1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Infrastructure for profiling code inserted by 'gcc -pg'. 4 * 5 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com> 6 * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com> 7 * 8 * Originally ported from the -rt patch by: 9 * Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com> 10 * 11 * Based on code in the latency_tracer, that is: 12 * 13 * Copyright (C) 2004-2006 Ingo Molnar 14 * Copyright (C) 2004 Nadia Yvette Chambers 15 */ 16 17 #include <linux/stop_machine.h> 18 #include <linux/clocksource.h> 19 #include <linux/sched/task.h> 20 #include <linux/kallsyms.h> 21 #include <linux/security.h> 22 #include <linux/seq_file.h> 23 #include <linux/tracefs.h> 24 #include <linux/hardirq.h> 25 #include <linux/kthread.h> 26 #include <linux/uaccess.h> 27 #include <linux/bsearch.h> 28 #include <linux/module.h> 29 #include <linux/ftrace.h> 30 #include <linux/sysctl.h> 31 #include <linux/slab.h> 32 #include <linux/ctype.h> 33 #include <linux/sort.h> 34 #include <linux/list.h> 35 #include <linux/hash.h> 36 #include <linux/rcupdate.h> 37 #include <linux/kprobes.h> 38 39 #include <trace/events/sched.h> 40 41 #include <asm/sections.h> 42 #include <asm/setup.h> 43 44 #include "ftrace_internal.h" 45 #include "trace_output.h" 46 #include "trace_stat.h" 47 48 /* Flags that do not get reset */ 49 #define FTRACE_NOCLEAR_FLAGS (FTRACE_FL_DISABLED | FTRACE_FL_TOUCHED | \ 50 FTRACE_FL_MODIFIED) 51 52 #define FTRACE_INVALID_FUNCTION "__ftrace_invalid_address__" 53 54 #define FTRACE_WARN_ON(cond) \ 55 ({ \ 56 int ___r = cond; \ 57 if (WARN_ON(___r)) \ 58 ftrace_kill(); \ 59 ___r; \ 60 }) 61 62 #define FTRACE_WARN_ON_ONCE(cond) \ 63 ({ \ 64 int ___r = cond; \ 65 if (WARN_ON_ONCE(___r)) \ 66 ftrace_kill(); \ 67 ___r; \ 68 }) 69 70 /* hash bits for specific function selection */ 71 #define FTRACE_HASH_DEFAULT_BITS 10 72 #define FTRACE_HASH_MAX_BITS 12 73 74 #ifdef CONFIG_DYNAMIC_FTRACE 75 #define INIT_OPS_HASH(opsname) \ 76 .func_hash = &opsname.local_hash, \ 77 .local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock), \ 78 .subop_list = LIST_HEAD_INIT(opsname.subop_list), 79 #else 80 #define INIT_OPS_HASH(opsname) 81 #endif 82 83 enum { 84 FTRACE_MODIFY_ENABLE_FL = (1 << 0), 85 FTRACE_MODIFY_MAY_SLEEP_FL = (1 << 1), 86 }; 87 88 struct ftrace_ops ftrace_list_end __read_mostly = { 89 .func = ftrace_stub, 90 .flags = FTRACE_OPS_FL_STUB, 91 INIT_OPS_HASH(ftrace_list_end) 92 }; 93 94 /* ftrace_enabled is a method to turn ftrace on or off */ 95 int ftrace_enabled __read_mostly; 96 static int __maybe_unused last_ftrace_enabled; 97 98 /* Current function tracing op */ 99 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end; 100 /* What to set function_trace_op to */ 101 static struct ftrace_ops *set_function_trace_op; 102 103 bool ftrace_pids_enabled(struct ftrace_ops *ops) 104 { 105 struct trace_array *tr; 106 107 if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private) 108 return false; 109 110 tr = ops->private; 111 112 return tr->function_pids != NULL || tr->function_no_pids != NULL; 113 } 114 115 static void ftrace_update_trampoline(struct ftrace_ops *ops); 116 117 /* 118 * ftrace_disabled is set when an anomaly is discovered. 119 * ftrace_disabled is much stronger than ftrace_enabled. 120 */ 121 static int ftrace_disabled __read_mostly; 122 123 DEFINE_MUTEX(ftrace_lock); 124 125 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = (struct ftrace_ops __rcu *)&ftrace_list_end; 126 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub; 127 struct ftrace_ops global_ops; 128 129 /* Defined by vmlinux.lds.h see the comment above arch_ftrace_ops_list_func for details */ 130 void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 131 struct ftrace_ops *op, struct ftrace_regs *fregs); 132 133 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_CALL_OPS 134 /* 135 * Stub used to invoke the list ops without requiring a separate trampoline. 136 */ 137 const struct ftrace_ops ftrace_list_ops = { 138 .func = ftrace_ops_list_func, 139 .flags = FTRACE_OPS_FL_STUB, 140 }; 141 142 static void ftrace_ops_nop_func(unsigned long ip, unsigned long parent_ip, 143 struct ftrace_ops *op, 144 struct ftrace_regs *fregs) 145 { 146 /* do nothing */ 147 } 148 149 /* 150 * Stub used when a call site is disabled. May be called transiently by threads 151 * which have made it into ftrace_caller but haven't yet recovered the ops at 152 * the point the call site is disabled. 153 */ 154 const struct ftrace_ops ftrace_nop_ops = { 155 .func = ftrace_ops_nop_func, 156 .flags = FTRACE_OPS_FL_STUB, 157 }; 158 #endif 159 160 static inline void ftrace_ops_init(struct ftrace_ops *ops) 161 { 162 #ifdef CONFIG_DYNAMIC_FTRACE 163 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) { 164 mutex_init(&ops->local_hash.regex_lock); 165 INIT_LIST_HEAD(&ops->subop_list); 166 ops->func_hash = &ops->local_hash; 167 ops->flags |= FTRACE_OPS_FL_INITIALIZED; 168 } 169 #endif 170 } 171 172 /* Call this function for when a callback filters on set_ftrace_pid */ 173 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip, 174 struct ftrace_ops *op, struct ftrace_regs *fregs) 175 { 176 struct trace_array *tr = op->private; 177 int pid; 178 179 if (tr) { 180 pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid); 181 if (pid == FTRACE_PID_IGNORE) 182 return; 183 if (pid != FTRACE_PID_TRACE && 184 pid != current->pid) 185 return; 186 } 187 188 op->saved_func(ip, parent_ip, op, fregs); 189 } 190 191 void ftrace_sync_ipi(void *data) 192 { 193 /* Probably not needed, but do it anyway */ 194 smp_rmb(); 195 } 196 197 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops) 198 { 199 /* 200 * If this is a dynamic or RCU ops, or we force list func, 201 * then it needs to call the list anyway. 202 */ 203 if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) || 204 FTRACE_FORCE_LIST_FUNC) 205 return ftrace_ops_list_func; 206 207 return ftrace_ops_get_func(ops); 208 } 209 210 static void update_ftrace_function(void) 211 { 212 ftrace_func_t func; 213 214 /* 215 * Prepare the ftrace_ops that the arch callback will use. 216 * If there's only one ftrace_ops registered, the ftrace_ops_list 217 * will point to the ops we want. 218 */ 219 set_function_trace_op = rcu_dereference_protected(ftrace_ops_list, 220 lockdep_is_held(&ftrace_lock)); 221 222 /* If there's no ftrace_ops registered, just call the stub function */ 223 if (set_function_trace_op == &ftrace_list_end) { 224 func = ftrace_stub; 225 226 /* 227 * If we are at the end of the list and this ops is 228 * recursion safe and not dynamic and the arch supports passing ops, 229 * then have the mcount trampoline call the function directly. 230 */ 231 } else if (rcu_dereference_protected(ftrace_ops_list->next, 232 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 233 func = ftrace_ops_get_list_func(ftrace_ops_list); 234 235 } else { 236 /* Just use the default ftrace_ops */ 237 set_function_trace_op = &ftrace_list_end; 238 func = ftrace_ops_list_func; 239 } 240 241 /* If there's no change, then do nothing more here */ 242 if (ftrace_trace_function == func) 243 return; 244 245 /* 246 * If we are using the list function, it doesn't care 247 * about the function_trace_ops. 248 */ 249 if (func == ftrace_ops_list_func) { 250 ftrace_trace_function = func; 251 /* 252 * Don't even bother setting function_trace_ops, 253 * it would be racy to do so anyway. 254 */ 255 return; 256 } 257 258 #ifndef CONFIG_DYNAMIC_FTRACE 259 /* 260 * For static tracing, we need to be a bit more careful. 261 * The function change takes affect immediately. Thus, 262 * we need to coordinate the setting of the function_trace_ops 263 * with the setting of the ftrace_trace_function. 264 * 265 * Set the function to the list ops, which will call the 266 * function we want, albeit indirectly, but it handles the 267 * ftrace_ops and doesn't depend on function_trace_op. 268 */ 269 ftrace_trace_function = ftrace_ops_list_func; 270 /* 271 * Make sure all CPUs see this. Yes this is slow, but static 272 * tracing is slow and nasty to have enabled. 273 */ 274 synchronize_rcu_tasks_rude(); 275 /* Now all cpus are using the list ops. */ 276 function_trace_op = set_function_trace_op; 277 /* Make sure the function_trace_op is visible on all CPUs */ 278 smp_wmb(); 279 /* Nasty way to force a rmb on all cpus */ 280 smp_call_function(ftrace_sync_ipi, NULL, 1); 281 /* OK, we are all set to update the ftrace_trace_function now! */ 282 #endif /* !CONFIG_DYNAMIC_FTRACE */ 283 284 ftrace_trace_function = func; 285 } 286 287 static void add_ftrace_ops(struct ftrace_ops __rcu **list, 288 struct ftrace_ops *ops) 289 { 290 rcu_assign_pointer(ops->next, *list); 291 292 /* 293 * We are entering ops into the list but another 294 * CPU might be walking that list. We need to make sure 295 * the ops->next pointer is valid before another CPU sees 296 * the ops pointer included into the list. 297 */ 298 rcu_assign_pointer(*list, ops); 299 } 300 301 static int remove_ftrace_ops(struct ftrace_ops __rcu **list, 302 struct ftrace_ops *ops) 303 { 304 struct ftrace_ops **p; 305 306 /* 307 * If we are removing the last function, then simply point 308 * to the ftrace_stub. 309 */ 310 if (rcu_dereference_protected(*list, 311 lockdep_is_held(&ftrace_lock)) == ops && 312 rcu_dereference_protected(ops->next, 313 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 314 rcu_assign_pointer(*list, &ftrace_list_end); 315 return 0; 316 } 317 318 for (p = list; *p != &ftrace_list_end; p = &(*p)->next) 319 if (*p == ops) 320 break; 321 322 if (*p != ops) 323 return -1; 324 325 *p = (*p)->next; 326 return 0; 327 } 328 329 static void ftrace_update_trampoline(struct ftrace_ops *ops); 330 331 int __register_ftrace_function(struct ftrace_ops *ops) 332 { 333 if (ops->flags & FTRACE_OPS_FL_DELETED) 334 return -EINVAL; 335 336 if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED)) 337 return -EBUSY; 338 339 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS 340 /* 341 * If the ftrace_ops specifies SAVE_REGS, then it only can be used 342 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set. 343 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant. 344 */ 345 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS && 346 !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)) 347 return -EINVAL; 348 349 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED) 350 ops->flags |= FTRACE_OPS_FL_SAVE_REGS; 351 #endif 352 if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT)) 353 return -EBUSY; 354 355 if (!is_kernel_core_data((unsigned long)ops)) 356 ops->flags |= FTRACE_OPS_FL_DYNAMIC; 357 358 add_ftrace_ops(&ftrace_ops_list, ops); 359 360 /* Always save the function, and reset at unregistering */ 361 ops->saved_func = ops->func; 362 363 if (ftrace_pids_enabled(ops)) 364 ops->func = ftrace_pid_func; 365 366 ftrace_update_trampoline(ops); 367 368 if (ftrace_enabled) 369 update_ftrace_function(); 370 371 return 0; 372 } 373 374 int __unregister_ftrace_function(struct ftrace_ops *ops) 375 { 376 int ret; 377 378 if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED))) 379 return -EBUSY; 380 381 ret = remove_ftrace_ops(&ftrace_ops_list, ops); 382 383 if (ret < 0) 384 return ret; 385 386 if (ftrace_enabled) 387 update_ftrace_function(); 388 389 ops->func = ops->saved_func; 390 391 return 0; 392 } 393 394 static void ftrace_update_pid_func(void) 395 { 396 struct ftrace_ops *op; 397 398 /* Only do something if we are tracing something */ 399 if (ftrace_trace_function == ftrace_stub) 400 return; 401 402 do_for_each_ftrace_op(op, ftrace_ops_list) { 403 if (op->flags & FTRACE_OPS_FL_PID) { 404 op->func = ftrace_pids_enabled(op) ? 405 ftrace_pid_func : op->saved_func; 406 ftrace_update_trampoline(op); 407 } 408 } while_for_each_ftrace_op(op); 409 410 fgraph_update_pid_func(); 411 412 update_ftrace_function(); 413 } 414 415 #ifdef CONFIG_FUNCTION_PROFILER 416 struct ftrace_profile { 417 struct hlist_node node; 418 unsigned long ip; 419 unsigned long counter; 420 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 421 unsigned long long time; 422 unsigned long long time_squared; 423 #endif 424 }; 425 426 struct ftrace_profile_page { 427 struct ftrace_profile_page *next; 428 unsigned long index; 429 struct ftrace_profile records[]; 430 }; 431 432 struct ftrace_profile_stat { 433 atomic_t disabled; 434 struct hlist_head *hash; 435 struct ftrace_profile_page *pages; 436 struct ftrace_profile_page *start; 437 struct tracer_stat stat; 438 }; 439 440 #define PROFILE_RECORDS_SIZE \ 441 (PAGE_SIZE - offsetof(struct ftrace_profile_page, records)) 442 443 #define PROFILES_PER_PAGE \ 444 (PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile)) 445 446 static int ftrace_profile_enabled __read_mostly; 447 448 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */ 449 static DEFINE_MUTEX(ftrace_profile_lock); 450 451 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats); 452 453 #define FTRACE_PROFILE_HASH_BITS 10 454 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS) 455 456 static void * 457 function_stat_next(void *v, int idx) 458 { 459 struct ftrace_profile *rec = v; 460 struct ftrace_profile_page *pg; 461 462 pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK); 463 464 again: 465 if (idx != 0) 466 rec++; 467 468 if ((void *)rec >= (void *)&pg->records[pg->index]) { 469 pg = pg->next; 470 if (!pg) 471 return NULL; 472 rec = &pg->records[0]; 473 if (!rec->counter) 474 goto again; 475 } 476 477 return rec; 478 } 479 480 static void *function_stat_start(struct tracer_stat *trace) 481 { 482 struct ftrace_profile_stat *stat = 483 container_of(trace, struct ftrace_profile_stat, stat); 484 485 if (!stat || !stat->start) 486 return NULL; 487 488 return function_stat_next(&stat->start->records[0], 0); 489 } 490 491 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 492 /* function graph compares on total time */ 493 static int function_stat_cmp(const void *p1, const void *p2) 494 { 495 const struct ftrace_profile *a = p1; 496 const struct ftrace_profile *b = p2; 497 498 if (a->time < b->time) 499 return -1; 500 if (a->time > b->time) 501 return 1; 502 else 503 return 0; 504 } 505 #else 506 /* not function graph compares against hits */ 507 static int function_stat_cmp(const void *p1, const void *p2) 508 { 509 const struct ftrace_profile *a = p1; 510 const struct ftrace_profile *b = p2; 511 512 if (a->counter < b->counter) 513 return -1; 514 if (a->counter > b->counter) 515 return 1; 516 else 517 return 0; 518 } 519 #endif 520 521 static int function_stat_headers(struct seq_file *m) 522 { 523 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 524 seq_puts(m, " Function " 525 "Hit Time Avg s^2\n" 526 " -------- " 527 "--- ---- --- ---\n"); 528 #else 529 seq_puts(m, " Function Hit\n" 530 " -------- ---\n"); 531 #endif 532 return 0; 533 } 534 535 static int function_stat_show(struct seq_file *m, void *v) 536 { 537 struct ftrace_profile *rec = v; 538 char str[KSYM_SYMBOL_LEN]; 539 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 540 static struct trace_seq s; 541 unsigned long long avg; 542 unsigned long long stddev; 543 unsigned long long stddev_denom; 544 #endif 545 guard(mutex)(&ftrace_profile_lock); 546 547 /* we raced with function_profile_reset() */ 548 if (unlikely(rec->counter == 0)) 549 return -EBUSY; 550 551 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 552 avg = div64_ul(rec->time, rec->counter); 553 if (tracing_thresh && (avg < tracing_thresh)) 554 return 0; 555 #endif 556 557 kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); 558 seq_printf(m, " %-30.30s %10lu", str, rec->counter); 559 560 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 561 seq_puts(m, " "); 562 563 /* 564 * Variance formula: 565 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2) 566 * Maybe Welford's method is better here? 567 * Divide only by 1000 for ns^2 -> us^2 conversion. 568 * trace_print_graph_duration will divide by 1000 again. 569 */ 570 stddev = 0; 571 stddev_denom = rec->counter * (rec->counter - 1) * 1000; 572 if (stddev_denom) { 573 stddev = rec->counter * rec->time_squared - 574 rec->time * rec->time; 575 stddev = div64_ul(stddev, stddev_denom); 576 } 577 578 trace_seq_init(&s); 579 trace_print_graph_duration(rec->time, &s); 580 trace_seq_puts(&s, " "); 581 trace_print_graph_duration(avg, &s); 582 trace_seq_puts(&s, " "); 583 trace_print_graph_duration(stddev, &s); 584 trace_print_seq(m, &s); 585 #endif 586 seq_putc(m, '\n'); 587 588 return 0; 589 } 590 591 static void ftrace_profile_reset(struct ftrace_profile_stat *stat) 592 { 593 struct ftrace_profile_page *pg; 594 595 pg = stat->pages = stat->start; 596 597 while (pg) { 598 memset(pg->records, 0, PROFILE_RECORDS_SIZE); 599 pg->index = 0; 600 pg = pg->next; 601 } 602 603 memset(stat->hash, 0, 604 FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head)); 605 } 606 607 static int ftrace_profile_pages_init(struct ftrace_profile_stat *stat) 608 { 609 struct ftrace_profile_page *pg; 610 int functions; 611 int pages; 612 int i; 613 614 /* If we already allocated, do nothing */ 615 if (stat->pages) 616 return 0; 617 618 stat->pages = (void *)get_zeroed_page(GFP_KERNEL); 619 if (!stat->pages) 620 return -ENOMEM; 621 622 #ifdef CONFIG_DYNAMIC_FTRACE 623 functions = ftrace_update_tot_cnt; 624 #else 625 /* 626 * We do not know the number of functions that exist because 627 * dynamic tracing is what counts them. With past experience 628 * we have around 20K functions. That should be more than enough. 629 * It is highly unlikely we will execute every function in 630 * the kernel. 631 */ 632 functions = 20000; 633 #endif 634 635 pg = stat->start = stat->pages; 636 637 pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE); 638 639 for (i = 1; i < pages; i++) { 640 pg->next = (void *)get_zeroed_page(GFP_KERNEL); 641 if (!pg->next) 642 goto out_free; 643 pg = pg->next; 644 } 645 646 return 0; 647 648 out_free: 649 pg = stat->start; 650 while (pg) { 651 unsigned long tmp = (unsigned long)pg; 652 653 pg = pg->next; 654 free_page(tmp); 655 } 656 657 stat->pages = NULL; 658 stat->start = NULL; 659 660 return -ENOMEM; 661 } 662 663 static int ftrace_profile_init_cpu(int cpu) 664 { 665 struct ftrace_profile_stat *stat; 666 int size; 667 668 stat = &per_cpu(ftrace_profile_stats, cpu); 669 670 if (stat->hash) { 671 /* If the profile is already created, simply reset it */ 672 ftrace_profile_reset(stat); 673 return 0; 674 } 675 676 /* 677 * We are profiling all functions, but usually only a few thousand 678 * functions are hit. We'll make a hash of 1024 items. 679 */ 680 size = FTRACE_PROFILE_HASH_SIZE; 681 682 stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL); 683 684 if (!stat->hash) 685 return -ENOMEM; 686 687 /* Preallocate the function profiling pages */ 688 if (ftrace_profile_pages_init(stat) < 0) { 689 kfree(stat->hash); 690 stat->hash = NULL; 691 return -ENOMEM; 692 } 693 694 return 0; 695 } 696 697 static int ftrace_profile_init(void) 698 { 699 int cpu; 700 int ret = 0; 701 702 for_each_possible_cpu(cpu) { 703 ret = ftrace_profile_init_cpu(cpu); 704 if (ret) 705 break; 706 } 707 708 return ret; 709 } 710 711 /* interrupts must be disabled */ 712 static struct ftrace_profile * 713 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip) 714 { 715 struct ftrace_profile *rec; 716 struct hlist_head *hhd; 717 unsigned long key; 718 719 key = hash_long(ip, FTRACE_PROFILE_HASH_BITS); 720 hhd = &stat->hash[key]; 721 722 if (hlist_empty(hhd)) 723 return NULL; 724 725 hlist_for_each_entry_rcu_notrace(rec, hhd, node) { 726 if (rec->ip == ip) 727 return rec; 728 } 729 730 return NULL; 731 } 732 733 static void ftrace_add_profile(struct ftrace_profile_stat *stat, 734 struct ftrace_profile *rec) 735 { 736 unsigned long key; 737 738 key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS); 739 hlist_add_head_rcu(&rec->node, &stat->hash[key]); 740 } 741 742 /* 743 * The memory is already allocated, this simply finds a new record to use. 744 */ 745 static struct ftrace_profile * 746 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip) 747 { 748 struct ftrace_profile *rec = NULL; 749 750 /* prevent recursion (from NMIs) */ 751 if (atomic_inc_return(&stat->disabled) != 1) 752 goto out; 753 754 /* 755 * Try to find the function again since an NMI 756 * could have added it 757 */ 758 rec = ftrace_find_profiled_func(stat, ip); 759 if (rec) 760 goto out; 761 762 if (stat->pages->index == PROFILES_PER_PAGE) { 763 if (!stat->pages->next) 764 goto out; 765 stat->pages = stat->pages->next; 766 } 767 768 rec = &stat->pages->records[stat->pages->index++]; 769 rec->ip = ip; 770 ftrace_add_profile(stat, rec); 771 772 out: 773 atomic_dec(&stat->disabled); 774 775 return rec; 776 } 777 778 static void 779 function_profile_call(unsigned long ip, unsigned long parent_ip, 780 struct ftrace_ops *ops, struct ftrace_regs *fregs) 781 { 782 struct ftrace_profile_stat *stat; 783 struct ftrace_profile *rec; 784 785 if (!ftrace_profile_enabled) 786 return; 787 788 guard(preempt_notrace)(); 789 790 stat = this_cpu_ptr(&ftrace_profile_stats); 791 if (!stat->hash || !ftrace_profile_enabled) 792 return; 793 794 rec = ftrace_find_profiled_func(stat, ip); 795 if (!rec) { 796 rec = ftrace_profile_alloc(stat, ip); 797 if (!rec) 798 return; 799 } 800 801 rec->counter++; 802 } 803 804 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 805 static bool fgraph_graph_time = true; 806 807 void ftrace_graph_graph_time_control(bool enable) 808 { 809 fgraph_graph_time = enable; 810 } 811 812 struct profile_fgraph_data { 813 unsigned long long calltime; 814 unsigned long long subtime; 815 unsigned long long sleeptime; 816 }; 817 818 static int profile_graph_entry(struct ftrace_graph_ent *trace, 819 struct fgraph_ops *gops, 820 struct ftrace_regs *fregs) 821 { 822 struct profile_fgraph_data *profile_data; 823 824 function_profile_call(trace->func, 0, NULL, NULL); 825 826 /* If function graph is shutting down, ret_stack can be NULL */ 827 if (!current->ret_stack) 828 return 0; 829 830 profile_data = fgraph_reserve_data(gops->idx, sizeof(*profile_data)); 831 if (!profile_data) 832 return 0; 833 834 profile_data->subtime = 0; 835 profile_data->sleeptime = current->ftrace_sleeptime; 836 profile_data->calltime = trace_clock_local(); 837 838 return 1; 839 } 840 841 static void profile_graph_return(struct ftrace_graph_ret *trace, 842 struct fgraph_ops *gops, 843 struct ftrace_regs *fregs) 844 { 845 struct profile_fgraph_data *profile_data; 846 struct ftrace_profile_stat *stat; 847 unsigned long long calltime; 848 unsigned long long rettime = trace_clock_local(); 849 struct ftrace_profile *rec; 850 int size; 851 852 guard(preempt_notrace)(); 853 854 stat = this_cpu_ptr(&ftrace_profile_stats); 855 if (!stat->hash || !ftrace_profile_enabled) 856 return; 857 858 profile_data = fgraph_retrieve_data(gops->idx, &size); 859 860 /* If the calltime was zero'd ignore it */ 861 if (!profile_data || !profile_data->calltime) 862 return; 863 864 calltime = rettime - profile_data->calltime; 865 866 if (!fgraph_sleep_time) { 867 if (current->ftrace_sleeptime) 868 calltime -= current->ftrace_sleeptime - profile_data->sleeptime; 869 } 870 871 if (!fgraph_graph_time) { 872 struct profile_fgraph_data *parent_data; 873 874 /* Append this call time to the parent time to subtract */ 875 parent_data = fgraph_retrieve_parent_data(gops->idx, &size, 1); 876 if (parent_data) 877 parent_data->subtime += calltime; 878 879 if (profile_data->subtime && profile_data->subtime < calltime) 880 calltime -= profile_data->subtime; 881 else 882 calltime = 0; 883 } 884 885 rec = ftrace_find_profiled_func(stat, trace->func); 886 if (rec) { 887 rec->time += calltime; 888 rec->time_squared += calltime * calltime; 889 } 890 } 891 892 static struct fgraph_ops fprofiler_ops = { 893 .entryfunc = &profile_graph_entry, 894 .retfunc = &profile_graph_return, 895 }; 896 897 static int register_ftrace_profiler(void) 898 { 899 ftrace_ops_set_global_filter(&fprofiler_ops.ops); 900 return register_ftrace_graph(&fprofiler_ops); 901 } 902 903 static void unregister_ftrace_profiler(void) 904 { 905 unregister_ftrace_graph(&fprofiler_ops); 906 } 907 #else 908 static struct ftrace_ops ftrace_profile_ops __read_mostly = { 909 .func = function_profile_call, 910 }; 911 912 static int register_ftrace_profiler(void) 913 { 914 ftrace_ops_set_global_filter(&ftrace_profile_ops); 915 return register_ftrace_function(&ftrace_profile_ops); 916 } 917 918 static void unregister_ftrace_profiler(void) 919 { 920 unregister_ftrace_function(&ftrace_profile_ops); 921 } 922 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 923 924 static ssize_t 925 ftrace_profile_write(struct file *filp, const char __user *ubuf, 926 size_t cnt, loff_t *ppos) 927 { 928 unsigned long val; 929 int ret; 930 931 ret = kstrtoul_from_user(ubuf, cnt, 10, &val); 932 if (ret) 933 return ret; 934 935 val = !!val; 936 937 guard(mutex)(&ftrace_profile_lock); 938 if (ftrace_profile_enabled ^ val) { 939 if (val) { 940 ret = ftrace_profile_init(); 941 if (ret < 0) 942 return ret; 943 944 ret = register_ftrace_profiler(); 945 if (ret < 0) 946 return ret; 947 ftrace_profile_enabled = 1; 948 } else { 949 ftrace_profile_enabled = 0; 950 /* 951 * unregister_ftrace_profiler calls stop_machine 952 * so this acts like an synchronize_rcu. 953 */ 954 unregister_ftrace_profiler(); 955 } 956 } 957 958 *ppos += cnt; 959 960 return cnt; 961 } 962 963 static ssize_t 964 ftrace_profile_read(struct file *filp, char __user *ubuf, 965 size_t cnt, loff_t *ppos) 966 { 967 char buf[64]; /* big enough to hold a number */ 968 int r; 969 970 r = sprintf(buf, "%u\n", ftrace_profile_enabled); 971 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 972 } 973 974 static const struct file_operations ftrace_profile_fops = { 975 .open = tracing_open_generic, 976 .read = ftrace_profile_read, 977 .write = ftrace_profile_write, 978 .llseek = default_llseek, 979 }; 980 981 /* used to initialize the real stat files */ 982 static struct tracer_stat function_stats __initdata = { 983 .name = "functions", 984 .stat_start = function_stat_start, 985 .stat_next = function_stat_next, 986 .stat_cmp = function_stat_cmp, 987 .stat_headers = function_stat_headers, 988 .stat_show = function_stat_show 989 }; 990 991 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 992 { 993 struct ftrace_profile_stat *stat; 994 char *name; 995 int ret; 996 int cpu; 997 998 for_each_possible_cpu(cpu) { 999 stat = &per_cpu(ftrace_profile_stats, cpu); 1000 1001 name = kasprintf(GFP_KERNEL, "function%d", cpu); 1002 if (!name) { 1003 /* 1004 * The files created are permanent, if something happens 1005 * we still do not free memory. 1006 */ 1007 WARN(1, 1008 "Could not allocate stat file for cpu %d\n", 1009 cpu); 1010 return; 1011 } 1012 stat->stat = function_stats; 1013 stat->stat.name = name; 1014 ret = register_stat_tracer(&stat->stat); 1015 if (ret) { 1016 WARN(1, 1017 "Could not register function stat for cpu %d\n", 1018 cpu); 1019 kfree(name); 1020 return; 1021 } 1022 } 1023 1024 trace_create_file("function_profile_enabled", 1025 TRACE_MODE_WRITE, d_tracer, NULL, 1026 &ftrace_profile_fops); 1027 } 1028 1029 #else /* CONFIG_FUNCTION_PROFILER */ 1030 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 1031 { 1032 } 1033 #endif /* CONFIG_FUNCTION_PROFILER */ 1034 1035 #ifdef CONFIG_DYNAMIC_FTRACE 1036 1037 static struct ftrace_ops *removed_ops; 1038 1039 /* 1040 * Set when doing a global update, like enabling all recs or disabling them. 1041 * It is not set when just updating a single ftrace_ops. 1042 */ 1043 static bool update_all_ops; 1044 1045 struct ftrace_func_probe { 1046 struct ftrace_probe_ops *probe_ops; 1047 struct ftrace_ops ops; 1048 struct trace_array *tr; 1049 struct list_head list; 1050 void *data; 1051 int ref; 1052 }; 1053 1054 /* 1055 * We make these constant because no one should touch them, 1056 * but they are used as the default "empty hash", to avoid allocating 1057 * it all the time. These are in a read only section such that if 1058 * anyone does try to modify it, it will cause an exception. 1059 */ 1060 static const struct hlist_head empty_buckets[1]; 1061 static const struct ftrace_hash empty_hash = { 1062 .buckets = (struct hlist_head *)empty_buckets, 1063 }; 1064 #define EMPTY_HASH ((struct ftrace_hash *)&empty_hash) 1065 1066 struct ftrace_ops global_ops = { 1067 .func = ftrace_stub, 1068 .local_hash.notrace_hash = EMPTY_HASH, 1069 .local_hash.filter_hash = EMPTY_HASH, 1070 INIT_OPS_HASH(global_ops) 1071 .flags = FTRACE_OPS_FL_INITIALIZED | 1072 FTRACE_OPS_FL_PID, 1073 }; 1074 1075 /* 1076 * Used by the stack unwinder to know about dynamic ftrace trampolines. 1077 */ 1078 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr) 1079 { 1080 struct ftrace_ops *op = NULL; 1081 1082 /* 1083 * Some of the ops may be dynamically allocated, 1084 * they are freed after a synchronize_rcu(). 1085 */ 1086 preempt_disable_notrace(); 1087 1088 do_for_each_ftrace_op(op, ftrace_ops_list) { 1089 /* 1090 * This is to check for dynamically allocated trampolines. 1091 * Trampolines that are in kernel text will have 1092 * core_kernel_text() return true. 1093 */ 1094 if (op->trampoline && op->trampoline_size) 1095 if (addr >= op->trampoline && 1096 addr < op->trampoline + op->trampoline_size) { 1097 preempt_enable_notrace(); 1098 return op; 1099 } 1100 } while_for_each_ftrace_op(op); 1101 preempt_enable_notrace(); 1102 1103 return NULL; 1104 } 1105 1106 /* 1107 * This is used by __kernel_text_address() to return true if the 1108 * address is on a dynamically allocated trampoline that would 1109 * not return true for either core_kernel_text() or 1110 * is_module_text_address(). 1111 */ 1112 bool is_ftrace_trampoline(unsigned long addr) 1113 { 1114 return ftrace_ops_trampoline(addr) != NULL; 1115 } 1116 1117 struct ftrace_page { 1118 struct ftrace_page *next; 1119 struct dyn_ftrace *records; 1120 int index; 1121 int order; 1122 }; 1123 1124 #define ENTRY_SIZE sizeof(struct dyn_ftrace) 1125 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE) 1126 1127 static struct ftrace_page *ftrace_pages_start; 1128 static struct ftrace_page *ftrace_pages; 1129 1130 static __always_inline unsigned long 1131 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip) 1132 { 1133 if (hash->size_bits > 0) 1134 return hash_long(ip, hash->size_bits); 1135 1136 return 0; 1137 } 1138 1139 /* Only use this function if ftrace_hash_empty() has already been tested */ 1140 static __always_inline struct ftrace_func_entry * 1141 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1142 { 1143 unsigned long key; 1144 struct ftrace_func_entry *entry; 1145 struct hlist_head *hhd; 1146 1147 key = ftrace_hash_key(hash, ip); 1148 hhd = &hash->buckets[key]; 1149 1150 hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) { 1151 if (entry->ip == ip) 1152 return entry; 1153 } 1154 return NULL; 1155 } 1156 1157 /** 1158 * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash 1159 * @hash: The hash to look at 1160 * @ip: The instruction pointer to test 1161 * 1162 * Search a given @hash to see if a given instruction pointer (@ip) 1163 * exists in it. 1164 * 1165 * Returns: the entry that holds the @ip if found. NULL otherwise. 1166 */ 1167 struct ftrace_func_entry * 1168 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1169 { 1170 if (ftrace_hash_empty(hash)) 1171 return NULL; 1172 1173 return __ftrace_lookup_ip(hash, ip); 1174 } 1175 1176 static void __add_hash_entry(struct ftrace_hash *hash, 1177 struct ftrace_func_entry *entry) 1178 { 1179 struct hlist_head *hhd; 1180 unsigned long key; 1181 1182 key = ftrace_hash_key(hash, entry->ip); 1183 hhd = &hash->buckets[key]; 1184 hlist_add_head(&entry->hlist, hhd); 1185 hash->count++; 1186 } 1187 1188 static struct ftrace_func_entry * 1189 add_hash_entry(struct ftrace_hash *hash, unsigned long ip) 1190 { 1191 struct ftrace_func_entry *entry; 1192 1193 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 1194 if (!entry) 1195 return NULL; 1196 1197 entry->ip = ip; 1198 __add_hash_entry(hash, entry); 1199 1200 return entry; 1201 } 1202 1203 static void 1204 free_hash_entry(struct ftrace_hash *hash, 1205 struct ftrace_func_entry *entry) 1206 { 1207 hlist_del(&entry->hlist); 1208 kfree(entry); 1209 hash->count--; 1210 } 1211 1212 static void 1213 remove_hash_entry(struct ftrace_hash *hash, 1214 struct ftrace_func_entry *entry) 1215 { 1216 hlist_del_rcu(&entry->hlist); 1217 hash->count--; 1218 } 1219 1220 static void ftrace_hash_clear(struct ftrace_hash *hash) 1221 { 1222 struct hlist_head *hhd; 1223 struct hlist_node *tn; 1224 struct ftrace_func_entry *entry; 1225 int size = 1 << hash->size_bits; 1226 int i; 1227 1228 if (!hash->count) 1229 return; 1230 1231 for (i = 0; i < size; i++) { 1232 hhd = &hash->buckets[i]; 1233 hlist_for_each_entry_safe(entry, tn, hhd, hlist) 1234 free_hash_entry(hash, entry); 1235 } 1236 FTRACE_WARN_ON(hash->count); 1237 } 1238 1239 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod) 1240 { 1241 list_del(&ftrace_mod->list); 1242 kfree(ftrace_mod->module); 1243 kfree(ftrace_mod->func); 1244 kfree(ftrace_mod); 1245 } 1246 1247 static void clear_ftrace_mod_list(struct list_head *head) 1248 { 1249 struct ftrace_mod_load *p, *n; 1250 1251 /* stack tracer isn't supported yet */ 1252 if (!head) 1253 return; 1254 1255 mutex_lock(&ftrace_lock); 1256 list_for_each_entry_safe(p, n, head, list) 1257 free_ftrace_mod(p); 1258 mutex_unlock(&ftrace_lock); 1259 } 1260 1261 static void free_ftrace_hash(struct ftrace_hash *hash) 1262 { 1263 if (!hash || hash == EMPTY_HASH) 1264 return; 1265 ftrace_hash_clear(hash); 1266 kfree(hash->buckets); 1267 kfree(hash); 1268 } 1269 1270 static void __free_ftrace_hash_rcu(struct rcu_head *rcu) 1271 { 1272 struct ftrace_hash *hash; 1273 1274 hash = container_of(rcu, struct ftrace_hash, rcu); 1275 free_ftrace_hash(hash); 1276 } 1277 1278 static void free_ftrace_hash_rcu(struct ftrace_hash *hash) 1279 { 1280 if (!hash || hash == EMPTY_HASH) 1281 return; 1282 call_rcu(&hash->rcu, __free_ftrace_hash_rcu); 1283 } 1284 1285 /** 1286 * ftrace_free_filter - remove all filters for an ftrace_ops 1287 * @ops: the ops to remove the filters from 1288 */ 1289 void ftrace_free_filter(struct ftrace_ops *ops) 1290 { 1291 ftrace_ops_init(ops); 1292 if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED)) 1293 return; 1294 free_ftrace_hash(ops->func_hash->filter_hash); 1295 free_ftrace_hash(ops->func_hash->notrace_hash); 1296 ops->func_hash->filter_hash = EMPTY_HASH; 1297 ops->func_hash->notrace_hash = EMPTY_HASH; 1298 } 1299 EXPORT_SYMBOL_GPL(ftrace_free_filter); 1300 1301 static struct ftrace_hash *alloc_ftrace_hash(int size_bits) 1302 { 1303 struct ftrace_hash *hash; 1304 int size; 1305 1306 hash = kzalloc(sizeof(*hash), GFP_KERNEL); 1307 if (!hash) 1308 return NULL; 1309 1310 size = 1 << size_bits; 1311 hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL); 1312 1313 if (!hash->buckets) { 1314 kfree(hash); 1315 return NULL; 1316 } 1317 1318 hash->size_bits = size_bits; 1319 1320 return hash; 1321 } 1322 1323 /* Used to save filters on functions for modules not loaded yet */ 1324 static int ftrace_add_mod(struct trace_array *tr, 1325 const char *func, const char *module, 1326 int enable) 1327 { 1328 struct ftrace_mod_load *ftrace_mod; 1329 struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace; 1330 1331 ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL); 1332 if (!ftrace_mod) 1333 return -ENOMEM; 1334 1335 INIT_LIST_HEAD(&ftrace_mod->list); 1336 ftrace_mod->func = kstrdup(func, GFP_KERNEL); 1337 ftrace_mod->module = kstrdup(module, GFP_KERNEL); 1338 ftrace_mod->enable = enable; 1339 1340 if (!ftrace_mod->func || !ftrace_mod->module) 1341 goto out_free; 1342 1343 list_add(&ftrace_mod->list, mod_head); 1344 1345 return 0; 1346 1347 out_free: 1348 free_ftrace_mod(ftrace_mod); 1349 1350 return -ENOMEM; 1351 } 1352 1353 static struct ftrace_hash * 1354 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash) 1355 { 1356 struct ftrace_func_entry *entry; 1357 struct ftrace_hash *new_hash; 1358 int size; 1359 int i; 1360 1361 new_hash = alloc_ftrace_hash(size_bits); 1362 if (!new_hash) 1363 return NULL; 1364 1365 if (hash) 1366 new_hash->flags = hash->flags; 1367 1368 /* Empty hash? */ 1369 if (ftrace_hash_empty(hash)) 1370 return new_hash; 1371 1372 size = 1 << hash->size_bits; 1373 for (i = 0; i < size; i++) { 1374 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 1375 if (add_hash_entry(new_hash, entry->ip) == NULL) 1376 goto free_hash; 1377 } 1378 } 1379 1380 FTRACE_WARN_ON(new_hash->count != hash->count); 1381 1382 return new_hash; 1383 1384 free_hash: 1385 free_ftrace_hash(new_hash); 1386 return NULL; 1387 } 1388 1389 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops); 1390 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops); 1391 1392 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1393 struct ftrace_hash *new_hash); 1394 1395 /* 1396 * Allocate a new hash and remove entries from @src and move them to the new hash. 1397 * On success, the @src hash will be empty and should be freed. 1398 */ 1399 static struct ftrace_hash *__move_hash(struct ftrace_hash *src, int size) 1400 { 1401 struct ftrace_func_entry *entry; 1402 struct ftrace_hash *new_hash; 1403 struct hlist_head *hhd; 1404 struct hlist_node *tn; 1405 int bits = 0; 1406 int i; 1407 1408 /* 1409 * Use around half the size (max bit of it), but 1410 * a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits). 1411 */ 1412 bits = fls(size / 2); 1413 1414 /* Don't allocate too much */ 1415 if (bits > FTRACE_HASH_MAX_BITS) 1416 bits = FTRACE_HASH_MAX_BITS; 1417 1418 new_hash = alloc_ftrace_hash(bits); 1419 if (!new_hash) 1420 return NULL; 1421 1422 new_hash->flags = src->flags; 1423 1424 size = 1 << src->size_bits; 1425 for (i = 0; i < size; i++) { 1426 hhd = &src->buckets[i]; 1427 hlist_for_each_entry_safe(entry, tn, hhd, hlist) { 1428 remove_hash_entry(src, entry); 1429 __add_hash_entry(new_hash, entry); 1430 } 1431 } 1432 return new_hash; 1433 } 1434 1435 /* Move the @src entries to a newly allocated hash */ 1436 static struct ftrace_hash * 1437 __ftrace_hash_move(struct ftrace_hash *src) 1438 { 1439 int size = src->count; 1440 1441 /* 1442 * If the new source is empty, just return the empty_hash. 1443 */ 1444 if (ftrace_hash_empty(src)) 1445 return EMPTY_HASH; 1446 1447 return __move_hash(src, size); 1448 } 1449 1450 /** 1451 * ftrace_hash_move - move a new hash to a filter and do updates 1452 * @ops: The ops with the hash that @dst points to 1453 * @enable: True if for the filter hash, false for the notrace hash 1454 * @dst: Points to the @ops hash that should be updated 1455 * @src: The hash to update @dst with 1456 * 1457 * This is called when an ftrace_ops hash is being updated and the 1458 * the kernel needs to reflect this. Note, this only updates the kernel 1459 * function callbacks if the @ops is enabled (not to be confused with 1460 * @enable above). If the @ops is enabled, its hash determines what 1461 * callbacks get called. This function gets called when the @ops hash 1462 * is updated and it requires new callbacks. 1463 * 1464 * On success the elements of @src is moved to @dst, and @dst is updated 1465 * properly, as well as the functions determined by the @ops hashes 1466 * are now calling the @ops callback function. 1467 * 1468 * Regardless of return type, @src should be freed with free_ftrace_hash(). 1469 */ 1470 static int 1471 ftrace_hash_move(struct ftrace_ops *ops, int enable, 1472 struct ftrace_hash **dst, struct ftrace_hash *src) 1473 { 1474 struct ftrace_hash *new_hash; 1475 int ret; 1476 1477 /* Reject setting notrace hash on IPMODIFY ftrace_ops */ 1478 if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable) 1479 return -EINVAL; 1480 1481 new_hash = __ftrace_hash_move(src); 1482 if (!new_hash) 1483 return -ENOMEM; 1484 1485 /* Make sure this can be applied if it is IPMODIFY ftrace_ops */ 1486 if (enable) { 1487 /* IPMODIFY should be updated only when filter_hash updating */ 1488 ret = ftrace_hash_ipmodify_update(ops, new_hash); 1489 if (ret < 0) { 1490 free_ftrace_hash(new_hash); 1491 return ret; 1492 } 1493 } 1494 1495 /* 1496 * Remove the current set, update the hash and add 1497 * them back. 1498 */ 1499 ftrace_hash_rec_disable_modify(ops); 1500 1501 rcu_assign_pointer(*dst, new_hash); 1502 1503 ftrace_hash_rec_enable_modify(ops); 1504 1505 return 0; 1506 } 1507 1508 static bool hash_contains_ip(unsigned long ip, 1509 struct ftrace_ops_hash *hash) 1510 { 1511 /* 1512 * The function record is a match if it exists in the filter 1513 * hash and not in the notrace hash. Note, an empty hash is 1514 * considered a match for the filter hash, but an empty 1515 * notrace hash is considered not in the notrace hash. 1516 */ 1517 return (ftrace_hash_empty(hash->filter_hash) || 1518 __ftrace_lookup_ip(hash->filter_hash, ip)) && 1519 (ftrace_hash_empty(hash->notrace_hash) || 1520 !__ftrace_lookup_ip(hash->notrace_hash, ip)); 1521 } 1522 1523 /* 1524 * Test the hashes for this ops to see if we want to call 1525 * the ops->func or not. 1526 * 1527 * It's a match if the ip is in the ops->filter_hash or 1528 * the filter_hash does not exist or is empty, 1529 * AND 1530 * the ip is not in the ops->notrace_hash. 1531 * 1532 * This needs to be called with preemption disabled as 1533 * the hashes are freed with call_rcu(). 1534 */ 1535 int 1536 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs) 1537 { 1538 struct ftrace_ops_hash hash; 1539 int ret; 1540 1541 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS 1542 /* 1543 * There's a small race when adding ops that the ftrace handler 1544 * that wants regs, may be called without them. We can not 1545 * allow that handler to be called if regs is NULL. 1546 */ 1547 if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS)) 1548 return 0; 1549 #endif 1550 1551 rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash); 1552 rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash); 1553 1554 if (hash_contains_ip(ip, &hash)) 1555 ret = 1; 1556 else 1557 ret = 0; 1558 1559 return ret; 1560 } 1561 1562 /* 1563 * This is a double for. Do not use 'break' to break out of the loop, 1564 * you must use a goto. 1565 */ 1566 #define do_for_each_ftrace_rec(pg, rec) \ 1567 for (pg = ftrace_pages_start; pg; pg = pg->next) { \ 1568 int _____i; \ 1569 for (_____i = 0; _____i < pg->index; _____i++) { \ 1570 rec = &pg->records[_____i]; 1571 1572 #define while_for_each_ftrace_rec() \ 1573 } \ 1574 } 1575 1576 1577 static int ftrace_cmp_recs(const void *a, const void *b) 1578 { 1579 const struct dyn_ftrace *key = a; 1580 const struct dyn_ftrace *rec = b; 1581 1582 if (key->flags < rec->ip) 1583 return -1; 1584 if (key->ip >= rec->ip + MCOUNT_INSN_SIZE) 1585 return 1; 1586 return 0; 1587 } 1588 1589 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end) 1590 { 1591 struct ftrace_page *pg; 1592 struct dyn_ftrace *rec = NULL; 1593 struct dyn_ftrace key; 1594 1595 key.ip = start; 1596 key.flags = end; /* overload flags, as it is unsigned long */ 1597 1598 for (pg = ftrace_pages_start; pg; pg = pg->next) { 1599 if (pg->index == 0 || 1600 end < pg->records[0].ip || 1601 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 1602 continue; 1603 rec = bsearch(&key, pg->records, pg->index, 1604 sizeof(struct dyn_ftrace), 1605 ftrace_cmp_recs); 1606 if (rec) 1607 break; 1608 } 1609 return rec; 1610 } 1611 1612 /** 1613 * ftrace_location_range - return the first address of a traced location 1614 * if it touches the given ip range 1615 * @start: start of range to search. 1616 * @end: end of range to search (inclusive). @end points to the last byte 1617 * to check. 1618 * 1619 * Returns: rec->ip if the related ftrace location is a least partly within 1620 * the given address range. That is, the first address of the instruction 1621 * that is either a NOP or call to the function tracer. It checks the ftrace 1622 * internal tables to determine if the address belongs or not. 1623 */ 1624 unsigned long ftrace_location_range(unsigned long start, unsigned long end) 1625 { 1626 struct dyn_ftrace *rec; 1627 unsigned long ip = 0; 1628 1629 rcu_read_lock(); 1630 rec = lookup_rec(start, end); 1631 if (rec) 1632 ip = rec->ip; 1633 rcu_read_unlock(); 1634 1635 return ip; 1636 } 1637 1638 /** 1639 * ftrace_location - return the ftrace location 1640 * @ip: the instruction pointer to check 1641 * 1642 * Returns: 1643 * * If @ip matches the ftrace location, return @ip. 1644 * * If @ip matches sym+0, return sym's ftrace location. 1645 * * Otherwise, return 0. 1646 */ 1647 unsigned long ftrace_location(unsigned long ip) 1648 { 1649 unsigned long loc; 1650 unsigned long offset; 1651 unsigned long size; 1652 1653 loc = ftrace_location_range(ip, ip); 1654 if (!loc) { 1655 if (!kallsyms_lookup_size_offset(ip, &size, &offset)) 1656 return 0; 1657 1658 /* map sym+0 to __fentry__ */ 1659 if (!offset) 1660 loc = ftrace_location_range(ip, ip + size - 1); 1661 } 1662 return loc; 1663 } 1664 1665 /** 1666 * ftrace_text_reserved - return true if range contains an ftrace location 1667 * @start: start of range to search 1668 * @end: end of range to search (inclusive). @end points to the last byte to check. 1669 * 1670 * Returns: 1 if @start and @end contains a ftrace location. 1671 * That is, the instruction that is either a NOP or call to 1672 * the function tracer. It checks the ftrace internal tables to 1673 * determine if the address belongs or not. 1674 */ 1675 int ftrace_text_reserved(const void *start, const void *end) 1676 { 1677 unsigned long ret; 1678 1679 ret = ftrace_location_range((unsigned long)start, 1680 (unsigned long)end); 1681 1682 return (int)!!ret; 1683 } 1684 1685 /* Test if ops registered to this rec needs regs */ 1686 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec) 1687 { 1688 struct ftrace_ops *ops; 1689 bool keep_regs = false; 1690 1691 for (ops = ftrace_ops_list; 1692 ops != &ftrace_list_end; ops = ops->next) { 1693 /* pass rec in as regs to have non-NULL val */ 1694 if (ftrace_ops_test(ops, rec->ip, rec)) { 1695 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1696 keep_regs = true; 1697 break; 1698 } 1699 } 1700 } 1701 1702 return keep_regs; 1703 } 1704 1705 static struct ftrace_ops * 1706 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec); 1707 static struct ftrace_ops * 1708 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude); 1709 static struct ftrace_ops * 1710 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops); 1711 1712 static bool skip_record(struct dyn_ftrace *rec) 1713 { 1714 /* 1715 * At boot up, weak functions are set to disable. Function tracing 1716 * can be enabled before they are, and they still need to be disabled now. 1717 * If the record is disabled, still continue if it is marked as already 1718 * enabled (this is needed to keep the accounting working). 1719 */ 1720 return rec->flags & FTRACE_FL_DISABLED && 1721 !(rec->flags & FTRACE_FL_ENABLED); 1722 } 1723 1724 /* 1725 * This is the main engine to the ftrace updates to the dyn_ftrace records. 1726 * 1727 * It will iterate through all the available ftrace functions 1728 * (the ones that ftrace can have callbacks to) and set the flags 1729 * in the associated dyn_ftrace records. 1730 * 1731 * @inc: If true, the functions associated to @ops are added to 1732 * the dyn_ftrace records, otherwise they are removed. 1733 */ 1734 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops, 1735 bool inc) 1736 { 1737 struct ftrace_hash *hash; 1738 struct ftrace_hash *notrace_hash; 1739 struct ftrace_page *pg; 1740 struct dyn_ftrace *rec; 1741 bool update = false; 1742 int count = 0; 1743 int all = false; 1744 1745 /* Only update if the ops has been registered */ 1746 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1747 return false; 1748 1749 /* 1750 * If the count is zero, we update all records. 1751 * Otherwise we just update the items in the hash. 1752 */ 1753 hash = ops->func_hash->filter_hash; 1754 notrace_hash = ops->func_hash->notrace_hash; 1755 if (ftrace_hash_empty(hash)) 1756 all = true; 1757 1758 do_for_each_ftrace_rec(pg, rec) { 1759 int in_notrace_hash = 0; 1760 int in_hash = 0; 1761 int match = 0; 1762 1763 if (skip_record(rec)) 1764 continue; 1765 1766 if (all) { 1767 /* 1768 * Only the filter_hash affects all records. 1769 * Update if the record is not in the notrace hash. 1770 */ 1771 if (!notrace_hash || !ftrace_lookup_ip(notrace_hash, rec->ip)) 1772 match = 1; 1773 } else { 1774 in_hash = !!ftrace_lookup_ip(hash, rec->ip); 1775 in_notrace_hash = !!ftrace_lookup_ip(notrace_hash, rec->ip); 1776 1777 /* 1778 * We want to match all functions that are in the hash but 1779 * not in the other hash. 1780 */ 1781 if (in_hash && !in_notrace_hash) 1782 match = 1; 1783 } 1784 if (!match) 1785 continue; 1786 1787 if (inc) { 1788 rec->flags++; 1789 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX)) 1790 return false; 1791 1792 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1793 rec->flags |= FTRACE_FL_DIRECT; 1794 1795 /* 1796 * If there's only a single callback registered to a 1797 * function, and the ops has a trampoline registered 1798 * for it, then we can call it directly. 1799 */ 1800 if (ftrace_rec_count(rec) == 1 && ops->trampoline) 1801 rec->flags |= FTRACE_FL_TRAMP; 1802 else 1803 /* 1804 * If we are adding another function callback 1805 * to this function, and the previous had a 1806 * custom trampoline in use, then we need to go 1807 * back to the default trampoline. 1808 */ 1809 rec->flags &= ~FTRACE_FL_TRAMP; 1810 1811 /* 1812 * If any ops wants regs saved for this function 1813 * then all ops will get saved regs. 1814 */ 1815 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 1816 rec->flags |= FTRACE_FL_REGS; 1817 } else { 1818 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0)) 1819 return false; 1820 rec->flags--; 1821 1822 /* 1823 * Only the internal direct_ops should have the 1824 * DIRECT flag set. Thus, if it is removing a 1825 * function, then that function should no longer 1826 * be direct. 1827 */ 1828 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1829 rec->flags &= ~FTRACE_FL_DIRECT; 1830 1831 /* 1832 * If the rec had REGS enabled and the ops that is 1833 * being removed had REGS set, then see if there is 1834 * still any ops for this record that wants regs. 1835 * If not, we can stop recording them. 1836 */ 1837 if (ftrace_rec_count(rec) > 0 && 1838 rec->flags & FTRACE_FL_REGS && 1839 ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1840 if (!test_rec_ops_needs_regs(rec)) 1841 rec->flags &= ~FTRACE_FL_REGS; 1842 } 1843 1844 /* 1845 * The TRAMP needs to be set only if rec count 1846 * is decremented to one, and the ops that is 1847 * left has a trampoline. As TRAMP can only be 1848 * enabled if there is only a single ops attached 1849 * to it. 1850 */ 1851 if (ftrace_rec_count(rec) == 1 && 1852 ftrace_find_tramp_ops_any_other(rec, ops)) 1853 rec->flags |= FTRACE_FL_TRAMP; 1854 else 1855 rec->flags &= ~FTRACE_FL_TRAMP; 1856 1857 /* 1858 * flags will be cleared in ftrace_check_record() 1859 * if rec count is zero. 1860 */ 1861 } 1862 1863 /* 1864 * If the rec has a single associated ops, and ops->func can be 1865 * called directly, allow the call site to call via the ops. 1866 */ 1867 if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE_WITH_CALL_OPS) && 1868 ftrace_rec_count(rec) == 1 && 1869 ftrace_ops_get_func(ops) == ops->func) 1870 rec->flags |= FTRACE_FL_CALL_OPS; 1871 else 1872 rec->flags &= ~FTRACE_FL_CALL_OPS; 1873 1874 count++; 1875 1876 /* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */ 1877 update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE; 1878 1879 /* Shortcut, if we handled all records, we are done. */ 1880 if (!all && count == hash->count) 1881 return update; 1882 } while_for_each_ftrace_rec(); 1883 1884 return update; 1885 } 1886 1887 /* 1888 * This is called when an ops is removed from tracing. It will decrement 1889 * the counters of the dyn_ftrace records for all the functions that 1890 * the @ops attached to. 1891 */ 1892 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops) 1893 { 1894 return __ftrace_hash_rec_update(ops, false); 1895 } 1896 1897 /* 1898 * This is called when an ops is added to tracing. It will increment 1899 * the counters of the dyn_ftrace records for all the functions that 1900 * the @ops attached to. 1901 */ 1902 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops) 1903 { 1904 return __ftrace_hash_rec_update(ops, true); 1905 } 1906 1907 /* 1908 * This function will update what functions @ops traces when its filter 1909 * changes. 1910 * 1911 * The @inc states if the @ops callbacks are going to be added or removed. 1912 * When one of the @ops hashes are updated to a "new_hash" the dyn_ftrace 1913 * records are update via: 1914 * 1915 * ftrace_hash_rec_disable_modify(ops); 1916 * ops->hash = new_hash 1917 * ftrace_hash_rec_enable_modify(ops); 1918 * 1919 * Where the @ops is removed from all the records it is tracing using 1920 * its old hash. The @ops hash is updated to the new hash, and then 1921 * the @ops is added back to the records so that it is tracing all 1922 * the new functions. 1923 */ 1924 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops, bool inc) 1925 { 1926 struct ftrace_ops *op; 1927 1928 __ftrace_hash_rec_update(ops, inc); 1929 1930 if (ops->func_hash != &global_ops.local_hash) 1931 return; 1932 1933 /* 1934 * If the ops shares the global_ops hash, then we need to update 1935 * all ops that are enabled and use this hash. 1936 */ 1937 do_for_each_ftrace_op(op, ftrace_ops_list) { 1938 /* Already done */ 1939 if (op == ops) 1940 continue; 1941 if (op->func_hash == &global_ops.local_hash) 1942 __ftrace_hash_rec_update(op, inc); 1943 } while_for_each_ftrace_op(op); 1944 } 1945 1946 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops) 1947 { 1948 ftrace_hash_rec_update_modify(ops, false); 1949 } 1950 1951 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops) 1952 { 1953 ftrace_hash_rec_update_modify(ops, true); 1954 } 1955 1956 /* 1957 * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK 1958 * or no-needed to update, -EBUSY if it detects a conflict of the flag 1959 * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs. 1960 * Note that old_hash and new_hash has below meanings 1961 * - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected) 1962 * - If the hash is EMPTY_HASH, it hits nothing 1963 * - Anything else hits the recs which match the hash entries. 1964 * 1965 * DIRECT ops does not have IPMODIFY flag, but we still need to check it 1966 * against functions with FTRACE_FL_IPMODIFY. If there is any overlap, call 1967 * ops_func(SHARE_IPMODIFY_SELF) to make sure current ops can share with 1968 * IPMODIFY. If ops_func(SHARE_IPMODIFY_SELF) returns non-zero, propagate 1969 * the return value to the caller and eventually to the owner of the DIRECT 1970 * ops. 1971 */ 1972 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops, 1973 struct ftrace_hash *old_hash, 1974 struct ftrace_hash *new_hash) 1975 { 1976 struct ftrace_page *pg; 1977 struct dyn_ftrace *rec, *end = NULL; 1978 int in_old, in_new; 1979 bool is_ipmodify, is_direct; 1980 1981 /* Only update if the ops has been registered */ 1982 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1983 return 0; 1984 1985 is_ipmodify = ops->flags & FTRACE_OPS_FL_IPMODIFY; 1986 is_direct = ops->flags & FTRACE_OPS_FL_DIRECT; 1987 1988 /* neither IPMODIFY nor DIRECT, skip */ 1989 if (!is_ipmodify && !is_direct) 1990 return 0; 1991 1992 if (WARN_ON_ONCE(is_ipmodify && is_direct)) 1993 return 0; 1994 1995 /* 1996 * Since the IPMODIFY and DIRECT are very address sensitive 1997 * actions, we do not allow ftrace_ops to set all functions to new 1998 * hash. 1999 */ 2000 if (!new_hash || !old_hash) 2001 return -EINVAL; 2002 2003 /* Update rec->flags */ 2004 do_for_each_ftrace_rec(pg, rec) { 2005 2006 if (rec->flags & FTRACE_FL_DISABLED) 2007 continue; 2008 2009 /* We need to update only differences of filter_hash */ 2010 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 2011 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 2012 if (in_old == in_new) 2013 continue; 2014 2015 if (in_new) { 2016 if (rec->flags & FTRACE_FL_IPMODIFY) { 2017 int ret; 2018 2019 /* Cannot have two ipmodify on same rec */ 2020 if (is_ipmodify) 2021 goto rollback; 2022 2023 FTRACE_WARN_ON(rec->flags & FTRACE_FL_DIRECT); 2024 2025 /* 2026 * Another ops with IPMODIFY is already 2027 * attached. We are now attaching a direct 2028 * ops. Run SHARE_IPMODIFY_SELF, to check 2029 * whether sharing is supported. 2030 */ 2031 if (!ops->ops_func) 2032 return -EBUSY; 2033 ret = ops->ops_func(ops, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_SELF); 2034 if (ret) 2035 return ret; 2036 } else if (is_ipmodify) { 2037 rec->flags |= FTRACE_FL_IPMODIFY; 2038 } 2039 } else if (is_ipmodify) { 2040 rec->flags &= ~FTRACE_FL_IPMODIFY; 2041 } 2042 } while_for_each_ftrace_rec(); 2043 2044 return 0; 2045 2046 rollback: 2047 end = rec; 2048 2049 /* Roll back what we did above */ 2050 do_for_each_ftrace_rec(pg, rec) { 2051 2052 if (rec->flags & FTRACE_FL_DISABLED) 2053 continue; 2054 2055 if (rec == end) 2056 return -EBUSY; 2057 2058 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 2059 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 2060 if (in_old == in_new) 2061 continue; 2062 2063 if (in_new) 2064 rec->flags &= ~FTRACE_FL_IPMODIFY; 2065 else 2066 rec->flags |= FTRACE_FL_IPMODIFY; 2067 } while_for_each_ftrace_rec(); 2068 2069 return -EBUSY; 2070 } 2071 2072 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops) 2073 { 2074 struct ftrace_hash *hash = ops->func_hash->filter_hash; 2075 2076 if (ftrace_hash_empty(hash)) 2077 hash = NULL; 2078 2079 return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash); 2080 } 2081 2082 /* Disabling always succeeds */ 2083 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops) 2084 { 2085 struct ftrace_hash *hash = ops->func_hash->filter_hash; 2086 2087 if (ftrace_hash_empty(hash)) 2088 hash = NULL; 2089 2090 __ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH); 2091 } 2092 2093 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 2094 struct ftrace_hash *new_hash) 2095 { 2096 struct ftrace_hash *old_hash = ops->func_hash->filter_hash; 2097 2098 if (ftrace_hash_empty(old_hash)) 2099 old_hash = NULL; 2100 2101 if (ftrace_hash_empty(new_hash)) 2102 new_hash = NULL; 2103 2104 return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash); 2105 } 2106 2107 static void print_ip_ins(const char *fmt, const unsigned char *p) 2108 { 2109 char ins[MCOUNT_INSN_SIZE]; 2110 2111 if (copy_from_kernel_nofault(ins, p, MCOUNT_INSN_SIZE)) { 2112 printk(KERN_CONT "%s[FAULT] %px\n", fmt, p); 2113 return; 2114 } 2115 2116 printk(KERN_CONT "%s", fmt); 2117 pr_cont("%*phC", MCOUNT_INSN_SIZE, ins); 2118 } 2119 2120 enum ftrace_bug_type ftrace_bug_type; 2121 const void *ftrace_expected; 2122 2123 static void print_bug_type(void) 2124 { 2125 switch (ftrace_bug_type) { 2126 case FTRACE_BUG_UNKNOWN: 2127 break; 2128 case FTRACE_BUG_INIT: 2129 pr_info("Initializing ftrace call sites\n"); 2130 break; 2131 case FTRACE_BUG_NOP: 2132 pr_info("Setting ftrace call site to NOP\n"); 2133 break; 2134 case FTRACE_BUG_CALL: 2135 pr_info("Setting ftrace call site to call ftrace function\n"); 2136 break; 2137 case FTRACE_BUG_UPDATE: 2138 pr_info("Updating ftrace call site to call a different ftrace function\n"); 2139 break; 2140 } 2141 } 2142 2143 /** 2144 * ftrace_bug - report and shutdown function tracer 2145 * @failed: The failed type (EFAULT, EINVAL, EPERM) 2146 * @rec: The record that failed 2147 * 2148 * The arch code that enables or disables the function tracing 2149 * can call ftrace_bug() when it has detected a problem in 2150 * modifying the code. @failed should be one of either: 2151 * EFAULT - if the problem happens on reading the @ip address 2152 * EINVAL - if what is read at @ip is not what was expected 2153 * EPERM - if the problem happens on writing to the @ip address 2154 */ 2155 void ftrace_bug(int failed, struct dyn_ftrace *rec) 2156 { 2157 unsigned long ip = rec ? rec->ip : 0; 2158 2159 pr_info("------------[ ftrace bug ]------------\n"); 2160 2161 switch (failed) { 2162 case -EFAULT: 2163 pr_info("ftrace faulted on modifying "); 2164 print_ip_sym(KERN_INFO, ip); 2165 break; 2166 case -EINVAL: 2167 pr_info("ftrace failed to modify "); 2168 print_ip_sym(KERN_INFO, ip); 2169 print_ip_ins(" actual: ", (unsigned char *)ip); 2170 pr_cont("\n"); 2171 if (ftrace_expected) { 2172 print_ip_ins(" expected: ", ftrace_expected); 2173 pr_cont("\n"); 2174 } 2175 break; 2176 case -EPERM: 2177 pr_info("ftrace faulted on writing "); 2178 print_ip_sym(KERN_INFO, ip); 2179 break; 2180 default: 2181 pr_info("ftrace faulted on unknown error "); 2182 print_ip_sym(KERN_INFO, ip); 2183 } 2184 print_bug_type(); 2185 if (rec) { 2186 struct ftrace_ops *ops = NULL; 2187 2188 pr_info("ftrace record flags: %lx\n", rec->flags); 2189 pr_cont(" (%ld)%s%s", ftrace_rec_count(rec), 2190 rec->flags & FTRACE_FL_REGS ? " R" : " ", 2191 rec->flags & FTRACE_FL_CALL_OPS ? " O" : " "); 2192 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2193 ops = ftrace_find_tramp_ops_any(rec); 2194 if (ops) { 2195 do { 2196 pr_cont("\ttramp: %pS (%pS)", 2197 (void *)ops->trampoline, 2198 (void *)ops->func); 2199 ops = ftrace_find_tramp_ops_next(rec, ops); 2200 } while (ops); 2201 } else 2202 pr_cont("\ttramp: ERROR!"); 2203 2204 } 2205 ip = ftrace_get_addr_curr(rec); 2206 pr_cont("\n expected tramp: %lx\n", ip); 2207 } 2208 2209 FTRACE_WARN_ON_ONCE(1); 2210 } 2211 2212 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update) 2213 { 2214 unsigned long flag = 0UL; 2215 2216 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2217 2218 if (skip_record(rec)) 2219 return FTRACE_UPDATE_IGNORE; 2220 2221 /* 2222 * If we are updating calls: 2223 * 2224 * If the record has a ref count, then we need to enable it 2225 * because someone is using it. 2226 * 2227 * Otherwise we make sure its disabled. 2228 * 2229 * If we are disabling calls, then disable all records that 2230 * are enabled. 2231 */ 2232 if (enable && ftrace_rec_count(rec)) 2233 flag = FTRACE_FL_ENABLED; 2234 2235 /* 2236 * If enabling and the REGS flag does not match the REGS_EN, or 2237 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore 2238 * this record. Set flags to fail the compare against ENABLED. 2239 * Same for direct calls. 2240 */ 2241 if (flag) { 2242 if (!(rec->flags & FTRACE_FL_REGS) != 2243 !(rec->flags & FTRACE_FL_REGS_EN)) 2244 flag |= FTRACE_FL_REGS; 2245 2246 if (!(rec->flags & FTRACE_FL_TRAMP) != 2247 !(rec->flags & FTRACE_FL_TRAMP_EN)) 2248 flag |= FTRACE_FL_TRAMP; 2249 2250 /* 2251 * Direct calls are special, as count matters. 2252 * We must test the record for direct, if the 2253 * DIRECT and DIRECT_EN do not match, but only 2254 * if the count is 1. That's because, if the 2255 * count is something other than one, we do not 2256 * want the direct enabled (it will be done via the 2257 * direct helper). But if DIRECT_EN is set, and 2258 * the count is not one, we need to clear it. 2259 * 2260 */ 2261 if (ftrace_rec_count(rec) == 1) { 2262 if (!(rec->flags & FTRACE_FL_DIRECT) != 2263 !(rec->flags & FTRACE_FL_DIRECT_EN)) 2264 flag |= FTRACE_FL_DIRECT; 2265 } else if (rec->flags & FTRACE_FL_DIRECT_EN) { 2266 flag |= FTRACE_FL_DIRECT; 2267 } 2268 2269 /* 2270 * Ops calls are special, as count matters. 2271 * As with direct calls, they must only be enabled when count 2272 * is one, otherwise they'll be handled via the list ops. 2273 */ 2274 if (ftrace_rec_count(rec) == 1) { 2275 if (!(rec->flags & FTRACE_FL_CALL_OPS) != 2276 !(rec->flags & FTRACE_FL_CALL_OPS_EN)) 2277 flag |= FTRACE_FL_CALL_OPS; 2278 } else if (rec->flags & FTRACE_FL_CALL_OPS_EN) { 2279 flag |= FTRACE_FL_CALL_OPS; 2280 } 2281 } 2282 2283 /* If the state of this record hasn't changed, then do nothing */ 2284 if ((rec->flags & FTRACE_FL_ENABLED) == flag) 2285 return FTRACE_UPDATE_IGNORE; 2286 2287 if (flag) { 2288 /* Save off if rec is being enabled (for return value) */ 2289 flag ^= rec->flags & FTRACE_FL_ENABLED; 2290 2291 if (update) { 2292 rec->flags |= FTRACE_FL_ENABLED | FTRACE_FL_TOUCHED; 2293 if (flag & FTRACE_FL_REGS) { 2294 if (rec->flags & FTRACE_FL_REGS) 2295 rec->flags |= FTRACE_FL_REGS_EN; 2296 else 2297 rec->flags &= ~FTRACE_FL_REGS_EN; 2298 } 2299 if (flag & FTRACE_FL_TRAMP) { 2300 if (rec->flags & FTRACE_FL_TRAMP) 2301 rec->flags |= FTRACE_FL_TRAMP_EN; 2302 else 2303 rec->flags &= ~FTRACE_FL_TRAMP_EN; 2304 } 2305 2306 /* Keep track of anything that modifies the function */ 2307 if (rec->flags & (FTRACE_FL_DIRECT | FTRACE_FL_IPMODIFY)) 2308 rec->flags |= FTRACE_FL_MODIFIED; 2309 2310 if (flag & FTRACE_FL_DIRECT) { 2311 /* 2312 * If there's only one user (direct_ops helper) 2313 * then we can call the direct function 2314 * directly (no ftrace trampoline). 2315 */ 2316 if (ftrace_rec_count(rec) == 1) { 2317 if (rec->flags & FTRACE_FL_DIRECT) 2318 rec->flags |= FTRACE_FL_DIRECT_EN; 2319 else 2320 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2321 } else { 2322 /* 2323 * Can only call directly if there's 2324 * only one callback to the function. 2325 */ 2326 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2327 } 2328 } 2329 2330 if (flag & FTRACE_FL_CALL_OPS) { 2331 if (ftrace_rec_count(rec) == 1) { 2332 if (rec->flags & FTRACE_FL_CALL_OPS) 2333 rec->flags |= FTRACE_FL_CALL_OPS_EN; 2334 else 2335 rec->flags &= ~FTRACE_FL_CALL_OPS_EN; 2336 } else { 2337 /* 2338 * Can only call directly if there's 2339 * only one set of associated ops. 2340 */ 2341 rec->flags &= ~FTRACE_FL_CALL_OPS_EN; 2342 } 2343 } 2344 } 2345 2346 /* 2347 * If this record is being updated from a nop, then 2348 * return UPDATE_MAKE_CALL. 2349 * Otherwise, 2350 * return UPDATE_MODIFY_CALL to tell the caller to convert 2351 * from the save regs, to a non-save regs function or 2352 * vice versa, or from a trampoline call. 2353 */ 2354 if (flag & FTRACE_FL_ENABLED) { 2355 ftrace_bug_type = FTRACE_BUG_CALL; 2356 return FTRACE_UPDATE_MAKE_CALL; 2357 } 2358 2359 ftrace_bug_type = FTRACE_BUG_UPDATE; 2360 return FTRACE_UPDATE_MODIFY_CALL; 2361 } 2362 2363 if (update) { 2364 /* If there's no more users, clear all flags */ 2365 if (!ftrace_rec_count(rec)) 2366 rec->flags &= FTRACE_NOCLEAR_FLAGS; 2367 else 2368 /* 2369 * Just disable the record, but keep the ops TRAMP 2370 * and REGS states. The _EN flags must be disabled though. 2371 */ 2372 rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN | 2373 FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN | 2374 FTRACE_FL_CALL_OPS_EN); 2375 } 2376 2377 ftrace_bug_type = FTRACE_BUG_NOP; 2378 return FTRACE_UPDATE_MAKE_NOP; 2379 } 2380 2381 /** 2382 * ftrace_update_record - set a record that now is tracing or not 2383 * @rec: the record to update 2384 * @enable: set to true if the record is tracing, false to force disable 2385 * 2386 * The records that represent all functions that can be traced need 2387 * to be updated when tracing has been enabled. 2388 */ 2389 int ftrace_update_record(struct dyn_ftrace *rec, bool enable) 2390 { 2391 return ftrace_check_record(rec, enable, true); 2392 } 2393 2394 /** 2395 * ftrace_test_record - check if the record has been enabled or not 2396 * @rec: the record to test 2397 * @enable: set to true to check if enabled, false if it is disabled 2398 * 2399 * The arch code may need to test if a record is already set to 2400 * tracing to determine how to modify the function code that it 2401 * represents. 2402 */ 2403 int ftrace_test_record(struct dyn_ftrace *rec, bool enable) 2404 { 2405 return ftrace_check_record(rec, enable, false); 2406 } 2407 2408 static struct ftrace_ops * 2409 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec) 2410 { 2411 struct ftrace_ops *op; 2412 unsigned long ip = rec->ip; 2413 2414 do_for_each_ftrace_op(op, ftrace_ops_list) { 2415 2416 if (!op->trampoline) 2417 continue; 2418 2419 if (hash_contains_ip(ip, op->func_hash)) 2420 return op; 2421 } while_for_each_ftrace_op(op); 2422 2423 return NULL; 2424 } 2425 2426 static struct ftrace_ops * 2427 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude) 2428 { 2429 struct ftrace_ops *op; 2430 unsigned long ip = rec->ip; 2431 2432 do_for_each_ftrace_op(op, ftrace_ops_list) { 2433 2434 if (op == op_exclude || !op->trampoline) 2435 continue; 2436 2437 if (hash_contains_ip(ip, op->func_hash)) 2438 return op; 2439 } while_for_each_ftrace_op(op); 2440 2441 return NULL; 2442 } 2443 2444 static struct ftrace_ops * 2445 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, 2446 struct ftrace_ops *op) 2447 { 2448 unsigned long ip = rec->ip; 2449 2450 while_for_each_ftrace_op(op) { 2451 2452 if (!op->trampoline) 2453 continue; 2454 2455 if (hash_contains_ip(ip, op->func_hash)) 2456 return op; 2457 } 2458 2459 return NULL; 2460 } 2461 2462 static struct ftrace_ops * 2463 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec) 2464 { 2465 struct ftrace_ops *op; 2466 unsigned long ip = rec->ip; 2467 2468 /* 2469 * Need to check removed ops first. 2470 * If they are being removed, and this rec has a tramp, 2471 * and this rec is in the ops list, then it would be the 2472 * one with the tramp. 2473 */ 2474 if (removed_ops) { 2475 if (hash_contains_ip(ip, &removed_ops->old_hash)) 2476 return removed_ops; 2477 } 2478 2479 /* 2480 * Need to find the current trampoline for a rec. 2481 * Now, a trampoline is only attached to a rec if there 2482 * was a single 'ops' attached to it. But this can be called 2483 * when we are adding another op to the rec or removing the 2484 * current one. Thus, if the op is being added, we can 2485 * ignore it because it hasn't attached itself to the rec 2486 * yet. 2487 * 2488 * If an ops is being modified (hooking to different functions) 2489 * then we don't care about the new functions that are being 2490 * added, just the old ones (that are probably being removed). 2491 * 2492 * If we are adding an ops to a function that already is using 2493 * a trampoline, it needs to be removed (trampolines are only 2494 * for single ops connected), then an ops that is not being 2495 * modified also needs to be checked. 2496 */ 2497 do_for_each_ftrace_op(op, ftrace_ops_list) { 2498 2499 if (!op->trampoline) 2500 continue; 2501 2502 /* 2503 * If the ops is being added, it hasn't gotten to 2504 * the point to be removed from this tree yet. 2505 */ 2506 if (op->flags & FTRACE_OPS_FL_ADDING) 2507 continue; 2508 2509 2510 /* 2511 * If the ops is being modified and is in the old 2512 * hash, then it is probably being removed from this 2513 * function. 2514 */ 2515 if ((op->flags & FTRACE_OPS_FL_MODIFYING) && 2516 hash_contains_ip(ip, &op->old_hash)) 2517 return op; 2518 /* 2519 * If the ops is not being added or modified, and it's 2520 * in its normal filter hash, then this must be the one 2521 * we want! 2522 */ 2523 if (!(op->flags & FTRACE_OPS_FL_MODIFYING) && 2524 hash_contains_ip(ip, op->func_hash)) 2525 return op; 2526 2527 } while_for_each_ftrace_op(op); 2528 2529 return NULL; 2530 } 2531 2532 static struct ftrace_ops * 2533 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec) 2534 { 2535 struct ftrace_ops *op; 2536 unsigned long ip = rec->ip; 2537 2538 do_for_each_ftrace_op(op, ftrace_ops_list) { 2539 /* pass rec in as regs to have non-NULL val */ 2540 if (hash_contains_ip(ip, op->func_hash)) 2541 return op; 2542 } while_for_each_ftrace_op(op); 2543 2544 return NULL; 2545 } 2546 2547 struct ftrace_ops * 2548 ftrace_find_unique_ops(struct dyn_ftrace *rec) 2549 { 2550 struct ftrace_ops *op, *found = NULL; 2551 unsigned long ip = rec->ip; 2552 2553 do_for_each_ftrace_op(op, ftrace_ops_list) { 2554 2555 if (hash_contains_ip(ip, op->func_hash)) { 2556 if (found) 2557 return NULL; 2558 found = op; 2559 } 2560 2561 } while_for_each_ftrace_op(op); 2562 2563 return found; 2564 } 2565 2566 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 2567 /* Protected by rcu_tasks for reading, and direct_mutex for writing */ 2568 static struct ftrace_hash __rcu *direct_functions = EMPTY_HASH; 2569 static DEFINE_MUTEX(direct_mutex); 2570 2571 /* 2572 * Search the direct_functions hash to see if the given instruction pointer 2573 * has a direct caller attached to it. 2574 */ 2575 unsigned long ftrace_find_rec_direct(unsigned long ip) 2576 { 2577 struct ftrace_func_entry *entry; 2578 2579 entry = __ftrace_lookup_ip(direct_functions, ip); 2580 if (!entry) 2581 return 0; 2582 2583 return entry->direct; 2584 } 2585 2586 static void call_direct_funcs(unsigned long ip, unsigned long pip, 2587 struct ftrace_ops *ops, struct ftrace_regs *fregs) 2588 { 2589 unsigned long addr = READ_ONCE(ops->direct_call); 2590 2591 if (!addr) 2592 return; 2593 2594 arch_ftrace_set_direct_caller(fregs, addr); 2595 } 2596 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 2597 2598 /** 2599 * ftrace_get_addr_new - Get the call address to set to 2600 * @rec: The ftrace record descriptor 2601 * 2602 * If the record has the FTRACE_FL_REGS set, that means that it 2603 * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS 2604 * is not set, then it wants to convert to the normal callback. 2605 * 2606 * Returns: the address of the trampoline to set to 2607 */ 2608 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec) 2609 { 2610 struct ftrace_ops *ops; 2611 unsigned long addr; 2612 2613 if ((rec->flags & FTRACE_FL_DIRECT) && 2614 (ftrace_rec_count(rec) == 1)) { 2615 addr = ftrace_find_rec_direct(rec->ip); 2616 if (addr) 2617 return addr; 2618 WARN_ON_ONCE(1); 2619 } 2620 2621 /* Trampolines take precedence over regs */ 2622 if (rec->flags & FTRACE_FL_TRAMP) { 2623 ops = ftrace_find_tramp_ops_new(rec); 2624 if (FTRACE_WARN_ON(!ops || !ops->trampoline)) { 2625 pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n", 2626 (void *)rec->ip, (void *)rec->ip, rec->flags); 2627 /* Ftrace is shutting down, return anything */ 2628 return (unsigned long)FTRACE_ADDR; 2629 } 2630 return ops->trampoline; 2631 } 2632 2633 if (rec->flags & FTRACE_FL_REGS) 2634 return (unsigned long)FTRACE_REGS_ADDR; 2635 else 2636 return (unsigned long)FTRACE_ADDR; 2637 } 2638 2639 /** 2640 * ftrace_get_addr_curr - Get the call address that is already there 2641 * @rec: The ftrace record descriptor 2642 * 2643 * The FTRACE_FL_REGS_EN is set when the record already points to 2644 * a function that saves all the regs. Basically the '_EN' version 2645 * represents the current state of the function. 2646 * 2647 * Returns: the address of the trampoline that is currently being called 2648 */ 2649 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec) 2650 { 2651 struct ftrace_ops *ops; 2652 unsigned long addr; 2653 2654 /* Direct calls take precedence over trampolines */ 2655 if (rec->flags & FTRACE_FL_DIRECT_EN) { 2656 addr = ftrace_find_rec_direct(rec->ip); 2657 if (addr) 2658 return addr; 2659 WARN_ON_ONCE(1); 2660 } 2661 2662 /* Trampolines take precedence over regs */ 2663 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2664 ops = ftrace_find_tramp_ops_curr(rec); 2665 if (FTRACE_WARN_ON(!ops)) { 2666 pr_warn("Bad trampoline accounting at: %p (%pS)\n", 2667 (void *)rec->ip, (void *)rec->ip); 2668 /* Ftrace is shutting down, return anything */ 2669 return (unsigned long)FTRACE_ADDR; 2670 } 2671 return ops->trampoline; 2672 } 2673 2674 if (rec->flags & FTRACE_FL_REGS_EN) 2675 return (unsigned long)FTRACE_REGS_ADDR; 2676 else 2677 return (unsigned long)FTRACE_ADDR; 2678 } 2679 2680 static int 2681 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable) 2682 { 2683 unsigned long ftrace_old_addr; 2684 unsigned long ftrace_addr; 2685 int ret; 2686 2687 ftrace_addr = ftrace_get_addr_new(rec); 2688 2689 /* This needs to be done before we call ftrace_update_record */ 2690 ftrace_old_addr = ftrace_get_addr_curr(rec); 2691 2692 ret = ftrace_update_record(rec, enable); 2693 2694 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2695 2696 switch (ret) { 2697 case FTRACE_UPDATE_IGNORE: 2698 return 0; 2699 2700 case FTRACE_UPDATE_MAKE_CALL: 2701 ftrace_bug_type = FTRACE_BUG_CALL; 2702 return ftrace_make_call(rec, ftrace_addr); 2703 2704 case FTRACE_UPDATE_MAKE_NOP: 2705 ftrace_bug_type = FTRACE_BUG_NOP; 2706 return ftrace_make_nop(NULL, rec, ftrace_old_addr); 2707 2708 case FTRACE_UPDATE_MODIFY_CALL: 2709 ftrace_bug_type = FTRACE_BUG_UPDATE; 2710 return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr); 2711 } 2712 2713 return -1; /* unknown ftrace bug */ 2714 } 2715 2716 void __weak ftrace_replace_code(int mod_flags) 2717 { 2718 struct dyn_ftrace *rec; 2719 struct ftrace_page *pg; 2720 bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL; 2721 int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL; 2722 int failed; 2723 2724 if (unlikely(ftrace_disabled)) 2725 return; 2726 2727 do_for_each_ftrace_rec(pg, rec) { 2728 2729 if (skip_record(rec)) 2730 continue; 2731 2732 failed = __ftrace_replace_code(rec, enable); 2733 if (failed) { 2734 ftrace_bug(failed, rec); 2735 /* Stop processing */ 2736 return; 2737 } 2738 if (schedulable) 2739 cond_resched(); 2740 } while_for_each_ftrace_rec(); 2741 } 2742 2743 struct ftrace_rec_iter { 2744 struct ftrace_page *pg; 2745 int index; 2746 }; 2747 2748 /** 2749 * ftrace_rec_iter_start - start up iterating over traced functions 2750 * 2751 * Returns: an iterator handle that is used to iterate over all 2752 * the records that represent address locations where functions 2753 * are traced. 2754 * 2755 * May return NULL if no records are available. 2756 */ 2757 struct ftrace_rec_iter *ftrace_rec_iter_start(void) 2758 { 2759 /* 2760 * We only use a single iterator. 2761 * Protected by the ftrace_lock mutex. 2762 */ 2763 static struct ftrace_rec_iter ftrace_rec_iter; 2764 struct ftrace_rec_iter *iter = &ftrace_rec_iter; 2765 2766 iter->pg = ftrace_pages_start; 2767 iter->index = 0; 2768 2769 /* Could have empty pages */ 2770 while (iter->pg && !iter->pg->index) 2771 iter->pg = iter->pg->next; 2772 2773 if (!iter->pg) 2774 return NULL; 2775 2776 return iter; 2777 } 2778 2779 /** 2780 * ftrace_rec_iter_next - get the next record to process. 2781 * @iter: The handle to the iterator. 2782 * 2783 * Returns: the next iterator after the given iterator @iter. 2784 */ 2785 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter) 2786 { 2787 iter->index++; 2788 2789 if (iter->index >= iter->pg->index) { 2790 iter->pg = iter->pg->next; 2791 iter->index = 0; 2792 2793 /* Could have empty pages */ 2794 while (iter->pg && !iter->pg->index) 2795 iter->pg = iter->pg->next; 2796 } 2797 2798 if (!iter->pg) 2799 return NULL; 2800 2801 return iter; 2802 } 2803 2804 /** 2805 * ftrace_rec_iter_record - get the record at the iterator location 2806 * @iter: The current iterator location 2807 * 2808 * Returns: the record that the current @iter is at. 2809 */ 2810 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter) 2811 { 2812 return &iter->pg->records[iter->index]; 2813 } 2814 2815 static int 2816 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec) 2817 { 2818 int ret; 2819 2820 if (unlikely(ftrace_disabled)) 2821 return 0; 2822 2823 ret = ftrace_init_nop(mod, rec); 2824 if (ret) { 2825 ftrace_bug_type = FTRACE_BUG_INIT; 2826 ftrace_bug(ret, rec); 2827 return 0; 2828 } 2829 return 1; 2830 } 2831 2832 /* 2833 * archs can override this function if they must do something 2834 * before the modifying code is performed. 2835 */ 2836 void __weak ftrace_arch_code_modify_prepare(void) 2837 { 2838 } 2839 2840 /* 2841 * archs can override this function if they must do something 2842 * after the modifying code is performed. 2843 */ 2844 void __weak ftrace_arch_code_modify_post_process(void) 2845 { 2846 } 2847 2848 static int update_ftrace_func(ftrace_func_t func) 2849 { 2850 static ftrace_func_t save_func; 2851 2852 /* Avoid updating if it hasn't changed */ 2853 if (func == save_func) 2854 return 0; 2855 2856 save_func = func; 2857 2858 return ftrace_update_ftrace_func(func); 2859 } 2860 2861 void ftrace_modify_all_code(int command) 2862 { 2863 int update = command & FTRACE_UPDATE_TRACE_FUNC; 2864 int mod_flags = 0; 2865 int err = 0; 2866 2867 if (command & FTRACE_MAY_SLEEP) 2868 mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL; 2869 2870 /* 2871 * If the ftrace_caller calls a ftrace_ops func directly, 2872 * we need to make sure that it only traces functions it 2873 * expects to trace. When doing the switch of functions, 2874 * we need to update to the ftrace_ops_list_func first 2875 * before the transition between old and new calls are set, 2876 * as the ftrace_ops_list_func will check the ops hashes 2877 * to make sure the ops are having the right functions 2878 * traced. 2879 */ 2880 if (update) { 2881 err = update_ftrace_func(ftrace_ops_list_func); 2882 if (FTRACE_WARN_ON(err)) 2883 return; 2884 } 2885 2886 if (command & FTRACE_UPDATE_CALLS) 2887 ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL); 2888 else if (command & FTRACE_DISABLE_CALLS) 2889 ftrace_replace_code(mod_flags); 2890 2891 if (update && ftrace_trace_function != ftrace_ops_list_func) { 2892 function_trace_op = set_function_trace_op; 2893 smp_wmb(); 2894 /* If irqs are disabled, we are in stop machine */ 2895 if (!irqs_disabled()) 2896 smp_call_function(ftrace_sync_ipi, NULL, 1); 2897 err = update_ftrace_func(ftrace_trace_function); 2898 if (FTRACE_WARN_ON(err)) 2899 return; 2900 } 2901 2902 if (command & FTRACE_START_FUNC_RET) 2903 err = ftrace_enable_ftrace_graph_caller(); 2904 else if (command & FTRACE_STOP_FUNC_RET) 2905 err = ftrace_disable_ftrace_graph_caller(); 2906 FTRACE_WARN_ON(err); 2907 } 2908 2909 static int __ftrace_modify_code(void *data) 2910 { 2911 int *command = data; 2912 2913 ftrace_modify_all_code(*command); 2914 2915 return 0; 2916 } 2917 2918 /** 2919 * ftrace_run_stop_machine - go back to the stop machine method 2920 * @command: The command to tell ftrace what to do 2921 * 2922 * If an arch needs to fall back to the stop machine method, the 2923 * it can call this function. 2924 */ 2925 void ftrace_run_stop_machine(int command) 2926 { 2927 stop_machine(__ftrace_modify_code, &command, NULL); 2928 } 2929 2930 /** 2931 * arch_ftrace_update_code - modify the code to trace or not trace 2932 * @command: The command that needs to be done 2933 * 2934 * Archs can override this function if it does not need to 2935 * run stop_machine() to modify code. 2936 */ 2937 void __weak arch_ftrace_update_code(int command) 2938 { 2939 ftrace_run_stop_machine(command); 2940 } 2941 2942 static void ftrace_run_update_code(int command) 2943 { 2944 ftrace_arch_code_modify_prepare(); 2945 2946 /* 2947 * By default we use stop_machine() to modify the code. 2948 * But archs can do what ever they want as long as it 2949 * is safe. The stop_machine() is the safest, but also 2950 * produces the most overhead. 2951 */ 2952 arch_ftrace_update_code(command); 2953 2954 ftrace_arch_code_modify_post_process(); 2955 } 2956 2957 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command, 2958 struct ftrace_ops_hash *old_hash) 2959 { 2960 ops->flags |= FTRACE_OPS_FL_MODIFYING; 2961 ops->old_hash.filter_hash = old_hash->filter_hash; 2962 ops->old_hash.notrace_hash = old_hash->notrace_hash; 2963 ftrace_run_update_code(command); 2964 ops->old_hash.filter_hash = NULL; 2965 ops->old_hash.notrace_hash = NULL; 2966 ops->flags &= ~FTRACE_OPS_FL_MODIFYING; 2967 } 2968 2969 static ftrace_func_t saved_ftrace_func; 2970 static int ftrace_start_up; 2971 2972 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops) 2973 { 2974 } 2975 2976 /* List of trace_ops that have allocated trampolines */ 2977 static LIST_HEAD(ftrace_ops_trampoline_list); 2978 2979 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops) 2980 { 2981 lockdep_assert_held(&ftrace_lock); 2982 list_add_rcu(&ops->list, &ftrace_ops_trampoline_list); 2983 } 2984 2985 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops) 2986 { 2987 lockdep_assert_held(&ftrace_lock); 2988 list_del_rcu(&ops->list); 2989 synchronize_rcu(); 2990 } 2991 2992 /* 2993 * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols 2994 * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is 2995 * not a module. 2996 */ 2997 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace" 2998 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline" 2999 3000 static void ftrace_trampoline_free(struct ftrace_ops *ops) 3001 { 3002 if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) && 3003 ops->trampoline) { 3004 /* 3005 * Record the text poke event before the ksymbol unregister 3006 * event. 3007 */ 3008 perf_event_text_poke((void *)ops->trampoline, 3009 (void *)ops->trampoline, 3010 ops->trampoline_size, NULL, 0); 3011 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 3012 ops->trampoline, ops->trampoline_size, 3013 true, FTRACE_TRAMPOLINE_SYM); 3014 /* Remove from kallsyms after the perf events */ 3015 ftrace_remove_trampoline_from_kallsyms(ops); 3016 } 3017 3018 arch_ftrace_trampoline_free(ops); 3019 } 3020 3021 static void ftrace_startup_enable(int command) 3022 { 3023 if (saved_ftrace_func != ftrace_trace_function) { 3024 saved_ftrace_func = ftrace_trace_function; 3025 command |= FTRACE_UPDATE_TRACE_FUNC; 3026 } 3027 3028 if (!command || !ftrace_enabled) 3029 return; 3030 3031 ftrace_run_update_code(command); 3032 } 3033 3034 static void ftrace_startup_all(int command) 3035 { 3036 update_all_ops = true; 3037 ftrace_startup_enable(command); 3038 update_all_ops = false; 3039 } 3040 3041 int ftrace_startup(struct ftrace_ops *ops, int command) 3042 { 3043 int ret; 3044 3045 if (unlikely(ftrace_disabled)) 3046 return -ENODEV; 3047 3048 ret = __register_ftrace_function(ops); 3049 if (ret) 3050 return ret; 3051 3052 ftrace_start_up++; 3053 3054 /* 3055 * Note that ftrace probes uses this to start up 3056 * and modify functions it will probe. But we still 3057 * set the ADDING flag for modification, as probes 3058 * do not have trampolines. If they add them in the 3059 * future, then the probes will need to distinguish 3060 * between adding and updating probes. 3061 */ 3062 ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING; 3063 3064 ret = ftrace_hash_ipmodify_enable(ops); 3065 if (ret < 0) { 3066 /* Rollback registration process */ 3067 __unregister_ftrace_function(ops); 3068 ftrace_start_up--; 3069 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 3070 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 3071 ftrace_trampoline_free(ops); 3072 return ret; 3073 } 3074 3075 if (ftrace_hash_rec_enable(ops)) 3076 command |= FTRACE_UPDATE_CALLS; 3077 3078 ftrace_startup_enable(command); 3079 3080 /* 3081 * If ftrace is in an undefined state, we just remove ops from list 3082 * to prevent the NULL pointer, instead of totally rolling it back and 3083 * free trampoline, because those actions could cause further damage. 3084 */ 3085 if (unlikely(ftrace_disabled)) { 3086 __unregister_ftrace_function(ops); 3087 return -ENODEV; 3088 } 3089 3090 ops->flags &= ~FTRACE_OPS_FL_ADDING; 3091 3092 return 0; 3093 } 3094 3095 int ftrace_shutdown(struct ftrace_ops *ops, int command) 3096 { 3097 int ret; 3098 3099 if (unlikely(ftrace_disabled)) 3100 return -ENODEV; 3101 3102 ret = __unregister_ftrace_function(ops); 3103 if (ret) 3104 return ret; 3105 3106 ftrace_start_up--; 3107 /* 3108 * Just warn in case of unbalance, no need to kill ftrace, it's not 3109 * critical but the ftrace_call callers may be never nopped again after 3110 * further ftrace uses. 3111 */ 3112 WARN_ON_ONCE(ftrace_start_up < 0); 3113 3114 /* Disabling ipmodify never fails */ 3115 ftrace_hash_ipmodify_disable(ops); 3116 3117 if (ftrace_hash_rec_disable(ops)) 3118 command |= FTRACE_UPDATE_CALLS; 3119 3120 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 3121 3122 if (saved_ftrace_func != ftrace_trace_function) { 3123 saved_ftrace_func = ftrace_trace_function; 3124 command |= FTRACE_UPDATE_TRACE_FUNC; 3125 } 3126 3127 if (!command || !ftrace_enabled) 3128 goto out; 3129 3130 /* 3131 * If the ops uses a trampoline, then it needs to be 3132 * tested first on update. 3133 */ 3134 ops->flags |= FTRACE_OPS_FL_REMOVING; 3135 removed_ops = ops; 3136 3137 /* The trampoline logic checks the old hashes */ 3138 ops->old_hash.filter_hash = ops->func_hash->filter_hash; 3139 ops->old_hash.notrace_hash = ops->func_hash->notrace_hash; 3140 3141 ftrace_run_update_code(command); 3142 3143 /* 3144 * If there's no more ops registered with ftrace, run a 3145 * sanity check to make sure all rec flags are cleared. 3146 */ 3147 if (rcu_dereference_protected(ftrace_ops_list, 3148 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 3149 struct ftrace_page *pg; 3150 struct dyn_ftrace *rec; 3151 3152 do_for_each_ftrace_rec(pg, rec) { 3153 if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_NOCLEAR_FLAGS)) 3154 pr_warn(" %pS flags:%lx\n", 3155 (void *)rec->ip, rec->flags); 3156 } while_for_each_ftrace_rec(); 3157 } 3158 3159 ops->old_hash.filter_hash = NULL; 3160 ops->old_hash.notrace_hash = NULL; 3161 3162 removed_ops = NULL; 3163 ops->flags &= ~FTRACE_OPS_FL_REMOVING; 3164 3165 out: 3166 /* 3167 * Dynamic ops may be freed, we must make sure that all 3168 * callers are done before leaving this function. 3169 */ 3170 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) { 3171 /* 3172 * We need to do a hard force of sched synchronization. 3173 * This is because we use preempt_disable() to do RCU, but 3174 * the function tracers can be called where RCU is not watching 3175 * (like before user_exit()). We can not rely on the RCU 3176 * infrastructure to do the synchronization, thus we must do it 3177 * ourselves. 3178 */ 3179 synchronize_rcu_tasks_rude(); 3180 3181 /* 3182 * When the kernel is preemptive, tasks can be preempted 3183 * while on a ftrace trampoline. Just scheduling a task on 3184 * a CPU is not good enough to flush them. Calling 3185 * synchronize_rcu_tasks() will wait for those tasks to 3186 * execute and either schedule voluntarily or enter user space. 3187 */ 3188 synchronize_rcu_tasks(); 3189 3190 ftrace_trampoline_free(ops); 3191 } 3192 3193 return 0; 3194 } 3195 3196 /* Simply make a copy of @src and return it */ 3197 static struct ftrace_hash *copy_hash(struct ftrace_hash *src) 3198 { 3199 if (ftrace_hash_empty(src)) 3200 return EMPTY_HASH; 3201 3202 return alloc_and_copy_ftrace_hash(src->size_bits, src); 3203 } 3204 3205 /* 3206 * Append @new_hash entries to @hash: 3207 * 3208 * If @hash is the EMPTY_HASH then it traces all functions and nothing 3209 * needs to be done. 3210 * 3211 * If @new_hash is the EMPTY_HASH, then make *hash the EMPTY_HASH so 3212 * that it traces everything. 3213 * 3214 * Otherwise, go through all of @new_hash and add anything that @hash 3215 * doesn't already have, to @hash. 3216 * 3217 * The filter_hash updates uses just the append_hash() function 3218 * and the notrace_hash does not. 3219 */ 3220 static int append_hash(struct ftrace_hash **hash, struct ftrace_hash *new_hash, 3221 int size_bits) 3222 { 3223 struct ftrace_func_entry *entry; 3224 int size; 3225 int i; 3226 3227 if (*hash) { 3228 /* An empty hash does everything */ 3229 if (ftrace_hash_empty(*hash)) 3230 return 0; 3231 } else { 3232 *hash = alloc_ftrace_hash(size_bits); 3233 if (!*hash) 3234 return -ENOMEM; 3235 } 3236 3237 /* If new_hash has everything make hash have everything */ 3238 if (ftrace_hash_empty(new_hash)) { 3239 free_ftrace_hash(*hash); 3240 *hash = EMPTY_HASH; 3241 return 0; 3242 } 3243 3244 size = 1 << new_hash->size_bits; 3245 for (i = 0; i < size; i++) { 3246 hlist_for_each_entry(entry, &new_hash->buckets[i], hlist) { 3247 /* Only add if not already in hash */ 3248 if (!__ftrace_lookup_ip(*hash, entry->ip) && 3249 add_hash_entry(*hash, entry->ip) == NULL) 3250 return -ENOMEM; 3251 } 3252 } 3253 return 0; 3254 } 3255 3256 /* 3257 * Remove functions from @hash that are in @notrace_hash 3258 */ 3259 static void remove_hash(struct ftrace_hash *hash, struct ftrace_hash *notrace_hash) 3260 { 3261 struct ftrace_func_entry *entry; 3262 struct hlist_node *tmp; 3263 int size; 3264 int i; 3265 3266 /* If the notrace hash is empty, there's nothing to do */ 3267 if (ftrace_hash_empty(notrace_hash)) 3268 return; 3269 3270 size = 1 << hash->size_bits; 3271 for (i = 0; i < size; i++) { 3272 hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) { 3273 if (!__ftrace_lookup_ip(notrace_hash, entry->ip)) 3274 continue; 3275 remove_hash_entry(hash, entry); 3276 kfree(entry); 3277 } 3278 } 3279 } 3280 3281 /* 3282 * Add to @hash only those that are in both @new_hash1 and @new_hash2 3283 * 3284 * The notrace_hash updates uses just the intersect_hash() function 3285 * and the filter_hash does not. 3286 */ 3287 static int intersect_hash(struct ftrace_hash **hash, struct ftrace_hash *new_hash1, 3288 struct ftrace_hash *new_hash2) 3289 { 3290 struct ftrace_func_entry *entry; 3291 int size; 3292 int i; 3293 3294 /* 3295 * If new_hash1 or new_hash2 is the EMPTY_HASH then make the hash 3296 * empty as well as empty for notrace means none are notraced. 3297 */ 3298 if (ftrace_hash_empty(new_hash1) || ftrace_hash_empty(new_hash2)) { 3299 free_ftrace_hash(*hash); 3300 *hash = EMPTY_HASH; 3301 return 0; 3302 } 3303 3304 size = 1 << new_hash1->size_bits; 3305 for (i = 0; i < size; i++) { 3306 hlist_for_each_entry(entry, &new_hash1->buckets[i], hlist) { 3307 /* Only add if in both @new_hash1 and @new_hash2 */ 3308 if (__ftrace_lookup_ip(new_hash2, entry->ip) && 3309 add_hash_entry(*hash, entry->ip) == NULL) 3310 return -ENOMEM; 3311 } 3312 } 3313 /* If nothing intersects, make it the empty set */ 3314 if (ftrace_hash_empty(*hash)) { 3315 free_ftrace_hash(*hash); 3316 *hash = EMPTY_HASH; 3317 } 3318 return 0; 3319 } 3320 3321 static bool ops_equal(struct ftrace_hash *A, struct ftrace_hash *B) 3322 { 3323 struct ftrace_func_entry *entry; 3324 int size; 3325 int i; 3326 3327 if (ftrace_hash_empty(A)) 3328 return ftrace_hash_empty(B); 3329 3330 if (ftrace_hash_empty(B)) 3331 return ftrace_hash_empty(A); 3332 3333 if (A->count != B->count) 3334 return false; 3335 3336 size = 1 << A->size_bits; 3337 for (i = 0; i < size; i++) { 3338 hlist_for_each_entry(entry, &A->buckets[i], hlist) { 3339 if (!__ftrace_lookup_ip(B, entry->ip)) 3340 return false; 3341 } 3342 } 3343 3344 return true; 3345 } 3346 3347 static void ftrace_ops_update_code(struct ftrace_ops *ops, 3348 struct ftrace_ops_hash *old_hash); 3349 3350 static int __ftrace_hash_move_and_update_ops(struct ftrace_ops *ops, 3351 struct ftrace_hash **orig_hash, 3352 struct ftrace_hash *hash, 3353 int enable) 3354 { 3355 struct ftrace_ops_hash old_hash_ops; 3356 struct ftrace_hash *old_hash; 3357 int ret; 3358 3359 old_hash = *orig_hash; 3360 old_hash_ops.filter_hash = ops->func_hash->filter_hash; 3361 old_hash_ops.notrace_hash = ops->func_hash->notrace_hash; 3362 ret = ftrace_hash_move(ops, enable, orig_hash, hash); 3363 if (!ret) { 3364 ftrace_ops_update_code(ops, &old_hash_ops); 3365 free_ftrace_hash_rcu(old_hash); 3366 } 3367 return ret; 3368 } 3369 3370 static int ftrace_update_ops(struct ftrace_ops *ops, struct ftrace_hash *filter_hash, 3371 struct ftrace_hash *notrace_hash) 3372 { 3373 int ret; 3374 3375 if (!ops_equal(filter_hash, ops->func_hash->filter_hash)) { 3376 ret = __ftrace_hash_move_and_update_ops(ops, &ops->func_hash->filter_hash, 3377 filter_hash, 1); 3378 if (ret < 0) 3379 return ret; 3380 } 3381 3382 if (!ops_equal(notrace_hash, ops->func_hash->notrace_hash)) { 3383 ret = __ftrace_hash_move_and_update_ops(ops, &ops->func_hash->notrace_hash, 3384 notrace_hash, 0); 3385 if (ret < 0) 3386 return ret; 3387 } 3388 3389 return 0; 3390 } 3391 3392 static int add_first_hash(struct ftrace_hash **filter_hash, struct ftrace_hash **notrace_hash, 3393 struct ftrace_ops_hash *func_hash) 3394 { 3395 /* If the filter hash is not empty, simply remove the nohash from it */ 3396 if (!ftrace_hash_empty(func_hash->filter_hash)) { 3397 *filter_hash = copy_hash(func_hash->filter_hash); 3398 if (!*filter_hash) 3399 return -ENOMEM; 3400 remove_hash(*filter_hash, func_hash->notrace_hash); 3401 *notrace_hash = EMPTY_HASH; 3402 3403 } else { 3404 *notrace_hash = copy_hash(func_hash->notrace_hash); 3405 if (!*notrace_hash) 3406 return -ENOMEM; 3407 *filter_hash = EMPTY_HASH; 3408 } 3409 return 0; 3410 } 3411 3412 static int add_next_hash(struct ftrace_hash **filter_hash, struct ftrace_hash **notrace_hash, 3413 struct ftrace_ops_hash *ops_hash, struct ftrace_ops_hash *subops_hash) 3414 { 3415 int size_bits; 3416 int ret; 3417 3418 /* If the subops trace all functions so must the main ops */ 3419 if (ftrace_hash_empty(ops_hash->filter_hash) || 3420 ftrace_hash_empty(subops_hash->filter_hash)) { 3421 *filter_hash = EMPTY_HASH; 3422 } else { 3423 /* 3424 * The main ops filter hash is not empty, so its 3425 * notrace_hash had better be, as the notrace hash 3426 * is only used for empty main filter hashes. 3427 */ 3428 WARN_ON_ONCE(!ftrace_hash_empty(ops_hash->notrace_hash)); 3429 3430 size_bits = max(ops_hash->filter_hash->size_bits, 3431 subops_hash->filter_hash->size_bits); 3432 3433 /* Copy the subops hash */ 3434 *filter_hash = alloc_and_copy_ftrace_hash(size_bits, subops_hash->filter_hash); 3435 if (!*filter_hash) 3436 return -ENOMEM; 3437 /* Remove any notrace functions from the copy */ 3438 remove_hash(*filter_hash, subops_hash->notrace_hash); 3439 3440 ret = append_hash(filter_hash, ops_hash->filter_hash, 3441 size_bits); 3442 if (ret < 0) { 3443 free_ftrace_hash(*filter_hash); 3444 *filter_hash = EMPTY_HASH; 3445 return ret; 3446 } 3447 } 3448 3449 /* 3450 * Only process notrace hashes if the main filter hash is empty 3451 * (tracing all functions), otherwise the filter hash will just 3452 * remove the notrace hash functions, and the notrace hash is 3453 * not needed. 3454 */ 3455 if (ftrace_hash_empty(*filter_hash)) { 3456 /* 3457 * Intersect the notrace functions. That is, if two 3458 * subops are not tracing a set of functions, the 3459 * main ops will only not trace the functions that are 3460 * in both subops, but has to trace the functions that 3461 * are only notrace in one of the subops, for the other 3462 * subops to be able to trace them. 3463 */ 3464 size_bits = max(ops_hash->notrace_hash->size_bits, 3465 subops_hash->notrace_hash->size_bits); 3466 *notrace_hash = alloc_ftrace_hash(size_bits); 3467 if (!*notrace_hash) 3468 return -ENOMEM; 3469 3470 ret = intersect_hash(notrace_hash, ops_hash->notrace_hash, 3471 subops_hash->notrace_hash); 3472 if (ret < 0) { 3473 free_ftrace_hash(*notrace_hash); 3474 *notrace_hash = EMPTY_HASH; 3475 return ret; 3476 } 3477 } 3478 return 0; 3479 } 3480 3481 /** 3482 * ftrace_startup_subops - enable tracing for subops of an ops 3483 * @ops: Manager ops (used to pick all the functions of its subops) 3484 * @subops: A new ops to add to @ops 3485 * @command: Extra commands to use to enable tracing 3486 * 3487 * The @ops is a manager @ops that has the filter that includes all the functions 3488 * that its list of subops are tracing. Adding a new @subops will add the 3489 * functions of @subops to @ops. 3490 */ 3491 int ftrace_startup_subops(struct ftrace_ops *ops, struct ftrace_ops *subops, int command) 3492 { 3493 struct ftrace_hash *filter_hash = EMPTY_HASH; 3494 struct ftrace_hash *notrace_hash = EMPTY_HASH; 3495 struct ftrace_hash *save_filter_hash; 3496 struct ftrace_hash *save_notrace_hash; 3497 int ret; 3498 3499 if (unlikely(ftrace_disabled)) 3500 return -ENODEV; 3501 3502 ftrace_ops_init(ops); 3503 ftrace_ops_init(subops); 3504 3505 if (WARN_ON_ONCE(subops->flags & FTRACE_OPS_FL_ENABLED)) 3506 return -EBUSY; 3507 3508 /* Make everything canonical (Just in case!) */ 3509 if (!ops->func_hash->filter_hash) 3510 ops->func_hash->filter_hash = EMPTY_HASH; 3511 if (!ops->func_hash->notrace_hash) 3512 ops->func_hash->notrace_hash = EMPTY_HASH; 3513 if (!subops->func_hash->filter_hash) 3514 subops->func_hash->filter_hash = EMPTY_HASH; 3515 if (!subops->func_hash->notrace_hash) 3516 subops->func_hash->notrace_hash = EMPTY_HASH; 3517 3518 /* For the first subops to ops just enable it normally */ 3519 if (list_empty(&ops->subop_list)) { 3520 3521 /* The ops was empty, should have empty hashes */ 3522 WARN_ON_ONCE(!ftrace_hash_empty(ops->func_hash->filter_hash)); 3523 WARN_ON_ONCE(!ftrace_hash_empty(ops->func_hash->notrace_hash)); 3524 3525 ret = add_first_hash(&filter_hash, ¬race_hash, subops->func_hash); 3526 if (ret < 0) 3527 return ret; 3528 3529 save_filter_hash = ops->func_hash->filter_hash; 3530 save_notrace_hash = ops->func_hash->notrace_hash; 3531 3532 ops->func_hash->filter_hash = filter_hash; 3533 ops->func_hash->notrace_hash = notrace_hash; 3534 list_add(&subops->list, &ops->subop_list); 3535 ret = ftrace_startup(ops, command); 3536 if (ret < 0) { 3537 list_del(&subops->list); 3538 ops->func_hash->filter_hash = save_filter_hash; 3539 ops->func_hash->notrace_hash = save_notrace_hash; 3540 free_ftrace_hash(filter_hash); 3541 free_ftrace_hash(notrace_hash); 3542 } else { 3543 free_ftrace_hash(save_filter_hash); 3544 free_ftrace_hash(save_notrace_hash); 3545 subops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP; 3546 subops->managed = ops; 3547 } 3548 return ret; 3549 } 3550 3551 /* 3552 * Here there's already something attached. Here are the rules: 3553 * If the new subops and main ops filter hashes are not empty: 3554 * o Make a copy of the subops filter hash 3555 * o Remove all functions in the nohash from it. 3556 * o Add in the main hash filter functions 3557 * o Remove any of these functions from the main notrace hash 3558 */ 3559 3560 ret = add_next_hash(&filter_hash, ¬race_hash, ops->func_hash, subops->func_hash); 3561 if (ret < 0) 3562 return ret; 3563 3564 list_add(&subops->list, &ops->subop_list); 3565 3566 ret = ftrace_update_ops(ops, filter_hash, notrace_hash); 3567 free_ftrace_hash(filter_hash); 3568 free_ftrace_hash(notrace_hash); 3569 if (ret < 0) { 3570 list_del(&subops->list); 3571 } else { 3572 subops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP; 3573 subops->managed = ops; 3574 } 3575 return ret; 3576 } 3577 3578 static int rebuild_hashes(struct ftrace_hash **filter_hash, struct ftrace_hash **notrace_hash, 3579 struct ftrace_ops *ops) 3580 { 3581 struct ftrace_ops_hash temp_hash; 3582 struct ftrace_ops *subops; 3583 bool first = true; 3584 int ret; 3585 3586 temp_hash.filter_hash = EMPTY_HASH; 3587 temp_hash.notrace_hash = EMPTY_HASH; 3588 3589 list_for_each_entry(subops, &ops->subop_list, list) { 3590 *filter_hash = EMPTY_HASH; 3591 *notrace_hash = EMPTY_HASH; 3592 3593 if (first) { 3594 ret = add_first_hash(filter_hash, notrace_hash, subops->func_hash); 3595 if (ret < 0) 3596 return ret; 3597 first = false; 3598 } else { 3599 ret = add_next_hash(filter_hash, notrace_hash, 3600 &temp_hash, subops->func_hash); 3601 if (ret < 0) { 3602 free_ftrace_hash(temp_hash.filter_hash); 3603 free_ftrace_hash(temp_hash.notrace_hash); 3604 return ret; 3605 } 3606 } 3607 3608 free_ftrace_hash(temp_hash.filter_hash); 3609 free_ftrace_hash(temp_hash.notrace_hash); 3610 3611 temp_hash.filter_hash = *filter_hash; 3612 temp_hash.notrace_hash = *notrace_hash; 3613 } 3614 return 0; 3615 } 3616 3617 /** 3618 * ftrace_shutdown_subops - Remove a subops from a manager ops 3619 * @ops: A manager ops to remove @subops from 3620 * @subops: The subops to remove from @ops 3621 * @command: Any extra command flags to add to modifying the text 3622 * 3623 * Removes the functions being traced by the @subops from @ops. Note, it 3624 * will not affect functions that are being traced by other subops that 3625 * still exist in @ops. 3626 * 3627 * If the last subops is removed from @ops, then @ops is shutdown normally. 3628 */ 3629 int ftrace_shutdown_subops(struct ftrace_ops *ops, struct ftrace_ops *subops, int command) 3630 { 3631 struct ftrace_hash *filter_hash = EMPTY_HASH; 3632 struct ftrace_hash *notrace_hash = EMPTY_HASH; 3633 int ret; 3634 3635 if (unlikely(ftrace_disabled)) 3636 return -ENODEV; 3637 3638 if (WARN_ON_ONCE(!(subops->flags & FTRACE_OPS_FL_ENABLED))) 3639 return -EINVAL; 3640 3641 list_del(&subops->list); 3642 3643 if (list_empty(&ops->subop_list)) { 3644 /* Last one, just disable the current ops */ 3645 3646 ret = ftrace_shutdown(ops, command); 3647 if (ret < 0) { 3648 list_add(&subops->list, &ops->subop_list); 3649 return ret; 3650 } 3651 3652 subops->flags &= ~FTRACE_OPS_FL_ENABLED; 3653 3654 free_ftrace_hash(ops->func_hash->filter_hash); 3655 free_ftrace_hash(ops->func_hash->notrace_hash); 3656 ops->func_hash->filter_hash = EMPTY_HASH; 3657 ops->func_hash->notrace_hash = EMPTY_HASH; 3658 subops->flags &= ~(FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP); 3659 subops->managed = NULL; 3660 3661 return 0; 3662 } 3663 3664 /* Rebuild the hashes without subops */ 3665 ret = rebuild_hashes(&filter_hash, ¬race_hash, ops); 3666 if (ret < 0) 3667 return ret; 3668 3669 ret = ftrace_update_ops(ops, filter_hash, notrace_hash); 3670 if (ret < 0) { 3671 list_add(&subops->list, &ops->subop_list); 3672 } else { 3673 subops->flags &= ~(FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP); 3674 subops->managed = NULL; 3675 } 3676 free_ftrace_hash(filter_hash); 3677 free_ftrace_hash(notrace_hash); 3678 return ret; 3679 } 3680 3681 static int ftrace_hash_move_and_update_subops(struct ftrace_ops *subops, 3682 struct ftrace_hash **orig_subhash, 3683 struct ftrace_hash *hash) 3684 { 3685 struct ftrace_ops *ops = subops->managed; 3686 struct ftrace_hash *notrace_hash; 3687 struct ftrace_hash *filter_hash; 3688 struct ftrace_hash *save_hash; 3689 struct ftrace_hash *new_hash; 3690 int ret; 3691 3692 /* Manager ops can not be subops (yet) */ 3693 if (WARN_ON_ONCE(!ops || ops->flags & FTRACE_OPS_FL_SUBOP)) 3694 return -EINVAL; 3695 3696 /* Move the new hash over to the subops hash */ 3697 save_hash = *orig_subhash; 3698 *orig_subhash = __ftrace_hash_move(hash); 3699 if (!*orig_subhash) { 3700 *orig_subhash = save_hash; 3701 return -ENOMEM; 3702 } 3703 3704 ret = rebuild_hashes(&filter_hash, ¬race_hash, ops); 3705 if (!ret) { 3706 ret = ftrace_update_ops(ops, filter_hash, notrace_hash); 3707 free_ftrace_hash(filter_hash); 3708 free_ftrace_hash(notrace_hash); 3709 } 3710 3711 if (ret) { 3712 /* Put back the original hash */ 3713 new_hash = *orig_subhash; 3714 *orig_subhash = save_hash; 3715 free_ftrace_hash_rcu(new_hash); 3716 } else { 3717 free_ftrace_hash_rcu(save_hash); 3718 } 3719 return ret; 3720 } 3721 3722 3723 u64 ftrace_update_time; 3724 u64 ftrace_total_mod_time; 3725 unsigned long ftrace_update_tot_cnt; 3726 unsigned long ftrace_number_of_pages; 3727 unsigned long ftrace_number_of_groups; 3728 3729 static inline int ops_traces_mod(struct ftrace_ops *ops) 3730 { 3731 /* 3732 * Filter_hash being empty will default to trace module. 3733 * But notrace hash requires a test of individual module functions. 3734 */ 3735 return ftrace_hash_empty(ops->func_hash->filter_hash) && 3736 ftrace_hash_empty(ops->func_hash->notrace_hash); 3737 } 3738 3739 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs) 3740 { 3741 bool init_nop = ftrace_need_init_nop(); 3742 struct ftrace_page *pg; 3743 struct dyn_ftrace *p; 3744 u64 start, stop, update_time; 3745 unsigned long update_cnt = 0; 3746 unsigned long rec_flags = 0; 3747 int i; 3748 3749 start = ftrace_now(raw_smp_processor_id()); 3750 3751 /* 3752 * When a module is loaded, this function is called to convert 3753 * the calls to mcount in its text to nops, and also to create 3754 * an entry in the ftrace data. Now, if ftrace is activated 3755 * after this call, but before the module sets its text to 3756 * read-only, the modification of enabling ftrace can fail if 3757 * the read-only is done while ftrace is converting the calls. 3758 * To prevent this, the module's records are set as disabled 3759 * and will be enabled after the call to set the module's text 3760 * to read-only. 3761 */ 3762 if (mod) 3763 rec_flags |= FTRACE_FL_DISABLED; 3764 3765 for (pg = new_pgs; pg; pg = pg->next) { 3766 3767 for (i = 0; i < pg->index; i++) { 3768 3769 /* If something went wrong, bail without enabling anything */ 3770 if (unlikely(ftrace_disabled)) 3771 return -1; 3772 3773 p = &pg->records[i]; 3774 p->flags = rec_flags; 3775 3776 /* 3777 * Do the initial record conversion from mcount jump 3778 * to the NOP instructions. 3779 */ 3780 if (init_nop && !ftrace_nop_initialize(mod, p)) 3781 break; 3782 3783 update_cnt++; 3784 } 3785 } 3786 3787 stop = ftrace_now(raw_smp_processor_id()); 3788 update_time = stop - start; 3789 if (mod) 3790 ftrace_total_mod_time += update_time; 3791 else 3792 ftrace_update_time = update_time; 3793 ftrace_update_tot_cnt += update_cnt; 3794 3795 return 0; 3796 } 3797 3798 static int ftrace_allocate_records(struct ftrace_page *pg, int count) 3799 { 3800 int order; 3801 int pages; 3802 int cnt; 3803 3804 if (WARN_ON(!count)) 3805 return -EINVAL; 3806 3807 /* We want to fill as much as possible, with no empty pages */ 3808 pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE); 3809 order = fls(pages) - 1; 3810 3811 again: 3812 pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 3813 3814 if (!pg->records) { 3815 /* if we can't allocate this size, try something smaller */ 3816 if (!order) 3817 return -ENOMEM; 3818 order--; 3819 goto again; 3820 } 3821 3822 ftrace_number_of_pages += 1 << order; 3823 ftrace_number_of_groups++; 3824 3825 cnt = (PAGE_SIZE << order) / ENTRY_SIZE; 3826 pg->order = order; 3827 3828 if (cnt > count) 3829 cnt = count; 3830 3831 return cnt; 3832 } 3833 3834 static void ftrace_free_pages(struct ftrace_page *pages) 3835 { 3836 struct ftrace_page *pg = pages; 3837 3838 while (pg) { 3839 if (pg->records) { 3840 free_pages((unsigned long)pg->records, pg->order); 3841 ftrace_number_of_pages -= 1 << pg->order; 3842 } 3843 pages = pg->next; 3844 kfree(pg); 3845 pg = pages; 3846 ftrace_number_of_groups--; 3847 } 3848 } 3849 3850 static struct ftrace_page * 3851 ftrace_allocate_pages(unsigned long num_to_init) 3852 { 3853 struct ftrace_page *start_pg; 3854 struct ftrace_page *pg; 3855 int cnt; 3856 3857 if (!num_to_init) 3858 return NULL; 3859 3860 start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL); 3861 if (!pg) 3862 return NULL; 3863 3864 /* 3865 * Try to allocate as much as possible in one continues 3866 * location that fills in all of the space. We want to 3867 * waste as little space as possible. 3868 */ 3869 for (;;) { 3870 cnt = ftrace_allocate_records(pg, num_to_init); 3871 if (cnt < 0) 3872 goto free_pages; 3873 3874 num_to_init -= cnt; 3875 if (!num_to_init) 3876 break; 3877 3878 pg->next = kzalloc(sizeof(*pg), GFP_KERNEL); 3879 if (!pg->next) 3880 goto free_pages; 3881 3882 pg = pg->next; 3883 } 3884 3885 return start_pg; 3886 3887 free_pages: 3888 ftrace_free_pages(start_pg); 3889 pr_info("ftrace: FAILED to allocate memory for functions\n"); 3890 return NULL; 3891 } 3892 3893 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */ 3894 3895 struct ftrace_iterator { 3896 loff_t pos; 3897 loff_t func_pos; 3898 loff_t mod_pos; 3899 struct ftrace_page *pg; 3900 struct dyn_ftrace *func; 3901 struct ftrace_func_probe *probe; 3902 struct ftrace_func_entry *probe_entry; 3903 struct trace_parser parser; 3904 struct ftrace_hash *hash; 3905 struct ftrace_ops *ops; 3906 struct trace_array *tr; 3907 struct list_head *mod_list; 3908 int pidx; 3909 int idx; 3910 unsigned flags; 3911 }; 3912 3913 static void * 3914 t_probe_next(struct seq_file *m, loff_t *pos) 3915 { 3916 struct ftrace_iterator *iter = m->private; 3917 struct trace_array *tr = iter->ops->private; 3918 struct list_head *func_probes; 3919 struct ftrace_hash *hash; 3920 struct list_head *next; 3921 struct hlist_node *hnd = NULL; 3922 struct hlist_head *hhd; 3923 int size; 3924 3925 (*pos)++; 3926 iter->pos = *pos; 3927 3928 if (!tr) 3929 return NULL; 3930 3931 func_probes = &tr->func_probes; 3932 if (list_empty(func_probes)) 3933 return NULL; 3934 3935 if (!iter->probe) { 3936 next = func_probes->next; 3937 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3938 } 3939 3940 if (iter->probe_entry) 3941 hnd = &iter->probe_entry->hlist; 3942 3943 hash = iter->probe->ops.func_hash->filter_hash; 3944 3945 /* 3946 * A probe being registered may temporarily have an empty hash 3947 * and it's at the end of the func_probes list. 3948 */ 3949 if (!hash || hash == EMPTY_HASH) 3950 return NULL; 3951 3952 size = 1 << hash->size_bits; 3953 3954 retry: 3955 if (iter->pidx >= size) { 3956 if (iter->probe->list.next == func_probes) 3957 return NULL; 3958 next = iter->probe->list.next; 3959 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3960 hash = iter->probe->ops.func_hash->filter_hash; 3961 size = 1 << hash->size_bits; 3962 iter->pidx = 0; 3963 } 3964 3965 hhd = &hash->buckets[iter->pidx]; 3966 3967 if (hlist_empty(hhd)) { 3968 iter->pidx++; 3969 hnd = NULL; 3970 goto retry; 3971 } 3972 3973 if (!hnd) 3974 hnd = hhd->first; 3975 else { 3976 hnd = hnd->next; 3977 if (!hnd) { 3978 iter->pidx++; 3979 goto retry; 3980 } 3981 } 3982 3983 if (WARN_ON_ONCE(!hnd)) 3984 return NULL; 3985 3986 iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist); 3987 3988 return iter; 3989 } 3990 3991 static void *t_probe_start(struct seq_file *m, loff_t *pos) 3992 { 3993 struct ftrace_iterator *iter = m->private; 3994 void *p = NULL; 3995 loff_t l; 3996 3997 if (!(iter->flags & FTRACE_ITER_DO_PROBES)) 3998 return NULL; 3999 4000 if (iter->mod_pos > *pos) 4001 return NULL; 4002 4003 iter->probe = NULL; 4004 iter->probe_entry = NULL; 4005 iter->pidx = 0; 4006 for (l = 0; l <= (*pos - iter->mod_pos); ) { 4007 p = t_probe_next(m, &l); 4008 if (!p) 4009 break; 4010 } 4011 if (!p) 4012 return NULL; 4013 4014 /* Only set this if we have an item */ 4015 iter->flags |= FTRACE_ITER_PROBE; 4016 4017 return iter; 4018 } 4019 4020 static int 4021 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter) 4022 { 4023 struct ftrace_func_entry *probe_entry; 4024 struct ftrace_probe_ops *probe_ops; 4025 struct ftrace_func_probe *probe; 4026 4027 probe = iter->probe; 4028 probe_entry = iter->probe_entry; 4029 4030 if (WARN_ON_ONCE(!probe || !probe_entry)) 4031 return -EIO; 4032 4033 probe_ops = probe->probe_ops; 4034 4035 if (probe_ops->print) 4036 return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data); 4037 4038 seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip, 4039 (void *)probe_ops->func); 4040 4041 return 0; 4042 } 4043 4044 static void * 4045 t_mod_next(struct seq_file *m, loff_t *pos) 4046 { 4047 struct ftrace_iterator *iter = m->private; 4048 struct trace_array *tr = iter->tr; 4049 4050 (*pos)++; 4051 iter->pos = *pos; 4052 4053 iter->mod_list = iter->mod_list->next; 4054 4055 if (iter->mod_list == &tr->mod_trace || 4056 iter->mod_list == &tr->mod_notrace) { 4057 iter->flags &= ~FTRACE_ITER_MOD; 4058 return NULL; 4059 } 4060 4061 iter->mod_pos = *pos; 4062 4063 return iter; 4064 } 4065 4066 static void *t_mod_start(struct seq_file *m, loff_t *pos) 4067 { 4068 struct ftrace_iterator *iter = m->private; 4069 void *p = NULL; 4070 loff_t l; 4071 4072 if (iter->func_pos > *pos) 4073 return NULL; 4074 4075 iter->mod_pos = iter->func_pos; 4076 4077 /* probes are only available if tr is set */ 4078 if (!iter->tr) 4079 return NULL; 4080 4081 for (l = 0; l <= (*pos - iter->func_pos); ) { 4082 p = t_mod_next(m, &l); 4083 if (!p) 4084 break; 4085 } 4086 if (!p) { 4087 iter->flags &= ~FTRACE_ITER_MOD; 4088 return t_probe_start(m, pos); 4089 } 4090 4091 /* Only set this if we have an item */ 4092 iter->flags |= FTRACE_ITER_MOD; 4093 4094 return iter; 4095 } 4096 4097 static int 4098 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter) 4099 { 4100 struct ftrace_mod_load *ftrace_mod; 4101 struct trace_array *tr = iter->tr; 4102 4103 if (WARN_ON_ONCE(!iter->mod_list) || 4104 iter->mod_list == &tr->mod_trace || 4105 iter->mod_list == &tr->mod_notrace) 4106 return -EIO; 4107 4108 ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list); 4109 4110 if (ftrace_mod->func) 4111 seq_printf(m, "%s", ftrace_mod->func); 4112 else 4113 seq_putc(m, '*'); 4114 4115 seq_printf(m, ":mod:%s\n", ftrace_mod->module); 4116 4117 return 0; 4118 } 4119 4120 static void * 4121 t_func_next(struct seq_file *m, loff_t *pos) 4122 { 4123 struct ftrace_iterator *iter = m->private; 4124 struct dyn_ftrace *rec = NULL; 4125 4126 (*pos)++; 4127 4128 retry: 4129 if (iter->idx >= iter->pg->index) { 4130 if (iter->pg->next) { 4131 iter->pg = iter->pg->next; 4132 iter->idx = 0; 4133 goto retry; 4134 } 4135 } else { 4136 rec = &iter->pg->records[iter->idx++]; 4137 if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 4138 !ftrace_lookup_ip(iter->hash, rec->ip)) || 4139 4140 ((iter->flags & FTRACE_ITER_ENABLED) && 4141 !(rec->flags & FTRACE_FL_ENABLED)) || 4142 4143 ((iter->flags & FTRACE_ITER_TOUCHED) && 4144 !(rec->flags & FTRACE_FL_TOUCHED))) { 4145 4146 rec = NULL; 4147 goto retry; 4148 } 4149 } 4150 4151 if (!rec) 4152 return NULL; 4153 4154 iter->pos = iter->func_pos = *pos; 4155 iter->func = rec; 4156 4157 return iter; 4158 } 4159 4160 static void * 4161 t_next(struct seq_file *m, void *v, loff_t *pos) 4162 { 4163 struct ftrace_iterator *iter = m->private; 4164 loff_t l = *pos; /* t_probe_start() must use original pos */ 4165 void *ret; 4166 4167 if (unlikely(ftrace_disabled)) 4168 return NULL; 4169 4170 if (iter->flags & FTRACE_ITER_PROBE) 4171 return t_probe_next(m, pos); 4172 4173 if (iter->flags & FTRACE_ITER_MOD) 4174 return t_mod_next(m, pos); 4175 4176 if (iter->flags & FTRACE_ITER_PRINTALL) { 4177 /* next must increment pos, and t_probe_start does not */ 4178 (*pos)++; 4179 return t_mod_start(m, &l); 4180 } 4181 4182 ret = t_func_next(m, pos); 4183 4184 if (!ret) 4185 return t_mod_start(m, &l); 4186 4187 return ret; 4188 } 4189 4190 static void reset_iter_read(struct ftrace_iterator *iter) 4191 { 4192 iter->pos = 0; 4193 iter->func_pos = 0; 4194 iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD); 4195 } 4196 4197 static void *t_start(struct seq_file *m, loff_t *pos) 4198 { 4199 struct ftrace_iterator *iter = m->private; 4200 void *p = NULL; 4201 loff_t l; 4202 4203 mutex_lock(&ftrace_lock); 4204 4205 if (unlikely(ftrace_disabled)) 4206 return NULL; 4207 4208 /* 4209 * If an lseek was done, then reset and start from beginning. 4210 */ 4211 if (*pos < iter->pos) 4212 reset_iter_read(iter); 4213 4214 /* 4215 * For set_ftrace_filter reading, if we have the filter 4216 * off, we can short cut and just print out that all 4217 * functions are enabled. 4218 */ 4219 if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 4220 ftrace_hash_empty(iter->hash)) { 4221 iter->func_pos = 1; /* Account for the message */ 4222 if (*pos > 0) 4223 return t_mod_start(m, pos); 4224 iter->flags |= FTRACE_ITER_PRINTALL; 4225 /* reset in case of seek/pread */ 4226 iter->flags &= ~FTRACE_ITER_PROBE; 4227 return iter; 4228 } 4229 4230 if (iter->flags & FTRACE_ITER_MOD) 4231 return t_mod_start(m, pos); 4232 4233 /* 4234 * Unfortunately, we need to restart at ftrace_pages_start 4235 * every time we let go of the ftrace_mutex. This is because 4236 * those pointers can change without the lock. 4237 */ 4238 iter->pg = ftrace_pages_start; 4239 iter->idx = 0; 4240 for (l = 0; l <= *pos; ) { 4241 p = t_func_next(m, &l); 4242 if (!p) 4243 break; 4244 } 4245 4246 if (!p) 4247 return t_mod_start(m, pos); 4248 4249 return iter; 4250 } 4251 4252 static void t_stop(struct seq_file *m, void *p) 4253 { 4254 mutex_unlock(&ftrace_lock); 4255 } 4256 4257 void * __weak 4258 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec) 4259 { 4260 return NULL; 4261 } 4262 4263 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops, 4264 struct dyn_ftrace *rec) 4265 { 4266 void *ptr; 4267 4268 ptr = arch_ftrace_trampoline_func(ops, rec); 4269 if (ptr) 4270 seq_printf(m, " ->%pS", ptr); 4271 } 4272 4273 #ifdef FTRACE_MCOUNT_MAX_OFFSET 4274 /* 4275 * Weak functions can still have an mcount/fentry that is saved in 4276 * the __mcount_loc section. These can be detected by having a 4277 * symbol offset of greater than FTRACE_MCOUNT_MAX_OFFSET, as the 4278 * symbol found by kallsyms is not the function that the mcount/fentry 4279 * is part of. The offset is much greater in these cases. 4280 * 4281 * Test the record to make sure that the ip points to a valid kallsyms 4282 * and if not, mark it disabled. 4283 */ 4284 static int test_for_valid_rec(struct dyn_ftrace *rec) 4285 { 4286 char str[KSYM_SYMBOL_LEN]; 4287 unsigned long offset; 4288 const char *ret; 4289 4290 ret = kallsyms_lookup(rec->ip, NULL, &offset, NULL, str); 4291 4292 /* Weak functions can cause invalid addresses */ 4293 if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) { 4294 rec->flags |= FTRACE_FL_DISABLED; 4295 return 0; 4296 } 4297 return 1; 4298 } 4299 4300 static struct workqueue_struct *ftrace_check_wq __initdata; 4301 static struct work_struct ftrace_check_work __initdata; 4302 4303 /* 4304 * Scan all the mcount/fentry entries to make sure they are valid. 4305 */ 4306 static __init void ftrace_check_work_func(struct work_struct *work) 4307 { 4308 struct ftrace_page *pg; 4309 struct dyn_ftrace *rec; 4310 4311 mutex_lock(&ftrace_lock); 4312 do_for_each_ftrace_rec(pg, rec) { 4313 test_for_valid_rec(rec); 4314 } while_for_each_ftrace_rec(); 4315 mutex_unlock(&ftrace_lock); 4316 } 4317 4318 static int __init ftrace_check_for_weak_functions(void) 4319 { 4320 INIT_WORK(&ftrace_check_work, ftrace_check_work_func); 4321 4322 ftrace_check_wq = alloc_workqueue("ftrace_check_wq", WQ_UNBOUND, 0); 4323 4324 queue_work(ftrace_check_wq, &ftrace_check_work); 4325 return 0; 4326 } 4327 4328 static int __init ftrace_check_sync(void) 4329 { 4330 /* Make sure the ftrace_check updates are finished */ 4331 if (ftrace_check_wq) 4332 destroy_workqueue(ftrace_check_wq); 4333 return 0; 4334 } 4335 4336 late_initcall_sync(ftrace_check_sync); 4337 subsys_initcall(ftrace_check_for_weak_functions); 4338 4339 static int print_rec(struct seq_file *m, unsigned long ip) 4340 { 4341 unsigned long offset; 4342 char str[KSYM_SYMBOL_LEN]; 4343 char *modname; 4344 const char *ret; 4345 4346 ret = kallsyms_lookup(ip, NULL, &offset, &modname, str); 4347 /* Weak functions can cause invalid addresses */ 4348 if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) { 4349 snprintf(str, KSYM_SYMBOL_LEN, "%s_%ld", 4350 FTRACE_INVALID_FUNCTION, offset); 4351 ret = NULL; 4352 } 4353 4354 seq_puts(m, str); 4355 if (modname) 4356 seq_printf(m, " [%s]", modname); 4357 return ret == NULL ? -1 : 0; 4358 } 4359 #else 4360 static inline int test_for_valid_rec(struct dyn_ftrace *rec) 4361 { 4362 return 1; 4363 } 4364 4365 static inline int print_rec(struct seq_file *m, unsigned long ip) 4366 { 4367 seq_printf(m, "%ps", (void *)ip); 4368 return 0; 4369 } 4370 #endif 4371 4372 static void print_subops(struct seq_file *m, struct ftrace_ops *ops, struct dyn_ftrace *rec) 4373 { 4374 struct ftrace_ops *subops; 4375 bool first = true; 4376 4377 list_for_each_entry(subops, &ops->subop_list, list) { 4378 if (!((subops->flags & FTRACE_OPS_FL_ENABLED) && 4379 hash_contains_ip(rec->ip, subops->func_hash))) 4380 continue; 4381 if (first) { 4382 seq_printf(m, "\tsubops:"); 4383 first = false; 4384 } 4385 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 4386 if (subops->flags & FTRACE_OPS_FL_GRAPH) { 4387 struct fgraph_ops *gops; 4388 4389 gops = container_of(subops, struct fgraph_ops, ops); 4390 seq_printf(m, " {ent:%pS ret:%pS}", 4391 (void *)gops->entryfunc, 4392 (void *)gops->retfunc); 4393 continue; 4394 } 4395 #endif 4396 if (subops->trampoline) { 4397 seq_printf(m, " {%pS (%pS)}", 4398 (void *)subops->trampoline, 4399 (void *)subops->func); 4400 add_trampoline_func(m, subops, rec); 4401 } else { 4402 seq_printf(m, " {%pS}", 4403 (void *)subops->func); 4404 } 4405 } 4406 } 4407 4408 static int t_show(struct seq_file *m, void *v) 4409 { 4410 struct ftrace_iterator *iter = m->private; 4411 struct dyn_ftrace *rec; 4412 4413 if (iter->flags & FTRACE_ITER_PROBE) 4414 return t_probe_show(m, iter); 4415 4416 if (iter->flags & FTRACE_ITER_MOD) 4417 return t_mod_show(m, iter); 4418 4419 if (iter->flags & FTRACE_ITER_PRINTALL) { 4420 if (iter->flags & FTRACE_ITER_NOTRACE) 4421 seq_puts(m, "#### no functions disabled ####\n"); 4422 else 4423 seq_puts(m, "#### all functions enabled ####\n"); 4424 return 0; 4425 } 4426 4427 rec = iter->func; 4428 4429 if (!rec) 4430 return 0; 4431 4432 if (iter->flags & FTRACE_ITER_ADDRS) 4433 seq_printf(m, "%lx ", rec->ip); 4434 4435 if (print_rec(m, rec->ip)) { 4436 /* This should only happen when a rec is disabled */ 4437 WARN_ON_ONCE(!(rec->flags & FTRACE_FL_DISABLED)); 4438 seq_putc(m, '\n'); 4439 return 0; 4440 } 4441 4442 if (iter->flags & (FTRACE_ITER_ENABLED | FTRACE_ITER_TOUCHED)) { 4443 struct ftrace_ops *ops; 4444 4445 seq_printf(m, " (%ld)%s%s%s%s%s", 4446 ftrace_rec_count(rec), 4447 rec->flags & FTRACE_FL_REGS ? " R" : " ", 4448 rec->flags & FTRACE_FL_IPMODIFY ? " I" : " ", 4449 rec->flags & FTRACE_FL_DIRECT ? " D" : " ", 4450 rec->flags & FTRACE_FL_CALL_OPS ? " O" : " ", 4451 rec->flags & FTRACE_FL_MODIFIED ? " M " : " "); 4452 if (rec->flags & FTRACE_FL_TRAMP_EN) { 4453 ops = ftrace_find_tramp_ops_any(rec); 4454 if (ops) { 4455 do { 4456 seq_printf(m, "\ttramp: %pS (%pS)", 4457 (void *)ops->trampoline, 4458 (void *)ops->func); 4459 add_trampoline_func(m, ops, rec); 4460 print_subops(m, ops, rec); 4461 ops = ftrace_find_tramp_ops_next(rec, ops); 4462 } while (ops); 4463 } else 4464 seq_puts(m, "\ttramp: ERROR!"); 4465 } else { 4466 add_trampoline_func(m, NULL, rec); 4467 } 4468 if (rec->flags & FTRACE_FL_CALL_OPS_EN) { 4469 ops = ftrace_find_unique_ops(rec); 4470 if (ops) { 4471 seq_printf(m, "\tops: %pS (%pS)", 4472 ops, ops->func); 4473 print_subops(m, ops, rec); 4474 } else { 4475 seq_puts(m, "\tops: ERROR!"); 4476 } 4477 } 4478 if (rec->flags & FTRACE_FL_DIRECT) { 4479 unsigned long direct; 4480 4481 direct = ftrace_find_rec_direct(rec->ip); 4482 if (direct) 4483 seq_printf(m, "\n\tdirect-->%pS", (void *)direct); 4484 } 4485 } 4486 4487 seq_putc(m, '\n'); 4488 4489 return 0; 4490 } 4491 4492 static const struct seq_operations show_ftrace_seq_ops = { 4493 .start = t_start, 4494 .next = t_next, 4495 .stop = t_stop, 4496 .show = t_show, 4497 }; 4498 4499 static int 4500 ftrace_avail_open(struct inode *inode, struct file *file) 4501 { 4502 struct ftrace_iterator *iter; 4503 int ret; 4504 4505 ret = security_locked_down(LOCKDOWN_TRACEFS); 4506 if (ret) 4507 return ret; 4508 4509 if (unlikely(ftrace_disabled)) 4510 return -ENODEV; 4511 4512 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 4513 if (!iter) 4514 return -ENOMEM; 4515 4516 iter->pg = ftrace_pages_start; 4517 iter->ops = &global_ops; 4518 4519 return 0; 4520 } 4521 4522 static int 4523 ftrace_enabled_open(struct inode *inode, struct file *file) 4524 { 4525 struct ftrace_iterator *iter; 4526 4527 /* 4528 * This shows us what functions are currently being 4529 * traced and by what. Not sure if we want lockdown 4530 * to hide such critical information for an admin. 4531 * Although, perhaps it can show information we don't 4532 * want people to see, but if something is tracing 4533 * something, we probably want to know about it. 4534 */ 4535 4536 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 4537 if (!iter) 4538 return -ENOMEM; 4539 4540 iter->pg = ftrace_pages_start; 4541 iter->flags = FTRACE_ITER_ENABLED; 4542 iter->ops = &global_ops; 4543 4544 return 0; 4545 } 4546 4547 static int 4548 ftrace_touched_open(struct inode *inode, struct file *file) 4549 { 4550 struct ftrace_iterator *iter; 4551 4552 /* 4553 * This shows us what functions have ever been enabled 4554 * (traced, direct, patched, etc). Not sure if we want lockdown 4555 * to hide such critical information for an admin. 4556 * Although, perhaps it can show information we don't 4557 * want people to see, but if something had traced 4558 * something, we probably want to know about it. 4559 */ 4560 4561 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 4562 if (!iter) 4563 return -ENOMEM; 4564 4565 iter->pg = ftrace_pages_start; 4566 iter->flags = FTRACE_ITER_TOUCHED; 4567 iter->ops = &global_ops; 4568 4569 return 0; 4570 } 4571 4572 static int 4573 ftrace_avail_addrs_open(struct inode *inode, struct file *file) 4574 { 4575 struct ftrace_iterator *iter; 4576 int ret; 4577 4578 ret = security_locked_down(LOCKDOWN_TRACEFS); 4579 if (ret) 4580 return ret; 4581 4582 if (unlikely(ftrace_disabled)) 4583 return -ENODEV; 4584 4585 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 4586 if (!iter) 4587 return -ENOMEM; 4588 4589 iter->pg = ftrace_pages_start; 4590 iter->flags = FTRACE_ITER_ADDRS; 4591 iter->ops = &global_ops; 4592 4593 return 0; 4594 } 4595 4596 /** 4597 * ftrace_regex_open - initialize function tracer filter files 4598 * @ops: The ftrace_ops that hold the hash filters 4599 * @flag: The type of filter to process 4600 * @inode: The inode, usually passed in to your open routine 4601 * @file: The file, usually passed in to your open routine 4602 * 4603 * ftrace_regex_open() initializes the filter files for the 4604 * @ops. Depending on @flag it may process the filter hash or 4605 * the notrace hash of @ops. With this called from the open 4606 * routine, you can use ftrace_filter_write() for the write 4607 * routine if @flag has FTRACE_ITER_FILTER set, or 4608 * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set. 4609 * tracing_lseek() should be used as the lseek routine, and 4610 * release must call ftrace_regex_release(). 4611 * 4612 * Returns: 0 on success or a negative errno value on failure 4613 */ 4614 int 4615 ftrace_regex_open(struct ftrace_ops *ops, int flag, 4616 struct inode *inode, struct file *file) 4617 { 4618 struct ftrace_iterator *iter; 4619 struct ftrace_hash *hash; 4620 struct list_head *mod_head; 4621 struct trace_array *tr = ops->private; 4622 int ret = -ENOMEM; 4623 4624 ftrace_ops_init(ops); 4625 4626 if (unlikely(ftrace_disabled)) 4627 return -ENODEV; 4628 4629 if (tracing_check_open_get_tr(tr)) 4630 return -ENODEV; 4631 4632 iter = kzalloc(sizeof(*iter), GFP_KERNEL); 4633 if (!iter) 4634 goto out; 4635 4636 if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) 4637 goto out; 4638 4639 iter->ops = ops; 4640 iter->flags = flag; 4641 iter->tr = tr; 4642 4643 mutex_lock(&ops->func_hash->regex_lock); 4644 4645 if (flag & FTRACE_ITER_NOTRACE) { 4646 hash = ops->func_hash->notrace_hash; 4647 mod_head = tr ? &tr->mod_notrace : NULL; 4648 } else { 4649 hash = ops->func_hash->filter_hash; 4650 mod_head = tr ? &tr->mod_trace : NULL; 4651 } 4652 4653 iter->mod_list = mod_head; 4654 4655 if (file->f_mode & FMODE_WRITE) { 4656 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 4657 4658 if (file->f_flags & O_TRUNC) { 4659 iter->hash = alloc_ftrace_hash(size_bits); 4660 clear_ftrace_mod_list(mod_head); 4661 } else { 4662 iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash); 4663 } 4664 } else { 4665 if (hash) 4666 iter->hash = alloc_and_copy_ftrace_hash(hash->size_bits, hash); 4667 else 4668 iter->hash = EMPTY_HASH; 4669 } 4670 4671 if (!iter->hash) { 4672 trace_parser_put(&iter->parser); 4673 goto out_unlock; 4674 } 4675 4676 ret = 0; 4677 4678 if (file->f_mode & FMODE_READ) { 4679 iter->pg = ftrace_pages_start; 4680 4681 ret = seq_open(file, &show_ftrace_seq_ops); 4682 if (!ret) { 4683 struct seq_file *m = file->private_data; 4684 m->private = iter; 4685 } else { 4686 /* Failed */ 4687 free_ftrace_hash(iter->hash); 4688 trace_parser_put(&iter->parser); 4689 } 4690 } else 4691 file->private_data = iter; 4692 4693 out_unlock: 4694 mutex_unlock(&ops->func_hash->regex_lock); 4695 4696 out: 4697 if (ret) { 4698 kfree(iter); 4699 if (tr) 4700 trace_array_put(tr); 4701 } 4702 4703 return ret; 4704 } 4705 4706 static int 4707 ftrace_filter_open(struct inode *inode, struct file *file) 4708 { 4709 struct ftrace_ops *ops = inode->i_private; 4710 4711 /* Checks for tracefs lockdown */ 4712 return ftrace_regex_open(ops, 4713 FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES, 4714 inode, file); 4715 } 4716 4717 static int 4718 ftrace_notrace_open(struct inode *inode, struct file *file) 4719 { 4720 struct ftrace_ops *ops = inode->i_private; 4721 4722 /* Checks for tracefs lockdown */ 4723 return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE, 4724 inode, file); 4725 } 4726 4727 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */ 4728 struct ftrace_glob { 4729 char *search; 4730 unsigned len; 4731 int type; 4732 }; 4733 4734 /* 4735 * If symbols in an architecture don't correspond exactly to the user-visible 4736 * name of what they represent, it is possible to define this function to 4737 * perform the necessary adjustments. 4738 */ 4739 char * __weak arch_ftrace_match_adjust(char *str, const char *search) 4740 { 4741 return str; 4742 } 4743 4744 static int ftrace_match(char *str, struct ftrace_glob *g) 4745 { 4746 int matched = 0; 4747 int slen; 4748 4749 str = arch_ftrace_match_adjust(str, g->search); 4750 4751 switch (g->type) { 4752 case MATCH_FULL: 4753 if (strcmp(str, g->search) == 0) 4754 matched = 1; 4755 break; 4756 case MATCH_FRONT_ONLY: 4757 if (strncmp(str, g->search, g->len) == 0) 4758 matched = 1; 4759 break; 4760 case MATCH_MIDDLE_ONLY: 4761 if (strstr(str, g->search)) 4762 matched = 1; 4763 break; 4764 case MATCH_END_ONLY: 4765 slen = strlen(str); 4766 if (slen >= g->len && 4767 memcmp(str + slen - g->len, g->search, g->len) == 0) 4768 matched = 1; 4769 break; 4770 case MATCH_GLOB: 4771 if (glob_match(g->search, str)) 4772 matched = 1; 4773 break; 4774 } 4775 4776 return matched; 4777 } 4778 4779 static int 4780 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter) 4781 { 4782 struct ftrace_func_entry *entry; 4783 int ret = 0; 4784 4785 entry = ftrace_lookup_ip(hash, rec->ip); 4786 if (clear_filter) { 4787 /* Do nothing if it doesn't exist */ 4788 if (!entry) 4789 return 0; 4790 4791 free_hash_entry(hash, entry); 4792 } else { 4793 /* Do nothing if it exists */ 4794 if (entry) 4795 return 0; 4796 if (add_hash_entry(hash, rec->ip) == NULL) 4797 ret = -ENOMEM; 4798 } 4799 return ret; 4800 } 4801 4802 static int 4803 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g, 4804 int clear_filter) 4805 { 4806 long index; 4807 struct ftrace_page *pg; 4808 struct dyn_ftrace *rec; 4809 4810 /* The index starts at 1 */ 4811 if (kstrtoul(func_g->search, 0, &index) || --index < 0) 4812 return 0; 4813 4814 do_for_each_ftrace_rec(pg, rec) { 4815 if (pg->index <= index) { 4816 index -= pg->index; 4817 /* this is a double loop, break goes to the next page */ 4818 break; 4819 } 4820 rec = &pg->records[index]; 4821 enter_record(hash, rec, clear_filter); 4822 return 1; 4823 } while_for_each_ftrace_rec(); 4824 return 0; 4825 } 4826 4827 #ifdef FTRACE_MCOUNT_MAX_OFFSET 4828 static int lookup_ip(unsigned long ip, char **modname, char *str) 4829 { 4830 unsigned long offset; 4831 4832 kallsyms_lookup(ip, NULL, &offset, modname, str); 4833 if (offset > FTRACE_MCOUNT_MAX_OFFSET) 4834 return -1; 4835 return 0; 4836 } 4837 #else 4838 static int lookup_ip(unsigned long ip, char **modname, char *str) 4839 { 4840 kallsyms_lookup(ip, NULL, NULL, modname, str); 4841 return 0; 4842 } 4843 #endif 4844 4845 static int 4846 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g, 4847 struct ftrace_glob *mod_g, int exclude_mod) 4848 { 4849 char str[KSYM_SYMBOL_LEN]; 4850 char *modname; 4851 4852 if (lookup_ip(rec->ip, &modname, str)) { 4853 /* This should only happen when a rec is disabled */ 4854 WARN_ON_ONCE(system_state == SYSTEM_RUNNING && 4855 !(rec->flags & FTRACE_FL_DISABLED)); 4856 return 0; 4857 } 4858 4859 if (mod_g) { 4860 int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0; 4861 4862 /* blank module name to match all modules */ 4863 if (!mod_g->len) { 4864 /* blank module globbing: modname xor exclude_mod */ 4865 if (!exclude_mod != !modname) 4866 goto func_match; 4867 return 0; 4868 } 4869 4870 /* 4871 * exclude_mod is set to trace everything but the given 4872 * module. If it is set and the module matches, then 4873 * return 0. If it is not set, and the module doesn't match 4874 * also return 0. Otherwise, check the function to see if 4875 * that matches. 4876 */ 4877 if (!mod_matches == !exclude_mod) 4878 return 0; 4879 func_match: 4880 /* blank search means to match all funcs in the mod */ 4881 if (!func_g->len) 4882 return 1; 4883 } 4884 4885 return ftrace_match(str, func_g); 4886 } 4887 4888 static int 4889 match_records(struct ftrace_hash *hash, char *func, int len, char *mod) 4890 { 4891 struct ftrace_page *pg; 4892 struct dyn_ftrace *rec; 4893 struct ftrace_glob func_g = { .type = MATCH_FULL }; 4894 struct ftrace_glob mod_g = { .type = MATCH_FULL }; 4895 struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL; 4896 int exclude_mod = 0; 4897 int found = 0; 4898 int ret; 4899 int clear_filter = 0; 4900 4901 if (func) { 4902 func_g.type = filter_parse_regex(func, len, &func_g.search, 4903 &clear_filter); 4904 func_g.len = strlen(func_g.search); 4905 } 4906 4907 if (mod) { 4908 mod_g.type = filter_parse_regex(mod, strlen(mod), 4909 &mod_g.search, &exclude_mod); 4910 mod_g.len = strlen(mod_g.search); 4911 } 4912 4913 guard(mutex)(&ftrace_lock); 4914 4915 if (unlikely(ftrace_disabled)) 4916 return 0; 4917 4918 if (func_g.type == MATCH_INDEX) 4919 return add_rec_by_index(hash, &func_g, clear_filter); 4920 4921 do_for_each_ftrace_rec(pg, rec) { 4922 4923 if (rec->flags & FTRACE_FL_DISABLED) 4924 continue; 4925 4926 if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) { 4927 ret = enter_record(hash, rec, clear_filter); 4928 if (ret < 0) 4929 return ret; 4930 found = 1; 4931 } 4932 cond_resched(); 4933 } while_for_each_ftrace_rec(); 4934 4935 return found; 4936 } 4937 4938 static int 4939 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len) 4940 { 4941 return match_records(hash, buff, len, NULL); 4942 } 4943 4944 static void ftrace_ops_update_code(struct ftrace_ops *ops, 4945 struct ftrace_ops_hash *old_hash) 4946 { 4947 struct ftrace_ops *op; 4948 4949 if (!ftrace_enabled) 4950 return; 4951 4952 if (ops->flags & FTRACE_OPS_FL_ENABLED) { 4953 ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash); 4954 return; 4955 } 4956 4957 /* 4958 * If this is the shared global_ops filter, then we need to 4959 * check if there is another ops that shares it, is enabled. 4960 * If so, we still need to run the modify code. 4961 */ 4962 if (ops->func_hash != &global_ops.local_hash) 4963 return; 4964 4965 do_for_each_ftrace_op(op, ftrace_ops_list) { 4966 if (op->func_hash == &global_ops.local_hash && 4967 op->flags & FTRACE_OPS_FL_ENABLED) { 4968 ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash); 4969 /* Only need to do this once */ 4970 return; 4971 } 4972 } while_for_each_ftrace_op(op); 4973 } 4974 4975 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops, 4976 struct ftrace_hash **orig_hash, 4977 struct ftrace_hash *hash, 4978 int enable) 4979 { 4980 if (ops->flags & FTRACE_OPS_FL_SUBOP) 4981 return ftrace_hash_move_and_update_subops(ops, orig_hash, hash); 4982 4983 /* 4984 * If this ops is not enabled, it could be sharing its filters 4985 * with a subop. If that's the case, update the subop instead of 4986 * this ops. Shared filters are only allowed to have one ops set 4987 * at a time, and if we update the ops that is not enabled, 4988 * it will not affect subops that share it. 4989 */ 4990 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) { 4991 struct ftrace_ops *op; 4992 4993 /* Check if any other manager subops maps to this hash */ 4994 do_for_each_ftrace_op(op, ftrace_ops_list) { 4995 struct ftrace_ops *subops; 4996 4997 list_for_each_entry(subops, &op->subop_list, list) { 4998 if ((subops->flags & FTRACE_OPS_FL_ENABLED) && 4999 subops->func_hash == ops->func_hash) { 5000 return ftrace_hash_move_and_update_subops(subops, orig_hash, hash); 5001 } 5002 } 5003 } while_for_each_ftrace_op(op); 5004 } 5005 5006 return __ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable); 5007 } 5008 5009 static int cache_mod(struct trace_array *tr, 5010 const char *func, char *module, int enable) 5011 { 5012 struct ftrace_mod_load *ftrace_mod, *n; 5013 struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace; 5014 5015 guard(mutex)(&ftrace_lock); 5016 5017 /* We do not cache inverse filters */ 5018 if (func[0] == '!') { 5019 int ret = -EINVAL; 5020 5021 func++; 5022 5023 /* Look to remove this hash */ 5024 list_for_each_entry_safe(ftrace_mod, n, head, list) { 5025 if (strcmp(ftrace_mod->module, module) != 0) 5026 continue; 5027 5028 /* no func matches all */ 5029 if (strcmp(func, "*") == 0 || 5030 (ftrace_mod->func && 5031 strcmp(ftrace_mod->func, func) == 0)) { 5032 ret = 0; 5033 free_ftrace_mod(ftrace_mod); 5034 continue; 5035 } 5036 } 5037 return ret; 5038 } 5039 5040 /* We only care about modules that have not been loaded yet */ 5041 if (module_exists(module)) 5042 return -EINVAL; 5043 5044 /* Save this string off, and execute it when the module is loaded */ 5045 return ftrace_add_mod(tr, func, module, enable); 5046 } 5047 5048 #ifdef CONFIG_MODULES 5049 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops, 5050 char *mod, bool enable) 5051 { 5052 struct ftrace_mod_load *ftrace_mod, *n; 5053 struct ftrace_hash **orig_hash, *new_hash; 5054 LIST_HEAD(process_mods); 5055 char *func; 5056 5057 mutex_lock(&ops->func_hash->regex_lock); 5058 5059 if (enable) 5060 orig_hash = &ops->func_hash->filter_hash; 5061 else 5062 orig_hash = &ops->func_hash->notrace_hash; 5063 5064 new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, 5065 *orig_hash); 5066 if (!new_hash) 5067 goto out; /* warn? */ 5068 5069 mutex_lock(&ftrace_lock); 5070 5071 list_for_each_entry_safe(ftrace_mod, n, head, list) { 5072 5073 if (strcmp(ftrace_mod->module, mod) != 0) 5074 continue; 5075 5076 if (ftrace_mod->func) 5077 func = kstrdup(ftrace_mod->func, GFP_KERNEL); 5078 else 5079 func = kstrdup("*", GFP_KERNEL); 5080 5081 if (!func) /* warn? */ 5082 continue; 5083 5084 list_move(&ftrace_mod->list, &process_mods); 5085 5086 /* Use the newly allocated func, as it may be "*" */ 5087 kfree(ftrace_mod->func); 5088 ftrace_mod->func = func; 5089 } 5090 5091 mutex_unlock(&ftrace_lock); 5092 5093 list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) { 5094 5095 func = ftrace_mod->func; 5096 5097 /* Grabs ftrace_lock, which is why we have this extra step */ 5098 match_records(new_hash, func, strlen(func), mod); 5099 free_ftrace_mod(ftrace_mod); 5100 } 5101 5102 if (enable && list_empty(head)) 5103 new_hash->flags &= ~FTRACE_HASH_FL_MOD; 5104 5105 mutex_lock(&ftrace_lock); 5106 5107 ftrace_hash_move_and_update_ops(ops, orig_hash, 5108 new_hash, enable); 5109 mutex_unlock(&ftrace_lock); 5110 5111 out: 5112 mutex_unlock(&ops->func_hash->regex_lock); 5113 5114 free_ftrace_hash(new_hash); 5115 } 5116 5117 static void process_cached_mods(const char *mod_name) 5118 { 5119 struct trace_array *tr; 5120 char *mod; 5121 5122 mod = kstrdup(mod_name, GFP_KERNEL); 5123 if (!mod) 5124 return; 5125 5126 mutex_lock(&trace_types_lock); 5127 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 5128 if (!list_empty(&tr->mod_trace)) 5129 process_mod_list(&tr->mod_trace, tr->ops, mod, true); 5130 if (!list_empty(&tr->mod_notrace)) 5131 process_mod_list(&tr->mod_notrace, tr->ops, mod, false); 5132 } 5133 mutex_unlock(&trace_types_lock); 5134 5135 kfree(mod); 5136 } 5137 #endif 5138 5139 /* 5140 * We register the module command as a template to show others how 5141 * to register the a command as well. 5142 */ 5143 5144 static int 5145 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash, 5146 char *func_orig, char *cmd, char *module, int enable) 5147 { 5148 char *func; 5149 int ret; 5150 5151 if (!tr) 5152 return -ENODEV; 5153 5154 /* match_records() modifies func, and we need the original */ 5155 func = kstrdup(func_orig, GFP_KERNEL); 5156 if (!func) 5157 return -ENOMEM; 5158 5159 /* 5160 * cmd == 'mod' because we only registered this func 5161 * for the 'mod' ftrace_func_command. 5162 * But if you register one func with multiple commands, 5163 * you can tell which command was used by the cmd 5164 * parameter. 5165 */ 5166 ret = match_records(hash, func, strlen(func), module); 5167 kfree(func); 5168 5169 if (!ret) 5170 return cache_mod(tr, func_orig, module, enable); 5171 if (ret < 0) 5172 return ret; 5173 return 0; 5174 } 5175 5176 static struct ftrace_func_command ftrace_mod_cmd = { 5177 .name = "mod", 5178 .func = ftrace_mod_callback, 5179 }; 5180 5181 static int __init ftrace_mod_cmd_init(void) 5182 { 5183 return register_ftrace_command(&ftrace_mod_cmd); 5184 } 5185 core_initcall(ftrace_mod_cmd_init); 5186 5187 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip, 5188 struct ftrace_ops *op, struct ftrace_regs *fregs) 5189 { 5190 struct ftrace_probe_ops *probe_ops; 5191 struct ftrace_func_probe *probe; 5192 5193 probe = container_of(op, struct ftrace_func_probe, ops); 5194 probe_ops = probe->probe_ops; 5195 5196 /* 5197 * Disable preemption for these calls to prevent a RCU grace 5198 * period. This syncs the hash iteration and freeing of items 5199 * on the hash. rcu_read_lock is too dangerous here. 5200 */ 5201 preempt_disable_notrace(); 5202 probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data); 5203 preempt_enable_notrace(); 5204 } 5205 5206 struct ftrace_func_map { 5207 struct ftrace_func_entry entry; 5208 void *data; 5209 }; 5210 5211 /* 5212 * Note, ftrace_func_mapper is freed by free_ftrace_hash(&mapper->hash). 5213 * The hash field must be the first field. 5214 */ 5215 struct ftrace_func_mapper { 5216 struct ftrace_hash hash; /* Must be first! */ 5217 }; 5218 5219 /** 5220 * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper 5221 * 5222 * Returns: a ftrace_func_mapper descriptor that can be used to map ips to data. 5223 */ 5224 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void) 5225 { 5226 struct ftrace_hash *hash; 5227 5228 /* 5229 * The mapper is simply a ftrace_hash, but since the entries 5230 * in the hash are not ftrace_func_entry type, we define it 5231 * as a separate structure. 5232 */ 5233 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 5234 return (struct ftrace_func_mapper *)hash; 5235 } 5236 5237 /** 5238 * ftrace_func_mapper_find_ip - Find some data mapped to an ip 5239 * @mapper: The mapper that has the ip maps 5240 * @ip: the instruction pointer to find the data for 5241 * 5242 * Returns: the data mapped to @ip if found otherwise NULL. The return 5243 * is actually the address of the mapper data pointer. The address is 5244 * returned for use cases where the data is no bigger than a long, and 5245 * the user can use the data pointer as its data instead of having to 5246 * allocate more memory for the reference. 5247 */ 5248 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper, 5249 unsigned long ip) 5250 { 5251 struct ftrace_func_entry *entry; 5252 struct ftrace_func_map *map; 5253 5254 entry = ftrace_lookup_ip(&mapper->hash, ip); 5255 if (!entry) 5256 return NULL; 5257 5258 map = (struct ftrace_func_map *)entry; 5259 return &map->data; 5260 } 5261 5262 /** 5263 * ftrace_func_mapper_add_ip - Map some data to an ip 5264 * @mapper: The mapper that has the ip maps 5265 * @ip: The instruction pointer address to map @data to 5266 * @data: The data to map to @ip 5267 * 5268 * Returns: 0 on success otherwise an error. 5269 */ 5270 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper, 5271 unsigned long ip, void *data) 5272 { 5273 struct ftrace_func_entry *entry; 5274 struct ftrace_func_map *map; 5275 5276 entry = ftrace_lookup_ip(&mapper->hash, ip); 5277 if (entry) 5278 return -EBUSY; 5279 5280 map = kmalloc(sizeof(*map), GFP_KERNEL); 5281 if (!map) 5282 return -ENOMEM; 5283 5284 map->entry.ip = ip; 5285 map->data = data; 5286 5287 __add_hash_entry(&mapper->hash, &map->entry); 5288 5289 return 0; 5290 } 5291 5292 /** 5293 * ftrace_func_mapper_remove_ip - Remove an ip from the mapping 5294 * @mapper: The mapper that has the ip maps 5295 * @ip: The instruction pointer address to remove the data from 5296 * 5297 * Returns: the data if it is found, otherwise NULL. 5298 * Note, if the data pointer is used as the data itself, (see 5299 * ftrace_func_mapper_find_ip(), then the return value may be meaningless, 5300 * if the data pointer was set to zero. 5301 */ 5302 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper, 5303 unsigned long ip) 5304 { 5305 struct ftrace_func_entry *entry; 5306 struct ftrace_func_map *map; 5307 void *data; 5308 5309 entry = ftrace_lookup_ip(&mapper->hash, ip); 5310 if (!entry) 5311 return NULL; 5312 5313 map = (struct ftrace_func_map *)entry; 5314 data = map->data; 5315 5316 remove_hash_entry(&mapper->hash, entry); 5317 kfree(entry); 5318 5319 return data; 5320 } 5321 5322 /** 5323 * free_ftrace_func_mapper - free a mapping of ips and data 5324 * @mapper: The mapper that has the ip maps 5325 * @free_func: A function to be called on each data item. 5326 * 5327 * This is used to free the function mapper. The @free_func is optional 5328 * and can be used if the data needs to be freed as well. 5329 */ 5330 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper, 5331 ftrace_mapper_func free_func) 5332 { 5333 struct ftrace_func_entry *entry; 5334 struct ftrace_func_map *map; 5335 struct hlist_head *hhd; 5336 int size, i; 5337 5338 if (!mapper) 5339 return; 5340 5341 if (free_func && mapper->hash.count) { 5342 size = 1 << mapper->hash.size_bits; 5343 for (i = 0; i < size; i++) { 5344 hhd = &mapper->hash.buckets[i]; 5345 hlist_for_each_entry(entry, hhd, hlist) { 5346 map = (struct ftrace_func_map *)entry; 5347 free_func(map); 5348 } 5349 } 5350 } 5351 /* This also frees the mapper itself */ 5352 free_ftrace_hash(&mapper->hash); 5353 } 5354 5355 static void release_probe(struct ftrace_func_probe *probe) 5356 { 5357 struct ftrace_probe_ops *probe_ops; 5358 5359 guard(mutex)(&ftrace_lock); 5360 5361 WARN_ON(probe->ref <= 0); 5362 5363 /* Subtract the ref that was used to protect this instance */ 5364 probe->ref--; 5365 5366 if (!probe->ref) { 5367 probe_ops = probe->probe_ops; 5368 /* 5369 * Sending zero as ip tells probe_ops to free 5370 * the probe->data itself 5371 */ 5372 if (probe_ops->free) 5373 probe_ops->free(probe_ops, probe->tr, 0, probe->data); 5374 list_del(&probe->list); 5375 kfree(probe); 5376 } 5377 } 5378 5379 static void acquire_probe_locked(struct ftrace_func_probe *probe) 5380 { 5381 /* 5382 * Add one ref to keep it from being freed when releasing the 5383 * ftrace_lock mutex. 5384 */ 5385 probe->ref++; 5386 } 5387 5388 int 5389 register_ftrace_function_probe(char *glob, struct trace_array *tr, 5390 struct ftrace_probe_ops *probe_ops, 5391 void *data) 5392 { 5393 struct ftrace_func_probe *probe = NULL, *iter; 5394 struct ftrace_func_entry *entry; 5395 struct ftrace_hash **orig_hash; 5396 struct ftrace_hash *old_hash; 5397 struct ftrace_hash *hash; 5398 int count = 0; 5399 int size; 5400 int ret; 5401 int i; 5402 5403 if (WARN_ON(!tr)) 5404 return -EINVAL; 5405 5406 /* We do not support '!' for function probes */ 5407 if (WARN_ON(glob[0] == '!')) 5408 return -EINVAL; 5409 5410 5411 mutex_lock(&ftrace_lock); 5412 /* Check if the probe_ops is already registered */ 5413 list_for_each_entry(iter, &tr->func_probes, list) { 5414 if (iter->probe_ops == probe_ops) { 5415 probe = iter; 5416 break; 5417 } 5418 } 5419 if (!probe) { 5420 probe = kzalloc(sizeof(*probe), GFP_KERNEL); 5421 if (!probe) { 5422 mutex_unlock(&ftrace_lock); 5423 return -ENOMEM; 5424 } 5425 probe->probe_ops = probe_ops; 5426 probe->ops.func = function_trace_probe_call; 5427 probe->tr = tr; 5428 ftrace_ops_init(&probe->ops); 5429 list_add(&probe->list, &tr->func_probes); 5430 } 5431 5432 acquire_probe_locked(probe); 5433 5434 mutex_unlock(&ftrace_lock); 5435 5436 /* 5437 * Note, there's a small window here that the func_hash->filter_hash 5438 * may be NULL or empty. Need to be careful when reading the loop. 5439 */ 5440 mutex_lock(&probe->ops.func_hash->regex_lock); 5441 5442 orig_hash = &probe->ops.func_hash->filter_hash; 5443 old_hash = *orig_hash; 5444 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 5445 5446 if (!hash) { 5447 ret = -ENOMEM; 5448 goto out; 5449 } 5450 5451 ret = ftrace_match_records(hash, glob, strlen(glob)); 5452 5453 /* Nothing found? */ 5454 if (!ret) 5455 ret = -EINVAL; 5456 5457 if (ret < 0) 5458 goto out; 5459 5460 size = 1 << hash->size_bits; 5461 for (i = 0; i < size; i++) { 5462 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5463 if (ftrace_lookup_ip(old_hash, entry->ip)) 5464 continue; 5465 /* 5466 * The caller might want to do something special 5467 * for each function we find. We call the callback 5468 * to give the caller an opportunity to do so. 5469 */ 5470 if (probe_ops->init) { 5471 ret = probe_ops->init(probe_ops, tr, 5472 entry->ip, data, 5473 &probe->data); 5474 if (ret < 0) { 5475 if (probe_ops->free && count) 5476 probe_ops->free(probe_ops, tr, 5477 0, probe->data); 5478 probe->data = NULL; 5479 goto out; 5480 } 5481 } 5482 count++; 5483 } 5484 } 5485 5486 mutex_lock(&ftrace_lock); 5487 5488 if (!count) { 5489 /* Nothing was added? */ 5490 ret = -EINVAL; 5491 goto out_unlock; 5492 } 5493 5494 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 5495 hash, 1); 5496 if (ret < 0) 5497 goto err_unlock; 5498 5499 /* One ref for each new function traced */ 5500 probe->ref += count; 5501 5502 if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED)) 5503 ret = ftrace_startup(&probe->ops, 0); 5504 5505 out_unlock: 5506 mutex_unlock(&ftrace_lock); 5507 5508 if (!ret) 5509 ret = count; 5510 out: 5511 mutex_unlock(&probe->ops.func_hash->regex_lock); 5512 free_ftrace_hash(hash); 5513 5514 release_probe(probe); 5515 5516 return ret; 5517 5518 err_unlock: 5519 if (!probe_ops->free || !count) 5520 goto out_unlock; 5521 5522 /* Failed to do the move, need to call the free functions */ 5523 for (i = 0; i < size; i++) { 5524 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5525 if (ftrace_lookup_ip(old_hash, entry->ip)) 5526 continue; 5527 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 5528 } 5529 } 5530 goto out_unlock; 5531 } 5532 5533 int 5534 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr, 5535 struct ftrace_probe_ops *probe_ops) 5536 { 5537 struct ftrace_func_probe *probe = NULL, *iter; 5538 struct ftrace_ops_hash old_hash_ops; 5539 struct ftrace_func_entry *entry; 5540 struct ftrace_glob func_g; 5541 struct ftrace_hash **orig_hash; 5542 struct ftrace_hash *old_hash; 5543 struct ftrace_hash *hash = NULL; 5544 struct hlist_node *tmp; 5545 struct hlist_head hhd; 5546 char str[KSYM_SYMBOL_LEN]; 5547 int count = 0; 5548 int i, ret = -ENODEV; 5549 int size; 5550 5551 if (!glob || !strlen(glob) || !strcmp(glob, "*")) 5552 func_g.search = NULL; 5553 else { 5554 int not; 5555 5556 func_g.type = filter_parse_regex(glob, strlen(glob), 5557 &func_g.search, ¬); 5558 func_g.len = strlen(func_g.search); 5559 5560 /* we do not support '!' for function probes */ 5561 if (WARN_ON(not)) 5562 return -EINVAL; 5563 } 5564 5565 mutex_lock(&ftrace_lock); 5566 /* Check if the probe_ops is already registered */ 5567 list_for_each_entry(iter, &tr->func_probes, list) { 5568 if (iter->probe_ops == probe_ops) { 5569 probe = iter; 5570 break; 5571 } 5572 } 5573 if (!probe) 5574 goto err_unlock_ftrace; 5575 5576 ret = -EINVAL; 5577 if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED)) 5578 goto err_unlock_ftrace; 5579 5580 acquire_probe_locked(probe); 5581 5582 mutex_unlock(&ftrace_lock); 5583 5584 mutex_lock(&probe->ops.func_hash->regex_lock); 5585 5586 orig_hash = &probe->ops.func_hash->filter_hash; 5587 old_hash = *orig_hash; 5588 5589 if (ftrace_hash_empty(old_hash)) 5590 goto out_unlock; 5591 5592 old_hash_ops.filter_hash = old_hash; 5593 /* Probes only have filters */ 5594 old_hash_ops.notrace_hash = NULL; 5595 5596 ret = -ENOMEM; 5597 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 5598 if (!hash) 5599 goto out_unlock; 5600 5601 INIT_HLIST_HEAD(&hhd); 5602 5603 size = 1 << hash->size_bits; 5604 for (i = 0; i < size; i++) { 5605 hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) { 5606 5607 if (func_g.search) { 5608 kallsyms_lookup(entry->ip, NULL, NULL, 5609 NULL, str); 5610 if (!ftrace_match(str, &func_g)) 5611 continue; 5612 } 5613 count++; 5614 remove_hash_entry(hash, entry); 5615 hlist_add_head(&entry->hlist, &hhd); 5616 } 5617 } 5618 5619 /* Nothing found? */ 5620 if (!count) { 5621 ret = -EINVAL; 5622 goto out_unlock; 5623 } 5624 5625 mutex_lock(&ftrace_lock); 5626 5627 WARN_ON(probe->ref < count); 5628 5629 probe->ref -= count; 5630 5631 if (ftrace_hash_empty(hash)) 5632 ftrace_shutdown(&probe->ops, 0); 5633 5634 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 5635 hash, 1); 5636 5637 /* still need to update the function call sites */ 5638 if (ftrace_enabled && !ftrace_hash_empty(hash)) 5639 ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS, 5640 &old_hash_ops); 5641 synchronize_rcu(); 5642 5643 hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) { 5644 hlist_del(&entry->hlist); 5645 if (probe_ops->free) 5646 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 5647 kfree(entry); 5648 } 5649 mutex_unlock(&ftrace_lock); 5650 5651 out_unlock: 5652 mutex_unlock(&probe->ops.func_hash->regex_lock); 5653 free_ftrace_hash(hash); 5654 5655 release_probe(probe); 5656 5657 return ret; 5658 5659 err_unlock_ftrace: 5660 mutex_unlock(&ftrace_lock); 5661 return ret; 5662 } 5663 5664 void clear_ftrace_function_probes(struct trace_array *tr) 5665 { 5666 struct ftrace_func_probe *probe, *n; 5667 5668 list_for_each_entry_safe(probe, n, &tr->func_probes, list) 5669 unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops); 5670 } 5671 5672 static LIST_HEAD(ftrace_commands); 5673 static DEFINE_MUTEX(ftrace_cmd_mutex); 5674 5675 /* 5676 * Currently we only register ftrace commands from __init, so mark this 5677 * __init too. 5678 */ 5679 __init int register_ftrace_command(struct ftrace_func_command *cmd) 5680 { 5681 struct ftrace_func_command *p; 5682 5683 guard(mutex)(&ftrace_cmd_mutex); 5684 list_for_each_entry(p, &ftrace_commands, list) { 5685 if (strcmp(cmd->name, p->name) == 0) 5686 return -EBUSY; 5687 } 5688 list_add(&cmd->list, &ftrace_commands); 5689 5690 return 0; 5691 } 5692 5693 /* 5694 * Currently we only unregister ftrace commands from __init, so mark 5695 * this __init too. 5696 */ 5697 __init int unregister_ftrace_command(struct ftrace_func_command *cmd) 5698 { 5699 struct ftrace_func_command *p, *n; 5700 5701 guard(mutex)(&ftrace_cmd_mutex); 5702 5703 list_for_each_entry_safe(p, n, &ftrace_commands, list) { 5704 if (strcmp(cmd->name, p->name) == 0) { 5705 list_del_init(&p->list); 5706 return 0; 5707 } 5708 } 5709 5710 return -ENODEV; 5711 } 5712 5713 static int ftrace_process_regex(struct ftrace_iterator *iter, 5714 char *buff, int len, int enable) 5715 { 5716 struct ftrace_hash *hash = iter->hash; 5717 struct trace_array *tr = iter->ops->private; 5718 char *func, *command, *next = buff; 5719 struct ftrace_func_command *p; 5720 int ret; 5721 5722 func = strsep(&next, ":"); 5723 5724 if (!next) { 5725 ret = ftrace_match_records(hash, func, len); 5726 if (!ret) 5727 ret = -EINVAL; 5728 if (ret < 0) 5729 return ret; 5730 return 0; 5731 } 5732 5733 /* command found */ 5734 5735 command = strsep(&next, ":"); 5736 5737 guard(mutex)(&ftrace_cmd_mutex); 5738 5739 list_for_each_entry(p, &ftrace_commands, list) { 5740 if (strcmp(p->name, command) == 0) 5741 return p->func(tr, hash, func, command, next, enable); 5742 } 5743 5744 return -EINVAL; 5745 } 5746 5747 static ssize_t 5748 ftrace_regex_write(struct file *file, const char __user *ubuf, 5749 size_t cnt, loff_t *ppos, int enable) 5750 { 5751 struct ftrace_iterator *iter; 5752 struct trace_parser *parser; 5753 ssize_t ret, read; 5754 5755 if (!cnt) 5756 return 0; 5757 5758 if (file->f_mode & FMODE_READ) { 5759 struct seq_file *m = file->private_data; 5760 iter = m->private; 5761 } else 5762 iter = file->private_data; 5763 5764 if (unlikely(ftrace_disabled)) 5765 return -ENODEV; 5766 5767 /* iter->hash is a local copy, so we don't need regex_lock */ 5768 5769 parser = &iter->parser; 5770 read = trace_get_user(parser, ubuf, cnt, ppos); 5771 5772 if (read >= 0 && trace_parser_loaded(parser) && 5773 !trace_parser_cont(parser)) { 5774 ret = ftrace_process_regex(iter, parser->buffer, 5775 parser->idx, enable); 5776 trace_parser_clear(parser); 5777 if (ret < 0) 5778 return ret; 5779 } 5780 5781 return read; 5782 } 5783 5784 ssize_t 5785 ftrace_filter_write(struct file *file, const char __user *ubuf, 5786 size_t cnt, loff_t *ppos) 5787 { 5788 return ftrace_regex_write(file, ubuf, cnt, ppos, 1); 5789 } 5790 5791 ssize_t 5792 ftrace_notrace_write(struct file *file, const char __user *ubuf, 5793 size_t cnt, loff_t *ppos) 5794 { 5795 return ftrace_regex_write(file, ubuf, cnt, ppos, 0); 5796 } 5797 5798 static int 5799 __ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove) 5800 { 5801 struct ftrace_func_entry *entry; 5802 5803 ip = ftrace_location(ip); 5804 if (!ip) 5805 return -EINVAL; 5806 5807 if (remove) { 5808 entry = ftrace_lookup_ip(hash, ip); 5809 if (!entry) 5810 return -ENOENT; 5811 free_hash_entry(hash, entry); 5812 return 0; 5813 } else if (__ftrace_lookup_ip(hash, ip) != NULL) { 5814 /* Already exists */ 5815 return 0; 5816 } 5817 5818 entry = add_hash_entry(hash, ip); 5819 return entry ? 0 : -ENOMEM; 5820 } 5821 5822 static int 5823 ftrace_match_addr(struct ftrace_hash *hash, unsigned long *ips, 5824 unsigned int cnt, int remove) 5825 { 5826 unsigned int i; 5827 int err; 5828 5829 for (i = 0; i < cnt; i++) { 5830 err = __ftrace_match_addr(hash, ips[i], remove); 5831 if (err) { 5832 /* 5833 * This expects the @hash is a temporary hash and if this 5834 * fails the caller must free the @hash. 5835 */ 5836 return err; 5837 } 5838 } 5839 return 0; 5840 } 5841 5842 static int 5843 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len, 5844 unsigned long *ips, unsigned int cnt, 5845 int remove, int reset, int enable, char *mod) 5846 { 5847 struct ftrace_hash **orig_hash; 5848 struct ftrace_hash *hash; 5849 int ret; 5850 5851 if (unlikely(ftrace_disabled)) 5852 return -ENODEV; 5853 5854 mutex_lock(&ops->func_hash->regex_lock); 5855 5856 if (enable) 5857 orig_hash = &ops->func_hash->filter_hash; 5858 else 5859 orig_hash = &ops->func_hash->notrace_hash; 5860 5861 if (reset) 5862 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 5863 else 5864 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash); 5865 5866 if (!hash) { 5867 ret = -ENOMEM; 5868 goto out_regex_unlock; 5869 } 5870 5871 if (buf && !match_records(hash, buf, len, mod)) { 5872 /* If this was for a module and nothing was enabled, flag it */ 5873 if (mod) 5874 (*orig_hash)->flags |= FTRACE_HASH_FL_MOD; 5875 5876 /* 5877 * Even if it is a mod, return error to let caller know 5878 * nothing was added 5879 */ 5880 ret = -EINVAL; 5881 goto out_regex_unlock; 5882 } 5883 if (ips) { 5884 ret = ftrace_match_addr(hash, ips, cnt, remove); 5885 if (ret < 0) 5886 goto out_regex_unlock; 5887 } 5888 5889 mutex_lock(&ftrace_lock); 5890 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable); 5891 mutex_unlock(&ftrace_lock); 5892 5893 out_regex_unlock: 5894 mutex_unlock(&ops->func_hash->regex_lock); 5895 5896 free_ftrace_hash(hash); 5897 return ret; 5898 } 5899 5900 static int 5901 ftrace_set_addr(struct ftrace_ops *ops, unsigned long *ips, unsigned int cnt, 5902 int remove, int reset, int enable) 5903 { 5904 return ftrace_set_hash(ops, NULL, 0, ips, cnt, remove, reset, enable, NULL); 5905 } 5906 5907 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 5908 5909 static int register_ftrace_function_nolock(struct ftrace_ops *ops); 5910 5911 /* 5912 * If there are multiple ftrace_ops, use SAVE_REGS by default, so that direct 5913 * call will be jumped from ftrace_regs_caller. Only if the architecture does 5914 * not support ftrace_regs_caller but direct_call, use SAVE_ARGS so that it 5915 * jumps from ftrace_caller for multiple ftrace_ops. 5916 */ 5917 #ifndef CONFIG_HAVE_DYNAMIC_FTRACE_WITH_REGS 5918 #define MULTI_FLAGS (FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_ARGS) 5919 #else 5920 #define MULTI_FLAGS (FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS) 5921 #endif 5922 5923 static int check_direct_multi(struct ftrace_ops *ops) 5924 { 5925 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) 5926 return -EINVAL; 5927 if ((ops->flags & MULTI_FLAGS) != MULTI_FLAGS) 5928 return -EINVAL; 5929 return 0; 5930 } 5931 5932 static void remove_direct_functions_hash(struct ftrace_hash *hash, unsigned long addr) 5933 { 5934 struct ftrace_func_entry *entry, *del; 5935 int size, i; 5936 5937 size = 1 << hash->size_bits; 5938 for (i = 0; i < size; i++) { 5939 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5940 del = __ftrace_lookup_ip(direct_functions, entry->ip); 5941 if (del && del->direct == addr) { 5942 remove_hash_entry(direct_functions, del); 5943 kfree(del); 5944 } 5945 } 5946 } 5947 } 5948 5949 static void register_ftrace_direct_cb(struct rcu_head *rhp) 5950 { 5951 struct ftrace_hash *fhp = container_of(rhp, struct ftrace_hash, rcu); 5952 5953 free_ftrace_hash(fhp); 5954 } 5955 5956 /** 5957 * register_ftrace_direct - Call a custom trampoline directly 5958 * for multiple functions registered in @ops 5959 * @ops: The address of the struct ftrace_ops object 5960 * @addr: The address of the trampoline to call at @ops functions 5961 * 5962 * This is used to connect a direct calls to @addr from the nop locations 5963 * of the functions registered in @ops (with by ftrace_set_filter_ip 5964 * function). 5965 * 5966 * The location that it calls (@addr) must be able to handle a direct call, 5967 * and save the parameters of the function being traced, and restore them 5968 * (or inject new ones if needed), before returning. 5969 * 5970 * Returns: 5971 * 0 on success 5972 * -EINVAL - The @ops object was already registered with this call or 5973 * when there are no functions in @ops object. 5974 * -EBUSY - Another direct function is already attached (there can be only one) 5975 * -ENODEV - @ip does not point to a ftrace nop location (or not supported) 5976 * -ENOMEM - There was an allocation failure. 5977 */ 5978 int register_ftrace_direct(struct ftrace_ops *ops, unsigned long addr) 5979 { 5980 struct ftrace_hash *hash, *new_hash = NULL, *free_hash = NULL; 5981 struct ftrace_func_entry *entry, *new; 5982 int err = -EBUSY, size, i; 5983 5984 if (ops->func || ops->trampoline) 5985 return -EINVAL; 5986 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) 5987 return -EINVAL; 5988 if (ops->flags & FTRACE_OPS_FL_ENABLED) 5989 return -EINVAL; 5990 5991 hash = ops->func_hash->filter_hash; 5992 if (ftrace_hash_empty(hash)) 5993 return -EINVAL; 5994 5995 mutex_lock(&direct_mutex); 5996 5997 /* Make sure requested entries are not already registered.. */ 5998 size = 1 << hash->size_bits; 5999 for (i = 0; i < size; i++) { 6000 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 6001 if (ftrace_find_rec_direct(entry->ip)) 6002 goto out_unlock; 6003 } 6004 } 6005 6006 err = -ENOMEM; 6007 6008 /* Make a copy hash to place the new and the old entries in */ 6009 size = hash->count + direct_functions->count; 6010 size = fls(size); 6011 if (size > FTRACE_HASH_MAX_BITS) 6012 size = FTRACE_HASH_MAX_BITS; 6013 new_hash = alloc_ftrace_hash(size); 6014 if (!new_hash) 6015 goto out_unlock; 6016 6017 /* Now copy over the existing direct entries */ 6018 size = 1 << direct_functions->size_bits; 6019 for (i = 0; i < size; i++) { 6020 hlist_for_each_entry(entry, &direct_functions->buckets[i], hlist) { 6021 new = add_hash_entry(new_hash, entry->ip); 6022 if (!new) 6023 goto out_unlock; 6024 new->direct = entry->direct; 6025 } 6026 } 6027 6028 /* ... and add the new entries */ 6029 size = 1 << hash->size_bits; 6030 for (i = 0; i < size; i++) { 6031 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 6032 new = add_hash_entry(new_hash, entry->ip); 6033 if (!new) 6034 goto out_unlock; 6035 /* Update both the copy and the hash entry */ 6036 new->direct = addr; 6037 entry->direct = addr; 6038 } 6039 } 6040 6041 free_hash = direct_functions; 6042 rcu_assign_pointer(direct_functions, new_hash); 6043 new_hash = NULL; 6044 6045 ops->func = call_direct_funcs; 6046 ops->flags = MULTI_FLAGS; 6047 ops->trampoline = FTRACE_REGS_ADDR; 6048 ops->direct_call = addr; 6049 6050 err = register_ftrace_function_nolock(ops); 6051 6052 out_unlock: 6053 mutex_unlock(&direct_mutex); 6054 6055 if (free_hash && free_hash != EMPTY_HASH) 6056 call_rcu_tasks(&free_hash->rcu, register_ftrace_direct_cb); 6057 6058 if (new_hash) 6059 free_ftrace_hash(new_hash); 6060 6061 return err; 6062 } 6063 EXPORT_SYMBOL_GPL(register_ftrace_direct); 6064 6065 /** 6066 * unregister_ftrace_direct - Remove calls to custom trampoline 6067 * previously registered by register_ftrace_direct for @ops object. 6068 * @ops: The address of the struct ftrace_ops object 6069 * @addr: The address of the direct function that is called by the @ops functions 6070 * @free_filters: Set to true to remove all filters for the ftrace_ops, false otherwise 6071 * 6072 * This is used to remove a direct calls to @addr from the nop locations 6073 * of the functions registered in @ops (with by ftrace_set_filter_ip 6074 * function). 6075 * 6076 * Returns: 6077 * 0 on success 6078 * -EINVAL - The @ops object was not properly registered. 6079 */ 6080 int unregister_ftrace_direct(struct ftrace_ops *ops, unsigned long addr, 6081 bool free_filters) 6082 { 6083 struct ftrace_hash *hash = ops->func_hash->filter_hash; 6084 int err; 6085 6086 if (check_direct_multi(ops)) 6087 return -EINVAL; 6088 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 6089 return -EINVAL; 6090 6091 mutex_lock(&direct_mutex); 6092 err = unregister_ftrace_function(ops); 6093 remove_direct_functions_hash(hash, addr); 6094 mutex_unlock(&direct_mutex); 6095 6096 /* cleanup for possible another register call */ 6097 ops->func = NULL; 6098 ops->trampoline = 0; 6099 6100 if (free_filters) 6101 ftrace_free_filter(ops); 6102 return err; 6103 } 6104 EXPORT_SYMBOL_GPL(unregister_ftrace_direct); 6105 6106 static int 6107 __modify_ftrace_direct(struct ftrace_ops *ops, unsigned long addr) 6108 { 6109 struct ftrace_hash *hash; 6110 struct ftrace_func_entry *entry, *iter; 6111 static struct ftrace_ops tmp_ops = { 6112 .func = ftrace_stub, 6113 .flags = FTRACE_OPS_FL_STUB, 6114 }; 6115 int i, size; 6116 int err; 6117 6118 lockdep_assert_held_once(&direct_mutex); 6119 6120 /* Enable the tmp_ops to have the same functions as the direct ops */ 6121 ftrace_ops_init(&tmp_ops); 6122 tmp_ops.func_hash = ops->func_hash; 6123 tmp_ops.direct_call = addr; 6124 6125 err = register_ftrace_function_nolock(&tmp_ops); 6126 if (err) 6127 return err; 6128 6129 /* 6130 * Now the ftrace_ops_list_func() is called to do the direct callers. 6131 * We can safely change the direct functions attached to each entry. 6132 */ 6133 mutex_lock(&ftrace_lock); 6134 6135 hash = ops->func_hash->filter_hash; 6136 size = 1 << hash->size_bits; 6137 for (i = 0; i < size; i++) { 6138 hlist_for_each_entry(iter, &hash->buckets[i], hlist) { 6139 entry = __ftrace_lookup_ip(direct_functions, iter->ip); 6140 if (!entry) 6141 continue; 6142 entry->direct = addr; 6143 } 6144 } 6145 /* Prevent store tearing if a trampoline concurrently accesses the value */ 6146 WRITE_ONCE(ops->direct_call, addr); 6147 6148 mutex_unlock(&ftrace_lock); 6149 6150 /* Removing the tmp_ops will add the updated direct callers to the functions */ 6151 unregister_ftrace_function(&tmp_ops); 6152 6153 return err; 6154 } 6155 6156 /** 6157 * modify_ftrace_direct_nolock - Modify an existing direct 'multi' call 6158 * to call something else 6159 * @ops: The address of the struct ftrace_ops object 6160 * @addr: The address of the new trampoline to call at @ops functions 6161 * 6162 * This is used to unregister currently registered direct caller and 6163 * register new one @addr on functions registered in @ops object. 6164 * 6165 * Note there's window between ftrace_shutdown and ftrace_startup calls 6166 * where there will be no callbacks called. 6167 * 6168 * Caller should already have direct_mutex locked, so we don't lock 6169 * direct_mutex here. 6170 * 6171 * Returns: zero on success. Non zero on error, which includes: 6172 * -EINVAL - The @ops object was not properly registered. 6173 */ 6174 int modify_ftrace_direct_nolock(struct ftrace_ops *ops, unsigned long addr) 6175 { 6176 if (check_direct_multi(ops)) 6177 return -EINVAL; 6178 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 6179 return -EINVAL; 6180 6181 return __modify_ftrace_direct(ops, addr); 6182 } 6183 EXPORT_SYMBOL_GPL(modify_ftrace_direct_nolock); 6184 6185 /** 6186 * modify_ftrace_direct - Modify an existing direct 'multi' call 6187 * to call something else 6188 * @ops: The address of the struct ftrace_ops object 6189 * @addr: The address of the new trampoline to call at @ops functions 6190 * 6191 * This is used to unregister currently registered direct caller and 6192 * register new one @addr on functions registered in @ops object. 6193 * 6194 * Note there's window between ftrace_shutdown and ftrace_startup calls 6195 * where there will be no callbacks called. 6196 * 6197 * Returns: zero on success. Non zero on error, which includes: 6198 * -EINVAL - The @ops object was not properly registered. 6199 */ 6200 int modify_ftrace_direct(struct ftrace_ops *ops, unsigned long addr) 6201 { 6202 int err; 6203 6204 if (check_direct_multi(ops)) 6205 return -EINVAL; 6206 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 6207 return -EINVAL; 6208 6209 mutex_lock(&direct_mutex); 6210 err = __modify_ftrace_direct(ops, addr); 6211 mutex_unlock(&direct_mutex); 6212 return err; 6213 } 6214 EXPORT_SYMBOL_GPL(modify_ftrace_direct); 6215 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 6216 6217 /** 6218 * ftrace_set_filter_ip - set a function to filter on in ftrace by address 6219 * @ops: the ops to set the filter with 6220 * @ip: the address to add to or remove from the filter. 6221 * @remove: non zero to remove the ip from the filter 6222 * @reset: non zero to reset all filters before applying this filter. 6223 * 6224 * Filters denote which functions should be enabled when tracing is enabled 6225 * If @ip is NULL, it fails to update filter. 6226 * 6227 * This can allocate memory which must be freed before @ops can be freed, 6228 * either by removing each filtered addr or by using 6229 * ftrace_free_filter(@ops). 6230 */ 6231 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip, 6232 int remove, int reset) 6233 { 6234 ftrace_ops_init(ops); 6235 return ftrace_set_addr(ops, &ip, 1, remove, reset, 1); 6236 } 6237 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip); 6238 6239 /** 6240 * ftrace_set_filter_ips - set functions to filter on in ftrace by addresses 6241 * @ops: the ops to set the filter with 6242 * @ips: the array of addresses to add to or remove from the filter. 6243 * @cnt: the number of addresses in @ips 6244 * @remove: non zero to remove ips from the filter 6245 * @reset: non zero to reset all filters before applying this filter. 6246 * 6247 * Filters denote which functions should be enabled when tracing is enabled 6248 * If @ips array or any ip specified within is NULL , it fails to update filter. 6249 * 6250 * This can allocate memory which must be freed before @ops can be freed, 6251 * either by removing each filtered addr or by using 6252 * ftrace_free_filter(@ops). 6253 */ 6254 int ftrace_set_filter_ips(struct ftrace_ops *ops, unsigned long *ips, 6255 unsigned int cnt, int remove, int reset) 6256 { 6257 ftrace_ops_init(ops); 6258 return ftrace_set_addr(ops, ips, cnt, remove, reset, 1); 6259 } 6260 EXPORT_SYMBOL_GPL(ftrace_set_filter_ips); 6261 6262 /** 6263 * ftrace_ops_set_global_filter - setup ops to use global filters 6264 * @ops: the ops which will use the global filters 6265 * 6266 * ftrace users who need global function trace filtering should call this. 6267 * It can set the global filter only if ops were not initialized before. 6268 */ 6269 void ftrace_ops_set_global_filter(struct ftrace_ops *ops) 6270 { 6271 if (ops->flags & FTRACE_OPS_FL_INITIALIZED) 6272 return; 6273 6274 ftrace_ops_init(ops); 6275 ops->func_hash = &global_ops.local_hash; 6276 } 6277 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter); 6278 6279 static int 6280 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 6281 int reset, int enable) 6282 { 6283 char *mod = NULL, *func, *command, *next = buf; 6284 char *tmp __free(kfree) = NULL; 6285 struct trace_array *tr = ops->private; 6286 int ret; 6287 6288 func = strsep(&next, ":"); 6289 6290 /* This can also handle :mod: parsing */ 6291 if (next) { 6292 if (!tr) 6293 return -EINVAL; 6294 6295 command = strsep(&next, ":"); 6296 if (strcmp(command, "mod") != 0) 6297 return -EINVAL; 6298 6299 mod = next; 6300 len = command - func; 6301 /* Save the original func as ftrace_set_hash() can modify it */ 6302 tmp = kstrdup(func, GFP_KERNEL); 6303 } 6304 6305 ret = ftrace_set_hash(ops, func, len, NULL, 0, 0, reset, enable, mod); 6306 6307 if (tr && mod && ret < 0) { 6308 /* Did tmp fail to allocate? */ 6309 if (!tmp) 6310 return -ENOMEM; 6311 ret = cache_mod(tr, tmp, mod, enable); 6312 } 6313 6314 return ret; 6315 } 6316 6317 /** 6318 * ftrace_set_filter - set a function to filter on in ftrace 6319 * @ops: the ops to set the filter with 6320 * @buf: the string that holds the function filter text. 6321 * @len: the length of the string. 6322 * @reset: non-zero to reset all filters before applying this filter. 6323 * 6324 * Filters denote which functions should be enabled when tracing is enabled. 6325 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 6326 * 6327 * This can allocate memory which must be freed before @ops can be freed, 6328 * either by removing each filtered addr or by using 6329 * ftrace_free_filter(@ops). 6330 */ 6331 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf, 6332 int len, int reset) 6333 { 6334 ftrace_ops_init(ops); 6335 return ftrace_set_regex(ops, buf, len, reset, 1); 6336 } 6337 EXPORT_SYMBOL_GPL(ftrace_set_filter); 6338 6339 /** 6340 * ftrace_set_notrace - set a function to not trace in ftrace 6341 * @ops: the ops to set the notrace filter with 6342 * @buf: the string that holds the function notrace text. 6343 * @len: the length of the string. 6344 * @reset: non-zero to reset all filters before applying this filter. 6345 * 6346 * Notrace Filters denote which functions should not be enabled when tracing 6347 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 6348 * for tracing. 6349 * 6350 * This can allocate memory which must be freed before @ops can be freed, 6351 * either by removing each filtered addr or by using 6352 * ftrace_free_filter(@ops). 6353 */ 6354 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf, 6355 int len, int reset) 6356 { 6357 ftrace_ops_init(ops); 6358 return ftrace_set_regex(ops, buf, len, reset, 0); 6359 } 6360 EXPORT_SYMBOL_GPL(ftrace_set_notrace); 6361 /** 6362 * ftrace_set_global_filter - set a function to filter on with global tracers 6363 * @buf: the string that holds the function filter text. 6364 * @len: the length of the string. 6365 * @reset: non-zero to reset all filters before applying this filter. 6366 * 6367 * Filters denote which functions should be enabled when tracing is enabled. 6368 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 6369 */ 6370 void ftrace_set_global_filter(unsigned char *buf, int len, int reset) 6371 { 6372 ftrace_set_regex(&global_ops, buf, len, reset, 1); 6373 } 6374 EXPORT_SYMBOL_GPL(ftrace_set_global_filter); 6375 6376 /** 6377 * ftrace_set_global_notrace - set a function to not trace with global tracers 6378 * @buf: the string that holds the function notrace text. 6379 * @len: the length of the string. 6380 * @reset: non-zero to reset all filters before applying this filter. 6381 * 6382 * Notrace Filters denote which functions should not be enabled when tracing 6383 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 6384 * for tracing. 6385 */ 6386 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset) 6387 { 6388 ftrace_set_regex(&global_ops, buf, len, reset, 0); 6389 } 6390 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace); 6391 6392 /* 6393 * command line interface to allow users to set filters on boot up. 6394 */ 6395 #define FTRACE_FILTER_SIZE COMMAND_LINE_SIZE 6396 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 6397 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata; 6398 6399 /* Used by function selftest to not test if filter is set */ 6400 bool ftrace_filter_param __initdata; 6401 6402 static int __init set_ftrace_notrace(char *str) 6403 { 6404 ftrace_filter_param = true; 6405 strscpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE); 6406 return 1; 6407 } 6408 __setup("ftrace_notrace=", set_ftrace_notrace); 6409 6410 static int __init set_ftrace_filter(char *str) 6411 { 6412 ftrace_filter_param = true; 6413 strscpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE); 6414 return 1; 6415 } 6416 __setup("ftrace_filter=", set_ftrace_filter); 6417 6418 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6419 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata; 6420 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 6421 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer); 6422 6423 static int __init set_graph_function(char *str) 6424 { 6425 strscpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE); 6426 return 1; 6427 } 6428 __setup("ftrace_graph_filter=", set_graph_function); 6429 6430 static int __init set_graph_notrace_function(char *str) 6431 { 6432 strscpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE); 6433 return 1; 6434 } 6435 __setup("ftrace_graph_notrace=", set_graph_notrace_function); 6436 6437 static int __init set_graph_max_depth_function(char *str) 6438 { 6439 if (!str || kstrtouint(str, 0, &fgraph_max_depth)) 6440 return 0; 6441 return 1; 6442 } 6443 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function); 6444 6445 static void __init set_ftrace_early_graph(char *buf, int enable) 6446 { 6447 int ret; 6448 char *func; 6449 struct ftrace_hash *hash; 6450 6451 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 6452 if (MEM_FAIL(!hash, "Failed to allocate hash\n")) 6453 return; 6454 6455 while (buf) { 6456 func = strsep(&buf, ","); 6457 /* we allow only one expression at a time */ 6458 ret = ftrace_graph_set_hash(hash, func); 6459 if (ret) 6460 printk(KERN_DEBUG "ftrace: function %s not " 6461 "traceable\n", func); 6462 } 6463 6464 if (enable) 6465 ftrace_graph_hash = hash; 6466 else 6467 ftrace_graph_notrace_hash = hash; 6468 } 6469 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6470 6471 void __init 6472 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable) 6473 { 6474 char *func; 6475 6476 ftrace_ops_init(ops); 6477 6478 /* The trace_array is needed for caching module function filters */ 6479 if (!ops->private) { 6480 struct trace_array *tr = trace_get_global_array(); 6481 6482 ops->private = tr; 6483 ftrace_init_trace_array(tr); 6484 } 6485 6486 while (buf) { 6487 func = strsep(&buf, ","); 6488 ftrace_set_regex(ops, func, strlen(func), 0, enable); 6489 } 6490 } 6491 6492 static void __init set_ftrace_early_filters(void) 6493 { 6494 if (ftrace_filter_buf[0]) 6495 ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1); 6496 if (ftrace_notrace_buf[0]) 6497 ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0); 6498 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6499 if (ftrace_graph_buf[0]) 6500 set_ftrace_early_graph(ftrace_graph_buf, 1); 6501 if (ftrace_graph_notrace_buf[0]) 6502 set_ftrace_early_graph(ftrace_graph_notrace_buf, 0); 6503 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6504 } 6505 6506 int ftrace_regex_release(struct inode *inode, struct file *file) 6507 { 6508 struct seq_file *m = (struct seq_file *)file->private_data; 6509 struct ftrace_iterator *iter; 6510 struct ftrace_hash **orig_hash; 6511 struct trace_parser *parser; 6512 int filter_hash; 6513 6514 if (file->f_mode & FMODE_READ) { 6515 iter = m->private; 6516 seq_release(inode, file); 6517 } else 6518 iter = file->private_data; 6519 6520 parser = &iter->parser; 6521 if (trace_parser_loaded(parser)) { 6522 int enable = !(iter->flags & FTRACE_ITER_NOTRACE); 6523 6524 ftrace_process_regex(iter, parser->buffer, 6525 parser->idx, enable); 6526 } 6527 6528 trace_parser_put(parser); 6529 6530 mutex_lock(&iter->ops->func_hash->regex_lock); 6531 6532 if (file->f_mode & FMODE_WRITE) { 6533 filter_hash = !!(iter->flags & FTRACE_ITER_FILTER); 6534 6535 if (filter_hash) { 6536 orig_hash = &iter->ops->func_hash->filter_hash; 6537 if (iter->tr) { 6538 if (list_empty(&iter->tr->mod_trace)) 6539 iter->hash->flags &= ~FTRACE_HASH_FL_MOD; 6540 else 6541 iter->hash->flags |= FTRACE_HASH_FL_MOD; 6542 } 6543 } else 6544 orig_hash = &iter->ops->func_hash->notrace_hash; 6545 6546 mutex_lock(&ftrace_lock); 6547 ftrace_hash_move_and_update_ops(iter->ops, orig_hash, 6548 iter->hash, filter_hash); 6549 mutex_unlock(&ftrace_lock); 6550 } 6551 6552 mutex_unlock(&iter->ops->func_hash->regex_lock); 6553 free_ftrace_hash(iter->hash); 6554 if (iter->tr) 6555 trace_array_put(iter->tr); 6556 kfree(iter); 6557 6558 return 0; 6559 } 6560 6561 static const struct file_operations ftrace_avail_fops = { 6562 .open = ftrace_avail_open, 6563 .read = seq_read, 6564 .llseek = seq_lseek, 6565 .release = seq_release_private, 6566 }; 6567 6568 static const struct file_operations ftrace_enabled_fops = { 6569 .open = ftrace_enabled_open, 6570 .read = seq_read, 6571 .llseek = seq_lseek, 6572 .release = seq_release_private, 6573 }; 6574 6575 static const struct file_operations ftrace_touched_fops = { 6576 .open = ftrace_touched_open, 6577 .read = seq_read, 6578 .llseek = seq_lseek, 6579 .release = seq_release_private, 6580 }; 6581 6582 static const struct file_operations ftrace_avail_addrs_fops = { 6583 .open = ftrace_avail_addrs_open, 6584 .read = seq_read, 6585 .llseek = seq_lseek, 6586 .release = seq_release_private, 6587 }; 6588 6589 static const struct file_operations ftrace_filter_fops = { 6590 .open = ftrace_filter_open, 6591 .read = seq_read, 6592 .write = ftrace_filter_write, 6593 .llseek = tracing_lseek, 6594 .release = ftrace_regex_release, 6595 }; 6596 6597 static const struct file_operations ftrace_notrace_fops = { 6598 .open = ftrace_notrace_open, 6599 .read = seq_read, 6600 .write = ftrace_notrace_write, 6601 .llseek = tracing_lseek, 6602 .release = ftrace_regex_release, 6603 }; 6604 6605 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6606 6607 static DEFINE_MUTEX(graph_lock); 6608 6609 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH; 6610 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH; 6611 6612 enum graph_filter_type { 6613 GRAPH_FILTER_NOTRACE = 0, 6614 GRAPH_FILTER_FUNCTION, 6615 }; 6616 6617 #define FTRACE_GRAPH_EMPTY ((void *)1) 6618 6619 struct ftrace_graph_data { 6620 struct ftrace_hash *hash; 6621 struct ftrace_func_entry *entry; 6622 int idx; /* for hash table iteration */ 6623 enum graph_filter_type type; 6624 struct ftrace_hash *new_hash; 6625 const struct seq_operations *seq_ops; 6626 struct trace_parser parser; 6627 }; 6628 6629 static void * 6630 __g_next(struct seq_file *m, loff_t *pos) 6631 { 6632 struct ftrace_graph_data *fgd = m->private; 6633 struct ftrace_func_entry *entry = fgd->entry; 6634 struct hlist_head *head; 6635 int i, idx = fgd->idx; 6636 6637 if (*pos >= fgd->hash->count) 6638 return NULL; 6639 6640 if (entry) { 6641 hlist_for_each_entry_continue(entry, hlist) { 6642 fgd->entry = entry; 6643 return entry; 6644 } 6645 6646 idx++; 6647 } 6648 6649 for (i = idx; i < 1 << fgd->hash->size_bits; i++) { 6650 head = &fgd->hash->buckets[i]; 6651 hlist_for_each_entry(entry, head, hlist) { 6652 fgd->entry = entry; 6653 fgd->idx = i; 6654 return entry; 6655 } 6656 } 6657 return NULL; 6658 } 6659 6660 static void * 6661 g_next(struct seq_file *m, void *v, loff_t *pos) 6662 { 6663 (*pos)++; 6664 return __g_next(m, pos); 6665 } 6666 6667 static void *g_start(struct seq_file *m, loff_t *pos) 6668 { 6669 struct ftrace_graph_data *fgd = m->private; 6670 6671 mutex_lock(&graph_lock); 6672 6673 if (fgd->type == GRAPH_FILTER_FUNCTION) 6674 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 6675 lockdep_is_held(&graph_lock)); 6676 else 6677 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6678 lockdep_is_held(&graph_lock)); 6679 6680 /* Nothing, tell g_show to print all functions are enabled */ 6681 if (ftrace_hash_empty(fgd->hash) && !*pos) 6682 return FTRACE_GRAPH_EMPTY; 6683 6684 fgd->idx = 0; 6685 fgd->entry = NULL; 6686 return __g_next(m, pos); 6687 } 6688 6689 static void g_stop(struct seq_file *m, void *p) 6690 { 6691 mutex_unlock(&graph_lock); 6692 } 6693 6694 static int g_show(struct seq_file *m, void *v) 6695 { 6696 struct ftrace_func_entry *entry = v; 6697 6698 if (!entry) 6699 return 0; 6700 6701 if (entry == FTRACE_GRAPH_EMPTY) { 6702 struct ftrace_graph_data *fgd = m->private; 6703 6704 if (fgd->type == GRAPH_FILTER_FUNCTION) 6705 seq_puts(m, "#### all functions enabled ####\n"); 6706 else 6707 seq_puts(m, "#### no functions disabled ####\n"); 6708 return 0; 6709 } 6710 6711 seq_printf(m, "%ps\n", (void *)entry->ip); 6712 6713 return 0; 6714 } 6715 6716 static const struct seq_operations ftrace_graph_seq_ops = { 6717 .start = g_start, 6718 .next = g_next, 6719 .stop = g_stop, 6720 .show = g_show, 6721 }; 6722 6723 static int 6724 __ftrace_graph_open(struct inode *inode, struct file *file, 6725 struct ftrace_graph_data *fgd) 6726 { 6727 int ret; 6728 struct ftrace_hash *new_hash = NULL; 6729 6730 ret = security_locked_down(LOCKDOWN_TRACEFS); 6731 if (ret) 6732 return ret; 6733 6734 if (file->f_mode & FMODE_WRITE) { 6735 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 6736 6737 if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX)) 6738 return -ENOMEM; 6739 6740 if (file->f_flags & O_TRUNC) 6741 new_hash = alloc_ftrace_hash(size_bits); 6742 else 6743 new_hash = alloc_and_copy_ftrace_hash(size_bits, 6744 fgd->hash); 6745 if (!new_hash) { 6746 ret = -ENOMEM; 6747 goto out; 6748 } 6749 } 6750 6751 if (file->f_mode & FMODE_READ) { 6752 ret = seq_open(file, &ftrace_graph_seq_ops); 6753 if (!ret) { 6754 struct seq_file *m = file->private_data; 6755 m->private = fgd; 6756 } else { 6757 /* Failed */ 6758 free_ftrace_hash(new_hash); 6759 new_hash = NULL; 6760 } 6761 } else 6762 file->private_data = fgd; 6763 6764 out: 6765 if (ret < 0 && file->f_mode & FMODE_WRITE) 6766 trace_parser_put(&fgd->parser); 6767 6768 fgd->new_hash = new_hash; 6769 6770 /* 6771 * All uses of fgd->hash must be taken with the graph_lock 6772 * held. The graph_lock is going to be released, so force 6773 * fgd->hash to be reinitialized when it is taken again. 6774 */ 6775 fgd->hash = NULL; 6776 6777 return ret; 6778 } 6779 6780 static int 6781 ftrace_graph_open(struct inode *inode, struct file *file) 6782 { 6783 struct ftrace_graph_data *fgd; 6784 int ret; 6785 6786 if (unlikely(ftrace_disabled)) 6787 return -ENODEV; 6788 6789 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 6790 if (fgd == NULL) 6791 return -ENOMEM; 6792 6793 mutex_lock(&graph_lock); 6794 6795 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 6796 lockdep_is_held(&graph_lock)); 6797 fgd->type = GRAPH_FILTER_FUNCTION; 6798 fgd->seq_ops = &ftrace_graph_seq_ops; 6799 6800 ret = __ftrace_graph_open(inode, file, fgd); 6801 if (ret < 0) 6802 kfree(fgd); 6803 6804 mutex_unlock(&graph_lock); 6805 return ret; 6806 } 6807 6808 static int 6809 ftrace_graph_notrace_open(struct inode *inode, struct file *file) 6810 { 6811 struct ftrace_graph_data *fgd; 6812 int ret; 6813 6814 if (unlikely(ftrace_disabled)) 6815 return -ENODEV; 6816 6817 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 6818 if (fgd == NULL) 6819 return -ENOMEM; 6820 6821 mutex_lock(&graph_lock); 6822 6823 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6824 lockdep_is_held(&graph_lock)); 6825 fgd->type = GRAPH_FILTER_NOTRACE; 6826 fgd->seq_ops = &ftrace_graph_seq_ops; 6827 6828 ret = __ftrace_graph_open(inode, file, fgd); 6829 if (ret < 0) 6830 kfree(fgd); 6831 6832 mutex_unlock(&graph_lock); 6833 return ret; 6834 } 6835 6836 static int 6837 ftrace_graph_release(struct inode *inode, struct file *file) 6838 { 6839 struct ftrace_graph_data *fgd; 6840 struct ftrace_hash *old_hash, *new_hash; 6841 struct trace_parser *parser; 6842 int ret = 0; 6843 6844 if (file->f_mode & FMODE_READ) { 6845 struct seq_file *m = file->private_data; 6846 6847 fgd = m->private; 6848 seq_release(inode, file); 6849 } else { 6850 fgd = file->private_data; 6851 } 6852 6853 6854 if (file->f_mode & FMODE_WRITE) { 6855 6856 parser = &fgd->parser; 6857 6858 if (trace_parser_loaded((parser))) { 6859 ret = ftrace_graph_set_hash(fgd->new_hash, 6860 parser->buffer); 6861 } 6862 6863 trace_parser_put(parser); 6864 6865 new_hash = __ftrace_hash_move(fgd->new_hash); 6866 if (!new_hash) { 6867 ret = -ENOMEM; 6868 goto out; 6869 } 6870 6871 mutex_lock(&graph_lock); 6872 6873 if (fgd->type == GRAPH_FILTER_FUNCTION) { 6874 old_hash = rcu_dereference_protected(ftrace_graph_hash, 6875 lockdep_is_held(&graph_lock)); 6876 rcu_assign_pointer(ftrace_graph_hash, new_hash); 6877 } else { 6878 old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6879 lockdep_is_held(&graph_lock)); 6880 rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash); 6881 } 6882 6883 mutex_unlock(&graph_lock); 6884 6885 /* 6886 * We need to do a hard force of sched synchronization. 6887 * This is because we use preempt_disable() to do RCU, but 6888 * the function tracers can be called where RCU is not watching 6889 * (like before user_exit()). We can not rely on the RCU 6890 * infrastructure to do the synchronization, thus we must do it 6891 * ourselves. 6892 */ 6893 if (old_hash != EMPTY_HASH) 6894 synchronize_rcu_tasks_rude(); 6895 6896 free_ftrace_hash(old_hash); 6897 } 6898 6899 out: 6900 free_ftrace_hash(fgd->new_hash); 6901 kfree(fgd); 6902 6903 return ret; 6904 } 6905 6906 static int 6907 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer) 6908 { 6909 struct ftrace_glob func_g; 6910 struct dyn_ftrace *rec; 6911 struct ftrace_page *pg; 6912 struct ftrace_func_entry *entry; 6913 int fail = 1; 6914 int not; 6915 6916 /* decode regex */ 6917 func_g.type = filter_parse_regex(buffer, strlen(buffer), 6918 &func_g.search, ¬); 6919 6920 func_g.len = strlen(func_g.search); 6921 6922 guard(mutex)(&ftrace_lock); 6923 6924 if (unlikely(ftrace_disabled)) 6925 return -ENODEV; 6926 6927 do_for_each_ftrace_rec(pg, rec) { 6928 6929 if (rec->flags & FTRACE_FL_DISABLED) 6930 continue; 6931 6932 if (ftrace_match_record(rec, &func_g, NULL, 0)) { 6933 entry = ftrace_lookup_ip(hash, rec->ip); 6934 6935 if (!not) { 6936 fail = 0; 6937 6938 if (entry) 6939 continue; 6940 if (add_hash_entry(hash, rec->ip) == NULL) 6941 return 0; 6942 } else { 6943 if (entry) { 6944 free_hash_entry(hash, entry); 6945 fail = 0; 6946 } 6947 } 6948 } 6949 cond_resched(); 6950 } while_for_each_ftrace_rec(); 6951 6952 return fail ? -EINVAL : 0; 6953 } 6954 6955 static ssize_t 6956 ftrace_graph_write(struct file *file, const char __user *ubuf, 6957 size_t cnt, loff_t *ppos) 6958 { 6959 ssize_t read, ret = 0; 6960 struct ftrace_graph_data *fgd = file->private_data; 6961 struct trace_parser *parser; 6962 6963 if (!cnt) 6964 return 0; 6965 6966 /* Read mode uses seq functions */ 6967 if (file->f_mode & FMODE_READ) { 6968 struct seq_file *m = file->private_data; 6969 fgd = m->private; 6970 } 6971 6972 parser = &fgd->parser; 6973 6974 read = trace_get_user(parser, ubuf, cnt, ppos); 6975 6976 if (read >= 0 && trace_parser_loaded(parser) && 6977 !trace_parser_cont(parser)) { 6978 6979 ret = ftrace_graph_set_hash(fgd->new_hash, 6980 parser->buffer); 6981 trace_parser_clear(parser); 6982 } 6983 6984 if (!ret) 6985 ret = read; 6986 6987 return ret; 6988 } 6989 6990 static const struct file_operations ftrace_graph_fops = { 6991 .open = ftrace_graph_open, 6992 .read = seq_read, 6993 .write = ftrace_graph_write, 6994 .llseek = tracing_lseek, 6995 .release = ftrace_graph_release, 6996 }; 6997 6998 static const struct file_operations ftrace_graph_notrace_fops = { 6999 .open = ftrace_graph_notrace_open, 7000 .read = seq_read, 7001 .write = ftrace_graph_write, 7002 .llseek = tracing_lseek, 7003 .release = ftrace_graph_release, 7004 }; 7005 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 7006 7007 void ftrace_create_filter_files(struct ftrace_ops *ops, 7008 struct dentry *parent) 7009 { 7010 7011 trace_create_file("set_ftrace_filter", TRACE_MODE_WRITE, parent, 7012 ops, &ftrace_filter_fops); 7013 7014 trace_create_file("set_ftrace_notrace", TRACE_MODE_WRITE, parent, 7015 ops, &ftrace_notrace_fops); 7016 } 7017 7018 /* 7019 * The name "destroy_filter_files" is really a misnomer. Although 7020 * in the future, it may actually delete the files, but this is 7021 * really intended to make sure the ops passed in are disabled 7022 * and that when this function returns, the caller is free to 7023 * free the ops. 7024 * 7025 * The "destroy" name is only to match the "create" name that this 7026 * should be paired with. 7027 */ 7028 void ftrace_destroy_filter_files(struct ftrace_ops *ops) 7029 { 7030 mutex_lock(&ftrace_lock); 7031 if (ops->flags & FTRACE_OPS_FL_ENABLED) 7032 ftrace_shutdown(ops, 0); 7033 ops->flags |= FTRACE_OPS_FL_DELETED; 7034 ftrace_free_filter(ops); 7035 mutex_unlock(&ftrace_lock); 7036 } 7037 7038 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer) 7039 { 7040 7041 trace_create_file("available_filter_functions", TRACE_MODE_READ, 7042 d_tracer, NULL, &ftrace_avail_fops); 7043 7044 trace_create_file("available_filter_functions_addrs", TRACE_MODE_READ, 7045 d_tracer, NULL, &ftrace_avail_addrs_fops); 7046 7047 trace_create_file("enabled_functions", TRACE_MODE_READ, 7048 d_tracer, NULL, &ftrace_enabled_fops); 7049 7050 trace_create_file("touched_functions", TRACE_MODE_READ, 7051 d_tracer, NULL, &ftrace_touched_fops); 7052 7053 ftrace_create_filter_files(&global_ops, d_tracer); 7054 7055 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 7056 trace_create_file("set_graph_function", TRACE_MODE_WRITE, d_tracer, 7057 NULL, 7058 &ftrace_graph_fops); 7059 trace_create_file("set_graph_notrace", TRACE_MODE_WRITE, d_tracer, 7060 NULL, 7061 &ftrace_graph_notrace_fops); 7062 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 7063 7064 return 0; 7065 } 7066 7067 static int ftrace_cmp_ips(const void *a, const void *b) 7068 { 7069 const unsigned long *ipa = a; 7070 const unsigned long *ipb = b; 7071 7072 if (*ipa > *ipb) 7073 return 1; 7074 if (*ipa < *ipb) 7075 return -1; 7076 return 0; 7077 } 7078 7079 #ifdef CONFIG_FTRACE_SORT_STARTUP_TEST 7080 static void test_is_sorted(unsigned long *start, unsigned long count) 7081 { 7082 int i; 7083 7084 for (i = 1; i < count; i++) { 7085 if (WARN(start[i - 1] > start[i], 7086 "[%d] %pS at %lx is not sorted with %pS at %lx\n", i, 7087 (void *)start[i - 1], start[i - 1], 7088 (void *)start[i], start[i])) 7089 break; 7090 } 7091 if (i == count) 7092 pr_info("ftrace section at %px sorted properly\n", start); 7093 } 7094 #else 7095 static void test_is_sorted(unsigned long *start, unsigned long count) 7096 { 7097 } 7098 #endif 7099 7100 static int ftrace_process_locs(struct module *mod, 7101 unsigned long *start, 7102 unsigned long *end) 7103 { 7104 struct ftrace_page *pg_unuse = NULL; 7105 struct ftrace_page *start_pg; 7106 struct ftrace_page *pg; 7107 struct dyn_ftrace *rec; 7108 unsigned long skipped = 0; 7109 unsigned long count; 7110 unsigned long *p; 7111 unsigned long addr; 7112 unsigned long flags = 0; /* Shut up gcc */ 7113 unsigned long pages; 7114 int ret = -ENOMEM; 7115 7116 count = end - start; 7117 7118 if (!count) 7119 return 0; 7120 7121 pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE); 7122 7123 /* 7124 * Sorting mcount in vmlinux at build time depend on 7125 * CONFIG_BUILDTIME_MCOUNT_SORT, while mcount loc in 7126 * modules can not be sorted at build time. 7127 */ 7128 if (!IS_ENABLED(CONFIG_BUILDTIME_MCOUNT_SORT) || mod) { 7129 sort(start, count, sizeof(*start), 7130 ftrace_cmp_ips, NULL); 7131 } else { 7132 test_is_sorted(start, count); 7133 } 7134 7135 start_pg = ftrace_allocate_pages(count); 7136 if (!start_pg) 7137 return -ENOMEM; 7138 7139 mutex_lock(&ftrace_lock); 7140 7141 /* 7142 * Core and each module needs their own pages, as 7143 * modules will free them when they are removed. 7144 * Force a new page to be allocated for modules. 7145 */ 7146 if (!mod) { 7147 WARN_ON(ftrace_pages || ftrace_pages_start); 7148 /* First initialization */ 7149 ftrace_pages = ftrace_pages_start = start_pg; 7150 } else { 7151 if (!ftrace_pages) 7152 goto out; 7153 7154 if (WARN_ON(ftrace_pages->next)) { 7155 /* Hmm, we have free pages? */ 7156 while (ftrace_pages->next) 7157 ftrace_pages = ftrace_pages->next; 7158 } 7159 7160 ftrace_pages->next = start_pg; 7161 } 7162 7163 p = start; 7164 pg = start_pg; 7165 while (p < end) { 7166 unsigned long end_offset; 7167 7168 addr = *p++; 7169 7170 /* 7171 * Some architecture linkers will pad between 7172 * the different mcount_loc sections of different 7173 * object files to satisfy alignments. 7174 * Skip any NULL pointers. 7175 */ 7176 if (!addr) { 7177 skipped++; 7178 continue; 7179 } 7180 7181 /* 7182 * If this is core kernel, make sure the address is in core 7183 * or inittext, as weak functions get zeroed and KASLR can 7184 * move them to something other than zero. It just will not 7185 * move it to an area where kernel text is. 7186 */ 7187 if (!mod && !(is_kernel_text(addr) || is_kernel_inittext(addr))) { 7188 skipped++; 7189 continue; 7190 } 7191 7192 addr = ftrace_call_adjust(addr); 7193 7194 end_offset = (pg->index+1) * sizeof(pg->records[0]); 7195 if (end_offset > PAGE_SIZE << pg->order) { 7196 /* We should have allocated enough */ 7197 if (WARN_ON(!pg->next)) 7198 break; 7199 pg = pg->next; 7200 } 7201 7202 rec = &pg->records[pg->index++]; 7203 rec->ip = addr; 7204 } 7205 7206 if (pg->next) { 7207 pg_unuse = pg->next; 7208 pg->next = NULL; 7209 } 7210 7211 /* Assign the last page to ftrace_pages */ 7212 ftrace_pages = pg; 7213 7214 /* 7215 * We only need to disable interrupts on start up 7216 * because we are modifying code that an interrupt 7217 * may execute, and the modification is not atomic. 7218 * But for modules, nothing runs the code we modify 7219 * until we are finished with it, and there's no 7220 * reason to cause large interrupt latencies while we do it. 7221 */ 7222 if (!mod) 7223 local_irq_save(flags); 7224 ftrace_update_code(mod, start_pg); 7225 if (!mod) 7226 local_irq_restore(flags); 7227 ret = 0; 7228 out: 7229 mutex_unlock(&ftrace_lock); 7230 7231 /* We should have used all pages unless we skipped some */ 7232 if (pg_unuse) { 7233 unsigned long pg_remaining, remaining = 0; 7234 unsigned long skip; 7235 7236 /* Count the number of entries unused and compare it to skipped. */ 7237 pg_remaining = (ENTRIES_PER_PAGE << pg->order) - pg->index; 7238 7239 if (!WARN(skipped < pg_remaining, "Extra allocated pages for ftrace")) { 7240 7241 skip = skipped - pg_remaining; 7242 7243 for (pg = pg_unuse; pg; pg = pg->next) 7244 remaining += 1 << pg->order; 7245 7246 pages -= remaining; 7247 7248 skip = DIV_ROUND_UP(skip, ENTRIES_PER_PAGE); 7249 7250 /* 7251 * Check to see if the number of pages remaining would 7252 * just fit the number of entries skipped. 7253 */ 7254 WARN(skip != remaining, "Extra allocated pages for ftrace: %lu with %lu skipped", 7255 remaining, skipped); 7256 } 7257 /* Need to synchronize with ftrace_location_range() */ 7258 synchronize_rcu(); 7259 ftrace_free_pages(pg_unuse); 7260 } 7261 7262 if (!mod) { 7263 count -= skipped; 7264 pr_info("ftrace: allocating %ld entries in %ld pages\n", 7265 count, pages); 7266 } 7267 7268 return ret; 7269 } 7270 7271 struct ftrace_mod_func { 7272 struct list_head list; 7273 char *name; 7274 unsigned long ip; 7275 unsigned int size; 7276 }; 7277 7278 struct ftrace_mod_map { 7279 struct rcu_head rcu; 7280 struct list_head list; 7281 struct module *mod; 7282 unsigned long start_addr; 7283 unsigned long end_addr; 7284 struct list_head funcs; 7285 unsigned int num_funcs; 7286 }; 7287 7288 static int ftrace_get_trampoline_kallsym(unsigned int symnum, 7289 unsigned long *value, char *type, 7290 char *name, char *module_name, 7291 int *exported) 7292 { 7293 struct ftrace_ops *op; 7294 7295 list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) { 7296 if (!op->trampoline || symnum--) 7297 continue; 7298 *value = op->trampoline; 7299 *type = 't'; 7300 strscpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN); 7301 strscpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN); 7302 *exported = 0; 7303 return 0; 7304 } 7305 7306 return -ERANGE; 7307 } 7308 7309 #if defined(CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS) || defined(CONFIG_MODULES) 7310 /* 7311 * Check if the current ops references the given ip. 7312 * 7313 * If the ops traces all functions, then it was already accounted for. 7314 * If the ops does not trace the current record function, skip it. 7315 * If the ops ignores the function via notrace filter, skip it. 7316 */ 7317 static bool 7318 ops_references_ip(struct ftrace_ops *ops, unsigned long ip) 7319 { 7320 /* If ops isn't enabled, ignore it */ 7321 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 7322 return false; 7323 7324 /* If ops traces all then it includes this function */ 7325 if (ops_traces_mod(ops)) 7326 return true; 7327 7328 /* The function must be in the filter */ 7329 if (!ftrace_hash_empty(ops->func_hash->filter_hash) && 7330 !__ftrace_lookup_ip(ops->func_hash->filter_hash, ip)) 7331 return false; 7332 7333 /* If in notrace hash, we ignore it too */ 7334 if (ftrace_lookup_ip(ops->func_hash->notrace_hash, ip)) 7335 return false; 7336 7337 return true; 7338 } 7339 #endif 7340 7341 #ifdef CONFIG_MODULES 7342 7343 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next) 7344 7345 static LIST_HEAD(ftrace_mod_maps); 7346 7347 static int referenced_filters(struct dyn_ftrace *rec) 7348 { 7349 struct ftrace_ops *ops; 7350 int cnt = 0; 7351 7352 for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) { 7353 if (ops_references_ip(ops, rec->ip)) { 7354 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT)) 7355 continue; 7356 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 7357 continue; 7358 cnt++; 7359 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 7360 rec->flags |= FTRACE_FL_REGS; 7361 if (cnt == 1 && ops->trampoline) 7362 rec->flags |= FTRACE_FL_TRAMP; 7363 else 7364 rec->flags &= ~FTRACE_FL_TRAMP; 7365 } 7366 } 7367 7368 return cnt; 7369 } 7370 7371 static void 7372 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash) 7373 { 7374 struct ftrace_func_entry *entry; 7375 struct dyn_ftrace *rec; 7376 int i; 7377 7378 if (ftrace_hash_empty(hash)) 7379 return; 7380 7381 for (i = 0; i < pg->index; i++) { 7382 rec = &pg->records[i]; 7383 entry = __ftrace_lookup_ip(hash, rec->ip); 7384 /* 7385 * Do not allow this rec to match again. 7386 * Yeah, it may waste some memory, but will be removed 7387 * if/when the hash is modified again. 7388 */ 7389 if (entry) 7390 entry->ip = 0; 7391 } 7392 } 7393 7394 /* Clear any records from hashes */ 7395 static void clear_mod_from_hashes(struct ftrace_page *pg) 7396 { 7397 struct trace_array *tr; 7398 7399 mutex_lock(&trace_types_lock); 7400 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 7401 if (!tr->ops || !tr->ops->func_hash) 7402 continue; 7403 mutex_lock(&tr->ops->func_hash->regex_lock); 7404 clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash); 7405 clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash); 7406 mutex_unlock(&tr->ops->func_hash->regex_lock); 7407 } 7408 mutex_unlock(&trace_types_lock); 7409 } 7410 7411 static void ftrace_free_mod_map(struct rcu_head *rcu) 7412 { 7413 struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu); 7414 struct ftrace_mod_func *mod_func; 7415 struct ftrace_mod_func *n; 7416 7417 /* All the contents of mod_map are now not visible to readers */ 7418 list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) { 7419 kfree(mod_func->name); 7420 list_del(&mod_func->list); 7421 kfree(mod_func); 7422 } 7423 7424 kfree(mod_map); 7425 } 7426 7427 void ftrace_release_mod(struct module *mod) 7428 { 7429 struct ftrace_mod_map *mod_map; 7430 struct ftrace_mod_map *n; 7431 struct dyn_ftrace *rec; 7432 struct ftrace_page **last_pg; 7433 struct ftrace_page *tmp_page = NULL; 7434 struct ftrace_page *pg; 7435 7436 mutex_lock(&ftrace_lock); 7437 7438 /* 7439 * To avoid the UAF problem after the module is unloaded, the 7440 * 'mod_map' resource needs to be released unconditionally. 7441 */ 7442 list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) { 7443 if (mod_map->mod == mod) { 7444 list_del_rcu(&mod_map->list); 7445 call_rcu(&mod_map->rcu, ftrace_free_mod_map); 7446 break; 7447 } 7448 } 7449 7450 if (ftrace_disabled) 7451 goto out_unlock; 7452 7453 /* 7454 * Each module has its own ftrace_pages, remove 7455 * them from the list. 7456 */ 7457 last_pg = &ftrace_pages_start; 7458 for (pg = ftrace_pages_start; pg; pg = *last_pg) { 7459 rec = &pg->records[0]; 7460 if (within_module(rec->ip, mod)) { 7461 /* 7462 * As core pages are first, the first 7463 * page should never be a module page. 7464 */ 7465 if (WARN_ON(pg == ftrace_pages_start)) 7466 goto out_unlock; 7467 7468 /* Check if we are deleting the last page */ 7469 if (pg == ftrace_pages) 7470 ftrace_pages = next_to_ftrace_page(last_pg); 7471 7472 ftrace_update_tot_cnt -= pg->index; 7473 *last_pg = pg->next; 7474 7475 pg->next = tmp_page; 7476 tmp_page = pg; 7477 } else 7478 last_pg = &pg->next; 7479 } 7480 out_unlock: 7481 mutex_unlock(&ftrace_lock); 7482 7483 /* Need to synchronize with ftrace_location_range() */ 7484 if (tmp_page) 7485 synchronize_rcu(); 7486 for (pg = tmp_page; pg; pg = tmp_page) { 7487 7488 /* Needs to be called outside of ftrace_lock */ 7489 clear_mod_from_hashes(pg); 7490 7491 if (pg->records) { 7492 free_pages((unsigned long)pg->records, pg->order); 7493 ftrace_number_of_pages -= 1 << pg->order; 7494 } 7495 tmp_page = pg->next; 7496 kfree(pg); 7497 ftrace_number_of_groups--; 7498 } 7499 } 7500 7501 void ftrace_module_enable(struct module *mod) 7502 { 7503 struct dyn_ftrace *rec; 7504 struct ftrace_page *pg; 7505 7506 mutex_lock(&ftrace_lock); 7507 7508 if (ftrace_disabled) 7509 goto out_unlock; 7510 7511 /* 7512 * If the tracing is enabled, go ahead and enable the record. 7513 * 7514 * The reason not to enable the record immediately is the 7515 * inherent check of ftrace_make_nop/ftrace_make_call for 7516 * correct previous instructions. Making first the NOP 7517 * conversion puts the module to the correct state, thus 7518 * passing the ftrace_make_call check. 7519 * 7520 * We also delay this to after the module code already set the 7521 * text to read-only, as we now need to set it back to read-write 7522 * so that we can modify the text. 7523 */ 7524 if (ftrace_start_up) 7525 ftrace_arch_code_modify_prepare(); 7526 7527 do_for_each_ftrace_rec(pg, rec) { 7528 int cnt; 7529 /* 7530 * do_for_each_ftrace_rec() is a double loop. 7531 * module text shares the pg. If a record is 7532 * not part of this module, then skip this pg, 7533 * which the "break" will do. 7534 */ 7535 if (!within_module(rec->ip, mod)) 7536 break; 7537 7538 /* Weak functions should still be ignored */ 7539 if (!test_for_valid_rec(rec)) { 7540 /* Clear all other flags. Should not be enabled anyway */ 7541 rec->flags = FTRACE_FL_DISABLED; 7542 continue; 7543 } 7544 7545 cnt = 0; 7546 7547 /* 7548 * When adding a module, we need to check if tracers are 7549 * currently enabled and if they are, and can trace this record, 7550 * we need to enable the module functions as well as update the 7551 * reference counts for those function records. 7552 */ 7553 if (ftrace_start_up) 7554 cnt += referenced_filters(rec); 7555 7556 rec->flags &= ~FTRACE_FL_DISABLED; 7557 rec->flags += cnt; 7558 7559 if (ftrace_start_up && cnt) { 7560 int failed = __ftrace_replace_code(rec, 1); 7561 if (failed) { 7562 ftrace_bug(failed, rec); 7563 goto out_loop; 7564 } 7565 } 7566 7567 } while_for_each_ftrace_rec(); 7568 7569 out_loop: 7570 if (ftrace_start_up) 7571 ftrace_arch_code_modify_post_process(); 7572 7573 out_unlock: 7574 mutex_unlock(&ftrace_lock); 7575 7576 process_cached_mods(mod->name); 7577 } 7578 7579 void ftrace_module_init(struct module *mod) 7580 { 7581 int ret; 7582 7583 if (ftrace_disabled || !mod->num_ftrace_callsites) 7584 return; 7585 7586 ret = ftrace_process_locs(mod, mod->ftrace_callsites, 7587 mod->ftrace_callsites + mod->num_ftrace_callsites); 7588 if (ret) 7589 pr_warn("ftrace: failed to allocate entries for module '%s' functions\n", 7590 mod->name); 7591 } 7592 7593 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 7594 struct dyn_ftrace *rec) 7595 { 7596 struct ftrace_mod_func *mod_func; 7597 unsigned long symsize; 7598 unsigned long offset; 7599 char str[KSYM_SYMBOL_LEN]; 7600 char *modname; 7601 const char *ret; 7602 7603 ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str); 7604 if (!ret) 7605 return; 7606 7607 mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL); 7608 if (!mod_func) 7609 return; 7610 7611 mod_func->name = kstrdup(str, GFP_KERNEL); 7612 if (!mod_func->name) { 7613 kfree(mod_func); 7614 return; 7615 } 7616 7617 mod_func->ip = rec->ip - offset; 7618 mod_func->size = symsize; 7619 7620 mod_map->num_funcs++; 7621 7622 list_add_rcu(&mod_func->list, &mod_map->funcs); 7623 } 7624 7625 static struct ftrace_mod_map * 7626 allocate_ftrace_mod_map(struct module *mod, 7627 unsigned long start, unsigned long end) 7628 { 7629 struct ftrace_mod_map *mod_map; 7630 7631 if (ftrace_disabled) 7632 return NULL; 7633 7634 mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL); 7635 if (!mod_map) 7636 return NULL; 7637 7638 mod_map->mod = mod; 7639 mod_map->start_addr = start; 7640 mod_map->end_addr = end; 7641 mod_map->num_funcs = 0; 7642 7643 INIT_LIST_HEAD_RCU(&mod_map->funcs); 7644 7645 list_add_rcu(&mod_map->list, &ftrace_mod_maps); 7646 7647 return mod_map; 7648 } 7649 7650 static int 7651 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map, 7652 unsigned long addr, unsigned long *size, 7653 unsigned long *off, char *sym) 7654 { 7655 struct ftrace_mod_func *found_func = NULL; 7656 struct ftrace_mod_func *mod_func; 7657 7658 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 7659 if (addr >= mod_func->ip && 7660 addr < mod_func->ip + mod_func->size) { 7661 found_func = mod_func; 7662 break; 7663 } 7664 } 7665 7666 if (found_func) { 7667 if (size) 7668 *size = found_func->size; 7669 if (off) 7670 *off = addr - found_func->ip; 7671 return strscpy(sym, found_func->name, KSYM_NAME_LEN); 7672 } 7673 7674 return 0; 7675 } 7676 7677 int 7678 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size, 7679 unsigned long *off, char **modname, char *sym) 7680 { 7681 struct ftrace_mod_map *mod_map; 7682 int ret = 0; 7683 7684 /* mod_map is freed via call_rcu() */ 7685 preempt_disable(); 7686 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 7687 ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym); 7688 if (ret) { 7689 if (modname) 7690 *modname = mod_map->mod->name; 7691 break; 7692 } 7693 } 7694 preempt_enable(); 7695 7696 return ret; 7697 } 7698 7699 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 7700 char *type, char *name, 7701 char *module_name, int *exported) 7702 { 7703 struct ftrace_mod_map *mod_map; 7704 struct ftrace_mod_func *mod_func; 7705 int ret; 7706 7707 preempt_disable(); 7708 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 7709 7710 if (symnum >= mod_map->num_funcs) { 7711 symnum -= mod_map->num_funcs; 7712 continue; 7713 } 7714 7715 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 7716 if (symnum > 1) { 7717 symnum--; 7718 continue; 7719 } 7720 7721 *value = mod_func->ip; 7722 *type = 'T'; 7723 strscpy(name, mod_func->name, KSYM_NAME_LEN); 7724 strscpy(module_name, mod_map->mod->name, MODULE_NAME_LEN); 7725 *exported = 1; 7726 preempt_enable(); 7727 return 0; 7728 } 7729 WARN_ON(1); 7730 break; 7731 } 7732 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 7733 module_name, exported); 7734 preempt_enable(); 7735 return ret; 7736 } 7737 7738 #else 7739 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 7740 struct dyn_ftrace *rec) { } 7741 static inline struct ftrace_mod_map * 7742 allocate_ftrace_mod_map(struct module *mod, 7743 unsigned long start, unsigned long end) 7744 { 7745 return NULL; 7746 } 7747 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 7748 char *type, char *name, char *module_name, 7749 int *exported) 7750 { 7751 int ret; 7752 7753 preempt_disable(); 7754 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 7755 module_name, exported); 7756 preempt_enable(); 7757 return ret; 7758 } 7759 #endif /* CONFIG_MODULES */ 7760 7761 struct ftrace_init_func { 7762 struct list_head list; 7763 unsigned long ip; 7764 }; 7765 7766 /* Clear any init ips from hashes */ 7767 static void 7768 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash) 7769 { 7770 struct ftrace_func_entry *entry; 7771 7772 entry = ftrace_lookup_ip(hash, func->ip); 7773 /* 7774 * Do not allow this rec to match again. 7775 * Yeah, it may waste some memory, but will be removed 7776 * if/when the hash is modified again. 7777 */ 7778 if (entry) 7779 entry->ip = 0; 7780 } 7781 7782 static void 7783 clear_func_from_hashes(struct ftrace_init_func *func) 7784 { 7785 struct trace_array *tr; 7786 7787 mutex_lock(&trace_types_lock); 7788 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 7789 if (!tr->ops || !tr->ops->func_hash) 7790 continue; 7791 mutex_lock(&tr->ops->func_hash->regex_lock); 7792 clear_func_from_hash(func, tr->ops->func_hash->filter_hash); 7793 clear_func_from_hash(func, tr->ops->func_hash->notrace_hash); 7794 mutex_unlock(&tr->ops->func_hash->regex_lock); 7795 } 7796 mutex_unlock(&trace_types_lock); 7797 } 7798 7799 static void add_to_clear_hash_list(struct list_head *clear_list, 7800 struct dyn_ftrace *rec) 7801 { 7802 struct ftrace_init_func *func; 7803 7804 func = kmalloc(sizeof(*func), GFP_KERNEL); 7805 if (!func) { 7806 MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n"); 7807 return; 7808 } 7809 7810 func->ip = rec->ip; 7811 list_add(&func->list, clear_list); 7812 } 7813 7814 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr) 7815 { 7816 unsigned long start = (unsigned long)(start_ptr); 7817 unsigned long end = (unsigned long)(end_ptr); 7818 struct ftrace_page **last_pg = &ftrace_pages_start; 7819 struct ftrace_page *tmp_page = NULL; 7820 struct ftrace_page *pg; 7821 struct dyn_ftrace *rec; 7822 struct dyn_ftrace key; 7823 struct ftrace_mod_map *mod_map = NULL; 7824 struct ftrace_init_func *func, *func_next; 7825 LIST_HEAD(clear_hash); 7826 7827 key.ip = start; 7828 key.flags = end; /* overload flags, as it is unsigned long */ 7829 7830 mutex_lock(&ftrace_lock); 7831 7832 /* 7833 * If we are freeing module init memory, then check if 7834 * any tracer is active. If so, we need to save a mapping of 7835 * the module functions being freed with the address. 7836 */ 7837 if (mod && ftrace_ops_list != &ftrace_list_end) 7838 mod_map = allocate_ftrace_mod_map(mod, start, end); 7839 7840 for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) { 7841 if (end < pg->records[0].ip || 7842 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 7843 continue; 7844 again: 7845 rec = bsearch(&key, pg->records, pg->index, 7846 sizeof(struct dyn_ftrace), 7847 ftrace_cmp_recs); 7848 if (!rec) 7849 continue; 7850 7851 /* rec will be cleared from hashes after ftrace_lock unlock */ 7852 add_to_clear_hash_list(&clear_hash, rec); 7853 7854 if (mod_map) 7855 save_ftrace_mod_rec(mod_map, rec); 7856 7857 pg->index--; 7858 ftrace_update_tot_cnt--; 7859 if (!pg->index) { 7860 *last_pg = pg->next; 7861 pg->next = tmp_page; 7862 tmp_page = pg; 7863 pg = container_of(last_pg, struct ftrace_page, next); 7864 if (!(*last_pg)) 7865 ftrace_pages = pg; 7866 continue; 7867 } 7868 memmove(rec, rec + 1, 7869 (pg->index - (rec - pg->records)) * sizeof(*rec)); 7870 /* More than one function may be in this block */ 7871 goto again; 7872 } 7873 mutex_unlock(&ftrace_lock); 7874 7875 list_for_each_entry_safe(func, func_next, &clear_hash, list) { 7876 clear_func_from_hashes(func); 7877 kfree(func); 7878 } 7879 /* Need to synchronize with ftrace_location_range() */ 7880 if (tmp_page) { 7881 synchronize_rcu(); 7882 ftrace_free_pages(tmp_page); 7883 } 7884 } 7885 7886 void __init ftrace_free_init_mem(void) 7887 { 7888 void *start = (void *)(&__init_begin); 7889 void *end = (void *)(&__init_end); 7890 7891 ftrace_boot_snapshot(); 7892 7893 ftrace_free_mem(NULL, start, end); 7894 } 7895 7896 int __init __weak ftrace_dyn_arch_init(void) 7897 { 7898 return 0; 7899 } 7900 7901 void __init ftrace_init(void) 7902 { 7903 extern unsigned long __start_mcount_loc[]; 7904 extern unsigned long __stop_mcount_loc[]; 7905 unsigned long count, flags; 7906 int ret; 7907 7908 local_irq_save(flags); 7909 ret = ftrace_dyn_arch_init(); 7910 local_irq_restore(flags); 7911 if (ret) 7912 goto failed; 7913 7914 count = __stop_mcount_loc - __start_mcount_loc; 7915 if (!count) { 7916 pr_info("ftrace: No functions to be traced?\n"); 7917 goto failed; 7918 } 7919 7920 ret = ftrace_process_locs(NULL, 7921 __start_mcount_loc, 7922 __stop_mcount_loc); 7923 if (ret) { 7924 pr_warn("ftrace: failed to allocate entries for functions\n"); 7925 goto failed; 7926 } 7927 7928 pr_info("ftrace: allocated %ld pages with %ld groups\n", 7929 ftrace_number_of_pages, ftrace_number_of_groups); 7930 7931 last_ftrace_enabled = ftrace_enabled = 1; 7932 7933 set_ftrace_early_filters(); 7934 7935 return; 7936 failed: 7937 ftrace_disabled = 1; 7938 } 7939 7940 /* Do nothing if arch does not support this */ 7941 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops) 7942 { 7943 } 7944 7945 static void ftrace_update_trampoline(struct ftrace_ops *ops) 7946 { 7947 unsigned long trampoline = ops->trampoline; 7948 7949 arch_ftrace_update_trampoline(ops); 7950 if (ops->trampoline && ops->trampoline != trampoline && 7951 (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) { 7952 /* Add to kallsyms before the perf events */ 7953 ftrace_add_trampoline_to_kallsyms(ops); 7954 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 7955 ops->trampoline, ops->trampoline_size, false, 7956 FTRACE_TRAMPOLINE_SYM); 7957 /* 7958 * Record the perf text poke event after the ksymbol register 7959 * event. 7960 */ 7961 perf_event_text_poke((void *)ops->trampoline, NULL, 0, 7962 (void *)ops->trampoline, 7963 ops->trampoline_size); 7964 } 7965 } 7966 7967 void ftrace_init_trace_array(struct trace_array *tr) 7968 { 7969 if (tr->flags & TRACE_ARRAY_FL_MOD_INIT) 7970 return; 7971 7972 INIT_LIST_HEAD(&tr->func_probes); 7973 INIT_LIST_HEAD(&tr->mod_trace); 7974 INIT_LIST_HEAD(&tr->mod_notrace); 7975 7976 tr->flags |= TRACE_ARRAY_FL_MOD_INIT; 7977 } 7978 #else 7979 7980 struct ftrace_ops global_ops = { 7981 .func = ftrace_stub, 7982 .flags = FTRACE_OPS_FL_INITIALIZED | 7983 FTRACE_OPS_FL_PID, 7984 }; 7985 7986 static int __init ftrace_nodyn_init(void) 7987 { 7988 ftrace_enabled = 1; 7989 return 0; 7990 } 7991 core_initcall(ftrace_nodyn_init); 7992 7993 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; } 7994 static inline void ftrace_startup_all(int command) { } 7995 7996 static void ftrace_update_trampoline(struct ftrace_ops *ops) 7997 { 7998 } 7999 8000 #endif /* CONFIG_DYNAMIC_FTRACE */ 8001 8002 __init void ftrace_init_global_array_ops(struct trace_array *tr) 8003 { 8004 tr->ops = &global_ops; 8005 if (!global_ops.private) 8006 global_ops.private = tr; 8007 ftrace_init_trace_array(tr); 8008 init_array_fgraph_ops(tr, tr->ops); 8009 } 8010 8011 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func) 8012 { 8013 /* If we filter on pids, update to use the pid function */ 8014 if (tr->flags & TRACE_ARRAY_FL_GLOBAL) { 8015 if (WARN_ON(tr->ops->func != ftrace_stub)) 8016 printk("ftrace ops had %pS for function\n", 8017 tr->ops->func); 8018 } 8019 tr->ops->func = func; 8020 tr->ops->private = tr; 8021 } 8022 8023 void ftrace_reset_array_ops(struct trace_array *tr) 8024 { 8025 tr->ops->func = ftrace_stub; 8026 } 8027 8028 static nokprobe_inline void 8029 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 8030 struct ftrace_ops *ignored, struct ftrace_regs *fregs) 8031 { 8032 struct pt_regs *regs = ftrace_get_regs(fregs); 8033 struct ftrace_ops *op; 8034 int bit; 8035 8036 /* 8037 * The ftrace_test_and_set_recursion() will disable preemption, 8038 * which is required since some of the ops may be dynamically 8039 * allocated, they must be freed after a synchronize_rcu(). 8040 */ 8041 bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START); 8042 if (bit < 0) 8043 return; 8044 8045 do_for_each_ftrace_op(op, ftrace_ops_list) { 8046 /* Stub functions don't need to be called nor tested */ 8047 if (op->flags & FTRACE_OPS_FL_STUB) 8048 continue; 8049 /* 8050 * Check the following for each ops before calling their func: 8051 * if RCU flag is set, then rcu_is_watching() must be true 8052 * Otherwise test if the ip matches the ops filter 8053 * 8054 * If any of the above fails then the op->func() is not executed. 8055 */ 8056 if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) && 8057 ftrace_ops_test(op, ip, regs)) { 8058 if (FTRACE_WARN_ON(!op->func)) { 8059 pr_warn("op=%p %pS\n", op, op); 8060 goto out; 8061 } 8062 op->func(ip, parent_ip, op, fregs); 8063 } 8064 } while_for_each_ftrace_op(op); 8065 out: 8066 trace_clear_recursion(bit); 8067 } 8068 8069 /* 8070 * Some archs only support passing ip and parent_ip. Even though 8071 * the list function ignores the op parameter, we do not want any 8072 * C side effects, where a function is called without the caller 8073 * sending a third parameter. 8074 * Archs are to support both the regs and ftrace_ops at the same time. 8075 * If they support ftrace_ops, it is assumed they support regs. 8076 * If call backs want to use regs, they must either check for regs 8077 * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS. 8078 * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved. 8079 * An architecture can pass partial regs with ftrace_ops and still 8080 * set the ARCH_SUPPORTS_FTRACE_OPS. 8081 * 8082 * In vmlinux.lds.h, ftrace_ops_list_func() is defined to be 8083 * arch_ftrace_ops_list_func. 8084 */ 8085 #if ARCH_SUPPORTS_FTRACE_OPS 8086 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 8087 struct ftrace_ops *op, struct ftrace_regs *fregs) 8088 { 8089 kmsan_unpoison_memory(fregs, ftrace_regs_size()); 8090 __ftrace_ops_list_func(ip, parent_ip, NULL, fregs); 8091 } 8092 #else 8093 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip) 8094 { 8095 __ftrace_ops_list_func(ip, parent_ip, NULL, NULL); 8096 } 8097 #endif 8098 NOKPROBE_SYMBOL(arch_ftrace_ops_list_func); 8099 8100 /* 8101 * If there's only one function registered but it does not support 8102 * recursion, needs RCU protection, then this function will be called 8103 * by the mcount trampoline. 8104 */ 8105 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip, 8106 struct ftrace_ops *op, struct ftrace_regs *fregs) 8107 { 8108 int bit; 8109 8110 bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START); 8111 if (bit < 0) 8112 return; 8113 8114 if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) 8115 op->func(ip, parent_ip, op, fregs); 8116 8117 trace_clear_recursion(bit); 8118 } 8119 NOKPROBE_SYMBOL(ftrace_ops_assist_func); 8120 8121 /** 8122 * ftrace_ops_get_func - get the function a trampoline should call 8123 * @ops: the ops to get the function for 8124 * 8125 * Normally the mcount trampoline will call the ops->func, but there 8126 * are times that it should not. For example, if the ops does not 8127 * have its own recursion protection, then it should call the 8128 * ftrace_ops_assist_func() instead. 8129 * 8130 * Returns: the function that the trampoline should call for @ops. 8131 */ 8132 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops) 8133 { 8134 /* 8135 * If the function does not handle recursion or needs to be RCU safe, 8136 * then we need to call the assist handler. 8137 */ 8138 if (ops->flags & (FTRACE_OPS_FL_RECURSION | 8139 FTRACE_OPS_FL_RCU)) 8140 return ftrace_ops_assist_func; 8141 8142 return ops->func; 8143 } 8144 8145 static void 8146 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt, 8147 struct task_struct *prev, 8148 struct task_struct *next, 8149 unsigned int prev_state) 8150 { 8151 struct trace_array *tr = data; 8152 struct trace_pid_list *pid_list; 8153 struct trace_pid_list *no_pid_list; 8154 8155 pid_list = rcu_dereference_sched(tr->function_pids); 8156 no_pid_list = rcu_dereference_sched(tr->function_no_pids); 8157 8158 if (trace_ignore_this_task(pid_list, no_pid_list, next)) 8159 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 8160 FTRACE_PID_IGNORE); 8161 else 8162 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 8163 next->pid); 8164 } 8165 8166 static void 8167 ftrace_pid_follow_sched_process_fork(void *data, 8168 struct task_struct *self, 8169 struct task_struct *task) 8170 { 8171 struct trace_pid_list *pid_list; 8172 struct trace_array *tr = data; 8173 8174 pid_list = rcu_dereference_sched(tr->function_pids); 8175 trace_filter_add_remove_task(pid_list, self, task); 8176 8177 pid_list = rcu_dereference_sched(tr->function_no_pids); 8178 trace_filter_add_remove_task(pid_list, self, task); 8179 } 8180 8181 static void 8182 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task) 8183 { 8184 struct trace_pid_list *pid_list; 8185 struct trace_array *tr = data; 8186 8187 pid_list = rcu_dereference_sched(tr->function_pids); 8188 trace_filter_add_remove_task(pid_list, NULL, task); 8189 8190 pid_list = rcu_dereference_sched(tr->function_no_pids); 8191 trace_filter_add_remove_task(pid_list, NULL, task); 8192 } 8193 8194 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable) 8195 { 8196 if (enable) { 8197 register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 8198 tr); 8199 register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 8200 tr); 8201 } else { 8202 unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 8203 tr); 8204 unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 8205 tr); 8206 } 8207 } 8208 8209 static void clear_ftrace_pids(struct trace_array *tr, int type) 8210 { 8211 struct trace_pid_list *pid_list; 8212 struct trace_pid_list *no_pid_list; 8213 int cpu; 8214 8215 pid_list = rcu_dereference_protected(tr->function_pids, 8216 lockdep_is_held(&ftrace_lock)); 8217 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 8218 lockdep_is_held(&ftrace_lock)); 8219 8220 /* Make sure there's something to do */ 8221 if (!pid_type_enabled(type, pid_list, no_pid_list)) 8222 return; 8223 8224 /* See if the pids still need to be checked after this */ 8225 if (!still_need_pid_events(type, pid_list, no_pid_list)) { 8226 unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 8227 for_each_possible_cpu(cpu) 8228 per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE; 8229 } 8230 8231 if (type & TRACE_PIDS) 8232 rcu_assign_pointer(tr->function_pids, NULL); 8233 8234 if (type & TRACE_NO_PIDS) 8235 rcu_assign_pointer(tr->function_no_pids, NULL); 8236 8237 /* Wait till all users are no longer using pid filtering */ 8238 synchronize_rcu(); 8239 8240 if ((type & TRACE_PIDS) && pid_list) 8241 trace_pid_list_free(pid_list); 8242 8243 if ((type & TRACE_NO_PIDS) && no_pid_list) 8244 trace_pid_list_free(no_pid_list); 8245 } 8246 8247 void ftrace_clear_pids(struct trace_array *tr) 8248 { 8249 mutex_lock(&ftrace_lock); 8250 8251 clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS); 8252 8253 mutex_unlock(&ftrace_lock); 8254 } 8255 8256 static void ftrace_pid_reset(struct trace_array *tr, int type) 8257 { 8258 mutex_lock(&ftrace_lock); 8259 clear_ftrace_pids(tr, type); 8260 8261 ftrace_update_pid_func(); 8262 ftrace_startup_all(0); 8263 8264 mutex_unlock(&ftrace_lock); 8265 } 8266 8267 /* Greater than any max PID */ 8268 #define FTRACE_NO_PIDS (void *)(PID_MAX_LIMIT + 1) 8269 8270 static void *fpid_start(struct seq_file *m, loff_t *pos) 8271 __acquires(RCU) 8272 { 8273 struct trace_pid_list *pid_list; 8274 struct trace_array *tr = m->private; 8275 8276 mutex_lock(&ftrace_lock); 8277 rcu_read_lock_sched(); 8278 8279 pid_list = rcu_dereference_sched(tr->function_pids); 8280 8281 if (!pid_list) 8282 return !(*pos) ? FTRACE_NO_PIDS : NULL; 8283 8284 return trace_pid_start(pid_list, pos); 8285 } 8286 8287 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos) 8288 { 8289 struct trace_array *tr = m->private; 8290 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids); 8291 8292 if (v == FTRACE_NO_PIDS) { 8293 (*pos)++; 8294 return NULL; 8295 } 8296 return trace_pid_next(pid_list, v, pos); 8297 } 8298 8299 static void fpid_stop(struct seq_file *m, void *p) 8300 __releases(RCU) 8301 { 8302 rcu_read_unlock_sched(); 8303 mutex_unlock(&ftrace_lock); 8304 } 8305 8306 static int fpid_show(struct seq_file *m, void *v) 8307 { 8308 if (v == FTRACE_NO_PIDS) { 8309 seq_puts(m, "no pid\n"); 8310 return 0; 8311 } 8312 8313 return trace_pid_show(m, v); 8314 } 8315 8316 static const struct seq_operations ftrace_pid_sops = { 8317 .start = fpid_start, 8318 .next = fpid_next, 8319 .stop = fpid_stop, 8320 .show = fpid_show, 8321 }; 8322 8323 static void *fnpid_start(struct seq_file *m, loff_t *pos) 8324 __acquires(RCU) 8325 { 8326 struct trace_pid_list *pid_list; 8327 struct trace_array *tr = m->private; 8328 8329 mutex_lock(&ftrace_lock); 8330 rcu_read_lock_sched(); 8331 8332 pid_list = rcu_dereference_sched(tr->function_no_pids); 8333 8334 if (!pid_list) 8335 return !(*pos) ? FTRACE_NO_PIDS : NULL; 8336 8337 return trace_pid_start(pid_list, pos); 8338 } 8339 8340 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos) 8341 { 8342 struct trace_array *tr = m->private; 8343 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids); 8344 8345 if (v == FTRACE_NO_PIDS) { 8346 (*pos)++; 8347 return NULL; 8348 } 8349 return trace_pid_next(pid_list, v, pos); 8350 } 8351 8352 static const struct seq_operations ftrace_no_pid_sops = { 8353 .start = fnpid_start, 8354 .next = fnpid_next, 8355 .stop = fpid_stop, 8356 .show = fpid_show, 8357 }; 8358 8359 static int pid_open(struct inode *inode, struct file *file, int type) 8360 { 8361 const struct seq_operations *seq_ops; 8362 struct trace_array *tr = inode->i_private; 8363 struct seq_file *m; 8364 int ret = 0; 8365 8366 ret = tracing_check_open_get_tr(tr); 8367 if (ret) 8368 return ret; 8369 8370 if ((file->f_mode & FMODE_WRITE) && 8371 (file->f_flags & O_TRUNC)) 8372 ftrace_pid_reset(tr, type); 8373 8374 switch (type) { 8375 case TRACE_PIDS: 8376 seq_ops = &ftrace_pid_sops; 8377 break; 8378 case TRACE_NO_PIDS: 8379 seq_ops = &ftrace_no_pid_sops; 8380 break; 8381 default: 8382 trace_array_put(tr); 8383 WARN_ON_ONCE(1); 8384 return -EINVAL; 8385 } 8386 8387 ret = seq_open(file, seq_ops); 8388 if (ret < 0) { 8389 trace_array_put(tr); 8390 } else { 8391 m = file->private_data; 8392 /* copy tr over to seq ops */ 8393 m->private = tr; 8394 } 8395 8396 return ret; 8397 } 8398 8399 static int 8400 ftrace_pid_open(struct inode *inode, struct file *file) 8401 { 8402 return pid_open(inode, file, TRACE_PIDS); 8403 } 8404 8405 static int 8406 ftrace_no_pid_open(struct inode *inode, struct file *file) 8407 { 8408 return pid_open(inode, file, TRACE_NO_PIDS); 8409 } 8410 8411 static void ignore_task_cpu(void *data) 8412 { 8413 struct trace_array *tr = data; 8414 struct trace_pid_list *pid_list; 8415 struct trace_pid_list *no_pid_list; 8416 8417 /* 8418 * This function is called by on_each_cpu() while the 8419 * event_mutex is held. 8420 */ 8421 pid_list = rcu_dereference_protected(tr->function_pids, 8422 mutex_is_locked(&ftrace_lock)); 8423 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 8424 mutex_is_locked(&ftrace_lock)); 8425 8426 if (trace_ignore_this_task(pid_list, no_pid_list, current)) 8427 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 8428 FTRACE_PID_IGNORE); 8429 else 8430 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 8431 current->pid); 8432 } 8433 8434 static ssize_t 8435 pid_write(struct file *filp, const char __user *ubuf, 8436 size_t cnt, loff_t *ppos, int type) 8437 { 8438 struct seq_file *m = filp->private_data; 8439 struct trace_array *tr = m->private; 8440 struct trace_pid_list *filtered_pids; 8441 struct trace_pid_list *other_pids; 8442 struct trace_pid_list *pid_list; 8443 ssize_t ret; 8444 8445 if (!cnt) 8446 return 0; 8447 8448 guard(mutex)(&ftrace_lock); 8449 8450 switch (type) { 8451 case TRACE_PIDS: 8452 filtered_pids = rcu_dereference_protected(tr->function_pids, 8453 lockdep_is_held(&ftrace_lock)); 8454 other_pids = rcu_dereference_protected(tr->function_no_pids, 8455 lockdep_is_held(&ftrace_lock)); 8456 break; 8457 case TRACE_NO_PIDS: 8458 filtered_pids = rcu_dereference_protected(tr->function_no_pids, 8459 lockdep_is_held(&ftrace_lock)); 8460 other_pids = rcu_dereference_protected(tr->function_pids, 8461 lockdep_is_held(&ftrace_lock)); 8462 break; 8463 default: 8464 WARN_ON_ONCE(1); 8465 return -EINVAL; 8466 } 8467 8468 ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt); 8469 if (ret < 0) 8470 return ret; 8471 8472 switch (type) { 8473 case TRACE_PIDS: 8474 rcu_assign_pointer(tr->function_pids, pid_list); 8475 break; 8476 case TRACE_NO_PIDS: 8477 rcu_assign_pointer(tr->function_no_pids, pid_list); 8478 break; 8479 } 8480 8481 8482 if (filtered_pids) { 8483 synchronize_rcu(); 8484 trace_pid_list_free(filtered_pids); 8485 } else if (pid_list && !other_pids) { 8486 /* Register a probe to set whether to ignore the tracing of a task */ 8487 register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 8488 } 8489 8490 /* 8491 * Ignoring of pids is done at task switch. But we have to 8492 * check for those tasks that are currently running. 8493 * Always do this in case a pid was appended or removed. 8494 */ 8495 on_each_cpu(ignore_task_cpu, tr, 1); 8496 8497 ftrace_update_pid_func(); 8498 ftrace_startup_all(0); 8499 8500 *ppos += ret; 8501 8502 return ret; 8503 } 8504 8505 static ssize_t 8506 ftrace_pid_write(struct file *filp, const char __user *ubuf, 8507 size_t cnt, loff_t *ppos) 8508 { 8509 return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS); 8510 } 8511 8512 static ssize_t 8513 ftrace_no_pid_write(struct file *filp, const char __user *ubuf, 8514 size_t cnt, loff_t *ppos) 8515 { 8516 return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS); 8517 } 8518 8519 static int 8520 ftrace_pid_release(struct inode *inode, struct file *file) 8521 { 8522 struct trace_array *tr = inode->i_private; 8523 8524 trace_array_put(tr); 8525 8526 return seq_release(inode, file); 8527 } 8528 8529 static const struct file_operations ftrace_pid_fops = { 8530 .open = ftrace_pid_open, 8531 .write = ftrace_pid_write, 8532 .read = seq_read, 8533 .llseek = tracing_lseek, 8534 .release = ftrace_pid_release, 8535 }; 8536 8537 static const struct file_operations ftrace_no_pid_fops = { 8538 .open = ftrace_no_pid_open, 8539 .write = ftrace_no_pid_write, 8540 .read = seq_read, 8541 .llseek = tracing_lseek, 8542 .release = ftrace_pid_release, 8543 }; 8544 8545 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer) 8546 { 8547 trace_create_file("set_ftrace_pid", TRACE_MODE_WRITE, d_tracer, 8548 tr, &ftrace_pid_fops); 8549 trace_create_file("set_ftrace_notrace_pid", TRACE_MODE_WRITE, 8550 d_tracer, tr, &ftrace_no_pid_fops); 8551 } 8552 8553 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr, 8554 struct dentry *d_tracer) 8555 { 8556 /* Only the top level directory has the dyn_tracefs and profile */ 8557 WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL)); 8558 8559 ftrace_init_dyn_tracefs(d_tracer); 8560 ftrace_profile_tracefs(d_tracer); 8561 } 8562 8563 /** 8564 * ftrace_kill - kill ftrace 8565 * 8566 * This function should be used by panic code. It stops ftrace 8567 * but in a not so nice way. If you need to simply kill ftrace 8568 * from a non-atomic section, use ftrace_kill. 8569 */ 8570 void ftrace_kill(void) 8571 { 8572 ftrace_disabled = 1; 8573 ftrace_enabled = 0; 8574 ftrace_trace_function = ftrace_stub; 8575 kprobe_ftrace_kill(); 8576 } 8577 8578 /** 8579 * ftrace_is_dead - Test if ftrace is dead or not. 8580 * 8581 * Returns: 1 if ftrace is "dead", zero otherwise. 8582 */ 8583 int ftrace_is_dead(void) 8584 { 8585 return ftrace_disabled; 8586 } 8587 8588 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 8589 /* 8590 * When registering ftrace_ops with IPMODIFY, it is necessary to make sure 8591 * it doesn't conflict with any direct ftrace_ops. If there is existing 8592 * direct ftrace_ops on a kernel function being patched, call 8593 * FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER on it to enable sharing. 8594 * 8595 * @ops: ftrace_ops being registered. 8596 * 8597 * Returns: 8598 * 0 on success; 8599 * Negative on failure. 8600 */ 8601 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops) 8602 { 8603 struct ftrace_func_entry *entry; 8604 struct ftrace_hash *hash; 8605 struct ftrace_ops *op; 8606 int size, i, ret; 8607 8608 lockdep_assert_held_once(&direct_mutex); 8609 8610 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 8611 return 0; 8612 8613 hash = ops->func_hash->filter_hash; 8614 size = 1 << hash->size_bits; 8615 for (i = 0; i < size; i++) { 8616 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 8617 unsigned long ip = entry->ip; 8618 bool found_op = false; 8619 8620 mutex_lock(&ftrace_lock); 8621 do_for_each_ftrace_op(op, ftrace_ops_list) { 8622 if (!(op->flags & FTRACE_OPS_FL_DIRECT)) 8623 continue; 8624 if (ops_references_ip(op, ip)) { 8625 found_op = true; 8626 break; 8627 } 8628 } while_for_each_ftrace_op(op); 8629 mutex_unlock(&ftrace_lock); 8630 8631 if (found_op) { 8632 if (!op->ops_func) 8633 return -EBUSY; 8634 8635 ret = op->ops_func(op, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER); 8636 if (ret) 8637 return ret; 8638 } 8639 } 8640 } 8641 8642 return 0; 8643 } 8644 8645 /* 8646 * Similar to prepare_direct_functions_for_ipmodify, clean up after ops 8647 * with IPMODIFY is unregistered. The cleanup is optional for most DIRECT 8648 * ops. 8649 */ 8650 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops) 8651 { 8652 struct ftrace_func_entry *entry; 8653 struct ftrace_hash *hash; 8654 struct ftrace_ops *op; 8655 int size, i; 8656 8657 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 8658 return; 8659 8660 mutex_lock(&direct_mutex); 8661 8662 hash = ops->func_hash->filter_hash; 8663 size = 1 << hash->size_bits; 8664 for (i = 0; i < size; i++) { 8665 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 8666 unsigned long ip = entry->ip; 8667 bool found_op = false; 8668 8669 mutex_lock(&ftrace_lock); 8670 do_for_each_ftrace_op(op, ftrace_ops_list) { 8671 if (!(op->flags & FTRACE_OPS_FL_DIRECT)) 8672 continue; 8673 if (ops_references_ip(op, ip)) { 8674 found_op = true; 8675 break; 8676 } 8677 } while_for_each_ftrace_op(op); 8678 mutex_unlock(&ftrace_lock); 8679 8680 /* The cleanup is optional, ignore any errors */ 8681 if (found_op && op->ops_func) 8682 op->ops_func(op, FTRACE_OPS_CMD_DISABLE_SHARE_IPMODIFY_PEER); 8683 } 8684 } 8685 mutex_unlock(&direct_mutex); 8686 } 8687 8688 #define lock_direct_mutex() mutex_lock(&direct_mutex) 8689 #define unlock_direct_mutex() mutex_unlock(&direct_mutex) 8690 8691 #else /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 8692 8693 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops) 8694 { 8695 return 0; 8696 } 8697 8698 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops) 8699 { 8700 } 8701 8702 #define lock_direct_mutex() do { } while (0) 8703 #define unlock_direct_mutex() do { } while (0) 8704 8705 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 8706 8707 /* 8708 * Similar to register_ftrace_function, except we don't lock direct_mutex. 8709 */ 8710 static int register_ftrace_function_nolock(struct ftrace_ops *ops) 8711 { 8712 int ret; 8713 8714 ftrace_ops_init(ops); 8715 8716 mutex_lock(&ftrace_lock); 8717 8718 ret = ftrace_startup(ops, 0); 8719 8720 mutex_unlock(&ftrace_lock); 8721 8722 return ret; 8723 } 8724 8725 /** 8726 * register_ftrace_function - register a function for profiling 8727 * @ops: ops structure that holds the function for profiling. 8728 * 8729 * Register a function to be called by all functions in the 8730 * kernel. 8731 * 8732 * Note: @ops->func and all the functions it calls must be labeled 8733 * with "notrace", otherwise it will go into a 8734 * recursive loop. 8735 */ 8736 int register_ftrace_function(struct ftrace_ops *ops) 8737 { 8738 int ret; 8739 8740 lock_direct_mutex(); 8741 ret = prepare_direct_functions_for_ipmodify(ops); 8742 if (ret < 0) 8743 goto out_unlock; 8744 8745 ret = register_ftrace_function_nolock(ops); 8746 8747 out_unlock: 8748 unlock_direct_mutex(); 8749 return ret; 8750 } 8751 EXPORT_SYMBOL_GPL(register_ftrace_function); 8752 8753 /** 8754 * unregister_ftrace_function - unregister a function for profiling. 8755 * @ops: ops structure that holds the function to unregister 8756 * 8757 * Unregister a function that was added to be called by ftrace profiling. 8758 */ 8759 int unregister_ftrace_function(struct ftrace_ops *ops) 8760 { 8761 int ret; 8762 8763 mutex_lock(&ftrace_lock); 8764 ret = ftrace_shutdown(ops, 0); 8765 mutex_unlock(&ftrace_lock); 8766 8767 cleanup_direct_functions_after_ipmodify(ops); 8768 return ret; 8769 } 8770 EXPORT_SYMBOL_GPL(unregister_ftrace_function); 8771 8772 static int symbols_cmp(const void *a, const void *b) 8773 { 8774 const char **str_a = (const char **) a; 8775 const char **str_b = (const char **) b; 8776 8777 return strcmp(*str_a, *str_b); 8778 } 8779 8780 struct kallsyms_data { 8781 unsigned long *addrs; 8782 const char **syms; 8783 size_t cnt; 8784 size_t found; 8785 }; 8786 8787 /* This function gets called for all kernel and module symbols 8788 * and returns 1 in case we resolved all the requested symbols, 8789 * 0 otherwise. 8790 */ 8791 static int kallsyms_callback(void *data, const char *name, unsigned long addr) 8792 { 8793 struct kallsyms_data *args = data; 8794 const char **sym; 8795 int idx; 8796 8797 sym = bsearch(&name, args->syms, args->cnt, sizeof(*args->syms), symbols_cmp); 8798 if (!sym) 8799 return 0; 8800 8801 idx = sym - args->syms; 8802 if (args->addrs[idx]) 8803 return 0; 8804 8805 if (!ftrace_location(addr)) 8806 return 0; 8807 8808 args->addrs[idx] = addr; 8809 args->found++; 8810 return args->found == args->cnt ? 1 : 0; 8811 } 8812 8813 /** 8814 * ftrace_lookup_symbols - Lookup addresses for array of symbols 8815 * 8816 * @sorted_syms: array of symbols pointers symbols to resolve, 8817 * must be alphabetically sorted 8818 * @cnt: number of symbols/addresses in @syms/@addrs arrays 8819 * @addrs: array for storing resulting addresses 8820 * 8821 * This function looks up addresses for array of symbols provided in 8822 * @syms array (must be alphabetically sorted) and stores them in 8823 * @addrs array, which needs to be big enough to store at least @cnt 8824 * addresses. 8825 * 8826 * Returns: 0 if all provided symbols are found, -ESRCH otherwise. 8827 */ 8828 int ftrace_lookup_symbols(const char **sorted_syms, size_t cnt, unsigned long *addrs) 8829 { 8830 struct kallsyms_data args; 8831 int found_all; 8832 8833 memset(addrs, 0, sizeof(*addrs) * cnt); 8834 args.addrs = addrs; 8835 args.syms = sorted_syms; 8836 args.cnt = cnt; 8837 args.found = 0; 8838 8839 found_all = kallsyms_on_each_symbol(kallsyms_callback, &args); 8840 if (found_all) 8841 return 0; 8842 found_all = module_kallsyms_on_each_symbol(NULL, kallsyms_callback, &args); 8843 return found_all ? 0 : -ESRCH; 8844 } 8845 8846 #ifdef CONFIG_SYSCTL 8847 8848 #ifdef CONFIG_DYNAMIC_FTRACE 8849 static void ftrace_startup_sysctl(void) 8850 { 8851 int command; 8852 8853 if (unlikely(ftrace_disabled)) 8854 return; 8855 8856 /* Force update next time */ 8857 saved_ftrace_func = NULL; 8858 /* ftrace_start_up is true if we want ftrace running */ 8859 if (ftrace_start_up) { 8860 command = FTRACE_UPDATE_CALLS; 8861 if (ftrace_graph_active) 8862 command |= FTRACE_START_FUNC_RET; 8863 ftrace_startup_enable(command); 8864 } 8865 } 8866 8867 static void ftrace_shutdown_sysctl(void) 8868 { 8869 int command; 8870 8871 if (unlikely(ftrace_disabled)) 8872 return; 8873 8874 /* ftrace_start_up is true if ftrace is running */ 8875 if (ftrace_start_up) { 8876 command = FTRACE_DISABLE_CALLS; 8877 if (ftrace_graph_active) 8878 command |= FTRACE_STOP_FUNC_RET; 8879 ftrace_run_update_code(command); 8880 } 8881 } 8882 #else 8883 # define ftrace_startup_sysctl() do { } while (0) 8884 # define ftrace_shutdown_sysctl() do { } while (0) 8885 #endif /* CONFIG_DYNAMIC_FTRACE */ 8886 8887 static bool is_permanent_ops_registered(void) 8888 { 8889 struct ftrace_ops *op; 8890 8891 do_for_each_ftrace_op(op, ftrace_ops_list) { 8892 if (op->flags & FTRACE_OPS_FL_PERMANENT) 8893 return true; 8894 } while_for_each_ftrace_op(op); 8895 8896 return false; 8897 } 8898 8899 static int 8900 ftrace_enable_sysctl(const struct ctl_table *table, int write, 8901 void *buffer, size_t *lenp, loff_t *ppos) 8902 { 8903 int ret; 8904 8905 guard(mutex)(&ftrace_lock); 8906 8907 if (unlikely(ftrace_disabled)) 8908 return -ENODEV; 8909 8910 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8911 8912 if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) 8913 return ret; 8914 8915 if (ftrace_enabled) { 8916 8917 /* we are starting ftrace again */ 8918 if (rcu_dereference_protected(ftrace_ops_list, 8919 lockdep_is_held(&ftrace_lock)) != &ftrace_list_end) 8920 update_ftrace_function(); 8921 8922 ftrace_startup_sysctl(); 8923 8924 } else { 8925 if (is_permanent_ops_registered()) { 8926 ftrace_enabled = true; 8927 return -EBUSY; 8928 } 8929 8930 /* stopping ftrace calls (just send to ftrace_stub) */ 8931 ftrace_trace_function = ftrace_stub; 8932 8933 ftrace_shutdown_sysctl(); 8934 } 8935 8936 last_ftrace_enabled = !!ftrace_enabled; 8937 return 0; 8938 } 8939 8940 static const struct ctl_table ftrace_sysctls[] = { 8941 { 8942 .procname = "ftrace_enabled", 8943 .data = &ftrace_enabled, 8944 .maxlen = sizeof(int), 8945 .mode = 0644, 8946 .proc_handler = ftrace_enable_sysctl, 8947 }, 8948 }; 8949 8950 static int __init ftrace_sysctl_init(void) 8951 { 8952 register_sysctl_init("kernel", ftrace_sysctls); 8953 return 0; 8954 } 8955 late_initcall(ftrace_sysctl_init); 8956 #endif 8957