xref: /linux/kernel/trace/ftrace.c (revision 41e0d49104dbff888ef6446ea46842fde66c0a76)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Infrastructure for profiling code inserted by 'gcc -pg'.
4  *
5  * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
6  * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com>
7  *
8  * Originally ported from the -rt patch by:
9  *   Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com>
10  *
11  * Based on code in the latency_tracer, that is:
12  *
13  *  Copyright (C) 2004-2006 Ingo Molnar
14  *  Copyright (C) 2004 Nadia Yvette Chambers
15  */
16 
17 #include <linux/stop_machine.h>
18 #include <linux/clocksource.h>
19 #include <linux/sched/task.h>
20 #include <linux/kallsyms.h>
21 #include <linux/security.h>
22 #include <linux/seq_file.h>
23 #include <linux/tracefs.h>
24 #include <linux/hardirq.h>
25 #include <linux/kthread.h>
26 #include <linux/uaccess.h>
27 #include <linux/bsearch.h>
28 #include <linux/module.h>
29 #include <linux/ftrace.h>
30 #include <linux/sysctl.h>
31 #include <linux/slab.h>
32 #include <linux/ctype.h>
33 #include <linux/sort.h>
34 #include <linux/list.h>
35 #include <linux/hash.h>
36 #include <linux/rcupdate.h>
37 #include <linux/kprobes.h>
38 
39 #include <trace/events/sched.h>
40 
41 #include <asm/sections.h>
42 #include <asm/setup.h>
43 
44 #include "ftrace_internal.h"
45 #include "trace_output.h"
46 #include "trace_stat.h"
47 
48 #define FTRACE_INVALID_FUNCTION		"__ftrace_invalid_address__"
49 
50 #define FTRACE_WARN_ON(cond)			\
51 	({					\
52 		int ___r = cond;		\
53 		if (WARN_ON(___r))		\
54 			ftrace_kill();		\
55 		___r;				\
56 	})
57 
58 #define FTRACE_WARN_ON_ONCE(cond)		\
59 	({					\
60 		int ___r = cond;		\
61 		if (WARN_ON_ONCE(___r))		\
62 			ftrace_kill();		\
63 		___r;				\
64 	})
65 
66 /* hash bits for specific function selection */
67 #define FTRACE_HASH_DEFAULT_BITS 10
68 #define FTRACE_HASH_MAX_BITS 12
69 
70 #ifdef CONFIG_DYNAMIC_FTRACE
71 #define INIT_OPS_HASH(opsname)	\
72 	.func_hash		= &opsname.local_hash,			\
73 	.local_hash.regex_lock	= __MUTEX_INITIALIZER(opsname.local_hash.regex_lock),
74 #else
75 #define INIT_OPS_HASH(opsname)
76 #endif
77 
78 enum {
79 	FTRACE_MODIFY_ENABLE_FL		= (1 << 0),
80 	FTRACE_MODIFY_MAY_SLEEP_FL	= (1 << 1),
81 };
82 
83 struct ftrace_ops ftrace_list_end __read_mostly = {
84 	.func		= ftrace_stub,
85 	.flags		= FTRACE_OPS_FL_STUB,
86 	INIT_OPS_HASH(ftrace_list_end)
87 };
88 
89 /* ftrace_enabled is a method to turn ftrace on or off */
90 int ftrace_enabled __read_mostly;
91 static int __maybe_unused last_ftrace_enabled;
92 
93 /* Current function tracing op */
94 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end;
95 /* What to set function_trace_op to */
96 static struct ftrace_ops *set_function_trace_op;
97 
98 static bool ftrace_pids_enabled(struct ftrace_ops *ops)
99 {
100 	struct trace_array *tr;
101 
102 	if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private)
103 		return false;
104 
105 	tr = ops->private;
106 
107 	return tr->function_pids != NULL || tr->function_no_pids != NULL;
108 }
109 
110 static void ftrace_update_trampoline(struct ftrace_ops *ops);
111 
112 /*
113  * ftrace_disabled is set when an anomaly is discovered.
114  * ftrace_disabled is much stronger than ftrace_enabled.
115  */
116 static int ftrace_disabled __read_mostly;
117 
118 DEFINE_MUTEX(ftrace_lock);
119 
120 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end;
121 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub;
122 struct ftrace_ops global_ops;
123 
124 /* Defined by vmlinux.lds.h see the comment above arch_ftrace_ops_list_func for details */
125 void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
126 			  struct ftrace_ops *op, struct ftrace_regs *fregs);
127 
128 static inline void ftrace_ops_init(struct ftrace_ops *ops)
129 {
130 #ifdef CONFIG_DYNAMIC_FTRACE
131 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) {
132 		mutex_init(&ops->local_hash.regex_lock);
133 		ops->func_hash = &ops->local_hash;
134 		ops->flags |= FTRACE_OPS_FL_INITIALIZED;
135 	}
136 #endif
137 }
138 
139 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip,
140 			    struct ftrace_ops *op, struct ftrace_regs *fregs)
141 {
142 	struct trace_array *tr = op->private;
143 	int pid;
144 
145 	if (tr) {
146 		pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid);
147 		if (pid == FTRACE_PID_IGNORE)
148 			return;
149 		if (pid != FTRACE_PID_TRACE &&
150 		    pid != current->pid)
151 			return;
152 	}
153 
154 	op->saved_func(ip, parent_ip, op, fregs);
155 }
156 
157 static void ftrace_sync_ipi(void *data)
158 {
159 	/* Probably not needed, but do it anyway */
160 	smp_rmb();
161 }
162 
163 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops)
164 {
165 	/*
166 	 * If this is a dynamic or RCU ops, or we force list func,
167 	 * then it needs to call the list anyway.
168 	 */
169 	if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) ||
170 	    FTRACE_FORCE_LIST_FUNC)
171 		return ftrace_ops_list_func;
172 
173 	return ftrace_ops_get_func(ops);
174 }
175 
176 static void update_ftrace_function(void)
177 {
178 	ftrace_func_t func;
179 
180 	/*
181 	 * Prepare the ftrace_ops that the arch callback will use.
182 	 * If there's only one ftrace_ops registered, the ftrace_ops_list
183 	 * will point to the ops we want.
184 	 */
185 	set_function_trace_op = rcu_dereference_protected(ftrace_ops_list,
186 						lockdep_is_held(&ftrace_lock));
187 
188 	/* If there's no ftrace_ops registered, just call the stub function */
189 	if (set_function_trace_op == &ftrace_list_end) {
190 		func = ftrace_stub;
191 
192 	/*
193 	 * If we are at the end of the list and this ops is
194 	 * recursion safe and not dynamic and the arch supports passing ops,
195 	 * then have the mcount trampoline call the function directly.
196 	 */
197 	} else if (rcu_dereference_protected(ftrace_ops_list->next,
198 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
199 		func = ftrace_ops_get_list_func(ftrace_ops_list);
200 
201 	} else {
202 		/* Just use the default ftrace_ops */
203 		set_function_trace_op = &ftrace_list_end;
204 		func = ftrace_ops_list_func;
205 	}
206 
207 	update_function_graph_func();
208 
209 	/* If there's no change, then do nothing more here */
210 	if (ftrace_trace_function == func)
211 		return;
212 
213 	/*
214 	 * If we are using the list function, it doesn't care
215 	 * about the function_trace_ops.
216 	 */
217 	if (func == ftrace_ops_list_func) {
218 		ftrace_trace_function = func;
219 		/*
220 		 * Don't even bother setting function_trace_ops,
221 		 * it would be racy to do so anyway.
222 		 */
223 		return;
224 	}
225 
226 #ifndef CONFIG_DYNAMIC_FTRACE
227 	/*
228 	 * For static tracing, we need to be a bit more careful.
229 	 * The function change takes affect immediately. Thus,
230 	 * we need to coordinate the setting of the function_trace_ops
231 	 * with the setting of the ftrace_trace_function.
232 	 *
233 	 * Set the function to the list ops, which will call the
234 	 * function we want, albeit indirectly, but it handles the
235 	 * ftrace_ops and doesn't depend on function_trace_op.
236 	 */
237 	ftrace_trace_function = ftrace_ops_list_func;
238 	/*
239 	 * Make sure all CPUs see this. Yes this is slow, but static
240 	 * tracing is slow and nasty to have enabled.
241 	 */
242 	synchronize_rcu_tasks_rude();
243 	/* Now all cpus are using the list ops. */
244 	function_trace_op = set_function_trace_op;
245 	/* Make sure the function_trace_op is visible on all CPUs */
246 	smp_wmb();
247 	/* Nasty way to force a rmb on all cpus */
248 	smp_call_function(ftrace_sync_ipi, NULL, 1);
249 	/* OK, we are all set to update the ftrace_trace_function now! */
250 #endif /* !CONFIG_DYNAMIC_FTRACE */
251 
252 	ftrace_trace_function = func;
253 }
254 
255 static void add_ftrace_ops(struct ftrace_ops __rcu **list,
256 			   struct ftrace_ops *ops)
257 {
258 	rcu_assign_pointer(ops->next, *list);
259 
260 	/*
261 	 * We are entering ops into the list but another
262 	 * CPU might be walking that list. We need to make sure
263 	 * the ops->next pointer is valid before another CPU sees
264 	 * the ops pointer included into the list.
265 	 */
266 	rcu_assign_pointer(*list, ops);
267 }
268 
269 static int remove_ftrace_ops(struct ftrace_ops __rcu **list,
270 			     struct ftrace_ops *ops)
271 {
272 	struct ftrace_ops **p;
273 
274 	/*
275 	 * If we are removing the last function, then simply point
276 	 * to the ftrace_stub.
277 	 */
278 	if (rcu_dereference_protected(*list,
279 			lockdep_is_held(&ftrace_lock)) == ops &&
280 	    rcu_dereference_protected(ops->next,
281 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
282 		*list = &ftrace_list_end;
283 		return 0;
284 	}
285 
286 	for (p = list; *p != &ftrace_list_end; p = &(*p)->next)
287 		if (*p == ops)
288 			break;
289 
290 	if (*p != ops)
291 		return -1;
292 
293 	*p = (*p)->next;
294 	return 0;
295 }
296 
297 static void ftrace_update_trampoline(struct ftrace_ops *ops);
298 
299 int __register_ftrace_function(struct ftrace_ops *ops)
300 {
301 	if (ops->flags & FTRACE_OPS_FL_DELETED)
302 		return -EINVAL;
303 
304 	if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED))
305 		return -EBUSY;
306 
307 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS
308 	/*
309 	 * If the ftrace_ops specifies SAVE_REGS, then it only can be used
310 	 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set.
311 	 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant.
312 	 */
313 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS &&
314 	    !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED))
315 		return -EINVAL;
316 
317 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)
318 		ops->flags |= FTRACE_OPS_FL_SAVE_REGS;
319 #endif
320 	if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT))
321 		return -EBUSY;
322 
323 	if (!is_kernel_core_data((unsigned long)ops))
324 		ops->flags |= FTRACE_OPS_FL_DYNAMIC;
325 
326 	add_ftrace_ops(&ftrace_ops_list, ops);
327 
328 	/* Always save the function, and reset at unregistering */
329 	ops->saved_func = ops->func;
330 
331 	if (ftrace_pids_enabled(ops))
332 		ops->func = ftrace_pid_func;
333 
334 	ftrace_update_trampoline(ops);
335 
336 	if (ftrace_enabled)
337 		update_ftrace_function();
338 
339 	return 0;
340 }
341 
342 int __unregister_ftrace_function(struct ftrace_ops *ops)
343 {
344 	int ret;
345 
346 	if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED)))
347 		return -EBUSY;
348 
349 	ret = remove_ftrace_ops(&ftrace_ops_list, ops);
350 
351 	if (ret < 0)
352 		return ret;
353 
354 	if (ftrace_enabled)
355 		update_ftrace_function();
356 
357 	ops->func = ops->saved_func;
358 
359 	return 0;
360 }
361 
362 static void ftrace_update_pid_func(void)
363 {
364 	struct ftrace_ops *op;
365 
366 	/* Only do something if we are tracing something */
367 	if (ftrace_trace_function == ftrace_stub)
368 		return;
369 
370 	do_for_each_ftrace_op(op, ftrace_ops_list) {
371 		if (op->flags & FTRACE_OPS_FL_PID) {
372 			op->func = ftrace_pids_enabled(op) ?
373 				ftrace_pid_func : op->saved_func;
374 			ftrace_update_trampoline(op);
375 		}
376 	} while_for_each_ftrace_op(op);
377 
378 	update_ftrace_function();
379 }
380 
381 #ifdef CONFIG_FUNCTION_PROFILER
382 struct ftrace_profile {
383 	struct hlist_node		node;
384 	unsigned long			ip;
385 	unsigned long			counter;
386 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
387 	unsigned long long		time;
388 	unsigned long long		time_squared;
389 #endif
390 };
391 
392 struct ftrace_profile_page {
393 	struct ftrace_profile_page	*next;
394 	unsigned long			index;
395 	struct ftrace_profile		records[];
396 };
397 
398 struct ftrace_profile_stat {
399 	atomic_t			disabled;
400 	struct hlist_head		*hash;
401 	struct ftrace_profile_page	*pages;
402 	struct ftrace_profile_page	*start;
403 	struct tracer_stat		stat;
404 };
405 
406 #define PROFILE_RECORDS_SIZE						\
407 	(PAGE_SIZE - offsetof(struct ftrace_profile_page, records))
408 
409 #define PROFILES_PER_PAGE					\
410 	(PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile))
411 
412 static int ftrace_profile_enabled __read_mostly;
413 
414 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */
415 static DEFINE_MUTEX(ftrace_profile_lock);
416 
417 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats);
418 
419 #define FTRACE_PROFILE_HASH_BITS 10
420 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS)
421 
422 static void *
423 function_stat_next(void *v, int idx)
424 {
425 	struct ftrace_profile *rec = v;
426 	struct ftrace_profile_page *pg;
427 
428 	pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK);
429 
430  again:
431 	if (idx != 0)
432 		rec++;
433 
434 	if ((void *)rec >= (void *)&pg->records[pg->index]) {
435 		pg = pg->next;
436 		if (!pg)
437 			return NULL;
438 		rec = &pg->records[0];
439 		if (!rec->counter)
440 			goto again;
441 	}
442 
443 	return rec;
444 }
445 
446 static void *function_stat_start(struct tracer_stat *trace)
447 {
448 	struct ftrace_profile_stat *stat =
449 		container_of(trace, struct ftrace_profile_stat, stat);
450 
451 	if (!stat || !stat->start)
452 		return NULL;
453 
454 	return function_stat_next(&stat->start->records[0], 0);
455 }
456 
457 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
458 /* function graph compares on total time */
459 static int function_stat_cmp(const void *p1, const void *p2)
460 {
461 	const struct ftrace_profile *a = p1;
462 	const struct ftrace_profile *b = p2;
463 
464 	if (a->time < b->time)
465 		return -1;
466 	if (a->time > b->time)
467 		return 1;
468 	else
469 		return 0;
470 }
471 #else
472 /* not function graph compares against hits */
473 static int function_stat_cmp(const void *p1, const void *p2)
474 {
475 	const struct ftrace_profile *a = p1;
476 	const struct ftrace_profile *b = p2;
477 
478 	if (a->counter < b->counter)
479 		return -1;
480 	if (a->counter > b->counter)
481 		return 1;
482 	else
483 		return 0;
484 }
485 #endif
486 
487 static int function_stat_headers(struct seq_file *m)
488 {
489 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
490 	seq_puts(m, "  Function                               "
491 		 "Hit    Time            Avg             s^2\n"
492 		    "  --------                               "
493 		 "---    ----            ---             ---\n");
494 #else
495 	seq_puts(m, "  Function                               Hit\n"
496 		    "  --------                               ---\n");
497 #endif
498 	return 0;
499 }
500 
501 static int function_stat_show(struct seq_file *m, void *v)
502 {
503 	struct ftrace_profile *rec = v;
504 	char str[KSYM_SYMBOL_LEN];
505 	int ret = 0;
506 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
507 	static struct trace_seq s;
508 	unsigned long long avg;
509 	unsigned long long stddev;
510 #endif
511 	mutex_lock(&ftrace_profile_lock);
512 
513 	/* we raced with function_profile_reset() */
514 	if (unlikely(rec->counter == 0)) {
515 		ret = -EBUSY;
516 		goto out;
517 	}
518 
519 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
520 	avg = div64_ul(rec->time, rec->counter);
521 	if (tracing_thresh && (avg < tracing_thresh))
522 		goto out;
523 #endif
524 
525 	kallsyms_lookup(rec->ip, NULL, NULL, NULL, str);
526 	seq_printf(m, "  %-30.30s  %10lu", str, rec->counter);
527 
528 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
529 	seq_puts(m, "    ");
530 
531 	/* Sample standard deviation (s^2) */
532 	if (rec->counter <= 1)
533 		stddev = 0;
534 	else {
535 		/*
536 		 * Apply Welford's method:
537 		 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2)
538 		 */
539 		stddev = rec->counter * rec->time_squared -
540 			 rec->time * rec->time;
541 
542 		/*
543 		 * Divide only 1000 for ns^2 -> us^2 conversion.
544 		 * trace_print_graph_duration will divide 1000 again.
545 		 */
546 		stddev = div64_ul(stddev,
547 				  rec->counter * (rec->counter - 1) * 1000);
548 	}
549 
550 	trace_seq_init(&s);
551 	trace_print_graph_duration(rec->time, &s);
552 	trace_seq_puts(&s, "    ");
553 	trace_print_graph_duration(avg, &s);
554 	trace_seq_puts(&s, "    ");
555 	trace_print_graph_duration(stddev, &s);
556 	trace_print_seq(m, &s);
557 #endif
558 	seq_putc(m, '\n');
559 out:
560 	mutex_unlock(&ftrace_profile_lock);
561 
562 	return ret;
563 }
564 
565 static void ftrace_profile_reset(struct ftrace_profile_stat *stat)
566 {
567 	struct ftrace_profile_page *pg;
568 
569 	pg = stat->pages = stat->start;
570 
571 	while (pg) {
572 		memset(pg->records, 0, PROFILE_RECORDS_SIZE);
573 		pg->index = 0;
574 		pg = pg->next;
575 	}
576 
577 	memset(stat->hash, 0,
578 	       FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head));
579 }
580 
581 static int ftrace_profile_pages_init(struct ftrace_profile_stat *stat)
582 {
583 	struct ftrace_profile_page *pg;
584 	int functions;
585 	int pages;
586 	int i;
587 
588 	/* If we already allocated, do nothing */
589 	if (stat->pages)
590 		return 0;
591 
592 	stat->pages = (void *)get_zeroed_page(GFP_KERNEL);
593 	if (!stat->pages)
594 		return -ENOMEM;
595 
596 #ifdef CONFIG_DYNAMIC_FTRACE
597 	functions = ftrace_update_tot_cnt;
598 #else
599 	/*
600 	 * We do not know the number of functions that exist because
601 	 * dynamic tracing is what counts them. With past experience
602 	 * we have around 20K functions. That should be more than enough.
603 	 * It is highly unlikely we will execute every function in
604 	 * the kernel.
605 	 */
606 	functions = 20000;
607 #endif
608 
609 	pg = stat->start = stat->pages;
610 
611 	pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE);
612 
613 	for (i = 1; i < pages; i++) {
614 		pg->next = (void *)get_zeroed_page(GFP_KERNEL);
615 		if (!pg->next)
616 			goto out_free;
617 		pg = pg->next;
618 	}
619 
620 	return 0;
621 
622  out_free:
623 	pg = stat->start;
624 	while (pg) {
625 		unsigned long tmp = (unsigned long)pg;
626 
627 		pg = pg->next;
628 		free_page(tmp);
629 	}
630 
631 	stat->pages = NULL;
632 	stat->start = NULL;
633 
634 	return -ENOMEM;
635 }
636 
637 static int ftrace_profile_init_cpu(int cpu)
638 {
639 	struct ftrace_profile_stat *stat;
640 	int size;
641 
642 	stat = &per_cpu(ftrace_profile_stats, cpu);
643 
644 	if (stat->hash) {
645 		/* If the profile is already created, simply reset it */
646 		ftrace_profile_reset(stat);
647 		return 0;
648 	}
649 
650 	/*
651 	 * We are profiling all functions, but usually only a few thousand
652 	 * functions are hit. We'll make a hash of 1024 items.
653 	 */
654 	size = FTRACE_PROFILE_HASH_SIZE;
655 
656 	stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL);
657 
658 	if (!stat->hash)
659 		return -ENOMEM;
660 
661 	/* Preallocate the function profiling pages */
662 	if (ftrace_profile_pages_init(stat) < 0) {
663 		kfree(stat->hash);
664 		stat->hash = NULL;
665 		return -ENOMEM;
666 	}
667 
668 	return 0;
669 }
670 
671 static int ftrace_profile_init(void)
672 {
673 	int cpu;
674 	int ret = 0;
675 
676 	for_each_possible_cpu(cpu) {
677 		ret = ftrace_profile_init_cpu(cpu);
678 		if (ret)
679 			break;
680 	}
681 
682 	return ret;
683 }
684 
685 /* interrupts must be disabled */
686 static struct ftrace_profile *
687 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip)
688 {
689 	struct ftrace_profile *rec;
690 	struct hlist_head *hhd;
691 	unsigned long key;
692 
693 	key = hash_long(ip, FTRACE_PROFILE_HASH_BITS);
694 	hhd = &stat->hash[key];
695 
696 	if (hlist_empty(hhd))
697 		return NULL;
698 
699 	hlist_for_each_entry_rcu_notrace(rec, hhd, node) {
700 		if (rec->ip == ip)
701 			return rec;
702 	}
703 
704 	return NULL;
705 }
706 
707 static void ftrace_add_profile(struct ftrace_profile_stat *stat,
708 			       struct ftrace_profile *rec)
709 {
710 	unsigned long key;
711 
712 	key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS);
713 	hlist_add_head_rcu(&rec->node, &stat->hash[key]);
714 }
715 
716 /*
717  * The memory is already allocated, this simply finds a new record to use.
718  */
719 static struct ftrace_profile *
720 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip)
721 {
722 	struct ftrace_profile *rec = NULL;
723 
724 	/* prevent recursion (from NMIs) */
725 	if (atomic_inc_return(&stat->disabled) != 1)
726 		goto out;
727 
728 	/*
729 	 * Try to find the function again since an NMI
730 	 * could have added it
731 	 */
732 	rec = ftrace_find_profiled_func(stat, ip);
733 	if (rec)
734 		goto out;
735 
736 	if (stat->pages->index == PROFILES_PER_PAGE) {
737 		if (!stat->pages->next)
738 			goto out;
739 		stat->pages = stat->pages->next;
740 	}
741 
742 	rec = &stat->pages->records[stat->pages->index++];
743 	rec->ip = ip;
744 	ftrace_add_profile(stat, rec);
745 
746  out:
747 	atomic_dec(&stat->disabled);
748 
749 	return rec;
750 }
751 
752 static void
753 function_profile_call(unsigned long ip, unsigned long parent_ip,
754 		      struct ftrace_ops *ops, struct ftrace_regs *fregs)
755 {
756 	struct ftrace_profile_stat *stat;
757 	struct ftrace_profile *rec;
758 	unsigned long flags;
759 
760 	if (!ftrace_profile_enabled)
761 		return;
762 
763 	local_irq_save(flags);
764 
765 	stat = this_cpu_ptr(&ftrace_profile_stats);
766 	if (!stat->hash || !ftrace_profile_enabled)
767 		goto out;
768 
769 	rec = ftrace_find_profiled_func(stat, ip);
770 	if (!rec) {
771 		rec = ftrace_profile_alloc(stat, ip);
772 		if (!rec)
773 			goto out;
774 	}
775 
776 	rec->counter++;
777  out:
778 	local_irq_restore(flags);
779 }
780 
781 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
782 static bool fgraph_graph_time = true;
783 
784 void ftrace_graph_graph_time_control(bool enable)
785 {
786 	fgraph_graph_time = enable;
787 }
788 
789 static int profile_graph_entry(struct ftrace_graph_ent *trace)
790 {
791 	struct ftrace_ret_stack *ret_stack;
792 
793 	function_profile_call(trace->func, 0, NULL, NULL);
794 
795 	/* If function graph is shutting down, ret_stack can be NULL */
796 	if (!current->ret_stack)
797 		return 0;
798 
799 	ret_stack = ftrace_graph_get_ret_stack(current, 0);
800 	if (ret_stack)
801 		ret_stack->subtime = 0;
802 
803 	return 1;
804 }
805 
806 static void profile_graph_return(struct ftrace_graph_ret *trace)
807 {
808 	struct ftrace_ret_stack *ret_stack;
809 	struct ftrace_profile_stat *stat;
810 	unsigned long long calltime;
811 	struct ftrace_profile *rec;
812 	unsigned long flags;
813 
814 	local_irq_save(flags);
815 	stat = this_cpu_ptr(&ftrace_profile_stats);
816 	if (!stat->hash || !ftrace_profile_enabled)
817 		goto out;
818 
819 	/* If the calltime was zero'd ignore it */
820 	if (!trace->calltime)
821 		goto out;
822 
823 	calltime = trace->rettime - trace->calltime;
824 
825 	if (!fgraph_graph_time) {
826 
827 		/* Append this call time to the parent time to subtract */
828 		ret_stack = ftrace_graph_get_ret_stack(current, 1);
829 		if (ret_stack)
830 			ret_stack->subtime += calltime;
831 
832 		ret_stack = ftrace_graph_get_ret_stack(current, 0);
833 		if (ret_stack && ret_stack->subtime < calltime)
834 			calltime -= ret_stack->subtime;
835 		else
836 			calltime = 0;
837 	}
838 
839 	rec = ftrace_find_profiled_func(stat, trace->func);
840 	if (rec) {
841 		rec->time += calltime;
842 		rec->time_squared += calltime * calltime;
843 	}
844 
845  out:
846 	local_irq_restore(flags);
847 }
848 
849 static struct fgraph_ops fprofiler_ops = {
850 	.entryfunc = &profile_graph_entry,
851 	.retfunc = &profile_graph_return,
852 };
853 
854 static int register_ftrace_profiler(void)
855 {
856 	return register_ftrace_graph(&fprofiler_ops);
857 }
858 
859 static void unregister_ftrace_profiler(void)
860 {
861 	unregister_ftrace_graph(&fprofiler_ops);
862 }
863 #else
864 static struct ftrace_ops ftrace_profile_ops __read_mostly = {
865 	.func		= function_profile_call,
866 	.flags		= FTRACE_OPS_FL_INITIALIZED,
867 	INIT_OPS_HASH(ftrace_profile_ops)
868 };
869 
870 static int register_ftrace_profiler(void)
871 {
872 	return register_ftrace_function(&ftrace_profile_ops);
873 }
874 
875 static void unregister_ftrace_profiler(void)
876 {
877 	unregister_ftrace_function(&ftrace_profile_ops);
878 }
879 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
880 
881 static ssize_t
882 ftrace_profile_write(struct file *filp, const char __user *ubuf,
883 		     size_t cnt, loff_t *ppos)
884 {
885 	unsigned long val;
886 	int ret;
887 
888 	ret = kstrtoul_from_user(ubuf, cnt, 10, &val);
889 	if (ret)
890 		return ret;
891 
892 	val = !!val;
893 
894 	mutex_lock(&ftrace_profile_lock);
895 	if (ftrace_profile_enabled ^ val) {
896 		if (val) {
897 			ret = ftrace_profile_init();
898 			if (ret < 0) {
899 				cnt = ret;
900 				goto out;
901 			}
902 
903 			ret = register_ftrace_profiler();
904 			if (ret < 0) {
905 				cnt = ret;
906 				goto out;
907 			}
908 			ftrace_profile_enabled = 1;
909 		} else {
910 			ftrace_profile_enabled = 0;
911 			/*
912 			 * unregister_ftrace_profiler calls stop_machine
913 			 * so this acts like an synchronize_rcu.
914 			 */
915 			unregister_ftrace_profiler();
916 		}
917 	}
918  out:
919 	mutex_unlock(&ftrace_profile_lock);
920 
921 	*ppos += cnt;
922 
923 	return cnt;
924 }
925 
926 static ssize_t
927 ftrace_profile_read(struct file *filp, char __user *ubuf,
928 		     size_t cnt, loff_t *ppos)
929 {
930 	char buf[64];		/* big enough to hold a number */
931 	int r;
932 
933 	r = sprintf(buf, "%u\n", ftrace_profile_enabled);
934 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
935 }
936 
937 static const struct file_operations ftrace_profile_fops = {
938 	.open		= tracing_open_generic,
939 	.read		= ftrace_profile_read,
940 	.write		= ftrace_profile_write,
941 	.llseek		= default_llseek,
942 };
943 
944 /* used to initialize the real stat files */
945 static struct tracer_stat function_stats __initdata = {
946 	.name		= "functions",
947 	.stat_start	= function_stat_start,
948 	.stat_next	= function_stat_next,
949 	.stat_cmp	= function_stat_cmp,
950 	.stat_headers	= function_stat_headers,
951 	.stat_show	= function_stat_show
952 };
953 
954 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
955 {
956 	struct ftrace_profile_stat *stat;
957 	char *name;
958 	int ret;
959 	int cpu;
960 
961 	for_each_possible_cpu(cpu) {
962 		stat = &per_cpu(ftrace_profile_stats, cpu);
963 
964 		name = kasprintf(GFP_KERNEL, "function%d", cpu);
965 		if (!name) {
966 			/*
967 			 * The files created are permanent, if something happens
968 			 * we still do not free memory.
969 			 */
970 			WARN(1,
971 			     "Could not allocate stat file for cpu %d\n",
972 			     cpu);
973 			return;
974 		}
975 		stat->stat = function_stats;
976 		stat->stat.name = name;
977 		ret = register_stat_tracer(&stat->stat);
978 		if (ret) {
979 			WARN(1,
980 			     "Could not register function stat for cpu %d\n",
981 			     cpu);
982 			kfree(name);
983 			return;
984 		}
985 	}
986 
987 	trace_create_file("function_profile_enabled",
988 			  TRACE_MODE_WRITE, d_tracer, NULL,
989 			  &ftrace_profile_fops);
990 }
991 
992 #else /* CONFIG_FUNCTION_PROFILER */
993 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
994 {
995 }
996 #endif /* CONFIG_FUNCTION_PROFILER */
997 
998 #ifdef CONFIG_DYNAMIC_FTRACE
999 
1000 static struct ftrace_ops *removed_ops;
1001 
1002 /*
1003  * Set when doing a global update, like enabling all recs or disabling them.
1004  * It is not set when just updating a single ftrace_ops.
1005  */
1006 static bool update_all_ops;
1007 
1008 #ifndef CONFIG_FTRACE_MCOUNT_RECORD
1009 # error Dynamic ftrace depends on MCOUNT_RECORD
1010 #endif
1011 
1012 struct ftrace_func_probe {
1013 	struct ftrace_probe_ops	*probe_ops;
1014 	struct ftrace_ops	ops;
1015 	struct trace_array	*tr;
1016 	struct list_head	list;
1017 	void			*data;
1018 	int			ref;
1019 };
1020 
1021 /*
1022  * We make these constant because no one should touch them,
1023  * but they are used as the default "empty hash", to avoid allocating
1024  * it all the time. These are in a read only section such that if
1025  * anyone does try to modify it, it will cause an exception.
1026  */
1027 static const struct hlist_head empty_buckets[1];
1028 static const struct ftrace_hash empty_hash = {
1029 	.buckets = (struct hlist_head *)empty_buckets,
1030 };
1031 #define EMPTY_HASH	((struct ftrace_hash *)&empty_hash)
1032 
1033 struct ftrace_ops global_ops = {
1034 	.func				= ftrace_stub,
1035 	.local_hash.notrace_hash	= EMPTY_HASH,
1036 	.local_hash.filter_hash		= EMPTY_HASH,
1037 	INIT_OPS_HASH(global_ops)
1038 	.flags				= FTRACE_OPS_FL_INITIALIZED |
1039 					  FTRACE_OPS_FL_PID,
1040 };
1041 
1042 /*
1043  * Used by the stack unwinder to know about dynamic ftrace trampolines.
1044  */
1045 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr)
1046 {
1047 	struct ftrace_ops *op = NULL;
1048 
1049 	/*
1050 	 * Some of the ops may be dynamically allocated,
1051 	 * they are freed after a synchronize_rcu().
1052 	 */
1053 	preempt_disable_notrace();
1054 
1055 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1056 		/*
1057 		 * This is to check for dynamically allocated trampolines.
1058 		 * Trampolines that are in kernel text will have
1059 		 * core_kernel_text() return true.
1060 		 */
1061 		if (op->trampoline && op->trampoline_size)
1062 			if (addr >= op->trampoline &&
1063 			    addr < op->trampoline + op->trampoline_size) {
1064 				preempt_enable_notrace();
1065 				return op;
1066 			}
1067 	} while_for_each_ftrace_op(op);
1068 	preempt_enable_notrace();
1069 
1070 	return NULL;
1071 }
1072 
1073 /*
1074  * This is used by __kernel_text_address() to return true if the
1075  * address is on a dynamically allocated trampoline that would
1076  * not return true for either core_kernel_text() or
1077  * is_module_text_address().
1078  */
1079 bool is_ftrace_trampoline(unsigned long addr)
1080 {
1081 	return ftrace_ops_trampoline(addr) != NULL;
1082 }
1083 
1084 struct ftrace_page {
1085 	struct ftrace_page	*next;
1086 	struct dyn_ftrace	*records;
1087 	int			index;
1088 	int			order;
1089 };
1090 
1091 #define ENTRY_SIZE sizeof(struct dyn_ftrace)
1092 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE)
1093 
1094 static struct ftrace_page	*ftrace_pages_start;
1095 static struct ftrace_page	*ftrace_pages;
1096 
1097 static __always_inline unsigned long
1098 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip)
1099 {
1100 	if (hash->size_bits > 0)
1101 		return hash_long(ip, hash->size_bits);
1102 
1103 	return 0;
1104 }
1105 
1106 /* Only use this function if ftrace_hash_empty() has already been tested */
1107 static __always_inline struct ftrace_func_entry *
1108 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1109 {
1110 	unsigned long key;
1111 	struct ftrace_func_entry *entry;
1112 	struct hlist_head *hhd;
1113 
1114 	key = ftrace_hash_key(hash, ip);
1115 	hhd = &hash->buckets[key];
1116 
1117 	hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) {
1118 		if (entry->ip == ip)
1119 			return entry;
1120 	}
1121 	return NULL;
1122 }
1123 
1124 /**
1125  * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash
1126  * @hash: The hash to look at
1127  * @ip: The instruction pointer to test
1128  *
1129  * Search a given @hash to see if a given instruction pointer (@ip)
1130  * exists in it.
1131  *
1132  * Returns the entry that holds the @ip if found. NULL otherwise.
1133  */
1134 struct ftrace_func_entry *
1135 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1136 {
1137 	if (ftrace_hash_empty(hash))
1138 		return NULL;
1139 
1140 	return __ftrace_lookup_ip(hash, ip);
1141 }
1142 
1143 static void __add_hash_entry(struct ftrace_hash *hash,
1144 			     struct ftrace_func_entry *entry)
1145 {
1146 	struct hlist_head *hhd;
1147 	unsigned long key;
1148 
1149 	key = ftrace_hash_key(hash, entry->ip);
1150 	hhd = &hash->buckets[key];
1151 	hlist_add_head(&entry->hlist, hhd);
1152 	hash->count++;
1153 }
1154 
1155 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip)
1156 {
1157 	struct ftrace_func_entry *entry;
1158 
1159 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1160 	if (!entry)
1161 		return -ENOMEM;
1162 
1163 	entry->ip = ip;
1164 	__add_hash_entry(hash, entry);
1165 
1166 	return 0;
1167 }
1168 
1169 static void
1170 free_hash_entry(struct ftrace_hash *hash,
1171 		  struct ftrace_func_entry *entry)
1172 {
1173 	hlist_del(&entry->hlist);
1174 	kfree(entry);
1175 	hash->count--;
1176 }
1177 
1178 static void
1179 remove_hash_entry(struct ftrace_hash *hash,
1180 		  struct ftrace_func_entry *entry)
1181 {
1182 	hlist_del_rcu(&entry->hlist);
1183 	hash->count--;
1184 }
1185 
1186 static void ftrace_hash_clear(struct ftrace_hash *hash)
1187 {
1188 	struct hlist_head *hhd;
1189 	struct hlist_node *tn;
1190 	struct ftrace_func_entry *entry;
1191 	int size = 1 << hash->size_bits;
1192 	int i;
1193 
1194 	if (!hash->count)
1195 		return;
1196 
1197 	for (i = 0; i < size; i++) {
1198 		hhd = &hash->buckets[i];
1199 		hlist_for_each_entry_safe(entry, tn, hhd, hlist)
1200 			free_hash_entry(hash, entry);
1201 	}
1202 	FTRACE_WARN_ON(hash->count);
1203 }
1204 
1205 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod)
1206 {
1207 	list_del(&ftrace_mod->list);
1208 	kfree(ftrace_mod->module);
1209 	kfree(ftrace_mod->func);
1210 	kfree(ftrace_mod);
1211 }
1212 
1213 static void clear_ftrace_mod_list(struct list_head *head)
1214 {
1215 	struct ftrace_mod_load *p, *n;
1216 
1217 	/* stack tracer isn't supported yet */
1218 	if (!head)
1219 		return;
1220 
1221 	mutex_lock(&ftrace_lock);
1222 	list_for_each_entry_safe(p, n, head, list)
1223 		free_ftrace_mod(p);
1224 	mutex_unlock(&ftrace_lock);
1225 }
1226 
1227 static void free_ftrace_hash(struct ftrace_hash *hash)
1228 {
1229 	if (!hash || hash == EMPTY_HASH)
1230 		return;
1231 	ftrace_hash_clear(hash);
1232 	kfree(hash->buckets);
1233 	kfree(hash);
1234 }
1235 
1236 static void __free_ftrace_hash_rcu(struct rcu_head *rcu)
1237 {
1238 	struct ftrace_hash *hash;
1239 
1240 	hash = container_of(rcu, struct ftrace_hash, rcu);
1241 	free_ftrace_hash(hash);
1242 }
1243 
1244 static void free_ftrace_hash_rcu(struct ftrace_hash *hash)
1245 {
1246 	if (!hash || hash == EMPTY_HASH)
1247 		return;
1248 	call_rcu(&hash->rcu, __free_ftrace_hash_rcu);
1249 }
1250 
1251 void ftrace_free_filter(struct ftrace_ops *ops)
1252 {
1253 	ftrace_ops_init(ops);
1254 	free_ftrace_hash(ops->func_hash->filter_hash);
1255 	free_ftrace_hash(ops->func_hash->notrace_hash);
1256 }
1257 
1258 static struct ftrace_hash *alloc_ftrace_hash(int size_bits)
1259 {
1260 	struct ftrace_hash *hash;
1261 	int size;
1262 
1263 	hash = kzalloc(sizeof(*hash), GFP_KERNEL);
1264 	if (!hash)
1265 		return NULL;
1266 
1267 	size = 1 << size_bits;
1268 	hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL);
1269 
1270 	if (!hash->buckets) {
1271 		kfree(hash);
1272 		return NULL;
1273 	}
1274 
1275 	hash->size_bits = size_bits;
1276 
1277 	return hash;
1278 }
1279 
1280 
1281 static int ftrace_add_mod(struct trace_array *tr,
1282 			  const char *func, const char *module,
1283 			  int enable)
1284 {
1285 	struct ftrace_mod_load *ftrace_mod;
1286 	struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace;
1287 
1288 	ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL);
1289 	if (!ftrace_mod)
1290 		return -ENOMEM;
1291 
1292 	INIT_LIST_HEAD(&ftrace_mod->list);
1293 	ftrace_mod->func = kstrdup(func, GFP_KERNEL);
1294 	ftrace_mod->module = kstrdup(module, GFP_KERNEL);
1295 	ftrace_mod->enable = enable;
1296 
1297 	if (!ftrace_mod->func || !ftrace_mod->module)
1298 		goto out_free;
1299 
1300 	list_add(&ftrace_mod->list, mod_head);
1301 
1302 	return 0;
1303 
1304  out_free:
1305 	free_ftrace_mod(ftrace_mod);
1306 
1307 	return -ENOMEM;
1308 }
1309 
1310 static struct ftrace_hash *
1311 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash)
1312 {
1313 	struct ftrace_func_entry *entry;
1314 	struct ftrace_hash *new_hash;
1315 	int size;
1316 	int ret;
1317 	int i;
1318 
1319 	new_hash = alloc_ftrace_hash(size_bits);
1320 	if (!new_hash)
1321 		return NULL;
1322 
1323 	if (hash)
1324 		new_hash->flags = hash->flags;
1325 
1326 	/* Empty hash? */
1327 	if (ftrace_hash_empty(hash))
1328 		return new_hash;
1329 
1330 	size = 1 << hash->size_bits;
1331 	for (i = 0; i < size; i++) {
1332 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
1333 			ret = add_hash_entry(new_hash, entry->ip);
1334 			if (ret < 0)
1335 				goto free_hash;
1336 		}
1337 	}
1338 
1339 	FTRACE_WARN_ON(new_hash->count != hash->count);
1340 
1341 	return new_hash;
1342 
1343  free_hash:
1344 	free_ftrace_hash(new_hash);
1345 	return NULL;
1346 }
1347 
1348 static void
1349 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash);
1350 static void
1351 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash);
1352 
1353 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1354 				       struct ftrace_hash *new_hash);
1355 
1356 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size)
1357 {
1358 	struct ftrace_func_entry *entry;
1359 	struct ftrace_hash *new_hash;
1360 	struct hlist_head *hhd;
1361 	struct hlist_node *tn;
1362 	int bits = 0;
1363 	int i;
1364 
1365 	/*
1366 	 * Use around half the size (max bit of it), but
1367 	 * a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits).
1368 	 */
1369 	bits = fls(size / 2);
1370 
1371 	/* Don't allocate too much */
1372 	if (bits > FTRACE_HASH_MAX_BITS)
1373 		bits = FTRACE_HASH_MAX_BITS;
1374 
1375 	new_hash = alloc_ftrace_hash(bits);
1376 	if (!new_hash)
1377 		return NULL;
1378 
1379 	new_hash->flags = src->flags;
1380 
1381 	size = 1 << src->size_bits;
1382 	for (i = 0; i < size; i++) {
1383 		hhd = &src->buckets[i];
1384 		hlist_for_each_entry_safe(entry, tn, hhd, hlist) {
1385 			remove_hash_entry(src, entry);
1386 			__add_hash_entry(new_hash, entry);
1387 		}
1388 	}
1389 	return new_hash;
1390 }
1391 
1392 static struct ftrace_hash *
1393 __ftrace_hash_move(struct ftrace_hash *src)
1394 {
1395 	int size = src->count;
1396 
1397 	/*
1398 	 * If the new source is empty, just return the empty_hash.
1399 	 */
1400 	if (ftrace_hash_empty(src))
1401 		return EMPTY_HASH;
1402 
1403 	return dup_hash(src, size);
1404 }
1405 
1406 static int
1407 ftrace_hash_move(struct ftrace_ops *ops, int enable,
1408 		 struct ftrace_hash **dst, struct ftrace_hash *src)
1409 {
1410 	struct ftrace_hash *new_hash;
1411 	int ret;
1412 
1413 	/* Reject setting notrace hash on IPMODIFY ftrace_ops */
1414 	if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable)
1415 		return -EINVAL;
1416 
1417 	new_hash = __ftrace_hash_move(src);
1418 	if (!new_hash)
1419 		return -ENOMEM;
1420 
1421 	/* Make sure this can be applied if it is IPMODIFY ftrace_ops */
1422 	if (enable) {
1423 		/* IPMODIFY should be updated only when filter_hash updating */
1424 		ret = ftrace_hash_ipmodify_update(ops, new_hash);
1425 		if (ret < 0) {
1426 			free_ftrace_hash(new_hash);
1427 			return ret;
1428 		}
1429 	}
1430 
1431 	/*
1432 	 * Remove the current set, update the hash and add
1433 	 * them back.
1434 	 */
1435 	ftrace_hash_rec_disable_modify(ops, enable);
1436 
1437 	rcu_assign_pointer(*dst, new_hash);
1438 
1439 	ftrace_hash_rec_enable_modify(ops, enable);
1440 
1441 	return 0;
1442 }
1443 
1444 static bool hash_contains_ip(unsigned long ip,
1445 			     struct ftrace_ops_hash *hash)
1446 {
1447 	/*
1448 	 * The function record is a match if it exists in the filter
1449 	 * hash and not in the notrace hash. Note, an empty hash is
1450 	 * considered a match for the filter hash, but an empty
1451 	 * notrace hash is considered not in the notrace hash.
1452 	 */
1453 	return (ftrace_hash_empty(hash->filter_hash) ||
1454 		__ftrace_lookup_ip(hash->filter_hash, ip)) &&
1455 		(ftrace_hash_empty(hash->notrace_hash) ||
1456 		 !__ftrace_lookup_ip(hash->notrace_hash, ip));
1457 }
1458 
1459 /*
1460  * Test the hashes for this ops to see if we want to call
1461  * the ops->func or not.
1462  *
1463  * It's a match if the ip is in the ops->filter_hash or
1464  * the filter_hash does not exist or is empty,
1465  *  AND
1466  * the ip is not in the ops->notrace_hash.
1467  *
1468  * This needs to be called with preemption disabled as
1469  * the hashes are freed with call_rcu().
1470  */
1471 int
1472 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs)
1473 {
1474 	struct ftrace_ops_hash hash;
1475 	int ret;
1476 
1477 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
1478 	/*
1479 	 * There's a small race when adding ops that the ftrace handler
1480 	 * that wants regs, may be called without them. We can not
1481 	 * allow that handler to be called if regs is NULL.
1482 	 */
1483 	if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS))
1484 		return 0;
1485 #endif
1486 
1487 	rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash);
1488 	rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash);
1489 
1490 	if (hash_contains_ip(ip, &hash))
1491 		ret = 1;
1492 	else
1493 		ret = 0;
1494 
1495 	return ret;
1496 }
1497 
1498 /*
1499  * This is a double for. Do not use 'break' to break out of the loop,
1500  * you must use a goto.
1501  */
1502 #define do_for_each_ftrace_rec(pg, rec)					\
1503 	for (pg = ftrace_pages_start; pg; pg = pg->next) {		\
1504 		int _____i;						\
1505 		for (_____i = 0; _____i < pg->index; _____i++) {	\
1506 			rec = &pg->records[_____i];
1507 
1508 #define while_for_each_ftrace_rec()		\
1509 		}				\
1510 	}
1511 
1512 
1513 static int ftrace_cmp_recs(const void *a, const void *b)
1514 {
1515 	const struct dyn_ftrace *key = a;
1516 	const struct dyn_ftrace *rec = b;
1517 
1518 	if (key->flags < rec->ip)
1519 		return -1;
1520 	if (key->ip >= rec->ip + MCOUNT_INSN_SIZE)
1521 		return 1;
1522 	return 0;
1523 }
1524 
1525 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end)
1526 {
1527 	struct ftrace_page *pg;
1528 	struct dyn_ftrace *rec = NULL;
1529 	struct dyn_ftrace key;
1530 
1531 	key.ip = start;
1532 	key.flags = end;	/* overload flags, as it is unsigned long */
1533 
1534 	for (pg = ftrace_pages_start; pg; pg = pg->next) {
1535 		if (end < pg->records[0].ip ||
1536 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
1537 			continue;
1538 		rec = bsearch(&key, pg->records, pg->index,
1539 			      sizeof(struct dyn_ftrace),
1540 			      ftrace_cmp_recs);
1541 		if (rec)
1542 			break;
1543 	}
1544 	return rec;
1545 }
1546 
1547 /**
1548  * ftrace_location_range - return the first address of a traced location
1549  *	if it touches the given ip range
1550  * @start: start of range to search.
1551  * @end: end of range to search (inclusive). @end points to the last byte
1552  *	to check.
1553  *
1554  * Returns rec->ip if the related ftrace location is a least partly within
1555  * the given address range. That is, the first address of the instruction
1556  * that is either a NOP or call to the function tracer. It checks the ftrace
1557  * internal tables to determine if the address belongs or not.
1558  */
1559 unsigned long ftrace_location_range(unsigned long start, unsigned long end)
1560 {
1561 	struct dyn_ftrace *rec;
1562 
1563 	rec = lookup_rec(start, end);
1564 	if (rec)
1565 		return rec->ip;
1566 
1567 	return 0;
1568 }
1569 
1570 /**
1571  * ftrace_location - return the ftrace location
1572  * @ip: the instruction pointer to check
1573  *
1574  * If @ip matches the ftrace location, return @ip.
1575  * If @ip matches sym+0, return sym's ftrace location.
1576  * Otherwise, return 0.
1577  */
1578 unsigned long ftrace_location(unsigned long ip)
1579 {
1580 	struct dyn_ftrace *rec;
1581 	unsigned long offset;
1582 	unsigned long size;
1583 
1584 	rec = lookup_rec(ip, ip);
1585 	if (!rec) {
1586 		if (!kallsyms_lookup_size_offset(ip, &size, &offset))
1587 			goto out;
1588 
1589 		/* map sym+0 to __fentry__ */
1590 		if (!offset)
1591 			rec = lookup_rec(ip, ip + size - 1);
1592 	}
1593 
1594 	if (rec)
1595 		return rec->ip;
1596 
1597 out:
1598 	return 0;
1599 }
1600 
1601 /**
1602  * ftrace_text_reserved - return true if range contains an ftrace location
1603  * @start: start of range to search
1604  * @end: end of range to search (inclusive). @end points to the last byte to check.
1605  *
1606  * Returns 1 if @start and @end contains a ftrace location.
1607  * That is, the instruction that is either a NOP or call to
1608  * the function tracer. It checks the ftrace internal tables to
1609  * determine if the address belongs or not.
1610  */
1611 int ftrace_text_reserved(const void *start, const void *end)
1612 {
1613 	unsigned long ret;
1614 
1615 	ret = ftrace_location_range((unsigned long)start,
1616 				    (unsigned long)end);
1617 
1618 	return (int)!!ret;
1619 }
1620 
1621 /* Test if ops registered to this rec needs regs */
1622 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec)
1623 {
1624 	struct ftrace_ops *ops;
1625 	bool keep_regs = false;
1626 
1627 	for (ops = ftrace_ops_list;
1628 	     ops != &ftrace_list_end; ops = ops->next) {
1629 		/* pass rec in as regs to have non-NULL val */
1630 		if (ftrace_ops_test(ops, rec->ip, rec)) {
1631 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1632 				keep_regs = true;
1633 				break;
1634 			}
1635 		}
1636 	}
1637 
1638 	return  keep_regs;
1639 }
1640 
1641 static struct ftrace_ops *
1642 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec);
1643 static struct ftrace_ops *
1644 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude);
1645 static struct ftrace_ops *
1646 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops);
1647 
1648 static bool skip_record(struct dyn_ftrace *rec)
1649 {
1650 	/*
1651 	 * At boot up, weak functions are set to disable. Function tracing
1652 	 * can be enabled before they are, and they still need to be disabled now.
1653 	 * If the record is disabled, still continue if it is marked as already
1654 	 * enabled (this is needed to keep the accounting working).
1655 	 */
1656 	return rec->flags & FTRACE_FL_DISABLED &&
1657 		!(rec->flags & FTRACE_FL_ENABLED);
1658 }
1659 
1660 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops,
1661 				     int filter_hash,
1662 				     bool inc)
1663 {
1664 	struct ftrace_hash *hash;
1665 	struct ftrace_hash *other_hash;
1666 	struct ftrace_page *pg;
1667 	struct dyn_ftrace *rec;
1668 	bool update = false;
1669 	int count = 0;
1670 	int all = false;
1671 
1672 	/* Only update if the ops has been registered */
1673 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1674 		return false;
1675 
1676 	/*
1677 	 * In the filter_hash case:
1678 	 *   If the count is zero, we update all records.
1679 	 *   Otherwise we just update the items in the hash.
1680 	 *
1681 	 * In the notrace_hash case:
1682 	 *   We enable the update in the hash.
1683 	 *   As disabling notrace means enabling the tracing,
1684 	 *   and enabling notrace means disabling, the inc variable
1685 	 *   gets inversed.
1686 	 */
1687 	if (filter_hash) {
1688 		hash = ops->func_hash->filter_hash;
1689 		other_hash = ops->func_hash->notrace_hash;
1690 		if (ftrace_hash_empty(hash))
1691 			all = true;
1692 	} else {
1693 		inc = !inc;
1694 		hash = ops->func_hash->notrace_hash;
1695 		other_hash = ops->func_hash->filter_hash;
1696 		/*
1697 		 * If the notrace hash has no items,
1698 		 * then there's nothing to do.
1699 		 */
1700 		if (ftrace_hash_empty(hash))
1701 			return false;
1702 	}
1703 
1704 	do_for_each_ftrace_rec(pg, rec) {
1705 		int in_other_hash = 0;
1706 		int in_hash = 0;
1707 		int match = 0;
1708 
1709 		if (skip_record(rec))
1710 			continue;
1711 
1712 		if (all) {
1713 			/*
1714 			 * Only the filter_hash affects all records.
1715 			 * Update if the record is not in the notrace hash.
1716 			 */
1717 			if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip))
1718 				match = 1;
1719 		} else {
1720 			in_hash = !!ftrace_lookup_ip(hash, rec->ip);
1721 			in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip);
1722 
1723 			/*
1724 			 * If filter_hash is set, we want to match all functions
1725 			 * that are in the hash but not in the other hash.
1726 			 *
1727 			 * If filter_hash is not set, then we are decrementing.
1728 			 * That means we match anything that is in the hash
1729 			 * and also in the other_hash. That is, we need to turn
1730 			 * off functions in the other hash because they are disabled
1731 			 * by this hash.
1732 			 */
1733 			if (filter_hash && in_hash && !in_other_hash)
1734 				match = 1;
1735 			else if (!filter_hash && in_hash &&
1736 				 (in_other_hash || ftrace_hash_empty(other_hash)))
1737 				match = 1;
1738 		}
1739 		if (!match)
1740 			continue;
1741 
1742 		if (inc) {
1743 			rec->flags++;
1744 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX))
1745 				return false;
1746 
1747 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1748 				rec->flags |= FTRACE_FL_DIRECT;
1749 
1750 			/*
1751 			 * If there's only a single callback registered to a
1752 			 * function, and the ops has a trampoline registered
1753 			 * for it, then we can call it directly.
1754 			 */
1755 			if (ftrace_rec_count(rec) == 1 && ops->trampoline)
1756 				rec->flags |= FTRACE_FL_TRAMP;
1757 			else
1758 				/*
1759 				 * If we are adding another function callback
1760 				 * to this function, and the previous had a
1761 				 * custom trampoline in use, then we need to go
1762 				 * back to the default trampoline.
1763 				 */
1764 				rec->flags &= ~FTRACE_FL_TRAMP;
1765 
1766 			/*
1767 			 * If any ops wants regs saved for this function
1768 			 * then all ops will get saved regs.
1769 			 */
1770 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
1771 				rec->flags |= FTRACE_FL_REGS;
1772 		} else {
1773 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0))
1774 				return false;
1775 			rec->flags--;
1776 
1777 			/*
1778 			 * Only the internal direct_ops should have the
1779 			 * DIRECT flag set. Thus, if it is removing a
1780 			 * function, then that function should no longer
1781 			 * be direct.
1782 			 */
1783 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1784 				rec->flags &= ~FTRACE_FL_DIRECT;
1785 
1786 			/*
1787 			 * If the rec had REGS enabled and the ops that is
1788 			 * being removed had REGS set, then see if there is
1789 			 * still any ops for this record that wants regs.
1790 			 * If not, we can stop recording them.
1791 			 */
1792 			if (ftrace_rec_count(rec) > 0 &&
1793 			    rec->flags & FTRACE_FL_REGS &&
1794 			    ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1795 				if (!test_rec_ops_needs_regs(rec))
1796 					rec->flags &= ~FTRACE_FL_REGS;
1797 			}
1798 
1799 			/*
1800 			 * The TRAMP needs to be set only if rec count
1801 			 * is decremented to one, and the ops that is
1802 			 * left has a trampoline. As TRAMP can only be
1803 			 * enabled if there is only a single ops attached
1804 			 * to it.
1805 			 */
1806 			if (ftrace_rec_count(rec) == 1 &&
1807 			    ftrace_find_tramp_ops_any_other(rec, ops))
1808 				rec->flags |= FTRACE_FL_TRAMP;
1809 			else
1810 				rec->flags &= ~FTRACE_FL_TRAMP;
1811 
1812 			/*
1813 			 * flags will be cleared in ftrace_check_record()
1814 			 * if rec count is zero.
1815 			 */
1816 		}
1817 		count++;
1818 
1819 		/* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */
1820 		update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE;
1821 
1822 		/* Shortcut, if we handled all records, we are done. */
1823 		if (!all && count == hash->count)
1824 			return update;
1825 	} while_for_each_ftrace_rec();
1826 
1827 	return update;
1828 }
1829 
1830 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops,
1831 				    int filter_hash)
1832 {
1833 	return __ftrace_hash_rec_update(ops, filter_hash, 0);
1834 }
1835 
1836 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops,
1837 				   int filter_hash)
1838 {
1839 	return __ftrace_hash_rec_update(ops, filter_hash, 1);
1840 }
1841 
1842 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops,
1843 					  int filter_hash, int inc)
1844 {
1845 	struct ftrace_ops *op;
1846 
1847 	__ftrace_hash_rec_update(ops, filter_hash, inc);
1848 
1849 	if (ops->func_hash != &global_ops.local_hash)
1850 		return;
1851 
1852 	/*
1853 	 * If the ops shares the global_ops hash, then we need to update
1854 	 * all ops that are enabled and use this hash.
1855 	 */
1856 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1857 		/* Already done */
1858 		if (op == ops)
1859 			continue;
1860 		if (op->func_hash == &global_ops.local_hash)
1861 			__ftrace_hash_rec_update(op, filter_hash, inc);
1862 	} while_for_each_ftrace_op(op);
1863 }
1864 
1865 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops,
1866 					   int filter_hash)
1867 {
1868 	ftrace_hash_rec_update_modify(ops, filter_hash, 0);
1869 }
1870 
1871 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops,
1872 					  int filter_hash)
1873 {
1874 	ftrace_hash_rec_update_modify(ops, filter_hash, 1);
1875 }
1876 
1877 /*
1878  * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK
1879  * or no-needed to update, -EBUSY if it detects a conflict of the flag
1880  * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs.
1881  * Note that old_hash and new_hash has below meanings
1882  *  - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected)
1883  *  - If the hash is EMPTY_HASH, it hits nothing
1884  *  - Anything else hits the recs which match the hash entries.
1885  *
1886  * DIRECT ops does not have IPMODIFY flag, but we still need to check it
1887  * against functions with FTRACE_FL_IPMODIFY. If there is any overlap, call
1888  * ops_func(SHARE_IPMODIFY_SELF) to make sure current ops can share with
1889  * IPMODIFY. If ops_func(SHARE_IPMODIFY_SELF) returns non-zero, propagate
1890  * the return value to the caller and eventually to the owner of the DIRECT
1891  * ops.
1892  */
1893 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops,
1894 					 struct ftrace_hash *old_hash,
1895 					 struct ftrace_hash *new_hash)
1896 {
1897 	struct ftrace_page *pg;
1898 	struct dyn_ftrace *rec, *end = NULL;
1899 	int in_old, in_new;
1900 	bool is_ipmodify, is_direct;
1901 
1902 	/* Only update if the ops has been registered */
1903 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1904 		return 0;
1905 
1906 	is_ipmodify = ops->flags & FTRACE_OPS_FL_IPMODIFY;
1907 	is_direct = ops->flags & FTRACE_OPS_FL_DIRECT;
1908 
1909 	/* neither IPMODIFY nor DIRECT, skip */
1910 	if (!is_ipmodify && !is_direct)
1911 		return 0;
1912 
1913 	if (WARN_ON_ONCE(is_ipmodify && is_direct))
1914 		return 0;
1915 
1916 	/*
1917 	 * Since the IPMODIFY and DIRECT are very address sensitive
1918 	 * actions, we do not allow ftrace_ops to set all functions to new
1919 	 * hash.
1920 	 */
1921 	if (!new_hash || !old_hash)
1922 		return -EINVAL;
1923 
1924 	/* Update rec->flags */
1925 	do_for_each_ftrace_rec(pg, rec) {
1926 
1927 		if (rec->flags & FTRACE_FL_DISABLED)
1928 			continue;
1929 
1930 		/* We need to update only differences of filter_hash */
1931 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1932 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1933 		if (in_old == in_new)
1934 			continue;
1935 
1936 		if (in_new) {
1937 			if (rec->flags & FTRACE_FL_IPMODIFY) {
1938 				int ret;
1939 
1940 				/* Cannot have two ipmodify on same rec */
1941 				if (is_ipmodify)
1942 					goto rollback;
1943 
1944 				FTRACE_WARN_ON(rec->flags & FTRACE_FL_DIRECT);
1945 
1946 				/*
1947 				 * Another ops with IPMODIFY is already
1948 				 * attached. We are now attaching a direct
1949 				 * ops. Run SHARE_IPMODIFY_SELF, to check
1950 				 * whether sharing is supported.
1951 				 */
1952 				if (!ops->ops_func)
1953 					return -EBUSY;
1954 				ret = ops->ops_func(ops, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_SELF);
1955 				if (ret)
1956 					return ret;
1957 			} else if (is_ipmodify) {
1958 				rec->flags |= FTRACE_FL_IPMODIFY;
1959 			}
1960 		} else if (is_ipmodify) {
1961 			rec->flags &= ~FTRACE_FL_IPMODIFY;
1962 		}
1963 	} while_for_each_ftrace_rec();
1964 
1965 	return 0;
1966 
1967 rollback:
1968 	end = rec;
1969 
1970 	/* Roll back what we did above */
1971 	do_for_each_ftrace_rec(pg, rec) {
1972 
1973 		if (rec->flags & FTRACE_FL_DISABLED)
1974 			continue;
1975 
1976 		if (rec == end)
1977 			goto err_out;
1978 
1979 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1980 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1981 		if (in_old == in_new)
1982 			continue;
1983 
1984 		if (in_new)
1985 			rec->flags &= ~FTRACE_FL_IPMODIFY;
1986 		else
1987 			rec->flags |= FTRACE_FL_IPMODIFY;
1988 	} while_for_each_ftrace_rec();
1989 
1990 err_out:
1991 	return -EBUSY;
1992 }
1993 
1994 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops)
1995 {
1996 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
1997 
1998 	if (ftrace_hash_empty(hash))
1999 		hash = NULL;
2000 
2001 	return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash);
2002 }
2003 
2004 /* Disabling always succeeds */
2005 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops)
2006 {
2007 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
2008 
2009 	if (ftrace_hash_empty(hash))
2010 		hash = NULL;
2011 
2012 	__ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH);
2013 }
2014 
2015 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
2016 				       struct ftrace_hash *new_hash)
2017 {
2018 	struct ftrace_hash *old_hash = ops->func_hash->filter_hash;
2019 
2020 	if (ftrace_hash_empty(old_hash))
2021 		old_hash = NULL;
2022 
2023 	if (ftrace_hash_empty(new_hash))
2024 		new_hash = NULL;
2025 
2026 	return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash);
2027 }
2028 
2029 static void print_ip_ins(const char *fmt, const unsigned char *p)
2030 {
2031 	char ins[MCOUNT_INSN_SIZE];
2032 
2033 	if (copy_from_kernel_nofault(ins, p, MCOUNT_INSN_SIZE)) {
2034 		printk(KERN_CONT "%s[FAULT] %px\n", fmt, p);
2035 		return;
2036 	}
2037 
2038 	printk(KERN_CONT "%s", fmt);
2039 	pr_cont("%*phC", MCOUNT_INSN_SIZE, ins);
2040 }
2041 
2042 enum ftrace_bug_type ftrace_bug_type;
2043 const void *ftrace_expected;
2044 
2045 static void print_bug_type(void)
2046 {
2047 	switch (ftrace_bug_type) {
2048 	case FTRACE_BUG_UNKNOWN:
2049 		break;
2050 	case FTRACE_BUG_INIT:
2051 		pr_info("Initializing ftrace call sites\n");
2052 		break;
2053 	case FTRACE_BUG_NOP:
2054 		pr_info("Setting ftrace call site to NOP\n");
2055 		break;
2056 	case FTRACE_BUG_CALL:
2057 		pr_info("Setting ftrace call site to call ftrace function\n");
2058 		break;
2059 	case FTRACE_BUG_UPDATE:
2060 		pr_info("Updating ftrace call site to call a different ftrace function\n");
2061 		break;
2062 	}
2063 }
2064 
2065 /**
2066  * ftrace_bug - report and shutdown function tracer
2067  * @failed: The failed type (EFAULT, EINVAL, EPERM)
2068  * @rec: The record that failed
2069  *
2070  * The arch code that enables or disables the function tracing
2071  * can call ftrace_bug() when it has detected a problem in
2072  * modifying the code. @failed should be one of either:
2073  * EFAULT - if the problem happens on reading the @ip address
2074  * EINVAL - if what is read at @ip is not what was expected
2075  * EPERM - if the problem happens on writing to the @ip address
2076  */
2077 void ftrace_bug(int failed, struct dyn_ftrace *rec)
2078 {
2079 	unsigned long ip = rec ? rec->ip : 0;
2080 
2081 	pr_info("------------[ ftrace bug ]------------\n");
2082 
2083 	switch (failed) {
2084 	case -EFAULT:
2085 		pr_info("ftrace faulted on modifying ");
2086 		print_ip_sym(KERN_INFO, ip);
2087 		break;
2088 	case -EINVAL:
2089 		pr_info("ftrace failed to modify ");
2090 		print_ip_sym(KERN_INFO, ip);
2091 		print_ip_ins(" actual:   ", (unsigned char *)ip);
2092 		pr_cont("\n");
2093 		if (ftrace_expected) {
2094 			print_ip_ins(" expected: ", ftrace_expected);
2095 			pr_cont("\n");
2096 		}
2097 		break;
2098 	case -EPERM:
2099 		pr_info("ftrace faulted on writing ");
2100 		print_ip_sym(KERN_INFO, ip);
2101 		break;
2102 	default:
2103 		pr_info("ftrace faulted on unknown error ");
2104 		print_ip_sym(KERN_INFO, ip);
2105 	}
2106 	print_bug_type();
2107 	if (rec) {
2108 		struct ftrace_ops *ops = NULL;
2109 
2110 		pr_info("ftrace record flags: %lx\n", rec->flags);
2111 		pr_cont(" (%ld)%s", ftrace_rec_count(rec),
2112 			rec->flags & FTRACE_FL_REGS ? " R" : "  ");
2113 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
2114 			ops = ftrace_find_tramp_ops_any(rec);
2115 			if (ops) {
2116 				do {
2117 					pr_cont("\ttramp: %pS (%pS)",
2118 						(void *)ops->trampoline,
2119 						(void *)ops->func);
2120 					ops = ftrace_find_tramp_ops_next(rec, ops);
2121 				} while (ops);
2122 			} else
2123 				pr_cont("\ttramp: ERROR!");
2124 
2125 		}
2126 		ip = ftrace_get_addr_curr(rec);
2127 		pr_cont("\n expected tramp: %lx\n", ip);
2128 	}
2129 
2130 	FTRACE_WARN_ON_ONCE(1);
2131 }
2132 
2133 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update)
2134 {
2135 	unsigned long flag = 0UL;
2136 
2137 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2138 
2139 	if (skip_record(rec))
2140 		return FTRACE_UPDATE_IGNORE;
2141 
2142 	/*
2143 	 * If we are updating calls:
2144 	 *
2145 	 *   If the record has a ref count, then we need to enable it
2146 	 *   because someone is using it.
2147 	 *
2148 	 *   Otherwise we make sure its disabled.
2149 	 *
2150 	 * If we are disabling calls, then disable all records that
2151 	 * are enabled.
2152 	 */
2153 	if (enable && ftrace_rec_count(rec))
2154 		flag = FTRACE_FL_ENABLED;
2155 
2156 	/*
2157 	 * If enabling and the REGS flag does not match the REGS_EN, or
2158 	 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore
2159 	 * this record. Set flags to fail the compare against ENABLED.
2160 	 * Same for direct calls.
2161 	 */
2162 	if (flag) {
2163 		if (!(rec->flags & FTRACE_FL_REGS) !=
2164 		    !(rec->flags & FTRACE_FL_REGS_EN))
2165 			flag |= FTRACE_FL_REGS;
2166 
2167 		if (!(rec->flags & FTRACE_FL_TRAMP) !=
2168 		    !(rec->flags & FTRACE_FL_TRAMP_EN))
2169 			flag |= FTRACE_FL_TRAMP;
2170 
2171 		/*
2172 		 * Direct calls are special, as count matters.
2173 		 * We must test the record for direct, if the
2174 		 * DIRECT and DIRECT_EN do not match, but only
2175 		 * if the count is 1. That's because, if the
2176 		 * count is something other than one, we do not
2177 		 * want the direct enabled (it will be done via the
2178 		 * direct helper). But if DIRECT_EN is set, and
2179 		 * the count is not one, we need to clear it.
2180 		 */
2181 		if (ftrace_rec_count(rec) == 1) {
2182 			if (!(rec->flags & FTRACE_FL_DIRECT) !=
2183 			    !(rec->flags & FTRACE_FL_DIRECT_EN))
2184 				flag |= FTRACE_FL_DIRECT;
2185 		} else if (rec->flags & FTRACE_FL_DIRECT_EN) {
2186 			flag |= FTRACE_FL_DIRECT;
2187 		}
2188 	}
2189 
2190 	/* If the state of this record hasn't changed, then do nothing */
2191 	if ((rec->flags & FTRACE_FL_ENABLED) == flag)
2192 		return FTRACE_UPDATE_IGNORE;
2193 
2194 	if (flag) {
2195 		/* Save off if rec is being enabled (for return value) */
2196 		flag ^= rec->flags & FTRACE_FL_ENABLED;
2197 
2198 		if (update) {
2199 			rec->flags |= FTRACE_FL_ENABLED;
2200 			if (flag & FTRACE_FL_REGS) {
2201 				if (rec->flags & FTRACE_FL_REGS)
2202 					rec->flags |= FTRACE_FL_REGS_EN;
2203 				else
2204 					rec->flags &= ~FTRACE_FL_REGS_EN;
2205 			}
2206 			if (flag & FTRACE_FL_TRAMP) {
2207 				if (rec->flags & FTRACE_FL_TRAMP)
2208 					rec->flags |= FTRACE_FL_TRAMP_EN;
2209 				else
2210 					rec->flags &= ~FTRACE_FL_TRAMP_EN;
2211 			}
2212 
2213 			if (flag & FTRACE_FL_DIRECT) {
2214 				/*
2215 				 * If there's only one user (direct_ops helper)
2216 				 * then we can call the direct function
2217 				 * directly (no ftrace trampoline).
2218 				 */
2219 				if (ftrace_rec_count(rec) == 1) {
2220 					if (rec->flags & FTRACE_FL_DIRECT)
2221 						rec->flags |= FTRACE_FL_DIRECT_EN;
2222 					else
2223 						rec->flags &= ~FTRACE_FL_DIRECT_EN;
2224 				} else {
2225 					/*
2226 					 * Can only call directly if there's
2227 					 * only one callback to the function.
2228 					 */
2229 					rec->flags &= ~FTRACE_FL_DIRECT_EN;
2230 				}
2231 			}
2232 		}
2233 
2234 		/*
2235 		 * If this record is being updated from a nop, then
2236 		 *   return UPDATE_MAKE_CALL.
2237 		 * Otherwise,
2238 		 *   return UPDATE_MODIFY_CALL to tell the caller to convert
2239 		 *   from the save regs, to a non-save regs function or
2240 		 *   vice versa, or from a trampoline call.
2241 		 */
2242 		if (flag & FTRACE_FL_ENABLED) {
2243 			ftrace_bug_type = FTRACE_BUG_CALL;
2244 			return FTRACE_UPDATE_MAKE_CALL;
2245 		}
2246 
2247 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2248 		return FTRACE_UPDATE_MODIFY_CALL;
2249 	}
2250 
2251 	if (update) {
2252 		/* If there's no more users, clear all flags */
2253 		if (!ftrace_rec_count(rec))
2254 			rec->flags &= FTRACE_FL_DISABLED;
2255 		else
2256 			/*
2257 			 * Just disable the record, but keep the ops TRAMP
2258 			 * and REGS states. The _EN flags must be disabled though.
2259 			 */
2260 			rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN |
2261 					FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN);
2262 	}
2263 
2264 	ftrace_bug_type = FTRACE_BUG_NOP;
2265 	return FTRACE_UPDATE_MAKE_NOP;
2266 }
2267 
2268 /**
2269  * ftrace_update_record - set a record that now is tracing or not
2270  * @rec: the record to update
2271  * @enable: set to true if the record is tracing, false to force disable
2272  *
2273  * The records that represent all functions that can be traced need
2274  * to be updated when tracing has been enabled.
2275  */
2276 int ftrace_update_record(struct dyn_ftrace *rec, bool enable)
2277 {
2278 	return ftrace_check_record(rec, enable, true);
2279 }
2280 
2281 /**
2282  * ftrace_test_record - check if the record has been enabled or not
2283  * @rec: the record to test
2284  * @enable: set to true to check if enabled, false if it is disabled
2285  *
2286  * The arch code may need to test if a record is already set to
2287  * tracing to determine how to modify the function code that it
2288  * represents.
2289  */
2290 int ftrace_test_record(struct dyn_ftrace *rec, bool enable)
2291 {
2292 	return ftrace_check_record(rec, enable, false);
2293 }
2294 
2295 static struct ftrace_ops *
2296 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec)
2297 {
2298 	struct ftrace_ops *op;
2299 	unsigned long ip = rec->ip;
2300 
2301 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2302 
2303 		if (!op->trampoline)
2304 			continue;
2305 
2306 		if (hash_contains_ip(ip, op->func_hash))
2307 			return op;
2308 	} while_for_each_ftrace_op(op);
2309 
2310 	return NULL;
2311 }
2312 
2313 static struct ftrace_ops *
2314 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude)
2315 {
2316 	struct ftrace_ops *op;
2317 	unsigned long ip = rec->ip;
2318 
2319 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2320 
2321 		if (op == op_exclude || !op->trampoline)
2322 			continue;
2323 
2324 		if (hash_contains_ip(ip, op->func_hash))
2325 			return op;
2326 	} while_for_each_ftrace_op(op);
2327 
2328 	return NULL;
2329 }
2330 
2331 static struct ftrace_ops *
2332 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec,
2333 			   struct ftrace_ops *op)
2334 {
2335 	unsigned long ip = rec->ip;
2336 
2337 	while_for_each_ftrace_op(op) {
2338 
2339 		if (!op->trampoline)
2340 			continue;
2341 
2342 		if (hash_contains_ip(ip, op->func_hash))
2343 			return op;
2344 	}
2345 
2346 	return NULL;
2347 }
2348 
2349 static struct ftrace_ops *
2350 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec)
2351 {
2352 	struct ftrace_ops *op;
2353 	unsigned long ip = rec->ip;
2354 
2355 	/*
2356 	 * Need to check removed ops first.
2357 	 * If they are being removed, and this rec has a tramp,
2358 	 * and this rec is in the ops list, then it would be the
2359 	 * one with the tramp.
2360 	 */
2361 	if (removed_ops) {
2362 		if (hash_contains_ip(ip, &removed_ops->old_hash))
2363 			return removed_ops;
2364 	}
2365 
2366 	/*
2367 	 * Need to find the current trampoline for a rec.
2368 	 * Now, a trampoline is only attached to a rec if there
2369 	 * was a single 'ops' attached to it. But this can be called
2370 	 * when we are adding another op to the rec or removing the
2371 	 * current one. Thus, if the op is being added, we can
2372 	 * ignore it because it hasn't attached itself to the rec
2373 	 * yet.
2374 	 *
2375 	 * If an ops is being modified (hooking to different functions)
2376 	 * then we don't care about the new functions that are being
2377 	 * added, just the old ones (that are probably being removed).
2378 	 *
2379 	 * If we are adding an ops to a function that already is using
2380 	 * a trampoline, it needs to be removed (trampolines are only
2381 	 * for single ops connected), then an ops that is not being
2382 	 * modified also needs to be checked.
2383 	 */
2384 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2385 
2386 		if (!op->trampoline)
2387 			continue;
2388 
2389 		/*
2390 		 * If the ops is being added, it hasn't gotten to
2391 		 * the point to be removed from this tree yet.
2392 		 */
2393 		if (op->flags & FTRACE_OPS_FL_ADDING)
2394 			continue;
2395 
2396 
2397 		/*
2398 		 * If the ops is being modified and is in the old
2399 		 * hash, then it is probably being removed from this
2400 		 * function.
2401 		 */
2402 		if ((op->flags & FTRACE_OPS_FL_MODIFYING) &&
2403 		    hash_contains_ip(ip, &op->old_hash))
2404 			return op;
2405 		/*
2406 		 * If the ops is not being added or modified, and it's
2407 		 * in its normal filter hash, then this must be the one
2408 		 * we want!
2409 		 */
2410 		if (!(op->flags & FTRACE_OPS_FL_MODIFYING) &&
2411 		    hash_contains_ip(ip, op->func_hash))
2412 			return op;
2413 
2414 	} while_for_each_ftrace_op(op);
2415 
2416 	return NULL;
2417 }
2418 
2419 static struct ftrace_ops *
2420 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec)
2421 {
2422 	struct ftrace_ops *op;
2423 	unsigned long ip = rec->ip;
2424 
2425 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2426 		/* pass rec in as regs to have non-NULL val */
2427 		if (hash_contains_ip(ip, op->func_hash))
2428 			return op;
2429 	} while_for_each_ftrace_op(op);
2430 
2431 	return NULL;
2432 }
2433 
2434 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
2435 /* Protected by rcu_tasks for reading, and direct_mutex for writing */
2436 static struct ftrace_hash *direct_functions = EMPTY_HASH;
2437 static DEFINE_MUTEX(direct_mutex);
2438 int ftrace_direct_func_count;
2439 
2440 /*
2441  * Search the direct_functions hash to see if the given instruction pointer
2442  * has a direct caller attached to it.
2443  */
2444 unsigned long ftrace_find_rec_direct(unsigned long ip)
2445 {
2446 	struct ftrace_func_entry *entry;
2447 
2448 	entry = __ftrace_lookup_ip(direct_functions, ip);
2449 	if (!entry)
2450 		return 0;
2451 
2452 	return entry->direct;
2453 }
2454 
2455 static struct ftrace_func_entry*
2456 ftrace_add_rec_direct(unsigned long ip, unsigned long addr,
2457 		      struct ftrace_hash **free_hash)
2458 {
2459 	struct ftrace_func_entry *entry;
2460 
2461 	if (ftrace_hash_empty(direct_functions) ||
2462 	    direct_functions->count > 2 * (1 << direct_functions->size_bits)) {
2463 		struct ftrace_hash *new_hash;
2464 		int size = ftrace_hash_empty(direct_functions) ? 0 :
2465 			direct_functions->count + 1;
2466 
2467 		if (size < 32)
2468 			size = 32;
2469 
2470 		new_hash = dup_hash(direct_functions, size);
2471 		if (!new_hash)
2472 			return NULL;
2473 
2474 		*free_hash = direct_functions;
2475 		direct_functions = new_hash;
2476 	}
2477 
2478 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2479 	if (!entry)
2480 		return NULL;
2481 
2482 	entry->ip = ip;
2483 	entry->direct = addr;
2484 	__add_hash_entry(direct_functions, entry);
2485 	return entry;
2486 }
2487 
2488 static void call_direct_funcs(unsigned long ip, unsigned long pip,
2489 			      struct ftrace_ops *ops, struct ftrace_regs *fregs)
2490 {
2491 	unsigned long addr;
2492 
2493 	addr = ftrace_find_rec_direct(ip);
2494 	if (!addr)
2495 		return;
2496 
2497 	arch_ftrace_set_direct_caller(fregs, addr);
2498 }
2499 
2500 struct ftrace_ops direct_ops = {
2501 	.func		= call_direct_funcs,
2502 	.flags		= FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS
2503 			  | FTRACE_OPS_FL_PERMANENT,
2504 	/*
2505 	 * By declaring the main trampoline as this trampoline
2506 	 * it will never have one allocated for it. Allocated
2507 	 * trampolines should not call direct functions.
2508 	 * The direct_ops should only be called by the builtin
2509 	 * ftrace_regs_caller trampoline.
2510 	 */
2511 	.trampoline	= FTRACE_REGS_ADDR,
2512 };
2513 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
2514 
2515 /**
2516  * ftrace_get_addr_new - Get the call address to set to
2517  * @rec:  The ftrace record descriptor
2518  *
2519  * If the record has the FTRACE_FL_REGS set, that means that it
2520  * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS
2521  * is not set, then it wants to convert to the normal callback.
2522  *
2523  * Returns the address of the trampoline to set to
2524  */
2525 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec)
2526 {
2527 	struct ftrace_ops *ops;
2528 	unsigned long addr;
2529 
2530 	if ((rec->flags & FTRACE_FL_DIRECT) &&
2531 	    (ftrace_rec_count(rec) == 1)) {
2532 		addr = ftrace_find_rec_direct(rec->ip);
2533 		if (addr)
2534 			return addr;
2535 		WARN_ON_ONCE(1);
2536 	}
2537 
2538 	/* Trampolines take precedence over regs */
2539 	if (rec->flags & FTRACE_FL_TRAMP) {
2540 		ops = ftrace_find_tramp_ops_new(rec);
2541 		if (FTRACE_WARN_ON(!ops || !ops->trampoline)) {
2542 			pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n",
2543 				(void *)rec->ip, (void *)rec->ip, rec->flags);
2544 			/* Ftrace is shutting down, return anything */
2545 			return (unsigned long)FTRACE_ADDR;
2546 		}
2547 		return ops->trampoline;
2548 	}
2549 
2550 	if (rec->flags & FTRACE_FL_REGS)
2551 		return (unsigned long)FTRACE_REGS_ADDR;
2552 	else
2553 		return (unsigned long)FTRACE_ADDR;
2554 }
2555 
2556 /**
2557  * ftrace_get_addr_curr - Get the call address that is already there
2558  * @rec:  The ftrace record descriptor
2559  *
2560  * The FTRACE_FL_REGS_EN is set when the record already points to
2561  * a function that saves all the regs. Basically the '_EN' version
2562  * represents the current state of the function.
2563  *
2564  * Returns the address of the trampoline that is currently being called
2565  */
2566 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec)
2567 {
2568 	struct ftrace_ops *ops;
2569 	unsigned long addr;
2570 
2571 	/* Direct calls take precedence over trampolines */
2572 	if (rec->flags & FTRACE_FL_DIRECT_EN) {
2573 		addr = ftrace_find_rec_direct(rec->ip);
2574 		if (addr)
2575 			return addr;
2576 		WARN_ON_ONCE(1);
2577 	}
2578 
2579 	/* Trampolines take precedence over regs */
2580 	if (rec->flags & FTRACE_FL_TRAMP_EN) {
2581 		ops = ftrace_find_tramp_ops_curr(rec);
2582 		if (FTRACE_WARN_ON(!ops)) {
2583 			pr_warn("Bad trampoline accounting at: %p (%pS)\n",
2584 				(void *)rec->ip, (void *)rec->ip);
2585 			/* Ftrace is shutting down, return anything */
2586 			return (unsigned long)FTRACE_ADDR;
2587 		}
2588 		return ops->trampoline;
2589 	}
2590 
2591 	if (rec->flags & FTRACE_FL_REGS_EN)
2592 		return (unsigned long)FTRACE_REGS_ADDR;
2593 	else
2594 		return (unsigned long)FTRACE_ADDR;
2595 }
2596 
2597 static int
2598 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable)
2599 {
2600 	unsigned long ftrace_old_addr;
2601 	unsigned long ftrace_addr;
2602 	int ret;
2603 
2604 	ftrace_addr = ftrace_get_addr_new(rec);
2605 
2606 	/* This needs to be done before we call ftrace_update_record */
2607 	ftrace_old_addr = ftrace_get_addr_curr(rec);
2608 
2609 	ret = ftrace_update_record(rec, enable);
2610 
2611 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2612 
2613 	switch (ret) {
2614 	case FTRACE_UPDATE_IGNORE:
2615 		return 0;
2616 
2617 	case FTRACE_UPDATE_MAKE_CALL:
2618 		ftrace_bug_type = FTRACE_BUG_CALL;
2619 		return ftrace_make_call(rec, ftrace_addr);
2620 
2621 	case FTRACE_UPDATE_MAKE_NOP:
2622 		ftrace_bug_type = FTRACE_BUG_NOP;
2623 		return ftrace_make_nop(NULL, rec, ftrace_old_addr);
2624 
2625 	case FTRACE_UPDATE_MODIFY_CALL:
2626 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2627 		return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr);
2628 	}
2629 
2630 	return -1; /* unknown ftrace bug */
2631 }
2632 
2633 void __weak ftrace_replace_code(int mod_flags)
2634 {
2635 	struct dyn_ftrace *rec;
2636 	struct ftrace_page *pg;
2637 	bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL;
2638 	int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL;
2639 	int failed;
2640 
2641 	if (unlikely(ftrace_disabled))
2642 		return;
2643 
2644 	do_for_each_ftrace_rec(pg, rec) {
2645 
2646 		if (skip_record(rec))
2647 			continue;
2648 
2649 		failed = __ftrace_replace_code(rec, enable);
2650 		if (failed) {
2651 			ftrace_bug(failed, rec);
2652 			/* Stop processing */
2653 			return;
2654 		}
2655 		if (schedulable)
2656 			cond_resched();
2657 	} while_for_each_ftrace_rec();
2658 }
2659 
2660 struct ftrace_rec_iter {
2661 	struct ftrace_page	*pg;
2662 	int			index;
2663 };
2664 
2665 /**
2666  * ftrace_rec_iter_start - start up iterating over traced functions
2667  *
2668  * Returns an iterator handle that is used to iterate over all
2669  * the records that represent address locations where functions
2670  * are traced.
2671  *
2672  * May return NULL if no records are available.
2673  */
2674 struct ftrace_rec_iter *ftrace_rec_iter_start(void)
2675 {
2676 	/*
2677 	 * We only use a single iterator.
2678 	 * Protected by the ftrace_lock mutex.
2679 	 */
2680 	static struct ftrace_rec_iter ftrace_rec_iter;
2681 	struct ftrace_rec_iter *iter = &ftrace_rec_iter;
2682 
2683 	iter->pg = ftrace_pages_start;
2684 	iter->index = 0;
2685 
2686 	/* Could have empty pages */
2687 	while (iter->pg && !iter->pg->index)
2688 		iter->pg = iter->pg->next;
2689 
2690 	if (!iter->pg)
2691 		return NULL;
2692 
2693 	return iter;
2694 }
2695 
2696 /**
2697  * ftrace_rec_iter_next - get the next record to process.
2698  * @iter: The handle to the iterator.
2699  *
2700  * Returns the next iterator after the given iterator @iter.
2701  */
2702 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter)
2703 {
2704 	iter->index++;
2705 
2706 	if (iter->index >= iter->pg->index) {
2707 		iter->pg = iter->pg->next;
2708 		iter->index = 0;
2709 
2710 		/* Could have empty pages */
2711 		while (iter->pg && !iter->pg->index)
2712 			iter->pg = iter->pg->next;
2713 	}
2714 
2715 	if (!iter->pg)
2716 		return NULL;
2717 
2718 	return iter;
2719 }
2720 
2721 /**
2722  * ftrace_rec_iter_record - get the record at the iterator location
2723  * @iter: The current iterator location
2724  *
2725  * Returns the record that the current @iter is at.
2726  */
2727 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter)
2728 {
2729 	return &iter->pg->records[iter->index];
2730 }
2731 
2732 static int
2733 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec)
2734 {
2735 	int ret;
2736 
2737 	if (unlikely(ftrace_disabled))
2738 		return 0;
2739 
2740 	ret = ftrace_init_nop(mod, rec);
2741 	if (ret) {
2742 		ftrace_bug_type = FTRACE_BUG_INIT;
2743 		ftrace_bug(ret, rec);
2744 		return 0;
2745 	}
2746 	return 1;
2747 }
2748 
2749 /*
2750  * archs can override this function if they must do something
2751  * before the modifying code is performed.
2752  */
2753 void __weak ftrace_arch_code_modify_prepare(void)
2754 {
2755 }
2756 
2757 /*
2758  * archs can override this function if they must do something
2759  * after the modifying code is performed.
2760  */
2761 void __weak ftrace_arch_code_modify_post_process(void)
2762 {
2763 }
2764 
2765 static int update_ftrace_func(ftrace_func_t func)
2766 {
2767 	static ftrace_func_t save_func;
2768 
2769 	/* Avoid updating if it hasn't changed */
2770 	if (func == save_func)
2771 		return 0;
2772 
2773 	save_func = func;
2774 
2775 	return ftrace_update_ftrace_func(func);
2776 }
2777 
2778 void ftrace_modify_all_code(int command)
2779 {
2780 	int update = command & FTRACE_UPDATE_TRACE_FUNC;
2781 	int mod_flags = 0;
2782 	int err = 0;
2783 
2784 	if (command & FTRACE_MAY_SLEEP)
2785 		mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL;
2786 
2787 	/*
2788 	 * If the ftrace_caller calls a ftrace_ops func directly,
2789 	 * we need to make sure that it only traces functions it
2790 	 * expects to trace. When doing the switch of functions,
2791 	 * we need to update to the ftrace_ops_list_func first
2792 	 * before the transition between old and new calls are set,
2793 	 * as the ftrace_ops_list_func will check the ops hashes
2794 	 * to make sure the ops are having the right functions
2795 	 * traced.
2796 	 */
2797 	if (update) {
2798 		err = update_ftrace_func(ftrace_ops_list_func);
2799 		if (FTRACE_WARN_ON(err))
2800 			return;
2801 	}
2802 
2803 	if (command & FTRACE_UPDATE_CALLS)
2804 		ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL);
2805 	else if (command & FTRACE_DISABLE_CALLS)
2806 		ftrace_replace_code(mod_flags);
2807 
2808 	if (update && ftrace_trace_function != ftrace_ops_list_func) {
2809 		function_trace_op = set_function_trace_op;
2810 		smp_wmb();
2811 		/* If irqs are disabled, we are in stop machine */
2812 		if (!irqs_disabled())
2813 			smp_call_function(ftrace_sync_ipi, NULL, 1);
2814 		err = update_ftrace_func(ftrace_trace_function);
2815 		if (FTRACE_WARN_ON(err))
2816 			return;
2817 	}
2818 
2819 	if (command & FTRACE_START_FUNC_RET)
2820 		err = ftrace_enable_ftrace_graph_caller();
2821 	else if (command & FTRACE_STOP_FUNC_RET)
2822 		err = ftrace_disable_ftrace_graph_caller();
2823 	FTRACE_WARN_ON(err);
2824 }
2825 
2826 static int __ftrace_modify_code(void *data)
2827 {
2828 	int *command = data;
2829 
2830 	ftrace_modify_all_code(*command);
2831 
2832 	return 0;
2833 }
2834 
2835 /**
2836  * ftrace_run_stop_machine - go back to the stop machine method
2837  * @command: The command to tell ftrace what to do
2838  *
2839  * If an arch needs to fall back to the stop machine method, the
2840  * it can call this function.
2841  */
2842 void ftrace_run_stop_machine(int command)
2843 {
2844 	stop_machine(__ftrace_modify_code, &command, NULL);
2845 }
2846 
2847 /**
2848  * arch_ftrace_update_code - modify the code to trace or not trace
2849  * @command: The command that needs to be done
2850  *
2851  * Archs can override this function if it does not need to
2852  * run stop_machine() to modify code.
2853  */
2854 void __weak arch_ftrace_update_code(int command)
2855 {
2856 	ftrace_run_stop_machine(command);
2857 }
2858 
2859 static void ftrace_run_update_code(int command)
2860 {
2861 	ftrace_arch_code_modify_prepare();
2862 
2863 	/*
2864 	 * By default we use stop_machine() to modify the code.
2865 	 * But archs can do what ever they want as long as it
2866 	 * is safe. The stop_machine() is the safest, but also
2867 	 * produces the most overhead.
2868 	 */
2869 	arch_ftrace_update_code(command);
2870 
2871 	ftrace_arch_code_modify_post_process();
2872 }
2873 
2874 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command,
2875 				   struct ftrace_ops_hash *old_hash)
2876 {
2877 	ops->flags |= FTRACE_OPS_FL_MODIFYING;
2878 	ops->old_hash.filter_hash = old_hash->filter_hash;
2879 	ops->old_hash.notrace_hash = old_hash->notrace_hash;
2880 	ftrace_run_update_code(command);
2881 	ops->old_hash.filter_hash = NULL;
2882 	ops->old_hash.notrace_hash = NULL;
2883 	ops->flags &= ~FTRACE_OPS_FL_MODIFYING;
2884 }
2885 
2886 static ftrace_func_t saved_ftrace_func;
2887 static int ftrace_start_up;
2888 
2889 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops)
2890 {
2891 }
2892 
2893 /* List of trace_ops that have allocated trampolines */
2894 static LIST_HEAD(ftrace_ops_trampoline_list);
2895 
2896 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops)
2897 {
2898 	lockdep_assert_held(&ftrace_lock);
2899 	list_add_rcu(&ops->list, &ftrace_ops_trampoline_list);
2900 }
2901 
2902 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops)
2903 {
2904 	lockdep_assert_held(&ftrace_lock);
2905 	list_del_rcu(&ops->list);
2906 	synchronize_rcu();
2907 }
2908 
2909 /*
2910  * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols
2911  * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is
2912  * not a module.
2913  */
2914 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace"
2915 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline"
2916 
2917 static void ftrace_trampoline_free(struct ftrace_ops *ops)
2918 {
2919 	if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) &&
2920 	    ops->trampoline) {
2921 		/*
2922 		 * Record the text poke event before the ksymbol unregister
2923 		 * event.
2924 		 */
2925 		perf_event_text_poke((void *)ops->trampoline,
2926 				     (void *)ops->trampoline,
2927 				     ops->trampoline_size, NULL, 0);
2928 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
2929 				   ops->trampoline, ops->trampoline_size,
2930 				   true, FTRACE_TRAMPOLINE_SYM);
2931 		/* Remove from kallsyms after the perf events */
2932 		ftrace_remove_trampoline_from_kallsyms(ops);
2933 	}
2934 
2935 	arch_ftrace_trampoline_free(ops);
2936 }
2937 
2938 static void ftrace_startup_enable(int command)
2939 {
2940 	if (saved_ftrace_func != ftrace_trace_function) {
2941 		saved_ftrace_func = ftrace_trace_function;
2942 		command |= FTRACE_UPDATE_TRACE_FUNC;
2943 	}
2944 
2945 	if (!command || !ftrace_enabled)
2946 		return;
2947 
2948 	ftrace_run_update_code(command);
2949 }
2950 
2951 static void ftrace_startup_all(int command)
2952 {
2953 	update_all_ops = true;
2954 	ftrace_startup_enable(command);
2955 	update_all_ops = false;
2956 }
2957 
2958 int ftrace_startup(struct ftrace_ops *ops, int command)
2959 {
2960 	int ret;
2961 
2962 	if (unlikely(ftrace_disabled))
2963 		return -ENODEV;
2964 
2965 	ret = __register_ftrace_function(ops);
2966 	if (ret)
2967 		return ret;
2968 
2969 	ftrace_start_up++;
2970 
2971 	/*
2972 	 * Note that ftrace probes uses this to start up
2973 	 * and modify functions it will probe. But we still
2974 	 * set the ADDING flag for modification, as probes
2975 	 * do not have trampolines. If they add them in the
2976 	 * future, then the probes will need to distinguish
2977 	 * between adding and updating probes.
2978 	 */
2979 	ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING;
2980 
2981 	ret = ftrace_hash_ipmodify_enable(ops);
2982 	if (ret < 0) {
2983 		/* Rollback registration process */
2984 		__unregister_ftrace_function(ops);
2985 		ftrace_start_up--;
2986 		ops->flags &= ~FTRACE_OPS_FL_ENABLED;
2987 		if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
2988 			ftrace_trampoline_free(ops);
2989 		return ret;
2990 	}
2991 
2992 	if (ftrace_hash_rec_enable(ops, 1))
2993 		command |= FTRACE_UPDATE_CALLS;
2994 
2995 	ftrace_startup_enable(command);
2996 
2997 	/*
2998 	 * If ftrace is in an undefined state, we just remove ops from list
2999 	 * to prevent the NULL pointer, instead of totally rolling it back and
3000 	 * free trampoline, because those actions could cause further damage.
3001 	 */
3002 	if (unlikely(ftrace_disabled)) {
3003 		__unregister_ftrace_function(ops);
3004 		return -ENODEV;
3005 	}
3006 
3007 	ops->flags &= ~FTRACE_OPS_FL_ADDING;
3008 
3009 	return 0;
3010 }
3011 
3012 int ftrace_shutdown(struct ftrace_ops *ops, int command)
3013 {
3014 	int ret;
3015 
3016 	if (unlikely(ftrace_disabled))
3017 		return -ENODEV;
3018 
3019 	ret = __unregister_ftrace_function(ops);
3020 	if (ret)
3021 		return ret;
3022 
3023 	ftrace_start_up--;
3024 	/*
3025 	 * Just warn in case of unbalance, no need to kill ftrace, it's not
3026 	 * critical but the ftrace_call callers may be never nopped again after
3027 	 * further ftrace uses.
3028 	 */
3029 	WARN_ON_ONCE(ftrace_start_up < 0);
3030 
3031 	/* Disabling ipmodify never fails */
3032 	ftrace_hash_ipmodify_disable(ops);
3033 
3034 	if (ftrace_hash_rec_disable(ops, 1))
3035 		command |= FTRACE_UPDATE_CALLS;
3036 
3037 	ops->flags &= ~FTRACE_OPS_FL_ENABLED;
3038 
3039 	if (saved_ftrace_func != ftrace_trace_function) {
3040 		saved_ftrace_func = ftrace_trace_function;
3041 		command |= FTRACE_UPDATE_TRACE_FUNC;
3042 	}
3043 
3044 	if (!command || !ftrace_enabled)
3045 		goto out;
3046 
3047 	/*
3048 	 * If the ops uses a trampoline, then it needs to be
3049 	 * tested first on update.
3050 	 */
3051 	ops->flags |= FTRACE_OPS_FL_REMOVING;
3052 	removed_ops = ops;
3053 
3054 	/* The trampoline logic checks the old hashes */
3055 	ops->old_hash.filter_hash = ops->func_hash->filter_hash;
3056 	ops->old_hash.notrace_hash = ops->func_hash->notrace_hash;
3057 
3058 	ftrace_run_update_code(command);
3059 
3060 	/*
3061 	 * If there's no more ops registered with ftrace, run a
3062 	 * sanity check to make sure all rec flags are cleared.
3063 	 */
3064 	if (rcu_dereference_protected(ftrace_ops_list,
3065 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
3066 		struct ftrace_page *pg;
3067 		struct dyn_ftrace *rec;
3068 
3069 		do_for_each_ftrace_rec(pg, rec) {
3070 			if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED))
3071 				pr_warn("  %pS flags:%lx\n",
3072 					(void *)rec->ip, rec->flags);
3073 		} while_for_each_ftrace_rec();
3074 	}
3075 
3076 	ops->old_hash.filter_hash = NULL;
3077 	ops->old_hash.notrace_hash = NULL;
3078 
3079 	removed_ops = NULL;
3080 	ops->flags &= ~FTRACE_OPS_FL_REMOVING;
3081 
3082 out:
3083 	/*
3084 	 * Dynamic ops may be freed, we must make sure that all
3085 	 * callers are done before leaving this function.
3086 	 */
3087 	if (ops->flags & FTRACE_OPS_FL_DYNAMIC) {
3088 		/*
3089 		 * We need to do a hard force of sched synchronization.
3090 		 * This is because we use preempt_disable() to do RCU, but
3091 		 * the function tracers can be called where RCU is not watching
3092 		 * (like before user_exit()). We can not rely on the RCU
3093 		 * infrastructure to do the synchronization, thus we must do it
3094 		 * ourselves.
3095 		 */
3096 		synchronize_rcu_tasks_rude();
3097 
3098 		/*
3099 		 * When the kernel is preemptive, tasks can be preempted
3100 		 * while on a ftrace trampoline. Just scheduling a task on
3101 		 * a CPU is not good enough to flush them. Calling
3102 		 * synchronize_rcu_tasks() will wait for those tasks to
3103 		 * execute and either schedule voluntarily or enter user space.
3104 		 */
3105 		if (IS_ENABLED(CONFIG_PREEMPTION))
3106 			synchronize_rcu_tasks();
3107 
3108 		ftrace_trampoline_free(ops);
3109 	}
3110 
3111 	return 0;
3112 }
3113 
3114 static u64		ftrace_update_time;
3115 unsigned long		ftrace_update_tot_cnt;
3116 unsigned long		ftrace_number_of_pages;
3117 unsigned long		ftrace_number_of_groups;
3118 
3119 static inline int ops_traces_mod(struct ftrace_ops *ops)
3120 {
3121 	/*
3122 	 * Filter_hash being empty will default to trace module.
3123 	 * But notrace hash requires a test of individual module functions.
3124 	 */
3125 	return ftrace_hash_empty(ops->func_hash->filter_hash) &&
3126 		ftrace_hash_empty(ops->func_hash->notrace_hash);
3127 }
3128 
3129 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs)
3130 {
3131 	bool init_nop = ftrace_need_init_nop();
3132 	struct ftrace_page *pg;
3133 	struct dyn_ftrace *p;
3134 	u64 start, stop;
3135 	unsigned long update_cnt = 0;
3136 	unsigned long rec_flags = 0;
3137 	int i;
3138 
3139 	start = ftrace_now(raw_smp_processor_id());
3140 
3141 	/*
3142 	 * When a module is loaded, this function is called to convert
3143 	 * the calls to mcount in its text to nops, and also to create
3144 	 * an entry in the ftrace data. Now, if ftrace is activated
3145 	 * after this call, but before the module sets its text to
3146 	 * read-only, the modification of enabling ftrace can fail if
3147 	 * the read-only is done while ftrace is converting the calls.
3148 	 * To prevent this, the module's records are set as disabled
3149 	 * and will be enabled after the call to set the module's text
3150 	 * to read-only.
3151 	 */
3152 	if (mod)
3153 		rec_flags |= FTRACE_FL_DISABLED;
3154 
3155 	for (pg = new_pgs; pg; pg = pg->next) {
3156 
3157 		for (i = 0; i < pg->index; i++) {
3158 
3159 			/* If something went wrong, bail without enabling anything */
3160 			if (unlikely(ftrace_disabled))
3161 				return -1;
3162 
3163 			p = &pg->records[i];
3164 			p->flags = rec_flags;
3165 
3166 			/*
3167 			 * Do the initial record conversion from mcount jump
3168 			 * to the NOP instructions.
3169 			 */
3170 			if (init_nop && !ftrace_nop_initialize(mod, p))
3171 				break;
3172 
3173 			update_cnt++;
3174 		}
3175 	}
3176 
3177 	stop = ftrace_now(raw_smp_processor_id());
3178 	ftrace_update_time = stop - start;
3179 	ftrace_update_tot_cnt += update_cnt;
3180 
3181 	return 0;
3182 }
3183 
3184 static int ftrace_allocate_records(struct ftrace_page *pg, int count)
3185 {
3186 	int order;
3187 	int pages;
3188 	int cnt;
3189 
3190 	if (WARN_ON(!count))
3191 		return -EINVAL;
3192 
3193 	/* We want to fill as much as possible, with no empty pages */
3194 	pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE);
3195 	order = fls(pages) - 1;
3196 
3197  again:
3198 	pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
3199 
3200 	if (!pg->records) {
3201 		/* if we can't allocate this size, try something smaller */
3202 		if (!order)
3203 			return -ENOMEM;
3204 		order--;
3205 		goto again;
3206 	}
3207 
3208 	ftrace_number_of_pages += 1 << order;
3209 	ftrace_number_of_groups++;
3210 
3211 	cnt = (PAGE_SIZE << order) / ENTRY_SIZE;
3212 	pg->order = order;
3213 
3214 	if (cnt > count)
3215 		cnt = count;
3216 
3217 	return cnt;
3218 }
3219 
3220 static struct ftrace_page *
3221 ftrace_allocate_pages(unsigned long num_to_init)
3222 {
3223 	struct ftrace_page *start_pg;
3224 	struct ftrace_page *pg;
3225 	int cnt;
3226 
3227 	if (!num_to_init)
3228 		return NULL;
3229 
3230 	start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL);
3231 	if (!pg)
3232 		return NULL;
3233 
3234 	/*
3235 	 * Try to allocate as much as possible in one continues
3236 	 * location that fills in all of the space. We want to
3237 	 * waste as little space as possible.
3238 	 */
3239 	for (;;) {
3240 		cnt = ftrace_allocate_records(pg, num_to_init);
3241 		if (cnt < 0)
3242 			goto free_pages;
3243 
3244 		num_to_init -= cnt;
3245 		if (!num_to_init)
3246 			break;
3247 
3248 		pg->next = kzalloc(sizeof(*pg), GFP_KERNEL);
3249 		if (!pg->next)
3250 			goto free_pages;
3251 
3252 		pg = pg->next;
3253 	}
3254 
3255 	return start_pg;
3256 
3257  free_pages:
3258 	pg = start_pg;
3259 	while (pg) {
3260 		if (pg->records) {
3261 			free_pages((unsigned long)pg->records, pg->order);
3262 			ftrace_number_of_pages -= 1 << pg->order;
3263 		}
3264 		start_pg = pg->next;
3265 		kfree(pg);
3266 		pg = start_pg;
3267 		ftrace_number_of_groups--;
3268 	}
3269 	pr_info("ftrace: FAILED to allocate memory for functions\n");
3270 	return NULL;
3271 }
3272 
3273 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */
3274 
3275 struct ftrace_iterator {
3276 	loff_t				pos;
3277 	loff_t				func_pos;
3278 	loff_t				mod_pos;
3279 	struct ftrace_page		*pg;
3280 	struct dyn_ftrace		*func;
3281 	struct ftrace_func_probe	*probe;
3282 	struct ftrace_func_entry	*probe_entry;
3283 	struct trace_parser		parser;
3284 	struct ftrace_hash		*hash;
3285 	struct ftrace_ops		*ops;
3286 	struct trace_array		*tr;
3287 	struct list_head		*mod_list;
3288 	int				pidx;
3289 	int				idx;
3290 	unsigned			flags;
3291 };
3292 
3293 static void *
3294 t_probe_next(struct seq_file *m, loff_t *pos)
3295 {
3296 	struct ftrace_iterator *iter = m->private;
3297 	struct trace_array *tr = iter->ops->private;
3298 	struct list_head *func_probes;
3299 	struct ftrace_hash *hash;
3300 	struct list_head *next;
3301 	struct hlist_node *hnd = NULL;
3302 	struct hlist_head *hhd;
3303 	int size;
3304 
3305 	(*pos)++;
3306 	iter->pos = *pos;
3307 
3308 	if (!tr)
3309 		return NULL;
3310 
3311 	func_probes = &tr->func_probes;
3312 	if (list_empty(func_probes))
3313 		return NULL;
3314 
3315 	if (!iter->probe) {
3316 		next = func_probes->next;
3317 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3318 	}
3319 
3320 	if (iter->probe_entry)
3321 		hnd = &iter->probe_entry->hlist;
3322 
3323 	hash = iter->probe->ops.func_hash->filter_hash;
3324 
3325 	/*
3326 	 * A probe being registered may temporarily have an empty hash
3327 	 * and it's at the end of the func_probes list.
3328 	 */
3329 	if (!hash || hash == EMPTY_HASH)
3330 		return NULL;
3331 
3332 	size = 1 << hash->size_bits;
3333 
3334  retry:
3335 	if (iter->pidx >= size) {
3336 		if (iter->probe->list.next == func_probes)
3337 			return NULL;
3338 		next = iter->probe->list.next;
3339 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3340 		hash = iter->probe->ops.func_hash->filter_hash;
3341 		size = 1 << hash->size_bits;
3342 		iter->pidx = 0;
3343 	}
3344 
3345 	hhd = &hash->buckets[iter->pidx];
3346 
3347 	if (hlist_empty(hhd)) {
3348 		iter->pidx++;
3349 		hnd = NULL;
3350 		goto retry;
3351 	}
3352 
3353 	if (!hnd)
3354 		hnd = hhd->first;
3355 	else {
3356 		hnd = hnd->next;
3357 		if (!hnd) {
3358 			iter->pidx++;
3359 			goto retry;
3360 		}
3361 	}
3362 
3363 	if (WARN_ON_ONCE(!hnd))
3364 		return NULL;
3365 
3366 	iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist);
3367 
3368 	return iter;
3369 }
3370 
3371 static void *t_probe_start(struct seq_file *m, loff_t *pos)
3372 {
3373 	struct ftrace_iterator *iter = m->private;
3374 	void *p = NULL;
3375 	loff_t l;
3376 
3377 	if (!(iter->flags & FTRACE_ITER_DO_PROBES))
3378 		return NULL;
3379 
3380 	if (iter->mod_pos > *pos)
3381 		return NULL;
3382 
3383 	iter->probe = NULL;
3384 	iter->probe_entry = NULL;
3385 	iter->pidx = 0;
3386 	for (l = 0; l <= (*pos - iter->mod_pos); ) {
3387 		p = t_probe_next(m, &l);
3388 		if (!p)
3389 			break;
3390 	}
3391 	if (!p)
3392 		return NULL;
3393 
3394 	/* Only set this if we have an item */
3395 	iter->flags |= FTRACE_ITER_PROBE;
3396 
3397 	return iter;
3398 }
3399 
3400 static int
3401 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter)
3402 {
3403 	struct ftrace_func_entry *probe_entry;
3404 	struct ftrace_probe_ops *probe_ops;
3405 	struct ftrace_func_probe *probe;
3406 
3407 	probe = iter->probe;
3408 	probe_entry = iter->probe_entry;
3409 
3410 	if (WARN_ON_ONCE(!probe || !probe_entry))
3411 		return -EIO;
3412 
3413 	probe_ops = probe->probe_ops;
3414 
3415 	if (probe_ops->print)
3416 		return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data);
3417 
3418 	seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip,
3419 		   (void *)probe_ops->func);
3420 
3421 	return 0;
3422 }
3423 
3424 static void *
3425 t_mod_next(struct seq_file *m, loff_t *pos)
3426 {
3427 	struct ftrace_iterator *iter = m->private;
3428 	struct trace_array *tr = iter->tr;
3429 
3430 	(*pos)++;
3431 	iter->pos = *pos;
3432 
3433 	iter->mod_list = iter->mod_list->next;
3434 
3435 	if (iter->mod_list == &tr->mod_trace ||
3436 	    iter->mod_list == &tr->mod_notrace) {
3437 		iter->flags &= ~FTRACE_ITER_MOD;
3438 		return NULL;
3439 	}
3440 
3441 	iter->mod_pos = *pos;
3442 
3443 	return iter;
3444 }
3445 
3446 static void *t_mod_start(struct seq_file *m, loff_t *pos)
3447 {
3448 	struct ftrace_iterator *iter = m->private;
3449 	void *p = NULL;
3450 	loff_t l;
3451 
3452 	if (iter->func_pos > *pos)
3453 		return NULL;
3454 
3455 	iter->mod_pos = iter->func_pos;
3456 
3457 	/* probes are only available if tr is set */
3458 	if (!iter->tr)
3459 		return NULL;
3460 
3461 	for (l = 0; l <= (*pos - iter->func_pos); ) {
3462 		p = t_mod_next(m, &l);
3463 		if (!p)
3464 			break;
3465 	}
3466 	if (!p) {
3467 		iter->flags &= ~FTRACE_ITER_MOD;
3468 		return t_probe_start(m, pos);
3469 	}
3470 
3471 	/* Only set this if we have an item */
3472 	iter->flags |= FTRACE_ITER_MOD;
3473 
3474 	return iter;
3475 }
3476 
3477 static int
3478 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter)
3479 {
3480 	struct ftrace_mod_load *ftrace_mod;
3481 	struct trace_array *tr = iter->tr;
3482 
3483 	if (WARN_ON_ONCE(!iter->mod_list) ||
3484 			 iter->mod_list == &tr->mod_trace ||
3485 			 iter->mod_list == &tr->mod_notrace)
3486 		return -EIO;
3487 
3488 	ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list);
3489 
3490 	if (ftrace_mod->func)
3491 		seq_printf(m, "%s", ftrace_mod->func);
3492 	else
3493 		seq_putc(m, '*');
3494 
3495 	seq_printf(m, ":mod:%s\n", ftrace_mod->module);
3496 
3497 	return 0;
3498 }
3499 
3500 static void *
3501 t_func_next(struct seq_file *m, loff_t *pos)
3502 {
3503 	struct ftrace_iterator *iter = m->private;
3504 	struct dyn_ftrace *rec = NULL;
3505 
3506 	(*pos)++;
3507 
3508  retry:
3509 	if (iter->idx >= iter->pg->index) {
3510 		if (iter->pg->next) {
3511 			iter->pg = iter->pg->next;
3512 			iter->idx = 0;
3513 			goto retry;
3514 		}
3515 	} else {
3516 		rec = &iter->pg->records[iter->idx++];
3517 		if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3518 		     !ftrace_lookup_ip(iter->hash, rec->ip)) ||
3519 
3520 		    ((iter->flags & FTRACE_ITER_ENABLED) &&
3521 		     !(rec->flags & FTRACE_FL_ENABLED))) {
3522 
3523 			rec = NULL;
3524 			goto retry;
3525 		}
3526 	}
3527 
3528 	if (!rec)
3529 		return NULL;
3530 
3531 	iter->pos = iter->func_pos = *pos;
3532 	iter->func = rec;
3533 
3534 	return iter;
3535 }
3536 
3537 static void *
3538 t_next(struct seq_file *m, void *v, loff_t *pos)
3539 {
3540 	struct ftrace_iterator *iter = m->private;
3541 	loff_t l = *pos; /* t_probe_start() must use original pos */
3542 	void *ret;
3543 
3544 	if (unlikely(ftrace_disabled))
3545 		return NULL;
3546 
3547 	if (iter->flags & FTRACE_ITER_PROBE)
3548 		return t_probe_next(m, pos);
3549 
3550 	if (iter->flags & FTRACE_ITER_MOD)
3551 		return t_mod_next(m, pos);
3552 
3553 	if (iter->flags & FTRACE_ITER_PRINTALL) {
3554 		/* next must increment pos, and t_probe_start does not */
3555 		(*pos)++;
3556 		return t_mod_start(m, &l);
3557 	}
3558 
3559 	ret = t_func_next(m, pos);
3560 
3561 	if (!ret)
3562 		return t_mod_start(m, &l);
3563 
3564 	return ret;
3565 }
3566 
3567 static void reset_iter_read(struct ftrace_iterator *iter)
3568 {
3569 	iter->pos = 0;
3570 	iter->func_pos = 0;
3571 	iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD);
3572 }
3573 
3574 static void *t_start(struct seq_file *m, loff_t *pos)
3575 {
3576 	struct ftrace_iterator *iter = m->private;
3577 	void *p = NULL;
3578 	loff_t l;
3579 
3580 	mutex_lock(&ftrace_lock);
3581 
3582 	if (unlikely(ftrace_disabled))
3583 		return NULL;
3584 
3585 	/*
3586 	 * If an lseek was done, then reset and start from beginning.
3587 	 */
3588 	if (*pos < iter->pos)
3589 		reset_iter_read(iter);
3590 
3591 	/*
3592 	 * For set_ftrace_filter reading, if we have the filter
3593 	 * off, we can short cut and just print out that all
3594 	 * functions are enabled.
3595 	 */
3596 	if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3597 	    ftrace_hash_empty(iter->hash)) {
3598 		iter->func_pos = 1; /* Account for the message */
3599 		if (*pos > 0)
3600 			return t_mod_start(m, pos);
3601 		iter->flags |= FTRACE_ITER_PRINTALL;
3602 		/* reset in case of seek/pread */
3603 		iter->flags &= ~FTRACE_ITER_PROBE;
3604 		return iter;
3605 	}
3606 
3607 	if (iter->flags & FTRACE_ITER_MOD)
3608 		return t_mod_start(m, pos);
3609 
3610 	/*
3611 	 * Unfortunately, we need to restart at ftrace_pages_start
3612 	 * every time we let go of the ftrace_mutex. This is because
3613 	 * those pointers can change without the lock.
3614 	 */
3615 	iter->pg = ftrace_pages_start;
3616 	iter->idx = 0;
3617 	for (l = 0; l <= *pos; ) {
3618 		p = t_func_next(m, &l);
3619 		if (!p)
3620 			break;
3621 	}
3622 
3623 	if (!p)
3624 		return t_mod_start(m, pos);
3625 
3626 	return iter;
3627 }
3628 
3629 static void t_stop(struct seq_file *m, void *p)
3630 {
3631 	mutex_unlock(&ftrace_lock);
3632 }
3633 
3634 void * __weak
3635 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec)
3636 {
3637 	return NULL;
3638 }
3639 
3640 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops,
3641 				struct dyn_ftrace *rec)
3642 {
3643 	void *ptr;
3644 
3645 	ptr = arch_ftrace_trampoline_func(ops, rec);
3646 	if (ptr)
3647 		seq_printf(m, " ->%pS", ptr);
3648 }
3649 
3650 #ifdef FTRACE_MCOUNT_MAX_OFFSET
3651 /*
3652  * Weak functions can still have an mcount/fentry that is saved in
3653  * the __mcount_loc section. These can be detected by having a
3654  * symbol offset of greater than FTRACE_MCOUNT_MAX_OFFSET, as the
3655  * symbol found by kallsyms is not the function that the mcount/fentry
3656  * is part of. The offset is much greater in these cases.
3657  *
3658  * Test the record to make sure that the ip points to a valid kallsyms
3659  * and if not, mark it disabled.
3660  */
3661 static int test_for_valid_rec(struct dyn_ftrace *rec)
3662 {
3663 	char str[KSYM_SYMBOL_LEN];
3664 	unsigned long offset;
3665 	const char *ret;
3666 
3667 	ret = kallsyms_lookup(rec->ip, NULL, &offset, NULL, str);
3668 
3669 	/* Weak functions can cause invalid addresses */
3670 	if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) {
3671 		rec->flags |= FTRACE_FL_DISABLED;
3672 		return 0;
3673 	}
3674 	return 1;
3675 }
3676 
3677 static struct workqueue_struct *ftrace_check_wq __initdata;
3678 static struct work_struct ftrace_check_work __initdata;
3679 
3680 /*
3681  * Scan all the mcount/fentry entries to make sure they are valid.
3682  */
3683 static __init void ftrace_check_work_func(struct work_struct *work)
3684 {
3685 	struct ftrace_page *pg;
3686 	struct dyn_ftrace *rec;
3687 
3688 	mutex_lock(&ftrace_lock);
3689 	do_for_each_ftrace_rec(pg, rec) {
3690 		test_for_valid_rec(rec);
3691 	} while_for_each_ftrace_rec();
3692 	mutex_unlock(&ftrace_lock);
3693 }
3694 
3695 static int __init ftrace_check_for_weak_functions(void)
3696 {
3697 	INIT_WORK(&ftrace_check_work, ftrace_check_work_func);
3698 
3699 	ftrace_check_wq = alloc_workqueue("ftrace_check_wq", WQ_UNBOUND, 0);
3700 
3701 	queue_work(ftrace_check_wq, &ftrace_check_work);
3702 	return 0;
3703 }
3704 
3705 static int __init ftrace_check_sync(void)
3706 {
3707 	/* Make sure the ftrace_check updates are finished */
3708 	if (ftrace_check_wq)
3709 		destroy_workqueue(ftrace_check_wq);
3710 	return 0;
3711 }
3712 
3713 late_initcall_sync(ftrace_check_sync);
3714 subsys_initcall(ftrace_check_for_weak_functions);
3715 
3716 static int print_rec(struct seq_file *m, unsigned long ip)
3717 {
3718 	unsigned long offset;
3719 	char str[KSYM_SYMBOL_LEN];
3720 	char *modname;
3721 	const char *ret;
3722 
3723 	ret = kallsyms_lookup(ip, NULL, &offset, &modname, str);
3724 	/* Weak functions can cause invalid addresses */
3725 	if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) {
3726 		snprintf(str, KSYM_SYMBOL_LEN, "%s_%ld",
3727 			 FTRACE_INVALID_FUNCTION, offset);
3728 		ret = NULL;
3729 	}
3730 
3731 	seq_puts(m, str);
3732 	if (modname)
3733 		seq_printf(m, " [%s]", modname);
3734 	return ret == NULL ? -1 : 0;
3735 }
3736 #else
3737 static inline int test_for_valid_rec(struct dyn_ftrace *rec)
3738 {
3739 	return 1;
3740 }
3741 
3742 static inline int print_rec(struct seq_file *m, unsigned long ip)
3743 {
3744 	seq_printf(m, "%ps", (void *)ip);
3745 	return 0;
3746 }
3747 #endif
3748 
3749 static int t_show(struct seq_file *m, void *v)
3750 {
3751 	struct ftrace_iterator *iter = m->private;
3752 	struct dyn_ftrace *rec;
3753 
3754 	if (iter->flags & FTRACE_ITER_PROBE)
3755 		return t_probe_show(m, iter);
3756 
3757 	if (iter->flags & FTRACE_ITER_MOD)
3758 		return t_mod_show(m, iter);
3759 
3760 	if (iter->flags & FTRACE_ITER_PRINTALL) {
3761 		if (iter->flags & FTRACE_ITER_NOTRACE)
3762 			seq_puts(m, "#### no functions disabled ####\n");
3763 		else
3764 			seq_puts(m, "#### all functions enabled ####\n");
3765 		return 0;
3766 	}
3767 
3768 	rec = iter->func;
3769 
3770 	if (!rec)
3771 		return 0;
3772 
3773 	if (print_rec(m, rec->ip)) {
3774 		/* This should only happen when a rec is disabled */
3775 		WARN_ON_ONCE(!(rec->flags & FTRACE_FL_DISABLED));
3776 		seq_putc(m, '\n');
3777 		return 0;
3778 	}
3779 
3780 	if (iter->flags & FTRACE_ITER_ENABLED) {
3781 		struct ftrace_ops *ops;
3782 
3783 		seq_printf(m, " (%ld)%s%s%s",
3784 			   ftrace_rec_count(rec),
3785 			   rec->flags & FTRACE_FL_REGS ? " R" : "  ",
3786 			   rec->flags & FTRACE_FL_IPMODIFY ? " I" : "  ",
3787 			   rec->flags & FTRACE_FL_DIRECT ? " D" : "  ");
3788 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
3789 			ops = ftrace_find_tramp_ops_any(rec);
3790 			if (ops) {
3791 				do {
3792 					seq_printf(m, "\ttramp: %pS (%pS)",
3793 						   (void *)ops->trampoline,
3794 						   (void *)ops->func);
3795 					add_trampoline_func(m, ops, rec);
3796 					ops = ftrace_find_tramp_ops_next(rec, ops);
3797 				} while (ops);
3798 			} else
3799 				seq_puts(m, "\ttramp: ERROR!");
3800 		} else {
3801 			add_trampoline_func(m, NULL, rec);
3802 		}
3803 		if (rec->flags & FTRACE_FL_DIRECT) {
3804 			unsigned long direct;
3805 
3806 			direct = ftrace_find_rec_direct(rec->ip);
3807 			if (direct)
3808 				seq_printf(m, "\n\tdirect-->%pS", (void *)direct);
3809 		}
3810 	}
3811 
3812 	seq_putc(m, '\n');
3813 
3814 	return 0;
3815 }
3816 
3817 static const struct seq_operations show_ftrace_seq_ops = {
3818 	.start = t_start,
3819 	.next = t_next,
3820 	.stop = t_stop,
3821 	.show = t_show,
3822 };
3823 
3824 static int
3825 ftrace_avail_open(struct inode *inode, struct file *file)
3826 {
3827 	struct ftrace_iterator *iter;
3828 	int ret;
3829 
3830 	ret = security_locked_down(LOCKDOWN_TRACEFS);
3831 	if (ret)
3832 		return ret;
3833 
3834 	if (unlikely(ftrace_disabled))
3835 		return -ENODEV;
3836 
3837 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3838 	if (!iter)
3839 		return -ENOMEM;
3840 
3841 	iter->pg = ftrace_pages_start;
3842 	iter->ops = &global_ops;
3843 
3844 	return 0;
3845 }
3846 
3847 static int
3848 ftrace_enabled_open(struct inode *inode, struct file *file)
3849 {
3850 	struct ftrace_iterator *iter;
3851 
3852 	/*
3853 	 * This shows us what functions are currently being
3854 	 * traced and by what. Not sure if we want lockdown
3855 	 * to hide such critical information for an admin.
3856 	 * Although, perhaps it can show information we don't
3857 	 * want people to see, but if something is tracing
3858 	 * something, we probably want to know about it.
3859 	 */
3860 
3861 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3862 	if (!iter)
3863 		return -ENOMEM;
3864 
3865 	iter->pg = ftrace_pages_start;
3866 	iter->flags = FTRACE_ITER_ENABLED;
3867 	iter->ops = &global_ops;
3868 
3869 	return 0;
3870 }
3871 
3872 /**
3873  * ftrace_regex_open - initialize function tracer filter files
3874  * @ops: The ftrace_ops that hold the hash filters
3875  * @flag: The type of filter to process
3876  * @inode: The inode, usually passed in to your open routine
3877  * @file: The file, usually passed in to your open routine
3878  *
3879  * ftrace_regex_open() initializes the filter files for the
3880  * @ops. Depending on @flag it may process the filter hash or
3881  * the notrace hash of @ops. With this called from the open
3882  * routine, you can use ftrace_filter_write() for the write
3883  * routine if @flag has FTRACE_ITER_FILTER set, or
3884  * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set.
3885  * tracing_lseek() should be used as the lseek routine, and
3886  * release must call ftrace_regex_release().
3887  */
3888 int
3889 ftrace_regex_open(struct ftrace_ops *ops, int flag,
3890 		  struct inode *inode, struct file *file)
3891 {
3892 	struct ftrace_iterator *iter;
3893 	struct ftrace_hash *hash;
3894 	struct list_head *mod_head;
3895 	struct trace_array *tr = ops->private;
3896 	int ret = -ENOMEM;
3897 
3898 	ftrace_ops_init(ops);
3899 
3900 	if (unlikely(ftrace_disabled))
3901 		return -ENODEV;
3902 
3903 	if (tracing_check_open_get_tr(tr))
3904 		return -ENODEV;
3905 
3906 	iter = kzalloc(sizeof(*iter), GFP_KERNEL);
3907 	if (!iter)
3908 		goto out;
3909 
3910 	if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX))
3911 		goto out;
3912 
3913 	iter->ops = ops;
3914 	iter->flags = flag;
3915 	iter->tr = tr;
3916 
3917 	mutex_lock(&ops->func_hash->regex_lock);
3918 
3919 	if (flag & FTRACE_ITER_NOTRACE) {
3920 		hash = ops->func_hash->notrace_hash;
3921 		mod_head = tr ? &tr->mod_notrace : NULL;
3922 	} else {
3923 		hash = ops->func_hash->filter_hash;
3924 		mod_head = tr ? &tr->mod_trace : NULL;
3925 	}
3926 
3927 	iter->mod_list = mod_head;
3928 
3929 	if (file->f_mode & FMODE_WRITE) {
3930 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
3931 
3932 		if (file->f_flags & O_TRUNC) {
3933 			iter->hash = alloc_ftrace_hash(size_bits);
3934 			clear_ftrace_mod_list(mod_head);
3935 	        } else {
3936 			iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash);
3937 		}
3938 
3939 		if (!iter->hash) {
3940 			trace_parser_put(&iter->parser);
3941 			goto out_unlock;
3942 		}
3943 	} else
3944 		iter->hash = hash;
3945 
3946 	ret = 0;
3947 
3948 	if (file->f_mode & FMODE_READ) {
3949 		iter->pg = ftrace_pages_start;
3950 
3951 		ret = seq_open(file, &show_ftrace_seq_ops);
3952 		if (!ret) {
3953 			struct seq_file *m = file->private_data;
3954 			m->private = iter;
3955 		} else {
3956 			/* Failed */
3957 			free_ftrace_hash(iter->hash);
3958 			trace_parser_put(&iter->parser);
3959 		}
3960 	} else
3961 		file->private_data = iter;
3962 
3963  out_unlock:
3964 	mutex_unlock(&ops->func_hash->regex_lock);
3965 
3966  out:
3967 	if (ret) {
3968 		kfree(iter);
3969 		if (tr)
3970 			trace_array_put(tr);
3971 	}
3972 
3973 	return ret;
3974 }
3975 
3976 static int
3977 ftrace_filter_open(struct inode *inode, struct file *file)
3978 {
3979 	struct ftrace_ops *ops = inode->i_private;
3980 
3981 	/* Checks for tracefs lockdown */
3982 	return ftrace_regex_open(ops,
3983 			FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES,
3984 			inode, file);
3985 }
3986 
3987 static int
3988 ftrace_notrace_open(struct inode *inode, struct file *file)
3989 {
3990 	struct ftrace_ops *ops = inode->i_private;
3991 
3992 	/* Checks for tracefs lockdown */
3993 	return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE,
3994 				 inode, file);
3995 }
3996 
3997 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */
3998 struct ftrace_glob {
3999 	char *search;
4000 	unsigned len;
4001 	int type;
4002 };
4003 
4004 /*
4005  * If symbols in an architecture don't correspond exactly to the user-visible
4006  * name of what they represent, it is possible to define this function to
4007  * perform the necessary adjustments.
4008 */
4009 char * __weak arch_ftrace_match_adjust(char *str, const char *search)
4010 {
4011 	return str;
4012 }
4013 
4014 static int ftrace_match(char *str, struct ftrace_glob *g)
4015 {
4016 	int matched = 0;
4017 	int slen;
4018 
4019 	str = arch_ftrace_match_adjust(str, g->search);
4020 
4021 	switch (g->type) {
4022 	case MATCH_FULL:
4023 		if (strcmp(str, g->search) == 0)
4024 			matched = 1;
4025 		break;
4026 	case MATCH_FRONT_ONLY:
4027 		if (strncmp(str, g->search, g->len) == 0)
4028 			matched = 1;
4029 		break;
4030 	case MATCH_MIDDLE_ONLY:
4031 		if (strstr(str, g->search))
4032 			matched = 1;
4033 		break;
4034 	case MATCH_END_ONLY:
4035 		slen = strlen(str);
4036 		if (slen >= g->len &&
4037 		    memcmp(str + slen - g->len, g->search, g->len) == 0)
4038 			matched = 1;
4039 		break;
4040 	case MATCH_GLOB:
4041 		if (glob_match(g->search, str))
4042 			matched = 1;
4043 		break;
4044 	}
4045 
4046 	return matched;
4047 }
4048 
4049 static int
4050 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter)
4051 {
4052 	struct ftrace_func_entry *entry;
4053 	int ret = 0;
4054 
4055 	entry = ftrace_lookup_ip(hash, rec->ip);
4056 	if (clear_filter) {
4057 		/* Do nothing if it doesn't exist */
4058 		if (!entry)
4059 			return 0;
4060 
4061 		free_hash_entry(hash, entry);
4062 	} else {
4063 		/* Do nothing if it exists */
4064 		if (entry)
4065 			return 0;
4066 
4067 		ret = add_hash_entry(hash, rec->ip);
4068 	}
4069 	return ret;
4070 }
4071 
4072 static int
4073 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g,
4074 		 int clear_filter)
4075 {
4076 	long index = simple_strtoul(func_g->search, NULL, 0);
4077 	struct ftrace_page *pg;
4078 	struct dyn_ftrace *rec;
4079 
4080 	/* The index starts at 1 */
4081 	if (--index < 0)
4082 		return 0;
4083 
4084 	do_for_each_ftrace_rec(pg, rec) {
4085 		if (pg->index <= index) {
4086 			index -= pg->index;
4087 			/* this is a double loop, break goes to the next page */
4088 			break;
4089 		}
4090 		rec = &pg->records[index];
4091 		enter_record(hash, rec, clear_filter);
4092 		return 1;
4093 	} while_for_each_ftrace_rec();
4094 	return 0;
4095 }
4096 
4097 #ifdef FTRACE_MCOUNT_MAX_OFFSET
4098 static int lookup_ip(unsigned long ip, char **modname, char *str)
4099 {
4100 	unsigned long offset;
4101 
4102 	kallsyms_lookup(ip, NULL, &offset, modname, str);
4103 	if (offset > FTRACE_MCOUNT_MAX_OFFSET)
4104 		return -1;
4105 	return 0;
4106 }
4107 #else
4108 static int lookup_ip(unsigned long ip, char **modname, char *str)
4109 {
4110 	kallsyms_lookup(ip, NULL, NULL, modname, str);
4111 	return 0;
4112 }
4113 #endif
4114 
4115 static int
4116 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g,
4117 		struct ftrace_glob *mod_g, int exclude_mod)
4118 {
4119 	char str[KSYM_SYMBOL_LEN];
4120 	char *modname;
4121 
4122 	if (lookup_ip(rec->ip, &modname, str)) {
4123 		/* This should only happen when a rec is disabled */
4124 		WARN_ON_ONCE(system_state == SYSTEM_RUNNING &&
4125 			     !(rec->flags & FTRACE_FL_DISABLED));
4126 		return 0;
4127 	}
4128 
4129 	if (mod_g) {
4130 		int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0;
4131 
4132 		/* blank module name to match all modules */
4133 		if (!mod_g->len) {
4134 			/* blank module globbing: modname xor exclude_mod */
4135 			if (!exclude_mod != !modname)
4136 				goto func_match;
4137 			return 0;
4138 		}
4139 
4140 		/*
4141 		 * exclude_mod is set to trace everything but the given
4142 		 * module. If it is set and the module matches, then
4143 		 * return 0. If it is not set, and the module doesn't match
4144 		 * also return 0. Otherwise, check the function to see if
4145 		 * that matches.
4146 		 */
4147 		if (!mod_matches == !exclude_mod)
4148 			return 0;
4149 func_match:
4150 		/* blank search means to match all funcs in the mod */
4151 		if (!func_g->len)
4152 			return 1;
4153 	}
4154 
4155 	return ftrace_match(str, func_g);
4156 }
4157 
4158 static int
4159 match_records(struct ftrace_hash *hash, char *func, int len, char *mod)
4160 {
4161 	struct ftrace_page *pg;
4162 	struct dyn_ftrace *rec;
4163 	struct ftrace_glob func_g = { .type = MATCH_FULL };
4164 	struct ftrace_glob mod_g = { .type = MATCH_FULL };
4165 	struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL;
4166 	int exclude_mod = 0;
4167 	int found = 0;
4168 	int ret;
4169 	int clear_filter = 0;
4170 
4171 	if (func) {
4172 		func_g.type = filter_parse_regex(func, len, &func_g.search,
4173 						 &clear_filter);
4174 		func_g.len = strlen(func_g.search);
4175 	}
4176 
4177 	if (mod) {
4178 		mod_g.type = filter_parse_regex(mod, strlen(mod),
4179 				&mod_g.search, &exclude_mod);
4180 		mod_g.len = strlen(mod_g.search);
4181 	}
4182 
4183 	mutex_lock(&ftrace_lock);
4184 
4185 	if (unlikely(ftrace_disabled))
4186 		goto out_unlock;
4187 
4188 	if (func_g.type == MATCH_INDEX) {
4189 		found = add_rec_by_index(hash, &func_g, clear_filter);
4190 		goto out_unlock;
4191 	}
4192 
4193 	do_for_each_ftrace_rec(pg, rec) {
4194 
4195 		if (rec->flags & FTRACE_FL_DISABLED)
4196 			continue;
4197 
4198 		if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) {
4199 			ret = enter_record(hash, rec, clear_filter);
4200 			if (ret < 0) {
4201 				found = ret;
4202 				goto out_unlock;
4203 			}
4204 			found = 1;
4205 		}
4206 		cond_resched();
4207 	} while_for_each_ftrace_rec();
4208  out_unlock:
4209 	mutex_unlock(&ftrace_lock);
4210 
4211 	return found;
4212 }
4213 
4214 static int
4215 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len)
4216 {
4217 	return match_records(hash, buff, len, NULL);
4218 }
4219 
4220 static void ftrace_ops_update_code(struct ftrace_ops *ops,
4221 				   struct ftrace_ops_hash *old_hash)
4222 {
4223 	struct ftrace_ops *op;
4224 
4225 	if (!ftrace_enabled)
4226 		return;
4227 
4228 	if (ops->flags & FTRACE_OPS_FL_ENABLED) {
4229 		ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash);
4230 		return;
4231 	}
4232 
4233 	/*
4234 	 * If this is the shared global_ops filter, then we need to
4235 	 * check if there is another ops that shares it, is enabled.
4236 	 * If so, we still need to run the modify code.
4237 	 */
4238 	if (ops->func_hash != &global_ops.local_hash)
4239 		return;
4240 
4241 	do_for_each_ftrace_op(op, ftrace_ops_list) {
4242 		if (op->func_hash == &global_ops.local_hash &&
4243 		    op->flags & FTRACE_OPS_FL_ENABLED) {
4244 			ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash);
4245 			/* Only need to do this once */
4246 			return;
4247 		}
4248 	} while_for_each_ftrace_op(op);
4249 }
4250 
4251 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops,
4252 					   struct ftrace_hash **orig_hash,
4253 					   struct ftrace_hash *hash,
4254 					   int enable)
4255 {
4256 	struct ftrace_ops_hash old_hash_ops;
4257 	struct ftrace_hash *old_hash;
4258 	int ret;
4259 
4260 	old_hash = *orig_hash;
4261 	old_hash_ops.filter_hash = ops->func_hash->filter_hash;
4262 	old_hash_ops.notrace_hash = ops->func_hash->notrace_hash;
4263 	ret = ftrace_hash_move(ops, enable, orig_hash, hash);
4264 	if (!ret) {
4265 		ftrace_ops_update_code(ops, &old_hash_ops);
4266 		free_ftrace_hash_rcu(old_hash);
4267 	}
4268 	return ret;
4269 }
4270 
4271 static bool module_exists(const char *module)
4272 {
4273 	/* All modules have the symbol __this_module */
4274 	static const char this_mod[] = "__this_module";
4275 	char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2];
4276 	unsigned long val;
4277 	int n;
4278 
4279 	n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod);
4280 
4281 	if (n > sizeof(modname) - 1)
4282 		return false;
4283 
4284 	val = module_kallsyms_lookup_name(modname);
4285 	return val != 0;
4286 }
4287 
4288 static int cache_mod(struct trace_array *tr,
4289 		     const char *func, char *module, int enable)
4290 {
4291 	struct ftrace_mod_load *ftrace_mod, *n;
4292 	struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace;
4293 	int ret;
4294 
4295 	mutex_lock(&ftrace_lock);
4296 
4297 	/* We do not cache inverse filters */
4298 	if (func[0] == '!') {
4299 		func++;
4300 		ret = -EINVAL;
4301 
4302 		/* Look to remove this hash */
4303 		list_for_each_entry_safe(ftrace_mod, n, head, list) {
4304 			if (strcmp(ftrace_mod->module, module) != 0)
4305 				continue;
4306 
4307 			/* no func matches all */
4308 			if (strcmp(func, "*") == 0 ||
4309 			    (ftrace_mod->func &&
4310 			     strcmp(ftrace_mod->func, func) == 0)) {
4311 				ret = 0;
4312 				free_ftrace_mod(ftrace_mod);
4313 				continue;
4314 			}
4315 		}
4316 		goto out;
4317 	}
4318 
4319 	ret = -EINVAL;
4320 	/* We only care about modules that have not been loaded yet */
4321 	if (module_exists(module))
4322 		goto out;
4323 
4324 	/* Save this string off, and execute it when the module is loaded */
4325 	ret = ftrace_add_mod(tr, func, module, enable);
4326  out:
4327 	mutex_unlock(&ftrace_lock);
4328 
4329 	return ret;
4330 }
4331 
4332 static int
4333 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
4334 		 int reset, int enable);
4335 
4336 #ifdef CONFIG_MODULES
4337 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops,
4338 			     char *mod, bool enable)
4339 {
4340 	struct ftrace_mod_load *ftrace_mod, *n;
4341 	struct ftrace_hash **orig_hash, *new_hash;
4342 	LIST_HEAD(process_mods);
4343 	char *func;
4344 
4345 	mutex_lock(&ops->func_hash->regex_lock);
4346 
4347 	if (enable)
4348 		orig_hash = &ops->func_hash->filter_hash;
4349 	else
4350 		orig_hash = &ops->func_hash->notrace_hash;
4351 
4352 	new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS,
4353 					      *orig_hash);
4354 	if (!new_hash)
4355 		goto out; /* warn? */
4356 
4357 	mutex_lock(&ftrace_lock);
4358 
4359 	list_for_each_entry_safe(ftrace_mod, n, head, list) {
4360 
4361 		if (strcmp(ftrace_mod->module, mod) != 0)
4362 			continue;
4363 
4364 		if (ftrace_mod->func)
4365 			func = kstrdup(ftrace_mod->func, GFP_KERNEL);
4366 		else
4367 			func = kstrdup("*", GFP_KERNEL);
4368 
4369 		if (!func) /* warn? */
4370 			continue;
4371 
4372 		list_move(&ftrace_mod->list, &process_mods);
4373 
4374 		/* Use the newly allocated func, as it may be "*" */
4375 		kfree(ftrace_mod->func);
4376 		ftrace_mod->func = func;
4377 	}
4378 
4379 	mutex_unlock(&ftrace_lock);
4380 
4381 	list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) {
4382 
4383 		func = ftrace_mod->func;
4384 
4385 		/* Grabs ftrace_lock, which is why we have this extra step */
4386 		match_records(new_hash, func, strlen(func), mod);
4387 		free_ftrace_mod(ftrace_mod);
4388 	}
4389 
4390 	if (enable && list_empty(head))
4391 		new_hash->flags &= ~FTRACE_HASH_FL_MOD;
4392 
4393 	mutex_lock(&ftrace_lock);
4394 
4395 	ftrace_hash_move_and_update_ops(ops, orig_hash,
4396 					      new_hash, enable);
4397 	mutex_unlock(&ftrace_lock);
4398 
4399  out:
4400 	mutex_unlock(&ops->func_hash->regex_lock);
4401 
4402 	free_ftrace_hash(new_hash);
4403 }
4404 
4405 static void process_cached_mods(const char *mod_name)
4406 {
4407 	struct trace_array *tr;
4408 	char *mod;
4409 
4410 	mod = kstrdup(mod_name, GFP_KERNEL);
4411 	if (!mod)
4412 		return;
4413 
4414 	mutex_lock(&trace_types_lock);
4415 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
4416 		if (!list_empty(&tr->mod_trace))
4417 			process_mod_list(&tr->mod_trace, tr->ops, mod, true);
4418 		if (!list_empty(&tr->mod_notrace))
4419 			process_mod_list(&tr->mod_notrace, tr->ops, mod, false);
4420 	}
4421 	mutex_unlock(&trace_types_lock);
4422 
4423 	kfree(mod);
4424 }
4425 #endif
4426 
4427 /*
4428  * We register the module command as a template to show others how
4429  * to register the a command as well.
4430  */
4431 
4432 static int
4433 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash,
4434 		    char *func_orig, char *cmd, char *module, int enable)
4435 {
4436 	char *func;
4437 	int ret;
4438 
4439 	/* match_records() modifies func, and we need the original */
4440 	func = kstrdup(func_orig, GFP_KERNEL);
4441 	if (!func)
4442 		return -ENOMEM;
4443 
4444 	/*
4445 	 * cmd == 'mod' because we only registered this func
4446 	 * for the 'mod' ftrace_func_command.
4447 	 * But if you register one func with multiple commands,
4448 	 * you can tell which command was used by the cmd
4449 	 * parameter.
4450 	 */
4451 	ret = match_records(hash, func, strlen(func), module);
4452 	kfree(func);
4453 
4454 	if (!ret)
4455 		return cache_mod(tr, func_orig, module, enable);
4456 	if (ret < 0)
4457 		return ret;
4458 	return 0;
4459 }
4460 
4461 static struct ftrace_func_command ftrace_mod_cmd = {
4462 	.name			= "mod",
4463 	.func			= ftrace_mod_callback,
4464 };
4465 
4466 static int __init ftrace_mod_cmd_init(void)
4467 {
4468 	return register_ftrace_command(&ftrace_mod_cmd);
4469 }
4470 core_initcall(ftrace_mod_cmd_init);
4471 
4472 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip,
4473 				      struct ftrace_ops *op, struct ftrace_regs *fregs)
4474 {
4475 	struct ftrace_probe_ops *probe_ops;
4476 	struct ftrace_func_probe *probe;
4477 
4478 	probe = container_of(op, struct ftrace_func_probe, ops);
4479 	probe_ops = probe->probe_ops;
4480 
4481 	/*
4482 	 * Disable preemption for these calls to prevent a RCU grace
4483 	 * period. This syncs the hash iteration and freeing of items
4484 	 * on the hash. rcu_read_lock is too dangerous here.
4485 	 */
4486 	preempt_disable_notrace();
4487 	probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data);
4488 	preempt_enable_notrace();
4489 }
4490 
4491 struct ftrace_func_map {
4492 	struct ftrace_func_entry	entry;
4493 	void				*data;
4494 };
4495 
4496 struct ftrace_func_mapper {
4497 	struct ftrace_hash		hash;
4498 };
4499 
4500 /**
4501  * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper
4502  *
4503  * Returns a ftrace_func_mapper descriptor that can be used to map ips to data.
4504  */
4505 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void)
4506 {
4507 	struct ftrace_hash *hash;
4508 
4509 	/*
4510 	 * The mapper is simply a ftrace_hash, but since the entries
4511 	 * in the hash are not ftrace_func_entry type, we define it
4512 	 * as a separate structure.
4513 	 */
4514 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
4515 	return (struct ftrace_func_mapper *)hash;
4516 }
4517 
4518 /**
4519  * ftrace_func_mapper_find_ip - Find some data mapped to an ip
4520  * @mapper: The mapper that has the ip maps
4521  * @ip: the instruction pointer to find the data for
4522  *
4523  * Returns the data mapped to @ip if found otherwise NULL. The return
4524  * is actually the address of the mapper data pointer. The address is
4525  * returned for use cases where the data is no bigger than a long, and
4526  * the user can use the data pointer as its data instead of having to
4527  * allocate more memory for the reference.
4528  */
4529 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper,
4530 				  unsigned long ip)
4531 {
4532 	struct ftrace_func_entry *entry;
4533 	struct ftrace_func_map *map;
4534 
4535 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4536 	if (!entry)
4537 		return NULL;
4538 
4539 	map = (struct ftrace_func_map *)entry;
4540 	return &map->data;
4541 }
4542 
4543 /**
4544  * ftrace_func_mapper_add_ip - Map some data to an ip
4545  * @mapper: The mapper that has the ip maps
4546  * @ip: The instruction pointer address to map @data to
4547  * @data: The data to map to @ip
4548  *
4549  * Returns 0 on success otherwise an error.
4550  */
4551 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper,
4552 			      unsigned long ip, void *data)
4553 {
4554 	struct ftrace_func_entry *entry;
4555 	struct ftrace_func_map *map;
4556 
4557 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4558 	if (entry)
4559 		return -EBUSY;
4560 
4561 	map = kmalloc(sizeof(*map), GFP_KERNEL);
4562 	if (!map)
4563 		return -ENOMEM;
4564 
4565 	map->entry.ip = ip;
4566 	map->data = data;
4567 
4568 	__add_hash_entry(&mapper->hash, &map->entry);
4569 
4570 	return 0;
4571 }
4572 
4573 /**
4574  * ftrace_func_mapper_remove_ip - Remove an ip from the mapping
4575  * @mapper: The mapper that has the ip maps
4576  * @ip: The instruction pointer address to remove the data from
4577  *
4578  * Returns the data if it is found, otherwise NULL.
4579  * Note, if the data pointer is used as the data itself, (see
4580  * ftrace_func_mapper_find_ip(), then the return value may be meaningless,
4581  * if the data pointer was set to zero.
4582  */
4583 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper,
4584 				   unsigned long ip)
4585 {
4586 	struct ftrace_func_entry *entry;
4587 	struct ftrace_func_map *map;
4588 	void *data;
4589 
4590 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4591 	if (!entry)
4592 		return NULL;
4593 
4594 	map = (struct ftrace_func_map *)entry;
4595 	data = map->data;
4596 
4597 	remove_hash_entry(&mapper->hash, entry);
4598 	kfree(entry);
4599 
4600 	return data;
4601 }
4602 
4603 /**
4604  * free_ftrace_func_mapper - free a mapping of ips and data
4605  * @mapper: The mapper that has the ip maps
4606  * @free_func: A function to be called on each data item.
4607  *
4608  * This is used to free the function mapper. The @free_func is optional
4609  * and can be used if the data needs to be freed as well.
4610  */
4611 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper,
4612 			     ftrace_mapper_func free_func)
4613 {
4614 	struct ftrace_func_entry *entry;
4615 	struct ftrace_func_map *map;
4616 	struct hlist_head *hhd;
4617 	int size, i;
4618 
4619 	if (!mapper)
4620 		return;
4621 
4622 	if (free_func && mapper->hash.count) {
4623 		size = 1 << mapper->hash.size_bits;
4624 		for (i = 0; i < size; i++) {
4625 			hhd = &mapper->hash.buckets[i];
4626 			hlist_for_each_entry(entry, hhd, hlist) {
4627 				map = (struct ftrace_func_map *)entry;
4628 				free_func(map);
4629 			}
4630 		}
4631 	}
4632 	free_ftrace_hash(&mapper->hash);
4633 }
4634 
4635 static void release_probe(struct ftrace_func_probe *probe)
4636 {
4637 	struct ftrace_probe_ops *probe_ops;
4638 
4639 	mutex_lock(&ftrace_lock);
4640 
4641 	WARN_ON(probe->ref <= 0);
4642 
4643 	/* Subtract the ref that was used to protect this instance */
4644 	probe->ref--;
4645 
4646 	if (!probe->ref) {
4647 		probe_ops = probe->probe_ops;
4648 		/*
4649 		 * Sending zero as ip tells probe_ops to free
4650 		 * the probe->data itself
4651 		 */
4652 		if (probe_ops->free)
4653 			probe_ops->free(probe_ops, probe->tr, 0, probe->data);
4654 		list_del(&probe->list);
4655 		kfree(probe);
4656 	}
4657 	mutex_unlock(&ftrace_lock);
4658 }
4659 
4660 static void acquire_probe_locked(struct ftrace_func_probe *probe)
4661 {
4662 	/*
4663 	 * Add one ref to keep it from being freed when releasing the
4664 	 * ftrace_lock mutex.
4665 	 */
4666 	probe->ref++;
4667 }
4668 
4669 int
4670 register_ftrace_function_probe(char *glob, struct trace_array *tr,
4671 			       struct ftrace_probe_ops *probe_ops,
4672 			       void *data)
4673 {
4674 	struct ftrace_func_probe *probe = NULL, *iter;
4675 	struct ftrace_func_entry *entry;
4676 	struct ftrace_hash **orig_hash;
4677 	struct ftrace_hash *old_hash;
4678 	struct ftrace_hash *hash;
4679 	int count = 0;
4680 	int size;
4681 	int ret;
4682 	int i;
4683 
4684 	if (WARN_ON(!tr))
4685 		return -EINVAL;
4686 
4687 	/* We do not support '!' for function probes */
4688 	if (WARN_ON(glob[0] == '!'))
4689 		return -EINVAL;
4690 
4691 
4692 	mutex_lock(&ftrace_lock);
4693 	/* Check if the probe_ops is already registered */
4694 	list_for_each_entry(iter, &tr->func_probes, list) {
4695 		if (iter->probe_ops == probe_ops) {
4696 			probe = iter;
4697 			break;
4698 		}
4699 	}
4700 	if (!probe) {
4701 		probe = kzalloc(sizeof(*probe), GFP_KERNEL);
4702 		if (!probe) {
4703 			mutex_unlock(&ftrace_lock);
4704 			return -ENOMEM;
4705 		}
4706 		probe->probe_ops = probe_ops;
4707 		probe->ops.func = function_trace_probe_call;
4708 		probe->tr = tr;
4709 		ftrace_ops_init(&probe->ops);
4710 		list_add(&probe->list, &tr->func_probes);
4711 	}
4712 
4713 	acquire_probe_locked(probe);
4714 
4715 	mutex_unlock(&ftrace_lock);
4716 
4717 	/*
4718 	 * Note, there's a small window here that the func_hash->filter_hash
4719 	 * may be NULL or empty. Need to be careful when reading the loop.
4720 	 */
4721 	mutex_lock(&probe->ops.func_hash->regex_lock);
4722 
4723 	orig_hash = &probe->ops.func_hash->filter_hash;
4724 	old_hash = *orig_hash;
4725 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4726 
4727 	if (!hash) {
4728 		ret = -ENOMEM;
4729 		goto out;
4730 	}
4731 
4732 	ret = ftrace_match_records(hash, glob, strlen(glob));
4733 
4734 	/* Nothing found? */
4735 	if (!ret)
4736 		ret = -EINVAL;
4737 
4738 	if (ret < 0)
4739 		goto out;
4740 
4741 	size = 1 << hash->size_bits;
4742 	for (i = 0; i < size; i++) {
4743 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4744 			if (ftrace_lookup_ip(old_hash, entry->ip))
4745 				continue;
4746 			/*
4747 			 * The caller might want to do something special
4748 			 * for each function we find. We call the callback
4749 			 * to give the caller an opportunity to do so.
4750 			 */
4751 			if (probe_ops->init) {
4752 				ret = probe_ops->init(probe_ops, tr,
4753 						      entry->ip, data,
4754 						      &probe->data);
4755 				if (ret < 0) {
4756 					if (probe_ops->free && count)
4757 						probe_ops->free(probe_ops, tr,
4758 								0, probe->data);
4759 					probe->data = NULL;
4760 					goto out;
4761 				}
4762 			}
4763 			count++;
4764 		}
4765 	}
4766 
4767 	mutex_lock(&ftrace_lock);
4768 
4769 	if (!count) {
4770 		/* Nothing was added? */
4771 		ret = -EINVAL;
4772 		goto out_unlock;
4773 	}
4774 
4775 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
4776 					      hash, 1);
4777 	if (ret < 0)
4778 		goto err_unlock;
4779 
4780 	/* One ref for each new function traced */
4781 	probe->ref += count;
4782 
4783 	if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED))
4784 		ret = ftrace_startup(&probe->ops, 0);
4785 
4786  out_unlock:
4787 	mutex_unlock(&ftrace_lock);
4788 
4789 	if (!ret)
4790 		ret = count;
4791  out:
4792 	mutex_unlock(&probe->ops.func_hash->regex_lock);
4793 	free_ftrace_hash(hash);
4794 
4795 	release_probe(probe);
4796 
4797 	return ret;
4798 
4799  err_unlock:
4800 	if (!probe_ops->free || !count)
4801 		goto out_unlock;
4802 
4803 	/* Failed to do the move, need to call the free functions */
4804 	for (i = 0; i < size; i++) {
4805 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4806 			if (ftrace_lookup_ip(old_hash, entry->ip))
4807 				continue;
4808 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
4809 		}
4810 	}
4811 	goto out_unlock;
4812 }
4813 
4814 int
4815 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr,
4816 				      struct ftrace_probe_ops *probe_ops)
4817 {
4818 	struct ftrace_func_probe *probe = NULL, *iter;
4819 	struct ftrace_ops_hash old_hash_ops;
4820 	struct ftrace_func_entry *entry;
4821 	struct ftrace_glob func_g;
4822 	struct ftrace_hash **orig_hash;
4823 	struct ftrace_hash *old_hash;
4824 	struct ftrace_hash *hash = NULL;
4825 	struct hlist_node *tmp;
4826 	struct hlist_head hhd;
4827 	char str[KSYM_SYMBOL_LEN];
4828 	int count = 0;
4829 	int i, ret = -ENODEV;
4830 	int size;
4831 
4832 	if (!glob || !strlen(glob) || !strcmp(glob, "*"))
4833 		func_g.search = NULL;
4834 	else {
4835 		int not;
4836 
4837 		func_g.type = filter_parse_regex(glob, strlen(glob),
4838 						 &func_g.search, &not);
4839 		func_g.len = strlen(func_g.search);
4840 
4841 		/* we do not support '!' for function probes */
4842 		if (WARN_ON(not))
4843 			return -EINVAL;
4844 	}
4845 
4846 	mutex_lock(&ftrace_lock);
4847 	/* Check if the probe_ops is already registered */
4848 	list_for_each_entry(iter, &tr->func_probes, list) {
4849 		if (iter->probe_ops == probe_ops) {
4850 			probe = iter;
4851 			break;
4852 		}
4853 	}
4854 	if (!probe)
4855 		goto err_unlock_ftrace;
4856 
4857 	ret = -EINVAL;
4858 	if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED))
4859 		goto err_unlock_ftrace;
4860 
4861 	acquire_probe_locked(probe);
4862 
4863 	mutex_unlock(&ftrace_lock);
4864 
4865 	mutex_lock(&probe->ops.func_hash->regex_lock);
4866 
4867 	orig_hash = &probe->ops.func_hash->filter_hash;
4868 	old_hash = *orig_hash;
4869 
4870 	if (ftrace_hash_empty(old_hash))
4871 		goto out_unlock;
4872 
4873 	old_hash_ops.filter_hash = old_hash;
4874 	/* Probes only have filters */
4875 	old_hash_ops.notrace_hash = NULL;
4876 
4877 	ret = -ENOMEM;
4878 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4879 	if (!hash)
4880 		goto out_unlock;
4881 
4882 	INIT_HLIST_HEAD(&hhd);
4883 
4884 	size = 1 << hash->size_bits;
4885 	for (i = 0; i < size; i++) {
4886 		hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) {
4887 
4888 			if (func_g.search) {
4889 				kallsyms_lookup(entry->ip, NULL, NULL,
4890 						NULL, str);
4891 				if (!ftrace_match(str, &func_g))
4892 					continue;
4893 			}
4894 			count++;
4895 			remove_hash_entry(hash, entry);
4896 			hlist_add_head(&entry->hlist, &hhd);
4897 		}
4898 	}
4899 
4900 	/* Nothing found? */
4901 	if (!count) {
4902 		ret = -EINVAL;
4903 		goto out_unlock;
4904 	}
4905 
4906 	mutex_lock(&ftrace_lock);
4907 
4908 	WARN_ON(probe->ref < count);
4909 
4910 	probe->ref -= count;
4911 
4912 	if (ftrace_hash_empty(hash))
4913 		ftrace_shutdown(&probe->ops, 0);
4914 
4915 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
4916 					      hash, 1);
4917 
4918 	/* still need to update the function call sites */
4919 	if (ftrace_enabled && !ftrace_hash_empty(hash))
4920 		ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS,
4921 				       &old_hash_ops);
4922 	synchronize_rcu();
4923 
4924 	hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) {
4925 		hlist_del(&entry->hlist);
4926 		if (probe_ops->free)
4927 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
4928 		kfree(entry);
4929 	}
4930 	mutex_unlock(&ftrace_lock);
4931 
4932  out_unlock:
4933 	mutex_unlock(&probe->ops.func_hash->regex_lock);
4934 	free_ftrace_hash(hash);
4935 
4936 	release_probe(probe);
4937 
4938 	return ret;
4939 
4940  err_unlock_ftrace:
4941 	mutex_unlock(&ftrace_lock);
4942 	return ret;
4943 }
4944 
4945 void clear_ftrace_function_probes(struct trace_array *tr)
4946 {
4947 	struct ftrace_func_probe *probe, *n;
4948 
4949 	list_for_each_entry_safe(probe, n, &tr->func_probes, list)
4950 		unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops);
4951 }
4952 
4953 static LIST_HEAD(ftrace_commands);
4954 static DEFINE_MUTEX(ftrace_cmd_mutex);
4955 
4956 /*
4957  * Currently we only register ftrace commands from __init, so mark this
4958  * __init too.
4959  */
4960 __init int register_ftrace_command(struct ftrace_func_command *cmd)
4961 {
4962 	struct ftrace_func_command *p;
4963 	int ret = 0;
4964 
4965 	mutex_lock(&ftrace_cmd_mutex);
4966 	list_for_each_entry(p, &ftrace_commands, list) {
4967 		if (strcmp(cmd->name, p->name) == 0) {
4968 			ret = -EBUSY;
4969 			goto out_unlock;
4970 		}
4971 	}
4972 	list_add(&cmd->list, &ftrace_commands);
4973  out_unlock:
4974 	mutex_unlock(&ftrace_cmd_mutex);
4975 
4976 	return ret;
4977 }
4978 
4979 /*
4980  * Currently we only unregister ftrace commands from __init, so mark
4981  * this __init too.
4982  */
4983 __init int unregister_ftrace_command(struct ftrace_func_command *cmd)
4984 {
4985 	struct ftrace_func_command *p, *n;
4986 	int ret = -ENODEV;
4987 
4988 	mutex_lock(&ftrace_cmd_mutex);
4989 	list_for_each_entry_safe(p, n, &ftrace_commands, list) {
4990 		if (strcmp(cmd->name, p->name) == 0) {
4991 			ret = 0;
4992 			list_del_init(&p->list);
4993 			goto out_unlock;
4994 		}
4995 	}
4996  out_unlock:
4997 	mutex_unlock(&ftrace_cmd_mutex);
4998 
4999 	return ret;
5000 }
5001 
5002 static int ftrace_process_regex(struct ftrace_iterator *iter,
5003 				char *buff, int len, int enable)
5004 {
5005 	struct ftrace_hash *hash = iter->hash;
5006 	struct trace_array *tr = iter->ops->private;
5007 	char *func, *command, *next = buff;
5008 	struct ftrace_func_command *p;
5009 	int ret = -EINVAL;
5010 
5011 	func = strsep(&next, ":");
5012 
5013 	if (!next) {
5014 		ret = ftrace_match_records(hash, func, len);
5015 		if (!ret)
5016 			ret = -EINVAL;
5017 		if (ret < 0)
5018 			return ret;
5019 		return 0;
5020 	}
5021 
5022 	/* command found */
5023 
5024 	command = strsep(&next, ":");
5025 
5026 	mutex_lock(&ftrace_cmd_mutex);
5027 	list_for_each_entry(p, &ftrace_commands, list) {
5028 		if (strcmp(p->name, command) == 0) {
5029 			ret = p->func(tr, hash, func, command, next, enable);
5030 			goto out_unlock;
5031 		}
5032 	}
5033  out_unlock:
5034 	mutex_unlock(&ftrace_cmd_mutex);
5035 
5036 	return ret;
5037 }
5038 
5039 static ssize_t
5040 ftrace_regex_write(struct file *file, const char __user *ubuf,
5041 		   size_t cnt, loff_t *ppos, int enable)
5042 {
5043 	struct ftrace_iterator *iter;
5044 	struct trace_parser *parser;
5045 	ssize_t ret, read;
5046 
5047 	if (!cnt)
5048 		return 0;
5049 
5050 	if (file->f_mode & FMODE_READ) {
5051 		struct seq_file *m = file->private_data;
5052 		iter = m->private;
5053 	} else
5054 		iter = file->private_data;
5055 
5056 	if (unlikely(ftrace_disabled))
5057 		return -ENODEV;
5058 
5059 	/* iter->hash is a local copy, so we don't need regex_lock */
5060 
5061 	parser = &iter->parser;
5062 	read = trace_get_user(parser, ubuf, cnt, ppos);
5063 
5064 	if (read >= 0 && trace_parser_loaded(parser) &&
5065 	    !trace_parser_cont(parser)) {
5066 		ret = ftrace_process_regex(iter, parser->buffer,
5067 					   parser->idx, enable);
5068 		trace_parser_clear(parser);
5069 		if (ret < 0)
5070 			goto out;
5071 	}
5072 
5073 	ret = read;
5074  out:
5075 	return ret;
5076 }
5077 
5078 ssize_t
5079 ftrace_filter_write(struct file *file, const char __user *ubuf,
5080 		    size_t cnt, loff_t *ppos)
5081 {
5082 	return ftrace_regex_write(file, ubuf, cnt, ppos, 1);
5083 }
5084 
5085 ssize_t
5086 ftrace_notrace_write(struct file *file, const char __user *ubuf,
5087 		     size_t cnt, loff_t *ppos)
5088 {
5089 	return ftrace_regex_write(file, ubuf, cnt, ppos, 0);
5090 }
5091 
5092 static int
5093 __ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove)
5094 {
5095 	struct ftrace_func_entry *entry;
5096 
5097 	ip = ftrace_location(ip);
5098 	if (!ip)
5099 		return -EINVAL;
5100 
5101 	if (remove) {
5102 		entry = ftrace_lookup_ip(hash, ip);
5103 		if (!entry)
5104 			return -ENOENT;
5105 		free_hash_entry(hash, entry);
5106 		return 0;
5107 	}
5108 
5109 	return add_hash_entry(hash, ip);
5110 }
5111 
5112 static int
5113 ftrace_match_addr(struct ftrace_hash *hash, unsigned long *ips,
5114 		  unsigned int cnt, int remove)
5115 {
5116 	unsigned int i;
5117 	int err;
5118 
5119 	for (i = 0; i < cnt; i++) {
5120 		err = __ftrace_match_addr(hash, ips[i], remove);
5121 		if (err) {
5122 			/*
5123 			 * This expects the @hash is a temporary hash and if this
5124 			 * fails the caller must free the @hash.
5125 			 */
5126 			return err;
5127 		}
5128 	}
5129 	return 0;
5130 }
5131 
5132 static int
5133 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len,
5134 		unsigned long *ips, unsigned int cnt,
5135 		int remove, int reset, int enable)
5136 {
5137 	struct ftrace_hash **orig_hash;
5138 	struct ftrace_hash *hash;
5139 	int ret;
5140 
5141 	if (unlikely(ftrace_disabled))
5142 		return -ENODEV;
5143 
5144 	mutex_lock(&ops->func_hash->regex_lock);
5145 
5146 	if (enable)
5147 		orig_hash = &ops->func_hash->filter_hash;
5148 	else
5149 		orig_hash = &ops->func_hash->notrace_hash;
5150 
5151 	if (reset)
5152 		hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
5153 	else
5154 		hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash);
5155 
5156 	if (!hash) {
5157 		ret = -ENOMEM;
5158 		goto out_regex_unlock;
5159 	}
5160 
5161 	if (buf && !ftrace_match_records(hash, buf, len)) {
5162 		ret = -EINVAL;
5163 		goto out_regex_unlock;
5164 	}
5165 	if (ips) {
5166 		ret = ftrace_match_addr(hash, ips, cnt, remove);
5167 		if (ret < 0)
5168 			goto out_regex_unlock;
5169 	}
5170 
5171 	mutex_lock(&ftrace_lock);
5172 	ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable);
5173 	mutex_unlock(&ftrace_lock);
5174 
5175  out_regex_unlock:
5176 	mutex_unlock(&ops->func_hash->regex_lock);
5177 
5178 	free_ftrace_hash(hash);
5179 	return ret;
5180 }
5181 
5182 static int
5183 ftrace_set_addr(struct ftrace_ops *ops, unsigned long *ips, unsigned int cnt,
5184 		int remove, int reset, int enable)
5185 {
5186 	return ftrace_set_hash(ops, NULL, 0, ips, cnt, remove, reset, enable);
5187 }
5188 
5189 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
5190 
5191 struct ftrace_direct_func {
5192 	struct list_head	next;
5193 	unsigned long		addr;
5194 	int			count;
5195 };
5196 
5197 static LIST_HEAD(ftrace_direct_funcs);
5198 
5199 /**
5200  * ftrace_find_direct_func - test an address if it is a registered direct caller
5201  * @addr: The address of a registered direct caller
5202  *
5203  * This searches to see if a ftrace direct caller has been registered
5204  * at a specific address, and if so, it returns a descriptor for it.
5205  *
5206  * This can be used by architecture code to see if an address is
5207  * a direct caller (trampoline) attached to a fentry/mcount location.
5208  * This is useful for the function_graph tracer, as it may need to
5209  * do adjustments if it traced a location that also has a direct
5210  * trampoline attached to it.
5211  */
5212 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr)
5213 {
5214 	struct ftrace_direct_func *entry;
5215 	bool found = false;
5216 
5217 	/* May be called by fgraph trampoline (protected by rcu tasks) */
5218 	list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) {
5219 		if (entry->addr == addr) {
5220 			found = true;
5221 			break;
5222 		}
5223 	}
5224 	if (found)
5225 		return entry;
5226 
5227 	return NULL;
5228 }
5229 
5230 static struct ftrace_direct_func *ftrace_alloc_direct_func(unsigned long addr)
5231 {
5232 	struct ftrace_direct_func *direct;
5233 
5234 	direct = kmalloc(sizeof(*direct), GFP_KERNEL);
5235 	if (!direct)
5236 		return NULL;
5237 	direct->addr = addr;
5238 	direct->count = 0;
5239 	list_add_rcu(&direct->next, &ftrace_direct_funcs);
5240 	ftrace_direct_func_count++;
5241 	return direct;
5242 }
5243 
5244 static int register_ftrace_function_nolock(struct ftrace_ops *ops);
5245 
5246 /**
5247  * register_ftrace_direct - Call a custom trampoline directly
5248  * @ip: The address of the nop at the beginning of a function
5249  * @addr: The address of the trampoline to call at @ip
5250  *
5251  * This is used to connect a direct call from the nop location (@ip)
5252  * at the start of ftrace traced functions. The location that it calls
5253  * (@addr) must be able to handle a direct call, and save the parameters
5254  * of the function being traced, and restore them (or inject new ones
5255  * if needed), before returning.
5256  *
5257  * Returns:
5258  *  0 on success
5259  *  -EBUSY - Another direct function is already attached (there can be only one)
5260  *  -ENODEV - @ip does not point to a ftrace nop location (or not supported)
5261  *  -ENOMEM - There was an allocation failure.
5262  */
5263 int register_ftrace_direct(unsigned long ip, unsigned long addr)
5264 {
5265 	struct ftrace_direct_func *direct;
5266 	struct ftrace_func_entry *entry;
5267 	struct ftrace_hash *free_hash = NULL;
5268 	struct dyn_ftrace *rec;
5269 	int ret = -ENODEV;
5270 
5271 	mutex_lock(&direct_mutex);
5272 
5273 	ip = ftrace_location(ip);
5274 	if (!ip)
5275 		goto out_unlock;
5276 
5277 	/* See if there's a direct function at @ip already */
5278 	ret = -EBUSY;
5279 	if (ftrace_find_rec_direct(ip))
5280 		goto out_unlock;
5281 
5282 	ret = -ENODEV;
5283 	rec = lookup_rec(ip, ip);
5284 	if (!rec)
5285 		goto out_unlock;
5286 
5287 	/*
5288 	 * Check if the rec says it has a direct call but we didn't
5289 	 * find one earlier?
5290 	 */
5291 	if (WARN_ON(rec->flags & FTRACE_FL_DIRECT))
5292 		goto out_unlock;
5293 
5294 	/* Make sure the ip points to the exact record */
5295 	if (ip != rec->ip) {
5296 		ip = rec->ip;
5297 		/* Need to check this ip for a direct. */
5298 		if (ftrace_find_rec_direct(ip))
5299 			goto out_unlock;
5300 	}
5301 
5302 	ret = -ENOMEM;
5303 	direct = ftrace_find_direct_func(addr);
5304 	if (!direct) {
5305 		direct = ftrace_alloc_direct_func(addr);
5306 		if (!direct)
5307 			goto out_unlock;
5308 	}
5309 
5310 	entry = ftrace_add_rec_direct(ip, addr, &free_hash);
5311 	if (!entry)
5312 		goto out_unlock;
5313 
5314 	ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0);
5315 
5316 	if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) {
5317 		ret = register_ftrace_function_nolock(&direct_ops);
5318 		if (ret)
5319 			ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
5320 	}
5321 
5322 	if (ret) {
5323 		remove_hash_entry(direct_functions, entry);
5324 		kfree(entry);
5325 		if (!direct->count) {
5326 			list_del_rcu(&direct->next);
5327 			synchronize_rcu_tasks();
5328 			kfree(direct);
5329 			if (free_hash)
5330 				free_ftrace_hash(free_hash);
5331 			free_hash = NULL;
5332 			ftrace_direct_func_count--;
5333 		}
5334 	} else {
5335 		direct->count++;
5336 	}
5337  out_unlock:
5338 	mutex_unlock(&direct_mutex);
5339 
5340 	if (free_hash) {
5341 		synchronize_rcu_tasks();
5342 		free_ftrace_hash(free_hash);
5343 	}
5344 
5345 	return ret;
5346 }
5347 EXPORT_SYMBOL_GPL(register_ftrace_direct);
5348 
5349 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip,
5350 						   struct dyn_ftrace **recp)
5351 {
5352 	struct ftrace_func_entry *entry;
5353 	struct dyn_ftrace *rec;
5354 
5355 	rec = lookup_rec(*ip, *ip);
5356 	if (!rec)
5357 		return NULL;
5358 
5359 	entry = __ftrace_lookup_ip(direct_functions, rec->ip);
5360 	if (!entry) {
5361 		WARN_ON(rec->flags & FTRACE_FL_DIRECT);
5362 		return NULL;
5363 	}
5364 
5365 	WARN_ON(!(rec->flags & FTRACE_FL_DIRECT));
5366 
5367 	/* Passed in ip just needs to be on the call site */
5368 	*ip = rec->ip;
5369 
5370 	if (recp)
5371 		*recp = rec;
5372 
5373 	return entry;
5374 }
5375 
5376 int unregister_ftrace_direct(unsigned long ip, unsigned long addr)
5377 {
5378 	struct ftrace_direct_func *direct;
5379 	struct ftrace_func_entry *entry;
5380 	struct ftrace_hash *hash;
5381 	int ret = -ENODEV;
5382 
5383 	mutex_lock(&direct_mutex);
5384 
5385 	ip = ftrace_location(ip);
5386 	if (!ip)
5387 		goto out_unlock;
5388 
5389 	entry = find_direct_entry(&ip, NULL);
5390 	if (!entry)
5391 		goto out_unlock;
5392 
5393 	hash = direct_ops.func_hash->filter_hash;
5394 	if (hash->count == 1)
5395 		unregister_ftrace_function(&direct_ops);
5396 
5397 	ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
5398 
5399 	WARN_ON(ret);
5400 
5401 	remove_hash_entry(direct_functions, entry);
5402 
5403 	direct = ftrace_find_direct_func(addr);
5404 	if (!WARN_ON(!direct)) {
5405 		/* This is the good path (see the ! before WARN) */
5406 		direct->count--;
5407 		WARN_ON(direct->count < 0);
5408 		if (!direct->count) {
5409 			list_del_rcu(&direct->next);
5410 			synchronize_rcu_tasks();
5411 			kfree(direct);
5412 			kfree(entry);
5413 			ftrace_direct_func_count--;
5414 		}
5415 	}
5416  out_unlock:
5417 	mutex_unlock(&direct_mutex);
5418 
5419 	return ret;
5420 }
5421 EXPORT_SYMBOL_GPL(unregister_ftrace_direct);
5422 
5423 static struct ftrace_ops stub_ops = {
5424 	.func		= ftrace_stub,
5425 };
5426 
5427 /**
5428  * ftrace_modify_direct_caller - modify ftrace nop directly
5429  * @entry: The ftrace hash entry of the direct helper for @rec
5430  * @rec: The record representing the function site to patch
5431  * @old_addr: The location that the site at @rec->ip currently calls
5432  * @new_addr: The location that the site at @rec->ip should call
5433  *
5434  * An architecture may overwrite this function to optimize the
5435  * changing of the direct callback on an ftrace nop location.
5436  * This is called with the ftrace_lock mutex held, and no other
5437  * ftrace callbacks are on the associated record (@rec). Thus,
5438  * it is safe to modify the ftrace record, where it should be
5439  * currently calling @old_addr directly, to call @new_addr.
5440  *
5441  * This is called with direct_mutex locked.
5442  *
5443  * Safety checks should be made to make sure that the code at
5444  * @rec->ip is currently calling @old_addr. And this must
5445  * also update entry->direct to @new_addr.
5446  */
5447 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry,
5448 				       struct dyn_ftrace *rec,
5449 				       unsigned long old_addr,
5450 				       unsigned long new_addr)
5451 {
5452 	unsigned long ip = rec->ip;
5453 	int ret;
5454 
5455 	lockdep_assert_held(&direct_mutex);
5456 
5457 	/*
5458 	 * The ftrace_lock was used to determine if the record
5459 	 * had more than one registered user to it. If it did,
5460 	 * we needed to prevent that from changing to do the quick
5461 	 * switch. But if it did not (only a direct caller was attached)
5462 	 * then this function is called. But this function can deal
5463 	 * with attached callers to the rec that we care about, and
5464 	 * since this function uses standard ftrace calls that take
5465 	 * the ftrace_lock mutex, we need to release it.
5466 	 */
5467 	mutex_unlock(&ftrace_lock);
5468 
5469 	/*
5470 	 * By setting a stub function at the same address, we force
5471 	 * the code to call the iterator and the direct_ops helper.
5472 	 * This means that @ip does not call the direct call, and
5473 	 * we can simply modify it.
5474 	 */
5475 	ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0);
5476 	if (ret)
5477 		goto out_lock;
5478 
5479 	ret = register_ftrace_function_nolock(&stub_ops);
5480 	if (ret) {
5481 		ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
5482 		goto out_lock;
5483 	}
5484 
5485 	entry->direct = new_addr;
5486 
5487 	/*
5488 	 * By removing the stub, we put back the direct call, calling
5489 	 * the @new_addr.
5490 	 */
5491 	unregister_ftrace_function(&stub_ops);
5492 	ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
5493 
5494  out_lock:
5495 	mutex_lock(&ftrace_lock);
5496 
5497 	return ret;
5498 }
5499 
5500 /**
5501  * modify_ftrace_direct - Modify an existing direct call to call something else
5502  * @ip: The instruction pointer to modify
5503  * @old_addr: The address that the current @ip calls directly
5504  * @new_addr: The address that the @ip should call
5505  *
5506  * This modifies a ftrace direct caller at an instruction pointer without
5507  * having to disable it first. The direct call will switch over to the
5508  * @new_addr without missing anything.
5509  *
5510  * Returns: zero on success. Non zero on error, which includes:
5511  *  -ENODEV : the @ip given has no direct caller attached
5512  *  -EINVAL : the @old_addr does not match the current direct caller
5513  */
5514 int modify_ftrace_direct(unsigned long ip,
5515 			 unsigned long old_addr, unsigned long new_addr)
5516 {
5517 	struct ftrace_direct_func *direct, *new_direct = NULL;
5518 	struct ftrace_func_entry *entry;
5519 	struct dyn_ftrace *rec;
5520 	int ret = -ENODEV;
5521 
5522 	mutex_lock(&direct_mutex);
5523 
5524 	mutex_lock(&ftrace_lock);
5525 
5526 	ip = ftrace_location(ip);
5527 	if (!ip)
5528 		goto out_unlock;
5529 
5530 	entry = find_direct_entry(&ip, &rec);
5531 	if (!entry)
5532 		goto out_unlock;
5533 
5534 	ret = -EINVAL;
5535 	if (entry->direct != old_addr)
5536 		goto out_unlock;
5537 
5538 	direct = ftrace_find_direct_func(old_addr);
5539 	if (WARN_ON(!direct))
5540 		goto out_unlock;
5541 	if (direct->count > 1) {
5542 		ret = -ENOMEM;
5543 		new_direct = ftrace_alloc_direct_func(new_addr);
5544 		if (!new_direct)
5545 			goto out_unlock;
5546 		direct->count--;
5547 		new_direct->count++;
5548 	} else {
5549 		direct->addr = new_addr;
5550 	}
5551 
5552 	/*
5553 	 * If there's no other ftrace callback on the rec->ip location,
5554 	 * then it can be changed directly by the architecture.
5555 	 * If there is another caller, then we just need to change the
5556 	 * direct caller helper to point to @new_addr.
5557 	 */
5558 	if (ftrace_rec_count(rec) == 1) {
5559 		ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr);
5560 	} else {
5561 		entry->direct = new_addr;
5562 		ret = 0;
5563 	}
5564 
5565 	if (unlikely(ret && new_direct)) {
5566 		direct->count++;
5567 		list_del_rcu(&new_direct->next);
5568 		synchronize_rcu_tasks();
5569 		kfree(new_direct);
5570 		ftrace_direct_func_count--;
5571 	}
5572 
5573  out_unlock:
5574 	mutex_unlock(&ftrace_lock);
5575 	mutex_unlock(&direct_mutex);
5576 	return ret;
5577 }
5578 EXPORT_SYMBOL_GPL(modify_ftrace_direct);
5579 
5580 #define MULTI_FLAGS (FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS)
5581 
5582 static int check_direct_multi(struct ftrace_ops *ops)
5583 {
5584 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED))
5585 		return -EINVAL;
5586 	if ((ops->flags & MULTI_FLAGS) != MULTI_FLAGS)
5587 		return -EINVAL;
5588 	return 0;
5589 }
5590 
5591 static void remove_direct_functions_hash(struct ftrace_hash *hash, unsigned long addr)
5592 {
5593 	struct ftrace_func_entry *entry, *del;
5594 	int size, i;
5595 
5596 	size = 1 << hash->size_bits;
5597 	for (i = 0; i < size; i++) {
5598 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5599 			del = __ftrace_lookup_ip(direct_functions, entry->ip);
5600 			if (del && del->direct == addr) {
5601 				remove_hash_entry(direct_functions, del);
5602 				kfree(del);
5603 			}
5604 		}
5605 	}
5606 }
5607 
5608 /**
5609  * register_ftrace_direct_multi - Call a custom trampoline directly
5610  * for multiple functions registered in @ops
5611  * @ops: The address of the struct ftrace_ops object
5612  * @addr: The address of the trampoline to call at @ops functions
5613  *
5614  * This is used to connect a direct calls to @addr from the nop locations
5615  * of the functions registered in @ops (with by ftrace_set_filter_ip
5616  * function).
5617  *
5618  * The location that it calls (@addr) must be able to handle a direct call,
5619  * and save the parameters of the function being traced, and restore them
5620  * (or inject new ones if needed), before returning.
5621  *
5622  * Returns:
5623  *  0 on success
5624  *  -EINVAL  - The @ops object was already registered with this call or
5625  *             when there are no functions in @ops object.
5626  *  -EBUSY   - Another direct function is already attached (there can be only one)
5627  *  -ENODEV  - @ip does not point to a ftrace nop location (or not supported)
5628  *  -ENOMEM  - There was an allocation failure.
5629  */
5630 int register_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr)
5631 {
5632 	struct ftrace_hash *hash, *free_hash = NULL;
5633 	struct ftrace_func_entry *entry, *new;
5634 	int err = -EBUSY, size, i;
5635 
5636 	if (ops->func || ops->trampoline)
5637 		return -EINVAL;
5638 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED))
5639 		return -EINVAL;
5640 	if (ops->flags & FTRACE_OPS_FL_ENABLED)
5641 		return -EINVAL;
5642 
5643 	hash = ops->func_hash->filter_hash;
5644 	if (ftrace_hash_empty(hash))
5645 		return -EINVAL;
5646 
5647 	mutex_lock(&direct_mutex);
5648 
5649 	/* Make sure requested entries are not already registered.. */
5650 	size = 1 << hash->size_bits;
5651 	for (i = 0; i < size; i++) {
5652 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5653 			if (ftrace_find_rec_direct(entry->ip))
5654 				goto out_unlock;
5655 		}
5656 	}
5657 
5658 	/* ... and insert them to direct_functions hash. */
5659 	err = -ENOMEM;
5660 	for (i = 0; i < size; i++) {
5661 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5662 			new = ftrace_add_rec_direct(entry->ip, addr, &free_hash);
5663 			if (!new)
5664 				goto out_remove;
5665 			entry->direct = addr;
5666 		}
5667 	}
5668 
5669 	ops->func = call_direct_funcs;
5670 	ops->flags = MULTI_FLAGS;
5671 	ops->trampoline = FTRACE_REGS_ADDR;
5672 
5673 	err = register_ftrace_function_nolock(ops);
5674 
5675  out_remove:
5676 	if (err)
5677 		remove_direct_functions_hash(hash, addr);
5678 
5679  out_unlock:
5680 	mutex_unlock(&direct_mutex);
5681 
5682 	if (free_hash) {
5683 		synchronize_rcu_tasks();
5684 		free_ftrace_hash(free_hash);
5685 	}
5686 	return err;
5687 }
5688 EXPORT_SYMBOL_GPL(register_ftrace_direct_multi);
5689 
5690 /**
5691  * unregister_ftrace_direct_multi - Remove calls to custom trampoline
5692  * previously registered by register_ftrace_direct_multi for @ops object.
5693  * @ops: The address of the struct ftrace_ops object
5694  *
5695  * This is used to remove a direct calls to @addr from the nop locations
5696  * of the functions registered in @ops (with by ftrace_set_filter_ip
5697  * function).
5698  *
5699  * Returns:
5700  *  0 on success
5701  *  -EINVAL - The @ops object was not properly registered.
5702  */
5703 int unregister_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr)
5704 {
5705 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
5706 	int err;
5707 
5708 	if (check_direct_multi(ops))
5709 		return -EINVAL;
5710 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
5711 		return -EINVAL;
5712 
5713 	mutex_lock(&direct_mutex);
5714 	err = unregister_ftrace_function(ops);
5715 	remove_direct_functions_hash(hash, addr);
5716 	mutex_unlock(&direct_mutex);
5717 
5718 	/* cleanup for possible another register call */
5719 	ops->func = NULL;
5720 	ops->trampoline = 0;
5721 	return err;
5722 }
5723 EXPORT_SYMBOL_GPL(unregister_ftrace_direct_multi);
5724 
5725 static int
5726 __modify_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr)
5727 {
5728 	struct ftrace_hash *hash;
5729 	struct ftrace_func_entry *entry, *iter;
5730 	static struct ftrace_ops tmp_ops = {
5731 		.func		= ftrace_stub,
5732 		.flags		= FTRACE_OPS_FL_STUB,
5733 	};
5734 	int i, size;
5735 	int err;
5736 
5737 	lockdep_assert_held_once(&direct_mutex);
5738 
5739 	/* Enable the tmp_ops to have the same functions as the direct ops */
5740 	ftrace_ops_init(&tmp_ops);
5741 	tmp_ops.func_hash = ops->func_hash;
5742 
5743 	err = register_ftrace_function_nolock(&tmp_ops);
5744 	if (err)
5745 		return err;
5746 
5747 	/*
5748 	 * Now the ftrace_ops_list_func() is called to do the direct callers.
5749 	 * We can safely change the direct functions attached to each entry.
5750 	 */
5751 	mutex_lock(&ftrace_lock);
5752 
5753 	hash = ops->func_hash->filter_hash;
5754 	size = 1 << hash->size_bits;
5755 	for (i = 0; i < size; i++) {
5756 		hlist_for_each_entry(iter, &hash->buckets[i], hlist) {
5757 			entry = __ftrace_lookup_ip(direct_functions, iter->ip);
5758 			if (!entry)
5759 				continue;
5760 			entry->direct = addr;
5761 		}
5762 	}
5763 
5764 	mutex_unlock(&ftrace_lock);
5765 
5766 	/* Removing the tmp_ops will add the updated direct callers to the functions */
5767 	unregister_ftrace_function(&tmp_ops);
5768 
5769 	return err;
5770 }
5771 
5772 /**
5773  * modify_ftrace_direct_multi_nolock - Modify an existing direct 'multi' call
5774  * to call something else
5775  * @ops: The address of the struct ftrace_ops object
5776  * @addr: The address of the new trampoline to call at @ops functions
5777  *
5778  * This is used to unregister currently registered direct caller and
5779  * register new one @addr on functions registered in @ops object.
5780  *
5781  * Note there's window between ftrace_shutdown and ftrace_startup calls
5782  * where there will be no callbacks called.
5783  *
5784  * Caller should already have direct_mutex locked, so we don't lock
5785  * direct_mutex here.
5786  *
5787  * Returns: zero on success. Non zero on error, which includes:
5788  *  -EINVAL - The @ops object was not properly registered.
5789  */
5790 int modify_ftrace_direct_multi_nolock(struct ftrace_ops *ops, unsigned long addr)
5791 {
5792 	if (check_direct_multi(ops))
5793 		return -EINVAL;
5794 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
5795 		return -EINVAL;
5796 
5797 	return __modify_ftrace_direct_multi(ops, addr);
5798 }
5799 EXPORT_SYMBOL_GPL(modify_ftrace_direct_multi_nolock);
5800 
5801 /**
5802  * modify_ftrace_direct_multi - Modify an existing direct 'multi' call
5803  * to call something else
5804  * @ops: The address of the struct ftrace_ops object
5805  * @addr: The address of the new trampoline to call at @ops functions
5806  *
5807  * This is used to unregister currently registered direct caller and
5808  * register new one @addr on functions registered in @ops object.
5809  *
5810  * Note there's window between ftrace_shutdown and ftrace_startup calls
5811  * where there will be no callbacks called.
5812  *
5813  * Returns: zero on success. Non zero on error, which includes:
5814  *  -EINVAL - The @ops object was not properly registered.
5815  */
5816 int modify_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr)
5817 {
5818 	int err;
5819 
5820 	if (check_direct_multi(ops))
5821 		return -EINVAL;
5822 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
5823 		return -EINVAL;
5824 
5825 	mutex_lock(&direct_mutex);
5826 	err = __modify_ftrace_direct_multi(ops, addr);
5827 	mutex_unlock(&direct_mutex);
5828 	return err;
5829 }
5830 EXPORT_SYMBOL_GPL(modify_ftrace_direct_multi);
5831 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
5832 
5833 /**
5834  * ftrace_set_filter_ip - set a function to filter on in ftrace by address
5835  * @ops - the ops to set the filter with
5836  * @ip - the address to add to or remove from the filter.
5837  * @remove - non zero to remove the ip from the filter
5838  * @reset - non zero to reset all filters before applying this filter.
5839  *
5840  * Filters denote which functions should be enabled when tracing is enabled
5841  * If @ip is NULL, it fails to update filter.
5842  */
5843 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip,
5844 			 int remove, int reset)
5845 {
5846 	ftrace_ops_init(ops);
5847 	return ftrace_set_addr(ops, &ip, 1, remove, reset, 1);
5848 }
5849 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip);
5850 
5851 /**
5852  * ftrace_set_filter_ips - set functions to filter on in ftrace by addresses
5853  * @ops - the ops to set the filter with
5854  * @ips - the array of addresses to add to or remove from the filter.
5855  * @cnt - the number of addresses in @ips
5856  * @remove - non zero to remove ips from the filter
5857  * @reset - non zero to reset all filters before applying this filter.
5858  *
5859  * Filters denote which functions should be enabled when tracing is enabled
5860  * If @ips array or any ip specified within is NULL , it fails to update filter.
5861  */
5862 int ftrace_set_filter_ips(struct ftrace_ops *ops, unsigned long *ips,
5863 			  unsigned int cnt, int remove, int reset)
5864 {
5865 	ftrace_ops_init(ops);
5866 	return ftrace_set_addr(ops, ips, cnt, remove, reset, 1);
5867 }
5868 EXPORT_SYMBOL_GPL(ftrace_set_filter_ips);
5869 
5870 /**
5871  * ftrace_ops_set_global_filter - setup ops to use global filters
5872  * @ops - the ops which will use the global filters
5873  *
5874  * ftrace users who need global function trace filtering should call this.
5875  * It can set the global filter only if ops were not initialized before.
5876  */
5877 void ftrace_ops_set_global_filter(struct ftrace_ops *ops)
5878 {
5879 	if (ops->flags & FTRACE_OPS_FL_INITIALIZED)
5880 		return;
5881 
5882 	ftrace_ops_init(ops);
5883 	ops->func_hash = &global_ops.local_hash;
5884 }
5885 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter);
5886 
5887 static int
5888 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
5889 		 int reset, int enable)
5890 {
5891 	return ftrace_set_hash(ops, buf, len, NULL, 0, 0, reset, enable);
5892 }
5893 
5894 /**
5895  * ftrace_set_filter - set a function to filter on in ftrace
5896  * @ops - the ops to set the filter with
5897  * @buf - the string that holds the function filter text.
5898  * @len - the length of the string.
5899  * @reset - non zero to reset all filters before applying this filter.
5900  *
5901  * Filters denote which functions should be enabled when tracing is enabled.
5902  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
5903  */
5904 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf,
5905 		       int len, int reset)
5906 {
5907 	ftrace_ops_init(ops);
5908 	return ftrace_set_regex(ops, buf, len, reset, 1);
5909 }
5910 EXPORT_SYMBOL_GPL(ftrace_set_filter);
5911 
5912 /**
5913  * ftrace_set_notrace - set a function to not trace in ftrace
5914  * @ops - the ops to set the notrace filter with
5915  * @buf - the string that holds the function notrace text.
5916  * @len - the length of the string.
5917  * @reset - non zero to reset all filters before applying this filter.
5918  *
5919  * Notrace Filters denote which functions should not be enabled when tracing
5920  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
5921  * for tracing.
5922  */
5923 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf,
5924 			int len, int reset)
5925 {
5926 	ftrace_ops_init(ops);
5927 	return ftrace_set_regex(ops, buf, len, reset, 0);
5928 }
5929 EXPORT_SYMBOL_GPL(ftrace_set_notrace);
5930 /**
5931  * ftrace_set_global_filter - set a function to filter on with global tracers
5932  * @buf - the string that holds the function filter text.
5933  * @len - the length of the string.
5934  * @reset - non zero to reset all filters before applying this filter.
5935  *
5936  * Filters denote which functions should be enabled when tracing is enabled.
5937  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
5938  */
5939 void ftrace_set_global_filter(unsigned char *buf, int len, int reset)
5940 {
5941 	ftrace_set_regex(&global_ops, buf, len, reset, 1);
5942 }
5943 EXPORT_SYMBOL_GPL(ftrace_set_global_filter);
5944 
5945 /**
5946  * ftrace_set_global_notrace - set a function to not trace with global tracers
5947  * @buf - the string that holds the function notrace text.
5948  * @len - the length of the string.
5949  * @reset - non zero to reset all filters before applying this filter.
5950  *
5951  * Notrace Filters denote which functions should not be enabled when tracing
5952  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
5953  * for tracing.
5954  */
5955 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset)
5956 {
5957 	ftrace_set_regex(&global_ops, buf, len, reset, 0);
5958 }
5959 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace);
5960 
5961 /*
5962  * command line interface to allow users to set filters on boot up.
5963  */
5964 #define FTRACE_FILTER_SIZE		COMMAND_LINE_SIZE
5965 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
5966 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata;
5967 
5968 /* Used by function selftest to not test if filter is set */
5969 bool ftrace_filter_param __initdata;
5970 
5971 static int __init set_ftrace_notrace(char *str)
5972 {
5973 	ftrace_filter_param = true;
5974 	strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE);
5975 	return 1;
5976 }
5977 __setup("ftrace_notrace=", set_ftrace_notrace);
5978 
5979 static int __init set_ftrace_filter(char *str)
5980 {
5981 	ftrace_filter_param = true;
5982 	strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE);
5983 	return 1;
5984 }
5985 __setup("ftrace_filter=", set_ftrace_filter);
5986 
5987 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5988 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata;
5989 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
5990 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer);
5991 
5992 static int __init set_graph_function(char *str)
5993 {
5994 	strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE);
5995 	return 1;
5996 }
5997 __setup("ftrace_graph_filter=", set_graph_function);
5998 
5999 static int __init set_graph_notrace_function(char *str)
6000 {
6001 	strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE);
6002 	return 1;
6003 }
6004 __setup("ftrace_graph_notrace=", set_graph_notrace_function);
6005 
6006 static int __init set_graph_max_depth_function(char *str)
6007 {
6008 	if (!str)
6009 		return 0;
6010 	fgraph_max_depth = simple_strtoul(str, NULL, 0);
6011 	return 1;
6012 }
6013 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function);
6014 
6015 static void __init set_ftrace_early_graph(char *buf, int enable)
6016 {
6017 	int ret;
6018 	char *func;
6019 	struct ftrace_hash *hash;
6020 
6021 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
6022 	if (MEM_FAIL(!hash, "Failed to allocate hash\n"))
6023 		return;
6024 
6025 	while (buf) {
6026 		func = strsep(&buf, ",");
6027 		/* we allow only one expression at a time */
6028 		ret = ftrace_graph_set_hash(hash, func);
6029 		if (ret)
6030 			printk(KERN_DEBUG "ftrace: function %s not "
6031 					  "traceable\n", func);
6032 	}
6033 
6034 	if (enable)
6035 		ftrace_graph_hash = hash;
6036 	else
6037 		ftrace_graph_notrace_hash = hash;
6038 }
6039 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6040 
6041 void __init
6042 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable)
6043 {
6044 	char *func;
6045 
6046 	ftrace_ops_init(ops);
6047 
6048 	while (buf) {
6049 		func = strsep(&buf, ",");
6050 		ftrace_set_regex(ops, func, strlen(func), 0, enable);
6051 	}
6052 }
6053 
6054 static void __init set_ftrace_early_filters(void)
6055 {
6056 	if (ftrace_filter_buf[0])
6057 		ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1);
6058 	if (ftrace_notrace_buf[0])
6059 		ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0);
6060 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6061 	if (ftrace_graph_buf[0])
6062 		set_ftrace_early_graph(ftrace_graph_buf, 1);
6063 	if (ftrace_graph_notrace_buf[0])
6064 		set_ftrace_early_graph(ftrace_graph_notrace_buf, 0);
6065 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6066 }
6067 
6068 int ftrace_regex_release(struct inode *inode, struct file *file)
6069 {
6070 	struct seq_file *m = (struct seq_file *)file->private_data;
6071 	struct ftrace_iterator *iter;
6072 	struct ftrace_hash **orig_hash;
6073 	struct trace_parser *parser;
6074 	int filter_hash;
6075 
6076 	if (file->f_mode & FMODE_READ) {
6077 		iter = m->private;
6078 		seq_release(inode, file);
6079 	} else
6080 		iter = file->private_data;
6081 
6082 	parser = &iter->parser;
6083 	if (trace_parser_loaded(parser)) {
6084 		int enable = !(iter->flags & FTRACE_ITER_NOTRACE);
6085 
6086 		ftrace_process_regex(iter, parser->buffer,
6087 				     parser->idx, enable);
6088 	}
6089 
6090 	trace_parser_put(parser);
6091 
6092 	mutex_lock(&iter->ops->func_hash->regex_lock);
6093 
6094 	if (file->f_mode & FMODE_WRITE) {
6095 		filter_hash = !!(iter->flags & FTRACE_ITER_FILTER);
6096 
6097 		if (filter_hash) {
6098 			orig_hash = &iter->ops->func_hash->filter_hash;
6099 			if (iter->tr) {
6100 				if (list_empty(&iter->tr->mod_trace))
6101 					iter->hash->flags &= ~FTRACE_HASH_FL_MOD;
6102 				else
6103 					iter->hash->flags |= FTRACE_HASH_FL_MOD;
6104 			}
6105 		} else
6106 			orig_hash = &iter->ops->func_hash->notrace_hash;
6107 
6108 		mutex_lock(&ftrace_lock);
6109 		ftrace_hash_move_and_update_ops(iter->ops, orig_hash,
6110 						      iter->hash, filter_hash);
6111 		mutex_unlock(&ftrace_lock);
6112 	} else {
6113 		/* For read only, the hash is the ops hash */
6114 		iter->hash = NULL;
6115 	}
6116 
6117 	mutex_unlock(&iter->ops->func_hash->regex_lock);
6118 	free_ftrace_hash(iter->hash);
6119 	if (iter->tr)
6120 		trace_array_put(iter->tr);
6121 	kfree(iter);
6122 
6123 	return 0;
6124 }
6125 
6126 static const struct file_operations ftrace_avail_fops = {
6127 	.open = ftrace_avail_open,
6128 	.read = seq_read,
6129 	.llseek = seq_lseek,
6130 	.release = seq_release_private,
6131 };
6132 
6133 static const struct file_operations ftrace_enabled_fops = {
6134 	.open = ftrace_enabled_open,
6135 	.read = seq_read,
6136 	.llseek = seq_lseek,
6137 	.release = seq_release_private,
6138 };
6139 
6140 static const struct file_operations ftrace_filter_fops = {
6141 	.open = ftrace_filter_open,
6142 	.read = seq_read,
6143 	.write = ftrace_filter_write,
6144 	.llseek = tracing_lseek,
6145 	.release = ftrace_regex_release,
6146 };
6147 
6148 static const struct file_operations ftrace_notrace_fops = {
6149 	.open = ftrace_notrace_open,
6150 	.read = seq_read,
6151 	.write = ftrace_notrace_write,
6152 	.llseek = tracing_lseek,
6153 	.release = ftrace_regex_release,
6154 };
6155 
6156 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6157 
6158 static DEFINE_MUTEX(graph_lock);
6159 
6160 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH;
6161 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH;
6162 
6163 enum graph_filter_type {
6164 	GRAPH_FILTER_NOTRACE	= 0,
6165 	GRAPH_FILTER_FUNCTION,
6166 };
6167 
6168 #define FTRACE_GRAPH_EMPTY	((void *)1)
6169 
6170 struct ftrace_graph_data {
6171 	struct ftrace_hash		*hash;
6172 	struct ftrace_func_entry	*entry;
6173 	int				idx;   /* for hash table iteration */
6174 	enum graph_filter_type		type;
6175 	struct ftrace_hash		*new_hash;
6176 	const struct seq_operations	*seq_ops;
6177 	struct trace_parser		parser;
6178 };
6179 
6180 static void *
6181 __g_next(struct seq_file *m, loff_t *pos)
6182 {
6183 	struct ftrace_graph_data *fgd = m->private;
6184 	struct ftrace_func_entry *entry = fgd->entry;
6185 	struct hlist_head *head;
6186 	int i, idx = fgd->idx;
6187 
6188 	if (*pos >= fgd->hash->count)
6189 		return NULL;
6190 
6191 	if (entry) {
6192 		hlist_for_each_entry_continue(entry, hlist) {
6193 			fgd->entry = entry;
6194 			return entry;
6195 		}
6196 
6197 		idx++;
6198 	}
6199 
6200 	for (i = idx; i < 1 << fgd->hash->size_bits; i++) {
6201 		head = &fgd->hash->buckets[i];
6202 		hlist_for_each_entry(entry, head, hlist) {
6203 			fgd->entry = entry;
6204 			fgd->idx = i;
6205 			return entry;
6206 		}
6207 	}
6208 	return NULL;
6209 }
6210 
6211 static void *
6212 g_next(struct seq_file *m, void *v, loff_t *pos)
6213 {
6214 	(*pos)++;
6215 	return __g_next(m, pos);
6216 }
6217 
6218 static void *g_start(struct seq_file *m, loff_t *pos)
6219 {
6220 	struct ftrace_graph_data *fgd = m->private;
6221 
6222 	mutex_lock(&graph_lock);
6223 
6224 	if (fgd->type == GRAPH_FILTER_FUNCTION)
6225 		fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
6226 					lockdep_is_held(&graph_lock));
6227 	else
6228 		fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
6229 					lockdep_is_held(&graph_lock));
6230 
6231 	/* Nothing, tell g_show to print all functions are enabled */
6232 	if (ftrace_hash_empty(fgd->hash) && !*pos)
6233 		return FTRACE_GRAPH_EMPTY;
6234 
6235 	fgd->idx = 0;
6236 	fgd->entry = NULL;
6237 	return __g_next(m, pos);
6238 }
6239 
6240 static void g_stop(struct seq_file *m, void *p)
6241 {
6242 	mutex_unlock(&graph_lock);
6243 }
6244 
6245 static int g_show(struct seq_file *m, void *v)
6246 {
6247 	struct ftrace_func_entry *entry = v;
6248 
6249 	if (!entry)
6250 		return 0;
6251 
6252 	if (entry == FTRACE_GRAPH_EMPTY) {
6253 		struct ftrace_graph_data *fgd = m->private;
6254 
6255 		if (fgd->type == GRAPH_FILTER_FUNCTION)
6256 			seq_puts(m, "#### all functions enabled ####\n");
6257 		else
6258 			seq_puts(m, "#### no functions disabled ####\n");
6259 		return 0;
6260 	}
6261 
6262 	seq_printf(m, "%ps\n", (void *)entry->ip);
6263 
6264 	return 0;
6265 }
6266 
6267 static const struct seq_operations ftrace_graph_seq_ops = {
6268 	.start = g_start,
6269 	.next = g_next,
6270 	.stop = g_stop,
6271 	.show = g_show,
6272 };
6273 
6274 static int
6275 __ftrace_graph_open(struct inode *inode, struct file *file,
6276 		    struct ftrace_graph_data *fgd)
6277 {
6278 	int ret;
6279 	struct ftrace_hash *new_hash = NULL;
6280 
6281 	ret = security_locked_down(LOCKDOWN_TRACEFS);
6282 	if (ret)
6283 		return ret;
6284 
6285 	if (file->f_mode & FMODE_WRITE) {
6286 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
6287 
6288 		if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX))
6289 			return -ENOMEM;
6290 
6291 		if (file->f_flags & O_TRUNC)
6292 			new_hash = alloc_ftrace_hash(size_bits);
6293 		else
6294 			new_hash = alloc_and_copy_ftrace_hash(size_bits,
6295 							      fgd->hash);
6296 		if (!new_hash) {
6297 			ret = -ENOMEM;
6298 			goto out;
6299 		}
6300 	}
6301 
6302 	if (file->f_mode & FMODE_READ) {
6303 		ret = seq_open(file, &ftrace_graph_seq_ops);
6304 		if (!ret) {
6305 			struct seq_file *m = file->private_data;
6306 			m->private = fgd;
6307 		} else {
6308 			/* Failed */
6309 			free_ftrace_hash(new_hash);
6310 			new_hash = NULL;
6311 		}
6312 	} else
6313 		file->private_data = fgd;
6314 
6315 out:
6316 	if (ret < 0 && file->f_mode & FMODE_WRITE)
6317 		trace_parser_put(&fgd->parser);
6318 
6319 	fgd->new_hash = new_hash;
6320 
6321 	/*
6322 	 * All uses of fgd->hash must be taken with the graph_lock
6323 	 * held. The graph_lock is going to be released, so force
6324 	 * fgd->hash to be reinitialized when it is taken again.
6325 	 */
6326 	fgd->hash = NULL;
6327 
6328 	return ret;
6329 }
6330 
6331 static int
6332 ftrace_graph_open(struct inode *inode, struct file *file)
6333 {
6334 	struct ftrace_graph_data *fgd;
6335 	int ret;
6336 
6337 	if (unlikely(ftrace_disabled))
6338 		return -ENODEV;
6339 
6340 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
6341 	if (fgd == NULL)
6342 		return -ENOMEM;
6343 
6344 	mutex_lock(&graph_lock);
6345 
6346 	fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
6347 					lockdep_is_held(&graph_lock));
6348 	fgd->type = GRAPH_FILTER_FUNCTION;
6349 	fgd->seq_ops = &ftrace_graph_seq_ops;
6350 
6351 	ret = __ftrace_graph_open(inode, file, fgd);
6352 	if (ret < 0)
6353 		kfree(fgd);
6354 
6355 	mutex_unlock(&graph_lock);
6356 	return ret;
6357 }
6358 
6359 static int
6360 ftrace_graph_notrace_open(struct inode *inode, struct file *file)
6361 {
6362 	struct ftrace_graph_data *fgd;
6363 	int ret;
6364 
6365 	if (unlikely(ftrace_disabled))
6366 		return -ENODEV;
6367 
6368 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
6369 	if (fgd == NULL)
6370 		return -ENOMEM;
6371 
6372 	mutex_lock(&graph_lock);
6373 
6374 	fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
6375 					lockdep_is_held(&graph_lock));
6376 	fgd->type = GRAPH_FILTER_NOTRACE;
6377 	fgd->seq_ops = &ftrace_graph_seq_ops;
6378 
6379 	ret = __ftrace_graph_open(inode, file, fgd);
6380 	if (ret < 0)
6381 		kfree(fgd);
6382 
6383 	mutex_unlock(&graph_lock);
6384 	return ret;
6385 }
6386 
6387 static int
6388 ftrace_graph_release(struct inode *inode, struct file *file)
6389 {
6390 	struct ftrace_graph_data *fgd;
6391 	struct ftrace_hash *old_hash, *new_hash;
6392 	struct trace_parser *parser;
6393 	int ret = 0;
6394 
6395 	if (file->f_mode & FMODE_READ) {
6396 		struct seq_file *m = file->private_data;
6397 
6398 		fgd = m->private;
6399 		seq_release(inode, file);
6400 	} else {
6401 		fgd = file->private_data;
6402 	}
6403 
6404 
6405 	if (file->f_mode & FMODE_WRITE) {
6406 
6407 		parser = &fgd->parser;
6408 
6409 		if (trace_parser_loaded((parser))) {
6410 			ret = ftrace_graph_set_hash(fgd->new_hash,
6411 						    parser->buffer);
6412 		}
6413 
6414 		trace_parser_put(parser);
6415 
6416 		new_hash = __ftrace_hash_move(fgd->new_hash);
6417 		if (!new_hash) {
6418 			ret = -ENOMEM;
6419 			goto out;
6420 		}
6421 
6422 		mutex_lock(&graph_lock);
6423 
6424 		if (fgd->type == GRAPH_FILTER_FUNCTION) {
6425 			old_hash = rcu_dereference_protected(ftrace_graph_hash,
6426 					lockdep_is_held(&graph_lock));
6427 			rcu_assign_pointer(ftrace_graph_hash, new_hash);
6428 		} else {
6429 			old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
6430 					lockdep_is_held(&graph_lock));
6431 			rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash);
6432 		}
6433 
6434 		mutex_unlock(&graph_lock);
6435 
6436 		/*
6437 		 * We need to do a hard force of sched synchronization.
6438 		 * This is because we use preempt_disable() to do RCU, but
6439 		 * the function tracers can be called where RCU is not watching
6440 		 * (like before user_exit()). We can not rely on the RCU
6441 		 * infrastructure to do the synchronization, thus we must do it
6442 		 * ourselves.
6443 		 */
6444 		if (old_hash != EMPTY_HASH)
6445 			synchronize_rcu_tasks_rude();
6446 
6447 		free_ftrace_hash(old_hash);
6448 	}
6449 
6450  out:
6451 	free_ftrace_hash(fgd->new_hash);
6452 	kfree(fgd);
6453 
6454 	return ret;
6455 }
6456 
6457 static int
6458 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer)
6459 {
6460 	struct ftrace_glob func_g;
6461 	struct dyn_ftrace *rec;
6462 	struct ftrace_page *pg;
6463 	struct ftrace_func_entry *entry;
6464 	int fail = 1;
6465 	int not;
6466 
6467 	/* decode regex */
6468 	func_g.type = filter_parse_regex(buffer, strlen(buffer),
6469 					 &func_g.search, &not);
6470 
6471 	func_g.len = strlen(func_g.search);
6472 
6473 	mutex_lock(&ftrace_lock);
6474 
6475 	if (unlikely(ftrace_disabled)) {
6476 		mutex_unlock(&ftrace_lock);
6477 		return -ENODEV;
6478 	}
6479 
6480 	do_for_each_ftrace_rec(pg, rec) {
6481 
6482 		if (rec->flags & FTRACE_FL_DISABLED)
6483 			continue;
6484 
6485 		if (ftrace_match_record(rec, &func_g, NULL, 0)) {
6486 			entry = ftrace_lookup_ip(hash, rec->ip);
6487 
6488 			if (!not) {
6489 				fail = 0;
6490 
6491 				if (entry)
6492 					continue;
6493 				if (add_hash_entry(hash, rec->ip) < 0)
6494 					goto out;
6495 			} else {
6496 				if (entry) {
6497 					free_hash_entry(hash, entry);
6498 					fail = 0;
6499 				}
6500 			}
6501 		}
6502 	} while_for_each_ftrace_rec();
6503 out:
6504 	mutex_unlock(&ftrace_lock);
6505 
6506 	if (fail)
6507 		return -EINVAL;
6508 
6509 	return 0;
6510 }
6511 
6512 static ssize_t
6513 ftrace_graph_write(struct file *file, const char __user *ubuf,
6514 		   size_t cnt, loff_t *ppos)
6515 {
6516 	ssize_t read, ret = 0;
6517 	struct ftrace_graph_data *fgd = file->private_data;
6518 	struct trace_parser *parser;
6519 
6520 	if (!cnt)
6521 		return 0;
6522 
6523 	/* Read mode uses seq functions */
6524 	if (file->f_mode & FMODE_READ) {
6525 		struct seq_file *m = file->private_data;
6526 		fgd = m->private;
6527 	}
6528 
6529 	parser = &fgd->parser;
6530 
6531 	read = trace_get_user(parser, ubuf, cnt, ppos);
6532 
6533 	if (read >= 0 && trace_parser_loaded(parser) &&
6534 	    !trace_parser_cont(parser)) {
6535 
6536 		ret = ftrace_graph_set_hash(fgd->new_hash,
6537 					    parser->buffer);
6538 		trace_parser_clear(parser);
6539 	}
6540 
6541 	if (!ret)
6542 		ret = read;
6543 
6544 	return ret;
6545 }
6546 
6547 static const struct file_operations ftrace_graph_fops = {
6548 	.open		= ftrace_graph_open,
6549 	.read		= seq_read,
6550 	.write		= ftrace_graph_write,
6551 	.llseek		= tracing_lseek,
6552 	.release	= ftrace_graph_release,
6553 };
6554 
6555 static const struct file_operations ftrace_graph_notrace_fops = {
6556 	.open		= ftrace_graph_notrace_open,
6557 	.read		= seq_read,
6558 	.write		= ftrace_graph_write,
6559 	.llseek		= tracing_lseek,
6560 	.release	= ftrace_graph_release,
6561 };
6562 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6563 
6564 void ftrace_create_filter_files(struct ftrace_ops *ops,
6565 				struct dentry *parent)
6566 {
6567 
6568 	trace_create_file("set_ftrace_filter", TRACE_MODE_WRITE, parent,
6569 			  ops, &ftrace_filter_fops);
6570 
6571 	trace_create_file("set_ftrace_notrace", TRACE_MODE_WRITE, parent,
6572 			  ops, &ftrace_notrace_fops);
6573 }
6574 
6575 /*
6576  * The name "destroy_filter_files" is really a misnomer. Although
6577  * in the future, it may actually delete the files, but this is
6578  * really intended to make sure the ops passed in are disabled
6579  * and that when this function returns, the caller is free to
6580  * free the ops.
6581  *
6582  * The "destroy" name is only to match the "create" name that this
6583  * should be paired with.
6584  */
6585 void ftrace_destroy_filter_files(struct ftrace_ops *ops)
6586 {
6587 	mutex_lock(&ftrace_lock);
6588 	if (ops->flags & FTRACE_OPS_FL_ENABLED)
6589 		ftrace_shutdown(ops, 0);
6590 	ops->flags |= FTRACE_OPS_FL_DELETED;
6591 	ftrace_free_filter(ops);
6592 	mutex_unlock(&ftrace_lock);
6593 }
6594 
6595 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer)
6596 {
6597 
6598 	trace_create_file("available_filter_functions", TRACE_MODE_READ,
6599 			d_tracer, NULL, &ftrace_avail_fops);
6600 
6601 	trace_create_file("enabled_functions", TRACE_MODE_READ,
6602 			d_tracer, NULL, &ftrace_enabled_fops);
6603 
6604 	ftrace_create_filter_files(&global_ops, d_tracer);
6605 
6606 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6607 	trace_create_file("set_graph_function", TRACE_MODE_WRITE, d_tracer,
6608 				    NULL,
6609 				    &ftrace_graph_fops);
6610 	trace_create_file("set_graph_notrace", TRACE_MODE_WRITE, d_tracer,
6611 				    NULL,
6612 				    &ftrace_graph_notrace_fops);
6613 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6614 
6615 	return 0;
6616 }
6617 
6618 static int ftrace_cmp_ips(const void *a, const void *b)
6619 {
6620 	const unsigned long *ipa = a;
6621 	const unsigned long *ipb = b;
6622 
6623 	if (*ipa > *ipb)
6624 		return 1;
6625 	if (*ipa < *ipb)
6626 		return -1;
6627 	return 0;
6628 }
6629 
6630 #ifdef CONFIG_FTRACE_SORT_STARTUP_TEST
6631 static void test_is_sorted(unsigned long *start, unsigned long count)
6632 {
6633 	int i;
6634 
6635 	for (i = 1; i < count; i++) {
6636 		if (WARN(start[i - 1] > start[i],
6637 			 "[%d] %pS at %lx is not sorted with %pS at %lx\n", i,
6638 			 (void *)start[i - 1], start[i - 1],
6639 			 (void *)start[i], start[i]))
6640 			break;
6641 	}
6642 	if (i == count)
6643 		pr_info("ftrace section at %px sorted properly\n", start);
6644 }
6645 #else
6646 static void test_is_sorted(unsigned long *start, unsigned long count)
6647 {
6648 }
6649 #endif
6650 
6651 static int ftrace_process_locs(struct module *mod,
6652 			       unsigned long *start,
6653 			       unsigned long *end)
6654 {
6655 	struct ftrace_page *start_pg;
6656 	struct ftrace_page *pg;
6657 	struct dyn_ftrace *rec;
6658 	unsigned long count;
6659 	unsigned long *p;
6660 	unsigned long addr;
6661 	unsigned long flags = 0; /* Shut up gcc */
6662 	int ret = -ENOMEM;
6663 
6664 	count = end - start;
6665 
6666 	if (!count)
6667 		return 0;
6668 
6669 	/*
6670 	 * Sorting mcount in vmlinux at build time depend on
6671 	 * CONFIG_BUILDTIME_MCOUNT_SORT, while mcount loc in
6672 	 * modules can not be sorted at build time.
6673 	 */
6674 	if (!IS_ENABLED(CONFIG_BUILDTIME_MCOUNT_SORT) || mod) {
6675 		sort(start, count, sizeof(*start),
6676 		     ftrace_cmp_ips, NULL);
6677 	} else {
6678 		test_is_sorted(start, count);
6679 	}
6680 
6681 	start_pg = ftrace_allocate_pages(count);
6682 	if (!start_pg)
6683 		return -ENOMEM;
6684 
6685 	mutex_lock(&ftrace_lock);
6686 
6687 	/*
6688 	 * Core and each module needs their own pages, as
6689 	 * modules will free them when they are removed.
6690 	 * Force a new page to be allocated for modules.
6691 	 */
6692 	if (!mod) {
6693 		WARN_ON(ftrace_pages || ftrace_pages_start);
6694 		/* First initialization */
6695 		ftrace_pages = ftrace_pages_start = start_pg;
6696 	} else {
6697 		if (!ftrace_pages)
6698 			goto out;
6699 
6700 		if (WARN_ON(ftrace_pages->next)) {
6701 			/* Hmm, we have free pages? */
6702 			while (ftrace_pages->next)
6703 				ftrace_pages = ftrace_pages->next;
6704 		}
6705 
6706 		ftrace_pages->next = start_pg;
6707 	}
6708 
6709 	p = start;
6710 	pg = start_pg;
6711 	while (p < end) {
6712 		unsigned long end_offset;
6713 		addr = ftrace_call_adjust(*p++);
6714 		/*
6715 		 * Some architecture linkers will pad between
6716 		 * the different mcount_loc sections of different
6717 		 * object files to satisfy alignments.
6718 		 * Skip any NULL pointers.
6719 		 */
6720 		if (!addr)
6721 			continue;
6722 
6723 		end_offset = (pg->index+1) * sizeof(pg->records[0]);
6724 		if (end_offset > PAGE_SIZE << pg->order) {
6725 			/* We should have allocated enough */
6726 			if (WARN_ON(!pg->next))
6727 				break;
6728 			pg = pg->next;
6729 		}
6730 
6731 		rec = &pg->records[pg->index++];
6732 		rec->ip = addr;
6733 	}
6734 
6735 	/* We should have used all pages */
6736 	WARN_ON(pg->next);
6737 
6738 	/* Assign the last page to ftrace_pages */
6739 	ftrace_pages = pg;
6740 
6741 	/*
6742 	 * We only need to disable interrupts on start up
6743 	 * because we are modifying code that an interrupt
6744 	 * may execute, and the modification is not atomic.
6745 	 * But for modules, nothing runs the code we modify
6746 	 * until we are finished with it, and there's no
6747 	 * reason to cause large interrupt latencies while we do it.
6748 	 */
6749 	if (!mod)
6750 		local_irq_save(flags);
6751 	ftrace_update_code(mod, start_pg);
6752 	if (!mod)
6753 		local_irq_restore(flags);
6754 	ret = 0;
6755  out:
6756 	mutex_unlock(&ftrace_lock);
6757 
6758 	return ret;
6759 }
6760 
6761 struct ftrace_mod_func {
6762 	struct list_head	list;
6763 	char			*name;
6764 	unsigned long		ip;
6765 	unsigned int		size;
6766 };
6767 
6768 struct ftrace_mod_map {
6769 	struct rcu_head		rcu;
6770 	struct list_head	list;
6771 	struct module		*mod;
6772 	unsigned long		start_addr;
6773 	unsigned long		end_addr;
6774 	struct list_head	funcs;
6775 	unsigned int		num_funcs;
6776 };
6777 
6778 static int ftrace_get_trampoline_kallsym(unsigned int symnum,
6779 					 unsigned long *value, char *type,
6780 					 char *name, char *module_name,
6781 					 int *exported)
6782 {
6783 	struct ftrace_ops *op;
6784 
6785 	list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) {
6786 		if (!op->trampoline || symnum--)
6787 			continue;
6788 		*value = op->trampoline;
6789 		*type = 't';
6790 		strlcpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN);
6791 		strlcpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN);
6792 		*exported = 0;
6793 		return 0;
6794 	}
6795 
6796 	return -ERANGE;
6797 }
6798 
6799 #if defined(CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS) || defined(CONFIG_MODULES)
6800 /*
6801  * Check if the current ops references the given ip.
6802  *
6803  * If the ops traces all functions, then it was already accounted for.
6804  * If the ops does not trace the current record function, skip it.
6805  * If the ops ignores the function via notrace filter, skip it.
6806  */
6807 static bool
6808 ops_references_ip(struct ftrace_ops *ops, unsigned long ip)
6809 {
6810 	/* If ops isn't enabled, ignore it */
6811 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
6812 		return false;
6813 
6814 	/* If ops traces all then it includes this function */
6815 	if (ops_traces_mod(ops))
6816 		return true;
6817 
6818 	/* The function must be in the filter */
6819 	if (!ftrace_hash_empty(ops->func_hash->filter_hash) &&
6820 	    !__ftrace_lookup_ip(ops->func_hash->filter_hash, ip))
6821 		return false;
6822 
6823 	/* If in notrace hash, we ignore it too */
6824 	if (ftrace_lookup_ip(ops->func_hash->notrace_hash, ip))
6825 		return false;
6826 
6827 	return true;
6828 }
6829 #endif
6830 
6831 #ifdef CONFIG_MODULES
6832 
6833 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next)
6834 
6835 static LIST_HEAD(ftrace_mod_maps);
6836 
6837 static int referenced_filters(struct dyn_ftrace *rec)
6838 {
6839 	struct ftrace_ops *ops;
6840 	int cnt = 0;
6841 
6842 	for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) {
6843 		if (ops_references_ip(ops, rec->ip)) {
6844 			if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT))
6845 				continue;
6846 			if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY))
6847 				continue;
6848 			cnt++;
6849 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
6850 				rec->flags |= FTRACE_FL_REGS;
6851 			if (cnt == 1 && ops->trampoline)
6852 				rec->flags |= FTRACE_FL_TRAMP;
6853 			else
6854 				rec->flags &= ~FTRACE_FL_TRAMP;
6855 		}
6856 	}
6857 
6858 	return cnt;
6859 }
6860 
6861 static void
6862 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash)
6863 {
6864 	struct ftrace_func_entry *entry;
6865 	struct dyn_ftrace *rec;
6866 	int i;
6867 
6868 	if (ftrace_hash_empty(hash))
6869 		return;
6870 
6871 	for (i = 0; i < pg->index; i++) {
6872 		rec = &pg->records[i];
6873 		entry = __ftrace_lookup_ip(hash, rec->ip);
6874 		/*
6875 		 * Do not allow this rec to match again.
6876 		 * Yeah, it may waste some memory, but will be removed
6877 		 * if/when the hash is modified again.
6878 		 */
6879 		if (entry)
6880 			entry->ip = 0;
6881 	}
6882 }
6883 
6884 /* Clear any records from hashes */
6885 static void clear_mod_from_hashes(struct ftrace_page *pg)
6886 {
6887 	struct trace_array *tr;
6888 
6889 	mutex_lock(&trace_types_lock);
6890 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
6891 		if (!tr->ops || !tr->ops->func_hash)
6892 			continue;
6893 		mutex_lock(&tr->ops->func_hash->regex_lock);
6894 		clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash);
6895 		clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash);
6896 		mutex_unlock(&tr->ops->func_hash->regex_lock);
6897 	}
6898 	mutex_unlock(&trace_types_lock);
6899 }
6900 
6901 static void ftrace_free_mod_map(struct rcu_head *rcu)
6902 {
6903 	struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu);
6904 	struct ftrace_mod_func *mod_func;
6905 	struct ftrace_mod_func *n;
6906 
6907 	/* All the contents of mod_map are now not visible to readers */
6908 	list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) {
6909 		kfree(mod_func->name);
6910 		list_del(&mod_func->list);
6911 		kfree(mod_func);
6912 	}
6913 
6914 	kfree(mod_map);
6915 }
6916 
6917 void ftrace_release_mod(struct module *mod)
6918 {
6919 	struct ftrace_mod_map *mod_map;
6920 	struct ftrace_mod_map *n;
6921 	struct dyn_ftrace *rec;
6922 	struct ftrace_page **last_pg;
6923 	struct ftrace_page *tmp_page = NULL;
6924 	struct ftrace_page *pg;
6925 
6926 	mutex_lock(&ftrace_lock);
6927 
6928 	if (ftrace_disabled)
6929 		goto out_unlock;
6930 
6931 	list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) {
6932 		if (mod_map->mod == mod) {
6933 			list_del_rcu(&mod_map->list);
6934 			call_rcu(&mod_map->rcu, ftrace_free_mod_map);
6935 			break;
6936 		}
6937 	}
6938 
6939 	/*
6940 	 * Each module has its own ftrace_pages, remove
6941 	 * them from the list.
6942 	 */
6943 	last_pg = &ftrace_pages_start;
6944 	for (pg = ftrace_pages_start; pg; pg = *last_pg) {
6945 		rec = &pg->records[0];
6946 		if (within_module_core(rec->ip, mod) ||
6947 		    within_module_init(rec->ip, mod)) {
6948 			/*
6949 			 * As core pages are first, the first
6950 			 * page should never be a module page.
6951 			 */
6952 			if (WARN_ON(pg == ftrace_pages_start))
6953 				goto out_unlock;
6954 
6955 			/* Check if we are deleting the last page */
6956 			if (pg == ftrace_pages)
6957 				ftrace_pages = next_to_ftrace_page(last_pg);
6958 
6959 			ftrace_update_tot_cnt -= pg->index;
6960 			*last_pg = pg->next;
6961 
6962 			pg->next = tmp_page;
6963 			tmp_page = pg;
6964 		} else
6965 			last_pg = &pg->next;
6966 	}
6967  out_unlock:
6968 	mutex_unlock(&ftrace_lock);
6969 
6970 	for (pg = tmp_page; pg; pg = tmp_page) {
6971 
6972 		/* Needs to be called outside of ftrace_lock */
6973 		clear_mod_from_hashes(pg);
6974 
6975 		if (pg->records) {
6976 			free_pages((unsigned long)pg->records, pg->order);
6977 			ftrace_number_of_pages -= 1 << pg->order;
6978 		}
6979 		tmp_page = pg->next;
6980 		kfree(pg);
6981 		ftrace_number_of_groups--;
6982 	}
6983 }
6984 
6985 void ftrace_module_enable(struct module *mod)
6986 {
6987 	struct dyn_ftrace *rec;
6988 	struct ftrace_page *pg;
6989 
6990 	mutex_lock(&ftrace_lock);
6991 
6992 	if (ftrace_disabled)
6993 		goto out_unlock;
6994 
6995 	/*
6996 	 * If the tracing is enabled, go ahead and enable the record.
6997 	 *
6998 	 * The reason not to enable the record immediately is the
6999 	 * inherent check of ftrace_make_nop/ftrace_make_call for
7000 	 * correct previous instructions.  Making first the NOP
7001 	 * conversion puts the module to the correct state, thus
7002 	 * passing the ftrace_make_call check.
7003 	 *
7004 	 * We also delay this to after the module code already set the
7005 	 * text to read-only, as we now need to set it back to read-write
7006 	 * so that we can modify the text.
7007 	 */
7008 	if (ftrace_start_up)
7009 		ftrace_arch_code_modify_prepare();
7010 
7011 	do_for_each_ftrace_rec(pg, rec) {
7012 		int cnt;
7013 		/*
7014 		 * do_for_each_ftrace_rec() is a double loop.
7015 		 * module text shares the pg. If a record is
7016 		 * not part of this module, then skip this pg,
7017 		 * which the "break" will do.
7018 		 */
7019 		if (!within_module_core(rec->ip, mod) &&
7020 		    !within_module_init(rec->ip, mod))
7021 			break;
7022 
7023 		/* Weak functions should still be ignored */
7024 		if (!test_for_valid_rec(rec)) {
7025 			/* Clear all other flags. Should not be enabled anyway */
7026 			rec->flags = FTRACE_FL_DISABLED;
7027 			continue;
7028 		}
7029 
7030 		cnt = 0;
7031 
7032 		/*
7033 		 * When adding a module, we need to check if tracers are
7034 		 * currently enabled and if they are, and can trace this record,
7035 		 * we need to enable the module functions as well as update the
7036 		 * reference counts for those function records.
7037 		 */
7038 		if (ftrace_start_up)
7039 			cnt += referenced_filters(rec);
7040 
7041 		rec->flags &= ~FTRACE_FL_DISABLED;
7042 		rec->flags += cnt;
7043 
7044 		if (ftrace_start_up && cnt) {
7045 			int failed = __ftrace_replace_code(rec, 1);
7046 			if (failed) {
7047 				ftrace_bug(failed, rec);
7048 				goto out_loop;
7049 			}
7050 		}
7051 
7052 	} while_for_each_ftrace_rec();
7053 
7054  out_loop:
7055 	if (ftrace_start_up)
7056 		ftrace_arch_code_modify_post_process();
7057 
7058  out_unlock:
7059 	mutex_unlock(&ftrace_lock);
7060 
7061 	process_cached_mods(mod->name);
7062 }
7063 
7064 void ftrace_module_init(struct module *mod)
7065 {
7066 	int ret;
7067 
7068 	if (ftrace_disabled || !mod->num_ftrace_callsites)
7069 		return;
7070 
7071 	ret = ftrace_process_locs(mod, mod->ftrace_callsites,
7072 				  mod->ftrace_callsites + mod->num_ftrace_callsites);
7073 	if (ret)
7074 		pr_warn("ftrace: failed to allocate entries for module '%s' functions\n",
7075 			mod->name);
7076 }
7077 
7078 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
7079 				struct dyn_ftrace *rec)
7080 {
7081 	struct ftrace_mod_func *mod_func;
7082 	unsigned long symsize;
7083 	unsigned long offset;
7084 	char str[KSYM_SYMBOL_LEN];
7085 	char *modname;
7086 	const char *ret;
7087 
7088 	ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str);
7089 	if (!ret)
7090 		return;
7091 
7092 	mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL);
7093 	if (!mod_func)
7094 		return;
7095 
7096 	mod_func->name = kstrdup(str, GFP_KERNEL);
7097 	if (!mod_func->name) {
7098 		kfree(mod_func);
7099 		return;
7100 	}
7101 
7102 	mod_func->ip = rec->ip - offset;
7103 	mod_func->size = symsize;
7104 
7105 	mod_map->num_funcs++;
7106 
7107 	list_add_rcu(&mod_func->list, &mod_map->funcs);
7108 }
7109 
7110 static struct ftrace_mod_map *
7111 allocate_ftrace_mod_map(struct module *mod,
7112 			unsigned long start, unsigned long end)
7113 {
7114 	struct ftrace_mod_map *mod_map;
7115 
7116 	mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL);
7117 	if (!mod_map)
7118 		return NULL;
7119 
7120 	mod_map->mod = mod;
7121 	mod_map->start_addr = start;
7122 	mod_map->end_addr = end;
7123 	mod_map->num_funcs = 0;
7124 
7125 	INIT_LIST_HEAD_RCU(&mod_map->funcs);
7126 
7127 	list_add_rcu(&mod_map->list, &ftrace_mod_maps);
7128 
7129 	return mod_map;
7130 }
7131 
7132 static const char *
7133 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map,
7134 			   unsigned long addr, unsigned long *size,
7135 			   unsigned long *off, char *sym)
7136 {
7137 	struct ftrace_mod_func *found_func =  NULL;
7138 	struct ftrace_mod_func *mod_func;
7139 
7140 	list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
7141 		if (addr >= mod_func->ip &&
7142 		    addr < mod_func->ip + mod_func->size) {
7143 			found_func = mod_func;
7144 			break;
7145 		}
7146 	}
7147 
7148 	if (found_func) {
7149 		if (size)
7150 			*size = found_func->size;
7151 		if (off)
7152 			*off = addr - found_func->ip;
7153 		if (sym)
7154 			strlcpy(sym, found_func->name, KSYM_NAME_LEN);
7155 
7156 		return found_func->name;
7157 	}
7158 
7159 	return NULL;
7160 }
7161 
7162 const char *
7163 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size,
7164 		   unsigned long *off, char **modname, char *sym)
7165 {
7166 	struct ftrace_mod_map *mod_map;
7167 	const char *ret = NULL;
7168 
7169 	/* mod_map is freed via call_rcu() */
7170 	preempt_disable();
7171 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
7172 		ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym);
7173 		if (ret) {
7174 			if (modname)
7175 				*modname = mod_map->mod->name;
7176 			break;
7177 		}
7178 	}
7179 	preempt_enable();
7180 
7181 	return ret;
7182 }
7183 
7184 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
7185 			   char *type, char *name,
7186 			   char *module_name, int *exported)
7187 {
7188 	struct ftrace_mod_map *mod_map;
7189 	struct ftrace_mod_func *mod_func;
7190 	int ret;
7191 
7192 	preempt_disable();
7193 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
7194 
7195 		if (symnum >= mod_map->num_funcs) {
7196 			symnum -= mod_map->num_funcs;
7197 			continue;
7198 		}
7199 
7200 		list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
7201 			if (symnum > 1) {
7202 				symnum--;
7203 				continue;
7204 			}
7205 
7206 			*value = mod_func->ip;
7207 			*type = 'T';
7208 			strlcpy(name, mod_func->name, KSYM_NAME_LEN);
7209 			strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN);
7210 			*exported = 1;
7211 			preempt_enable();
7212 			return 0;
7213 		}
7214 		WARN_ON(1);
7215 		break;
7216 	}
7217 	ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
7218 					    module_name, exported);
7219 	preempt_enable();
7220 	return ret;
7221 }
7222 
7223 #else
7224 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
7225 				struct dyn_ftrace *rec) { }
7226 static inline struct ftrace_mod_map *
7227 allocate_ftrace_mod_map(struct module *mod,
7228 			unsigned long start, unsigned long end)
7229 {
7230 	return NULL;
7231 }
7232 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
7233 			   char *type, char *name, char *module_name,
7234 			   int *exported)
7235 {
7236 	int ret;
7237 
7238 	preempt_disable();
7239 	ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
7240 					    module_name, exported);
7241 	preempt_enable();
7242 	return ret;
7243 }
7244 #endif /* CONFIG_MODULES */
7245 
7246 struct ftrace_init_func {
7247 	struct list_head list;
7248 	unsigned long ip;
7249 };
7250 
7251 /* Clear any init ips from hashes */
7252 static void
7253 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash)
7254 {
7255 	struct ftrace_func_entry *entry;
7256 
7257 	entry = ftrace_lookup_ip(hash, func->ip);
7258 	/*
7259 	 * Do not allow this rec to match again.
7260 	 * Yeah, it may waste some memory, but will be removed
7261 	 * if/when the hash is modified again.
7262 	 */
7263 	if (entry)
7264 		entry->ip = 0;
7265 }
7266 
7267 static void
7268 clear_func_from_hashes(struct ftrace_init_func *func)
7269 {
7270 	struct trace_array *tr;
7271 
7272 	mutex_lock(&trace_types_lock);
7273 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
7274 		if (!tr->ops || !tr->ops->func_hash)
7275 			continue;
7276 		mutex_lock(&tr->ops->func_hash->regex_lock);
7277 		clear_func_from_hash(func, tr->ops->func_hash->filter_hash);
7278 		clear_func_from_hash(func, tr->ops->func_hash->notrace_hash);
7279 		mutex_unlock(&tr->ops->func_hash->regex_lock);
7280 	}
7281 	mutex_unlock(&trace_types_lock);
7282 }
7283 
7284 static void add_to_clear_hash_list(struct list_head *clear_list,
7285 				   struct dyn_ftrace *rec)
7286 {
7287 	struct ftrace_init_func *func;
7288 
7289 	func = kmalloc(sizeof(*func), GFP_KERNEL);
7290 	if (!func) {
7291 		MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n");
7292 		return;
7293 	}
7294 
7295 	func->ip = rec->ip;
7296 	list_add(&func->list, clear_list);
7297 }
7298 
7299 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr)
7300 {
7301 	unsigned long start = (unsigned long)(start_ptr);
7302 	unsigned long end = (unsigned long)(end_ptr);
7303 	struct ftrace_page **last_pg = &ftrace_pages_start;
7304 	struct ftrace_page *pg;
7305 	struct dyn_ftrace *rec;
7306 	struct dyn_ftrace key;
7307 	struct ftrace_mod_map *mod_map = NULL;
7308 	struct ftrace_init_func *func, *func_next;
7309 	struct list_head clear_hash;
7310 
7311 	INIT_LIST_HEAD(&clear_hash);
7312 
7313 	key.ip = start;
7314 	key.flags = end;	/* overload flags, as it is unsigned long */
7315 
7316 	mutex_lock(&ftrace_lock);
7317 
7318 	/*
7319 	 * If we are freeing module init memory, then check if
7320 	 * any tracer is active. If so, we need to save a mapping of
7321 	 * the module functions being freed with the address.
7322 	 */
7323 	if (mod && ftrace_ops_list != &ftrace_list_end)
7324 		mod_map = allocate_ftrace_mod_map(mod, start, end);
7325 
7326 	for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) {
7327 		if (end < pg->records[0].ip ||
7328 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
7329 			continue;
7330  again:
7331 		rec = bsearch(&key, pg->records, pg->index,
7332 			      sizeof(struct dyn_ftrace),
7333 			      ftrace_cmp_recs);
7334 		if (!rec)
7335 			continue;
7336 
7337 		/* rec will be cleared from hashes after ftrace_lock unlock */
7338 		add_to_clear_hash_list(&clear_hash, rec);
7339 
7340 		if (mod_map)
7341 			save_ftrace_mod_rec(mod_map, rec);
7342 
7343 		pg->index--;
7344 		ftrace_update_tot_cnt--;
7345 		if (!pg->index) {
7346 			*last_pg = pg->next;
7347 			if (pg->records) {
7348 				free_pages((unsigned long)pg->records, pg->order);
7349 				ftrace_number_of_pages -= 1 << pg->order;
7350 			}
7351 			ftrace_number_of_groups--;
7352 			kfree(pg);
7353 			pg = container_of(last_pg, struct ftrace_page, next);
7354 			if (!(*last_pg))
7355 				ftrace_pages = pg;
7356 			continue;
7357 		}
7358 		memmove(rec, rec + 1,
7359 			(pg->index - (rec - pg->records)) * sizeof(*rec));
7360 		/* More than one function may be in this block */
7361 		goto again;
7362 	}
7363 	mutex_unlock(&ftrace_lock);
7364 
7365 	list_for_each_entry_safe(func, func_next, &clear_hash, list) {
7366 		clear_func_from_hashes(func);
7367 		kfree(func);
7368 	}
7369 }
7370 
7371 void __init ftrace_free_init_mem(void)
7372 {
7373 	void *start = (void *)(&__init_begin);
7374 	void *end = (void *)(&__init_end);
7375 
7376 	ftrace_boot_snapshot();
7377 
7378 	ftrace_free_mem(NULL, start, end);
7379 }
7380 
7381 int __init __weak ftrace_dyn_arch_init(void)
7382 {
7383 	return 0;
7384 }
7385 
7386 void __init ftrace_init(void)
7387 {
7388 	extern unsigned long __start_mcount_loc[];
7389 	extern unsigned long __stop_mcount_loc[];
7390 	unsigned long count, flags;
7391 	int ret;
7392 
7393 	local_irq_save(flags);
7394 	ret = ftrace_dyn_arch_init();
7395 	local_irq_restore(flags);
7396 	if (ret)
7397 		goto failed;
7398 
7399 	count = __stop_mcount_loc - __start_mcount_loc;
7400 	if (!count) {
7401 		pr_info("ftrace: No functions to be traced?\n");
7402 		goto failed;
7403 	}
7404 
7405 	pr_info("ftrace: allocating %ld entries in %ld pages\n",
7406 		count, DIV_ROUND_UP(count, ENTRIES_PER_PAGE));
7407 
7408 	ret = ftrace_process_locs(NULL,
7409 				  __start_mcount_loc,
7410 				  __stop_mcount_loc);
7411 	if (ret) {
7412 		pr_warn("ftrace: failed to allocate entries for functions\n");
7413 		goto failed;
7414 	}
7415 
7416 	pr_info("ftrace: allocated %ld pages with %ld groups\n",
7417 		ftrace_number_of_pages, ftrace_number_of_groups);
7418 
7419 	last_ftrace_enabled = ftrace_enabled = 1;
7420 
7421 	set_ftrace_early_filters();
7422 
7423 	return;
7424  failed:
7425 	ftrace_disabled = 1;
7426 }
7427 
7428 /* Do nothing if arch does not support this */
7429 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops)
7430 {
7431 }
7432 
7433 static void ftrace_update_trampoline(struct ftrace_ops *ops)
7434 {
7435 	unsigned long trampoline = ops->trampoline;
7436 
7437 	arch_ftrace_update_trampoline(ops);
7438 	if (ops->trampoline && ops->trampoline != trampoline &&
7439 	    (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) {
7440 		/* Add to kallsyms before the perf events */
7441 		ftrace_add_trampoline_to_kallsyms(ops);
7442 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
7443 				   ops->trampoline, ops->trampoline_size, false,
7444 				   FTRACE_TRAMPOLINE_SYM);
7445 		/*
7446 		 * Record the perf text poke event after the ksymbol register
7447 		 * event.
7448 		 */
7449 		perf_event_text_poke((void *)ops->trampoline, NULL, 0,
7450 				     (void *)ops->trampoline,
7451 				     ops->trampoline_size);
7452 	}
7453 }
7454 
7455 void ftrace_init_trace_array(struct trace_array *tr)
7456 {
7457 	INIT_LIST_HEAD(&tr->func_probes);
7458 	INIT_LIST_HEAD(&tr->mod_trace);
7459 	INIT_LIST_HEAD(&tr->mod_notrace);
7460 }
7461 #else
7462 
7463 struct ftrace_ops global_ops = {
7464 	.func			= ftrace_stub,
7465 	.flags			= FTRACE_OPS_FL_INITIALIZED |
7466 				  FTRACE_OPS_FL_PID,
7467 };
7468 
7469 static int __init ftrace_nodyn_init(void)
7470 {
7471 	ftrace_enabled = 1;
7472 	return 0;
7473 }
7474 core_initcall(ftrace_nodyn_init);
7475 
7476 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; }
7477 static inline void ftrace_startup_all(int command) { }
7478 
7479 static void ftrace_update_trampoline(struct ftrace_ops *ops)
7480 {
7481 }
7482 
7483 #endif /* CONFIG_DYNAMIC_FTRACE */
7484 
7485 __init void ftrace_init_global_array_ops(struct trace_array *tr)
7486 {
7487 	tr->ops = &global_ops;
7488 	tr->ops->private = tr;
7489 	ftrace_init_trace_array(tr);
7490 }
7491 
7492 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func)
7493 {
7494 	/* If we filter on pids, update to use the pid function */
7495 	if (tr->flags & TRACE_ARRAY_FL_GLOBAL) {
7496 		if (WARN_ON(tr->ops->func != ftrace_stub))
7497 			printk("ftrace ops had %pS for function\n",
7498 			       tr->ops->func);
7499 	}
7500 	tr->ops->func = func;
7501 	tr->ops->private = tr;
7502 }
7503 
7504 void ftrace_reset_array_ops(struct trace_array *tr)
7505 {
7506 	tr->ops->func = ftrace_stub;
7507 }
7508 
7509 static nokprobe_inline void
7510 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
7511 		       struct ftrace_ops *ignored, struct ftrace_regs *fregs)
7512 {
7513 	struct pt_regs *regs = ftrace_get_regs(fregs);
7514 	struct ftrace_ops *op;
7515 	int bit;
7516 
7517 	/*
7518 	 * The ftrace_test_and_set_recursion() will disable preemption,
7519 	 * which is required since some of the ops may be dynamically
7520 	 * allocated, they must be freed after a synchronize_rcu().
7521 	 */
7522 	bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START);
7523 	if (bit < 0)
7524 		return;
7525 
7526 	do_for_each_ftrace_op(op, ftrace_ops_list) {
7527 		/* Stub functions don't need to be called nor tested */
7528 		if (op->flags & FTRACE_OPS_FL_STUB)
7529 			continue;
7530 		/*
7531 		 * Check the following for each ops before calling their func:
7532 		 *  if RCU flag is set, then rcu_is_watching() must be true
7533 		 *  Otherwise test if the ip matches the ops filter
7534 		 *
7535 		 * If any of the above fails then the op->func() is not executed.
7536 		 */
7537 		if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) &&
7538 		    ftrace_ops_test(op, ip, regs)) {
7539 			if (FTRACE_WARN_ON(!op->func)) {
7540 				pr_warn("op=%p %pS\n", op, op);
7541 				goto out;
7542 			}
7543 			op->func(ip, parent_ip, op, fregs);
7544 		}
7545 	} while_for_each_ftrace_op(op);
7546 out:
7547 	trace_clear_recursion(bit);
7548 }
7549 
7550 /*
7551  * Some archs only support passing ip and parent_ip. Even though
7552  * the list function ignores the op parameter, we do not want any
7553  * C side effects, where a function is called without the caller
7554  * sending a third parameter.
7555  * Archs are to support both the regs and ftrace_ops at the same time.
7556  * If they support ftrace_ops, it is assumed they support regs.
7557  * If call backs want to use regs, they must either check for regs
7558  * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS.
7559  * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved.
7560  * An architecture can pass partial regs with ftrace_ops and still
7561  * set the ARCH_SUPPORTS_FTRACE_OPS.
7562  *
7563  * In vmlinux.lds.h, ftrace_ops_list_func() is defined to be
7564  * arch_ftrace_ops_list_func.
7565  */
7566 #if ARCH_SUPPORTS_FTRACE_OPS
7567 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
7568 			       struct ftrace_ops *op, struct ftrace_regs *fregs)
7569 {
7570 	__ftrace_ops_list_func(ip, parent_ip, NULL, fregs);
7571 }
7572 #else
7573 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip)
7574 {
7575 	__ftrace_ops_list_func(ip, parent_ip, NULL, NULL);
7576 }
7577 #endif
7578 NOKPROBE_SYMBOL(arch_ftrace_ops_list_func);
7579 
7580 /*
7581  * If there's only one function registered but it does not support
7582  * recursion, needs RCU protection, then this function will be called
7583  * by the mcount trampoline.
7584  */
7585 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip,
7586 				   struct ftrace_ops *op, struct ftrace_regs *fregs)
7587 {
7588 	int bit;
7589 
7590 	bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START);
7591 	if (bit < 0)
7592 		return;
7593 
7594 	if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching())
7595 		op->func(ip, parent_ip, op, fregs);
7596 
7597 	trace_clear_recursion(bit);
7598 }
7599 NOKPROBE_SYMBOL(ftrace_ops_assist_func);
7600 
7601 /**
7602  * ftrace_ops_get_func - get the function a trampoline should call
7603  * @ops: the ops to get the function for
7604  *
7605  * Normally the mcount trampoline will call the ops->func, but there
7606  * are times that it should not. For example, if the ops does not
7607  * have its own recursion protection, then it should call the
7608  * ftrace_ops_assist_func() instead.
7609  *
7610  * Returns the function that the trampoline should call for @ops.
7611  */
7612 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops)
7613 {
7614 	/*
7615 	 * If the function does not handle recursion or needs to be RCU safe,
7616 	 * then we need to call the assist handler.
7617 	 */
7618 	if (ops->flags & (FTRACE_OPS_FL_RECURSION |
7619 			  FTRACE_OPS_FL_RCU))
7620 		return ftrace_ops_assist_func;
7621 
7622 	return ops->func;
7623 }
7624 
7625 static void
7626 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt,
7627 				     struct task_struct *prev,
7628 				     struct task_struct *next,
7629 				     unsigned int prev_state)
7630 {
7631 	struct trace_array *tr = data;
7632 	struct trace_pid_list *pid_list;
7633 	struct trace_pid_list *no_pid_list;
7634 
7635 	pid_list = rcu_dereference_sched(tr->function_pids);
7636 	no_pid_list = rcu_dereference_sched(tr->function_no_pids);
7637 
7638 	if (trace_ignore_this_task(pid_list, no_pid_list, next))
7639 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7640 			       FTRACE_PID_IGNORE);
7641 	else
7642 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7643 			       next->pid);
7644 }
7645 
7646 static void
7647 ftrace_pid_follow_sched_process_fork(void *data,
7648 				     struct task_struct *self,
7649 				     struct task_struct *task)
7650 {
7651 	struct trace_pid_list *pid_list;
7652 	struct trace_array *tr = data;
7653 
7654 	pid_list = rcu_dereference_sched(tr->function_pids);
7655 	trace_filter_add_remove_task(pid_list, self, task);
7656 
7657 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7658 	trace_filter_add_remove_task(pid_list, self, task);
7659 }
7660 
7661 static void
7662 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task)
7663 {
7664 	struct trace_pid_list *pid_list;
7665 	struct trace_array *tr = data;
7666 
7667 	pid_list = rcu_dereference_sched(tr->function_pids);
7668 	trace_filter_add_remove_task(pid_list, NULL, task);
7669 
7670 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7671 	trace_filter_add_remove_task(pid_list, NULL, task);
7672 }
7673 
7674 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable)
7675 {
7676 	if (enable) {
7677 		register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
7678 						  tr);
7679 		register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
7680 						  tr);
7681 	} else {
7682 		unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
7683 						    tr);
7684 		unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
7685 						    tr);
7686 	}
7687 }
7688 
7689 static void clear_ftrace_pids(struct trace_array *tr, int type)
7690 {
7691 	struct trace_pid_list *pid_list;
7692 	struct trace_pid_list *no_pid_list;
7693 	int cpu;
7694 
7695 	pid_list = rcu_dereference_protected(tr->function_pids,
7696 					     lockdep_is_held(&ftrace_lock));
7697 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
7698 						lockdep_is_held(&ftrace_lock));
7699 
7700 	/* Make sure there's something to do */
7701 	if (!pid_type_enabled(type, pid_list, no_pid_list))
7702 		return;
7703 
7704 	/* See if the pids still need to be checked after this */
7705 	if (!still_need_pid_events(type, pid_list, no_pid_list)) {
7706 		unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
7707 		for_each_possible_cpu(cpu)
7708 			per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE;
7709 	}
7710 
7711 	if (type & TRACE_PIDS)
7712 		rcu_assign_pointer(tr->function_pids, NULL);
7713 
7714 	if (type & TRACE_NO_PIDS)
7715 		rcu_assign_pointer(tr->function_no_pids, NULL);
7716 
7717 	/* Wait till all users are no longer using pid filtering */
7718 	synchronize_rcu();
7719 
7720 	if ((type & TRACE_PIDS) && pid_list)
7721 		trace_pid_list_free(pid_list);
7722 
7723 	if ((type & TRACE_NO_PIDS) && no_pid_list)
7724 		trace_pid_list_free(no_pid_list);
7725 }
7726 
7727 void ftrace_clear_pids(struct trace_array *tr)
7728 {
7729 	mutex_lock(&ftrace_lock);
7730 
7731 	clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS);
7732 
7733 	mutex_unlock(&ftrace_lock);
7734 }
7735 
7736 static void ftrace_pid_reset(struct trace_array *tr, int type)
7737 {
7738 	mutex_lock(&ftrace_lock);
7739 	clear_ftrace_pids(tr, type);
7740 
7741 	ftrace_update_pid_func();
7742 	ftrace_startup_all(0);
7743 
7744 	mutex_unlock(&ftrace_lock);
7745 }
7746 
7747 /* Greater than any max PID */
7748 #define FTRACE_NO_PIDS		(void *)(PID_MAX_LIMIT + 1)
7749 
7750 static void *fpid_start(struct seq_file *m, loff_t *pos)
7751 	__acquires(RCU)
7752 {
7753 	struct trace_pid_list *pid_list;
7754 	struct trace_array *tr = m->private;
7755 
7756 	mutex_lock(&ftrace_lock);
7757 	rcu_read_lock_sched();
7758 
7759 	pid_list = rcu_dereference_sched(tr->function_pids);
7760 
7761 	if (!pid_list)
7762 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
7763 
7764 	return trace_pid_start(pid_list, pos);
7765 }
7766 
7767 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos)
7768 {
7769 	struct trace_array *tr = m->private;
7770 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids);
7771 
7772 	if (v == FTRACE_NO_PIDS) {
7773 		(*pos)++;
7774 		return NULL;
7775 	}
7776 	return trace_pid_next(pid_list, v, pos);
7777 }
7778 
7779 static void fpid_stop(struct seq_file *m, void *p)
7780 	__releases(RCU)
7781 {
7782 	rcu_read_unlock_sched();
7783 	mutex_unlock(&ftrace_lock);
7784 }
7785 
7786 static int fpid_show(struct seq_file *m, void *v)
7787 {
7788 	if (v == FTRACE_NO_PIDS) {
7789 		seq_puts(m, "no pid\n");
7790 		return 0;
7791 	}
7792 
7793 	return trace_pid_show(m, v);
7794 }
7795 
7796 static const struct seq_operations ftrace_pid_sops = {
7797 	.start = fpid_start,
7798 	.next = fpid_next,
7799 	.stop = fpid_stop,
7800 	.show = fpid_show,
7801 };
7802 
7803 static void *fnpid_start(struct seq_file *m, loff_t *pos)
7804 	__acquires(RCU)
7805 {
7806 	struct trace_pid_list *pid_list;
7807 	struct trace_array *tr = m->private;
7808 
7809 	mutex_lock(&ftrace_lock);
7810 	rcu_read_lock_sched();
7811 
7812 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7813 
7814 	if (!pid_list)
7815 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
7816 
7817 	return trace_pid_start(pid_list, pos);
7818 }
7819 
7820 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos)
7821 {
7822 	struct trace_array *tr = m->private;
7823 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids);
7824 
7825 	if (v == FTRACE_NO_PIDS) {
7826 		(*pos)++;
7827 		return NULL;
7828 	}
7829 	return trace_pid_next(pid_list, v, pos);
7830 }
7831 
7832 static const struct seq_operations ftrace_no_pid_sops = {
7833 	.start = fnpid_start,
7834 	.next = fnpid_next,
7835 	.stop = fpid_stop,
7836 	.show = fpid_show,
7837 };
7838 
7839 static int pid_open(struct inode *inode, struct file *file, int type)
7840 {
7841 	const struct seq_operations *seq_ops;
7842 	struct trace_array *tr = inode->i_private;
7843 	struct seq_file *m;
7844 	int ret = 0;
7845 
7846 	ret = tracing_check_open_get_tr(tr);
7847 	if (ret)
7848 		return ret;
7849 
7850 	if ((file->f_mode & FMODE_WRITE) &&
7851 	    (file->f_flags & O_TRUNC))
7852 		ftrace_pid_reset(tr, type);
7853 
7854 	switch (type) {
7855 	case TRACE_PIDS:
7856 		seq_ops = &ftrace_pid_sops;
7857 		break;
7858 	case TRACE_NO_PIDS:
7859 		seq_ops = &ftrace_no_pid_sops;
7860 		break;
7861 	default:
7862 		trace_array_put(tr);
7863 		WARN_ON_ONCE(1);
7864 		return -EINVAL;
7865 	}
7866 
7867 	ret = seq_open(file, seq_ops);
7868 	if (ret < 0) {
7869 		trace_array_put(tr);
7870 	} else {
7871 		m = file->private_data;
7872 		/* copy tr over to seq ops */
7873 		m->private = tr;
7874 	}
7875 
7876 	return ret;
7877 }
7878 
7879 static int
7880 ftrace_pid_open(struct inode *inode, struct file *file)
7881 {
7882 	return pid_open(inode, file, TRACE_PIDS);
7883 }
7884 
7885 static int
7886 ftrace_no_pid_open(struct inode *inode, struct file *file)
7887 {
7888 	return pid_open(inode, file, TRACE_NO_PIDS);
7889 }
7890 
7891 static void ignore_task_cpu(void *data)
7892 {
7893 	struct trace_array *tr = data;
7894 	struct trace_pid_list *pid_list;
7895 	struct trace_pid_list *no_pid_list;
7896 
7897 	/*
7898 	 * This function is called by on_each_cpu() while the
7899 	 * event_mutex is held.
7900 	 */
7901 	pid_list = rcu_dereference_protected(tr->function_pids,
7902 					     mutex_is_locked(&ftrace_lock));
7903 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
7904 						mutex_is_locked(&ftrace_lock));
7905 
7906 	if (trace_ignore_this_task(pid_list, no_pid_list, current))
7907 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7908 			       FTRACE_PID_IGNORE);
7909 	else
7910 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7911 			       current->pid);
7912 }
7913 
7914 static ssize_t
7915 pid_write(struct file *filp, const char __user *ubuf,
7916 	  size_t cnt, loff_t *ppos, int type)
7917 {
7918 	struct seq_file *m = filp->private_data;
7919 	struct trace_array *tr = m->private;
7920 	struct trace_pid_list *filtered_pids;
7921 	struct trace_pid_list *other_pids;
7922 	struct trace_pid_list *pid_list;
7923 	ssize_t ret;
7924 
7925 	if (!cnt)
7926 		return 0;
7927 
7928 	mutex_lock(&ftrace_lock);
7929 
7930 	switch (type) {
7931 	case TRACE_PIDS:
7932 		filtered_pids = rcu_dereference_protected(tr->function_pids,
7933 					     lockdep_is_held(&ftrace_lock));
7934 		other_pids = rcu_dereference_protected(tr->function_no_pids,
7935 					     lockdep_is_held(&ftrace_lock));
7936 		break;
7937 	case TRACE_NO_PIDS:
7938 		filtered_pids = rcu_dereference_protected(tr->function_no_pids,
7939 					     lockdep_is_held(&ftrace_lock));
7940 		other_pids = rcu_dereference_protected(tr->function_pids,
7941 					     lockdep_is_held(&ftrace_lock));
7942 		break;
7943 	default:
7944 		ret = -EINVAL;
7945 		WARN_ON_ONCE(1);
7946 		goto out;
7947 	}
7948 
7949 	ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt);
7950 	if (ret < 0)
7951 		goto out;
7952 
7953 	switch (type) {
7954 	case TRACE_PIDS:
7955 		rcu_assign_pointer(tr->function_pids, pid_list);
7956 		break;
7957 	case TRACE_NO_PIDS:
7958 		rcu_assign_pointer(tr->function_no_pids, pid_list);
7959 		break;
7960 	}
7961 
7962 
7963 	if (filtered_pids) {
7964 		synchronize_rcu();
7965 		trace_pid_list_free(filtered_pids);
7966 	} else if (pid_list && !other_pids) {
7967 		/* Register a probe to set whether to ignore the tracing of a task */
7968 		register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
7969 	}
7970 
7971 	/*
7972 	 * Ignoring of pids is done at task switch. But we have to
7973 	 * check for those tasks that are currently running.
7974 	 * Always do this in case a pid was appended or removed.
7975 	 */
7976 	on_each_cpu(ignore_task_cpu, tr, 1);
7977 
7978 	ftrace_update_pid_func();
7979 	ftrace_startup_all(0);
7980  out:
7981 	mutex_unlock(&ftrace_lock);
7982 
7983 	if (ret > 0)
7984 		*ppos += ret;
7985 
7986 	return ret;
7987 }
7988 
7989 static ssize_t
7990 ftrace_pid_write(struct file *filp, const char __user *ubuf,
7991 		 size_t cnt, loff_t *ppos)
7992 {
7993 	return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS);
7994 }
7995 
7996 static ssize_t
7997 ftrace_no_pid_write(struct file *filp, const char __user *ubuf,
7998 		    size_t cnt, loff_t *ppos)
7999 {
8000 	return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS);
8001 }
8002 
8003 static int
8004 ftrace_pid_release(struct inode *inode, struct file *file)
8005 {
8006 	struct trace_array *tr = inode->i_private;
8007 
8008 	trace_array_put(tr);
8009 
8010 	return seq_release(inode, file);
8011 }
8012 
8013 static const struct file_operations ftrace_pid_fops = {
8014 	.open		= ftrace_pid_open,
8015 	.write		= ftrace_pid_write,
8016 	.read		= seq_read,
8017 	.llseek		= tracing_lseek,
8018 	.release	= ftrace_pid_release,
8019 };
8020 
8021 static const struct file_operations ftrace_no_pid_fops = {
8022 	.open		= ftrace_no_pid_open,
8023 	.write		= ftrace_no_pid_write,
8024 	.read		= seq_read,
8025 	.llseek		= tracing_lseek,
8026 	.release	= ftrace_pid_release,
8027 };
8028 
8029 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer)
8030 {
8031 	trace_create_file("set_ftrace_pid", TRACE_MODE_WRITE, d_tracer,
8032 			    tr, &ftrace_pid_fops);
8033 	trace_create_file("set_ftrace_notrace_pid", TRACE_MODE_WRITE,
8034 			  d_tracer, tr, &ftrace_no_pid_fops);
8035 }
8036 
8037 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr,
8038 					 struct dentry *d_tracer)
8039 {
8040 	/* Only the top level directory has the dyn_tracefs and profile */
8041 	WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL));
8042 
8043 	ftrace_init_dyn_tracefs(d_tracer);
8044 	ftrace_profile_tracefs(d_tracer);
8045 }
8046 
8047 /**
8048  * ftrace_kill - kill ftrace
8049  *
8050  * This function should be used by panic code. It stops ftrace
8051  * but in a not so nice way. If you need to simply kill ftrace
8052  * from a non-atomic section, use ftrace_kill.
8053  */
8054 void ftrace_kill(void)
8055 {
8056 	ftrace_disabled = 1;
8057 	ftrace_enabled = 0;
8058 	ftrace_trace_function = ftrace_stub;
8059 }
8060 
8061 /**
8062  * ftrace_is_dead - Test if ftrace is dead or not.
8063  *
8064  * Returns 1 if ftrace is "dead", zero otherwise.
8065  */
8066 int ftrace_is_dead(void)
8067 {
8068 	return ftrace_disabled;
8069 }
8070 
8071 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
8072 /*
8073  * When registering ftrace_ops with IPMODIFY, it is necessary to make sure
8074  * it doesn't conflict with any direct ftrace_ops. If there is existing
8075  * direct ftrace_ops on a kernel function being patched, call
8076  * FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER on it to enable sharing.
8077  *
8078  * @ops:     ftrace_ops being registered.
8079  *
8080  * Returns:
8081  *         0 on success;
8082  *         Negative on failure.
8083  */
8084 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops)
8085 {
8086 	struct ftrace_func_entry *entry;
8087 	struct ftrace_hash *hash;
8088 	struct ftrace_ops *op;
8089 	int size, i, ret;
8090 
8091 	lockdep_assert_held_once(&direct_mutex);
8092 
8093 	if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
8094 		return 0;
8095 
8096 	hash = ops->func_hash->filter_hash;
8097 	size = 1 << hash->size_bits;
8098 	for (i = 0; i < size; i++) {
8099 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
8100 			unsigned long ip = entry->ip;
8101 			bool found_op = false;
8102 
8103 			mutex_lock(&ftrace_lock);
8104 			do_for_each_ftrace_op(op, ftrace_ops_list) {
8105 				if (!(op->flags & FTRACE_OPS_FL_DIRECT))
8106 					continue;
8107 				if (ops_references_ip(op, ip)) {
8108 					found_op = true;
8109 					break;
8110 				}
8111 			} while_for_each_ftrace_op(op);
8112 			mutex_unlock(&ftrace_lock);
8113 
8114 			if (found_op) {
8115 				if (!op->ops_func)
8116 					return -EBUSY;
8117 
8118 				ret = op->ops_func(op, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER);
8119 				if (ret)
8120 					return ret;
8121 			}
8122 		}
8123 	}
8124 
8125 	return 0;
8126 }
8127 
8128 /*
8129  * Similar to prepare_direct_functions_for_ipmodify, clean up after ops
8130  * with IPMODIFY is unregistered. The cleanup is optional for most DIRECT
8131  * ops.
8132  */
8133 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops)
8134 {
8135 	struct ftrace_func_entry *entry;
8136 	struct ftrace_hash *hash;
8137 	struct ftrace_ops *op;
8138 	int size, i;
8139 
8140 	if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
8141 		return;
8142 
8143 	mutex_lock(&direct_mutex);
8144 
8145 	hash = ops->func_hash->filter_hash;
8146 	size = 1 << hash->size_bits;
8147 	for (i = 0; i < size; i++) {
8148 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
8149 			unsigned long ip = entry->ip;
8150 			bool found_op = false;
8151 
8152 			mutex_lock(&ftrace_lock);
8153 			do_for_each_ftrace_op(op, ftrace_ops_list) {
8154 				if (!(op->flags & FTRACE_OPS_FL_DIRECT))
8155 					continue;
8156 				if (ops_references_ip(op, ip)) {
8157 					found_op = true;
8158 					break;
8159 				}
8160 			} while_for_each_ftrace_op(op);
8161 			mutex_unlock(&ftrace_lock);
8162 
8163 			/* The cleanup is optional, ignore any errors */
8164 			if (found_op && op->ops_func)
8165 				op->ops_func(op, FTRACE_OPS_CMD_DISABLE_SHARE_IPMODIFY_PEER);
8166 		}
8167 	}
8168 	mutex_unlock(&direct_mutex);
8169 }
8170 
8171 #define lock_direct_mutex()	mutex_lock(&direct_mutex)
8172 #define unlock_direct_mutex()	mutex_unlock(&direct_mutex)
8173 
8174 #else  /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
8175 
8176 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops)
8177 {
8178 	return 0;
8179 }
8180 
8181 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops)
8182 {
8183 }
8184 
8185 #define lock_direct_mutex()	do { } while (0)
8186 #define unlock_direct_mutex()	do { } while (0)
8187 
8188 #endif  /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
8189 
8190 /*
8191  * Similar to register_ftrace_function, except we don't lock direct_mutex.
8192  */
8193 static int register_ftrace_function_nolock(struct ftrace_ops *ops)
8194 {
8195 	int ret;
8196 
8197 	ftrace_ops_init(ops);
8198 
8199 	mutex_lock(&ftrace_lock);
8200 
8201 	ret = ftrace_startup(ops, 0);
8202 
8203 	mutex_unlock(&ftrace_lock);
8204 
8205 	return ret;
8206 }
8207 
8208 /**
8209  * register_ftrace_function - register a function for profiling
8210  * @ops:	ops structure that holds the function for profiling.
8211  *
8212  * Register a function to be called by all functions in the
8213  * kernel.
8214  *
8215  * Note: @ops->func and all the functions it calls must be labeled
8216  *       with "notrace", otherwise it will go into a
8217  *       recursive loop.
8218  */
8219 int register_ftrace_function(struct ftrace_ops *ops)
8220 {
8221 	int ret;
8222 
8223 	lock_direct_mutex();
8224 	ret = prepare_direct_functions_for_ipmodify(ops);
8225 	if (ret < 0)
8226 		goto out_unlock;
8227 
8228 	ret = register_ftrace_function_nolock(ops);
8229 
8230 out_unlock:
8231 	unlock_direct_mutex();
8232 	return ret;
8233 }
8234 EXPORT_SYMBOL_GPL(register_ftrace_function);
8235 
8236 /**
8237  * unregister_ftrace_function - unregister a function for profiling.
8238  * @ops:	ops structure that holds the function to unregister
8239  *
8240  * Unregister a function that was added to be called by ftrace profiling.
8241  */
8242 int unregister_ftrace_function(struct ftrace_ops *ops)
8243 {
8244 	int ret;
8245 
8246 	mutex_lock(&ftrace_lock);
8247 	ret = ftrace_shutdown(ops, 0);
8248 	mutex_unlock(&ftrace_lock);
8249 
8250 	cleanup_direct_functions_after_ipmodify(ops);
8251 	return ret;
8252 }
8253 EXPORT_SYMBOL_GPL(unregister_ftrace_function);
8254 
8255 static int symbols_cmp(const void *a, const void *b)
8256 {
8257 	const char **str_a = (const char **) a;
8258 	const char **str_b = (const char **) b;
8259 
8260 	return strcmp(*str_a, *str_b);
8261 }
8262 
8263 struct kallsyms_data {
8264 	unsigned long *addrs;
8265 	const char **syms;
8266 	size_t cnt;
8267 	size_t found;
8268 };
8269 
8270 /* This function gets called for all kernel and module symbols
8271  * and returns 1 in case we resolved all the requested symbols,
8272  * 0 otherwise.
8273  */
8274 static int kallsyms_callback(void *data, const char *name,
8275 			     struct module *mod, unsigned long addr)
8276 {
8277 	struct kallsyms_data *args = data;
8278 	const char **sym;
8279 	int idx;
8280 
8281 	sym = bsearch(&name, args->syms, args->cnt, sizeof(*args->syms), symbols_cmp);
8282 	if (!sym)
8283 		return 0;
8284 
8285 	idx = sym - args->syms;
8286 	if (args->addrs[idx])
8287 		return 0;
8288 
8289 	if (!ftrace_location(addr))
8290 		return 0;
8291 
8292 	args->addrs[idx] = addr;
8293 	args->found++;
8294 	return args->found == args->cnt ? 1 : 0;
8295 }
8296 
8297 /**
8298  * ftrace_lookup_symbols - Lookup addresses for array of symbols
8299  *
8300  * @sorted_syms: array of symbols pointers symbols to resolve,
8301  * must be alphabetically sorted
8302  * @cnt: number of symbols/addresses in @syms/@addrs arrays
8303  * @addrs: array for storing resulting addresses
8304  *
8305  * This function looks up addresses for array of symbols provided in
8306  * @syms array (must be alphabetically sorted) and stores them in
8307  * @addrs array, which needs to be big enough to store at least @cnt
8308  * addresses.
8309  *
8310  * This function returns 0 if all provided symbols are found,
8311  * -ESRCH otherwise.
8312  */
8313 int ftrace_lookup_symbols(const char **sorted_syms, size_t cnt, unsigned long *addrs)
8314 {
8315 	struct kallsyms_data args;
8316 	int found_all;
8317 
8318 	memset(addrs, 0, sizeof(*addrs) * cnt);
8319 	args.addrs = addrs;
8320 	args.syms = sorted_syms;
8321 	args.cnt = cnt;
8322 	args.found = 0;
8323 
8324 	found_all = kallsyms_on_each_symbol(kallsyms_callback, &args);
8325 	if (found_all)
8326 		return 0;
8327 	found_all = module_kallsyms_on_each_symbol(kallsyms_callback, &args);
8328 	return found_all ? 0 : -ESRCH;
8329 }
8330 
8331 #ifdef CONFIG_SYSCTL
8332 
8333 #ifdef CONFIG_DYNAMIC_FTRACE
8334 static void ftrace_startup_sysctl(void)
8335 {
8336 	int command;
8337 
8338 	if (unlikely(ftrace_disabled))
8339 		return;
8340 
8341 	/* Force update next time */
8342 	saved_ftrace_func = NULL;
8343 	/* ftrace_start_up is true if we want ftrace running */
8344 	if (ftrace_start_up) {
8345 		command = FTRACE_UPDATE_CALLS;
8346 		if (ftrace_graph_active)
8347 			command |= FTRACE_START_FUNC_RET;
8348 		ftrace_startup_enable(command);
8349 	}
8350 }
8351 
8352 static void ftrace_shutdown_sysctl(void)
8353 {
8354 	int command;
8355 
8356 	if (unlikely(ftrace_disabled))
8357 		return;
8358 
8359 	/* ftrace_start_up is true if ftrace is running */
8360 	if (ftrace_start_up) {
8361 		command = FTRACE_DISABLE_CALLS;
8362 		if (ftrace_graph_active)
8363 			command |= FTRACE_STOP_FUNC_RET;
8364 		ftrace_run_update_code(command);
8365 	}
8366 }
8367 #else
8368 # define ftrace_startup_sysctl()       do { } while (0)
8369 # define ftrace_shutdown_sysctl()      do { } while (0)
8370 #endif /* CONFIG_DYNAMIC_FTRACE */
8371 
8372 static bool is_permanent_ops_registered(void)
8373 {
8374 	struct ftrace_ops *op;
8375 
8376 	do_for_each_ftrace_op(op, ftrace_ops_list) {
8377 		if (op->flags & FTRACE_OPS_FL_PERMANENT)
8378 			return true;
8379 	} while_for_each_ftrace_op(op);
8380 
8381 	return false;
8382 }
8383 
8384 static int
8385 ftrace_enable_sysctl(struct ctl_table *table, int write,
8386 		     void *buffer, size_t *lenp, loff_t *ppos)
8387 {
8388 	int ret = -ENODEV;
8389 
8390 	mutex_lock(&ftrace_lock);
8391 
8392 	if (unlikely(ftrace_disabled))
8393 		goto out;
8394 
8395 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8396 
8397 	if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled))
8398 		goto out;
8399 
8400 	if (ftrace_enabled) {
8401 
8402 		/* we are starting ftrace again */
8403 		if (rcu_dereference_protected(ftrace_ops_list,
8404 			lockdep_is_held(&ftrace_lock)) != &ftrace_list_end)
8405 			update_ftrace_function();
8406 
8407 		ftrace_startup_sysctl();
8408 
8409 	} else {
8410 		if (is_permanent_ops_registered()) {
8411 			ftrace_enabled = true;
8412 			ret = -EBUSY;
8413 			goto out;
8414 		}
8415 
8416 		/* stopping ftrace calls (just send to ftrace_stub) */
8417 		ftrace_trace_function = ftrace_stub;
8418 
8419 		ftrace_shutdown_sysctl();
8420 	}
8421 
8422 	last_ftrace_enabled = !!ftrace_enabled;
8423  out:
8424 	mutex_unlock(&ftrace_lock);
8425 	return ret;
8426 }
8427 
8428 static struct ctl_table ftrace_sysctls[] = {
8429 	{
8430 		.procname       = "ftrace_enabled",
8431 		.data           = &ftrace_enabled,
8432 		.maxlen         = sizeof(int),
8433 		.mode           = 0644,
8434 		.proc_handler   = ftrace_enable_sysctl,
8435 	},
8436 	{}
8437 };
8438 
8439 static int __init ftrace_sysctl_init(void)
8440 {
8441 	register_sysctl_init("kernel", ftrace_sysctls);
8442 	return 0;
8443 }
8444 late_initcall(ftrace_sysctl_init);
8445 #endif
8446