 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip) 697 { 698 struct ftrace_profile *rec; 699 struct hlist_head *hhd; 700 unsigned long key; 701 702 key = hash_long(ip, FTRACE_PROFILE_HASH_BITS); 703 hhd = &stat->hash[key]; 704 705 if (hlist_empty(hhd)) 706 return NULL; 707 708 hlist_for_each_entry_rcu_notrace(rec, hhd, node) { 709 if (rec->ip == ip) 710 return rec; 711 } 712 713 return NULL; 714 } 715 716 static void ftrace_add_profile(struct ftrace_profile_stat *stat, 717 struct ftrace_profile *rec) 718 { 719 unsigned long key; 720 721 key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS); 722 hlist_add_head_rcu(&rec->node, &stat->hash[key]); 723 } 724 725 /* 726 * The memory is already allocated, this simply finds a new record to use. 727 */ 728 static struct ftrace_profile * 729 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip) 730 { 731 struct ftrace_profile *rec = NULL; 732 733 /* prevent recursion (from NMIs) */ 734 if (atomic_inc_return(&stat->disabled) != 1) 735 goto out; 736 737 /* 738 * Try to find the function again since an NMI 739 * could have added it 740 */ 741 rec = ftrace_find_profiled_func(stat, ip); 742 if (rec) 743 goto out; 744 745 if (stat->pages->index == PROFILES_PER_PAGE) { 746 if (!stat->pages->next) 747 goto out; 748 stat->pages = stat->pages->next; 749 } 750 751 rec = &stat->pages->records[stat->pages->index++]; 752 rec->ip = ip; 753 ftrace_add_profile(stat, rec); 754 755 out: 756 atomic_dec(&stat->disabled); 757 758 return rec; 759 } 760 761 static void 762 function_profile_call(unsigned long ip, unsigned long parent_ip, 763 struct ftrace_ops *ops, struct pt_regs *regs) 764 { 765 struct ftrace_profile_stat *stat; 766 struct ftrace_profile *rec; 767 unsigned long flags; 768 769 if (!ftrace_profile_enabled) 770 return; 771 772 local_irq_save(flags); 773 774 stat = this_cpu_ptr(&ftrace_profile_stats); 775 if (!stat->hash || !ftrace_profile_enabled) 776 goto out; 777 778 rec = ftrace_find_profiled_func(stat, ip); 779 if (!rec) { 780 rec = ftrace_profile_alloc(stat, ip); 781 if (!rec) 782 goto out; 783 } 784 785 rec->counter++; 786 out: 787 local_irq_restore(flags); 788 } 789 790 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 791 static bool fgraph_graph_time = true; 792 793 void ftrace_graph_graph_time_control(bool enable) 794 { 795 fgraph_graph_time = enable; 796 } 797 798 static int profile_graph_entry(struct ftrace_graph_ent *trace) 799 { 800 struct ftrace_ret_stack *ret_stack; 801 802 function_profile_call(trace->func, 0, NULL, NULL); 803 804 /* If function graph is shutting down, ret_stack can be NULL */ 805 if (!current->ret_stack) 806 return 0; 807 808 ret_stack = ftrace_graph_get_ret_stack(current, 0); 809 if (ret_stack) 810 ret_stack->subtime = 0; 811 812 return 1; 813 } 814 815 static void profile_graph_return(struct ftrace_graph_ret *trace) 816 { 817 struct ftrace_ret_stack *ret_stack; 818 struct ftrace_profile_stat *stat; 819 unsigned long long calltime; 820 struct ftrace_profile *rec; 821 unsigned long flags; 822 823 local_irq_save(flags); 824 stat = this_cpu_ptr(&ftrace_profile_stats); 825 if (!stat->hash || !ftrace_profile_enabled) 826 goto out; 827 828 /* If the calltime was zero'd ignore it */ 829 if (!trace->calltime) 830 goto out; 831 832 calltime = trace->rettime - trace->calltime; 833 834 if (!fgraph_graph_time) { 835 836 /* Append this call time to the parent time to subtract */ 837 ret_stack = ftrace_graph_get_ret_stack(current, 1); 838 if (ret_stack) 839 ret_stack->subtime += calltime; 840 841 ret_stack = ftrace_graph_get_ret_stack(current, 0); 842 if (ret_stack && ret_stack->subtime < calltime) 843 calltime -= ret_stack->subtime; 844 else 845 calltime = 0; 846 } 847 848 rec = ftrace_find_profiled_func(stat, trace->func); 849 if (rec) { 850 rec->time += calltime; 851 rec->time_squared += calltime * calltime; 852 } 853 854 out: 855 local_irq_restore(flags); 856 } 857 858 static struct fgraph_ops fprofiler_ops = { 859 .entryfunc = &profile_graph_entry, 860 .retfunc = &profile_graph_return, 861 }; 862 863 static int register_ftrace_profiler(void) 864 { 865 return register_ftrace_graph(&fprofiler_ops); 866 } 867 868 static void unregister_ftrace_profiler(void) 869 { 870 unregister_ftrace_graph(&fprofiler_ops); 871 } 872 #else 873 static struct ftrace_ops ftrace_profile_ops __read_mostly = { 874 .func = function_profile_call, 875 .flags = FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_INITIALIZED, 876 INIT_OPS_HASH(ftrace_profile_ops) 877 }; 878 879 static int register_ftrace_profiler(void) 880 { 881 return register_ftrace_function(&ftrace_profile_ops); 882 } 883 884 static void unregister_ftrace_profiler(void) 885 { 886 unregister_ftrace_function(&ftrace_profile_ops); 887 } 888 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 889 890 static ssize_t 891 ftrace_profile_write(struct file *filp, const char __user *ubuf, 892 size_t cnt, loff_t *ppos) 893 { 894 unsigned long val; 895 int ret; 896 897 ret = kstrtoul_from_user(ubuf, cnt, 10, &val); 898 if (ret) 899 return ret; 900 901 val = !!val; 902 903 mutex_lock(&ftrace_profile_lock); 904 if (ftrace_profile_enabled ^ val) { 905 if (val) { 906 ret = ftrace_profile_init(); 907 if (ret < 0) { 908 cnt = ret; 909 goto out; 910 } 911 912 ret = register_ftrace_profiler(); 913 if (ret < 0) { 914 cnt = ret; 915 goto out; 916 } 917 ftrace_profile_enabled = 1; 918 } else { 919 ftrace_profile_enabled = 0; 920 /* 921 * unregister_ftrace_profiler calls stop_machine 922 * so this acts like an synchronize_rcu. 923 */ 924 unregister_ftrace_profiler(); 925 } 926 } 927 out: 928 mutex_unlock(&ftrace_profile_lock); 929 930 *ppos += cnt; 931 932 return cnt; 933 } 934 935 static ssize_t 936 ftrace_profile_read(struct file *filp, char __user *ubuf, 937 size_t cnt, loff_t *ppos) 938 { 939 char buf[64]; /* big enough to hold a number */ 940 int r; 941 942 r = sprintf(buf, "%u\n", ftrace_profile_enabled); 943 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 944 } 945 946 static const struct file_operations ftrace_profile_fops = { 947 .open = tracing_open_generic, 948 .read = ftrace_profile_read, 949 .write = ftrace_profile_write, 950 .llseek = default_llseek, 951 }; 952 953 /* used to initialize the real stat files */ 954 static struct tracer_stat function_stats __initdata = { 955 .name = "functions", 956 .stat_start = function_stat_start, 957 .stat_next = function_stat_next, 958 .stat_cmp = function_stat_cmp, 959 .stat_headers = function_stat_headers, 960 .stat_show = function_stat_show 961 }; 962 963 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 964 { 965 struct ftrace_profile_stat *stat; 966 struct dentry *entry; 967 char *name; 968 int ret; 969 int cpu; 970 971 for_each_possible_cpu(cpu) { 972 stat = &per_cpu(ftrace_profile_stats, cpu); 973 974 name = kasprintf(GFP_KERNEL, "function%d", cpu); 975 if (!name) { 976 /* 977 * The files created are permanent, if something happens 978 * we still do not free memory. 979 */ 980 WARN(1, 981 "Could not allocate stat file for cpu %d\n", 982 cpu); 983 return; 984 } 985 stat->stat = function_stats; 986 stat->stat.name = name; 987 ret = register_stat_tracer(&stat->stat); 988 if (ret) { 989 WARN(1, 990 "Could not register function stat for cpu %d\n", 991 cpu); 992 kfree(name); 993 return; 994 } 995 } 996 997 entry = tracefs_create_file("function_profile_enabled", 0644, 998 d_tracer, NULL, &ftrace_profile_fops); 999 if (!entry) 1000 pr_warn("Could not create tracefs 'function_profile_enabled' entry\n"); 1001 } 1002 1003 #else /* CONFIG_FUNCTION_PROFILER */ 1004 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 1005 { 1006 } 1007 #endif /* CONFIG_FUNCTION_PROFILER */ 1008 1009 #ifdef CONFIG_DYNAMIC_FTRACE 1010 1011 static struct ftrace_ops *removed_ops; 1012 1013 /* 1014 * Set when doing a global update, like enabling all recs or disabling them. 1015 * It is not set when just updating a single ftrace_ops. 1016 */ 1017 static bool update_all_ops; 1018 1019 #ifndef CONFIG_FTRACE_MCOUNT_RECORD 1020 # error Dynamic ftrace depends on MCOUNT_RECORD 1021 #endif 1022 1023 struct ftrace_func_probe { 1024 struct ftrace_probe_ops *probe_ops; 1025 struct ftrace_ops ops; 1026 struct trace_array *tr; 1027 struct list_head list; 1028 void *data; 1029 int ref; 1030 }; 1031 1032 /* 1033 * We make these constant because no one should touch them, 1034 * but they are used as the default "empty hash", to avoid allocating 1035 * it all the time. These are in a read only section such that if 1036 * anyone does try to modify it, it will cause an exception. 1037 */ 1038 static const struct hlist_head empty_buckets[1]; 1039 static const struct ftrace_hash empty_hash = { 1040 .buckets = (struct hlist_head *)empty_buckets, 1041 }; 1042 #define EMPTY_HASH ((struct ftrace_hash *)&empty_hash) 1043 1044 struct ftrace_ops global_ops = { 1045 .func = ftrace_stub, 1046 .local_hash.notrace_hash = EMPTY_HASH, 1047 .local_hash.filter_hash = EMPTY_HASH, 1048 INIT_OPS_HASH(global_ops) 1049 .flags = FTRACE_OPS_FL_RECURSION_SAFE | 1050 FTRACE_OPS_FL_INITIALIZED | 1051 FTRACE_OPS_FL_PID, 1052 }; 1053 1054 /* 1055 * Used by the stack undwinder to know about dynamic ftrace trampolines. 1056 */ 1057 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr) 1058 { 1059 struct ftrace_ops *op = NULL; 1060 1061 /* 1062 * Some of the ops may be dynamically allocated, 1063 * they are freed after a synchronize_rcu(). 1064 */ 1065 preempt_disable_notrace(); 1066 1067 do_for_each_ftrace_op(op, ftrace_ops_list) { 1068 /* 1069 * This is to check for dynamically allocated trampolines. 1070 * Trampolines that are in kernel text will have 1071 * core_kernel_text() return true. 1072 */ 1073 if (op->trampoline && op->trampoline_size) 1074 if (addr >= op->trampoline && 1075 addr < op->trampoline + op->trampoline_size) { 1076 preempt_enable_notrace(); 1077 return op; 1078 } 1079 } while_for_each_ftrace_op(op); 1080 preempt_enable_notrace(); 1081 1082 return NULL; 1083 } 1084 1085 /* 1086 * This is used by __kernel_text_address() to return true if the 1087 * address is on a dynamically allocated trampoline that would 1088 * not return true for either core_kernel_text() or 1089 * is_module_text_address(). 1090 */ 1091 bool is_ftrace_trampoline(unsigned long addr) 1092 { 1093 return ftrace_ops_trampoline(addr) != NULL; 1094 } 1095 1096 struct ftrace_page { 1097 struct ftrace_page *next; 1098 struct dyn_ftrace *records; 1099 int index; 1100 int size; 1101 }; 1102 1103 #define ENTRY_SIZE sizeof(struct dyn_ftrace) 1104 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE) 1105 1106 /* estimate from running different kernels */ 1107 #define NR_TO_INIT 10000 1108 1109 static struct ftrace_page *ftrace_pages_start; 1110 static struct ftrace_page *ftrace_pages; 1111 1112 static __always_inline unsigned long 1113 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip) 1114 { 1115 if (hash->size_bits > 0) 1116 return hash_long(ip, hash->size_bits); 1117 1118 return 0; 1119 } 1120 1121 /* Only use this function if ftrace_hash_empty() has already been tested */ 1122 static __always_inline struct ftrace_func_entry * 1123 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1124 { 1125 unsigned long key; 1126 struct ftrace_func_entry *entry; 1127 struct hlist_head *hhd; 1128 1129 key = ftrace_hash_key(hash, ip); 1130 hhd = &hash->buckets[key]; 1131 1132 hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) { 1133 if (entry->ip == ip) 1134 return entry; 1135 } 1136 return NULL; 1137 } 1138 1139 /** 1140 * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash 1141 * @hash: The hash to look at 1142 * @ip: The instruction pointer to test 1143 * 1144 * Search a given @hash to see if a given instruction pointer (@ip) 1145 * exists in it. 1146 * 1147 * Returns the entry that holds the @ip if found. NULL otherwise. 1148 */ 1149 struct ftrace_func_entry * 1150 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1151 { 1152 if (ftrace_hash_empty(hash)) 1153 return NULL; 1154 1155 return __ftrace_lookup_ip(hash, ip); 1156 } 1157 1158 static void __add_hash_entry(struct ftrace_hash *hash, 1159 struct ftrace_func_entry *entry) 1160 { 1161 struct hlist_head *hhd; 1162 unsigned long key; 1163 1164 key = ftrace_hash_key(hash, entry->ip); 1165 hhd = &hash->buckets[key]; 1166 hlist_add_head(&entry->hlist, hhd); 1167 hash->count++; 1168 } 1169 1170 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip) 1171 { 1172 struct ftrace_func_entry *entry; 1173 1174 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 1175 if (!entry) 1176 return -ENOMEM; 1177 1178 entry->ip = ip; 1179 __add_hash_entry(hash, entry); 1180 1181 return 0; 1182 } 1183 1184 static void 1185 free_hash_entry(struct ftrace_hash *hash, 1186 struct ftrace_func_entry *entry) 1187 { 1188 hlist_del(&entry->hlist); 1189 kfree(entry); 1190 hash->count--; 1191 } 1192 1193 static void 1194 remove_hash_entry(struct ftrace_hash *hash, 1195 struct ftrace_func_entry *entry) 1196 { 1197 hlist_del_rcu(&entry->hlist); 1198 hash->count--; 1199 } 1200 1201 static void ftrace_hash_clear(struct ftrace_hash *hash) 1202 { 1203 struct hlist_head *hhd; 1204 struct hlist_node *tn; 1205 struct ftrace_func_entry *entry; 1206 int size = 1 << hash->size_bits; 1207 int i; 1208 1209 if (!hash->count) 1210 return; 1211 1212 for (i = 0; i < size; i++) { 1213 hhd = &hash->buckets[i]; 1214 hlist_for_each_entry_safe(entry, tn, hhd, hlist) 1215 free_hash_entry(hash, entry); 1216 } 1217 FTRACE_WARN_ON(hash->count); 1218 } 1219 1220 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod) 1221 { 1222 list_del(&ftrace_mod->list); 1223 kfree(ftrace_mod->module); 1224 kfree(ftrace_mod->func); 1225 kfree(ftrace_mod); 1226 } 1227 1228 static void clear_ftrace_mod_list(struct list_head *head) 1229 { 1230 struct ftrace_mod_load *p, *n; 1231 1232 /* stack tracer isn't supported yet */ 1233 if (!head) 1234 return; 1235 1236 mutex_lock(&ftrace_lock); 1237 list_for_each_entry_safe(p, n, head, list) 1238 free_ftrace_mod(p); 1239 mutex_unlock(&ftrace_lock); 1240 } 1241 1242 static void free_ftrace_hash(struct ftrace_hash *hash) 1243 { 1244 if (!hash || hash == EMPTY_HASH) 1245 return; 1246 ftrace_hash_clear(hash); 1247 kfree(hash->buckets); 1248 kfree(hash); 1249 } 1250 1251 static void __free_ftrace_hash_rcu(struct rcu_head *rcu) 1252 { 1253 struct ftrace_hash *hash; 1254 1255 hash = container_of(rcu, struct ftrace_hash, rcu); 1256 free_ftrace_hash(hash); 1257 } 1258 1259 static void free_ftrace_hash_rcu(struct ftrace_hash *hash) 1260 { 1261 if (!hash || hash == EMPTY_HASH) 1262 return; 1263 call_rcu(&hash->rcu, __free_ftrace_hash_rcu); 1264 } 1265 1266 void ftrace_free_filter(struct ftrace_ops *ops) 1267 { 1268 ftrace_ops_init(ops); 1269 free_ftrace_hash(ops->func_hash->filter_hash); 1270 free_ftrace_hash(ops->func_hash->notrace_hash); 1271 } 1272 1273 static struct ftrace_hash *alloc_ftrace_hash(int size_bits) 1274 { 1275 struct ftrace_hash *hash; 1276 int size; 1277 1278 hash = kzalloc(sizeof(*hash), GFP_KERNEL); 1279 if (!hash) 1280 return NULL; 1281 1282 size = 1 << size_bits; 1283 hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL); 1284 1285 if (!hash->buckets) { 1286 kfree(hash); 1287 return NULL; 1288 } 1289 1290 hash->size_bits = size_bits; 1291 1292 return hash; 1293 } 1294 1295 1296 static int ftrace_add_mod(struct trace_array *tr, 1297 const char *func, const char *module, 1298 int enable) 1299 { 1300 struct ftrace_mod_load *ftrace_mod; 1301 struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace; 1302 1303 ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL); 1304 if (!ftrace_mod) 1305 return -ENOMEM; 1306 1307 ftrace_mod->func = kstrdup(func, GFP_KERNEL); 1308 ftrace_mod->module = kstrdup(module, GFP_KERNEL); 1309 ftrace_mod->enable = enable; 1310 1311 if (!ftrace_mod->func || !ftrace_mod->module) 1312 goto out_free; 1313 1314 list_add(&ftrace_mod->list, mod_head); 1315 1316 return 0; 1317 1318 out_free: 1319 free_ftrace_mod(ftrace_mod); 1320 1321 return -ENOMEM; 1322 } 1323 1324 static struct ftrace_hash * 1325 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash) 1326 { 1327 struct ftrace_func_entry *entry; 1328 struct ftrace_hash *new_hash; 1329 int size; 1330 int ret; 1331 int i; 1332 1333 new_hash = alloc_ftrace_hash(size_bits); 1334 if (!new_hash) 1335 return NULL; 1336 1337 if (hash) 1338 new_hash->flags = hash->flags; 1339 1340 /* Empty hash? */ 1341 if (ftrace_hash_empty(hash)) 1342 return new_hash; 1343 1344 size = 1 << hash->size_bits; 1345 for (i = 0; i < size; i++) { 1346 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 1347 ret = add_hash_entry(new_hash, entry->ip); 1348 if (ret < 0) 1349 goto free_hash; 1350 } 1351 } 1352 1353 FTRACE_WARN_ON(new_hash->count != hash->count); 1354 1355 return new_hash; 1356 1357 free_hash: 1358 free_ftrace_hash(new_hash); 1359 return NULL; 1360 } 1361 1362 static void 1363 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash); 1364 static void 1365 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash); 1366 1367 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1368 struct ftrace_hash *new_hash); 1369 1370 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size) 1371 { 1372 struct ftrace_func_entry *entry; 1373 struct ftrace_hash *new_hash; 1374 struct hlist_head *hhd; 1375 struct hlist_node *tn; 1376 int bits = 0; 1377 int i; 1378 1379 /* 1380 * Make the hash size about 1/2 the # found 1381 */ 1382 for (size /= 2; size; size >>= 1) 1383 bits++; 1384 1385 /* Don't allocate too much */ 1386 if (bits > FTRACE_HASH_MAX_BITS) 1387 bits = FTRACE_HASH_MAX_BITS; 1388 1389 new_hash = alloc_ftrace_hash(bits); 1390 if (!new_hash) 1391 return NULL; 1392 1393 new_hash->flags = src->flags; 1394 1395 size = 1 << src->size_bits; 1396 for (i = 0; i < size; i++) { 1397 hhd = &src->buckets[i]; 1398 hlist_for_each_entry_safe(entry, tn, hhd, hlist) { 1399 remove_hash_entry(src, entry); 1400 __add_hash_entry(new_hash, entry); 1401 } 1402 } 1403 return new_hash; 1404 } 1405 1406 static struct ftrace_hash * 1407 __ftrace_hash_move(struct ftrace_hash *src) 1408 { 1409 int size = src->count; 1410 1411 /* 1412 * If the new source is empty, just return the empty_hash. 1413 */ 1414 if (ftrace_hash_empty(src)) 1415 return EMPTY_HASH; 1416 1417 return dup_hash(src, size); 1418 } 1419 1420 static int 1421 ftrace_hash_move(struct ftrace_ops *ops, int enable, 1422 struct ftrace_hash **dst, struct ftrace_hash *src) 1423 { 1424 struct ftrace_hash *new_hash; 1425 int ret; 1426 1427 /* Reject setting notrace hash on IPMODIFY ftrace_ops */ 1428 if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable) 1429 return -EINVAL; 1430 1431 new_hash = __ftrace_hash_move(src); 1432 if (!new_hash) 1433 return -ENOMEM; 1434 1435 /* Make sure this can be applied if it is IPMODIFY ftrace_ops */ 1436 if (enable) { 1437 /* IPMODIFY should be updated only when filter_hash updating */ 1438 ret = ftrace_hash_ipmodify_update(ops, new_hash); 1439 if (ret < 0) { 1440 free_ftrace_hash(new_hash); 1441 return ret; 1442 } 1443 } 1444 1445 /* 1446 * Remove the current set, update the hash and add 1447 * them back. 1448 */ 1449 ftrace_hash_rec_disable_modify(ops, enable); 1450 1451 rcu_assign_pointer(*dst, new_hash); 1452 1453 ftrace_hash_rec_enable_modify(ops, enable); 1454 1455 return 0; 1456 } 1457 1458 static bool hash_contains_ip(unsigned long ip, 1459 struct ftrace_ops_hash *hash) 1460 { 1461 /* 1462 * The function record is a match if it exists in the filter 1463 * hash and not in the notrace hash. Note, an emty hash is 1464 * considered a match for the filter hash, but an empty 1465 * notrace hash is considered not in the notrace hash. 1466 */ 1467 return (ftrace_hash_empty(hash->filter_hash) || 1468 __ftrace_lookup_ip(hash->filter_hash, ip)) && 1469 (ftrace_hash_empty(hash->notrace_hash) || 1470 !__ftrace_lookup_ip(hash->notrace_hash, ip)); 1471 } 1472 1473 /* 1474 * Test the hashes for this ops to see if we want to call 1475 * the ops->func or not. 1476 * 1477 * It's a match if the ip is in the ops->filter_hash or 1478 * the filter_hash does not exist or is empty, 1479 * AND 1480 * the ip is not in the ops->notrace_hash. 1481 * 1482 * This needs to be called with preemption disabled as 1483 * the hashes are freed with call_rcu(). 1484 */ 1485 int 1486 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs) 1487 { 1488 struct ftrace_ops_hash hash; 1489 int ret; 1490 1491 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS 1492 /* 1493 * There's a small race when adding ops that the ftrace handler 1494 * that wants regs, may be called without them. We can not 1495 * allow that handler to be called if regs is NULL. 1496 */ 1497 if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS)) 1498 return 0; 1499 #endif 1500 1501 rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash); 1502 rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash); 1503 1504 if (hash_contains_ip(ip, &hash)) 1505 ret = 1; 1506 else 1507 ret = 0; 1508 1509 return ret; 1510 } 1511 1512 /* 1513 * This is a double for. Do not use 'break' to break out of the loop, 1514 * you must use a goto. 1515 */ 1516 #define do_for_each_ftrace_rec(pg, rec) \ 1517 for (pg = ftrace_pages_start; pg; pg = pg->next) { \ 1518 int _____i; \ 1519 for (_____i = 0; _____i < pg->index; _____i++) { \ 1520 rec = &pg->records[_____i]; 1521 1522 #define while_for_each_ftrace_rec() \ 1523 } \ 1524 } 1525 1526 1527 static int ftrace_cmp_recs(const void *a, const void *b) 1528 { 1529 const struct dyn_ftrace *key = a; 1530 const struct dyn_ftrace *rec = b; 1531 1532 if (key->flags < rec->ip) 1533 return -1; 1534 if (key->ip >= rec->ip + MCOUNT_INSN_SIZE) 1535 return 1; 1536 return 0; 1537 } 1538 1539 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end) 1540 { 1541 struct ftrace_page *pg; 1542 struct dyn_ftrace *rec = NULL; 1543 struct dyn_ftrace key; 1544 1545 key.ip = start; 1546 key.flags = end; /* overload flags, as it is unsigned long */ 1547 1548 for (pg = ftrace_pages_start; pg; pg = pg->next) { 1549 if (end < pg->records[0].ip || 1550 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 1551 continue; 1552 rec = bsearch(&key, pg->records, pg->index, 1553 sizeof(struct dyn_ftrace), 1554 ftrace_cmp_recs); 1555 } 1556 return rec; 1557 } 1558 1559 /** 1560 * ftrace_location_range - return the first address of a traced location 1561 * if it touches the given ip range 1562 * @start: start of range to search. 1563 * @end: end of range to search (inclusive). @end points to the last byte 1564 * to check. 1565 * 1566 * Returns rec->ip if the related ftrace location is a least partly within 1567 * the given address range. That is, the first address of the instruction 1568 * that is either a NOP or call to the function tracer. It checks the ftrace 1569 * internal tables to determine if the address belongs or not. 1570 */ 1571 unsigned long ftrace_location_range(unsigned long start, unsigned long end) 1572 { 1573 struct dyn_ftrace *rec; 1574 1575 rec = lookup_rec(start, end); 1576 if (rec) 1577 return rec->ip; 1578 1579 return 0; 1580 } 1581 1582 /** 1583 * ftrace_location - return true if the ip giving is a traced location 1584 * @ip: the instruction pointer to check 1585 * 1586 * Returns rec->ip if @ip given is a pointer to a ftrace location. 1587 * That is, the instruction that is either a NOP or call to 1588 * the function tracer. It checks the ftrace internal tables to 1589 * determine if the address belongs or not. 1590 */ 1591 unsigned long ftrace_location(unsigned long ip) 1592 { 1593 return ftrace_location_range(ip, ip); 1594 } 1595 1596 /** 1597 * ftrace_text_reserved - return true if range contains an ftrace location 1598 * @start: start of range to search 1599 * @end: end of range to search (inclusive). @end points to the last byte to check. 1600 * 1601 * Returns 1 if @start and @end contains a ftrace location. 1602 * That is, the instruction that is either a NOP or call to 1603 * the function tracer. It checks the ftrace internal tables to 1604 * determine if the address belongs or not. 1605 */ 1606 int ftrace_text_reserved(const void *start, const void *end) 1607 { 1608 unsigned long ret; 1609 1610 ret = ftrace_location_range((unsigned long)start, 1611 (unsigned long)end); 1612 1613 return (int)!!ret; 1614 } 1615 1616 /* Test if ops registered to this rec needs regs */ 1617 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec) 1618 { 1619 struct ftrace_ops *ops; 1620 bool keep_regs = false; 1621 1622 for (ops = ftrace_ops_list; 1623 ops != &ftrace_list_end; ops = ops->next) { 1624 /* pass rec in as regs to have non-NULL val */ 1625 if (ftrace_ops_test(ops, rec->ip, rec)) { 1626 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1627 keep_regs = true; 1628 break; 1629 } 1630 } 1631 } 1632 1633 return keep_regs; 1634 } 1635 1636 static struct ftrace_ops * 1637 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec); 1638 static struct ftrace_ops * 1639 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops); 1640 1641 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops, 1642 int filter_hash, 1643 bool inc) 1644 { 1645 struct ftrace_hash *hash; 1646 struct ftrace_hash *other_hash; 1647 struct ftrace_page *pg; 1648 struct dyn_ftrace *rec; 1649 bool update = false; 1650 int count = 0; 1651 int all = false; 1652 1653 /* Only update if the ops has been registered */ 1654 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1655 return false; 1656 1657 /* 1658 * In the filter_hash case: 1659 * If the count is zero, we update all records. 1660 * Otherwise we just update the items in the hash. 1661 * 1662 * In the notrace_hash case: 1663 * We enable the update in the hash. 1664 * As disabling notrace means enabling the tracing, 1665 * and enabling notrace means disabling, the inc variable 1666 * gets inversed. 1667 */ 1668 if (filter_hash) { 1669 hash = ops->func_hash->filter_hash; 1670 other_hash = ops->func_hash->notrace_hash; 1671 if (ftrace_hash_empty(hash)) 1672 all = true; 1673 } else { 1674 inc = !inc; 1675 hash = ops->func_hash->notrace_hash; 1676 other_hash = ops->func_hash->filter_hash; 1677 /* 1678 * If the notrace hash has no items, 1679 * then there's nothing to do. 1680 */ 1681 if (ftrace_hash_empty(hash)) 1682 return false; 1683 } 1684 1685 do_for_each_ftrace_rec(pg, rec) { 1686 int in_other_hash = 0; 1687 int in_hash = 0; 1688 int match = 0; 1689 1690 if (rec->flags & FTRACE_FL_DISABLED) 1691 continue; 1692 1693 if (all) { 1694 /* 1695 * Only the filter_hash affects all records. 1696 * Update if the record is not in the notrace hash. 1697 */ 1698 if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip)) 1699 match = 1; 1700 } else { 1701 in_hash = !!ftrace_lookup_ip(hash, rec->ip); 1702 in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip); 1703 1704 /* 1705 * If filter_hash is set, we want to match all functions 1706 * that are in the hash but not in the other hash. 1707 * 1708 * If filter_hash is not set, then we are decrementing. 1709 * That means we match anything that is in the hash 1710 * and also in the other_hash. That is, we need to turn 1711 * off functions in the other hash because they are disabled 1712 * by this hash. 1713 */ 1714 if (filter_hash && in_hash && !in_other_hash) 1715 match = 1; 1716 else if (!filter_hash && in_hash && 1717 (in_other_hash || ftrace_hash_empty(other_hash))) 1718 match = 1; 1719 } 1720 if (!match) 1721 continue; 1722 1723 if (inc) { 1724 rec->flags++; 1725 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX)) 1726 return false; 1727 1728 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1729 rec->flags |= FTRACE_FL_DIRECT; 1730 1731 /* 1732 * If there's only a single callback registered to a 1733 * function, and the ops has a trampoline registered 1734 * for it, then we can call it directly. 1735 */ 1736 if (ftrace_rec_count(rec) == 1 && ops->trampoline) 1737 rec->flags |= FTRACE_FL_TRAMP; 1738 else 1739 /* 1740 * If we are adding another function callback 1741 * to this function, and the previous had a 1742 * custom trampoline in use, then we need to go 1743 * back to the default trampoline. 1744 */ 1745 rec->flags &= ~FTRACE_FL_TRAMP; 1746 1747 /* 1748 * If any ops wants regs saved for this function 1749 * then all ops will get saved regs. 1750 */ 1751 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 1752 rec->flags |= FTRACE_FL_REGS; 1753 } else { 1754 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0)) 1755 return false; 1756 rec->flags--; 1757 1758 /* 1759 * Only the internal direct_ops should have the 1760 * DIRECT flag set. Thus, if it is removing a 1761 * function, then that function should no longer 1762 * be direct. 1763 */ 1764 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1765 rec->flags &= ~FTRACE_FL_DIRECT; 1766 1767 /* 1768 * If the rec had REGS enabled and the ops that is 1769 * being removed had REGS set, then see if there is 1770 * still any ops for this record that wants regs. 1771 * If not, we can stop recording them. 1772 */ 1773 if (ftrace_rec_count(rec) > 0 && 1774 rec->flags & FTRACE_FL_REGS && 1775 ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1776 if (!test_rec_ops_needs_regs(rec)) 1777 rec->flags &= ~FTRACE_FL_REGS; 1778 } 1779 1780 /* 1781 * The TRAMP needs to be set only if rec count 1782 * is decremented to one, and the ops that is 1783 * left has a trampoline. As TRAMP can only be 1784 * enabled if there is only a single ops attached 1785 * to it. 1786 */ 1787 if (ftrace_rec_count(rec) == 1 && 1788 ftrace_find_tramp_ops_any(rec)) 1789 rec->flags |= FTRACE_FL_TRAMP; 1790 else 1791 rec->flags &= ~FTRACE_FL_TRAMP; 1792 1793 /* 1794 * flags will be cleared in ftrace_check_record() 1795 * if rec count is zero. 1796 */ 1797 } 1798 count++; 1799 1800 /* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */ 1801 update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE; 1802 1803 /* Shortcut, if we handled all records, we are done. */ 1804 if (!all && count == hash->count) 1805 return update; 1806 } while_for_each_ftrace_rec(); 1807 1808 return update; 1809 } 1810 1811 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops, 1812 int filter_hash) 1813 { 1814 return __ftrace_hash_rec_update(ops, filter_hash, 0); 1815 } 1816 1817 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops, 1818 int filter_hash) 1819 { 1820 return __ftrace_hash_rec_update(ops, filter_hash, 1); 1821 } 1822 1823 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops, 1824 int filter_hash, int inc) 1825 { 1826 struct ftrace_ops *op; 1827 1828 __ftrace_hash_rec_update(ops, filter_hash, inc); 1829 1830 if (ops->func_hash != &global_ops.local_hash) 1831 return; 1832 1833 /* 1834 * If the ops shares the global_ops hash, then we need to update 1835 * all ops that are enabled and use this hash. 1836 */ 1837 do_for_each_ftrace_op(op, ftrace_ops_list) { 1838 /* Already done */ 1839 if (op == ops) 1840 continue; 1841 if (op->func_hash == &global_ops.local_hash) 1842 __ftrace_hash_rec_update(op, filter_hash, inc); 1843 } while_for_each_ftrace_op(op); 1844 } 1845 1846 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, 1847 int filter_hash) 1848 { 1849 ftrace_hash_rec_update_modify(ops, filter_hash, 0); 1850 } 1851 1852 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, 1853 int filter_hash) 1854 { 1855 ftrace_hash_rec_update_modify(ops, filter_hash, 1); 1856 } 1857 1858 /* 1859 * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK 1860 * or no-needed to update, -EBUSY if it detects a conflict of the flag 1861 * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs. 1862 * Note that old_hash and new_hash has below meanings 1863 * - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected) 1864 * - If the hash is EMPTY_HASH, it hits nothing 1865 * - Anything else hits the recs which match the hash entries. 1866 */ 1867 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops, 1868 struct ftrace_hash *old_hash, 1869 struct ftrace_hash *new_hash) 1870 { 1871 struct ftrace_page *pg; 1872 struct dyn_ftrace *rec, *end = NULL; 1873 int in_old, in_new; 1874 1875 /* Only update if the ops has been registered */ 1876 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1877 return 0; 1878 1879 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 1880 return 0; 1881 1882 /* 1883 * Since the IPMODIFY is a very address sensitive action, we do not 1884 * allow ftrace_ops to set all functions to new hash. 1885 */ 1886 if (!new_hash || !old_hash) 1887 return -EINVAL; 1888 1889 /* Update rec->flags */ 1890 do_for_each_ftrace_rec(pg, rec) { 1891 1892 if (rec->flags & FTRACE_FL_DISABLED) 1893 continue; 1894 1895 /* We need to update only differences of filter_hash */ 1896 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1897 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1898 if (in_old == in_new) 1899 continue; 1900 1901 if (in_new) { 1902 /* New entries must ensure no others are using it */ 1903 if (rec->flags & FTRACE_FL_IPMODIFY) 1904 goto rollback; 1905 rec->flags |= FTRACE_FL_IPMODIFY; 1906 } else /* Removed entry */ 1907 rec->flags &= ~FTRACE_FL_IPMODIFY; 1908 } while_for_each_ftrace_rec(); 1909 1910 return 0; 1911 1912 rollback: 1913 end = rec; 1914 1915 /* Roll back what we did above */ 1916 do_for_each_ftrace_rec(pg, rec) { 1917 1918 if (rec->flags & FTRACE_FL_DISABLED) 1919 continue; 1920 1921 if (rec == end) 1922 goto err_out; 1923 1924 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1925 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1926 if (in_old == in_new) 1927 continue; 1928 1929 if (in_new) 1930 rec->flags &= ~FTRACE_FL_IPMODIFY; 1931 else 1932 rec->flags |= FTRACE_FL_IPMODIFY; 1933 } while_for_each_ftrace_rec(); 1934 1935 err_out: 1936 return -EBUSY; 1937 } 1938 1939 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops) 1940 { 1941 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1942 1943 if (ftrace_hash_empty(hash)) 1944 hash = NULL; 1945 1946 return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash); 1947 } 1948 1949 /* Disabling always succeeds */ 1950 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops) 1951 { 1952 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1953 1954 if (ftrace_hash_empty(hash)) 1955 hash = NULL; 1956 1957 __ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH); 1958 } 1959 1960 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1961 struct ftrace_hash *new_hash) 1962 { 1963 struct ftrace_hash *old_hash = ops->func_hash->filter_hash; 1964 1965 if (ftrace_hash_empty(old_hash)) 1966 old_hash = NULL; 1967 1968 if (ftrace_hash_empty(new_hash)) 1969 new_hash = NULL; 1970 1971 return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash); 1972 } 1973 1974 static void print_ip_ins(const char *fmt, const unsigned char *p) 1975 { 1976 int i; 1977 1978 printk(KERN_CONT "%s", fmt); 1979 1980 for (i = 0; i < MCOUNT_INSN_SIZE; i++) 1981 printk(KERN_CONT "%s%02x", i ? ":" : "", p[i]); 1982 } 1983 1984 enum ftrace_bug_type ftrace_bug_type; 1985 const void *ftrace_expected; 1986 1987 static void print_bug_type(void) 1988 { 1989 switch (ftrace_bug_type) { 1990 case FTRACE_BUG_UNKNOWN: 1991 break; 1992 case FTRACE_BUG_INIT: 1993 pr_info("Initializing ftrace call sites\n"); 1994 break; 1995 case FTRACE_BUG_NOP: 1996 pr_info("Setting ftrace call site to NOP\n"); 1997 break; 1998 case FTRACE_BUG_CALL: 1999 pr_info("Setting ftrace call site to call ftrace function\n"); 2000 break; 2001 case FTRACE_BUG_UPDATE: 2002 pr_info("Updating ftrace call site to call a different ftrace function\n"); 2003 break; 2004 } 2005 } 2006 2007 /** 2008 * ftrace_bug - report and shutdown function tracer 2009 * @failed: The failed type (EFAULT, EINVAL, EPERM) 2010 * @rec: The record that failed 2011 * 2012 * The arch code that enables or disables the function tracing 2013 * can call ftrace_bug() when it has detected a problem in 2014 * modifying the code. @failed should be one of either: 2015 * EFAULT - if the problem happens on reading the @ip address 2016 * EINVAL - if what is read at @ip is not what was expected 2017 * EPERM - if the problem happens on writing to the @ip address 2018 */ 2019 void ftrace_bug(int failed, struct dyn_ftrace *rec) 2020 { 2021 unsigned long ip = rec ? rec->ip : 0; 2022 2023 switch (failed) { 2024 case -EFAULT: 2025 FTRACE_WARN_ON_ONCE(1); 2026 pr_info("ftrace faulted on modifying "); 2027 print_ip_sym(ip); 2028 break; 2029 case -EINVAL: 2030 FTRACE_WARN_ON_ONCE(1); 2031 pr_info("ftrace failed to modify "); 2032 print_ip_sym(ip); 2033 print_ip_ins(" actual: ", (unsigned char *)ip); 2034 pr_cont("\n"); 2035 if (ftrace_expected) { 2036 print_ip_ins(" expected: ", ftrace_expected); 2037 pr_cont("\n"); 2038 } 2039 break; 2040 case -EPERM: 2041 FTRACE_WARN_ON_ONCE(1); 2042 pr_info("ftrace faulted on writing "); 2043 print_ip_sym(ip); 2044 break; 2045 default: 2046 FTRACE_WARN_ON_ONCE(1); 2047 pr_info("ftrace faulted on unknown error "); 2048 print_ip_sym(ip); 2049 } 2050 print_bug_type(); 2051 if (rec) { 2052 struct ftrace_ops *ops = NULL; 2053 2054 pr_info("ftrace record flags: %lx\n", rec->flags); 2055 pr_cont(" (%ld)%s", ftrace_rec_count(rec), 2056 rec->flags & FTRACE_FL_REGS ? " R" : " "); 2057 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2058 ops = ftrace_find_tramp_ops_any(rec); 2059 if (ops) { 2060 do { 2061 pr_cont("\ttramp: %pS (%pS)", 2062 (void *)ops->trampoline, 2063 (void *)ops->func); 2064 ops = ftrace_find_tramp_ops_next(rec, ops); 2065 } while (ops); 2066 } else 2067 pr_cont("\ttramp: ERROR!"); 2068 2069 } 2070 ip = ftrace_get_addr_curr(rec); 2071 pr_cont("\n expected tramp: %lx\n", ip); 2072 } 2073 } 2074 2075 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update) 2076 { 2077 unsigned long flag = 0UL; 2078 2079 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2080 2081 if (rec->flags & FTRACE_FL_DISABLED) 2082 return FTRACE_UPDATE_IGNORE; 2083 2084 /* 2085 * If we are updating calls: 2086 * 2087 * If the record has a ref count, then we need to enable it 2088 * because someone is using it. 2089 * 2090 * Otherwise we make sure its disabled. 2091 * 2092 * If we are disabling calls, then disable all records that 2093 * are enabled. 2094 */ 2095 if (enable && ftrace_rec_count(rec)) 2096 flag = FTRACE_FL_ENABLED; 2097 2098 /* 2099 * If enabling and the REGS flag does not match the REGS_EN, or 2100 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore 2101 * this record. Set flags to fail the compare against ENABLED. 2102 * Same for direct calls. 2103 */ 2104 if (flag) { 2105 if (!(rec->flags & FTRACE_FL_REGS) != 2106 !(rec->flags & FTRACE_FL_REGS_EN)) 2107 flag |= FTRACE_FL_REGS; 2108 2109 if (!(rec->flags & FTRACE_FL_TRAMP) != 2110 !(rec->flags & FTRACE_FL_TRAMP_EN)) 2111 flag |= FTRACE_FL_TRAMP; 2112 2113 /* 2114 * Direct calls are special, as count matters. 2115 * We must test the record for direct, if the 2116 * DIRECT and DIRECT_EN do not match, but only 2117 * if the count is 1. That's because, if the 2118 * count is something other than one, we do not 2119 * want the direct enabled (it will be done via the 2120 * direct helper). But if DIRECT_EN is set, and 2121 * the count is not one, we need to clear it. 2122 */ 2123 if (ftrace_rec_count(rec) == 1) { 2124 if (!(rec->flags & FTRACE_FL_DIRECT) != 2125 !(rec->flags & FTRACE_FL_DIRECT_EN)) 2126 flag |= FTRACE_FL_DIRECT; 2127 } else if (rec->flags & FTRACE_FL_DIRECT_EN) { 2128 flag |= FTRACE_FL_DIRECT; 2129 } 2130 } 2131 2132 /* If the state of this record hasn't changed, then do nothing */ 2133 if ((rec->flags & FTRACE_FL_ENABLED) == flag) 2134 return FTRACE_UPDATE_IGNORE; 2135 2136 if (flag) { 2137 /* Save off if rec is being enabled (for return value) */ 2138 flag ^= rec->flags & FTRACE_FL_ENABLED; 2139 2140 if (update) { 2141 rec->flags |= FTRACE_FL_ENABLED; 2142 if (flag & FTRACE_FL_REGS) { 2143 if (rec->flags & FTRACE_FL_REGS) 2144 rec->flags |= FTRACE_FL_REGS_EN; 2145 else 2146 rec->flags &= ~FTRACE_FL_REGS_EN; 2147 } 2148 if (flag & FTRACE_FL_TRAMP) { 2149 if (rec->flags & FTRACE_FL_TRAMP) 2150 rec->flags |= FTRACE_FL_TRAMP_EN; 2151 else 2152 rec->flags &= ~FTRACE_FL_TRAMP_EN; 2153 } 2154 if (flag & FTRACE_FL_DIRECT) { 2155 /* 2156 * If there's only one user (direct_ops helper) 2157 * then we can call the direct function 2158 * directly (no ftrace trampoline). 2159 */ 2160 if (ftrace_rec_count(rec) == 1) { 2161 if (rec->flags & FTRACE_FL_DIRECT) 2162 rec->flags |= FTRACE_FL_DIRECT_EN; 2163 else 2164 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2165 } else { 2166 /* 2167 * Can only call directly if there's 2168 * only one callback to the function. 2169 */ 2170 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2171 } 2172 } 2173 } 2174 2175 /* 2176 * If this record is being updated from a nop, then 2177 * return UPDATE_MAKE_CALL. 2178 * Otherwise, 2179 * return UPDATE_MODIFY_CALL to tell the caller to convert 2180 * from the save regs, to a non-save regs function or 2181 * vice versa, or from a trampoline call. 2182 */ 2183 if (flag & FTRACE_FL_ENABLED) { 2184 ftrace_bug_type = FTRACE_BUG_CALL; 2185 return FTRACE_UPDATE_MAKE_CALL; 2186 } 2187 2188 ftrace_bug_type = FTRACE_BUG_UPDATE; 2189 return FTRACE_UPDATE_MODIFY_CALL; 2190 } 2191 2192 if (update) { 2193 /* If there's no more users, clear all flags */ 2194 if (!ftrace_rec_count(rec)) 2195 rec->flags = 0; 2196 else 2197 /* 2198 * Just disable the record, but keep the ops TRAMP 2199 * and REGS states. The _EN flags must be disabled though. 2200 */ 2201 rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN | 2202 FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN); 2203 } 2204 2205 ftrace_bug_type = FTRACE_BUG_NOP; 2206 return FTRACE_UPDATE_MAKE_NOP; 2207 } 2208 2209 /** 2210 * ftrace_update_record, set a record that now is tracing or not 2211 * @rec: the record to update 2212 * @enable: set to true if the record is tracing, false to force disable 2213 * 2214 * The records that represent all functions that can be traced need 2215 * to be updated when tracing has been enabled. 2216 */ 2217 int ftrace_update_record(struct dyn_ftrace *rec, bool enable) 2218 { 2219 return ftrace_check_record(rec, enable, true); 2220 } 2221 2222 /** 2223 * ftrace_test_record, check if the record has been enabled or not 2224 * @rec: the record to test 2225 * @enable: set to true to check if enabled, false if it is disabled 2226 * 2227 * The arch code may need to test if a record is already set to 2228 * tracing to determine how to modify the function code that it 2229 * represents. 2230 */ 2231 int ftrace_test_record(struct dyn_ftrace *rec, bool enable) 2232 { 2233 return ftrace_check_record(rec, enable, false); 2234 } 2235 2236 static struct ftrace_ops * 2237 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec) 2238 { 2239 struct ftrace_ops *op; 2240 unsigned long ip = rec->ip; 2241 2242 do_for_each_ftrace_op(op, ftrace_ops_list) { 2243 2244 if (!op->trampoline) 2245 continue; 2246 2247 if (hash_contains_ip(ip, op->func_hash)) 2248 return op; 2249 } while_for_each_ftrace_op(op); 2250 2251 return NULL; 2252 } 2253 2254 static struct ftrace_ops * 2255 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, 2256 struct ftrace_ops *op) 2257 { 2258 unsigned long ip = rec->ip; 2259 2260 while_for_each_ftrace_op(op) { 2261 2262 if (!op->trampoline) 2263 continue; 2264 2265 if (hash_contains_ip(ip, op->func_hash)) 2266 return op; 2267 } 2268 2269 return NULL; 2270 } 2271 2272 static struct ftrace_ops * 2273 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec) 2274 { 2275 struct ftrace_ops *op; 2276 unsigned long ip = rec->ip; 2277 2278 /* 2279 * Need to check removed ops first. 2280 * If they are being removed, and this rec has a tramp, 2281 * and this rec is in the ops list, then it would be the 2282 * one with the tramp. 2283 */ 2284 if (removed_ops) { 2285 if (hash_contains_ip(ip, &removed_ops->old_hash)) 2286 return removed_ops; 2287 } 2288 2289 /* 2290 * Need to find the current trampoline for a rec. 2291 * Now, a trampoline is only attached to a rec if there 2292 * was a single 'ops' attached to it. But this can be called 2293 * when we are adding another op to the rec or removing the 2294 * current one. Thus, if the op is being added, we can 2295 * ignore it because it hasn't attached itself to the rec 2296 * yet. 2297 * 2298 * If an ops is being modified (hooking to different functions) 2299 * then we don't care about the new functions that are being 2300 * added, just the old ones (that are probably being removed). 2301 * 2302 * If we are adding an ops to a function that already is using 2303 * a trampoline, it needs to be removed (trampolines are only 2304 * for single ops connected), then an ops that is not being 2305 * modified also needs to be checked. 2306 */ 2307 do_for_each_ftrace_op(op, ftrace_ops_list) { 2308 2309 if (!op->trampoline) 2310 continue; 2311 2312 /* 2313 * If the ops is being added, it hasn't gotten to 2314 * the point to be removed from this tree yet. 2315 */ 2316 if (op->flags & FTRACE_OPS_FL_ADDING) 2317 continue; 2318 2319 2320 /* 2321 * If the ops is being modified and is in the old 2322 * hash, then it is probably being removed from this 2323 * function. 2324 */ 2325 if ((op->flags & FTRACE_OPS_FL_MODIFYING) && 2326 hash_contains_ip(ip, &op->old_hash)) 2327 return op; 2328 /* 2329 * If the ops is not being added or modified, and it's 2330 * in its normal filter hash, then this must be the one 2331 * we want! 2332 */ 2333 if (!(op->flags & FTRACE_OPS_FL_MODIFYING) && 2334 hash_contains_ip(ip, op->func_hash)) 2335 return op; 2336 2337 } while_for_each_ftrace_op(op); 2338 2339 return NULL; 2340 } 2341 2342 static struct ftrace_ops * 2343 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec) 2344 { 2345 struct ftrace_ops *op; 2346 unsigned long ip = rec->ip; 2347 2348 do_for_each_ftrace_op(op, ftrace_ops_list) { 2349 /* pass rec in as regs to have non-NULL val */ 2350 if (hash_contains_ip(ip, op->func_hash)) 2351 return op; 2352 } while_for_each_ftrace_op(op); 2353 2354 return NULL; 2355 } 2356 2357 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 2358 /* Protected by rcu_tasks for reading, and direct_mutex for writing */ 2359 static struct ftrace_hash *direct_functions = EMPTY_HASH; 2360 static DEFINE_MUTEX(direct_mutex); 2361 int ftrace_direct_func_count; 2362 2363 /* 2364 * Search the direct_functions hash to see if the given instruction pointer 2365 * has a direct caller attached to it. 2366 */ 2367 static unsigned long find_rec_direct(unsigned long ip) 2368 { 2369 struct ftrace_func_entry *entry; 2370 2371 entry = __ftrace_lookup_ip(direct_functions, ip); 2372 if (!entry) 2373 return 0; 2374 2375 return entry->direct; 2376 } 2377 2378 static void call_direct_funcs(unsigned long ip, unsigned long pip, 2379 struct ftrace_ops *ops, struct pt_regs *regs) 2380 { 2381 unsigned long addr; 2382 2383 addr = find_rec_direct(ip); 2384 if (!addr) 2385 return; 2386 2387 arch_ftrace_set_direct_caller(regs, addr); 2388 } 2389 2390 struct ftrace_ops direct_ops = { 2391 .func = call_direct_funcs, 2392 .flags = FTRACE_OPS_FL_IPMODIFY | FTRACE_OPS_FL_RECURSION_SAFE 2393 | FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS 2394 | FTRACE_OPS_FL_PERMANENT, 2395 }; 2396 #else 2397 static inline unsigned long find_rec_direct(unsigned long ip) 2398 { 2399 return 0; 2400 } 2401 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 2402 2403 /** 2404 * ftrace_get_addr_new - Get the call address to set to 2405 * @rec: The ftrace record descriptor 2406 * 2407 * If the record has the FTRACE_FL_REGS set, that means that it 2408 * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS 2409 * is not not set, then it wants to convert to the normal callback. 2410 * 2411 * Returns the address of the trampoline to set to 2412 */ 2413 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec) 2414 { 2415 struct ftrace_ops *ops; 2416 unsigned long addr; 2417 2418 if ((rec->flags & FTRACE_FL_DIRECT) && 2419 (ftrace_rec_count(rec) == 1)) { 2420 addr = find_rec_direct(rec->ip); 2421 if (addr) 2422 return addr; 2423 WARN_ON_ONCE(1); 2424 } 2425 2426 /* Trampolines take precedence over regs */ 2427 if (rec->flags & FTRACE_FL_TRAMP) { 2428 ops = ftrace_find_tramp_ops_new(rec); 2429 if (FTRACE_WARN_ON(!ops || !ops->trampoline)) { 2430 pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n", 2431 (void *)rec->ip, (void *)rec->ip, rec->flags); 2432 /* Ftrace is shutting down, return anything */ 2433 return (unsigned long)FTRACE_ADDR; 2434 } 2435 return ops->trampoline; 2436 } 2437 2438 if (rec->flags & FTRACE_FL_REGS) 2439 return (unsigned long)FTRACE_REGS_ADDR; 2440 else 2441 return (unsigned long)FTRACE_ADDR; 2442 } 2443 2444 /** 2445 * ftrace_get_addr_curr - Get the call address that is already there 2446 * @rec: The ftrace record descriptor 2447 * 2448 * The FTRACE_FL_REGS_EN is set when the record already points to 2449 * a function that saves all the regs. Basically the '_EN' version 2450 * represents the current state of the function. 2451 * 2452 * Returns the address of the trampoline that is currently being called 2453 */ 2454 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec) 2455 { 2456 struct ftrace_ops *ops; 2457 unsigned long addr; 2458 2459 /* Direct calls take precedence over trampolines */ 2460 if (rec->flags & FTRACE_FL_DIRECT_EN) { 2461 addr = find_rec_direct(rec->ip); 2462 if (addr) 2463 return addr; 2464 WARN_ON_ONCE(1); 2465 } 2466 2467 /* Trampolines take precedence over regs */ 2468 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2469 ops = ftrace_find_tramp_ops_curr(rec); 2470 if (FTRACE_WARN_ON(!ops)) { 2471 pr_warn("Bad trampoline accounting at: %p (%pS)\n", 2472 (void *)rec->ip, (void *)rec->ip); 2473 /* Ftrace is shutting down, return anything */ 2474 return (unsigned long)FTRACE_ADDR; 2475 } 2476 return ops->trampoline; 2477 } 2478 2479 if (rec->flags & FTRACE_FL_REGS_EN) 2480 return (unsigned long)FTRACE_REGS_ADDR; 2481 else 2482 return (unsigned long)FTRACE_ADDR; 2483 } 2484 2485 static int 2486 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable) 2487 { 2488 unsigned long ftrace_old_addr; 2489 unsigned long ftrace_addr; 2490 int ret; 2491 2492 ftrace_addr = ftrace_get_addr_new(rec); 2493 2494 /* This needs to be done before we call ftrace_update_record */ 2495 ftrace_old_addr = ftrace_get_addr_curr(rec); 2496 2497 ret = ftrace_update_record(rec, enable); 2498 2499 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2500 2501 switch (ret) { 2502 case FTRACE_UPDATE_IGNORE: 2503 return 0; 2504 2505 case FTRACE_UPDATE_MAKE_CALL: 2506 ftrace_bug_type = FTRACE_BUG_CALL; 2507 return ftrace_make_call(rec, ftrace_addr); 2508 2509 case FTRACE_UPDATE_MAKE_NOP: 2510 ftrace_bug_type = FTRACE_BUG_NOP; 2511 return ftrace_make_nop(NULL, rec, ftrace_old_addr); 2512 2513 case FTRACE_UPDATE_MODIFY_CALL: 2514 ftrace_bug_type = FTRACE_BUG_UPDATE; 2515 return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr); 2516 } 2517 2518 return -1; /* unknown ftrace bug */ 2519 } 2520 2521 void __weak ftrace_replace_code(int mod_flags) 2522 { 2523 struct dyn_ftrace *rec; 2524 struct ftrace_page *pg; 2525 bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL; 2526 int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL; 2527 int failed; 2528 2529 if (unlikely(ftrace_disabled)) 2530 return; 2531 2532 do_for_each_ftrace_rec(pg, rec) { 2533 2534 if (rec->flags & FTRACE_FL_DISABLED) 2535 continue; 2536 2537 failed = __ftrace_replace_code(rec, enable); 2538 if (failed) { 2539 ftrace_bug(failed, rec); 2540 /* Stop processing */ 2541 return; 2542 } 2543 if (schedulable) 2544 cond_resched(); 2545 } while_for_each_ftrace_rec(); 2546 } 2547 2548 struct ftrace_rec_iter { 2549 struct ftrace_page *pg; 2550 int index; 2551 }; 2552 2553 /** 2554 * ftrace_rec_iter_start, start up iterating over traced functions 2555 * 2556 * Returns an iterator handle that is used to iterate over all 2557 * the records that represent address locations where functions 2558 * are traced. 2559 * 2560 * May return NULL if no records are available. 2561 */ 2562 struct ftrace_rec_iter *ftrace_rec_iter_start(void) 2563 { 2564 /* 2565 * We only use a single iterator. 2566 * Protected by the ftrace_lock mutex. 2567 */ 2568 static struct ftrace_rec_iter ftrace_rec_iter; 2569 struct ftrace_rec_iter *iter = &ftrace_rec_iter; 2570 2571 iter->pg = ftrace_pages_start; 2572 iter->index = 0; 2573 2574 /* Could have empty pages */ 2575 while (iter->pg && !iter->pg->index) 2576 iter->pg = iter->pg->next; 2577 2578 if (!iter->pg) 2579 return NULL; 2580 2581 return iter; 2582 } 2583 2584 /** 2585 * ftrace_rec_iter_next, get the next record to process. 2586 * @iter: The handle to the iterator. 2587 * 2588 * Returns the next iterator after the given iterator @iter. 2589 */ 2590 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter) 2591 { 2592 iter->index++; 2593 2594 if (iter->index >= iter->pg->index) { 2595 iter->pg = iter->pg->next; 2596 iter->index = 0; 2597 2598 /* Could have empty pages */ 2599 while (iter->pg && !iter->pg->index) 2600 iter->pg = iter->pg->next; 2601 } 2602 2603 if (!iter->pg) 2604 return NULL; 2605 2606 return iter; 2607 } 2608 2609 /** 2610 * ftrace_rec_iter_record, get the record at the iterator location 2611 * @iter: The current iterator location 2612 * 2613 * Returns the record that the current @iter is at. 2614 */ 2615 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter) 2616 { 2617 return &iter->pg->records[iter->index]; 2618 } 2619 2620 static int 2621 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec) 2622 { 2623 int ret; 2624 2625 if (unlikely(ftrace_disabled)) 2626 return 0; 2627 2628 ret = ftrace_init_nop(mod, rec); 2629 if (ret) { 2630 ftrace_bug_type = FTRACE_BUG_INIT; 2631 ftrace_bug(ret, rec); 2632 return 0; 2633 } 2634 return 1; 2635 } 2636 2637 /* 2638 * archs can override this function if they must do something 2639 * before the modifying code is performed. 2640 */ 2641 int __weak ftrace_arch_code_modify_prepare(void) 2642 { 2643 return 0; 2644 } 2645 2646 /* 2647 * archs can override this function if they must do something 2648 * after the modifying code is performed. 2649 */ 2650 int __weak ftrace_arch_code_modify_post_process(void) 2651 { 2652 return 0; 2653 } 2654 2655 void ftrace_modify_all_code(int command) 2656 { 2657 int update = command & FTRACE_UPDATE_TRACE_FUNC; 2658 int mod_flags = 0; 2659 int err = 0; 2660 2661 if (command & FTRACE_MAY_SLEEP) 2662 mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL; 2663 2664 /* 2665 * If the ftrace_caller calls a ftrace_ops func directly, 2666 * we need to make sure that it only traces functions it 2667 * expects to trace. When doing the switch of functions, 2668 * we need to update to the ftrace_ops_list_func first 2669 * before the transition between old and new calls are set, 2670 * as the ftrace_ops_list_func will check the ops hashes 2671 * to make sure the ops are having the right functions 2672 * traced. 2673 */ 2674 if (update) { 2675 err = ftrace_update_ftrace_func(ftrace_ops_list_func); 2676 if (FTRACE_WARN_ON(err)) 2677 return; 2678 } 2679 2680 if (command & FTRACE_UPDATE_CALLS) 2681 ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL); 2682 else if (command & FTRACE_DISABLE_CALLS) 2683 ftrace_replace_code(mod_flags); 2684 2685 if (update && ftrace_trace_function != ftrace_ops_list_func) { 2686 function_trace_op = set_function_trace_op; 2687 smp_wmb(); 2688 /* If irqs are disabled, we are in stop machine */ 2689 if (!irqs_disabled()) 2690 smp_call_function(ftrace_sync_ipi, NULL, 1); 2691 err = ftrace_update_ftrace_func(ftrace_trace_function); 2692 if (FTRACE_WARN_ON(err)) 2693 return; 2694 } 2695 2696 if (command & FTRACE_START_FUNC_RET) 2697 err = ftrace_enable_ftrace_graph_caller(); 2698 else if (command & FTRACE_STOP_FUNC_RET) 2699 err = ftrace_disable_ftrace_graph_caller(); 2700 FTRACE_WARN_ON(err); 2701 } 2702 2703 static int __ftrace_modify_code(void *data) 2704 { 2705 int *command = data; 2706 2707 ftrace_modify_all_code(*command); 2708 2709 return 0; 2710 } 2711 2712 /** 2713 * ftrace_run_stop_machine, go back to the stop machine method 2714 * @command: The command to tell ftrace what to do 2715 * 2716 * If an arch needs to fall back to the stop machine method, the 2717 * it can call this function. 2718 */ 2719 void ftrace_run_stop_machine(int command) 2720 { 2721 stop_machine(__ftrace_modify_code, &command, NULL); 2722 } 2723 2724 /** 2725 * arch_ftrace_update_code, modify the code to trace or not trace 2726 * @command: The command that needs to be done 2727 * 2728 * Archs can override this function if it does not need to 2729 * run stop_machine() to modify code. 2730 */ 2731 void __weak arch_ftrace_update_code(int command) 2732 { 2733 ftrace_run_stop_machine(command); 2734 } 2735 2736 static void ftrace_run_update_code(int command) 2737 { 2738 int ret; 2739 2740 ret = ftrace_arch_code_modify_prepare(); 2741 FTRACE_WARN_ON(ret); 2742 if (ret) 2743 return; 2744 2745 /* 2746 * By default we use stop_machine() to modify the code. 2747 * But archs can do what ever they want as long as it 2748 * is safe. The stop_machine() is the safest, but also 2749 * produces the most overhead. 2750 */ 2751 arch_ftrace_update_code(command); 2752 2753 ret = ftrace_arch_code_modify_post_process(); 2754 FTRACE_WARN_ON(ret); 2755 } 2756 2757 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command, 2758 struct ftrace_ops_hash *old_hash) 2759 { 2760 ops->flags |= FTRACE_OPS_FL_MODIFYING; 2761 ops->old_hash.filter_hash = old_hash->filter_hash; 2762 ops->old_hash.notrace_hash = old_hash->notrace_hash; 2763 ftrace_run_update_code(command); 2764 ops->old_hash.filter_hash = NULL; 2765 ops->old_hash.notrace_hash = NULL; 2766 ops->flags &= ~FTRACE_OPS_FL_MODIFYING; 2767 } 2768 2769 static ftrace_func_t saved_ftrace_func; 2770 static int ftrace_start_up; 2771 2772 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops) 2773 { 2774 } 2775 2776 static void ftrace_startup_enable(int command) 2777 { 2778 if (saved_ftrace_func != ftrace_trace_function) { 2779 saved_ftrace_func = ftrace_trace_function; 2780 command |= FTRACE_UPDATE_TRACE_FUNC; 2781 } 2782 2783 if (!command || !ftrace_enabled) 2784 return; 2785 2786 ftrace_run_update_code(command); 2787 } 2788 2789 static void ftrace_startup_all(int command) 2790 { 2791 update_all_ops = true; 2792 ftrace_startup_enable(command); 2793 update_all_ops = false; 2794 } 2795 2796 int ftrace_startup(struct ftrace_ops *ops, int command) 2797 { 2798 int ret; 2799 2800 if (unlikely(ftrace_disabled)) 2801 return -ENODEV; 2802 2803 ret = __register_ftrace_function(ops); 2804 if (ret) 2805 return ret; 2806 2807 ftrace_start_up++; 2808 2809 /* 2810 * Note that ftrace probes uses this to start up 2811 * and modify functions it will probe. But we still 2812 * set the ADDING flag for modification, as probes 2813 * do not have trampolines. If they add them in the 2814 * future, then the probes will need to distinguish 2815 * between adding and updating probes. 2816 */ 2817 ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING; 2818 2819 ret = ftrace_hash_ipmodify_enable(ops); 2820 if (ret < 0) { 2821 /* Rollback registration process */ 2822 __unregister_ftrace_function(ops); 2823 ftrace_start_up--; 2824 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2825 return ret; 2826 } 2827 2828 if (ftrace_hash_rec_enable(ops, 1)) 2829 command |= FTRACE_UPDATE_CALLS; 2830 2831 ftrace_startup_enable(command); 2832 2833 ops->flags &= ~FTRACE_OPS_FL_ADDING; 2834 2835 return 0; 2836 } 2837 2838 int ftrace_shutdown(struct ftrace_ops *ops, int command) 2839 { 2840 int ret; 2841 2842 if (unlikely(ftrace_disabled)) 2843 return -ENODEV; 2844 2845 ret = __unregister_ftrace_function(ops); 2846 if (ret) 2847 return ret; 2848 2849 ftrace_start_up--; 2850 /* 2851 * Just warn in case of unbalance, no need to kill ftrace, it's not 2852 * critical but the ftrace_call callers may be never nopped again after 2853 * further ftrace uses. 2854 */ 2855 WARN_ON_ONCE(ftrace_start_up < 0); 2856 2857 /* Disabling ipmodify never fails */ 2858 ftrace_hash_ipmodify_disable(ops); 2859 2860 if (ftrace_hash_rec_disable(ops, 1)) 2861 command |= FTRACE_UPDATE_CALLS; 2862 2863 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2864 2865 if (saved_ftrace_func != ftrace_trace_function) { 2866 saved_ftrace_func = ftrace_trace_function; 2867 command |= FTRACE_UPDATE_TRACE_FUNC; 2868 } 2869 2870 if (!command || !ftrace_enabled) { 2871 /* 2872 * If these are dynamic or per_cpu ops, they still 2873 * need their data freed. Since, function tracing is 2874 * not currently active, we can just free them 2875 * without synchronizing all CPUs. 2876 */ 2877 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 2878 goto free_ops; 2879 2880 return 0; 2881 } 2882 2883 /* 2884 * If the ops uses a trampoline, then it needs to be 2885 * tested first on update. 2886 */ 2887 ops->flags |= FTRACE_OPS_FL_REMOVING; 2888 removed_ops = ops; 2889 2890 /* The trampoline logic checks the old hashes */ 2891 ops->old_hash.filter_hash = ops->func_hash->filter_hash; 2892 ops->old_hash.notrace_hash = ops->func_hash->notrace_hash; 2893 2894 ftrace_run_update_code(command); 2895 2896 /* 2897 * If there's no more ops registered with ftrace, run a 2898 * sanity check to make sure all rec flags are cleared. 2899 */ 2900 if (rcu_dereference_protected(ftrace_ops_list, 2901 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 2902 struct ftrace_page *pg; 2903 struct dyn_ftrace *rec; 2904 2905 do_for_each_ftrace_rec(pg, rec) { 2906 if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED)) 2907 pr_warn(" %pS flags:%lx\n", 2908 (void *)rec->ip, rec->flags); 2909 } while_for_each_ftrace_rec(); 2910 } 2911 2912 ops->old_hash.filter_hash = NULL; 2913 ops->old_hash.notrace_hash = NULL; 2914 2915 removed_ops = NULL; 2916 ops->flags &= ~FTRACE_OPS_FL_REMOVING; 2917 2918 /* 2919 * Dynamic ops may be freed, we must make sure that all 2920 * callers are done before leaving this function. 2921 * The same goes for freeing the per_cpu data of the per_cpu 2922 * ops. 2923 */ 2924 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) { 2925 /* 2926 * We need to do a hard force of sched synchronization. 2927 * This is because we use preempt_disable() to do RCU, but 2928 * the function tracers can be called where RCU is not watching 2929 * (like before user_exit()). We can not rely on the RCU 2930 * infrastructure to do the synchronization, thus we must do it 2931 * ourselves. 2932 */ 2933 schedule_on_each_cpu(ftrace_sync); 2934 2935 /* 2936 * When the kernel is preeptive, tasks can be preempted 2937 * while on a ftrace trampoline. Just scheduling a task on 2938 * a CPU is not good enough to flush them. Calling 2939 * synchornize_rcu_tasks() will wait for those tasks to 2940 * execute and either schedule voluntarily or enter user space. 2941 */ 2942 if (IS_ENABLED(CONFIG_PREEMPTION)) 2943 synchronize_rcu_tasks(); 2944 2945 free_ops: 2946 arch_ftrace_trampoline_free(ops); 2947 } 2948 2949 return 0; 2950 } 2951 2952 static void ftrace_startup_sysctl(void) 2953 { 2954 int command; 2955 2956 if (unlikely(ftrace_disabled)) 2957 return; 2958 2959 /* Force update next time */ 2960 saved_ftrace_func = NULL; 2961 /* ftrace_start_up is true if we want ftrace running */ 2962 if (ftrace_start_up) { 2963 command = FTRACE_UPDATE_CALLS; 2964 if (ftrace_graph_active) 2965 command |= FTRACE_START_FUNC_RET; 2966 ftrace_startup_enable(command); 2967 } 2968 } 2969 2970 static void ftrace_shutdown_sysctl(void) 2971 { 2972 int command; 2973 2974 if (unlikely(ftrace_disabled)) 2975 return; 2976 2977 /* ftrace_start_up is true if ftrace is running */ 2978 if (ftrace_start_up) { 2979 command = FTRACE_DISABLE_CALLS; 2980 if (ftrace_graph_active) 2981 command |= FTRACE_STOP_FUNC_RET; 2982 ftrace_run_update_code(command); 2983 } 2984 } 2985 2986 static u64 ftrace_update_time; 2987 unsigned long ftrace_update_tot_cnt; 2988 unsigned long ftrace_number_of_pages; 2989 unsigned long ftrace_number_of_groups; 2990 2991 static inline int ops_traces_mod(struct ftrace_ops *ops) 2992 { 2993 /* 2994 * Filter_hash being empty will default to trace module. 2995 * But notrace hash requires a test of individual module functions. 2996 */ 2997 return ftrace_hash_empty(ops->func_hash->filter_hash) && 2998 ftrace_hash_empty(ops->func_hash->notrace_hash); 2999 } 3000 3001 /* 3002 * Check if the current ops references the record. 3003 * 3004 * If the ops traces all functions, then it was already accounted for. 3005 * If the ops does not trace the current record function, skip it. 3006 * If the ops ignores the function via notrace filter, skip it. 3007 */ 3008 static inline bool 3009 ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3010 { 3011 /* If ops isn't enabled, ignore it */ 3012 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 3013 return false; 3014 3015 /* If ops traces all then it includes this function */ 3016 if (ops_traces_mod(ops)) 3017 return true; 3018 3019 /* The function must be in the filter */ 3020 if (!ftrace_hash_empty(ops->func_hash->filter_hash) && 3021 !__ftrace_lookup_ip(ops->func_hash->filter_hash, rec->ip)) 3022 return false; 3023 3024 /* If in notrace hash, we ignore it too */ 3025 if (ftrace_lookup_ip(ops->func_hash->notrace_hash, rec->ip)) 3026 return false; 3027 3028 return true; 3029 } 3030 3031 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs) 3032 { 3033 struct ftrace_page *pg; 3034 struct dyn_ftrace *p; 3035 u64 start, stop; 3036 unsigned long update_cnt = 0; 3037 unsigned long rec_flags = 0; 3038 int i; 3039 3040 start = ftrace_now(raw_smp_processor_id()); 3041 3042 /* 3043 * When a module is loaded, this function is called to convert 3044 * the calls to mcount in its text to nops, and also to create 3045 * an entry in the ftrace data. Now, if ftrace is activated 3046 * after this call, but before the module sets its text to 3047 * read-only, the modification of enabling ftrace can fail if 3048 * the read-only is done while ftrace is converting the calls. 3049 * To prevent this, the module's records are set as disabled 3050 * and will be enabled after the call to set the module's text 3051 * to read-only. 3052 */ 3053 if (mod) 3054 rec_flags |= FTRACE_FL_DISABLED; 3055 3056 for (pg = new_pgs; pg; pg = pg->next) { 3057 3058 for (i = 0; i < pg->index; i++) { 3059 3060 /* If something went wrong, bail without enabling anything */ 3061 if (unlikely(ftrace_disabled)) 3062 return -1; 3063 3064 p = &pg->records[i]; 3065 p->flags = rec_flags; 3066 3067 /* 3068 * Do the initial record conversion from mcount jump 3069 * to the NOP instructions. 3070 */ 3071 if (!__is_defined(CC_USING_NOP_MCOUNT) && 3072 !ftrace_nop_initialize(mod, p)) 3073 break; 3074 3075 update_cnt++; 3076 } 3077 } 3078 3079 stop = ftrace_now(raw_smp_processor_id()); 3080 ftrace_update_time = stop - start; 3081 ftrace_update_tot_cnt += update_cnt; 3082 3083 return 0; 3084 } 3085 3086 static int ftrace_allocate_records(struct ftrace_page *pg, int count) 3087 { 3088 int order; 3089 int cnt; 3090 3091 if (WARN_ON(!count)) 3092 return -EINVAL; 3093 3094 order = get_count_order(DIV_ROUND_UP(count, ENTRIES_PER_PAGE)); 3095 3096 /* 3097 * We want to fill as much as possible. No more than a page 3098 * may be empty. 3099 */ 3100 while ((PAGE_SIZE << order) / ENTRY_SIZE >= count + ENTRIES_PER_PAGE) 3101 order--; 3102 3103 again: 3104 pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 3105 3106 if (!pg->records) { 3107 /* if we can't allocate this size, try something smaller */ 3108 if (!order) 3109 return -ENOMEM; 3110 order >>= 1; 3111 goto again; 3112 } 3113 3114 ftrace_number_of_pages += 1 << order; 3115 ftrace_number_of_groups++; 3116 3117 cnt = (PAGE_SIZE << order) / ENTRY_SIZE; 3118 pg->size = cnt; 3119 3120 if (cnt > count) 3121 cnt = count; 3122 3123 return cnt; 3124 } 3125 3126 static struct ftrace_page * 3127 ftrace_allocate_pages(unsigned long num_to_init) 3128 { 3129 struct ftrace_page *start_pg; 3130 struct ftrace_page *pg; 3131 int order; 3132 int cnt; 3133 3134 if (!num_to_init) 3135 return NULL; 3136 3137 start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL); 3138 if (!pg) 3139 return NULL; 3140 3141 /* 3142 * Try to allocate as much as possible in one continues 3143 * location that fills in all of the space. We want to 3144 * waste as little space as possible. 3145 */ 3146 for (;;) { 3147 cnt = ftrace_allocate_records(pg, num_to_init); 3148 if (cnt < 0) 3149 goto free_pages; 3150 3151 num_to_init -= cnt; 3152 if (!num_to_init) 3153 break; 3154 3155 pg->next = kzalloc(sizeof(*pg), GFP_KERNEL); 3156 if (!pg->next) 3157 goto free_pages; 3158 3159 pg = pg->next; 3160 } 3161 3162 return start_pg; 3163 3164 free_pages: 3165 pg = start_pg; 3166 while (pg) { 3167 order = get_count_order(pg->size / ENTRIES_PER_PAGE); 3168 free_pages((unsigned long)pg->records, order); 3169 start_pg = pg->next; 3170 kfree(pg); 3171 pg = start_pg; 3172 ftrace_number_of_pages -= 1 << order; 3173 ftrace_number_of_groups--; 3174 } 3175 pr_info("ftrace: FAILED to allocate memory for functions\n"); 3176 return NULL; 3177 } 3178 3179 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */ 3180 3181 struct ftrace_iterator { 3182 loff_t pos; 3183 loff_t func_pos; 3184 loff_t mod_pos; 3185 struct ftrace_page *pg; 3186 struct dyn_ftrace *func; 3187 struct ftrace_func_probe *probe; 3188 struct ftrace_func_entry *probe_entry; 3189 struct trace_parser parser; 3190 struct ftrace_hash *hash; 3191 struct ftrace_ops *ops; 3192 struct trace_array *tr; 3193 struct list_head *mod_list; 3194 int pidx; 3195 int idx; 3196 unsigned flags; 3197 }; 3198 3199 static void * 3200 t_probe_next(struct seq_file *m, loff_t *pos) 3201 { 3202 struct ftrace_iterator *iter = m->private; 3203 struct trace_array *tr = iter->ops->private; 3204 struct list_head *func_probes; 3205 struct ftrace_hash *hash; 3206 struct list_head *next; 3207 struct hlist_node *hnd = NULL; 3208 struct hlist_head *hhd; 3209 int size; 3210 3211 (*pos)++; 3212 iter->pos = *pos; 3213 3214 if (!tr) 3215 return NULL; 3216 3217 func_probes = &tr->func_probes; 3218 if (list_empty(func_probes)) 3219 return NULL; 3220 3221 if (!iter->probe) { 3222 next = func_probes->next; 3223 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3224 } 3225 3226 if (iter->probe_entry) 3227 hnd = &iter->probe_entry->hlist; 3228 3229 hash = iter->probe->ops.func_hash->filter_hash; 3230 3231 /* 3232 * A probe being registered may temporarily have an empty hash 3233 * and it's at the end of the func_probes list. 3234 */ 3235 if (!hash || hash == EMPTY_HASH) 3236 return NULL; 3237 3238 size = 1 << hash->size_bits; 3239 3240 retry: 3241 if (iter->pidx >= size) { 3242 if (iter->probe->list.next == func_probes) 3243 return NULL; 3244 next = iter->probe->list.next; 3245 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3246 hash = iter->probe->ops.func_hash->filter_hash; 3247 size = 1 << hash->size_bits; 3248 iter->pidx = 0; 3249 } 3250 3251 hhd = &hash->buckets[iter->pidx]; 3252 3253 if (hlist_empty(hhd)) { 3254 iter->pidx++; 3255 hnd = NULL; 3256 goto retry; 3257 } 3258 3259 if (!hnd) 3260 hnd = hhd->first; 3261 else { 3262 hnd = hnd->next; 3263 if (!hnd) { 3264 iter->pidx++; 3265 goto retry; 3266 } 3267 } 3268 3269 if (WARN_ON_ONCE(!hnd)) 3270 return NULL; 3271 3272 iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist); 3273 3274 return iter; 3275 } 3276 3277 static void *t_probe_start(struct seq_file *m, loff_t *pos) 3278 { 3279 struct ftrace_iterator *iter = m->private; 3280 void *p = NULL; 3281 loff_t l; 3282 3283 if (!(iter->flags & FTRACE_ITER_DO_PROBES)) 3284 return NULL; 3285 3286 if (iter->mod_pos > *pos) 3287 return NULL; 3288 3289 iter->probe = NULL; 3290 iter->probe_entry = NULL; 3291 iter->pidx = 0; 3292 for (l = 0; l <= (*pos - iter->mod_pos); ) { 3293 p = t_probe_next(m, &l); 3294 if (!p) 3295 break; 3296 } 3297 if (!p) 3298 return NULL; 3299 3300 /* Only set this if we have an item */ 3301 iter->flags |= FTRACE_ITER_PROBE; 3302 3303 return iter; 3304 } 3305 3306 static int 3307 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter) 3308 { 3309 struct ftrace_func_entry *probe_entry; 3310 struct ftrace_probe_ops *probe_ops; 3311 struct ftrace_func_probe *probe; 3312 3313 probe = iter->probe; 3314 probe_entry = iter->probe_entry; 3315 3316 if (WARN_ON_ONCE(!probe || !probe_entry)) 3317 return -EIO; 3318 3319 probe_ops = probe->probe_ops; 3320 3321 if (probe_ops->print) 3322 return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data); 3323 3324 seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip, 3325 (void *)probe_ops->func); 3326 3327 return 0; 3328 } 3329 3330 static void * 3331 t_mod_next(struct seq_file *m, loff_t *pos) 3332 { 3333 struct ftrace_iterator *iter = m->private; 3334 struct trace_array *tr = iter->tr; 3335 3336 (*pos)++; 3337 iter->pos = *pos; 3338 3339 iter->mod_list = iter->mod_list->next; 3340 3341 if (iter->mod_list == &tr->mod_trace || 3342 iter->mod_list == &tr->mod_notrace) { 3343 iter->flags &= ~FTRACE_ITER_MOD; 3344 return NULL; 3345 } 3346 3347 iter->mod_pos = *pos; 3348 3349 return iter; 3350 } 3351 3352 static void *t_mod_start(struct seq_file *m, loff_t *pos) 3353 { 3354 struct ftrace_iterator *iter = m->private; 3355 void *p = NULL; 3356 loff_t l; 3357 3358 if (iter->func_pos > *pos) 3359 return NULL; 3360 3361 iter->mod_pos = iter->func_pos; 3362 3363 /* probes are only available if tr is set */ 3364 if (!iter->tr) 3365 return NULL; 3366 3367 for (l = 0; l <= (*pos - iter->func_pos); ) { 3368 p = t_mod_next(m, &l); 3369 if (!p) 3370 break; 3371 } 3372 if (!p) { 3373 iter->flags &= ~FTRACE_ITER_MOD; 3374 return t_probe_start(m, pos); 3375 } 3376 3377 /* Only set this if we have an item */ 3378 iter->flags |= FTRACE_ITER_MOD; 3379 3380 return iter; 3381 } 3382 3383 static int 3384 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter) 3385 { 3386 struct ftrace_mod_load *ftrace_mod; 3387 struct trace_array *tr = iter->tr; 3388 3389 if (WARN_ON_ONCE(!iter->mod_list) || 3390 iter->mod_list == &tr->mod_trace || 3391 iter->mod_list == &tr->mod_notrace) 3392 return -EIO; 3393 3394 ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list); 3395 3396 if (ftrace_mod->func) 3397 seq_printf(m, "%s", ftrace_mod->func); 3398 else 3399 seq_putc(m, '*'); 3400 3401 seq_printf(m, ":mod:%s\n", ftrace_mod->module); 3402 3403 return 0; 3404 } 3405 3406 static void * 3407 t_func_next(struct seq_file *m, loff_t *pos) 3408 { 3409 struct ftrace_iterator *iter = m->private; 3410 struct dyn_ftrace *rec = NULL; 3411 3412 (*pos)++; 3413 3414 retry: 3415 if (iter->idx >= iter->pg->index) { 3416 if (iter->pg->next) { 3417 iter->pg = iter->pg->next; 3418 iter->idx = 0; 3419 goto retry; 3420 } 3421 } else { 3422 rec = &iter->pg->records[iter->idx++]; 3423 if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3424 !ftrace_lookup_ip(iter->hash, rec->ip)) || 3425 3426 ((iter->flags & FTRACE_ITER_ENABLED) && 3427 !(rec->flags & FTRACE_FL_ENABLED))) { 3428 3429 rec = NULL; 3430 goto retry; 3431 } 3432 } 3433 3434 if (!rec) 3435 return NULL; 3436 3437 iter->pos = iter->func_pos = *pos; 3438 iter->func = rec; 3439 3440 return iter; 3441 } 3442 3443 static void * 3444 t_next(struct seq_file *m, void *v, loff_t *pos) 3445 { 3446 struct ftrace_iterator *iter = m->private; 3447 loff_t l = *pos; /* t_probe_start() must use original pos */ 3448 void *ret; 3449 3450 if (unlikely(ftrace_disabled)) 3451 return NULL; 3452 3453 if (iter->flags & FTRACE_ITER_PROBE) 3454 return t_probe_next(m, pos); 3455 3456 if (iter->flags & FTRACE_ITER_MOD) 3457 return t_mod_next(m, pos); 3458 3459 if (iter->flags & FTRACE_ITER_PRINTALL) { 3460 /* next must increment pos, and t_probe_start does not */ 3461 (*pos)++; 3462 return t_mod_start(m, &l); 3463 } 3464 3465 ret = t_func_next(m, pos); 3466 3467 if (!ret) 3468 return t_mod_start(m, &l); 3469 3470 return ret; 3471 } 3472 3473 static void reset_iter_read(struct ftrace_iterator *iter) 3474 { 3475 iter->pos = 0; 3476 iter->func_pos = 0; 3477 iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD); 3478 } 3479 3480 static void *t_start(struct seq_file *m, loff_t *pos) 3481 { 3482 struct ftrace_iterator *iter = m->private; 3483 void *p = NULL; 3484 loff_t l; 3485 3486 mutex_lock(&ftrace_lock); 3487 3488 if (unlikely(ftrace_disabled)) 3489 return NULL; 3490 3491 /* 3492 * If an lseek was done, then reset and start from beginning. 3493 */ 3494 if (*pos < iter->pos) 3495 reset_iter_read(iter); 3496 3497 /* 3498 * For set_ftrace_filter reading, if we have the filter 3499 * off, we can short cut and just print out that all 3500 * functions are enabled. 3501 */ 3502 if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3503 ftrace_hash_empty(iter->hash)) { 3504 iter->func_pos = 1; /* Account for the message */ 3505 if (*pos > 0) 3506 return t_mod_start(m, pos); 3507 iter->flags |= FTRACE_ITER_PRINTALL; 3508 /* reset in case of seek/pread */ 3509 iter->flags &= ~FTRACE_ITER_PROBE; 3510 return iter; 3511 } 3512 3513 if (iter->flags & FTRACE_ITER_MOD) 3514 return t_mod_start(m, pos); 3515 3516 /* 3517 * Unfortunately, we need to restart at ftrace_pages_start 3518 * every time we let go of the ftrace_mutex. This is because 3519 * those pointers can change without the lock. 3520 */ 3521 iter->pg = ftrace_pages_start; 3522 iter->idx = 0; 3523 for (l = 0; l <= *pos; ) { 3524 p = t_func_next(m, &l); 3525 if (!p) 3526 break; 3527 } 3528 3529 if (!p) 3530 return t_mod_start(m, pos); 3531 3532 return iter; 3533 } 3534 3535 static void t_stop(struct seq_file *m, void *p) 3536 { 3537 mutex_unlock(&ftrace_lock); 3538 } 3539 3540 void * __weak 3541 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3542 { 3543 return NULL; 3544 } 3545 3546 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops, 3547 struct dyn_ftrace *rec) 3548 { 3549 void *ptr; 3550 3551 ptr = arch_ftrace_trampoline_func(ops, rec); 3552 if (ptr) 3553 seq_printf(m, " ->%pS", ptr); 3554 } 3555 3556 static int t_show(struct seq_file *m, void *v) 3557 { 3558 struct ftrace_iterator *iter = m->private; 3559 struct dyn_ftrace *rec; 3560 3561 if (iter->flags & FTRACE_ITER_PROBE) 3562 return t_probe_show(m, iter); 3563 3564 if (iter->flags & FTRACE_ITER_MOD) 3565 return t_mod_show(m, iter); 3566 3567 if (iter->flags & FTRACE_ITER_PRINTALL) { 3568 if (iter->flags & FTRACE_ITER_NOTRACE) 3569 seq_puts(m, "#### no functions disabled ####\n"); 3570 else 3571 seq_puts(m, "#### all functions enabled ####\n"); 3572 return 0; 3573 } 3574 3575 rec = iter->func; 3576 3577 if (!rec) 3578 return 0; 3579 3580 seq_printf(m, "%ps", (void *)rec->ip); 3581 if (iter->flags & FTRACE_ITER_ENABLED) { 3582 struct ftrace_ops *ops; 3583 3584 seq_printf(m, " (%ld)%s%s%s", 3585 ftrace_rec_count(rec), 3586 rec->flags & FTRACE_FL_REGS ? " R" : " ", 3587 rec->flags & FTRACE_FL_IPMODIFY ? " I" : " ", 3588 rec->flags & FTRACE_FL_DIRECT ? " D" : " "); 3589 if (rec->flags & FTRACE_FL_TRAMP_EN) { 3590 ops = ftrace_find_tramp_ops_any(rec); 3591 if (ops) { 3592 do { 3593 seq_printf(m, "\ttramp: %pS (%pS)", 3594 (void *)ops->trampoline, 3595 (void *)ops->func); 3596 add_trampoline_func(m, ops, rec); 3597 ops = ftrace_find_tramp_ops_next(rec, ops); 3598 } while (ops); 3599 } else 3600 seq_puts(m, "\ttramp: ERROR!"); 3601 } else { 3602 add_trampoline_func(m, NULL, rec); 3603 } 3604 if (rec->flags & FTRACE_FL_DIRECT) { 3605 unsigned long direct; 3606 3607 direct = find_rec_direct(rec->ip); 3608 if (direct) 3609 seq_printf(m, "\n\tdirect-->%pS", (void *)direct); 3610 } 3611 } 3612 3613 seq_putc(m, '\n'); 3614 3615 return 0; 3616 } 3617 3618 static const struct seq_operations show_ftrace_seq_ops = { 3619 .start = t_start, 3620 .next = t_next, 3621 .stop = t_stop, 3622 .show = t_show, 3623 }; 3624 3625 static int 3626 ftrace_avail_open(struct inode *inode, struct file *file) 3627 { 3628 struct ftrace_iterator *iter; 3629 int ret; 3630 3631 ret = security_locked_down(LOCKDOWN_TRACEFS); 3632 if (ret) 3633 return ret; 3634 3635 if (unlikely(ftrace_disabled)) 3636 return -ENODEV; 3637 3638 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3639 if (!iter) 3640 return -ENOMEM; 3641 3642 iter->pg = ftrace_pages_start; 3643 iter->ops = &global_ops; 3644 3645 return 0; 3646 } 3647 3648 static int 3649 ftrace_enabled_open(struct inode *inode, struct file *file) 3650 { 3651 struct ftrace_iterator *iter; 3652 3653 /* 3654 * This shows us what functions are currently being 3655 * traced and by what. Not sure if we want lockdown 3656 * to hide such critical information for an admin. 3657 * Although, perhaps it can show information we don't 3658 * want people to see, but if something is tracing 3659 * something, we probably want to know about it. 3660 */ 3661 3662 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3663 if (!iter) 3664 return -ENOMEM; 3665 3666 iter->pg = ftrace_pages_start; 3667 iter->flags = FTRACE_ITER_ENABLED; 3668 iter->ops = &global_ops; 3669 3670 return 0; 3671 } 3672 3673 /** 3674 * ftrace_regex_open - initialize function tracer filter files 3675 * @ops: The ftrace_ops that hold the hash filters 3676 * @flag: The type of filter to process 3677 * @inode: The inode, usually passed in to your open routine 3678 * @file: The file, usually passed in to your open routine 3679 * 3680 * ftrace_regex_open() initializes the filter files for the 3681 * @ops. Depending on @flag it may process the filter hash or 3682 * the notrace hash of @ops. With this called from the open 3683 * routine, you can use ftrace_filter_write() for the write 3684 * routine if @flag has FTRACE_ITER_FILTER set, or 3685 * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set. 3686 * tracing_lseek() should be used as the lseek routine, and 3687 * release must call ftrace_regex_release(). 3688 */ 3689 int 3690 ftrace_regex_open(struct ftrace_ops *ops, int flag, 3691 struct inode *inode, struct file *file) 3692 { 3693 struct ftrace_iterator *iter; 3694 struct ftrace_hash *hash; 3695 struct list_head *mod_head; 3696 struct trace_array *tr = ops->private; 3697 int ret = -ENOMEM; 3698 3699 ftrace_ops_init(ops); 3700 3701 if (unlikely(ftrace_disabled)) 3702 return -ENODEV; 3703 3704 if (tracing_check_open_get_tr(tr)) 3705 return -ENODEV; 3706 3707 iter = kzalloc(sizeof(*iter), GFP_KERNEL); 3708 if (!iter) 3709 goto out; 3710 3711 if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) 3712 goto out; 3713 3714 iter->ops = ops; 3715 iter->flags = flag; 3716 iter->tr = tr; 3717 3718 mutex_lock(&ops->func_hash->regex_lock); 3719 3720 if (flag & FTRACE_ITER_NOTRACE) { 3721 hash = ops->func_hash->notrace_hash; 3722 mod_head = tr ? &tr->mod_notrace : NULL; 3723 } else { 3724 hash = ops->func_hash->filter_hash; 3725 mod_head = tr ? &tr->mod_trace : NULL; 3726 } 3727 3728 iter->mod_list = mod_head; 3729 3730 if (file->f_mode & FMODE_WRITE) { 3731 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 3732 3733 if (file->f_flags & O_TRUNC) { 3734 iter->hash = alloc_ftrace_hash(size_bits); 3735 clear_ftrace_mod_list(mod_head); 3736 } else { 3737 iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash); 3738 } 3739 3740 if (!iter->hash) { 3741 trace_parser_put(&iter->parser); 3742 goto out_unlock; 3743 } 3744 } else 3745 iter->hash = hash; 3746 3747 ret = 0; 3748 3749 if (file->f_mode & FMODE_READ) { 3750 iter->pg = ftrace_pages_start; 3751 3752 ret = seq_open(file, &show_ftrace_seq_ops); 3753 if (!ret) { 3754 struct seq_file *m = file->private_data; 3755 m->private = iter; 3756 } else { 3757 /* Failed */ 3758 free_ftrace_hash(iter->hash); 3759 trace_parser_put(&iter->parser); 3760 } 3761 } else 3762 file->private_data = iter; 3763 3764 out_unlock: 3765 mutex_unlock(&ops->func_hash->regex_lock); 3766 3767 out: 3768 if (ret) { 3769 kfree(iter); 3770 if (tr) 3771 trace_array_put(tr); 3772 } 3773 3774 return ret; 3775 } 3776 3777 static int 3778 ftrace_filter_open(struct inode *inode, struct file *file) 3779 { 3780 struct ftrace_ops *ops = inode->i_private; 3781 3782 /* Checks for tracefs lockdown */ 3783 return ftrace_regex_open(ops, 3784 FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES, 3785 inode, file); 3786 } 3787 3788 static int 3789 ftrace_notrace_open(struct inode *inode, struct file *file) 3790 { 3791 struct ftrace_ops *ops = inode->i_private; 3792 3793 /* Checks for tracefs lockdown */ 3794 return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE, 3795 inode, file); 3796 } 3797 3798 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */ 3799 struct ftrace_glob { 3800 char *search; 3801 unsigned len; 3802 int type; 3803 }; 3804 3805 /* 3806 * If symbols in an architecture don't correspond exactly to the user-visible 3807 * name of what they represent, it is possible to define this function to 3808 * perform the necessary adjustments. 3809 */ 3810 char * __weak arch_ftrace_match_adjust(char *str, const char *search) 3811 { 3812 return str; 3813 } 3814 3815 static int ftrace_match(char *str, struct ftrace_glob *g) 3816 { 3817 int matched = 0; 3818 int slen; 3819 3820 str = arch_ftrace_match_adjust(str, g->search); 3821 3822 switch (g->type) { 3823 case MATCH_FULL: 3824 if (strcmp(str, g->search) == 0) 3825 matched = 1; 3826 break; 3827 case MATCH_FRONT_ONLY: 3828 if (strncmp(str, g->search, g->len) == 0) 3829 matched = 1; 3830 break; 3831 case MATCH_MIDDLE_ONLY: 3832 if (strstr(str, g->search)) 3833 matched = 1; 3834 break; 3835 case MATCH_END_ONLY: 3836 slen = strlen(str); 3837 if (slen >= g->len && 3838 memcmp(str + slen - g->len, g->search, g->len) == 0) 3839 matched = 1; 3840 break; 3841 case MATCH_GLOB: 3842 if (glob_match(g->search, str)) 3843 matched = 1; 3844 break; 3845 } 3846 3847 return matched; 3848 } 3849 3850 static int 3851 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter) 3852 { 3853 struct ftrace_func_entry *entry; 3854 int ret = 0; 3855 3856 entry = ftrace_lookup_ip(hash, rec->ip); 3857 if (clear_filter) { 3858 /* Do nothing if it doesn't exist */ 3859 if (!entry) 3860 return 0; 3861 3862 free_hash_entry(hash, entry); 3863 } else { 3864 /* Do nothing if it exists */ 3865 if (entry) 3866 return 0; 3867 3868 ret = add_hash_entry(hash, rec->ip); 3869 } 3870 return ret; 3871 } 3872 3873 static int 3874 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g, 3875 int clear_filter) 3876 { 3877 long index = simple_strtoul(func_g->search, NULL, 0); 3878 struct ftrace_page *pg; 3879 struct dyn_ftrace *rec; 3880 3881 /* The index starts at 1 */ 3882 if (--index < 0) 3883 return 0; 3884 3885 do_for_each_ftrace_rec(pg, rec) { 3886 if (pg->index <= index) { 3887 index -= pg->index; 3888 /* this is a double loop, break goes to the next page */ 3889 break; 3890 } 3891 rec = &pg->records[index]; 3892 enter_record(hash, rec, clear_filter); 3893 return 1; 3894 } while_for_each_ftrace_rec(); 3895 return 0; 3896 } 3897 3898 static int 3899 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g, 3900 struct ftrace_glob *mod_g, int exclude_mod) 3901 { 3902 char str[KSYM_SYMBOL_LEN]; 3903 char *modname; 3904 3905 kallsyms_lookup(rec->ip, NULL, NULL, &modname, str); 3906 3907 if (mod_g) { 3908 int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0; 3909 3910 /* blank module name to match all modules */ 3911 if (!mod_g->len) { 3912 /* blank module globbing: modname xor exclude_mod */ 3913 if (!exclude_mod != !modname) 3914 goto func_match; 3915 return 0; 3916 } 3917 3918 /* 3919 * exclude_mod is set to trace everything but the given 3920 * module. If it is set and the module matches, then 3921 * return 0. If it is not set, and the module doesn't match 3922 * also return 0. Otherwise, check the function to see if 3923 * that matches. 3924 */ 3925 if (!mod_matches == !exclude_mod) 3926 return 0; 3927 func_match: 3928 /* blank search means to match all funcs in the mod */ 3929 if (!func_g->len) 3930 return 1; 3931 } 3932 3933 return ftrace_match(str, func_g); 3934 } 3935 3936 static int 3937 match_records(struct ftrace_hash *hash, char *func, int len, char *mod) 3938 { 3939 struct ftrace_page *pg; 3940 struct dyn_ftrace *rec; 3941 struct ftrace_glob func_g = { .type = MATCH_FULL }; 3942 struct ftrace_glob mod_g = { .type = MATCH_FULL }; 3943 struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL; 3944 int exclude_mod = 0; 3945 int found = 0; 3946 int ret; 3947 int clear_filter = 0; 3948 3949 if (func) { 3950 func_g.type = filter_parse_regex(func, len, &func_g.search, 3951 &clear_filter); 3952 func_g.len = strlen(func_g.search); 3953 } 3954 3955 if (mod) { 3956 mod_g.type = filter_parse_regex(mod, strlen(mod), 3957 &mod_g.search, &exclude_mod); 3958 mod_g.len = strlen(mod_g.search); 3959 } 3960 3961 mutex_lock(&ftrace_lock); 3962 3963 if (unlikely(ftrace_disabled)) 3964 goto out_unlock; 3965 3966 if (func_g.type == MATCH_INDEX) { 3967 found = add_rec_by_index(hash, &func_g, clear_filter); 3968 goto out_unlock; 3969 } 3970 3971 do_for_each_ftrace_rec(pg, rec) { 3972 3973 if (rec->flags & FTRACE_FL_DISABLED) 3974 continue; 3975 3976 if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) { 3977 ret = enter_record(hash, rec, clear_filter); 3978 if (ret < 0) { 3979 found = ret; 3980 goto out_unlock; 3981 } 3982 found = 1; 3983 } 3984 } while_for_each_ftrace_rec(); 3985 out_unlock: 3986 mutex_unlock(&ftrace_lock); 3987 3988 return found; 3989 } 3990 3991 static int 3992 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len) 3993 { 3994 return match_records(hash, buff, len, NULL); 3995 } 3996 3997 static void ftrace_ops_update_code(struct ftrace_ops *ops, 3998 struct ftrace_ops_hash *old_hash) 3999 { 4000 struct ftrace_ops *op; 4001 4002 if (!ftrace_enabled) 4003 return; 4004 4005 if (ops->flags & FTRACE_OPS_FL_ENABLED) { 4006 ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash); 4007 return; 4008 } 4009 4010 /* 4011 * If this is the shared global_ops filter, then we need to 4012 * check if there is another ops that shares it, is enabled. 4013 * If so, we still need to run the modify code. 4014 */ 4015 if (ops->func_hash != &global_ops.local_hash) 4016 return; 4017 4018 do_for_each_ftrace_op(op, ftrace_ops_list) { 4019 if (op->func_hash == &global_ops.local_hash && 4020 op->flags & FTRACE_OPS_FL_ENABLED) { 4021 ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash); 4022 /* Only need to do this once */ 4023 return; 4024 } 4025 } while_for_each_ftrace_op(op); 4026 } 4027 4028 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops, 4029 struct ftrace_hash **orig_hash, 4030 struct ftrace_hash *hash, 4031 int enable) 4032 { 4033 struct ftrace_ops_hash old_hash_ops; 4034 struct ftrace_hash *old_hash; 4035 int ret; 4036 4037 old_hash = *orig_hash; 4038 old_hash_ops.filter_hash = ops->func_hash->filter_hash; 4039 old_hash_ops.notrace_hash = ops->func_hash->notrace_hash; 4040 ret = ftrace_hash_move(ops, enable, orig_hash, hash); 4041 if (!ret) { 4042 ftrace_ops_update_code(ops, &old_hash_ops); 4043 free_ftrace_hash_rcu(old_hash); 4044 } 4045 return ret; 4046 } 4047 4048 static bool module_exists(const char *module) 4049 { 4050 /* All modules have the symbol __this_module */ 4051 static const char this_mod[] = "__this_module"; 4052 char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2]; 4053 unsigned long val; 4054 int n; 4055 4056 n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod); 4057 4058 if (n > sizeof(modname) - 1) 4059 return false; 4060 4061 val = module_kallsyms_lookup_name(modname); 4062 return val != 0; 4063 } 4064 4065 static int cache_mod(struct trace_array *tr, 4066 const char *func, char *module, int enable) 4067 { 4068 struct ftrace_mod_load *ftrace_mod, *n; 4069 struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace; 4070 int ret; 4071 4072 mutex_lock(&ftrace_lock); 4073 4074 /* We do not cache inverse filters */ 4075 if (func[0] == '!') { 4076 func++; 4077 ret = -EINVAL; 4078 4079 /* Look to remove this hash */ 4080 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4081 if (strcmp(ftrace_mod->module, module) != 0) 4082 continue; 4083 4084 /* no func matches all */ 4085 if (strcmp(func, "*") == 0 || 4086 (ftrace_mod->func && 4087 strcmp(ftrace_mod->func, func) == 0)) { 4088 ret = 0; 4089 free_ftrace_mod(ftrace_mod); 4090 continue; 4091 } 4092 } 4093 goto out; 4094 } 4095 4096 ret = -EINVAL; 4097 /* We only care about modules that have not been loaded yet */ 4098 if (module_exists(module)) 4099 goto out; 4100 4101 /* Save this string off, and execute it when the module is loaded */ 4102 ret = ftrace_add_mod(tr, func, module, enable); 4103 out: 4104 mutex_unlock(&ftrace_lock); 4105 4106 return ret; 4107 } 4108 4109 static int 4110 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 4111 int reset, int enable); 4112 4113 #ifdef CONFIG_MODULES 4114 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops, 4115 char *mod, bool enable) 4116 { 4117 struct ftrace_mod_load *ftrace_mod, *n; 4118 struct ftrace_hash **orig_hash, *new_hash; 4119 LIST_HEAD(process_mods); 4120 char *func; 4121 int ret; 4122 4123 mutex_lock(&ops->func_hash->regex_lock); 4124 4125 if (enable) 4126 orig_hash = &ops->func_hash->filter_hash; 4127 else 4128 orig_hash = &ops->func_hash->notrace_hash; 4129 4130 new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, 4131 *orig_hash); 4132 if (!new_hash) 4133 goto out; /* warn? */ 4134 4135 mutex_lock(&ftrace_lock); 4136 4137 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4138 4139 if (strcmp(ftrace_mod->module, mod) != 0) 4140 continue; 4141 4142 if (ftrace_mod->func) 4143 func = kstrdup(ftrace_mod->func, GFP_KERNEL); 4144 else 4145 func = kstrdup("*", GFP_KERNEL); 4146 4147 if (!func) /* warn? */ 4148 continue; 4149 4150 list_del(&ftrace_mod->list); 4151 list_add(&ftrace_mod->list, &process_mods); 4152 4153 /* Use the newly allocated func, as it may be "*" */ 4154 kfree(ftrace_mod->func); 4155 ftrace_mod->func = func; 4156 } 4157 4158 mutex_unlock(&ftrace_lock); 4159 4160 list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) { 4161 4162 func = ftrace_mod->func; 4163 4164 /* Grabs ftrace_lock, which is why we have this extra step */ 4165 match_records(new_hash, func, strlen(func), mod); 4166 free_ftrace_mod(ftrace_mod); 4167 } 4168 4169 if (enable && list_empty(head)) 4170 new_hash->flags &= ~FTRACE_HASH_FL_MOD; 4171 4172 mutex_lock(&ftrace_lock); 4173 4174 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, 4175 new_hash, enable); 4176 mutex_unlock(&ftrace_lock); 4177 4178 out: 4179 mutex_unlock(&ops->func_hash->regex_lock); 4180 4181 free_ftrace_hash(new_hash); 4182 } 4183 4184 static void process_cached_mods(const char *mod_name) 4185 { 4186 struct trace_array *tr; 4187 char *mod; 4188 4189 mod = kstrdup(mod_name, GFP_KERNEL); 4190 if (!mod) 4191 return; 4192 4193 mutex_lock(&trace_types_lock); 4194 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 4195 if (!list_empty(&tr->mod_trace)) 4196 process_mod_list(&tr->mod_trace, tr->ops, mod, true); 4197 if (!list_empty(&tr->mod_notrace)) 4198 process_mod_list(&tr->mod_notrace, tr->ops, mod, false); 4199 } 4200 mutex_unlock(&trace_types_lock); 4201 4202 kfree(mod); 4203 } 4204 #endif 4205 4206 /* 4207 * We register the module command as a template to show others how 4208 * to register the a command as well. 4209 */ 4210 4211 static int 4212 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash, 4213 char *func_orig, char *cmd, char *module, int enable) 4214 { 4215 char *func; 4216 int ret; 4217 4218 /* match_records() modifies func, and we need the original */ 4219 func = kstrdup(func_orig, GFP_KERNEL); 4220 if (!func) 4221 return -ENOMEM; 4222 4223 /* 4224 * cmd == 'mod' because we only registered this func 4225 * for the 'mod' ftrace_func_command. 4226 * But if you register one func with multiple commands, 4227 * you can tell which command was used by the cmd 4228 * parameter. 4229 */ 4230 ret = match_records(hash, func, strlen(func), module); 4231 kfree(func); 4232 4233 if (!ret) 4234 return cache_mod(tr, func_orig, module, enable); 4235 if (ret < 0) 4236 return ret; 4237 return 0; 4238 } 4239 4240 static struct ftrace_func_command ftrace_mod_cmd = { 4241 .name = "mod", 4242 .func = ftrace_mod_callback, 4243 }; 4244 4245 static int __init ftrace_mod_cmd_init(void) 4246 { 4247 return register_ftrace_command(&ftrace_mod_cmd); 4248 } 4249 core_initcall(ftrace_mod_cmd_init); 4250 4251 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip, 4252 struct ftrace_ops *op, struct pt_regs *pt_regs) 4253 { 4254 struct ftrace_probe_ops *probe_ops; 4255 struct ftrace_func_probe *probe; 4256 4257 probe = container_of(op, struct ftrace_func_probe, ops); 4258 probe_ops = probe->probe_ops; 4259 4260 /* 4261 * Disable preemption for these calls to prevent a RCU grace 4262 * period. This syncs the hash iteration and freeing of items 4263 * on the hash. rcu_read_lock is too dangerous here. 4264 */ 4265 preempt_disable_notrace(); 4266 probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data); 4267 preempt_enable_notrace(); 4268 } 4269 4270 struct ftrace_func_map { 4271 struct ftrace_func_entry entry; 4272 void *data; 4273 }; 4274 4275 struct ftrace_func_mapper { 4276 struct ftrace_hash hash; 4277 }; 4278 4279 /** 4280 * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper 4281 * 4282 * Returns a ftrace_func_mapper descriptor that can be used to map ips to data. 4283 */ 4284 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void) 4285 { 4286 struct ftrace_hash *hash; 4287 4288 /* 4289 * The mapper is simply a ftrace_hash, but since the entries 4290 * in the hash are not ftrace_func_entry type, we define it 4291 * as a separate structure. 4292 */ 4293 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4294 return (struct ftrace_func_mapper *)hash; 4295 } 4296 4297 /** 4298 * ftrace_func_mapper_find_ip - Find some data mapped to an ip 4299 * @mapper: The mapper that has the ip maps 4300 * @ip: the instruction pointer to find the data for 4301 * 4302 * Returns the data mapped to @ip if found otherwise NULL. The return 4303 * is actually the address of the mapper data pointer. The address is 4304 * returned for use cases where the data is no bigger than a long, and 4305 * the user can use the data pointer as its data instead of having to 4306 * allocate more memory for the reference. 4307 */ 4308 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper, 4309 unsigned long ip) 4310 { 4311 struct ftrace_func_entry *entry; 4312 struct ftrace_func_map *map; 4313 4314 entry = ftrace_lookup_ip(&mapper->hash, ip); 4315 if (!entry) 4316 return NULL; 4317 4318 map = (struct ftrace_func_map *)entry; 4319 return &map->data; 4320 } 4321 4322 /** 4323 * ftrace_func_mapper_add_ip - Map some data to an ip 4324 * @mapper: The mapper that has the ip maps 4325 * @ip: The instruction pointer address to map @data to 4326 * @data: The data to map to @ip 4327 * 4328 * Returns 0 on succes otherwise an error. 4329 */ 4330 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper, 4331 unsigned long ip, void *data) 4332 { 4333 struct ftrace_func_entry *entry; 4334 struct ftrace_func_map *map; 4335 4336 entry = ftrace_lookup_ip(&mapper->hash, ip); 4337 if (entry) 4338 return -EBUSY; 4339 4340 map = kmalloc(sizeof(*map), GFP_KERNEL); 4341 if (!map) 4342 return -ENOMEM; 4343 4344 map->entry.ip = ip; 4345 map->data = data; 4346 4347 __add_hash_entry(&mapper->hash, &map->entry); 4348 4349 return 0; 4350 } 4351 4352 /** 4353 * ftrace_func_mapper_remove_ip - Remove an ip from the mapping 4354 * @mapper: The mapper that has the ip maps 4355 * @ip: The instruction pointer address to remove the data from 4356 * 4357 * Returns the data if it is found, otherwise NULL. 4358 * Note, if the data pointer is used as the data itself, (see 4359 * ftrace_func_mapper_find_ip(), then the return value may be meaningless, 4360 * if the data pointer was set to zero. 4361 */ 4362 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper, 4363 unsigned long ip) 4364 { 4365 struct ftrace_func_entry *entry; 4366 struct ftrace_func_map *map; 4367 void *data; 4368 4369 entry = ftrace_lookup_ip(&mapper->hash, ip); 4370 if (!entry) 4371 return NULL; 4372 4373 map = (struct ftrace_func_map *)entry; 4374 data = map->data; 4375 4376 remove_hash_entry(&mapper->hash, entry); 4377 kfree(entry); 4378 4379 return data; 4380 } 4381 4382 /** 4383 * free_ftrace_func_mapper - free a mapping of ips and data 4384 * @mapper: The mapper that has the ip maps 4385 * @free_func: A function to be called on each data item. 4386 * 4387 * This is used to free the function mapper. The @free_func is optional 4388 * and can be used if the data needs to be freed as well. 4389 */ 4390 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper, 4391 ftrace_mapper_func free_func) 4392 { 4393 struct ftrace_func_entry *entry; 4394 struct ftrace_func_map *map; 4395 struct hlist_head *hhd; 4396 int size, i; 4397 4398 if (!mapper) 4399 return; 4400 4401 if (free_func && mapper->hash.count) { 4402 size = 1 << mapper->hash.size_bits; 4403 for (i = 0; i < size; i++) { 4404 hhd = &mapper->hash.buckets[i]; 4405 hlist_for_each_entry(entry, hhd, hlist) { 4406 map = (struct ftrace_func_map *)entry; 4407 free_func(map); 4408 } 4409 } 4410 } 4411 free_ftrace_hash(&mapper->hash); 4412 } 4413 4414 static void release_probe(struct ftrace_func_probe *probe) 4415 { 4416 struct ftrace_probe_ops *probe_ops; 4417 4418 mutex_lock(&ftrace_lock); 4419 4420 WARN_ON(probe->ref <= 0); 4421 4422 /* Subtract the ref that was used to protect this instance */ 4423 probe->ref--; 4424 4425 if (!probe->ref) { 4426 probe_ops = probe->probe_ops; 4427 /* 4428 * Sending zero as ip tells probe_ops to free 4429 * the probe->data itself 4430 */ 4431 if (probe_ops->free) 4432 probe_ops->free(probe_ops, probe->tr, 0, probe->data); 4433 list_del(&probe->list); 4434 kfree(probe); 4435 } 4436 mutex_unlock(&ftrace_lock); 4437 } 4438 4439 static void acquire_probe_locked(struct ftrace_func_probe *probe) 4440 { 4441 /* 4442 * Add one ref to keep it from being freed when releasing the 4443 * ftrace_lock mutex. 4444 */ 4445 probe->ref++; 4446 } 4447 4448 int 4449 register_ftrace_function_probe(char *glob, struct trace_array *tr, 4450 struct ftrace_probe_ops *probe_ops, 4451 void *data) 4452 { 4453 struct ftrace_func_entry *entry; 4454 struct ftrace_func_probe *probe; 4455 struct ftrace_hash **orig_hash; 4456 struct ftrace_hash *old_hash; 4457 struct ftrace_hash *hash; 4458 int count = 0; 4459 int size; 4460 int ret; 4461 int i; 4462 4463 if (WARN_ON(!tr)) 4464 return -EINVAL; 4465 4466 /* We do not support '!' for function probes */ 4467 if (WARN_ON(glob[0] == '!')) 4468 return -EINVAL; 4469 4470 4471 mutex_lock(&ftrace_lock); 4472 /* Check if the probe_ops is already registered */ 4473 list_for_each_entry(probe, &tr->func_probes, list) { 4474 if (probe->probe_ops == probe_ops) 4475 break; 4476 } 4477 if (&probe->list == &tr->func_probes) { 4478 probe = kzalloc(sizeof(*probe), GFP_KERNEL); 4479 if (!probe) { 4480 mutex_unlock(&ftrace_lock); 4481 return -ENOMEM; 4482 } 4483 probe->probe_ops = probe_ops; 4484 probe->ops.func = function_trace_probe_call; 4485 probe->tr = tr; 4486 ftrace_ops_init(&probe->ops); 4487 list_add(&probe->list, &tr->func_probes); 4488 } 4489 4490 acquire_probe_locked(probe); 4491 4492 mutex_unlock(&ftrace_lock); 4493 4494 /* 4495 * Note, there's a small window here that the func_hash->filter_hash 4496 * may be NULL or empty. Need to be carefule when reading the loop. 4497 */ 4498 mutex_lock(&probe->ops.func_hash->regex_lock); 4499 4500 orig_hash = &probe->ops.func_hash->filter_hash; 4501 old_hash = *orig_hash; 4502 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4503 4504 if (!hash) { 4505 ret = -ENOMEM; 4506 goto out; 4507 } 4508 4509 ret = ftrace_match_records(hash, glob, strlen(glob)); 4510 4511 /* Nothing found? */ 4512 if (!ret) 4513 ret = -EINVAL; 4514 4515 if (ret < 0) 4516 goto out; 4517 4518 size = 1 << hash->size_bits; 4519 for (i = 0; i < size; i++) { 4520 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4521 if (ftrace_lookup_ip(old_hash, entry->ip)) 4522 continue; 4523 /* 4524 * The caller might want to do something special 4525 * for each function we find. We call the callback 4526 * to give the caller an opportunity to do so. 4527 */ 4528 if (probe_ops->init) { 4529 ret = probe_ops->init(probe_ops, tr, 4530 entry->ip, data, 4531 &probe->data); 4532 if (ret < 0) { 4533 if (probe_ops->free && count) 4534 probe_ops->free(probe_ops, tr, 4535 0, probe->data); 4536 probe->data = NULL; 4537 goto out; 4538 } 4539 } 4540 count++; 4541 } 4542 } 4543 4544 mutex_lock(&ftrace_lock); 4545 4546 if (!count) { 4547 /* Nothing was added? */ 4548 ret = -EINVAL; 4549 goto out_unlock; 4550 } 4551 4552 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4553 hash, 1); 4554 if (ret < 0) 4555 goto err_unlock; 4556 4557 /* One ref for each new function traced */ 4558 probe->ref += count; 4559 4560 if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED)) 4561 ret = ftrace_startup(&probe->ops, 0); 4562 4563 out_unlock: 4564 mutex_unlock(&ftrace_lock); 4565 4566 if (!ret) 4567 ret = count; 4568 out: 4569 mutex_unlock(&probe->ops.func_hash->regex_lock); 4570 free_ftrace_hash(hash); 4571 4572 release_probe(probe); 4573 4574 return ret; 4575 4576 err_unlock: 4577 if (!probe_ops->free || !count) 4578 goto out_unlock; 4579 4580 /* Failed to do the move, need to call the free functions */ 4581 for (i = 0; i < size; i++) { 4582 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4583 if (ftrace_lookup_ip(old_hash, entry->ip)) 4584 continue; 4585 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4586 } 4587 } 4588 goto out_unlock; 4589 } 4590 4591 int 4592 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr, 4593 struct ftrace_probe_ops *probe_ops) 4594 { 4595 struct ftrace_ops_hash old_hash_ops; 4596 struct ftrace_func_entry *entry; 4597 struct ftrace_func_probe *probe; 4598 struct ftrace_glob func_g; 4599 struct ftrace_hash **orig_hash; 4600 struct ftrace_hash *old_hash; 4601 struct ftrace_hash *hash = NULL; 4602 struct hlist_node *tmp; 4603 struct hlist_head hhd; 4604 char str[KSYM_SYMBOL_LEN]; 4605 int count = 0; 4606 int i, ret = -ENODEV; 4607 int size; 4608 4609 if (!glob || !strlen(glob) || !strcmp(glob, "*")) 4610 func_g.search = NULL; 4611 else { 4612 int not; 4613 4614 func_g.type = filter_parse_regex(glob, strlen(glob), 4615 &func_g.search, ¬); 4616 func_g.len = strlen(func_g.search); 4617 4618 /* we do not support '!' for function probes */ 4619 if (WARN_ON(not)) 4620 return -EINVAL; 4621 } 4622 4623 mutex_lock(&ftrace_lock); 4624 /* Check if the probe_ops is already registered */ 4625 list_for_each_entry(probe, &tr->func_probes, list) { 4626 if (probe->probe_ops == probe_ops) 4627 break; 4628 } 4629 if (&probe->list == &tr->func_probes) 4630 goto err_unlock_ftrace; 4631 4632 ret = -EINVAL; 4633 if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED)) 4634 goto err_unlock_ftrace; 4635 4636 acquire_probe_locked(probe); 4637 4638 mutex_unlock(&ftrace_lock); 4639 4640 mutex_lock(&probe->ops.func_hash->regex_lock); 4641 4642 orig_hash = &probe->ops.func_hash->filter_hash; 4643 old_hash = *orig_hash; 4644 4645 if (ftrace_hash_empty(old_hash)) 4646 goto out_unlock; 4647 4648 old_hash_ops.filter_hash = old_hash; 4649 /* Probes only have filters */ 4650 old_hash_ops.notrace_hash = NULL; 4651 4652 ret = -ENOMEM; 4653 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4654 if (!hash) 4655 goto out_unlock; 4656 4657 INIT_HLIST_HEAD(&hhd); 4658 4659 size = 1 << hash->size_bits; 4660 for (i = 0; i < size; i++) { 4661 hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) { 4662 4663 if (func_g.search) { 4664 kallsyms_lookup(entry->ip, NULL, NULL, 4665 NULL, str); 4666 if (!ftrace_match(str, &func_g)) 4667 continue; 4668 } 4669 count++; 4670 remove_hash_entry(hash, entry); 4671 hlist_add_head(&entry->hlist, &hhd); 4672 } 4673 } 4674 4675 /* Nothing found? */ 4676 if (!count) { 4677 ret = -EINVAL; 4678 goto out_unlock; 4679 } 4680 4681 mutex_lock(&ftrace_lock); 4682 4683 WARN_ON(probe->ref < count); 4684 4685 probe->ref -= count; 4686 4687 if (ftrace_hash_empty(hash)) 4688 ftrace_shutdown(&probe->ops, 0); 4689 4690 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4691 hash, 1); 4692 4693 /* still need to update the function call sites */ 4694 if (ftrace_enabled && !ftrace_hash_empty(hash)) 4695 ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS, 4696 &old_hash_ops); 4697 synchronize_rcu(); 4698 4699 hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) { 4700 hlist_del(&entry->hlist); 4701 if (probe_ops->free) 4702 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4703 kfree(entry); 4704 } 4705 mutex_unlock(&ftrace_lock); 4706 4707 out_unlock: 4708 mutex_unlock(&probe->ops.func_hash->regex_lock); 4709 free_ftrace_hash(hash); 4710 4711 release_probe(probe); 4712 4713 return ret; 4714 4715 err_unlock_ftrace: 4716 mutex_unlock(&ftrace_lock); 4717 return ret; 4718 } 4719 4720 void clear_ftrace_function_probes(struct trace_array *tr) 4721 { 4722 struct ftrace_func_probe *probe, *n; 4723 4724 list_for_each_entry_safe(probe, n, &tr->func_probes, list) 4725 unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops); 4726 } 4727 4728 static LIST_HEAD(ftrace_commands); 4729 static DEFINE_MUTEX(ftrace_cmd_mutex); 4730 4731 /* 4732 * Currently we only register ftrace commands from __init, so mark this 4733 * __init too. 4734 */ 4735 __init int register_ftrace_command(struct ftrace_func_command *cmd) 4736 { 4737 struct ftrace_func_command *p; 4738 int ret = 0; 4739 4740 mutex_lock(&ftrace_cmd_mutex); 4741 list_for_each_entry(p, &ftrace_commands, list) { 4742 if (strcmp(cmd->name, p->name) == 0) { 4743 ret = -EBUSY; 4744 goto out_unlock; 4745 } 4746 } 4747 list_add(&cmd->list, &ftrace_commands); 4748 out_unlock: 4749 mutex_unlock(&ftrace_cmd_mutex); 4750 4751 return ret; 4752 } 4753 4754 /* 4755 * Currently we only unregister ftrace commands from __init, so mark 4756 * this __init too. 4757 */ 4758 __init int unregister_ftrace_command(struct ftrace_func_command *cmd) 4759 { 4760 struct ftrace_func_command *p, *n; 4761 int ret = -ENODEV; 4762 4763 mutex_lock(&ftrace_cmd_mutex); 4764 list_for_each_entry_safe(p, n, &ftrace_commands, list) { 4765 if (strcmp(cmd->name, p->name) == 0) { 4766 ret = 0; 4767 list_del_init(&p->list); 4768 goto out_unlock; 4769 } 4770 } 4771 out_unlock: 4772 mutex_unlock(&ftrace_cmd_mutex); 4773 4774 return ret; 4775 } 4776 4777 static int ftrace_process_regex(struct ftrace_iterator *iter, 4778 char *buff, int len, int enable) 4779 { 4780 struct ftrace_hash *hash = iter->hash; 4781 struct trace_array *tr = iter->ops->private; 4782 char *func, *command, *next = buff; 4783 struct ftrace_func_command *p; 4784 int ret = -EINVAL; 4785 4786 func = strsep(&next, ":"); 4787 4788 if (!next) { 4789 ret = ftrace_match_records(hash, func, len); 4790 if (!ret) 4791 ret = -EINVAL; 4792 if (ret < 0) 4793 return ret; 4794 return 0; 4795 } 4796 4797 /* command found */ 4798 4799 command = strsep(&next, ":"); 4800 4801 mutex_lock(&ftrace_cmd_mutex); 4802 list_for_each_entry(p, &ftrace_commands, list) { 4803 if (strcmp(p->name, command) == 0) { 4804 ret = p->func(tr, hash, func, command, next, enable); 4805 goto out_unlock; 4806 } 4807 } 4808 out_unlock: 4809 mutex_unlock(&ftrace_cmd_mutex); 4810 4811 return ret; 4812 } 4813 4814 static ssize_t 4815 ftrace_regex_write(struct file *file, const char __user *ubuf, 4816 size_t cnt, loff_t *ppos, int enable) 4817 { 4818 struct ftrace_iterator *iter; 4819 struct trace_parser *parser; 4820 ssize_t ret, read; 4821 4822 if (!cnt) 4823 return 0; 4824 4825 if (file->f_mode & FMODE_READ) { 4826 struct seq_file *m = file->private_data; 4827 iter = m->private; 4828 } else 4829 iter = file->private_data; 4830 4831 if (unlikely(ftrace_disabled)) 4832 return -ENODEV; 4833 4834 /* iter->hash is a local copy, so we don't need regex_lock */ 4835 4836 parser = &iter->parser; 4837 read = trace_get_user(parser, ubuf, cnt, ppos); 4838 4839 if (read >= 0 && trace_parser_loaded(parser) && 4840 !trace_parser_cont(parser)) { 4841 ret = ftrace_process_regex(iter, parser->buffer, 4842 parser->idx, enable); 4843 trace_parser_clear(parser); 4844 if (ret < 0) 4845 goto out; 4846 } 4847 4848 ret = read; 4849 out: 4850 return ret; 4851 } 4852 4853 ssize_t 4854 ftrace_filter_write(struct file *file, const char __user *ubuf, 4855 size_t cnt, loff_t *ppos) 4856 { 4857 return ftrace_regex_write(file, ubuf, cnt, ppos, 1); 4858 } 4859 4860 ssize_t 4861 ftrace_notrace_write(struct file *file, const char __user *ubuf, 4862 size_t cnt, loff_t *ppos) 4863 { 4864 return ftrace_regex_write(file, ubuf, cnt, ppos, 0); 4865 } 4866 4867 static int 4868 ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove) 4869 { 4870 struct ftrace_func_entry *entry; 4871 4872 if (!ftrace_location(ip)) 4873 return -EINVAL; 4874 4875 if (remove) { 4876 entry = ftrace_lookup_ip(hash, ip); 4877 if (!entry) 4878 return -ENOENT; 4879 free_hash_entry(hash, entry); 4880 return 0; 4881 } 4882 4883 return add_hash_entry(hash, ip); 4884 } 4885 4886 static int 4887 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len, 4888 unsigned long ip, int remove, int reset, int enable) 4889 { 4890 struct ftrace_hash **orig_hash; 4891 struct ftrace_hash *hash; 4892 int ret; 4893 4894 if (unlikely(ftrace_disabled)) 4895 return -ENODEV; 4896 4897 mutex_lock(&ops->func_hash->regex_lock); 4898 4899 if (enable) 4900 orig_hash = &ops->func_hash->filter_hash; 4901 else 4902 orig_hash = &ops->func_hash->notrace_hash; 4903 4904 if (reset) 4905 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4906 else 4907 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash); 4908 4909 if (!hash) { 4910 ret = -ENOMEM; 4911 goto out_regex_unlock; 4912 } 4913 4914 if (buf && !ftrace_match_records(hash, buf, len)) { 4915 ret = -EINVAL; 4916 goto out_regex_unlock; 4917 } 4918 if (ip) { 4919 ret = ftrace_match_addr(hash, ip, remove); 4920 if (ret < 0) 4921 goto out_regex_unlock; 4922 } 4923 4924 mutex_lock(&ftrace_lock); 4925 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable); 4926 mutex_unlock(&ftrace_lock); 4927 4928 out_regex_unlock: 4929 mutex_unlock(&ops->func_hash->regex_lock); 4930 4931 free_ftrace_hash(hash); 4932 return ret; 4933 } 4934 4935 static int 4936 ftrace_set_addr(struct ftrace_ops *ops, unsigned long ip, int remove, 4937 int reset, int enable) 4938 { 4939 return ftrace_set_hash(ops, NULL, 0, ip, remove, reset, enable); 4940 } 4941 4942 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 4943 4944 struct ftrace_direct_func { 4945 struct list_head next; 4946 unsigned long addr; 4947 int count; 4948 }; 4949 4950 static LIST_HEAD(ftrace_direct_funcs); 4951 4952 /** 4953 * ftrace_find_direct_func - test an address if it is a registered direct caller 4954 * @addr: The address of a registered direct caller 4955 * 4956 * This searches to see if a ftrace direct caller has been registered 4957 * at a specific address, and if so, it returns a descriptor for it. 4958 * 4959 * This can be used by architecture code to see if an address is 4960 * a direct caller (trampoline) attached to a fentry/mcount location. 4961 * This is useful for the function_graph tracer, as it may need to 4962 * do adjustments if it traced a location that also has a direct 4963 * trampoline attached to it. 4964 */ 4965 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr) 4966 { 4967 struct ftrace_direct_func *entry; 4968 bool found = false; 4969 4970 /* May be called by fgraph trampoline (protected by rcu tasks) */ 4971 list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) { 4972 if (entry->addr == addr) { 4973 found = true; 4974 break; 4975 } 4976 } 4977 if (found) 4978 return entry; 4979 4980 return NULL; 4981 } 4982 4983 /** 4984 * register_ftrace_direct - Call a custom trampoline directly 4985 * @ip: The address of the nop at the beginning of a function 4986 * @addr: The address of the trampoline to call at @ip 4987 * 4988 * This is used to connect a direct call from the nop location (@ip) 4989 * at the start of ftrace traced functions. The location that it calls 4990 * (@addr) must be able to handle a direct call, and save the parameters 4991 * of the function being traced, and restore them (or inject new ones 4992 * if needed), before returning. 4993 * 4994 * Returns: 4995 * 0 on success 4996 * -EBUSY - Another direct function is already attached (there can be only one) 4997 * -ENODEV - @ip does not point to a ftrace nop location (or not supported) 4998 * -ENOMEM - There was an allocation failure. 4999 */ 5000 int register_ftrace_direct(unsigned long ip, unsigned long addr) 5001 { 5002 struct ftrace_direct_func *direct; 5003 struct ftrace_func_entry *entry; 5004 struct ftrace_hash *free_hash = NULL; 5005 struct dyn_ftrace *rec; 5006 int ret = -EBUSY; 5007 5008 mutex_lock(&direct_mutex); 5009 5010 /* See if there's a direct function at @ip already */ 5011 if (find_rec_direct(ip)) 5012 goto out_unlock; 5013 5014 ret = -ENODEV; 5015 rec = lookup_rec(ip, ip); 5016 if (!rec) 5017 goto out_unlock; 5018 5019 /* 5020 * Check if the rec says it has a direct call but we didn't 5021 * find one earlier? 5022 */ 5023 if (WARN_ON(rec->flags & FTRACE_FL_DIRECT)) 5024 goto out_unlock; 5025 5026 /* Make sure the ip points to the exact record */ 5027 if (ip != rec->ip) { 5028 ip = rec->ip; 5029 /* Need to check this ip for a direct. */ 5030 if (find_rec_direct(ip)) 5031 goto out_unlock; 5032 } 5033 5034 ret = -ENOMEM; 5035 if (ftrace_hash_empty(direct_functions) || 5036 direct_functions->count > 2 * (1 << direct_functions->size_bits)) { 5037 struct ftrace_hash *new_hash; 5038 int size = ftrace_hash_empty(direct_functions) ? 0 : 5039 direct_functions->count + 1; 5040 5041 if (size < 32) 5042 size = 32; 5043 5044 new_hash = dup_hash(direct_functions, size); 5045 if (!new_hash) 5046 goto out_unlock; 5047 5048 free_hash = direct_functions; 5049 direct_functions = new_hash; 5050 } 5051 5052 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 5053 if (!entry) 5054 goto out_unlock; 5055 5056 direct = ftrace_find_direct_func(addr); 5057 if (!direct) { 5058 direct = kmalloc(sizeof(*direct), GFP_KERNEL); 5059 if (!direct) { 5060 kfree(entry); 5061 goto out_unlock; 5062 } 5063 direct->addr = addr; 5064 direct->count = 0; 5065 list_add_rcu(&direct->next, &ftrace_direct_funcs); 5066 ftrace_direct_func_count++; 5067 } 5068 5069 entry->ip = ip; 5070 entry->direct = addr; 5071 __add_hash_entry(direct_functions, entry); 5072 5073 ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0); 5074 if (ret) 5075 remove_hash_entry(direct_functions, entry); 5076 5077 if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) { 5078 ret = register_ftrace_function(&direct_ops); 5079 if (ret) 5080 ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5081 } 5082 5083 if (ret) { 5084 kfree(entry); 5085 if (!direct->count) { 5086 list_del_rcu(&direct->next); 5087 synchronize_rcu_tasks(); 5088 kfree(direct); 5089 if (free_hash) 5090 free_ftrace_hash(free_hash); 5091 free_hash = NULL; 5092 ftrace_direct_func_count--; 5093 } 5094 } else { 5095 direct->count++; 5096 } 5097 out_unlock: 5098 mutex_unlock(&direct_mutex); 5099 5100 if (free_hash) { 5101 synchronize_rcu_tasks(); 5102 free_ftrace_hash(free_hash); 5103 } 5104 5105 return ret; 5106 } 5107 EXPORT_SYMBOL_GPL(register_ftrace_direct); 5108 5109 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip, 5110 struct dyn_ftrace **recp) 5111 { 5112 struct ftrace_func_entry *entry; 5113 struct dyn_ftrace *rec; 5114 5115 rec = lookup_rec(*ip, *ip); 5116 if (!rec) 5117 return NULL; 5118 5119 entry = __ftrace_lookup_ip(direct_functions, rec->ip); 5120 if (!entry) { 5121 WARN_ON(rec->flags & FTRACE_FL_DIRECT); 5122 return NULL; 5123 } 5124 5125 WARN_ON(!(rec->flags & FTRACE_FL_DIRECT)); 5126 5127 /* Passed in ip just needs to be on the call site */ 5128 *ip = rec->ip; 5129 5130 if (recp) 5131 *recp = rec; 5132 5133 return entry; 5134 } 5135 5136 int unregister_ftrace_direct(unsigned long ip, unsigned long addr) 5137 { 5138 struct ftrace_direct_func *direct; 5139 struct ftrace_func_entry *entry; 5140 int ret = -ENODEV; 5141 5142 mutex_lock(&direct_mutex); 5143 5144 entry = find_direct_entry(&ip, NULL); 5145 if (!entry) 5146 goto out_unlock; 5147 5148 if (direct_functions->count == 1) 5149 unregister_ftrace_function(&direct_ops); 5150 5151 ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5152 5153 WARN_ON(ret); 5154 5155 remove_hash_entry(direct_functions, entry); 5156 5157 direct = ftrace_find_direct_func(addr); 5158 if (!WARN_ON(!direct)) { 5159 /* This is the good path (see the ! before WARN) */ 5160 direct->count--; 5161 WARN_ON(direct->count < 0); 5162 if (!direct->count) { 5163 list_del_rcu(&direct->next); 5164 synchronize_rcu_tasks(); 5165 kfree(direct); 5166 ftrace_direct_func_count--; 5167 } 5168 } 5169 out_unlock: 5170 mutex_unlock(&direct_mutex); 5171 5172 return ret; 5173 } 5174 EXPORT_SYMBOL_GPL(unregister_ftrace_direct); 5175 5176 static struct ftrace_ops stub_ops = { 5177 .func = ftrace_stub, 5178 }; 5179 5180 /** 5181 * ftrace_modify_direct_caller - modify ftrace nop directly 5182 * @entry: The ftrace hash entry of the direct helper for @rec 5183 * @rec: The record representing the function site to patch 5184 * @old_addr: The location that the site at @rec->ip currently calls 5185 * @new_addr: The location that the site at @rec->ip should call 5186 * 5187 * An architecture may overwrite this function to optimize the 5188 * changing of the direct callback on an ftrace nop location. 5189 * This is called with the ftrace_lock mutex held, and no other 5190 * ftrace callbacks are on the associated record (@rec). Thus, 5191 * it is safe to modify the ftrace record, where it should be 5192 * currently calling @old_addr directly, to call @new_addr. 5193 * 5194 * Safety checks should be made to make sure that the code at 5195 * @rec->ip is currently calling @old_addr. And this must 5196 * also update entry->direct to @new_addr. 5197 */ 5198 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry, 5199 struct dyn_ftrace *rec, 5200 unsigned long old_addr, 5201 unsigned long new_addr) 5202 { 5203 unsigned long ip = rec->ip; 5204 int ret; 5205 5206 /* 5207 * The ftrace_lock was used to determine if the record 5208 * had more than one registered user to it. If it did, 5209 * we needed to prevent that from changing to do the quick 5210 * switch. But if it did not (only a direct caller was attached) 5211 * then this function is called. But this function can deal 5212 * with attached callers to the rec that we care about, and 5213 * since this function uses standard ftrace calls that take 5214 * the ftrace_lock mutex, we need to release it. 5215 */ 5216 mutex_unlock(&ftrace_lock); 5217 5218 /* 5219 * By setting a stub function at the same address, we force 5220 * the code to call the iterator and the direct_ops helper. 5221 * This means that @ip does not call the direct call, and 5222 * we can simply modify it. 5223 */ 5224 ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0); 5225 if (ret) 5226 goto out_lock; 5227 5228 ret = register_ftrace_function(&stub_ops); 5229 if (ret) { 5230 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5231 goto out_lock; 5232 } 5233 5234 entry->direct = new_addr; 5235 5236 /* 5237 * By removing the stub, we put back the direct call, calling 5238 * the @new_addr. 5239 */ 5240 unregister_ftrace_function(&stub_ops); 5241 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5242 5243 out_lock: 5244 mutex_lock(&ftrace_lock); 5245 5246 return ret; 5247 } 5248 5249 /** 5250 * modify_ftrace_direct - Modify an existing direct call to call something else 5251 * @ip: The instruction pointer to modify 5252 * @old_addr: The address that the current @ip calls directly 5253 * @new_addr: The address that the @ip should call 5254 * 5255 * This modifies a ftrace direct caller at an instruction pointer without 5256 * having to disable it first. The direct call will switch over to the 5257 * @new_addr without missing anything. 5258 * 5259 * Returns: zero on success. Non zero on error, which includes: 5260 * -ENODEV : the @ip given has no direct caller attached 5261 * -EINVAL : the @old_addr does not match the current direct caller 5262 */ 5263 int modify_ftrace_direct(unsigned long ip, 5264 unsigned long old_addr, unsigned long new_addr) 5265 { 5266 struct ftrace_func_entry *entry; 5267 struct dyn_ftrace *rec; 5268 int ret = -ENODEV; 5269 5270 mutex_lock(&direct_mutex); 5271 5272 mutex_lock(&ftrace_lock); 5273 entry = find_direct_entry(&ip, &rec); 5274 if (!entry) 5275 goto out_unlock; 5276 5277 ret = -EINVAL; 5278 if (entry->direct != old_addr) 5279 goto out_unlock; 5280 5281 /* 5282 * If there's no other ftrace callback on the rec->ip location, 5283 * then it can be changed directly by the architecture. 5284 * If there is another caller, then we just need to change the 5285 * direct caller helper to point to @new_addr. 5286 */ 5287 if (ftrace_rec_count(rec) == 1) { 5288 ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr); 5289 } else { 5290 entry->direct = new_addr; 5291 ret = 0; 5292 } 5293 5294 out_unlock: 5295 mutex_unlock(&ftrace_lock); 5296 mutex_unlock(&direct_mutex); 5297 return ret; 5298 } 5299 EXPORT_SYMBOL_GPL(modify_ftrace_direct); 5300 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 5301 5302 /** 5303 * ftrace_set_filter_ip - set a function to filter on in ftrace by address 5304 * @ops - the ops to set the filter with 5305 * @ip - the address to add to or remove from the filter. 5306 * @remove - non zero to remove the ip from the filter 5307 * @reset - non zero to reset all filters before applying this filter. 5308 * 5309 * Filters denote which functions should be enabled when tracing is enabled 5310 * If @ip is NULL, it failes to update filter. 5311 */ 5312 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip, 5313 int remove, int reset) 5314 { 5315 ftrace_ops_init(ops); 5316 return ftrace_set_addr(ops, ip, remove, reset, 1); 5317 } 5318 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip); 5319 5320 /** 5321 * ftrace_ops_set_global_filter - setup ops to use global filters 5322 * @ops - the ops which will use the global filters 5323 * 5324 * ftrace users who need global function trace filtering should call this. 5325 * It can set the global filter only if ops were not initialized before. 5326 */ 5327 void ftrace_ops_set_global_filter(struct ftrace_ops *ops) 5328 { 5329 if (ops->flags & FTRACE_OPS_FL_INITIALIZED) 5330 return; 5331 5332 ftrace_ops_init(ops); 5333 ops->func_hash = &global_ops.local_hash; 5334 } 5335 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter); 5336 5337 static int 5338 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 5339 int reset, int enable) 5340 { 5341 return ftrace_set_hash(ops, buf, len, 0, 0, reset, enable); 5342 } 5343 5344 /** 5345 * ftrace_set_filter - set a function to filter on in ftrace 5346 * @ops - the ops to set the filter with 5347 * @buf - the string that holds the function filter text. 5348 * @len - the length of the string. 5349 * @reset - non zero to reset all filters before applying this filter. 5350 * 5351 * Filters denote which functions should be enabled when tracing is enabled. 5352 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5353 */ 5354 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf, 5355 int len, int reset) 5356 { 5357 ftrace_ops_init(ops); 5358 return ftrace_set_regex(ops, buf, len, reset, 1); 5359 } 5360 EXPORT_SYMBOL_GPL(ftrace_set_filter); 5361 5362 /** 5363 * ftrace_set_notrace - set a function to not trace in ftrace 5364 * @ops - the ops to set the notrace filter with 5365 * @buf - the string that holds the function notrace text. 5366 * @len - the length of the string. 5367 * @reset - non zero to reset all filters before applying this filter. 5368 * 5369 * Notrace Filters denote which functions should not be enabled when tracing 5370 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5371 * for tracing. 5372 */ 5373 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf, 5374 int len, int reset) 5375 { 5376 ftrace_ops_init(ops); 5377 return ftrace_set_regex(ops, buf, len, reset, 0); 5378 } 5379 EXPORT_SYMBOL_GPL(ftrace_set_notrace); 5380 /** 5381 * ftrace_set_global_filter - set a function to filter on with global tracers 5382 * @buf - the string that holds the function filter text. 5383 * @len - the length of the string. 5384 * @reset - non zero to reset all filters before applying this filter. 5385 * 5386 * Filters denote which functions should be enabled when tracing is enabled. 5387 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5388 */ 5389 void ftrace_set_global_filter(unsigned char *buf, int len, int reset) 5390 { 5391 ftrace_set_regex(&global_ops, buf, len, reset, 1); 5392 } 5393 EXPORT_SYMBOL_GPL(ftrace_set_global_filter); 5394 5395 /** 5396 * ftrace_set_global_notrace - set a function to not trace with global tracers 5397 * @buf - the string that holds the function notrace text. 5398 * @len - the length of the string. 5399 * @reset - non zero to reset all filters before applying this filter. 5400 * 5401 * Notrace Filters denote which functions should not be enabled when tracing 5402 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5403 * for tracing. 5404 */ 5405 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset) 5406 { 5407 ftrace_set_regex(&global_ops, buf, len, reset, 0); 5408 } 5409 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace); 5410 5411 /* 5412 * command line interface to allow users to set filters on boot up. 5413 */ 5414 #define FTRACE_FILTER_SIZE COMMAND_LINE_SIZE 5415 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5416 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata; 5417 5418 /* Used by function selftest to not test if filter is set */ 5419 bool ftrace_filter_param __initdata; 5420 5421 static int __init set_ftrace_notrace(char *str) 5422 { 5423 ftrace_filter_param = true; 5424 strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE); 5425 return 1; 5426 } 5427 __setup("ftrace_notrace=", set_ftrace_notrace); 5428 5429 static int __init set_ftrace_filter(char *str) 5430 { 5431 ftrace_filter_param = true; 5432 strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE); 5433 return 1; 5434 } 5435 __setup("ftrace_filter=", set_ftrace_filter); 5436 5437 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5438 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata; 5439 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5440 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer); 5441 5442 static int __init set_graph_function(char *str) 5443 { 5444 strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE); 5445 return 1; 5446 } 5447 __setup("ftrace_graph_filter=", set_graph_function); 5448 5449 static int __init set_graph_notrace_function(char *str) 5450 { 5451 strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE); 5452 return 1; 5453 } 5454 __setup("ftrace_graph_notrace=", set_graph_notrace_function); 5455 5456 static int __init set_graph_max_depth_function(char *str) 5457 { 5458 if (!str) 5459 return 0; 5460 fgraph_max_depth = simple_strtoul(str, NULL, 0); 5461 return 1; 5462 } 5463 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function); 5464 5465 static void __init set_ftrace_early_graph(char *buf, int enable) 5466 { 5467 int ret; 5468 char *func; 5469 struct ftrace_hash *hash; 5470 5471 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 5472 if (WARN_ON(!hash)) 5473 return; 5474 5475 while (buf) { 5476 func = strsep(&buf, ","); 5477 /* we allow only one expression at a time */ 5478 ret = ftrace_graph_set_hash(hash, func); 5479 if (ret) 5480 printk(KERN_DEBUG "ftrace: function %s not " 5481 "traceable\n", func); 5482 } 5483 5484 if (enable) 5485 ftrace_graph_hash = hash; 5486 else 5487 ftrace_graph_notrace_hash = hash; 5488 } 5489 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5490 5491 void __init 5492 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable) 5493 { 5494 char *func; 5495 5496 ftrace_ops_init(ops); 5497 5498 while (buf) { 5499 func = strsep(&buf, ","); 5500 ftrace_set_regex(ops, func, strlen(func), 0, enable); 5501 } 5502 } 5503 5504 static void __init set_ftrace_early_filters(void) 5505 { 5506 if (ftrace_filter_buf[0]) 5507 ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1); 5508 if (ftrace_notrace_buf[0]) 5509 ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0); 5510 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5511 if (ftrace_graph_buf[0]) 5512 set_ftrace_early_graph(ftrace_graph_buf, 1); 5513 if (ftrace_graph_notrace_buf[0]) 5514 set_ftrace_early_graph(ftrace_graph_notrace_buf, 0); 5515 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5516 } 5517 5518 int ftrace_regex_release(struct inode *inode, struct file *file) 5519 { 5520 struct seq_file *m = (struct seq_file *)file->private_data; 5521 struct ftrace_iterator *iter; 5522 struct ftrace_hash **orig_hash; 5523 struct trace_parser *parser; 5524 int filter_hash; 5525 int ret; 5526 5527 if (file->f_mode & FMODE_READ) { 5528 iter = m->private; 5529 seq_release(inode, file); 5530 } else 5531 iter = file->private_data; 5532 5533 parser = &iter->parser; 5534 if (trace_parser_loaded(parser)) { 5535 ftrace_match_records(iter->hash, parser->buffer, parser->idx); 5536 } 5537 5538 trace_parser_put(parser); 5539 5540 mutex_lock(&iter->ops->func_hash->regex_lock); 5541 5542 if (file->f_mode & FMODE_WRITE) { 5543 filter_hash = !!(iter->flags & FTRACE_ITER_FILTER); 5544 5545 if (filter_hash) { 5546 orig_hash = &iter->ops->func_hash->filter_hash; 5547 if (iter->tr && !list_empty(&iter->tr->mod_trace)) 5548 iter->hash->flags |= FTRACE_HASH_FL_MOD; 5549 } else 5550 orig_hash = &iter->ops->func_hash->notrace_hash; 5551 5552 mutex_lock(&ftrace_lock); 5553 ret = ftrace_hash_move_and_update_ops(iter->ops, orig_hash, 5554 iter->hash, filter_hash); 5555 mutex_unlock(&ftrace_lock); 5556 } else { 5557 /* For read only, the hash is the ops hash */ 5558 iter->hash = NULL; 5559 } 5560 5561 mutex_unlock(&iter->ops->func_hash->regex_lock); 5562 free_ftrace_hash(iter->hash); 5563 if (iter->tr) 5564 trace_array_put(iter->tr); 5565 kfree(iter); 5566 5567 return 0; 5568 } 5569 5570 static const struct file_operations ftrace_avail_fops = { 5571 .open = ftrace_avail_open, 5572 .read = seq_read, 5573 .llseek = seq_lseek, 5574 .release = seq_release_private, 5575 }; 5576 5577 static const struct file_operations ftrace_enabled_fops = { 5578 .open = ftrace_enabled_open, 5579 .read = seq_read, 5580 .llseek = seq_lseek, 5581 .release = seq_release_private, 5582 }; 5583 5584 static const struct file_operations ftrace_filter_fops = { 5585 .open = ftrace_filter_open, 5586 .read = seq_read, 5587 .write = ftrace_filter_write, 5588 .llseek = tracing_lseek, 5589 .release = ftrace_regex_release, 5590 }; 5591 5592 static const struct file_operations ftrace_notrace_fops = { 5593 .open = ftrace_notrace_open, 5594 .read = seq_read, 5595 .write = ftrace_notrace_write, 5596 .llseek = tracing_lseek, 5597 .release = ftrace_regex_release, 5598 }; 5599 5600 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5601 5602 static DEFINE_MUTEX(graph_lock); 5603 5604 struct ftrace_hash *ftrace_graph_hash = EMPTY_HASH; 5605 struct ftrace_hash *ftrace_graph_notrace_hash = EMPTY_HASH; 5606 5607 enum graph_filter_type { 5608 GRAPH_FILTER_NOTRACE = 0, 5609 GRAPH_FILTER_FUNCTION, 5610 }; 5611 5612 #define FTRACE_GRAPH_EMPTY ((void *)1) 5613 5614 struct ftrace_graph_data { 5615 struct ftrace_hash *hash; 5616 struct ftrace_func_entry *entry; 5617 int idx; /* for hash table iteration */ 5618 enum graph_filter_type type; 5619 struct ftrace_hash *new_hash; 5620 const struct seq_operations *seq_ops; 5621 struct trace_parser parser; 5622 }; 5623 5624 static void * 5625 __g_next(struct seq_file *m, loff_t *pos) 5626 { 5627 struct ftrace_graph_data *fgd = m->private; 5628 struct ftrace_func_entry *entry = fgd->entry; 5629 struct hlist_head *head; 5630 int i, idx = fgd->idx; 5631 5632 if (*pos >= fgd->hash->count) 5633 return NULL; 5634 5635 if (entry) { 5636 hlist_for_each_entry_continue(entry, hlist) { 5637 fgd->entry = entry; 5638 return entry; 5639 } 5640 5641 idx++; 5642 } 5643 5644 for (i = idx; i < 1 << fgd->hash->size_bits; i++) { 5645 head = &fgd->hash->buckets[i]; 5646 hlist_for_each_entry(entry, head, hlist) { 5647 fgd->entry = entry; 5648 fgd->idx = i; 5649 return entry; 5650 } 5651 } 5652 return NULL; 5653 } 5654 5655 static void * 5656 g_next(struct seq_file *m, void *v, loff_t *pos) 5657 { 5658 (*pos)++; 5659 return __g_next(m, pos); 5660 } 5661 5662 static void *g_start(struct seq_file *m, loff_t *pos) 5663 { 5664 struct ftrace_graph_data *fgd = m->private; 5665 5666 mutex_lock(&graph_lock); 5667 5668 if (fgd->type == GRAPH_FILTER_FUNCTION) 5669 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 5670 lockdep_is_held(&graph_lock)); 5671 else 5672 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5673 lockdep_is_held(&graph_lock)); 5674 5675 /* Nothing, tell g_show to print all functions are enabled */ 5676 if (ftrace_hash_empty(fgd->hash) && !*pos) 5677 return FTRACE_GRAPH_EMPTY; 5678 5679 fgd->idx = 0; 5680 fgd->entry = NULL; 5681 return __g_next(m, pos); 5682 } 5683 5684 static void g_stop(struct seq_file *m, void *p) 5685 { 5686 mutex_unlock(&graph_lock); 5687 } 5688 5689 static int g_show(struct seq_file *m, void *v) 5690 { 5691 struct ftrace_func_entry *entry = v; 5692 5693 if (!entry) 5694 return 0; 5695 5696 if (entry == FTRACE_GRAPH_EMPTY) { 5697 struct ftrace_graph_data *fgd = m->private; 5698 5699 if (fgd->type == GRAPH_FILTER_FUNCTION) 5700 seq_puts(m, "#### all functions enabled ####\n"); 5701 else 5702 seq_puts(m, "#### no functions disabled ####\n"); 5703 return 0; 5704 } 5705 5706 seq_printf(m, "%ps\n", (void *)entry->ip); 5707 5708 return 0; 5709 } 5710 5711 static const struct seq_operations ftrace_graph_seq_ops = { 5712 .start = g_start, 5713 .next = g_next, 5714 .stop = g_stop, 5715 .show = g_show, 5716 }; 5717 5718 static int 5719 __ftrace_graph_open(struct inode *inode, struct file *file, 5720 struct ftrace_graph_data *fgd) 5721 { 5722 int ret; 5723 struct ftrace_hash *new_hash = NULL; 5724 5725 ret = security_locked_down(LOCKDOWN_TRACEFS); 5726 if (ret) 5727 return ret; 5728 5729 if (file->f_mode & FMODE_WRITE) { 5730 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 5731 5732 if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX)) 5733 return -ENOMEM; 5734 5735 if (file->f_flags & O_TRUNC) 5736 new_hash = alloc_ftrace_hash(size_bits); 5737 else 5738 new_hash = alloc_and_copy_ftrace_hash(size_bits, 5739 fgd->hash); 5740 if (!new_hash) { 5741 ret = -ENOMEM; 5742 goto out; 5743 } 5744 } 5745 5746 if (file->f_mode & FMODE_READ) { 5747 ret = seq_open(file, &ftrace_graph_seq_ops); 5748 if (!ret) { 5749 struct seq_file *m = file->private_data; 5750 m->private = fgd; 5751 } else { 5752 /* Failed */ 5753 free_ftrace_hash(new_hash); 5754 new_hash = NULL; 5755 } 5756 } else 5757 file->private_data = fgd; 5758 5759 out: 5760 if (ret < 0 && file->f_mode & FMODE_WRITE) 5761 trace_parser_put(&fgd->parser); 5762 5763 fgd->new_hash = new_hash; 5764 5765 /* 5766 * All uses of fgd->hash must be taken with the graph_lock 5767 * held. The graph_lock is going to be released, so force 5768 * fgd->hash to be reinitialized when it is taken again. 5769 */ 5770 fgd->hash = NULL; 5771 5772 return ret; 5773 } 5774 5775 static int 5776 ftrace_graph_open(struct inode *inode, struct file *file) 5777 { 5778 struct ftrace_graph_data *fgd; 5779 int ret; 5780 5781 if (unlikely(ftrace_disabled)) 5782 return -ENODEV; 5783 5784 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 5785 if (fgd == NULL) 5786 return -ENOMEM; 5787 5788 mutex_lock(&graph_lock); 5789 5790 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 5791 lockdep_is_held(&graph_lock)); 5792 fgd->type = GRAPH_FILTER_FUNCTION; 5793 fgd->seq_ops = &ftrace_graph_seq_ops; 5794 5795 ret = __ftrace_graph_open(inode, file, fgd); 5796 if (ret < 0) 5797 kfree(fgd); 5798 5799 mutex_unlock(&graph_lock); 5800 return ret; 5801 } 5802 5803 static int 5804 ftrace_graph_notrace_open(struct inode *inode, struct file *file) 5805 { 5806 struct ftrace_graph_data *fgd; 5807 int ret; 5808 5809 if (unlikely(ftrace_disabled)) 5810 return -ENODEV; 5811 5812 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 5813 if (fgd == NULL) 5814 return -ENOMEM; 5815 5816 mutex_lock(&graph_lock); 5817 5818 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5819 lockdep_is_held(&graph_lock)); 5820 fgd->type = GRAPH_FILTER_NOTRACE; 5821 fgd->seq_ops = &ftrace_graph_seq_ops; 5822 5823 ret = __ftrace_graph_open(inode, file, fgd); 5824 if (ret < 0) 5825 kfree(fgd); 5826 5827 mutex_unlock(&graph_lock); 5828 return ret; 5829 } 5830 5831 static int 5832 ftrace_graph_release(struct inode *inode, struct file *file) 5833 { 5834 struct ftrace_graph_data *fgd; 5835 struct ftrace_hash *old_hash, *new_hash; 5836 struct trace_parser *parser; 5837 int ret = 0; 5838 5839 if (file->f_mode & FMODE_READ) { 5840 struct seq_file *m = file->private_data; 5841 5842 fgd = m->private; 5843 seq_release(inode, file); 5844 } else { 5845 fgd = file->private_data; 5846 } 5847 5848 5849 if (file->f_mode & FMODE_WRITE) { 5850 5851 parser = &fgd->parser; 5852 5853 if (trace_parser_loaded((parser))) { 5854 ret = ftrace_graph_set_hash(fgd->new_hash, 5855 parser->buffer); 5856 } 5857 5858 trace_parser_put(parser); 5859 5860 new_hash = __ftrace_hash_move(fgd->new_hash); 5861 if (!new_hash) { 5862 ret = -ENOMEM; 5863 goto out; 5864 } 5865 5866 mutex_lock(&graph_lock); 5867 5868 if (fgd->type == GRAPH_FILTER_FUNCTION) { 5869 old_hash = rcu_dereference_protected(ftrace_graph_hash, 5870 lockdep_is_held(&graph_lock)); 5871 rcu_assign_pointer(ftrace_graph_hash, new_hash); 5872 } else { 5873 old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5874 lockdep_is_held(&graph_lock)); 5875 rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash); 5876 } 5877 5878 mutex_unlock(&graph_lock); 5879 5880 /* Wait till all users are no longer using the old hash */ 5881 synchronize_rcu(); 5882 5883 free_ftrace_hash(old_hash); 5884 } 5885 5886 out: 5887 free_ftrace_hash(fgd->new_hash); 5888 kfree(fgd); 5889 5890 return ret; 5891 } 5892 5893 static int 5894 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer) 5895 { 5896 struct ftrace_glob func_g; 5897 struct dyn_ftrace *rec; 5898 struct ftrace_page *pg; 5899 struct ftrace_func_entry *entry; 5900 int fail = 1; 5901 int not; 5902 5903 /* decode regex */ 5904 func_g.type = filter_parse_regex(buffer, strlen(buffer), 5905 &func_g.search, ¬); 5906 5907 func_g.len = strlen(func_g.search); 5908 5909 mutex_lock(&ftrace_lock); 5910 5911 if (unlikely(ftrace_disabled)) { 5912 mutex_unlock(&ftrace_lock); 5913 return -ENODEV; 5914 } 5915 5916 do_for_each_ftrace_rec(pg, rec) { 5917 5918 if (rec->flags & FTRACE_FL_DISABLED) 5919 continue; 5920 5921 if (ftrace_match_record(rec, &func_g, NULL, 0)) { 5922 entry = ftrace_lookup_ip(hash, rec->ip); 5923 5924 if (!not) { 5925 fail = 0; 5926 5927 if (entry) 5928 continue; 5929 if (add_hash_entry(hash, rec->ip) < 0) 5930 goto out; 5931 } else { 5932 if (entry) { 5933 free_hash_entry(hash, entry); 5934 fail = 0; 5935 } 5936 } 5937 } 5938 } while_for_each_ftrace_rec(); 5939 out: 5940 mutex_unlock(&ftrace_lock); 5941 5942 if (fail) 5943 return -EINVAL; 5944 5945 return 0; 5946 } 5947 5948 static ssize_t 5949 ftrace_graph_write(struct file *file, const char __user *ubuf, 5950 size_t cnt, loff_t *ppos) 5951 { 5952 ssize_t read, ret = 0; 5953 struct ftrace_graph_data *fgd = file->private_data; 5954 struct trace_parser *parser; 5955 5956 if (!cnt) 5957 return 0; 5958 5959 /* Read mode uses seq functions */ 5960 if (file->f_mode & FMODE_READ) { 5961 struct seq_file *m = file->private_data; 5962 fgd = m->private; 5963 } 5964 5965 parser = &fgd->parser; 5966 5967 read = trace_get_user(parser, ubuf, cnt, ppos); 5968 5969 if (read >= 0 && trace_parser_loaded(parser) && 5970 !trace_parser_cont(parser)) { 5971 5972 ret = ftrace_graph_set_hash(fgd->new_hash, 5973 parser->buffer); 5974 trace_parser_clear(parser); 5975 } 5976 5977 if (!ret) 5978 ret = read; 5979 5980 return ret; 5981 } 5982 5983 static const struct file_operations ftrace_graph_fops = { 5984 .open = ftrace_graph_open, 5985 .read = seq_read, 5986 .write = ftrace_graph_write, 5987 .llseek = tracing_lseek, 5988 .release = ftrace_graph_release, 5989 }; 5990 5991 static const struct file_operations ftrace_graph_notrace_fops = { 5992 .open = ftrace_graph_notrace_open, 5993 .read = seq_read, 5994 .write = ftrace_graph_write, 5995 .llseek = tracing_lseek, 5996 .release = ftrace_graph_release, 5997 }; 5998 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5999 6000 void ftrace_create_filter_files(struct ftrace_ops *ops, 6001 struct dentry *parent) 6002 { 6003 6004 trace_create_file("set_ftrace_filter", 0644, parent, 6005 ops, &ftrace_filter_fops); 6006 6007 trace_create_file("set_ftrace_notrace", 0644, parent, 6008 ops, &ftrace_notrace_fops); 6009 } 6010 6011 /* 6012 * The name "destroy_filter_files" is really a misnomer. Although 6013 * in the future, it may actually delete the files, but this is 6014 * really intended to make sure the ops passed in are disabled 6015 * and that when this function returns, the caller is free to 6016 * free the ops. 6017 * 6018 * The "destroy" name is only to match the "create" name that this 6019 * should be paired with. 6020 */ 6021 void ftrace_destroy_filter_files(struct ftrace_ops *ops) 6022 { 6023 mutex_lock(&ftrace_lock); 6024 if (ops->flags & FTRACE_OPS_FL_ENABLED) 6025 ftrace_shutdown(ops, 0); 6026 ops->flags |= FTRACE_OPS_FL_DELETED; 6027 ftrace_free_filter(ops); 6028 mutex_unlock(&ftrace_lock); 6029 } 6030 6031 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer) 6032 { 6033 6034 trace_create_file("available_filter_functions", 0444, 6035 d_tracer, NULL, &ftrace_avail_fops); 6036 6037 trace_create_file("enabled_functions", 0444, 6038 d_tracer, NULL, &ftrace_enabled_fops); 6039 6040 ftrace_create_filter_files(&global_ops, d_tracer); 6041 6042 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6043 trace_create_file("set_graph_function", 0644, d_tracer, 6044 NULL, 6045 &ftrace_graph_fops); 6046 trace_create_file("set_graph_notrace", 0644, d_tracer, 6047 NULL, 6048 &ftrace_graph_notrace_fops); 6049 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6050 6051 return 0; 6052 } 6053 6054 static int ftrace_cmp_ips(const void *a, const void *b) 6055 { 6056 const unsigned long *ipa = a; 6057 const unsigned long *ipb = b; 6058 6059 if (*ipa > *ipb) 6060 return 1; 6061 if (*ipa < *ipb) 6062 return -1; 6063 return 0; 6064 } 6065 6066 static int ftrace_process_locs(struct module *mod, 6067 unsigned long *start, 6068 unsigned long *end) 6069 { 6070 struct ftrace_page *start_pg; 6071 struct ftrace_page *pg; 6072 struct dyn_ftrace *rec; 6073 unsigned long count; 6074 unsigned long *p; 6075 unsigned long addr; 6076 unsigned long flags = 0; /* Shut up gcc */ 6077 int ret = -ENOMEM; 6078 6079 count = end - start; 6080 6081 if (!count) 6082 return 0; 6083 6084 sort(start, count, sizeof(*start), 6085 ftrace_cmp_ips, NULL); 6086 6087 start_pg = ftrace_allocate_pages(count); 6088 if (!start_pg) 6089 return -ENOMEM; 6090 6091 mutex_lock(&ftrace_lock); 6092 6093 /* 6094 * Core and each module needs their own pages, as 6095 * modules will free them when they are removed. 6096 * Force a new page to be allocated for modules. 6097 */ 6098 if (!mod) { 6099 WARN_ON(ftrace_pages || ftrace_pages_start); 6100 /* First initialization */ 6101 ftrace_pages = ftrace_pages_start = start_pg; 6102 } else { 6103 if (!ftrace_pages) 6104 goto out; 6105 6106 if (WARN_ON(ftrace_pages->next)) { 6107 /* Hmm, we have free pages? */ 6108 while (ftrace_pages->next) 6109 ftrace_pages = ftrace_pages->next; 6110 } 6111 6112 ftrace_pages->next = start_pg; 6113 } 6114 6115 p = start; 6116 pg = start_pg; 6117 while (p < end) { 6118 addr = ftrace_call_adjust(*p++); 6119 /* 6120 * Some architecture linkers will pad between 6121 * the different mcount_loc sections of different 6122 * object files to satisfy alignments. 6123 * Skip any NULL pointers. 6124 */ 6125 if (!addr) 6126 continue; 6127 6128 if (pg->index == pg->size) { 6129 /* We should have allocated enough */ 6130 if (WARN_ON(!pg->next)) 6131 break; 6132 pg = pg->next; 6133 } 6134 6135 rec = &pg->records[pg->index++]; 6136 rec->ip = addr; 6137 } 6138 6139 /* We should have used all pages */ 6140 WARN_ON(pg->next); 6141 6142 /* Assign the last page to ftrace_pages */ 6143 ftrace_pages = pg; 6144 6145 /* 6146 * We only need to disable interrupts on start up 6147 * because we are modifying code that an interrupt 6148 * may execute, and the modification is not atomic. 6149 * But for modules, nothing runs the code we modify 6150 * until we are finished with it, and there's no 6151 * reason to cause large interrupt latencies while we do it. 6152 */ 6153 if (!mod) 6154 local_irq_save(flags); 6155 ftrace_update_code(mod, start_pg); 6156 if (!mod) 6157 local_irq_restore(flags); 6158 ret = 0; 6159 out: 6160 mutex_unlock(&ftrace_lock); 6161 6162 return ret; 6163 } 6164 6165 struct ftrace_mod_func { 6166 struct list_head list; 6167 char *name; 6168 unsigned long ip; 6169 unsigned int size; 6170 }; 6171 6172 struct ftrace_mod_map { 6173 struct rcu_head rcu; 6174 struct list_head list; 6175 struct module *mod; 6176 unsigned long start_addr; 6177 unsigned long end_addr; 6178 struct list_head funcs; 6179 unsigned int num_funcs; 6180 }; 6181 6182 #ifdef CONFIG_MODULES 6183 6184 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next) 6185 6186 static LIST_HEAD(ftrace_mod_maps); 6187 6188 static int referenced_filters(struct dyn_ftrace *rec) 6189 { 6190 struct ftrace_ops *ops; 6191 int cnt = 0; 6192 6193 for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) { 6194 if (ops_references_rec(ops, rec)) 6195 cnt++; 6196 } 6197 6198 return cnt; 6199 } 6200 6201 static void 6202 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash) 6203 { 6204 struct ftrace_func_entry *entry; 6205 struct dyn_ftrace *rec; 6206 int i; 6207 6208 if (ftrace_hash_empty(hash)) 6209 return; 6210 6211 for (i = 0; i < pg->index; i++) { 6212 rec = &pg->records[i]; 6213 entry = __ftrace_lookup_ip(hash, rec->ip); 6214 /* 6215 * Do not allow this rec to match again. 6216 * Yeah, it may waste some memory, but will be removed 6217 * if/when the hash is modified again. 6218 */ 6219 if (entry) 6220 entry->ip = 0; 6221 } 6222 } 6223 6224 /* Clear any records from hashs */ 6225 static void clear_mod_from_hashes(struct ftrace_page *pg) 6226 { 6227 struct trace_array *tr; 6228 6229 mutex_lock(&trace_types_lock); 6230 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 6231 if (!tr->ops || !tr->ops->func_hash) 6232 continue; 6233 mutex_lock(&tr->ops->func_hash->regex_lock); 6234 clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash); 6235 clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash); 6236 mutex_unlock(&tr->ops->func_hash->regex_lock); 6237 } 6238 mutex_unlock(&trace_types_lock); 6239 } 6240 6241 static void ftrace_free_mod_map(struct rcu_head *rcu) 6242 { 6243 struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu); 6244 struct ftrace_mod_func *mod_func; 6245 struct ftrace_mod_func *n; 6246 6247 /* All the contents of mod_map are now not visible to readers */ 6248 list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) { 6249 kfree(mod_func->name); 6250 list_del(&mod_func->list); 6251 kfree(mod_func); 6252 } 6253 6254 kfree(mod_map); 6255 } 6256 6257 void ftrace_release_mod(struct module *mod) 6258 { 6259 struct ftrace_mod_map *mod_map; 6260 struct ftrace_mod_map *n; 6261 struct dyn_ftrace *rec; 6262 struct ftrace_page **last_pg; 6263 struct ftrace_page *tmp_page = NULL; 6264 struct ftrace_page *pg; 6265 int order; 6266 6267 mutex_lock(&ftrace_lock); 6268 6269 if (ftrace_disabled) 6270 goto out_unlock; 6271 6272 list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) { 6273 if (mod_map->mod == mod) { 6274 list_del_rcu(&mod_map->list); 6275 call_rcu(&mod_map->rcu, ftrace_free_mod_map); 6276 break; 6277 } 6278 } 6279 6280 /* 6281 * Each module has its own ftrace_pages, remove 6282 * them from the list. 6283 */ 6284 last_pg = &ftrace_pages_start; 6285 for (pg = ftrace_pages_start; pg; pg = *last_pg) { 6286 rec = &pg->records[0]; 6287 if (within_module_core(rec->ip, mod) || 6288 within_module_init(rec->ip, mod)) { 6289 /* 6290 * As core pages are first, the first 6291 * page should never be a module page. 6292 */ 6293 if (WARN_ON(pg == ftrace_pages_start)) 6294 goto out_unlock; 6295 6296 /* Check if we are deleting the last page */ 6297 if (pg == ftrace_pages) 6298 ftrace_pages = next_to_ftrace_page(last_pg); 6299 6300 ftrace_update_tot_cnt -= pg->index; 6301 *last_pg = pg->next; 6302 6303 pg->next = tmp_page; 6304 tmp_page = pg; 6305 } else 6306 last_pg = &pg->next; 6307 } 6308 out_unlock: 6309 mutex_unlock(&ftrace_lock); 6310 6311 for (pg = tmp_page; pg; pg = tmp_page) { 6312 6313 /* Needs to be called outside of ftrace_lock */ 6314 clear_mod_from_hashes(pg); 6315 6316 order = get_count_order(pg->size / ENTRIES_PER_PAGE); 6317 free_pages((unsigned long)pg->records, order); 6318 tmp_page = pg->next; 6319 kfree(pg); 6320 ftrace_number_of_pages -= 1 << order; 6321 ftrace_number_of_groups--; 6322 } 6323 } 6324 6325 void ftrace_module_enable(struct module *mod) 6326 { 6327 struct dyn_ftrace *rec; 6328 struct ftrace_page *pg; 6329 6330 mutex_lock(&ftrace_lock); 6331 6332 if (ftrace_disabled) 6333 goto out_unlock; 6334 6335 /* 6336 * If the tracing is enabled, go ahead and enable the record. 6337 * 6338 * The reason not to enable the record immediately is the 6339 * inherent check of ftrace_make_nop/ftrace_make_call for 6340 * correct previous instructions. Making first the NOP 6341 * conversion puts the module to the correct state, thus 6342 * passing the ftrace_make_call check. 6343 * 6344 * We also delay this to after the module code already set the 6345 * text to read-only, as we now need to set it back to read-write 6346 * so that we can modify the text. 6347 */ 6348 if (ftrace_start_up) 6349 ftrace_arch_code_modify_prepare(); 6350 6351 do_for_each_ftrace_rec(pg, rec) { 6352 int cnt; 6353 /* 6354 * do_for_each_ftrace_rec() is a double loop. 6355 * module text shares the pg. If a record is 6356 * not part of this module, then skip this pg, 6357 * which the "break" will do. 6358 */ 6359 if (!within_module_core(rec->ip, mod) && 6360 !within_module_init(rec->ip, mod)) 6361 break; 6362 6363 cnt = 0; 6364 6365 /* 6366 * When adding a module, we need to check if tracers are 6367 * currently enabled and if they are, and can trace this record, 6368 * we need to enable the module functions as well as update the 6369 * reference counts for those function records. 6370 */ 6371 if (ftrace_start_up) 6372 cnt += referenced_filters(rec); 6373 6374 /* This clears FTRACE_FL_DISABLED */ 6375 rec->flags = cnt; 6376 6377 if (ftrace_start_up && cnt) { 6378 int failed = __ftrace_replace_code(rec, 1); 6379 if (failed) { 6380 ftrace_bug(failed, rec); 6381 goto out_loop; 6382 } 6383 } 6384 6385 } while_for_each_ftrace_rec(); 6386 6387 out_loop: 6388 if (ftrace_start_up) 6389 ftrace_arch_code_modify_post_process(); 6390 6391 out_unlock: 6392 mutex_unlock(&ftrace_lock); 6393 6394 process_cached_mods(mod->name); 6395 } 6396 6397 void ftrace_module_init(struct module *mod) 6398 { 6399 if (ftrace_disabled || !mod->num_ftrace_callsites) 6400 return; 6401 6402 ftrace_process_locs(mod, mod->ftrace_callsites, 6403 mod->ftrace_callsites + mod->num_ftrace_callsites); 6404 } 6405 6406 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 6407 struct dyn_ftrace *rec) 6408 { 6409 struct ftrace_mod_func *mod_func; 6410 unsigned long symsize; 6411 unsigned long offset; 6412 char str[KSYM_SYMBOL_LEN]; 6413 char *modname; 6414 const char *ret; 6415 6416 ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str); 6417 if (!ret) 6418 return; 6419 6420 mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL); 6421 if (!mod_func) 6422 return; 6423 6424 mod_func->name = kstrdup(str, GFP_KERNEL); 6425 if (!mod_func->name) { 6426 kfree(mod_func); 6427 return; 6428 } 6429 6430 mod_func->ip = rec->ip - offset; 6431 mod_func->size = symsize; 6432 6433 mod_map->num_funcs++; 6434 6435 list_add_rcu(&mod_func->list, &mod_map->funcs); 6436 } 6437 6438 static struct ftrace_mod_map * 6439 allocate_ftrace_mod_map(struct module *mod, 6440 unsigned long start, unsigned long end) 6441 { 6442 struct ftrace_mod_map *mod_map; 6443 6444 mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL); 6445 if (!mod_map) 6446 return NULL; 6447 6448 mod_map->mod = mod; 6449 mod_map->start_addr = start; 6450 mod_map->end_addr = end; 6451 mod_map->num_funcs = 0; 6452 6453 INIT_LIST_HEAD_RCU(&mod_map->funcs); 6454 6455 list_add_rcu(&mod_map->list, &ftrace_mod_maps); 6456 6457 return mod_map; 6458 } 6459 6460 static const char * 6461 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map, 6462 unsigned long addr, unsigned long *size, 6463 unsigned long *off, char *sym) 6464 { 6465 struct ftrace_mod_func *found_func = NULL; 6466 struct ftrace_mod_func *mod_func; 6467 6468 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 6469 if (addr >= mod_func->ip && 6470 addr < mod_func->ip + mod_func->size) { 6471 found_func = mod_func; 6472 break; 6473 } 6474 } 6475 6476 if (found_func) { 6477 if (size) 6478 *size = found_func->size; 6479 if (off) 6480 *off = addr - found_func->ip; 6481 if (sym) 6482 strlcpy(sym, found_func->name, KSYM_NAME_LEN); 6483 6484 return found_func->name; 6485 } 6486 6487 return NULL; 6488 } 6489 6490 const char * 6491 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size, 6492 unsigned long *off, char **modname, char *sym) 6493 { 6494 struct ftrace_mod_map *mod_map; 6495 const char *ret = NULL; 6496 6497 /* mod_map is freed via call_rcu() */ 6498 preempt_disable(); 6499 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 6500 ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym); 6501 if (ret) { 6502 if (modname) 6503 *modname = mod_map->mod->name; 6504 break; 6505 } 6506 } 6507 preempt_enable(); 6508 6509 return ret; 6510 } 6511 6512 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 6513 char *type, char *name, 6514 char *module_name, int *exported) 6515 { 6516 struct ftrace_mod_map *mod_map; 6517 struct ftrace_mod_func *mod_func; 6518 6519 preempt_disable(); 6520 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 6521 6522 if (symnum >= mod_map->num_funcs) { 6523 symnum -= mod_map->num_funcs; 6524 continue; 6525 } 6526 6527 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 6528 if (symnum > 1) { 6529 symnum--; 6530 continue; 6531 } 6532 6533 *value = mod_func->ip; 6534 *type = 'T'; 6535 strlcpy(name, mod_func->name, KSYM_NAME_LEN); 6536 strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN); 6537 *exported = 1; 6538 preempt_enable(); 6539 return 0; 6540 } 6541 WARN_ON(1); 6542 break; 6543 } 6544 preempt_enable(); 6545 return -ERANGE; 6546 } 6547 6548 #else 6549 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 6550 struct dyn_ftrace *rec) { } 6551 static inline struct ftrace_mod_map * 6552 allocate_ftrace_mod_map(struct module *mod, 6553 unsigned long start, unsigned long end) 6554 { 6555 return NULL; 6556 } 6557 #endif /* CONFIG_MODULES */ 6558 6559 struct ftrace_init_func { 6560 struct list_head list; 6561 unsigned long ip; 6562 }; 6563 6564 /* Clear any init ips from hashes */ 6565 static void 6566 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash) 6567 { 6568 struct ftrace_func_entry *entry; 6569 6570 entry = ftrace_lookup_ip(hash, func->ip); 6571 /* 6572 * Do not allow this rec to match again. 6573 * Yeah, it may waste some memory, but will be removed 6574 * if/when the hash is modified again. 6575 */ 6576 if (entry) 6577 entry->ip = 0; 6578 } 6579 6580 static void 6581 clear_func_from_hashes(struct ftrace_init_func *func) 6582 { 6583 struct trace_array *tr; 6584 6585 mutex_lock(&trace_types_lock); 6586 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 6587 if (!tr->ops || !tr->ops->func_hash) 6588 continue; 6589 mutex_lock(&tr->ops->func_hash->regex_lock); 6590 clear_func_from_hash(func, tr->ops->func_hash->filter_hash); 6591 clear_func_from_hash(func, tr->ops->func_hash->notrace_hash); 6592 mutex_unlock(&tr->ops->func_hash->regex_lock); 6593 } 6594 mutex_unlock(&trace_types_lock); 6595 } 6596 6597 static void add_to_clear_hash_list(struct list_head *clear_list, 6598 struct dyn_ftrace *rec) 6599 { 6600 struct ftrace_init_func *func; 6601 6602 func = kmalloc(sizeof(*func), GFP_KERNEL); 6603 if (!func) { 6604 WARN_ONCE(1, "alloc failure, ftrace filter could be stale\n"); 6605 return; 6606 } 6607 6608 func->ip = rec->ip; 6609 list_add(&func->list, clear_list); 6610 } 6611 6612 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr) 6613 { 6614 unsigned long start = (unsigned long)(start_ptr); 6615 unsigned long end = (unsigned long)(end_ptr); 6616 struct ftrace_page **last_pg = &ftrace_pages_start; 6617 struct ftrace_page *pg; 6618 struct dyn_ftrace *rec; 6619 struct dyn_ftrace key; 6620 struct ftrace_mod_map *mod_map = NULL; 6621 struct ftrace_init_func *func, *func_next; 6622 struct list_head clear_hash; 6623 int order; 6624 6625 INIT_LIST_HEAD(&clear_hash); 6626 6627 key.ip = start; 6628 key.flags = end; /* overload flags, as it is unsigned long */ 6629 6630 mutex_lock(&ftrace_lock); 6631 6632 /* 6633 * If we are freeing module init memory, then check if 6634 * any tracer is active. If so, we need to save a mapping of 6635 * the module functions being freed with the address. 6636 */ 6637 if (mod && ftrace_ops_list != &ftrace_list_end) 6638 mod_map = allocate_ftrace_mod_map(mod, start, end); 6639 6640 for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) { 6641 if (end < pg->records[0].ip || 6642 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 6643 continue; 6644 again: 6645 rec = bsearch(&key, pg->records, pg->index, 6646 sizeof(struct dyn_ftrace), 6647 ftrace_cmp_recs); 6648 if (!rec) 6649 continue; 6650 6651 /* rec will be cleared from hashes after ftrace_lock unlock */ 6652 add_to_clear_hash_list(&clear_hash, rec); 6653 6654 if (mod_map) 6655 save_ftrace_mod_rec(mod_map, rec); 6656 6657 pg->index--; 6658 ftrace_update_tot_cnt--; 6659 if (!pg->index) { 6660 *last_pg = pg->next; 6661 order = get_count_order(pg->size / ENTRIES_PER_PAGE); 6662 free_pages((unsigned long)pg->records, order); 6663 ftrace_number_of_pages -= 1 << order; 6664 ftrace_number_of_groups--; 6665 kfree(pg); 6666 pg = container_of(last_pg, struct ftrace_page, next); 6667 if (!(*last_pg)) 6668 ftrace_pages = pg; 6669 continue; 6670 } 6671 memmove(rec, rec + 1, 6672 (pg->index - (rec - pg->records)) * sizeof(*rec)); 6673 /* More than one function may be in this block */ 6674 goto again; 6675 } 6676 mutex_unlock(&ftrace_lock); 6677 6678 list_for_each_entry_safe(func, func_next, &clear_hash, list) { 6679 clear_func_from_hashes(func); 6680 kfree(func); 6681 } 6682 } 6683 6684 void __init ftrace_free_init_mem(void) 6685 { 6686 void *start = (void *)(&__init_begin); 6687 void *end = (void *)(&__init_end); 6688 6689 ftrace_free_mem(NULL, start, end); 6690 } 6691 6692 void __init ftrace_init(void) 6693 { 6694 extern unsigned long __start_mcount_loc[]; 6695 extern unsigned long __stop_mcount_loc[]; 6696 unsigned long count, flags; 6697 int ret; 6698 6699 local_irq_save(flags); 6700 ret = ftrace_dyn_arch_init(); 6701 local_irq_restore(flags); 6702 if (ret) 6703 goto failed; 6704 6705 count = __stop_mcount_loc - __start_mcount_loc; 6706 if (!count) { 6707 pr_info("ftrace: No functions to be traced?\n"); 6708 goto failed; 6709 } 6710 6711 pr_info("ftrace: allocating %ld entries in %ld pages\n", 6712 count, count / ENTRIES_PER_PAGE + 1); 6713 6714 last_ftrace_enabled = ftrace_enabled = 1; 6715 6716 ret = ftrace_process_locs(NULL, 6717 __start_mcount_loc, 6718 __stop_mcount_loc); 6719 6720 pr_info("ftrace: allocated %ld pages with %ld groups\n", 6721 ftrace_number_of_pages, ftrace_number_of_groups); 6722 6723 set_ftrace_early_filters(); 6724 6725 return; 6726 failed: 6727 ftrace_disabled = 1; 6728 } 6729 6730 /* Do nothing if arch does not support this */ 6731 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops) 6732 { 6733 } 6734 6735 static void ftrace_update_trampoline(struct ftrace_ops *ops) 6736 { 6737 arch_ftrace_update_trampoline(ops); 6738 } 6739 6740 void ftrace_init_trace_array(struct trace_array *tr) 6741 { 6742 INIT_LIST_HEAD(&tr->func_probes); 6743 INIT_LIST_HEAD(&tr->mod_trace); 6744 INIT_LIST_HEAD(&tr->mod_notrace); 6745 } 6746 #else 6747 6748 struct ftrace_ops global_ops = { 6749 .func = ftrace_stub, 6750 .flags = FTRACE_OPS_FL_RECURSION_SAFE | 6751 FTRACE_OPS_FL_INITIALIZED | 6752 FTRACE_OPS_FL_PID, 6753 }; 6754 6755 static int __init ftrace_nodyn_init(void) 6756 { 6757 ftrace_enabled = 1; 6758 return 0; 6759 } 6760 core_initcall(ftrace_nodyn_init); 6761 6762 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; } 6763 static inline void ftrace_startup_enable(int command) { } 6764 static inline void ftrace_startup_all(int command) { } 6765 6766 # define ftrace_startup_sysctl() do { } while (0) 6767 # define ftrace_shutdown_sysctl() do { } while (0) 6768 6769 static void ftrace_update_trampoline(struct ftrace_ops *ops) 6770 { 6771 } 6772 6773 #endif /* CONFIG_DYNAMIC_FTRACE */ 6774 6775 __init void ftrace_init_global_array_ops(struct trace_array *tr) 6776 { 6777 tr->ops = &global_ops; 6778 tr->ops->private = tr; 6779 ftrace_init_trace_array(tr); 6780 } 6781 6782 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func) 6783 { 6784 /* If we filter on pids, update to use the pid function */ 6785 if (tr->flags & TRACE_ARRAY_FL_GLOBAL) { 6786 if (WARN_ON(tr->ops->func != ftrace_stub)) 6787 printk("ftrace ops had %pS for function\n", 6788 tr->ops->func); 6789 } 6790 tr->ops->func = func; 6791 tr->ops->private = tr; 6792 } 6793 6794 void ftrace_reset_array_ops(struct trace_array *tr) 6795 { 6796 tr->ops->func = ftrace_stub; 6797 } 6798 6799 static nokprobe_inline void 6800 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 6801 struct ftrace_ops *ignored, struct pt_regs *regs) 6802 { 6803 struct ftrace_ops *op; 6804 int bit; 6805 6806 bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX); 6807 if (bit < 0) 6808 return; 6809 6810 /* 6811 * Some of the ops may be dynamically allocated, 6812 * they must be freed after a synchronize_rcu(). 6813 */ 6814 preempt_disable_notrace(); 6815 6816 do_for_each_ftrace_op(op, ftrace_ops_list) { 6817 /* Stub functions don't need to be called nor tested */ 6818 if (op->flags & FTRACE_OPS_FL_STUB) 6819 continue; 6820 /* 6821 * Check the following for each ops before calling their func: 6822 * if RCU flag is set, then rcu_is_watching() must be true 6823 * if PER_CPU is set, then ftrace_function_local_disable() 6824 * must be false 6825 * Otherwise test if the ip matches the ops filter 6826 * 6827 * If any of the above fails then the op->func() is not executed. 6828 */ 6829 if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) && 6830 ftrace_ops_test(op, ip, regs)) { 6831 if (FTRACE_WARN_ON(!op->func)) { 6832 pr_warn("op=%p %pS\n", op, op); 6833 goto out; 6834 } 6835 op->func(ip, parent_ip, op, regs); 6836 } 6837 } while_for_each_ftrace_op(op); 6838 out: 6839 preempt_enable_notrace(); 6840 trace_clear_recursion(bit); 6841 } 6842 6843 /* 6844 * Some archs only support passing ip and parent_ip. Even though 6845 * the list function ignores the op parameter, we do not want any 6846 * C side effects, where a function is called without the caller 6847 * sending a third parameter. 6848 * Archs are to support both the regs and ftrace_ops at the same time. 6849 * If they support ftrace_ops, it is assumed they support regs. 6850 * If call backs want to use regs, they must either check for regs 6851 * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS. 6852 * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved. 6853 * An architecture can pass partial regs with ftrace_ops and still 6854 * set the ARCH_SUPPORTS_FTRACE_OPS. 6855 */ 6856 #if ARCH_SUPPORTS_FTRACE_OPS 6857 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 6858 struct ftrace_ops *op, struct pt_regs *regs) 6859 { 6860 __ftrace_ops_list_func(ip, parent_ip, NULL, regs); 6861 } 6862 NOKPROBE_SYMBOL(ftrace_ops_list_func); 6863 #else 6864 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip) 6865 { 6866 __ftrace_ops_list_func(ip, parent_ip, NULL, NULL); 6867 } 6868 NOKPROBE_SYMBOL(ftrace_ops_no_ops); 6869 #endif 6870 6871 /* 6872 * If there's only one function registered but it does not support 6873 * recursion, needs RCU protection and/or requires per cpu handling, then 6874 * this function will be called by the mcount trampoline. 6875 */ 6876 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip, 6877 struct ftrace_ops *op, struct pt_regs *regs) 6878 { 6879 int bit; 6880 6881 if ((op->flags & FTRACE_OPS_FL_RCU) && !rcu_is_watching()) 6882 return; 6883 6884 bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX); 6885 if (bit < 0) 6886 return; 6887 6888 preempt_disable_notrace(); 6889 6890 op->func(ip, parent_ip, op, regs); 6891 6892 preempt_enable_notrace(); 6893 trace_clear_recursion(bit); 6894 } 6895 NOKPROBE_SYMBOL(ftrace_ops_assist_func); 6896 6897 /** 6898 * ftrace_ops_get_func - get the function a trampoline should call 6899 * @ops: the ops to get the function for 6900 * 6901 * Normally the mcount trampoline will call the ops->func, but there 6902 * are times that it should not. For example, if the ops does not 6903 * have its own recursion protection, then it should call the 6904 * ftrace_ops_assist_func() instead. 6905 * 6906 * Returns the function that the trampoline should call for @ops. 6907 */ 6908 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops) 6909 { 6910 /* 6911 * If the function does not handle recursion, needs to be RCU safe, 6912 * or does per cpu logic, then we need to call the assist handler. 6913 */ 6914 if (!(ops->flags & FTRACE_OPS_FL_RECURSION_SAFE) || 6915 ops->flags & FTRACE_OPS_FL_RCU) 6916 return ftrace_ops_assist_func; 6917 6918 return ops->func; 6919 } 6920 6921 static void 6922 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt, 6923 struct task_struct *prev, struct task_struct *next) 6924 { 6925 struct trace_array *tr = data; 6926 struct trace_pid_list *pid_list; 6927 6928 pid_list = rcu_dereference_sched(tr->function_pids); 6929 6930 this_cpu_write(tr->trace_buffer.data->ftrace_ignore_pid, 6931 trace_ignore_this_task(pid_list, next)); 6932 } 6933 6934 static void 6935 ftrace_pid_follow_sched_process_fork(void *data, 6936 struct task_struct *self, 6937 struct task_struct *task) 6938 { 6939 struct trace_pid_list *pid_list; 6940 struct trace_array *tr = data; 6941 6942 pid_list = rcu_dereference_sched(tr->function_pids); 6943 trace_filter_add_remove_task(pid_list, self, task); 6944 } 6945 6946 static void 6947 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task) 6948 { 6949 struct trace_pid_list *pid_list; 6950 struct trace_array *tr = data; 6951 6952 pid_list = rcu_dereference_sched(tr->function_pids); 6953 trace_filter_add_remove_task(pid_list, NULL, task); 6954 } 6955 6956 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable) 6957 { 6958 if (enable) { 6959 register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 6960 tr); 6961 register_trace_sched_process_exit(ftrace_pid_follow_sched_process_exit, 6962 tr); 6963 } else { 6964 unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 6965 tr); 6966 unregister_trace_sched_process_exit(ftrace_pid_follow_sched_process_exit, 6967 tr); 6968 } 6969 } 6970 6971 static void clear_ftrace_pids(struct trace_array *tr) 6972 { 6973 struct trace_pid_list *pid_list; 6974 int cpu; 6975 6976 pid_list = rcu_dereference_protected(tr->function_pids, 6977 lockdep_is_held(&ftrace_lock)); 6978 if (!pid_list) 6979 return; 6980 6981 unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 6982 6983 for_each_possible_cpu(cpu) 6984 per_cpu_ptr(tr->trace_buffer.data, cpu)->ftrace_ignore_pid = false; 6985 6986 rcu_assign_pointer(tr->function_pids, NULL); 6987 6988 /* Wait till all users are no longer using pid filtering */ 6989 synchronize_rcu(); 6990 6991 trace_free_pid_list(pid_list); 6992 } 6993 6994 void ftrace_clear_pids(struct trace_array *tr) 6995 { 6996 mutex_lock(&ftrace_lock); 6997 6998 clear_ftrace_pids(tr); 6999 7000 mutex_unlock(&ftrace_lock); 7001 } 7002 7003 static void ftrace_pid_reset(struct trace_array *tr) 7004 { 7005 mutex_lock(&ftrace_lock); 7006 clear_ftrace_pids(tr); 7007 7008 ftrace_update_pid_func(); 7009 ftrace_startup_all(0); 7010 7011 mutex_unlock(&ftrace_lock); 7012 } 7013 7014 /* Greater than any max PID */ 7015 #define FTRACE_NO_PIDS (void *)(PID_MAX_LIMIT + 1) 7016 7017 static void *fpid_start(struct seq_file *m, loff_t *pos) 7018 __acquires(RCU) 7019 { 7020 struct trace_pid_list *pid_list; 7021 struct trace_array *tr = m->private; 7022 7023 mutex_lock(&ftrace_lock); 7024 rcu_read_lock_sched(); 7025 7026 pid_list = rcu_dereference_sched(tr->function_pids); 7027 7028 if (!pid_list) 7029 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7030 7031 return trace_pid_start(pid_list, pos); 7032 } 7033 7034 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos) 7035 { 7036 struct trace_array *tr = m->private; 7037 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids); 7038 7039 if (v == FTRACE_NO_PIDS) 7040 return NULL; 7041 7042 return trace_pid_next(pid_list, v, pos); 7043 } 7044 7045 static void fpid_stop(struct seq_file *m, void *p) 7046 __releases(RCU) 7047 { 7048 rcu_read_unlock_sched(); 7049 mutex_unlock(&ftrace_lock); 7050 } 7051 7052 static int fpid_show(struct seq_file *m, void *v) 7053 { 7054 if (v == FTRACE_NO_PIDS) { 7055 seq_puts(m, "no pid\n"); 7056 return 0; 7057 } 7058 7059 return trace_pid_show(m, v); 7060 } 7061 7062 static const struct seq_operations ftrace_pid_sops = { 7063 .start = fpid_start, 7064 .next = fpid_next, 7065 .stop = fpid_stop, 7066 .show = fpid_show, 7067 }; 7068 7069 static int 7070 ftrace_pid_open(struct inode *inode, struct file *file) 7071 { 7072 struct trace_array *tr = inode->i_private; 7073 struct seq_file *m; 7074 int ret = 0; 7075 7076 ret = tracing_check_open_get_tr(tr); 7077 if (ret) 7078 return ret; 7079 7080 if ((file->f_mode & FMODE_WRITE) && 7081 (file->f_flags & O_TRUNC)) 7082 ftrace_pid_reset(tr); 7083 7084 ret = seq_open(file, &ftrace_pid_sops); 7085 if (ret < 0) { 7086 trace_array_put(tr); 7087 } else { 7088 m = file->private_data; 7089 /* copy tr over to seq ops */ 7090 m->private = tr; 7091 } 7092 7093 return ret; 7094 } 7095 7096 static void ignore_task_cpu(void *data) 7097 { 7098 struct trace_array *tr = data; 7099 struct trace_pid_list *pid_list; 7100 7101 /* 7102 * This function is called by on_each_cpu() while the 7103 * event_mutex is held. 7104 */ 7105 pid_list = rcu_dereference_protected(tr->function_pids, 7106 mutex_is_locked(&ftrace_lock)); 7107 7108 this_cpu_write(tr->trace_buffer.data->ftrace_ignore_pid, 7109 trace_ignore_this_task(pid_list, current)); 7110 } 7111 7112 static ssize_t 7113 ftrace_pid_write(struct file *filp, const char __user *ubuf, 7114 size_t cnt, loff_t *ppos) 7115 { 7116 struct seq_file *m = filp->private_data; 7117 struct trace_array *tr = m->private; 7118 struct trace_pid_list *filtered_pids = NULL; 7119 struct trace_pid_list *pid_list; 7120 ssize_t ret; 7121 7122 if (!cnt) 7123 return 0; 7124 7125 mutex_lock(&ftrace_lock); 7126 7127 filtered_pids = rcu_dereference_protected(tr->function_pids, 7128 lockdep_is_held(&ftrace_lock)); 7129 7130 ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt); 7131 if (ret < 0) 7132 goto out; 7133 7134 rcu_assign_pointer(tr->function_pids, pid_list); 7135 7136 if (filtered_pids) { 7137 synchronize_rcu(); 7138 trace_free_pid_list(filtered_pids); 7139 } else if (pid_list) { 7140 /* Register a probe to set whether to ignore the tracing of a task */ 7141 register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7142 } 7143 7144 /* 7145 * Ignoring of pids is done at task switch. But we have to 7146 * check for those tasks that are currently running. 7147 * Always do this in case a pid was appended or removed. 7148 */ 7149 on_each_cpu(ignore_task_cpu, tr, 1); 7150 7151 ftrace_update_pid_func(); 7152 ftrace_startup_all(0); 7153 out: 7154 mutex_unlock(&ftrace_lock); 7155 7156 if (ret > 0) 7157 *ppos += ret; 7158 7159 return ret; 7160 } 7161 7162 static int 7163 ftrace_pid_release(struct inode *inode, struct file *file) 7164 { 7165 struct trace_array *tr = inode->i_private; 7166 7167 trace_array_put(tr); 7168 7169 return seq_release(inode, file); 7170 } 7171 7172 static const struct file_operations ftrace_pid_fops = { 7173 .open = ftrace_pid_open, 7174 .write = ftrace_pid_write, 7175 .read = seq_read, 7176 .llseek = tracing_lseek, 7177 .release = ftrace_pid_release, 7178 }; 7179 7180 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer) 7181 { 7182 trace_create_file("set_ftrace_pid", 0644, d_tracer, 7183 tr, &ftrace_pid_fops); 7184 } 7185 7186 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr, 7187 struct dentry *d_tracer) 7188 { 7189 /* Only the top level directory has the dyn_tracefs and profile */ 7190 WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL)); 7191 7192 ftrace_init_dyn_tracefs(d_tracer); 7193 ftrace_profile_tracefs(d_tracer); 7194 } 7195 7196 /** 7197 * ftrace_kill - kill ftrace 7198 * 7199 * This function should be used by panic code. It stops ftrace 7200 * but in a not so nice way. If you need to simply kill ftrace 7201 * from a non-atomic section, use ftrace_kill. 7202 */ 7203 void ftrace_kill(void) 7204 { 7205 ftrace_disabled = 1; 7206 ftrace_enabled = 0; 7207 ftrace_trace_function = ftrace_stub; 7208 } 7209 7210 /** 7211 * Test if ftrace is dead or not. 7212 */ 7213 int ftrace_is_dead(void) 7214 { 7215 return ftrace_disabled; 7216 } 7217 7218 /** 7219 * register_ftrace_function - register a function for profiling 7220 * @ops - ops structure that holds the function for profiling. 7221 * 7222 * Register a function to be called by all functions in the 7223 * kernel. 7224 * 7225 * Note: @ops->func and all the functions it calls must be labeled 7226 * with "notrace", otherwise it will go into a 7227 * recursive loop. 7228 */ 7229 int register_ftrace_function(struct ftrace_ops *ops) 7230 { 7231 int ret = -1; 7232 7233 ftrace_ops_init(ops); 7234 7235 mutex_lock(&ftrace_lock); 7236 7237 ret = ftrace_startup(ops, 0); 7238 7239 mutex_unlock(&ftrace_lock); 7240 7241 return ret; 7242 } 7243 EXPORT_SYMBOL_GPL(register_ftrace_function); 7244 7245 /** 7246 * unregister_ftrace_function - unregister a function for profiling. 7247 * @ops - ops structure that holds the function to unregister 7248 * 7249 * Unregister a function that was added to be called by ftrace profiling. 7250 */ 7251 int unregister_ftrace_function(struct ftrace_ops *ops) 7252 { 7253 int ret; 7254 7255 mutex_lock(&ftrace_lock); 7256 ret = ftrace_shutdown(ops, 0); 7257 mutex_unlock(&ftrace_lock); 7258 7259 return ret; 7260 } 7261 EXPORT_SYMBOL_GPL(unregister_ftrace_function); 7262 7263 static bool is_permanent_ops_registered(void) 7264 { 7265 struct ftrace_ops *op; 7266 7267 do_for_each_ftrace_op(op, ftrace_ops_list) { 7268 if (op->flags & FTRACE_OPS_FL_PERMANENT) 7269 return true; 7270 } while_for_each_ftrace_op(op); 7271 7272 return false; 7273 } 7274 7275 int 7276 ftrace_enable_sysctl(struct ctl_table *table, int write, 7277 void __user *buffer, size_t *lenp, 7278 loff_t *ppos) 7279 { 7280 int ret = -ENODEV; 7281 7282 mutex_lock(&ftrace_lock); 7283 7284 if (unlikely(ftrace_disabled)) 7285 goto out; 7286 7287 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7288 7289 if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) 7290 goto out; 7291 7292 if (ftrace_enabled) { 7293 7294 /* we are starting ftrace again */ 7295 if (rcu_dereference_protected(ftrace_ops_list, 7296 lockdep_is_held(&ftrace_lock)) != &ftrace_list_end) 7297 update_ftrace_function(); 7298 7299 ftrace_startup_sysctl(); 7300 7301 } else { 7302 if (is_permanent_ops_registered()) { 7303 ftrace_enabled = true; 7304 ret = -EBUSY; 7305 goto out; 7306 } 7307 7308 /* stopping ftrace calls (just send to ftrace_stub) */ 7309 ftrace_trace_function = ftrace_stub; 7310 7311 ftrace_shutdown_sysctl(); 7312 } 7313 7314 last_ftrace_enabled = !!ftrace_enabled; 7315 out: 7316 mutex_unlock(&ftrace_lock); 7317 return ret; 7318 } 7319