xref: /linux/kernel/trace/ftrace.c (revision 7a08cb9b4bb92fb86f5fe8a3aa0ac08a9b3d783b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Infrastructure for profiling code inserted by 'gcc -pg'.
4  *
5  * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
6  * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com>
7  *
8  * Originally ported from the -rt patch by:
9  *   Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com>
10  *
11  * Based on code in the latency_tracer, that is:
12  *
13  *  Copyright (C) 2004-2006 Ingo Molnar
14  *  Copyright (C) 2004 Nadia Yvette Chambers
15  */
16 
17 #include <linux/stop_machine.h>
18 #include <linux/clocksource.h>
19 #include <linux/sched/task.h>
20 #include <linux/kallsyms.h>
21 #include <linux/security.h>
22 #include <linux/seq_file.h>
23 #include <linux/tracefs.h>
24 #include <linux/hardirq.h>
25 #include <linux/kthread.h>
26 #include <linux/uaccess.h>
27 #include <linux/bsearch.h>
28 #include <linux/module.h>
29 #include <linux/ftrace.h>
30 #include <linux/sysctl.h>
31 #include <linux/slab.h>
32 #include <linux/ctype.h>
33 #include <linux/sort.h>
34 #include <linux/list.h>
35 #include <linux/hash.h>
36 #include <linux/rcupdate.h>
37 #include <linux/kprobes.h>
38 
39 #include <trace/events/sched.h>
40 
41 #include <asm/sections.h>
42 #include <asm/setup.h>
43 
44 #include "ftrace_internal.h"
45 #include "trace_output.h"
46 #include "trace_stat.h"
47 
48 /* Flags that do not get reset */
49 #define FTRACE_NOCLEAR_FLAGS	(FTRACE_FL_DISABLED | FTRACE_FL_TOUCHED | \
50 				 FTRACE_FL_MODIFIED)
51 
52 #define FTRACE_INVALID_FUNCTION		"__ftrace_invalid_address__"
53 
54 #define FTRACE_WARN_ON(cond)			\
55 	({					\
56 		int ___r = cond;		\
57 		if (WARN_ON(___r))		\
58 			ftrace_kill();		\
59 		___r;				\
60 	})
61 
62 #define FTRACE_WARN_ON_ONCE(cond)		\
63 	({					\
64 		int ___r = cond;		\
65 		if (WARN_ON_ONCE(___r))		\
66 			ftrace_kill();		\
67 		___r;				\
68 	})
69 
70 /* hash bits for specific function selection */
71 #define FTRACE_HASH_DEFAULT_BITS 10
72 #define FTRACE_HASH_MAX_BITS 12
73 
74 #ifdef CONFIG_DYNAMIC_FTRACE
75 #define INIT_OPS_HASH(opsname)	\
76 	.func_hash		= &opsname.local_hash,			\
77 	.local_hash.regex_lock	= __MUTEX_INITIALIZER(opsname.local_hash.regex_lock), \
78 	.subop_list		= LIST_HEAD_INIT(opsname.subop_list),
79 #else
80 #define INIT_OPS_HASH(opsname)
81 #endif
82 
83 enum {
84 	FTRACE_MODIFY_ENABLE_FL		= (1 << 0),
85 	FTRACE_MODIFY_MAY_SLEEP_FL	= (1 << 1),
86 };
87 
88 struct ftrace_ops ftrace_list_end __read_mostly = {
89 	.func		= ftrace_stub,
90 	.flags		= FTRACE_OPS_FL_STUB,
91 	INIT_OPS_HASH(ftrace_list_end)
92 };
93 
94 /* ftrace_enabled is a method to turn ftrace on or off */
95 int ftrace_enabled __read_mostly;
96 static int __maybe_unused last_ftrace_enabled;
97 
98 /* Current function tracing op */
99 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end;
100 /* What to set function_trace_op to */
101 static struct ftrace_ops *set_function_trace_op;
102 
103 bool ftrace_pids_enabled(struct ftrace_ops *ops)
104 {
105 	struct trace_array *tr;
106 
107 	if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private)
108 		return false;
109 
110 	tr = ops->private;
111 
112 	return tr->function_pids != NULL || tr->function_no_pids != NULL;
113 }
114 
115 static void ftrace_update_trampoline(struct ftrace_ops *ops);
116 
117 /*
118  * ftrace_disabled is set when an anomaly is discovered.
119  * ftrace_disabled is much stronger than ftrace_enabled.
120  */
121 static int ftrace_disabled __read_mostly;
122 
123 DEFINE_MUTEX(ftrace_lock);
124 
125 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = (struct ftrace_ops __rcu *)&ftrace_list_end;
126 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub;
127 struct ftrace_ops global_ops;
128 
129 /* Defined by vmlinux.lds.h see the comment above arch_ftrace_ops_list_func for details */
130 void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
131 			  struct ftrace_ops *op, struct ftrace_regs *fregs);
132 
133 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_CALL_OPS
134 /*
135  * Stub used to invoke the list ops without requiring a separate trampoline.
136  */
137 const struct ftrace_ops ftrace_list_ops = {
138 	.func	= ftrace_ops_list_func,
139 	.flags	= FTRACE_OPS_FL_STUB,
140 };
141 
142 static void ftrace_ops_nop_func(unsigned long ip, unsigned long parent_ip,
143 				struct ftrace_ops *op,
144 				struct ftrace_regs *fregs)
145 {
146 	/* do nothing */
147 }
148 
149 /*
150  * Stub used when a call site is disabled. May be called transiently by threads
151  * which have made it into ftrace_caller but haven't yet recovered the ops at
152  * the point the call site is disabled.
153  */
154 const struct ftrace_ops ftrace_nop_ops = {
155 	.func	= ftrace_ops_nop_func,
156 	.flags  = FTRACE_OPS_FL_STUB,
157 };
158 #endif
159 
160 static inline void ftrace_ops_init(struct ftrace_ops *ops)
161 {
162 #ifdef CONFIG_DYNAMIC_FTRACE
163 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) {
164 		mutex_init(&ops->local_hash.regex_lock);
165 		INIT_LIST_HEAD(&ops->subop_list);
166 		ops->func_hash = &ops->local_hash;
167 		ops->flags |= FTRACE_OPS_FL_INITIALIZED;
168 	}
169 #endif
170 }
171 
172 /* Call this function for when a callback filters on set_ftrace_pid */
173 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip,
174 			    struct ftrace_ops *op, struct ftrace_regs *fregs)
175 {
176 	struct trace_array *tr = op->private;
177 	int pid;
178 
179 	if (tr) {
180 		pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid);
181 		if (pid == FTRACE_PID_IGNORE)
182 			return;
183 		if (pid != FTRACE_PID_TRACE &&
184 		    pid != current->pid)
185 			return;
186 	}
187 
188 	op->saved_func(ip, parent_ip, op, fregs);
189 }
190 
191 static void ftrace_sync_ipi(void *data)
192 {
193 	/* Probably not needed, but do it anyway */
194 	smp_rmb();
195 }
196 
197 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops)
198 {
199 	/*
200 	 * If this is a dynamic or RCU ops, or we force list func,
201 	 * then it needs to call the list anyway.
202 	 */
203 	if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) ||
204 	    FTRACE_FORCE_LIST_FUNC)
205 		return ftrace_ops_list_func;
206 
207 	return ftrace_ops_get_func(ops);
208 }
209 
210 static void update_ftrace_function(void)
211 {
212 	ftrace_func_t func;
213 
214 	/*
215 	 * Prepare the ftrace_ops that the arch callback will use.
216 	 * If there's only one ftrace_ops registered, the ftrace_ops_list
217 	 * will point to the ops we want.
218 	 */
219 	set_function_trace_op = rcu_dereference_protected(ftrace_ops_list,
220 						lockdep_is_held(&ftrace_lock));
221 
222 	/* If there's no ftrace_ops registered, just call the stub function */
223 	if (set_function_trace_op == &ftrace_list_end) {
224 		func = ftrace_stub;
225 
226 	/*
227 	 * If we are at the end of the list and this ops is
228 	 * recursion safe and not dynamic and the arch supports passing ops,
229 	 * then have the mcount trampoline call the function directly.
230 	 */
231 	} else if (rcu_dereference_protected(ftrace_ops_list->next,
232 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
233 		func = ftrace_ops_get_list_func(ftrace_ops_list);
234 
235 	} else {
236 		/* Just use the default ftrace_ops */
237 		set_function_trace_op = &ftrace_list_end;
238 		func = ftrace_ops_list_func;
239 	}
240 
241 	/* If there's no change, then do nothing more here */
242 	if (ftrace_trace_function == func)
243 		return;
244 
245 	/*
246 	 * If we are using the list function, it doesn't care
247 	 * about the function_trace_ops.
248 	 */
249 	if (func == ftrace_ops_list_func) {
250 		ftrace_trace_function = func;
251 		/*
252 		 * Don't even bother setting function_trace_ops,
253 		 * it would be racy to do so anyway.
254 		 */
255 		return;
256 	}
257 
258 #ifndef CONFIG_DYNAMIC_FTRACE
259 	/*
260 	 * For static tracing, we need to be a bit more careful.
261 	 * The function change takes affect immediately. Thus,
262 	 * we need to coordinate the setting of the function_trace_ops
263 	 * with the setting of the ftrace_trace_function.
264 	 *
265 	 * Set the function to the list ops, which will call the
266 	 * function we want, albeit indirectly, but it handles the
267 	 * ftrace_ops and doesn't depend on function_trace_op.
268 	 */
269 	ftrace_trace_function = ftrace_ops_list_func;
270 	/*
271 	 * Make sure all CPUs see this. Yes this is slow, but static
272 	 * tracing is slow and nasty to have enabled.
273 	 */
274 	synchronize_rcu_tasks_rude();
275 	/* Now all cpus are using the list ops. */
276 	function_trace_op = set_function_trace_op;
277 	/* Make sure the function_trace_op is visible on all CPUs */
278 	smp_wmb();
279 	/* Nasty way to force a rmb on all cpus */
280 	smp_call_function(ftrace_sync_ipi, NULL, 1);
281 	/* OK, we are all set to update the ftrace_trace_function now! */
282 #endif /* !CONFIG_DYNAMIC_FTRACE */
283 
284 	ftrace_trace_function = func;
285 }
286 
287 static void add_ftrace_ops(struct ftrace_ops __rcu **list,
288 			   struct ftrace_ops *ops)
289 {
290 	rcu_assign_pointer(ops->next, *list);
291 
292 	/*
293 	 * We are entering ops into the list but another
294 	 * CPU might be walking that list. We need to make sure
295 	 * the ops->next pointer is valid before another CPU sees
296 	 * the ops pointer included into the list.
297 	 */
298 	rcu_assign_pointer(*list, ops);
299 }
300 
301 static int remove_ftrace_ops(struct ftrace_ops __rcu **list,
302 			     struct ftrace_ops *ops)
303 {
304 	struct ftrace_ops **p;
305 
306 	/*
307 	 * If we are removing the last function, then simply point
308 	 * to the ftrace_stub.
309 	 */
310 	if (rcu_dereference_protected(*list,
311 			lockdep_is_held(&ftrace_lock)) == ops &&
312 	    rcu_dereference_protected(ops->next,
313 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
314 		rcu_assign_pointer(*list, &ftrace_list_end);
315 		return 0;
316 	}
317 
318 	for (p = list; *p != &ftrace_list_end; p = &(*p)->next)
319 		if (*p == ops)
320 			break;
321 
322 	if (*p != ops)
323 		return -1;
324 
325 	*p = (*p)->next;
326 	return 0;
327 }
328 
329 static void ftrace_update_trampoline(struct ftrace_ops *ops);
330 
331 int __register_ftrace_function(struct ftrace_ops *ops)
332 {
333 	if (ops->flags & FTRACE_OPS_FL_DELETED)
334 		return -EINVAL;
335 
336 	if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED))
337 		return -EBUSY;
338 
339 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS
340 	/*
341 	 * If the ftrace_ops specifies SAVE_REGS, then it only can be used
342 	 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set.
343 	 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant.
344 	 */
345 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS &&
346 	    !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED))
347 		return -EINVAL;
348 
349 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)
350 		ops->flags |= FTRACE_OPS_FL_SAVE_REGS;
351 #endif
352 	if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT))
353 		return -EBUSY;
354 
355 	if (!is_kernel_core_data((unsigned long)ops))
356 		ops->flags |= FTRACE_OPS_FL_DYNAMIC;
357 
358 	add_ftrace_ops(&ftrace_ops_list, ops);
359 
360 	/* Always save the function, and reset at unregistering */
361 	ops->saved_func = ops->func;
362 
363 	if (ftrace_pids_enabled(ops))
364 		ops->func = ftrace_pid_func;
365 
366 	ftrace_update_trampoline(ops);
367 
368 	if (ftrace_enabled)
369 		update_ftrace_function();
370 
371 	return 0;
372 }
373 
374 int __unregister_ftrace_function(struct ftrace_ops *ops)
375 {
376 	int ret;
377 
378 	if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED)))
379 		return -EBUSY;
380 
381 	ret = remove_ftrace_ops(&ftrace_ops_list, ops);
382 
383 	if (ret < 0)
384 		return ret;
385 
386 	if (ftrace_enabled)
387 		update_ftrace_function();
388 
389 	ops->func = ops->saved_func;
390 
391 	return 0;
392 }
393 
394 static void ftrace_update_pid_func(void)
395 {
396 	struct ftrace_ops *op;
397 
398 	/* Only do something if we are tracing something */
399 	if (ftrace_trace_function == ftrace_stub)
400 		return;
401 
402 	do_for_each_ftrace_op(op, ftrace_ops_list) {
403 		if (op->flags & FTRACE_OPS_FL_PID) {
404 			op->func = ftrace_pids_enabled(op) ?
405 				ftrace_pid_func : op->saved_func;
406 			ftrace_update_trampoline(op);
407 		}
408 	} while_for_each_ftrace_op(op);
409 
410 	fgraph_update_pid_func();
411 
412 	update_ftrace_function();
413 }
414 
415 #ifdef CONFIG_FUNCTION_PROFILER
416 struct ftrace_profile {
417 	struct hlist_node		node;
418 	unsigned long			ip;
419 	unsigned long			counter;
420 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
421 	unsigned long long		time;
422 	unsigned long long		time_squared;
423 #endif
424 };
425 
426 struct ftrace_profile_page {
427 	struct ftrace_profile_page	*next;
428 	unsigned long			index;
429 	struct ftrace_profile		records[];
430 };
431 
432 struct ftrace_profile_stat {
433 	atomic_t			disabled;
434 	struct hlist_head		*hash;
435 	struct ftrace_profile_page	*pages;
436 	struct ftrace_profile_page	*start;
437 	struct tracer_stat		stat;
438 };
439 
440 #define PROFILE_RECORDS_SIZE						\
441 	(PAGE_SIZE - offsetof(struct ftrace_profile_page, records))
442 
443 #define PROFILES_PER_PAGE					\
444 	(PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile))
445 
446 static int ftrace_profile_enabled __read_mostly;
447 
448 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */
449 static DEFINE_MUTEX(ftrace_profile_lock);
450 
451 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats);
452 
453 #define FTRACE_PROFILE_HASH_BITS 10
454 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS)
455 
456 static void *
457 function_stat_next(void *v, int idx)
458 {
459 	struct ftrace_profile *rec = v;
460 	struct ftrace_profile_page *pg;
461 
462 	pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK);
463 
464  again:
465 	if (idx != 0)
466 		rec++;
467 
468 	if ((void *)rec >= (void *)&pg->records[pg->index]) {
469 		pg = pg->next;
470 		if (!pg)
471 			return NULL;
472 		rec = &pg->records[0];
473 		if (!rec->counter)
474 			goto again;
475 	}
476 
477 	return rec;
478 }
479 
480 static void *function_stat_start(struct tracer_stat *trace)
481 {
482 	struct ftrace_profile_stat *stat =
483 		container_of(trace, struct ftrace_profile_stat, stat);
484 
485 	if (!stat || !stat->start)
486 		return NULL;
487 
488 	return function_stat_next(&stat->start->records[0], 0);
489 }
490 
491 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
492 /* function graph compares on total time */
493 static int function_stat_cmp(const void *p1, const void *p2)
494 {
495 	const struct ftrace_profile *a = p1;
496 	const struct ftrace_profile *b = p2;
497 
498 	if (a->time < b->time)
499 		return -1;
500 	if (a->time > b->time)
501 		return 1;
502 	else
503 		return 0;
504 }
505 #else
506 /* not function graph compares against hits */
507 static int function_stat_cmp(const void *p1, const void *p2)
508 {
509 	const struct ftrace_profile *a = p1;
510 	const struct ftrace_profile *b = p2;
511 
512 	if (a->counter < b->counter)
513 		return -1;
514 	if (a->counter > b->counter)
515 		return 1;
516 	else
517 		return 0;
518 }
519 #endif
520 
521 static int function_stat_headers(struct seq_file *m)
522 {
523 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
524 	seq_puts(m, "  Function                               "
525 		 "Hit    Time            Avg             s^2\n"
526 		    "  --------                               "
527 		 "---    ----            ---             ---\n");
528 #else
529 	seq_puts(m, "  Function                               Hit\n"
530 		    "  --------                               ---\n");
531 #endif
532 	return 0;
533 }
534 
535 static int function_stat_show(struct seq_file *m, void *v)
536 {
537 	struct ftrace_profile *rec = v;
538 	char str[KSYM_SYMBOL_LEN];
539 	int ret = 0;
540 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
541 	static struct trace_seq s;
542 	unsigned long long avg;
543 	unsigned long long stddev;
544 #endif
545 	mutex_lock(&ftrace_profile_lock);
546 
547 	/* we raced with function_profile_reset() */
548 	if (unlikely(rec->counter == 0)) {
549 		ret = -EBUSY;
550 		goto out;
551 	}
552 
553 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
554 	avg = div64_ul(rec->time, rec->counter);
555 	if (tracing_thresh && (avg < tracing_thresh))
556 		goto out;
557 #endif
558 
559 	kallsyms_lookup(rec->ip, NULL, NULL, NULL, str);
560 	seq_printf(m, "  %-30.30s  %10lu", str, rec->counter);
561 
562 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
563 	seq_puts(m, "    ");
564 
565 	/* Sample standard deviation (s^2) */
566 	if (rec->counter <= 1)
567 		stddev = 0;
568 	else {
569 		/*
570 		 * Apply Welford's method:
571 		 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2)
572 		 */
573 		stddev = rec->counter * rec->time_squared -
574 			 rec->time * rec->time;
575 
576 		/*
577 		 * Divide only 1000 for ns^2 -> us^2 conversion.
578 		 * trace_print_graph_duration will divide 1000 again.
579 		 */
580 		stddev = div64_ul(stddev,
581 				  rec->counter * (rec->counter - 1) * 1000);
582 	}
583 
584 	trace_seq_init(&s);
585 	trace_print_graph_duration(rec->time, &s);
586 	trace_seq_puts(&s, "    ");
587 	trace_print_graph_duration(avg, &s);
588 	trace_seq_puts(&s, "    ");
589 	trace_print_graph_duration(stddev, &s);
590 	trace_print_seq(m, &s);
591 #endif
592 	seq_putc(m, '\n');
593 out:
594 	mutex_unlock(&ftrace_profile_lock);
595 
596 	return ret;
597 }
598 
599 static void ftrace_profile_reset(struct ftrace_profile_stat *stat)
600 {
601 	struct ftrace_profile_page *pg;
602 
603 	pg = stat->pages = stat->start;
604 
605 	while (pg) {
606 		memset(pg->records, 0, PROFILE_RECORDS_SIZE);
607 		pg->index = 0;
608 		pg = pg->next;
609 	}
610 
611 	memset(stat->hash, 0,
612 	       FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head));
613 }
614 
615 static int ftrace_profile_pages_init(struct ftrace_profile_stat *stat)
616 {
617 	struct ftrace_profile_page *pg;
618 	int functions;
619 	int pages;
620 	int i;
621 
622 	/* If we already allocated, do nothing */
623 	if (stat->pages)
624 		return 0;
625 
626 	stat->pages = (void *)get_zeroed_page(GFP_KERNEL);
627 	if (!stat->pages)
628 		return -ENOMEM;
629 
630 #ifdef CONFIG_DYNAMIC_FTRACE
631 	functions = ftrace_update_tot_cnt;
632 #else
633 	/*
634 	 * We do not know the number of functions that exist because
635 	 * dynamic tracing is what counts them. With past experience
636 	 * we have around 20K functions. That should be more than enough.
637 	 * It is highly unlikely we will execute every function in
638 	 * the kernel.
639 	 */
640 	functions = 20000;
641 #endif
642 
643 	pg = stat->start = stat->pages;
644 
645 	pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE);
646 
647 	for (i = 1; i < pages; i++) {
648 		pg->next = (void *)get_zeroed_page(GFP_KERNEL);
649 		if (!pg->next)
650 			goto out_free;
651 		pg = pg->next;
652 	}
653 
654 	return 0;
655 
656  out_free:
657 	pg = stat->start;
658 	while (pg) {
659 		unsigned long tmp = (unsigned long)pg;
660 
661 		pg = pg->next;
662 		free_page(tmp);
663 	}
664 
665 	stat->pages = NULL;
666 	stat->start = NULL;
667 
668 	return -ENOMEM;
669 }
670 
671 static int ftrace_profile_init_cpu(int cpu)
672 {
673 	struct ftrace_profile_stat *stat;
674 	int size;
675 
676 	stat = &per_cpu(ftrace_profile_stats, cpu);
677 
678 	if (stat->hash) {
679 		/* If the profile is already created, simply reset it */
680 		ftrace_profile_reset(stat);
681 		return 0;
682 	}
683 
684 	/*
685 	 * We are profiling all functions, but usually only a few thousand
686 	 * functions are hit. We'll make a hash of 1024 items.
687 	 */
688 	size = FTRACE_PROFILE_HASH_SIZE;
689 
690 	stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL);
691 
692 	if (!stat->hash)
693 		return -ENOMEM;
694 
695 	/* Preallocate the function profiling pages */
696 	if (ftrace_profile_pages_init(stat) < 0) {
697 		kfree(stat->hash);
698 		stat->hash = NULL;
699 		return -ENOMEM;
700 	}
701 
702 	return 0;
703 }
704 
705 static int ftrace_profile_init(void)
706 {
707 	int cpu;
708 	int ret = 0;
709 
710 	for_each_possible_cpu(cpu) {
711 		ret = ftrace_profile_init_cpu(cpu);
712 		if (ret)
713 			break;
714 	}
715 
716 	return ret;
717 }
718 
719 /* interrupts must be disabled */
720 static struct ftrace_profile *
721 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip)
722 {
723 	struct ftrace_profile *rec;
724 	struct hlist_head *hhd;
725 	unsigned long key;
726 
727 	key = hash_long(ip, FTRACE_PROFILE_HASH_BITS);
728 	hhd = &stat->hash[key];
729 
730 	if (hlist_empty(hhd))
731 		return NULL;
732 
733 	hlist_for_each_entry_rcu_notrace(rec, hhd, node) {
734 		if (rec->ip == ip)
735 			return rec;
736 	}
737 
738 	return NULL;
739 }
740 
741 static void ftrace_add_profile(struct ftrace_profile_stat *stat,
742 			       struct ftrace_profile *rec)
743 {
744 	unsigned long key;
745 
746 	key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS);
747 	hlist_add_head_rcu(&rec->node, &stat->hash[key]);
748 }
749 
750 /*
751  * The memory is already allocated, this simply finds a new record to use.
752  */
753 static struct ftrace_profile *
754 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip)
755 {
756 	struct ftrace_profile *rec = NULL;
757 
758 	/* prevent recursion (from NMIs) */
759 	if (atomic_inc_return(&stat->disabled) != 1)
760 		goto out;
761 
762 	/*
763 	 * Try to find the function again since an NMI
764 	 * could have added it
765 	 */
766 	rec = ftrace_find_profiled_func(stat, ip);
767 	if (rec)
768 		goto out;
769 
770 	if (stat->pages->index == PROFILES_PER_PAGE) {
771 		if (!stat->pages->next)
772 			goto out;
773 		stat->pages = stat->pages->next;
774 	}
775 
776 	rec = &stat->pages->records[stat->pages->index++];
777 	rec->ip = ip;
778 	ftrace_add_profile(stat, rec);
779 
780  out:
781 	atomic_dec(&stat->disabled);
782 
783 	return rec;
784 }
785 
786 static void
787 function_profile_call(unsigned long ip, unsigned long parent_ip,
788 		      struct ftrace_ops *ops, struct ftrace_regs *fregs)
789 {
790 	struct ftrace_profile_stat *stat;
791 	struct ftrace_profile *rec;
792 	unsigned long flags;
793 
794 	if (!ftrace_profile_enabled)
795 		return;
796 
797 	local_irq_save(flags);
798 
799 	stat = this_cpu_ptr(&ftrace_profile_stats);
800 	if (!stat->hash || !ftrace_profile_enabled)
801 		goto out;
802 
803 	rec = ftrace_find_profiled_func(stat, ip);
804 	if (!rec) {
805 		rec = ftrace_profile_alloc(stat, ip);
806 		if (!rec)
807 			goto out;
808 	}
809 
810 	rec->counter++;
811  out:
812 	local_irq_restore(flags);
813 }
814 
815 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
816 static bool fgraph_graph_time = true;
817 
818 void ftrace_graph_graph_time_control(bool enable)
819 {
820 	fgraph_graph_time = enable;
821 }
822 
823 static int profile_graph_entry(struct ftrace_graph_ent *trace,
824 			       struct fgraph_ops *gops)
825 {
826 	struct ftrace_ret_stack *ret_stack;
827 
828 	function_profile_call(trace->func, 0, NULL, NULL);
829 
830 	/* If function graph is shutting down, ret_stack can be NULL */
831 	if (!current->ret_stack)
832 		return 0;
833 
834 	ret_stack = ftrace_graph_get_ret_stack(current, 0);
835 	if (ret_stack)
836 		ret_stack->subtime = 0;
837 
838 	return 1;
839 }
840 
841 static void profile_graph_return(struct ftrace_graph_ret *trace,
842 				 struct fgraph_ops *gops)
843 {
844 	struct ftrace_ret_stack *ret_stack;
845 	struct ftrace_profile_stat *stat;
846 	unsigned long long calltime;
847 	struct ftrace_profile *rec;
848 	unsigned long flags;
849 
850 	local_irq_save(flags);
851 	stat = this_cpu_ptr(&ftrace_profile_stats);
852 	if (!stat->hash || !ftrace_profile_enabled)
853 		goto out;
854 
855 	/* If the calltime was zero'd ignore it */
856 	if (!trace->calltime)
857 		goto out;
858 
859 	calltime = trace->rettime - trace->calltime;
860 
861 	if (!fgraph_graph_time) {
862 
863 		/* Append this call time to the parent time to subtract */
864 		ret_stack = ftrace_graph_get_ret_stack(current, 1);
865 		if (ret_stack)
866 			ret_stack->subtime += calltime;
867 
868 		ret_stack = ftrace_graph_get_ret_stack(current, 0);
869 		if (ret_stack && ret_stack->subtime < calltime)
870 			calltime -= ret_stack->subtime;
871 		else
872 			calltime = 0;
873 	}
874 
875 	rec = ftrace_find_profiled_func(stat, trace->func);
876 	if (rec) {
877 		rec->time += calltime;
878 		rec->time_squared += calltime * calltime;
879 	}
880 
881  out:
882 	local_irq_restore(flags);
883 }
884 
885 static struct fgraph_ops fprofiler_ops = {
886 	.entryfunc = &profile_graph_entry,
887 	.retfunc = &profile_graph_return,
888 };
889 
890 static int register_ftrace_profiler(void)
891 {
892 	return register_ftrace_graph(&fprofiler_ops);
893 }
894 
895 static void unregister_ftrace_profiler(void)
896 {
897 	unregister_ftrace_graph(&fprofiler_ops);
898 }
899 #else
900 static struct ftrace_ops ftrace_profile_ops __read_mostly = {
901 	.func		= function_profile_call,
902 	.flags		= FTRACE_OPS_FL_INITIALIZED,
903 	INIT_OPS_HASH(ftrace_profile_ops)
904 };
905 
906 static int register_ftrace_profiler(void)
907 {
908 	return register_ftrace_function(&ftrace_profile_ops);
909 }
910 
911 static void unregister_ftrace_profiler(void)
912 {
913 	unregister_ftrace_function(&ftrace_profile_ops);
914 }
915 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
916 
917 static ssize_t
918 ftrace_profile_write(struct file *filp, const char __user *ubuf,
919 		     size_t cnt, loff_t *ppos)
920 {
921 	unsigned long val;
922 	int ret;
923 
924 	ret = kstrtoul_from_user(ubuf, cnt, 10, &val);
925 	if (ret)
926 		return ret;
927 
928 	val = !!val;
929 
930 	mutex_lock(&ftrace_profile_lock);
931 	if (ftrace_profile_enabled ^ val) {
932 		if (val) {
933 			ret = ftrace_profile_init();
934 			if (ret < 0) {
935 				cnt = ret;
936 				goto out;
937 			}
938 
939 			ret = register_ftrace_profiler();
940 			if (ret < 0) {
941 				cnt = ret;
942 				goto out;
943 			}
944 			ftrace_profile_enabled = 1;
945 		} else {
946 			ftrace_profile_enabled = 0;
947 			/*
948 			 * unregister_ftrace_profiler calls stop_machine
949 			 * so this acts like an synchronize_rcu.
950 			 */
951 			unregister_ftrace_profiler();
952 		}
953 	}
954  out:
955 	mutex_unlock(&ftrace_profile_lock);
956 
957 	*ppos += cnt;
958 
959 	return cnt;
960 }
961 
962 static ssize_t
963 ftrace_profile_read(struct file *filp, char __user *ubuf,
964 		     size_t cnt, loff_t *ppos)
965 {
966 	char buf[64];		/* big enough to hold a number */
967 	int r;
968 
969 	r = sprintf(buf, "%u\n", ftrace_profile_enabled);
970 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
971 }
972 
973 static const struct file_operations ftrace_profile_fops = {
974 	.open		= tracing_open_generic,
975 	.read		= ftrace_profile_read,
976 	.write		= ftrace_profile_write,
977 	.llseek		= default_llseek,
978 };
979 
980 /* used to initialize the real stat files */
981 static struct tracer_stat function_stats __initdata = {
982 	.name		= "functions",
983 	.stat_start	= function_stat_start,
984 	.stat_next	= function_stat_next,
985 	.stat_cmp	= function_stat_cmp,
986 	.stat_headers	= function_stat_headers,
987 	.stat_show	= function_stat_show
988 };
989 
990 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
991 {
992 	struct ftrace_profile_stat *stat;
993 	char *name;
994 	int ret;
995 	int cpu;
996 
997 	for_each_possible_cpu(cpu) {
998 		stat = &per_cpu(ftrace_profile_stats, cpu);
999 
1000 		name = kasprintf(GFP_KERNEL, "function%d", cpu);
1001 		if (!name) {
1002 			/*
1003 			 * The files created are permanent, if something happens
1004 			 * we still do not free memory.
1005 			 */
1006 			WARN(1,
1007 			     "Could not allocate stat file for cpu %d\n",
1008 			     cpu);
1009 			return;
1010 		}
1011 		stat->stat = function_stats;
1012 		stat->stat.name = name;
1013 		ret = register_stat_tracer(&stat->stat);
1014 		if (ret) {
1015 			WARN(1,
1016 			     "Could not register function stat for cpu %d\n",
1017 			     cpu);
1018 			kfree(name);
1019 			return;
1020 		}
1021 	}
1022 
1023 	trace_create_file("function_profile_enabled",
1024 			  TRACE_MODE_WRITE, d_tracer, NULL,
1025 			  &ftrace_profile_fops);
1026 }
1027 
1028 #else /* CONFIG_FUNCTION_PROFILER */
1029 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
1030 {
1031 }
1032 #endif /* CONFIG_FUNCTION_PROFILER */
1033 
1034 #ifdef CONFIG_DYNAMIC_FTRACE
1035 
1036 static struct ftrace_ops *removed_ops;
1037 
1038 /*
1039  * Set when doing a global update, like enabling all recs or disabling them.
1040  * It is not set when just updating a single ftrace_ops.
1041  */
1042 static bool update_all_ops;
1043 
1044 #ifndef CONFIG_FTRACE_MCOUNT_RECORD
1045 # error Dynamic ftrace depends on MCOUNT_RECORD
1046 #endif
1047 
1048 struct ftrace_func_probe {
1049 	struct ftrace_probe_ops	*probe_ops;
1050 	struct ftrace_ops	ops;
1051 	struct trace_array	*tr;
1052 	struct list_head	list;
1053 	void			*data;
1054 	int			ref;
1055 };
1056 
1057 /*
1058  * We make these constant because no one should touch them,
1059  * but they are used as the default "empty hash", to avoid allocating
1060  * it all the time. These are in a read only section such that if
1061  * anyone does try to modify it, it will cause an exception.
1062  */
1063 static const struct hlist_head empty_buckets[1];
1064 static const struct ftrace_hash empty_hash = {
1065 	.buckets = (struct hlist_head *)empty_buckets,
1066 };
1067 #define EMPTY_HASH	((struct ftrace_hash *)&empty_hash)
1068 
1069 struct ftrace_ops global_ops = {
1070 	.func				= ftrace_stub,
1071 	.local_hash.notrace_hash	= EMPTY_HASH,
1072 	.local_hash.filter_hash		= EMPTY_HASH,
1073 	INIT_OPS_HASH(global_ops)
1074 	.flags				= FTRACE_OPS_FL_INITIALIZED |
1075 					  FTRACE_OPS_FL_PID,
1076 };
1077 
1078 /*
1079  * Used by the stack unwinder to know about dynamic ftrace trampolines.
1080  */
1081 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr)
1082 {
1083 	struct ftrace_ops *op = NULL;
1084 
1085 	/*
1086 	 * Some of the ops may be dynamically allocated,
1087 	 * they are freed after a synchronize_rcu().
1088 	 */
1089 	preempt_disable_notrace();
1090 
1091 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1092 		/*
1093 		 * This is to check for dynamically allocated trampolines.
1094 		 * Trampolines that are in kernel text will have
1095 		 * core_kernel_text() return true.
1096 		 */
1097 		if (op->trampoline && op->trampoline_size)
1098 			if (addr >= op->trampoline &&
1099 			    addr < op->trampoline + op->trampoline_size) {
1100 				preempt_enable_notrace();
1101 				return op;
1102 			}
1103 	} while_for_each_ftrace_op(op);
1104 	preempt_enable_notrace();
1105 
1106 	return NULL;
1107 }
1108 
1109 /*
1110  * This is used by __kernel_text_address() to return true if the
1111  * address is on a dynamically allocated trampoline that would
1112  * not return true for either core_kernel_text() or
1113  * is_module_text_address().
1114  */
1115 bool is_ftrace_trampoline(unsigned long addr)
1116 {
1117 	return ftrace_ops_trampoline(addr) != NULL;
1118 }
1119 
1120 struct ftrace_page {
1121 	struct ftrace_page	*next;
1122 	struct dyn_ftrace	*records;
1123 	int			index;
1124 	int			order;
1125 };
1126 
1127 #define ENTRY_SIZE sizeof(struct dyn_ftrace)
1128 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE)
1129 
1130 static struct ftrace_page	*ftrace_pages_start;
1131 static struct ftrace_page	*ftrace_pages;
1132 
1133 static __always_inline unsigned long
1134 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip)
1135 {
1136 	if (hash->size_bits > 0)
1137 		return hash_long(ip, hash->size_bits);
1138 
1139 	return 0;
1140 }
1141 
1142 /* Only use this function if ftrace_hash_empty() has already been tested */
1143 static __always_inline struct ftrace_func_entry *
1144 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1145 {
1146 	unsigned long key;
1147 	struct ftrace_func_entry *entry;
1148 	struct hlist_head *hhd;
1149 
1150 	key = ftrace_hash_key(hash, ip);
1151 	hhd = &hash->buckets[key];
1152 
1153 	hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) {
1154 		if (entry->ip == ip)
1155 			return entry;
1156 	}
1157 	return NULL;
1158 }
1159 
1160 /**
1161  * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash
1162  * @hash: The hash to look at
1163  * @ip: The instruction pointer to test
1164  *
1165  * Search a given @hash to see if a given instruction pointer (@ip)
1166  * exists in it.
1167  *
1168  * Returns: the entry that holds the @ip if found. NULL otherwise.
1169  */
1170 struct ftrace_func_entry *
1171 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1172 {
1173 	if (ftrace_hash_empty(hash))
1174 		return NULL;
1175 
1176 	return __ftrace_lookup_ip(hash, ip);
1177 }
1178 
1179 static void __add_hash_entry(struct ftrace_hash *hash,
1180 			     struct ftrace_func_entry *entry)
1181 {
1182 	struct hlist_head *hhd;
1183 	unsigned long key;
1184 
1185 	key = ftrace_hash_key(hash, entry->ip);
1186 	hhd = &hash->buckets[key];
1187 	hlist_add_head(&entry->hlist, hhd);
1188 	hash->count++;
1189 }
1190 
1191 static struct ftrace_func_entry *
1192 add_hash_entry(struct ftrace_hash *hash, unsigned long ip)
1193 {
1194 	struct ftrace_func_entry *entry;
1195 
1196 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1197 	if (!entry)
1198 		return NULL;
1199 
1200 	entry->ip = ip;
1201 	__add_hash_entry(hash, entry);
1202 
1203 	return entry;
1204 }
1205 
1206 static void
1207 free_hash_entry(struct ftrace_hash *hash,
1208 		  struct ftrace_func_entry *entry)
1209 {
1210 	hlist_del(&entry->hlist);
1211 	kfree(entry);
1212 	hash->count--;
1213 }
1214 
1215 static void
1216 remove_hash_entry(struct ftrace_hash *hash,
1217 		  struct ftrace_func_entry *entry)
1218 {
1219 	hlist_del_rcu(&entry->hlist);
1220 	hash->count--;
1221 }
1222 
1223 static void ftrace_hash_clear(struct ftrace_hash *hash)
1224 {
1225 	struct hlist_head *hhd;
1226 	struct hlist_node *tn;
1227 	struct ftrace_func_entry *entry;
1228 	int size = 1 << hash->size_bits;
1229 	int i;
1230 
1231 	if (!hash->count)
1232 		return;
1233 
1234 	for (i = 0; i < size; i++) {
1235 		hhd = &hash->buckets[i];
1236 		hlist_for_each_entry_safe(entry, tn, hhd, hlist)
1237 			free_hash_entry(hash, entry);
1238 	}
1239 	FTRACE_WARN_ON(hash->count);
1240 }
1241 
1242 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod)
1243 {
1244 	list_del(&ftrace_mod->list);
1245 	kfree(ftrace_mod->module);
1246 	kfree(ftrace_mod->func);
1247 	kfree(ftrace_mod);
1248 }
1249 
1250 static void clear_ftrace_mod_list(struct list_head *head)
1251 {
1252 	struct ftrace_mod_load *p, *n;
1253 
1254 	/* stack tracer isn't supported yet */
1255 	if (!head)
1256 		return;
1257 
1258 	mutex_lock(&ftrace_lock);
1259 	list_for_each_entry_safe(p, n, head, list)
1260 		free_ftrace_mod(p);
1261 	mutex_unlock(&ftrace_lock);
1262 }
1263 
1264 static void free_ftrace_hash(struct ftrace_hash *hash)
1265 {
1266 	if (!hash || hash == EMPTY_HASH)
1267 		return;
1268 	ftrace_hash_clear(hash);
1269 	kfree(hash->buckets);
1270 	kfree(hash);
1271 }
1272 
1273 static void __free_ftrace_hash_rcu(struct rcu_head *rcu)
1274 {
1275 	struct ftrace_hash *hash;
1276 
1277 	hash = container_of(rcu, struct ftrace_hash, rcu);
1278 	free_ftrace_hash(hash);
1279 }
1280 
1281 static void free_ftrace_hash_rcu(struct ftrace_hash *hash)
1282 {
1283 	if (!hash || hash == EMPTY_HASH)
1284 		return;
1285 	call_rcu(&hash->rcu, __free_ftrace_hash_rcu);
1286 }
1287 
1288 /**
1289  * ftrace_free_filter - remove all filters for an ftrace_ops
1290  * @ops: the ops to remove the filters from
1291  */
1292 void ftrace_free_filter(struct ftrace_ops *ops)
1293 {
1294 	ftrace_ops_init(ops);
1295 	free_ftrace_hash(ops->func_hash->filter_hash);
1296 	free_ftrace_hash(ops->func_hash->notrace_hash);
1297 }
1298 EXPORT_SYMBOL_GPL(ftrace_free_filter);
1299 
1300 static struct ftrace_hash *alloc_ftrace_hash(int size_bits)
1301 {
1302 	struct ftrace_hash *hash;
1303 	int size;
1304 
1305 	hash = kzalloc(sizeof(*hash), GFP_KERNEL);
1306 	if (!hash)
1307 		return NULL;
1308 
1309 	size = 1 << size_bits;
1310 	hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL);
1311 
1312 	if (!hash->buckets) {
1313 		kfree(hash);
1314 		return NULL;
1315 	}
1316 
1317 	hash->size_bits = size_bits;
1318 
1319 	return hash;
1320 }
1321 
1322 /* Used to save filters on functions for modules not loaded yet */
1323 static int ftrace_add_mod(struct trace_array *tr,
1324 			  const char *func, const char *module,
1325 			  int enable)
1326 {
1327 	struct ftrace_mod_load *ftrace_mod;
1328 	struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace;
1329 
1330 	ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL);
1331 	if (!ftrace_mod)
1332 		return -ENOMEM;
1333 
1334 	INIT_LIST_HEAD(&ftrace_mod->list);
1335 	ftrace_mod->func = kstrdup(func, GFP_KERNEL);
1336 	ftrace_mod->module = kstrdup(module, GFP_KERNEL);
1337 	ftrace_mod->enable = enable;
1338 
1339 	if (!ftrace_mod->func || !ftrace_mod->module)
1340 		goto out_free;
1341 
1342 	list_add(&ftrace_mod->list, mod_head);
1343 
1344 	return 0;
1345 
1346  out_free:
1347 	free_ftrace_mod(ftrace_mod);
1348 
1349 	return -ENOMEM;
1350 }
1351 
1352 static struct ftrace_hash *
1353 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash)
1354 {
1355 	struct ftrace_func_entry *entry;
1356 	struct ftrace_hash *new_hash;
1357 	int size;
1358 	int i;
1359 
1360 	new_hash = alloc_ftrace_hash(size_bits);
1361 	if (!new_hash)
1362 		return NULL;
1363 
1364 	if (hash)
1365 		new_hash->flags = hash->flags;
1366 
1367 	/* Empty hash? */
1368 	if (ftrace_hash_empty(hash))
1369 		return new_hash;
1370 
1371 	size = 1 << hash->size_bits;
1372 	for (i = 0; i < size; i++) {
1373 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
1374 			if (add_hash_entry(new_hash, entry->ip) == NULL)
1375 				goto free_hash;
1376 		}
1377 	}
1378 
1379 	FTRACE_WARN_ON(new_hash->count != hash->count);
1380 
1381 	return new_hash;
1382 
1383  free_hash:
1384 	free_ftrace_hash(new_hash);
1385 	return NULL;
1386 }
1387 
1388 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops);
1389 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops);
1390 
1391 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1392 				       struct ftrace_hash *new_hash);
1393 
1394 /*
1395  * Allocate a new hash and remove entries from @src and move them to the new hash.
1396  * On success, the @src hash will be empty and should be freed.
1397  */
1398 static struct ftrace_hash *__move_hash(struct ftrace_hash *src, int size)
1399 {
1400 	struct ftrace_func_entry *entry;
1401 	struct ftrace_hash *new_hash;
1402 	struct hlist_head *hhd;
1403 	struct hlist_node *tn;
1404 	int bits = 0;
1405 	int i;
1406 
1407 	/*
1408 	 * Use around half the size (max bit of it), but
1409 	 * a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits).
1410 	 */
1411 	bits = fls(size / 2);
1412 
1413 	/* Don't allocate too much */
1414 	if (bits > FTRACE_HASH_MAX_BITS)
1415 		bits = FTRACE_HASH_MAX_BITS;
1416 
1417 	new_hash = alloc_ftrace_hash(bits);
1418 	if (!new_hash)
1419 		return NULL;
1420 
1421 	new_hash->flags = src->flags;
1422 
1423 	size = 1 << src->size_bits;
1424 	for (i = 0; i < size; i++) {
1425 		hhd = &src->buckets[i];
1426 		hlist_for_each_entry_safe(entry, tn, hhd, hlist) {
1427 			remove_hash_entry(src, entry);
1428 			__add_hash_entry(new_hash, entry);
1429 		}
1430 	}
1431 	return new_hash;
1432 }
1433 
1434 /* Move the @src entries to a newly allocated hash */
1435 static struct ftrace_hash *
1436 __ftrace_hash_move(struct ftrace_hash *src)
1437 {
1438 	int size = src->count;
1439 
1440 	/*
1441 	 * If the new source is empty, just return the empty_hash.
1442 	 */
1443 	if (ftrace_hash_empty(src))
1444 		return EMPTY_HASH;
1445 
1446 	return __move_hash(src, size);
1447 }
1448 
1449 /**
1450  * ftrace_hash_move - move a new hash to a filter and do updates
1451  * @ops: The ops with the hash that @dst points to
1452  * @enable: True if for the filter hash, false for the notrace hash
1453  * @dst: Points to the @ops hash that should be updated
1454  * @src: The hash to update @dst with
1455  *
1456  * This is called when an ftrace_ops hash is being updated and the
1457  * the kernel needs to reflect this. Note, this only updates the kernel
1458  * function callbacks if the @ops is enabled (not to be confused with
1459  * @enable above). If the @ops is enabled, its hash determines what
1460  * callbacks get called. This function gets called when the @ops hash
1461  * is updated and it requires new callbacks.
1462  *
1463  * On success the elements of @src is moved to @dst, and @dst is updated
1464  * properly, as well as the functions determined by the @ops hashes
1465  * are now calling the @ops callback function.
1466  *
1467  * Regardless of return type, @src should be freed with free_ftrace_hash().
1468  */
1469 static int
1470 ftrace_hash_move(struct ftrace_ops *ops, int enable,
1471 		 struct ftrace_hash **dst, struct ftrace_hash *src)
1472 {
1473 	struct ftrace_hash *new_hash;
1474 	int ret;
1475 
1476 	/* Reject setting notrace hash on IPMODIFY ftrace_ops */
1477 	if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable)
1478 		return -EINVAL;
1479 
1480 	new_hash = __ftrace_hash_move(src);
1481 	if (!new_hash)
1482 		return -ENOMEM;
1483 
1484 	/* Make sure this can be applied if it is IPMODIFY ftrace_ops */
1485 	if (enable) {
1486 		/* IPMODIFY should be updated only when filter_hash updating */
1487 		ret = ftrace_hash_ipmodify_update(ops, new_hash);
1488 		if (ret < 0) {
1489 			free_ftrace_hash(new_hash);
1490 			return ret;
1491 		}
1492 	}
1493 
1494 	/*
1495 	 * Remove the current set, update the hash and add
1496 	 * them back.
1497 	 */
1498 	ftrace_hash_rec_disable_modify(ops);
1499 
1500 	rcu_assign_pointer(*dst, new_hash);
1501 
1502 	ftrace_hash_rec_enable_modify(ops);
1503 
1504 	return 0;
1505 }
1506 
1507 static bool hash_contains_ip(unsigned long ip,
1508 			     struct ftrace_ops_hash *hash)
1509 {
1510 	/*
1511 	 * The function record is a match if it exists in the filter
1512 	 * hash and not in the notrace hash. Note, an empty hash is
1513 	 * considered a match for the filter hash, but an empty
1514 	 * notrace hash is considered not in the notrace hash.
1515 	 */
1516 	return (ftrace_hash_empty(hash->filter_hash) ||
1517 		__ftrace_lookup_ip(hash->filter_hash, ip)) &&
1518 		(ftrace_hash_empty(hash->notrace_hash) ||
1519 		 !__ftrace_lookup_ip(hash->notrace_hash, ip));
1520 }
1521 
1522 /*
1523  * Test the hashes for this ops to see if we want to call
1524  * the ops->func or not.
1525  *
1526  * It's a match if the ip is in the ops->filter_hash or
1527  * the filter_hash does not exist or is empty,
1528  *  AND
1529  * the ip is not in the ops->notrace_hash.
1530  *
1531  * This needs to be called with preemption disabled as
1532  * the hashes are freed with call_rcu().
1533  */
1534 int
1535 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs)
1536 {
1537 	struct ftrace_ops_hash hash;
1538 	int ret;
1539 
1540 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
1541 	/*
1542 	 * There's a small race when adding ops that the ftrace handler
1543 	 * that wants regs, may be called without them. We can not
1544 	 * allow that handler to be called if regs is NULL.
1545 	 */
1546 	if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS))
1547 		return 0;
1548 #endif
1549 
1550 	rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash);
1551 	rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash);
1552 
1553 	if (hash_contains_ip(ip, &hash))
1554 		ret = 1;
1555 	else
1556 		ret = 0;
1557 
1558 	return ret;
1559 }
1560 
1561 /*
1562  * This is a double for. Do not use 'break' to break out of the loop,
1563  * you must use a goto.
1564  */
1565 #define do_for_each_ftrace_rec(pg, rec)					\
1566 	for (pg = ftrace_pages_start; pg; pg = pg->next) {		\
1567 		int _____i;						\
1568 		for (_____i = 0; _____i < pg->index; _____i++) {	\
1569 			rec = &pg->records[_____i];
1570 
1571 #define while_for_each_ftrace_rec()		\
1572 		}				\
1573 	}
1574 
1575 
1576 static int ftrace_cmp_recs(const void *a, const void *b)
1577 {
1578 	const struct dyn_ftrace *key = a;
1579 	const struct dyn_ftrace *rec = b;
1580 
1581 	if (key->flags < rec->ip)
1582 		return -1;
1583 	if (key->ip >= rec->ip + MCOUNT_INSN_SIZE)
1584 		return 1;
1585 	return 0;
1586 }
1587 
1588 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end)
1589 {
1590 	struct ftrace_page *pg;
1591 	struct dyn_ftrace *rec = NULL;
1592 	struct dyn_ftrace key;
1593 
1594 	key.ip = start;
1595 	key.flags = end;	/* overload flags, as it is unsigned long */
1596 
1597 	for (pg = ftrace_pages_start; pg; pg = pg->next) {
1598 		if (pg->index == 0 ||
1599 		    end < pg->records[0].ip ||
1600 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
1601 			continue;
1602 		rec = bsearch(&key, pg->records, pg->index,
1603 			      sizeof(struct dyn_ftrace),
1604 			      ftrace_cmp_recs);
1605 		if (rec)
1606 			break;
1607 	}
1608 	return rec;
1609 }
1610 
1611 /**
1612  * ftrace_location_range - return the first address of a traced location
1613  *	if it touches the given ip range
1614  * @start: start of range to search.
1615  * @end: end of range to search (inclusive). @end points to the last byte
1616  *	to check.
1617  *
1618  * Returns: rec->ip if the related ftrace location is a least partly within
1619  * the given address range. That is, the first address of the instruction
1620  * that is either a NOP or call to the function tracer. It checks the ftrace
1621  * internal tables to determine if the address belongs or not.
1622  */
1623 unsigned long ftrace_location_range(unsigned long start, unsigned long end)
1624 {
1625 	struct dyn_ftrace *rec;
1626 	unsigned long ip = 0;
1627 
1628 	rcu_read_lock();
1629 	rec = lookup_rec(start, end);
1630 	if (rec)
1631 		ip = rec->ip;
1632 	rcu_read_unlock();
1633 
1634 	return ip;
1635 }
1636 
1637 /**
1638  * ftrace_location - return the ftrace location
1639  * @ip: the instruction pointer to check
1640  *
1641  * Returns:
1642  * * If @ip matches the ftrace location, return @ip.
1643  * * If @ip matches sym+0, return sym's ftrace location.
1644  * * Otherwise, return 0.
1645  */
1646 unsigned long ftrace_location(unsigned long ip)
1647 {
1648 	unsigned long loc;
1649 	unsigned long offset;
1650 	unsigned long size;
1651 
1652 	loc = ftrace_location_range(ip, ip);
1653 	if (!loc) {
1654 		if (!kallsyms_lookup_size_offset(ip, &size, &offset))
1655 			goto out;
1656 
1657 		/* map sym+0 to __fentry__ */
1658 		if (!offset)
1659 			loc = ftrace_location_range(ip, ip + size - 1);
1660 	}
1661 
1662 out:
1663 	return loc;
1664 }
1665 
1666 /**
1667  * ftrace_text_reserved - return true if range contains an ftrace location
1668  * @start: start of range to search
1669  * @end: end of range to search (inclusive). @end points to the last byte to check.
1670  *
1671  * Returns: 1 if @start and @end contains a ftrace location.
1672  * That is, the instruction that is either a NOP or call to
1673  * the function tracer. It checks the ftrace internal tables to
1674  * determine if the address belongs or not.
1675  */
1676 int ftrace_text_reserved(const void *start, const void *end)
1677 {
1678 	unsigned long ret;
1679 
1680 	ret = ftrace_location_range((unsigned long)start,
1681 				    (unsigned long)end);
1682 
1683 	return (int)!!ret;
1684 }
1685 
1686 /* Test if ops registered to this rec needs regs */
1687 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec)
1688 {
1689 	struct ftrace_ops *ops;
1690 	bool keep_regs = false;
1691 
1692 	for (ops = ftrace_ops_list;
1693 	     ops != &ftrace_list_end; ops = ops->next) {
1694 		/* pass rec in as regs to have non-NULL val */
1695 		if (ftrace_ops_test(ops, rec->ip, rec)) {
1696 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1697 				keep_regs = true;
1698 				break;
1699 			}
1700 		}
1701 	}
1702 
1703 	return  keep_regs;
1704 }
1705 
1706 static struct ftrace_ops *
1707 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec);
1708 static struct ftrace_ops *
1709 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude);
1710 static struct ftrace_ops *
1711 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops);
1712 
1713 static bool skip_record(struct dyn_ftrace *rec)
1714 {
1715 	/*
1716 	 * At boot up, weak functions are set to disable. Function tracing
1717 	 * can be enabled before they are, and they still need to be disabled now.
1718 	 * If the record is disabled, still continue if it is marked as already
1719 	 * enabled (this is needed to keep the accounting working).
1720 	 */
1721 	return rec->flags & FTRACE_FL_DISABLED &&
1722 		!(rec->flags & FTRACE_FL_ENABLED);
1723 }
1724 
1725 /*
1726  * This is the main engine to the ftrace updates to the dyn_ftrace records.
1727  *
1728  * It will iterate through all the available ftrace functions
1729  * (the ones that ftrace can have callbacks to) and set the flags
1730  * in the associated dyn_ftrace records.
1731  *
1732  * @inc: If true, the functions associated to @ops are added to
1733  *       the dyn_ftrace records, otherwise they are removed.
1734  */
1735 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops,
1736 				     bool inc)
1737 {
1738 	struct ftrace_hash *hash;
1739 	struct ftrace_hash *notrace_hash;
1740 	struct ftrace_page *pg;
1741 	struct dyn_ftrace *rec;
1742 	bool update = false;
1743 	int count = 0;
1744 	int all = false;
1745 
1746 	/* Only update if the ops has been registered */
1747 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1748 		return false;
1749 
1750 	/*
1751 	 *   If the count is zero, we update all records.
1752 	 *   Otherwise we just update the items in the hash.
1753 	 */
1754 	hash = ops->func_hash->filter_hash;
1755 	notrace_hash = ops->func_hash->notrace_hash;
1756 	if (ftrace_hash_empty(hash))
1757 		all = true;
1758 
1759 	do_for_each_ftrace_rec(pg, rec) {
1760 		int in_notrace_hash = 0;
1761 		int in_hash = 0;
1762 		int match = 0;
1763 
1764 		if (skip_record(rec))
1765 			continue;
1766 
1767 		if (all) {
1768 			/*
1769 			 * Only the filter_hash affects all records.
1770 			 * Update if the record is not in the notrace hash.
1771 			 */
1772 			if (!notrace_hash || !ftrace_lookup_ip(notrace_hash, rec->ip))
1773 				match = 1;
1774 		} else {
1775 			in_hash = !!ftrace_lookup_ip(hash, rec->ip);
1776 			in_notrace_hash = !!ftrace_lookup_ip(notrace_hash, rec->ip);
1777 
1778 			/*
1779 			 * We want to match all functions that are in the hash but
1780 			 * not in the other hash.
1781 			 */
1782 			if (in_hash && !in_notrace_hash)
1783 				match = 1;
1784 		}
1785 		if (!match)
1786 			continue;
1787 
1788 		if (inc) {
1789 			rec->flags++;
1790 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX))
1791 				return false;
1792 
1793 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1794 				rec->flags |= FTRACE_FL_DIRECT;
1795 
1796 			/*
1797 			 * If there's only a single callback registered to a
1798 			 * function, and the ops has a trampoline registered
1799 			 * for it, then we can call it directly.
1800 			 */
1801 			if (ftrace_rec_count(rec) == 1 && ops->trampoline)
1802 				rec->flags |= FTRACE_FL_TRAMP;
1803 			else
1804 				/*
1805 				 * If we are adding another function callback
1806 				 * to this function, and the previous had a
1807 				 * custom trampoline in use, then we need to go
1808 				 * back to the default trampoline.
1809 				 */
1810 				rec->flags &= ~FTRACE_FL_TRAMP;
1811 
1812 			/*
1813 			 * If any ops wants regs saved for this function
1814 			 * then all ops will get saved regs.
1815 			 */
1816 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
1817 				rec->flags |= FTRACE_FL_REGS;
1818 		} else {
1819 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0))
1820 				return false;
1821 			rec->flags--;
1822 
1823 			/*
1824 			 * Only the internal direct_ops should have the
1825 			 * DIRECT flag set. Thus, if it is removing a
1826 			 * function, then that function should no longer
1827 			 * be direct.
1828 			 */
1829 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1830 				rec->flags &= ~FTRACE_FL_DIRECT;
1831 
1832 			/*
1833 			 * If the rec had REGS enabled and the ops that is
1834 			 * being removed had REGS set, then see if there is
1835 			 * still any ops for this record that wants regs.
1836 			 * If not, we can stop recording them.
1837 			 */
1838 			if (ftrace_rec_count(rec) > 0 &&
1839 			    rec->flags & FTRACE_FL_REGS &&
1840 			    ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1841 				if (!test_rec_ops_needs_regs(rec))
1842 					rec->flags &= ~FTRACE_FL_REGS;
1843 			}
1844 
1845 			/*
1846 			 * The TRAMP needs to be set only if rec count
1847 			 * is decremented to one, and the ops that is
1848 			 * left has a trampoline. As TRAMP can only be
1849 			 * enabled if there is only a single ops attached
1850 			 * to it.
1851 			 */
1852 			if (ftrace_rec_count(rec) == 1 &&
1853 			    ftrace_find_tramp_ops_any_other(rec, ops))
1854 				rec->flags |= FTRACE_FL_TRAMP;
1855 			else
1856 				rec->flags &= ~FTRACE_FL_TRAMP;
1857 
1858 			/*
1859 			 * flags will be cleared in ftrace_check_record()
1860 			 * if rec count is zero.
1861 			 */
1862 		}
1863 
1864 		/*
1865 		 * If the rec has a single associated ops, and ops->func can be
1866 		 * called directly, allow the call site to call via the ops.
1867 		 */
1868 		if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE_WITH_CALL_OPS) &&
1869 		    ftrace_rec_count(rec) == 1 &&
1870 		    ftrace_ops_get_func(ops) == ops->func)
1871 			rec->flags |= FTRACE_FL_CALL_OPS;
1872 		else
1873 			rec->flags &= ~FTRACE_FL_CALL_OPS;
1874 
1875 		count++;
1876 
1877 		/* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */
1878 		update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE;
1879 
1880 		/* Shortcut, if we handled all records, we are done. */
1881 		if (!all && count == hash->count)
1882 			return update;
1883 	} while_for_each_ftrace_rec();
1884 
1885 	return update;
1886 }
1887 
1888 /*
1889  * This is called when an ops is removed from tracing. It will decrement
1890  * the counters of the dyn_ftrace records for all the functions that
1891  * the @ops attached to.
1892  */
1893 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops)
1894 {
1895 	return __ftrace_hash_rec_update(ops, false);
1896 }
1897 
1898 /*
1899  * This is called when an ops is added to tracing. It will increment
1900  * the counters of the dyn_ftrace records for all the functions that
1901  * the @ops attached to.
1902  */
1903 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops)
1904 {
1905 	return __ftrace_hash_rec_update(ops, true);
1906 }
1907 
1908 /*
1909  * This function will update what functions @ops traces when its filter
1910  * changes.
1911  *
1912  * The @inc states if the @ops callbacks are going to be added or removed.
1913  * When one of the @ops hashes are updated to a "new_hash" the dyn_ftrace
1914  * records are update via:
1915  *
1916  * ftrace_hash_rec_disable_modify(ops);
1917  * ops->hash = new_hash
1918  * ftrace_hash_rec_enable_modify(ops);
1919  *
1920  * Where the @ops is removed from all the records it is tracing using
1921  * its old hash. The @ops hash is updated to the new hash, and then
1922  * the @ops is added back to the records so that it is tracing all
1923  * the new functions.
1924  */
1925 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops, bool inc)
1926 {
1927 	struct ftrace_ops *op;
1928 
1929 	__ftrace_hash_rec_update(ops, inc);
1930 
1931 	if (ops->func_hash != &global_ops.local_hash)
1932 		return;
1933 
1934 	/*
1935 	 * If the ops shares the global_ops hash, then we need to update
1936 	 * all ops that are enabled and use this hash.
1937 	 */
1938 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1939 		/* Already done */
1940 		if (op == ops)
1941 			continue;
1942 		if (op->func_hash == &global_ops.local_hash)
1943 			__ftrace_hash_rec_update(op, inc);
1944 	} while_for_each_ftrace_op(op);
1945 }
1946 
1947 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops)
1948 {
1949 	ftrace_hash_rec_update_modify(ops, false);
1950 }
1951 
1952 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops)
1953 {
1954 	ftrace_hash_rec_update_modify(ops, true);
1955 }
1956 
1957 /*
1958  * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK
1959  * or no-needed to update, -EBUSY if it detects a conflict of the flag
1960  * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs.
1961  * Note that old_hash and new_hash has below meanings
1962  *  - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected)
1963  *  - If the hash is EMPTY_HASH, it hits nothing
1964  *  - Anything else hits the recs which match the hash entries.
1965  *
1966  * DIRECT ops does not have IPMODIFY flag, but we still need to check it
1967  * against functions with FTRACE_FL_IPMODIFY. If there is any overlap, call
1968  * ops_func(SHARE_IPMODIFY_SELF) to make sure current ops can share with
1969  * IPMODIFY. If ops_func(SHARE_IPMODIFY_SELF) returns non-zero, propagate
1970  * the return value to the caller and eventually to the owner of the DIRECT
1971  * ops.
1972  */
1973 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops,
1974 					 struct ftrace_hash *old_hash,
1975 					 struct ftrace_hash *new_hash)
1976 {
1977 	struct ftrace_page *pg;
1978 	struct dyn_ftrace *rec, *end = NULL;
1979 	int in_old, in_new;
1980 	bool is_ipmodify, is_direct;
1981 
1982 	/* Only update if the ops has been registered */
1983 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1984 		return 0;
1985 
1986 	is_ipmodify = ops->flags & FTRACE_OPS_FL_IPMODIFY;
1987 	is_direct = ops->flags & FTRACE_OPS_FL_DIRECT;
1988 
1989 	/* neither IPMODIFY nor DIRECT, skip */
1990 	if (!is_ipmodify && !is_direct)
1991 		return 0;
1992 
1993 	if (WARN_ON_ONCE(is_ipmodify && is_direct))
1994 		return 0;
1995 
1996 	/*
1997 	 * Since the IPMODIFY and DIRECT are very address sensitive
1998 	 * actions, we do not allow ftrace_ops to set all functions to new
1999 	 * hash.
2000 	 */
2001 	if (!new_hash || !old_hash)
2002 		return -EINVAL;
2003 
2004 	/* Update rec->flags */
2005 	do_for_each_ftrace_rec(pg, rec) {
2006 
2007 		if (rec->flags & FTRACE_FL_DISABLED)
2008 			continue;
2009 
2010 		/* We need to update only differences of filter_hash */
2011 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
2012 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
2013 		if (in_old == in_new)
2014 			continue;
2015 
2016 		if (in_new) {
2017 			if (rec->flags & FTRACE_FL_IPMODIFY) {
2018 				int ret;
2019 
2020 				/* Cannot have two ipmodify on same rec */
2021 				if (is_ipmodify)
2022 					goto rollback;
2023 
2024 				FTRACE_WARN_ON(rec->flags & FTRACE_FL_DIRECT);
2025 
2026 				/*
2027 				 * Another ops with IPMODIFY is already
2028 				 * attached. We are now attaching a direct
2029 				 * ops. Run SHARE_IPMODIFY_SELF, to check
2030 				 * whether sharing is supported.
2031 				 */
2032 				if (!ops->ops_func)
2033 					return -EBUSY;
2034 				ret = ops->ops_func(ops, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_SELF);
2035 				if (ret)
2036 					return ret;
2037 			} else if (is_ipmodify) {
2038 				rec->flags |= FTRACE_FL_IPMODIFY;
2039 			}
2040 		} else if (is_ipmodify) {
2041 			rec->flags &= ~FTRACE_FL_IPMODIFY;
2042 		}
2043 	} while_for_each_ftrace_rec();
2044 
2045 	return 0;
2046 
2047 rollback:
2048 	end = rec;
2049 
2050 	/* Roll back what we did above */
2051 	do_for_each_ftrace_rec(pg, rec) {
2052 
2053 		if (rec->flags & FTRACE_FL_DISABLED)
2054 			continue;
2055 
2056 		if (rec == end)
2057 			goto err_out;
2058 
2059 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
2060 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
2061 		if (in_old == in_new)
2062 			continue;
2063 
2064 		if (in_new)
2065 			rec->flags &= ~FTRACE_FL_IPMODIFY;
2066 		else
2067 			rec->flags |= FTRACE_FL_IPMODIFY;
2068 	} while_for_each_ftrace_rec();
2069 
2070 err_out:
2071 	return -EBUSY;
2072 }
2073 
2074 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops)
2075 {
2076 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
2077 
2078 	if (ftrace_hash_empty(hash))
2079 		hash = NULL;
2080 
2081 	return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash);
2082 }
2083 
2084 /* Disabling always succeeds */
2085 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops)
2086 {
2087 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
2088 
2089 	if (ftrace_hash_empty(hash))
2090 		hash = NULL;
2091 
2092 	__ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH);
2093 }
2094 
2095 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
2096 				       struct ftrace_hash *new_hash)
2097 {
2098 	struct ftrace_hash *old_hash = ops->func_hash->filter_hash;
2099 
2100 	if (ftrace_hash_empty(old_hash))
2101 		old_hash = NULL;
2102 
2103 	if (ftrace_hash_empty(new_hash))
2104 		new_hash = NULL;
2105 
2106 	return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash);
2107 }
2108 
2109 static void print_ip_ins(const char *fmt, const unsigned char *p)
2110 {
2111 	char ins[MCOUNT_INSN_SIZE];
2112 
2113 	if (copy_from_kernel_nofault(ins, p, MCOUNT_INSN_SIZE)) {
2114 		printk(KERN_CONT "%s[FAULT] %px\n", fmt, p);
2115 		return;
2116 	}
2117 
2118 	printk(KERN_CONT "%s", fmt);
2119 	pr_cont("%*phC", MCOUNT_INSN_SIZE, ins);
2120 }
2121 
2122 enum ftrace_bug_type ftrace_bug_type;
2123 const void *ftrace_expected;
2124 
2125 static void print_bug_type(void)
2126 {
2127 	switch (ftrace_bug_type) {
2128 	case FTRACE_BUG_UNKNOWN:
2129 		break;
2130 	case FTRACE_BUG_INIT:
2131 		pr_info("Initializing ftrace call sites\n");
2132 		break;
2133 	case FTRACE_BUG_NOP:
2134 		pr_info("Setting ftrace call site to NOP\n");
2135 		break;
2136 	case FTRACE_BUG_CALL:
2137 		pr_info("Setting ftrace call site to call ftrace function\n");
2138 		break;
2139 	case FTRACE_BUG_UPDATE:
2140 		pr_info("Updating ftrace call site to call a different ftrace function\n");
2141 		break;
2142 	}
2143 }
2144 
2145 /**
2146  * ftrace_bug - report and shutdown function tracer
2147  * @failed: The failed type (EFAULT, EINVAL, EPERM)
2148  * @rec: The record that failed
2149  *
2150  * The arch code that enables or disables the function tracing
2151  * can call ftrace_bug() when it has detected a problem in
2152  * modifying the code. @failed should be one of either:
2153  * EFAULT - if the problem happens on reading the @ip address
2154  * EINVAL - if what is read at @ip is not what was expected
2155  * EPERM - if the problem happens on writing to the @ip address
2156  */
2157 void ftrace_bug(int failed, struct dyn_ftrace *rec)
2158 {
2159 	unsigned long ip = rec ? rec->ip : 0;
2160 
2161 	pr_info("------------[ ftrace bug ]------------\n");
2162 
2163 	switch (failed) {
2164 	case -EFAULT:
2165 		pr_info("ftrace faulted on modifying ");
2166 		print_ip_sym(KERN_INFO, ip);
2167 		break;
2168 	case -EINVAL:
2169 		pr_info("ftrace failed to modify ");
2170 		print_ip_sym(KERN_INFO, ip);
2171 		print_ip_ins(" actual:   ", (unsigned char *)ip);
2172 		pr_cont("\n");
2173 		if (ftrace_expected) {
2174 			print_ip_ins(" expected: ", ftrace_expected);
2175 			pr_cont("\n");
2176 		}
2177 		break;
2178 	case -EPERM:
2179 		pr_info("ftrace faulted on writing ");
2180 		print_ip_sym(KERN_INFO, ip);
2181 		break;
2182 	default:
2183 		pr_info("ftrace faulted on unknown error ");
2184 		print_ip_sym(KERN_INFO, ip);
2185 	}
2186 	print_bug_type();
2187 	if (rec) {
2188 		struct ftrace_ops *ops = NULL;
2189 
2190 		pr_info("ftrace record flags: %lx\n", rec->flags);
2191 		pr_cont(" (%ld)%s%s", ftrace_rec_count(rec),
2192 			rec->flags & FTRACE_FL_REGS ? " R" : "  ",
2193 			rec->flags & FTRACE_FL_CALL_OPS ? " O" : "  ");
2194 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
2195 			ops = ftrace_find_tramp_ops_any(rec);
2196 			if (ops) {
2197 				do {
2198 					pr_cont("\ttramp: %pS (%pS)",
2199 						(void *)ops->trampoline,
2200 						(void *)ops->func);
2201 					ops = ftrace_find_tramp_ops_next(rec, ops);
2202 				} while (ops);
2203 			} else
2204 				pr_cont("\ttramp: ERROR!");
2205 
2206 		}
2207 		ip = ftrace_get_addr_curr(rec);
2208 		pr_cont("\n expected tramp: %lx\n", ip);
2209 	}
2210 
2211 	FTRACE_WARN_ON_ONCE(1);
2212 }
2213 
2214 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update)
2215 {
2216 	unsigned long flag = 0UL;
2217 
2218 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2219 
2220 	if (skip_record(rec))
2221 		return FTRACE_UPDATE_IGNORE;
2222 
2223 	/*
2224 	 * If we are updating calls:
2225 	 *
2226 	 *   If the record has a ref count, then we need to enable it
2227 	 *   because someone is using it.
2228 	 *
2229 	 *   Otherwise we make sure its disabled.
2230 	 *
2231 	 * If we are disabling calls, then disable all records that
2232 	 * are enabled.
2233 	 */
2234 	if (enable && ftrace_rec_count(rec))
2235 		flag = FTRACE_FL_ENABLED;
2236 
2237 	/*
2238 	 * If enabling and the REGS flag does not match the REGS_EN, or
2239 	 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore
2240 	 * this record. Set flags to fail the compare against ENABLED.
2241 	 * Same for direct calls.
2242 	 */
2243 	if (flag) {
2244 		if (!(rec->flags & FTRACE_FL_REGS) !=
2245 		    !(rec->flags & FTRACE_FL_REGS_EN))
2246 			flag |= FTRACE_FL_REGS;
2247 
2248 		if (!(rec->flags & FTRACE_FL_TRAMP) !=
2249 		    !(rec->flags & FTRACE_FL_TRAMP_EN))
2250 			flag |= FTRACE_FL_TRAMP;
2251 
2252 		/*
2253 		 * Direct calls are special, as count matters.
2254 		 * We must test the record for direct, if the
2255 		 * DIRECT and DIRECT_EN do not match, but only
2256 		 * if the count is 1. That's because, if the
2257 		 * count is something other than one, we do not
2258 		 * want the direct enabled (it will be done via the
2259 		 * direct helper). But if DIRECT_EN is set, and
2260 		 * the count is not one, we need to clear it.
2261 		 *
2262 		 */
2263 		if (ftrace_rec_count(rec) == 1) {
2264 			if (!(rec->flags & FTRACE_FL_DIRECT) !=
2265 			    !(rec->flags & FTRACE_FL_DIRECT_EN))
2266 				flag |= FTRACE_FL_DIRECT;
2267 		} else if (rec->flags & FTRACE_FL_DIRECT_EN) {
2268 			flag |= FTRACE_FL_DIRECT;
2269 		}
2270 
2271 		/*
2272 		 * Ops calls are special, as count matters.
2273 		 * As with direct calls, they must only be enabled when count
2274 		 * is one, otherwise they'll be handled via the list ops.
2275 		 */
2276 		if (ftrace_rec_count(rec) == 1) {
2277 			if (!(rec->flags & FTRACE_FL_CALL_OPS) !=
2278 			    !(rec->flags & FTRACE_FL_CALL_OPS_EN))
2279 				flag |= FTRACE_FL_CALL_OPS;
2280 		} else if (rec->flags & FTRACE_FL_CALL_OPS_EN) {
2281 			flag |= FTRACE_FL_CALL_OPS;
2282 		}
2283 	}
2284 
2285 	/* If the state of this record hasn't changed, then do nothing */
2286 	if ((rec->flags & FTRACE_FL_ENABLED) == flag)
2287 		return FTRACE_UPDATE_IGNORE;
2288 
2289 	if (flag) {
2290 		/* Save off if rec is being enabled (for return value) */
2291 		flag ^= rec->flags & FTRACE_FL_ENABLED;
2292 
2293 		if (update) {
2294 			rec->flags |= FTRACE_FL_ENABLED | FTRACE_FL_TOUCHED;
2295 			if (flag & FTRACE_FL_REGS) {
2296 				if (rec->flags & FTRACE_FL_REGS)
2297 					rec->flags |= FTRACE_FL_REGS_EN;
2298 				else
2299 					rec->flags &= ~FTRACE_FL_REGS_EN;
2300 			}
2301 			if (flag & FTRACE_FL_TRAMP) {
2302 				if (rec->flags & FTRACE_FL_TRAMP)
2303 					rec->flags |= FTRACE_FL_TRAMP_EN;
2304 				else
2305 					rec->flags &= ~FTRACE_FL_TRAMP_EN;
2306 			}
2307 
2308 			/* Keep track of anything that modifies the function */
2309 			if (rec->flags & (FTRACE_FL_DIRECT | FTRACE_FL_IPMODIFY))
2310 				rec->flags |= FTRACE_FL_MODIFIED;
2311 
2312 			if (flag & FTRACE_FL_DIRECT) {
2313 				/*
2314 				 * If there's only one user (direct_ops helper)
2315 				 * then we can call the direct function
2316 				 * directly (no ftrace trampoline).
2317 				 */
2318 				if (ftrace_rec_count(rec) == 1) {
2319 					if (rec->flags & FTRACE_FL_DIRECT)
2320 						rec->flags |= FTRACE_FL_DIRECT_EN;
2321 					else
2322 						rec->flags &= ~FTRACE_FL_DIRECT_EN;
2323 				} else {
2324 					/*
2325 					 * Can only call directly if there's
2326 					 * only one callback to the function.
2327 					 */
2328 					rec->flags &= ~FTRACE_FL_DIRECT_EN;
2329 				}
2330 			}
2331 
2332 			if (flag & FTRACE_FL_CALL_OPS) {
2333 				if (ftrace_rec_count(rec) == 1) {
2334 					if (rec->flags & FTRACE_FL_CALL_OPS)
2335 						rec->flags |= FTRACE_FL_CALL_OPS_EN;
2336 					else
2337 						rec->flags &= ~FTRACE_FL_CALL_OPS_EN;
2338 				} else {
2339 					/*
2340 					 * Can only call directly if there's
2341 					 * only one set of associated ops.
2342 					 */
2343 					rec->flags &= ~FTRACE_FL_CALL_OPS_EN;
2344 				}
2345 			}
2346 		}
2347 
2348 		/*
2349 		 * If this record is being updated from a nop, then
2350 		 *   return UPDATE_MAKE_CALL.
2351 		 * Otherwise,
2352 		 *   return UPDATE_MODIFY_CALL to tell the caller to convert
2353 		 *   from the save regs, to a non-save regs function or
2354 		 *   vice versa, or from a trampoline call.
2355 		 */
2356 		if (flag & FTRACE_FL_ENABLED) {
2357 			ftrace_bug_type = FTRACE_BUG_CALL;
2358 			return FTRACE_UPDATE_MAKE_CALL;
2359 		}
2360 
2361 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2362 		return FTRACE_UPDATE_MODIFY_CALL;
2363 	}
2364 
2365 	if (update) {
2366 		/* If there's no more users, clear all flags */
2367 		if (!ftrace_rec_count(rec))
2368 			rec->flags &= FTRACE_NOCLEAR_FLAGS;
2369 		else
2370 			/*
2371 			 * Just disable the record, but keep the ops TRAMP
2372 			 * and REGS states. The _EN flags must be disabled though.
2373 			 */
2374 			rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN |
2375 					FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN |
2376 					FTRACE_FL_CALL_OPS_EN);
2377 	}
2378 
2379 	ftrace_bug_type = FTRACE_BUG_NOP;
2380 	return FTRACE_UPDATE_MAKE_NOP;
2381 }
2382 
2383 /**
2384  * ftrace_update_record - set a record that now is tracing or not
2385  * @rec: the record to update
2386  * @enable: set to true if the record is tracing, false to force disable
2387  *
2388  * The records that represent all functions that can be traced need
2389  * to be updated when tracing has been enabled.
2390  */
2391 int ftrace_update_record(struct dyn_ftrace *rec, bool enable)
2392 {
2393 	return ftrace_check_record(rec, enable, true);
2394 }
2395 
2396 /**
2397  * ftrace_test_record - check if the record has been enabled or not
2398  * @rec: the record to test
2399  * @enable: set to true to check if enabled, false if it is disabled
2400  *
2401  * The arch code may need to test if a record is already set to
2402  * tracing to determine how to modify the function code that it
2403  * represents.
2404  */
2405 int ftrace_test_record(struct dyn_ftrace *rec, bool enable)
2406 {
2407 	return ftrace_check_record(rec, enable, false);
2408 }
2409 
2410 static struct ftrace_ops *
2411 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec)
2412 {
2413 	struct ftrace_ops *op;
2414 	unsigned long ip = rec->ip;
2415 
2416 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2417 
2418 		if (!op->trampoline)
2419 			continue;
2420 
2421 		if (hash_contains_ip(ip, op->func_hash))
2422 			return op;
2423 	} while_for_each_ftrace_op(op);
2424 
2425 	return NULL;
2426 }
2427 
2428 static struct ftrace_ops *
2429 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude)
2430 {
2431 	struct ftrace_ops *op;
2432 	unsigned long ip = rec->ip;
2433 
2434 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2435 
2436 		if (op == op_exclude || !op->trampoline)
2437 			continue;
2438 
2439 		if (hash_contains_ip(ip, op->func_hash))
2440 			return op;
2441 	} while_for_each_ftrace_op(op);
2442 
2443 	return NULL;
2444 }
2445 
2446 static struct ftrace_ops *
2447 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec,
2448 			   struct ftrace_ops *op)
2449 {
2450 	unsigned long ip = rec->ip;
2451 
2452 	while_for_each_ftrace_op(op) {
2453 
2454 		if (!op->trampoline)
2455 			continue;
2456 
2457 		if (hash_contains_ip(ip, op->func_hash))
2458 			return op;
2459 	}
2460 
2461 	return NULL;
2462 }
2463 
2464 static struct ftrace_ops *
2465 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec)
2466 {
2467 	struct ftrace_ops *op;
2468 	unsigned long ip = rec->ip;
2469 
2470 	/*
2471 	 * Need to check removed ops first.
2472 	 * If they are being removed, and this rec has a tramp,
2473 	 * and this rec is in the ops list, then it would be the
2474 	 * one with the tramp.
2475 	 */
2476 	if (removed_ops) {
2477 		if (hash_contains_ip(ip, &removed_ops->old_hash))
2478 			return removed_ops;
2479 	}
2480 
2481 	/*
2482 	 * Need to find the current trampoline for a rec.
2483 	 * Now, a trampoline is only attached to a rec if there
2484 	 * was a single 'ops' attached to it. But this can be called
2485 	 * when we are adding another op to the rec or removing the
2486 	 * current one. Thus, if the op is being added, we can
2487 	 * ignore it because it hasn't attached itself to the rec
2488 	 * yet.
2489 	 *
2490 	 * If an ops is being modified (hooking to different functions)
2491 	 * then we don't care about the new functions that are being
2492 	 * added, just the old ones (that are probably being removed).
2493 	 *
2494 	 * If we are adding an ops to a function that already is using
2495 	 * a trampoline, it needs to be removed (trampolines are only
2496 	 * for single ops connected), then an ops that is not being
2497 	 * modified also needs to be checked.
2498 	 */
2499 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2500 
2501 		if (!op->trampoline)
2502 			continue;
2503 
2504 		/*
2505 		 * If the ops is being added, it hasn't gotten to
2506 		 * the point to be removed from this tree yet.
2507 		 */
2508 		if (op->flags & FTRACE_OPS_FL_ADDING)
2509 			continue;
2510 
2511 
2512 		/*
2513 		 * If the ops is being modified and is in the old
2514 		 * hash, then it is probably being removed from this
2515 		 * function.
2516 		 */
2517 		if ((op->flags & FTRACE_OPS_FL_MODIFYING) &&
2518 		    hash_contains_ip(ip, &op->old_hash))
2519 			return op;
2520 		/*
2521 		 * If the ops is not being added or modified, and it's
2522 		 * in its normal filter hash, then this must be the one
2523 		 * we want!
2524 		 */
2525 		if (!(op->flags & FTRACE_OPS_FL_MODIFYING) &&
2526 		    hash_contains_ip(ip, op->func_hash))
2527 			return op;
2528 
2529 	} while_for_each_ftrace_op(op);
2530 
2531 	return NULL;
2532 }
2533 
2534 static struct ftrace_ops *
2535 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec)
2536 {
2537 	struct ftrace_ops *op;
2538 	unsigned long ip = rec->ip;
2539 
2540 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2541 		/* pass rec in as regs to have non-NULL val */
2542 		if (hash_contains_ip(ip, op->func_hash))
2543 			return op;
2544 	} while_for_each_ftrace_op(op);
2545 
2546 	return NULL;
2547 }
2548 
2549 struct ftrace_ops *
2550 ftrace_find_unique_ops(struct dyn_ftrace *rec)
2551 {
2552 	struct ftrace_ops *op, *found = NULL;
2553 	unsigned long ip = rec->ip;
2554 
2555 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2556 
2557 		if (hash_contains_ip(ip, op->func_hash)) {
2558 			if (found)
2559 				return NULL;
2560 			found = op;
2561 		}
2562 
2563 	} while_for_each_ftrace_op(op);
2564 
2565 	return found;
2566 }
2567 
2568 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
2569 /* Protected by rcu_tasks for reading, and direct_mutex for writing */
2570 static struct ftrace_hash __rcu *direct_functions = EMPTY_HASH;
2571 static DEFINE_MUTEX(direct_mutex);
2572 
2573 /*
2574  * Search the direct_functions hash to see if the given instruction pointer
2575  * has a direct caller attached to it.
2576  */
2577 unsigned long ftrace_find_rec_direct(unsigned long ip)
2578 {
2579 	struct ftrace_func_entry *entry;
2580 
2581 	entry = __ftrace_lookup_ip(direct_functions, ip);
2582 	if (!entry)
2583 		return 0;
2584 
2585 	return entry->direct;
2586 }
2587 
2588 static void call_direct_funcs(unsigned long ip, unsigned long pip,
2589 			      struct ftrace_ops *ops, struct ftrace_regs *fregs)
2590 {
2591 	unsigned long addr = READ_ONCE(ops->direct_call);
2592 
2593 	if (!addr)
2594 		return;
2595 
2596 	arch_ftrace_set_direct_caller(fregs, addr);
2597 }
2598 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
2599 
2600 /**
2601  * ftrace_get_addr_new - Get the call address to set to
2602  * @rec:  The ftrace record descriptor
2603  *
2604  * If the record has the FTRACE_FL_REGS set, that means that it
2605  * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS
2606  * is not set, then it wants to convert to the normal callback.
2607  *
2608  * Returns: the address of the trampoline to set to
2609  */
2610 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec)
2611 {
2612 	struct ftrace_ops *ops;
2613 	unsigned long addr;
2614 
2615 	if ((rec->flags & FTRACE_FL_DIRECT) &&
2616 	    (ftrace_rec_count(rec) == 1)) {
2617 		addr = ftrace_find_rec_direct(rec->ip);
2618 		if (addr)
2619 			return addr;
2620 		WARN_ON_ONCE(1);
2621 	}
2622 
2623 	/* Trampolines take precedence over regs */
2624 	if (rec->flags & FTRACE_FL_TRAMP) {
2625 		ops = ftrace_find_tramp_ops_new(rec);
2626 		if (FTRACE_WARN_ON(!ops || !ops->trampoline)) {
2627 			pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n",
2628 				(void *)rec->ip, (void *)rec->ip, rec->flags);
2629 			/* Ftrace is shutting down, return anything */
2630 			return (unsigned long)FTRACE_ADDR;
2631 		}
2632 		return ops->trampoline;
2633 	}
2634 
2635 	if (rec->flags & FTRACE_FL_REGS)
2636 		return (unsigned long)FTRACE_REGS_ADDR;
2637 	else
2638 		return (unsigned long)FTRACE_ADDR;
2639 }
2640 
2641 /**
2642  * ftrace_get_addr_curr - Get the call address that is already there
2643  * @rec:  The ftrace record descriptor
2644  *
2645  * The FTRACE_FL_REGS_EN is set when the record already points to
2646  * a function that saves all the regs. Basically the '_EN' version
2647  * represents the current state of the function.
2648  *
2649  * Returns: the address of the trampoline that is currently being called
2650  */
2651 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec)
2652 {
2653 	struct ftrace_ops *ops;
2654 	unsigned long addr;
2655 
2656 	/* Direct calls take precedence over trampolines */
2657 	if (rec->flags & FTRACE_FL_DIRECT_EN) {
2658 		addr = ftrace_find_rec_direct(rec->ip);
2659 		if (addr)
2660 			return addr;
2661 		WARN_ON_ONCE(1);
2662 	}
2663 
2664 	/* Trampolines take precedence over regs */
2665 	if (rec->flags & FTRACE_FL_TRAMP_EN) {
2666 		ops = ftrace_find_tramp_ops_curr(rec);
2667 		if (FTRACE_WARN_ON(!ops)) {
2668 			pr_warn("Bad trampoline accounting at: %p (%pS)\n",
2669 				(void *)rec->ip, (void *)rec->ip);
2670 			/* Ftrace is shutting down, return anything */
2671 			return (unsigned long)FTRACE_ADDR;
2672 		}
2673 		return ops->trampoline;
2674 	}
2675 
2676 	if (rec->flags & FTRACE_FL_REGS_EN)
2677 		return (unsigned long)FTRACE_REGS_ADDR;
2678 	else
2679 		return (unsigned long)FTRACE_ADDR;
2680 }
2681 
2682 static int
2683 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable)
2684 {
2685 	unsigned long ftrace_old_addr;
2686 	unsigned long ftrace_addr;
2687 	int ret;
2688 
2689 	ftrace_addr = ftrace_get_addr_new(rec);
2690 
2691 	/* This needs to be done before we call ftrace_update_record */
2692 	ftrace_old_addr = ftrace_get_addr_curr(rec);
2693 
2694 	ret = ftrace_update_record(rec, enable);
2695 
2696 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2697 
2698 	switch (ret) {
2699 	case FTRACE_UPDATE_IGNORE:
2700 		return 0;
2701 
2702 	case FTRACE_UPDATE_MAKE_CALL:
2703 		ftrace_bug_type = FTRACE_BUG_CALL;
2704 		return ftrace_make_call(rec, ftrace_addr);
2705 
2706 	case FTRACE_UPDATE_MAKE_NOP:
2707 		ftrace_bug_type = FTRACE_BUG_NOP;
2708 		return ftrace_make_nop(NULL, rec, ftrace_old_addr);
2709 
2710 	case FTRACE_UPDATE_MODIFY_CALL:
2711 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2712 		return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr);
2713 	}
2714 
2715 	return -1; /* unknown ftrace bug */
2716 }
2717 
2718 void __weak ftrace_replace_code(int mod_flags)
2719 {
2720 	struct dyn_ftrace *rec;
2721 	struct ftrace_page *pg;
2722 	bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL;
2723 	int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL;
2724 	int failed;
2725 
2726 	if (unlikely(ftrace_disabled))
2727 		return;
2728 
2729 	do_for_each_ftrace_rec(pg, rec) {
2730 
2731 		if (skip_record(rec))
2732 			continue;
2733 
2734 		failed = __ftrace_replace_code(rec, enable);
2735 		if (failed) {
2736 			ftrace_bug(failed, rec);
2737 			/* Stop processing */
2738 			return;
2739 		}
2740 		if (schedulable)
2741 			cond_resched();
2742 	} while_for_each_ftrace_rec();
2743 }
2744 
2745 struct ftrace_rec_iter {
2746 	struct ftrace_page	*pg;
2747 	int			index;
2748 };
2749 
2750 /**
2751  * ftrace_rec_iter_start - start up iterating over traced functions
2752  *
2753  * Returns: an iterator handle that is used to iterate over all
2754  * the records that represent address locations where functions
2755  * are traced.
2756  *
2757  * May return NULL if no records are available.
2758  */
2759 struct ftrace_rec_iter *ftrace_rec_iter_start(void)
2760 {
2761 	/*
2762 	 * We only use a single iterator.
2763 	 * Protected by the ftrace_lock mutex.
2764 	 */
2765 	static struct ftrace_rec_iter ftrace_rec_iter;
2766 	struct ftrace_rec_iter *iter = &ftrace_rec_iter;
2767 
2768 	iter->pg = ftrace_pages_start;
2769 	iter->index = 0;
2770 
2771 	/* Could have empty pages */
2772 	while (iter->pg && !iter->pg->index)
2773 		iter->pg = iter->pg->next;
2774 
2775 	if (!iter->pg)
2776 		return NULL;
2777 
2778 	return iter;
2779 }
2780 
2781 /**
2782  * ftrace_rec_iter_next - get the next record to process.
2783  * @iter: The handle to the iterator.
2784  *
2785  * Returns: the next iterator after the given iterator @iter.
2786  */
2787 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter)
2788 {
2789 	iter->index++;
2790 
2791 	if (iter->index >= iter->pg->index) {
2792 		iter->pg = iter->pg->next;
2793 		iter->index = 0;
2794 
2795 		/* Could have empty pages */
2796 		while (iter->pg && !iter->pg->index)
2797 			iter->pg = iter->pg->next;
2798 	}
2799 
2800 	if (!iter->pg)
2801 		return NULL;
2802 
2803 	return iter;
2804 }
2805 
2806 /**
2807  * ftrace_rec_iter_record - get the record at the iterator location
2808  * @iter: The current iterator location
2809  *
2810  * Returns: the record that the current @iter is at.
2811  */
2812 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter)
2813 {
2814 	return &iter->pg->records[iter->index];
2815 }
2816 
2817 static int
2818 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec)
2819 {
2820 	int ret;
2821 
2822 	if (unlikely(ftrace_disabled))
2823 		return 0;
2824 
2825 	ret = ftrace_init_nop(mod, rec);
2826 	if (ret) {
2827 		ftrace_bug_type = FTRACE_BUG_INIT;
2828 		ftrace_bug(ret, rec);
2829 		return 0;
2830 	}
2831 	return 1;
2832 }
2833 
2834 /*
2835  * archs can override this function if they must do something
2836  * before the modifying code is performed.
2837  */
2838 void __weak ftrace_arch_code_modify_prepare(void)
2839 {
2840 }
2841 
2842 /*
2843  * archs can override this function if they must do something
2844  * after the modifying code is performed.
2845  */
2846 void __weak ftrace_arch_code_modify_post_process(void)
2847 {
2848 }
2849 
2850 static int update_ftrace_func(ftrace_func_t func)
2851 {
2852 	static ftrace_func_t save_func;
2853 
2854 	/* Avoid updating if it hasn't changed */
2855 	if (func == save_func)
2856 		return 0;
2857 
2858 	save_func = func;
2859 
2860 	return ftrace_update_ftrace_func(func);
2861 }
2862 
2863 void ftrace_modify_all_code(int command)
2864 {
2865 	int update = command & FTRACE_UPDATE_TRACE_FUNC;
2866 	int mod_flags = 0;
2867 	int err = 0;
2868 
2869 	if (command & FTRACE_MAY_SLEEP)
2870 		mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL;
2871 
2872 	/*
2873 	 * If the ftrace_caller calls a ftrace_ops func directly,
2874 	 * we need to make sure that it only traces functions it
2875 	 * expects to trace. When doing the switch of functions,
2876 	 * we need to update to the ftrace_ops_list_func first
2877 	 * before the transition between old and new calls are set,
2878 	 * as the ftrace_ops_list_func will check the ops hashes
2879 	 * to make sure the ops are having the right functions
2880 	 * traced.
2881 	 */
2882 	if (update) {
2883 		err = update_ftrace_func(ftrace_ops_list_func);
2884 		if (FTRACE_WARN_ON(err))
2885 			return;
2886 	}
2887 
2888 	if (command & FTRACE_UPDATE_CALLS)
2889 		ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL);
2890 	else if (command & FTRACE_DISABLE_CALLS)
2891 		ftrace_replace_code(mod_flags);
2892 
2893 	if (update && ftrace_trace_function != ftrace_ops_list_func) {
2894 		function_trace_op = set_function_trace_op;
2895 		smp_wmb();
2896 		/* If irqs are disabled, we are in stop machine */
2897 		if (!irqs_disabled())
2898 			smp_call_function(ftrace_sync_ipi, NULL, 1);
2899 		err = update_ftrace_func(ftrace_trace_function);
2900 		if (FTRACE_WARN_ON(err))
2901 			return;
2902 	}
2903 
2904 	if (command & FTRACE_START_FUNC_RET)
2905 		err = ftrace_enable_ftrace_graph_caller();
2906 	else if (command & FTRACE_STOP_FUNC_RET)
2907 		err = ftrace_disable_ftrace_graph_caller();
2908 	FTRACE_WARN_ON(err);
2909 }
2910 
2911 static int __ftrace_modify_code(void *data)
2912 {
2913 	int *command = data;
2914 
2915 	ftrace_modify_all_code(*command);
2916 
2917 	return 0;
2918 }
2919 
2920 /**
2921  * ftrace_run_stop_machine - go back to the stop machine method
2922  * @command: The command to tell ftrace what to do
2923  *
2924  * If an arch needs to fall back to the stop machine method, the
2925  * it can call this function.
2926  */
2927 void ftrace_run_stop_machine(int command)
2928 {
2929 	stop_machine(__ftrace_modify_code, &command, NULL);
2930 }
2931 
2932 /**
2933  * arch_ftrace_update_code - modify the code to trace or not trace
2934  * @command: The command that needs to be done
2935  *
2936  * Archs can override this function if it does not need to
2937  * run stop_machine() to modify code.
2938  */
2939 void __weak arch_ftrace_update_code(int command)
2940 {
2941 	ftrace_run_stop_machine(command);
2942 }
2943 
2944 static void ftrace_run_update_code(int command)
2945 {
2946 	ftrace_arch_code_modify_prepare();
2947 
2948 	/*
2949 	 * By default we use stop_machine() to modify the code.
2950 	 * But archs can do what ever they want as long as it
2951 	 * is safe. The stop_machine() is the safest, but also
2952 	 * produces the most overhead.
2953 	 */
2954 	arch_ftrace_update_code(command);
2955 
2956 	ftrace_arch_code_modify_post_process();
2957 }
2958 
2959 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command,
2960 				   struct ftrace_ops_hash *old_hash)
2961 {
2962 	ops->flags |= FTRACE_OPS_FL_MODIFYING;
2963 	ops->old_hash.filter_hash = old_hash->filter_hash;
2964 	ops->old_hash.notrace_hash = old_hash->notrace_hash;
2965 	ftrace_run_update_code(command);
2966 	ops->old_hash.filter_hash = NULL;
2967 	ops->old_hash.notrace_hash = NULL;
2968 	ops->flags &= ~FTRACE_OPS_FL_MODIFYING;
2969 }
2970 
2971 static ftrace_func_t saved_ftrace_func;
2972 static int ftrace_start_up;
2973 
2974 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops)
2975 {
2976 }
2977 
2978 /* List of trace_ops that have allocated trampolines */
2979 static LIST_HEAD(ftrace_ops_trampoline_list);
2980 
2981 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops)
2982 {
2983 	lockdep_assert_held(&ftrace_lock);
2984 	list_add_rcu(&ops->list, &ftrace_ops_trampoline_list);
2985 }
2986 
2987 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops)
2988 {
2989 	lockdep_assert_held(&ftrace_lock);
2990 	list_del_rcu(&ops->list);
2991 	synchronize_rcu();
2992 }
2993 
2994 /*
2995  * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols
2996  * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is
2997  * not a module.
2998  */
2999 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace"
3000 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline"
3001 
3002 static void ftrace_trampoline_free(struct ftrace_ops *ops)
3003 {
3004 	if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) &&
3005 	    ops->trampoline) {
3006 		/*
3007 		 * Record the text poke event before the ksymbol unregister
3008 		 * event.
3009 		 */
3010 		perf_event_text_poke((void *)ops->trampoline,
3011 				     (void *)ops->trampoline,
3012 				     ops->trampoline_size, NULL, 0);
3013 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
3014 				   ops->trampoline, ops->trampoline_size,
3015 				   true, FTRACE_TRAMPOLINE_SYM);
3016 		/* Remove from kallsyms after the perf events */
3017 		ftrace_remove_trampoline_from_kallsyms(ops);
3018 	}
3019 
3020 	arch_ftrace_trampoline_free(ops);
3021 }
3022 
3023 static void ftrace_startup_enable(int command)
3024 {
3025 	if (saved_ftrace_func != ftrace_trace_function) {
3026 		saved_ftrace_func = ftrace_trace_function;
3027 		command |= FTRACE_UPDATE_TRACE_FUNC;
3028 	}
3029 
3030 	if (!command || !ftrace_enabled)
3031 		return;
3032 
3033 	ftrace_run_update_code(command);
3034 }
3035 
3036 static void ftrace_startup_all(int command)
3037 {
3038 	update_all_ops = true;
3039 	ftrace_startup_enable(command);
3040 	update_all_ops = false;
3041 }
3042 
3043 int ftrace_startup(struct ftrace_ops *ops, int command)
3044 {
3045 	int ret;
3046 
3047 	if (unlikely(ftrace_disabled))
3048 		return -ENODEV;
3049 
3050 	ret = __register_ftrace_function(ops);
3051 	if (ret)
3052 		return ret;
3053 
3054 	ftrace_start_up++;
3055 
3056 	/*
3057 	 * Note that ftrace probes uses this to start up
3058 	 * and modify functions it will probe. But we still
3059 	 * set the ADDING flag for modification, as probes
3060 	 * do not have trampolines. If they add them in the
3061 	 * future, then the probes will need to distinguish
3062 	 * between adding and updating probes.
3063 	 */
3064 	ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING;
3065 
3066 	ret = ftrace_hash_ipmodify_enable(ops);
3067 	if (ret < 0) {
3068 		/* Rollback registration process */
3069 		__unregister_ftrace_function(ops);
3070 		ftrace_start_up--;
3071 		ops->flags &= ~FTRACE_OPS_FL_ENABLED;
3072 		if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
3073 			ftrace_trampoline_free(ops);
3074 		return ret;
3075 	}
3076 
3077 	if (ftrace_hash_rec_enable(ops))
3078 		command |= FTRACE_UPDATE_CALLS;
3079 
3080 	ftrace_startup_enable(command);
3081 
3082 	/*
3083 	 * If ftrace is in an undefined state, we just remove ops from list
3084 	 * to prevent the NULL pointer, instead of totally rolling it back and
3085 	 * free trampoline, because those actions could cause further damage.
3086 	 */
3087 	if (unlikely(ftrace_disabled)) {
3088 		__unregister_ftrace_function(ops);
3089 		return -ENODEV;
3090 	}
3091 
3092 	ops->flags &= ~FTRACE_OPS_FL_ADDING;
3093 
3094 	return 0;
3095 }
3096 
3097 int ftrace_shutdown(struct ftrace_ops *ops, int command)
3098 {
3099 	int ret;
3100 
3101 	if (unlikely(ftrace_disabled))
3102 		return -ENODEV;
3103 
3104 	ret = __unregister_ftrace_function(ops);
3105 	if (ret)
3106 		return ret;
3107 
3108 	ftrace_start_up--;
3109 	/*
3110 	 * Just warn in case of unbalance, no need to kill ftrace, it's not
3111 	 * critical but the ftrace_call callers may be never nopped again after
3112 	 * further ftrace uses.
3113 	 */
3114 	WARN_ON_ONCE(ftrace_start_up < 0);
3115 
3116 	/* Disabling ipmodify never fails */
3117 	ftrace_hash_ipmodify_disable(ops);
3118 
3119 	if (ftrace_hash_rec_disable(ops))
3120 		command |= FTRACE_UPDATE_CALLS;
3121 
3122 	ops->flags &= ~FTRACE_OPS_FL_ENABLED;
3123 
3124 	if (saved_ftrace_func != ftrace_trace_function) {
3125 		saved_ftrace_func = ftrace_trace_function;
3126 		command |= FTRACE_UPDATE_TRACE_FUNC;
3127 	}
3128 
3129 	if (!command || !ftrace_enabled)
3130 		goto out;
3131 
3132 	/*
3133 	 * If the ops uses a trampoline, then it needs to be
3134 	 * tested first on update.
3135 	 */
3136 	ops->flags |= FTRACE_OPS_FL_REMOVING;
3137 	removed_ops = ops;
3138 
3139 	/* The trampoline logic checks the old hashes */
3140 	ops->old_hash.filter_hash = ops->func_hash->filter_hash;
3141 	ops->old_hash.notrace_hash = ops->func_hash->notrace_hash;
3142 
3143 	ftrace_run_update_code(command);
3144 
3145 	/*
3146 	 * If there's no more ops registered with ftrace, run a
3147 	 * sanity check to make sure all rec flags are cleared.
3148 	 */
3149 	if (rcu_dereference_protected(ftrace_ops_list,
3150 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
3151 		struct ftrace_page *pg;
3152 		struct dyn_ftrace *rec;
3153 
3154 		do_for_each_ftrace_rec(pg, rec) {
3155 			if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_NOCLEAR_FLAGS))
3156 				pr_warn("  %pS flags:%lx\n",
3157 					(void *)rec->ip, rec->flags);
3158 		} while_for_each_ftrace_rec();
3159 	}
3160 
3161 	ops->old_hash.filter_hash = NULL;
3162 	ops->old_hash.notrace_hash = NULL;
3163 
3164 	removed_ops = NULL;
3165 	ops->flags &= ~FTRACE_OPS_FL_REMOVING;
3166 
3167 out:
3168 	/*
3169 	 * Dynamic ops may be freed, we must make sure that all
3170 	 * callers are done before leaving this function.
3171 	 */
3172 	if (ops->flags & FTRACE_OPS_FL_DYNAMIC) {
3173 		/*
3174 		 * We need to do a hard force of sched synchronization.
3175 		 * This is because we use preempt_disable() to do RCU, but
3176 		 * the function tracers can be called where RCU is not watching
3177 		 * (like before user_exit()). We can not rely on the RCU
3178 		 * infrastructure to do the synchronization, thus we must do it
3179 		 * ourselves.
3180 		 */
3181 		synchronize_rcu_tasks_rude();
3182 
3183 		/*
3184 		 * When the kernel is preemptive, tasks can be preempted
3185 		 * while on a ftrace trampoline. Just scheduling a task on
3186 		 * a CPU is not good enough to flush them. Calling
3187 		 * synchronize_rcu_tasks() will wait for those tasks to
3188 		 * execute and either schedule voluntarily or enter user space.
3189 		 */
3190 		synchronize_rcu_tasks();
3191 
3192 		ftrace_trampoline_free(ops);
3193 	}
3194 
3195 	return 0;
3196 }
3197 
3198 /* Simply make a copy of @src and return it */
3199 static struct ftrace_hash *copy_hash(struct ftrace_hash *src)
3200 {
3201 	if (ftrace_hash_empty(src))
3202 		return EMPTY_HASH;
3203 
3204 	return alloc_and_copy_ftrace_hash(src->size_bits, src);
3205 }
3206 
3207 /*
3208  * Append @new_hash entries to @hash:
3209  *
3210  *  If @hash is the EMPTY_HASH then it traces all functions and nothing
3211  *  needs to be done.
3212  *
3213  *  If @new_hash is the EMPTY_HASH, then make *hash the EMPTY_HASH so
3214  *  that it traces everything.
3215  *
3216  *  Otherwise, go through all of @new_hash and add anything that @hash
3217  *  doesn't already have, to @hash.
3218  *
3219  *  The filter_hash updates uses just the append_hash() function
3220  *  and the notrace_hash does not.
3221  */
3222 static int append_hash(struct ftrace_hash **hash, struct ftrace_hash *new_hash)
3223 {
3224 	struct ftrace_func_entry *entry;
3225 	int size;
3226 	int i;
3227 
3228 	/* An empty hash does everything */
3229 	if (ftrace_hash_empty(*hash))
3230 		return 0;
3231 
3232 	/* If new_hash has everything make hash have everything */
3233 	if (ftrace_hash_empty(new_hash)) {
3234 		free_ftrace_hash(*hash);
3235 		*hash = EMPTY_HASH;
3236 		return 0;
3237 	}
3238 
3239 	size = 1 << new_hash->size_bits;
3240 	for (i = 0; i < size; i++) {
3241 		hlist_for_each_entry(entry, &new_hash->buckets[i], hlist) {
3242 			/* Only add if not already in hash */
3243 			if (!__ftrace_lookup_ip(*hash, entry->ip) &&
3244 			    add_hash_entry(*hash, entry->ip) == NULL)
3245 				return -ENOMEM;
3246 		}
3247 	}
3248 	return 0;
3249 }
3250 
3251 /*
3252  * Add to @hash only those that are in both @new_hash1 and @new_hash2
3253  *
3254  * The notrace_hash updates uses just the intersect_hash() function
3255  * and the filter_hash does not.
3256  */
3257 static int intersect_hash(struct ftrace_hash **hash, struct ftrace_hash *new_hash1,
3258 			  struct ftrace_hash *new_hash2)
3259 {
3260 	struct ftrace_func_entry *entry;
3261 	int size;
3262 	int i;
3263 
3264 	/*
3265 	 * If new_hash1 or new_hash2 is the EMPTY_HASH then make the hash
3266 	 * empty as well as empty for notrace means none are notraced.
3267 	 */
3268 	if (ftrace_hash_empty(new_hash1) || ftrace_hash_empty(new_hash2)) {
3269 		free_ftrace_hash(*hash);
3270 		*hash = EMPTY_HASH;
3271 		return 0;
3272 	}
3273 
3274 	size = 1 << new_hash1->size_bits;
3275 	for (i = 0; i < size; i++) {
3276 		hlist_for_each_entry(entry, &new_hash1->buckets[i], hlist) {
3277 			/* Only add if in both @new_hash1 and @new_hash2 */
3278 			if (__ftrace_lookup_ip(new_hash2, entry->ip) &&
3279 			    add_hash_entry(*hash, entry->ip) == NULL)
3280 				return -ENOMEM;
3281 		}
3282 	}
3283 	/* If nothing intersects, make it the empty set */
3284 	if (ftrace_hash_empty(*hash)) {
3285 		free_ftrace_hash(*hash);
3286 		*hash = EMPTY_HASH;
3287 	}
3288 	return 0;
3289 }
3290 
3291 /* Return a new hash that has a union of all @ops->filter_hash entries */
3292 static struct ftrace_hash *append_hashes(struct ftrace_ops *ops)
3293 {
3294 	struct ftrace_hash *new_hash;
3295 	struct ftrace_ops *subops;
3296 	int ret;
3297 
3298 	new_hash = alloc_ftrace_hash(ops->func_hash->filter_hash->size_bits);
3299 	if (!new_hash)
3300 		return NULL;
3301 
3302 	list_for_each_entry(subops, &ops->subop_list, list) {
3303 		ret = append_hash(&new_hash, subops->func_hash->filter_hash);
3304 		if (ret < 0) {
3305 			free_ftrace_hash(new_hash);
3306 			return NULL;
3307 		}
3308 		/* Nothing more to do if new_hash is empty */
3309 		if (ftrace_hash_empty(new_hash))
3310 			break;
3311 	}
3312 	return new_hash;
3313 }
3314 
3315 /* Make @ops trace evenything except what all its subops do not trace */
3316 static struct ftrace_hash *intersect_hashes(struct ftrace_ops *ops)
3317 {
3318 	struct ftrace_hash *new_hash = NULL;
3319 	struct ftrace_ops *subops;
3320 	int size_bits;
3321 	int ret;
3322 
3323 	list_for_each_entry(subops, &ops->subop_list, list) {
3324 		struct ftrace_hash *next_hash;
3325 
3326 		if (!new_hash) {
3327 			size_bits = subops->func_hash->notrace_hash->size_bits;
3328 			new_hash = alloc_and_copy_ftrace_hash(size_bits, ops->func_hash->notrace_hash);
3329 			if (!new_hash)
3330 				return NULL;
3331 			continue;
3332 		}
3333 		size_bits = new_hash->size_bits;
3334 		next_hash = new_hash;
3335 		new_hash = alloc_ftrace_hash(size_bits);
3336 		ret = intersect_hash(&new_hash, next_hash, subops->func_hash->notrace_hash);
3337 		free_ftrace_hash(next_hash);
3338 		if (ret < 0) {
3339 			free_ftrace_hash(new_hash);
3340 			return NULL;
3341 		}
3342 		/* Nothing more to do if new_hash is empty */
3343 		if (ftrace_hash_empty(new_hash))
3344 			break;
3345 	}
3346 	return new_hash;
3347 }
3348 
3349 static bool ops_equal(struct ftrace_hash *A, struct ftrace_hash *B)
3350 {
3351 	struct ftrace_func_entry *entry;
3352 	int size;
3353 	int i;
3354 
3355 	if (ftrace_hash_empty(A))
3356 		return ftrace_hash_empty(B);
3357 
3358 	if (ftrace_hash_empty(B))
3359 		return ftrace_hash_empty(A);
3360 
3361 	if (A->count != B->count)
3362 		return false;
3363 
3364 	size = 1 << A->size_bits;
3365 	for (i = 0; i < size; i++) {
3366 		hlist_for_each_entry(entry, &A->buckets[i], hlist) {
3367 			if (!__ftrace_lookup_ip(B, entry->ip))
3368 				return false;
3369 		}
3370 	}
3371 
3372 	return true;
3373 }
3374 
3375 static void ftrace_ops_update_code(struct ftrace_ops *ops,
3376 				   struct ftrace_ops_hash *old_hash);
3377 
3378 static int __ftrace_hash_move_and_update_ops(struct ftrace_ops *ops,
3379 					     struct ftrace_hash **orig_hash,
3380 					     struct ftrace_hash *hash,
3381 					     int enable)
3382 {
3383 	struct ftrace_ops_hash old_hash_ops;
3384 	struct ftrace_hash *old_hash;
3385 	int ret;
3386 
3387 	old_hash = *orig_hash;
3388 	old_hash_ops.filter_hash = ops->func_hash->filter_hash;
3389 	old_hash_ops.notrace_hash = ops->func_hash->notrace_hash;
3390 	ret = ftrace_hash_move(ops, enable, orig_hash, hash);
3391 	if (!ret) {
3392 		ftrace_ops_update_code(ops, &old_hash_ops);
3393 		free_ftrace_hash_rcu(old_hash);
3394 	}
3395 	return ret;
3396 }
3397 
3398 static int ftrace_update_ops(struct ftrace_ops *ops, struct ftrace_hash *filter_hash,
3399 			     struct ftrace_hash *notrace_hash)
3400 {
3401 	int ret;
3402 
3403 	if (!ops_equal(filter_hash, ops->func_hash->filter_hash)) {
3404 		ret = __ftrace_hash_move_and_update_ops(ops, &ops->func_hash->filter_hash,
3405 							filter_hash, 1);
3406 		if (ret < 0)
3407 			return ret;
3408 	}
3409 
3410 	if (!ops_equal(notrace_hash, ops->func_hash->notrace_hash)) {
3411 		ret = __ftrace_hash_move_and_update_ops(ops, &ops->func_hash->notrace_hash,
3412 							notrace_hash, 0);
3413 		if (ret < 0)
3414 			return ret;
3415 	}
3416 
3417 	return 0;
3418 }
3419 
3420 /**
3421  * ftrace_startup_subops - enable tracing for subops of an ops
3422  * @ops: Manager ops (used to pick all the functions of its subops)
3423  * @subops: A new ops to add to @ops
3424  * @command: Extra commands to use to enable tracing
3425  *
3426  * The @ops is a manager @ops that has the filter that includes all the functions
3427  * that its list of subops are tracing. Adding a new @subops will add the
3428  * functions of @subops to @ops.
3429  */
3430 int ftrace_startup_subops(struct ftrace_ops *ops, struct ftrace_ops *subops, int command)
3431 {
3432 	struct ftrace_hash *filter_hash;
3433 	struct ftrace_hash *notrace_hash;
3434 	struct ftrace_hash *save_filter_hash;
3435 	struct ftrace_hash *save_notrace_hash;
3436 	int size_bits;
3437 	int ret;
3438 
3439 	if (unlikely(ftrace_disabled))
3440 		return -ENODEV;
3441 
3442 	ftrace_ops_init(ops);
3443 	ftrace_ops_init(subops);
3444 
3445 	if (WARN_ON_ONCE(subops->flags & FTRACE_OPS_FL_ENABLED))
3446 		return -EBUSY;
3447 
3448 	/* Make everything canonical (Just in case!) */
3449 	if (!ops->func_hash->filter_hash)
3450 		ops->func_hash->filter_hash = EMPTY_HASH;
3451 	if (!ops->func_hash->notrace_hash)
3452 		ops->func_hash->notrace_hash = EMPTY_HASH;
3453 	if (!subops->func_hash->filter_hash)
3454 		subops->func_hash->filter_hash = EMPTY_HASH;
3455 	if (!subops->func_hash->notrace_hash)
3456 		subops->func_hash->notrace_hash = EMPTY_HASH;
3457 
3458 	/* For the first subops to ops just enable it normally */
3459 	if (list_empty(&ops->subop_list)) {
3460 		/* Just use the subops hashes */
3461 		filter_hash = copy_hash(subops->func_hash->filter_hash);
3462 		notrace_hash = copy_hash(subops->func_hash->notrace_hash);
3463 		if (!filter_hash || !notrace_hash) {
3464 			free_ftrace_hash(filter_hash);
3465 			free_ftrace_hash(notrace_hash);
3466 			return -ENOMEM;
3467 		}
3468 
3469 		save_filter_hash = ops->func_hash->filter_hash;
3470 		save_notrace_hash = ops->func_hash->notrace_hash;
3471 
3472 		ops->func_hash->filter_hash = filter_hash;
3473 		ops->func_hash->notrace_hash = notrace_hash;
3474 		list_add(&subops->list, &ops->subop_list);
3475 		ret = ftrace_startup(ops, command);
3476 		if (ret < 0) {
3477 			list_del(&subops->list);
3478 			ops->func_hash->filter_hash = save_filter_hash;
3479 			ops->func_hash->notrace_hash = save_notrace_hash;
3480 			free_ftrace_hash(filter_hash);
3481 			free_ftrace_hash(notrace_hash);
3482 		} else {
3483 			free_ftrace_hash(save_filter_hash);
3484 			free_ftrace_hash(save_notrace_hash);
3485 			subops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP;
3486 			subops->managed = ops;
3487 		}
3488 		return ret;
3489 	}
3490 
3491 	/*
3492 	 * Here there's already something attached. Here are the rules:
3493 	 *   o If either filter_hash is empty then the final stays empty
3494 	 *      o Otherwise, the final is a superset of both hashes
3495 	 *   o If either notrace_hash is empty then the final stays empty
3496 	 *      o Otherwise, the final is an intersection between the hashes
3497 	 */
3498 	if (ftrace_hash_empty(ops->func_hash->filter_hash) ||
3499 	    ftrace_hash_empty(subops->func_hash->filter_hash)) {
3500 		filter_hash = EMPTY_HASH;
3501 	} else {
3502 		size_bits = max(ops->func_hash->filter_hash->size_bits,
3503 				subops->func_hash->filter_hash->size_bits);
3504 		filter_hash = alloc_and_copy_ftrace_hash(size_bits, ops->func_hash->filter_hash);
3505 		if (!filter_hash)
3506 			return -ENOMEM;
3507 		ret = append_hash(&filter_hash, subops->func_hash->filter_hash);
3508 		if (ret < 0) {
3509 			free_ftrace_hash(filter_hash);
3510 			return ret;
3511 		}
3512 	}
3513 
3514 	if (ftrace_hash_empty(ops->func_hash->notrace_hash) ||
3515 	    ftrace_hash_empty(subops->func_hash->notrace_hash)) {
3516 		notrace_hash = EMPTY_HASH;
3517 	} else {
3518 		size_bits = max(ops->func_hash->filter_hash->size_bits,
3519 				subops->func_hash->filter_hash->size_bits);
3520 		notrace_hash = alloc_ftrace_hash(size_bits);
3521 		if (!notrace_hash) {
3522 			free_ftrace_hash(filter_hash);
3523 			return -ENOMEM;
3524 		}
3525 
3526 		ret = intersect_hash(&notrace_hash, ops->func_hash->filter_hash,
3527 				     subops->func_hash->filter_hash);
3528 		if (ret < 0) {
3529 			free_ftrace_hash(filter_hash);
3530 			free_ftrace_hash(notrace_hash);
3531 			return ret;
3532 		}
3533 	}
3534 
3535 	list_add(&subops->list, &ops->subop_list);
3536 
3537 	ret = ftrace_update_ops(ops, filter_hash, notrace_hash);
3538 	free_ftrace_hash(filter_hash);
3539 	free_ftrace_hash(notrace_hash);
3540 	if (ret < 0) {
3541 		list_del(&subops->list);
3542 	} else {
3543 		subops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP;
3544 		subops->managed = ops;
3545 	}
3546 	return ret;
3547 }
3548 
3549 /**
3550  * ftrace_shutdown_subops - Remove a subops from a manager ops
3551  * @ops: A manager ops to remove @subops from
3552  * @subops: The subops to remove from @ops
3553  * @command: Any extra command flags to add to modifying the text
3554  *
3555  * Removes the functions being traced by the @subops from @ops. Note, it
3556  * will not affect functions that are being traced by other subops that
3557  * still exist in @ops.
3558  *
3559  * If the last subops is removed from @ops, then @ops is shutdown normally.
3560  */
3561 int ftrace_shutdown_subops(struct ftrace_ops *ops, struct ftrace_ops *subops, int command)
3562 {
3563 	struct ftrace_hash *filter_hash;
3564 	struct ftrace_hash *notrace_hash;
3565 	int ret;
3566 
3567 	if (unlikely(ftrace_disabled))
3568 		return -ENODEV;
3569 
3570 	if (WARN_ON_ONCE(!(subops->flags & FTRACE_OPS_FL_ENABLED)))
3571 		return -EINVAL;
3572 
3573 	list_del(&subops->list);
3574 
3575 	if (list_empty(&ops->subop_list)) {
3576 		/* Last one, just disable the current ops */
3577 
3578 		ret = ftrace_shutdown(ops, command);
3579 		if (ret < 0) {
3580 			list_add(&subops->list, &ops->subop_list);
3581 			return ret;
3582 		}
3583 
3584 		subops->flags &= ~FTRACE_OPS_FL_ENABLED;
3585 
3586 		free_ftrace_hash(ops->func_hash->filter_hash);
3587 		free_ftrace_hash(ops->func_hash->notrace_hash);
3588 		ops->func_hash->filter_hash = EMPTY_HASH;
3589 		ops->func_hash->notrace_hash = EMPTY_HASH;
3590 		subops->flags &= ~(FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP);
3591 		subops->managed = NULL;
3592 
3593 		return 0;
3594 	}
3595 
3596 	/* Rebuild the hashes without subops */
3597 	filter_hash = append_hashes(ops);
3598 	notrace_hash = intersect_hashes(ops);
3599 	if (!filter_hash || !notrace_hash) {
3600 		free_ftrace_hash(filter_hash);
3601 		free_ftrace_hash(notrace_hash);
3602 		list_add(&subops->list, &ops->subop_list);
3603 		return -ENOMEM;
3604 	}
3605 
3606 	ret = ftrace_update_ops(ops, filter_hash, notrace_hash);
3607 	if (ret < 0) {
3608 		list_add(&subops->list, &ops->subop_list);
3609 	} else {
3610 		subops->flags &= ~(FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP);
3611 		subops->managed = NULL;
3612 	}
3613 	free_ftrace_hash(filter_hash);
3614 	free_ftrace_hash(notrace_hash);
3615 	return ret;
3616 }
3617 
3618 static int ftrace_hash_move_and_update_subops(struct ftrace_ops *subops,
3619 					      struct ftrace_hash **orig_subhash,
3620 					      struct ftrace_hash *hash,
3621 					      int enable)
3622 {
3623 	struct ftrace_ops *ops = subops->managed;
3624 	struct ftrace_hash **orig_hash;
3625 	struct ftrace_hash *save_hash;
3626 	struct ftrace_hash *new_hash;
3627 	int ret;
3628 
3629 	/* Manager ops can not be subops (yet) */
3630 	if (WARN_ON_ONCE(!ops || ops->flags & FTRACE_OPS_FL_SUBOP))
3631 		return -EINVAL;
3632 
3633 	/* Move the new hash over to the subops hash */
3634 	save_hash = *orig_subhash;
3635 	*orig_subhash = __ftrace_hash_move(hash);
3636 	if (!*orig_subhash) {
3637 		*orig_subhash = save_hash;
3638 		return -ENOMEM;
3639 	}
3640 
3641 	/* Create a new_hash to hold the ops new functions */
3642 	if (enable) {
3643 		orig_hash = &ops->func_hash->filter_hash;
3644 		new_hash = append_hashes(ops);
3645 	} else {
3646 		orig_hash = &ops->func_hash->notrace_hash;
3647 		new_hash = intersect_hashes(ops);
3648 	}
3649 
3650 	/* Move the hash over to the new hash */
3651 	ret = __ftrace_hash_move_and_update_ops(ops, orig_hash, new_hash, enable);
3652 
3653 	free_ftrace_hash(new_hash);
3654 
3655 	if (ret) {
3656 		/* Put back the original hash */
3657 		free_ftrace_hash_rcu(*orig_subhash);
3658 		*orig_subhash = save_hash;
3659 	} else {
3660 		free_ftrace_hash_rcu(save_hash);
3661 	}
3662 	return ret;
3663 }
3664 
3665 
3666 static u64		ftrace_update_time;
3667 unsigned long		ftrace_update_tot_cnt;
3668 unsigned long		ftrace_number_of_pages;
3669 unsigned long		ftrace_number_of_groups;
3670 
3671 static inline int ops_traces_mod(struct ftrace_ops *ops)
3672 {
3673 	/*
3674 	 * Filter_hash being empty will default to trace module.
3675 	 * But notrace hash requires a test of individual module functions.
3676 	 */
3677 	return ftrace_hash_empty(ops->func_hash->filter_hash) &&
3678 		ftrace_hash_empty(ops->func_hash->notrace_hash);
3679 }
3680 
3681 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs)
3682 {
3683 	bool init_nop = ftrace_need_init_nop();
3684 	struct ftrace_page *pg;
3685 	struct dyn_ftrace *p;
3686 	u64 start, stop;
3687 	unsigned long update_cnt = 0;
3688 	unsigned long rec_flags = 0;
3689 	int i;
3690 
3691 	start = ftrace_now(raw_smp_processor_id());
3692 
3693 	/*
3694 	 * When a module is loaded, this function is called to convert
3695 	 * the calls to mcount in its text to nops, and also to create
3696 	 * an entry in the ftrace data. Now, if ftrace is activated
3697 	 * after this call, but before the module sets its text to
3698 	 * read-only, the modification of enabling ftrace can fail if
3699 	 * the read-only is done while ftrace is converting the calls.
3700 	 * To prevent this, the module's records are set as disabled
3701 	 * and will be enabled after the call to set the module's text
3702 	 * to read-only.
3703 	 */
3704 	if (mod)
3705 		rec_flags |= FTRACE_FL_DISABLED;
3706 
3707 	for (pg = new_pgs; pg; pg = pg->next) {
3708 
3709 		for (i = 0; i < pg->index; i++) {
3710 
3711 			/* If something went wrong, bail without enabling anything */
3712 			if (unlikely(ftrace_disabled))
3713 				return -1;
3714 
3715 			p = &pg->records[i];
3716 			p->flags = rec_flags;
3717 
3718 			/*
3719 			 * Do the initial record conversion from mcount jump
3720 			 * to the NOP instructions.
3721 			 */
3722 			if (init_nop && !ftrace_nop_initialize(mod, p))
3723 				break;
3724 
3725 			update_cnt++;
3726 		}
3727 	}
3728 
3729 	stop = ftrace_now(raw_smp_processor_id());
3730 	ftrace_update_time = stop - start;
3731 	ftrace_update_tot_cnt += update_cnt;
3732 
3733 	return 0;
3734 }
3735 
3736 static int ftrace_allocate_records(struct ftrace_page *pg, int count)
3737 {
3738 	int order;
3739 	int pages;
3740 	int cnt;
3741 
3742 	if (WARN_ON(!count))
3743 		return -EINVAL;
3744 
3745 	/* We want to fill as much as possible, with no empty pages */
3746 	pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE);
3747 	order = fls(pages) - 1;
3748 
3749  again:
3750 	pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
3751 
3752 	if (!pg->records) {
3753 		/* if we can't allocate this size, try something smaller */
3754 		if (!order)
3755 			return -ENOMEM;
3756 		order--;
3757 		goto again;
3758 	}
3759 
3760 	ftrace_number_of_pages += 1 << order;
3761 	ftrace_number_of_groups++;
3762 
3763 	cnt = (PAGE_SIZE << order) / ENTRY_SIZE;
3764 	pg->order = order;
3765 
3766 	if (cnt > count)
3767 		cnt = count;
3768 
3769 	return cnt;
3770 }
3771 
3772 static void ftrace_free_pages(struct ftrace_page *pages)
3773 {
3774 	struct ftrace_page *pg = pages;
3775 
3776 	while (pg) {
3777 		if (pg->records) {
3778 			free_pages((unsigned long)pg->records, pg->order);
3779 			ftrace_number_of_pages -= 1 << pg->order;
3780 		}
3781 		pages = pg->next;
3782 		kfree(pg);
3783 		pg = pages;
3784 		ftrace_number_of_groups--;
3785 	}
3786 }
3787 
3788 static struct ftrace_page *
3789 ftrace_allocate_pages(unsigned long num_to_init)
3790 {
3791 	struct ftrace_page *start_pg;
3792 	struct ftrace_page *pg;
3793 	int cnt;
3794 
3795 	if (!num_to_init)
3796 		return NULL;
3797 
3798 	start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL);
3799 	if (!pg)
3800 		return NULL;
3801 
3802 	/*
3803 	 * Try to allocate as much as possible in one continues
3804 	 * location that fills in all of the space. We want to
3805 	 * waste as little space as possible.
3806 	 */
3807 	for (;;) {
3808 		cnt = ftrace_allocate_records(pg, num_to_init);
3809 		if (cnt < 0)
3810 			goto free_pages;
3811 
3812 		num_to_init -= cnt;
3813 		if (!num_to_init)
3814 			break;
3815 
3816 		pg->next = kzalloc(sizeof(*pg), GFP_KERNEL);
3817 		if (!pg->next)
3818 			goto free_pages;
3819 
3820 		pg = pg->next;
3821 	}
3822 
3823 	return start_pg;
3824 
3825  free_pages:
3826 	ftrace_free_pages(start_pg);
3827 	pr_info("ftrace: FAILED to allocate memory for functions\n");
3828 	return NULL;
3829 }
3830 
3831 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */
3832 
3833 struct ftrace_iterator {
3834 	loff_t				pos;
3835 	loff_t				func_pos;
3836 	loff_t				mod_pos;
3837 	struct ftrace_page		*pg;
3838 	struct dyn_ftrace		*func;
3839 	struct ftrace_func_probe	*probe;
3840 	struct ftrace_func_entry	*probe_entry;
3841 	struct trace_parser		parser;
3842 	struct ftrace_hash		*hash;
3843 	struct ftrace_ops		*ops;
3844 	struct trace_array		*tr;
3845 	struct list_head		*mod_list;
3846 	int				pidx;
3847 	int				idx;
3848 	unsigned			flags;
3849 };
3850 
3851 static void *
3852 t_probe_next(struct seq_file *m, loff_t *pos)
3853 {
3854 	struct ftrace_iterator *iter = m->private;
3855 	struct trace_array *tr = iter->ops->private;
3856 	struct list_head *func_probes;
3857 	struct ftrace_hash *hash;
3858 	struct list_head *next;
3859 	struct hlist_node *hnd = NULL;
3860 	struct hlist_head *hhd;
3861 	int size;
3862 
3863 	(*pos)++;
3864 	iter->pos = *pos;
3865 
3866 	if (!tr)
3867 		return NULL;
3868 
3869 	func_probes = &tr->func_probes;
3870 	if (list_empty(func_probes))
3871 		return NULL;
3872 
3873 	if (!iter->probe) {
3874 		next = func_probes->next;
3875 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3876 	}
3877 
3878 	if (iter->probe_entry)
3879 		hnd = &iter->probe_entry->hlist;
3880 
3881 	hash = iter->probe->ops.func_hash->filter_hash;
3882 
3883 	/*
3884 	 * A probe being registered may temporarily have an empty hash
3885 	 * and it's at the end of the func_probes list.
3886 	 */
3887 	if (!hash || hash == EMPTY_HASH)
3888 		return NULL;
3889 
3890 	size = 1 << hash->size_bits;
3891 
3892  retry:
3893 	if (iter->pidx >= size) {
3894 		if (iter->probe->list.next == func_probes)
3895 			return NULL;
3896 		next = iter->probe->list.next;
3897 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3898 		hash = iter->probe->ops.func_hash->filter_hash;
3899 		size = 1 << hash->size_bits;
3900 		iter->pidx = 0;
3901 	}
3902 
3903 	hhd = &hash->buckets[iter->pidx];
3904 
3905 	if (hlist_empty(hhd)) {
3906 		iter->pidx++;
3907 		hnd = NULL;
3908 		goto retry;
3909 	}
3910 
3911 	if (!hnd)
3912 		hnd = hhd->first;
3913 	else {
3914 		hnd = hnd->next;
3915 		if (!hnd) {
3916 			iter->pidx++;
3917 			goto retry;
3918 		}
3919 	}
3920 
3921 	if (WARN_ON_ONCE(!hnd))
3922 		return NULL;
3923 
3924 	iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist);
3925 
3926 	return iter;
3927 }
3928 
3929 static void *t_probe_start(struct seq_file *m, loff_t *pos)
3930 {
3931 	struct ftrace_iterator *iter = m->private;
3932 	void *p = NULL;
3933 	loff_t l;
3934 
3935 	if (!(iter->flags & FTRACE_ITER_DO_PROBES))
3936 		return NULL;
3937 
3938 	if (iter->mod_pos > *pos)
3939 		return NULL;
3940 
3941 	iter->probe = NULL;
3942 	iter->probe_entry = NULL;
3943 	iter->pidx = 0;
3944 	for (l = 0; l <= (*pos - iter->mod_pos); ) {
3945 		p = t_probe_next(m, &l);
3946 		if (!p)
3947 			break;
3948 	}
3949 	if (!p)
3950 		return NULL;
3951 
3952 	/* Only set this if we have an item */
3953 	iter->flags |= FTRACE_ITER_PROBE;
3954 
3955 	return iter;
3956 }
3957 
3958 static int
3959 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter)
3960 {
3961 	struct ftrace_func_entry *probe_entry;
3962 	struct ftrace_probe_ops *probe_ops;
3963 	struct ftrace_func_probe *probe;
3964 
3965 	probe = iter->probe;
3966 	probe_entry = iter->probe_entry;
3967 
3968 	if (WARN_ON_ONCE(!probe || !probe_entry))
3969 		return -EIO;
3970 
3971 	probe_ops = probe->probe_ops;
3972 
3973 	if (probe_ops->print)
3974 		return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data);
3975 
3976 	seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip,
3977 		   (void *)probe_ops->func);
3978 
3979 	return 0;
3980 }
3981 
3982 static void *
3983 t_mod_next(struct seq_file *m, loff_t *pos)
3984 {
3985 	struct ftrace_iterator *iter = m->private;
3986 	struct trace_array *tr = iter->tr;
3987 
3988 	(*pos)++;
3989 	iter->pos = *pos;
3990 
3991 	iter->mod_list = iter->mod_list->next;
3992 
3993 	if (iter->mod_list == &tr->mod_trace ||
3994 	    iter->mod_list == &tr->mod_notrace) {
3995 		iter->flags &= ~FTRACE_ITER_MOD;
3996 		return NULL;
3997 	}
3998 
3999 	iter->mod_pos = *pos;
4000 
4001 	return iter;
4002 }
4003 
4004 static void *t_mod_start(struct seq_file *m, loff_t *pos)
4005 {
4006 	struct ftrace_iterator *iter = m->private;
4007 	void *p = NULL;
4008 	loff_t l;
4009 
4010 	if (iter->func_pos > *pos)
4011 		return NULL;
4012 
4013 	iter->mod_pos = iter->func_pos;
4014 
4015 	/* probes are only available if tr is set */
4016 	if (!iter->tr)
4017 		return NULL;
4018 
4019 	for (l = 0; l <= (*pos - iter->func_pos); ) {
4020 		p = t_mod_next(m, &l);
4021 		if (!p)
4022 			break;
4023 	}
4024 	if (!p) {
4025 		iter->flags &= ~FTRACE_ITER_MOD;
4026 		return t_probe_start(m, pos);
4027 	}
4028 
4029 	/* Only set this if we have an item */
4030 	iter->flags |= FTRACE_ITER_MOD;
4031 
4032 	return iter;
4033 }
4034 
4035 static int
4036 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter)
4037 {
4038 	struct ftrace_mod_load *ftrace_mod;
4039 	struct trace_array *tr = iter->tr;
4040 
4041 	if (WARN_ON_ONCE(!iter->mod_list) ||
4042 			 iter->mod_list == &tr->mod_trace ||
4043 			 iter->mod_list == &tr->mod_notrace)
4044 		return -EIO;
4045 
4046 	ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list);
4047 
4048 	if (ftrace_mod->func)
4049 		seq_printf(m, "%s", ftrace_mod->func);
4050 	else
4051 		seq_putc(m, '*');
4052 
4053 	seq_printf(m, ":mod:%s\n", ftrace_mod->module);
4054 
4055 	return 0;
4056 }
4057 
4058 static void *
4059 t_func_next(struct seq_file *m, loff_t *pos)
4060 {
4061 	struct ftrace_iterator *iter = m->private;
4062 	struct dyn_ftrace *rec = NULL;
4063 
4064 	(*pos)++;
4065 
4066  retry:
4067 	if (iter->idx >= iter->pg->index) {
4068 		if (iter->pg->next) {
4069 			iter->pg = iter->pg->next;
4070 			iter->idx = 0;
4071 			goto retry;
4072 		}
4073 	} else {
4074 		rec = &iter->pg->records[iter->idx++];
4075 		if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
4076 		     !ftrace_lookup_ip(iter->hash, rec->ip)) ||
4077 
4078 		    ((iter->flags & FTRACE_ITER_ENABLED) &&
4079 		     !(rec->flags & FTRACE_FL_ENABLED)) ||
4080 
4081 		    ((iter->flags & FTRACE_ITER_TOUCHED) &&
4082 		     !(rec->flags & FTRACE_FL_TOUCHED))) {
4083 
4084 			rec = NULL;
4085 			goto retry;
4086 		}
4087 	}
4088 
4089 	if (!rec)
4090 		return NULL;
4091 
4092 	iter->pos = iter->func_pos = *pos;
4093 	iter->func = rec;
4094 
4095 	return iter;
4096 }
4097 
4098 static void *
4099 t_next(struct seq_file *m, void *v, loff_t *pos)
4100 {
4101 	struct ftrace_iterator *iter = m->private;
4102 	loff_t l = *pos; /* t_probe_start() must use original pos */
4103 	void *ret;
4104 
4105 	if (unlikely(ftrace_disabled))
4106 		return NULL;
4107 
4108 	if (iter->flags & FTRACE_ITER_PROBE)
4109 		return t_probe_next(m, pos);
4110 
4111 	if (iter->flags & FTRACE_ITER_MOD)
4112 		return t_mod_next(m, pos);
4113 
4114 	if (iter->flags & FTRACE_ITER_PRINTALL) {
4115 		/* next must increment pos, and t_probe_start does not */
4116 		(*pos)++;
4117 		return t_mod_start(m, &l);
4118 	}
4119 
4120 	ret = t_func_next(m, pos);
4121 
4122 	if (!ret)
4123 		return t_mod_start(m, &l);
4124 
4125 	return ret;
4126 }
4127 
4128 static void reset_iter_read(struct ftrace_iterator *iter)
4129 {
4130 	iter->pos = 0;
4131 	iter->func_pos = 0;
4132 	iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD);
4133 }
4134 
4135 static void *t_start(struct seq_file *m, loff_t *pos)
4136 {
4137 	struct ftrace_iterator *iter = m->private;
4138 	void *p = NULL;
4139 	loff_t l;
4140 
4141 	mutex_lock(&ftrace_lock);
4142 
4143 	if (unlikely(ftrace_disabled))
4144 		return NULL;
4145 
4146 	/*
4147 	 * If an lseek was done, then reset and start from beginning.
4148 	 */
4149 	if (*pos < iter->pos)
4150 		reset_iter_read(iter);
4151 
4152 	/*
4153 	 * For set_ftrace_filter reading, if we have the filter
4154 	 * off, we can short cut and just print out that all
4155 	 * functions are enabled.
4156 	 */
4157 	if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
4158 	    ftrace_hash_empty(iter->hash)) {
4159 		iter->func_pos = 1; /* Account for the message */
4160 		if (*pos > 0)
4161 			return t_mod_start(m, pos);
4162 		iter->flags |= FTRACE_ITER_PRINTALL;
4163 		/* reset in case of seek/pread */
4164 		iter->flags &= ~FTRACE_ITER_PROBE;
4165 		return iter;
4166 	}
4167 
4168 	if (iter->flags & FTRACE_ITER_MOD)
4169 		return t_mod_start(m, pos);
4170 
4171 	/*
4172 	 * Unfortunately, we need to restart at ftrace_pages_start
4173 	 * every time we let go of the ftrace_mutex. This is because
4174 	 * those pointers can change without the lock.
4175 	 */
4176 	iter->pg = ftrace_pages_start;
4177 	iter->idx = 0;
4178 	for (l = 0; l <= *pos; ) {
4179 		p = t_func_next(m, &l);
4180 		if (!p)
4181 			break;
4182 	}
4183 
4184 	if (!p)
4185 		return t_mod_start(m, pos);
4186 
4187 	return iter;
4188 }
4189 
4190 static void t_stop(struct seq_file *m, void *p)
4191 {
4192 	mutex_unlock(&ftrace_lock);
4193 }
4194 
4195 void * __weak
4196 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec)
4197 {
4198 	return NULL;
4199 }
4200 
4201 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops,
4202 				struct dyn_ftrace *rec)
4203 {
4204 	void *ptr;
4205 
4206 	ptr = arch_ftrace_trampoline_func(ops, rec);
4207 	if (ptr)
4208 		seq_printf(m, " ->%pS", ptr);
4209 }
4210 
4211 #ifdef FTRACE_MCOUNT_MAX_OFFSET
4212 /*
4213  * Weak functions can still have an mcount/fentry that is saved in
4214  * the __mcount_loc section. These can be detected by having a
4215  * symbol offset of greater than FTRACE_MCOUNT_MAX_OFFSET, as the
4216  * symbol found by kallsyms is not the function that the mcount/fentry
4217  * is part of. The offset is much greater in these cases.
4218  *
4219  * Test the record to make sure that the ip points to a valid kallsyms
4220  * and if not, mark it disabled.
4221  */
4222 static int test_for_valid_rec(struct dyn_ftrace *rec)
4223 {
4224 	char str[KSYM_SYMBOL_LEN];
4225 	unsigned long offset;
4226 	const char *ret;
4227 
4228 	ret = kallsyms_lookup(rec->ip, NULL, &offset, NULL, str);
4229 
4230 	/* Weak functions can cause invalid addresses */
4231 	if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) {
4232 		rec->flags |= FTRACE_FL_DISABLED;
4233 		return 0;
4234 	}
4235 	return 1;
4236 }
4237 
4238 static struct workqueue_struct *ftrace_check_wq __initdata;
4239 static struct work_struct ftrace_check_work __initdata;
4240 
4241 /*
4242  * Scan all the mcount/fentry entries to make sure they are valid.
4243  */
4244 static __init void ftrace_check_work_func(struct work_struct *work)
4245 {
4246 	struct ftrace_page *pg;
4247 	struct dyn_ftrace *rec;
4248 
4249 	mutex_lock(&ftrace_lock);
4250 	do_for_each_ftrace_rec(pg, rec) {
4251 		test_for_valid_rec(rec);
4252 	} while_for_each_ftrace_rec();
4253 	mutex_unlock(&ftrace_lock);
4254 }
4255 
4256 static int __init ftrace_check_for_weak_functions(void)
4257 {
4258 	INIT_WORK(&ftrace_check_work, ftrace_check_work_func);
4259 
4260 	ftrace_check_wq = alloc_workqueue("ftrace_check_wq", WQ_UNBOUND, 0);
4261 
4262 	queue_work(ftrace_check_wq, &ftrace_check_work);
4263 	return 0;
4264 }
4265 
4266 static int __init ftrace_check_sync(void)
4267 {
4268 	/* Make sure the ftrace_check updates are finished */
4269 	if (ftrace_check_wq)
4270 		destroy_workqueue(ftrace_check_wq);
4271 	return 0;
4272 }
4273 
4274 late_initcall_sync(ftrace_check_sync);
4275 subsys_initcall(ftrace_check_for_weak_functions);
4276 
4277 static int print_rec(struct seq_file *m, unsigned long ip)
4278 {
4279 	unsigned long offset;
4280 	char str[KSYM_SYMBOL_LEN];
4281 	char *modname;
4282 	const char *ret;
4283 
4284 	ret = kallsyms_lookup(ip, NULL, &offset, &modname, str);
4285 	/* Weak functions can cause invalid addresses */
4286 	if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) {
4287 		snprintf(str, KSYM_SYMBOL_LEN, "%s_%ld",
4288 			 FTRACE_INVALID_FUNCTION, offset);
4289 		ret = NULL;
4290 	}
4291 
4292 	seq_puts(m, str);
4293 	if (modname)
4294 		seq_printf(m, " [%s]", modname);
4295 	return ret == NULL ? -1 : 0;
4296 }
4297 #else
4298 static inline int test_for_valid_rec(struct dyn_ftrace *rec)
4299 {
4300 	return 1;
4301 }
4302 
4303 static inline int print_rec(struct seq_file *m, unsigned long ip)
4304 {
4305 	seq_printf(m, "%ps", (void *)ip);
4306 	return 0;
4307 }
4308 #endif
4309 
4310 static int t_show(struct seq_file *m, void *v)
4311 {
4312 	struct ftrace_iterator *iter = m->private;
4313 	struct dyn_ftrace *rec;
4314 
4315 	if (iter->flags & FTRACE_ITER_PROBE)
4316 		return t_probe_show(m, iter);
4317 
4318 	if (iter->flags & FTRACE_ITER_MOD)
4319 		return t_mod_show(m, iter);
4320 
4321 	if (iter->flags & FTRACE_ITER_PRINTALL) {
4322 		if (iter->flags & FTRACE_ITER_NOTRACE)
4323 			seq_puts(m, "#### no functions disabled ####\n");
4324 		else
4325 			seq_puts(m, "#### all functions enabled ####\n");
4326 		return 0;
4327 	}
4328 
4329 	rec = iter->func;
4330 
4331 	if (!rec)
4332 		return 0;
4333 
4334 	if (iter->flags & FTRACE_ITER_ADDRS)
4335 		seq_printf(m, "%lx ", rec->ip);
4336 
4337 	if (print_rec(m, rec->ip)) {
4338 		/* This should only happen when a rec is disabled */
4339 		WARN_ON_ONCE(!(rec->flags & FTRACE_FL_DISABLED));
4340 		seq_putc(m, '\n');
4341 		return 0;
4342 	}
4343 
4344 	if (iter->flags & (FTRACE_ITER_ENABLED | FTRACE_ITER_TOUCHED)) {
4345 		struct ftrace_ops *ops;
4346 
4347 		seq_printf(m, " (%ld)%s%s%s%s%s",
4348 			   ftrace_rec_count(rec),
4349 			   rec->flags & FTRACE_FL_REGS ? " R" : "  ",
4350 			   rec->flags & FTRACE_FL_IPMODIFY ? " I" : "  ",
4351 			   rec->flags & FTRACE_FL_DIRECT ? " D" : "  ",
4352 			   rec->flags & FTRACE_FL_CALL_OPS ? " O" : "  ",
4353 			   rec->flags & FTRACE_FL_MODIFIED ? " M " : "   ");
4354 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
4355 			ops = ftrace_find_tramp_ops_any(rec);
4356 			if (ops) {
4357 				do {
4358 					seq_printf(m, "\ttramp: %pS (%pS)",
4359 						   (void *)ops->trampoline,
4360 						   (void *)ops->func);
4361 					add_trampoline_func(m, ops, rec);
4362 					ops = ftrace_find_tramp_ops_next(rec, ops);
4363 				} while (ops);
4364 			} else
4365 				seq_puts(m, "\ttramp: ERROR!");
4366 		} else {
4367 			add_trampoline_func(m, NULL, rec);
4368 		}
4369 		if (rec->flags & FTRACE_FL_CALL_OPS_EN) {
4370 			ops = ftrace_find_unique_ops(rec);
4371 			if (ops) {
4372 				seq_printf(m, "\tops: %pS (%pS)",
4373 					   ops, ops->func);
4374 			} else {
4375 				seq_puts(m, "\tops: ERROR!");
4376 			}
4377 		}
4378 		if (rec->flags & FTRACE_FL_DIRECT) {
4379 			unsigned long direct;
4380 
4381 			direct = ftrace_find_rec_direct(rec->ip);
4382 			if (direct)
4383 				seq_printf(m, "\n\tdirect-->%pS", (void *)direct);
4384 		}
4385 	}
4386 
4387 	seq_putc(m, '\n');
4388 
4389 	return 0;
4390 }
4391 
4392 static const struct seq_operations show_ftrace_seq_ops = {
4393 	.start = t_start,
4394 	.next = t_next,
4395 	.stop = t_stop,
4396 	.show = t_show,
4397 };
4398 
4399 static int
4400 ftrace_avail_open(struct inode *inode, struct file *file)
4401 {
4402 	struct ftrace_iterator *iter;
4403 	int ret;
4404 
4405 	ret = security_locked_down(LOCKDOWN_TRACEFS);
4406 	if (ret)
4407 		return ret;
4408 
4409 	if (unlikely(ftrace_disabled))
4410 		return -ENODEV;
4411 
4412 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
4413 	if (!iter)
4414 		return -ENOMEM;
4415 
4416 	iter->pg = ftrace_pages_start;
4417 	iter->ops = &global_ops;
4418 
4419 	return 0;
4420 }
4421 
4422 static int
4423 ftrace_enabled_open(struct inode *inode, struct file *file)
4424 {
4425 	struct ftrace_iterator *iter;
4426 
4427 	/*
4428 	 * This shows us what functions are currently being
4429 	 * traced and by what. Not sure if we want lockdown
4430 	 * to hide such critical information for an admin.
4431 	 * Although, perhaps it can show information we don't
4432 	 * want people to see, but if something is tracing
4433 	 * something, we probably want to know about it.
4434 	 */
4435 
4436 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
4437 	if (!iter)
4438 		return -ENOMEM;
4439 
4440 	iter->pg = ftrace_pages_start;
4441 	iter->flags = FTRACE_ITER_ENABLED;
4442 	iter->ops = &global_ops;
4443 
4444 	return 0;
4445 }
4446 
4447 static int
4448 ftrace_touched_open(struct inode *inode, struct file *file)
4449 {
4450 	struct ftrace_iterator *iter;
4451 
4452 	/*
4453 	 * This shows us what functions have ever been enabled
4454 	 * (traced, direct, patched, etc). Not sure if we want lockdown
4455 	 * to hide such critical information for an admin.
4456 	 * Although, perhaps it can show information we don't
4457 	 * want people to see, but if something had traced
4458 	 * something, we probably want to know about it.
4459 	 */
4460 
4461 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
4462 	if (!iter)
4463 		return -ENOMEM;
4464 
4465 	iter->pg = ftrace_pages_start;
4466 	iter->flags = FTRACE_ITER_TOUCHED;
4467 	iter->ops = &global_ops;
4468 
4469 	return 0;
4470 }
4471 
4472 static int
4473 ftrace_avail_addrs_open(struct inode *inode, struct file *file)
4474 {
4475 	struct ftrace_iterator *iter;
4476 	int ret;
4477 
4478 	ret = security_locked_down(LOCKDOWN_TRACEFS);
4479 	if (ret)
4480 		return ret;
4481 
4482 	if (unlikely(ftrace_disabled))
4483 		return -ENODEV;
4484 
4485 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
4486 	if (!iter)
4487 		return -ENOMEM;
4488 
4489 	iter->pg = ftrace_pages_start;
4490 	iter->flags = FTRACE_ITER_ADDRS;
4491 	iter->ops = &global_ops;
4492 
4493 	return 0;
4494 }
4495 
4496 /**
4497  * ftrace_regex_open - initialize function tracer filter files
4498  * @ops: The ftrace_ops that hold the hash filters
4499  * @flag: The type of filter to process
4500  * @inode: The inode, usually passed in to your open routine
4501  * @file: The file, usually passed in to your open routine
4502  *
4503  * ftrace_regex_open() initializes the filter files for the
4504  * @ops. Depending on @flag it may process the filter hash or
4505  * the notrace hash of @ops. With this called from the open
4506  * routine, you can use ftrace_filter_write() for the write
4507  * routine if @flag has FTRACE_ITER_FILTER set, or
4508  * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set.
4509  * tracing_lseek() should be used as the lseek routine, and
4510  * release must call ftrace_regex_release().
4511  *
4512  * Returns: 0 on success or a negative errno value on failure
4513  */
4514 int
4515 ftrace_regex_open(struct ftrace_ops *ops, int flag,
4516 		  struct inode *inode, struct file *file)
4517 {
4518 	struct ftrace_iterator *iter;
4519 	struct ftrace_hash *hash;
4520 	struct list_head *mod_head;
4521 	struct trace_array *tr = ops->private;
4522 	int ret = -ENOMEM;
4523 
4524 	ftrace_ops_init(ops);
4525 
4526 	if (unlikely(ftrace_disabled))
4527 		return -ENODEV;
4528 
4529 	if (tracing_check_open_get_tr(tr))
4530 		return -ENODEV;
4531 
4532 	iter = kzalloc(sizeof(*iter), GFP_KERNEL);
4533 	if (!iter)
4534 		goto out;
4535 
4536 	if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX))
4537 		goto out;
4538 
4539 	iter->ops = ops;
4540 	iter->flags = flag;
4541 	iter->tr = tr;
4542 
4543 	mutex_lock(&ops->func_hash->regex_lock);
4544 
4545 	if (flag & FTRACE_ITER_NOTRACE) {
4546 		hash = ops->func_hash->notrace_hash;
4547 		mod_head = tr ? &tr->mod_notrace : NULL;
4548 	} else {
4549 		hash = ops->func_hash->filter_hash;
4550 		mod_head = tr ? &tr->mod_trace : NULL;
4551 	}
4552 
4553 	iter->mod_list = mod_head;
4554 
4555 	if (file->f_mode & FMODE_WRITE) {
4556 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
4557 
4558 		if (file->f_flags & O_TRUNC) {
4559 			iter->hash = alloc_ftrace_hash(size_bits);
4560 			clear_ftrace_mod_list(mod_head);
4561 	        } else {
4562 			iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash);
4563 		}
4564 
4565 		if (!iter->hash) {
4566 			trace_parser_put(&iter->parser);
4567 			goto out_unlock;
4568 		}
4569 	} else
4570 		iter->hash = hash;
4571 
4572 	ret = 0;
4573 
4574 	if (file->f_mode & FMODE_READ) {
4575 		iter->pg = ftrace_pages_start;
4576 
4577 		ret = seq_open(file, &show_ftrace_seq_ops);
4578 		if (!ret) {
4579 			struct seq_file *m = file->private_data;
4580 			m->private = iter;
4581 		} else {
4582 			/* Failed */
4583 			free_ftrace_hash(iter->hash);
4584 			trace_parser_put(&iter->parser);
4585 		}
4586 	} else
4587 		file->private_data = iter;
4588 
4589  out_unlock:
4590 	mutex_unlock(&ops->func_hash->regex_lock);
4591 
4592  out:
4593 	if (ret) {
4594 		kfree(iter);
4595 		if (tr)
4596 			trace_array_put(tr);
4597 	}
4598 
4599 	return ret;
4600 }
4601 
4602 static int
4603 ftrace_filter_open(struct inode *inode, struct file *file)
4604 {
4605 	struct ftrace_ops *ops = inode->i_private;
4606 
4607 	/* Checks for tracefs lockdown */
4608 	return ftrace_regex_open(ops,
4609 			FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES,
4610 			inode, file);
4611 }
4612 
4613 static int
4614 ftrace_notrace_open(struct inode *inode, struct file *file)
4615 {
4616 	struct ftrace_ops *ops = inode->i_private;
4617 
4618 	/* Checks for tracefs lockdown */
4619 	return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE,
4620 				 inode, file);
4621 }
4622 
4623 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */
4624 struct ftrace_glob {
4625 	char *search;
4626 	unsigned len;
4627 	int type;
4628 };
4629 
4630 /*
4631  * If symbols in an architecture don't correspond exactly to the user-visible
4632  * name of what they represent, it is possible to define this function to
4633  * perform the necessary adjustments.
4634 */
4635 char * __weak arch_ftrace_match_adjust(char *str, const char *search)
4636 {
4637 	return str;
4638 }
4639 
4640 static int ftrace_match(char *str, struct ftrace_glob *g)
4641 {
4642 	int matched = 0;
4643 	int slen;
4644 
4645 	str = arch_ftrace_match_adjust(str, g->search);
4646 
4647 	switch (g->type) {
4648 	case MATCH_FULL:
4649 		if (strcmp(str, g->search) == 0)
4650 			matched = 1;
4651 		break;
4652 	case MATCH_FRONT_ONLY:
4653 		if (strncmp(str, g->search, g->len) == 0)
4654 			matched = 1;
4655 		break;
4656 	case MATCH_MIDDLE_ONLY:
4657 		if (strstr(str, g->search))
4658 			matched = 1;
4659 		break;
4660 	case MATCH_END_ONLY:
4661 		slen = strlen(str);
4662 		if (slen >= g->len &&
4663 		    memcmp(str + slen - g->len, g->search, g->len) == 0)
4664 			matched = 1;
4665 		break;
4666 	case MATCH_GLOB:
4667 		if (glob_match(g->search, str))
4668 			matched = 1;
4669 		break;
4670 	}
4671 
4672 	return matched;
4673 }
4674 
4675 static int
4676 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter)
4677 {
4678 	struct ftrace_func_entry *entry;
4679 	int ret = 0;
4680 
4681 	entry = ftrace_lookup_ip(hash, rec->ip);
4682 	if (clear_filter) {
4683 		/* Do nothing if it doesn't exist */
4684 		if (!entry)
4685 			return 0;
4686 
4687 		free_hash_entry(hash, entry);
4688 	} else {
4689 		/* Do nothing if it exists */
4690 		if (entry)
4691 			return 0;
4692 		if (add_hash_entry(hash, rec->ip) == NULL)
4693 			ret = -ENOMEM;
4694 	}
4695 	return ret;
4696 }
4697 
4698 static int
4699 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g,
4700 		 int clear_filter)
4701 {
4702 	long index;
4703 	struct ftrace_page *pg;
4704 	struct dyn_ftrace *rec;
4705 
4706 	/* The index starts at 1 */
4707 	if (kstrtoul(func_g->search, 0, &index) || --index < 0)
4708 		return 0;
4709 
4710 	do_for_each_ftrace_rec(pg, rec) {
4711 		if (pg->index <= index) {
4712 			index -= pg->index;
4713 			/* this is a double loop, break goes to the next page */
4714 			break;
4715 		}
4716 		rec = &pg->records[index];
4717 		enter_record(hash, rec, clear_filter);
4718 		return 1;
4719 	} while_for_each_ftrace_rec();
4720 	return 0;
4721 }
4722 
4723 #ifdef FTRACE_MCOUNT_MAX_OFFSET
4724 static int lookup_ip(unsigned long ip, char **modname, char *str)
4725 {
4726 	unsigned long offset;
4727 
4728 	kallsyms_lookup(ip, NULL, &offset, modname, str);
4729 	if (offset > FTRACE_MCOUNT_MAX_OFFSET)
4730 		return -1;
4731 	return 0;
4732 }
4733 #else
4734 static int lookup_ip(unsigned long ip, char **modname, char *str)
4735 {
4736 	kallsyms_lookup(ip, NULL, NULL, modname, str);
4737 	return 0;
4738 }
4739 #endif
4740 
4741 static int
4742 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g,
4743 		struct ftrace_glob *mod_g, int exclude_mod)
4744 {
4745 	char str[KSYM_SYMBOL_LEN];
4746 	char *modname;
4747 
4748 	if (lookup_ip(rec->ip, &modname, str)) {
4749 		/* This should only happen when a rec is disabled */
4750 		WARN_ON_ONCE(system_state == SYSTEM_RUNNING &&
4751 			     !(rec->flags & FTRACE_FL_DISABLED));
4752 		return 0;
4753 	}
4754 
4755 	if (mod_g) {
4756 		int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0;
4757 
4758 		/* blank module name to match all modules */
4759 		if (!mod_g->len) {
4760 			/* blank module globbing: modname xor exclude_mod */
4761 			if (!exclude_mod != !modname)
4762 				goto func_match;
4763 			return 0;
4764 		}
4765 
4766 		/*
4767 		 * exclude_mod is set to trace everything but the given
4768 		 * module. If it is set and the module matches, then
4769 		 * return 0. If it is not set, and the module doesn't match
4770 		 * also return 0. Otherwise, check the function to see if
4771 		 * that matches.
4772 		 */
4773 		if (!mod_matches == !exclude_mod)
4774 			return 0;
4775 func_match:
4776 		/* blank search means to match all funcs in the mod */
4777 		if (!func_g->len)
4778 			return 1;
4779 	}
4780 
4781 	return ftrace_match(str, func_g);
4782 }
4783 
4784 static int
4785 match_records(struct ftrace_hash *hash, char *func, int len, char *mod)
4786 {
4787 	struct ftrace_page *pg;
4788 	struct dyn_ftrace *rec;
4789 	struct ftrace_glob func_g = { .type = MATCH_FULL };
4790 	struct ftrace_glob mod_g = { .type = MATCH_FULL };
4791 	struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL;
4792 	int exclude_mod = 0;
4793 	int found = 0;
4794 	int ret;
4795 	int clear_filter = 0;
4796 
4797 	if (func) {
4798 		func_g.type = filter_parse_regex(func, len, &func_g.search,
4799 						 &clear_filter);
4800 		func_g.len = strlen(func_g.search);
4801 	}
4802 
4803 	if (mod) {
4804 		mod_g.type = filter_parse_regex(mod, strlen(mod),
4805 				&mod_g.search, &exclude_mod);
4806 		mod_g.len = strlen(mod_g.search);
4807 	}
4808 
4809 	mutex_lock(&ftrace_lock);
4810 
4811 	if (unlikely(ftrace_disabled))
4812 		goto out_unlock;
4813 
4814 	if (func_g.type == MATCH_INDEX) {
4815 		found = add_rec_by_index(hash, &func_g, clear_filter);
4816 		goto out_unlock;
4817 	}
4818 
4819 	do_for_each_ftrace_rec(pg, rec) {
4820 
4821 		if (rec->flags & FTRACE_FL_DISABLED)
4822 			continue;
4823 
4824 		if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) {
4825 			ret = enter_record(hash, rec, clear_filter);
4826 			if (ret < 0) {
4827 				found = ret;
4828 				goto out_unlock;
4829 			}
4830 			found = 1;
4831 		}
4832 		cond_resched();
4833 	} while_for_each_ftrace_rec();
4834  out_unlock:
4835 	mutex_unlock(&ftrace_lock);
4836 
4837 	return found;
4838 }
4839 
4840 static int
4841 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len)
4842 {
4843 	return match_records(hash, buff, len, NULL);
4844 }
4845 
4846 static void ftrace_ops_update_code(struct ftrace_ops *ops,
4847 				   struct ftrace_ops_hash *old_hash)
4848 {
4849 	struct ftrace_ops *op;
4850 
4851 	if (!ftrace_enabled)
4852 		return;
4853 
4854 	if (ops->flags & FTRACE_OPS_FL_ENABLED) {
4855 		ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash);
4856 		return;
4857 	}
4858 
4859 	/*
4860 	 * If this is the shared global_ops filter, then we need to
4861 	 * check if there is another ops that shares it, is enabled.
4862 	 * If so, we still need to run the modify code.
4863 	 */
4864 	if (ops->func_hash != &global_ops.local_hash)
4865 		return;
4866 
4867 	do_for_each_ftrace_op(op, ftrace_ops_list) {
4868 		if (op->func_hash == &global_ops.local_hash &&
4869 		    op->flags & FTRACE_OPS_FL_ENABLED) {
4870 			ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash);
4871 			/* Only need to do this once */
4872 			return;
4873 		}
4874 	} while_for_each_ftrace_op(op);
4875 }
4876 
4877 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops,
4878 					   struct ftrace_hash **orig_hash,
4879 					   struct ftrace_hash *hash,
4880 					   int enable)
4881 {
4882 	if (ops->flags & FTRACE_OPS_FL_SUBOP)
4883 		return ftrace_hash_move_and_update_subops(ops, orig_hash, hash, enable);
4884 
4885 	/*
4886 	 * If this ops is not enabled, it could be sharing its filters
4887 	 * with a subop. If that's the case, update the subop instead of
4888 	 * this ops. Shared filters are only allowed to have one ops set
4889 	 * at a time, and if we update the ops that is not enabled,
4890 	 * it will not affect subops that share it.
4891 	 */
4892 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) {
4893 		struct ftrace_ops *op;
4894 
4895 		/* Check if any other manager subops maps to this hash */
4896 		do_for_each_ftrace_op(op, ftrace_ops_list) {
4897 			struct ftrace_ops *subops;
4898 
4899 			list_for_each_entry(subops, &op->subop_list, list) {
4900 				if ((subops->flags & FTRACE_OPS_FL_ENABLED) &&
4901 				     subops->func_hash == ops->func_hash) {
4902 					return ftrace_hash_move_and_update_subops(subops, orig_hash, hash, enable);
4903 				}
4904 			}
4905 		} while_for_each_ftrace_op(op);
4906 	}
4907 
4908 	return __ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable);
4909 }
4910 
4911 static bool module_exists(const char *module)
4912 {
4913 	/* All modules have the symbol __this_module */
4914 	static const char this_mod[] = "__this_module";
4915 	char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2];
4916 	unsigned long val;
4917 	int n;
4918 
4919 	n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod);
4920 
4921 	if (n > sizeof(modname) - 1)
4922 		return false;
4923 
4924 	val = module_kallsyms_lookup_name(modname);
4925 	return val != 0;
4926 }
4927 
4928 static int cache_mod(struct trace_array *tr,
4929 		     const char *func, char *module, int enable)
4930 {
4931 	struct ftrace_mod_load *ftrace_mod, *n;
4932 	struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace;
4933 	int ret;
4934 
4935 	mutex_lock(&ftrace_lock);
4936 
4937 	/* We do not cache inverse filters */
4938 	if (func[0] == '!') {
4939 		func++;
4940 		ret = -EINVAL;
4941 
4942 		/* Look to remove this hash */
4943 		list_for_each_entry_safe(ftrace_mod, n, head, list) {
4944 			if (strcmp(ftrace_mod->module, module) != 0)
4945 				continue;
4946 
4947 			/* no func matches all */
4948 			if (strcmp(func, "*") == 0 ||
4949 			    (ftrace_mod->func &&
4950 			     strcmp(ftrace_mod->func, func) == 0)) {
4951 				ret = 0;
4952 				free_ftrace_mod(ftrace_mod);
4953 				continue;
4954 			}
4955 		}
4956 		goto out;
4957 	}
4958 
4959 	ret = -EINVAL;
4960 	/* We only care about modules that have not been loaded yet */
4961 	if (module_exists(module))
4962 		goto out;
4963 
4964 	/* Save this string off, and execute it when the module is loaded */
4965 	ret = ftrace_add_mod(tr, func, module, enable);
4966  out:
4967 	mutex_unlock(&ftrace_lock);
4968 
4969 	return ret;
4970 }
4971 
4972 static int
4973 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
4974 		 int reset, int enable);
4975 
4976 #ifdef CONFIG_MODULES
4977 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops,
4978 			     char *mod, bool enable)
4979 {
4980 	struct ftrace_mod_load *ftrace_mod, *n;
4981 	struct ftrace_hash **orig_hash, *new_hash;
4982 	LIST_HEAD(process_mods);
4983 	char *func;
4984 
4985 	mutex_lock(&ops->func_hash->regex_lock);
4986 
4987 	if (enable)
4988 		orig_hash = &ops->func_hash->filter_hash;
4989 	else
4990 		orig_hash = &ops->func_hash->notrace_hash;
4991 
4992 	new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS,
4993 					      *orig_hash);
4994 	if (!new_hash)
4995 		goto out; /* warn? */
4996 
4997 	mutex_lock(&ftrace_lock);
4998 
4999 	list_for_each_entry_safe(ftrace_mod, n, head, list) {
5000 
5001 		if (strcmp(ftrace_mod->module, mod) != 0)
5002 			continue;
5003 
5004 		if (ftrace_mod->func)
5005 			func = kstrdup(ftrace_mod->func, GFP_KERNEL);
5006 		else
5007 			func = kstrdup("*", GFP_KERNEL);
5008 
5009 		if (!func) /* warn? */
5010 			continue;
5011 
5012 		list_move(&ftrace_mod->list, &process_mods);
5013 
5014 		/* Use the newly allocated func, as it may be "*" */
5015 		kfree(ftrace_mod->func);
5016 		ftrace_mod->func = func;
5017 	}
5018 
5019 	mutex_unlock(&ftrace_lock);
5020 
5021 	list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) {
5022 
5023 		func = ftrace_mod->func;
5024 
5025 		/* Grabs ftrace_lock, which is why we have this extra step */
5026 		match_records(new_hash, func, strlen(func), mod);
5027 		free_ftrace_mod(ftrace_mod);
5028 	}
5029 
5030 	if (enable && list_empty(head))
5031 		new_hash->flags &= ~FTRACE_HASH_FL_MOD;
5032 
5033 	mutex_lock(&ftrace_lock);
5034 
5035 	ftrace_hash_move_and_update_ops(ops, orig_hash,
5036 					      new_hash, enable);
5037 	mutex_unlock(&ftrace_lock);
5038 
5039  out:
5040 	mutex_unlock(&ops->func_hash->regex_lock);
5041 
5042 	free_ftrace_hash(new_hash);
5043 }
5044 
5045 static void process_cached_mods(const char *mod_name)
5046 {
5047 	struct trace_array *tr;
5048 	char *mod;
5049 
5050 	mod = kstrdup(mod_name, GFP_KERNEL);
5051 	if (!mod)
5052 		return;
5053 
5054 	mutex_lock(&trace_types_lock);
5055 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
5056 		if (!list_empty(&tr->mod_trace))
5057 			process_mod_list(&tr->mod_trace, tr->ops, mod, true);
5058 		if (!list_empty(&tr->mod_notrace))
5059 			process_mod_list(&tr->mod_notrace, tr->ops, mod, false);
5060 	}
5061 	mutex_unlock(&trace_types_lock);
5062 
5063 	kfree(mod);
5064 }
5065 #endif
5066 
5067 /*
5068  * We register the module command as a template to show others how
5069  * to register the a command as well.
5070  */
5071 
5072 static int
5073 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash,
5074 		    char *func_orig, char *cmd, char *module, int enable)
5075 {
5076 	char *func;
5077 	int ret;
5078 
5079 	/* match_records() modifies func, and we need the original */
5080 	func = kstrdup(func_orig, GFP_KERNEL);
5081 	if (!func)
5082 		return -ENOMEM;
5083 
5084 	/*
5085 	 * cmd == 'mod' because we only registered this func
5086 	 * for the 'mod' ftrace_func_command.
5087 	 * But if you register one func with multiple commands,
5088 	 * you can tell which command was used by the cmd
5089 	 * parameter.
5090 	 */
5091 	ret = match_records(hash, func, strlen(func), module);
5092 	kfree(func);
5093 
5094 	if (!ret)
5095 		return cache_mod(tr, func_orig, module, enable);
5096 	if (ret < 0)
5097 		return ret;
5098 	return 0;
5099 }
5100 
5101 static struct ftrace_func_command ftrace_mod_cmd = {
5102 	.name			= "mod",
5103 	.func			= ftrace_mod_callback,
5104 };
5105 
5106 static int __init ftrace_mod_cmd_init(void)
5107 {
5108 	return register_ftrace_command(&ftrace_mod_cmd);
5109 }
5110 core_initcall(ftrace_mod_cmd_init);
5111 
5112 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip,
5113 				      struct ftrace_ops *op, struct ftrace_regs *fregs)
5114 {
5115 	struct ftrace_probe_ops *probe_ops;
5116 	struct ftrace_func_probe *probe;
5117 
5118 	probe = container_of(op, struct ftrace_func_probe, ops);
5119 	probe_ops = probe->probe_ops;
5120 
5121 	/*
5122 	 * Disable preemption for these calls to prevent a RCU grace
5123 	 * period. This syncs the hash iteration and freeing of items
5124 	 * on the hash. rcu_read_lock is too dangerous here.
5125 	 */
5126 	preempt_disable_notrace();
5127 	probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data);
5128 	preempt_enable_notrace();
5129 }
5130 
5131 struct ftrace_func_map {
5132 	struct ftrace_func_entry	entry;
5133 	void				*data;
5134 };
5135 
5136 struct ftrace_func_mapper {
5137 	struct ftrace_hash		hash;
5138 };
5139 
5140 /**
5141  * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper
5142  *
5143  * Returns: a ftrace_func_mapper descriptor that can be used to map ips to data.
5144  */
5145 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void)
5146 {
5147 	struct ftrace_hash *hash;
5148 
5149 	/*
5150 	 * The mapper is simply a ftrace_hash, but since the entries
5151 	 * in the hash are not ftrace_func_entry type, we define it
5152 	 * as a separate structure.
5153 	 */
5154 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
5155 	return (struct ftrace_func_mapper *)hash;
5156 }
5157 
5158 /**
5159  * ftrace_func_mapper_find_ip - Find some data mapped to an ip
5160  * @mapper: The mapper that has the ip maps
5161  * @ip: the instruction pointer to find the data for
5162  *
5163  * Returns: the data mapped to @ip if found otherwise NULL. The return
5164  * is actually the address of the mapper data pointer. The address is
5165  * returned for use cases where the data is no bigger than a long, and
5166  * the user can use the data pointer as its data instead of having to
5167  * allocate more memory for the reference.
5168  */
5169 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper,
5170 				  unsigned long ip)
5171 {
5172 	struct ftrace_func_entry *entry;
5173 	struct ftrace_func_map *map;
5174 
5175 	entry = ftrace_lookup_ip(&mapper->hash, ip);
5176 	if (!entry)
5177 		return NULL;
5178 
5179 	map = (struct ftrace_func_map *)entry;
5180 	return &map->data;
5181 }
5182 
5183 /**
5184  * ftrace_func_mapper_add_ip - Map some data to an ip
5185  * @mapper: The mapper that has the ip maps
5186  * @ip: The instruction pointer address to map @data to
5187  * @data: The data to map to @ip
5188  *
5189  * Returns: 0 on success otherwise an error.
5190  */
5191 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper,
5192 			      unsigned long ip, void *data)
5193 {
5194 	struct ftrace_func_entry *entry;
5195 	struct ftrace_func_map *map;
5196 
5197 	entry = ftrace_lookup_ip(&mapper->hash, ip);
5198 	if (entry)
5199 		return -EBUSY;
5200 
5201 	map = kmalloc(sizeof(*map), GFP_KERNEL);
5202 	if (!map)
5203 		return -ENOMEM;
5204 
5205 	map->entry.ip = ip;
5206 	map->data = data;
5207 
5208 	__add_hash_entry(&mapper->hash, &map->entry);
5209 
5210 	return 0;
5211 }
5212 
5213 /**
5214  * ftrace_func_mapper_remove_ip - Remove an ip from the mapping
5215  * @mapper: The mapper that has the ip maps
5216  * @ip: The instruction pointer address to remove the data from
5217  *
5218  * Returns: the data if it is found, otherwise NULL.
5219  * Note, if the data pointer is used as the data itself, (see
5220  * ftrace_func_mapper_find_ip(), then the return value may be meaningless,
5221  * if the data pointer was set to zero.
5222  */
5223 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper,
5224 				   unsigned long ip)
5225 {
5226 	struct ftrace_func_entry *entry;
5227 	struct ftrace_func_map *map;
5228 	void *data;
5229 
5230 	entry = ftrace_lookup_ip(&mapper->hash, ip);
5231 	if (!entry)
5232 		return NULL;
5233 
5234 	map = (struct ftrace_func_map *)entry;
5235 	data = map->data;
5236 
5237 	remove_hash_entry(&mapper->hash, entry);
5238 	kfree(entry);
5239 
5240 	return data;
5241 }
5242 
5243 /**
5244  * free_ftrace_func_mapper - free a mapping of ips and data
5245  * @mapper: The mapper that has the ip maps
5246  * @free_func: A function to be called on each data item.
5247  *
5248  * This is used to free the function mapper. The @free_func is optional
5249  * and can be used if the data needs to be freed as well.
5250  */
5251 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper,
5252 			     ftrace_mapper_func free_func)
5253 {
5254 	struct ftrace_func_entry *entry;
5255 	struct ftrace_func_map *map;
5256 	struct hlist_head *hhd;
5257 	int size, i;
5258 
5259 	if (!mapper)
5260 		return;
5261 
5262 	if (free_func && mapper->hash.count) {
5263 		size = 1 << mapper->hash.size_bits;
5264 		for (i = 0; i < size; i++) {
5265 			hhd = &mapper->hash.buckets[i];
5266 			hlist_for_each_entry(entry, hhd, hlist) {
5267 				map = (struct ftrace_func_map *)entry;
5268 				free_func(map);
5269 			}
5270 		}
5271 	}
5272 	free_ftrace_hash(&mapper->hash);
5273 }
5274 
5275 static void release_probe(struct ftrace_func_probe *probe)
5276 {
5277 	struct ftrace_probe_ops *probe_ops;
5278 
5279 	mutex_lock(&ftrace_lock);
5280 
5281 	WARN_ON(probe->ref <= 0);
5282 
5283 	/* Subtract the ref that was used to protect this instance */
5284 	probe->ref--;
5285 
5286 	if (!probe->ref) {
5287 		probe_ops = probe->probe_ops;
5288 		/*
5289 		 * Sending zero as ip tells probe_ops to free
5290 		 * the probe->data itself
5291 		 */
5292 		if (probe_ops->free)
5293 			probe_ops->free(probe_ops, probe->tr, 0, probe->data);
5294 		list_del(&probe->list);
5295 		kfree(probe);
5296 	}
5297 	mutex_unlock(&ftrace_lock);
5298 }
5299 
5300 static void acquire_probe_locked(struct ftrace_func_probe *probe)
5301 {
5302 	/*
5303 	 * Add one ref to keep it from being freed when releasing the
5304 	 * ftrace_lock mutex.
5305 	 */
5306 	probe->ref++;
5307 }
5308 
5309 int
5310 register_ftrace_function_probe(char *glob, struct trace_array *tr,
5311 			       struct ftrace_probe_ops *probe_ops,
5312 			       void *data)
5313 {
5314 	struct ftrace_func_probe *probe = NULL, *iter;
5315 	struct ftrace_func_entry *entry;
5316 	struct ftrace_hash **orig_hash;
5317 	struct ftrace_hash *old_hash;
5318 	struct ftrace_hash *hash;
5319 	int count = 0;
5320 	int size;
5321 	int ret;
5322 	int i;
5323 
5324 	if (WARN_ON(!tr))
5325 		return -EINVAL;
5326 
5327 	/* We do not support '!' for function probes */
5328 	if (WARN_ON(glob[0] == '!'))
5329 		return -EINVAL;
5330 
5331 
5332 	mutex_lock(&ftrace_lock);
5333 	/* Check if the probe_ops is already registered */
5334 	list_for_each_entry(iter, &tr->func_probes, list) {
5335 		if (iter->probe_ops == probe_ops) {
5336 			probe = iter;
5337 			break;
5338 		}
5339 	}
5340 	if (!probe) {
5341 		probe = kzalloc(sizeof(*probe), GFP_KERNEL);
5342 		if (!probe) {
5343 			mutex_unlock(&ftrace_lock);
5344 			return -ENOMEM;
5345 		}
5346 		probe->probe_ops = probe_ops;
5347 		probe->ops.func = function_trace_probe_call;
5348 		probe->tr = tr;
5349 		ftrace_ops_init(&probe->ops);
5350 		list_add(&probe->list, &tr->func_probes);
5351 	}
5352 
5353 	acquire_probe_locked(probe);
5354 
5355 	mutex_unlock(&ftrace_lock);
5356 
5357 	/*
5358 	 * Note, there's a small window here that the func_hash->filter_hash
5359 	 * may be NULL or empty. Need to be careful when reading the loop.
5360 	 */
5361 	mutex_lock(&probe->ops.func_hash->regex_lock);
5362 
5363 	orig_hash = &probe->ops.func_hash->filter_hash;
5364 	old_hash = *orig_hash;
5365 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
5366 
5367 	if (!hash) {
5368 		ret = -ENOMEM;
5369 		goto out;
5370 	}
5371 
5372 	ret = ftrace_match_records(hash, glob, strlen(glob));
5373 
5374 	/* Nothing found? */
5375 	if (!ret)
5376 		ret = -EINVAL;
5377 
5378 	if (ret < 0)
5379 		goto out;
5380 
5381 	size = 1 << hash->size_bits;
5382 	for (i = 0; i < size; i++) {
5383 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5384 			if (ftrace_lookup_ip(old_hash, entry->ip))
5385 				continue;
5386 			/*
5387 			 * The caller might want to do something special
5388 			 * for each function we find. We call the callback
5389 			 * to give the caller an opportunity to do so.
5390 			 */
5391 			if (probe_ops->init) {
5392 				ret = probe_ops->init(probe_ops, tr,
5393 						      entry->ip, data,
5394 						      &probe->data);
5395 				if (ret < 0) {
5396 					if (probe_ops->free && count)
5397 						probe_ops->free(probe_ops, tr,
5398 								0, probe->data);
5399 					probe->data = NULL;
5400 					goto out;
5401 				}
5402 			}
5403 			count++;
5404 		}
5405 	}
5406 
5407 	mutex_lock(&ftrace_lock);
5408 
5409 	if (!count) {
5410 		/* Nothing was added? */
5411 		ret = -EINVAL;
5412 		goto out_unlock;
5413 	}
5414 
5415 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
5416 					      hash, 1);
5417 	if (ret < 0)
5418 		goto err_unlock;
5419 
5420 	/* One ref for each new function traced */
5421 	probe->ref += count;
5422 
5423 	if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED))
5424 		ret = ftrace_startup(&probe->ops, 0);
5425 
5426  out_unlock:
5427 	mutex_unlock(&ftrace_lock);
5428 
5429 	if (!ret)
5430 		ret = count;
5431  out:
5432 	mutex_unlock(&probe->ops.func_hash->regex_lock);
5433 	free_ftrace_hash(hash);
5434 
5435 	release_probe(probe);
5436 
5437 	return ret;
5438 
5439  err_unlock:
5440 	if (!probe_ops->free || !count)
5441 		goto out_unlock;
5442 
5443 	/* Failed to do the move, need to call the free functions */
5444 	for (i = 0; i < size; i++) {
5445 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5446 			if (ftrace_lookup_ip(old_hash, entry->ip))
5447 				continue;
5448 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
5449 		}
5450 	}
5451 	goto out_unlock;
5452 }
5453 
5454 int
5455 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr,
5456 				      struct ftrace_probe_ops *probe_ops)
5457 {
5458 	struct ftrace_func_probe *probe = NULL, *iter;
5459 	struct ftrace_ops_hash old_hash_ops;
5460 	struct ftrace_func_entry *entry;
5461 	struct ftrace_glob func_g;
5462 	struct ftrace_hash **orig_hash;
5463 	struct ftrace_hash *old_hash;
5464 	struct ftrace_hash *hash = NULL;
5465 	struct hlist_node *tmp;
5466 	struct hlist_head hhd;
5467 	char str[KSYM_SYMBOL_LEN];
5468 	int count = 0;
5469 	int i, ret = -ENODEV;
5470 	int size;
5471 
5472 	if (!glob || !strlen(glob) || !strcmp(glob, "*"))
5473 		func_g.search = NULL;
5474 	else {
5475 		int not;
5476 
5477 		func_g.type = filter_parse_regex(glob, strlen(glob),
5478 						 &func_g.search, &not);
5479 		func_g.len = strlen(func_g.search);
5480 
5481 		/* we do not support '!' for function probes */
5482 		if (WARN_ON(not))
5483 			return -EINVAL;
5484 	}
5485 
5486 	mutex_lock(&ftrace_lock);
5487 	/* Check if the probe_ops is already registered */
5488 	list_for_each_entry(iter, &tr->func_probes, list) {
5489 		if (iter->probe_ops == probe_ops) {
5490 			probe = iter;
5491 			break;
5492 		}
5493 	}
5494 	if (!probe)
5495 		goto err_unlock_ftrace;
5496 
5497 	ret = -EINVAL;
5498 	if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED))
5499 		goto err_unlock_ftrace;
5500 
5501 	acquire_probe_locked(probe);
5502 
5503 	mutex_unlock(&ftrace_lock);
5504 
5505 	mutex_lock(&probe->ops.func_hash->regex_lock);
5506 
5507 	orig_hash = &probe->ops.func_hash->filter_hash;
5508 	old_hash = *orig_hash;
5509 
5510 	if (ftrace_hash_empty(old_hash))
5511 		goto out_unlock;
5512 
5513 	old_hash_ops.filter_hash = old_hash;
5514 	/* Probes only have filters */
5515 	old_hash_ops.notrace_hash = NULL;
5516 
5517 	ret = -ENOMEM;
5518 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
5519 	if (!hash)
5520 		goto out_unlock;
5521 
5522 	INIT_HLIST_HEAD(&hhd);
5523 
5524 	size = 1 << hash->size_bits;
5525 	for (i = 0; i < size; i++) {
5526 		hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) {
5527 
5528 			if (func_g.search) {
5529 				kallsyms_lookup(entry->ip, NULL, NULL,
5530 						NULL, str);
5531 				if (!ftrace_match(str, &func_g))
5532 					continue;
5533 			}
5534 			count++;
5535 			remove_hash_entry(hash, entry);
5536 			hlist_add_head(&entry->hlist, &hhd);
5537 		}
5538 	}
5539 
5540 	/* Nothing found? */
5541 	if (!count) {
5542 		ret = -EINVAL;
5543 		goto out_unlock;
5544 	}
5545 
5546 	mutex_lock(&ftrace_lock);
5547 
5548 	WARN_ON(probe->ref < count);
5549 
5550 	probe->ref -= count;
5551 
5552 	if (ftrace_hash_empty(hash))
5553 		ftrace_shutdown(&probe->ops, 0);
5554 
5555 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
5556 					      hash, 1);
5557 
5558 	/* still need to update the function call sites */
5559 	if (ftrace_enabled && !ftrace_hash_empty(hash))
5560 		ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS,
5561 				       &old_hash_ops);
5562 	synchronize_rcu();
5563 
5564 	hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) {
5565 		hlist_del(&entry->hlist);
5566 		if (probe_ops->free)
5567 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
5568 		kfree(entry);
5569 	}
5570 	mutex_unlock(&ftrace_lock);
5571 
5572  out_unlock:
5573 	mutex_unlock(&probe->ops.func_hash->regex_lock);
5574 	free_ftrace_hash(hash);
5575 
5576 	release_probe(probe);
5577 
5578 	return ret;
5579 
5580  err_unlock_ftrace:
5581 	mutex_unlock(&ftrace_lock);
5582 	return ret;
5583 }
5584 
5585 void clear_ftrace_function_probes(struct trace_array *tr)
5586 {
5587 	struct ftrace_func_probe *probe, *n;
5588 
5589 	list_for_each_entry_safe(probe, n, &tr->func_probes, list)
5590 		unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops);
5591 }
5592 
5593 static LIST_HEAD(ftrace_commands);
5594 static DEFINE_MUTEX(ftrace_cmd_mutex);
5595 
5596 /*
5597  * Currently we only register ftrace commands from __init, so mark this
5598  * __init too.
5599  */
5600 __init int register_ftrace_command(struct ftrace_func_command *cmd)
5601 {
5602 	struct ftrace_func_command *p;
5603 	int ret = 0;
5604 
5605 	mutex_lock(&ftrace_cmd_mutex);
5606 	list_for_each_entry(p, &ftrace_commands, list) {
5607 		if (strcmp(cmd->name, p->name) == 0) {
5608 			ret = -EBUSY;
5609 			goto out_unlock;
5610 		}
5611 	}
5612 	list_add(&cmd->list, &ftrace_commands);
5613  out_unlock:
5614 	mutex_unlock(&ftrace_cmd_mutex);
5615 
5616 	return ret;
5617 }
5618 
5619 /*
5620  * Currently we only unregister ftrace commands from __init, so mark
5621  * this __init too.
5622  */
5623 __init int unregister_ftrace_command(struct ftrace_func_command *cmd)
5624 {
5625 	struct ftrace_func_command *p, *n;
5626 	int ret = -ENODEV;
5627 
5628 	mutex_lock(&ftrace_cmd_mutex);
5629 	list_for_each_entry_safe(p, n, &ftrace_commands, list) {
5630 		if (strcmp(cmd->name, p->name) == 0) {
5631 			ret = 0;
5632 			list_del_init(&p->list);
5633 			goto out_unlock;
5634 		}
5635 	}
5636  out_unlock:
5637 	mutex_unlock(&ftrace_cmd_mutex);
5638 
5639 	return ret;
5640 }
5641 
5642 static int ftrace_process_regex(struct ftrace_iterator *iter,
5643 				char *buff, int len, int enable)
5644 {
5645 	struct ftrace_hash *hash = iter->hash;
5646 	struct trace_array *tr = iter->ops->private;
5647 	char *func, *command, *next = buff;
5648 	struct ftrace_func_command *p;
5649 	int ret = -EINVAL;
5650 
5651 	func = strsep(&next, ":");
5652 
5653 	if (!next) {
5654 		ret = ftrace_match_records(hash, func, len);
5655 		if (!ret)
5656 			ret = -EINVAL;
5657 		if (ret < 0)
5658 			return ret;
5659 		return 0;
5660 	}
5661 
5662 	/* command found */
5663 
5664 	command = strsep(&next, ":");
5665 
5666 	mutex_lock(&ftrace_cmd_mutex);
5667 	list_for_each_entry(p, &ftrace_commands, list) {
5668 		if (strcmp(p->name, command) == 0) {
5669 			ret = p->func(tr, hash, func, command, next, enable);
5670 			goto out_unlock;
5671 		}
5672 	}
5673  out_unlock:
5674 	mutex_unlock(&ftrace_cmd_mutex);
5675 
5676 	return ret;
5677 }
5678 
5679 static ssize_t
5680 ftrace_regex_write(struct file *file, const char __user *ubuf,
5681 		   size_t cnt, loff_t *ppos, int enable)
5682 {
5683 	struct ftrace_iterator *iter;
5684 	struct trace_parser *parser;
5685 	ssize_t ret, read;
5686 
5687 	if (!cnt)
5688 		return 0;
5689 
5690 	if (file->f_mode & FMODE_READ) {
5691 		struct seq_file *m = file->private_data;
5692 		iter = m->private;
5693 	} else
5694 		iter = file->private_data;
5695 
5696 	if (unlikely(ftrace_disabled))
5697 		return -ENODEV;
5698 
5699 	/* iter->hash is a local copy, so we don't need regex_lock */
5700 
5701 	parser = &iter->parser;
5702 	read = trace_get_user(parser, ubuf, cnt, ppos);
5703 
5704 	if (read >= 0 && trace_parser_loaded(parser) &&
5705 	    !trace_parser_cont(parser)) {
5706 		ret = ftrace_process_regex(iter, parser->buffer,
5707 					   parser->idx, enable);
5708 		trace_parser_clear(parser);
5709 		if (ret < 0)
5710 			goto out;
5711 	}
5712 
5713 	ret = read;
5714  out:
5715 	return ret;
5716 }
5717 
5718 ssize_t
5719 ftrace_filter_write(struct file *file, const char __user *ubuf,
5720 		    size_t cnt, loff_t *ppos)
5721 {
5722 	return ftrace_regex_write(file, ubuf, cnt, ppos, 1);
5723 }
5724 
5725 ssize_t
5726 ftrace_notrace_write(struct file *file, const char __user *ubuf,
5727 		     size_t cnt, loff_t *ppos)
5728 {
5729 	return ftrace_regex_write(file, ubuf, cnt, ppos, 0);
5730 }
5731 
5732 static int
5733 __ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove)
5734 {
5735 	struct ftrace_func_entry *entry;
5736 
5737 	ip = ftrace_location(ip);
5738 	if (!ip)
5739 		return -EINVAL;
5740 
5741 	if (remove) {
5742 		entry = ftrace_lookup_ip(hash, ip);
5743 		if (!entry)
5744 			return -ENOENT;
5745 		free_hash_entry(hash, entry);
5746 		return 0;
5747 	}
5748 
5749 	entry = add_hash_entry(hash, ip);
5750 	return entry ? 0 :  -ENOMEM;
5751 }
5752 
5753 static int
5754 ftrace_match_addr(struct ftrace_hash *hash, unsigned long *ips,
5755 		  unsigned int cnt, int remove)
5756 {
5757 	unsigned int i;
5758 	int err;
5759 
5760 	for (i = 0; i < cnt; i++) {
5761 		err = __ftrace_match_addr(hash, ips[i], remove);
5762 		if (err) {
5763 			/*
5764 			 * This expects the @hash is a temporary hash and if this
5765 			 * fails the caller must free the @hash.
5766 			 */
5767 			return err;
5768 		}
5769 	}
5770 	return 0;
5771 }
5772 
5773 static int
5774 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len,
5775 		unsigned long *ips, unsigned int cnt,
5776 		int remove, int reset, int enable)
5777 {
5778 	struct ftrace_hash **orig_hash;
5779 	struct ftrace_hash *hash;
5780 	int ret;
5781 
5782 	if (unlikely(ftrace_disabled))
5783 		return -ENODEV;
5784 
5785 	mutex_lock(&ops->func_hash->regex_lock);
5786 
5787 	if (enable)
5788 		orig_hash = &ops->func_hash->filter_hash;
5789 	else
5790 		orig_hash = &ops->func_hash->notrace_hash;
5791 
5792 	if (reset)
5793 		hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
5794 	else
5795 		hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash);
5796 
5797 	if (!hash) {
5798 		ret = -ENOMEM;
5799 		goto out_regex_unlock;
5800 	}
5801 
5802 	if (buf && !ftrace_match_records(hash, buf, len)) {
5803 		ret = -EINVAL;
5804 		goto out_regex_unlock;
5805 	}
5806 	if (ips) {
5807 		ret = ftrace_match_addr(hash, ips, cnt, remove);
5808 		if (ret < 0)
5809 			goto out_regex_unlock;
5810 	}
5811 
5812 	mutex_lock(&ftrace_lock);
5813 	ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable);
5814 	mutex_unlock(&ftrace_lock);
5815 
5816  out_regex_unlock:
5817 	mutex_unlock(&ops->func_hash->regex_lock);
5818 
5819 	free_ftrace_hash(hash);
5820 	return ret;
5821 }
5822 
5823 static int
5824 ftrace_set_addr(struct ftrace_ops *ops, unsigned long *ips, unsigned int cnt,
5825 		int remove, int reset, int enable)
5826 {
5827 	return ftrace_set_hash(ops, NULL, 0, ips, cnt, remove, reset, enable);
5828 }
5829 
5830 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
5831 
5832 static int register_ftrace_function_nolock(struct ftrace_ops *ops);
5833 
5834 /*
5835  * If there are multiple ftrace_ops, use SAVE_REGS by default, so that direct
5836  * call will be jumped from ftrace_regs_caller. Only if the architecture does
5837  * not support ftrace_regs_caller but direct_call, use SAVE_ARGS so that it
5838  * jumps from ftrace_caller for multiple ftrace_ops.
5839  */
5840 #ifndef CONFIG_HAVE_DYNAMIC_FTRACE_WITH_REGS
5841 #define MULTI_FLAGS (FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_ARGS)
5842 #else
5843 #define MULTI_FLAGS (FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS)
5844 #endif
5845 
5846 static int check_direct_multi(struct ftrace_ops *ops)
5847 {
5848 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED))
5849 		return -EINVAL;
5850 	if ((ops->flags & MULTI_FLAGS) != MULTI_FLAGS)
5851 		return -EINVAL;
5852 	return 0;
5853 }
5854 
5855 static void remove_direct_functions_hash(struct ftrace_hash *hash, unsigned long addr)
5856 {
5857 	struct ftrace_func_entry *entry, *del;
5858 	int size, i;
5859 
5860 	size = 1 << hash->size_bits;
5861 	for (i = 0; i < size; i++) {
5862 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5863 			del = __ftrace_lookup_ip(direct_functions, entry->ip);
5864 			if (del && del->direct == addr) {
5865 				remove_hash_entry(direct_functions, del);
5866 				kfree(del);
5867 			}
5868 		}
5869 	}
5870 }
5871 
5872 static void register_ftrace_direct_cb(struct rcu_head *rhp)
5873 {
5874 	struct ftrace_hash *fhp = container_of(rhp, struct ftrace_hash, rcu);
5875 
5876 	free_ftrace_hash(fhp);
5877 }
5878 
5879 /**
5880  * register_ftrace_direct - Call a custom trampoline directly
5881  * for multiple functions registered in @ops
5882  * @ops: The address of the struct ftrace_ops object
5883  * @addr: The address of the trampoline to call at @ops functions
5884  *
5885  * This is used to connect a direct calls to @addr from the nop locations
5886  * of the functions registered in @ops (with by ftrace_set_filter_ip
5887  * function).
5888  *
5889  * The location that it calls (@addr) must be able to handle a direct call,
5890  * and save the parameters of the function being traced, and restore them
5891  * (or inject new ones if needed), before returning.
5892  *
5893  * Returns:
5894  *  0 on success
5895  *  -EINVAL  - The @ops object was already registered with this call or
5896  *             when there are no functions in @ops object.
5897  *  -EBUSY   - Another direct function is already attached (there can be only one)
5898  *  -ENODEV  - @ip does not point to a ftrace nop location (or not supported)
5899  *  -ENOMEM  - There was an allocation failure.
5900  */
5901 int register_ftrace_direct(struct ftrace_ops *ops, unsigned long addr)
5902 {
5903 	struct ftrace_hash *hash, *new_hash = NULL, *free_hash = NULL;
5904 	struct ftrace_func_entry *entry, *new;
5905 	int err = -EBUSY, size, i;
5906 
5907 	if (ops->func || ops->trampoline)
5908 		return -EINVAL;
5909 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED))
5910 		return -EINVAL;
5911 	if (ops->flags & FTRACE_OPS_FL_ENABLED)
5912 		return -EINVAL;
5913 
5914 	hash = ops->func_hash->filter_hash;
5915 	if (ftrace_hash_empty(hash))
5916 		return -EINVAL;
5917 
5918 	mutex_lock(&direct_mutex);
5919 
5920 	/* Make sure requested entries are not already registered.. */
5921 	size = 1 << hash->size_bits;
5922 	for (i = 0; i < size; i++) {
5923 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5924 			if (ftrace_find_rec_direct(entry->ip))
5925 				goto out_unlock;
5926 		}
5927 	}
5928 
5929 	err = -ENOMEM;
5930 
5931 	/* Make a copy hash to place the new and the old entries in */
5932 	size = hash->count + direct_functions->count;
5933 	if (size > 32)
5934 		size = 32;
5935 	new_hash = alloc_ftrace_hash(fls(size));
5936 	if (!new_hash)
5937 		goto out_unlock;
5938 
5939 	/* Now copy over the existing direct entries */
5940 	size = 1 << direct_functions->size_bits;
5941 	for (i = 0; i < size; i++) {
5942 		hlist_for_each_entry(entry, &direct_functions->buckets[i], hlist) {
5943 			new = add_hash_entry(new_hash, entry->ip);
5944 			if (!new)
5945 				goto out_unlock;
5946 			new->direct = entry->direct;
5947 		}
5948 	}
5949 
5950 	/* ... and add the new entries */
5951 	size = 1 << hash->size_bits;
5952 	for (i = 0; i < size; i++) {
5953 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5954 			new = add_hash_entry(new_hash, entry->ip);
5955 			if (!new)
5956 				goto out_unlock;
5957 			/* Update both the copy and the hash entry */
5958 			new->direct = addr;
5959 			entry->direct = addr;
5960 		}
5961 	}
5962 
5963 	free_hash = direct_functions;
5964 	rcu_assign_pointer(direct_functions, new_hash);
5965 	new_hash = NULL;
5966 
5967 	ops->func = call_direct_funcs;
5968 	ops->flags = MULTI_FLAGS;
5969 	ops->trampoline = FTRACE_REGS_ADDR;
5970 	ops->direct_call = addr;
5971 
5972 	err = register_ftrace_function_nolock(ops);
5973 
5974  out_unlock:
5975 	mutex_unlock(&direct_mutex);
5976 
5977 	if (free_hash && free_hash != EMPTY_HASH)
5978 		call_rcu_tasks(&free_hash->rcu, register_ftrace_direct_cb);
5979 
5980 	if (new_hash)
5981 		free_ftrace_hash(new_hash);
5982 
5983 	return err;
5984 }
5985 EXPORT_SYMBOL_GPL(register_ftrace_direct);
5986 
5987 /**
5988  * unregister_ftrace_direct - Remove calls to custom trampoline
5989  * previously registered by register_ftrace_direct for @ops object.
5990  * @ops: The address of the struct ftrace_ops object
5991  * @addr: The address of the direct function that is called by the @ops functions
5992  * @free_filters: Set to true to remove all filters for the ftrace_ops, false otherwise
5993  *
5994  * This is used to remove a direct calls to @addr from the nop locations
5995  * of the functions registered in @ops (with by ftrace_set_filter_ip
5996  * function).
5997  *
5998  * Returns:
5999  *  0 on success
6000  *  -EINVAL - The @ops object was not properly registered.
6001  */
6002 int unregister_ftrace_direct(struct ftrace_ops *ops, unsigned long addr,
6003 			     bool free_filters)
6004 {
6005 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
6006 	int err;
6007 
6008 	if (check_direct_multi(ops))
6009 		return -EINVAL;
6010 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
6011 		return -EINVAL;
6012 
6013 	mutex_lock(&direct_mutex);
6014 	err = unregister_ftrace_function(ops);
6015 	remove_direct_functions_hash(hash, addr);
6016 	mutex_unlock(&direct_mutex);
6017 
6018 	/* cleanup for possible another register call */
6019 	ops->func = NULL;
6020 	ops->trampoline = 0;
6021 
6022 	if (free_filters)
6023 		ftrace_free_filter(ops);
6024 	return err;
6025 }
6026 EXPORT_SYMBOL_GPL(unregister_ftrace_direct);
6027 
6028 static int
6029 __modify_ftrace_direct(struct ftrace_ops *ops, unsigned long addr)
6030 {
6031 	struct ftrace_hash *hash;
6032 	struct ftrace_func_entry *entry, *iter;
6033 	static struct ftrace_ops tmp_ops = {
6034 		.func		= ftrace_stub,
6035 		.flags		= FTRACE_OPS_FL_STUB,
6036 	};
6037 	int i, size;
6038 	int err;
6039 
6040 	lockdep_assert_held_once(&direct_mutex);
6041 
6042 	/* Enable the tmp_ops to have the same functions as the direct ops */
6043 	ftrace_ops_init(&tmp_ops);
6044 	tmp_ops.func_hash = ops->func_hash;
6045 	tmp_ops.direct_call = addr;
6046 
6047 	err = register_ftrace_function_nolock(&tmp_ops);
6048 	if (err)
6049 		return err;
6050 
6051 	/*
6052 	 * Now the ftrace_ops_list_func() is called to do the direct callers.
6053 	 * We can safely change the direct functions attached to each entry.
6054 	 */
6055 	mutex_lock(&ftrace_lock);
6056 
6057 	hash = ops->func_hash->filter_hash;
6058 	size = 1 << hash->size_bits;
6059 	for (i = 0; i < size; i++) {
6060 		hlist_for_each_entry(iter, &hash->buckets[i], hlist) {
6061 			entry = __ftrace_lookup_ip(direct_functions, iter->ip);
6062 			if (!entry)
6063 				continue;
6064 			entry->direct = addr;
6065 		}
6066 	}
6067 	/* Prevent store tearing if a trampoline concurrently accesses the value */
6068 	WRITE_ONCE(ops->direct_call, addr);
6069 
6070 	mutex_unlock(&ftrace_lock);
6071 
6072 	/* Removing the tmp_ops will add the updated direct callers to the functions */
6073 	unregister_ftrace_function(&tmp_ops);
6074 
6075 	return err;
6076 }
6077 
6078 /**
6079  * modify_ftrace_direct_nolock - Modify an existing direct 'multi' call
6080  * to call something else
6081  * @ops: The address of the struct ftrace_ops object
6082  * @addr: The address of the new trampoline to call at @ops functions
6083  *
6084  * This is used to unregister currently registered direct caller and
6085  * register new one @addr on functions registered in @ops object.
6086  *
6087  * Note there's window between ftrace_shutdown and ftrace_startup calls
6088  * where there will be no callbacks called.
6089  *
6090  * Caller should already have direct_mutex locked, so we don't lock
6091  * direct_mutex here.
6092  *
6093  * Returns: zero on success. Non zero on error, which includes:
6094  *  -EINVAL - The @ops object was not properly registered.
6095  */
6096 int modify_ftrace_direct_nolock(struct ftrace_ops *ops, unsigned long addr)
6097 {
6098 	if (check_direct_multi(ops))
6099 		return -EINVAL;
6100 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
6101 		return -EINVAL;
6102 
6103 	return __modify_ftrace_direct(ops, addr);
6104 }
6105 EXPORT_SYMBOL_GPL(modify_ftrace_direct_nolock);
6106 
6107 /**
6108  * modify_ftrace_direct - Modify an existing direct 'multi' call
6109  * to call something else
6110  * @ops: The address of the struct ftrace_ops object
6111  * @addr: The address of the new trampoline to call at @ops functions
6112  *
6113  * This is used to unregister currently registered direct caller and
6114  * register new one @addr on functions registered in @ops object.
6115  *
6116  * Note there's window between ftrace_shutdown and ftrace_startup calls
6117  * where there will be no callbacks called.
6118  *
6119  * Returns: zero on success. Non zero on error, which includes:
6120  *  -EINVAL - The @ops object was not properly registered.
6121  */
6122 int modify_ftrace_direct(struct ftrace_ops *ops, unsigned long addr)
6123 {
6124 	int err;
6125 
6126 	if (check_direct_multi(ops))
6127 		return -EINVAL;
6128 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
6129 		return -EINVAL;
6130 
6131 	mutex_lock(&direct_mutex);
6132 	err = __modify_ftrace_direct(ops, addr);
6133 	mutex_unlock(&direct_mutex);
6134 	return err;
6135 }
6136 EXPORT_SYMBOL_GPL(modify_ftrace_direct);
6137 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
6138 
6139 /**
6140  * ftrace_set_filter_ip - set a function to filter on in ftrace by address
6141  * @ops: the ops to set the filter with
6142  * @ip: the address to add to or remove from the filter.
6143  * @remove: non zero to remove the ip from the filter
6144  * @reset: non zero to reset all filters before applying this filter.
6145  *
6146  * Filters denote which functions should be enabled when tracing is enabled
6147  * If @ip is NULL, it fails to update filter.
6148  *
6149  * This can allocate memory which must be freed before @ops can be freed,
6150  * either by removing each filtered addr or by using
6151  * ftrace_free_filter(@ops).
6152  */
6153 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip,
6154 			 int remove, int reset)
6155 {
6156 	ftrace_ops_init(ops);
6157 	return ftrace_set_addr(ops, &ip, 1, remove, reset, 1);
6158 }
6159 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip);
6160 
6161 /**
6162  * ftrace_set_filter_ips - set functions to filter on in ftrace by addresses
6163  * @ops: the ops to set the filter with
6164  * @ips: the array of addresses to add to or remove from the filter.
6165  * @cnt: the number of addresses in @ips
6166  * @remove: non zero to remove ips from the filter
6167  * @reset: non zero to reset all filters before applying this filter.
6168  *
6169  * Filters denote which functions should be enabled when tracing is enabled
6170  * If @ips array or any ip specified within is NULL , it fails to update filter.
6171  *
6172  * This can allocate memory which must be freed before @ops can be freed,
6173  * either by removing each filtered addr or by using
6174  * ftrace_free_filter(@ops).
6175 */
6176 int ftrace_set_filter_ips(struct ftrace_ops *ops, unsigned long *ips,
6177 			  unsigned int cnt, int remove, int reset)
6178 {
6179 	ftrace_ops_init(ops);
6180 	return ftrace_set_addr(ops, ips, cnt, remove, reset, 1);
6181 }
6182 EXPORT_SYMBOL_GPL(ftrace_set_filter_ips);
6183 
6184 /**
6185  * ftrace_ops_set_global_filter - setup ops to use global filters
6186  * @ops: the ops which will use the global filters
6187  *
6188  * ftrace users who need global function trace filtering should call this.
6189  * It can set the global filter only if ops were not initialized before.
6190  */
6191 void ftrace_ops_set_global_filter(struct ftrace_ops *ops)
6192 {
6193 	if (ops->flags & FTRACE_OPS_FL_INITIALIZED)
6194 		return;
6195 
6196 	ftrace_ops_init(ops);
6197 	ops->func_hash = &global_ops.local_hash;
6198 }
6199 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter);
6200 
6201 static int
6202 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
6203 		 int reset, int enable)
6204 {
6205 	return ftrace_set_hash(ops, buf, len, NULL, 0, 0, reset, enable);
6206 }
6207 
6208 /**
6209  * ftrace_set_filter - set a function to filter on in ftrace
6210  * @ops: the ops to set the filter with
6211  * @buf: the string that holds the function filter text.
6212  * @len: the length of the string.
6213  * @reset: non-zero to reset all filters before applying this filter.
6214  *
6215  * Filters denote which functions should be enabled when tracing is enabled.
6216  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
6217  *
6218  * This can allocate memory which must be freed before @ops can be freed,
6219  * either by removing each filtered addr or by using
6220  * ftrace_free_filter(@ops).
6221  */
6222 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf,
6223 		       int len, int reset)
6224 {
6225 	ftrace_ops_init(ops);
6226 	return ftrace_set_regex(ops, buf, len, reset, 1);
6227 }
6228 EXPORT_SYMBOL_GPL(ftrace_set_filter);
6229 
6230 /**
6231  * ftrace_set_notrace - set a function to not trace in ftrace
6232  * @ops: the ops to set the notrace filter with
6233  * @buf: the string that holds the function notrace text.
6234  * @len: the length of the string.
6235  * @reset: non-zero to reset all filters before applying this filter.
6236  *
6237  * Notrace Filters denote which functions should not be enabled when tracing
6238  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
6239  * for tracing.
6240  *
6241  * This can allocate memory which must be freed before @ops can be freed,
6242  * either by removing each filtered addr or by using
6243  * ftrace_free_filter(@ops).
6244  */
6245 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf,
6246 			int len, int reset)
6247 {
6248 	ftrace_ops_init(ops);
6249 	return ftrace_set_regex(ops, buf, len, reset, 0);
6250 }
6251 EXPORT_SYMBOL_GPL(ftrace_set_notrace);
6252 /**
6253  * ftrace_set_global_filter - set a function to filter on with global tracers
6254  * @buf: the string that holds the function filter text.
6255  * @len: the length of the string.
6256  * @reset: non-zero to reset all filters before applying this filter.
6257  *
6258  * Filters denote which functions should be enabled when tracing is enabled.
6259  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
6260  */
6261 void ftrace_set_global_filter(unsigned char *buf, int len, int reset)
6262 {
6263 	ftrace_set_regex(&global_ops, buf, len, reset, 1);
6264 }
6265 EXPORT_SYMBOL_GPL(ftrace_set_global_filter);
6266 
6267 /**
6268  * ftrace_set_global_notrace - set a function to not trace with global tracers
6269  * @buf: the string that holds the function notrace text.
6270  * @len: the length of the string.
6271  * @reset: non-zero to reset all filters before applying this filter.
6272  *
6273  * Notrace Filters denote which functions should not be enabled when tracing
6274  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
6275  * for tracing.
6276  */
6277 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset)
6278 {
6279 	ftrace_set_regex(&global_ops, buf, len, reset, 0);
6280 }
6281 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace);
6282 
6283 /*
6284  * command line interface to allow users to set filters on boot up.
6285  */
6286 #define FTRACE_FILTER_SIZE		COMMAND_LINE_SIZE
6287 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
6288 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata;
6289 
6290 /* Used by function selftest to not test if filter is set */
6291 bool ftrace_filter_param __initdata;
6292 
6293 static int __init set_ftrace_notrace(char *str)
6294 {
6295 	ftrace_filter_param = true;
6296 	strscpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE);
6297 	return 1;
6298 }
6299 __setup("ftrace_notrace=", set_ftrace_notrace);
6300 
6301 static int __init set_ftrace_filter(char *str)
6302 {
6303 	ftrace_filter_param = true;
6304 	strscpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE);
6305 	return 1;
6306 }
6307 __setup("ftrace_filter=", set_ftrace_filter);
6308 
6309 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6310 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata;
6311 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
6312 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer);
6313 
6314 static int __init set_graph_function(char *str)
6315 {
6316 	strscpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE);
6317 	return 1;
6318 }
6319 __setup("ftrace_graph_filter=", set_graph_function);
6320 
6321 static int __init set_graph_notrace_function(char *str)
6322 {
6323 	strscpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE);
6324 	return 1;
6325 }
6326 __setup("ftrace_graph_notrace=", set_graph_notrace_function);
6327 
6328 static int __init set_graph_max_depth_function(char *str)
6329 {
6330 	if (!str || kstrtouint(str, 0, &fgraph_max_depth))
6331 		return 0;
6332 	return 1;
6333 }
6334 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function);
6335 
6336 static void __init set_ftrace_early_graph(char *buf, int enable)
6337 {
6338 	int ret;
6339 	char *func;
6340 	struct ftrace_hash *hash;
6341 
6342 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
6343 	if (MEM_FAIL(!hash, "Failed to allocate hash\n"))
6344 		return;
6345 
6346 	while (buf) {
6347 		func = strsep(&buf, ",");
6348 		/* we allow only one expression at a time */
6349 		ret = ftrace_graph_set_hash(hash, func);
6350 		if (ret)
6351 			printk(KERN_DEBUG "ftrace: function %s not "
6352 					  "traceable\n", func);
6353 	}
6354 
6355 	if (enable)
6356 		ftrace_graph_hash = hash;
6357 	else
6358 		ftrace_graph_notrace_hash = hash;
6359 }
6360 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6361 
6362 void __init
6363 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable)
6364 {
6365 	char *func;
6366 
6367 	ftrace_ops_init(ops);
6368 
6369 	while (buf) {
6370 		func = strsep(&buf, ",");
6371 		ftrace_set_regex(ops, func, strlen(func), 0, enable);
6372 	}
6373 }
6374 
6375 static void __init set_ftrace_early_filters(void)
6376 {
6377 	if (ftrace_filter_buf[0])
6378 		ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1);
6379 	if (ftrace_notrace_buf[0])
6380 		ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0);
6381 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6382 	if (ftrace_graph_buf[0])
6383 		set_ftrace_early_graph(ftrace_graph_buf, 1);
6384 	if (ftrace_graph_notrace_buf[0])
6385 		set_ftrace_early_graph(ftrace_graph_notrace_buf, 0);
6386 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6387 }
6388 
6389 int ftrace_regex_release(struct inode *inode, struct file *file)
6390 {
6391 	struct seq_file *m = (struct seq_file *)file->private_data;
6392 	struct ftrace_iterator *iter;
6393 	struct ftrace_hash **orig_hash;
6394 	struct trace_parser *parser;
6395 	int filter_hash;
6396 
6397 	if (file->f_mode & FMODE_READ) {
6398 		iter = m->private;
6399 		seq_release(inode, file);
6400 	} else
6401 		iter = file->private_data;
6402 
6403 	parser = &iter->parser;
6404 	if (trace_parser_loaded(parser)) {
6405 		int enable = !(iter->flags & FTRACE_ITER_NOTRACE);
6406 
6407 		ftrace_process_regex(iter, parser->buffer,
6408 				     parser->idx, enable);
6409 	}
6410 
6411 	trace_parser_put(parser);
6412 
6413 	mutex_lock(&iter->ops->func_hash->regex_lock);
6414 
6415 	if (file->f_mode & FMODE_WRITE) {
6416 		filter_hash = !!(iter->flags & FTRACE_ITER_FILTER);
6417 
6418 		if (filter_hash) {
6419 			orig_hash = &iter->ops->func_hash->filter_hash;
6420 			if (iter->tr) {
6421 				if (list_empty(&iter->tr->mod_trace))
6422 					iter->hash->flags &= ~FTRACE_HASH_FL_MOD;
6423 				else
6424 					iter->hash->flags |= FTRACE_HASH_FL_MOD;
6425 			}
6426 		} else
6427 			orig_hash = &iter->ops->func_hash->notrace_hash;
6428 
6429 		mutex_lock(&ftrace_lock);
6430 		ftrace_hash_move_and_update_ops(iter->ops, orig_hash,
6431 						      iter->hash, filter_hash);
6432 		mutex_unlock(&ftrace_lock);
6433 	} else {
6434 		/* For read only, the hash is the ops hash */
6435 		iter->hash = NULL;
6436 	}
6437 
6438 	mutex_unlock(&iter->ops->func_hash->regex_lock);
6439 	free_ftrace_hash(iter->hash);
6440 	if (iter->tr)
6441 		trace_array_put(iter->tr);
6442 	kfree(iter);
6443 
6444 	return 0;
6445 }
6446 
6447 static const struct file_operations ftrace_avail_fops = {
6448 	.open = ftrace_avail_open,
6449 	.read = seq_read,
6450 	.llseek = seq_lseek,
6451 	.release = seq_release_private,
6452 };
6453 
6454 static const struct file_operations ftrace_enabled_fops = {
6455 	.open = ftrace_enabled_open,
6456 	.read = seq_read,
6457 	.llseek = seq_lseek,
6458 	.release = seq_release_private,
6459 };
6460 
6461 static const struct file_operations ftrace_touched_fops = {
6462 	.open = ftrace_touched_open,
6463 	.read = seq_read,
6464 	.llseek = seq_lseek,
6465 	.release = seq_release_private,
6466 };
6467 
6468 static const struct file_operations ftrace_avail_addrs_fops = {
6469 	.open = ftrace_avail_addrs_open,
6470 	.read = seq_read,
6471 	.llseek = seq_lseek,
6472 	.release = seq_release_private,
6473 };
6474 
6475 static const struct file_operations ftrace_filter_fops = {
6476 	.open = ftrace_filter_open,
6477 	.read = seq_read,
6478 	.write = ftrace_filter_write,
6479 	.llseek = tracing_lseek,
6480 	.release = ftrace_regex_release,
6481 };
6482 
6483 static const struct file_operations ftrace_notrace_fops = {
6484 	.open = ftrace_notrace_open,
6485 	.read = seq_read,
6486 	.write = ftrace_notrace_write,
6487 	.llseek = tracing_lseek,
6488 	.release = ftrace_regex_release,
6489 };
6490 
6491 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6492 
6493 static DEFINE_MUTEX(graph_lock);
6494 
6495 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH;
6496 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH;
6497 
6498 enum graph_filter_type {
6499 	GRAPH_FILTER_NOTRACE	= 0,
6500 	GRAPH_FILTER_FUNCTION,
6501 };
6502 
6503 #define FTRACE_GRAPH_EMPTY	((void *)1)
6504 
6505 struct ftrace_graph_data {
6506 	struct ftrace_hash		*hash;
6507 	struct ftrace_func_entry	*entry;
6508 	int				idx;   /* for hash table iteration */
6509 	enum graph_filter_type		type;
6510 	struct ftrace_hash		*new_hash;
6511 	const struct seq_operations	*seq_ops;
6512 	struct trace_parser		parser;
6513 };
6514 
6515 static void *
6516 __g_next(struct seq_file *m, loff_t *pos)
6517 {
6518 	struct ftrace_graph_data *fgd = m->private;
6519 	struct ftrace_func_entry *entry = fgd->entry;
6520 	struct hlist_head *head;
6521 	int i, idx = fgd->idx;
6522 
6523 	if (*pos >= fgd->hash->count)
6524 		return NULL;
6525 
6526 	if (entry) {
6527 		hlist_for_each_entry_continue(entry, hlist) {
6528 			fgd->entry = entry;
6529 			return entry;
6530 		}
6531 
6532 		idx++;
6533 	}
6534 
6535 	for (i = idx; i < 1 << fgd->hash->size_bits; i++) {
6536 		head = &fgd->hash->buckets[i];
6537 		hlist_for_each_entry(entry, head, hlist) {
6538 			fgd->entry = entry;
6539 			fgd->idx = i;
6540 			return entry;
6541 		}
6542 	}
6543 	return NULL;
6544 }
6545 
6546 static void *
6547 g_next(struct seq_file *m, void *v, loff_t *pos)
6548 {
6549 	(*pos)++;
6550 	return __g_next(m, pos);
6551 }
6552 
6553 static void *g_start(struct seq_file *m, loff_t *pos)
6554 {
6555 	struct ftrace_graph_data *fgd = m->private;
6556 
6557 	mutex_lock(&graph_lock);
6558 
6559 	if (fgd->type == GRAPH_FILTER_FUNCTION)
6560 		fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
6561 					lockdep_is_held(&graph_lock));
6562 	else
6563 		fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
6564 					lockdep_is_held(&graph_lock));
6565 
6566 	/* Nothing, tell g_show to print all functions are enabled */
6567 	if (ftrace_hash_empty(fgd->hash) && !*pos)
6568 		return FTRACE_GRAPH_EMPTY;
6569 
6570 	fgd->idx = 0;
6571 	fgd->entry = NULL;
6572 	return __g_next(m, pos);
6573 }
6574 
6575 static void g_stop(struct seq_file *m, void *p)
6576 {
6577 	mutex_unlock(&graph_lock);
6578 }
6579 
6580 static int g_show(struct seq_file *m, void *v)
6581 {
6582 	struct ftrace_func_entry *entry = v;
6583 
6584 	if (!entry)
6585 		return 0;
6586 
6587 	if (entry == FTRACE_GRAPH_EMPTY) {
6588 		struct ftrace_graph_data *fgd = m->private;
6589 
6590 		if (fgd->type == GRAPH_FILTER_FUNCTION)
6591 			seq_puts(m, "#### all functions enabled ####\n");
6592 		else
6593 			seq_puts(m, "#### no functions disabled ####\n");
6594 		return 0;
6595 	}
6596 
6597 	seq_printf(m, "%ps\n", (void *)entry->ip);
6598 
6599 	return 0;
6600 }
6601 
6602 static const struct seq_operations ftrace_graph_seq_ops = {
6603 	.start = g_start,
6604 	.next = g_next,
6605 	.stop = g_stop,
6606 	.show = g_show,
6607 };
6608 
6609 static int
6610 __ftrace_graph_open(struct inode *inode, struct file *file,
6611 		    struct ftrace_graph_data *fgd)
6612 {
6613 	int ret;
6614 	struct ftrace_hash *new_hash = NULL;
6615 
6616 	ret = security_locked_down(LOCKDOWN_TRACEFS);
6617 	if (ret)
6618 		return ret;
6619 
6620 	if (file->f_mode & FMODE_WRITE) {
6621 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
6622 
6623 		if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX))
6624 			return -ENOMEM;
6625 
6626 		if (file->f_flags & O_TRUNC)
6627 			new_hash = alloc_ftrace_hash(size_bits);
6628 		else
6629 			new_hash = alloc_and_copy_ftrace_hash(size_bits,
6630 							      fgd->hash);
6631 		if (!new_hash) {
6632 			ret = -ENOMEM;
6633 			goto out;
6634 		}
6635 	}
6636 
6637 	if (file->f_mode & FMODE_READ) {
6638 		ret = seq_open(file, &ftrace_graph_seq_ops);
6639 		if (!ret) {
6640 			struct seq_file *m = file->private_data;
6641 			m->private = fgd;
6642 		} else {
6643 			/* Failed */
6644 			free_ftrace_hash(new_hash);
6645 			new_hash = NULL;
6646 		}
6647 	} else
6648 		file->private_data = fgd;
6649 
6650 out:
6651 	if (ret < 0 && file->f_mode & FMODE_WRITE)
6652 		trace_parser_put(&fgd->parser);
6653 
6654 	fgd->new_hash = new_hash;
6655 
6656 	/*
6657 	 * All uses of fgd->hash must be taken with the graph_lock
6658 	 * held. The graph_lock is going to be released, so force
6659 	 * fgd->hash to be reinitialized when it is taken again.
6660 	 */
6661 	fgd->hash = NULL;
6662 
6663 	return ret;
6664 }
6665 
6666 static int
6667 ftrace_graph_open(struct inode *inode, struct file *file)
6668 {
6669 	struct ftrace_graph_data *fgd;
6670 	int ret;
6671 
6672 	if (unlikely(ftrace_disabled))
6673 		return -ENODEV;
6674 
6675 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
6676 	if (fgd == NULL)
6677 		return -ENOMEM;
6678 
6679 	mutex_lock(&graph_lock);
6680 
6681 	fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
6682 					lockdep_is_held(&graph_lock));
6683 	fgd->type = GRAPH_FILTER_FUNCTION;
6684 	fgd->seq_ops = &ftrace_graph_seq_ops;
6685 
6686 	ret = __ftrace_graph_open(inode, file, fgd);
6687 	if (ret < 0)
6688 		kfree(fgd);
6689 
6690 	mutex_unlock(&graph_lock);
6691 	return ret;
6692 }
6693 
6694 static int
6695 ftrace_graph_notrace_open(struct inode *inode, struct file *file)
6696 {
6697 	struct ftrace_graph_data *fgd;
6698 	int ret;
6699 
6700 	if (unlikely(ftrace_disabled))
6701 		return -ENODEV;
6702 
6703 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
6704 	if (fgd == NULL)
6705 		return -ENOMEM;
6706 
6707 	mutex_lock(&graph_lock);
6708 
6709 	fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
6710 					lockdep_is_held(&graph_lock));
6711 	fgd->type = GRAPH_FILTER_NOTRACE;
6712 	fgd->seq_ops = &ftrace_graph_seq_ops;
6713 
6714 	ret = __ftrace_graph_open(inode, file, fgd);
6715 	if (ret < 0)
6716 		kfree(fgd);
6717 
6718 	mutex_unlock(&graph_lock);
6719 	return ret;
6720 }
6721 
6722 static int
6723 ftrace_graph_release(struct inode *inode, struct file *file)
6724 {
6725 	struct ftrace_graph_data *fgd;
6726 	struct ftrace_hash *old_hash, *new_hash;
6727 	struct trace_parser *parser;
6728 	int ret = 0;
6729 
6730 	if (file->f_mode & FMODE_READ) {
6731 		struct seq_file *m = file->private_data;
6732 
6733 		fgd = m->private;
6734 		seq_release(inode, file);
6735 	} else {
6736 		fgd = file->private_data;
6737 	}
6738 
6739 
6740 	if (file->f_mode & FMODE_WRITE) {
6741 
6742 		parser = &fgd->parser;
6743 
6744 		if (trace_parser_loaded((parser))) {
6745 			ret = ftrace_graph_set_hash(fgd->new_hash,
6746 						    parser->buffer);
6747 		}
6748 
6749 		trace_parser_put(parser);
6750 
6751 		new_hash = __ftrace_hash_move(fgd->new_hash);
6752 		if (!new_hash) {
6753 			ret = -ENOMEM;
6754 			goto out;
6755 		}
6756 
6757 		mutex_lock(&graph_lock);
6758 
6759 		if (fgd->type == GRAPH_FILTER_FUNCTION) {
6760 			old_hash = rcu_dereference_protected(ftrace_graph_hash,
6761 					lockdep_is_held(&graph_lock));
6762 			rcu_assign_pointer(ftrace_graph_hash, new_hash);
6763 		} else {
6764 			old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
6765 					lockdep_is_held(&graph_lock));
6766 			rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash);
6767 		}
6768 
6769 		mutex_unlock(&graph_lock);
6770 
6771 		/*
6772 		 * We need to do a hard force of sched synchronization.
6773 		 * This is because we use preempt_disable() to do RCU, but
6774 		 * the function tracers can be called where RCU is not watching
6775 		 * (like before user_exit()). We can not rely on the RCU
6776 		 * infrastructure to do the synchronization, thus we must do it
6777 		 * ourselves.
6778 		 */
6779 		if (old_hash != EMPTY_HASH)
6780 			synchronize_rcu_tasks_rude();
6781 
6782 		free_ftrace_hash(old_hash);
6783 	}
6784 
6785  out:
6786 	free_ftrace_hash(fgd->new_hash);
6787 	kfree(fgd);
6788 
6789 	return ret;
6790 }
6791 
6792 static int
6793 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer)
6794 {
6795 	struct ftrace_glob func_g;
6796 	struct dyn_ftrace *rec;
6797 	struct ftrace_page *pg;
6798 	struct ftrace_func_entry *entry;
6799 	int fail = 1;
6800 	int not;
6801 
6802 	/* decode regex */
6803 	func_g.type = filter_parse_regex(buffer, strlen(buffer),
6804 					 &func_g.search, &not);
6805 
6806 	func_g.len = strlen(func_g.search);
6807 
6808 	mutex_lock(&ftrace_lock);
6809 
6810 	if (unlikely(ftrace_disabled)) {
6811 		mutex_unlock(&ftrace_lock);
6812 		return -ENODEV;
6813 	}
6814 
6815 	do_for_each_ftrace_rec(pg, rec) {
6816 
6817 		if (rec->flags & FTRACE_FL_DISABLED)
6818 			continue;
6819 
6820 		if (ftrace_match_record(rec, &func_g, NULL, 0)) {
6821 			entry = ftrace_lookup_ip(hash, rec->ip);
6822 
6823 			if (!not) {
6824 				fail = 0;
6825 
6826 				if (entry)
6827 					continue;
6828 				if (add_hash_entry(hash, rec->ip) == NULL)
6829 					goto out;
6830 			} else {
6831 				if (entry) {
6832 					free_hash_entry(hash, entry);
6833 					fail = 0;
6834 				}
6835 			}
6836 		}
6837 	} while_for_each_ftrace_rec();
6838 out:
6839 	mutex_unlock(&ftrace_lock);
6840 
6841 	if (fail)
6842 		return -EINVAL;
6843 
6844 	return 0;
6845 }
6846 
6847 static ssize_t
6848 ftrace_graph_write(struct file *file, const char __user *ubuf,
6849 		   size_t cnt, loff_t *ppos)
6850 {
6851 	ssize_t read, ret = 0;
6852 	struct ftrace_graph_data *fgd = file->private_data;
6853 	struct trace_parser *parser;
6854 
6855 	if (!cnt)
6856 		return 0;
6857 
6858 	/* Read mode uses seq functions */
6859 	if (file->f_mode & FMODE_READ) {
6860 		struct seq_file *m = file->private_data;
6861 		fgd = m->private;
6862 	}
6863 
6864 	parser = &fgd->parser;
6865 
6866 	read = trace_get_user(parser, ubuf, cnt, ppos);
6867 
6868 	if (read >= 0 && trace_parser_loaded(parser) &&
6869 	    !trace_parser_cont(parser)) {
6870 
6871 		ret = ftrace_graph_set_hash(fgd->new_hash,
6872 					    parser->buffer);
6873 		trace_parser_clear(parser);
6874 	}
6875 
6876 	if (!ret)
6877 		ret = read;
6878 
6879 	return ret;
6880 }
6881 
6882 static const struct file_operations ftrace_graph_fops = {
6883 	.open		= ftrace_graph_open,
6884 	.read		= seq_read,
6885 	.write		= ftrace_graph_write,
6886 	.llseek		= tracing_lseek,
6887 	.release	= ftrace_graph_release,
6888 };
6889 
6890 static const struct file_operations ftrace_graph_notrace_fops = {
6891 	.open		= ftrace_graph_notrace_open,
6892 	.read		= seq_read,
6893 	.write		= ftrace_graph_write,
6894 	.llseek		= tracing_lseek,
6895 	.release	= ftrace_graph_release,
6896 };
6897 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6898 
6899 void ftrace_create_filter_files(struct ftrace_ops *ops,
6900 				struct dentry *parent)
6901 {
6902 
6903 	trace_create_file("set_ftrace_filter", TRACE_MODE_WRITE, parent,
6904 			  ops, &ftrace_filter_fops);
6905 
6906 	trace_create_file("set_ftrace_notrace", TRACE_MODE_WRITE, parent,
6907 			  ops, &ftrace_notrace_fops);
6908 }
6909 
6910 /*
6911  * The name "destroy_filter_files" is really a misnomer. Although
6912  * in the future, it may actually delete the files, but this is
6913  * really intended to make sure the ops passed in are disabled
6914  * and that when this function returns, the caller is free to
6915  * free the ops.
6916  *
6917  * The "destroy" name is only to match the "create" name that this
6918  * should be paired with.
6919  */
6920 void ftrace_destroy_filter_files(struct ftrace_ops *ops)
6921 {
6922 	mutex_lock(&ftrace_lock);
6923 	if (ops->flags & FTRACE_OPS_FL_ENABLED)
6924 		ftrace_shutdown(ops, 0);
6925 	ops->flags |= FTRACE_OPS_FL_DELETED;
6926 	ftrace_free_filter(ops);
6927 	mutex_unlock(&ftrace_lock);
6928 }
6929 
6930 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer)
6931 {
6932 
6933 	trace_create_file("available_filter_functions", TRACE_MODE_READ,
6934 			d_tracer, NULL, &ftrace_avail_fops);
6935 
6936 	trace_create_file("available_filter_functions_addrs", TRACE_MODE_READ,
6937 			d_tracer, NULL, &ftrace_avail_addrs_fops);
6938 
6939 	trace_create_file("enabled_functions", TRACE_MODE_READ,
6940 			d_tracer, NULL, &ftrace_enabled_fops);
6941 
6942 	trace_create_file("touched_functions", TRACE_MODE_READ,
6943 			d_tracer, NULL, &ftrace_touched_fops);
6944 
6945 	ftrace_create_filter_files(&global_ops, d_tracer);
6946 
6947 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6948 	trace_create_file("set_graph_function", TRACE_MODE_WRITE, d_tracer,
6949 				    NULL,
6950 				    &ftrace_graph_fops);
6951 	trace_create_file("set_graph_notrace", TRACE_MODE_WRITE, d_tracer,
6952 				    NULL,
6953 				    &ftrace_graph_notrace_fops);
6954 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6955 
6956 	return 0;
6957 }
6958 
6959 static int ftrace_cmp_ips(const void *a, const void *b)
6960 {
6961 	const unsigned long *ipa = a;
6962 	const unsigned long *ipb = b;
6963 
6964 	if (*ipa > *ipb)
6965 		return 1;
6966 	if (*ipa < *ipb)
6967 		return -1;
6968 	return 0;
6969 }
6970 
6971 #ifdef CONFIG_FTRACE_SORT_STARTUP_TEST
6972 static void test_is_sorted(unsigned long *start, unsigned long count)
6973 {
6974 	int i;
6975 
6976 	for (i = 1; i < count; i++) {
6977 		if (WARN(start[i - 1] > start[i],
6978 			 "[%d] %pS at %lx is not sorted with %pS at %lx\n", i,
6979 			 (void *)start[i - 1], start[i - 1],
6980 			 (void *)start[i], start[i]))
6981 			break;
6982 	}
6983 	if (i == count)
6984 		pr_info("ftrace section at %px sorted properly\n", start);
6985 }
6986 #else
6987 static void test_is_sorted(unsigned long *start, unsigned long count)
6988 {
6989 }
6990 #endif
6991 
6992 static int ftrace_process_locs(struct module *mod,
6993 			       unsigned long *start,
6994 			       unsigned long *end)
6995 {
6996 	struct ftrace_page *pg_unuse = NULL;
6997 	struct ftrace_page *start_pg;
6998 	struct ftrace_page *pg;
6999 	struct dyn_ftrace *rec;
7000 	unsigned long skipped = 0;
7001 	unsigned long count;
7002 	unsigned long *p;
7003 	unsigned long addr;
7004 	unsigned long flags = 0; /* Shut up gcc */
7005 	int ret = -ENOMEM;
7006 
7007 	count = end - start;
7008 
7009 	if (!count)
7010 		return 0;
7011 
7012 	/*
7013 	 * Sorting mcount in vmlinux at build time depend on
7014 	 * CONFIG_BUILDTIME_MCOUNT_SORT, while mcount loc in
7015 	 * modules can not be sorted at build time.
7016 	 */
7017 	if (!IS_ENABLED(CONFIG_BUILDTIME_MCOUNT_SORT) || mod) {
7018 		sort(start, count, sizeof(*start),
7019 		     ftrace_cmp_ips, NULL);
7020 	} else {
7021 		test_is_sorted(start, count);
7022 	}
7023 
7024 	start_pg = ftrace_allocate_pages(count);
7025 	if (!start_pg)
7026 		return -ENOMEM;
7027 
7028 	mutex_lock(&ftrace_lock);
7029 
7030 	/*
7031 	 * Core and each module needs their own pages, as
7032 	 * modules will free them when they are removed.
7033 	 * Force a new page to be allocated for modules.
7034 	 */
7035 	if (!mod) {
7036 		WARN_ON(ftrace_pages || ftrace_pages_start);
7037 		/* First initialization */
7038 		ftrace_pages = ftrace_pages_start = start_pg;
7039 	} else {
7040 		if (!ftrace_pages)
7041 			goto out;
7042 
7043 		if (WARN_ON(ftrace_pages->next)) {
7044 			/* Hmm, we have free pages? */
7045 			while (ftrace_pages->next)
7046 				ftrace_pages = ftrace_pages->next;
7047 		}
7048 
7049 		ftrace_pages->next = start_pg;
7050 	}
7051 
7052 	p = start;
7053 	pg = start_pg;
7054 	while (p < end) {
7055 		unsigned long end_offset;
7056 		addr = ftrace_call_adjust(*p++);
7057 		/*
7058 		 * Some architecture linkers will pad between
7059 		 * the different mcount_loc sections of different
7060 		 * object files to satisfy alignments.
7061 		 * Skip any NULL pointers.
7062 		 */
7063 		if (!addr) {
7064 			skipped++;
7065 			continue;
7066 		}
7067 
7068 		end_offset = (pg->index+1) * sizeof(pg->records[0]);
7069 		if (end_offset > PAGE_SIZE << pg->order) {
7070 			/* We should have allocated enough */
7071 			if (WARN_ON(!pg->next))
7072 				break;
7073 			pg = pg->next;
7074 		}
7075 
7076 		rec = &pg->records[pg->index++];
7077 		rec->ip = addr;
7078 	}
7079 
7080 	if (pg->next) {
7081 		pg_unuse = pg->next;
7082 		pg->next = NULL;
7083 	}
7084 
7085 	/* Assign the last page to ftrace_pages */
7086 	ftrace_pages = pg;
7087 
7088 	/*
7089 	 * We only need to disable interrupts on start up
7090 	 * because we are modifying code that an interrupt
7091 	 * may execute, and the modification is not atomic.
7092 	 * But for modules, nothing runs the code we modify
7093 	 * until we are finished with it, and there's no
7094 	 * reason to cause large interrupt latencies while we do it.
7095 	 */
7096 	if (!mod)
7097 		local_irq_save(flags);
7098 	ftrace_update_code(mod, start_pg);
7099 	if (!mod)
7100 		local_irq_restore(flags);
7101 	ret = 0;
7102  out:
7103 	mutex_unlock(&ftrace_lock);
7104 
7105 	/* We should have used all pages unless we skipped some */
7106 	if (pg_unuse) {
7107 		WARN_ON(!skipped);
7108 		/* Need to synchronize with ftrace_location_range() */
7109 		synchronize_rcu();
7110 		ftrace_free_pages(pg_unuse);
7111 	}
7112 	return ret;
7113 }
7114 
7115 struct ftrace_mod_func {
7116 	struct list_head	list;
7117 	char			*name;
7118 	unsigned long		ip;
7119 	unsigned int		size;
7120 };
7121 
7122 struct ftrace_mod_map {
7123 	struct rcu_head		rcu;
7124 	struct list_head	list;
7125 	struct module		*mod;
7126 	unsigned long		start_addr;
7127 	unsigned long		end_addr;
7128 	struct list_head	funcs;
7129 	unsigned int		num_funcs;
7130 };
7131 
7132 static int ftrace_get_trampoline_kallsym(unsigned int symnum,
7133 					 unsigned long *value, char *type,
7134 					 char *name, char *module_name,
7135 					 int *exported)
7136 {
7137 	struct ftrace_ops *op;
7138 
7139 	list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) {
7140 		if (!op->trampoline || symnum--)
7141 			continue;
7142 		*value = op->trampoline;
7143 		*type = 't';
7144 		strscpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN);
7145 		strscpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN);
7146 		*exported = 0;
7147 		return 0;
7148 	}
7149 
7150 	return -ERANGE;
7151 }
7152 
7153 #if defined(CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS) || defined(CONFIG_MODULES)
7154 /*
7155  * Check if the current ops references the given ip.
7156  *
7157  * If the ops traces all functions, then it was already accounted for.
7158  * If the ops does not trace the current record function, skip it.
7159  * If the ops ignores the function via notrace filter, skip it.
7160  */
7161 static bool
7162 ops_references_ip(struct ftrace_ops *ops, unsigned long ip)
7163 {
7164 	/* If ops isn't enabled, ignore it */
7165 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
7166 		return false;
7167 
7168 	/* If ops traces all then it includes this function */
7169 	if (ops_traces_mod(ops))
7170 		return true;
7171 
7172 	/* The function must be in the filter */
7173 	if (!ftrace_hash_empty(ops->func_hash->filter_hash) &&
7174 	    !__ftrace_lookup_ip(ops->func_hash->filter_hash, ip))
7175 		return false;
7176 
7177 	/* If in notrace hash, we ignore it too */
7178 	if (ftrace_lookup_ip(ops->func_hash->notrace_hash, ip))
7179 		return false;
7180 
7181 	return true;
7182 }
7183 #endif
7184 
7185 #ifdef CONFIG_MODULES
7186 
7187 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next)
7188 
7189 static LIST_HEAD(ftrace_mod_maps);
7190 
7191 static int referenced_filters(struct dyn_ftrace *rec)
7192 {
7193 	struct ftrace_ops *ops;
7194 	int cnt = 0;
7195 
7196 	for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) {
7197 		if (ops_references_ip(ops, rec->ip)) {
7198 			if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT))
7199 				continue;
7200 			if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY))
7201 				continue;
7202 			cnt++;
7203 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
7204 				rec->flags |= FTRACE_FL_REGS;
7205 			if (cnt == 1 && ops->trampoline)
7206 				rec->flags |= FTRACE_FL_TRAMP;
7207 			else
7208 				rec->flags &= ~FTRACE_FL_TRAMP;
7209 		}
7210 	}
7211 
7212 	return cnt;
7213 }
7214 
7215 static void
7216 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash)
7217 {
7218 	struct ftrace_func_entry *entry;
7219 	struct dyn_ftrace *rec;
7220 	int i;
7221 
7222 	if (ftrace_hash_empty(hash))
7223 		return;
7224 
7225 	for (i = 0; i < pg->index; i++) {
7226 		rec = &pg->records[i];
7227 		entry = __ftrace_lookup_ip(hash, rec->ip);
7228 		/*
7229 		 * Do not allow this rec to match again.
7230 		 * Yeah, it may waste some memory, but will be removed
7231 		 * if/when the hash is modified again.
7232 		 */
7233 		if (entry)
7234 			entry->ip = 0;
7235 	}
7236 }
7237 
7238 /* Clear any records from hashes */
7239 static void clear_mod_from_hashes(struct ftrace_page *pg)
7240 {
7241 	struct trace_array *tr;
7242 
7243 	mutex_lock(&trace_types_lock);
7244 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
7245 		if (!tr->ops || !tr->ops->func_hash)
7246 			continue;
7247 		mutex_lock(&tr->ops->func_hash->regex_lock);
7248 		clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash);
7249 		clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash);
7250 		mutex_unlock(&tr->ops->func_hash->regex_lock);
7251 	}
7252 	mutex_unlock(&trace_types_lock);
7253 }
7254 
7255 static void ftrace_free_mod_map(struct rcu_head *rcu)
7256 {
7257 	struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu);
7258 	struct ftrace_mod_func *mod_func;
7259 	struct ftrace_mod_func *n;
7260 
7261 	/* All the contents of mod_map are now not visible to readers */
7262 	list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) {
7263 		kfree(mod_func->name);
7264 		list_del(&mod_func->list);
7265 		kfree(mod_func);
7266 	}
7267 
7268 	kfree(mod_map);
7269 }
7270 
7271 void ftrace_release_mod(struct module *mod)
7272 {
7273 	struct ftrace_mod_map *mod_map;
7274 	struct ftrace_mod_map *n;
7275 	struct dyn_ftrace *rec;
7276 	struct ftrace_page **last_pg;
7277 	struct ftrace_page *tmp_page = NULL;
7278 	struct ftrace_page *pg;
7279 
7280 	mutex_lock(&ftrace_lock);
7281 
7282 	if (ftrace_disabled)
7283 		goto out_unlock;
7284 
7285 	list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) {
7286 		if (mod_map->mod == mod) {
7287 			list_del_rcu(&mod_map->list);
7288 			call_rcu(&mod_map->rcu, ftrace_free_mod_map);
7289 			break;
7290 		}
7291 	}
7292 
7293 	/*
7294 	 * Each module has its own ftrace_pages, remove
7295 	 * them from the list.
7296 	 */
7297 	last_pg = &ftrace_pages_start;
7298 	for (pg = ftrace_pages_start; pg; pg = *last_pg) {
7299 		rec = &pg->records[0];
7300 		if (within_module(rec->ip, mod)) {
7301 			/*
7302 			 * As core pages are first, the first
7303 			 * page should never be a module page.
7304 			 */
7305 			if (WARN_ON(pg == ftrace_pages_start))
7306 				goto out_unlock;
7307 
7308 			/* Check if we are deleting the last page */
7309 			if (pg == ftrace_pages)
7310 				ftrace_pages = next_to_ftrace_page(last_pg);
7311 
7312 			ftrace_update_tot_cnt -= pg->index;
7313 			*last_pg = pg->next;
7314 
7315 			pg->next = tmp_page;
7316 			tmp_page = pg;
7317 		} else
7318 			last_pg = &pg->next;
7319 	}
7320  out_unlock:
7321 	mutex_unlock(&ftrace_lock);
7322 
7323 	/* Need to synchronize with ftrace_location_range() */
7324 	if (tmp_page)
7325 		synchronize_rcu();
7326 	for (pg = tmp_page; pg; pg = tmp_page) {
7327 
7328 		/* Needs to be called outside of ftrace_lock */
7329 		clear_mod_from_hashes(pg);
7330 
7331 		if (pg->records) {
7332 			free_pages((unsigned long)pg->records, pg->order);
7333 			ftrace_number_of_pages -= 1 << pg->order;
7334 		}
7335 		tmp_page = pg->next;
7336 		kfree(pg);
7337 		ftrace_number_of_groups--;
7338 	}
7339 }
7340 
7341 void ftrace_module_enable(struct module *mod)
7342 {
7343 	struct dyn_ftrace *rec;
7344 	struct ftrace_page *pg;
7345 
7346 	mutex_lock(&ftrace_lock);
7347 
7348 	if (ftrace_disabled)
7349 		goto out_unlock;
7350 
7351 	/*
7352 	 * If the tracing is enabled, go ahead and enable the record.
7353 	 *
7354 	 * The reason not to enable the record immediately is the
7355 	 * inherent check of ftrace_make_nop/ftrace_make_call for
7356 	 * correct previous instructions.  Making first the NOP
7357 	 * conversion puts the module to the correct state, thus
7358 	 * passing the ftrace_make_call check.
7359 	 *
7360 	 * We also delay this to after the module code already set the
7361 	 * text to read-only, as we now need to set it back to read-write
7362 	 * so that we can modify the text.
7363 	 */
7364 	if (ftrace_start_up)
7365 		ftrace_arch_code_modify_prepare();
7366 
7367 	do_for_each_ftrace_rec(pg, rec) {
7368 		int cnt;
7369 		/*
7370 		 * do_for_each_ftrace_rec() is a double loop.
7371 		 * module text shares the pg. If a record is
7372 		 * not part of this module, then skip this pg,
7373 		 * which the "break" will do.
7374 		 */
7375 		if (!within_module(rec->ip, mod))
7376 			break;
7377 
7378 		/* Weak functions should still be ignored */
7379 		if (!test_for_valid_rec(rec)) {
7380 			/* Clear all other flags. Should not be enabled anyway */
7381 			rec->flags = FTRACE_FL_DISABLED;
7382 			continue;
7383 		}
7384 
7385 		cnt = 0;
7386 
7387 		/*
7388 		 * When adding a module, we need to check if tracers are
7389 		 * currently enabled and if they are, and can trace this record,
7390 		 * we need to enable the module functions as well as update the
7391 		 * reference counts for those function records.
7392 		 */
7393 		if (ftrace_start_up)
7394 			cnt += referenced_filters(rec);
7395 
7396 		rec->flags &= ~FTRACE_FL_DISABLED;
7397 		rec->flags += cnt;
7398 
7399 		if (ftrace_start_up && cnt) {
7400 			int failed = __ftrace_replace_code(rec, 1);
7401 			if (failed) {
7402 				ftrace_bug(failed, rec);
7403 				goto out_loop;
7404 			}
7405 		}
7406 
7407 	} while_for_each_ftrace_rec();
7408 
7409  out_loop:
7410 	if (ftrace_start_up)
7411 		ftrace_arch_code_modify_post_process();
7412 
7413  out_unlock:
7414 	mutex_unlock(&ftrace_lock);
7415 
7416 	process_cached_mods(mod->name);
7417 }
7418 
7419 void ftrace_module_init(struct module *mod)
7420 {
7421 	int ret;
7422 
7423 	if (ftrace_disabled || !mod->num_ftrace_callsites)
7424 		return;
7425 
7426 	ret = ftrace_process_locs(mod, mod->ftrace_callsites,
7427 				  mod->ftrace_callsites + mod->num_ftrace_callsites);
7428 	if (ret)
7429 		pr_warn("ftrace: failed to allocate entries for module '%s' functions\n",
7430 			mod->name);
7431 }
7432 
7433 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
7434 				struct dyn_ftrace *rec)
7435 {
7436 	struct ftrace_mod_func *mod_func;
7437 	unsigned long symsize;
7438 	unsigned long offset;
7439 	char str[KSYM_SYMBOL_LEN];
7440 	char *modname;
7441 	const char *ret;
7442 
7443 	ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str);
7444 	if (!ret)
7445 		return;
7446 
7447 	mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL);
7448 	if (!mod_func)
7449 		return;
7450 
7451 	mod_func->name = kstrdup(str, GFP_KERNEL);
7452 	if (!mod_func->name) {
7453 		kfree(mod_func);
7454 		return;
7455 	}
7456 
7457 	mod_func->ip = rec->ip - offset;
7458 	mod_func->size = symsize;
7459 
7460 	mod_map->num_funcs++;
7461 
7462 	list_add_rcu(&mod_func->list, &mod_map->funcs);
7463 }
7464 
7465 static struct ftrace_mod_map *
7466 allocate_ftrace_mod_map(struct module *mod,
7467 			unsigned long start, unsigned long end)
7468 {
7469 	struct ftrace_mod_map *mod_map;
7470 
7471 	mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL);
7472 	if (!mod_map)
7473 		return NULL;
7474 
7475 	mod_map->mod = mod;
7476 	mod_map->start_addr = start;
7477 	mod_map->end_addr = end;
7478 	mod_map->num_funcs = 0;
7479 
7480 	INIT_LIST_HEAD_RCU(&mod_map->funcs);
7481 
7482 	list_add_rcu(&mod_map->list, &ftrace_mod_maps);
7483 
7484 	return mod_map;
7485 }
7486 
7487 static int
7488 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map,
7489 			   unsigned long addr, unsigned long *size,
7490 			   unsigned long *off, char *sym)
7491 {
7492 	struct ftrace_mod_func *found_func =  NULL;
7493 	struct ftrace_mod_func *mod_func;
7494 
7495 	list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
7496 		if (addr >= mod_func->ip &&
7497 		    addr < mod_func->ip + mod_func->size) {
7498 			found_func = mod_func;
7499 			break;
7500 		}
7501 	}
7502 
7503 	if (found_func) {
7504 		if (size)
7505 			*size = found_func->size;
7506 		if (off)
7507 			*off = addr - found_func->ip;
7508 		return strscpy(sym, found_func->name, KSYM_NAME_LEN);
7509 	}
7510 
7511 	return 0;
7512 }
7513 
7514 int
7515 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size,
7516 		   unsigned long *off, char **modname, char *sym)
7517 {
7518 	struct ftrace_mod_map *mod_map;
7519 	int ret = 0;
7520 
7521 	/* mod_map is freed via call_rcu() */
7522 	preempt_disable();
7523 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
7524 		ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym);
7525 		if (ret) {
7526 			if (modname)
7527 				*modname = mod_map->mod->name;
7528 			break;
7529 		}
7530 	}
7531 	preempt_enable();
7532 
7533 	return ret;
7534 }
7535 
7536 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
7537 			   char *type, char *name,
7538 			   char *module_name, int *exported)
7539 {
7540 	struct ftrace_mod_map *mod_map;
7541 	struct ftrace_mod_func *mod_func;
7542 	int ret;
7543 
7544 	preempt_disable();
7545 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
7546 
7547 		if (symnum >= mod_map->num_funcs) {
7548 			symnum -= mod_map->num_funcs;
7549 			continue;
7550 		}
7551 
7552 		list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
7553 			if (symnum > 1) {
7554 				symnum--;
7555 				continue;
7556 			}
7557 
7558 			*value = mod_func->ip;
7559 			*type = 'T';
7560 			strscpy(name, mod_func->name, KSYM_NAME_LEN);
7561 			strscpy(module_name, mod_map->mod->name, MODULE_NAME_LEN);
7562 			*exported = 1;
7563 			preempt_enable();
7564 			return 0;
7565 		}
7566 		WARN_ON(1);
7567 		break;
7568 	}
7569 	ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
7570 					    module_name, exported);
7571 	preempt_enable();
7572 	return ret;
7573 }
7574 
7575 #else
7576 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
7577 				struct dyn_ftrace *rec) { }
7578 static inline struct ftrace_mod_map *
7579 allocate_ftrace_mod_map(struct module *mod,
7580 			unsigned long start, unsigned long end)
7581 {
7582 	return NULL;
7583 }
7584 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
7585 			   char *type, char *name, char *module_name,
7586 			   int *exported)
7587 {
7588 	int ret;
7589 
7590 	preempt_disable();
7591 	ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
7592 					    module_name, exported);
7593 	preempt_enable();
7594 	return ret;
7595 }
7596 #endif /* CONFIG_MODULES */
7597 
7598 struct ftrace_init_func {
7599 	struct list_head list;
7600 	unsigned long ip;
7601 };
7602 
7603 /* Clear any init ips from hashes */
7604 static void
7605 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash)
7606 {
7607 	struct ftrace_func_entry *entry;
7608 
7609 	entry = ftrace_lookup_ip(hash, func->ip);
7610 	/*
7611 	 * Do not allow this rec to match again.
7612 	 * Yeah, it may waste some memory, but will be removed
7613 	 * if/when the hash is modified again.
7614 	 */
7615 	if (entry)
7616 		entry->ip = 0;
7617 }
7618 
7619 static void
7620 clear_func_from_hashes(struct ftrace_init_func *func)
7621 {
7622 	struct trace_array *tr;
7623 
7624 	mutex_lock(&trace_types_lock);
7625 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
7626 		if (!tr->ops || !tr->ops->func_hash)
7627 			continue;
7628 		mutex_lock(&tr->ops->func_hash->regex_lock);
7629 		clear_func_from_hash(func, tr->ops->func_hash->filter_hash);
7630 		clear_func_from_hash(func, tr->ops->func_hash->notrace_hash);
7631 		mutex_unlock(&tr->ops->func_hash->regex_lock);
7632 	}
7633 	mutex_unlock(&trace_types_lock);
7634 }
7635 
7636 static void add_to_clear_hash_list(struct list_head *clear_list,
7637 				   struct dyn_ftrace *rec)
7638 {
7639 	struct ftrace_init_func *func;
7640 
7641 	func = kmalloc(sizeof(*func), GFP_KERNEL);
7642 	if (!func) {
7643 		MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n");
7644 		return;
7645 	}
7646 
7647 	func->ip = rec->ip;
7648 	list_add(&func->list, clear_list);
7649 }
7650 
7651 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr)
7652 {
7653 	unsigned long start = (unsigned long)(start_ptr);
7654 	unsigned long end = (unsigned long)(end_ptr);
7655 	struct ftrace_page **last_pg = &ftrace_pages_start;
7656 	struct ftrace_page *tmp_page = NULL;
7657 	struct ftrace_page *pg;
7658 	struct dyn_ftrace *rec;
7659 	struct dyn_ftrace key;
7660 	struct ftrace_mod_map *mod_map = NULL;
7661 	struct ftrace_init_func *func, *func_next;
7662 	LIST_HEAD(clear_hash);
7663 
7664 	key.ip = start;
7665 	key.flags = end;	/* overload flags, as it is unsigned long */
7666 
7667 	mutex_lock(&ftrace_lock);
7668 
7669 	/*
7670 	 * If we are freeing module init memory, then check if
7671 	 * any tracer is active. If so, we need to save a mapping of
7672 	 * the module functions being freed with the address.
7673 	 */
7674 	if (mod && ftrace_ops_list != &ftrace_list_end)
7675 		mod_map = allocate_ftrace_mod_map(mod, start, end);
7676 
7677 	for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) {
7678 		if (end < pg->records[0].ip ||
7679 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
7680 			continue;
7681  again:
7682 		rec = bsearch(&key, pg->records, pg->index,
7683 			      sizeof(struct dyn_ftrace),
7684 			      ftrace_cmp_recs);
7685 		if (!rec)
7686 			continue;
7687 
7688 		/* rec will be cleared from hashes after ftrace_lock unlock */
7689 		add_to_clear_hash_list(&clear_hash, rec);
7690 
7691 		if (mod_map)
7692 			save_ftrace_mod_rec(mod_map, rec);
7693 
7694 		pg->index--;
7695 		ftrace_update_tot_cnt--;
7696 		if (!pg->index) {
7697 			*last_pg = pg->next;
7698 			pg->next = tmp_page;
7699 			tmp_page = pg;
7700 			pg = container_of(last_pg, struct ftrace_page, next);
7701 			if (!(*last_pg))
7702 				ftrace_pages = pg;
7703 			continue;
7704 		}
7705 		memmove(rec, rec + 1,
7706 			(pg->index - (rec - pg->records)) * sizeof(*rec));
7707 		/* More than one function may be in this block */
7708 		goto again;
7709 	}
7710 	mutex_unlock(&ftrace_lock);
7711 
7712 	list_for_each_entry_safe(func, func_next, &clear_hash, list) {
7713 		clear_func_from_hashes(func);
7714 		kfree(func);
7715 	}
7716 	/* Need to synchronize with ftrace_location_range() */
7717 	if (tmp_page) {
7718 		synchronize_rcu();
7719 		ftrace_free_pages(tmp_page);
7720 	}
7721 }
7722 
7723 void __init ftrace_free_init_mem(void)
7724 {
7725 	void *start = (void *)(&__init_begin);
7726 	void *end = (void *)(&__init_end);
7727 
7728 	ftrace_boot_snapshot();
7729 
7730 	ftrace_free_mem(NULL, start, end);
7731 }
7732 
7733 int __init __weak ftrace_dyn_arch_init(void)
7734 {
7735 	return 0;
7736 }
7737 
7738 void __init ftrace_init(void)
7739 {
7740 	extern unsigned long __start_mcount_loc[];
7741 	extern unsigned long __stop_mcount_loc[];
7742 	unsigned long count, flags;
7743 	int ret;
7744 
7745 	local_irq_save(flags);
7746 	ret = ftrace_dyn_arch_init();
7747 	local_irq_restore(flags);
7748 	if (ret)
7749 		goto failed;
7750 
7751 	count = __stop_mcount_loc - __start_mcount_loc;
7752 	if (!count) {
7753 		pr_info("ftrace: No functions to be traced?\n");
7754 		goto failed;
7755 	}
7756 
7757 	pr_info("ftrace: allocating %ld entries in %ld pages\n",
7758 		count, DIV_ROUND_UP(count, ENTRIES_PER_PAGE));
7759 
7760 	ret = ftrace_process_locs(NULL,
7761 				  __start_mcount_loc,
7762 				  __stop_mcount_loc);
7763 	if (ret) {
7764 		pr_warn("ftrace: failed to allocate entries for functions\n");
7765 		goto failed;
7766 	}
7767 
7768 	pr_info("ftrace: allocated %ld pages with %ld groups\n",
7769 		ftrace_number_of_pages, ftrace_number_of_groups);
7770 
7771 	last_ftrace_enabled = ftrace_enabled = 1;
7772 
7773 	set_ftrace_early_filters();
7774 
7775 	return;
7776  failed:
7777 	ftrace_disabled = 1;
7778 }
7779 
7780 /* Do nothing if arch does not support this */
7781 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops)
7782 {
7783 }
7784 
7785 static void ftrace_update_trampoline(struct ftrace_ops *ops)
7786 {
7787 	unsigned long trampoline = ops->trampoline;
7788 
7789 	arch_ftrace_update_trampoline(ops);
7790 	if (ops->trampoline && ops->trampoline != trampoline &&
7791 	    (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) {
7792 		/* Add to kallsyms before the perf events */
7793 		ftrace_add_trampoline_to_kallsyms(ops);
7794 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
7795 				   ops->trampoline, ops->trampoline_size, false,
7796 				   FTRACE_TRAMPOLINE_SYM);
7797 		/*
7798 		 * Record the perf text poke event after the ksymbol register
7799 		 * event.
7800 		 */
7801 		perf_event_text_poke((void *)ops->trampoline, NULL, 0,
7802 				     (void *)ops->trampoline,
7803 				     ops->trampoline_size);
7804 	}
7805 }
7806 
7807 void ftrace_init_trace_array(struct trace_array *tr)
7808 {
7809 	INIT_LIST_HEAD(&tr->func_probes);
7810 	INIT_LIST_HEAD(&tr->mod_trace);
7811 	INIT_LIST_HEAD(&tr->mod_notrace);
7812 }
7813 #else
7814 
7815 struct ftrace_ops global_ops = {
7816 	.func			= ftrace_stub,
7817 	.flags			= FTRACE_OPS_FL_INITIALIZED |
7818 				  FTRACE_OPS_FL_PID,
7819 };
7820 
7821 static int __init ftrace_nodyn_init(void)
7822 {
7823 	ftrace_enabled = 1;
7824 	return 0;
7825 }
7826 core_initcall(ftrace_nodyn_init);
7827 
7828 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; }
7829 static inline void ftrace_startup_all(int command) { }
7830 
7831 static void ftrace_update_trampoline(struct ftrace_ops *ops)
7832 {
7833 }
7834 
7835 #endif /* CONFIG_DYNAMIC_FTRACE */
7836 
7837 __init void ftrace_init_global_array_ops(struct trace_array *tr)
7838 {
7839 	tr->ops = &global_ops;
7840 	tr->ops->private = tr;
7841 	ftrace_init_trace_array(tr);
7842 	init_array_fgraph_ops(tr, tr->ops);
7843 }
7844 
7845 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func)
7846 {
7847 	/* If we filter on pids, update to use the pid function */
7848 	if (tr->flags & TRACE_ARRAY_FL_GLOBAL) {
7849 		if (WARN_ON(tr->ops->func != ftrace_stub))
7850 			printk("ftrace ops had %pS for function\n",
7851 			       tr->ops->func);
7852 	}
7853 	tr->ops->func = func;
7854 	tr->ops->private = tr;
7855 }
7856 
7857 void ftrace_reset_array_ops(struct trace_array *tr)
7858 {
7859 	tr->ops->func = ftrace_stub;
7860 }
7861 
7862 static nokprobe_inline void
7863 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
7864 		       struct ftrace_ops *ignored, struct ftrace_regs *fregs)
7865 {
7866 	struct pt_regs *regs = ftrace_get_regs(fregs);
7867 	struct ftrace_ops *op;
7868 	int bit;
7869 
7870 	/*
7871 	 * The ftrace_test_and_set_recursion() will disable preemption,
7872 	 * which is required since some of the ops may be dynamically
7873 	 * allocated, they must be freed after a synchronize_rcu().
7874 	 */
7875 	bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START);
7876 	if (bit < 0)
7877 		return;
7878 
7879 	do_for_each_ftrace_op(op, ftrace_ops_list) {
7880 		/* Stub functions don't need to be called nor tested */
7881 		if (op->flags & FTRACE_OPS_FL_STUB)
7882 			continue;
7883 		/*
7884 		 * Check the following for each ops before calling their func:
7885 		 *  if RCU flag is set, then rcu_is_watching() must be true
7886 		 *  Otherwise test if the ip matches the ops filter
7887 		 *
7888 		 * If any of the above fails then the op->func() is not executed.
7889 		 */
7890 		if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) &&
7891 		    ftrace_ops_test(op, ip, regs)) {
7892 			if (FTRACE_WARN_ON(!op->func)) {
7893 				pr_warn("op=%p %pS\n", op, op);
7894 				goto out;
7895 			}
7896 			op->func(ip, parent_ip, op, fregs);
7897 		}
7898 	} while_for_each_ftrace_op(op);
7899 out:
7900 	trace_clear_recursion(bit);
7901 }
7902 
7903 /*
7904  * Some archs only support passing ip and parent_ip. Even though
7905  * the list function ignores the op parameter, we do not want any
7906  * C side effects, where a function is called without the caller
7907  * sending a third parameter.
7908  * Archs are to support both the regs and ftrace_ops at the same time.
7909  * If they support ftrace_ops, it is assumed they support regs.
7910  * If call backs want to use regs, they must either check for regs
7911  * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS.
7912  * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved.
7913  * An architecture can pass partial regs with ftrace_ops and still
7914  * set the ARCH_SUPPORTS_FTRACE_OPS.
7915  *
7916  * In vmlinux.lds.h, ftrace_ops_list_func() is defined to be
7917  * arch_ftrace_ops_list_func.
7918  */
7919 #if ARCH_SUPPORTS_FTRACE_OPS
7920 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
7921 			       struct ftrace_ops *op, struct ftrace_regs *fregs)
7922 {
7923 	kmsan_unpoison_memory(fregs, sizeof(*fregs));
7924 	__ftrace_ops_list_func(ip, parent_ip, NULL, fregs);
7925 }
7926 #else
7927 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip)
7928 {
7929 	__ftrace_ops_list_func(ip, parent_ip, NULL, NULL);
7930 }
7931 #endif
7932 NOKPROBE_SYMBOL(arch_ftrace_ops_list_func);
7933 
7934 /*
7935  * If there's only one function registered but it does not support
7936  * recursion, needs RCU protection, then this function will be called
7937  * by the mcount trampoline.
7938  */
7939 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip,
7940 				   struct ftrace_ops *op, struct ftrace_regs *fregs)
7941 {
7942 	int bit;
7943 
7944 	bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START);
7945 	if (bit < 0)
7946 		return;
7947 
7948 	if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching())
7949 		op->func(ip, parent_ip, op, fregs);
7950 
7951 	trace_clear_recursion(bit);
7952 }
7953 NOKPROBE_SYMBOL(ftrace_ops_assist_func);
7954 
7955 /**
7956  * ftrace_ops_get_func - get the function a trampoline should call
7957  * @ops: the ops to get the function for
7958  *
7959  * Normally the mcount trampoline will call the ops->func, but there
7960  * are times that it should not. For example, if the ops does not
7961  * have its own recursion protection, then it should call the
7962  * ftrace_ops_assist_func() instead.
7963  *
7964  * Returns: the function that the trampoline should call for @ops.
7965  */
7966 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops)
7967 {
7968 	/*
7969 	 * If the function does not handle recursion or needs to be RCU safe,
7970 	 * then we need to call the assist handler.
7971 	 */
7972 	if (ops->flags & (FTRACE_OPS_FL_RECURSION |
7973 			  FTRACE_OPS_FL_RCU))
7974 		return ftrace_ops_assist_func;
7975 
7976 	return ops->func;
7977 }
7978 
7979 static void
7980 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt,
7981 				     struct task_struct *prev,
7982 				     struct task_struct *next,
7983 				     unsigned int prev_state)
7984 {
7985 	struct trace_array *tr = data;
7986 	struct trace_pid_list *pid_list;
7987 	struct trace_pid_list *no_pid_list;
7988 
7989 	pid_list = rcu_dereference_sched(tr->function_pids);
7990 	no_pid_list = rcu_dereference_sched(tr->function_no_pids);
7991 
7992 	if (trace_ignore_this_task(pid_list, no_pid_list, next))
7993 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7994 			       FTRACE_PID_IGNORE);
7995 	else
7996 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7997 			       next->pid);
7998 }
7999 
8000 static void
8001 ftrace_pid_follow_sched_process_fork(void *data,
8002 				     struct task_struct *self,
8003 				     struct task_struct *task)
8004 {
8005 	struct trace_pid_list *pid_list;
8006 	struct trace_array *tr = data;
8007 
8008 	pid_list = rcu_dereference_sched(tr->function_pids);
8009 	trace_filter_add_remove_task(pid_list, self, task);
8010 
8011 	pid_list = rcu_dereference_sched(tr->function_no_pids);
8012 	trace_filter_add_remove_task(pid_list, self, task);
8013 }
8014 
8015 static void
8016 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task)
8017 {
8018 	struct trace_pid_list *pid_list;
8019 	struct trace_array *tr = data;
8020 
8021 	pid_list = rcu_dereference_sched(tr->function_pids);
8022 	trace_filter_add_remove_task(pid_list, NULL, task);
8023 
8024 	pid_list = rcu_dereference_sched(tr->function_no_pids);
8025 	trace_filter_add_remove_task(pid_list, NULL, task);
8026 }
8027 
8028 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable)
8029 {
8030 	if (enable) {
8031 		register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
8032 						  tr);
8033 		register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
8034 						  tr);
8035 	} else {
8036 		unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
8037 						    tr);
8038 		unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
8039 						    tr);
8040 	}
8041 }
8042 
8043 static void clear_ftrace_pids(struct trace_array *tr, int type)
8044 {
8045 	struct trace_pid_list *pid_list;
8046 	struct trace_pid_list *no_pid_list;
8047 	int cpu;
8048 
8049 	pid_list = rcu_dereference_protected(tr->function_pids,
8050 					     lockdep_is_held(&ftrace_lock));
8051 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
8052 						lockdep_is_held(&ftrace_lock));
8053 
8054 	/* Make sure there's something to do */
8055 	if (!pid_type_enabled(type, pid_list, no_pid_list))
8056 		return;
8057 
8058 	/* See if the pids still need to be checked after this */
8059 	if (!still_need_pid_events(type, pid_list, no_pid_list)) {
8060 		unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
8061 		for_each_possible_cpu(cpu)
8062 			per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE;
8063 	}
8064 
8065 	if (type & TRACE_PIDS)
8066 		rcu_assign_pointer(tr->function_pids, NULL);
8067 
8068 	if (type & TRACE_NO_PIDS)
8069 		rcu_assign_pointer(tr->function_no_pids, NULL);
8070 
8071 	/* Wait till all users are no longer using pid filtering */
8072 	synchronize_rcu();
8073 
8074 	if ((type & TRACE_PIDS) && pid_list)
8075 		trace_pid_list_free(pid_list);
8076 
8077 	if ((type & TRACE_NO_PIDS) && no_pid_list)
8078 		trace_pid_list_free(no_pid_list);
8079 }
8080 
8081 void ftrace_clear_pids(struct trace_array *tr)
8082 {
8083 	mutex_lock(&ftrace_lock);
8084 
8085 	clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS);
8086 
8087 	mutex_unlock(&ftrace_lock);
8088 }
8089 
8090 static void ftrace_pid_reset(struct trace_array *tr, int type)
8091 {
8092 	mutex_lock(&ftrace_lock);
8093 	clear_ftrace_pids(tr, type);
8094 
8095 	ftrace_update_pid_func();
8096 	ftrace_startup_all(0);
8097 
8098 	mutex_unlock(&ftrace_lock);
8099 }
8100 
8101 /* Greater than any max PID */
8102 #define FTRACE_NO_PIDS		(void *)(PID_MAX_LIMIT + 1)
8103 
8104 static void *fpid_start(struct seq_file *m, loff_t *pos)
8105 	__acquires(RCU)
8106 {
8107 	struct trace_pid_list *pid_list;
8108 	struct trace_array *tr = m->private;
8109 
8110 	mutex_lock(&ftrace_lock);
8111 	rcu_read_lock_sched();
8112 
8113 	pid_list = rcu_dereference_sched(tr->function_pids);
8114 
8115 	if (!pid_list)
8116 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
8117 
8118 	return trace_pid_start(pid_list, pos);
8119 }
8120 
8121 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos)
8122 {
8123 	struct trace_array *tr = m->private;
8124 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids);
8125 
8126 	if (v == FTRACE_NO_PIDS) {
8127 		(*pos)++;
8128 		return NULL;
8129 	}
8130 	return trace_pid_next(pid_list, v, pos);
8131 }
8132 
8133 static void fpid_stop(struct seq_file *m, void *p)
8134 	__releases(RCU)
8135 {
8136 	rcu_read_unlock_sched();
8137 	mutex_unlock(&ftrace_lock);
8138 }
8139 
8140 static int fpid_show(struct seq_file *m, void *v)
8141 {
8142 	if (v == FTRACE_NO_PIDS) {
8143 		seq_puts(m, "no pid\n");
8144 		return 0;
8145 	}
8146 
8147 	return trace_pid_show(m, v);
8148 }
8149 
8150 static const struct seq_operations ftrace_pid_sops = {
8151 	.start = fpid_start,
8152 	.next = fpid_next,
8153 	.stop = fpid_stop,
8154 	.show = fpid_show,
8155 };
8156 
8157 static void *fnpid_start(struct seq_file *m, loff_t *pos)
8158 	__acquires(RCU)
8159 {
8160 	struct trace_pid_list *pid_list;
8161 	struct trace_array *tr = m->private;
8162 
8163 	mutex_lock(&ftrace_lock);
8164 	rcu_read_lock_sched();
8165 
8166 	pid_list = rcu_dereference_sched(tr->function_no_pids);
8167 
8168 	if (!pid_list)
8169 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
8170 
8171 	return trace_pid_start(pid_list, pos);
8172 }
8173 
8174 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos)
8175 {
8176 	struct trace_array *tr = m->private;
8177 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids);
8178 
8179 	if (v == FTRACE_NO_PIDS) {
8180 		(*pos)++;
8181 		return NULL;
8182 	}
8183 	return trace_pid_next(pid_list, v, pos);
8184 }
8185 
8186 static const struct seq_operations ftrace_no_pid_sops = {
8187 	.start = fnpid_start,
8188 	.next = fnpid_next,
8189 	.stop = fpid_stop,
8190 	.show = fpid_show,
8191 };
8192 
8193 static int pid_open(struct inode *inode, struct file *file, int type)
8194 {
8195 	const struct seq_operations *seq_ops;
8196 	struct trace_array *tr = inode->i_private;
8197 	struct seq_file *m;
8198 	int ret = 0;
8199 
8200 	ret = tracing_check_open_get_tr(tr);
8201 	if (ret)
8202 		return ret;
8203 
8204 	if ((file->f_mode & FMODE_WRITE) &&
8205 	    (file->f_flags & O_TRUNC))
8206 		ftrace_pid_reset(tr, type);
8207 
8208 	switch (type) {
8209 	case TRACE_PIDS:
8210 		seq_ops = &ftrace_pid_sops;
8211 		break;
8212 	case TRACE_NO_PIDS:
8213 		seq_ops = &ftrace_no_pid_sops;
8214 		break;
8215 	default:
8216 		trace_array_put(tr);
8217 		WARN_ON_ONCE(1);
8218 		return -EINVAL;
8219 	}
8220 
8221 	ret = seq_open(file, seq_ops);
8222 	if (ret < 0) {
8223 		trace_array_put(tr);
8224 	} else {
8225 		m = file->private_data;
8226 		/* copy tr over to seq ops */
8227 		m->private = tr;
8228 	}
8229 
8230 	return ret;
8231 }
8232 
8233 static int
8234 ftrace_pid_open(struct inode *inode, struct file *file)
8235 {
8236 	return pid_open(inode, file, TRACE_PIDS);
8237 }
8238 
8239 static int
8240 ftrace_no_pid_open(struct inode *inode, struct file *file)
8241 {
8242 	return pid_open(inode, file, TRACE_NO_PIDS);
8243 }
8244 
8245 static void ignore_task_cpu(void *data)
8246 {
8247 	struct trace_array *tr = data;
8248 	struct trace_pid_list *pid_list;
8249 	struct trace_pid_list *no_pid_list;
8250 
8251 	/*
8252 	 * This function is called by on_each_cpu() while the
8253 	 * event_mutex is held.
8254 	 */
8255 	pid_list = rcu_dereference_protected(tr->function_pids,
8256 					     mutex_is_locked(&ftrace_lock));
8257 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
8258 						mutex_is_locked(&ftrace_lock));
8259 
8260 	if (trace_ignore_this_task(pid_list, no_pid_list, current))
8261 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
8262 			       FTRACE_PID_IGNORE);
8263 	else
8264 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
8265 			       current->pid);
8266 }
8267 
8268 static ssize_t
8269 pid_write(struct file *filp, const char __user *ubuf,
8270 	  size_t cnt, loff_t *ppos, int type)
8271 {
8272 	struct seq_file *m = filp->private_data;
8273 	struct trace_array *tr = m->private;
8274 	struct trace_pid_list *filtered_pids;
8275 	struct trace_pid_list *other_pids;
8276 	struct trace_pid_list *pid_list;
8277 	ssize_t ret;
8278 
8279 	if (!cnt)
8280 		return 0;
8281 
8282 	mutex_lock(&ftrace_lock);
8283 
8284 	switch (type) {
8285 	case TRACE_PIDS:
8286 		filtered_pids = rcu_dereference_protected(tr->function_pids,
8287 					     lockdep_is_held(&ftrace_lock));
8288 		other_pids = rcu_dereference_protected(tr->function_no_pids,
8289 					     lockdep_is_held(&ftrace_lock));
8290 		break;
8291 	case TRACE_NO_PIDS:
8292 		filtered_pids = rcu_dereference_protected(tr->function_no_pids,
8293 					     lockdep_is_held(&ftrace_lock));
8294 		other_pids = rcu_dereference_protected(tr->function_pids,
8295 					     lockdep_is_held(&ftrace_lock));
8296 		break;
8297 	default:
8298 		ret = -EINVAL;
8299 		WARN_ON_ONCE(1);
8300 		goto out;
8301 	}
8302 
8303 	ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt);
8304 	if (ret < 0)
8305 		goto out;
8306 
8307 	switch (type) {
8308 	case TRACE_PIDS:
8309 		rcu_assign_pointer(tr->function_pids, pid_list);
8310 		break;
8311 	case TRACE_NO_PIDS:
8312 		rcu_assign_pointer(tr->function_no_pids, pid_list);
8313 		break;
8314 	}
8315 
8316 
8317 	if (filtered_pids) {
8318 		synchronize_rcu();
8319 		trace_pid_list_free(filtered_pids);
8320 	} else if (pid_list && !other_pids) {
8321 		/* Register a probe to set whether to ignore the tracing of a task */
8322 		register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
8323 	}
8324 
8325 	/*
8326 	 * Ignoring of pids is done at task switch. But we have to
8327 	 * check for those tasks that are currently running.
8328 	 * Always do this in case a pid was appended or removed.
8329 	 */
8330 	on_each_cpu(ignore_task_cpu, tr, 1);
8331 
8332 	ftrace_update_pid_func();
8333 	ftrace_startup_all(0);
8334  out:
8335 	mutex_unlock(&ftrace_lock);
8336 
8337 	if (ret > 0)
8338 		*ppos += ret;
8339 
8340 	return ret;
8341 }
8342 
8343 static ssize_t
8344 ftrace_pid_write(struct file *filp, const char __user *ubuf,
8345 		 size_t cnt, loff_t *ppos)
8346 {
8347 	return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS);
8348 }
8349 
8350 static ssize_t
8351 ftrace_no_pid_write(struct file *filp, const char __user *ubuf,
8352 		    size_t cnt, loff_t *ppos)
8353 {
8354 	return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS);
8355 }
8356 
8357 static int
8358 ftrace_pid_release(struct inode *inode, struct file *file)
8359 {
8360 	struct trace_array *tr = inode->i_private;
8361 
8362 	trace_array_put(tr);
8363 
8364 	return seq_release(inode, file);
8365 }
8366 
8367 static const struct file_operations ftrace_pid_fops = {
8368 	.open		= ftrace_pid_open,
8369 	.write		= ftrace_pid_write,
8370 	.read		= seq_read,
8371 	.llseek		= tracing_lseek,
8372 	.release	= ftrace_pid_release,
8373 };
8374 
8375 static const struct file_operations ftrace_no_pid_fops = {
8376 	.open		= ftrace_no_pid_open,
8377 	.write		= ftrace_no_pid_write,
8378 	.read		= seq_read,
8379 	.llseek		= tracing_lseek,
8380 	.release	= ftrace_pid_release,
8381 };
8382 
8383 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer)
8384 {
8385 	trace_create_file("set_ftrace_pid", TRACE_MODE_WRITE, d_tracer,
8386 			    tr, &ftrace_pid_fops);
8387 	trace_create_file("set_ftrace_notrace_pid", TRACE_MODE_WRITE,
8388 			  d_tracer, tr, &ftrace_no_pid_fops);
8389 }
8390 
8391 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr,
8392 					 struct dentry *d_tracer)
8393 {
8394 	/* Only the top level directory has the dyn_tracefs and profile */
8395 	WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL));
8396 
8397 	ftrace_init_dyn_tracefs(d_tracer);
8398 	ftrace_profile_tracefs(d_tracer);
8399 }
8400 
8401 /**
8402  * ftrace_kill - kill ftrace
8403  *
8404  * This function should be used by panic code. It stops ftrace
8405  * but in a not so nice way. If you need to simply kill ftrace
8406  * from a non-atomic section, use ftrace_kill.
8407  */
8408 void ftrace_kill(void)
8409 {
8410 	ftrace_disabled = 1;
8411 	ftrace_enabled = 0;
8412 	ftrace_trace_function = ftrace_stub;
8413 	kprobe_ftrace_kill();
8414 }
8415 
8416 /**
8417  * ftrace_is_dead - Test if ftrace is dead or not.
8418  *
8419  * Returns: 1 if ftrace is "dead", zero otherwise.
8420  */
8421 int ftrace_is_dead(void)
8422 {
8423 	return ftrace_disabled;
8424 }
8425 
8426 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
8427 /*
8428  * When registering ftrace_ops with IPMODIFY, it is necessary to make sure
8429  * it doesn't conflict with any direct ftrace_ops. If there is existing
8430  * direct ftrace_ops on a kernel function being patched, call
8431  * FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER on it to enable sharing.
8432  *
8433  * @ops:     ftrace_ops being registered.
8434  *
8435  * Returns:
8436  *         0 on success;
8437  *         Negative on failure.
8438  */
8439 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops)
8440 {
8441 	struct ftrace_func_entry *entry;
8442 	struct ftrace_hash *hash;
8443 	struct ftrace_ops *op;
8444 	int size, i, ret;
8445 
8446 	lockdep_assert_held_once(&direct_mutex);
8447 
8448 	if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
8449 		return 0;
8450 
8451 	hash = ops->func_hash->filter_hash;
8452 	size = 1 << hash->size_bits;
8453 	for (i = 0; i < size; i++) {
8454 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
8455 			unsigned long ip = entry->ip;
8456 			bool found_op = false;
8457 
8458 			mutex_lock(&ftrace_lock);
8459 			do_for_each_ftrace_op(op, ftrace_ops_list) {
8460 				if (!(op->flags & FTRACE_OPS_FL_DIRECT))
8461 					continue;
8462 				if (ops_references_ip(op, ip)) {
8463 					found_op = true;
8464 					break;
8465 				}
8466 			} while_for_each_ftrace_op(op);
8467 			mutex_unlock(&ftrace_lock);
8468 
8469 			if (found_op) {
8470 				if (!op->ops_func)
8471 					return -EBUSY;
8472 
8473 				ret = op->ops_func(op, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER);
8474 				if (ret)
8475 					return ret;
8476 			}
8477 		}
8478 	}
8479 
8480 	return 0;
8481 }
8482 
8483 /*
8484  * Similar to prepare_direct_functions_for_ipmodify, clean up after ops
8485  * with IPMODIFY is unregistered. The cleanup is optional for most DIRECT
8486  * ops.
8487  */
8488 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops)
8489 {
8490 	struct ftrace_func_entry *entry;
8491 	struct ftrace_hash *hash;
8492 	struct ftrace_ops *op;
8493 	int size, i;
8494 
8495 	if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
8496 		return;
8497 
8498 	mutex_lock(&direct_mutex);
8499 
8500 	hash = ops->func_hash->filter_hash;
8501 	size = 1 << hash->size_bits;
8502 	for (i = 0; i < size; i++) {
8503 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
8504 			unsigned long ip = entry->ip;
8505 			bool found_op = false;
8506 
8507 			mutex_lock(&ftrace_lock);
8508 			do_for_each_ftrace_op(op, ftrace_ops_list) {
8509 				if (!(op->flags & FTRACE_OPS_FL_DIRECT))
8510 					continue;
8511 				if (ops_references_ip(op, ip)) {
8512 					found_op = true;
8513 					break;
8514 				}
8515 			} while_for_each_ftrace_op(op);
8516 			mutex_unlock(&ftrace_lock);
8517 
8518 			/* The cleanup is optional, ignore any errors */
8519 			if (found_op && op->ops_func)
8520 				op->ops_func(op, FTRACE_OPS_CMD_DISABLE_SHARE_IPMODIFY_PEER);
8521 		}
8522 	}
8523 	mutex_unlock(&direct_mutex);
8524 }
8525 
8526 #define lock_direct_mutex()	mutex_lock(&direct_mutex)
8527 #define unlock_direct_mutex()	mutex_unlock(&direct_mutex)
8528 
8529 #else  /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
8530 
8531 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops)
8532 {
8533 	return 0;
8534 }
8535 
8536 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops)
8537 {
8538 }
8539 
8540 #define lock_direct_mutex()	do { } while (0)
8541 #define unlock_direct_mutex()	do { } while (0)
8542 
8543 #endif  /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
8544 
8545 /*
8546  * Similar to register_ftrace_function, except we don't lock direct_mutex.
8547  */
8548 static int register_ftrace_function_nolock(struct ftrace_ops *ops)
8549 {
8550 	int ret;
8551 
8552 	ftrace_ops_init(ops);
8553 
8554 	mutex_lock(&ftrace_lock);
8555 
8556 	ret = ftrace_startup(ops, 0);
8557 
8558 	mutex_unlock(&ftrace_lock);
8559 
8560 	return ret;
8561 }
8562 
8563 /**
8564  * register_ftrace_function - register a function for profiling
8565  * @ops:	ops structure that holds the function for profiling.
8566  *
8567  * Register a function to be called by all functions in the
8568  * kernel.
8569  *
8570  * Note: @ops->func and all the functions it calls must be labeled
8571  *       with "notrace", otherwise it will go into a
8572  *       recursive loop.
8573  */
8574 int register_ftrace_function(struct ftrace_ops *ops)
8575 {
8576 	int ret;
8577 
8578 	lock_direct_mutex();
8579 	ret = prepare_direct_functions_for_ipmodify(ops);
8580 	if (ret < 0)
8581 		goto out_unlock;
8582 
8583 	ret = register_ftrace_function_nolock(ops);
8584 
8585 out_unlock:
8586 	unlock_direct_mutex();
8587 	return ret;
8588 }
8589 EXPORT_SYMBOL_GPL(register_ftrace_function);
8590 
8591 /**
8592  * unregister_ftrace_function - unregister a function for profiling.
8593  * @ops:	ops structure that holds the function to unregister
8594  *
8595  * Unregister a function that was added to be called by ftrace profiling.
8596  */
8597 int unregister_ftrace_function(struct ftrace_ops *ops)
8598 {
8599 	int ret;
8600 
8601 	mutex_lock(&ftrace_lock);
8602 	ret = ftrace_shutdown(ops, 0);
8603 	mutex_unlock(&ftrace_lock);
8604 
8605 	cleanup_direct_functions_after_ipmodify(ops);
8606 	return ret;
8607 }
8608 EXPORT_SYMBOL_GPL(unregister_ftrace_function);
8609 
8610 static int symbols_cmp(const void *a, const void *b)
8611 {
8612 	const char **str_a = (const char **) a;
8613 	const char **str_b = (const char **) b;
8614 
8615 	return strcmp(*str_a, *str_b);
8616 }
8617 
8618 struct kallsyms_data {
8619 	unsigned long *addrs;
8620 	const char **syms;
8621 	size_t cnt;
8622 	size_t found;
8623 };
8624 
8625 /* This function gets called for all kernel and module symbols
8626  * and returns 1 in case we resolved all the requested symbols,
8627  * 0 otherwise.
8628  */
8629 static int kallsyms_callback(void *data, const char *name, unsigned long addr)
8630 {
8631 	struct kallsyms_data *args = data;
8632 	const char **sym;
8633 	int idx;
8634 
8635 	sym = bsearch(&name, args->syms, args->cnt, sizeof(*args->syms), symbols_cmp);
8636 	if (!sym)
8637 		return 0;
8638 
8639 	idx = sym - args->syms;
8640 	if (args->addrs[idx])
8641 		return 0;
8642 
8643 	if (!ftrace_location(addr))
8644 		return 0;
8645 
8646 	args->addrs[idx] = addr;
8647 	args->found++;
8648 	return args->found == args->cnt ? 1 : 0;
8649 }
8650 
8651 /**
8652  * ftrace_lookup_symbols - Lookup addresses for array of symbols
8653  *
8654  * @sorted_syms: array of symbols pointers symbols to resolve,
8655  * must be alphabetically sorted
8656  * @cnt: number of symbols/addresses in @syms/@addrs arrays
8657  * @addrs: array for storing resulting addresses
8658  *
8659  * This function looks up addresses for array of symbols provided in
8660  * @syms array (must be alphabetically sorted) and stores them in
8661  * @addrs array, which needs to be big enough to store at least @cnt
8662  * addresses.
8663  *
8664  * Returns: 0 if all provided symbols are found, -ESRCH otherwise.
8665  */
8666 int ftrace_lookup_symbols(const char **sorted_syms, size_t cnt, unsigned long *addrs)
8667 {
8668 	struct kallsyms_data args;
8669 	int found_all;
8670 
8671 	memset(addrs, 0, sizeof(*addrs) * cnt);
8672 	args.addrs = addrs;
8673 	args.syms = sorted_syms;
8674 	args.cnt = cnt;
8675 	args.found = 0;
8676 
8677 	found_all = kallsyms_on_each_symbol(kallsyms_callback, &args);
8678 	if (found_all)
8679 		return 0;
8680 	found_all = module_kallsyms_on_each_symbol(NULL, kallsyms_callback, &args);
8681 	return found_all ? 0 : -ESRCH;
8682 }
8683 
8684 #ifdef CONFIG_SYSCTL
8685 
8686 #ifdef CONFIG_DYNAMIC_FTRACE
8687 static void ftrace_startup_sysctl(void)
8688 {
8689 	int command;
8690 
8691 	if (unlikely(ftrace_disabled))
8692 		return;
8693 
8694 	/* Force update next time */
8695 	saved_ftrace_func = NULL;
8696 	/* ftrace_start_up is true if we want ftrace running */
8697 	if (ftrace_start_up) {
8698 		command = FTRACE_UPDATE_CALLS;
8699 		if (ftrace_graph_active)
8700 			command |= FTRACE_START_FUNC_RET;
8701 		ftrace_startup_enable(command);
8702 	}
8703 }
8704 
8705 static void ftrace_shutdown_sysctl(void)
8706 {
8707 	int command;
8708 
8709 	if (unlikely(ftrace_disabled))
8710 		return;
8711 
8712 	/* ftrace_start_up is true if ftrace is running */
8713 	if (ftrace_start_up) {
8714 		command = FTRACE_DISABLE_CALLS;
8715 		if (ftrace_graph_active)
8716 			command |= FTRACE_STOP_FUNC_RET;
8717 		ftrace_run_update_code(command);
8718 	}
8719 }
8720 #else
8721 # define ftrace_startup_sysctl()       do { } while (0)
8722 # define ftrace_shutdown_sysctl()      do { } while (0)
8723 #endif /* CONFIG_DYNAMIC_FTRACE */
8724 
8725 static bool is_permanent_ops_registered(void)
8726 {
8727 	struct ftrace_ops *op;
8728 
8729 	do_for_each_ftrace_op(op, ftrace_ops_list) {
8730 		if (op->flags & FTRACE_OPS_FL_PERMANENT)
8731 			return true;
8732 	} while_for_each_ftrace_op(op);
8733 
8734 	return false;
8735 }
8736 
8737 static int
8738 ftrace_enable_sysctl(const struct ctl_table *table, int write,
8739 		     void *buffer, size_t *lenp, loff_t *ppos)
8740 {
8741 	int ret = -ENODEV;
8742 
8743 	mutex_lock(&ftrace_lock);
8744 
8745 	if (unlikely(ftrace_disabled))
8746 		goto out;
8747 
8748 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8749 
8750 	if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled))
8751 		goto out;
8752 
8753 	if (ftrace_enabled) {
8754 
8755 		/* we are starting ftrace again */
8756 		if (rcu_dereference_protected(ftrace_ops_list,
8757 			lockdep_is_held(&ftrace_lock)) != &ftrace_list_end)
8758 			update_ftrace_function();
8759 
8760 		ftrace_startup_sysctl();
8761 
8762 	} else {
8763 		if (is_permanent_ops_registered()) {
8764 			ftrace_enabled = true;
8765 			ret = -EBUSY;
8766 			goto out;
8767 		}
8768 
8769 		/* stopping ftrace calls (just send to ftrace_stub) */
8770 		ftrace_trace_function = ftrace_stub;
8771 
8772 		ftrace_shutdown_sysctl();
8773 	}
8774 
8775 	last_ftrace_enabled = !!ftrace_enabled;
8776  out:
8777 	mutex_unlock(&ftrace_lock);
8778 	return ret;
8779 }
8780 
8781 static struct ctl_table ftrace_sysctls[] = {
8782 	{
8783 		.procname       = "ftrace_enabled",
8784 		.data           = &ftrace_enabled,
8785 		.maxlen         = sizeof(int),
8786 		.mode           = 0644,
8787 		.proc_handler   = ftrace_enable_sysctl,
8788 	},
8789 };
8790 
8791 static int __init ftrace_sysctl_init(void)
8792 {
8793 	register_sysctl_init("kernel", ftrace_sysctls);
8794 	return 0;
8795 }
8796 late_initcall(ftrace_sysctl_init);
8797 #endif
8798