1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Infrastructure for profiling code inserted by 'gcc -pg'. 4 * 5 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com> 6 * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com> 7 * 8 * Originally ported from the -rt patch by: 9 * Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com> 10 * 11 * Based on code in the latency_tracer, that is: 12 * 13 * Copyright (C) 2004-2006 Ingo Molnar 14 * Copyright (C) 2004 Nadia Yvette Chambers 15 */ 16 17 #include <linux/stop_machine.h> 18 #include <linux/clocksource.h> 19 #include <linux/sched/task.h> 20 #include <linux/kallsyms.h> 21 #include <linux/security.h> 22 #include <linux/seq_file.h> 23 #include <linux/tracefs.h> 24 #include <linux/hardirq.h> 25 #include <linux/kthread.h> 26 #include <linux/uaccess.h> 27 #include <linux/bsearch.h> 28 #include <linux/module.h> 29 #include <linux/ftrace.h> 30 #include <linux/sysctl.h> 31 #include <linux/slab.h> 32 #include <linux/ctype.h> 33 #include <linux/sort.h> 34 #include <linux/list.h> 35 #include <linux/hash.h> 36 #include <linux/rcupdate.h> 37 #include <linux/kprobes.h> 38 39 #include <trace/events/sched.h> 40 41 #include <asm/sections.h> 42 #include <asm/setup.h> 43 44 #include "ftrace_internal.h" 45 #include "trace_output.h" 46 #include "trace_stat.h" 47 48 /* Flags that do not get reset */ 49 #define FTRACE_NOCLEAR_FLAGS (FTRACE_FL_DISABLED | FTRACE_FL_TOUCHED | \ 50 FTRACE_FL_MODIFIED) 51 52 #define FTRACE_INVALID_FUNCTION "__ftrace_invalid_address__" 53 54 #define FTRACE_WARN_ON(cond) \ 55 ({ \ 56 int ___r = cond; \ 57 if (WARN_ON(___r)) \ 58 ftrace_kill(); \ 59 ___r; \ 60 }) 61 62 #define FTRACE_WARN_ON_ONCE(cond) \ 63 ({ \ 64 int ___r = cond; \ 65 if (WARN_ON_ONCE(___r)) \ 66 ftrace_kill(); \ 67 ___r; \ 68 }) 69 70 /* hash bits for specific function selection */ 71 #define FTRACE_HASH_DEFAULT_BITS 10 72 #define FTRACE_HASH_MAX_BITS 12 73 74 #ifdef CONFIG_DYNAMIC_FTRACE 75 #define INIT_OPS_HASH(opsname) \ 76 .func_hash = &opsname.local_hash, \ 77 .local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock), \ 78 .subop_list = LIST_HEAD_INIT(opsname.subop_list), 79 #else 80 #define INIT_OPS_HASH(opsname) 81 #endif 82 83 enum { 84 FTRACE_MODIFY_ENABLE_FL = (1 << 0), 85 FTRACE_MODIFY_MAY_SLEEP_FL = (1 << 1), 86 }; 87 88 struct ftrace_ops ftrace_list_end __read_mostly = { 89 .func = ftrace_stub, 90 .flags = FTRACE_OPS_FL_STUB, 91 INIT_OPS_HASH(ftrace_list_end) 92 }; 93 94 /* ftrace_enabled is a method to turn ftrace on or off */ 95 int ftrace_enabled __read_mostly; 96 static int __maybe_unused last_ftrace_enabled; 97 98 /* Current function tracing op */ 99 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end; 100 /* What to set function_trace_op to */ 101 static struct ftrace_ops *set_function_trace_op; 102 103 bool ftrace_pids_enabled(struct ftrace_ops *ops) 104 { 105 struct trace_array *tr; 106 107 if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private) 108 return false; 109 110 tr = ops->private; 111 112 return tr->function_pids != NULL || tr->function_no_pids != NULL; 113 } 114 115 static void ftrace_update_trampoline(struct ftrace_ops *ops); 116 117 /* 118 * ftrace_disabled is set when an anomaly is discovered. 119 * ftrace_disabled is much stronger than ftrace_enabled. 120 */ 121 static int ftrace_disabled __read_mostly; 122 123 DEFINE_MUTEX(ftrace_lock); 124 125 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = (struct ftrace_ops __rcu *)&ftrace_list_end; 126 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub; 127 struct ftrace_ops global_ops; 128 129 /* Defined by vmlinux.lds.h see the comment above arch_ftrace_ops_list_func for details */ 130 void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 131 struct ftrace_ops *op, struct ftrace_regs *fregs); 132 133 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_CALL_OPS 134 /* 135 * Stub used to invoke the list ops without requiring a separate trampoline. 136 */ 137 const struct ftrace_ops ftrace_list_ops = { 138 .func = ftrace_ops_list_func, 139 .flags = FTRACE_OPS_FL_STUB, 140 }; 141 142 static void ftrace_ops_nop_func(unsigned long ip, unsigned long parent_ip, 143 struct ftrace_ops *op, 144 struct ftrace_regs *fregs) 145 { 146 /* do nothing */ 147 } 148 149 /* 150 * Stub used when a call site is disabled. May be called transiently by threads 151 * which have made it into ftrace_caller but haven't yet recovered the ops at 152 * the point the call site is disabled. 153 */ 154 const struct ftrace_ops ftrace_nop_ops = { 155 .func = ftrace_ops_nop_func, 156 .flags = FTRACE_OPS_FL_STUB, 157 }; 158 #endif 159 160 static inline void ftrace_ops_init(struct ftrace_ops *ops) 161 { 162 #ifdef CONFIG_DYNAMIC_FTRACE 163 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) { 164 mutex_init(&ops->local_hash.regex_lock); 165 INIT_LIST_HEAD(&ops->subop_list); 166 ops->func_hash = &ops->local_hash; 167 ops->flags |= FTRACE_OPS_FL_INITIALIZED; 168 } 169 #endif 170 } 171 172 /* Call this function for when a callback filters on set_ftrace_pid */ 173 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip, 174 struct ftrace_ops *op, struct ftrace_regs *fregs) 175 { 176 struct trace_array *tr = op->private; 177 int pid; 178 179 if (tr) { 180 pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid); 181 if (pid == FTRACE_PID_IGNORE) 182 return; 183 if (pid != FTRACE_PID_TRACE && 184 pid != current->pid) 185 return; 186 } 187 188 op->saved_func(ip, parent_ip, op, fregs); 189 } 190 191 static void ftrace_sync_ipi(void *data) 192 { 193 /* Probably not needed, but do it anyway */ 194 smp_rmb(); 195 } 196 197 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops) 198 { 199 /* 200 * If this is a dynamic or RCU ops, or we force list func, 201 * then it needs to call the list anyway. 202 */ 203 if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) || 204 FTRACE_FORCE_LIST_FUNC) 205 return ftrace_ops_list_func; 206 207 return ftrace_ops_get_func(ops); 208 } 209 210 static void update_ftrace_function(void) 211 { 212 ftrace_func_t func; 213 214 /* 215 * Prepare the ftrace_ops that the arch callback will use. 216 * If there's only one ftrace_ops registered, the ftrace_ops_list 217 * will point to the ops we want. 218 */ 219 set_function_trace_op = rcu_dereference_protected(ftrace_ops_list, 220 lockdep_is_held(&ftrace_lock)); 221 222 /* If there's no ftrace_ops registered, just call the stub function */ 223 if (set_function_trace_op == &ftrace_list_end) { 224 func = ftrace_stub; 225 226 /* 227 * If we are at the end of the list and this ops is 228 * recursion safe and not dynamic and the arch supports passing ops, 229 * then have the mcount trampoline call the function directly. 230 */ 231 } else if (rcu_dereference_protected(ftrace_ops_list->next, 232 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 233 func = ftrace_ops_get_list_func(ftrace_ops_list); 234 235 } else { 236 /* Just use the default ftrace_ops */ 237 set_function_trace_op = &ftrace_list_end; 238 func = ftrace_ops_list_func; 239 } 240 241 /* If there's no change, then do nothing more here */ 242 if (ftrace_trace_function == func) 243 return; 244 245 /* 246 * If we are using the list function, it doesn't care 247 * about the function_trace_ops. 248 */ 249 if (func == ftrace_ops_list_func) { 250 ftrace_trace_function = func; 251 /* 252 * Don't even bother setting function_trace_ops, 253 * it would be racy to do so anyway. 254 */ 255 return; 256 } 257 258 #ifndef CONFIG_DYNAMIC_FTRACE 259 /* 260 * For static tracing, we need to be a bit more careful. 261 * The function change takes affect immediately. Thus, 262 * we need to coordinate the setting of the function_trace_ops 263 * with the setting of the ftrace_trace_function. 264 * 265 * Set the function to the list ops, which will call the 266 * function we want, albeit indirectly, but it handles the 267 * ftrace_ops and doesn't depend on function_trace_op. 268 */ 269 ftrace_trace_function = ftrace_ops_list_func; 270 /* 271 * Make sure all CPUs see this. Yes this is slow, but static 272 * tracing is slow and nasty to have enabled. 273 */ 274 synchronize_rcu_tasks_rude(); 275 /* Now all cpus are using the list ops. */ 276 function_trace_op = set_function_trace_op; 277 /* Make sure the function_trace_op is visible on all CPUs */ 278 smp_wmb(); 279 /* Nasty way to force a rmb on all cpus */ 280 smp_call_function(ftrace_sync_ipi, NULL, 1); 281 /* OK, we are all set to update the ftrace_trace_function now! */ 282 #endif /* !CONFIG_DYNAMIC_FTRACE */ 283 284 ftrace_trace_function = func; 285 } 286 287 static void add_ftrace_ops(struct ftrace_ops __rcu **list, 288 struct ftrace_ops *ops) 289 { 290 rcu_assign_pointer(ops->next, *list); 291 292 /* 293 * We are entering ops into the list but another 294 * CPU might be walking that list. We need to make sure 295 * the ops->next pointer is valid before another CPU sees 296 * the ops pointer included into the list. 297 */ 298 rcu_assign_pointer(*list, ops); 299 } 300 301 static int remove_ftrace_ops(struct ftrace_ops __rcu **list, 302 struct ftrace_ops *ops) 303 { 304 struct ftrace_ops **p; 305 306 /* 307 * If we are removing the last function, then simply point 308 * to the ftrace_stub. 309 */ 310 if (rcu_dereference_protected(*list, 311 lockdep_is_held(&ftrace_lock)) == ops && 312 rcu_dereference_protected(ops->next, 313 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 314 rcu_assign_pointer(*list, &ftrace_list_end); 315 return 0; 316 } 317 318 for (p = list; *p != &ftrace_list_end; p = &(*p)->next) 319 if (*p == ops) 320 break; 321 322 if (*p != ops) 323 return -1; 324 325 *p = (*p)->next; 326 return 0; 327 } 328 329 static void ftrace_update_trampoline(struct ftrace_ops *ops); 330 331 int __register_ftrace_function(struct ftrace_ops *ops) 332 { 333 if (ops->flags & FTRACE_OPS_FL_DELETED) 334 return -EINVAL; 335 336 if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED)) 337 return -EBUSY; 338 339 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS 340 /* 341 * If the ftrace_ops specifies SAVE_REGS, then it only can be used 342 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set. 343 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant. 344 */ 345 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS && 346 !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)) 347 return -EINVAL; 348 349 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED) 350 ops->flags |= FTRACE_OPS_FL_SAVE_REGS; 351 #endif 352 if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT)) 353 return -EBUSY; 354 355 if (!is_kernel_core_data((unsigned long)ops)) 356 ops->flags |= FTRACE_OPS_FL_DYNAMIC; 357 358 add_ftrace_ops(&ftrace_ops_list, ops); 359 360 /* Always save the function, and reset at unregistering */ 361 ops->saved_func = ops->func; 362 363 if (ftrace_pids_enabled(ops)) 364 ops->func = ftrace_pid_func; 365 366 ftrace_update_trampoline(ops); 367 368 if (ftrace_enabled) 369 update_ftrace_function(); 370 371 return 0; 372 } 373 374 int __unregister_ftrace_function(struct ftrace_ops *ops) 375 { 376 int ret; 377 378 if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED))) 379 return -EBUSY; 380 381 ret = remove_ftrace_ops(&ftrace_ops_list, ops); 382 383 if (ret < 0) 384 return ret; 385 386 if (ftrace_enabled) 387 update_ftrace_function(); 388 389 ops->func = ops->saved_func; 390 391 return 0; 392 } 393 394 static void ftrace_update_pid_func(void) 395 { 396 struct ftrace_ops *op; 397 398 /* Only do something if we are tracing something */ 399 if (ftrace_trace_function == ftrace_stub) 400 return; 401 402 do_for_each_ftrace_op(op, ftrace_ops_list) { 403 if (op->flags & FTRACE_OPS_FL_PID) { 404 op->func = ftrace_pids_enabled(op) ? 405 ftrace_pid_func : op->saved_func; 406 ftrace_update_trampoline(op); 407 } 408 } while_for_each_ftrace_op(op); 409 410 fgraph_update_pid_func(); 411 412 update_ftrace_function(); 413 } 414 415 #ifdef CONFIG_FUNCTION_PROFILER 416 struct ftrace_profile { 417 struct hlist_node node; 418 unsigned long ip; 419 unsigned long counter; 420 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 421 unsigned long long time; 422 unsigned long long time_squared; 423 #endif 424 }; 425 426 struct ftrace_profile_page { 427 struct ftrace_profile_page *next; 428 unsigned long index; 429 struct ftrace_profile records[]; 430 }; 431 432 struct ftrace_profile_stat { 433 atomic_t disabled; 434 struct hlist_head *hash; 435 struct ftrace_profile_page *pages; 436 struct ftrace_profile_page *start; 437 struct tracer_stat stat; 438 }; 439 440 #define PROFILE_RECORDS_SIZE \ 441 (PAGE_SIZE - offsetof(struct ftrace_profile_page, records)) 442 443 #define PROFILES_PER_PAGE \ 444 (PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile)) 445 446 static int ftrace_profile_enabled __read_mostly; 447 448 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */ 449 static DEFINE_MUTEX(ftrace_profile_lock); 450 451 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats); 452 453 #define FTRACE_PROFILE_HASH_BITS 10 454 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS) 455 456 static void * 457 function_stat_next(void *v, int idx) 458 { 459 struct ftrace_profile *rec = v; 460 struct ftrace_profile_page *pg; 461 462 pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK); 463 464 again: 465 if (idx != 0) 466 rec++; 467 468 if ((void *)rec >= (void *)&pg->records[pg->index]) { 469 pg = pg->next; 470 if (!pg) 471 return NULL; 472 rec = &pg->records[0]; 473 if (!rec->counter) 474 goto again; 475 } 476 477 return rec; 478 } 479 480 static void *function_stat_start(struct tracer_stat *trace) 481 { 482 struct ftrace_profile_stat *stat = 483 container_of(trace, struct ftrace_profile_stat, stat); 484 485 if (!stat || !stat->start) 486 return NULL; 487 488 return function_stat_next(&stat->start->records[0], 0); 489 } 490 491 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 492 /* function graph compares on total time */ 493 static int function_stat_cmp(const void *p1, const void *p2) 494 { 495 const struct ftrace_profile *a = p1; 496 const struct ftrace_profile *b = p2; 497 498 if (a->time < b->time) 499 return -1; 500 if (a->time > b->time) 501 return 1; 502 else 503 return 0; 504 } 505 #else 506 /* not function graph compares against hits */ 507 static int function_stat_cmp(const void *p1, const void *p2) 508 { 509 const struct ftrace_profile *a = p1; 510 const struct ftrace_profile *b = p2; 511 512 if (a->counter < b->counter) 513 return -1; 514 if (a->counter > b->counter) 515 return 1; 516 else 517 return 0; 518 } 519 #endif 520 521 static int function_stat_headers(struct seq_file *m) 522 { 523 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 524 seq_puts(m, " Function " 525 "Hit Time Avg s^2\n" 526 " -------- " 527 "--- ---- --- ---\n"); 528 #else 529 seq_puts(m, " Function Hit\n" 530 " -------- ---\n"); 531 #endif 532 return 0; 533 } 534 535 static int function_stat_show(struct seq_file *m, void *v) 536 { 537 struct ftrace_profile *rec = v; 538 char str[KSYM_SYMBOL_LEN]; 539 int ret = 0; 540 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 541 static struct trace_seq s; 542 unsigned long long avg; 543 unsigned long long stddev; 544 #endif 545 mutex_lock(&ftrace_profile_lock); 546 547 /* we raced with function_profile_reset() */ 548 if (unlikely(rec->counter == 0)) { 549 ret = -EBUSY; 550 goto out; 551 } 552 553 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 554 avg = div64_ul(rec->time, rec->counter); 555 if (tracing_thresh && (avg < tracing_thresh)) 556 goto out; 557 #endif 558 559 kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); 560 seq_printf(m, " %-30.30s %10lu", str, rec->counter); 561 562 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 563 seq_puts(m, " "); 564 565 /* Sample standard deviation (s^2) */ 566 if (rec->counter <= 1) 567 stddev = 0; 568 else { 569 /* 570 * Apply Welford's method: 571 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2) 572 */ 573 stddev = rec->counter * rec->time_squared - 574 rec->time * rec->time; 575 576 /* 577 * Divide only 1000 for ns^2 -> us^2 conversion. 578 * trace_print_graph_duration will divide 1000 again. 579 */ 580 stddev = div64_ul(stddev, 581 rec->counter * (rec->counter - 1) * 1000); 582 } 583 584 trace_seq_init(&s); 585 trace_print_graph_duration(rec->time, &s); 586 trace_seq_puts(&s, " "); 587 trace_print_graph_duration(avg, &s); 588 trace_seq_puts(&s, " "); 589 trace_print_graph_duration(stddev, &s); 590 trace_print_seq(m, &s); 591 #endif 592 seq_putc(m, '\n'); 593 out: 594 mutex_unlock(&ftrace_profile_lock); 595 596 return ret; 597 } 598 599 static void ftrace_profile_reset(struct ftrace_profile_stat *stat) 600 { 601 struct ftrace_profile_page *pg; 602 603 pg = stat->pages = stat->start; 604 605 while (pg) { 606 memset(pg->records, 0, PROFILE_RECORDS_SIZE); 607 pg->index = 0; 608 pg = pg->next; 609 } 610 611 memset(stat->hash, 0, 612 FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head)); 613 } 614 615 static int ftrace_profile_pages_init(struct ftrace_profile_stat *stat) 616 { 617 struct ftrace_profile_page *pg; 618 int functions; 619 int pages; 620 int i; 621 622 /* If we already allocated, do nothing */ 623 if (stat->pages) 624 return 0; 625 626 stat->pages = (void *)get_zeroed_page(GFP_KERNEL); 627 if (!stat->pages) 628 return -ENOMEM; 629 630 #ifdef CONFIG_DYNAMIC_FTRACE 631 functions = ftrace_update_tot_cnt; 632 #else 633 /* 634 * We do not know the number of functions that exist because 635 * dynamic tracing is what counts them. With past experience 636 * we have around 20K functions. That should be more than enough. 637 * It is highly unlikely we will execute every function in 638 * the kernel. 639 */ 640 functions = 20000; 641 #endif 642 643 pg = stat->start = stat->pages; 644 645 pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE); 646 647 for (i = 1; i < pages; i++) { 648 pg->next = (void *)get_zeroed_page(GFP_KERNEL); 649 if (!pg->next) 650 goto out_free; 651 pg = pg->next; 652 } 653 654 return 0; 655 656 out_free: 657 pg = stat->start; 658 while (pg) { 659 unsigned long tmp = (unsigned long)pg; 660 661 pg = pg->next; 662 free_page(tmp); 663 } 664 665 stat->pages = NULL; 666 stat->start = NULL; 667 668 return -ENOMEM; 669 } 670 671 static int ftrace_profile_init_cpu(int cpu) 672 { 673 struct ftrace_profile_stat *stat; 674 int size; 675 676 stat = &per_cpu(ftrace_profile_stats, cpu); 677 678 if (stat->hash) { 679 /* If the profile is already created, simply reset it */ 680 ftrace_profile_reset(stat); 681 return 0; 682 } 683 684 /* 685 * We are profiling all functions, but usually only a few thousand 686 * functions are hit. We'll make a hash of 1024 items. 687 */ 688 size = FTRACE_PROFILE_HASH_SIZE; 689 690 stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL); 691 692 if (!stat->hash) 693 return -ENOMEM; 694 695 /* Preallocate the function profiling pages */ 696 if (ftrace_profile_pages_init(stat) < 0) { 697 kfree(stat->hash); 698 stat->hash = NULL; 699 return -ENOMEM; 700 } 701 702 return 0; 703 } 704 705 static int ftrace_profile_init(void) 706 { 707 int cpu; 708 int ret = 0; 709 710 for_each_possible_cpu(cpu) { 711 ret = ftrace_profile_init_cpu(cpu); 712 if (ret) 713 break; 714 } 715 716 return ret; 717 } 718 719 /* interrupts must be disabled */ 720 static struct ftrace_profile * 721 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip) 722 { 723 struct ftrace_profile *rec; 724 struct hlist_head *hhd; 725 unsigned long key; 726 727 key = hash_long(ip, FTRACE_PROFILE_HASH_BITS); 728 hhd = &stat->hash[key]; 729 730 if (hlist_empty(hhd)) 731 return NULL; 732 733 hlist_for_each_entry_rcu_notrace(rec, hhd, node) { 734 if (rec->ip == ip) 735 return rec; 736 } 737 738 return NULL; 739 } 740 741 static void ftrace_add_profile(struct ftrace_profile_stat *stat, 742 struct ftrace_profile *rec) 743 { 744 unsigned long key; 745 746 key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS); 747 hlist_add_head_rcu(&rec->node, &stat->hash[key]); 748 } 749 750 /* 751 * The memory is already allocated, this simply finds a new record to use. 752 */ 753 static struct ftrace_profile * 754 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip) 755 { 756 struct ftrace_profile *rec = NULL; 757 758 /* prevent recursion (from NMIs) */ 759 if (atomic_inc_return(&stat->disabled) != 1) 760 goto out; 761 762 /* 763 * Try to find the function again since an NMI 764 * could have added it 765 */ 766 rec = ftrace_find_profiled_func(stat, ip); 767 if (rec) 768 goto out; 769 770 if (stat->pages->index == PROFILES_PER_PAGE) { 771 if (!stat->pages->next) 772 goto out; 773 stat->pages = stat->pages->next; 774 } 775 776 rec = &stat->pages->records[stat->pages->index++]; 777 rec->ip = ip; 778 ftrace_add_profile(stat, rec); 779 780 out: 781 atomic_dec(&stat->disabled); 782 783 return rec; 784 } 785 786 static void 787 function_profile_call(unsigned long ip, unsigned long parent_ip, 788 struct ftrace_ops *ops, struct ftrace_regs *fregs) 789 { 790 struct ftrace_profile_stat *stat; 791 struct ftrace_profile *rec; 792 unsigned long flags; 793 794 if (!ftrace_profile_enabled) 795 return; 796 797 local_irq_save(flags); 798 799 stat = this_cpu_ptr(&ftrace_profile_stats); 800 if (!stat->hash || !ftrace_profile_enabled) 801 goto out; 802 803 rec = ftrace_find_profiled_func(stat, ip); 804 if (!rec) { 805 rec = ftrace_profile_alloc(stat, ip); 806 if (!rec) 807 goto out; 808 } 809 810 rec->counter++; 811 out: 812 local_irq_restore(flags); 813 } 814 815 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 816 static bool fgraph_graph_time = true; 817 818 void ftrace_graph_graph_time_control(bool enable) 819 { 820 fgraph_graph_time = enable; 821 } 822 823 static int profile_graph_entry(struct ftrace_graph_ent *trace, 824 struct fgraph_ops *gops) 825 { 826 struct ftrace_ret_stack *ret_stack; 827 828 function_profile_call(trace->func, 0, NULL, NULL); 829 830 /* If function graph is shutting down, ret_stack can be NULL */ 831 if (!current->ret_stack) 832 return 0; 833 834 ret_stack = ftrace_graph_get_ret_stack(current, 0); 835 if (ret_stack) 836 ret_stack->subtime = 0; 837 838 return 1; 839 } 840 841 static void profile_graph_return(struct ftrace_graph_ret *trace, 842 struct fgraph_ops *gops) 843 { 844 struct ftrace_ret_stack *ret_stack; 845 struct ftrace_profile_stat *stat; 846 unsigned long long calltime; 847 struct ftrace_profile *rec; 848 unsigned long flags; 849 850 local_irq_save(flags); 851 stat = this_cpu_ptr(&ftrace_profile_stats); 852 if (!stat->hash || !ftrace_profile_enabled) 853 goto out; 854 855 /* If the calltime was zero'd ignore it */ 856 if (!trace->calltime) 857 goto out; 858 859 calltime = trace->rettime - trace->calltime; 860 861 if (!fgraph_graph_time) { 862 863 /* Append this call time to the parent time to subtract */ 864 ret_stack = ftrace_graph_get_ret_stack(current, 1); 865 if (ret_stack) 866 ret_stack->subtime += calltime; 867 868 ret_stack = ftrace_graph_get_ret_stack(current, 0); 869 if (ret_stack && ret_stack->subtime < calltime) 870 calltime -= ret_stack->subtime; 871 else 872 calltime = 0; 873 } 874 875 rec = ftrace_find_profiled_func(stat, trace->func); 876 if (rec) { 877 rec->time += calltime; 878 rec->time_squared += calltime * calltime; 879 } 880 881 out: 882 local_irq_restore(flags); 883 } 884 885 static struct fgraph_ops fprofiler_ops = { 886 .entryfunc = &profile_graph_entry, 887 .retfunc = &profile_graph_return, 888 }; 889 890 static int register_ftrace_profiler(void) 891 { 892 return register_ftrace_graph(&fprofiler_ops); 893 } 894 895 static void unregister_ftrace_profiler(void) 896 { 897 unregister_ftrace_graph(&fprofiler_ops); 898 } 899 #else 900 static struct ftrace_ops ftrace_profile_ops __read_mostly = { 901 .func = function_profile_call, 902 .flags = FTRACE_OPS_FL_INITIALIZED, 903 INIT_OPS_HASH(ftrace_profile_ops) 904 }; 905 906 static int register_ftrace_profiler(void) 907 { 908 return register_ftrace_function(&ftrace_profile_ops); 909 } 910 911 static void unregister_ftrace_profiler(void) 912 { 913 unregister_ftrace_function(&ftrace_profile_ops); 914 } 915 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 916 917 static ssize_t 918 ftrace_profile_write(struct file *filp, const char __user *ubuf, 919 size_t cnt, loff_t *ppos) 920 { 921 unsigned long val; 922 int ret; 923 924 ret = kstrtoul_from_user(ubuf, cnt, 10, &val); 925 if (ret) 926 return ret; 927 928 val = !!val; 929 930 mutex_lock(&ftrace_profile_lock); 931 if (ftrace_profile_enabled ^ val) { 932 if (val) { 933 ret = ftrace_profile_init(); 934 if (ret < 0) { 935 cnt = ret; 936 goto out; 937 } 938 939 ret = register_ftrace_profiler(); 940 if (ret < 0) { 941 cnt = ret; 942 goto out; 943 } 944 ftrace_profile_enabled = 1; 945 } else { 946 ftrace_profile_enabled = 0; 947 /* 948 * unregister_ftrace_profiler calls stop_machine 949 * so this acts like an synchronize_rcu. 950 */ 951 unregister_ftrace_profiler(); 952 } 953 } 954 out: 955 mutex_unlock(&ftrace_profile_lock); 956 957 *ppos += cnt; 958 959 return cnt; 960 } 961 962 static ssize_t 963 ftrace_profile_read(struct file *filp, char __user *ubuf, 964 size_t cnt, loff_t *ppos) 965 { 966 char buf[64]; /* big enough to hold a number */ 967 int r; 968 969 r = sprintf(buf, "%u\n", ftrace_profile_enabled); 970 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 971 } 972 973 static const struct file_operations ftrace_profile_fops = { 974 .open = tracing_open_generic, 975 .read = ftrace_profile_read, 976 .write = ftrace_profile_write, 977 .llseek = default_llseek, 978 }; 979 980 /* used to initialize the real stat files */ 981 static struct tracer_stat function_stats __initdata = { 982 .name = "functions", 983 .stat_start = function_stat_start, 984 .stat_next = function_stat_next, 985 .stat_cmp = function_stat_cmp, 986 .stat_headers = function_stat_headers, 987 .stat_show = function_stat_show 988 }; 989 990 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 991 { 992 struct ftrace_profile_stat *stat; 993 char *name; 994 int ret; 995 int cpu; 996 997 for_each_possible_cpu(cpu) { 998 stat = &per_cpu(ftrace_profile_stats, cpu); 999 1000 name = kasprintf(GFP_KERNEL, "function%d", cpu); 1001 if (!name) { 1002 /* 1003 * The files created are permanent, if something happens 1004 * we still do not free memory. 1005 */ 1006 WARN(1, 1007 "Could not allocate stat file for cpu %d\n", 1008 cpu); 1009 return; 1010 } 1011 stat->stat = function_stats; 1012 stat->stat.name = name; 1013 ret = register_stat_tracer(&stat->stat); 1014 if (ret) { 1015 WARN(1, 1016 "Could not register function stat for cpu %d\n", 1017 cpu); 1018 kfree(name); 1019 return; 1020 } 1021 } 1022 1023 trace_create_file("function_profile_enabled", 1024 TRACE_MODE_WRITE, d_tracer, NULL, 1025 &ftrace_profile_fops); 1026 } 1027 1028 #else /* CONFIG_FUNCTION_PROFILER */ 1029 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 1030 { 1031 } 1032 #endif /* CONFIG_FUNCTION_PROFILER */ 1033 1034 #ifdef CONFIG_DYNAMIC_FTRACE 1035 1036 static struct ftrace_ops *removed_ops; 1037 1038 /* 1039 * Set when doing a global update, like enabling all recs or disabling them. 1040 * It is not set when just updating a single ftrace_ops. 1041 */ 1042 static bool update_all_ops; 1043 1044 #ifndef CONFIG_FTRACE_MCOUNT_RECORD 1045 # error Dynamic ftrace depends on MCOUNT_RECORD 1046 #endif 1047 1048 struct ftrace_func_probe { 1049 struct ftrace_probe_ops *probe_ops; 1050 struct ftrace_ops ops; 1051 struct trace_array *tr; 1052 struct list_head list; 1053 void *data; 1054 int ref; 1055 }; 1056 1057 /* 1058 * We make these constant because no one should touch them, 1059 * but they are used as the default "empty hash", to avoid allocating 1060 * it all the time. These are in a read only section such that if 1061 * anyone does try to modify it, it will cause an exception. 1062 */ 1063 static const struct hlist_head empty_buckets[1]; 1064 static const struct ftrace_hash empty_hash = { 1065 .buckets = (struct hlist_head *)empty_buckets, 1066 }; 1067 #define EMPTY_HASH ((struct ftrace_hash *)&empty_hash) 1068 1069 struct ftrace_ops global_ops = { 1070 .func = ftrace_stub, 1071 .local_hash.notrace_hash = EMPTY_HASH, 1072 .local_hash.filter_hash = EMPTY_HASH, 1073 INIT_OPS_HASH(global_ops) 1074 .flags = FTRACE_OPS_FL_INITIALIZED | 1075 FTRACE_OPS_FL_PID, 1076 }; 1077 1078 /* 1079 * Used by the stack unwinder to know about dynamic ftrace trampolines. 1080 */ 1081 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr) 1082 { 1083 struct ftrace_ops *op = NULL; 1084 1085 /* 1086 * Some of the ops may be dynamically allocated, 1087 * they are freed after a synchronize_rcu(). 1088 */ 1089 preempt_disable_notrace(); 1090 1091 do_for_each_ftrace_op(op, ftrace_ops_list) { 1092 /* 1093 * This is to check for dynamically allocated trampolines. 1094 * Trampolines that are in kernel text will have 1095 * core_kernel_text() return true. 1096 */ 1097 if (op->trampoline && op->trampoline_size) 1098 if (addr >= op->trampoline && 1099 addr < op->trampoline + op->trampoline_size) { 1100 preempt_enable_notrace(); 1101 return op; 1102 } 1103 } while_for_each_ftrace_op(op); 1104 preempt_enable_notrace(); 1105 1106 return NULL; 1107 } 1108 1109 /* 1110 * This is used by __kernel_text_address() to return true if the 1111 * address is on a dynamically allocated trampoline that would 1112 * not return true for either core_kernel_text() or 1113 * is_module_text_address(). 1114 */ 1115 bool is_ftrace_trampoline(unsigned long addr) 1116 { 1117 return ftrace_ops_trampoline(addr) != NULL; 1118 } 1119 1120 struct ftrace_page { 1121 struct ftrace_page *next; 1122 struct dyn_ftrace *records; 1123 int index; 1124 int order; 1125 }; 1126 1127 #define ENTRY_SIZE sizeof(struct dyn_ftrace) 1128 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE) 1129 1130 static struct ftrace_page *ftrace_pages_start; 1131 static struct ftrace_page *ftrace_pages; 1132 1133 static __always_inline unsigned long 1134 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip) 1135 { 1136 if (hash->size_bits > 0) 1137 return hash_long(ip, hash->size_bits); 1138 1139 return 0; 1140 } 1141 1142 /* Only use this function if ftrace_hash_empty() has already been tested */ 1143 static __always_inline struct ftrace_func_entry * 1144 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1145 { 1146 unsigned long key; 1147 struct ftrace_func_entry *entry; 1148 struct hlist_head *hhd; 1149 1150 key = ftrace_hash_key(hash, ip); 1151 hhd = &hash->buckets[key]; 1152 1153 hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) { 1154 if (entry->ip == ip) 1155 return entry; 1156 } 1157 return NULL; 1158 } 1159 1160 /** 1161 * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash 1162 * @hash: The hash to look at 1163 * @ip: The instruction pointer to test 1164 * 1165 * Search a given @hash to see if a given instruction pointer (@ip) 1166 * exists in it. 1167 * 1168 * Returns: the entry that holds the @ip if found. NULL otherwise. 1169 */ 1170 struct ftrace_func_entry * 1171 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1172 { 1173 if (ftrace_hash_empty(hash)) 1174 return NULL; 1175 1176 return __ftrace_lookup_ip(hash, ip); 1177 } 1178 1179 static void __add_hash_entry(struct ftrace_hash *hash, 1180 struct ftrace_func_entry *entry) 1181 { 1182 struct hlist_head *hhd; 1183 unsigned long key; 1184 1185 key = ftrace_hash_key(hash, entry->ip); 1186 hhd = &hash->buckets[key]; 1187 hlist_add_head(&entry->hlist, hhd); 1188 hash->count++; 1189 } 1190 1191 static struct ftrace_func_entry * 1192 add_hash_entry(struct ftrace_hash *hash, unsigned long ip) 1193 { 1194 struct ftrace_func_entry *entry; 1195 1196 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 1197 if (!entry) 1198 return NULL; 1199 1200 entry->ip = ip; 1201 __add_hash_entry(hash, entry); 1202 1203 return entry; 1204 } 1205 1206 static void 1207 free_hash_entry(struct ftrace_hash *hash, 1208 struct ftrace_func_entry *entry) 1209 { 1210 hlist_del(&entry->hlist); 1211 kfree(entry); 1212 hash->count--; 1213 } 1214 1215 static void 1216 remove_hash_entry(struct ftrace_hash *hash, 1217 struct ftrace_func_entry *entry) 1218 { 1219 hlist_del_rcu(&entry->hlist); 1220 hash->count--; 1221 } 1222 1223 static void ftrace_hash_clear(struct ftrace_hash *hash) 1224 { 1225 struct hlist_head *hhd; 1226 struct hlist_node *tn; 1227 struct ftrace_func_entry *entry; 1228 int size = 1 << hash->size_bits; 1229 int i; 1230 1231 if (!hash->count) 1232 return; 1233 1234 for (i = 0; i < size; i++) { 1235 hhd = &hash->buckets[i]; 1236 hlist_for_each_entry_safe(entry, tn, hhd, hlist) 1237 free_hash_entry(hash, entry); 1238 } 1239 FTRACE_WARN_ON(hash->count); 1240 } 1241 1242 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod) 1243 { 1244 list_del(&ftrace_mod->list); 1245 kfree(ftrace_mod->module); 1246 kfree(ftrace_mod->func); 1247 kfree(ftrace_mod); 1248 } 1249 1250 static void clear_ftrace_mod_list(struct list_head *head) 1251 { 1252 struct ftrace_mod_load *p, *n; 1253 1254 /* stack tracer isn't supported yet */ 1255 if (!head) 1256 return; 1257 1258 mutex_lock(&ftrace_lock); 1259 list_for_each_entry_safe(p, n, head, list) 1260 free_ftrace_mod(p); 1261 mutex_unlock(&ftrace_lock); 1262 } 1263 1264 static void free_ftrace_hash(struct ftrace_hash *hash) 1265 { 1266 if (!hash || hash == EMPTY_HASH) 1267 return; 1268 ftrace_hash_clear(hash); 1269 kfree(hash->buckets); 1270 kfree(hash); 1271 } 1272 1273 static void __free_ftrace_hash_rcu(struct rcu_head *rcu) 1274 { 1275 struct ftrace_hash *hash; 1276 1277 hash = container_of(rcu, struct ftrace_hash, rcu); 1278 free_ftrace_hash(hash); 1279 } 1280 1281 static void free_ftrace_hash_rcu(struct ftrace_hash *hash) 1282 { 1283 if (!hash || hash == EMPTY_HASH) 1284 return; 1285 call_rcu(&hash->rcu, __free_ftrace_hash_rcu); 1286 } 1287 1288 /** 1289 * ftrace_free_filter - remove all filters for an ftrace_ops 1290 * @ops: the ops to remove the filters from 1291 */ 1292 void ftrace_free_filter(struct ftrace_ops *ops) 1293 { 1294 ftrace_ops_init(ops); 1295 free_ftrace_hash(ops->func_hash->filter_hash); 1296 free_ftrace_hash(ops->func_hash->notrace_hash); 1297 } 1298 EXPORT_SYMBOL_GPL(ftrace_free_filter); 1299 1300 static struct ftrace_hash *alloc_ftrace_hash(int size_bits) 1301 { 1302 struct ftrace_hash *hash; 1303 int size; 1304 1305 hash = kzalloc(sizeof(*hash), GFP_KERNEL); 1306 if (!hash) 1307 return NULL; 1308 1309 size = 1 << size_bits; 1310 hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL); 1311 1312 if (!hash->buckets) { 1313 kfree(hash); 1314 return NULL; 1315 } 1316 1317 hash->size_bits = size_bits; 1318 1319 return hash; 1320 } 1321 1322 /* Used to save filters on functions for modules not loaded yet */ 1323 static int ftrace_add_mod(struct trace_array *tr, 1324 const char *func, const char *module, 1325 int enable) 1326 { 1327 struct ftrace_mod_load *ftrace_mod; 1328 struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace; 1329 1330 ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL); 1331 if (!ftrace_mod) 1332 return -ENOMEM; 1333 1334 INIT_LIST_HEAD(&ftrace_mod->list); 1335 ftrace_mod->func = kstrdup(func, GFP_KERNEL); 1336 ftrace_mod->module = kstrdup(module, GFP_KERNEL); 1337 ftrace_mod->enable = enable; 1338 1339 if (!ftrace_mod->func || !ftrace_mod->module) 1340 goto out_free; 1341 1342 list_add(&ftrace_mod->list, mod_head); 1343 1344 return 0; 1345 1346 out_free: 1347 free_ftrace_mod(ftrace_mod); 1348 1349 return -ENOMEM; 1350 } 1351 1352 static struct ftrace_hash * 1353 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash) 1354 { 1355 struct ftrace_func_entry *entry; 1356 struct ftrace_hash *new_hash; 1357 int size; 1358 int i; 1359 1360 new_hash = alloc_ftrace_hash(size_bits); 1361 if (!new_hash) 1362 return NULL; 1363 1364 if (hash) 1365 new_hash->flags = hash->flags; 1366 1367 /* Empty hash? */ 1368 if (ftrace_hash_empty(hash)) 1369 return new_hash; 1370 1371 size = 1 << hash->size_bits; 1372 for (i = 0; i < size; i++) { 1373 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 1374 if (add_hash_entry(new_hash, entry->ip) == NULL) 1375 goto free_hash; 1376 } 1377 } 1378 1379 FTRACE_WARN_ON(new_hash->count != hash->count); 1380 1381 return new_hash; 1382 1383 free_hash: 1384 free_ftrace_hash(new_hash); 1385 return NULL; 1386 } 1387 1388 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops); 1389 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops); 1390 1391 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1392 struct ftrace_hash *new_hash); 1393 1394 /* 1395 * Allocate a new hash and remove entries from @src and move them to the new hash. 1396 * On success, the @src hash will be empty and should be freed. 1397 */ 1398 static struct ftrace_hash *__move_hash(struct ftrace_hash *src, int size) 1399 { 1400 struct ftrace_func_entry *entry; 1401 struct ftrace_hash *new_hash; 1402 struct hlist_head *hhd; 1403 struct hlist_node *tn; 1404 int bits = 0; 1405 int i; 1406 1407 /* 1408 * Use around half the size (max bit of it), but 1409 * a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits). 1410 */ 1411 bits = fls(size / 2); 1412 1413 /* Don't allocate too much */ 1414 if (bits > FTRACE_HASH_MAX_BITS) 1415 bits = FTRACE_HASH_MAX_BITS; 1416 1417 new_hash = alloc_ftrace_hash(bits); 1418 if (!new_hash) 1419 return NULL; 1420 1421 new_hash->flags = src->flags; 1422 1423 size = 1 << src->size_bits; 1424 for (i = 0; i < size; i++) { 1425 hhd = &src->buckets[i]; 1426 hlist_for_each_entry_safe(entry, tn, hhd, hlist) { 1427 remove_hash_entry(src, entry); 1428 __add_hash_entry(new_hash, entry); 1429 } 1430 } 1431 return new_hash; 1432 } 1433 1434 /* Move the @src entries to a newly allocated hash */ 1435 static struct ftrace_hash * 1436 __ftrace_hash_move(struct ftrace_hash *src) 1437 { 1438 int size = src->count; 1439 1440 /* 1441 * If the new source is empty, just return the empty_hash. 1442 */ 1443 if (ftrace_hash_empty(src)) 1444 return EMPTY_HASH; 1445 1446 return __move_hash(src, size); 1447 } 1448 1449 /** 1450 * ftrace_hash_move - move a new hash to a filter and do updates 1451 * @ops: The ops with the hash that @dst points to 1452 * @enable: True if for the filter hash, false for the notrace hash 1453 * @dst: Points to the @ops hash that should be updated 1454 * @src: The hash to update @dst with 1455 * 1456 * This is called when an ftrace_ops hash is being updated and the 1457 * the kernel needs to reflect this. Note, this only updates the kernel 1458 * function callbacks if the @ops is enabled (not to be confused with 1459 * @enable above). If the @ops is enabled, its hash determines what 1460 * callbacks get called. This function gets called when the @ops hash 1461 * is updated and it requires new callbacks. 1462 * 1463 * On success the elements of @src is moved to @dst, and @dst is updated 1464 * properly, as well as the functions determined by the @ops hashes 1465 * are now calling the @ops callback function. 1466 * 1467 * Regardless of return type, @src should be freed with free_ftrace_hash(). 1468 */ 1469 static int 1470 ftrace_hash_move(struct ftrace_ops *ops, int enable, 1471 struct ftrace_hash **dst, struct ftrace_hash *src) 1472 { 1473 struct ftrace_hash *new_hash; 1474 int ret; 1475 1476 /* Reject setting notrace hash on IPMODIFY ftrace_ops */ 1477 if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable) 1478 return -EINVAL; 1479 1480 new_hash = __ftrace_hash_move(src); 1481 if (!new_hash) 1482 return -ENOMEM; 1483 1484 /* Make sure this can be applied if it is IPMODIFY ftrace_ops */ 1485 if (enable) { 1486 /* IPMODIFY should be updated only when filter_hash updating */ 1487 ret = ftrace_hash_ipmodify_update(ops, new_hash); 1488 if (ret < 0) { 1489 free_ftrace_hash(new_hash); 1490 return ret; 1491 } 1492 } 1493 1494 /* 1495 * Remove the current set, update the hash and add 1496 * them back. 1497 */ 1498 ftrace_hash_rec_disable_modify(ops); 1499 1500 rcu_assign_pointer(*dst, new_hash); 1501 1502 ftrace_hash_rec_enable_modify(ops); 1503 1504 return 0; 1505 } 1506 1507 static bool hash_contains_ip(unsigned long ip, 1508 struct ftrace_ops_hash *hash) 1509 { 1510 /* 1511 * The function record is a match if it exists in the filter 1512 * hash and not in the notrace hash. Note, an empty hash is 1513 * considered a match for the filter hash, but an empty 1514 * notrace hash is considered not in the notrace hash. 1515 */ 1516 return (ftrace_hash_empty(hash->filter_hash) || 1517 __ftrace_lookup_ip(hash->filter_hash, ip)) && 1518 (ftrace_hash_empty(hash->notrace_hash) || 1519 !__ftrace_lookup_ip(hash->notrace_hash, ip)); 1520 } 1521 1522 /* 1523 * Test the hashes for this ops to see if we want to call 1524 * the ops->func or not. 1525 * 1526 * It's a match if the ip is in the ops->filter_hash or 1527 * the filter_hash does not exist or is empty, 1528 * AND 1529 * the ip is not in the ops->notrace_hash. 1530 * 1531 * This needs to be called with preemption disabled as 1532 * the hashes are freed with call_rcu(). 1533 */ 1534 int 1535 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs) 1536 { 1537 struct ftrace_ops_hash hash; 1538 int ret; 1539 1540 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS 1541 /* 1542 * There's a small race when adding ops that the ftrace handler 1543 * that wants regs, may be called without them. We can not 1544 * allow that handler to be called if regs is NULL. 1545 */ 1546 if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS)) 1547 return 0; 1548 #endif 1549 1550 rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash); 1551 rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash); 1552 1553 if (hash_contains_ip(ip, &hash)) 1554 ret = 1; 1555 else 1556 ret = 0; 1557 1558 return ret; 1559 } 1560 1561 /* 1562 * This is a double for. Do not use 'break' to break out of the loop, 1563 * you must use a goto. 1564 */ 1565 #define do_for_each_ftrace_rec(pg, rec) \ 1566 for (pg = ftrace_pages_start; pg; pg = pg->next) { \ 1567 int _____i; \ 1568 for (_____i = 0; _____i < pg->index; _____i++) { \ 1569 rec = &pg->records[_____i]; 1570 1571 #define while_for_each_ftrace_rec() \ 1572 } \ 1573 } 1574 1575 1576 static int ftrace_cmp_recs(const void *a, const void *b) 1577 { 1578 const struct dyn_ftrace *key = a; 1579 const struct dyn_ftrace *rec = b; 1580 1581 if (key->flags < rec->ip) 1582 return -1; 1583 if (key->ip >= rec->ip + MCOUNT_INSN_SIZE) 1584 return 1; 1585 return 0; 1586 } 1587 1588 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end) 1589 { 1590 struct ftrace_page *pg; 1591 struct dyn_ftrace *rec = NULL; 1592 struct dyn_ftrace key; 1593 1594 key.ip = start; 1595 key.flags = end; /* overload flags, as it is unsigned long */ 1596 1597 for (pg = ftrace_pages_start; pg; pg = pg->next) { 1598 if (pg->index == 0 || 1599 end < pg->records[0].ip || 1600 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 1601 continue; 1602 rec = bsearch(&key, pg->records, pg->index, 1603 sizeof(struct dyn_ftrace), 1604 ftrace_cmp_recs); 1605 if (rec) 1606 break; 1607 } 1608 return rec; 1609 } 1610 1611 /** 1612 * ftrace_location_range - return the first address of a traced location 1613 * if it touches the given ip range 1614 * @start: start of range to search. 1615 * @end: end of range to search (inclusive). @end points to the last byte 1616 * to check. 1617 * 1618 * Returns: rec->ip if the related ftrace location is a least partly within 1619 * the given address range. That is, the first address of the instruction 1620 * that is either a NOP or call to the function tracer. It checks the ftrace 1621 * internal tables to determine if the address belongs or not. 1622 */ 1623 unsigned long ftrace_location_range(unsigned long start, unsigned long end) 1624 { 1625 struct dyn_ftrace *rec; 1626 unsigned long ip = 0; 1627 1628 rcu_read_lock(); 1629 rec = lookup_rec(start, end); 1630 if (rec) 1631 ip = rec->ip; 1632 rcu_read_unlock(); 1633 1634 return ip; 1635 } 1636 1637 /** 1638 * ftrace_location - return the ftrace location 1639 * @ip: the instruction pointer to check 1640 * 1641 * Returns: 1642 * * If @ip matches the ftrace location, return @ip. 1643 * * If @ip matches sym+0, return sym's ftrace location. 1644 * * Otherwise, return 0. 1645 */ 1646 unsigned long ftrace_location(unsigned long ip) 1647 { 1648 unsigned long loc; 1649 unsigned long offset; 1650 unsigned long size; 1651 1652 loc = ftrace_location_range(ip, ip); 1653 if (!loc) { 1654 if (!kallsyms_lookup_size_offset(ip, &size, &offset)) 1655 goto out; 1656 1657 /* map sym+0 to __fentry__ */ 1658 if (!offset) 1659 loc = ftrace_location_range(ip, ip + size - 1); 1660 } 1661 1662 out: 1663 return loc; 1664 } 1665 1666 /** 1667 * ftrace_text_reserved - return true if range contains an ftrace location 1668 * @start: start of range to search 1669 * @end: end of range to search (inclusive). @end points to the last byte to check. 1670 * 1671 * Returns: 1 if @start and @end contains a ftrace location. 1672 * That is, the instruction that is either a NOP or call to 1673 * the function tracer. It checks the ftrace internal tables to 1674 * determine if the address belongs or not. 1675 */ 1676 int ftrace_text_reserved(const void *start, const void *end) 1677 { 1678 unsigned long ret; 1679 1680 ret = ftrace_location_range((unsigned long)start, 1681 (unsigned long)end); 1682 1683 return (int)!!ret; 1684 } 1685 1686 /* Test if ops registered to this rec needs regs */ 1687 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec) 1688 { 1689 struct ftrace_ops *ops; 1690 bool keep_regs = false; 1691 1692 for (ops = ftrace_ops_list; 1693 ops != &ftrace_list_end; ops = ops->next) { 1694 /* pass rec in as regs to have non-NULL val */ 1695 if (ftrace_ops_test(ops, rec->ip, rec)) { 1696 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1697 keep_regs = true; 1698 break; 1699 } 1700 } 1701 } 1702 1703 return keep_regs; 1704 } 1705 1706 static struct ftrace_ops * 1707 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec); 1708 static struct ftrace_ops * 1709 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude); 1710 static struct ftrace_ops * 1711 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops); 1712 1713 static bool skip_record(struct dyn_ftrace *rec) 1714 { 1715 /* 1716 * At boot up, weak functions are set to disable. Function tracing 1717 * can be enabled before they are, and they still need to be disabled now. 1718 * If the record is disabled, still continue if it is marked as already 1719 * enabled (this is needed to keep the accounting working). 1720 */ 1721 return rec->flags & FTRACE_FL_DISABLED && 1722 !(rec->flags & FTRACE_FL_ENABLED); 1723 } 1724 1725 /* 1726 * This is the main engine to the ftrace updates to the dyn_ftrace records. 1727 * 1728 * It will iterate through all the available ftrace functions 1729 * (the ones that ftrace can have callbacks to) and set the flags 1730 * in the associated dyn_ftrace records. 1731 * 1732 * @inc: If true, the functions associated to @ops are added to 1733 * the dyn_ftrace records, otherwise they are removed. 1734 */ 1735 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops, 1736 bool inc) 1737 { 1738 struct ftrace_hash *hash; 1739 struct ftrace_hash *notrace_hash; 1740 struct ftrace_page *pg; 1741 struct dyn_ftrace *rec; 1742 bool update = false; 1743 int count = 0; 1744 int all = false; 1745 1746 /* Only update if the ops has been registered */ 1747 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1748 return false; 1749 1750 /* 1751 * If the count is zero, we update all records. 1752 * Otherwise we just update the items in the hash. 1753 */ 1754 hash = ops->func_hash->filter_hash; 1755 notrace_hash = ops->func_hash->notrace_hash; 1756 if (ftrace_hash_empty(hash)) 1757 all = true; 1758 1759 do_for_each_ftrace_rec(pg, rec) { 1760 int in_notrace_hash = 0; 1761 int in_hash = 0; 1762 int match = 0; 1763 1764 if (skip_record(rec)) 1765 continue; 1766 1767 if (all) { 1768 /* 1769 * Only the filter_hash affects all records. 1770 * Update if the record is not in the notrace hash. 1771 */ 1772 if (!notrace_hash || !ftrace_lookup_ip(notrace_hash, rec->ip)) 1773 match = 1; 1774 } else { 1775 in_hash = !!ftrace_lookup_ip(hash, rec->ip); 1776 in_notrace_hash = !!ftrace_lookup_ip(notrace_hash, rec->ip); 1777 1778 /* 1779 * We want to match all functions that are in the hash but 1780 * not in the other hash. 1781 */ 1782 if (in_hash && !in_notrace_hash) 1783 match = 1; 1784 } 1785 if (!match) 1786 continue; 1787 1788 if (inc) { 1789 rec->flags++; 1790 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX)) 1791 return false; 1792 1793 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1794 rec->flags |= FTRACE_FL_DIRECT; 1795 1796 /* 1797 * If there's only a single callback registered to a 1798 * function, and the ops has a trampoline registered 1799 * for it, then we can call it directly. 1800 */ 1801 if (ftrace_rec_count(rec) == 1 && ops->trampoline) 1802 rec->flags |= FTRACE_FL_TRAMP; 1803 else 1804 /* 1805 * If we are adding another function callback 1806 * to this function, and the previous had a 1807 * custom trampoline in use, then we need to go 1808 * back to the default trampoline. 1809 */ 1810 rec->flags &= ~FTRACE_FL_TRAMP; 1811 1812 /* 1813 * If any ops wants regs saved for this function 1814 * then all ops will get saved regs. 1815 */ 1816 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 1817 rec->flags |= FTRACE_FL_REGS; 1818 } else { 1819 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0)) 1820 return false; 1821 rec->flags--; 1822 1823 /* 1824 * Only the internal direct_ops should have the 1825 * DIRECT flag set. Thus, if it is removing a 1826 * function, then that function should no longer 1827 * be direct. 1828 */ 1829 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1830 rec->flags &= ~FTRACE_FL_DIRECT; 1831 1832 /* 1833 * If the rec had REGS enabled and the ops that is 1834 * being removed had REGS set, then see if there is 1835 * still any ops for this record that wants regs. 1836 * If not, we can stop recording them. 1837 */ 1838 if (ftrace_rec_count(rec) > 0 && 1839 rec->flags & FTRACE_FL_REGS && 1840 ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1841 if (!test_rec_ops_needs_regs(rec)) 1842 rec->flags &= ~FTRACE_FL_REGS; 1843 } 1844 1845 /* 1846 * The TRAMP needs to be set only if rec count 1847 * is decremented to one, and the ops that is 1848 * left has a trampoline. As TRAMP can only be 1849 * enabled if there is only a single ops attached 1850 * to it. 1851 */ 1852 if (ftrace_rec_count(rec) == 1 && 1853 ftrace_find_tramp_ops_any_other(rec, ops)) 1854 rec->flags |= FTRACE_FL_TRAMP; 1855 else 1856 rec->flags &= ~FTRACE_FL_TRAMP; 1857 1858 /* 1859 * flags will be cleared in ftrace_check_record() 1860 * if rec count is zero. 1861 */ 1862 } 1863 1864 /* 1865 * If the rec has a single associated ops, and ops->func can be 1866 * called directly, allow the call site to call via the ops. 1867 */ 1868 if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE_WITH_CALL_OPS) && 1869 ftrace_rec_count(rec) == 1 && 1870 ftrace_ops_get_func(ops) == ops->func) 1871 rec->flags |= FTRACE_FL_CALL_OPS; 1872 else 1873 rec->flags &= ~FTRACE_FL_CALL_OPS; 1874 1875 count++; 1876 1877 /* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */ 1878 update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE; 1879 1880 /* Shortcut, if we handled all records, we are done. */ 1881 if (!all && count == hash->count) 1882 return update; 1883 } while_for_each_ftrace_rec(); 1884 1885 return update; 1886 } 1887 1888 /* 1889 * This is called when an ops is removed from tracing. It will decrement 1890 * the counters of the dyn_ftrace records for all the functions that 1891 * the @ops attached to. 1892 */ 1893 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops) 1894 { 1895 return __ftrace_hash_rec_update(ops, false); 1896 } 1897 1898 /* 1899 * This is called when an ops is added to tracing. It will increment 1900 * the counters of the dyn_ftrace records for all the functions that 1901 * the @ops attached to. 1902 */ 1903 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops) 1904 { 1905 return __ftrace_hash_rec_update(ops, true); 1906 } 1907 1908 /* 1909 * This function will update what functions @ops traces when its filter 1910 * changes. 1911 * 1912 * The @inc states if the @ops callbacks are going to be added or removed. 1913 * When one of the @ops hashes are updated to a "new_hash" the dyn_ftrace 1914 * records are update via: 1915 * 1916 * ftrace_hash_rec_disable_modify(ops); 1917 * ops->hash = new_hash 1918 * ftrace_hash_rec_enable_modify(ops); 1919 * 1920 * Where the @ops is removed from all the records it is tracing using 1921 * its old hash. The @ops hash is updated to the new hash, and then 1922 * the @ops is added back to the records so that it is tracing all 1923 * the new functions. 1924 */ 1925 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops, bool inc) 1926 { 1927 struct ftrace_ops *op; 1928 1929 __ftrace_hash_rec_update(ops, inc); 1930 1931 if (ops->func_hash != &global_ops.local_hash) 1932 return; 1933 1934 /* 1935 * If the ops shares the global_ops hash, then we need to update 1936 * all ops that are enabled and use this hash. 1937 */ 1938 do_for_each_ftrace_op(op, ftrace_ops_list) { 1939 /* Already done */ 1940 if (op == ops) 1941 continue; 1942 if (op->func_hash == &global_ops.local_hash) 1943 __ftrace_hash_rec_update(op, inc); 1944 } while_for_each_ftrace_op(op); 1945 } 1946 1947 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops) 1948 { 1949 ftrace_hash_rec_update_modify(ops, false); 1950 } 1951 1952 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops) 1953 { 1954 ftrace_hash_rec_update_modify(ops, true); 1955 } 1956 1957 /* 1958 * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK 1959 * or no-needed to update, -EBUSY if it detects a conflict of the flag 1960 * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs. 1961 * Note that old_hash and new_hash has below meanings 1962 * - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected) 1963 * - If the hash is EMPTY_HASH, it hits nothing 1964 * - Anything else hits the recs which match the hash entries. 1965 * 1966 * DIRECT ops does not have IPMODIFY flag, but we still need to check it 1967 * against functions with FTRACE_FL_IPMODIFY. If there is any overlap, call 1968 * ops_func(SHARE_IPMODIFY_SELF) to make sure current ops can share with 1969 * IPMODIFY. If ops_func(SHARE_IPMODIFY_SELF) returns non-zero, propagate 1970 * the return value to the caller and eventually to the owner of the DIRECT 1971 * ops. 1972 */ 1973 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops, 1974 struct ftrace_hash *old_hash, 1975 struct ftrace_hash *new_hash) 1976 { 1977 struct ftrace_page *pg; 1978 struct dyn_ftrace *rec, *end = NULL; 1979 int in_old, in_new; 1980 bool is_ipmodify, is_direct; 1981 1982 /* Only update if the ops has been registered */ 1983 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1984 return 0; 1985 1986 is_ipmodify = ops->flags & FTRACE_OPS_FL_IPMODIFY; 1987 is_direct = ops->flags & FTRACE_OPS_FL_DIRECT; 1988 1989 /* neither IPMODIFY nor DIRECT, skip */ 1990 if (!is_ipmodify && !is_direct) 1991 return 0; 1992 1993 if (WARN_ON_ONCE(is_ipmodify && is_direct)) 1994 return 0; 1995 1996 /* 1997 * Since the IPMODIFY and DIRECT are very address sensitive 1998 * actions, we do not allow ftrace_ops to set all functions to new 1999 * hash. 2000 */ 2001 if (!new_hash || !old_hash) 2002 return -EINVAL; 2003 2004 /* Update rec->flags */ 2005 do_for_each_ftrace_rec(pg, rec) { 2006 2007 if (rec->flags & FTRACE_FL_DISABLED) 2008 continue; 2009 2010 /* We need to update only differences of filter_hash */ 2011 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 2012 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 2013 if (in_old == in_new) 2014 continue; 2015 2016 if (in_new) { 2017 if (rec->flags & FTRACE_FL_IPMODIFY) { 2018 int ret; 2019 2020 /* Cannot have two ipmodify on same rec */ 2021 if (is_ipmodify) 2022 goto rollback; 2023 2024 FTRACE_WARN_ON(rec->flags & FTRACE_FL_DIRECT); 2025 2026 /* 2027 * Another ops with IPMODIFY is already 2028 * attached. We are now attaching a direct 2029 * ops. Run SHARE_IPMODIFY_SELF, to check 2030 * whether sharing is supported. 2031 */ 2032 if (!ops->ops_func) 2033 return -EBUSY; 2034 ret = ops->ops_func(ops, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_SELF); 2035 if (ret) 2036 return ret; 2037 } else if (is_ipmodify) { 2038 rec->flags |= FTRACE_FL_IPMODIFY; 2039 } 2040 } else if (is_ipmodify) { 2041 rec->flags &= ~FTRACE_FL_IPMODIFY; 2042 } 2043 } while_for_each_ftrace_rec(); 2044 2045 return 0; 2046 2047 rollback: 2048 end = rec; 2049 2050 /* Roll back what we did above */ 2051 do_for_each_ftrace_rec(pg, rec) { 2052 2053 if (rec->flags & FTRACE_FL_DISABLED) 2054 continue; 2055 2056 if (rec == end) 2057 goto err_out; 2058 2059 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 2060 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 2061 if (in_old == in_new) 2062 continue; 2063 2064 if (in_new) 2065 rec->flags &= ~FTRACE_FL_IPMODIFY; 2066 else 2067 rec->flags |= FTRACE_FL_IPMODIFY; 2068 } while_for_each_ftrace_rec(); 2069 2070 err_out: 2071 return -EBUSY; 2072 } 2073 2074 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops) 2075 { 2076 struct ftrace_hash *hash = ops->func_hash->filter_hash; 2077 2078 if (ftrace_hash_empty(hash)) 2079 hash = NULL; 2080 2081 return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash); 2082 } 2083 2084 /* Disabling always succeeds */ 2085 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops) 2086 { 2087 struct ftrace_hash *hash = ops->func_hash->filter_hash; 2088 2089 if (ftrace_hash_empty(hash)) 2090 hash = NULL; 2091 2092 __ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH); 2093 } 2094 2095 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 2096 struct ftrace_hash *new_hash) 2097 { 2098 struct ftrace_hash *old_hash = ops->func_hash->filter_hash; 2099 2100 if (ftrace_hash_empty(old_hash)) 2101 old_hash = NULL; 2102 2103 if (ftrace_hash_empty(new_hash)) 2104 new_hash = NULL; 2105 2106 return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash); 2107 } 2108 2109 static void print_ip_ins(const char *fmt, const unsigned char *p) 2110 { 2111 char ins[MCOUNT_INSN_SIZE]; 2112 2113 if (copy_from_kernel_nofault(ins, p, MCOUNT_INSN_SIZE)) { 2114 printk(KERN_CONT "%s[FAULT] %px\n", fmt, p); 2115 return; 2116 } 2117 2118 printk(KERN_CONT "%s", fmt); 2119 pr_cont("%*phC", MCOUNT_INSN_SIZE, ins); 2120 } 2121 2122 enum ftrace_bug_type ftrace_bug_type; 2123 const void *ftrace_expected; 2124 2125 static void print_bug_type(void) 2126 { 2127 switch (ftrace_bug_type) { 2128 case FTRACE_BUG_UNKNOWN: 2129 break; 2130 case FTRACE_BUG_INIT: 2131 pr_info("Initializing ftrace call sites\n"); 2132 break; 2133 case FTRACE_BUG_NOP: 2134 pr_info("Setting ftrace call site to NOP\n"); 2135 break; 2136 case FTRACE_BUG_CALL: 2137 pr_info("Setting ftrace call site to call ftrace function\n"); 2138 break; 2139 case FTRACE_BUG_UPDATE: 2140 pr_info("Updating ftrace call site to call a different ftrace function\n"); 2141 break; 2142 } 2143 } 2144 2145 /** 2146 * ftrace_bug - report and shutdown function tracer 2147 * @failed: The failed type (EFAULT, EINVAL, EPERM) 2148 * @rec: The record that failed 2149 * 2150 * The arch code that enables or disables the function tracing 2151 * can call ftrace_bug() when it has detected a problem in 2152 * modifying the code. @failed should be one of either: 2153 * EFAULT - if the problem happens on reading the @ip address 2154 * EINVAL - if what is read at @ip is not what was expected 2155 * EPERM - if the problem happens on writing to the @ip address 2156 */ 2157 void ftrace_bug(int failed, struct dyn_ftrace *rec) 2158 { 2159 unsigned long ip = rec ? rec->ip : 0; 2160 2161 pr_info("------------[ ftrace bug ]------------\n"); 2162 2163 switch (failed) { 2164 case -EFAULT: 2165 pr_info("ftrace faulted on modifying "); 2166 print_ip_sym(KERN_INFO, ip); 2167 break; 2168 case -EINVAL: 2169 pr_info("ftrace failed to modify "); 2170 print_ip_sym(KERN_INFO, ip); 2171 print_ip_ins(" actual: ", (unsigned char *)ip); 2172 pr_cont("\n"); 2173 if (ftrace_expected) { 2174 print_ip_ins(" expected: ", ftrace_expected); 2175 pr_cont("\n"); 2176 } 2177 break; 2178 case -EPERM: 2179 pr_info("ftrace faulted on writing "); 2180 print_ip_sym(KERN_INFO, ip); 2181 break; 2182 default: 2183 pr_info("ftrace faulted on unknown error "); 2184 print_ip_sym(KERN_INFO, ip); 2185 } 2186 print_bug_type(); 2187 if (rec) { 2188 struct ftrace_ops *ops = NULL; 2189 2190 pr_info("ftrace record flags: %lx\n", rec->flags); 2191 pr_cont(" (%ld)%s%s", ftrace_rec_count(rec), 2192 rec->flags & FTRACE_FL_REGS ? " R" : " ", 2193 rec->flags & FTRACE_FL_CALL_OPS ? " O" : " "); 2194 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2195 ops = ftrace_find_tramp_ops_any(rec); 2196 if (ops) { 2197 do { 2198 pr_cont("\ttramp: %pS (%pS)", 2199 (void *)ops->trampoline, 2200 (void *)ops->func); 2201 ops = ftrace_find_tramp_ops_next(rec, ops); 2202 } while (ops); 2203 } else 2204 pr_cont("\ttramp: ERROR!"); 2205 2206 } 2207 ip = ftrace_get_addr_curr(rec); 2208 pr_cont("\n expected tramp: %lx\n", ip); 2209 } 2210 2211 FTRACE_WARN_ON_ONCE(1); 2212 } 2213 2214 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update) 2215 { 2216 unsigned long flag = 0UL; 2217 2218 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2219 2220 if (skip_record(rec)) 2221 return FTRACE_UPDATE_IGNORE; 2222 2223 /* 2224 * If we are updating calls: 2225 * 2226 * If the record has a ref count, then we need to enable it 2227 * because someone is using it. 2228 * 2229 * Otherwise we make sure its disabled. 2230 * 2231 * If we are disabling calls, then disable all records that 2232 * are enabled. 2233 */ 2234 if (enable && ftrace_rec_count(rec)) 2235 flag = FTRACE_FL_ENABLED; 2236 2237 /* 2238 * If enabling and the REGS flag does not match the REGS_EN, or 2239 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore 2240 * this record. Set flags to fail the compare against ENABLED. 2241 * Same for direct calls. 2242 */ 2243 if (flag) { 2244 if (!(rec->flags & FTRACE_FL_REGS) != 2245 !(rec->flags & FTRACE_FL_REGS_EN)) 2246 flag |= FTRACE_FL_REGS; 2247 2248 if (!(rec->flags & FTRACE_FL_TRAMP) != 2249 !(rec->flags & FTRACE_FL_TRAMP_EN)) 2250 flag |= FTRACE_FL_TRAMP; 2251 2252 /* 2253 * Direct calls are special, as count matters. 2254 * We must test the record for direct, if the 2255 * DIRECT and DIRECT_EN do not match, but only 2256 * if the count is 1. That's because, if the 2257 * count is something other than one, we do not 2258 * want the direct enabled (it will be done via the 2259 * direct helper). But if DIRECT_EN is set, and 2260 * the count is not one, we need to clear it. 2261 * 2262 */ 2263 if (ftrace_rec_count(rec) == 1) { 2264 if (!(rec->flags & FTRACE_FL_DIRECT) != 2265 !(rec->flags & FTRACE_FL_DIRECT_EN)) 2266 flag |= FTRACE_FL_DIRECT; 2267 } else if (rec->flags & FTRACE_FL_DIRECT_EN) { 2268 flag |= FTRACE_FL_DIRECT; 2269 } 2270 2271 /* 2272 * Ops calls are special, as count matters. 2273 * As with direct calls, they must only be enabled when count 2274 * is one, otherwise they'll be handled via the list ops. 2275 */ 2276 if (ftrace_rec_count(rec) == 1) { 2277 if (!(rec->flags & FTRACE_FL_CALL_OPS) != 2278 !(rec->flags & FTRACE_FL_CALL_OPS_EN)) 2279 flag |= FTRACE_FL_CALL_OPS; 2280 } else if (rec->flags & FTRACE_FL_CALL_OPS_EN) { 2281 flag |= FTRACE_FL_CALL_OPS; 2282 } 2283 } 2284 2285 /* If the state of this record hasn't changed, then do nothing */ 2286 if ((rec->flags & FTRACE_FL_ENABLED) == flag) 2287 return FTRACE_UPDATE_IGNORE; 2288 2289 if (flag) { 2290 /* Save off if rec is being enabled (for return value) */ 2291 flag ^= rec->flags & FTRACE_FL_ENABLED; 2292 2293 if (update) { 2294 rec->flags |= FTRACE_FL_ENABLED | FTRACE_FL_TOUCHED; 2295 if (flag & FTRACE_FL_REGS) { 2296 if (rec->flags & FTRACE_FL_REGS) 2297 rec->flags |= FTRACE_FL_REGS_EN; 2298 else 2299 rec->flags &= ~FTRACE_FL_REGS_EN; 2300 } 2301 if (flag & FTRACE_FL_TRAMP) { 2302 if (rec->flags & FTRACE_FL_TRAMP) 2303 rec->flags |= FTRACE_FL_TRAMP_EN; 2304 else 2305 rec->flags &= ~FTRACE_FL_TRAMP_EN; 2306 } 2307 2308 /* Keep track of anything that modifies the function */ 2309 if (rec->flags & (FTRACE_FL_DIRECT | FTRACE_FL_IPMODIFY)) 2310 rec->flags |= FTRACE_FL_MODIFIED; 2311 2312 if (flag & FTRACE_FL_DIRECT) { 2313 /* 2314 * If there's only one user (direct_ops helper) 2315 * then we can call the direct function 2316 * directly (no ftrace trampoline). 2317 */ 2318 if (ftrace_rec_count(rec) == 1) { 2319 if (rec->flags & FTRACE_FL_DIRECT) 2320 rec->flags |= FTRACE_FL_DIRECT_EN; 2321 else 2322 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2323 } else { 2324 /* 2325 * Can only call directly if there's 2326 * only one callback to the function. 2327 */ 2328 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2329 } 2330 } 2331 2332 if (flag & FTRACE_FL_CALL_OPS) { 2333 if (ftrace_rec_count(rec) == 1) { 2334 if (rec->flags & FTRACE_FL_CALL_OPS) 2335 rec->flags |= FTRACE_FL_CALL_OPS_EN; 2336 else 2337 rec->flags &= ~FTRACE_FL_CALL_OPS_EN; 2338 } else { 2339 /* 2340 * Can only call directly if there's 2341 * only one set of associated ops. 2342 */ 2343 rec->flags &= ~FTRACE_FL_CALL_OPS_EN; 2344 } 2345 } 2346 } 2347 2348 /* 2349 * If this record is being updated from a nop, then 2350 * return UPDATE_MAKE_CALL. 2351 * Otherwise, 2352 * return UPDATE_MODIFY_CALL to tell the caller to convert 2353 * from the save regs, to a non-save regs function or 2354 * vice versa, or from a trampoline call. 2355 */ 2356 if (flag & FTRACE_FL_ENABLED) { 2357 ftrace_bug_type = FTRACE_BUG_CALL; 2358 return FTRACE_UPDATE_MAKE_CALL; 2359 } 2360 2361 ftrace_bug_type = FTRACE_BUG_UPDATE; 2362 return FTRACE_UPDATE_MODIFY_CALL; 2363 } 2364 2365 if (update) { 2366 /* If there's no more users, clear all flags */ 2367 if (!ftrace_rec_count(rec)) 2368 rec->flags &= FTRACE_NOCLEAR_FLAGS; 2369 else 2370 /* 2371 * Just disable the record, but keep the ops TRAMP 2372 * and REGS states. The _EN flags must be disabled though. 2373 */ 2374 rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN | 2375 FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN | 2376 FTRACE_FL_CALL_OPS_EN); 2377 } 2378 2379 ftrace_bug_type = FTRACE_BUG_NOP; 2380 return FTRACE_UPDATE_MAKE_NOP; 2381 } 2382 2383 /** 2384 * ftrace_update_record - set a record that now is tracing or not 2385 * @rec: the record to update 2386 * @enable: set to true if the record is tracing, false to force disable 2387 * 2388 * The records that represent all functions that can be traced need 2389 * to be updated when tracing has been enabled. 2390 */ 2391 int ftrace_update_record(struct dyn_ftrace *rec, bool enable) 2392 { 2393 return ftrace_check_record(rec, enable, true); 2394 } 2395 2396 /** 2397 * ftrace_test_record - check if the record has been enabled or not 2398 * @rec: the record to test 2399 * @enable: set to true to check if enabled, false if it is disabled 2400 * 2401 * The arch code may need to test if a record is already set to 2402 * tracing to determine how to modify the function code that it 2403 * represents. 2404 */ 2405 int ftrace_test_record(struct dyn_ftrace *rec, bool enable) 2406 { 2407 return ftrace_check_record(rec, enable, false); 2408 } 2409 2410 static struct ftrace_ops * 2411 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec) 2412 { 2413 struct ftrace_ops *op; 2414 unsigned long ip = rec->ip; 2415 2416 do_for_each_ftrace_op(op, ftrace_ops_list) { 2417 2418 if (!op->trampoline) 2419 continue; 2420 2421 if (hash_contains_ip(ip, op->func_hash)) 2422 return op; 2423 } while_for_each_ftrace_op(op); 2424 2425 return NULL; 2426 } 2427 2428 static struct ftrace_ops * 2429 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude) 2430 { 2431 struct ftrace_ops *op; 2432 unsigned long ip = rec->ip; 2433 2434 do_for_each_ftrace_op(op, ftrace_ops_list) { 2435 2436 if (op == op_exclude || !op->trampoline) 2437 continue; 2438 2439 if (hash_contains_ip(ip, op->func_hash)) 2440 return op; 2441 } while_for_each_ftrace_op(op); 2442 2443 return NULL; 2444 } 2445 2446 static struct ftrace_ops * 2447 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, 2448 struct ftrace_ops *op) 2449 { 2450 unsigned long ip = rec->ip; 2451 2452 while_for_each_ftrace_op(op) { 2453 2454 if (!op->trampoline) 2455 continue; 2456 2457 if (hash_contains_ip(ip, op->func_hash)) 2458 return op; 2459 } 2460 2461 return NULL; 2462 } 2463 2464 static struct ftrace_ops * 2465 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec) 2466 { 2467 struct ftrace_ops *op; 2468 unsigned long ip = rec->ip; 2469 2470 /* 2471 * Need to check removed ops first. 2472 * If they are being removed, and this rec has a tramp, 2473 * and this rec is in the ops list, then it would be the 2474 * one with the tramp. 2475 */ 2476 if (removed_ops) { 2477 if (hash_contains_ip(ip, &removed_ops->old_hash)) 2478 return removed_ops; 2479 } 2480 2481 /* 2482 * Need to find the current trampoline for a rec. 2483 * Now, a trampoline is only attached to a rec if there 2484 * was a single 'ops' attached to it. But this can be called 2485 * when we are adding another op to the rec or removing the 2486 * current one. Thus, if the op is being added, we can 2487 * ignore it because it hasn't attached itself to the rec 2488 * yet. 2489 * 2490 * If an ops is being modified (hooking to different functions) 2491 * then we don't care about the new functions that are being 2492 * added, just the old ones (that are probably being removed). 2493 * 2494 * If we are adding an ops to a function that already is using 2495 * a trampoline, it needs to be removed (trampolines are only 2496 * for single ops connected), then an ops that is not being 2497 * modified also needs to be checked. 2498 */ 2499 do_for_each_ftrace_op(op, ftrace_ops_list) { 2500 2501 if (!op->trampoline) 2502 continue; 2503 2504 /* 2505 * If the ops is being added, it hasn't gotten to 2506 * the point to be removed from this tree yet. 2507 */ 2508 if (op->flags & FTRACE_OPS_FL_ADDING) 2509 continue; 2510 2511 2512 /* 2513 * If the ops is being modified and is in the old 2514 * hash, then it is probably being removed from this 2515 * function. 2516 */ 2517 if ((op->flags & FTRACE_OPS_FL_MODIFYING) && 2518 hash_contains_ip(ip, &op->old_hash)) 2519 return op; 2520 /* 2521 * If the ops is not being added or modified, and it's 2522 * in its normal filter hash, then this must be the one 2523 * we want! 2524 */ 2525 if (!(op->flags & FTRACE_OPS_FL_MODIFYING) && 2526 hash_contains_ip(ip, op->func_hash)) 2527 return op; 2528 2529 } while_for_each_ftrace_op(op); 2530 2531 return NULL; 2532 } 2533 2534 static struct ftrace_ops * 2535 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec) 2536 { 2537 struct ftrace_ops *op; 2538 unsigned long ip = rec->ip; 2539 2540 do_for_each_ftrace_op(op, ftrace_ops_list) { 2541 /* pass rec in as regs to have non-NULL val */ 2542 if (hash_contains_ip(ip, op->func_hash)) 2543 return op; 2544 } while_for_each_ftrace_op(op); 2545 2546 return NULL; 2547 } 2548 2549 struct ftrace_ops * 2550 ftrace_find_unique_ops(struct dyn_ftrace *rec) 2551 { 2552 struct ftrace_ops *op, *found = NULL; 2553 unsigned long ip = rec->ip; 2554 2555 do_for_each_ftrace_op(op, ftrace_ops_list) { 2556 2557 if (hash_contains_ip(ip, op->func_hash)) { 2558 if (found) 2559 return NULL; 2560 found = op; 2561 } 2562 2563 } while_for_each_ftrace_op(op); 2564 2565 return found; 2566 } 2567 2568 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 2569 /* Protected by rcu_tasks for reading, and direct_mutex for writing */ 2570 static struct ftrace_hash __rcu *direct_functions = EMPTY_HASH; 2571 static DEFINE_MUTEX(direct_mutex); 2572 2573 /* 2574 * Search the direct_functions hash to see if the given instruction pointer 2575 * has a direct caller attached to it. 2576 */ 2577 unsigned long ftrace_find_rec_direct(unsigned long ip) 2578 { 2579 struct ftrace_func_entry *entry; 2580 2581 entry = __ftrace_lookup_ip(direct_functions, ip); 2582 if (!entry) 2583 return 0; 2584 2585 return entry->direct; 2586 } 2587 2588 static void call_direct_funcs(unsigned long ip, unsigned long pip, 2589 struct ftrace_ops *ops, struct ftrace_regs *fregs) 2590 { 2591 unsigned long addr = READ_ONCE(ops->direct_call); 2592 2593 if (!addr) 2594 return; 2595 2596 arch_ftrace_set_direct_caller(fregs, addr); 2597 } 2598 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 2599 2600 /** 2601 * ftrace_get_addr_new - Get the call address to set to 2602 * @rec: The ftrace record descriptor 2603 * 2604 * If the record has the FTRACE_FL_REGS set, that means that it 2605 * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS 2606 * is not set, then it wants to convert to the normal callback. 2607 * 2608 * Returns: the address of the trampoline to set to 2609 */ 2610 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec) 2611 { 2612 struct ftrace_ops *ops; 2613 unsigned long addr; 2614 2615 if ((rec->flags & FTRACE_FL_DIRECT) && 2616 (ftrace_rec_count(rec) == 1)) { 2617 addr = ftrace_find_rec_direct(rec->ip); 2618 if (addr) 2619 return addr; 2620 WARN_ON_ONCE(1); 2621 } 2622 2623 /* Trampolines take precedence over regs */ 2624 if (rec->flags & FTRACE_FL_TRAMP) { 2625 ops = ftrace_find_tramp_ops_new(rec); 2626 if (FTRACE_WARN_ON(!ops || !ops->trampoline)) { 2627 pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n", 2628 (void *)rec->ip, (void *)rec->ip, rec->flags); 2629 /* Ftrace is shutting down, return anything */ 2630 return (unsigned long)FTRACE_ADDR; 2631 } 2632 return ops->trampoline; 2633 } 2634 2635 if (rec->flags & FTRACE_FL_REGS) 2636 return (unsigned long)FTRACE_REGS_ADDR; 2637 else 2638 return (unsigned long)FTRACE_ADDR; 2639 } 2640 2641 /** 2642 * ftrace_get_addr_curr - Get the call address that is already there 2643 * @rec: The ftrace record descriptor 2644 * 2645 * The FTRACE_FL_REGS_EN is set when the record already points to 2646 * a function that saves all the regs. Basically the '_EN' version 2647 * represents the current state of the function. 2648 * 2649 * Returns: the address of the trampoline that is currently being called 2650 */ 2651 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec) 2652 { 2653 struct ftrace_ops *ops; 2654 unsigned long addr; 2655 2656 /* Direct calls take precedence over trampolines */ 2657 if (rec->flags & FTRACE_FL_DIRECT_EN) { 2658 addr = ftrace_find_rec_direct(rec->ip); 2659 if (addr) 2660 return addr; 2661 WARN_ON_ONCE(1); 2662 } 2663 2664 /* Trampolines take precedence over regs */ 2665 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2666 ops = ftrace_find_tramp_ops_curr(rec); 2667 if (FTRACE_WARN_ON(!ops)) { 2668 pr_warn("Bad trampoline accounting at: %p (%pS)\n", 2669 (void *)rec->ip, (void *)rec->ip); 2670 /* Ftrace is shutting down, return anything */ 2671 return (unsigned long)FTRACE_ADDR; 2672 } 2673 return ops->trampoline; 2674 } 2675 2676 if (rec->flags & FTRACE_FL_REGS_EN) 2677 return (unsigned long)FTRACE_REGS_ADDR; 2678 else 2679 return (unsigned long)FTRACE_ADDR; 2680 } 2681 2682 static int 2683 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable) 2684 { 2685 unsigned long ftrace_old_addr; 2686 unsigned long ftrace_addr; 2687 int ret; 2688 2689 ftrace_addr = ftrace_get_addr_new(rec); 2690 2691 /* This needs to be done before we call ftrace_update_record */ 2692 ftrace_old_addr = ftrace_get_addr_curr(rec); 2693 2694 ret = ftrace_update_record(rec, enable); 2695 2696 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2697 2698 switch (ret) { 2699 case FTRACE_UPDATE_IGNORE: 2700 return 0; 2701 2702 case FTRACE_UPDATE_MAKE_CALL: 2703 ftrace_bug_type = FTRACE_BUG_CALL; 2704 return ftrace_make_call(rec, ftrace_addr); 2705 2706 case FTRACE_UPDATE_MAKE_NOP: 2707 ftrace_bug_type = FTRACE_BUG_NOP; 2708 return ftrace_make_nop(NULL, rec, ftrace_old_addr); 2709 2710 case FTRACE_UPDATE_MODIFY_CALL: 2711 ftrace_bug_type = FTRACE_BUG_UPDATE; 2712 return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr); 2713 } 2714 2715 return -1; /* unknown ftrace bug */ 2716 } 2717 2718 void __weak ftrace_replace_code(int mod_flags) 2719 { 2720 struct dyn_ftrace *rec; 2721 struct ftrace_page *pg; 2722 bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL; 2723 int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL; 2724 int failed; 2725 2726 if (unlikely(ftrace_disabled)) 2727 return; 2728 2729 do_for_each_ftrace_rec(pg, rec) { 2730 2731 if (skip_record(rec)) 2732 continue; 2733 2734 failed = __ftrace_replace_code(rec, enable); 2735 if (failed) { 2736 ftrace_bug(failed, rec); 2737 /* Stop processing */ 2738 return; 2739 } 2740 if (schedulable) 2741 cond_resched(); 2742 } while_for_each_ftrace_rec(); 2743 } 2744 2745 struct ftrace_rec_iter { 2746 struct ftrace_page *pg; 2747 int index; 2748 }; 2749 2750 /** 2751 * ftrace_rec_iter_start - start up iterating over traced functions 2752 * 2753 * Returns: an iterator handle that is used to iterate over all 2754 * the records that represent address locations where functions 2755 * are traced. 2756 * 2757 * May return NULL if no records are available. 2758 */ 2759 struct ftrace_rec_iter *ftrace_rec_iter_start(void) 2760 { 2761 /* 2762 * We only use a single iterator. 2763 * Protected by the ftrace_lock mutex. 2764 */ 2765 static struct ftrace_rec_iter ftrace_rec_iter; 2766 struct ftrace_rec_iter *iter = &ftrace_rec_iter; 2767 2768 iter->pg = ftrace_pages_start; 2769 iter->index = 0; 2770 2771 /* Could have empty pages */ 2772 while (iter->pg && !iter->pg->index) 2773 iter->pg = iter->pg->next; 2774 2775 if (!iter->pg) 2776 return NULL; 2777 2778 return iter; 2779 } 2780 2781 /** 2782 * ftrace_rec_iter_next - get the next record to process. 2783 * @iter: The handle to the iterator. 2784 * 2785 * Returns: the next iterator after the given iterator @iter. 2786 */ 2787 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter) 2788 { 2789 iter->index++; 2790 2791 if (iter->index >= iter->pg->index) { 2792 iter->pg = iter->pg->next; 2793 iter->index = 0; 2794 2795 /* Could have empty pages */ 2796 while (iter->pg && !iter->pg->index) 2797 iter->pg = iter->pg->next; 2798 } 2799 2800 if (!iter->pg) 2801 return NULL; 2802 2803 return iter; 2804 } 2805 2806 /** 2807 * ftrace_rec_iter_record - get the record at the iterator location 2808 * @iter: The current iterator location 2809 * 2810 * Returns: the record that the current @iter is at. 2811 */ 2812 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter) 2813 { 2814 return &iter->pg->records[iter->index]; 2815 } 2816 2817 static int 2818 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec) 2819 { 2820 int ret; 2821 2822 if (unlikely(ftrace_disabled)) 2823 return 0; 2824 2825 ret = ftrace_init_nop(mod, rec); 2826 if (ret) { 2827 ftrace_bug_type = FTRACE_BUG_INIT; 2828 ftrace_bug(ret, rec); 2829 return 0; 2830 } 2831 return 1; 2832 } 2833 2834 /* 2835 * archs can override this function if they must do something 2836 * before the modifying code is performed. 2837 */ 2838 void __weak ftrace_arch_code_modify_prepare(void) 2839 { 2840 } 2841 2842 /* 2843 * archs can override this function if they must do something 2844 * after the modifying code is performed. 2845 */ 2846 void __weak ftrace_arch_code_modify_post_process(void) 2847 { 2848 } 2849 2850 static int update_ftrace_func(ftrace_func_t func) 2851 { 2852 static ftrace_func_t save_func; 2853 2854 /* Avoid updating if it hasn't changed */ 2855 if (func == save_func) 2856 return 0; 2857 2858 save_func = func; 2859 2860 return ftrace_update_ftrace_func(func); 2861 } 2862 2863 void ftrace_modify_all_code(int command) 2864 { 2865 int update = command & FTRACE_UPDATE_TRACE_FUNC; 2866 int mod_flags = 0; 2867 int err = 0; 2868 2869 if (command & FTRACE_MAY_SLEEP) 2870 mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL; 2871 2872 /* 2873 * If the ftrace_caller calls a ftrace_ops func directly, 2874 * we need to make sure that it only traces functions it 2875 * expects to trace. When doing the switch of functions, 2876 * we need to update to the ftrace_ops_list_func first 2877 * before the transition between old and new calls are set, 2878 * as the ftrace_ops_list_func will check the ops hashes 2879 * to make sure the ops are having the right functions 2880 * traced. 2881 */ 2882 if (update) { 2883 err = update_ftrace_func(ftrace_ops_list_func); 2884 if (FTRACE_WARN_ON(err)) 2885 return; 2886 } 2887 2888 if (command & FTRACE_UPDATE_CALLS) 2889 ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL); 2890 else if (command & FTRACE_DISABLE_CALLS) 2891 ftrace_replace_code(mod_flags); 2892 2893 if (update && ftrace_trace_function != ftrace_ops_list_func) { 2894 function_trace_op = set_function_trace_op; 2895 smp_wmb(); 2896 /* If irqs are disabled, we are in stop machine */ 2897 if (!irqs_disabled()) 2898 smp_call_function(ftrace_sync_ipi, NULL, 1); 2899 err = update_ftrace_func(ftrace_trace_function); 2900 if (FTRACE_WARN_ON(err)) 2901 return; 2902 } 2903 2904 if (command & FTRACE_START_FUNC_RET) 2905 err = ftrace_enable_ftrace_graph_caller(); 2906 else if (command & FTRACE_STOP_FUNC_RET) 2907 err = ftrace_disable_ftrace_graph_caller(); 2908 FTRACE_WARN_ON(err); 2909 } 2910 2911 static int __ftrace_modify_code(void *data) 2912 { 2913 int *command = data; 2914 2915 ftrace_modify_all_code(*command); 2916 2917 return 0; 2918 } 2919 2920 /** 2921 * ftrace_run_stop_machine - go back to the stop machine method 2922 * @command: The command to tell ftrace what to do 2923 * 2924 * If an arch needs to fall back to the stop machine method, the 2925 * it can call this function. 2926 */ 2927 void ftrace_run_stop_machine(int command) 2928 { 2929 stop_machine(__ftrace_modify_code, &command, NULL); 2930 } 2931 2932 /** 2933 * arch_ftrace_update_code - modify the code to trace or not trace 2934 * @command: The command that needs to be done 2935 * 2936 * Archs can override this function if it does not need to 2937 * run stop_machine() to modify code. 2938 */ 2939 void __weak arch_ftrace_update_code(int command) 2940 { 2941 ftrace_run_stop_machine(command); 2942 } 2943 2944 static void ftrace_run_update_code(int command) 2945 { 2946 ftrace_arch_code_modify_prepare(); 2947 2948 /* 2949 * By default we use stop_machine() to modify the code. 2950 * But archs can do what ever they want as long as it 2951 * is safe. The stop_machine() is the safest, but also 2952 * produces the most overhead. 2953 */ 2954 arch_ftrace_update_code(command); 2955 2956 ftrace_arch_code_modify_post_process(); 2957 } 2958 2959 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command, 2960 struct ftrace_ops_hash *old_hash) 2961 { 2962 ops->flags |= FTRACE_OPS_FL_MODIFYING; 2963 ops->old_hash.filter_hash = old_hash->filter_hash; 2964 ops->old_hash.notrace_hash = old_hash->notrace_hash; 2965 ftrace_run_update_code(command); 2966 ops->old_hash.filter_hash = NULL; 2967 ops->old_hash.notrace_hash = NULL; 2968 ops->flags &= ~FTRACE_OPS_FL_MODIFYING; 2969 } 2970 2971 static ftrace_func_t saved_ftrace_func; 2972 static int ftrace_start_up; 2973 2974 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops) 2975 { 2976 } 2977 2978 /* List of trace_ops that have allocated trampolines */ 2979 static LIST_HEAD(ftrace_ops_trampoline_list); 2980 2981 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops) 2982 { 2983 lockdep_assert_held(&ftrace_lock); 2984 list_add_rcu(&ops->list, &ftrace_ops_trampoline_list); 2985 } 2986 2987 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops) 2988 { 2989 lockdep_assert_held(&ftrace_lock); 2990 list_del_rcu(&ops->list); 2991 synchronize_rcu(); 2992 } 2993 2994 /* 2995 * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols 2996 * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is 2997 * not a module. 2998 */ 2999 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace" 3000 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline" 3001 3002 static void ftrace_trampoline_free(struct ftrace_ops *ops) 3003 { 3004 if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) && 3005 ops->trampoline) { 3006 /* 3007 * Record the text poke event before the ksymbol unregister 3008 * event. 3009 */ 3010 perf_event_text_poke((void *)ops->trampoline, 3011 (void *)ops->trampoline, 3012 ops->trampoline_size, NULL, 0); 3013 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 3014 ops->trampoline, ops->trampoline_size, 3015 true, FTRACE_TRAMPOLINE_SYM); 3016 /* Remove from kallsyms after the perf events */ 3017 ftrace_remove_trampoline_from_kallsyms(ops); 3018 } 3019 3020 arch_ftrace_trampoline_free(ops); 3021 } 3022 3023 static void ftrace_startup_enable(int command) 3024 { 3025 if (saved_ftrace_func != ftrace_trace_function) { 3026 saved_ftrace_func = ftrace_trace_function; 3027 command |= FTRACE_UPDATE_TRACE_FUNC; 3028 } 3029 3030 if (!command || !ftrace_enabled) 3031 return; 3032 3033 ftrace_run_update_code(command); 3034 } 3035 3036 static void ftrace_startup_all(int command) 3037 { 3038 update_all_ops = true; 3039 ftrace_startup_enable(command); 3040 update_all_ops = false; 3041 } 3042 3043 int ftrace_startup(struct ftrace_ops *ops, int command) 3044 { 3045 int ret; 3046 3047 if (unlikely(ftrace_disabled)) 3048 return -ENODEV; 3049 3050 ret = __register_ftrace_function(ops); 3051 if (ret) 3052 return ret; 3053 3054 ftrace_start_up++; 3055 3056 /* 3057 * Note that ftrace probes uses this to start up 3058 * and modify functions it will probe. But we still 3059 * set the ADDING flag for modification, as probes 3060 * do not have trampolines. If they add them in the 3061 * future, then the probes will need to distinguish 3062 * between adding and updating probes. 3063 */ 3064 ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING; 3065 3066 ret = ftrace_hash_ipmodify_enable(ops); 3067 if (ret < 0) { 3068 /* Rollback registration process */ 3069 __unregister_ftrace_function(ops); 3070 ftrace_start_up--; 3071 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 3072 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 3073 ftrace_trampoline_free(ops); 3074 return ret; 3075 } 3076 3077 if (ftrace_hash_rec_enable(ops)) 3078 command |= FTRACE_UPDATE_CALLS; 3079 3080 ftrace_startup_enable(command); 3081 3082 /* 3083 * If ftrace is in an undefined state, we just remove ops from list 3084 * to prevent the NULL pointer, instead of totally rolling it back and 3085 * free trampoline, because those actions could cause further damage. 3086 */ 3087 if (unlikely(ftrace_disabled)) { 3088 __unregister_ftrace_function(ops); 3089 return -ENODEV; 3090 } 3091 3092 ops->flags &= ~FTRACE_OPS_FL_ADDING; 3093 3094 return 0; 3095 } 3096 3097 int ftrace_shutdown(struct ftrace_ops *ops, int command) 3098 { 3099 int ret; 3100 3101 if (unlikely(ftrace_disabled)) 3102 return -ENODEV; 3103 3104 ret = __unregister_ftrace_function(ops); 3105 if (ret) 3106 return ret; 3107 3108 ftrace_start_up--; 3109 /* 3110 * Just warn in case of unbalance, no need to kill ftrace, it's not 3111 * critical but the ftrace_call callers may be never nopped again after 3112 * further ftrace uses. 3113 */ 3114 WARN_ON_ONCE(ftrace_start_up < 0); 3115 3116 /* Disabling ipmodify never fails */ 3117 ftrace_hash_ipmodify_disable(ops); 3118 3119 if (ftrace_hash_rec_disable(ops)) 3120 command |= FTRACE_UPDATE_CALLS; 3121 3122 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 3123 3124 if (saved_ftrace_func != ftrace_trace_function) { 3125 saved_ftrace_func = ftrace_trace_function; 3126 command |= FTRACE_UPDATE_TRACE_FUNC; 3127 } 3128 3129 if (!command || !ftrace_enabled) 3130 goto out; 3131 3132 /* 3133 * If the ops uses a trampoline, then it needs to be 3134 * tested first on update. 3135 */ 3136 ops->flags |= FTRACE_OPS_FL_REMOVING; 3137 removed_ops = ops; 3138 3139 /* The trampoline logic checks the old hashes */ 3140 ops->old_hash.filter_hash = ops->func_hash->filter_hash; 3141 ops->old_hash.notrace_hash = ops->func_hash->notrace_hash; 3142 3143 ftrace_run_update_code(command); 3144 3145 /* 3146 * If there's no more ops registered with ftrace, run a 3147 * sanity check to make sure all rec flags are cleared. 3148 */ 3149 if (rcu_dereference_protected(ftrace_ops_list, 3150 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 3151 struct ftrace_page *pg; 3152 struct dyn_ftrace *rec; 3153 3154 do_for_each_ftrace_rec(pg, rec) { 3155 if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_NOCLEAR_FLAGS)) 3156 pr_warn(" %pS flags:%lx\n", 3157 (void *)rec->ip, rec->flags); 3158 } while_for_each_ftrace_rec(); 3159 } 3160 3161 ops->old_hash.filter_hash = NULL; 3162 ops->old_hash.notrace_hash = NULL; 3163 3164 removed_ops = NULL; 3165 ops->flags &= ~FTRACE_OPS_FL_REMOVING; 3166 3167 out: 3168 /* 3169 * Dynamic ops may be freed, we must make sure that all 3170 * callers are done before leaving this function. 3171 */ 3172 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) { 3173 /* 3174 * We need to do a hard force of sched synchronization. 3175 * This is because we use preempt_disable() to do RCU, but 3176 * the function tracers can be called where RCU is not watching 3177 * (like before user_exit()). We can not rely on the RCU 3178 * infrastructure to do the synchronization, thus we must do it 3179 * ourselves. 3180 */ 3181 synchronize_rcu_tasks_rude(); 3182 3183 /* 3184 * When the kernel is preemptive, tasks can be preempted 3185 * while on a ftrace trampoline. Just scheduling a task on 3186 * a CPU is not good enough to flush them. Calling 3187 * synchronize_rcu_tasks() will wait for those tasks to 3188 * execute and either schedule voluntarily or enter user space. 3189 */ 3190 synchronize_rcu_tasks(); 3191 3192 ftrace_trampoline_free(ops); 3193 } 3194 3195 return 0; 3196 } 3197 3198 /* Simply make a copy of @src and return it */ 3199 static struct ftrace_hash *copy_hash(struct ftrace_hash *src) 3200 { 3201 if (ftrace_hash_empty(src)) 3202 return EMPTY_HASH; 3203 3204 return alloc_and_copy_ftrace_hash(src->size_bits, src); 3205 } 3206 3207 /* 3208 * Append @new_hash entries to @hash: 3209 * 3210 * If @hash is the EMPTY_HASH then it traces all functions and nothing 3211 * needs to be done. 3212 * 3213 * If @new_hash is the EMPTY_HASH, then make *hash the EMPTY_HASH so 3214 * that it traces everything. 3215 * 3216 * Otherwise, go through all of @new_hash and add anything that @hash 3217 * doesn't already have, to @hash. 3218 * 3219 * The filter_hash updates uses just the append_hash() function 3220 * and the notrace_hash does not. 3221 */ 3222 static int append_hash(struct ftrace_hash **hash, struct ftrace_hash *new_hash) 3223 { 3224 struct ftrace_func_entry *entry; 3225 int size; 3226 int i; 3227 3228 /* An empty hash does everything */ 3229 if (ftrace_hash_empty(*hash)) 3230 return 0; 3231 3232 /* If new_hash has everything make hash have everything */ 3233 if (ftrace_hash_empty(new_hash)) { 3234 free_ftrace_hash(*hash); 3235 *hash = EMPTY_HASH; 3236 return 0; 3237 } 3238 3239 size = 1 << new_hash->size_bits; 3240 for (i = 0; i < size; i++) { 3241 hlist_for_each_entry(entry, &new_hash->buckets[i], hlist) { 3242 /* Only add if not already in hash */ 3243 if (!__ftrace_lookup_ip(*hash, entry->ip) && 3244 add_hash_entry(*hash, entry->ip) == NULL) 3245 return -ENOMEM; 3246 } 3247 } 3248 return 0; 3249 } 3250 3251 /* 3252 * Add to @hash only those that are in both @new_hash1 and @new_hash2 3253 * 3254 * The notrace_hash updates uses just the intersect_hash() function 3255 * and the filter_hash does not. 3256 */ 3257 static int intersect_hash(struct ftrace_hash **hash, struct ftrace_hash *new_hash1, 3258 struct ftrace_hash *new_hash2) 3259 { 3260 struct ftrace_func_entry *entry; 3261 int size; 3262 int i; 3263 3264 /* 3265 * If new_hash1 or new_hash2 is the EMPTY_HASH then make the hash 3266 * empty as well as empty for notrace means none are notraced. 3267 */ 3268 if (ftrace_hash_empty(new_hash1) || ftrace_hash_empty(new_hash2)) { 3269 free_ftrace_hash(*hash); 3270 *hash = EMPTY_HASH; 3271 return 0; 3272 } 3273 3274 size = 1 << new_hash1->size_bits; 3275 for (i = 0; i < size; i++) { 3276 hlist_for_each_entry(entry, &new_hash1->buckets[i], hlist) { 3277 /* Only add if in both @new_hash1 and @new_hash2 */ 3278 if (__ftrace_lookup_ip(new_hash2, entry->ip) && 3279 add_hash_entry(*hash, entry->ip) == NULL) 3280 return -ENOMEM; 3281 } 3282 } 3283 /* If nothing intersects, make it the empty set */ 3284 if (ftrace_hash_empty(*hash)) { 3285 free_ftrace_hash(*hash); 3286 *hash = EMPTY_HASH; 3287 } 3288 return 0; 3289 } 3290 3291 /* Return a new hash that has a union of all @ops->filter_hash entries */ 3292 static struct ftrace_hash *append_hashes(struct ftrace_ops *ops) 3293 { 3294 struct ftrace_hash *new_hash; 3295 struct ftrace_ops *subops; 3296 int ret; 3297 3298 new_hash = alloc_ftrace_hash(ops->func_hash->filter_hash->size_bits); 3299 if (!new_hash) 3300 return NULL; 3301 3302 list_for_each_entry(subops, &ops->subop_list, list) { 3303 ret = append_hash(&new_hash, subops->func_hash->filter_hash); 3304 if (ret < 0) { 3305 free_ftrace_hash(new_hash); 3306 return NULL; 3307 } 3308 /* Nothing more to do if new_hash is empty */ 3309 if (ftrace_hash_empty(new_hash)) 3310 break; 3311 } 3312 return new_hash; 3313 } 3314 3315 /* Make @ops trace evenything except what all its subops do not trace */ 3316 static struct ftrace_hash *intersect_hashes(struct ftrace_ops *ops) 3317 { 3318 struct ftrace_hash *new_hash = NULL; 3319 struct ftrace_ops *subops; 3320 int size_bits; 3321 int ret; 3322 3323 list_for_each_entry(subops, &ops->subop_list, list) { 3324 struct ftrace_hash *next_hash; 3325 3326 if (!new_hash) { 3327 size_bits = subops->func_hash->notrace_hash->size_bits; 3328 new_hash = alloc_and_copy_ftrace_hash(size_bits, ops->func_hash->notrace_hash); 3329 if (!new_hash) 3330 return NULL; 3331 continue; 3332 } 3333 size_bits = new_hash->size_bits; 3334 next_hash = new_hash; 3335 new_hash = alloc_ftrace_hash(size_bits); 3336 ret = intersect_hash(&new_hash, next_hash, subops->func_hash->notrace_hash); 3337 free_ftrace_hash(next_hash); 3338 if (ret < 0) { 3339 free_ftrace_hash(new_hash); 3340 return NULL; 3341 } 3342 /* Nothing more to do if new_hash is empty */ 3343 if (ftrace_hash_empty(new_hash)) 3344 break; 3345 } 3346 return new_hash; 3347 } 3348 3349 static bool ops_equal(struct ftrace_hash *A, struct ftrace_hash *B) 3350 { 3351 struct ftrace_func_entry *entry; 3352 int size; 3353 int i; 3354 3355 if (ftrace_hash_empty(A)) 3356 return ftrace_hash_empty(B); 3357 3358 if (ftrace_hash_empty(B)) 3359 return ftrace_hash_empty(A); 3360 3361 if (A->count != B->count) 3362 return false; 3363 3364 size = 1 << A->size_bits; 3365 for (i = 0; i < size; i++) { 3366 hlist_for_each_entry(entry, &A->buckets[i], hlist) { 3367 if (!__ftrace_lookup_ip(B, entry->ip)) 3368 return false; 3369 } 3370 } 3371 3372 return true; 3373 } 3374 3375 static void ftrace_ops_update_code(struct ftrace_ops *ops, 3376 struct ftrace_ops_hash *old_hash); 3377 3378 static int __ftrace_hash_move_and_update_ops(struct ftrace_ops *ops, 3379 struct ftrace_hash **orig_hash, 3380 struct ftrace_hash *hash, 3381 int enable) 3382 { 3383 struct ftrace_ops_hash old_hash_ops; 3384 struct ftrace_hash *old_hash; 3385 int ret; 3386 3387 old_hash = *orig_hash; 3388 old_hash_ops.filter_hash = ops->func_hash->filter_hash; 3389 old_hash_ops.notrace_hash = ops->func_hash->notrace_hash; 3390 ret = ftrace_hash_move(ops, enable, orig_hash, hash); 3391 if (!ret) { 3392 ftrace_ops_update_code(ops, &old_hash_ops); 3393 free_ftrace_hash_rcu(old_hash); 3394 } 3395 return ret; 3396 } 3397 3398 static int ftrace_update_ops(struct ftrace_ops *ops, struct ftrace_hash *filter_hash, 3399 struct ftrace_hash *notrace_hash) 3400 { 3401 int ret; 3402 3403 if (!ops_equal(filter_hash, ops->func_hash->filter_hash)) { 3404 ret = __ftrace_hash_move_and_update_ops(ops, &ops->func_hash->filter_hash, 3405 filter_hash, 1); 3406 if (ret < 0) 3407 return ret; 3408 } 3409 3410 if (!ops_equal(notrace_hash, ops->func_hash->notrace_hash)) { 3411 ret = __ftrace_hash_move_and_update_ops(ops, &ops->func_hash->notrace_hash, 3412 notrace_hash, 0); 3413 if (ret < 0) 3414 return ret; 3415 } 3416 3417 return 0; 3418 } 3419 3420 /** 3421 * ftrace_startup_subops - enable tracing for subops of an ops 3422 * @ops: Manager ops (used to pick all the functions of its subops) 3423 * @subops: A new ops to add to @ops 3424 * @command: Extra commands to use to enable tracing 3425 * 3426 * The @ops is a manager @ops that has the filter that includes all the functions 3427 * that its list of subops are tracing. Adding a new @subops will add the 3428 * functions of @subops to @ops. 3429 */ 3430 int ftrace_startup_subops(struct ftrace_ops *ops, struct ftrace_ops *subops, int command) 3431 { 3432 struct ftrace_hash *filter_hash; 3433 struct ftrace_hash *notrace_hash; 3434 struct ftrace_hash *save_filter_hash; 3435 struct ftrace_hash *save_notrace_hash; 3436 int size_bits; 3437 int ret; 3438 3439 if (unlikely(ftrace_disabled)) 3440 return -ENODEV; 3441 3442 ftrace_ops_init(ops); 3443 ftrace_ops_init(subops); 3444 3445 if (WARN_ON_ONCE(subops->flags & FTRACE_OPS_FL_ENABLED)) 3446 return -EBUSY; 3447 3448 /* Make everything canonical (Just in case!) */ 3449 if (!ops->func_hash->filter_hash) 3450 ops->func_hash->filter_hash = EMPTY_HASH; 3451 if (!ops->func_hash->notrace_hash) 3452 ops->func_hash->notrace_hash = EMPTY_HASH; 3453 if (!subops->func_hash->filter_hash) 3454 subops->func_hash->filter_hash = EMPTY_HASH; 3455 if (!subops->func_hash->notrace_hash) 3456 subops->func_hash->notrace_hash = EMPTY_HASH; 3457 3458 /* For the first subops to ops just enable it normally */ 3459 if (list_empty(&ops->subop_list)) { 3460 /* Just use the subops hashes */ 3461 filter_hash = copy_hash(subops->func_hash->filter_hash); 3462 notrace_hash = copy_hash(subops->func_hash->notrace_hash); 3463 if (!filter_hash || !notrace_hash) { 3464 free_ftrace_hash(filter_hash); 3465 free_ftrace_hash(notrace_hash); 3466 return -ENOMEM; 3467 } 3468 3469 save_filter_hash = ops->func_hash->filter_hash; 3470 save_notrace_hash = ops->func_hash->notrace_hash; 3471 3472 ops->func_hash->filter_hash = filter_hash; 3473 ops->func_hash->notrace_hash = notrace_hash; 3474 list_add(&subops->list, &ops->subop_list); 3475 ret = ftrace_startup(ops, command); 3476 if (ret < 0) { 3477 list_del(&subops->list); 3478 ops->func_hash->filter_hash = save_filter_hash; 3479 ops->func_hash->notrace_hash = save_notrace_hash; 3480 free_ftrace_hash(filter_hash); 3481 free_ftrace_hash(notrace_hash); 3482 } else { 3483 free_ftrace_hash(save_filter_hash); 3484 free_ftrace_hash(save_notrace_hash); 3485 subops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP; 3486 subops->managed = ops; 3487 } 3488 return ret; 3489 } 3490 3491 /* 3492 * Here there's already something attached. Here are the rules: 3493 * o If either filter_hash is empty then the final stays empty 3494 * o Otherwise, the final is a superset of both hashes 3495 * o If either notrace_hash is empty then the final stays empty 3496 * o Otherwise, the final is an intersection between the hashes 3497 */ 3498 if (ftrace_hash_empty(ops->func_hash->filter_hash) || 3499 ftrace_hash_empty(subops->func_hash->filter_hash)) { 3500 filter_hash = EMPTY_HASH; 3501 } else { 3502 size_bits = max(ops->func_hash->filter_hash->size_bits, 3503 subops->func_hash->filter_hash->size_bits); 3504 filter_hash = alloc_and_copy_ftrace_hash(size_bits, ops->func_hash->filter_hash); 3505 if (!filter_hash) 3506 return -ENOMEM; 3507 ret = append_hash(&filter_hash, subops->func_hash->filter_hash); 3508 if (ret < 0) { 3509 free_ftrace_hash(filter_hash); 3510 return ret; 3511 } 3512 } 3513 3514 if (ftrace_hash_empty(ops->func_hash->notrace_hash) || 3515 ftrace_hash_empty(subops->func_hash->notrace_hash)) { 3516 notrace_hash = EMPTY_HASH; 3517 } else { 3518 size_bits = max(ops->func_hash->filter_hash->size_bits, 3519 subops->func_hash->filter_hash->size_bits); 3520 notrace_hash = alloc_ftrace_hash(size_bits); 3521 if (!notrace_hash) { 3522 free_ftrace_hash(filter_hash); 3523 return -ENOMEM; 3524 } 3525 3526 ret = intersect_hash(¬race_hash, ops->func_hash->filter_hash, 3527 subops->func_hash->filter_hash); 3528 if (ret < 0) { 3529 free_ftrace_hash(filter_hash); 3530 free_ftrace_hash(notrace_hash); 3531 return ret; 3532 } 3533 } 3534 3535 list_add(&subops->list, &ops->subop_list); 3536 3537 ret = ftrace_update_ops(ops, filter_hash, notrace_hash); 3538 free_ftrace_hash(filter_hash); 3539 free_ftrace_hash(notrace_hash); 3540 if (ret < 0) { 3541 list_del(&subops->list); 3542 } else { 3543 subops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP; 3544 subops->managed = ops; 3545 } 3546 return ret; 3547 } 3548 3549 /** 3550 * ftrace_shutdown_subops - Remove a subops from a manager ops 3551 * @ops: A manager ops to remove @subops from 3552 * @subops: The subops to remove from @ops 3553 * @command: Any extra command flags to add to modifying the text 3554 * 3555 * Removes the functions being traced by the @subops from @ops. Note, it 3556 * will not affect functions that are being traced by other subops that 3557 * still exist in @ops. 3558 * 3559 * If the last subops is removed from @ops, then @ops is shutdown normally. 3560 */ 3561 int ftrace_shutdown_subops(struct ftrace_ops *ops, struct ftrace_ops *subops, int command) 3562 { 3563 struct ftrace_hash *filter_hash; 3564 struct ftrace_hash *notrace_hash; 3565 int ret; 3566 3567 if (unlikely(ftrace_disabled)) 3568 return -ENODEV; 3569 3570 if (WARN_ON_ONCE(!(subops->flags & FTRACE_OPS_FL_ENABLED))) 3571 return -EINVAL; 3572 3573 list_del(&subops->list); 3574 3575 if (list_empty(&ops->subop_list)) { 3576 /* Last one, just disable the current ops */ 3577 3578 ret = ftrace_shutdown(ops, command); 3579 if (ret < 0) { 3580 list_add(&subops->list, &ops->subop_list); 3581 return ret; 3582 } 3583 3584 subops->flags &= ~FTRACE_OPS_FL_ENABLED; 3585 3586 free_ftrace_hash(ops->func_hash->filter_hash); 3587 free_ftrace_hash(ops->func_hash->notrace_hash); 3588 ops->func_hash->filter_hash = EMPTY_HASH; 3589 ops->func_hash->notrace_hash = EMPTY_HASH; 3590 subops->flags &= ~(FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP); 3591 subops->managed = NULL; 3592 3593 return 0; 3594 } 3595 3596 /* Rebuild the hashes without subops */ 3597 filter_hash = append_hashes(ops); 3598 notrace_hash = intersect_hashes(ops); 3599 if (!filter_hash || !notrace_hash) { 3600 free_ftrace_hash(filter_hash); 3601 free_ftrace_hash(notrace_hash); 3602 list_add(&subops->list, &ops->subop_list); 3603 return -ENOMEM; 3604 } 3605 3606 ret = ftrace_update_ops(ops, filter_hash, notrace_hash); 3607 if (ret < 0) { 3608 list_add(&subops->list, &ops->subop_list); 3609 } else { 3610 subops->flags &= ~(FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP); 3611 subops->managed = NULL; 3612 } 3613 free_ftrace_hash(filter_hash); 3614 free_ftrace_hash(notrace_hash); 3615 return ret; 3616 } 3617 3618 static int ftrace_hash_move_and_update_subops(struct ftrace_ops *subops, 3619 struct ftrace_hash **orig_subhash, 3620 struct ftrace_hash *hash, 3621 int enable) 3622 { 3623 struct ftrace_ops *ops = subops->managed; 3624 struct ftrace_hash **orig_hash; 3625 struct ftrace_hash *save_hash; 3626 struct ftrace_hash *new_hash; 3627 int ret; 3628 3629 /* Manager ops can not be subops (yet) */ 3630 if (WARN_ON_ONCE(!ops || ops->flags & FTRACE_OPS_FL_SUBOP)) 3631 return -EINVAL; 3632 3633 /* Move the new hash over to the subops hash */ 3634 save_hash = *orig_subhash; 3635 *orig_subhash = __ftrace_hash_move(hash); 3636 if (!*orig_subhash) { 3637 *orig_subhash = save_hash; 3638 return -ENOMEM; 3639 } 3640 3641 /* Create a new_hash to hold the ops new functions */ 3642 if (enable) { 3643 orig_hash = &ops->func_hash->filter_hash; 3644 new_hash = append_hashes(ops); 3645 } else { 3646 orig_hash = &ops->func_hash->notrace_hash; 3647 new_hash = intersect_hashes(ops); 3648 } 3649 3650 /* Move the hash over to the new hash */ 3651 ret = __ftrace_hash_move_and_update_ops(ops, orig_hash, new_hash, enable); 3652 3653 free_ftrace_hash(new_hash); 3654 3655 if (ret) { 3656 /* Put back the original hash */ 3657 free_ftrace_hash_rcu(*orig_subhash); 3658 *orig_subhash = save_hash; 3659 } else { 3660 free_ftrace_hash_rcu(save_hash); 3661 } 3662 return ret; 3663 } 3664 3665 3666 static u64 ftrace_update_time; 3667 unsigned long ftrace_update_tot_cnt; 3668 unsigned long ftrace_number_of_pages; 3669 unsigned long ftrace_number_of_groups; 3670 3671 static inline int ops_traces_mod(struct ftrace_ops *ops) 3672 { 3673 /* 3674 * Filter_hash being empty will default to trace module. 3675 * But notrace hash requires a test of individual module functions. 3676 */ 3677 return ftrace_hash_empty(ops->func_hash->filter_hash) && 3678 ftrace_hash_empty(ops->func_hash->notrace_hash); 3679 } 3680 3681 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs) 3682 { 3683 bool init_nop = ftrace_need_init_nop(); 3684 struct ftrace_page *pg; 3685 struct dyn_ftrace *p; 3686 u64 start, stop; 3687 unsigned long update_cnt = 0; 3688 unsigned long rec_flags = 0; 3689 int i; 3690 3691 start = ftrace_now(raw_smp_processor_id()); 3692 3693 /* 3694 * When a module is loaded, this function is called to convert 3695 * the calls to mcount in its text to nops, and also to create 3696 * an entry in the ftrace data. Now, if ftrace is activated 3697 * after this call, but before the module sets its text to 3698 * read-only, the modification of enabling ftrace can fail if 3699 * the read-only is done while ftrace is converting the calls. 3700 * To prevent this, the module's records are set as disabled 3701 * and will be enabled after the call to set the module's text 3702 * to read-only. 3703 */ 3704 if (mod) 3705 rec_flags |= FTRACE_FL_DISABLED; 3706 3707 for (pg = new_pgs; pg; pg = pg->next) { 3708 3709 for (i = 0; i < pg->index; i++) { 3710 3711 /* If something went wrong, bail without enabling anything */ 3712 if (unlikely(ftrace_disabled)) 3713 return -1; 3714 3715 p = &pg->records[i]; 3716 p->flags = rec_flags; 3717 3718 /* 3719 * Do the initial record conversion from mcount jump 3720 * to the NOP instructions. 3721 */ 3722 if (init_nop && !ftrace_nop_initialize(mod, p)) 3723 break; 3724 3725 update_cnt++; 3726 } 3727 } 3728 3729 stop = ftrace_now(raw_smp_processor_id()); 3730 ftrace_update_time = stop - start; 3731 ftrace_update_tot_cnt += update_cnt; 3732 3733 return 0; 3734 } 3735 3736 static int ftrace_allocate_records(struct ftrace_page *pg, int count) 3737 { 3738 int order; 3739 int pages; 3740 int cnt; 3741 3742 if (WARN_ON(!count)) 3743 return -EINVAL; 3744 3745 /* We want to fill as much as possible, with no empty pages */ 3746 pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE); 3747 order = fls(pages) - 1; 3748 3749 again: 3750 pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 3751 3752 if (!pg->records) { 3753 /* if we can't allocate this size, try something smaller */ 3754 if (!order) 3755 return -ENOMEM; 3756 order--; 3757 goto again; 3758 } 3759 3760 ftrace_number_of_pages += 1 << order; 3761 ftrace_number_of_groups++; 3762 3763 cnt = (PAGE_SIZE << order) / ENTRY_SIZE; 3764 pg->order = order; 3765 3766 if (cnt > count) 3767 cnt = count; 3768 3769 return cnt; 3770 } 3771 3772 static void ftrace_free_pages(struct ftrace_page *pages) 3773 { 3774 struct ftrace_page *pg = pages; 3775 3776 while (pg) { 3777 if (pg->records) { 3778 free_pages((unsigned long)pg->records, pg->order); 3779 ftrace_number_of_pages -= 1 << pg->order; 3780 } 3781 pages = pg->next; 3782 kfree(pg); 3783 pg = pages; 3784 ftrace_number_of_groups--; 3785 } 3786 } 3787 3788 static struct ftrace_page * 3789 ftrace_allocate_pages(unsigned long num_to_init) 3790 { 3791 struct ftrace_page *start_pg; 3792 struct ftrace_page *pg; 3793 int cnt; 3794 3795 if (!num_to_init) 3796 return NULL; 3797 3798 start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL); 3799 if (!pg) 3800 return NULL; 3801 3802 /* 3803 * Try to allocate as much as possible in one continues 3804 * location that fills in all of the space. We want to 3805 * waste as little space as possible. 3806 */ 3807 for (;;) { 3808 cnt = ftrace_allocate_records(pg, num_to_init); 3809 if (cnt < 0) 3810 goto free_pages; 3811 3812 num_to_init -= cnt; 3813 if (!num_to_init) 3814 break; 3815 3816 pg->next = kzalloc(sizeof(*pg), GFP_KERNEL); 3817 if (!pg->next) 3818 goto free_pages; 3819 3820 pg = pg->next; 3821 } 3822 3823 return start_pg; 3824 3825 free_pages: 3826 ftrace_free_pages(start_pg); 3827 pr_info("ftrace: FAILED to allocate memory for functions\n"); 3828 return NULL; 3829 } 3830 3831 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */ 3832 3833 struct ftrace_iterator { 3834 loff_t pos; 3835 loff_t func_pos; 3836 loff_t mod_pos; 3837 struct ftrace_page *pg; 3838 struct dyn_ftrace *func; 3839 struct ftrace_func_probe *probe; 3840 struct ftrace_func_entry *probe_entry; 3841 struct trace_parser parser; 3842 struct ftrace_hash *hash; 3843 struct ftrace_ops *ops; 3844 struct trace_array *tr; 3845 struct list_head *mod_list; 3846 int pidx; 3847 int idx; 3848 unsigned flags; 3849 }; 3850 3851 static void * 3852 t_probe_next(struct seq_file *m, loff_t *pos) 3853 { 3854 struct ftrace_iterator *iter = m->private; 3855 struct trace_array *tr = iter->ops->private; 3856 struct list_head *func_probes; 3857 struct ftrace_hash *hash; 3858 struct list_head *next; 3859 struct hlist_node *hnd = NULL; 3860 struct hlist_head *hhd; 3861 int size; 3862 3863 (*pos)++; 3864 iter->pos = *pos; 3865 3866 if (!tr) 3867 return NULL; 3868 3869 func_probes = &tr->func_probes; 3870 if (list_empty(func_probes)) 3871 return NULL; 3872 3873 if (!iter->probe) { 3874 next = func_probes->next; 3875 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3876 } 3877 3878 if (iter->probe_entry) 3879 hnd = &iter->probe_entry->hlist; 3880 3881 hash = iter->probe->ops.func_hash->filter_hash; 3882 3883 /* 3884 * A probe being registered may temporarily have an empty hash 3885 * and it's at the end of the func_probes list. 3886 */ 3887 if (!hash || hash == EMPTY_HASH) 3888 return NULL; 3889 3890 size = 1 << hash->size_bits; 3891 3892 retry: 3893 if (iter->pidx >= size) { 3894 if (iter->probe->list.next == func_probes) 3895 return NULL; 3896 next = iter->probe->list.next; 3897 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3898 hash = iter->probe->ops.func_hash->filter_hash; 3899 size = 1 << hash->size_bits; 3900 iter->pidx = 0; 3901 } 3902 3903 hhd = &hash->buckets[iter->pidx]; 3904 3905 if (hlist_empty(hhd)) { 3906 iter->pidx++; 3907 hnd = NULL; 3908 goto retry; 3909 } 3910 3911 if (!hnd) 3912 hnd = hhd->first; 3913 else { 3914 hnd = hnd->next; 3915 if (!hnd) { 3916 iter->pidx++; 3917 goto retry; 3918 } 3919 } 3920 3921 if (WARN_ON_ONCE(!hnd)) 3922 return NULL; 3923 3924 iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist); 3925 3926 return iter; 3927 } 3928 3929 static void *t_probe_start(struct seq_file *m, loff_t *pos) 3930 { 3931 struct ftrace_iterator *iter = m->private; 3932 void *p = NULL; 3933 loff_t l; 3934 3935 if (!(iter->flags & FTRACE_ITER_DO_PROBES)) 3936 return NULL; 3937 3938 if (iter->mod_pos > *pos) 3939 return NULL; 3940 3941 iter->probe = NULL; 3942 iter->probe_entry = NULL; 3943 iter->pidx = 0; 3944 for (l = 0; l <= (*pos - iter->mod_pos); ) { 3945 p = t_probe_next(m, &l); 3946 if (!p) 3947 break; 3948 } 3949 if (!p) 3950 return NULL; 3951 3952 /* Only set this if we have an item */ 3953 iter->flags |= FTRACE_ITER_PROBE; 3954 3955 return iter; 3956 } 3957 3958 static int 3959 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter) 3960 { 3961 struct ftrace_func_entry *probe_entry; 3962 struct ftrace_probe_ops *probe_ops; 3963 struct ftrace_func_probe *probe; 3964 3965 probe = iter->probe; 3966 probe_entry = iter->probe_entry; 3967 3968 if (WARN_ON_ONCE(!probe || !probe_entry)) 3969 return -EIO; 3970 3971 probe_ops = probe->probe_ops; 3972 3973 if (probe_ops->print) 3974 return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data); 3975 3976 seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip, 3977 (void *)probe_ops->func); 3978 3979 return 0; 3980 } 3981 3982 static void * 3983 t_mod_next(struct seq_file *m, loff_t *pos) 3984 { 3985 struct ftrace_iterator *iter = m->private; 3986 struct trace_array *tr = iter->tr; 3987 3988 (*pos)++; 3989 iter->pos = *pos; 3990 3991 iter->mod_list = iter->mod_list->next; 3992 3993 if (iter->mod_list == &tr->mod_trace || 3994 iter->mod_list == &tr->mod_notrace) { 3995 iter->flags &= ~FTRACE_ITER_MOD; 3996 return NULL; 3997 } 3998 3999 iter->mod_pos = *pos; 4000 4001 return iter; 4002 } 4003 4004 static void *t_mod_start(struct seq_file *m, loff_t *pos) 4005 { 4006 struct ftrace_iterator *iter = m->private; 4007 void *p = NULL; 4008 loff_t l; 4009 4010 if (iter->func_pos > *pos) 4011 return NULL; 4012 4013 iter->mod_pos = iter->func_pos; 4014 4015 /* probes are only available if tr is set */ 4016 if (!iter->tr) 4017 return NULL; 4018 4019 for (l = 0; l <= (*pos - iter->func_pos); ) { 4020 p = t_mod_next(m, &l); 4021 if (!p) 4022 break; 4023 } 4024 if (!p) { 4025 iter->flags &= ~FTRACE_ITER_MOD; 4026 return t_probe_start(m, pos); 4027 } 4028 4029 /* Only set this if we have an item */ 4030 iter->flags |= FTRACE_ITER_MOD; 4031 4032 return iter; 4033 } 4034 4035 static int 4036 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter) 4037 { 4038 struct ftrace_mod_load *ftrace_mod; 4039 struct trace_array *tr = iter->tr; 4040 4041 if (WARN_ON_ONCE(!iter->mod_list) || 4042 iter->mod_list == &tr->mod_trace || 4043 iter->mod_list == &tr->mod_notrace) 4044 return -EIO; 4045 4046 ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list); 4047 4048 if (ftrace_mod->func) 4049 seq_printf(m, "%s", ftrace_mod->func); 4050 else 4051 seq_putc(m, '*'); 4052 4053 seq_printf(m, ":mod:%s\n", ftrace_mod->module); 4054 4055 return 0; 4056 } 4057 4058 static void * 4059 t_func_next(struct seq_file *m, loff_t *pos) 4060 { 4061 struct ftrace_iterator *iter = m->private; 4062 struct dyn_ftrace *rec = NULL; 4063 4064 (*pos)++; 4065 4066 retry: 4067 if (iter->idx >= iter->pg->index) { 4068 if (iter->pg->next) { 4069 iter->pg = iter->pg->next; 4070 iter->idx = 0; 4071 goto retry; 4072 } 4073 } else { 4074 rec = &iter->pg->records[iter->idx++]; 4075 if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 4076 !ftrace_lookup_ip(iter->hash, rec->ip)) || 4077 4078 ((iter->flags & FTRACE_ITER_ENABLED) && 4079 !(rec->flags & FTRACE_FL_ENABLED)) || 4080 4081 ((iter->flags & FTRACE_ITER_TOUCHED) && 4082 !(rec->flags & FTRACE_FL_TOUCHED))) { 4083 4084 rec = NULL; 4085 goto retry; 4086 } 4087 } 4088 4089 if (!rec) 4090 return NULL; 4091 4092 iter->pos = iter->func_pos = *pos; 4093 iter->func = rec; 4094 4095 return iter; 4096 } 4097 4098 static void * 4099 t_next(struct seq_file *m, void *v, loff_t *pos) 4100 { 4101 struct ftrace_iterator *iter = m->private; 4102 loff_t l = *pos; /* t_probe_start() must use original pos */ 4103 void *ret; 4104 4105 if (unlikely(ftrace_disabled)) 4106 return NULL; 4107 4108 if (iter->flags & FTRACE_ITER_PROBE) 4109 return t_probe_next(m, pos); 4110 4111 if (iter->flags & FTRACE_ITER_MOD) 4112 return t_mod_next(m, pos); 4113 4114 if (iter->flags & FTRACE_ITER_PRINTALL) { 4115 /* next must increment pos, and t_probe_start does not */ 4116 (*pos)++; 4117 return t_mod_start(m, &l); 4118 } 4119 4120 ret = t_func_next(m, pos); 4121 4122 if (!ret) 4123 return t_mod_start(m, &l); 4124 4125 return ret; 4126 } 4127 4128 static void reset_iter_read(struct ftrace_iterator *iter) 4129 { 4130 iter->pos = 0; 4131 iter->func_pos = 0; 4132 iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD); 4133 } 4134 4135 static void *t_start(struct seq_file *m, loff_t *pos) 4136 { 4137 struct ftrace_iterator *iter = m->private; 4138 void *p = NULL; 4139 loff_t l; 4140 4141 mutex_lock(&ftrace_lock); 4142 4143 if (unlikely(ftrace_disabled)) 4144 return NULL; 4145 4146 /* 4147 * If an lseek was done, then reset and start from beginning. 4148 */ 4149 if (*pos < iter->pos) 4150 reset_iter_read(iter); 4151 4152 /* 4153 * For set_ftrace_filter reading, if we have the filter 4154 * off, we can short cut and just print out that all 4155 * functions are enabled. 4156 */ 4157 if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 4158 ftrace_hash_empty(iter->hash)) { 4159 iter->func_pos = 1; /* Account for the message */ 4160 if (*pos > 0) 4161 return t_mod_start(m, pos); 4162 iter->flags |= FTRACE_ITER_PRINTALL; 4163 /* reset in case of seek/pread */ 4164 iter->flags &= ~FTRACE_ITER_PROBE; 4165 return iter; 4166 } 4167 4168 if (iter->flags & FTRACE_ITER_MOD) 4169 return t_mod_start(m, pos); 4170 4171 /* 4172 * Unfortunately, we need to restart at ftrace_pages_start 4173 * every time we let go of the ftrace_mutex. This is because 4174 * those pointers can change without the lock. 4175 */ 4176 iter->pg = ftrace_pages_start; 4177 iter->idx = 0; 4178 for (l = 0; l <= *pos; ) { 4179 p = t_func_next(m, &l); 4180 if (!p) 4181 break; 4182 } 4183 4184 if (!p) 4185 return t_mod_start(m, pos); 4186 4187 return iter; 4188 } 4189 4190 static void t_stop(struct seq_file *m, void *p) 4191 { 4192 mutex_unlock(&ftrace_lock); 4193 } 4194 4195 void * __weak 4196 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec) 4197 { 4198 return NULL; 4199 } 4200 4201 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops, 4202 struct dyn_ftrace *rec) 4203 { 4204 void *ptr; 4205 4206 ptr = arch_ftrace_trampoline_func(ops, rec); 4207 if (ptr) 4208 seq_printf(m, " ->%pS", ptr); 4209 } 4210 4211 #ifdef FTRACE_MCOUNT_MAX_OFFSET 4212 /* 4213 * Weak functions can still have an mcount/fentry that is saved in 4214 * the __mcount_loc section. These can be detected by having a 4215 * symbol offset of greater than FTRACE_MCOUNT_MAX_OFFSET, as the 4216 * symbol found by kallsyms is not the function that the mcount/fentry 4217 * is part of. The offset is much greater in these cases. 4218 * 4219 * Test the record to make sure that the ip points to a valid kallsyms 4220 * and if not, mark it disabled. 4221 */ 4222 static int test_for_valid_rec(struct dyn_ftrace *rec) 4223 { 4224 char str[KSYM_SYMBOL_LEN]; 4225 unsigned long offset; 4226 const char *ret; 4227 4228 ret = kallsyms_lookup(rec->ip, NULL, &offset, NULL, str); 4229 4230 /* Weak functions can cause invalid addresses */ 4231 if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) { 4232 rec->flags |= FTRACE_FL_DISABLED; 4233 return 0; 4234 } 4235 return 1; 4236 } 4237 4238 static struct workqueue_struct *ftrace_check_wq __initdata; 4239 static struct work_struct ftrace_check_work __initdata; 4240 4241 /* 4242 * Scan all the mcount/fentry entries to make sure they are valid. 4243 */ 4244 static __init void ftrace_check_work_func(struct work_struct *work) 4245 { 4246 struct ftrace_page *pg; 4247 struct dyn_ftrace *rec; 4248 4249 mutex_lock(&ftrace_lock); 4250 do_for_each_ftrace_rec(pg, rec) { 4251 test_for_valid_rec(rec); 4252 } while_for_each_ftrace_rec(); 4253 mutex_unlock(&ftrace_lock); 4254 } 4255 4256 static int __init ftrace_check_for_weak_functions(void) 4257 { 4258 INIT_WORK(&ftrace_check_work, ftrace_check_work_func); 4259 4260 ftrace_check_wq = alloc_workqueue("ftrace_check_wq", WQ_UNBOUND, 0); 4261 4262 queue_work(ftrace_check_wq, &ftrace_check_work); 4263 return 0; 4264 } 4265 4266 static int __init ftrace_check_sync(void) 4267 { 4268 /* Make sure the ftrace_check updates are finished */ 4269 if (ftrace_check_wq) 4270 destroy_workqueue(ftrace_check_wq); 4271 return 0; 4272 } 4273 4274 late_initcall_sync(ftrace_check_sync); 4275 subsys_initcall(ftrace_check_for_weak_functions); 4276 4277 static int print_rec(struct seq_file *m, unsigned long ip) 4278 { 4279 unsigned long offset; 4280 char str[KSYM_SYMBOL_LEN]; 4281 char *modname; 4282 const char *ret; 4283 4284 ret = kallsyms_lookup(ip, NULL, &offset, &modname, str); 4285 /* Weak functions can cause invalid addresses */ 4286 if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) { 4287 snprintf(str, KSYM_SYMBOL_LEN, "%s_%ld", 4288 FTRACE_INVALID_FUNCTION, offset); 4289 ret = NULL; 4290 } 4291 4292 seq_puts(m, str); 4293 if (modname) 4294 seq_printf(m, " [%s]", modname); 4295 return ret == NULL ? -1 : 0; 4296 } 4297 #else 4298 static inline int test_for_valid_rec(struct dyn_ftrace *rec) 4299 { 4300 return 1; 4301 } 4302 4303 static inline int print_rec(struct seq_file *m, unsigned long ip) 4304 { 4305 seq_printf(m, "%ps", (void *)ip); 4306 return 0; 4307 } 4308 #endif 4309 4310 static int t_show(struct seq_file *m, void *v) 4311 { 4312 struct ftrace_iterator *iter = m->private; 4313 struct dyn_ftrace *rec; 4314 4315 if (iter->flags & FTRACE_ITER_PROBE) 4316 return t_probe_show(m, iter); 4317 4318 if (iter->flags & FTRACE_ITER_MOD) 4319 return t_mod_show(m, iter); 4320 4321 if (iter->flags & FTRACE_ITER_PRINTALL) { 4322 if (iter->flags & FTRACE_ITER_NOTRACE) 4323 seq_puts(m, "#### no functions disabled ####\n"); 4324 else 4325 seq_puts(m, "#### all functions enabled ####\n"); 4326 return 0; 4327 } 4328 4329 rec = iter->func; 4330 4331 if (!rec) 4332 return 0; 4333 4334 if (iter->flags & FTRACE_ITER_ADDRS) 4335 seq_printf(m, "%lx ", rec->ip); 4336 4337 if (print_rec(m, rec->ip)) { 4338 /* This should only happen when a rec is disabled */ 4339 WARN_ON_ONCE(!(rec->flags & FTRACE_FL_DISABLED)); 4340 seq_putc(m, '\n'); 4341 return 0; 4342 } 4343 4344 if (iter->flags & (FTRACE_ITER_ENABLED | FTRACE_ITER_TOUCHED)) { 4345 struct ftrace_ops *ops; 4346 4347 seq_printf(m, " (%ld)%s%s%s%s%s", 4348 ftrace_rec_count(rec), 4349 rec->flags & FTRACE_FL_REGS ? " R" : " ", 4350 rec->flags & FTRACE_FL_IPMODIFY ? " I" : " ", 4351 rec->flags & FTRACE_FL_DIRECT ? " D" : " ", 4352 rec->flags & FTRACE_FL_CALL_OPS ? " O" : " ", 4353 rec->flags & FTRACE_FL_MODIFIED ? " M " : " "); 4354 if (rec->flags & FTRACE_FL_TRAMP_EN) { 4355 ops = ftrace_find_tramp_ops_any(rec); 4356 if (ops) { 4357 do { 4358 seq_printf(m, "\ttramp: %pS (%pS)", 4359 (void *)ops->trampoline, 4360 (void *)ops->func); 4361 add_trampoline_func(m, ops, rec); 4362 ops = ftrace_find_tramp_ops_next(rec, ops); 4363 } while (ops); 4364 } else 4365 seq_puts(m, "\ttramp: ERROR!"); 4366 } else { 4367 add_trampoline_func(m, NULL, rec); 4368 } 4369 if (rec->flags & FTRACE_FL_CALL_OPS_EN) { 4370 ops = ftrace_find_unique_ops(rec); 4371 if (ops) { 4372 seq_printf(m, "\tops: %pS (%pS)", 4373 ops, ops->func); 4374 } else { 4375 seq_puts(m, "\tops: ERROR!"); 4376 } 4377 } 4378 if (rec->flags & FTRACE_FL_DIRECT) { 4379 unsigned long direct; 4380 4381 direct = ftrace_find_rec_direct(rec->ip); 4382 if (direct) 4383 seq_printf(m, "\n\tdirect-->%pS", (void *)direct); 4384 } 4385 } 4386 4387 seq_putc(m, '\n'); 4388 4389 return 0; 4390 } 4391 4392 static const struct seq_operations show_ftrace_seq_ops = { 4393 .start = t_start, 4394 .next = t_next, 4395 .stop = t_stop, 4396 .show = t_show, 4397 }; 4398 4399 static int 4400 ftrace_avail_open(struct inode *inode, struct file *file) 4401 { 4402 struct ftrace_iterator *iter; 4403 int ret; 4404 4405 ret = security_locked_down(LOCKDOWN_TRACEFS); 4406 if (ret) 4407 return ret; 4408 4409 if (unlikely(ftrace_disabled)) 4410 return -ENODEV; 4411 4412 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 4413 if (!iter) 4414 return -ENOMEM; 4415 4416 iter->pg = ftrace_pages_start; 4417 iter->ops = &global_ops; 4418 4419 return 0; 4420 } 4421 4422 static int 4423 ftrace_enabled_open(struct inode *inode, struct file *file) 4424 { 4425 struct ftrace_iterator *iter; 4426 4427 /* 4428 * This shows us what functions are currently being 4429 * traced and by what. Not sure if we want lockdown 4430 * to hide such critical information for an admin. 4431 * Although, perhaps it can show information we don't 4432 * want people to see, but if something is tracing 4433 * something, we probably want to know about it. 4434 */ 4435 4436 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 4437 if (!iter) 4438 return -ENOMEM; 4439 4440 iter->pg = ftrace_pages_start; 4441 iter->flags = FTRACE_ITER_ENABLED; 4442 iter->ops = &global_ops; 4443 4444 return 0; 4445 } 4446 4447 static int 4448 ftrace_touched_open(struct inode *inode, struct file *file) 4449 { 4450 struct ftrace_iterator *iter; 4451 4452 /* 4453 * This shows us what functions have ever been enabled 4454 * (traced, direct, patched, etc). Not sure if we want lockdown 4455 * to hide such critical information for an admin. 4456 * Although, perhaps it can show information we don't 4457 * want people to see, but if something had traced 4458 * something, we probably want to know about it. 4459 */ 4460 4461 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 4462 if (!iter) 4463 return -ENOMEM; 4464 4465 iter->pg = ftrace_pages_start; 4466 iter->flags = FTRACE_ITER_TOUCHED; 4467 iter->ops = &global_ops; 4468 4469 return 0; 4470 } 4471 4472 static int 4473 ftrace_avail_addrs_open(struct inode *inode, struct file *file) 4474 { 4475 struct ftrace_iterator *iter; 4476 int ret; 4477 4478 ret = security_locked_down(LOCKDOWN_TRACEFS); 4479 if (ret) 4480 return ret; 4481 4482 if (unlikely(ftrace_disabled)) 4483 return -ENODEV; 4484 4485 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 4486 if (!iter) 4487 return -ENOMEM; 4488 4489 iter->pg = ftrace_pages_start; 4490 iter->flags = FTRACE_ITER_ADDRS; 4491 iter->ops = &global_ops; 4492 4493 return 0; 4494 } 4495 4496 /** 4497 * ftrace_regex_open - initialize function tracer filter files 4498 * @ops: The ftrace_ops that hold the hash filters 4499 * @flag: The type of filter to process 4500 * @inode: The inode, usually passed in to your open routine 4501 * @file: The file, usually passed in to your open routine 4502 * 4503 * ftrace_regex_open() initializes the filter files for the 4504 * @ops. Depending on @flag it may process the filter hash or 4505 * the notrace hash of @ops. With this called from the open 4506 * routine, you can use ftrace_filter_write() for the write 4507 * routine if @flag has FTRACE_ITER_FILTER set, or 4508 * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set. 4509 * tracing_lseek() should be used as the lseek routine, and 4510 * release must call ftrace_regex_release(). 4511 * 4512 * Returns: 0 on success or a negative errno value on failure 4513 */ 4514 int 4515 ftrace_regex_open(struct ftrace_ops *ops, int flag, 4516 struct inode *inode, struct file *file) 4517 { 4518 struct ftrace_iterator *iter; 4519 struct ftrace_hash *hash; 4520 struct list_head *mod_head; 4521 struct trace_array *tr = ops->private; 4522 int ret = -ENOMEM; 4523 4524 ftrace_ops_init(ops); 4525 4526 if (unlikely(ftrace_disabled)) 4527 return -ENODEV; 4528 4529 if (tracing_check_open_get_tr(tr)) 4530 return -ENODEV; 4531 4532 iter = kzalloc(sizeof(*iter), GFP_KERNEL); 4533 if (!iter) 4534 goto out; 4535 4536 if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) 4537 goto out; 4538 4539 iter->ops = ops; 4540 iter->flags = flag; 4541 iter->tr = tr; 4542 4543 mutex_lock(&ops->func_hash->regex_lock); 4544 4545 if (flag & FTRACE_ITER_NOTRACE) { 4546 hash = ops->func_hash->notrace_hash; 4547 mod_head = tr ? &tr->mod_notrace : NULL; 4548 } else { 4549 hash = ops->func_hash->filter_hash; 4550 mod_head = tr ? &tr->mod_trace : NULL; 4551 } 4552 4553 iter->mod_list = mod_head; 4554 4555 if (file->f_mode & FMODE_WRITE) { 4556 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 4557 4558 if (file->f_flags & O_TRUNC) { 4559 iter->hash = alloc_ftrace_hash(size_bits); 4560 clear_ftrace_mod_list(mod_head); 4561 } else { 4562 iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash); 4563 } 4564 4565 if (!iter->hash) { 4566 trace_parser_put(&iter->parser); 4567 goto out_unlock; 4568 } 4569 } else 4570 iter->hash = hash; 4571 4572 ret = 0; 4573 4574 if (file->f_mode & FMODE_READ) { 4575 iter->pg = ftrace_pages_start; 4576 4577 ret = seq_open(file, &show_ftrace_seq_ops); 4578 if (!ret) { 4579 struct seq_file *m = file->private_data; 4580 m->private = iter; 4581 } else { 4582 /* Failed */ 4583 free_ftrace_hash(iter->hash); 4584 trace_parser_put(&iter->parser); 4585 } 4586 } else 4587 file->private_data = iter; 4588 4589 out_unlock: 4590 mutex_unlock(&ops->func_hash->regex_lock); 4591 4592 out: 4593 if (ret) { 4594 kfree(iter); 4595 if (tr) 4596 trace_array_put(tr); 4597 } 4598 4599 return ret; 4600 } 4601 4602 static int 4603 ftrace_filter_open(struct inode *inode, struct file *file) 4604 { 4605 struct ftrace_ops *ops = inode->i_private; 4606 4607 /* Checks for tracefs lockdown */ 4608 return ftrace_regex_open(ops, 4609 FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES, 4610 inode, file); 4611 } 4612 4613 static int 4614 ftrace_notrace_open(struct inode *inode, struct file *file) 4615 { 4616 struct ftrace_ops *ops = inode->i_private; 4617 4618 /* Checks for tracefs lockdown */ 4619 return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE, 4620 inode, file); 4621 } 4622 4623 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */ 4624 struct ftrace_glob { 4625 char *search; 4626 unsigned len; 4627 int type; 4628 }; 4629 4630 /* 4631 * If symbols in an architecture don't correspond exactly to the user-visible 4632 * name of what they represent, it is possible to define this function to 4633 * perform the necessary adjustments. 4634 */ 4635 char * __weak arch_ftrace_match_adjust(char *str, const char *search) 4636 { 4637 return str; 4638 } 4639 4640 static int ftrace_match(char *str, struct ftrace_glob *g) 4641 { 4642 int matched = 0; 4643 int slen; 4644 4645 str = arch_ftrace_match_adjust(str, g->search); 4646 4647 switch (g->type) { 4648 case MATCH_FULL: 4649 if (strcmp(str, g->search) == 0) 4650 matched = 1; 4651 break; 4652 case MATCH_FRONT_ONLY: 4653 if (strncmp(str, g->search, g->len) == 0) 4654 matched = 1; 4655 break; 4656 case MATCH_MIDDLE_ONLY: 4657 if (strstr(str, g->search)) 4658 matched = 1; 4659 break; 4660 case MATCH_END_ONLY: 4661 slen = strlen(str); 4662 if (slen >= g->len && 4663 memcmp(str + slen - g->len, g->search, g->len) == 0) 4664 matched = 1; 4665 break; 4666 case MATCH_GLOB: 4667 if (glob_match(g->search, str)) 4668 matched = 1; 4669 break; 4670 } 4671 4672 return matched; 4673 } 4674 4675 static int 4676 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter) 4677 { 4678 struct ftrace_func_entry *entry; 4679 int ret = 0; 4680 4681 entry = ftrace_lookup_ip(hash, rec->ip); 4682 if (clear_filter) { 4683 /* Do nothing if it doesn't exist */ 4684 if (!entry) 4685 return 0; 4686 4687 free_hash_entry(hash, entry); 4688 } else { 4689 /* Do nothing if it exists */ 4690 if (entry) 4691 return 0; 4692 if (add_hash_entry(hash, rec->ip) == NULL) 4693 ret = -ENOMEM; 4694 } 4695 return ret; 4696 } 4697 4698 static int 4699 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g, 4700 int clear_filter) 4701 { 4702 long index; 4703 struct ftrace_page *pg; 4704 struct dyn_ftrace *rec; 4705 4706 /* The index starts at 1 */ 4707 if (kstrtoul(func_g->search, 0, &index) || --index < 0) 4708 return 0; 4709 4710 do_for_each_ftrace_rec(pg, rec) { 4711 if (pg->index <= index) { 4712 index -= pg->index; 4713 /* this is a double loop, break goes to the next page */ 4714 break; 4715 } 4716 rec = &pg->records[index]; 4717 enter_record(hash, rec, clear_filter); 4718 return 1; 4719 } while_for_each_ftrace_rec(); 4720 return 0; 4721 } 4722 4723 #ifdef FTRACE_MCOUNT_MAX_OFFSET 4724 static int lookup_ip(unsigned long ip, char **modname, char *str) 4725 { 4726 unsigned long offset; 4727 4728 kallsyms_lookup(ip, NULL, &offset, modname, str); 4729 if (offset > FTRACE_MCOUNT_MAX_OFFSET) 4730 return -1; 4731 return 0; 4732 } 4733 #else 4734 static int lookup_ip(unsigned long ip, char **modname, char *str) 4735 { 4736 kallsyms_lookup(ip, NULL, NULL, modname, str); 4737 return 0; 4738 } 4739 #endif 4740 4741 static int 4742 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g, 4743 struct ftrace_glob *mod_g, int exclude_mod) 4744 { 4745 char str[KSYM_SYMBOL_LEN]; 4746 char *modname; 4747 4748 if (lookup_ip(rec->ip, &modname, str)) { 4749 /* This should only happen when a rec is disabled */ 4750 WARN_ON_ONCE(system_state == SYSTEM_RUNNING && 4751 !(rec->flags & FTRACE_FL_DISABLED)); 4752 return 0; 4753 } 4754 4755 if (mod_g) { 4756 int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0; 4757 4758 /* blank module name to match all modules */ 4759 if (!mod_g->len) { 4760 /* blank module globbing: modname xor exclude_mod */ 4761 if (!exclude_mod != !modname) 4762 goto func_match; 4763 return 0; 4764 } 4765 4766 /* 4767 * exclude_mod is set to trace everything but the given 4768 * module. If it is set and the module matches, then 4769 * return 0. If it is not set, and the module doesn't match 4770 * also return 0. Otherwise, check the function to see if 4771 * that matches. 4772 */ 4773 if (!mod_matches == !exclude_mod) 4774 return 0; 4775 func_match: 4776 /* blank search means to match all funcs in the mod */ 4777 if (!func_g->len) 4778 return 1; 4779 } 4780 4781 return ftrace_match(str, func_g); 4782 } 4783 4784 static int 4785 match_records(struct ftrace_hash *hash, char *func, int len, char *mod) 4786 { 4787 struct ftrace_page *pg; 4788 struct dyn_ftrace *rec; 4789 struct ftrace_glob func_g = { .type = MATCH_FULL }; 4790 struct ftrace_glob mod_g = { .type = MATCH_FULL }; 4791 struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL; 4792 int exclude_mod = 0; 4793 int found = 0; 4794 int ret; 4795 int clear_filter = 0; 4796 4797 if (func) { 4798 func_g.type = filter_parse_regex(func, len, &func_g.search, 4799 &clear_filter); 4800 func_g.len = strlen(func_g.search); 4801 } 4802 4803 if (mod) { 4804 mod_g.type = filter_parse_regex(mod, strlen(mod), 4805 &mod_g.search, &exclude_mod); 4806 mod_g.len = strlen(mod_g.search); 4807 } 4808 4809 mutex_lock(&ftrace_lock); 4810 4811 if (unlikely(ftrace_disabled)) 4812 goto out_unlock; 4813 4814 if (func_g.type == MATCH_INDEX) { 4815 found = add_rec_by_index(hash, &func_g, clear_filter); 4816 goto out_unlock; 4817 } 4818 4819 do_for_each_ftrace_rec(pg, rec) { 4820 4821 if (rec->flags & FTRACE_FL_DISABLED) 4822 continue; 4823 4824 if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) { 4825 ret = enter_record(hash, rec, clear_filter); 4826 if (ret < 0) { 4827 found = ret; 4828 goto out_unlock; 4829 } 4830 found = 1; 4831 } 4832 cond_resched(); 4833 } while_for_each_ftrace_rec(); 4834 out_unlock: 4835 mutex_unlock(&ftrace_lock); 4836 4837 return found; 4838 } 4839 4840 static int 4841 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len) 4842 { 4843 return match_records(hash, buff, len, NULL); 4844 } 4845 4846 static void ftrace_ops_update_code(struct ftrace_ops *ops, 4847 struct ftrace_ops_hash *old_hash) 4848 { 4849 struct ftrace_ops *op; 4850 4851 if (!ftrace_enabled) 4852 return; 4853 4854 if (ops->flags & FTRACE_OPS_FL_ENABLED) { 4855 ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash); 4856 return; 4857 } 4858 4859 /* 4860 * If this is the shared global_ops filter, then we need to 4861 * check if there is another ops that shares it, is enabled. 4862 * If so, we still need to run the modify code. 4863 */ 4864 if (ops->func_hash != &global_ops.local_hash) 4865 return; 4866 4867 do_for_each_ftrace_op(op, ftrace_ops_list) { 4868 if (op->func_hash == &global_ops.local_hash && 4869 op->flags & FTRACE_OPS_FL_ENABLED) { 4870 ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash); 4871 /* Only need to do this once */ 4872 return; 4873 } 4874 } while_for_each_ftrace_op(op); 4875 } 4876 4877 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops, 4878 struct ftrace_hash **orig_hash, 4879 struct ftrace_hash *hash, 4880 int enable) 4881 { 4882 if (ops->flags & FTRACE_OPS_FL_SUBOP) 4883 return ftrace_hash_move_and_update_subops(ops, orig_hash, hash, enable); 4884 4885 /* 4886 * If this ops is not enabled, it could be sharing its filters 4887 * with a subop. If that's the case, update the subop instead of 4888 * this ops. Shared filters are only allowed to have one ops set 4889 * at a time, and if we update the ops that is not enabled, 4890 * it will not affect subops that share it. 4891 */ 4892 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) { 4893 struct ftrace_ops *op; 4894 4895 /* Check if any other manager subops maps to this hash */ 4896 do_for_each_ftrace_op(op, ftrace_ops_list) { 4897 struct ftrace_ops *subops; 4898 4899 list_for_each_entry(subops, &op->subop_list, list) { 4900 if ((subops->flags & FTRACE_OPS_FL_ENABLED) && 4901 subops->func_hash == ops->func_hash) { 4902 return ftrace_hash_move_and_update_subops(subops, orig_hash, hash, enable); 4903 } 4904 } 4905 } while_for_each_ftrace_op(op); 4906 } 4907 4908 return __ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable); 4909 } 4910 4911 static bool module_exists(const char *module) 4912 { 4913 /* All modules have the symbol __this_module */ 4914 static const char this_mod[] = "__this_module"; 4915 char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2]; 4916 unsigned long val; 4917 int n; 4918 4919 n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod); 4920 4921 if (n > sizeof(modname) - 1) 4922 return false; 4923 4924 val = module_kallsyms_lookup_name(modname); 4925 return val != 0; 4926 } 4927 4928 static int cache_mod(struct trace_array *tr, 4929 const char *func, char *module, int enable) 4930 { 4931 struct ftrace_mod_load *ftrace_mod, *n; 4932 struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace; 4933 int ret; 4934 4935 mutex_lock(&ftrace_lock); 4936 4937 /* We do not cache inverse filters */ 4938 if (func[0] == '!') { 4939 func++; 4940 ret = -EINVAL; 4941 4942 /* Look to remove this hash */ 4943 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4944 if (strcmp(ftrace_mod->module, module) != 0) 4945 continue; 4946 4947 /* no func matches all */ 4948 if (strcmp(func, "*") == 0 || 4949 (ftrace_mod->func && 4950 strcmp(ftrace_mod->func, func) == 0)) { 4951 ret = 0; 4952 free_ftrace_mod(ftrace_mod); 4953 continue; 4954 } 4955 } 4956 goto out; 4957 } 4958 4959 ret = -EINVAL; 4960 /* We only care about modules that have not been loaded yet */ 4961 if (module_exists(module)) 4962 goto out; 4963 4964 /* Save this string off, and execute it when the module is loaded */ 4965 ret = ftrace_add_mod(tr, func, module, enable); 4966 out: 4967 mutex_unlock(&ftrace_lock); 4968 4969 return ret; 4970 } 4971 4972 static int 4973 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 4974 int reset, int enable); 4975 4976 #ifdef CONFIG_MODULES 4977 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops, 4978 char *mod, bool enable) 4979 { 4980 struct ftrace_mod_load *ftrace_mod, *n; 4981 struct ftrace_hash **orig_hash, *new_hash; 4982 LIST_HEAD(process_mods); 4983 char *func; 4984 4985 mutex_lock(&ops->func_hash->regex_lock); 4986 4987 if (enable) 4988 orig_hash = &ops->func_hash->filter_hash; 4989 else 4990 orig_hash = &ops->func_hash->notrace_hash; 4991 4992 new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, 4993 *orig_hash); 4994 if (!new_hash) 4995 goto out; /* warn? */ 4996 4997 mutex_lock(&ftrace_lock); 4998 4999 list_for_each_entry_safe(ftrace_mod, n, head, list) { 5000 5001 if (strcmp(ftrace_mod->module, mod) != 0) 5002 continue; 5003 5004 if (ftrace_mod->func) 5005 func = kstrdup(ftrace_mod->func, GFP_KERNEL); 5006 else 5007 func = kstrdup("*", GFP_KERNEL); 5008 5009 if (!func) /* warn? */ 5010 continue; 5011 5012 list_move(&ftrace_mod->list, &process_mods); 5013 5014 /* Use the newly allocated func, as it may be "*" */ 5015 kfree(ftrace_mod->func); 5016 ftrace_mod->func = func; 5017 } 5018 5019 mutex_unlock(&ftrace_lock); 5020 5021 list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) { 5022 5023 func = ftrace_mod->func; 5024 5025 /* Grabs ftrace_lock, which is why we have this extra step */ 5026 match_records(new_hash, func, strlen(func), mod); 5027 free_ftrace_mod(ftrace_mod); 5028 } 5029 5030 if (enable && list_empty(head)) 5031 new_hash->flags &= ~FTRACE_HASH_FL_MOD; 5032 5033 mutex_lock(&ftrace_lock); 5034 5035 ftrace_hash_move_and_update_ops(ops, orig_hash, 5036 new_hash, enable); 5037 mutex_unlock(&ftrace_lock); 5038 5039 out: 5040 mutex_unlock(&ops->func_hash->regex_lock); 5041 5042 free_ftrace_hash(new_hash); 5043 } 5044 5045 static void process_cached_mods(const char *mod_name) 5046 { 5047 struct trace_array *tr; 5048 char *mod; 5049 5050 mod = kstrdup(mod_name, GFP_KERNEL); 5051 if (!mod) 5052 return; 5053 5054 mutex_lock(&trace_types_lock); 5055 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 5056 if (!list_empty(&tr->mod_trace)) 5057 process_mod_list(&tr->mod_trace, tr->ops, mod, true); 5058 if (!list_empty(&tr->mod_notrace)) 5059 process_mod_list(&tr->mod_notrace, tr->ops, mod, false); 5060 } 5061 mutex_unlock(&trace_types_lock); 5062 5063 kfree(mod); 5064 } 5065 #endif 5066 5067 /* 5068 * We register the module command as a template to show others how 5069 * to register the a command as well. 5070 */ 5071 5072 static int 5073 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash, 5074 char *func_orig, char *cmd, char *module, int enable) 5075 { 5076 char *func; 5077 int ret; 5078 5079 /* match_records() modifies func, and we need the original */ 5080 func = kstrdup(func_orig, GFP_KERNEL); 5081 if (!func) 5082 return -ENOMEM; 5083 5084 /* 5085 * cmd == 'mod' because we only registered this func 5086 * for the 'mod' ftrace_func_command. 5087 * But if you register one func with multiple commands, 5088 * you can tell which command was used by the cmd 5089 * parameter. 5090 */ 5091 ret = match_records(hash, func, strlen(func), module); 5092 kfree(func); 5093 5094 if (!ret) 5095 return cache_mod(tr, func_orig, module, enable); 5096 if (ret < 0) 5097 return ret; 5098 return 0; 5099 } 5100 5101 static struct ftrace_func_command ftrace_mod_cmd = { 5102 .name = "mod", 5103 .func = ftrace_mod_callback, 5104 }; 5105 5106 static int __init ftrace_mod_cmd_init(void) 5107 { 5108 return register_ftrace_command(&ftrace_mod_cmd); 5109 } 5110 core_initcall(ftrace_mod_cmd_init); 5111 5112 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip, 5113 struct ftrace_ops *op, struct ftrace_regs *fregs) 5114 { 5115 struct ftrace_probe_ops *probe_ops; 5116 struct ftrace_func_probe *probe; 5117 5118 probe = container_of(op, struct ftrace_func_probe, ops); 5119 probe_ops = probe->probe_ops; 5120 5121 /* 5122 * Disable preemption for these calls to prevent a RCU grace 5123 * period. This syncs the hash iteration and freeing of items 5124 * on the hash. rcu_read_lock is too dangerous here. 5125 */ 5126 preempt_disable_notrace(); 5127 probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data); 5128 preempt_enable_notrace(); 5129 } 5130 5131 struct ftrace_func_map { 5132 struct ftrace_func_entry entry; 5133 void *data; 5134 }; 5135 5136 struct ftrace_func_mapper { 5137 struct ftrace_hash hash; 5138 }; 5139 5140 /** 5141 * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper 5142 * 5143 * Returns: a ftrace_func_mapper descriptor that can be used to map ips to data. 5144 */ 5145 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void) 5146 { 5147 struct ftrace_hash *hash; 5148 5149 /* 5150 * The mapper is simply a ftrace_hash, but since the entries 5151 * in the hash are not ftrace_func_entry type, we define it 5152 * as a separate structure. 5153 */ 5154 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 5155 return (struct ftrace_func_mapper *)hash; 5156 } 5157 5158 /** 5159 * ftrace_func_mapper_find_ip - Find some data mapped to an ip 5160 * @mapper: The mapper that has the ip maps 5161 * @ip: the instruction pointer to find the data for 5162 * 5163 * Returns: the data mapped to @ip if found otherwise NULL. The return 5164 * is actually the address of the mapper data pointer. The address is 5165 * returned for use cases where the data is no bigger than a long, and 5166 * the user can use the data pointer as its data instead of having to 5167 * allocate more memory for the reference. 5168 */ 5169 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper, 5170 unsigned long ip) 5171 { 5172 struct ftrace_func_entry *entry; 5173 struct ftrace_func_map *map; 5174 5175 entry = ftrace_lookup_ip(&mapper->hash, ip); 5176 if (!entry) 5177 return NULL; 5178 5179 map = (struct ftrace_func_map *)entry; 5180 return &map->data; 5181 } 5182 5183 /** 5184 * ftrace_func_mapper_add_ip - Map some data to an ip 5185 * @mapper: The mapper that has the ip maps 5186 * @ip: The instruction pointer address to map @data to 5187 * @data: The data to map to @ip 5188 * 5189 * Returns: 0 on success otherwise an error. 5190 */ 5191 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper, 5192 unsigned long ip, void *data) 5193 { 5194 struct ftrace_func_entry *entry; 5195 struct ftrace_func_map *map; 5196 5197 entry = ftrace_lookup_ip(&mapper->hash, ip); 5198 if (entry) 5199 return -EBUSY; 5200 5201 map = kmalloc(sizeof(*map), GFP_KERNEL); 5202 if (!map) 5203 return -ENOMEM; 5204 5205 map->entry.ip = ip; 5206 map->data = data; 5207 5208 __add_hash_entry(&mapper->hash, &map->entry); 5209 5210 return 0; 5211 } 5212 5213 /** 5214 * ftrace_func_mapper_remove_ip - Remove an ip from the mapping 5215 * @mapper: The mapper that has the ip maps 5216 * @ip: The instruction pointer address to remove the data from 5217 * 5218 * Returns: the data if it is found, otherwise NULL. 5219 * Note, if the data pointer is used as the data itself, (see 5220 * ftrace_func_mapper_find_ip(), then the return value may be meaningless, 5221 * if the data pointer was set to zero. 5222 */ 5223 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper, 5224 unsigned long ip) 5225 { 5226 struct ftrace_func_entry *entry; 5227 struct ftrace_func_map *map; 5228 void *data; 5229 5230 entry = ftrace_lookup_ip(&mapper->hash, ip); 5231 if (!entry) 5232 return NULL; 5233 5234 map = (struct ftrace_func_map *)entry; 5235 data = map->data; 5236 5237 remove_hash_entry(&mapper->hash, entry); 5238 kfree(entry); 5239 5240 return data; 5241 } 5242 5243 /** 5244 * free_ftrace_func_mapper - free a mapping of ips and data 5245 * @mapper: The mapper that has the ip maps 5246 * @free_func: A function to be called on each data item. 5247 * 5248 * This is used to free the function mapper. The @free_func is optional 5249 * and can be used if the data needs to be freed as well. 5250 */ 5251 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper, 5252 ftrace_mapper_func free_func) 5253 { 5254 struct ftrace_func_entry *entry; 5255 struct ftrace_func_map *map; 5256 struct hlist_head *hhd; 5257 int size, i; 5258 5259 if (!mapper) 5260 return; 5261 5262 if (free_func && mapper->hash.count) { 5263 size = 1 << mapper->hash.size_bits; 5264 for (i = 0; i < size; i++) { 5265 hhd = &mapper->hash.buckets[i]; 5266 hlist_for_each_entry(entry, hhd, hlist) { 5267 map = (struct ftrace_func_map *)entry; 5268 free_func(map); 5269 } 5270 } 5271 } 5272 free_ftrace_hash(&mapper->hash); 5273 } 5274 5275 static void release_probe(struct ftrace_func_probe *probe) 5276 { 5277 struct ftrace_probe_ops *probe_ops; 5278 5279 mutex_lock(&ftrace_lock); 5280 5281 WARN_ON(probe->ref <= 0); 5282 5283 /* Subtract the ref that was used to protect this instance */ 5284 probe->ref--; 5285 5286 if (!probe->ref) { 5287 probe_ops = probe->probe_ops; 5288 /* 5289 * Sending zero as ip tells probe_ops to free 5290 * the probe->data itself 5291 */ 5292 if (probe_ops->free) 5293 probe_ops->free(probe_ops, probe->tr, 0, probe->data); 5294 list_del(&probe->list); 5295 kfree(probe); 5296 } 5297 mutex_unlock(&ftrace_lock); 5298 } 5299 5300 static void acquire_probe_locked(struct ftrace_func_probe *probe) 5301 { 5302 /* 5303 * Add one ref to keep it from being freed when releasing the 5304 * ftrace_lock mutex. 5305 */ 5306 probe->ref++; 5307 } 5308 5309 int 5310 register_ftrace_function_probe(char *glob, struct trace_array *tr, 5311 struct ftrace_probe_ops *probe_ops, 5312 void *data) 5313 { 5314 struct ftrace_func_probe *probe = NULL, *iter; 5315 struct ftrace_func_entry *entry; 5316 struct ftrace_hash **orig_hash; 5317 struct ftrace_hash *old_hash; 5318 struct ftrace_hash *hash; 5319 int count = 0; 5320 int size; 5321 int ret; 5322 int i; 5323 5324 if (WARN_ON(!tr)) 5325 return -EINVAL; 5326 5327 /* We do not support '!' for function probes */ 5328 if (WARN_ON(glob[0] == '!')) 5329 return -EINVAL; 5330 5331 5332 mutex_lock(&ftrace_lock); 5333 /* Check if the probe_ops is already registered */ 5334 list_for_each_entry(iter, &tr->func_probes, list) { 5335 if (iter->probe_ops == probe_ops) { 5336 probe = iter; 5337 break; 5338 } 5339 } 5340 if (!probe) { 5341 probe = kzalloc(sizeof(*probe), GFP_KERNEL); 5342 if (!probe) { 5343 mutex_unlock(&ftrace_lock); 5344 return -ENOMEM; 5345 } 5346 probe->probe_ops = probe_ops; 5347 probe->ops.func = function_trace_probe_call; 5348 probe->tr = tr; 5349 ftrace_ops_init(&probe->ops); 5350 list_add(&probe->list, &tr->func_probes); 5351 } 5352 5353 acquire_probe_locked(probe); 5354 5355 mutex_unlock(&ftrace_lock); 5356 5357 /* 5358 * Note, there's a small window here that the func_hash->filter_hash 5359 * may be NULL or empty. Need to be careful when reading the loop. 5360 */ 5361 mutex_lock(&probe->ops.func_hash->regex_lock); 5362 5363 orig_hash = &probe->ops.func_hash->filter_hash; 5364 old_hash = *orig_hash; 5365 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 5366 5367 if (!hash) { 5368 ret = -ENOMEM; 5369 goto out; 5370 } 5371 5372 ret = ftrace_match_records(hash, glob, strlen(glob)); 5373 5374 /* Nothing found? */ 5375 if (!ret) 5376 ret = -EINVAL; 5377 5378 if (ret < 0) 5379 goto out; 5380 5381 size = 1 << hash->size_bits; 5382 for (i = 0; i < size; i++) { 5383 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5384 if (ftrace_lookup_ip(old_hash, entry->ip)) 5385 continue; 5386 /* 5387 * The caller might want to do something special 5388 * for each function we find. We call the callback 5389 * to give the caller an opportunity to do so. 5390 */ 5391 if (probe_ops->init) { 5392 ret = probe_ops->init(probe_ops, tr, 5393 entry->ip, data, 5394 &probe->data); 5395 if (ret < 0) { 5396 if (probe_ops->free && count) 5397 probe_ops->free(probe_ops, tr, 5398 0, probe->data); 5399 probe->data = NULL; 5400 goto out; 5401 } 5402 } 5403 count++; 5404 } 5405 } 5406 5407 mutex_lock(&ftrace_lock); 5408 5409 if (!count) { 5410 /* Nothing was added? */ 5411 ret = -EINVAL; 5412 goto out_unlock; 5413 } 5414 5415 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 5416 hash, 1); 5417 if (ret < 0) 5418 goto err_unlock; 5419 5420 /* One ref for each new function traced */ 5421 probe->ref += count; 5422 5423 if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED)) 5424 ret = ftrace_startup(&probe->ops, 0); 5425 5426 out_unlock: 5427 mutex_unlock(&ftrace_lock); 5428 5429 if (!ret) 5430 ret = count; 5431 out: 5432 mutex_unlock(&probe->ops.func_hash->regex_lock); 5433 free_ftrace_hash(hash); 5434 5435 release_probe(probe); 5436 5437 return ret; 5438 5439 err_unlock: 5440 if (!probe_ops->free || !count) 5441 goto out_unlock; 5442 5443 /* Failed to do the move, need to call the free functions */ 5444 for (i = 0; i < size; i++) { 5445 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5446 if (ftrace_lookup_ip(old_hash, entry->ip)) 5447 continue; 5448 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 5449 } 5450 } 5451 goto out_unlock; 5452 } 5453 5454 int 5455 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr, 5456 struct ftrace_probe_ops *probe_ops) 5457 { 5458 struct ftrace_func_probe *probe = NULL, *iter; 5459 struct ftrace_ops_hash old_hash_ops; 5460 struct ftrace_func_entry *entry; 5461 struct ftrace_glob func_g; 5462 struct ftrace_hash **orig_hash; 5463 struct ftrace_hash *old_hash; 5464 struct ftrace_hash *hash = NULL; 5465 struct hlist_node *tmp; 5466 struct hlist_head hhd; 5467 char str[KSYM_SYMBOL_LEN]; 5468 int count = 0; 5469 int i, ret = -ENODEV; 5470 int size; 5471 5472 if (!glob || !strlen(glob) || !strcmp(glob, "*")) 5473 func_g.search = NULL; 5474 else { 5475 int not; 5476 5477 func_g.type = filter_parse_regex(glob, strlen(glob), 5478 &func_g.search, ¬); 5479 func_g.len = strlen(func_g.search); 5480 5481 /* we do not support '!' for function probes */ 5482 if (WARN_ON(not)) 5483 return -EINVAL; 5484 } 5485 5486 mutex_lock(&ftrace_lock); 5487 /* Check if the probe_ops is already registered */ 5488 list_for_each_entry(iter, &tr->func_probes, list) { 5489 if (iter->probe_ops == probe_ops) { 5490 probe = iter; 5491 break; 5492 } 5493 } 5494 if (!probe) 5495 goto err_unlock_ftrace; 5496 5497 ret = -EINVAL; 5498 if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED)) 5499 goto err_unlock_ftrace; 5500 5501 acquire_probe_locked(probe); 5502 5503 mutex_unlock(&ftrace_lock); 5504 5505 mutex_lock(&probe->ops.func_hash->regex_lock); 5506 5507 orig_hash = &probe->ops.func_hash->filter_hash; 5508 old_hash = *orig_hash; 5509 5510 if (ftrace_hash_empty(old_hash)) 5511 goto out_unlock; 5512 5513 old_hash_ops.filter_hash = old_hash; 5514 /* Probes only have filters */ 5515 old_hash_ops.notrace_hash = NULL; 5516 5517 ret = -ENOMEM; 5518 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 5519 if (!hash) 5520 goto out_unlock; 5521 5522 INIT_HLIST_HEAD(&hhd); 5523 5524 size = 1 << hash->size_bits; 5525 for (i = 0; i < size; i++) { 5526 hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) { 5527 5528 if (func_g.search) { 5529 kallsyms_lookup(entry->ip, NULL, NULL, 5530 NULL, str); 5531 if (!ftrace_match(str, &func_g)) 5532 continue; 5533 } 5534 count++; 5535 remove_hash_entry(hash, entry); 5536 hlist_add_head(&entry->hlist, &hhd); 5537 } 5538 } 5539 5540 /* Nothing found? */ 5541 if (!count) { 5542 ret = -EINVAL; 5543 goto out_unlock; 5544 } 5545 5546 mutex_lock(&ftrace_lock); 5547 5548 WARN_ON(probe->ref < count); 5549 5550 probe->ref -= count; 5551 5552 if (ftrace_hash_empty(hash)) 5553 ftrace_shutdown(&probe->ops, 0); 5554 5555 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 5556 hash, 1); 5557 5558 /* still need to update the function call sites */ 5559 if (ftrace_enabled && !ftrace_hash_empty(hash)) 5560 ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS, 5561 &old_hash_ops); 5562 synchronize_rcu(); 5563 5564 hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) { 5565 hlist_del(&entry->hlist); 5566 if (probe_ops->free) 5567 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 5568 kfree(entry); 5569 } 5570 mutex_unlock(&ftrace_lock); 5571 5572 out_unlock: 5573 mutex_unlock(&probe->ops.func_hash->regex_lock); 5574 free_ftrace_hash(hash); 5575 5576 release_probe(probe); 5577 5578 return ret; 5579 5580 err_unlock_ftrace: 5581 mutex_unlock(&ftrace_lock); 5582 return ret; 5583 } 5584 5585 void clear_ftrace_function_probes(struct trace_array *tr) 5586 { 5587 struct ftrace_func_probe *probe, *n; 5588 5589 list_for_each_entry_safe(probe, n, &tr->func_probes, list) 5590 unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops); 5591 } 5592 5593 static LIST_HEAD(ftrace_commands); 5594 static DEFINE_MUTEX(ftrace_cmd_mutex); 5595 5596 /* 5597 * Currently we only register ftrace commands from __init, so mark this 5598 * __init too. 5599 */ 5600 __init int register_ftrace_command(struct ftrace_func_command *cmd) 5601 { 5602 struct ftrace_func_command *p; 5603 int ret = 0; 5604 5605 mutex_lock(&ftrace_cmd_mutex); 5606 list_for_each_entry(p, &ftrace_commands, list) { 5607 if (strcmp(cmd->name, p->name) == 0) { 5608 ret = -EBUSY; 5609 goto out_unlock; 5610 } 5611 } 5612 list_add(&cmd->list, &ftrace_commands); 5613 out_unlock: 5614 mutex_unlock(&ftrace_cmd_mutex); 5615 5616 return ret; 5617 } 5618 5619 /* 5620 * Currently we only unregister ftrace commands from __init, so mark 5621 * this __init too. 5622 */ 5623 __init int unregister_ftrace_command(struct ftrace_func_command *cmd) 5624 { 5625 struct ftrace_func_command *p, *n; 5626 int ret = -ENODEV; 5627 5628 mutex_lock(&ftrace_cmd_mutex); 5629 list_for_each_entry_safe(p, n, &ftrace_commands, list) { 5630 if (strcmp(cmd->name, p->name) == 0) { 5631 ret = 0; 5632 list_del_init(&p->list); 5633 goto out_unlock; 5634 } 5635 } 5636 out_unlock: 5637 mutex_unlock(&ftrace_cmd_mutex); 5638 5639 return ret; 5640 } 5641 5642 static int ftrace_process_regex(struct ftrace_iterator *iter, 5643 char *buff, int len, int enable) 5644 { 5645 struct ftrace_hash *hash = iter->hash; 5646 struct trace_array *tr = iter->ops->private; 5647 char *func, *command, *next = buff; 5648 struct ftrace_func_command *p; 5649 int ret = -EINVAL; 5650 5651 func = strsep(&next, ":"); 5652 5653 if (!next) { 5654 ret = ftrace_match_records(hash, func, len); 5655 if (!ret) 5656 ret = -EINVAL; 5657 if (ret < 0) 5658 return ret; 5659 return 0; 5660 } 5661 5662 /* command found */ 5663 5664 command = strsep(&next, ":"); 5665 5666 mutex_lock(&ftrace_cmd_mutex); 5667 list_for_each_entry(p, &ftrace_commands, list) { 5668 if (strcmp(p->name, command) == 0) { 5669 ret = p->func(tr, hash, func, command, next, enable); 5670 goto out_unlock; 5671 } 5672 } 5673 out_unlock: 5674 mutex_unlock(&ftrace_cmd_mutex); 5675 5676 return ret; 5677 } 5678 5679 static ssize_t 5680 ftrace_regex_write(struct file *file, const char __user *ubuf, 5681 size_t cnt, loff_t *ppos, int enable) 5682 { 5683 struct ftrace_iterator *iter; 5684 struct trace_parser *parser; 5685 ssize_t ret, read; 5686 5687 if (!cnt) 5688 return 0; 5689 5690 if (file->f_mode & FMODE_READ) { 5691 struct seq_file *m = file->private_data; 5692 iter = m->private; 5693 } else 5694 iter = file->private_data; 5695 5696 if (unlikely(ftrace_disabled)) 5697 return -ENODEV; 5698 5699 /* iter->hash is a local copy, so we don't need regex_lock */ 5700 5701 parser = &iter->parser; 5702 read = trace_get_user(parser, ubuf, cnt, ppos); 5703 5704 if (read >= 0 && trace_parser_loaded(parser) && 5705 !trace_parser_cont(parser)) { 5706 ret = ftrace_process_regex(iter, parser->buffer, 5707 parser->idx, enable); 5708 trace_parser_clear(parser); 5709 if (ret < 0) 5710 goto out; 5711 } 5712 5713 ret = read; 5714 out: 5715 return ret; 5716 } 5717 5718 ssize_t 5719 ftrace_filter_write(struct file *file, const char __user *ubuf, 5720 size_t cnt, loff_t *ppos) 5721 { 5722 return ftrace_regex_write(file, ubuf, cnt, ppos, 1); 5723 } 5724 5725 ssize_t 5726 ftrace_notrace_write(struct file *file, const char __user *ubuf, 5727 size_t cnt, loff_t *ppos) 5728 { 5729 return ftrace_regex_write(file, ubuf, cnt, ppos, 0); 5730 } 5731 5732 static int 5733 __ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove) 5734 { 5735 struct ftrace_func_entry *entry; 5736 5737 ip = ftrace_location(ip); 5738 if (!ip) 5739 return -EINVAL; 5740 5741 if (remove) { 5742 entry = ftrace_lookup_ip(hash, ip); 5743 if (!entry) 5744 return -ENOENT; 5745 free_hash_entry(hash, entry); 5746 return 0; 5747 } 5748 5749 entry = add_hash_entry(hash, ip); 5750 return entry ? 0 : -ENOMEM; 5751 } 5752 5753 static int 5754 ftrace_match_addr(struct ftrace_hash *hash, unsigned long *ips, 5755 unsigned int cnt, int remove) 5756 { 5757 unsigned int i; 5758 int err; 5759 5760 for (i = 0; i < cnt; i++) { 5761 err = __ftrace_match_addr(hash, ips[i], remove); 5762 if (err) { 5763 /* 5764 * This expects the @hash is a temporary hash and if this 5765 * fails the caller must free the @hash. 5766 */ 5767 return err; 5768 } 5769 } 5770 return 0; 5771 } 5772 5773 static int 5774 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len, 5775 unsigned long *ips, unsigned int cnt, 5776 int remove, int reset, int enable) 5777 { 5778 struct ftrace_hash **orig_hash; 5779 struct ftrace_hash *hash; 5780 int ret; 5781 5782 if (unlikely(ftrace_disabled)) 5783 return -ENODEV; 5784 5785 mutex_lock(&ops->func_hash->regex_lock); 5786 5787 if (enable) 5788 orig_hash = &ops->func_hash->filter_hash; 5789 else 5790 orig_hash = &ops->func_hash->notrace_hash; 5791 5792 if (reset) 5793 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 5794 else 5795 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash); 5796 5797 if (!hash) { 5798 ret = -ENOMEM; 5799 goto out_regex_unlock; 5800 } 5801 5802 if (buf && !ftrace_match_records(hash, buf, len)) { 5803 ret = -EINVAL; 5804 goto out_regex_unlock; 5805 } 5806 if (ips) { 5807 ret = ftrace_match_addr(hash, ips, cnt, remove); 5808 if (ret < 0) 5809 goto out_regex_unlock; 5810 } 5811 5812 mutex_lock(&ftrace_lock); 5813 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable); 5814 mutex_unlock(&ftrace_lock); 5815 5816 out_regex_unlock: 5817 mutex_unlock(&ops->func_hash->regex_lock); 5818 5819 free_ftrace_hash(hash); 5820 return ret; 5821 } 5822 5823 static int 5824 ftrace_set_addr(struct ftrace_ops *ops, unsigned long *ips, unsigned int cnt, 5825 int remove, int reset, int enable) 5826 { 5827 return ftrace_set_hash(ops, NULL, 0, ips, cnt, remove, reset, enable); 5828 } 5829 5830 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 5831 5832 static int register_ftrace_function_nolock(struct ftrace_ops *ops); 5833 5834 /* 5835 * If there are multiple ftrace_ops, use SAVE_REGS by default, so that direct 5836 * call will be jumped from ftrace_regs_caller. Only if the architecture does 5837 * not support ftrace_regs_caller but direct_call, use SAVE_ARGS so that it 5838 * jumps from ftrace_caller for multiple ftrace_ops. 5839 */ 5840 #ifndef CONFIG_HAVE_DYNAMIC_FTRACE_WITH_REGS 5841 #define MULTI_FLAGS (FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_ARGS) 5842 #else 5843 #define MULTI_FLAGS (FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS) 5844 #endif 5845 5846 static int check_direct_multi(struct ftrace_ops *ops) 5847 { 5848 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) 5849 return -EINVAL; 5850 if ((ops->flags & MULTI_FLAGS) != MULTI_FLAGS) 5851 return -EINVAL; 5852 return 0; 5853 } 5854 5855 static void remove_direct_functions_hash(struct ftrace_hash *hash, unsigned long addr) 5856 { 5857 struct ftrace_func_entry *entry, *del; 5858 int size, i; 5859 5860 size = 1 << hash->size_bits; 5861 for (i = 0; i < size; i++) { 5862 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5863 del = __ftrace_lookup_ip(direct_functions, entry->ip); 5864 if (del && del->direct == addr) { 5865 remove_hash_entry(direct_functions, del); 5866 kfree(del); 5867 } 5868 } 5869 } 5870 } 5871 5872 static void register_ftrace_direct_cb(struct rcu_head *rhp) 5873 { 5874 struct ftrace_hash *fhp = container_of(rhp, struct ftrace_hash, rcu); 5875 5876 free_ftrace_hash(fhp); 5877 } 5878 5879 /** 5880 * register_ftrace_direct - Call a custom trampoline directly 5881 * for multiple functions registered in @ops 5882 * @ops: The address of the struct ftrace_ops object 5883 * @addr: The address of the trampoline to call at @ops functions 5884 * 5885 * This is used to connect a direct calls to @addr from the nop locations 5886 * of the functions registered in @ops (with by ftrace_set_filter_ip 5887 * function). 5888 * 5889 * The location that it calls (@addr) must be able to handle a direct call, 5890 * and save the parameters of the function being traced, and restore them 5891 * (or inject new ones if needed), before returning. 5892 * 5893 * Returns: 5894 * 0 on success 5895 * -EINVAL - The @ops object was already registered with this call or 5896 * when there are no functions in @ops object. 5897 * -EBUSY - Another direct function is already attached (there can be only one) 5898 * -ENODEV - @ip does not point to a ftrace nop location (or not supported) 5899 * -ENOMEM - There was an allocation failure. 5900 */ 5901 int register_ftrace_direct(struct ftrace_ops *ops, unsigned long addr) 5902 { 5903 struct ftrace_hash *hash, *new_hash = NULL, *free_hash = NULL; 5904 struct ftrace_func_entry *entry, *new; 5905 int err = -EBUSY, size, i; 5906 5907 if (ops->func || ops->trampoline) 5908 return -EINVAL; 5909 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) 5910 return -EINVAL; 5911 if (ops->flags & FTRACE_OPS_FL_ENABLED) 5912 return -EINVAL; 5913 5914 hash = ops->func_hash->filter_hash; 5915 if (ftrace_hash_empty(hash)) 5916 return -EINVAL; 5917 5918 mutex_lock(&direct_mutex); 5919 5920 /* Make sure requested entries are not already registered.. */ 5921 size = 1 << hash->size_bits; 5922 for (i = 0; i < size; i++) { 5923 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5924 if (ftrace_find_rec_direct(entry->ip)) 5925 goto out_unlock; 5926 } 5927 } 5928 5929 err = -ENOMEM; 5930 5931 /* Make a copy hash to place the new and the old entries in */ 5932 size = hash->count + direct_functions->count; 5933 if (size > 32) 5934 size = 32; 5935 new_hash = alloc_ftrace_hash(fls(size)); 5936 if (!new_hash) 5937 goto out_unlock; 5938 5939 /* Now copy over the existing direct entries */ 5940 size = 1 << direct_functions->size_bits; 5941 for (i = 0; i < size; i++) { 5942 hlist_for_each_entry(entry, &direct_functions->buckets[i], hlist) { 5943 new = add_hash_entry(new_hash, entry->ip); 5944 if (!new) 5945 goto out_unlock; 5946 new->direct = entry->direct; 5947 } 5948 } 5949 5950 /* ... and add the new entries */ 5951 size = 1 << hash->size_bits; 5952 for (i = 0; i < size; i++) { 5953 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5954 new = add_hash_entry(new_hash, entry->ip); 5955 if (!new) 5956 goto out_unlock; 5957 /* Update both the copy and the hash entry */ 5958 new->direct = addr; 5959 entry->direct = addr; 5960 } 5961 } 5962 5963 free_hash = direct_functions; 5964 rcu_assign_pointer(direct_functions, new_hash); 5965 new_hash = NULL; 5966 5967 ops->func = call_direct_funcs; 5968 ops->flags = MULTI_FLAGS; 5969 ops->trampoline = FTRACE_REGS_ADDR; 5970 ops->direct_call = addr; 5971 5972 err = register_ftrace_function_nolock(ops); 5973 5974 out_unlock: 5975 mutex_unlock(&direct_mutex); 5976 5977 if (free_hash && free_hash != EMPTY_HASH) 5978 call_rcu_tasks(&free_hash->rcu, register_ftrace_direct_cb); 5979 5980 if (new_hash) 5981 free_ftrace_hash(new_hash); 5982 5983 return err; 5984 } 5985 EXPORT_SYMBOL_GPL(register_ftrace_direct); 5986 5987 /** 5988 * unregister_ftrace_direct - Remove calls to custom trampoline 5989 * previously registered by register_ftrace_direct for @ops object. 5990 * @ops: The address of the struct ftrace_ops object 5991 * @addr: The address of the direct function that is called by the @ops functions 5992 * @free_filters: Set to true to remove all filters for the ftrace_ops, false otherwise 5993 * 5994 * This is used to remove a direct calls to @addr from the nop locations 5995 * of the functions registered in @ops (with by ftrace_set_filter_ip 5996 * function). 5997 * 5998 * Returns: 5999 * 0 on success 6000 * -EINVAL - The @ops object was not properly registered. 6001 */ 6002 int unregister_ftrace_direct(struct ftrace_ops *ops, unsigned long addr, 6003 bool free_filters) 6004 { 6005 struct ftrace_hash *hash = ops->func_hash->filter_hash; 6006 int err; 6007 6008 if (check_direct_multi(ops)) 6009 return -EINVAL; 6010 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 6011 return -EINVAL; 6012 6013 mutex_lock(&direct_mutex); 6014 err = unregister_ftrace_function(ops); 6015 remove_direct_functions_hash(hash, addr); 6016 mutex_unlock(&direct_mutex); 6017 6018 /* cleanup for possible another register call */ 6019 ops->func = NULL; 6020 ops->trampoline = 0; 6021 6022 if (free_filters) 6023 ftrace_free_filter(ops); 6024 return err; 6025 } 6026 EXPORT_SYMBOL_GPL(unregister_ftrace_direct); 6027 6028 static int 6029 __modify_ftrace_direct(struct ftrace_ops *ops, unsigned long addr) 6030 { 6031 struct ftrace_hash *hash; 6032 struct ftrace_func_entry *entry, *iter; 6033 static struct ftrace_ops tmp_ops = { 6034 .func = ftrace_stub, 6035 .flags = FTRACE_OPS_FL_STUB, 6036 }; 6037 int i, size; 6038 int err; 6039 6040 lockdep_assert_held_once(&direct_mutex); 6041 6042 /* Enable the tmp_ops to have the same functions as the direct ops */ 6043 ftrace_ops_init(&tmp_ops); 6044 tmp_ops.func_hash = ops->func_hash; 6045 tmp_ops.direct_call = addr; 6046 6047 err = register_ftrace_function_nolock(&tmp_ops); 6048 if (err) 6049 return err; 6050 6051 /* 6052 * Now the ftrace_ops_list_func() is called to do the direct callers. 6053 * We can safely change the direct functions attached to each entry. 6054 */ 6055 mutex_lock(&ftrace_lock); 6056 6057 hash = ops->func_hash->filter_hash; 6058 size = 1 << hash->size_bits; 6059 for (i = 0; i < size; i++) { 6060 hlist_for_each_entry(iter, &hash->buckets[i], hlist) { 6061 entry = __ftrace_lookup_ip(direct_functions, iter->ip); 6062 if (!entry) 6063 continue; 6064 entry->direct = addr; 6065 } 6066 } 6067 /* Prevent store tearing if a trampoline concurrently accesses the value */ 6068 WRITE_ONCE(ops->direct_call, addr); 6069 6070 mutex_unlock(&ftrace_lock); 6071 6072 /* Removing the tmp_ops will add the updated direct callers to the functions */ 6073 unregister_ftrace_function(&tmp_ops); 6074 6075 return err; 6076 } 6077 6078 /** 6079 * modify_ftrace_direct_nolock - Modify an existing direct 'multi' call 6080 * to call something else 6081 * @ops: The address of the struct ftrace_ops object 6082 * @addr: The address of the new trampoline to call at @ops functions 6083 * 6084 * This is used to unregister currently registered direct caller and 6085 * register new one @addr on functions registered in @ops object. 6086 * 6087 * Note there's window between ftrace_shutdown and ftrace_startup calls 6088 * where there will be no callbacks called. 6089 * 6090 * Caller should already have direct_mutex locked, so we don't lock 6091 * direct_mutex here. 6092 * 6093 * Returns: zero on success. Non zero on error, which includes: 6094 * -EINVAL - The @ops object was not properly registered. 6095 */ 6096 int modify_ftrace_direct_nolock(struct ftrace_ops *ops, unsigned long addr) 6097 { 6098 if (check_direct_multi(ops)) 6099 return -EINVAL; 6100 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 6101 return -EINVAL; 6102 6103 return __modify_ftrace_direct(ops, addr); 6104 } 6105 EXPORT_SYMBOL_GPL(modify_ftrace_direct_nolock); 6106 6107 /** 6108 * modify_ftrace_direct - Modify an existing direct 'multi' call 6109 * to call something else 6110 * @ops: The address of the struct ftrace_ops object 6111 * @addr: The address of the new trampoline to call at @ops functions 6112 * 6113 * This is used to unregister currently registered direct caller and 6114 * register new one @addr on functions registered in @ops object. 6115 * 6116 * Note there's window between ftrace_shutdown and ftrace_startup calls 6117 * where there will be no callbacks called. 6118 * 6119 * Returns: zero on success. Non zero on error, which includes: 6120 * -EINVAL - The @ops object was not properly registered. 6121 */ 6122 int modify_ftrace_direct(struct ftrace_ops *ops, unsigned long addr) 6123 { 6124 int err; 6125 6126 if (check_direct_multi(ops)) 6127 return -EINVAL; 6128 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 6129 return -EINVAL; 6130 6131 mutex_lock(&direct_mutex); 6132 err = __modify_ftrace_direct(ops, addr); 6133 mutex_unlock(&direct_mutex); 6134 return err; 6135 } 6136 EXPORT_SYMBOL_GPL(modify_ftrace_direct); 6137 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 6138 6139 /** 6140 * ftrace_set_filter_ip - set a function to filter on in ftrace by address 6141 * @ops: the ops to set the filter with 6142 * @ip: the address to add to or remove from the filter. 6143 * @remove: non zero to remove the ip from the filter 6144 * @reset: non zero to reset all filters before applying this filter. 6145 * 6146 * Filters denote which functions should be enabled when tracing is enabled 6147 * If @ip is NULL, it fails to update filter. 6148 * 6149 * This can allocate memory which must be freed before @ops can be freed, 6150 * either by removing each filtered addr or by using 6151 * ftrace_free_filter(@ops). 6152 */ 6153 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip, 6154 int remove, int reset) 6155 { 6156 ftrace_ops_init(ops); 6157 return ftrace_set_addr(ops, &ip, 1, remove, reset, 1); 6158 } 6159 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip); 6160 6161 /** 6162 * ftrace_set_filter_ips - set functions to filter on in ftrace by addresses 6163 * @ops: the ops to set the filter with 6164 * @ips: the array of addresses to add to or remove from the filter. 6165 * @cnt: the number of addresses in @ips 6166 * @remove: non zero to remove ips from the filter 6167 * @reset: non zero to reset all filters before applying this filter. 6168 * 6169 * Filters denote which functions should be enabled when tracing is enabled 6170 * If @ips array or any ip specified within is NULL , it fails to update filter. 6171 * 6172 * This can allocate memory which must be freed before @ops can be freed, 6173 * either by removing each filtered addr or by using 6174 * ftrace_free_filter(@ops). 6175 */ 6176 int ftrace_set_filter_ips(struct ftrace_ops *ops, unsigned long *ips, 6177 unsigned int cnt, int remove, int reset) 6178 { 6179 ftrace_ops_init(ops); 6180 return ftrace_set_addr(ops, ips, cnt, remove, reset, 1); 6181 } 6182 EXPORT_SYMBOL_GPL(ftrace_set_filter_ips); 6183 6184 /** 6185 * ftrace_ops_set_global_filter - setup ops to use global filters 6186 * @ops: the ops which will use the global filters 6187 * 6188 * ftrace users who need global function trace filtering should call this. 6189 * It can set the global filter only if ops were not initialized before. 6190 */ 6191 void ftrace_ops_set_global_filter(struct ftrace_ops *ops) 6192 { 6193 if (ops->flags & FTRACE_OPS_FL_INITIALIZED) 6194 return; 6195 6196 ftrace_ops_init(ops); 6197 ops->func_hash = &global_ops.local_hash; 6198 } 6199 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter); 6200 6201 static int 6202 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 6203 int reset, int enable) 6204 { 6205 return ftrace_set_hash(ops, buf, len, NULL, 0, 0, reset, enable); 6206 } 6207 6208 /** 6209 * ftrace_set_filter - set a function to filter on in ftrace 6210 * @ops: the ops to set the filter with 6211 * @buf: the string that holds the function filter text. 6212 * @len: the length of the string. 6213 * @reset: non-zero to reset all filters before applying this filter. 6214 * 6215 * Filters denote which functions should be enabled when tracing is enabled. 6216 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 6217 * 6218 * This can allocate memory which must be freed before @ops can be freed, 6219 * either by removing each filtered addr or by using 6220 * ftrace_free_filter(@ops). 6221 */ 6222 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf, 6223 int len, int reset) 6224 { 6225 ftrace_ops_init(ops); 6226 return ftrace_set_regex(ops, buf, len, reset, 1); 6227 } 6228 EXPORT_SYMBOL_GPL(ftrace_set_filter); 6229 6230 /** 6231 * ftrace_set_notrace - set a function to not trace in ftrace 6232 * @ops: the ops to set the notrace filter with 6233 * @buf: the string that holds the function notrace text. 6234 * @len: the length of the string. 6235 * @reset: non-zero to reset all filters before applying this filter. 6236 * 6237 * Notrace Filters denote which functions should not be enabled when tracing 6238 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 6239 * for tracing. 6240 * 6241 * This can allocate memory which must be freed before @ops can be freed, 6242 * either by removing each filtered addr or by using 6243 * ftrace_free_filter(@ops). 6244 */ 6245 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf, 6246 int len, int reset) 6247 { 6248 ftrace_ops_init(ops); 6249 return ftrace_set_regex(ops, buf, len, reset, 0); 6250 } 6251 EXPORT_SYMBOL_GPL(ftrace_set_notrace); 6252 /** 6253 * ftrace_set_global_filter - set a function to filter on with global tracers 6254 * @buf: the string that holds the function filter text. 6255 * @len: the length of the string. 6256 * @reset: non-zero to reset all filters before applying this filter. 6257 * 6258 * Filters denote which functions should be enabled when tracing is enabled. 6259 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 6260 */ 6261 void ftrace_set_global_filter(unsigned char *buf, int len, int reset) 6262 { 6263 ftrace_set_regex(&global_ops, buf, len, reset, 1); 6264 } 6265 EXPORT_SYMBOL_GPL(ftrace_set_global_filter); 6266 6267 /** 6268 * ftrace_set_global_notrace - set a function to not trace with global tracers 6269 * @buf: the string that holds the function notrace text. 6270 * @len: the length of the string. 6271 * @reset: non-zero to reset all filters before applying this filter. 6272 * 6273 * Notrace Filters denote which functions should not be enabled when tracing 6274 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 6275 * for tracing. 6276 */ 6277 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset) 6278 { 6279 ftrace_set_regex(&global_ops, buf, len, reset, 0); 6280 } 6281 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace); 6282 6283 /* 6284 * command line interface to allow users to set filters on boot up. 6285 */ 6286 #define FTRACE_FILTER_SIZE COMMAND_LINE_SIZE 6287 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 6288 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata; 6289 6290 /* Used by function selftest to not test if filter is set */ 6291 bool ftrace_filter_param __initdata; 6292 6293 static int __init set_ftrace_notrace(char *str) 6294 { 6295 ftrace_filter_param = true; 6296 strscpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE); 6297 return 1; 6298 } 6299 __setup("ftrace_notrace=", set_ftrace_notrace); 6300 6301 static int __init set_ftrace_filter(char *str) 6302 { 6303 ftrace_filter_param = true; 6304 strscpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE); 6305 return 1; 6306 } 6307 __setup("ftrace_filter=", set_ftrace_filter); 6308 6309 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6310 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata; 6311 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 6312 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer); 6313 6314 static int __init set_graph_function(char *str) 6315 { 6316 strscpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE); 6317 return 1; 6318 } 6319 __setup("ftrace_graph_filter=", set_graph_function); 6320 6321 static int __init set_graph_notrace_function(char *str) 6322 { 6323 strscpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE); 6324 return 1; 6325 } 6326 __setup("ftrace_graph_notrace=", set_graph_notrace_function); 6327 6328 static int __init set_graph_max_depth_function(char *str) 6329 { 6330 if (!str || kstrtouint(str, 0, &fgraph_max_depth)) 6331 return 0; 6332 return 1; 6333 } 6334 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function); 6335 6336 static void __init set_ftrace_early_graph(char *buf, int enable) 6337 { 6338 int ret; 6339 char *func; 6340 struct ftrace_hash *hash; 6341 6342 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 6343 if (MEM_FAIL(!hash, "Failed to allocate hash\n")) 6344 return; 6345 6346 while (buf) { 6347 func = strsep(&buf, ","); 6348 /* we allow only one expression at a time */ 6349 ret = ftrace_graph_set_hash(hash, func); 6350 if (ret) 6351 printk(KERN_DEBUG "ftrace: function %s not " 6352 "traceable\n", func); 6353 } 6354 6355 if (enable) 6356 ftrace_graph_hash = hash; 6357 else 6358 ftrace_graph_notrace_hash = hash; 6359 } 6360 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6361 6362 void __init 6363 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable) 6364 { 6365 char *func; 6366 6367 ftrace_ops_init(ops); 6368 6369 while (buf) { 6370 func = strsep(&buf, ","); 6371 ftrace_set_regex(ops, func, strlen(func), 0, enable); 6372 } 6373 } 6374 6375 static void __init set_ftrace_early_filters(void) 6376 { 6377 if (ftrace_filter_buf[0]) 6378 ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1); 6379 if (ftrace_notrace_buf[0]) 6380 ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0); 6381 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6382 if (ftrace_graph_buf[0]) 6383 set_ftrace_early_graph(ftrace_graph_buf, 1); 6384 if (ftrace_graph_notrace_buf[0]) 6385 set_ftrace_early_graph(ftrace_graph_notrace_buf, 0); 6386 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6387 } 6388 6389 int ftrace_regex_release(struct inode *inode, struct file *file) 6390 { 6391 struct seq_file *m = (struct seq_file *)file->private_data; 6392 struct ftrace_iterator *iter; 6393 struct ftrace_hash **orig_hash; 6394 struct trace_parser *parser; 6395 int filter_hash; 6396 6397 if (file->f_mode & FMODE_READ) { 6398 iter = m->private; 6399 seq_release(inode, file); 6400 } else 6401 iter = file->private_data; 6402 6403 parser = &iter->parser; 6404 if (trace_parser_loaded(parser)) { 6405 int enable = !(iter->flags & FTRACE_ITER_NOTRACE); 6406 6407 ftrace_process_regex(iter, parser->buffer, 6408 parser->idx, enable); 6409 } 6410 6411 trace_parser_put(parser); 6412 6413 mutex_lock(&iter->ops->func_hash->regex_lock); 6414 6415 if (file->f_mode & FMODE_WRITE) { 6416 filter_hash = !!(iter->flags & FTRACE_ITER_FILTER); 6417 6418 if (filter_hash) { 6419 orig_hash = &iter->ops->func_hash->filter_hash; 6420 if (iter->tr) { 6421 if (list_empty(&iter->tr->mod_trace)) 6422 iter->hash->flags &= ~FTRACE_HASH_FL_MOD; 6423 else 6424 iter->hash->flags |= FTRACE_HASH_FL_MOD; 6425 } 6426 } else 6427 orig_hash = &iter->ops->func_hash->notrace_hash; 6428 6429 mutex_lock(&ftrace_lock); 6430 ftrace_hash_move_and_update_ops(iter->ops, orig_hash, 6431 iter->hash, filter_hash); 6432 mutex_unlock(&ftrace_lock); 6433 } else { 6434 /* For read only, the hash is the ops hash */ 6435 iter->hash = NULL; 6436 } 6437 6438 mutex_unlock(&iter->ops->func_hash->regex_lock); 6439 free_ftrace_hash(iter->hash); 6440 if (iter->tr) 6441 trace_array_put(iter->tr); 6442 kfree(iter); 6443 6444 return 0; 6445 } 6446 6447 static const struct file_operations ftrace_avail_fops = { 6448 .open = ftrace_avail_open, 6449 .read = seq_read, 6450 .llseek = seq_lseek, 6451 .release = seq_release_private, 6452 }; 6453 6454 static const struct file_operations ftrace_enabled_fops = { 6455 .open = ftrace_enabled_open, 6456 .read = seq_read, 6457 .llseek = seq_lseek, 6458 .release = seq_release_private, 6459 }; 6460 6461 static const struct file_operations ftrace_touched_fops = { 6462 .open = ftrace_touched_open, 6463 .read = seq_read, 6464 .llseek = seq_lseek, 6465 .release = seq_release_private, 6466 }; 6467 6468 static const struct file_operations ftrace_avail_addrs_fops = { 6469 .open = ftrace_avail_addrs_open, 6470 .read = seq_read, 6471 .llseek = seq_lseek, 6472 .release = seq_release_private, 6473 }; 6474 6475 static const struct file_operations ftrace_filter_fops = { 6476 .open = ftrace_filter_open, 6477 .read = seq_read, 6478 .write = ftrace_filter_write, 6479 .llseek = tracing_lseek, 6480 .release = ftrace_regex_release, 6481 }; 6482 6483 static const struct file_operations ftrace_notrace_fops = { 6484 .open = ftrace_notrace_open, 6485 .read = seq_read, 6486 .write = ftrace_notrace_write, 6487 .llseek = tracing_lseek, 6488 .release = ftrace_regex_release, 6489 }; 6490 6491 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6492 6493 static DEFINE_MUTEX(graph_lock); 6494 6495 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH; 6496 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH; 6497 6498 enum graph_filter_type { 6499 GRAPH_FILTER_NOTRACE = 0, 6500 GRAPH_FILTER_FUNCTION, 6501 }; 6502 6503 #define FTRACE_GRAPH_EMPTY ((void *)1) 6504 6505 struct ftrace_graph_data { 6506 struct ftrace_hash *hash; 6507 struct ftrace_func_entry *entry; 6508 int idx; /* for hash table iteration */ 6509 enum graph_filter_type type; 6510 struct ftrace_hash *new_hash; 6511 const struct seq_operations *seq_ops; 6512 struct trace_parser parser; 6513 }; 6514 6515 static void * 6516 __g_next(struct seq_file *m, loff_t *pos) 6517 { 6518 struct ftrace_graph_data *fgd = m->private; 6519 struct ftrace_func_entry *entry = fgd->entry; 6520 struct hlist_head *head; 6521 int i, idx = fgd->idx; 6522 6523 if (*pos >= fgd->hash->count) 6524 return NULL; 6525 6526 if (entry) { 6527 hlist_for_each_entry_continue(entry, hlist) { 6528 fgd->entry = entry; 6529 return entry; 6530 } 6531 6532 idx++; 6533 } 6534 6535 for (i = idx; i < 1 << fgd->hash->size_bits; i++) { 6536 head = &fgd->hash->buckets[i]; 6537 hlist_for_each_entry(entry, head, hlist) { 6538 fgd->entry = entry; 6539 fgd->idx = i; 6540 return entry; 6541 } 6542 } 6543 return NULL; 6544 } 6545 6546 static void * 6547 g_next(struct seq_file *m, void *v, loff_t *pos) 6548 { 6549 (*pos)++; 6550 return __g_next(m, pos); 6551 } 6552 6553 static void *g_start(struct seq_file *m, loff_t *pos) 6554 { 6555 struct ftrace_graph_data *fgd = m->private; 6556 6557 mutex_lock(&graph_lock); 6558 6559 if (fgd->type == GRAPH_FILTER_FUNCTION) 6560 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 6561 lockdep_is_held(&graph_lock)); 6562 else 6563 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6564 lockdep_is_held(&graph_lock)); 6565 6566 /* Nothing, tell g_show to print all functions are enabled */ 6567 if (ftrace_hash_empty(fgd->hash) && !*pos) 6568 return FTRACE_GRAPH_EMPTY; 6569 6570 fgd->idx = 0; 6571 fgd->entry = NULL; 6572 return __g_next(m, pos); 6573 } 6574 6575 static void g_stop(struct seq_file *m, void *p) 6576 { 6577 mutex_unlock(&graph_lock); 6578 } 6579 6580 static int g_show(struct seq_file *m, void *v) 6581 { 6582 struct ftrace_func_entry *entry = v; 6583 6584 if (!entry) 6585 return 0; 6586 6587 if (entry == FTRACE_GRAPH_EMPTY) { 6588 struct ftrace_graph_data *fgd = m->private; 6589 6590 if (fgd->type == GRAPH_FILTER_FUNCTION) 6591 seq_puts(m, "#### all functions enabled ####\n"); 6592 else 6593 seq_puts(m, "#### no functions disabled ####\n"); 6594 return 0; 6595 } 6596 6597 seq_printf(m, "%ps\n", (void *)entry->ip); 6598 6599 return 0; 6600 } 6601 6602 static const struct seq_operations ftrace_graph_seq_ops = { 6603 .start = g_start, 6604 .next = g_next, 6605 .stop = g_stop, 6606 .show = g_show, 6607 }; 6608 6609 static int 6610 __ftrace_graph_open(struct inode *inode, struct file *file, 6611 struct ftrace_graph_data *fgd) 6612 { 6613 int ret; 6614 struct ftrace_hash *new_hash = NULL; 6615 6616 ret = security_locked_down(LOCKDOWN_TRACEFS); 6617 if (ret) 6618 return ret; 6619 6620 if (file->f_mode & FMODE_WRITE) { 6621 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 6622 6623 if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX)) 6624 return -ENOMEM; 6625 6626 if (file->f_flags & O_TRUNC) 6627 new_hash = alloc_ftrace_hash(size_bits); 6628 else 6629 new_hash = alloc_and_copy_ftrace_hash(size_bits, 6630 fgd->hash); 6631 if (!new_hash) { 6632 ret = -ENOMEM; 6633 goto out; 6634 } 6635 } 6636 6637 if (file->f_mode & FMODE_READ) { 6638 ret = seq_open(file, &ftrace_graph_seq_ops); 6639 if (!ret) { 6640 struct seq_file *m = file->private_data; 6641 m->private = fgd; 6642 } else { 6643 /* Failed */ 6644 free_ftrace_hash(new_hash); 6645 new_hash = NULL; 6646 } 6647 } else 6648 file->private_data = fgd; 6649 6650 out: 6651 if (ret < 0 && file->f_mode & FMODE_WRITE) 6652 trace_parser_put(&fgd->parser); 6653 6654 fgd->new_hash = new_hash; 6655 6656 /* 6657 * All uses of fgd->hash must be taken with the graph_lock 6658 * held. The graph_lock is going to be released, so force 6659 * fgd->hash to be reinitialized when it is taken again. 6660 */ 6661 fgd->hash = NULL; 6662 6663 return ret; 6664 } 6665 6666 static int 6667 ftrace_graph_open(struct inode *inode, struct file *file) 6668 { 6669 struct ftrace_graph_data *fgd; 6670 int ret; 6671 6672 if (unlikely(ftrace_disabled)) 6673 return -ENODEV; 6674 6675 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 6676 if (fgd == NULL) 6677 return -ENOMEM; 6678 6679 mutex_lock(&graph_lock); 6680 6681 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 6682 lockdep_is_held(&graph_lock)); 6683 fgd->type = GRAPH_FILTER_FUNCTION; 6684 fgd->seq_ops = &ftrace_graph_seq_ops; 6685 6686 ret = __ftrace_graph_open(inode, file, fgd); 6687 if (ret < 0) 6688 kfree(fgd); 6689 6690 mutex_unlock(&graph_lock); 6691 return ret; 6692 } 6693 6694 static int 6695 ftrace_graph_notrace_open(struct inode *inode, struct file *file) 6696 { 6697 struct ftrace_graph_data *fgd; 6698 int ret; 6699 6700 if (unlikely(ftrace_disabled)) 6701 return -ENODEV; 6702 6703 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 6704 if (fgd == NULL) 6705 return -ENOMEM; 6706 6707 mutex_lock(&graph_lock); 6708 6709 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6710 lockdep_is_held(&graph_lock)); 6711 fgd->type = GRAPH_FILTER_NOTRACE; 6712 fgd->seq_ops = &ftrace_graph_seq_ops; 6713 6714 ret = __ftrace_graph_open(inode, file, fgd); 6715 if (ret < 0) 6716 kfree(fgd); 6717 6718 mutex_unlock(&graph_lock); 6719 return ret; 6720 } 6721 6722 static int 6723 ftrace_graph_release(struct inode *inode, struct file *file) 6724 { 6725 struct ftrace_graph_data *fgd; 6726 struct ftrace_hash *old_hash, *new_hash; 6727 struct trace_parser *parser; 6728 int ret = 0; 6729 6730 if (file->f_mode & FMODE_READ) { 6731 struct seq_file *m = file->private_data; 6732 6733 fgd = m->private; 6734 seq_release(inode, file); 6735 } else { 6736 fgd = file->private_data; 6737 } 6738 6739 6740 if (file->f_mode & FMODE_WRITE) { 6741 6742 parser = &fgd->parser; 6743 6744 if (trace_parser_loaded((parser))) { 6745 ret = ftrace_graph_set_hash(fgd->new_hash, 6746 parser->buffer); 6747 } 6748 6749 trace_parser_put(parser); 6750 6751 new_hash = __ftrace_hash_move(fgd->new_hash); 6752 if (!new_hash) { 6753 ret = -ENOMEM; 6754 goto out; 6755 } 6756 6757 mutex_lock(&graph_lock); 6758 6759 if (fgd->type == GRAPH_FILTER_FUNCTION) { 6760 old_hash = rcu_dereference_protected(ftrace_graph_hash, 6761 lockdep_is_held(&graph_lock)); 6762 rcu_assign_pointer(ftrace_graph_hash, new_hash); 6763 } else { 6764 old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6765 lockdep_is_held(&graph_lock)); 6766 rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash); 6767 } 6768 6769 mutex_unlock(&graph_lock); 6770 6771 /* 6772 * We need to do a hard force of sched synchronization. 6773 * This is because we use preempt_disable() to do RCU, but 6774 * the function tracers can be called where RCU is not watching 6775 * (like before user_exit()). We can not rely on the RCU 6776 * infrastructure to do the synchronization, thus we must do it 6777 * ourselves. 6778 */ 6779 if (old_hash != EMPTY_HASH) 6780 synchronize_rcu_tasks_rude(); 6781 6782 free_ftrace_hash(old_hash); 6783 } 6784 6785 out: 6786 free_ftrace_hash(fgd->new_hash); 6787 kfree(fgd); 6788 6789 return ret; 6790 } 6791 6792 static int 6793 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer) 6794 { 6795 struct ftrace_glob func_g; 6796 struct dyn_ftrace *rec; 6797 struct ftrace_page *pg; 6798 struct ftrace_func_entry *entry; 6799 int fail = 1; 6800 int not; 6801 6802 /* decode regex */ 6803 func_g.type = filter_parse_regex(buffer, strlen(buffer), 6804 &func_g.search, ¬); 6805 6806 func_g.len = strlen(func_g.search); 6807 6808 mutex_lock(&ftrace_lock); 6809 6810 if (unlikely(ftrace_disabled)) { 6811 mutex_unlock(&ftrace_lock); 6812 return -ENODEV; 6813 } 6814 6815 do_for_each_ftrace_rec(pg, rec) { 6816 6817 if (rec->flags & FTRACE_FL_DISABLED) 6818 continue; 6819 6820 if (ftrace_match_record(rec, &func_g, NULL, 0)) { 6821 entry = ftrace_lookup_ip(hash, rec->ip); 6822 6823 if (!not) { 6824 fail = 0; 6825 6826 if (entry) 6827 continue; 6828 if (add_hash_entry(hash, rec->ip) == NULL) 6829 goto out; 6830 } else { 6831 if (entry) { 6832 free_hash_entry(hash, entry); 6833 fail = 0; 6834 } 6835 } 6836 } 6837 } while_for_each_ftrace_rec(); 6838 out: 6839 mutex_unlock(&ftrace_lock); 6840 6841 if (fail) 6842 return -EINVAL; 6843 6844 return 0; 6845 } 6846 6847 static ssize_t 6848 ftrace_graph_write(struct file *file, const char __user *ubuf, 6849 size_t cnt, loff_t *ppos) 6850 { 6851 ssize_t read, ret = 0; 6852 struct ftrace_graph_data *fgd = file->private_data; 6853 struct trace_parser *parser; 6854 6855 if (!cnt) 6856 return 0; 6857 6858 /* Read mode uses seq functions */ 6859 if (file->f_mode & FMODE_READ) { 6860 struct seq_file *m = file->private_data; 6861 fgd = m->private; 6862 } 6863 6864 parser = &fgd->parser; 6865 6866 read = trace_get_user(parser, ubuf, cnt, ppos); 6867 6868 if (read >= 0 && trace_parser_loaded(parser) && 6869 !trace_parser_cont(parser)) { 6870 6871 ret = ftrace_graph_set_hash(fgd->new_hash, 6872 parser->buffer); 6873 trace_parser_clear(parser); 6874 } 6875 6876 if (!ret) 6877 ret = read; 6878 6879 return ret; 6880 } 6881 6882 static const struct file_operations ftrace_graph_fops = { 6883 .open = ftrace_graph_open, 6884 .read = seq_read, 6885 .write = ftrace_graph_write, 6886 .llseek = tracing_lseek, 6887 .release = ftrace_graph_release, 6888 }; 6889 6890 static const struct file_operations ftrace_graph_notrace_fops = { 6891 .open = ftrace_graph_notrace_open, 6892 .read = seq_read, 6893 .write = ftrace_graph_write, 6894 .llseek = tracing_lseek, 6895 .release = ftrace_graph_release, 6896 }; 6897 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6898 6899 void ftrace_create_filter_files(struct ftrace_ops *ops, 6900 struct dentry *parent) 6901 { 6902 6903 trace_create_file("set_ftrace_filter", TRACE_MODE_WRITE, parent, 6904 ops, &ftrace_filter_fops); 6905 6906 trace_create_file("set_ftrace_notrace", TRACE_MODE_WRITE, parent, 6907 ops, &ftrace_notrace_fops); 6908 } 6909 6910 /* 6911 * The name "destroy_filter_files" is really a misnomer. Although 6912 * in the future, it may actually delete the files, but this is 6913 * really intended to make sure the ops passed in are disabled 6914 * and that when this function returns, the caller is free to 6915 * free the ops. 6916 * 6917 * The "destroy" name is only to match the "create" name that this 6918 * should be paired with. 6919 */ 6920 void ftrace_destroy_filter_files(struct ftrace_ops *ops) 6921 { 6922 mutex_lock(&ftrace_lock); 6923 if (ops->flags & FTRACE_OPS_FL_ENABLED) 6924 ftrace_shutdown(ops, 0); 6925 ops->flags |= FTRACE_OPS_FL_DELETED; 6926 ftrace_free_filter(ops); 6927 mutex_unlock(&ftrace_lock); 6928 } 6929 6930 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer) 6931 { 6932 6933 trace_create_file("available_filter_functions", TRACE_MODE_READ, 6934 d_tracer, NULL, &ftrace_avail_fops); 6935 6936 trace_create_file("available_filter_functions_addrs", TRACE_MODE_READ, 6937 d_tracer, NULL, &ftrace_avail_addrs_fops); 6938 6939 trace_create_file("enabled_functions", TRACE_MODE_READ, 6940 d_tracer, NULL, &ftrace_enabled_fops); 6941 6942 trace_create_file("touched_functions", TRACE_MODE_READ, 6943 d_tracer, NULL, &ftrace_touched_fops); 6944 6945 ftrace_create_filter_files(&global_ops, d_tracer); 6946 6947 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6948 trace_create_file("set_graph_function", TRACE_MODE_WRITE, d_tracer, 6949 NULL, 6950 &ftrace_graph_fops); 6951 trace_create_file("set_graph_notrace", TRACE_MODE_WRITE, d_tracer, 6952 NULL, 6953 &ftrace_graph_notrace_fops); 6954 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6955 6956 return 0; 6957 } 6958 6959 static int ftrace_cmp_ips(const void *a, const void *b) 6960 { 6961 const unsigned long *ipa = a; 6962 const unsigned long *ipb = b; 6963 6964 if (*ipa > *ipb) 6965 return 1; 6966 if (*ipa < *ipb) 6967 return -1; 6968 return 0; 6969 } 6970 6971 #ifdef CONFIG_FTRACE_SORT_STARTUP_TEST 6972 static void test_is_sorted(unsigned long *start, unsigned long count) 6973 { 6974 int i; 6975 6976 for (i = 1; i < count; i++) { 6977 if (WARN(start[i - 1] > start[i], 6978 "[%d] %pS at %lx is not sorted with %pS at %lx\n", i, 6979 (void *)start[i - 1], start[i - 1], 6980 (void *)start[i], start[i])) 6981 break; 6982 } 6983 if (i == count) 6984 pr_info("ftrace section at %px sorted properly\n", start); 6985 } 6986 #else 6987 static void test_is_sorted(unsigned long *start, unsigned long count) 6988 { 6989 } 6990 #endif 6991 6992 static int ftrace_process_locs(struct module *mod, 6993 unsigned long *start, 6994 unsigned long *end) 6995 { 6996 struct ftrace_page *pg_unuse = NULL; 6997 struct ftrace_page *start_pg; 6998 struct ftrace_page *pg; 6999 struct dyn_ftrace *rec; 7000 unsigned long skipped = 0; 7001 unsigned long count; 7002 unsigned long *p; 7003 unsigned long addr; 7004 unsigned long flags = 0; /* Shut up gcc */ 7005 int ret = -ENOMEM; 7006 7007 count = end - start; 7008 7009 if (!count) 7010 return 0; 7011 7012 /* 7013 * Sorting mcount in vmlinux at build time depend on 7014 * CONFIG_BUILDTIME_MCOUNT_SORT, while mcount loc in 7015 * modules can not be sorted at build time. 7016 */ 7017 if (!IS_ENABLED(CONFIG_BUILDTIME_MCOUNT_SORT) || mod) { 7018 sort(start, count, sizeof(*start), 7019 ftrace_cmp_ips, NULL); 7020 } else { 7021 test_is_sorted(start, count); 7022 } 7023 7024 start_pg = ftrace_allocate_pages(count); 7025 if (!start_pg) 7026 return -ENOMEM; 7027 7028 mutex_lock(&ftrace_lock); 7029 7030 /* 7031 * Core and each module needs their own pages, as 7032 * modules will free them when they are removed. 7033 * Force a new page to be allocated for modules. 7034 */ 7035 if (!mod) { 7036 WARN_ON(ftrace_pages || ftrace_pages_start); 7037 /* First initialization */ 7038 ftrace_pages = ftrace_pages_start = start_pg; 7039 } else { 7040 if (!ftrace_pages) 7041 goto out; 7042 7043 if (WARN_ON(ftrace_pages->next)) { 7044 /* Hmm, we have free pages? */ 7045 while (ftrace_pages->next) 7046 ftrace_pages = ftrace_pages->next; 7047 } 7048 7049 ftrace_pages->next = start_pg; 7050 } 7051 7052 p = start; 7053 pg = start_pg; 7054 while (p < end) { 7055 unsigned long end_offset; 7056 addr = ftrace_call_adjust(*p++); 7057 /* 7058 * Some architecture linkers will pad between 7059 * the different mcount_loc sections of different 7060 * object files to satisfy alignments. 7061 * Skip any NULL pointers. 7062 */ 7063 if (!addr) { 7064 skipped++; 7065 continue; 7066 } 7067 7068 end_offset = (pg->index+1) * sizeof(pg->records[0]); 7069 if (end_offset > PAGE_SIZE << pg->order) { 7070 /* We should have allocated enough */ 7071 if (WARN_ON(!pg->next)) 7072 break; 7073 pg = pg->next; 7074 } 7075 7076 rec = &pg->records[pg->index++]; 7077 rec->ip = addr; 7078 } 7079 7080 if (pg->next) { 7081 pg_unuse = pg->next; 7082 pg->next = NULL; 7083 } 7084 7085 /* Assign the last page to ftrace_pages */ 7086 ftrace_pages = pg; 7087 7088 /* 7089 * We only need to disable interrupts on start up 7090 * because we are modifying code that an interrupt 7091 * may execute, and the modification is not atomic. 7092 * But for modules, nothing runs the code we modify 7093 * until we are finished with it, and there's no 7094 * reason to cause large interrupt latencies while we do it. 7095 */ 7096 if (!mod) 7097 local_irq_save(flags); 7098 ftrace_update_code(mod, start_pg); 7099 if (!mod) 7100 local_irq_restore(flags); 7101 ret = 0; 7102 out: 7103 mutex_unlock(&ftrace_lock); 7104 7105 /* We should have used all pages unless we skipped some */ 7106 if (pg_unuse) { 7107 WARN_ON(!skipped); 7108 /* Need to synchronize with ftrace_location_range() */ 7109 synchronize_rcu(); 7110 ftrace_free_pages(pg_unuse); 7111 } 7112 return ret; 7113 } 7114 7115 struct ftrace_mod_func { 7116 struct list_head list; 7117 char *name; 7118 unsigned long ip; 7119 unsigned int size; 7120 }; 7121 7122 struct ftrace_mod_map { 7123 struct rcu_head rcu; 7124 struct list_head list; 7125 struct module *mod; 7126 unsigned long start_addr; 7127 unsigned long end_addr; 7128 struct list_head funcs; 7129 unsigned int num_funcs; 7130 }; 7131 7132 static int ftrace_get_trampoline_kallsym(unsigned int symnum, 7133 unsigned long *value, char *type, 7134 char *name, char *module_name, 7135 int *exported) 7136 { 7137 struct ftrace_ops *op; 7138 7139 list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) { 7140 if (!op->trampoline || symnum--) 7141 continue; 7142 *value = op->trampoline; 7143 *type = 't'; 7144 strscpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN); 7145 strscpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN); 7146 *exported = 0; 7147 return 0; 7148 } 7149 7150 return -ERANGE; 7151 } 7152 7153 #if defined(CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS) || defined(CONFIG_MODULES) 7154 /* 7155 * Check if the current ops references the given ip. 7156 * 7157 * If the ops traces all functions, then it was already accounted for. 7158 * If the ops does not trace the current record function, skip it. 7159 * If the ops ignores the function via notrace filter, skip it. 7160 */ 7161 static bool 7162 ops_references_ip(struct ftrace_ops *ops, unsigned long ip) 7163 { 7164 /* If ops isn't enabled, ignore it */ 7165 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 7166 return false; 7167 7168 /* If ops traces all then it includes this function */ 7169 if (ops_traces_mod(ops)) 7170 return true; 7171 7172 /* The function must be in the filter */ 7173 if (!ftrace_hash_empty(ops->func_hash->filter_hash) && 7174 !__ftrace_lookup_ip(ops->func_hash->filter_hash, ip)) 7175 return false; 7176 7177 /* If in notrace hash, we ignore it too */ 7178 if (ftrace_lookup_ip(ops->func_hash->notrace_hash, ip)) 7179 return false; 7180 7181 return true; 7182 } 7183 #endif 7184 7185 #ifdef CONFIG_MODULES 7186 7187 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next) 7188 7189 static LIST_HEAD(ftrace_mod_maps); 7190 7191 static int referenced_filters(struct dyn_ftrace *rec) 7192 { 7193 struct ftrace_ops *ops; 7194 int cnt = 0; 7195 7196 for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) { 7197 if (ops_references_ip(ops, rec->ip)) { 7198 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT)) 7199 continue; 7200 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 7201 continue; 7202 cnt++; 7203 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 7204 rec->flags |= FTRACE_FL_REGS; 7205 if (cnt == 1 && ops->trampoline) 7206 rec->flags |= FTRACE_FL_TRAMP; 7207 else 7208 rec->flags &= ~FTRACE_FL_TRAMP; 7209 } 7210 } 7211 7212 return cnt; 7213 } 7214 7215 static void 7216 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash) 7217 { 7218 struct ftrace_func_entry *entry; 7219 struct dyn_ftrace *rec; 7220 int i; 7221 7222 if (ftrace_hash_empty(hash)) 7223 return; 7224 7225 for (i = 0; i < pg->index; i++) { 7226 rec = &pg->records[i]; 7227 entry = __ftrace_lookup_ip(hash, rec->ip); 7228 /* 7229 * Do not allow this rec to match again. 7230 * Yeah, it may waste some memory, but will be removed 7231 * if/when the hash is modified again. 7232 */ 7233 if (entry) 7234 entry->ip = 0; 7235 } 7236 } 7237 7238 /* Clear any records from hashes */ 7239 static void clear_mod_from_hashes(struct ftrace_page *pg) 7240 { 7241 struct trace_array *tr; 7242 7243 mutex_lock(&trace_types_lock); 7244 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 7245 if (!tr->ops || !tr->ops->func_hash) 7246 continue; 7247 mutex_lock(&tr->ops->func_hash->regex_lock); 7248 clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash); 7249 clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash); 7250 mutex_unlock(&tr->ops->func_hash->regex_lock); 7251 } 7252 mutex_unlock(&trace_types_lock); 7253 } 7254 7255 static void ftrace_free_mod_map(struct rcu_head *rcu) 7256 { 7257 struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu); 7258 struct ftrace_mod_func *mod_func; 7259 struct ftrace_mod_func *n; 7260 7261 /* All the contents of mod_map are now not visible to readers */ 7262 list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) { 7263 kfree(mod_func->name); 7264 list_del(&mod_func->list); 7265 kfree(mod_func); 7266 } 7267 7268 kfree(mod_map); 7269 } 7270 7271 void ftrace_release_mod(struct module *mod) 7272 { 7273 struct ftrace_mod_map *mod_map; 7274 struct ftrace_mod_map *n; 7275 struct dyn_ftrace *rec; 7276 struct ftrace_page **last_pg; 7277 struct ftrace_page *tmp_page = NULL; 7278 struct ftrace_page *pg; 7279 7280 mutex_lock(&ftrace_lock); 7281 7282 if (ftrace_disabled) 7283 goto out_unlock; 7284 7285 list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) { 7286 if (mod_map->mod == mod) { 7287 list_del_rcu(&mod_map->list); 7288 call_rcu(&mod_map->rcu, ftrace_free_mod_map); 7289 break; 7290 } 7291 } 7292 7293 /* 7294 * Each module has its own ftrace_pages, remove 7295 * them from the list. 7296 */ 7297 last_pg = &ftrace_pages_start; 7298 for (pg = ftrace_pages_start; pg; pg = *last_pg) { 7299 rec = &pg->records[0]; 7300 if (within_module(rec->ip, mod)) { 7301 /* 7302 * As core pages are first, the first 7303 * page should never be a module page. 7304 */ 7305 if (WARN_ON(pg == ftrace_pages_start)) 7306 goto out_unlock; 7307 7308 /* Check if we are deleting the last page */ 7309 if (pg == ftrace_pages) 7310 ftrace_pages = next_to_ftrace_page(last_pg); 7311 7312 ftrace_update_tot_cnt -= pg->index; 7313 *last_pg = pg->next; 7314 7315 pg->next = tmp_page; 7316 tmp_page = pg; 7317 } else 7318 last_pg = &pg->next; 7319 } 7320 out_unlock: 7321 mutex_unlock(&ftrace_lock); 7322 7323 /* Need to synchronize with ftrace_location_range() */ 7324 if (tmp_page) 7325 synchronize_rcu(); 7326 for (pg = tmp_page; pg; pg = tmp_page) { 7327 7328 /* Needs to be called outside of ftrace_lock */ 7329 clear_mod_from_hashes(pg); 7330 7331 if (pg->records) { 7332 free_pages((unsigned long)pg->records, pg->order); 7333 ftrace_number_of_pages -= 1 << pg->order; 7334 } 7335 tmp_page = pg->next; 7336 kfree(pg); 7337 ftrace_number_of_groups--; 7338 } 7339 } 7340 7341 void ftrace_module_enable(struct module *mod) 7342 { 7343 struct dyn_ftrace *rec; 7344 struct ftrace_page *pg; 7345 7346 mutex_lock(&ftrace_lock); 7347 7348 if (ftrace_disabled) 7349 goto out_unlock; 7350 7351 /* 7352 * If the tracing is enabled, go ahead and enable the record. 7353 * 7354 * The reason not to enable the record immediately is the 7355 * inherent check of ftrace_make_nop/ftrace_make_call for 7356 * correct previous instructions. Making first the NOP 7357 * conversion puts the module to the correct state, thus 7358 * passing the ftrace_make_call check. 7359 * 7360 * We also delay this to after the module code already set the 7361 * text to read-only, as we now need to set it back to read-write 7362 * so that we can modify the text. 7363 */ 7364 if (ftrace_start_up) 7365 ftrace_arch_code_modify_prepare(); 7366 7367 do_for_each_ftrace_rec(pg, rec) { 7368 int cnt; 7369 /* 7370 * do_for_each_ftrace_rec() is a double loop. 7371 * module text shares the pg. If a record is 7372 * not part of this module, then skip this pg, 7373 * which the "break" will do. 7374 */ 7375 if (!within_module(rec->ip, mod)) 7376 break; 7377 7378 /* Weak functions should still be ignored */ 7379 if (!test_for_valid_rec(rec)) { 7380 /* Clear all other flags. Should not be enabled anyway */ 7381 rec->flags = FTRACE_FL_DISABLED; 7382 continue; 7383 } 7384 7385 cnt = 0; 7386 7387 /* 7388 * When adding a module, we need to check if tracers are 7389 * currently enabled and if they are, and can trace this record, 7390 * we need to enable the module functions as well as update the 7391 * reference counts for those function records. 7392 */ 7393 if (ftrace_start_up) 7394 cnt += referenced_filters(rec); 7395 7396 rec->flags &= ~FTRACE_FL_DISABLED; 7397 rec->flags += cnt; 7398 7399 if (ftrace_start_up && cnt) { 7400 int failed = __ftrace_replace_code(rec, 1); 7401 if (failed) { 7402 ftrace_bug(failed, rec); 7403 goto out_loop; 7404 } 7405 } 7406 7407 } while_for_each_ftrace_rec(); 7408 7409 out_loop: 7410 if (ftrace_start_up) 7411 ftrace_arch_code_modify_post_process(); 7412 7413 out_unlock: 7414 mutex_unlock(&ftrace_lock); 7415 7416 process_cached_mods(mod->name); 7417 } 7418 7419 void ftrace_module_init(struct module *mod) 7420 { 7421 int ret; 7422 7423 if (ftrace_disabled || !mod->num_ftrace_callsites) 7424 return; 7425 7426 ret = ftrace_process_locs(mod, mod->ftrace_callsites, 7427 mod->ftrace_callsites + mod->num_ftrace_callsites); 7428 if (ret) 7429 pr_warn("ftrace: failed to allocate entries for module '%s' functions\n", 7430 mod->name); 7431 } 7432 7433 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 7434 struct dyn_ftrace *rec) 7435 { 7436 struct ftrace_mod_func *mod_func; 7437 unsigned long symsize; 7438 unsigned long offset; 7439 char str[KSYM_SYMBOL_LEN]; 7440 char *modname; 7441 const char *ret; 7442 7443 ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str); 7444 if (!ret) 7445 return; 7446 7447 mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL); 7448 if (!mod_func) 7449 return; 7450 7451 mod_func->name = kstrdup(str, GFP_KERNEL); 7452 if (!mod_func->name) { 7453 kfree(mod_func); 7454 return; 7455 } 7456 7457 mod_func->ip = rec->ip - offset; 7458 mod_func->size = symsize; 7459 7460 mod_map->num_funcs++; 7461 7462 list_add_rcu(&mod_func->list, &mod_map->funcs); 7463 } 7464 7465 static struct ftrace_mod_map * 7466 allocate_ftrace_mod_map(struct module *mod, 7467 unsigned long start, unsigned long end) 7468 { 7469 struct ftrace_mod_map *mod_map; 7470 7471 mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL); 7472 if (!mod_map) 7473 return NULL; 7474 7475 mod_map->mod = mod; 7476 mod_map->start_addr = start; 7477 mod_map->end_addr = end; 7478 mod_map->num_funcs = 0; 7479 7480 INIT_LIST_HEAD_RCU(&mod_map->funcs); 7481 7482 list_add_rcu(&mod_map->list, &ftrace_mod_maps); 7483 7484 return mod_map; 7485 } 7486 7487 static int 7488 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map, 7489 unsigned long addr, unsigned long *size, 7490 unsigned long *off, char *sym) 7491 { 7492 struct ftrace_mod_func *found_func = NULL; 7493 struct ftrace_mod_func *mod_func; 7494 7495 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 7496 if (addr >= mod_func->ip && 7497 addr < mod_func->ip + mod_func->size) { 7498 found_func = mod_func; 7499 break; 7500 } 7501 } 7502 7503 if (found_func) { 7504 if (size) 7505 *size = found_func->size; 7506 if (off) 7507 *off = addr - found_func->ip; 7508 return strscpy(sym, found_func->name, KSYM_NAME_LEN); 7509 } 7510 7511 return 0; 7512 } 7513 7514 int 7515 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size, 7516 unsigned long *off, char **modname, char *sym) 7517 { 7518 struct ftrace_mod_map *mod_map; 7519 int ret = 0; 7520 7521 /* mod_map is freed via call_rcu() */ 7522 preempt_disable(); 7523 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 7524 ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym); 7525 if (ret) { 7526 if (modname) 7527 *modname = mod_map->mod->name; 7528 break; 7529 } 7530 } 7531 preempt_enable(); 7532 7533 return ret; 7534 } 7535 7536 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 7537 char *type, char *name, 7538 char *module_name, int *exported) 7539 { 7540 struct ftrace_mod_map *mod_map; 7541 struct ftrace_mod_func *mod_func; 7542 int ret; 7543 7544 preempt_disable(); 7545 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 7546 7547 if (symnum >= mod_map->num_funcs) { 7548 symnum -= mod_map->num_funcs; 7549 continue; 7550 } 7551 7552 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 7553 if (symnum > 1) { 7554 symnum--; 7555 continue; 7556 } 7557 7558 *value = mod_func->ip; 7559 *type = 'T'; 7560 strscpy(name, mod_func->name, KSYM_NAME_LEN); 7561 strscpy(module_name, mod_map->mod->name, MODULE_NAME_LEN); 7562 *exported = 1; 7563 preempt_enable(); 7564 return 0; 7565 } 7566 WARN_ON(1); 7567 break; 7568 } 7569 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 7570 module_name, exported); 7571 preempt_enable(); 7572 return ret; 7573 } 7574 7575 #else 7576 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 7577 struct dyn_ftrace *rec) { } 7578 static inline struct ftrace_mod_map * 7579 allocate_ftrace_mod_map(struct module *mod, 7580 unsigned long start, unsigned long end) 7581 { 7582 return NULL; 7583 } 7584 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 7585 char *type, char *name, char *module_name, 7586 int *exported) 7587 { 7588 int ret; 7589 7590 preempt_disable(); 7591 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 7592 module_name, exported); 7593 preempt_enable(); 7594 return ret; 7595 } 7596 #endif /* CONFIG_MODULES */ 7597 7598 struct ftrace_init_func { 7599 struct list_head list; 7600 unsigned long ip; 7601 }; 7602 7603 /* Clear any init ips from hashes */ 7604 static void 7605 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash) 7606 { 7607 struct ftrace_func_entry *entry; 7608 7609 entry = ftrace_lookup_ip(hash, func->ip); 7610 /* 7611 * Do not allow this rec to match again. 7612 * Yeah, it may waste some memory, but will be removed 7613 * if/when the hash is modified again. 7614 */ 7615 if (entry) 7616 entry->ip = 0; 7617 } 7618 7619 static void 7620 clear_func_from_hashes(struct ftrace_init_func *func) 7621 { 7622 struct trace_array *tr; 7623 7624 mutex_lock(&trace_types_lock); 7625 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 7626 if (!tr->ops || !tr->ops->func_hash) 7627 continue; 7628 mutex_lock(&tr->ops->func_hash->regex_lock); 7629 clear_func_from_hash(func, tr->ops->func_hash->filter_hash); 7630 clear_func_from_hash(func, tr->ops->func_hash->notrace_hash); 7631 mutex_unlock(&tr->ops->func_hash->regex_lock); 7632 } 7633 mutex_unlock(&trace_types_lock); 7634 } 7635 7636 static void add_to_clear_hash_list(struct list_head *clear_list, 7637 struct dyn_ftrace *rec) 7638 { 7639 struct ftrace_init_func *func; 7640 7641 func = kmalloc(sizeof(*func), GFP_KERNEL); 7642 if (!func) { 7643 MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n"); 7644 return; 7645 } 7646 7647 func->ip = rec->ip; 7648 list_add(&func->list, clear_list); 7649 } 7650 7651 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr) 7652 { 7653 unsigned long start = (unsigned long)(start_ptr); 7654 unsigned long end = (unsigned long)(end_ptr); 7655 struct ftrace_page **last_pg = &ftrace_pages_start; 7656 struct ftrace_page *tmp_page = NULL; 7657 struct ftrace_page *pg; 7658 struct dyn_ftrace *rec; 7659 struct dyn_ftrace key; 7660 struct ftrace_mod_map *mod_map = NULL; 7661 struct ftrace_init_func *func, *func_next; 7662 LIST_HEAD(clear_hash); 7663 7664 key.ip = start; 7665 key.flags = end; /* overload flags, as it is unsigned long */ 7666 7667 mutex_lock(&ftrace_lock); 7668 7669 /* 7670 * If we are freeing module init memory, then check if 7671 * any tracer is active. If so, we need to save a mapping of 7672 * the module functions being freed with the address. 7673 */ 7674 if (mod && ftrace_ops_list != &ftrace_list_end) 7675 mod_map = allocate_ftrace_mod_map(mod, start, end); 7676 7677 for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) { 7678 if (end < pg->records[0].ip || 7679 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 7680 continue; 7681 again: 7682 rec = bsearch(&key, pg->records, pg->index, 7683 sizeof(struct dyn_ftrace), 7684 ftrace_cmp_recs); 7685 if (!rec) 7686 continue; 7687 7688 /* rec will be cleared from hashes after ftrace_lock unlock */ 7689 add_to_clear_hash_list(&clear_hash, rec); 7690 7691 if (mod_map) 7692 save_ftrace_mod_rec(mod_map, rec); 7693 7694 pg->index--; 7695 ftrace_update_tot_cnt--; 7696 if (!pg->index) { 7697 *last_pg = pg->next; 7698 pg->next = tmp_page; 7699 tmp_page = pg; 7700 pg = container_of(last_pg, struct ftrace_page, next); 7701 if (!(*last_pg)) 7702 ftrace_pages = pg; 7703 continue; 7704 } 7705 memmove(rec, rec + 1, 7706 (pg->index - (rec - pg->records)) * sizeof(*rec)); 7707 /* More than one function may be in this block */ 7708 goto again; 7709 } 7710 mutex_unlock(&ftrace_lock); 7711 7712 list_for_each_entry_safe(func, func_next, &clear_hash, list) { 7713 clear_func_from_hashes(func); 7714 kfree(func); 7715 } 7716 /* Need to synchronize with ftrace_location_range() */ 7717 if (tmp_page) { 7718 synchronize_rcu(); 7719 ftrace_free_pages(tmp_page); 7720 } 7721 } 7722 7723 void __init ftrace_free_init_mem(void) 7724 { 7725 void *start = (void *)(&__init_begin); 7726 void *end = (void *)(&__init_end); 7727 7728 ftrace_boot_snapshot(); 7729 7730 ftrace_free_mem(NULL, start, end); 7731 } 7732 7733 int __init __weak ftrace_dyn_arch_init(void) 7734 { 7735 return 0; 7736 } 7737 7738 void __init ftrace_init(void) 7739 { 7740 extern unsigned long __start_mcount_loc[]; 7741 extern unsigned long __stop_mcount_loc[]; 7742 unsigned long count, flags; 7743 int ret; 7744 7745 local_irq_save(flags); 7746 ret = ftrace_dyn_arch_init(); 7747 local_irq_restore(flags); 7748 if (ret) 7749 goto failed; 7750 7751 count = __stop_mcount_loc - __start_mcount_loc; 7752 if (!count) { 7753 pr_info("ftrace: No functions to be traced?\n"); 7754 goto failed; 7755 } 7756 7757 pr_info("ftrace: allocating %ld entries in %ld pages\n", 7758 count, DIV_ROUND_UP(count, ENTRIES_PER_PAGE)); 7759 7760 ret = ftrace_process_locs(NULL, 7761 __start_mcount_loc, 7762 __stop_mcount_loc); 7763 if (ret) { 7764 pr_warn("ftrace: failed to allocate entries for functions\n"); 7765 goto failed; 7766 } 7767 7768 pr_info("ftrace: allocated %ld pages with %ld groups\n", 7769 ftrace_number_of_pages, ftrace_number_of_groups); 7770 7771 last_ftrace_enabled = ftrace_enabled = 1; 7772 7773 set_ftrace_early_filters(); 7774 7775 return; 7776 failed: 7777 ftrace_disabled = 1; 7778 } 7779 7780 /* Do nothing if arch does not support this */ 7781 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops) 7782 { 7783 } 7784 7785 static void ftrace_update_trampoline(struct ftrace_ops *ops) 7786 { 7787 unsigned long trampoline = ops->trampoline; 7788 7789 arch_ftrace_update_trampoline(ops); 7790 if (ops->trampoline && ops->trampoline != trampoline && 7791 (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) { 7792 /* Add to kallsyms before the perf events */ 7793 ftrace_add_trampoline_to_kallsyms(ops); 7794 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 7795 ops->trampoline, ops->trampoline_size, false, 7796 FTRACE_TRAMPOLINE_SYM); 7797 /* 7798 * Record the perf text poke event after the ksymbol register 7799 * event. 7800 */ 7801 perf_event_text_poke((void *)ops->trampoline, NULL, 0, 7802 (void *)ops->trampoline, 7803 ops->trampoline_size); 7804 } 7805 } 7806 7807 void ftrace_init_trace_array(struct trace_array *tr) 7808 { 7809 INIT_LIST_HEAD(&tr->func_probes); 7810 INIT_LIST_HEAD(&tr->mod_trace); 7811 INIT_LIST_HEAD(&tr->mod_notrace); 7812 } 7813 #else 7814 7815 struct ftrace_ops global_ops = { 7816 .func = ftrace_stub, 7817 .flags = FTRACE_OPS_FL_INITIALIZED | 7818 FTRACE_OPS_FL_PID, 7819 }; 7820 7821 static int __init ftrace_nodyn_init(void) 7822 { 7823 ftrace_enabled = 1; 7824 return 0; 7825 } 7826 core_initcall(ftrace_nodyn_init); 7827 7828 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; } 7829 static inline void ftrace_startup_all(int command) { } 7830 7831 static void ftrace_update_trampoline(struct ftrace_ops *ops) 7832 { 7833 } 7834 7835 #endif /* CONFIG_DYNAMIC_FTRACE */ 7836 7837 __init void ftrace_init_global_array_ops(struct trace_array *tr) 7838 { 7839 tr->ops = &global_ops; 7840 tr->ops->private = tr; 7841 ftrace_init_trace_array(tr); 7842 init_array_fgraph_ops(tr, tr->ops); 7843 } 7844 7845 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func) 7846 { 7847 /* If we filter on pids, update to use the pid function */ 7848 if (tr->flags & TRACE_ARRAY_FL_GLOBAL) { 7849 if (WARN_ON(tr->ops->func != ftrace_stub)) 7850 printk("ftrace ops had %pS for function\n", 7851 tr->ops->func); 7852 } 7853 tr->ops->func = func; 7854 tr->ops->private = tr; 7855 } 7856 7857 void ftrace_reset_array_ops(struct trace_array *tr) 7858 { 7859 tr->ops->func = ftrace_stub; 7860 } 7861 7862 static nokprobe_inline void 7863 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 7864 struct ftrace_ops *ignored, struct ftrace_regs *fregs) 7865 { 7866 struct pt_regs *regs = ftrace_get_regs(fregs); 7867 struct ftrace_ops *op; 7868 int bit; 7869 7870 /* 7871 * The ftrace_test_and_set_recursion() will disable preemption, 7872 * which is required since some of the ops may be dynamically 7873 * allocated, they must be freed after a synchronize_rcu(). 7874 */ 7875 bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START); 7876 if (bit < 0) 7877 return; 7878 7879 do_for_each_ftrace_op(op, ftrace_ops_list) { 7880 /* Stub functions don't need to be called nor tested */ 7881 if (op->flags & FTRACE_OPS_FL_STUB) 7882 continue; 7883 /* 7884 * Check the following for each ops before calling their func: 7885 * if RCU flag is set, then rcu_is_watching() must be true 7886 * Otherwise test if the ip matches the ops filter 7887 * 7888 * If any of the above fails then the op->func() is not executed. 7889 */ 7890 if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) && 7891 ftrace_ops_test(op, ip, regs)) { 7892 if (FTRACE_WARN_ON(!op->func)) { 7893 pr_warn("op=%p %pS\n", op, op); 7894 goto out; 7895 } 7896 op->func(ip, parent_ip, op, fregs); 7897 } 7898 } while_for_each_ftrace_op(op); 7899 out: 7900 trace_clear_recursion(bit); 7901 } 7902 7903 /* 7904 * Some archs only support passing ip and parent_ip. Even though 7905 * the list function ignores the op parameter, we do not want any 7906 * C side effects, where a function is called without the caller 7907 * sending a third parameter. 7908 * Archs are to support both the regs and ftrace_ops at the same time. 7909 * If they support ftrace_ops, it is assumed they support regs. 7910 * If call backs want to use regs, they must either check for regs 7911 * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS. 7912 * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved. 7913 * An architecture can pass partial regs with ftrace_ops and still 7914 * set the ARCH_SUPPORTS_FTRACE_OPS. 7915 * 7916 * In vmlinux.lds.h, ftrace_ops_list_func() is defined to be 7917 * arch_ftrace_ops_list_func. 7918 */ 7919 #if ARCH_SUPPORTS_FTRACE_OPS 7920 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 7921 struct ftrace_ops *op, struct ftrace_regs *fregs) 7922 { 7923 kmsan_unpoison_memory(fregs, sizeof(*fregs)); 7924 __ftrace_ops_list_func(ip, parent_ip, NULL, fregs); 7925 } 7926 #else 7927 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip) 7928 { 7929 __ftrace_ops_list_func(ip, parent_ip, NULL, NULL); 7930 } 7931 #endif 7932 NOKPROBE_SYMBOL(arch_ftrace_ops_list_func); 7933 7934 /* 7935 * If there's only one function registered but it does not support 7936 * recursion, needs RCU protection, then this function will be called 7937 * by the mcount trampoline. 7938 */ 7939 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip, 7940 struct ftrace_ops *op, struct ftrace_regs *fregs) 7941 { 7942 int bit; 7943 7944 bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START); 7945 if (bit < 0) 7946 return; 7947 7948 if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) 7949 op->func(ip, parent_ip, op, fregs); 7950 7951 trace_clear_recursion(bit); 7952 } 7953 NOKPROBE_SYMBOL(ftrace_ops_assist_func); 7954 7955 /** 7956 * ftrace_ops_get_func - get the function a trampoline should call 7957 * @ops: the ops to get the function for 7958 * 7959 * Normally the mcount trampoline will call the ops->func, but there 7960 * are times that it should not. For example, if the ops does not 7961 * have its own recursion protection, then it should call the 7962 * ftrace_ops_assist_func() instead. 7963 * 7964 * Returns: the function that the trampoline should call for @ops. 7965 */ 7966 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops) 7967 { 7968 /* 7969 * If the function does not handle recursion or needs to be RCU safe, 7970 * then we need to call the assist handler. 7971 */ 7972 if (ops->flags & (FTRACE_OPS_FL_RECURSION | 7973 FTRACE_OPS_FL_RCU)) 7974 return ftrace_ops_assist_func; 7975 7976 return ops->func; 7977 } 7978 7979 static void 7980 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt, 7981 struct task_struct *prev, 7982 struct task_struct *next, 7983 unsigned int prev_state) 7984 { 7985 struct trace_array *tr = data; 7986 struct trace_pid_list *pid_list; 7987 struct trace_pid_list *no_pid_list; 7988 7989 pid_list = rcu_dereference_sched(tr->function_pids); 7990 no_pid_list = rcu_dereference_sched(tr->function_no_pids); 7991 7992 if (trace_ignore_this_task(pid_list, no_pid_list, next)) 7993 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7994 FTRACE_PID_IGNORE); 7995 else 7996 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7997 next->pid); 7998 } 7999 8000 static void 8001 ftrace_pid_follow_sched_process_fork(void *data, 8002 struct task_struct *self, 8003 struct task_struct *task) 8004 { 8005 struct trace_pid_list *pid_list; 8006 struct trace_array *tr = data; 8007 8008 pid_list = rcu_dereference_sched(tr->function_pids); 8009 trace_filter_add_remove_task(pid_list, self, task); 8010 8011 pid_list = rcu_dereference_sched(tr->function_no_pids); 8012 trace_filter_add_remove_task(pid_list, self, task); 8013 } 8014 8015 static void 8016 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task) 8017 { 8018 struct trace_pid_list *pid_list; 8019 struct trace_array *tr = data; 8020 8021 pid_list = rcu_dereference_sched(tr->function_pids); 8022 trace_filter_add_remove_task(pid_list, NULL, task); 8023 8024 pid_list = rcu_dereference_sched(tr->function_no_pids); 8025 trace_filter_add_remove_task(pid_list, NULL, task); 8026 } 8027 8028 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable) 8029 { 8030 if (enable) { 8031 register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 8032 tr); 8033 register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 8034 tr); 8035 } else { 8036 unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 8037 tr); 8038 unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 8039 tr); 8040 } 8041 } 8042 8043 static void clear_ftrace_pids(struct trace_array *tr, int type) 8044 { 8045 struct trace_pid_list *pid_list; 8046 struct trace_pid_list *no_pid_list; 8047 int cpu; 8048 8049 pid_list = rcu_dereference_protected(tr->function_pids, 8050 lockdep_is_held(&ftrace_lock)); 8051 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 8052 lockdep_is_held(&ftrace_lock)); 8053 8054 /* Make sure there's something to do */ 8055 if (!pid_type_enabled(type, pid_list, no_pid_list)) 8056 return; 8057 8058 /* See if the pids still need to be checked after this */ 8059 if (!still_need_pid_events(type, pid_list, no_pid_list)) { 8060 unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 8061 for_each_possible_cpu(cpu) 8062 per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE; 8063 } 8064 8065 if (type & TRACE_PIDS) 8066 rcu_assign_pointer(tr->function_pids, NULL); 8067 8068 if (type & TRACE_NO_PIDS) 8069 rcu_assign_pointer(tr->function_no_pids, NULL); 8070 8071 /* Wait till all users are no longer using pid filtering */ 8072 synchronize_rcu(); 8073 8074 if ((type & TRACE_PIDS) && pid_list) 8075 trace_pid_list_free(pid_list); 8076 8077 if ((type & TRACE_NO_PIDS) && no_pid_list) 8078 trace_pid_list_free(no_pid_list); 8079 } 8080 8081 void ftrace_clear_pids(struct trace_array *tr) 8082 { 8083 mutex_lock(&ftrace_lock); 8084 8085 clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS); 8086 8087 mutex_unlock(&ftrace_lock); 8088 } 8089 8090 static void ftrace_pid_reset(struct trace_array *tr, int type) 8091 { 8092 mutex_lock(&ftrace_lock); 8093 clear_ftrace_pids(tr, type); 8094 8095 ftrace_update_pid_func(); 8096 ftrace_startup_all(0); 8097 8098 mutex_unlock(&ftrace_lock); 8099 } 8100 8101 /* Greater than any max PID */ 8102 #define FTRACE_NO_PIDS (void *)(PID_MAX_LIMIT + 1) 8103 8104 static void *fpid_start(struct seq_file *m, loff_t *pos) 8105 __acquires(RCU) 8106 { 8107 struct trace_pid_list *pid_list; 8108 struct trace_array *tr = m->private; 8109 8110 mutex_lock(&ftrace_lock); 8111 rcu_read_lock_sched(); 8112 8113 pid_list = rcu_dereference_sched(tr->function_pids); 8114 8115 if (!pid_list) 8116 return !(*pos) ? FTRACE_NO_PIDS : NULL; 8117 8118 return trace_pid_start(pid_list, pos); 8119 } 8120 8121 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos) 8122 { 8123 struct trace_array *tr = m->private; 8124 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids); 8125 8126 if (v == FTRACE_NO_PIDS) { 8127 (*pos)++; 8128 return NULL; 8129 } 8130 return trace_pid_next(pid_list, v, pos); 8131 } 8132 8133 static void fpid_stop(struct seq_file *m, void *p) 8134 __releases(RCU) 8135 { 8136 rcu_read_unlock_sched(); 8137 mutex_unlock(&ftrace_lock); 8138 } 8139 8140 static int fpid_show(struct seq_file *m, void *v) 8141 { 8142 if (v == FTRACE_NO_PIDS) { 8143 seq_puts(m, "no pid\n"); 8144 return 0; 8145 } 8146 8147 return trace_pid_show(m, v); 8148 } 8149 8150 static const struct seq_operations ftrace_pid_sops = { 8151 .start = fpid_start, 8152 .next = fpid_next, 8153 .stop = fpid_stop, 8154 .show = fpid_show, 8155 }; 8156 8157 static void *fnpid_start(struct seq_file *m, loff_t *pos) 8158 __acquires(RCU) 8159 { 8160 struct trace_pid_list *pid_list; 8161 struct trace_array *tr = m->private; 8162 8163 mutex_lock(&ftrace_lock); 8164 rcu_read_lock_sched(); 8165 8166 pid_list = rcu_dereference_sched(tr->function_no_pids); 8167 8168 if (!pid_list) 8169 return !(*pos) ? FTRACE_NO_PIDS : NULL; 8170 8171 return trace_pid_start(pid_list, pos); 8172 } 8173 8174 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos) 8175 { 8176 struct trace_array *tr = m->private; 8177 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids); 8178 8179 if (v == FTRACE_NO_PIDS) { 8180 (*pos)++; 8181 return NULL; 8182 } 8183 return trace_pid_next(pid_list, v, pos); 8184 } 8185 8186 static const struct seq_operations ftrace_no_pid_sops = { 8187 .start = fnpid_start, 8188 .next = fnpid_next, 8189 .stop = fpid_stop, 8190 .show = fpid_show, 8191 }; 8192 8193 static int pid_open(struct inode *inode, struct file *file, int type) 8194 { 8195 const struct seq_operations *seq_ops; 8196 struct trace_array *tr = inode->i_private; 8197 struct seq_file *m; 8198 int ret = 0; 8199 8200 ret = tracing_check_open_get_tr(tr); 8201 if (ret) 8202 return ret; 8203 8204 if ((file->f_mode & FMODE_WRITE) && 8205 (file->f_flags & O_TRUNC)) 8206 ftrace_pid_reset(tr, type); 8207 8208 switch (type) { 8209 case TRACE_PIDS: 8210 seq_ops = &ftrace_pid_sops; 8211 break; 8212 case TRACE_NO_PIDS: 8213 seq_ops = &ftrace_no_pid_sops; 8214 break; 8215 default: 8216 trace_array_put(tr); 8217 WARN_ON_ONCE(1); 8218 return -EINVAL; 8219 } 8220 8221 ret = seq_open(file, seq_ops); 8222 if (ret < 0) { 8223 trace_array_put(tr); 8224 } else { 8225 m = file->private_data; 8226 /* copy tr over to seq ops */ 8227 m->private = tr; 8228 } 8229 8230 return ret; 8231 } 8232 8233 static int 8234 ftrace_pid_open(struct inode *inode, struct file *file) 8235 { 8236 return pid_open(inode, file, TRACE_PIDS); 8237 } 8238 8239 static int 8240 ftrace_no_pid_open(struct inode *inode, struct file *file) 8241 { 8242 return pid_open(inode, file, TRACE_NO_PIDS); 8243 } 8244 8245 static void ignore_task_cpu(void *data) 8246 { 8247 struct trace_array *tr = data; 8248 struct trace_pid_list *pid_list; 8249 struct trace_pid_list *no_pid_list; 8250 8251 /* 8252 * This function is called by on_each_cpu() while the 8253 * event_mutex is held. 8254 */ 8255 pid_list = rcu_dereference_protected(tr->function_pids, 8256 mutex_is_locked(&ftrace_lock)); 8257 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 8258 mutex_is_locked(&ftrace_lock)); 8259 8260 if (trace_ignore_this_task(pid_list, no_pid_list, current)) 8261 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 8262 FTRACE_PID_IGNORE); 8263 else 8264 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 8265 current->pid); 8266 } 8267 8268 static ssize_t 8269 pid_write(struct file *filp, const char __user *ubuf, 8270 size_t cnt, loff_t *ppos, int type) 8271 { 8272 struct seq_file *m = filp->private_data; 8273 struct trace_array *tr = m->private; 8274 struct trace_pid_list *filtered_pids; 8275 struct trace_pid_list *other_pids; 8276 struct trace_pid_list *pid_list; 8277 ssize_t ret; 8278 8279 if (!cnt) 8280 return 0; 8281 8282 mutex_lock(&ftrace_lock); 8283 8284 switch (type) { 8285 case TRACE_PIDS: 8286 filtered_pids = rcu_dereference_protected(tr->function_pids, 8287 lockdep_is_held(&ftrace_lock)); 8288 other_pids = rcu_dereference_protected(tr->function_no_pids, 8289 lockdep_is_held(&ftrace_lock)); 8290 break; 8291 case TRACE_NO_PIDS: 8292 filtered_pids = rcu_dereference_protected(tr->function_no_pids, 8293 lockdep_is_held(&ftrace_lock)); 8294 other_pids = rcu_dereference_protected(tr->function_pids, 8295 lockdep_is_held(&ftrace_lock)); 8296 break; 8297 default: 8298 ret = -EINVAL; 8299 WARN_ON_ONCE(1); 8300 goto out; 8301 } 8302 8303 ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt); 8304 if (ret < 0) 8305 goto out; 8306 8307 switch (type) { 8308 case TRACE_PIDS: 8309 rcu_assign_pointer(tr->function_pids, pid_list); 8310 break; 8311 case TRACE_NO_PIDS: 8312 rcu_assign_pointer(tr->function_no_pids, pid_list); 8313 break; 8314 } 8315 8316 8317 if (filtered_pids) { 8318 synchronize_rcu(); 8319 trace_pid_list_free(filtered_pids); 8320 } else if (pid_list && !other_pids) { 8321 /* Register a probe to set whether to ignore the tracing of a task */ 8322 register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 8323 } 8324 8325 /* 8326 * Ignoring of pids is done at task switch. But we have to 8327 * check for those tasks that are currently running. 8328 * Always do this in case a pid was appended or removed. 8329 */ 8330 on_each_cpu(ignore_task_cpu, tr, 1); 8331 8332 ftrace_update_pid_func(); 8333 ftrace_startup_all(0); 8334 out: 8335 mutex_unlock(&ftrace_lock); 8336 8337 if (ret > 0) 8338 *ppos += ret; 8339 8340 return ret; 8341 } 8342 8343 static ssize_t 8344 ftrace_pid_write(struct file *filp, const char __user *ubuf, 8345 size_t cnt, loff_t *ppos) 8346 { 8347 return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS); 8348 } 8349 8350 static ssize_t 8351 ftrace_no_pid_write(struct file *filp, const char __user *ubuf, 8352 size_t cnt, loff_t *ppos) 8353 { 8354 return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS); 8355 } 8356 8357 static int 8358 ftrace_pid_release(struct inode *inode, struct file *file) 8359 { 8360 struct trace_array *tr = inode->i_private; 8361 8362 trace_array_put(tr); 8363 8364 return seq_release(inode, file); 8365 } 8366 8367 static const struct file_operations ftrace_pid_fops = { 8368 .open = ftrace_pid_open, 8369 .write = ftrace_pid_write, 8370 .read = seq_read, 8371 .llseek = tracing_lseek, 8372 .release = ftrace_pid_release, 8373 }; 8374 8375 static const struct file_operations ftrace_no_pid_fops = { 8376 .open = ftrace_no_pid_open, 8377 .write = ftrace_no_pid_write, 8378 .read = seq_read, 8379 .llseek = tracing_lseek, 8380 .release = ftrace_pid_release, 8381 }; 8382 8383 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer) 8384 { 8385 trace_create_file("set_ftrace_pid", TRACE_MODE_WRITE, d_tracer, 8386 tr, &ftrace_pid_fops); 8387 trace_create_file("set_ftrace_notrace_pid", TRACE_MODE_WRITE, 8388 d_tracer, tr, &ftrace_no_pid_fops); 8389 } 8390 8391 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr, 8392 struct dentry *d_tracer) 8393 { 8394 /* Only the top level directory has the dyn_tracefs and profile */ 8395 WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL)); 8396 8397 ftrace_init_dyn_tracefs(d_tracer); 8398 ftrace_profile_tracefs(d_tracer); 8399 } 8400 8401 /** 8402 * ftrace_kill - kill ftrace 8403 * 8404 * This function should be used by panic code. It stops ftrace 8405 * but in a not so nice way. If you need to simply kill ftrace 8406 * from a non-atomic section, use ftrace_kill. 8407 */ 8408 void ftrace_kill(void) 8409 { 8410 ftrace_disabled = 1; 8411 ftrace_enabled = 0; 8412 ftrace_trace_function = ftrace_stub; 8413 kprobe_ftrace_kill(); 8414 } 8415 8416 /** 8417 * ftrace_is_dead - Test if ftrace is dead or not. 8418 * 8419 * Returns: 1 if ftrace is "dead", zero otherwise. 8420 */ 8421 int ftrace_is_dead(void) 8422 { 8423 return ftrace_disabled; 8424 } 8425 8426 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 8427 /* 8428 * When registering ftrace_ops with IPMODIFY, it is necessary to make sure 8429 * it doesn't conflict with any direct ftrace_ops. If there is existing 8430 * direct ftrace_ops on a kernel function being patched, call 8431 * FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER on it to enable sharing. 8432 * 8433 * @ops: ftrace_ops being registered. 8434 * 8435 * Returns: 8436 * 0 on success; 8437 * Negative on failure. 8438 */ 8439 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops) 8440 { 8441 struct ftrace_func_entry *entry; 8442 struct ftrace_hash *hash; 8443 struct ftrace_ops *op; 8444 int size, i, ret; 8445 8446 lockdep_assert_held_once(&direct_mutex); 8447 8448 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 8449 return 0; 8450 8451 hash = ops->func_hash->filter_hash; 8452 size = 1 << hash->size_bits; 8453 for (i = 0; i < size; i++) { 8454 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 8455 unsigned long ip = entry->ip; 8456 bool found_op = false; 8457 8458 mutex_lock(&ftrace_lock); 8459 do_for_each_ftrace_op(op, ftrace_ops_list) { 8460 if (!(op->flags & FTRACE_OPS_FL_DIRECT)) 8461 continue; 8462 if (ops_references_ip(op, ip)) { 8463 found_op = true; 8464 break; 8465 } 8466 } while_for_each_ftrace_op(op); 8467 mutex_unlock(&ftrace_lock); 8468 8469 if (found_op) { 8470 if (!op->ops_func) 8471 return -EBUSY; 8472 8473 ret = op->ops_func(op, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER); 8474 if (ret) 8475 return ret; 8476 } 8477 } 8478 } 8479 8480 return 0; 8481 } 8482 8483 /* 8484 * Similar to prepare_direct_functions_for_ipmodify, clean up after ops 8485 * with IPMODIFY is unregistered. The cleanup is optional for most DIRECT 8486 * ops. 8487 */ 8488 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops) 8489 { 8490 struct ftrace_func_entry *entry; 8491 struct ftrace_hash *hash; 8492 struct ftrace_ops *op; 8493 int size, i; 8494 8495 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 8496 return; 8497 8498 mutex_lock(&direct_mutex); 8499 8500 hash = ops->func_hash->filter_hash; 8501 size = 1 << hash->size_bits; 8502 for (i = 0; i < size; i++) { 8503 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 8504 unsigned long ip = entry->ip; 8505 bool found_op = false; 8506 8507 mutex_lock(&ftrace_lock); 8508 do_for_each_ftrace_op(op, ftrace_ops_list) { 8509 if (!(op->flags & FTRACE_OPS_FL_DIRECT)) 8510 continue; 8511 if (ops_references_ip(op, ip)) { 8512 found_op = true; 8513 break; 8514 } 8515 } while_for_each_ftrace_op(op); 8516 mutex_unlock(&ftrace_lock); 8517 8518 /* The cleanup is optional, ignore any errors */ 8519 if (found_op && op->ops_func) 8520 op->ops_func(op, FTRACE_OPS_CMD_DISABLE_SHARE_IPMODIFY_PEER); 8521 } 8522 } 8523 mutex_unlock(&direct_mutex); 8524 } 8525 8526 #define lock_direct_mutex() mutex_lock(&direct_mutex) 8527 #define unlock_direct_mutex() mutex_unlock(&direct_mutex) 8528 8529 #else /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 8530 8531 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops) 8532 { 8533 return 0; 8534 } 8535 8536 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops) 8537 { 8538 } 8539 8540 #define lock_direct_mutex() do { } while (0) 8541 #define unlock_direct_mutex() do { } while (0) 8542 8543 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 8544 8545 /* 8546 * Similar to register_ftrace_function, except we don't lock direct_mutex. 8547 */ 8548 static int register_ftrace_function_nolock(struct ftrace_ops *ops) 8549 { 8550 int ret; 8551 8552 ftrace_ops_init(ops); 8553 8554 mutex_lock(&ftrace_lock); 8555 8556 ret = ftrace_startup(ops, 0); 8557 8558 mutex_unlock(&ftrace_lock); 8559 8560 return ret; 8561 } 8562 8563 /** 8564 * register_ftrace_function - register a function for profiling 8565 * @ops: ops structure that holds the function for profiling. 8566 * 8567 * Register a function to be called by all functions in the 8568 * kernel. 8569 * 8570 * Note: @ops->func and all the functions it calls must be labeled 8571 * with "notrace", otherwise it will go into a 8572 * recursive loop. 8573 */ 8574 int register_ftrace_function(struct ftrace_ops *ops) 8575 { 8576 int ret; 8577 8578 lock_direct_mutex(); 8579 ret = prepare_direct_functions_for_ipmodify(ops); 8580 if (ret < 0) 8581 goto out_unlock; 8582 8583 ret = register_ftrace_function_nolock(ops); 8584 8585 out_unlock: 8586 unlock_direct_mutex(); 8587 return ret; 8588 } 8589 EXPORT_SYMBOL_GPL(register_ftrace_function); 8590 8591 /** 8592 * unregister_ftrace_function - unregister a function for profiling. 8593 * @ops: ops structure that holds the function to unregister 8594 * 8595 * Unregister a function that was added to be called by ftrace profiling. 8596 */ 8597 int unregister_ftrace_function(struct ftrace_ops *ops) 8598 { 8599 int ret; 8600 8601 mutex_lock(&ftrace_lock); 8602 ret = ftrace_shutdown(ops, 0); 8603 mutex_unlock(&ftrace_lock); 8604 8605 cleanup_direct_functions_after_ipmodify(ops); 8606 return ret; 8607 } 8608 EXPORT_SYMBOL_GPL(unregister_ftrace_function); 8609 8610 static int symbols_cmp(const void *a, const void *b) 8611 { 8612 const char **str_a = (const char **) a; 8613 const char **str_b = (const char **) b; 8614 8615 return strcmp(*str_a, *str_b); 8616 } 8617 8618 struct kallsyms_data { 8619 unsigned long *addrs; 8620 const char **syms; 8621 size_t cnt; 8622 size_t found; 8623 }; 8624 8625 /* This function gets called for all kernel and module symbols 8626 * and returns 1 in case we resolved all the requested symbols, 8627 * 0 otherwise. 8628 */ 8629 static int kallsyms_callback(void *data, const char *name, unsigned long addr) 8630 { 8631 struct kallsyms_data *args = data; 8632 const char **sym; 8633 int idx; 8634 8635 sym = bsearch(&name, args->syms, args->cnt, sizeof(*args->syms), symbols_cmp); 8636 if (!sym) 8637 return 0; 8638 8639 idx = sym - args->syms; 8640 if (args->addrs[idx]) 8641 return 0; 8642 8643 if (!ftrace_location(addr)) 8644 return 0; 8645 8646 args->addrs[idx] = addr; 8647 args->found++; 8648 return args->found == args->cnt ? 1 : 0; 8649 } 8650 8651 /** 8652 * ftrace_lookup_symbols - Lookup addresses for array of symbols 8653 * 8654 * @sorted_syms: array of symbols pointers symbols to resolve, 8655 * must be alphabetically sorted 8656 * @cnt: number of symbols/addresses in @syms/@addrs arrays 8657 * @addrs: array for storing resulting addresses 8658 * 8659 * This function looks up addresses for array of symbols provided in 8660 * @syms array (must be alphabetically sorted) and stores them in 8661 * @addrs array, which needs to be big enough to store at least @cnt 8662 * addresses. 8663 * 8664 * Returns: 0 if all provided symbols are found, -ESRCH otherwise. 8665 */ 8666 int ftrace_lookup_symbols(const char **sorted_syms, size_t cnt, unsigned long *addrs) 8667 { 8668 struct kallsyms_data args; 8669 int found_all; 8670 8671 memset(addrs, 0, sizeof(*addrs) * cnt); 8672 args.addrs = addrs; 8673 args.syms = sorted_syms; 8674 args.cnt = cnt; 8675 args.found = 0; 8676 8677 found_all = kallsyms_on_each_symbol(kallsyms_callback, &args); 8678 if (found_all) 8679 return 0; 8680 found_all = module_kallsyms_on_each_symbol(NULL, kallsyms_callback, &args); 8681 return found_all ? 0 : -ESRCH; 8682 } 8683 8684 #ifdef CONFIG_SYSCTL 8685 8686 #ifdef CONFIG_DYNAMIC_FTRACE 8687 static void ftrace_startup_sysctl(void) 8688 { 8689 int command; 8690 8691 if (unlikely(ftrace_disabled)) 8692 return; 8693 8694 /* Force update next time */ 8695 saved_ftrace_func = NULL; 8696 /* ftrace_start_up is true if we want ftrace running */ 8697 if (ftrace_start_up) { 8698 command = FTRACE_UPDATE_CALLS; 8699 if (ftrace_graph_active) 8700 command |= FTRACE_START_FUNC_RET; 8701 ftrace_startup_enable(command); 8702 } 8703 } 8704 8705 static void ftrace_shutdown_sysctl(void) 8706 { 8707 int command; 8708 8709 if (unlikely(ftrace_disabled)) 8710 return; 8711 8712 /* ftrace_start_up is true if ftrace is running */ 8713 if (ftrace_start_up) { 8714 command = FTRACE_DISABLE_CALLS; 8715 if (ftrace_graph_active) 8716 command |= FTRACE_STOP_FUNC_RET; 8717 ftrace_run_update_code(command); 8718 } 8719 } 8720 #else 8721 # define ftrace_startup_sysctl() do { } while (0) 8722 # define ftrace_shutdown_sysctl() do { } while (0) 8723 #endif /* CONFIG_DYNAMIC_FTRACE */ 8724 8725 static bool is_permanent_ops_registered(void) 8726 { 8727 struct ftrace_ops *op; 8728 8729 do_for_each_ftrace_op(op, ftrace_ops_list) { 8730 if (op->flags & FTRACE_OPS_FL_PERMANENT) 8731 return true; 8732 } while_for_each_ftrace_op(op); 8733 8734 return false; 8735 } 8736 8737 static int 8738 ftrace_enable_sysctl(const struct ctl_table *table, int write, 8739 void *buffer, size_t *lenp, loff_t *ppos) 8740 { 8741 int ret = -ENODEV; 8742 8743 mutex_lock(&ftrace_lock); 8744 8745 if (unlikely(ftrace_disabled)) 8746 goto out; 8747 8748 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8749 8750 if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) 8751 goto out; 8752 8753 if (ftrace_enabled) { 8754 8755 /* we are starting ftrace again */ 8756 if (rcu_dereference_protected(ftrace_ops_list, 8757 lockdep_is_held(&ftrace_lock)) != &ftrace_list_end) 8758 update_ftrace_function(); 8759 8760 ftrace_startup_sysctl(); 8761 8762 } else { 8763 if (is_permanent_ops_registered()) { 8764 ftrace_enabled = true; 8765 ret = -EBUSY; 8766 goto out; 8767 } 8768 8769 /* stopping ftrace calls (just send to ftrace_stub) */ 8770 ftrace_trace_function = ftrace_stub; 8771 8772 ftrace_shutdown_sysctl(); 8773 } 8774 8775 last_ftrace_enabled = !!ftrace_enabled; 8776 out: 8777 mutex_unlock(&ftrace_lock); 8778 return ret; 8779 } 8780 8781 static struct ctl_table ftrace_sysctls[] = { 8782 { 8783 .procname = "ftrace_enabled", 8784 .data = &ftrace_enabled, 8785 .maxlen = sizeof(int), 8786 .mode = 0644, 8787 .proc_handler = ftrace_enable_sysctl, 8788 }, 8789 }; 8790 8791 static int __init ftrace_sysctl_init(void) 8792 { 8793 register_sysctl_init("kernel", ftrace_sysctls); 8794 return 0; 8795 } 8796 late_initcall(ftrace_sysctl_init); 8797 #endif 8798