xref: /linux/kernel/trace/ftrace.c (revision 1623bc27a85a93e82194c8d077eccc464efa67db)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Infrastructure for profiling code inserted by 'gcc -pg'.
4  *
5  * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
6  * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com>
7  *
8  * Originally ported from the -rt patch by:
9  *   Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com>
10  *
11  * Based on code in the latency_tracer, that is:
12  *
13  *  Copyright (C) 2004-2006 Ingo Molnar
14  *  Copyright (C) 2004 Nadia Yvette Chambers
15  */
16 
17 #include <linux/stop_machine.h>
18 #include <linux/clocksource.h>
19 #include <linux/sched/task.h>
20 #include <linux/kallsyms.h>
21 #include <linux/security.h>
22 #include <linux/seq_file.h>
23 #include <linux/tracefs.h>
24 #include <linux/hardirq.h>
25 #include <linux/kthread.h>
26 #include <linux/uaccess.h>
27 #include <linux/bsearch.h>
28 #include <linux/module.h>
29 #include <linux/ftrace.h>
30 #include <linux/sysctl.h>
31 #include <linux/slab.h>
32 #include <linux/ctype.h>
33 #include <linux/sort.h>
34 #include <linux/list.h>
35 #include <linux/hash.h>
36 #include <linux/rcupdate.h>
37 #include <linux/kprobes.h>
38 
39 #include <trace/events/sched.h>
40 
41 #include <asm/sections.h>
42 #include <asm/setup.h>
43 
44 #include "ftrace_internal.h"
45 #include "trace_output.h"
46 #include "trace_stat.h"
47 
48 /* Flags that do not get reset */
49 #define FTRACE_NOCLEAR_FLAGS	(FTRACE_FL_DISABLED | FTRACE_FL_TOUCHED | \
50 				 FTRACE_FL_MODIFIED)
51 
52 #define FTRACE_INVALID_FUNCTION		"__ftrace_invalid_address__"
53 
54 #define FTRACE_WARN_ON(cond)			\
55 	({					\
56 		int ___r = cond;		\
57 		if (WARN_ON(___r))		\
58 			ftrace_kill();		\
59 		___r;				\
60 	})
61 
62 #define FTRACE_WARN_ON_ONCE(cond)		\
63 	({					\
64 		int ___r = cond;		\
65 		if (WARN_ON_ONCE(___r))		\
66 			ftrace_kill();		\
67 		___r;				\
68 	})
69 
70 /* hash bits for specific function selection */
71 #define FTRACE_HASH_DEFAULT_BITS 10
72 #define FTRACE_HASH_MAX_BITS 12
73 
74 #ifdef CONFIG_DYNAMIC_FTRACE
75 #define INIT_OPS_HASH(opsname)	\
76 	.func_hash		= &opsname.local_hash,			\
77 	.local_hash.regex_lock	= __MUTEX_INITIALIZER(opsname.local_hash.regex_lock), \
78 	.subop_list		= LIST_HEAD_INIT(opsname.subop_list),
79 #else
80 #define INIT_OPS_HASH(opsname)
81 #endif
82 
83 enum {
84 	FTRACE_MODIFY_ENABLE_FL		= (1 << 0),
85 	FTRACE_MODIFY_MAY_SLEEP_FL	= (1 << 1),
86 };
87 
88 struct ftrace_ops ftrace_list_end __read_mostly = {
89 	.func		= ftrace_stub,
90 	.flags		= FTRACE_OPS_FL_STUB,
91 	INIT_OPS_HASH(ftrace_list_end)
92 };
93 
94 /* ftrace_enabled is a method to turn ftrace on or off */
95 int ftrace_enabled __read_mostly;
96 static int __maybe_unused last_ftrace_enabled;
97 
98 /* Current function tracing op */
99 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end;
100 /* What to set function_trace_op to */
101 static struct ftrace_ops *set_function_trace_op;
102 
103 bool ftrace_pids_enabled(struct ftrace_ops *ops)
104 {
105 	struct trace_array *tr;
106 
107 	if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private)
108 		return false;
109 
110 	tr = ops->private;
111 
112 	return tr->function_pids != NULL || tr->function_no_pids != NULL;
113 }
114 
115 static void ftrace_update_trampoline(struct ftrace_ops *ops);
116 
117 /*
118  * ftrace_disabled is set when an anomaly is discovered.
119  * ftrace_disabled is much stronger than ftrace_enabled.
120  */
121 static int ftrace_disabled __read_mostly;
122 
123 DEFINE_MUTEX(ftrace_lock);
124 
125 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = (struct ftrace_ops __rcu *)&ftrace_list_end;
126 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub;
127 struct ftrace_ops global_ops;
128 
129 /* Defined by vmlinux.lds.h see the comment above arch_ftrace_ops_list_func for details */
130 void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
131 			  struct ftrace_ops *op, struct ftrace_regs *fregs);
132 
133 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_CALL_OPS
134 /*
135  * Stub used to invoke the list ops without requiring a separate trampoline.
136  */
137 const struct ftrace_ops ftrace_list_ops = {
138 	.func	= ftrace_ops_list_func,
139 	.flags	= FTRACE_OPS_FL_STUB,
140 };
141 
142 static void ftrace_ops_nop_func(unsigned long ip, unsigned long parent_ip,
143 				struct ftrace_ops *op,
144 				struct ftrace_regs *fregs)
145 {
146 	/* do nothing */
147 }
148 
149 /*
150  * Stub used when a call site is disabled. May be called transiently by threads
151  * which have made it into ftrace_caller but haven't yet recovered the ops at
152  * the point the call site is disabled.
153  */
154 const struct ftrace_ops ftrace_nop_ops = {
155 	.func	= ftrace_ops_nop_func,
156 	.flags  = FTRACE_OPS_FL_STUB,
157 };
158 #endif
159 
160 static inline void ftrace_ops_init(struct ftrace_ops *ops)
161 {
162 #ifdef CONFIG_DYNAMIC_FTRACE
163 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) {
164 		mutex_init(&ops->local_hash.regex_lock);
165 		INIT_LIST_HEAD(&ops->subop_list);
166 		ops->func_hash = &ops->local_hash;
167 		ops->flags |= FTRACE_OPS_FL_INITIALIZED;
168 	}
169 #endif
170 }
171 
172 /* Call this function for when a callback filters on set_ftrace_pid */
173 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip,
174 			    struct ftrace_ops *op, struct ftrace_regs *fregs)
175 {
176 	struct trace_array *tr = op->private;
177 	int pid;
178 
179 	if (tr) {
180 		pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid);
181 		if (pid == FTRACE_PID_IGNORE)
182 			return;
183 		if (pid != FTRACE_PID_TRACE &&
184 		    pid != current->pid)
185 			return;
186 	}
187 
188 	op->saved_func(ip, parent_ip, op, fregs);
189 }
190 
191 static void ftrace_sync_ipi(void *data)
192 {
193 	/* Probably not needed, but do it anyway */
194 	smp_rmb();
195 }
196 
197 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops)
198 {
199 	/*
200 	 * If this is a dynamic or RCU ops, or we force list func,
201 	 * then it needs to call the list anyway.
202 	 */
203 	if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) ||
204 	    FTRACE_FORCE_LIST_FUNC)
205 		return ftrace_ops_list_func;
206 
207 	return ftrace_ops_get_func(ops);
208 }
209 
210 static void update_ftrace_function(void)
211 {
212 	ftrace_func_t func;
213 
214 	/*
215 	 * Prepare the ftrace_ops that the arch callback will use.
216 	 * If there's only one ftrace_ops registered, the ftrace_ops_list
217 	 * will point to the ops we want.
218 	 */
219 	set_function_trace_op = rcu_dereference_protected(ftrace_ops_list,
220 						lockdep_is_held(&ftrace_lock));
221 
222 	/* If there's no ftrace_ops registered, just call the stub function */
223 	if (set_function_trace_op == &ftrace_list_end) {
224 		func = ftrace_stub;
225 
226 	/*
227 	 * If we are at the end of the list and this ops is
228 	 * recursion safe and not dynamic and the arch supports passing ops,
229 	 * then have the mcount trampoline call the function directly.
230 	 */
231 	} else if (rcu_dereference_protected(ftrace_ops_list->next,
232 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
233 		func = ftrace_ops_get_list_func(ftrace_ops_list);
234 
235 	} else {
236 		/* Just use the default ftrace_ops */
237 		set_function_trace_op = &ftrace_list_end;
238 		func = ftrace_ops_list_func;
239 	}
240 
241 	/* If there's no change, then do nothing more here */
242 	if (ftrace_trace_function == func)
243 		return;
244 
245 	/*
246 	 * If we are using the list function, it doesn't care
247 	 * about the function_trace_ops.
248 	 */
249 	if (func == ftrace_ops_list_func) {
250 		ftrace_trace_function = func;
251 		/*
252 		 * Don't even bother setting function_trace_ops,
253 		 * it would be racy to do so anyway.
254 		 */
255 		return;
256 	}
257 
258 #ifndef CONFIG_DYNAMIC_FTRACE
259 	/*
260 	 * For static tracing, we need to be a bit more careful.
261 	 * The function change takes affect immediately. Thus,
262 	 * we need to coordinate the setting of the function_trace_ops
263 	 * with the setting of the ftrace_trace_function.
264 	 *
265 	 * Set the function to the list ops, which will call the
266 	 * function we want, albeit indirectly, but it handles the
267 	 * ftrace_ops and doesn't depend on function_trace_op.
268 	 */
269 	ftrace_trace_function = ftrace_ops_list_func;
270 	/*
271 	 * Make sure all CPUs see this. Yes this is slow, but static
272 	 * tracing is slow and nasty to have enabled.
273 	 */
274 	synchronize_rcu_tasks_rude();
275 	/* Now all cpus are using the list ops. */
276 	function_trace_op = set_function_trace_op;
277 	/* Make sure the function_trace_op is visible on all CPUs */
278 	smp_wmb();
279 	/* Nasty way to force a rmb on all cpus */
280 	smp_call_function(ftrace_sync_ipi, NULL, 1);
281 	/* OK, we are all set to update the ftrace_trace_function now! */
282 #endif /* !CONFIG_DYNAMIC_FTRACE */
283 
284 	ftrace_trace_function = func;
285 }
286 
287 static void add_ftrace_ops(struct ftrace_ops __rcu **list,
288 			   struct ftrace_ops *ops)
289 {
290 	rcu_assign_pointer(ops->next, *list);
291 
292 	/*
293 	 * We are entering ops into the list but another
294 	 * CPU might be walking that list. We need to make sure
295 	 * the ops->next pointer is valid before another CPU sees
296 	 * the ops pointer included into the list.
297 	 */
298 	rcu_assign_pointer(*list, ops);
299 }
300 
301 static int remove_ftrace_ops(struct ftrace_ops __rcu **list,
302 			     struct ftrace_ops *ops)
303 {
304 	struct ftrace_ops **p;
305 
306 	/*
307 	 * If we are removing the last function, then simply point
308 	 * to the ftrace_stub.
309 	 */
310 	if (rcu_dereference_protected(*list,
311 			lockdep_is_held(&ftrace_lock)) == ops &&
312 	    rcu_dereference_protected(ops->next,
313 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
314 		rcu_assign_pointer(*list, &ftrace_list_end);
315 		return 0;
316 	}
317 
318 	for (p = list; *p != &ftrace_list_end; p = &(*p)->next)
319 		if (*p == ops)
320 			break;
321 
322 	if (*p != ops)
323 		return -1;
324 
325 	*p = (*p)->next;
326 	return 0;
327 }
328 
329 static void ftrace_update_trampoline(struct ftrace_ops *ops);
330 
331 int __register_ftrace_function(struct ftrace_ops *ops)
332 {
333 	if (ops->flags & FTRACE_OPS_FL_DELETED)
334 		return -EINVAL;
335 
336 	if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED))
337 		return -EBUSY;
338 
339 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS
340 	/*
341 	 * If the ftrace_ops specifies SAVE_REGS, then it only can be used
342 	 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set.
343 	 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant.
344 	 */
345 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS &&
346 	    !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED))
347 		return -EINVAL;
348 
349 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)
350 		ops->flags |= FTRACE_OPS_FL_SAVE_REGS;
351 #endif
352 	if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT))
353 		return -EBUSY;
354 
355 	if (!is_kernel_core_data((unsigned long)ops))
356 		ops->flags |= FTRACE_OPS_FL_DYNAMIC;
357 
358 	add_ftrace_ops(&ftrace_ops_list, ops);
359 
360 	/* Always save the function, and reset at unregistering */
361 	ops->saved_func = ops->func;
362 
363 	if (ftrace_pids_enabled(ops))
364 		ops->func = ftrace_pid_func;
365 
366 	ftrace_update_trampoline(ops);
367 
368 	if (ftrace_enabled)
369 		update_ftrace_function();
370 
371 	return 0;
372 }
373 
374 int __unregister_ftrace_function(struct ftrace_ops *ops)
375 {
376 	int ret;
377 
378 	if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED)))
379 		return -EBUSY;
380 
381 	ret = remove_ftrace_ops(&ftrace_ops_list, ops);
382 
383 	if (ret < 0)
384 		return ret;
385 
386 	if (ftrace_enabled)
387 		update_ftrace_function();
388 
389 	ops->func = ops->saved_func;
390 
391 	return 0;
392 }
393 
394 static void ftrace_update_pid_func(void)
395 {
396 	struct ftrace_ops *op;
397 
398 	/* Only do something if we are tracing something */
399 	if (ftrace_trace_function == ftrace_stub)
400 		return;
401 
402 	do_for_each_ftrace_op(op, ftrace_ops_list) {
403 		if (op->flags & FTRACE_OPS_FL_PID) {
404 			op->func = ftrace_pids_enabled(op) ?
405 				ftrace_pid_func : op->saved_func;
406 			ftrace_update_trampoline(op);
407 		}
408 	} while_for_each_ftrace_op(op);
409 
410 	fgraph_update_pid_func();
411 
412 	update_ftrace_function();
413 }
414 
415 #ifdef CONFIG_FUNCTION_PROFILER
416 struct ftrace_profile {
417 	struct hlist_node		node;
418 	unsigned long			ip;
419 	unsigned long			counter;
420 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
421 	unsigned long long		time;
422 	unsigned long long		time_squared;
423 #endif
424 };
425 
426 struct ftrace_profile_page {
427 	struct ftrace_profile_page	*next;
428 	unsigned long			index;
429 	struct ftrace_profile		records[];
430 };
431 
432 struct ftrace_profile_stat {
433 	atomic_t			disabled;
434 	struct hlist_head		*hash;
435 	struct ftrace_profile_page	*pages;
436 	struct ftrace_profile_page	*start;
437 	struct tracer_stat		stat;
438 };
439 
440 #define PROFILE_RECORDS_SIZE						\
441 	(PAGE_SIZE - offsetof(struct ftrace_profile_page, records))
442 
443 #define PROFILES_PER_PAGE					\
444 	(PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile))
445 
446 static int ftrace_profile_enabled __read_mostly;
447 
448 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */
449 static DEFINE_MUTEX(ftrace_profile_lock);
450 
451 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats);
452 
453 #define FTRACE_PROFILE_HASH_BITS 10
454 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS)
455 
456 static void *
457 function_stat_next(void *v, int idx)
458 {
459 	struct ftrace_profile *rec = v;
460 	struct ftrace_profile_page *pg;
461 
462 	pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK);
463 
464  again:
465 	if (idx != 0)
466 		rec++;
467 
468 	if ((void *)rec >= (void *)&pg->records[pg->index]) {
469 		pg = pg->next;
470 		if (!pg)
471 			return NULL;
472 		rec = &pg->records[0];
473 		if (!rec->counter)
474 			goto again;
475 	}
476 
477 	return rec;
478 }
479 
480 static void *function_stat_start(struct tracer_stat *trace)
481 {
482 	struct ftrace_profile_stat *stat =
483 		container_of(trace, struct ftrace_profile_stat, stat);
484 
485 	if (!stat || !stat->start)
486 		return NULL;
487 
488 	return function_stat_next(&stat->start->records[0], 0);
489 }
490 
491 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
492 /* function graph compares on total time */
493 static int function_stat_cmp(const void *p1, const void *p2)
494 {
495 	const struct ftrace_profile *a = p1;
496 	const struct ftrace_profile *b = p2;
497 
498 	if (a->time < b->time)
499 		return -1;
500 	if (a->time > b->time)
501 		return 1;
502 	else
503 		return 0;
504 }
505 #else
506 /* not function graph compares against hits */
507 static int function_stat_cmp(const void *p1, const void *p2)
508 {
509 	const struct ftrace_profile *a = p1;
510 	const struct ftrace_profile *b = p2;
511 
512 	if (a->counter < b->counter)
513 		return -1;
514 	if (a->counter > b->counter)
515 		return 1;
516 	else
517 		return 0;
518 }
519 #endif
520 
521 static int function_stat_headers(struct seq_file *m)
522 {
523 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
524 	seq_puts(m, "  Function                               "
525 		 "Hit    Time            Avg             s^2\n"
526 		    "  --------                               "
527 		 "---    ----            ---             ---\n");
528 #else
529 	seq_puts(m, "  Function                               Hit\n"
530 		    "  --------                               ---\n");
531 #endif
532 	return 0;
533 }
534 
535 static int function_stat_show(struct seq_file *m, void *v)
536 {
537 	struct ftrace_profile *rec = v;
538 	char str[KSYM_SYMBOL_LEN];
539 	int ret = 0;
540 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
541 	static struct trace_seq s;
542 	unsigned long long avg;
543 	unsigned long long stddev;
544 #endif
545 	mutex_lock(&ftrace_profile_lock);
546 
547 	/* we raced with function_profile_reset() */
548 	if (unlikely(rec->counter == 0)) {
549 		ret = -EBUSY;
550 		goto out;
551 	}
552 
553 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
554 	avg = div64_ul(rec->time, rec->counter);
555 	if (tracing_thresh && (avg < tracing_thresh))
556 		goto out;
557 #endif
558 
559 	kallsyms_lookup(rec->ip, NULL, NULL, NULL, str);
560 	seq_printf(m, "  %-30.30s  %10lu", str, rec->counter);
561 
562 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
563 	seq_puts(m, "    ");
564 
565 	/* Sample standard deviation (s^2) */
566 	if (rec->counter <= 1)
567 		stddev = 0;
568 	else {
569 		/*
570 		 * Apply Welford's method:
571 		 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2)
572 		 */
573 		stddev = rec->counter * rec->time_squared -
574 			 rec->time * rec->time;
575 
576 		/*
577 		 * Divide only 1000 for ns^2 -> us^2 conversion.
578 		 * trace_print_graph_duration will divide 1000 again.
579 		 */
580 		stddev = div64_ul(stddev,
581 				  rec->counter * (rec->counter - 1) * 1000);
582 	}
583 
584 	trace_seq_init(&s);
585 	trace_print_graph_duration(rec->time, &s);
586 	trace_seq_puts(&s, "    ");
587 	trace_print_graph_duration(avg, &s);
588 	trace_seq_puts(&s, "    ");
589 	trace_print_graph_duration(stddev, &s);
590 	trace_print_seq(m, &s);
591 #endif
592 	seq_putc(m, '\n');
593 out:
594 	mutex_unlock(&ftrace_profile_lock);
595 
596 	return ret;
597 }
598 
599 static void ftrace_profile_reset(struct ftrace_profile_stat *stat)
600 {
601 	struct ftrace_profile_page *pg;
602 
603 	pg = stat->pages = stat->start;
604 
605 	while (pg) {
606 		memset(pg->records, 0, PROFILE_RECORDS_SIZE);
607 		pg->index = 0;
608 		pg = pg->next;
609 	}
610 
611 	memset(stat->hash, 0,
612 	       FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head));
613 }
614 
615 static int ftrace_profile_pages_init(struct ftrace_profile_stat *stat)
616 {
617 	struct ftrace_profile_page *pg;
618 	int functions;
619 	int pages;
620 	int i;
621 
622 	/* If we already allocated, do nothing */
623 	if (stat->pages)
624 		return 0;
625 
626 	stat->pages = (void *)get_zeroed_page(GFP_KERNEL);
627 	if (!stat->pages)
628 		return -ENOMEM;
629 
630 #ifdef CONFIG_DYNAMIC_FTRACE
631 	functions = ftrace_update_tot_cnt;
632 #else
633 	/*
634 	 * We do not know the number of functions that exist because
635 	 * dynamic tracing is what counts them. With past experience
636 	 * we have around 20K functions. That should be more than enough.
637 	 * It is highly unlikely we will execute every function in
638 	 * the kernel.
639 	 */
640 	functions = 20000;
641 #endif
642 
643 	pg = stat->start = stat->pages;
644 
645 	pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE);
646 
647 	for (i = 1; i < pages; i++) {
648 		pg->next = (void *)get_zeroed_page(GFP_KERNEL);
649 		if (!pg->next)
650 			goto out_free;
651 		pg = pg->next;
652 	}
653 
654 	return 0;
655 
656  out_free:
657 	pg = stat->start;
658 	while (pg) {
659 		unsigned long tmp = (unsigned long)pg;
660 
661 		pg = pg->next;
662 		free_page(tmp);
663 	}
664 
665 	stat->pages = NULL;
666 	stat->start = NULL;
667 
668 	return -ENOMEM;
669 }
670 
671 static int ftrace_profile_init_cpu(int cpu)
672 {
673 	struct ftrace_profile_stat *stat;
674 	int size;
675 
676 	stat = &per_cpu(ftrace_profile_stats, cpu);
677 
678 	if (stat->hash) {
679 		/* If the profile is already created, simply reset it */
680 		ftrace_profile_reset(stat);
681 		return 0;
682 	}
683 
684 	/*
685 	 * We are profiling all functions, but usually only a few thousand
686 	 * functions are hit. We'll make a hash of 1024 items.
687 	 */
688 	size = FTRACE_PROFILE_HASH_SIZE;
689 
690 	stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL);
691 
692 	if (!stat->hash)
693 		return -ENOMEM;
694 
695 	/* Preallocate the function profiling pages */
696 	if (ftrace_profile_pages_init(stat) < 0) {
697 		kfree(stat->hash);
698 		stat->hash = NULL;
699 		return -ENOMEM;
700 	}
701 
702 	return 0;
703 }
704 
705 static int ftrace_profile_init(void)
706 {
707 	int cpu;
708 	int ret = 0;
709 
710 	for_each_possible_cpu(cpu) {
711 		ret = ftrace_profile_init_cpu(cpu);
712 		if (ret)
713 			break;
714 	}
715 
716 	return ret;
717 }
718 
719 /* interrupts must be disabled */
720 static struct ftrace_profile *
721 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip)
722 {
723 	struct ftrace_profile *rec;
724 	struct hlist_head *hhd;
725 	unsigned long key;
726 
727 	key = hash_long(ip, FTRACE_PROFILE_HASH_BITS);
728 	hhd = &stat->hash[key];
729 
730 	if (hlist_empty(hhd))
731 		return NULL;
732 
733 	hlist_for_each_entry_rcu_notrace(rec, hhd, node) {
734 		if (rec->ip == ip)
735 			return rec;
736 	}
737 
738 	return NULL;
739 }
740 
741 static void ftrace_add_profile(struct ftrace_profile_stat *stat,
742 			       struct ftrace_profile *rec)
743 {
744 	unsigned long key;
745 
746 	key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS);
747 	hlist_add_head_rcu(&rec->node, &stat->hash[key]);
748 }
749 
750 /*
751  * The memory is already allocated, this simply finds a new record to use.
752  */
753 static struct ftrace_profile *
754 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip)
755 {
756 	struct ftrace_profile *rec = NULL;
757 
758 	/* prevent recursion (from NMIs) */
759 	if (atomic_inc_return(&stat->disabled) != 1)
760 		goto out;
761 
762 	/*
763 	 * Try to find the function again since an NMI
764 	 * could have added it
765 	 */
766 	rec = ftrace_find_profiled_func(stat, ip);
767 	if (rec)
768 		goto out;
769 
770 	if (stat->pages->index == PROFILES_PER_PAGE) {
771 		if (!stat->pages->next)
772 			goto out;
773 		stat->pages = stat->pages->next;
774 	}
775 
776 	rec = &stat->pages->records[stat->pages->index++];
777 	rec->ip = ip;
778 	ftrace_add_profile(stat, rec);
779 
780  out:
781 	atomic_dec(&stat->disabled);
782 
783 	return rec;
784 }
785 
786 static void
787 function_profile_call(unsigned long ip, unsigned long parent_ip,
788 		      struct ftrace_ops *ops, struct ftrace_regs *fregs)
789 {
790 	struct ftrace_profile_stat *stat;
791 	struct ftrace_profile *rec;
792 	unsigned long flags;
793 
794 	if (!ftrace_profile_enabled)
795 		return;
796 
797 	local_irq_save(flags);
798 
799 	stat = this_cpu_ptr(&ftrace_profile_stats);
800 	if (!stat->hash || !ftrace_profile_enabled)
801 		goto out;
802 
803 	rec = ftrace_find_profiled_func(stat, ip);
804 	if (!rec) {
805 		rec = ftrace_profile_alloc(stat, ip);
806 		if (!rec)
807 			goto out;
808 	}
809 
810 	rec->counter++;
811  out:
812 	local_irq_restore(flags);
813 }
814 
815 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
816 static bool fgraph_graph_time = true;
817 
818 void ftrace_graph_graph_time_control(bool enable)
819 {
820 	fgraph_graph_time = enable;
821 }
822 
823 struct profile_fgraph_data {
824 	unsigned long long		calltime;
825 	unsigned long long		subtime;
826 	unsigned long long		sleeptime;
827 };
828 
829 static int profile_graph_entry(struct ftrace_graph_ent *trace,
830 			       struct fgraph_ops *gops)
831 {
832 	struct profile_fgraph_data *profile_data;
833 
834 	function_profile_call(trace->func, 0, NULL, NULL);
835 
836 	/* If function graph is shutting down, ret_stack can be NULL */
837 	if (!current->ret_stack)
838 		return 0;
839 
840 	profile_data = fgraph_reserve_data(gops->idx, sizeof(*profile_data));
841 	if (!profile_data)
842 		return 0;
843 
844 	profile_data->subtime = 0;
845 	profile_data->sleeptime = current->ftrace_sleeptime;
846 	profile_data->calltime = trace_clock_local();
847 
848 	return 1;
849 }
850 
851 static void profile_graph_return(struct ftrace_graph_ret *trace,
852 				 struct fgraph_ops *gops)
853 {
854 	struct profile_fgraph_data *profile_data;
855 	struct ftrace_profile_stat *stat;
856 	unsigned long long calltime;
857 	unsigned long long rettime = trace_clock_local();
858 	struct ftrace_profile *rec;
859 	unsigned long flags;
860 	int size;
861 
862 	local_irq_save(flags);
863 	stat = this_cpu_ptr(&ftrace_profile_stats);
864 	if (!stat->hash || !ftrace_profile_enabled)
865 		goto out;
866 
867 	profile_data = fgraph_retrieve_data(gops->idx, &size);
868 
869 	/* If the calltime was zero'd ignore it */
870 	if (!profile_data || !profile_data->calltime)
871 		goto out;
872 
873 	calltime = rettime - profile_data->calltime;
874 
875 	if (!fgraph_sleep_time) {
876 		if (current->ftrace_sleeptime)
877 			calltime -= current->ftrace_sleeptime - profile_data->sleeptime;
878 	}
879 
880 	if (!fgraph_graph_time) {
881 		struct profile_fgraph_data *parent_data;
882 
883 		/* Append this call time to the parent time to subtract */
884 		parent_data = fgraph_retrieve_parent_data(gops->idx, &size, 1);
885 		if (parent_data)
886 			parent_data->subtime += calltime;
887 
888 		if (profile_data->subtime && profile_data->subtime < calltime)
889 			calltime -= profile_data->subtime;
890 		else
891 			calltime = 0;
892 	}
893 
894 	rec = ftrace_find_profiled_func(stat, trace->func);
895 	if (rec) {
896 		rec->time += calltime;
897 		rec->time_squared += calltime * calltime;
898 	}
899 
900  out:
901 	local_irq_restore(flags);
902 }
903 
904 static struct fgraph_ops fprofiler_ops = {
905 	.entryfunc = &profile_graph_entry,
906 	.retfunc = &profile_graph_return,
907 };
908 
909 static int register_ftrace_profiler(void)
910 {
911 	ftrace_ops_set_global_filter(&fprofiler_ops.ops);
912 	return register_ftrace_graph(&fprofiler_ops);
913 }
914 
915 static void unregister_ftrace_profiler(void)
916 {
917 	unregister_ftrace_graph(&fprofiler_ops);
918 }
919 #else
920 static struct ftrace_ops ftrace_profile_ops __read_mostly = {
921 	.func		= function_profile_call,
922 };
923 
924 static int register_ftrace_profiler(void)
925 {
926 	ftrace_ops_set_global_filter(&ftrace_profile_ops);
927 	return register_ftrace_function(&ftrace_profile_ops);
928 }
929 
930 static void unregister_ftrace_profiler(void)
931 {
932 	unregister_ftrace_function(&ftrace_profile_ops);
933 }
934 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
935 
936 static ssize_t
937 ftrace_profile_write(struct file *filp, const char __user *ubuf,
938 		     size_t cnt, loff_t *ppos)
939 {
940 	unsigned long val;
941 	int ret;
942 
943 	ret = kstrtoul_from_user(ubuf, cnt, 10, &val);
944 	if (ret)
945 		return ret;
946 
947 	val = !!val;
948 
949 	mutex_lock(&ftrace_profile_lock);
950 	if (ftrace_profile_enabled ^ val) {
951 		if (val) {
952 			ret = ftrace_profile_init();
953 			if (ret < 0) {
954 				cnt = ret;
955 				goto out;
956 			}
957 
958 			ret = register_ftrace_profiler();
959 			if (ret < 0) {
960 				cnt = ret;
961 				goto out;
962 			}
963 			ftrace_profile_enabled = 1;
964 		} else {
965 			ftrace_profile_enabled = 0;
966 			/*
967 			 * unregister_ftrace_profiler calls stop_machine
968 			 * so this acts like an synchronize_rcu.
969 			 */
970 			unregister_ftrace_profiler();
971 		}
972 	}
973  out:
974 	mutex_unlock(&ftrace_profile_lock);
975 
976 	*ppos += cnt;
977 
978 	return cnt;
979 }
980 
981 static ssize_t
982 ftrace_profile_read(struct file *filp, char __user *ubuf,
983 		     size_t cnt, loff_t *ppos)
984 {
985 	char buf[64];		/* big enough to hold a number */
986 	int r;
987 
988 	r = sprintf(buf, "%u\n", ftrace_profile_enabled);
989 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
990 }
991 
992 static const struct file_operations ftrace_profile_fops = {
993 	.open		= tracing_open_generic,
994 	.read		= ftrace_profile_read,
995 	.write		= ftrace_profile_write,
996 	.llseek		= default_llseek,
997 };
998 
999 /* used to initialize the real stat files */
1000 static struct tracer_stat function_stats __initdata = {
1001 	.name		= "functions",
1002 	.stat_start	= function_stat_start,
1003 	.stat_next	= function_stat_next,
1004 	.stat_cmp	= function_stat_cmp,
1005 	.stat_headers	= function_stat_headers,
1006 	.stat_show	= function_stat_show
1007 };
1008 
1009 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
1010 {
1011 	struct ftrace_profile_stat *stat;
1012 	char *name;
1013 	int ret;
1014 	int cpu;
1015 
1016 	for_each_possible_cpu(cpu) {
1017 		stat = &per_cpu(ftrace_profile_stats, cpu);
1018 
1019 		name = kasprintf(GFP_KERNEL, "function%d", cpu);
1020 		if (!name) {
1021 			/*
1022 			 * The files created are permanent, if something happens
1023 			 * we still do not free memory.
1024 			 */
1025 			WARN(1,
1026 			     "Could not allocate stat file for cpu %d\n",
1027 			     cpu);
1028 			return;
1029 		}
1030 		stat->stat = function_stats;
1031 		stat->stat.name = name;
1032 		ret = register_stat_tracer(&stat->stat);
1033 		if (ret) {
1034 			WARN(1,
1035 			     "Could not register function stat for cpu %d\n",
1036 			     cpu);
1037 			kfree(name);
1038 			return;
1039 		}
1040 	}
1041 
1042 	trace_create_file("function_profile_enabled",
1043 			  TRACE_MODE_WRITE, d_tracer, NULL,
1044 			  &ftrace_profile_fops);
1045 }
1046 
1047 #else /* CONFIG_FUNCTION_PROFILER */
1048 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
1049 {
1050 }
1051 #endif /* CONFIG_FUNCTION_PROFILER */
1052 
1053 #ifdef CONFIG_DYNAMIC_FTRACE
1054 
1055 static struct ftrace_ops *removed_ops;
1056 
1057 /*
1058  * Set when doing a global update, like enabling all recs or disabling them.
1059  * It is not set when just updating a single ftrace_ops.
1060  */
1061 static bool update_all_ops;
1062 
1063 #ifndef CONFIG_FTRACE_MCOUNT_RECORD
1064 # error Dynamic ftrace depends on MCOUNT_RECORD
1065 #endif
1066 
1067 struct ftrace_func_probe {
1068 	struct ftrace_probe_ops	*probe_ops;
1069 	struct ftrace_ops	ops;
1070 	struct trace_array	*tr;
1071 	struct list_head	list;
1072 	void			*data;
1073 	int			ref;
1074 };
1075 
1076 /*
1077  * We make these constant because no one should touch them,
1078  * but they are used as the default "empty hash", to avoid allocating
1079  * it all the time. These are in a read only section such that if
1080  * anyone does try to modify it, it will cause an exception.
1081  */
1082 static const struct hlist_head empty_buckets[1];
1083 static const struct ftrace_hash empty_hash = {
1084 	.buckets = (struct hlist_head *)empty_buckets,
1085 };
1086 #define EMPTY_HASH	((struct ftrace_hash *)&empty_hash)
1087 
1088 struct ftrace_ops global_ops = {
1089 	.func				= ftrace_stub,
1090 	.local_hash.notrace_hash	= EMPTY_HASH,
1091 	.local_hash.filter_hash		= EMPTY_HASH,
1092 	INIT_OPS_HASH(global_ops)
1093 	.flags				= FTRACE_OPS_FL_INITIALIZED |
1094 					  FTRACE_OPS_FL_PID,
1095 };
1096 
1097 /*
1098  * Used by the stack unwinder to know about dynamic ftrace trampolines.
1099  */
1100 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr)
1101 {
1102 	struct ftrace_ops *op = NULL;
1103 
1104 	/*
1105 	 * Some of the ops may be dynamically allocated,
1106 	 * they are freed after a synchronize_rcu().
1107 	 */
1108 	preempt_disable_notrace();
1109 
1110 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1111 		/*
1112 		 * This is to check for dynamically allocated trampolines.
1113 		 * Trampolines that are in kernel text will have
1114 		 * core_kernel_text() return true.
1115 		 */
1116 		if (op->trampoline && op->trampoline_size)
1117 			if (addr >= op->trampoline &&
1118 			    addr < op->trampoline + op->trampoline_size) {
1119 				preempt_enable_notrace();
1120 				return op;
1121 			}
1122 	} while_for_each_ftrace_op(op);
1123 	preempt_enable_notrace();
1124 
1125 	return NULL;
1126 }
1127 
1128 /*
1129  * This is used by __kernel_text_address() to return true if the
1130  * address is on a dynamically allocated trampoline that would
1131  * not return true for either core_kernel_text() or
1132  * is_module_text_address().
1133  */
1134 bool is_ftrace_trampoline(unsigned long addr)
1135 {
1136 	return ftrace_ops_trampoline(addr) != NULL;
1137 }
1138 
1139 struct ftrace_page {
1140 	struct ftrace_page	*next;
1141 	struct dyn_ftrace	*records;
1142 	int			index;
1143 	int			order;
1144 };
1145 
1146 #define ENTRY_SIZE sizeof(struct dyn_ftrace)
1147 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE)
1148 
1149 static struct ftrace_page	*ftrace_pages_start;
1150 static struct ftrace_page	*ftrace_pages;
1151 
1152 static __always_inline unsigned long
1153 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip)
1154 {
1155 	if (hash->size_bits > 0)
1156 		return hash_long(ip, hash->size_bits);
1157 
1158 	return 0;
1159 }
1160 
1161 /* Only use this function if ftrace_hash_empty() has already been tested */
1162 static __always_inline struct ftrace_func_entry *
1163 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1164 {
1165 	unsigned long key;
1166 	struct ftrace_func_entry *entry;
1167 	struct hlist_head *hhd;
1168 
1169 	key = ftrace_hash_key(hash, ip);
1170 	hhd = &hash->buckets[key];
1171 
1172 	hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) {
1173 		if (entry->ip == ip)
1174 			return entry;
1175 	}
1176 	return NULL;
1177 }
1178 
1179 /**
1180  * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash
1181  * @hash: The hash to look at
1182  * @ip: The instruction pointer to test
1183  *
1184  * Search a given @hash to see if a given instruction pointer (@ip)
1185  * exists in it.
1186  *
1187  * Returns: the entry that holds the @ip if found. NULL otherwise.
1188  */
1189 struct ftrace_func_entry *
1190 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1191 {
1192 	if (ftrace_hash_empty(hash))
1193 		return NULL;
1194 
1195 	return __ftrace_lookup_ip(hash, ip);
1196 }
1197 
1198 static void __add_hash_entry(struct ftrace_hash *hash,
1199 			     struct ftrace_func_entry *entry)
1200 {
1201 	struct hlist_head *hhd;
1202 	unsigned long key;
1203 
1204 	key = ftrace_hash_key(hash, entry->ip);
1205 	hhd = &hash->buckets[key];
1206 	hlist_add_head(&entry->hlist, hhd);
1207 	hash->count++;
1208 }
1209 
1210 static struct ftrace_func_entry *
1211 add_hash_entry(struct ftrace_hash *hash, unsigned long ip)
1212 {
1213 	struct ftrace_func_entry *entry;
1214 
1215 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1216 	if (!entry)
1217 		return NULL;
1218 
1219 	entry->ip = ip;
1220 	__add_hash_entry(hash, entry);
1221 
1222 	return entry;
1223 }
1224 
1225 static void
1226 free_hash_entry(struct ftrace_hash *hash,
1227 		  struct ftrace_func_entry *entry)
1228 {
1229 	hlist_del(&entry->hlist);
1230 	kfree(entry);
1231 	hash->count--;
1232 }
1233 
1234 static void
1235 remove_hash_entry(struct ftrace_hash *hash,
1236 		  struct ftrace_func_entry *entry)
1237 {
1238 	hlist_del_rcu(&entry->hlist);
1239 	hash->count--;
1240 }
1241 
1242 static void ftrace_hash_clear(struct ftrace_hash *hash)
1243 {
1244 	struct hlist_head *hhd;
1245 	struct hlist_node *tn;
1246 	struct ftrace_func_entry *entry;
1247 	int size = 1 << hash->size_bits;
1248 	int i;
1249 
1250 	if (!hash->count)
1251 		return;
1252 
1253 	for (i = 0; i < size; i++) {
1254 		hhd = &hash->buckets[i];
1255 		hlist_for_each_entry_safe(entry, tn, hhd, hlist)
1256 			free_hash_entry(hash, entry);
1257 	}
1258 	FTRACE_WARN_ON(hash->count);
1259 }
1260 
1261 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod)
1262 {
1263 	list_del(&ftrace_mod->list);
1264 	kfree(ftrace_mod->module);
1265 	kfree(ftrace_mod->func);
1266 	kfree(ftrace_mod);
1267 }
1268 
1269 static void clear_ftrace_mod_list(struct list_head *head)
1270 {
1271 	struct ftrace_mod_load *p, *n;
1272 
1273 	/* stack tracer isn't supported yet */
1274 	if (!head)
1275 		return;
1276 
1277 	mutex_lock(&ftrace_lock);
1278 	list_for_each_entry_safe(p, n, head, list)
1279 		free_ftrace_mod(p);
1280 	mutex_unlock(&ftrace_lock);
1281 }
1282 
1283 static void free_ftrace_hash(struct ftrace_hash *hash)
1284 {
1285 	if (!hash || hash == EMPTY_HASH)
1286 		return;
1287 	ftrace_hash_clear(hash);
1288 	kfree(hash->buckets);
1289 	kfree(hash);
1290 }
1291 
1292 static void __free_ftrace_hash_rcu(struct rcu_head *rcu)
1293 {
1294 	struct ftrace_hash *hash;
1295 
1296 	hash = container_of(rcu, struct ftrace_hash, rcu);
1297 	free_ftrace_hash(hash);
1298 }
1299 
1300 static void free_ftrace_hash_rcu(struct ftrace_hash *hash)
1301 {
1302 	if (!hash || hash == EMPTY_HASH)
1303 		return;
1304 	call_rcu(&hash->rcu, __free_ftrace_hash_rcu);
1305 }
1306 
1307 /**
1308  * ftrace_free_filter - remove all filters for an ftrace_ops
1309  * @ops: the ops to remove the filters from
1310  */
1311 void ftrace_free_filter(struct ftrace_ops *ops)
1312 {
1313 	ftrace_ops_init(ops);
1314 	free_ftrace_hash(ops->func_hash->filter_hash);
1315 	free_ftrace_hash(ops->func_hash->notrace_hash);
1316 }
1317 EXPORT_SYMBOL_GPL(ftrace_free_filter);
1318 
1319 static struct ftrace_hash *alloc_ftrace_hash(int size_bits)
1320 {
1321 	struct ftrace_hash *hash;
1322 	int size;
1323 
1324 	hash = kzalloc(sizeof(*hash), GFP_KERNEL);
1325 	if (!hash)
1326 		return NULL;
1327 
1328 	size = 1 << size_bits;
1329 	hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL);
1330 
1331 	if (!hash->buckets) {
1332 		kfree(hash);
1333 		return NULL;
1334 	}
1335 
1336 	hash->size_bits = size_bits;
1337 
1338 	return hash;
1339 }
1340 
1341 /* Used to save filters on functions for modules not loaded yet */
1342 static int ftrace_add_mod(struct trace_array *tr,
1343 			  const char *func, const char *module,
1344 			  int enable)
1345 {
1346 	struct ftrace_mod_load *ftrace_mod;
1347 	struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace;
1348 
1349 	ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL);
1350 	if (!ftrace_mod)
1351 		return -ENOMEM;
1352 
1353 	INIT_LIST_HEAD(&ftrace_mod->list);
1354 	ftrace_mod->func = kstrdup(func, GFP_KERNEL);
1355 	ftrace_mod->module = kstrdup(module, GFP_KERNEL);
1356 	ftrace_mod->enable = enable;
1357 
1358 	if (!ftrace_mod->func || !ftrace_mod->module)
1359 		goto out_free;
1360 
1361 	list_add(&ftrace_mod->list, mod_head);
1362 
1363 	return 0;
1364 
1365  out_free:
1366 	free_ftrace_mod(ftrace_mod);
1367 
1368 	return -ENOMEM;
1369 }
1370 
1371 static struct ftrace_hash *
1372 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash)
1373 {
1374 	struct ftrace_func_entry *entry;
1375 	struct ftrace_hash *new_hash;
1376 	int size;
1377 	int i;
1378 
1379 	new_hash = alloc_ftrace_hash(size_bits);
1380 	if (!new_hash)
1381 		return NULL;
1382 
1383 	if (hash)
1384 		new_hash->flags = hash->flags;
1385 
1386 	/* Empty hash? */
1387 	if (ftrace_hash_empty(hash))
1388 		return new_hash;
1389 
1390 	size = 1 << hash->size_bits;
1391 	for (i = 0; i < size; i++) {
1392 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
1393 			if (add_hash_entry(new_hash, entry->ip) == NULL)
1394 				goto free_hash;
1395 		}
1396 	}
1397 
1398 	FTRACE_WARN_ON(new_hash->count != hash->count);
1399 
1400 	return new_hash;
1401 
1402  free_hash:
1403 	free_ftrace_hash(new_hash);
1404 	return NULL;
1405 }
1406 
1407 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops);
1408 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops);
1409 
1410 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1411 				       struct ftrace_hash *new_hash);
1412 
1413 /*
1414  * Allocate a new hash and remove entries from @src and move them to the new hash.
1415  * On success, the @src hash will be empty and should be freed.
1416  */
1417 static struct ftrace_hash *__move_hash(struct ftrace_hash *src, int size)
1418 {
1419 	struct ftrace_func_entry *entry;
1420 	struct ftrace_hash *new_hash;
1421 	struct hlist_head *hhd;
1422 	struct hlist_node *tn;
1423 	int bits = 0;
1424 	int i;
1425 
1426 	/*
1427 	 * Use around half the size (max bit of it), but
1428 	 * a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits).
1429 	 */
1430 	bits = fls(size / 2);
1431 
1432 	/* Don't allocate too much */
1433 	if (bits > FTRACE_HASH_MAX_BITS)
1434 		bits = FTRACE_HASH_MAX_BITS;
1435 
1436 	new_hash = alloc_ftrace_hash(bits);
1437 	if (!new_hash)
1438 		return NULL;
1439 
1440 	new_hash->flags = src->flags;
1441 
1442 	size = 1 << src->size_bits;
1443 	for (i = 0; i < size; i++) {
1444 		hhd = &src->buckets[i];
1445 		hlist_for_each_entry_safe(entry, tn, hhd, hlist) {
1446 			remove_hash_entry(src, entry);
1447 			__add_hash_entry(new_hash, entry);
1448 		}
1449 	}
1450 	return new_hash;
1451 }
1452 
1453 /* Move the @src entries to a newly allocated hash */
1454 static struct ftrace_hash *
1455 __ftrace_hash_move(struct ftrace_hash *src)
1456 {
1457 	int size = src->count;
1458 
1459 	/*
1460 	 * If the new source is empty, just return the empty_hash.
1461 	 */
1462 	if (ftrace_hash_empty(src))
1463 		return EMPTY_HASH;
1464 
1465 	return __move_hash(src, size);
1466 }
1467 
1468 /**
1469  * ftrace_hash_move - move a new hash to a filter and do updates
1470  * @ops: The ops with the hash that @dst points to
1471  * @enable: True if for the filter hash, false for the notrace hash
1472  * @dst: Points to the @ops hash that should be updated
1473  * @src: The hash to update @dst with
1474  *
1475  * This is called when an ftrace_ops hash is being updated and the
1476  * the kernel needs to reflect this. Note, this only updates the kernel
1477  * function callbacks if the @ops is enabled (not to be confused with
1478  * @enable above). If the @ops is enabled, its hash determines what
1479  * callbacks get called. This function gets called when the @ops hash
1480  * is updated and it requires new callbacks.
1481  *
1482  * On success the elements of @src is moved to @dst, and @dst is updated
1483  * properly, as well as the functions determined by the @ops hashes
1484  * are now calling the @ops callback function.
1485  *
1486  * Regardless of return type, @src should be freed with free_ftrace_hash().
1487  */
1488 static int
1489 ftrace_hash_move(struct ftrace_ops *ops, int enable,
1490 		 struct ftrace_hash **dst, struct ftrace_hash *src)
1491 {
1492 	struct ftrace_hash *new_hash;
1493 	int ret;
1494 
1495 	/* Reject setting notrace hash on IPMODIFY ftrace_ops */
1496 	if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable)
1497 		return -EINVAL;
1498 
1499 	new_hash = __ftrace_hash_move(src);
1500 	if (!new_hash)
1501 		return -ENOMEM;
1502 
1503 	/* Make sure this can be applied if it is IPMODIFY ftrace_ops */
1504 	if (enable) {
1505 		/* IPMODIFY should be updated only when filter_hash updating */
1506 		ret = ftrace_hash_ipmodify_update(ops, new_hash);
1507 		if (ret < 0) {
1508 			free_ftrace_hash(new_hash);
1509 			return ret;
1510 		}
1511 	}
1512 
1513 	/*
1514 	 * Remove the current set, update the hash and add
1515 	 * them back.
1516 	 */
1517 	ftrace_hash_rec_disable_modify(ops);
1518 
1519 	rcu_assign_pointer(*dst, new_hash);
1520 
1521 	ftrace_hash_rec_enable_modify(ops);
1522 
1523 	return 0;
1524 }
1525 
1526 static bool hash_contains_ip(unsigned long ip,
1527 			     struct ftrace_ops_hash *hash)
1528 {
1529 	/*
1530 	 * The function record is a match if it exists in the filter
1531 	 * hash and not in the notrace hash. Note, an empty hash is
1532 	 * considered a match for the filter hash, but an empty
1533 	 * notrace hash is considered not in the notrace hash.
1534 	 */
1535 	return (ftrace_hash_empty(hash->filter_hash) ||
1536 		__ftrace_lookup_ip(hash->filter_hash, ip)) &&
1537 		(ftrace_hash_empty(hash->notrace_hash) ||
1538 		 !__ftrace_lookup_ip(hash->notrace_hash, ip));
1539 }
1540 
1541 /*
1542  * Test the hashes for this ops to see if we want to call
1543  * the ops->func or not.
1544  *
1545  * It's a match if the ip is in the ops->filter_hash or
1546  * the filter_hash does not exist or is empty,
1547  *  AND
1548  * the ip is not in the ops->notrace_hash.
1549  *
1550  * This needs to be called with preemption disabled as
1551  * the hashes are freed with call_rcu().
1552  */
1553 int
1554 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs)
1555 {
1556 	struct ftrace_ops_hash hash;
1557 	int ret;
1558 
1559 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
1560 	/*
1561 	 * There's a small race when adding ops that the ftrace handler
1562 	 * that wants regs, may be called without them. We can not
1563 	 * allow that handler to be called if regs is NULL.
1564 	 */
1565 	if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS))
1566 		return 0;
1567 #endif
1568 
1569 	rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash);
1570 	rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash);
1571 
1572 	if (hash_contains_ip(ip, &hash))
1573 		ret = 1;
1574 	else
1575 		ret = 0;
1576 
1577 	return ret;
1578 }
1579 
1580 /*
1581  * This is a double for. Do not use 'break' to break out of the loop,
1582  * you must use a goto.
1583  */
1584 #define do_for_each_ftrace_rec(pg, rec)					\
1585 	for (pg = ftrace_pages_start; pg; pg = pg->next) {		\
1586 		int _____i;						\
1587 		for (_____i = 0; _____i < pg->index; _____i++) {	\
1588 			rec = &pg->records[_____i];
1589 
1590 #define while_for_each_ftrace_rec()		\
1591 		}				\
1592 	}
1593 
1594 
1595 static int ftrace_cmp_recs(const void *a, const void *b)
1596 {
1597 	const struct dyn_ftrace *key = a;
1598 	const struct dyn_ftrace *rec = b;
1599 
1600 	if (key->flags < rec->ip)
1601 		return -1;
1602 	if (key->ip >= rec->ip + MCOUNT_INSN_SIZE)
1603 		return 1;
1604 	return 0;
1605 }
1606 
1607 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end)
1608 {
1609 	struct ftrace_page *pg;
1610 	struct dyn_ftrace *rec = NULL;
1611 	struct dyn_ftrace key;
1612 
1613 	key.ip = start;
1614 	key.flags = end;	/* overload flags, as it is unsigned long */
1615 
1616 	for (pg = ftrace_pages_start; pg; pg = pg->next) {
1617 		if (pg->index == 0 ||
1618 		    end < pg->records[0].ip ||
1619 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
1620 			continue;
1621 		rec = bsearch(&key, pg->records, pg->index,
1622 			      sizeof(struct dyn_ftrace),
1623 			      ftrace_cmp_recs);
1624 		if (rec)
1625 			break;
1626 	}
1627 	return rec;
1628 }
1629 
1630 /**
1631  * ftrace_location_range - return the first address of a traced location
1632  *	if it touches the given ip range
1633  * @start: start of range to search.
1634  * @end: end of range to search (inclusive). @end points to the last byte
1635  *	to check.
1636  *
1637  * Returns: rec->ip if the related ftrace location is a least partly within
1638  * the given address range. That is, the first address of the instruction
1639  * that is either a NOP or call to the function tracer. It checks the ftrace
1640  * internal tables to determine if the address belongs or not.
1641  */
1642 unsigned long ftrace_location_range(unsigned long start, unsigned long end)
1643 {
1644 	struct dyn_ftrace *rec;
1645 	unsigned long ip = 0;
1646 
1647 	rcu_read_lock();
1648 	rec = lookup_rec(start, end);
1649 	if (rec)
1650 		ip = rec->ip;
1651 	rcu_read_unlock();
1652 
1653 	return ip;
1654 }
1655 
1656 /**
1657  * ftrace_location - return the ftrace location
1658  * @ip: the instruction pointer to check
1659  *
1660  * Returns:
1661  * * If @ip matches the ftrace location, return @ip.
1662  * * If @ip matches sym+0, return sym's ftrace location.
1663  * * Otherwise, return 0.
1664  */
1665 unsigned long ftrace_location(unsigned long ip)
1666 {
1667 	unsigned long loc;
1668 	unsigned long offset;
1669 	unsigned long size;
1670 
1671 	loc = ftrace_location_range(ip, ip);
1672 	if (!loc) {
1673 		if (!kallsyms_lookup_size_offset(ip, &size, &offset))
1674 			goto out;
1675 
1676 		/* map sym+0 to __fentry__ */
1677 		if (!offset)
1678 			loc = ftrace_location_range(ip, ip + size - 1);
1679 	}
1680 
1681 out:
1682 	return loc;
1683 }
1684 
1685 /**
1686  * ftrace_text_reserved - return true if range contains an ftrace location
1687  * @start: start of range to search
1688  * @end: end of range to search (inclusive). @end points to the last byte to check.
1689  *
1690  * Returns: 1 if @start and @end contains a ftrace location.
1691  * That is, the instruction that is either a NOP or call to
1692  * the function tracer. It checks the ftrace internal tables to
1693  * determine if the address belongs or not.
1694  */
1695 int ftrace_text_reserved(const void *start, const void *end)
1696 {
1697 	unsigned long ret;
1698 
1699 	ret = ftrace_location_range((unsigned long)start,
1700 				    (unsigned long)end);
1701 
1702 	return (int)!!ret;
1703 }
1704 
1705 /* Test if ops registered to this rec needs regs */
1706 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec)
1707 {
1708 	struct ftrace_ops *ops;
1709 	bool keep_regs = false;
1710 
1711 	for (ops = ftrace_ops_list;
1712 	     ops != &ftrace_list_end; ops = ops->next) {
1713 		/* pass rec in as regs to have non-NULL val */
1714 		if (ftrace_ops_test(ops, rec->ip, rec)) {
1715 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1716 				keep_regs = true;
1717 				break;
1718 			}
1719 		}
1720 	}
1721 
1722 	return  keep_regs;
1723 }
1724 
1725 static struct ftrace_ops *
1726 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec);
1727 static struct ftrace_ops *
1728 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude);
1729 static struct ftrace_ops *
1730 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops);
1731 
1732 static bool skip_record(struct dyn_ftrace *rec)
1733 {
1734 	/*
1735 	 * At boot up, weak functions are set to disable. Function tracing
1736 	 * can be enabled before they are, and they still need to be disabled now.
1737 	 * If the record is disabled, still continue if it is marked as already
1738 	 * enabled (this is needed to keep the accounting working).
1739 	 */
1740 	return rec->flags & FTRACE_FL_DISABLED &&
1741 		!(rec->flags & FTRACE_FL_ENABLED);
1742 }
1743 
1744 /*
1745  * This is the main engine to the ftrace updates to the dyn_ftrace records.
1746  *
1747  * It will iterate through all the available ftrace functions
1748  * (the ones that ftrace can have callbacks to) and set the flags
1749  * in the associated dyn_ftrace records.
1750  *
1751  * @inc: If true, the functions associated to @ops are added to
1752  *       the dyn_ftrace records, otherwise they are removed.
1753  */
1754 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops,
1755 				     bool inc)
1756 {
1757 	struct ftrace_hash *hash;
1758 	struct ftrace_hash *notrace_hash;
1759 	struct ftrace_page *pg;
1760 	struct dyn_ftrace *rec;
1761 	bool update = false;
1762 	int count = 0;
1763 	int all = false;
1764 
1765 	/* Only update if the ops has been registered */
1766 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1767 		return false;
1768 
1769 	/*
1770 	 *   If the count is zero, we update all records.
1771 	 *   Otherwise we just update the items in the hash.
1772 	 */
1773 	hash = ops->func_hash->filter_hash;
1774 	notrace_hash = ops->func_hash->notrace_hash;
1775 	if (ftrace_hash_empty(hash))
1776 		all = true;
1777 
1778 	do_for_each_ftrace_rec(pg, rec) {
1779 		int in_notrace_hash = 0;
1780 		int in_hash = 0;
1781 		int match = 0;
1782 
1783 		if (skip_record(rec))
1784 			continue;
1785 
1786 		if (all) {
1787 			/*
1788 			 * Only the filter_hash affects all records.
1789 			 * Update if the record is not in the notrace hash.
1790 			 */
1791 			if (!notrace_hash || !ftrace_lookup_ip(notrace_hash, rec->ip))
1792 				match = 1;
1793 		} else {
1794 			in_hash = !!ftrace_lookup_ip(hash, rec->ip);
1795 			in_notrace_hash = !!ftrace_lookup_ip(notrace_hash, rec->ip);
1796 
1797 			/*
1798 			 * We want to match all functions that are in the hash but
1799 			 * not in the other hash.
1800 			 */
1801 			if (in_hash && !in_notrace_hash)
1802 				match = 1;
1803 		}
1804 		if (!match)
1805 			continue;
1806 
1807 		if (inc) {
1808 			rec->flags++;
1809 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX))
1810 				return false;
1811 
1812 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1813 				rec->flags |= FTRACE_FL_DIRECT;
1814 
1815 			/*
1816 			 * If there's only a single callback registered to a
1817 			 * function, and the ops has a trampoline registered
1818 			 * for it, then we can call it directly.
1819 			 */
1820 			if (ftrace_rec_count(rec) == 1 && ops->trampoline)
1821 				rec->flags |= FTRACE_FL_TRAMP;
1822 			else
1823 				/*
1824 				 * If we are adding another function callback
1825 				 * to this function, and the previous had a
1826 				 * custom trampoline in use, then we need to go
1827 				 * back to the default trampoline.
1828 				 */
1829 				rec->flags &= ~FTRACE_FL_TRAMP;
1830 
1831 			/*
1832 			 * If any ops wants regs saved for this function
1833 			 * then all ops will get saved regs.
1834 			 */
1835 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
1836 				rec->flags |= FTRACE_FL_REGS;
1837 		} else {
1838 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0))
1839 				return false;
1840 			rec->flags--;
1841 
1842 			/*
1843 			 * Only the internal direct_ops should have the
1844 			 * DIRECT flag set. Thus, if it is removing a
1845 			 * function, then that function should no longer
1846 			 * be direct.
1847 			 */
1848 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1849 				rec->flags &= ~FTRACE_FL_DIRECT;
1850 
1851 			/*
1852 			 * If the rec had REGS enabled and the ops that is
1853 			 * being removed had REGS set, then see if there is
1854 			 * still any ops for this record that wants regs.
1855 			 * If not, we can stop recording them.
1856 			 */
1857 			if (ftrace_rec_count(rec) > 0 &&
1858 			    rec->flags & FTRACE_FL_REGS &&
1859 			    ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1860 				if (!test_rec_ops_needs_regs(rec))
1861 					rec->flags &= ~FTRACE_FL_REGS;
1862 			}
1863 
1864 			/*
1865 			 * The TRAMP needs to be set only if rec count
1866 			 * is decremented to one, and the ops that is
1867 			 * left has a trampoline. As TRAMP can only be
1868 			 * enabled if there is only a single ops attached
1869 			 * to it.
1870 			 */
1871 			if (ftrace_rec_count(rec) == 1 &&
1872 			    ftrace_find_tramp_ops_any_other(rec, ops))
1873 				rec->flags |= FTRACE_FL_TRAMP;
1874 			else
1875 				rec->flags &= ~FTRACE_FL_TRAMP;
1876 
1877 			/*
1878 			 * flags will be cleared in ftrace_check_record()
1879 			 * if rec count is zero.
1880 			 */
1881 		}
1882 
1883 		/*
1884 		 * If the rec has a single associated ops, and ops->func can be
1885 		 * called directly, allow the call site to call via the ops.
1886 		 */
1887 		if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE_WITH_CALL_OPS) &&
1888 		    ftrace_rec_count(rec) == 1 &&
1889 		    ftrace_ops_get_func(ops) == ops->func)
1890 			rec->flags |= FTRACE_FL_CALL_OPS;
1891 		else
1892 			rec->flags &= ~FTRACE_FL_CALL_OPS;
1893 
1894 		count++;
1895 
1896 		/* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */
1897 		update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE;
1898 
1899 		/* Shortcut, if we handled all records, we are done. */
1900 		if (!all && count == hash->count)
1901 			return update;
1902 	} while_for_each_ftrace_rec();
1903 
1904 	return update;
1905 }
1906 
1907 /*
1908  * This is called when an ops is removed from tracing. It will decrement
1909  * the counters of the dyn_ftrace records for all the functions that
1910  * the @ops attached to.
1911  */
1912 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops)
1913 {
1914 	return __ftrace_hash_rec_update(ops, false);
1915 }
1916 
1917 /*
1918  * This is called when an ops is added to tracing. It will increment
1919  * the counters of the dyn_ftrace records for all the functions that
1920  * the @ops attached to.
1921  */
1922 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops)
1923 {
1924 	return __ftrace_hash_rec_update(ops, true);
1925 }
1926 
1927 /*
1928  * This function will update what functions @ops traces when its filter
1929  * changes.
1930  *
1931  * The @inc states if the @ops callbacks are going to be added or removed.
1932  * When one of the @ops hashes are updated to a "new_hash" the dyn_ftrace
1933  * records are update via:
1934  *
1935  * ftrace_hash_rec_disable_modify(ops);
1936  * ops->hash = new_hash
1937  * ftrace_hash_rec_enable_modify(ops);
1938  *
1939  * Where the @ops is removed from all the records it is tracing using
1940  * its old hash. The @ops hash is updated to the new hash, and then
1941  * the @ops is added back to the records so that it is tracing all
1942  * the new functions.
1943  */
1944 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops, bool inc)
1945 {
1946 	struct ftrace_ops *op;
1947 
1948 	__ftrace_hash_rec_update(ops, inc);
1949 
1950 	if (ops->func_hash != &global_ops.local_hash)
1951 		return;
1952 
1953 	/*
1954 	 * If the ops shares the global_ops hash, then we need to update
1955 	 * all ops that are enabled and use this hash.
1956 	 */
1957 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1958 		/* Already done */
1959 		if (op == ops)
1960 			continue;
1961 		if (op->func_hash == &global_ops.local_hash)
1962 			__ftrace_hash_rec_update(op, inc);
1963 	} while_for_each_ftrace_op(op);
1964 }
1965 
1966 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops)
1967 {
1968 	ftrace_hash_rec_update_modify(ops, false);
1969 }
1970 
1971 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops)
1972 {
1973 	ftrace_hash_rec_update_modify(ops, true);
1974 }
1975 
1976 /*
1977  * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK
1978  * or no-needed to update, -EBUSY if it detects a conflict of the flag
1979  * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs.
1980  * Note that old_hash and new_hash has below meanings
1981  *  - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected)
1982  *  - If the hash is EMPTY_HASH, it hits nothing
1983  *  - Anything else hits the recs which match the hash entries.
1984  *
1985  * DIRECT ops does not have IPMODIFY flag, but we still need to check it
1986  * against functions with FTRACE_FL_IPMODIFY. If there is any overlap, call
1987  * ops_func(SHARE_IPMODIFY_SELF) to make sure current ops can share with
1988  * IPMODIFY. If ops_func(SHARE_IPMODIFY_SELF) returns non-zero, propagate
1989  * the return value to the caller and eventually to the owner of the DIRECT
1990  * ops.
1991  */
1992 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops,
1993 					 struct ftrace_hash *old_hash,
1994 					 struct ftrace_hash *new_hash)
1995 {
1996 	struct ftrace_page *pg;
1997 	struct dyn_ftrace *rec, *end = NULL;
1998 	int in_old, in_new;
1999 	bool is_ipmodify, is_direct;
2000 
2001 	/* Only update if the ops has been registered */
2002 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
2003 		return 0;
2004 
2005 	is_ipmodify = ops->flags & FTRACE_OPS_FL_IPMODIFY;
2006 	is_direct = ops->flags & FTRACE_OPS_FL_DIRECT;
2007 
2008 	/* neither IPMODIFY nor DIRECT, skip */
2009 	if (!is_ipmodify && !is_direct)
2010 		return 0;
2011 
2012 	if (WARN_ON_ONCE(is_ipmodify && is_direct))
2013 		return 0;
2014 
2015 	/*
2016 	 * Since the IPMODIFY and DIRECT are very address sensitive
2017 	 * actions, we do not allow ftrace_ops to set all functions to new
2018 	 * hash.
2019 	 */
2020 	if (!new_hash || !old_hash)
2021 		return -EINVAL;
2022 
2023 	/* Update rec->flags */
2024 	do_for_each_ftrace_rec(pg, rec) {
2025 
2026 		if (rec->flags & FTRACE_FL_DISABLED)
2027 			continue;
2028 
2029 		/* We need to update only differences of filter_hash */
2030 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
2031 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
2032 		if (in_old == in_new)
2033 			continue;
2034 
2035 		if (in_new) {
2036 			if (rec->flags & FTRACE_FL_IPMODIFY) {
2037 				int ret;
2038 
2039 				/* Cannot have two ipmodify on same rec */
2040 				if (is_ipmodify)
2041 					goto rollback;
2042 
2043 				FTRACE_WARN_ON(rec->flags & FTRACE_FL_DIRECT);
2044 
2045 				/*
2046 				 * Another ops with IPMODIFY is already
2047 				 * attached. We are now attaching a direct
2048 				 * ops. Run SHARE_IPMODIFY_SELF, to check
2049 				 * whether sharing is supported.
2050 				 */
2051 				if (!ops->ops_func)
2052 					return -EBUSY;
2053 				ret = ops->ops_func(ops, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_SELF);
2054 				if (ret)
2055 					return ret;
2056 			} else if (is_ipmodify) {
2057 				rec->flags |= FTRACE_FL_IPMODIFY;
2058 			}
2059 		} else if (is_ipmodify) {
2060 			rec->flags &= ~FTRACE_FL_IPMODIFY;
2061 		}
2062 	} while_for_each_ftrace_rec();
2063 
2064 	return 0;
2065 
2066 rollback:
2067 	end = rec;
2068 
2069 	/* Roll back what we did above */
2070 	do_for_each_ftrace_rec(pg, rec) {
2071 
2072 		if (rec->flags & FTRACE_FL_DISABLED)
2073 			continue;
2074 
2075 		if (rec == end)
2076 			goto err_out;
2077 
2078 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
2079 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
2080 		if (in_old == in_new)
2081 			continue;
2082 
2083 		if (in_new)
2084 			rec->flags &= ~FTRACE_FL_IPMODIFY;
2085 		else
2086 			rec->flags |= FTRACE_FL_IPMODIFY;
2087 	} while_for_each_ftrace_rec();
2088 
2089 err_out:
2090 	return -EBUSY;
2091 }
2092 
2093 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops)
2094 {
2095 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
2096 
2097 	if (ftrace_hash_empty(hash))
2098 		hash = NULL;
2099 
2100 	return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash);
2101 }
2102 
2103 /* Disabling always succeeds */
2104 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops)
2105 {
2106 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
2107 
2108 	if (ftrace_hash_empty(hash))
2109 		hash = NULL;
2110 
2111 	__ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH);
2112 }
2113 
2114 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
2115 				       struct ftrace_hash *new_hash)
2116 {
2117 	struct ftrace_hash *old_hash = ops->func_hash->filter_hash;
2118 
2119 	if (ftrace_hash_empty(old_hash))
2120 		old_hash = NULL;
2121 
2122 	if (ftrace_hash_empty(new_hash))
2123 		new_hash = NULL;
2124 
2125 	return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash);
2126 }
2127 
2128 static void print_ip_ins(const char *fmt, const unsigned char *p)
2129 {
2130 	char ins[MCOUNT_INSN_SIZE];
2131 
2132 	if (copy_from_kernel_nofault(ins, p, MCOUNT_INSN_SIZE)) {
2133 		printk(KERN_CONT "%s[FAULT] %px\n", fmt, p);
2134 		return;
2135 	}
2136 
2137 	printk(KERN_CONT "%s", fmt);
2138 	pr_cont("%*phC", MCOUNT_INSN_SIZE, ins);
2139 }
2140 
2141 enum ftrace_bug_type ftrace_bug_type;
2142 const void *ftrace_expected;
2143 
2144 static void print_bug_type(void)
2145 {
2146 	switch (ftrace_bug_type) {
2147 	case FTRACE_BUG_UNKNOWN:
2148 		break;
2149 	case FTRACE_BUG_INIT:
2150 		pr_info("Initializing ftrace call sites\n");
2151 		break;
2152 	case FTRACE_BUG_NOP:
2153 		pr_info("Setting ftrace call site to NOP\n");
2154 		break;
2155 	case FTRACE_BUG_CALL:
2156 		pr_info("Setting ftrace call site to call ftrace function\n");
2157 		break;
2158 	case FTRACE_BUG_UPDATE:
2159 		pr_info("Updating ftrace call site to call a different ftrace function\n");
2160 		break;
2161 	}
2162 }
2163 
2164 /**
2165  * ftrace_bug - report and shutdown function tracer
2166  * @failed: The failed type (EFAULT, EINVAL, EPERM)
2167  * @rec: The record that failed
2168  *
2169  * The arch code that enables or disables the function tracing
2170  * can call ftrace_bug() when it has detected a problem in
2171  * modifying the code. @failed should be one of either:
2172  * EFAULT - if the problem happens on reading the @ip address
2173  * EINVAL - if what is read at @ip is not what was expected
2174  * EPERM - if the problem happens on writing to the @ip address
2175  */
2176 void ftrace_bug(int failed, struct dyn_ftrace *rec)
2177 {
2178 	unsigned long ip = rec ? rec->ip : 0;
2179 
2180 	pr_info("------------[ ftrace bug ]------------\n");
2181 
2182 	switch (failed) {
2183 	case -EFAULT:
2184 		pr_info("ftrace faulted on modifying ");
2185 		print_ip_sym(KERN_INFO, ip);
2186 		break;
2187 	case -EINVAL:
2188 		pr_info("ftrace failed to modify ");
2189 		print_ip_sym(KERN_INFO, ip);
2190 		print_ip_ins(" actual:   ", (unsigned char *)ip);
2191 		pr_cont("\n");
2192 		if (ftrace_expected) {
2193 			print_ip_ins(" expected: ", ftrace_expected);
2194 			pr_cont("\n");
2195 		}
2196 		break;
2197 	case -EPERM:
2198 		pr_info("ftrace faulted on writing ");
2199 		print_ip_sym(KERN_INFO, ip);
2200 		break;
2201 	default:
2202 		pr_info("ftrace faulted on unknown error ");
2203 		print_ip_sym(KERN_INFO, ip);
2204 	}
2205 	print_bug_type();
2206 	if (rec) {
2207 		struct ftrace_ops *ops = NULL;
2208 
2209 		pr_info("ftrace record flags: %lx\n", rec->flags);
2210 		pr_cont(" (%ld)%s%s", ftrace_rec_count(rec),
2211 			rec->flags & FTRACE_FL_REGS ? " R" : "  ",
2212 			rec->flags & FTRACE_FL_CALL_OPS ? " O" : "  ");
2213 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
2214 			ops = ftrace_find_tramp_ops_any(rec);
2215 			if (ops) {
2216 				do {
2217 					pr_cont("\ttramp: %pS (%pS)",
2218 						(void *)ops->trampoline,
2219 						(void *)ops->func);
2220 					ops = ftrace_find_tramp_ops_next(rec, ops);
2221 				} while (ops);
2222 			} else
2223 				pr_cont("\ttramp: ERROR!");
2224 
2225 		}
2226 		ip = ftrace_get_addr_curr(rec);
2227 		pr_cont("\n expected tramp: %lx\n", ip);
2228 	}
2229 
2230 	FTRACE_WARN_ON_ONCE(1);
2231 }
2232 
2233 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update)
2234 {
2235 	unsigned long flag = 0UL;
2236 
2237 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2238 
2239 	if (skip_record(rec))
2240 		return FTRACE_UPDATE_IGNORE;
2241 
2242 	/*
2243 	 * If we are updating calls:
2244 	 *
2245 	 *   If the record has a ref count, then we need to enable it
2246 	 *   because someone is using it.
2247 	 *
2248 	 *   Otherwise we make sure its disabled.
2249 	 *
2250 	 * If we are disabling calls, then disable all records that
2251 	 * are enabled.
2252 	 */
2253 	if (enable && ftrace_rec_count(rec))
2254 		flag = FTRACE_FL_ENABLED;
2255 
2256 	/*
2257 	 * If enabling and the REGS flag does not match the REGS_EN, or
2258 	 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore
2259 	 * this record. Set flags to fail the compare against ENABLED.
2260 	 * Same for direct calls.
2261 	 */
2262 	if (flag) {
2263 		if (!(rec->flags & FTRACE_FL_REGS) !=
2264 		    !(rec->flags & FTRACE_FL_REGS_EN))
2265 			flag |= FTRACE_FL_REGS;
2266 
2267 		if (!(rec->flags & FTRACE_FL_TRAMP) !=
2268 		    !(rec->flags & FTRACE_FL_TRAMP_EN))
2269 			flag |= FTRACE_FL_TRAMP;
2270 
2271 		/*
2272 		 * Direct calls are special, as count matters.
2273 		 * We must test the record for direct, if the
2274 		 * DIRECT and DIRECT_EN do not match, but only
2275 		 * if the count is 1. That's because, if the
2276 		 * count is something other than one, we do not
2277 		 * want the direct enabled (it will be done via the
2278 		 * direct helper). But if DIRECT_EN is set, and
2279 		 * the count is not one, we need to clear it.
2280 		 *
2281 		 */
2282 		if (ftrace_rec_count(rec) == 1) {
2283 			if (!(rec->flags & FTRACE_FL_DIRECT) !=
2284 			    !(rec->flags & FTRACE_FL_DIRECT_EN))
2285 				flag |= FTRACE_FL_DIRECT;
2286 		} else if (rec->flags & FTRACE_FL_DIRECT_EN) {
2287 			flag |= FTRACE_FL_DIRECT;
2288 		}
2289 
2290 		/*
2291 		 * Ops calls are special, as count matters.
2292 		 * As with direct calls, they must only be enabled when count
2293 		 * is one, otherwise they'll be handled via the list ops.
2294 		 */
2295 		if (ftrace_rec_count(rec) == 1) {
2296 			if (!(rec->flags & FTRACE_FL_CALL_OPS) !=
2297 			    !(rec->flags & FTRACE_FL_CALL_OPS_EN))
2298 				flag |= FTRACE_FL_CALL_OPS;
2299 		} else if (rec->flags & FTRACE_FL_CALL_OPS_EN) {
2300 			flag |= FTRACE_FL_CALL_OPS;
2301 		}
2302 	}
2303 
2304 	/* If the state of this record hasn't changed, then do nothing */
2305 	if ((rec->flags & FTRACE_FL_ENABLED) == flag)
2306 		return FTRACE_UPDATE_IGNORE;
2307 
2308 	if (flag) {
2309 		/* Save off if rec is being enabled (for return value) */
2310 		flag ^= rec->flags & FTRACE_FL_ENABLED;
2311 
2312 		if (update) {
2313 			rec->flags |= FTRACE_FL_ENABLED | FTRACE_FL_TOUCHED;
2314 			if (flag & FTRACE_FL_REGS) {
2315 				if (rec->flags & FTRACE_FL_REGS)
2316 					rec->flags |= FTRACE_FL_REGS_EN;
2317 				else
2318 					rec->flags &= ~FTRACE_FL_REGS_EN;
2319 			}
2320 			if (flag & FTRACE_FL_TRAMP) {
2321 				if (rec->flags & FTRACE_FL_TRAMP)
2322 					rec->flags |= FTRACE_FL_TRAMP_EN;
2323 				else
2324 					rec->flags &= ~FTRACE_FL_TRAMP_EN;
2325 			}
2326 
2327 			/* Keep track of anything that modifies the function */
2328 			if (rec->flags & (FTRACE_FL_DIRECT | FTRACE_FL_IPMODIFY))
2329 				rec->flags |= FTRACE_FL_MODIFIED;
2330 
2331 			if (flag & FTRACE_FL_DIRECT) {
2332 				/*
2333 				 * If there's only one user (direct_ops helper)
2334 				 * then we can call the direct function
2335 				 * directly (no ftrace trampoline).
2336 				 */
2337 				if (ftrace_rec_count(rec) == 1) {
2338 					if (rec->flags & FTRACE_FL_DIRECT)
2339 						rec->flags |= FTRACE_FL_DIRECT_EN;
2340 					else
2341 						rec->flags &= ~FTRACE_FL_DIRECT_EN;
2342 				} else {
2343 					/*
2344 					 * Can only call directly if there's
2345 					 * only one callback to the function.
2346 					 */
2347 					rec->flags &= ~FTRACE_FL_DIRECT_EN;
2348 				}
2349 			}
2350 
2351 			if (flag & FTRACE_FL_CALL_OPS) {
2352 				if (ftrace_rec_count(rec) == 1) {
2353 					if (rec->flags & FTRACE_FL_CALL_OPS)
2354 						rec->flags |= FTRACE_FL_CALL_OPS_EN;
2355 					else
2356 						rec->flags &= ~FTRACE_FL_CALL_OPS_EN;
2357 				} else {
2358 					/*
2359 					 * Can only call directly if there's
2360 					 * only one set of associated ops.
2361 					 */
2362 					rec->flags &= ~FTRACE_FL_CALL_OPS_EN;
2363 				}
2364 			}
2365 		}
2366 
2367 		/*
2368 		 * If this record is being updated from a nop, then
2369 		 *   return UPDATE_MAKE_CALL.
2370 		 * Otherwise,
2371 		 *   return UPDATE_MODIFY_CALL to tell the caller to convert
2372 		 *   from the save regs, to a non-save regs function or
2373 		 *   vice versa, or from a trampoline call.
2374 		 */
2375 		if (flag & FTRACE_FL_ENABLED) {
2376 			ftrace_bug_type = FTRACE_BUG_CALL;
2377 			return FTRACE_UPDATE_MAKE_CALL;
2378 		}
2379 
2380 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2381 		return FTRACE_UPDATE_MODIFY_CALL;
2382 	}
2383 
2384 	if (update) {
2385 		/* If there's no more users, clear all flags */
2386 		if (!ftrace_rec_count(rec))
2387 			rec->flags &= FTRACE_NOCLEAR_FLAGS;
2388 		else
2389 			/*
2390 			 * Just disable the record, but keep the ops TRAMP
2391 			 * and REGS states. The _EN flags must be disabled though.
2392 			 */
2393 			rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN |
2394 					FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN |
2395 					FTRACE_FL_CALL_OPS_EN);
2396 	}
2397 
2398 	ftrace_bug_type = FTRACE_BUG_NOP;
2399 	return FTRACE_UPDATE_MAKE_NOP;
2400 }
2401 
2402 /**
2403  * ftrace_update_record - set a record that now is tracing or not
2404  * @rec: the record to update
2405  * @enable: set to true if the record is tracing, false to force disable
2406  *
2407  * The records that represent all functions that can be traced need
2408  * to be updated when tracing has been enabled.
2409  */
2410 int ftrace_update_record(struct dyn_ftrace *rec, bool enable)
2411 {
2412 	return ftrace_check_record(rec, enable, true);
2413 }
2414 
2415 /**
2416  * ftrace_test_record - check if the record has been enabled or not
2417  * @rec: the record to test
2418  * @enable: set to true to check if enabled, false if it is disabled
2419  *
2420  * The arch code may need to test if a record is already set to
2421  * tracing to determine how to modify the function code that it
2422  * represents.
2423  */
2424 int ftrace_test_record(struct dyn_ftrace *rec, bool enable)
2425 {
2426 	return ftrace_check_record(rec, enable, false);
2427 }
2428 
2429 static struct ftrace_ops *
2430 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec)
2431 {
2432 	struct ftrace_ops *op;
2433 	unsigned long ip = rec->ip;
2434 
2435 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2436 
2437 		if (!op->trampoline)
2438 			continue;
2439 
2440 		if (hash_contains_ip(ip, op->func_hash))
2441 			return op;
2442 	} while_for_each_ftrace_op(op);
2443 
2444 	return NULL;
2445 }
2446 
2447 static struct ftrace_ops *
2448 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude)
2449 {
2450 	struct ftrace_ops *op;
2451 	unsigned long ip = rec->ip;
2452 
2453 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2454 
2455 		if (op == op_exclude || !op->trampoline)
2456 			continue;
2457 
2458 		if (hash_contains_ip(ip, op->func_hash))
2459 			return op;
2460 	} while_for_each_ftrace_op(op);
2461 
2462 	return NULL;
2463 }
2464 
2465 static struct ftrace_ops *
2466 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec,
2467 			   struct ftrace_ops *op)
2468 {
2469 	unsigned long ip = rec->ip;
2470 
2471 	while_for_each_ftrace_op(op) {
2472 
2473 		if (!op->trampoline)
2474 			continue;
2475 
2476 		if (hash_contains_ip(ip, op->func_hash))
2477 			return op;
2478 	}
2479 
2480 	return NULL;
2481 }
2482 
2483 static struct ftrace_ops *
2484 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec)
2485 {
2486 	struct ftrace_ops *op;
2487 	unsigned long ip = rec->ip;
2488 
2489 	/*
2490 	 * Need to check removed ops first.
2491 	 * If they are being removed, and this rec has a tramp,
2492 	 * and this rec is in the ops list, then it would be the
2493 	 * one with the tramp.
2494 	 */
2495 	if (removed_ops) {
2496 		if (hash_contains_ip(ip, &removed_ops->old_hash))
2497 			return removed_ops;
2498 	}
2499 
2500 	/*
2501 	 * Need to find the current trampoline for a rec.
2502 	 * Now, a trampoline is only attached to a rec if there
2503 	 * was a single 'ops' attached to it. But this can be called
2504 	 * when we are adding another op to the rec or removing the
2505 	 * current one. Thus, if the op is being added, we can
2506 	 * ignore it because it hasn't attached itself to the rec
2507 	 * yet.
2508 	 *
2509 	 * If an ops is being modified (hooking to different functions)
2510 	 * then we don't care about the new functions that are being
2511 	 * added, just the old ones (that are probably being removed).
2512 	 *
2513 	 * If we are adding an ops to a function that already is using
2514 	 * a trampoline, it needs to be removed (trampolines are only
2515 	 * for single ops connected), then an ops that is not being
2516 	 * modified also needs to be checked.
2517 	 */
2518 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2519 
2520 		if (!op->trampoline)
2521 			continue;
2522 
2523 		/*
2524 		 * If the ops is being added, it hasn't gotten to
2525 		 * the point to be removed from this tree yet.
2526 		 */
2527 		if (op->flags & FTRACE_OPS_FL_ADDING)
2528 			continue;
2529 
2530 
2531 		/*
2532 		 * If the ops is being modified and is in the old
2533 		 * hash, then it is probably being removed from this
2534 		 * function.
2535 		 */
2536 		if ((op->flags & FTRACE_OPS_FL_MODIFYING) &&
2537 		    hash_contains_ip(ip, &op->old_hash))
2538 			return op;
2539 		/*
2540 		 * If the ops is not being added or modified, and it's
2541 		 * in its normal filter hash, then this must be the one
2542 		 * we want!
2543 		 */
2544 		if (!(op->flags & FTRACE_OPS_FL_MODIFYING) &&
2545 		    hash_contains_ip(ip, op->func_hash))
2546 			return op;
2547 
2548 	} while_for_each_ftrace_op(op);
2549 
2550 	return NULL;
2551 }
2552 
2553 static struct ftrace_ops *
2554 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec)
2555 {
2556 	struct ftrace_ops *op;
2557 	unsigned long ip = rec->ip;
2558 
2559 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2560 		/* pass rec in as regs to have non-NULL val */
2561 		if (hash_contains_ip(ip, op->func_hash))
2562 			return op;
2563 	} while_for_each_ftrace_op(op);
2564 
2565 	return NULL;
2566 }
2567 
2568 struct ftrace_ops *
2569 ftrace_find_unique_ops(struct dyn_ftrace *rec)
2570 {
2571 	struct ftrace_ops *op, *found = NULL;
2572 	unsigned long ip = rec->ip;
2573 
2574 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2575 
2576 		if (hash_contains_ip(ip, op->func_hash)) {
2577 			if (found)
2578 				return NULL;
2579 			found = op;
2580 		}
2581 
2582 	} while_for_each_ftrace_op(op);
2583 
2584 	return found;
2585 }
2586 
2587 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
2588 /* Protected by rcu_tasks for reading, and direct_mutex for writing */
2589 static struct ftrace_hash __rcu *direct_functions = EMPTY_HASH;
2590 static DEFINE_MUTEX(direct_mutex);
2591 
2592 /*
2593  * Search the direct_functions hash to see if the given instruction pointer
2594  * has a direct caller attached to it.
2595  */
2596 unsigned long ftrace_find_rec_direct(unsigned long ip)
2597 {
2598 	struct ftrace_func_entry *entry;
2599 
2600 	entry = __ftrace_lookup_ip(direct_functions, ip);
2601 	if (!entry)
2602 		return 0;
2603 
2604 	return entry->direct;
2605 }
2606 
2607 static void call_direct_funcs(unsigned long ip, unsigned long pip,
2608 			      struct ftrace_ops *ops, struct ftrace_regs *fregs)
2609 {
2610 	unsigned long addr = READ_ONCE(ops->direct_call);
2611 
2612 	if (!addr)
2613 		return;
2614 
2615 	arch_ftrace_set_direct_caller(fregs, addr);
2616 }
2617 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
2618 
2619 /**
2620  * ftrace_get_addr_new - Get the call address to set to
2621  * @rec:  The ftrace record descriptor
2622  *
2623  * If the record has the FTRACE_FL_REGS set, that means that it
2624  * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS
2625  * is not set, then it wants to convert to the normal callback.
2626  *
2627  * Returns: the address of the trampoline to set to
2628  */
2629 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec)
2630 {
2631 	struct ftrace_ops *ops;
2632 	unsigned long addr;
2633 
2634 	if ((rec->flags & FTRACE_FL_DIRECT) &&
2635 	    (ftrace_rec_count(rec) == 1)) {
2636 		addr = ftrace_find_rec_direct(rec->ip);
2637 		if (addr)
2638 			return addr;
2639 		WARN_ON_ONCE(1);
2640 	}
2641 
2642 	/* Trampolines take precedence over regs */
2643 	if (rec->flags & FTRACE_FL_TRAMP) {
2644 		ops = ftrace_find_tramp_ops_new(rec);
2645 		if (FTRACE_WARN_ON(!ops || !ops->trampoline)) {
2646 			pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n",
2647 				(void *)rec->ip, (void *)rec->ip, rec->flags);
2648 			/* Ftrace is shutting down, return anything */
2649 			return (unsigned long)FTRACE_ADDR;
2650 		}
2651 		return ops->trampoline;
2652 	}
2653 
2654 	if (rec->flags & FTRACE_FL_REGS)
2655 		return (unsigned long)FTRACE_REGS_ADDR;
2656 	else
2657 		return (unsigned long)FTRACE_ADDR;
2658 }
2659 
2660 /**
2661  * ftrace_get_addr_curr - Get the call address that is already there
2662  * @rec:  The ftrace record descriptor
2663  *
2664  * The FTRACE_FL_REGS_EN is set when the record already points to
2665  * a function that saves all the regs. Basically the '_EN' version
2666  * represents the current state of the function.
2667  *
2668  * Returns: the address of the trampoline that is currently being called
2669  */
2670 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec)
2671 {
2672 	struct ftrace_ops *ops;
2673 	unsigned long addr;
2674 
2675 	/* Direct calls take precedence over trampolines */
2676 	if (rec->flags & FTRACE_FL_DIRECT_EN) {
2677 		addr = ftrace_find_rec_direct(rec->ip);
2678 		if (addr)
2679 			return addr;
2680 		WARN_ON_ONCE(1);
2681 	}
2682 
2683 	/* Trampolines take precedence over regs */
2684 	if (rec->flags & FTRACE_FL_TRAMP_EN) {
2685 		ops = ftrace_find_tramp_ops_curr(rec);
2686 		if (FTRACE_WARN_ON(!ops)) {
2687 			pr_warn("Bad trampoline accounting at: %p (%pS)\n",
2688 				(void *)rec->ip, (void *)rec->ip);
2689 			/* Ftrace is shutting down, return anything */
2690 			return (unsigned long)FTRACE_ADDR;
2691 		}
2692 		return ops->trampoline;
2693 	}
2694 
2695 	if (rec->flags & FTRACE_FL_REGS_EN)
2696 		return (unsigned long)FTRACE_REGS_ADDR;
2697 	else
2698 		return (unsigned long)FTRACE_ADDR;
2699 }
2700 
2701 static int
2702 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable)
2703 {
2704 	unsigned long ftrace_old_addr;
2705 	unsigned long ftrace_addr;
2706 	int ret;
2707 
2708 	ftrace_addr = ftrace_get_addr_new(rec);
2709 
2710 	/* This needs to be done before we call ftrace_update_record */
2711 	ftrace_old_addr = ftrace_get_addr_curr(rec);
2712 
2713 	ret = ftrace_update_record(rec, enable);
2714 
2715 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2716 
2717 	switch (ret) {
2718 	case FTRACE_UPDATE_IGNORE:
2719 		return 0;
2720 
2721 	case FTRACE_UPDATE_MAKE_CALL:
2722 		ftrace_bug_type = FTRACE_BUG_CALL;
2723 		return ftrace_make_call(rec, ftrace_addr);
2724 
2725 	case FTRACE_UPDATE_MAKE_NOP:
2726 		ftrace_bug_type = FTRACE_BUG_NOP;
2727 		return ftrace_make_nop(NULL, rec, ftrace_old_addr);
2728 
2729 	case FTRACE_UPDATE_MODIFY_CALL:
2730 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2731 		return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr);
2732 	}
2733 
2734 	return -1; /* unknown ftrace bug */
2735 }
2736 
2737 void __weak ftrace_replace_code(int mod_flags)
2738 {
2739 	struct dyn_ftrace *rec;
2740 	struct ftrace_page *pg;
2741 	bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL;
2742 	int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL;
2743 	int failed;
2744 
2745 	if (unlikely(ftrace_disabled))
2746 		return;
2747 
2748 	do_for_each_ftrace_rec(pg, rec) {
2749 
2750 		if (skip_record(rec))
2751 			continue;
2752 
2753 		failed = __ftrace_replace_code(rec, enable);
2754 		if (failed) {
2755 			ftrace_bug(failed, rec);
2756 			/* Stop processing */
2757 			return;
2758 		}
2759 		if (schedulable)
2760 			cond_resched();
2761 	} while_for_each_ftrace_rec();
2762 }
2763 
2764 struct ftrace_rec_iter {
2765 	struct ftrace_page	*pg;
2766 	int			index;
2767 };
2768 
2769 /**
2770  * ftrace_rec_iter_start - start up iterating over traced functions
2771  *
2772  * Returns: an iterator handle that is used to iterate over all
2773  * the records that represent address locations where functions
2774  * are traced.
2775  *
2776  * May return NULL if no records are available.
2777  */
2778 struct ftrace_rec_iter *ftrace_rec_iter_start(void)
2779 {
2780 	/*
2781 	 * We only use a single iterator.
2782 	 * Protected by the ftrace_lock mutex.
2783 	 */
2784 	static struct ftrace_rec_iter ftrace_rec_iter;
2785 	struct ftrace_rec_iter *iter = &ftrace_rec_iter;
2786 
2787 	iter->pg = ftrace_pages_start;
2788 	iter->index = 0;
2789 
2790 	/* Could have empty pages */
2791 	while (iter->pg && !iter->pg->index)
2792 		iter->pg = iter->pg->next;
2793 
2794 	if (!iter->pg)
2795 		return NULL;
2796 
2797 	return iter;
2798 }
2799 
2800 /**
2801  * ftrace_rec_iter_next - get the next record to process.
2802  * @iter: The handle to the iterator.
2803  *
2804  * Returns: the next iterator after the given iterator @iter.
2805  */
2806 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter)
2807 {
2808 	iter->index++;
2809 
2810 	if (iter->index >= iter->pg->index) {
2811 		iter->pg = iter->pg->next;
2812 		iter->index = 0;
2813 
2814 		/* Could have empty pages */
2815 		while (iter->pg && !iter->pg->index)
2816 			iter->pg = iter->pg->next;
2817 	}
2818 
2819 	if (!iter->pg)
2820 		return NULL;
2821 
2822 	return iter;
2823 }
2824 
2825 /**
2826  * ftrace_rec_iter_record - get the record at the iterator location
2827  * @iter: The current iterator location
2828  *
2829  * Returns: the record that the current @iter is at.
2830  */
2831 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter)
2832 {
2833 	return &iter->pg->records[iter->index];
2834 }
2835 
2836 static int
2837 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec)
2838 {
2839 	int ret;
2840 
2841 	if (unlikely(ftrace_disabled))
2842 		return 0;
2843 
2844 	ret = ftrace_init_nop(mod, rec);
2845 	if (ret) {
2846 		ftrace_bug_type = FTRACE_BUG_INIT;
2847 		ftrace_bug(ret, rec);
2848 		return 0;
2849 	}
2850 	return 1;
2851 }
2852 
2853 /*
2854  * archs can override this function if they must do something
2855  * before the modifying code is performed.
2856  */
2857 void __weak ftrace_arch_code_modify_prepare(void)
2858 {
2859 }
2860 
2861 /*
2862  * archs can override this function if they must do something
2863  * after the modifying code is performed.
2864  */
2865 void __weak ftrace_arch_code_modify_post_process(void)
2866 {
2867 }
2868 
2869 static int update_ftrace_func(ftrace_func_t func)
2870 {
2871 	static ftrace_func_t save_func;
2872 
2873 	/* Avoid updating if it hasn't changed */
2874 	if (func == save_func)
2875 		return 0;
2876 
2877 	save_func = func;
2878 
2879 	return ftrace_update_ftrace_func(func);
2880 }
2881 
2882 void ftrace_modify_all_code(int command)
2883 {
2884 	int update = command & FTRACE_UPDATE_TRACE_FUNC;
2885 	int mod_flags = 0;
2886 	int err = 0;
2887 
2888 	if (command & FTRACE_MAY_SLEEP)
2889 		mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL;
2890 
2891 	/*
2892 	 * If the ftrace_caller calls a ftrace_ops func directly,
2893 	 * we need to make sure that it only traces functions it
2894 	 * expects to trace. When doing the switch of functions,
2895 	 * we need to update to the ftrace_ops_list_func first
2896 	 * before the transition between old and new calls are set,
2897 	 * as the ftrace_ops_list_func will check the ops hashes
2898 	 * to make sure the ops are having the right functions
2899 	 * traced.
2900 	 */
2901 	if (update) {
2902 		err = update_ftrace_func(ftrace_ops_list_func);
2903 		if (FTRACE_WARN_ON(err))
2904 			return;
2905 	}
2906 
2907 	if (command & FTRACE_UPDATE_CALLS)
2908 		ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL);
2909 	else if (command & FTRACE_DISABLE_CALLS)
2910 		ftrace_replace_code(mod_flags);
2911 
2912 	if (update && ftrace_trace_function != ftrace_ops_list_func) {
2913 		function_trace_op = set_function_trace_op;
2914 		smp_wmb();
2915 		/* If irqs are disabled, we are in stop machine */
2916 		if (!irqs_disabled())
2917 			smp_call_function(ftrace_sync_ipi, NULL, 1);
2918 		err = update_ftrace_func(ftrace_trace_function);
2919 		if (FTRACE_WARN_ON(err))
2920 			return;
2921 	}
2922 
2923 	if (command & FTRACE_START_FUNC_RET)
2924 		err = ftrace_enable_ftrace_graph_caller();
2925 	else if (command & FTRACE_STOP_FUNC_RET)
2926 		err = ftrace_disable_ftrace_graph_caller();
2927 	FTRACE_WARN_ON(err);
2928 }
2929 
2930 static int __ftrace_modify_code(void *data)
2931 {
2932 	int *command = data;
2933 
2934 	ftrace_modify_all_code(*command);
2935 
2936 	return 0;
2937 }
2938 
2939 /**
2940  * ftrace_run_stop_machine - go back to the stop machine method
2941  * @command: The command to tell ftrace what to do
2942  *
2943  * If an arch needs to fall back to the stop machine method, the
2944  * it can call this function.
2945  */
2946 void ftrace_run_stop_machine(int command)
2947 {
2948 	stop_machine(__ftrace_modify_code, &command, NULL);
2949 }
2950 
2951 /**
2952  * arch_ftrace_update_code - modify the code to trace or not trace
2953  * @command: The command that needs to be done
2954  *
2955  * Archs can override this function if it does not need to
2956  * run stop_machine() to modify code.
2957  */
2958 void __weak arch_ftrace_update_code(int command)
2959 {
2960 	ftrace_run_stop_machine(command);
2961 }
2962 
2963 static void ftrace_run_update_code(int command)
2964 {
2965 	ftrace_arch_code_modify_prepare();
2966 
2967 	/*
2968 	 * By default we use stop_machine() to modify the code.
2969 	 * But archs can do what ever they want as long as it
2970 	 * is safe. The stop_machine() is the safest, but also
2971 	 * produces the most overhead.
2972 	 */
2973 	arch_ftrace_update_code(command);
2974 
2975 	ftrace_arch_code_modify_post_process();
2976 }
2977 
2978 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command,
2979 				   struct ftrace_ops_hash *old_hash)
2980 {
2981 	ops->flags |= FTRACE_OPS_FL_MODIFYING;
2982 	ops->old_hash.filter_hash = old_hash->filter_hash;
2983 	ops->old_hash.notrace_hash = old_hash->notrace_hash;
2984 	ftrace_run_update_code(command);
2985 	ops->old_hash.filter_hash = NULL;
2986 	ops->old_hash.notrace_hash = NULL;
2987 	ops->flags &= ~FTRACE_OPS_FL_MODIFYING;
2988 }
2989 
2990 static ftrace_func_t saved_ftrace_func;
2991 static int ftrace_start_up;
2992 
2993 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops)
2994 {
2995 }
2996 
2997 /* List of trace_ops that have allocated trampolines */
2998 static LIST_HEAD(ftrace_ops_trampoline_list);
2999 
3000 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops)
3001 {
3002 	lockdep_assert_held(&ftrace_lock);
3003 	list_add_rcu(&ops->list, &ftrace_ops_trampoline_list);
3004 }
3005 
3006 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops)
3007 {
3008 	lockdep_assert_held(&ftrace_lock);
3009 	list_del_rcu(&ops->list);
3010 	synchronize_rcu();
3011 }
3012 
3013 /*
3014  * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols
3015  * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is
3016  * not a module.
3017  */
3018 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace"
3019 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline"
3020 
3021 static void ftrace_trampoline_free(struct ftrace_ops *ops)
3022 {
3023 	if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) &&
3024 	    ops->trampoline) {
3025 		/*
3026 		 * Record the text poke event before the ksymbol unregister
3027 		 * event.
3028 		 */
3029 		perf_event_text_poke((void *)ops->trampoline,
3030 				     (void *)ops->trampoline,
3031 				     ops->trampoline_size, NULL, 0);
3032 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
3033 				   ops->trampoline, ops->trampoline_size,
3034 				   true, FTRACE_TRAMPOLINE_SYM);
3035 		/* Remove from kallsyms after the perf events */
3036 		ftrace_remove_trampoline_from_kallsyms(ops);
3037 	}
3038 
3039 	arch_ftrace_trampoline_free(ops);
3040 }
3041 
3042 static void ftrace_startup_enable(int command)
3043 {
3044 	if (saved_ftrace_func != ftrace_trace_function) {
3045 		saved_ftrace_func = ftrace_trace_function;
3046 		command |= FTRACE_UPDATE_TRACE_FUNC;
3047 	}
3048 
3049 	if (!command || !ftrace_enabled)
3050 		return;
3051 
3052 	ftrace_run_update_code(command);
3053 }
3054 
3055 static void ftrace_startup_all(int command)
3056 {
3057 	update_all_ops = true;
3058 	ftrace_startup_enable(command);
3059 	update_all_ops = false;
3060 }
3061 
3062 int ftrace_startup(struct ftrace_ops *ops, int command)
3063 {
3064 	int ret;
3065 
3066 	if (unlikely(ftrace_disabled))
3067 		return -ENODEV;
3068 
3069 	ret = __register_ftrace_function(ops);
3070 	if (ret)
3071 		return ret;
3072 
3073 	ftrace_start_up++;
3074 
3075 	/*
3076 	 * Note that ftrace probes uses this to start up
3077 	 * and modify functions it will probe. But we still
3078 	 * set the ADDING flag for modification, as probes
3079 	 * do not have trampolines. If they add them in the
3080 	 * future, then the probes will need to distinguish
3081 	 * between adding and updating probes.
3082 	 */
3083 	ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING;
3084 
3085 	ret = ftrace_hash_ipmodify_enable(ops);
3086 	if (ret < 0) {
3087 		/* Rollback registration process */
3088 		__unregister_ftrace_function(ops);
3089 		ftrace_start_up--;
3090 		ops->flags &= ~FTRACE_OPS_FL_ENABLED;
3091 		if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
3092 			ftrace_trampoline_free(ops);
3093 		return ret;
3094 	}
3095 
3096 	if (ftrace_hash_rec_enable(ops))
3097 		command |= FTRACE_UPDATE_CALLS;
3098 
3099 	ftrace_startup_enable(command);
3100 
3101 	/*
3102 	 * If ftrace is in an undefined state, we just remove ops from list
3103 	 * to prevent the NULL pointer, instead of totally rolling it back and
3104 	 * free trampoline, because those actions could cause further damage.
3105 	 */
3106 	if (unlikely(ftrace_disabled)) {
3107 		__unregister_ftrace_function(ops);
3108 		return -ENODEV;
3109 	}
3110 
3111 	ops->flags &= ~FTRACE_OPS_FL_ADDING;
3112 
3113 	return 0;
3114 }
3115 
3116 int ftrace_shutdown(struct ftrace_ops *ops, int command)
3117 {
3118 	int ret;
3119 
3120 	if (unlikely(ftrace_disabled))
3121 		return -ENODEV;
3122 
3123 	ret = __unregister_ftrace_function(ops);
3124 	if (ret)
3125 		return ret;
3126 
3127 	ftrace_start_up--;
3128 	/*
3129 	 * Just warn in case of unbalance, no need to kill ftrace, it's not
3130 	 * critical but the ftrace_call callers may be never nopped again after
3131 	 * further ftrace uses.
3132 	 */
3133 	WARN_ON_ONCE(ftrace_start_up < 0);
3134 
3135 	/* Disabling ipmodify never fails */
3136 	ftrace_hash_ipmodify_disable(ops);
3137 
3138 	if (ftrace_hash_rec_disable(ops))
3139 		command |= FTRACE_UPDATE_CALLS;
3140 
3141 	ops->flags &= ~FTRACE_OPS_FL_ENABLED;
3142 
3143 	if (saved_ftrace_func != ftrace_trace_function) {
3144 		saved_ftrace_func = ftrace_trace_function;
3145 		command |= FTRACE_UPDATE_TRACE_FUNC;
3146 	}
3147 
3148 	if (!command || !ftrace_enabled)
3149 		goto out;
3150 
3151 	/*
3152 	 * If the ops uses a trampoline, then it needs to be
3153 	 * tested first on update.
3154 	 */
3155 	ops->flags |= FTRACE_OPS_FL_REMOVING;
3156 	removed_ops = ops;
3157 
3158 	/* The trampoline logic checks the old hashes */
3159 	ops->old_hash.filter_hash = ops->func_hash->filter_hash;
3160 	ops->old_hash.notrace_hash = ops->func_hash->notrace_hash;
3161 
3162 	ftrace_run_update_code(command);
3163 
3164 	/*
3165 	 * If there's no more ops registered with ftrace, run a
3166 	 * sanity check to make sure all rec flags are cleared.
3167 	 */
3168 	if (rcu_dereference_protected(ftrace_ops_list,
3169 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
3170 		struct ftrace_page *pg;
3171 		struct dyn_ftrace *rec;
3172 
3173 		do_for_each_ftrace_rec(pg, rec) {
3174 			if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_NOCLEAR_FLAGS))
3175 				pr_warn("  %pS flags:%lx\n",
3176 					(void *)rec->ip, rec->flags);
3177 		} while_for_each_ftrace_rec();
3178 	}
3179 
3180 	ops->old_hash.filter_hash = NULL;
3181 	ops->old_hash.notrace_hash = NULL;
3182 
3183 	removed_ops = NULL;
3184 	ops->flags &= ~FTRACE_OPS_FL_REMOVING;
3185 
3186 out:
3187 	/*
3188 	 * Dynamic ops may be freed, we must make sure that all
3189 	 * callers are done before leaving this function.
3190 	 */
3191 	if (ops->flags & FTRACE_OPS_FL_DYNAMIC) {
3192 		/*
3193 		 * We need to do a hard force of sched synchronization.
3194 		 * This is because we use preempt_disable() to do RCU, but
3195 		 * the function tracers can be called where RCU is not watching
3196 		 * (like before user_exit()). We can not rely on the RCU
3197 		 * infrastructure to do the synchronization, thus we must do it
3198 		 * ourselves.
3199 		 */
3200 		synchronize_rcu_tasks_rude();
3201 
3202 		/*
3203 		 * When the kernel is preemptive, tasks can be preempted
3204 		 * while on a ftrace trampoline. Just scheduling a task on
3205 		 * a CPU is not good enough to flush them. Calling
3206 		 * synchronize_rcu_tasks() will wait for those tasks to
3207 		 * execute and either schedule voluntarily or enter user space.
3208 		 */
3209 		synchronize_rcu_tasks();
3210 
3211 		ftrace_trampoline_free(ops);
3212 	}
3213 
3214 	return 0;
3215 }
3216 
3217 /* Simply make a copy of @src and return it */
3218 static struct ftrace_hash *copy_hash(struct ftrace_hash *src)
3219 {
3220 	if (ftrace_hash_empty(src))
3221 		return EMPTY_HASH;
3222 
3223 	return alloc_and_copy_ftrace_hash(src->size_bits, src);
3224 }
3225 
3226 /*
3227  * Append @new_hash entries to @hash:
3228  *
3229  *  If @hash is the EMPTY_HASH then it traces all functions and nothing
3230  *  needs to be done.
3231  *
3232  *  If @new_hash is the EMPTY_HASH, then make *hash the EMPTY_HASH so
3233  *  that it traces everything.
3234  *
3235  *  Otherwise, go through all of @new_hash and add anything that @hash
3236  *  doesn't already have, to @hash.
3237  *
3238  *  The filter_hash updates uses just the append_hash() function
3239  *  and the notrace_hash does not.
3240  */
3241 static int append_hash(struct ftrace_hash **hash, struct ftrace_hash *new_hash)
3242 {
3243 	struct ftrace_func_entry *entry;
3244 	int size;
3245 	int i;
3246 
3247 	/* An empty hash does everything */
3248 	if (ftrace_hash_empty(*hash))
3249 		return 0;
3250 
3251 	/* If new_hash has everything make hash have everything */
3252 	if (ftrace_hash_empty(new_hash)) {
3253 		free_ftrace_hash(*hash);
3254 		*hash = EMPTY_HASH;
3255 		return 0;
3256 	}
3257 
3258 	size = 1 << new_hash->size_bits;
3259 	for (i = 0; i < size; i++) {
3260 		hlist_for_each_entry(entry, &new_hash->buckets[i], hlist) {
3261 			/* Only add if not already in hash */
3262 			if (!__ftrace_lookup_ip(*hash, entry->ip) &&
3263 			    add_hash_entry(*hash, entry->ip) == NULL)
3264 				return -ENOMEM;
3265 		}
3266 	}
3267 	return 0;
3268 }
3269 
3270 /*
3271  * Add to @hash only those that are in both @new_hash1 and @new_hash2
3272  *
3273  * The notrace_hash updates uses just the intersect_hash() function
3274  * and the filter_hash does not.
3275  */
3276 static int intersect_hash(struct ftrace_hash **hash, struct ftrace_hash *new_hash1,
3277 			  struct ftrace_hash *new_hash2)
3278 {
3279 	struct ftrace_func_entry *entry;
3280 	int size;
3281 	int i;
3282 
3283 	/*
3284 	 * If new_hash1 or new_hash2 is the EMPTY_HASH then make the hash
3285 	 * empty as well as empty for notrace means none are notraced.
3286 	 */
3287 	if (ftrace_hash_empty(new_hash1) || ftrace_hash_empty(new_hash2)) {
3288 		free_ftrace_hash(*hash);
3289 		*hash = EMPTY_HASH;
3290 		return 0;
3291 	}
3292 
3293 	size = 1 << new_hash1->size_bits;
3294 	for (i = 0; i < size; i++) {
3295 		hlist_for_each_entry(entry, &new_hash1->buckets[i], hlist) {
3296 			/* Only add if in both @new_hash1 and @new_hash2 */
3297 			if (__ftrace_lookup_ip(new_hash2, entry->ip) &&
3298 			    add_hash_entry(*hash, entry->ip) == NULL)
3299 				return -ENOMEM;
3300 		}
3301 	}
3302 	/* If nothing intersects, make it the empty set */
3303 	if (ftrace_hash_empty(*hash)) {
3304 		free_ftrace_hash(*hash);
3305 		*hash = EMPTY_HASH;
3306 	}
3307 	return 0;
3308 }
3309 
3310 /* Return a new hash that has a union of all @ops->filter_hash entries */
3311 static struct ftrace_hash *append_hashes(struct ftrace_ops *ops)
3312 {
3313 	struct ftrace_hash *new_hash;
3314 	struct ftrace_ops *subops;
3315 	int ret;
3316 
3317 	new_hash = alloc_ftrace_hash(ops->func_hash->filter_hash->size_bits);
3318 	if (!new_hash)
3319 		return NULL;
3320 
3321 	list_for_each_entry(subops, &ops->subop_list, list) {
3322 		ret = append_hash(&new_hash, subops->func_hash->filter_hash);
3323 		if (ret < 0) {
3324 			free_ftrace_hash(new_hash);
3325 			return NULL;
3326 		}
3327 		/* Nothing more to do if new_hash is empty */
3328 		if (ftrace_hash_empty(new_hash))
3329 			break;
3330 	}
3331 	return new_hash;
3332 }
3333 
3334 /* Make @ops trace evenything except what all its subops do not trace */
3335 static struct ftrace_hash *intersect_hashes(struct ftrace_ops *ops)
3336 {
3337 	struct ftrace_hash *new_hash = NULL;
3338 	struct ftrace_ops *subops;
3339 	int size_bits;
3340 	int ret;
3341 
3342 	list_for_each_entry(subops, &ops->subop_list, list) {
3343 		struct ftrace_hash *next_hash;
3344 
3345 		if (!new_hash) {
3346 			size_bits = subops->func_hash->notrace_hash->size_bits;
3347 			new_hash = alloc_and_copy_ftrace_hash(size_bits, ops->func_hash->notrace_hash);
3348 			if (!new_hash)
3349 				return NULL;
3350 			continue;
3351 		}
3352 		size_bits = new_hash->size_bits;
3353 		next_hash = new_hash;
3354 		new_hash = alloc_ftrace_hash(size_bits);
3355 		ret = intersect_hash(&new_hash, next_hash, subops->func_hash->notrace_hash);
3356 		free_ftrace_hash(next_hash);
3357 		if (ret < 0) {
3358 			free_ftrace_hash(new_hash);
3359 			return NULL;
3360 		}
3361 		/* Nothing more to do if new_hash is empty */
3362 		if (ftrace_hash_empty(new_hash))
3363 			break;
3364 	}
3365 	return new_hash;
3366 }
3367 
3368 static bool ops_equal(struct ftrace_hash *A, struct ftrace_hash *B)
3369 {
3370 	struct ftrace_func_entry *entry;
3371 	int size;
3372 	int i;
3373 
3374 	if (ftrace_hash_empty(A))
3375 		return ftrace_hash_empty(B);
3376 
3377 	if (ftrace_hash_empty(B))
3378 		return ftrace_hash_empty(A);
3379 
3380 	if (A->count != B->count)
3381 		return false;
3382 
3383 	size = 1 << A->size_bits;
3384 	for (i = 0; i < size; i++) {
3385 		hlist_for_each_entry(entry, &A->buckets[i], hlist) {
3386 			if (!__ftrace_lookup_ip(B, entry->ip))
3387 				return false;
3388 		}
3389 	}
3390 
3391 	return true;
3392 }
3393 
3394 static void ftrace_ops_update_code(struct ftrace_ops *ops,
3395 				   struct ftrace_ops_hash *old_hash);
3396 
3397 static int __ftrace_hash_move_and_update_ops(struct ftrace_ops *ops,
3398 					     struct ftrace_hash **orig_hash,
3399 					     struct ftrace_hash *hash,
3400 					     int enable)
3401 {
3402 	struct ftrace_ops_hash old_hash_ops;
3403 	struct ftrace_hash *old_hash;
3404 	int ret;
3405 
3406 	old_hash = *orig_hash;
3407 	old_hash_ops.filter_hash = ops->func_hash->filter_hash;
3408 	old_hash_ops.notrace_hash = ops->func_hash->notrace_hash;
3409 	ret = ftrace_hash_move(ops, enable, orig_hash, hash);
3410 	if (!ret) {
3411 		ftrace_ops_update_code(ops, &old_hash_ops);
3412 		free_ftrace_hash_rcu(old_hash);
3413 	}
3414 	return ret;
3415 }
3416 
3417 static int ftrace_update_ops(struct ftrace_ops *ops, struct ftrace_hash *filter_hash,
3418 			     struct ftrace_hash *notrace_hash)
3419 {
3420 	int ret;
3421 
3422 	if (!ops_equal(filter_hash, ops->func_hash->filter_hash)) {
3423 		ret = __ftrace_hash_move_and_update_ops(ops, &ops->func_hash->filter_hash,
3424 							filter_hash, 1);
3425 		if (ret < 0)
3426 			return ret;
3427 	}
3428 
3429 	if (!ops_equal(notrace_hash, ops->func_hash->notrace_hash)) {
3430 		ret = __ftrace_hash_move_and_update_ops(ops, &ops->func_hash->notrace_hash,
3431 							notrace_hash, 0);
3432 		if (ret < 0)
3433 			return ret;
3434 	}
3435 
3436 	return 0;
3437 }
3438 
3439 /**
3440  * ftrace_startup_subops - enable tracing for subops of an ops
3441  * @ops: Manager ops (used to pick all the functions of its subops)
3442  * @subops: A new ops to add to @ops
3443  * @command: Extra commands to use to enable tracing
3444  *
3445  * The @ops is a manager @ops that has the filter that includes all the functions
3446  * that its list of subops are tracing. Adding a new @subops will add the
3447  * functions of @subops to @ops.
3448  */
3449 int ftrace_startup_subops(struct ftrace_ops *ops, struct ftrace_ops *subops, int command)
3450 {
3451 	struct ftrace_hash *filter_hash;
3452 	struct ftrace_hash *notrace_hash;
3453 	struct ftrace_hash *save_filter_hash;
3454 	struct ftrace_hash *save_notrace_hash;
3455 	int size_bits;
3456 	int ret;
3457 
3458 	if (unlikely(ftrace_disabled))
3459 		return -ENODEV;
3460 
3461 	ftrace_ops_init(ops);
3462 	ftrace_ops_init(subops);
3463 
3464 	if (WARN_ON_ONCE(subops->flags & FTRACE_OPS_FL_ENABLED))
3465 		return -EBUSY;
3466 
3467 	/* Make everything canonical (Just in case!) */
3468 	if (!ops->func_hash->filter_hash)
3469 		ops->func_hash->filter_hash = EMPTY_HASH;
3470 	if (!ops->func_hash->notrace_hash)
3471 		ops->func_hash->notrace_hash = EMPTY_HASH;
3472 	if (!subops->func_hash->filter_hash)
3473 		subops->func_hash->filter_hash = EMPTY_HASH;
3474 	if (!subops->func_hash->notrace_hash)
3475 		subops->func_hash->notrace_hash = EMPTY_HASH;
3476 
3477 	/* For the first subops to ops just enable it normally */
3478 	if (list_empty(&ops->subop_list)) {
3479 		/* Just use the subops hashes */
3480 		filter_hash = copy_hash(subops->func_hash->filter_hash);
3481 		notrace_hash = copy_hash(subops->func_hash->notrace_hash);
3482 		if (!filter_hash || !notrace_hash) {
3483 			free_ftrace_hash(filter_hash);
3484 			free_ftrace_hash(notrace_hash);
3485 			return -ENOMEM;
3486 		}
3487 
3488 		save_filter_hash = ops->func_hash->filter_hash;
3489 		save_notrace_hash = ops->func_hash->notrace_hash;
3490 
3491 		ops->func_hash->filter_hash = filter_hash;
3492 		ops->func_hash->notrace_hash = notrace_hash;
3493 		list_add(&subops->list, &ops->subop_list);
3494 		ret = ftrace_startup(ops, command);
3495 		if (ret < 0) {
3496 			list_del(&subops->list);
3497 			ops->func_hash->filter_hash = save_filter_hash;
3498 			ops->func_hash->notrace_hash = save_notrace_hash;
3499 			free_ftrace_hash(filter_hash);
3500 			free_ftrace_hash(notrace_hash);
3501 		} else {
3502 			free_ftrace_hash(save_filter_hash);
3503 			free_ftrace_hash(save_notrace_hash);
3504 			subops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP;
3505 			subops->managed = ops;
3506 		}
3507 		return ret;
3508 	}
3509 
3510 	/*
3511 	 * Here there's already something attached. Here are the rules:
3512 	 *   o If either filter_hash is empty then the final stays empty
3513 	 *      o Otherwise, the final is a superset of both hashes
3514 	 *   o If either notrace_hash is empty then the final stays empty
3515 	 *      o Otherwise, the final is an intersection between the hashes
3516 	 */
3517 	if (ftrace_hash_empty(ops->func_hash->filter_hash) ||
3518 	    ftrace_hash_empty(subops->func_hash->filter_hash)) {
3519 		filter_hash = EMPTY_HASH;
3520 	} else {
3521 		size_bits = max(ops->func_hash->filter_hash->size_bits,
3522 				subops->func_hash->filter_hash->size_bits);
3523 		filter_hash = alloc_and_copy_ftrace_hash(size_bits, ops->func_hash->filter_hash);
3524 		if (!filter_hash)
3525 			return -ENOMEM;
3526 		ret = append_hash(&filter_hash, subops->func_hash->filter_hash);
3527 		if (ret < 0) {
3528 			free_ftrace_hash(filter_hash);
3529 			return ret;
3530 		}
3531 	}
3532 
3533 	if (ftrace_hash_empty(ops->func_hash->notrace_hash) ||
3534 	    ftrace_hash_empty(subops->func_hash->notrace_hash)) {
3535 		notrace_hash = EMPTY_HASH;
3536 	} else {
3537 		size_bits = max(ops->func_hash->filter_hash->size_bits,
3538 				subops->func_hash->filter_hash->size_bits);
3539 		notrace_hash = alloc_ftrace_hash(size_bits);
3540 		if (!notrace_hash) {
3541 			free_ftrace_hash(filter_hash);
3542 			return -ENOMEM;
3543 		}
3544 
3545 		ret = intersect_hash(&notrace_hash, ops->func_hash->filter_hash,
3546 				     subops->func_hash->filter_hash);
3547 		if (ret < 0) {
3548 			free_ftrace_hash(filter_hash);
3549 			free_ftrace_hash(notrace_hash);
3550 			return ret;
3551 		}
3552 	}
3553 
3554 	list_add(&subops->list, &ops->subop_list);
3555 
3556 	ret = ftrace_update_ops(ops, filter_hash, notrace_hash);
3557 	free_ftrace_hash(filter_hash);
3558 	free_ftrace_hash(notrace_hash);
3559 	if (ret < 0) {
3560 		list_del(&subops->list);
3561 	} else {
3562 		subops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP;
3563 		subops->managed = ops;
3564 	}
3565 	return ret;
3566 }
3567 
3568 /**
3569  * ftrace_shutdown_subops - Remove a subops from a manager ops
3570  * @ops: A manager ops to remove @subops from
3571  * @subops: The subops to remove from @ops
3572  * @command: Any extra command flags to add to modifying the text
3573  *
3574  * Removes the functions being traced by the @subops from @ops. Note, it
3575  * will not affect functions that are being traced by other subops that
3576  * still exist in @ops.
3577  *
3578  * If the last subops is removed from @ops, then @ops is shutdown normally.
3579  */
3580 int ftrace_shutdown_subops(struct ftrace_ops *ops, struct ftrace_ops *subops, int command)
3581 {
3582 	struct ftrace_hash *filter_hash;
3583 	struct ftrace_hash *notrace_hash;
3584 	int ret;
3585 
3586 	if (unlikely(ftrace_disabled))
3587 		return -ENODEV;
3588 
3589 	if (WARN_ON_ONCE(!(subops->flags & FTRACE_OPS_FL_ENABLED)))
3590 		return -EINVAL;
3591 
3592 	list_del(&subops->list);
3593 
3594 	if (list_empty(&ops->subop_list)) {
3595 		/* Last one, just disable the current ops */
3596 
3597 		ret = ftrace_shutdown(ops, command);
3598 		if (ret < 0) {
3599 			list_add(&subops->list, &ops->subop_list);
3600 			return ret;
3601 		}
3602 
3603 		subops->flags &= ~FTRACE_OPS_FL_ENABLED;
3604 
3605 		free_ftrace_hash(ops->func_hash->filter_hash);
3606 		free_ftrace_hash(ops->func_hash->notrace_hash);
3607 		ops->func_hash->filter_hash = EMPTY_HASH;
3608 		ops->func_hash->notrace_hash = EMPTY_HASH;
3609 		subops->flags &= ~(FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP);
3610 		subops->managed = NULL;
3611 
3612 		return 0;
3613 	}
3614 
3615 	/* Rebuild the hashes without subops */
3616 	filter_hash = append_hashes(ops);
3617 	notrace_hash = intersect_hashes(ops);
3618 	if (!filter_hash || !notrace_hash) {
3619 		free_ftrace_hash(filter_hash);
3620 		free_ftrace_hash(notrace_hash);
3621 		list_add(&subops->list, &ops->subop_list);
3622 		return -ENOMEM;
3623 	}
3624 
3625 	ret = ftrace_update_ops(ops, filter_hash, notrace_hash);
3626 	if (ret < 0) {
3627 		list_add(&subops->list, &ops->subop_list);
3628 	} else {
3629 		subops->flags &= ~(FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP);
3630 		subops->managed = NULL;
3631 	}
3632 	free_ftrace_hash(filter_hash);
3633 	free_ftrace_hash(notrace_hash);
3634 	return ret;
3635 }
3636 
3637 static int ftrace_hash_move_and_update_subops(struct ftrace_ops *subops,
3638 					      struct ftrace_hash **orig_subhash,
3639 					      struct ftrace_hash *hash,
3640 					      int enable)
3641 {
3642 	struct ftrace_ops *ops = subops->managed;
3643 	struct ftrace_hash **orig_hash;
3644 	struct ftrace_hash *save_hash;
3645 	struct ftrace_hash *new_hash;
3646 	int ret;
3647 
3648 	/* Manager ops can not be subops (yet) */
3649 	if (WARN_ON_ONCE(!ops || ops->flags & FTRACE_OPS_FL_SUBOP))
3650 		return -EINVAL;
3651 
3652 	/* Move the new hash over to the subops hash */
3653 	save_hash = *orig_subhash;
3654 	*orig_subhash = __ftrace_hash_move(hash);
3655 	if (!*orig_subhash) {
3656 		*orig_subhash = save_hash;
3657 		return -ENOMEM;
3658 	}
3659 
3660 	/* Create a new_hash to hold the ops new functions */
3661 	if (enable) {
3662 		orig_hash = &ops->func_hash->filter_hash;
3663 		new_hash = append_hashes(ops);
3664 	} else {
3665 		orig_hash = &ops->func_hash->notrace_hash;
3666 		new_hash = intersect_hashes(ops);
3667 	}
3668 
3669 	/* Move the hash over to the new hash */
3670 	ret = __ftrace_hash_move_and_update_ops(ops, orig_hash, new_hash, enable);
3671 
3672 	free_ftrace_hash(new_hash);
3673 
3674 	if (ret) {
3675 		/* Put back the original hash */
3676 		free_ftrace_hash_rcu(*orig_subhash);
3677 		*orig_subhash = save_hash;
3678 	} else {
3679 		free_ftrace_hash_rcu(save_hash);
3680 	}
3681 	return ret;
3682 }
3683 
3684 
3685 u64			ftrace_update_time;
3686 u64			ftrace_total_mod_time;
3687 unsigned long		ftrace_update_tot_cnt;
3688 unsigned long		ftrace_number_of_pages;
3689 unsigned long		ftrace_number_of_groups;
3690 
3691 static inline int ops_traces_mod(struct ftrace_ops *ops)
3692 {
3693 	/*
3694 	 * Filter_hash being empty will default to trace module.
3695 	 * But notrace hash requires a test of individual module functions.
3696 	 */
3697 	return ftrace_hash_empty(ops->func_hash->filter_hash) &&
3698 		ftrace_hash_empty(ops->func_hash->notrace_hash);
3699 }
3700 
3701 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs)
3702 {
3703 	bool init_nop = ftrace_need_init_nop();
3704 	struct ftrace_page *pg;
3705 	struct dyn_ftrace *p;
3706 	u64 start, stop, update_time;
3707 	unsigned long update_cnt = 0;
3708 	unsigned long rec_flags = 0;
3709 	int i;
3710 
3711 	start = ftrace_now(raw_smp_processor_id());
3712 
3713 	/*
3714 	 * When a module is loaded, this function is called to convert
3715 	 * the calls to mcount in its text to nops, and also to create
3716 	 * an entry in the ftrace data. Now, if ftrace is activated
3717 	 * after this call, but before the module sets its text to
3718 	 * read-only, the modification of enabling ftrace can fail if
3719 	 * the read-only is done while ftrace is converting the calls.
3720 	 * To prevent this, the module's records are set as disabled
3721 	 * and will be enabled after the call to set the module's text
3722 	 * to read-only.
3723 	 */
3724 	if (mod)
3725 		rec_flags |= FTRACE_FL_DISABLED;
3726 
3727 	for (pg = new_pgs; pg; pg = pg->next) {
3728 
3729 		for (i = 0; i < pg->index; i++) {
3730 
3731 			/* If something went wrong, bail without enabling anything */
3732 			if (unlikely(ftrace_disabled))
3733 				return -1;
3734 
3735 			p = &pg->records[i];
3736 			p->flags = rec_flags;
3737 
3738 			/*
3739 			 * Do the initial record conversion from mcount jump
3740 			 * to the NOP instructions.
3741 			 */
3742 			if (init_nop && !ftrace_nop_initialize(mod, p))
3743 				break;
3744 
3745 			update_cnt++;
3746 		}
3747 	}
3748 
3749 	stop = ftrace_now(raw_smp_processor_id());
3750 	update_time = stop - start;
3751 	if (mod)
3752 		ftrace_total_mod_time += update_time;
3753 	else
3754 		ftrace_update_time = update_time;
3755 	ftrace_update_tot_cnt += update_cnt;
3756 
3757 	return 0;
3758 }
3759 
3760 static int ftrace_allocate_records(struct ftrace_page *pg, int count)
3761 {
3762 	int order;
3763 	int pages;
3764 	int cnt;
3765 
3766 	if (WARN_ON(!count))
3767 		return -EINVAL;
3768 
3769 	/* We want to fill as much as possible, with no empty pages */
3770 	pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE);
3771 	order = fls(pages) - 1;
3772 
3773  again:
3774 	pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
3775 
3776 	if (!pg->records) {
3777 		/* if we can't allocate this size, try something smaller */
3778 		if (!order)
3779 			return -ENOMEM;
3780 		order--;
3781 		goto again;
3782 	}
3783 
3784 	ftrace_number_of_pages += 1 << order;
3785 	ftrace_number_of_groups++;
3786 
3787 	cnt = (PAGE_SIZE << order) / ENTRY_SIZE;
3788 	pg->order = order;
3789 
3790 	if (cnt > count)
3791 		cnt = count;
3792 
3793 	return cnt;
3794 }
3795 
3796 static void ftrace_free_pages(struct ftrace_page *pages)
3797 {
3798 	struct ftrace_page *pg = pages;
3799 
3800 	while (pg) {
3801 		if (pg->records) {
3802 			free_pages((unsigned long)pg->records, pg->order);
3803 			ftrace_number_of_pages -= 1 << pg->order;
3804 		}
3805 		pages = pg->next;
3806 		kfree(pg);
3807 		pg = pages;
3808 		ftrace_number_of_groups--;
3809 	}
3810 }
3811 
3812 static struct ftrace_page *
3813 ftrace_allocate_pages(unsigned long num_to_init)
3814 {
3815 	struct ftrace_page *start_pg;
3816 	struct ftrace_page *pg;
3817 	int cnt;
3818 
3819 	if (!num_to_init)
3820 		return NULL;
3821 
3822 	start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL);
3823 	if (!pg)
3824 		return NULL;
3825 
3826 	/*
3827 	 * Try to allocate as much as possible in one continues
3828 	 * location that fills in all of the space. We want to
3829 	 * waste as little space as possible.
3830 	 */
3831 	for (;;) {
3832 		cnt = ftrace_allocate_records(pg, num_to_init);
3833 		if (cnt < 0)
3834 			goto free_pages;
3835 
3836 		num_to_init -= cnt;
3837 		if (!num_to_init)
3838 			break;
3839 
3840 		pg->next = kzalloc(sizeof(*pg), GFP_KERNEL);
3841 		if (!pg->next)
3842 			goto free_pages;
3843 
3844 		pg = pg->next;
3845 	}
3846 
3847 	return start_pg;
3848 
3849  free_pages:
3850 	ftrace_free_pages(start_pg);
3851 	pr_info("ftrace: FAILED to allocate memory for functions\n");
3852 	return NULL;
3853 }
3854 
3855 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */
3856 
3857 struct ftrace_iterator {
3858 	loff_t				pos;
3859 	loff_t				func_pos;
3860 	loff_t				mod_pos;
3861 	struct ftrace_page		*pg;
3862 	struct dyn_ftrace		*func;
3863 	struct ftrace_func_probe	*probe;
3864 	struct ftrace_func_entry	*probe_entry;
3865 	struct trace_parser		parser;
3866 	struct ftrace_hash		*hash;
3867 	struct ftrace_ops		*ops;
3868 	struct trace_array		*tr;
3869 	struct list_head		*mod_list;
3870 	int				pidx;
3871 	int				idx;
3872 	unsigned			flags;
3873 };
3874 
3875 static void *
3876 t_probe_next(struct seq_file *m, loff_t *pos)
3877 {
3878 	struct ftrace_iterator *iter = m->private;
3879 	struct trace_array *tr = iter->ops->private;
3880 	struct list_head *func_probes;
3881 	struct ftrace_hash *hash;
3882 	struct list_head *next;
3883 	struct hlist_node *hnd = NULL;
3884 	struct hlist_head *hhd;
3885 	int size;
3886 
3887 	(*pos)++;
3888 	iter->pos = *pos;
3889 
3890 	if (!tr)
3891 		return NULL;
3892 
3893 	func_probes = &tr->func_probes;
3894 	if (list_empty(func_probes))
3895 		return NULL;
3896 
3897 	if (!iter->probe) {
3898 		next = func_probes->next;
3899 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3900 	}
3901 
3902 	if (iter->probe_entry)
3903 		hnd = &iter->probe_entry->hlist;
3904 
3905 	hash = iter->probe->ops.func_hash->filter_hash;
3906 
3907 	/*
3908 	 * A probe being registered may temporarily have an empty hash
3909 	 * and it's at the end of the func_probes list.
3910 	 */
3911 	if (!hash || hash == EMPTY_HASH)
3912 		return NULL;
3913 
3914 	size = 1 << hash->size_bits;
3915 
3916  retry:
3917 	if (iter->pidx >= size) {
3918 		if (iter->probe->list.next == func_probes)
3919 			return NULL;
3920 		next = iter->probe->list.next;
3921 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3922 		hash = iter->probe->ops.func_hash->filter_hash;
3923 		size = 1 << hash->size_bits;
3924 		iter->pidx = 0;
3925 	}
3926 
3927 	hhd = &hash->buckets[iter->pidx];
3928 
3929 	if (hlist_empty(hhd)) {
3930 		iter->pidx++;
3931 		hnd = NULL;
3932 		goto retry;
3933 	}
3934 
3935 	if (!hnd)
3936 		hnd = hhd->first;
3937 	else {
3938 		hnd = hnd->next;
3939 		if (!hnd) {
3940 			iter->pidx++;
3941 			goto retry;
3942 		}
3943 	}
3944 
3945 	if (WARN_ON_ONCE(!hnd))
3946 		return NULL;
3947 
3948 	iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist);
3949 
3950 	return iter;
3951 }
3952 
3953 static void *t_probe_start(struct seq_file *m, loff_t *pos)
3954 {
3955 	struct ftrace_iterator *iter = m->private;
3956 	void *p = NULL;
3957 	loff_t l;
3958 
3959 	if (!(iter->flags & FTRACE_ITER_DO_PROBES))
3960 		return NULL;
3961 
3962 	if (iter->mod_pos > *pos)
3963 		return NULL;
3964 
3965 	iter->probe = NULL;
3966 	iter->probe_entry = NULL;
3967 	iter->pidx = 0;
3968 	for (l = 0; l <= (*pos - iter->mod_pos); ) {
3969 		p = t_probe_next(m, &l);
3970 		if (!p)
3971 			break;
3972 	}
3973 	if (!p)
3974 		return NULL;
3975 
3976 	/* Only set this if we have an item */
3977 	iter->flags |= FTRACE_ITER_PROBE;
3978 
3979 	return iter;
3980 }
3981 
3982 static int
3983 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter)
3984 {
3985 	struct ftrace_func_entry *probe_entry;
3986 	struct ftrace_probe_ops *probe_ops;
3987 	struct ftrace_func_probe *probe;
3988 
3989 	probe = iter->probe;
3990 	probe_entry = iter->probe_entry;
3991 
3992 	if (WARN_ON_ONCE(!probe || !probe_entry))
3993 		return -EIO;
3994 
3995 	probe_ops = probe->probe_ops;
3996 
3997 	if (probe_ops->print)
3998 		return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data);
3999 
4000 	seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip,
4001 		   (void *)probe_ops->func);
4002 
4003 	return 0;
4004 }
4005 
4006 static void *
4007 t_mod_next(struct seq_file *m, loff_t *pos)
4008 {
4009 	struct ftrace_iterator *iter = m->private;
4010 	struct trace_array *tr = iter->tr;
4011 
4012 	(*pos)++;
4013 	iter->pos = *pos;
4014 
4015 	iter->mod_list = iter->mod_list->next;
4016 
4017 	if (iter->mod_list == &tr->mod_trace ||
4018 	    iter->mod_list == &tr->mod_notrace) {
4019 		iter->flags &= ~FTRACE_ITER_MOD;
4020 		return NULL;
4021 	}
4022 
4023 	iter->mod_pos = *pos;
4024 
4025 	return iter;
4026 }
4027 
4028 static void *t_mod_start(struct seq_file *m, loff_t *pos)
4029 {
4030 	struct ftrace_iterator *iter = m->private;
4031 	void *p = NULL;
4032 	loff_t l;
4033 
4034 	if (iter->func_pos > *pos)
4035 		return NULL;
4036 
4037 	iter->mod_pos = iter->func_pos;
4038 
4039 	/* probes are only available if tr is set */
4040 	if (!iter->tr)
4041 		return NULL;
4042 
4043 	for (l = 0; l <= (*pos - iter->func_pos); ) {
4044 		p = t_mod_next(m, &l);
4045 		if (!p)
4046 			break;
4047 	}
4048 	if (!p) {
4049 		iter->flags &= ~FTRACE_ITER_MOD;
4050 		return t_probe_start(m, pos);
4051 	}
4052 
4053 	/* Only set this if we have an item */
4054 	iter->flags |= FTRACE_ITER_MOD;
4055 
4056 	return iter;
4057 }
4058 
4059 static int
4060 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter)
4061 {
4062 	struct ftrace_mod_load *ftrace_mod;
4063 	struct trace_array *tr = iter->tr;
4064 
4065 	if (WARN_ON_ONCE(!iter->mod_list) ||
4066 			 iter->mod_list == &tr->mod_trace ||
4067 			 iter->mod_list == &tr->mod_notrace)
4068 		return -EIO;
4069 
4070 	ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list);
4071 
4072 	if (ftrace_mod->func)
4073 		seq_printf(m, "%s", ftrace_mod->func);
4074 	else
4075 		seq_putc(m, '*');
4076 
4077 	seq_printf(m, ":mod:%s\n", ftrace_mod->module);
4078 
4079 	return 0;
4080 }
4081 
4082 static void *
4083 t_func_next(struct seq_file *m, loff_t *pos)
4084 {
4085 	struct ftrace_iterator *iter = m->private;
4086 	struct dyn_ftrace *rec = NULL;
4087 
4088 	(*pos)++;
4089 
4090  retry:
4091 	if (iter->idx >= iter->pg->index) {
4092 		if (iter->pg->next) {
4093 			iter->pg = iter->pg->next;
4094 			iter->idx = 0;
4095 			goto retry;
4096 		}
4097 	} else {
4098 		rec = &iter->pg->records[iter->idx++];
4099 		if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
4100 		     !ftrace_lookup_ip(iter->hash, rec->ip)) ||
4101 
4102 		    ((iter->flags & FTRACE_ITER_ENABLED) &&
4103 		     !(rec->flags & FTRACE_FL_ENABLED)) ||
4104 
4105 		    ((iter->flags & FTRACE_ITER_TOUCHED) &&
4106 		     !(rec->flags & FTRACE_FL_TOUCHED))) {
4107 
4108 			rec = NULL;
4109 			goto retry;
4110 		}
4111 	}
4112 
4113 	if (!rec)
4114 		return NULL;
4115 
4116 	iter->pos = iter->func_pos = *pos;
4117 	iter->func = rec;
4118 
4119 	return iter;
4120 }
4121 
4122 static void *
4123 t_next(struct seq_file *m, void *v, loff_t *pos)
4124 {
4125 	struct ftrace_iterator *iter = m->private;
4126 	loff_t l = *pos; /* t_probe_start() must use original pos */
4127 	void *ret;
4128 
4129 	if (unlikely(ftrace_disabled))
4130 		return NULL;
4131 
4132 	if (iter->flags & FTRACE_ITER_PROBE)
4133 		return t_probe_next(m, pos);
4134 
4135 	if (iter->flags & FTRACE_ITER_MOD)
4136 		return t_mod_next(m, pos);
4137 
4138 	if (iter->flags & FTRACE_ITER_PRINTALL) {
4139 		/* next must increment pos, and t_probe_start does not */
4140 		(*pos)++;
4141 		return t_mod_start(m, &l);
4142 	}
4143 
4144 	ret = t_func_next(m, pos);
4145 
4146 	if (!ret)
4147 		return t_mod_start(m, &l);
4148 
4149 	return ret;
4150 }
4151 
4152 static void reset_iter_read(struct ftrace_iterator *iter)
4153 {
4154 	iter->pos = 0;
4155 	iter->func_pos = 0;
4156 	iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD);
4157 }
4158 
4159 static void *t_start(struct seq_file *m, loff_t *pos)
4160 {
4161 	struct ftrace_iterator *iter = m->private;
4162 	void *p = NULL;
4163 	loff_t l;
4164 
4165 	mutex_lock(&ftrace_lock);
4166 
4167 	if (unlikely(ftrace_disabled))
4168 		return NULL;
4169 
4170 	/*
4171 	 * If an lseek was done, then reset and start from beginning.
4172 	 */
4173 	if (*pos < iter->pos)
4174 		reset_iter_read(iter);
4175 
4176 	/*
4177 	 * For set_ftrace_filter reading, if we have the filter
4178 	 * off, we can short cut and just print out that all
4179 	 * functions are enabled.
4180 	 */
4181 	if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
4182 	    ftrace_hash_empty(iter->hash)) {
4183 		iter->func_pos = 1; /* Account for the message */
4184 		if (*pos > 0)
4185 			return t_mod_start(m, pos);
4186 		iter->flags |= FTRACE_ITER_PRINTALL;
4187 		/* reset in case of seek/pread */
4188 		iter->flags &= ~FTRACE_ITER_PROBE;
4189 		return iter;
4190 	}
4191 
4192 	if (iter->flags & FTRACE_ITER_MOD)
4193 		return t_mod_start(m, pos);
4194 
4195 	/*
4196 	 * Unfortunately, we need to restart at ftrace_pages_start
4197 	 * every time we let go of the ftrace_mutex. This is because
4198 	 * those pointers can change without the lock.
4199 	 */
4200 	iter->pg = ftrace_pages_start;
4201 	iter->idx = 0;
4202 	for (l = 0; l <= *pos; ) {
4203 		p = t_func_next(m, &l);
4204 		if (!p)
4205 			break;
4206 	}
4207 
4208 	if (!p)
4209 		return t_mod_start(m, pos);
4210 
4211 	return iter;
4212 }
4213 
4214 static void t_stop(struct seq_file *m, void *p)
4215 {
4216 	mutex_unlock(&ftrace_lock);
4217 }
4218 
4219 void * __weak
4220 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec)
4221 {
4222 	return NULL;
4223 }
4224 
4225 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops,
4226 				struct dyn_ftrace *rec)
4227 {
4228 	void *ptr;
4229 
4230 	ptr = arch_ftrace_trampoline_func(ops, rec);
4231 	if (ptr)
4232 		seq_printf(m, " ->%pS", ptr);
4233 }
4234 
4235 #ifdef FTRACE_MCOUNT_MAX_OFFSET
4236 /*
4237  * Weak functions can still have an mcount/fentry that is saved in
4238  * the __mcount_loc section. These can be detected by having a
4239  * symbol offset of greater than FTRACE_MCOUNT_MAX_OFFSET, as the
4240  * symbol found by kallsyms is not the function that the mcount/fentry
4241  * is part of. The offset is much greater in these cases.
4242  *
4243  * Test the record to make sure that the ip points to a valid kallsyms
4244  * and if not, mark it disabled.
4245  */
4246 static int test_for_valid_rec(struct dyn_ftrace *rec)
4247 {
4248 	char str[KSYM_SYMBOL_LEN];
4249 	unsigned long offset;
4250 	const char *ret;
4251 
4252 	ret = kallsyms_lookup(rec->ip, NULL, &offset, NULL, str);
4253 
4254 	/* Weak functions can cause invalid addresses */
4255 	if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) {
4256 		rec->flags |= FTRACE_FL_DISABLED;
4257 		return 0;
4258 	}
4259 	return 1;
4260 }
4261 
4262 static struct workqueue_struct *ftrace_check_wq __initdata;
4263 static struct work_struct ftrace_check_work __initdata;
4264 
4265 /*
4266  * Scan all the mcount/fentry entries to make sure they are valid.
4267  */
4268 static __init void ftrace_check_work_func(struct work_struct *work)
4269 {
4270 	struct ftrace_page *pg;
4271 	struct dyn_ftrace *rec;
4272 
4273 	mutex_lock(&ftrace_lock);
4274 	do_for_each_ftrace_rec(pg, rec) {
4275 		test_for_valid_rec(rec);
4276 	} while_for_each_ftrace_rec();
4277 	mutex_unlock(&ftrace_lock);
4278 }
4279 
4280 static int __init ftrace_check_for_weak_functions(void)
4281 {
4282 	INIT_WORK(&ftrace_check_work, ftrace_check_work_func);
4283 
4284 	ftrace_check_wq = alloc_workqueue("ftrace_check_wq", WQ_UNBOUND, 0);
4285 
4286 	queue_work(ftrace_check_wq, &ftrace_check_work);
4287 	return 0;
4288 }
4289 
4290 static int __init ftrace_check_sync(void)
4291 {
4292 	/* Make sure the ftrace_check updates are finished */
4293 	if (ftrace_check_wq)
4294 		destroy_workqueue(ftrace_check_wq);
4295 	return 0;
4296 }
4297 
4298 late_initcall_sync(ftrace_check_sync);
4299 subsys_initcall(ftrace_check_for_weak_functions);
4300 
4301 static int print_rec(struct seq_file *m, unsigned long ip)
4302 {
4303 	unsigned long offset;
4304 	char str[KSYM_SYMBOL_LEN];
4305 	char *modname;
4306 	const char *ret;
4307 
4308 	ret = kallsyms_lookup(ip, NULL, &offset, &modname, str);
4309 	/* Weak functions can cause invalid addresses */
4310 	if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) {
4311 		snprintf(str, KSYM_SYMBOL_LEN, "%s_%ld",
4312 			 FTRACE_INVALID_FUNCTION, offset);
4313 		ret = NULL;
4314 	}
4315 
4316 	seq_puts(m, str);
4317 	if (modname)
4318 		seq_printf(m, " [%s]", modname);
4319 	return ret == NULL ? -1 : 0;
4320 }
4321 #else
4322 static inline int test_for_valid_rec(struct dyn_ftrace *rec)
4323 {
4324 	return 1;
4325 }
4326 
4327 static inline int print_rec(struct seq_file *m, unsigned long ip)
4328 {
4329 	seq_printf(m, "%ps", (void *)ip);
4330 	return 0;
4331 }
4332 #endif
4333 
4334 static int t_show(struct seq_file *m, void *v)
4335 {
4336 	struct ftrace_iterator *iter = m->private;
4337 	struct dyn_ftrace *rec;
4338 
4339 	if (iter->flags & FTRACE_ITER_PROBE)
4340 		return t_probe_show(m, iter);
4341 
4342 	if (iter->flags & FTRACE_ITER_MOD)
4343 		return t_mod_show(m, iter);
4344 
4345 	if (iter->flags & FTRACE_ITER_PRINTALL) {
4346 		if (iter->flags & FTRACE_ITER_NOTRACE)
4347 			seq_puts(m, "#### no functions disabled ####\n");
4348 		else
4349 			seq_puts(m, "#### all functions enabled ####\n");
4350 		return 0;
4351 	}
4352 
4353 	rec = iter->func;
4354 
4355 	if (!rec)
4356 		return 0;
4357 
4358 	if (iter->flags & FTRACE_ITER_ADDRS)
4359 		seq_printf(m, "%lx ", rec->ip);
4360 
4361 	if (print_rec(m, rec->ip)) {
4362 		/* This should only happen when a rec is disabled */
4363 		WARN_ON_ONCE(!(rec->flags & FTRACE_FL_DISABLED));
4364 		seq_putc(m, '\n');
4365 		return 0;
4366 	}
4367 
4368 	if (iter->flags & (FTRACE_ITER_ENABLED | FTRACE_ITER_TOUCHED)) {
4369 		struct ftrace_ops *ops;
4370 
4371 		seq_printf(m, " (%ld)%s%s%s%s%s",
4372 			   ftrace_rec_count(rec),
4373 			   rec->flags & FTRACE_FL_REGS ? " R" : "  ",
4374 			   rec->flags & FTRACE_FL_IPMODIFY ? " I" : "  ",
4375 			   rec->flags & FTRACE_FL_DIRECT ? " D" : "  ",
4376 			   rec->flags & FTRACE_FL_CALL_OPS ? " O" : "  ",
4377 			   rec->flags & FTRACE_FL_MODIFIED ? " M " : "   ");
4378 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
4379 			ops = ftrace_find_tramp_ops_any(rec);
4380 			if (ops) {
4381 				do {
4382 					seq_printf(m, "\ttramp: %pS (%pS)",
4383 						   (void *)ops->trampoline,
4384 						   (void *)ops->func);
4385 					add_trampoline_func(m, ops, rec);
4386 					ops = ftrace_find_tramp_ops_next(rec, ops);
4387 				} while (ops);
4388 			} else
4389 				seq_puts(m, "\ttramp: ERROR!");
4390 		} else {
4391 			add_trampoline_func(m, NULL, rec);
4392 		}
4393 		if (rec->flags & FTRACE_FL_CALL_OPS_EN) {
4394 			ops = ftrace_find_unique_ops(rec);
4395 			if (ops) {
4396 				seq_printf(m, "\tops: %pS (%pS)",
4397 					   ops, ops->func);
4398 			} else {
4399 				seq_puts(m, "\tops: ERROR!");
4400 			}
4401 		}
4402 		if (rec->flags & FTRACE_FL_DIRECT) {
4403 			unsigned long direct;
4404 
4405 			direct = ftrace_find_rec_direct(rec->ip);
4406 			if (direct)
4407 				seq_printf(m, "\n\tdirect-->%pS", (void *)direct);
4408 		}
4409 	}
4410 
4411 	seq_putc(m, '\n');
4412 
4413 	return 0;
4414 }
4415 
4416 static const struct seq_operations show_ftrace_seq_ops = {
4417 	.start = t_start,
4418 	.next = t_next,
4419 	.stop = t_stop,
4420 	.show = t_show,
4421 };
4422 
4423 static int
4424 ftrace_avail_open(struct inode *inode, struct file *file)
4425 {
4426 	struct ftrace_iterator *iter;
4427 	int ret;
4428 
4429 	ret = security_locked_down(LOCKDOWN_TRACEFS);
4430 	if (ret)
4431 		return ret;
4432 
4433 	if (unlikely(ftrace_disabled))
4434 		return -ENODEV;
4435 
4436 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
4437 	if (!iter)
4438 		return -ENOMEM;
4439 
4440 	iter->pg = ftrace_pages_start;
4441 	iter->ops = &global_ops;
4442 
4443 	return 0;
4444 }
4445 
4446 static int
4447 ftrace_enabled_open(struct inode *inode, struct file *file)
4448 {
4449 	struct ftrace_iterator *iter;
4450 
4451 	/*
4452 	 * This shows us what functions are currently being
4453 	 * traced and by what. Not sure if we want lockdown
4454 	 * to hide such critical information for an admin.
4455 	 * Although, perhaps it can show information we don't
4456 	 * want people to see, but if something is tracing
4457 	 * something, we probably want to know about it.
4458 	 */
4459 
4460 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
4461 	if (!iter)
4462 		return -ENOMEM;
4463 
4464 	iter->pg = ftrace_pages_start;
4465 	iter->flags = FTRACE_ITER_ENABLED;
4466 	iter->ops = &global_ops;
4467 
4468 	return 0;
4469 }
4470 
4471 static int
4472 ftrace_touched_open(struct inode *inode, struct file *file)
4473 {
4474 	struct ftrace_iterator *iter;
4475 
4476 	/*
4477 	 * This shows us what functions have ever been enabled
4478 	 * (traced, direct, patched, etc). Not sure if we want lockdown
4479 	 * to hide such critical information for an admin.
4480 	 * Although, perhaps it can show information we don't
4481 	 * want people to see, but if something had traced
4482 	 * something, we probably want to know about it.
4483 	 */
4484 
4485 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
4486 	if (!iter)
4487 		return -ENOMEM;
4488 
4489 	iter->pg = ftrace_pages_start;
4490 	iter->flags = FTRACE_ITER_TOUCHED;
4491 	iter->ops = &global_ops;
4492 
4493 	return 0;
4494 }
4495 
4496 static int
4497 ftrace_avail_addrs_open(struct inode *inode, struct file *file)
4498 {
4499 	struct ftrace_iterator *iter;
4500 	int ret;
4501 
4502 	ret = security_locked_down(LOCKDOWN_TRACEFS);
4503 	if (ret)
4504 		return ret;
4505 
4506 	if (unlikely(ftrace_disabled))
4507 		return -ENODEV;
4508 
4509 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
4510 	if (!iter)
4511 		return -ENOMEM;
4512 
4513 	iter->pg = ftrace_pages_start;
4514 	iter->flags = FTRACE_ITER_ADDRS;
4515 	iter->ops = &global_ops;
4516 
4517 	return 0;
4518 }
4519 
4520 /**
4521  * ftrace_regex_open - initialize function tracer filter files
4522  * @ops: The ftrace_ops that hold the hash filters
4523  * @flag: The type of filter to process
4524  * @inode: The inode, usually passed in to your open routine
4525  * @file: The file, usually passed in to your open routine
4526  *
4527  * ftrace_regex_open() initializes the filter files for the
4528  * @ops. Depending on @flag it may process the filter hash or
4529  * the notrace hash of @ops. With this called from the open
4530  * routine, you can use ftrace_filter_write() for the write
4531  * routine if @flag has FTRACE_ITER_FILTER set, or
4532  * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set.
4533  * tracing_lseek() should be used as the lseek routine, and
4534  * release must call ftrace_regex_release().
4535  *
4536  * Returns: 0 on success or a negative errno value on failure
4537  */
4538 int
4539 ftrace_regex_open(struct ftrace_ops *ops, int flag,
4540 		  struct inode *inode, struct file *file)
4541 {
4542 	struct ftrace_iterator *iter;
4543 	struct ftrace_hash *hash;
4544 	struct list_head *mod_head;
4545 	struct trace_array *tr = ops->private;
4546 	int ret = -ENOMEM;
4547 
4548 	ftrace_ops_init(ops);
4549 
4550 	if (unlikely(ftrace_disabled))
4551 		return -ENODEV;
4552 
4553 	if (tracing_check_open_get_tr(tr))
4554 		return -ENODEV;
4555 
4556 	iter = kzalloc(sizeof(*iter), GFP_KERNEL);
4557 	if (!iter)
4558 		goto out;
4559 
4560 	if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX))
4561 		goto out;
4562 
4563 	iter->ops = ops;
4564 	iter->flags = flag;
4565 	iter->tr = tr;
4566 
4567 	mutex_lock(&ops->func_hash->regex_lock);
4568 
4569 	if (flag & FTRACE_ITER_NOTRACE) {
4570 		hash = ops->func_hash->notrace_hash;
4571 		mod_head = tr ? &tr->mod_notrace : NULL;
4572 	} else {
4573 		hash = ops->func_hash->filter_hash;
4574 		mod_head = tr ? &tr->mod_trace : NULL;
4575 	}
4576 
4577 	iter->mod_list = mod_head;
4578 
4579 	if (file->f_mode & FMODE_WRITE) {
4580 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
4581 
4582 		if (file->f_flags & O_TRUNC) {
4583 			iter->hash = alloc_ftrace_hash(size_bits);
4584 			clear_ftrace_mod_list(mod_head);
4585 	        } else {
4586 			iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash);
4587 		}
4588 
4589 		if (!iter->hash) {
4590 			trace_parser_put(&iter->parser);
4591 			goto out_unlock;
4592 		}
4593 	} else
4594 		iter->hash = hash;
4595 
4596 	ret = 0;
4597 
4598 	if (file->f_mode & FMODE_READ) {
4599 		iter->pg = ftrace_pages_start;
4600 
4601 		ret = seq_open(file, &show_ftrace_seq_ops);
4602 		if (!ret) {
4603 			struct seq_file *m = file->private_data;
4604 			m->private = iter;
4605 		} else {
4606 			/* Failed */
4607 			free_ftrace_hash(iter->hash);
4608 			trace_parser_put(&iter->parser);
4609 		}
4610 	} else
4611 		file->private_data = iter;
4612 
4613  out_unlock:
4614 	mutex_unlock(&ops->func_hash->regex_lock);
4615 
4616  out:
4617 	if (ret) {
4618 		kfree(iter);
4619 		if (tr)
4620 			trace_array_put(tr);
4621 	}
4622 
4623 	return ret;
4624 }
4625 
4626 static int
4627 ftrace_filter_open(struct inode *inode, struct file *file)
4628 {
4629 	struct ftrace_ops *ops = inode->i_private;
4630 
4631 	/* Checks for tracefs lockdown */
4632 	return ftrace_regex_open(ops,
4633 			FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES,
4634 			inode, file);
4635 }
4636 
4637 static int
4638 ftrace_notrace_open(struct inode *inode, struct file *file)
4639 {
4640 	struct ftrace_ops *ops = inode->i_private;
4641 
4642 	/* Checks for tracefs lockdown */
4643 	return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE,
4644 				 inode, file);
4645 }
4646 
4647 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */
4648 struct ftrace_glob {
4649 	char *search;
4650 	unsigned len;
4651 	int type;
4652 };
4653 
4654 /*
4655  * If symbols in an architecture don't correspond exactly to the user-visible
4656  * name of what they represent, it is possible to define this function to
4657  * perform the necessary adjustments.
4658 */
4659 char * __weak arch_ftrace_match_adjust(char *str, const char *search)
4660 {
4661 	return str;
4662 }
4663 
4664 static int ftrace_match(char *str, struct ftrace_glob *g)
4665 {
4666 	int matched = 0;
4667 	int slen;
4668 
4669 	str = arch_ftrace_match_adjust(str, g->search);
4670 
4671 	switch (g->type) {
4672 	case MATCH_FULL:
4673 		if (strcmp(str, g->search) == 0)
4674 			matched = 1;
4675 		break;
4676 	case MATCH_FRONT_ONLY:
4677 		if (strncmp(str, g->search, g->len) == 0)
4678 			matched = 1;
4679 		break;
4680 	case MATCH_MIDDLE_ONLY:
4681 		if (strstr(str, g->search))
4682 			matched = 1;
4683 		break;
4684 	case MATCH_END_ONLY:
4685 		slen = strlen(str);
4686 		if (slen >= g->len &&
4687 		    memcmp(str + slen - g->len, g->search, g->len) == 0)
4688 			matched = 1;
4689 		break;
4690 	case MATCH_GLOB:
4691 		if (glob_match(g->search, str))
4692 			matched = 1;
4693 		break;
4694 	}
4695 
4696 	return matched;
4697 }
4698 
4699 static int
4700 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter)
4701 {
4702 	struct ftrace_func_entry *entry;
4703 	int ret = 0;
4704 
4705 	entry = ftrace_lookup_ip(hash, rec->ip);
4706 	if (clear_filter) {
4707 		/* Do nothing if it doesn't exist */
4708 		if (!entry)
4709 			return 0;
4710 
4711 		free_hash_entry(hash, entry);
4712 	} else {
4713 		/* Do nothing if it exists */
4714 		if (entry)
4715 			return 0;
4716 		if (add_hash_entry(hash, rec->ip) == NULL)
4717 			ret = -ENOMEM;
4718 	}
4719 	return ret;
4720 }
4721 
4722 static int
4723 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g,
4724 		 int clear_filter)
4725 {
4726 	long index;
4727 	struct ftrace_page *pg;
4728 	struct dyn_ftrace *rec;
4729 
4730 	/* The index starts at 1 */
4731 	if (kstrtoul(func_g->search, 0, &index) || --index < 0)
4732 		return 0;
4733 
4734 	do_for_each_ftrace_rec(pg, rec) {
4735 		if (pg->index <= index) {
4736 			index -= pg->index;
4737 			/* this is a double loop, break goes to the next page */
4738 			break;
4739 		}
4740 		rec = &pg->records[index];
4741 		enter_record(hash, rec, clear_filter);
4742 		return 1;
4743 	} while_for_each_ftrace_rec();
4744 	return 0;
4745 }
4746 
4747 #ifdef FTRACE_MCOUNT_MAX_OFFSET
4748 static int lookup_ip(unsigned long ip, char **modname, char *str)
4749 {
4750 	unsigned long offset;
4751 
4752 	kallsyms_lookup(ip, NULL, &offset, modname, str);
4753 	if (offset > FTRACE_MCOUNT_MAX_OFFSET)
4754 		return -1;
4755 	return 0;
4756 }
4757 #else
4758 static int lookup_ip(unsigned long ip, char **modname, char *str)
4759 {
4760 	kallsyms_lookup(ip, NULL, NULL, modname, str);
4761 	return 0;
4762 }
4763 #endif
4764 
4765 static int
4766 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g,
4767 		struct ftrace_glob *mod_g, int exclude_mod)
4768 {
4769 	char str[KSYM_SYMBOL_LEN];
4770 	char *modname;
4771 
4772 	if (lookup_ip(rec->ip, &modname, str)) {
4773 		/* This should only happen when a rec is disabled */
4774 		WARN_ON_ONCE(system_state == SYSTEM_RUNNING &&
4775 			     !(rec->flags & FTRACE_FL_DISABLED));
4776 		return 0;
4777 	}
4778 
4779 	if (mod_g) {
4780 		int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0;
4781 
4782 		/* blank module name to match all modules */
4783 		if (!mod_g->len) {
4784 			/* blank module globbing: modname xor exclude_mod */
4785 			if (!exclude_mod != !modname)
4786 				goto func_match;
4787 			return 0;
4788 		}
4789 
4790 		/*
4791 		 * exclude_mod is set to trace everything but the given
4792 		 * module. If it is set and the module matches, then
4793 		 * return 0. If it is not set, and the module doesn't match
4794 		 * also return 0. Otherwise, check the function to see if
4795 		 * that matches.
4796 		 */
4797 		if (!mod_matches == !exclude_mod)
4798 			return 0;
4799 func_match:
4800 		/* blank search means to match all funcs in the mod */
4801 		if (!func_g->len)
4802 			return 1;
4803 	}
4804 
4805 	return ftrace_match(str, func_g);
4806 }
4807 
4808 static int
4809 match_records(struct ftrace_hash *hash, char *func, int len, char *mod)
4810 {
4811 	struct ftrace_page *pg;
4812 	struct dyn_ftrace *rec;
4813 	struct ftrace_glob func_g = { .type = MATCH_FULL };
4814 	struct ftrace_glob mod_g = { .type = MATCH_FULL };
4815 	struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL;
4816 	int exclude_mod = 0;
4817 	int found = 0;
4818 	int ret;
4819 	int clear_filter = 0;
4820 
4821 	if (func) {
4822 		func_g.type = filter_parse_regex(func, len, &func_g.search,
4823 						 &clear_filter);
4824 		func_g.len = strlen(func_g.search);
4825 	}
4826 
4827 	if (mod) {
4828 		mod_g.type = filter_parse_regex(mod, strlen(mod),
4829 				&mod_g.search, &exclude_mod);
4830 		mod_g.len = strlen(mod_g.search);
4831 	}
4832 
4833 	guard(mutex)(&ftrace_lock);
4834 
4835 	if (unlikely(ftrace_disabled))
4836 		return 0;
4837 
4838 	if (func_g.type == MATCH_INDEX)
4839 		return add_rec_by_index(hash, &func_g, clear_filter);
4840 
4841 	do_for_each_ftrace_rec(pg, rec) {
4842 
4843 		if (rec->flags & FTRACE_FL_DISABLED)
4844 			continue;
4845 
4846 		if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) {
4847 			ret = enter_record(hash, rec, clear_filter);
4848 			if (ret < 0)
4849 				return ret;
4850 			found = 1;
4851 		}
4852 		cond_resched();
4853 	} while_for_each_ftrace_rec();
4854 
4855 	return found;
4856 }
4857 
4858 static int
4859 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len)
4860 {
4861 	return match_records(hash, buff, len, NULL);
4862 }
4863 
4864 static void ftrace_ops_update_code(struct ftrace_ops *ops,
4865 				   struct ftrace_ops_hash *old_hash)
4866 {
4867 	struct ftrace_ops *op;
4868 
4869 	if (!ftrace_enabled)
4870 		return;
4871 
4872 	if (ops->flags & FTRACE_OPS_FL_ENABLED) {
4873 		ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash);
4874 		return;
4875 	}
4876 
4877 	/*
4878 	 * If this is the shared global_ops filter, then we need to
4879 	 * check if there is another ops that shares it, is enabled.
4880 	 * If so, we still need to run the modify code.
4881 	 */
4882 	if (ops->func_hash != &global_ops.local_hash)
4883 		return;
4884 
4885 	do_for_each_ftrace_op(op, ftrace_ops_list) {
4886 		if (op->func_hash == &global_ops.local_hash &&
4887 		    op->flags & FTRACE_OPS_FL_ENABLED) {
4888 			ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash);
4889 			/* Only need to do this once */
4890 			return;
4891 		}
4892 	} while_for_each_ftrace_op(op);
4893 }
4894 
4895 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops,
4896 					   struct ftrace_hash **orig_hash,
4897 					   struct ftrace_hash *hash,
4898 					   int enable)
4899 {
4900 	if (ops->flags & FTRACE_OPS_FL_SUBOP)
4901 		return ftrace_hash_move_and_update_subops(ops, orig_hash, hash, enable);
4902 
4903 	/*
4904 	 * If this ops is not enabled, it could be sharing its filters
4905 	 * with a subop. If that's the case, update the subop instead of
4906 	 * this ops. Shared filters are only allowed to have one ops set
4907 	 * at a time, and if we update the ops that is not enabled,
4908 	 * it will not affect subops that share it.
4909 	 */
4910 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) {
4911 		struct ftrace_ops *op;
4912 
4913 		/* Check if any other manager subops maps to this hash */
4914 		do_for_each_ftrace_op(op, ftrace_ops_list) {
4915 			struct ftrace_ops *subops;
4916 
4917 			list_for_each_entry(subops, &op->subop_list, list) {
4918 				if ((subops->flags & FTRACE_OPS_FL_ENABLED) &&
4919 				     subops->func_hash == ops->func_hash) {
4920 					return ftrace_hash_move_and_update_subops(subops, orig_hash, hash, enable);
4921 				}
4922 			}
4923 		} while_for_each_ftrace_op(op);
4924 	}
4925 
4926 	return __ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable);
4927 }
4928 
4929 static bool module_exists(const char *module)
4930 {
4931 	/* All modules have the symbol __this_module */
4932 	static const char this_mod[] = "__this_module";
4933 	char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2];
4934 	unsigned long val;
4935 	int n;
4936 
4937 	n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod);
4938 
4939 	if (n > sizeof(modname) - 1)
4940 		return false;
4941 
4942 	val = module_kallsyms_lookup_name(modname);
4943 	return val != 0;
4944 }
4945 
4946 static int cache_mod(struct trace_array *tr,
4947 		     const char *func, char *module, int enable)
4948 {
4949 	struct ftrace_mod_load *ftrace_mod, *n;
4950 	struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace;
4951 
4952 	guard(mutex)(&ftrace_lock);
4953 
4954 	/* We do not cache inverse filters */
4955 	if (func[0] == '!') {
4956 		int ret = -EINVAL;
4957 
4958 		func++;
4959 
4960 		/* Look to remove this hash */
4961 		list_for_each_entry_safe(ftrace_mod, n, head, list) {
4962 			if (strcmp(ftrace_mod->module, module) != 0)
4963 				continue;
4964 
4965 			/* no func matches all */
4966 			if (strcmp(func, "*") == 0 ||
4967 			    (ftrace_mod->func &&
4968 			     strcmp(ftrace_mod->func, func) == 0)) {
4969 				ret = 0;
4970 				free_ftrace_mod(ftrace_mod);
4971 				continue;
4972 			}
4973 		}
4974 		return ret;
4975 	}
4976 
4977 	/* We only care about modules that have not been loaded yet */
4978 	if (module_exists(module))
4979 		return -EINVAL;
4980 
4981 	/* Save this string off, and execute it when the module is loaded */
4982 	return ftrace_add_mod(tr, func, module, enable);
4983 }
4984 
4985 static int
4986 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
4987 		 int reset, int enable);
4988 
4989 #ifdef CONFIG_MODULES
4990 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops,
4991 			     char *mod, bool enable)
4992 {
4993 	struct ftrace_mod_load *ftrace_mod, *n;
4994 	struct ftrace_hash **orig_hash, *new_hash;
4995 	LIST_HEAD(process_mods);
4996 	char *func;
4997 
4998 	mutex_lock(&ops->func_hash->regex_lock);
4999 
5000 	if (enable)
5001 		orig_hash = &ops->func_hash->filter_hash;
5002 	else
5003 		orig_hash = &ops->func_hash->notrace_hash;
5004 
5005 	new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS,
5006 					      *orig_hash);
5007 	if (!new_hash)
5008 		goto out; /* warn? */
5009 
5010 	mutex_lock(&ftrace_lock);
5011 
5012 	list_for_each_entry_safe(ftrace_mod, n, head, list) {
5013 
5014 		if (strcmp(ftrace_mod->module, mod) != 0)
5015 			continue;
5016 
5017 		if (ftrace_mod->func)
5018 			func = kstrdup(ftrace_mod->func, GFP_KERNEL);
5019 		else
5020 			func = kstrdup("*", GFP_KERNEL);
5021 
5022 		if (!func) /* warn? */
5023 			continue;
5024 
5025 		list_move(&ftrace_mod->list, &process_mods);
5026 
5027 		/* Use the newly allocated func, as it may be "*" */
5028 		kfree(ftrace_mod->func);
5029 		ftrace_mod->func = func;
5030 	}
5031 
5032 	mutex_unlock(&ftrace_lock);
5033 
5034 	list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) {
5035 
5036 		func = ftrace_mod->func;
5037 
5038 		/* Grabs ftrace_lock, which is why we have this extra step */
5039 		match_records(new_hash, func, strlen(func), mod);
5040 		free_ftrace_mod(ftrace_mod);
5041 	}
5042 
5043 	if (enable && list_empty(head))
5044 		new_hash->flags &= ~FTRACE_HASH_FL_MOD;
5045 
5046 	mutex_lock(&ftrace_lock);
5047 
5048 	ftrace_hash_move_and_update_ops(ops, orig_hash,
5049 					      new_hash, enable);
5050 	mutex_unlock(&ftrace_lock);
5051 
5052  out:
5053 	mutex_unlock(&ops->func_hash->regex_lock);
5054 
5055 	free_ftrace_hash(new_hash);
5056 }
5057 
5058 static void process_cached_mods(const char *mod_name)
5059 {
5060 	struct trace_array *tr;
5061 	char *mod;
5062 
5063 	mod = kstrdup(mod_name, GFP_KERNEL);
5064 	if (!mod)
5065 		return;
5066 
5067 	mutex_lock(&trace_types_lock);
5068 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
5069 		if (!list_empty(&tr->mod_trace))
5070 			process_mod_list(&tr->mod_trace, tr->ops, mod, true);
5071 		if (!list_empty(&tr->mod_notrace))
5072 			process_mod_list(&tr->mod_notrace, tr->ops, mod, false);
5073 	}
5074 	mutex_unlock(&trace_types_lock);
5075 
5076 	kfree(mod);
5077 }
5078 #endif
5079 
5080 /*
5081  * We register the module command as a template to show others how
5082  * to register the a command as well.
5083  */
5084 
5085 static int
5086 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash,
5087 		    char *func_orig, char *cmd, char *module, int enable)
5088 {
5089 	char *func;
5090 	int ret;
5091 
5092 	if (!tr)
5093 		return -ENODEV;
5094 
5095 	/* match_records() modifies func, and we need the original */
5096 	func = kstrdup(func_orig, GFP_KERNEL);
5097 	if (!func)
5098 		return -ENOMEM;
5099 
5100 	/*
5101 	 * cmd == 'mod' because we only registered this func
5102 	 * for the 'mod' ftrace_func_command.
5103 	 * But if you register one func with multiple commands,
5104 	 * you can tell which command was used by the cmd
5105 	 * parameter.
5106 	 */
5107 	ret = match_records(hash, func, strlen(func), module);
5108 	kfree(func);
5109 
5110 	if (!ret)
5111 		return cache_mod(tr, func_orig, module, enable);
5112 	if (ret < 0)
5113 		return ret;
5114 	return 0;
5115 }
5116 
5117 static struct ftrace_func_command ftrace_mod_cmd = {
5118 	.name			= "mod",
5119 	.func			= ftrace_mod_callback,
5120 };
5121 
5122 static int __init ftrace_mod_cmd_init(void)
5123 {
5124 	return register_ftrace_command(&ftrace_mod_cmd);
5125 }
5126 core_initcall(ftrace_mod_cmd_init);
5127 
5128 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip,
5129 				      struct ftrace_ops *op, struct ftrace_regs *fregs)
5130 {
5131 	struct ftrace_probe_ops *probe_ops;
5132 	struct ftrace_func_probe *probe;
5133 
5134 	probe = container_of(op, struct ftrace_func_probe, ops);
5135 	probe_ops = probe->probe_ops;
5136 
5137 	/*
5138 	 * Disable preemption for these calls to prevent a RCU grace
5139 	 * period. This syncs the hash iteration and freeing of items
5140 	 * on the hash. rcu_read_lock is too dangerous here.
5141 	 */
5142 	preempt_disable_notrace();
5143 	probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data);
5144 	preempt_enable_notrace();
5145 }
5146 
5147 struct ftrace_func_map {
5148 	struct ftrace_func_entry	entry;
5149 	void				*data;
5150 };
5151 
5152 struct ftrace_func_mapper {
5153 	struct ftrace_hash		hash;
5154 };
5155 
5156 /**
5157  * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper
5158  *
5159  * Returns: a ftrace_func_mapper descriptor that can be used to map ips to data.
5160  */
5161 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void)
5162 {
5163 	struct ftrace_hash *hash;
5164 
5165 	/*
5166 	 * The mapper is simply a ftrace_hash, but since the entries
5167 	 * in the hash are not ftrace_func_entry type, we define it
5168 	 * as a separate structure.
5169 	 */
5170 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
5171 	return (struct ftrace_func_mapper *)hash;
5172 }
5173 
5174 /**
5175  * ftrace_func_mapper_find_ip - Find some data mapped to an ip
5176  * @mapper: The mapper that has the ip maps
5177  * @ip: the instruction pointer to find the data for
5178  *
5179  * Returns: the data mapped to @ip if found otherwise NULL. The return
5180  * is actually the address of the mapper data pointer. The address is
5181  * returned for use cases where the data is no bigger than a long, and
5182  * the user can use the data pointer as its data instead of having to
5183  * allocate more memory for the reference.
5184  */
5185 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper,
5186 				  unsigned long ip)
5187 {
5188 	struct ftrace_func_entry *entry;
5189 	struct ftrace_func_map *map;
5190 
5191 	entry = ftrace_lookup_ip(&mapper->hash, ip);
5192 	if (!entry)
5193 		return NULL;
5194 
5195 	map = (struct ftrace_func_map *)entry;
5196 	return &map->data;
5197 }
5198 
5199 /**
5200  * ftrace_func_mapper_add_ip - Map some data to an ip
5201  * @mapper: The mapper that has the ip maps
5202  * @ip: The instruction pointer address to map @data to
5203  * @data: The data to map to @ip
5204  *
5205  * Returns: 0 on success otherwise an error.
5206  */
5207 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper,
5208 			      unsigned long ip, void *data)
5209 {
5210 	struct ftrace_func_entry *entry;
5211 	struct ftrace_func_map *map;
5212 
5213 	entry = ftrace_lookup_ip(&mapper->hash, ip);
5214 	if (entry)
5215 		return -EBUSY;
5216 
5217 	map = kmalloc(sizeof(*map), GFP_KERNEL);
5218 	if (!map)
5219 		return -ENOMEM;
5220 
5221 	map->entry.ip = ip;
5222 	map->data = data;
5223 
5224 	__add_hash_entry(&mapper->hash, &map->entry);
5225 
5226 	return 0;
5227 }
5228 
5229 /**
5230  * ftrace_func_mapper_remove_ip - Remove an ip from the mapping
5231  * @mapper: The mapper that has the ip maps
5232  * @ip: The instruction pointer address to remove the data from
5233  *
5234  * Returns: the data if it is found, otherwise NULL.
5235  * Note, if the data pointer is used as the data itself, (see
5236  * ftrace_func_mapper_find_ip(), then the return value may be meaningless,
5237  * if the data pointer was set to zero.
5238  */
5239 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper,
5240 				   unsigned long ip)
5241 {
5242 	struct ftrace_func_entry *entry;
5243 	struct ftrace_func_map *map;
5244 	void *data;
5245 
5246 	entry = ftrace_lookup_ip(&mapper->hash, ip);
5247 	if (!entry)
5248 		return NULL;
5249 
5250 	map = (struct ftrace_func_map *)entry;
5251 	data = map->data;
5252 
5253 	remove_hash_entry(&mapper->hash, entry);
5254 	kfree(entry);
5255 
5256 	return data;
5257 }
5258 
5259 /**
5260  * free_ftrace_func_mapper - free a mapping of ips and data
5261  * @mapper: The mapper that has the ip maps
5262  * @free_func: A function to be called on each data item.
5263  *
5264  * This is used to free the function mapper. The @free_func is optional
5265  * and can be used if the data needs to be freed as well.
5266  */
5267 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper,
5268 			     ftrace_mapper_func free_func)
5269 {
5270 	struct ftrace_func_entry *entry;
5271 	struct ftrace_func_map *map;
5272 	struct hlist_head *hhd;
5273 	int size, i;
5274 
5275 	if (!mapper)
5276 		return;
5277 
5278 	if (free_func && mapper->hash.count) {
5279 		size = 1 << mapper->hash.size_bits;
5280 		for (i = 0; i < size; i++) {
5281 			hhd = &mapper->hash.buckets[i];
5282 			hlist_for_each_entry(entry, hhd, hlist) {
5283 				map = (struct ftrace_func_map *)entry;
5284 				free_func(map);
5285 			}
5286 		}
5287 	}
5288 	free_ftrace_hash(&mapper->hash);
5289 }
5290 
5291 static void release_probe(struct ftrace_func_probe *probe)
5292 {
5293 	struct ftrace_probe_ops *probe_ops;
5294 
5295 	guard(mutex)(&ftrace_lock);
5296 
5297 	WARN_ON(probe->ref <= 0);
5298 
5299 	/* Subtract the ref that was used to protect this instance */
5300 	probe->ref--;
5301 
5302 	if (!probe->ref) {
5303 		probe_ops = probe->probe_ops;
5304 		/*
5305 		 * Sending zero as ip tells probe_ops to free
5306 		 * the probe->data itself
5307 		 */
5308 		if (probe_ops->free)
5309 			probe_ops->free(probe_ops, probe->tr, 0, probe->data);
5310 		list_del(&probe->list);
5311 		kfree(probe);
5312 	}
5313 }
5314 
5315 static void acquire_probe_locked(struct ftrace_func_probe *probe)
5316 {
5317 	/*
5318 	 * Add one ref to keep it from being freed when releasing the
5319 	 * ftrace_lock mutex.
5320 	 */
5321 	probe->ref++;
5322 }
5323 
5324 int
5325 register_ftrace_function_probe(char *glob, struct trace_array *tr,
5326 			       struct ftrace_probe_ops *probe_ops,
5327 			       void *data)
5328 {
5329 	struct ftrace_func_probe *probe = NULL, *iter;
5330 	struct ftrace_func_entry *entry;
5331 	struct ftrace_hash **orig_hash;
5332 	struct ftrace_hash *old_hash;
5333 	struct ftrace_hash *hash;
5334 	int count = 0;
5335 	int size;
5336 	int ret;
5337 	int i;
5338 
5339 	if (WARN_ON(!tr))
5340 		return -EINVAL;
5341 
5342 	/* We do not support '!' for function probes */
5343 	if (WARN_ON(glob[0] == '!'))
5344 		return -EINVAL;
5345 
5346 
5347 	mutex_lock(&ftrace_lock);
5348 	/* Check if the probe_ops is already registered */
5349 	list_for_each_entry(iter, &tr->func_probes, list) {
5350 		if (iter->probe_ops == probe_ops) {
5351 			probe = iter;
5352 			break;
5353 		}
5354 	}
5355 	if (!probe) {
5356 		probe = kzalloc(sizeof(*probe), GFP_KERNEL);
5357 		if (!probe) {
5358 			mutex_unlock(&ftrace_lock);
5359 			return -ENOMEM;
5360 		}
5361 		probe->probe_ops = probe_ops;
5362 		probe->ops.func = function_trace_probe_call;
5363 		probe->tr = tr;
5364 		ftrace_ops_init(&probe->ops);
5365 		list_add(&probe->list, &tr->func_probes);
5366 	}
5367 
5368 	acquire_probe_locked(probe);
5369 
5370 	mutex_unlock(&ftrace_lock);
5371 
5372 	/*
5373 	 * Note, there's a small window here that the func_hash->filter_hash
5374 	 * may be NULL or empty. Need to be careful when reading the loop.
5375 	 */
5376 	mutex_lock(&probe->ops.func_hash->regex_lock);
5377 
5378 	orig_hash = &probe->ops.func_hash->filter_hash;
5379 	old_hash = *orig_hash;
5380 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
5381 
5382 	if (!hash) {
5383 		ret = -ENOMEM;
5384 		goto out;
5385 	}
5386 
5387 	ret = ftrace_match_records(hash, glob, strlen(glob));
5388 
5389 	/* Nothing found? */
5390 	if (!ret)
5391 		ret = -EINVAL;
5392 
5393 	if (ret < 0)
5394 		goto out;
5395 
5396 	size = 1 << hash->size_bits;
5397 	for (i = 0; i < size; i++) {
5398 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5399 			if (ftrace_lookup_ip(old_hash, entry->ip))
5400 				continue;
5401 			/*
5402 			 * The caller might want to do something special
5403 			 * for each function we find. We call the callback
5404 			 * to give the caller an opportunity to do so.
5405 			 */
5406 			if (probe_ops->init) {
5407 				ret = probe_ops->init(probe_ops, tr,
5408 						      entry->ip, data,
5409 						      &probe->data);
5410 				if (ret < 0) {
5411 					if (probe_ops->free && count)
5412 						probe_ops->free(probe_ops, tr,
5413 								0, probe->data);
5414 					probe->data = NULL;
5415 					goto out;
5416 				}
5417 			}
5418 			count++;
5419 		}
5420 	}
5421 
5422 	mutex_lock(&ftrace_lock);
5423 
5424 	if (!count) {
5425 		/* Nothing was added? */
5426 		ret = -EINVAL;
5427 		goto out_unlock;
5428 	}
5429 
5430 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
5431 					      hash, 1);
5432 	if (ret < 0)
5433 		goto err_unlock;
5434 
5435 	/* One ref for each new function traced */
5436 	probe->ref += count;
5437 
5438 	if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED))
5439 		ret = ftrace_startup(&probe->ops, 0);
5440 
5441  out_unlock:
5442 	mutex_unlock(&ftrace_lock);
5443 
5444 	if (!ret)
5445 		ret = count;
5446  out:
5447 	mutex_unlock(&probe->ops.func_hash->regex_lock);
5448 	free_ftrace_hash(hash);
5449 
5450 	release_probe(probe);
5451 
5452 	return ret;
5453 
5454  err_unlock:
5455 	if (!probe_ops->free || !count)
5456 		goto out_unlock;
5457 
5458 	/* Failed to do the move, need to call the free functions */
5459 	for (i = 0; i < size; i++) {
5460 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5461 			if (ftrace_lookup_ip(old_hash, entry->ip))
5462 				continue;
5463 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
5464 		}
5465 	}
5466 	goto out_unlock;
5467 }
5468 
5469 int
5470 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr,
5471 				      struct ftrace_probe_ops *probe_ops)
5472 {
5473 	struct ftrace_func_probe *probe = NULL, *iter;
5474 	struct ftrace_ops_hash old_hash_ops;
5475 	struct ftrace_func_entry *entry;
5476 	struct ftrace_glob func_g;
5477 	struct ftrace_hash **orig_hash;
5478 	struct ftrace_hash *old_hash;
5479 	struct ftrace_hash *hash = NULL;
5480 	struct hlist_node *tmp;
5481 	struct hlist_head hhd;
5482 	char str[KSYM_SYMBOL_LEN];
5483 	int count = 0;
5484 	int i, ret = -ENODEV;
5485 	int size;
5486 
5487 	if (!glob || !strlen(glob) || !strcmp(glob, "*"))
5488 		func_g.search = NULL;
5489 	else {
5490 		int not;
5491 
5492 		func_g.type = filter_parse_regex(glob, strlen(glob),
5493 						 &func_g.search, &not);
5494 		func_g.len = strlen(func_g.search);
5495 
5496 		/* we do not support '!' for function probes */
5497 		if (WARN_ON(not))
5498 			return -EINVAL;
5499 	}
5500 
5501 	mutex_lock(&ftrace_lock);
5502 	/* Check if the probe_ops is already registered */
5503 	list_for_each_entry(iter, &tr->func_probes, list) {
5504 		if (iter->probe_ops == probe_ops) {
5505 			probe = iter;
5506 			break;
5507 		}
5508 	}
5509 	if (!probe)
5510 		goto err_unlock_ftrace;
5511 
5512 	ret = -EINVAL;
5513 	if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED))
5514 		goto err_unlock_ftrace;
5515 
5516 	acquire_probe_locked(probe);
5517 
5518 	mutex_unlock(&ftrace_lock);
5519 
5520 	mutex_lock(&probe->ops.func_hash->regex_lock);
5521 
5522 	orig_hash = &probe->ops.func_hash->filter_hash;
5523 	old_hash = *orig_hash;
5524 
5525 	if (ftrace_hash_empty(old_hash))
5526 		goto out_unlock;
5527 
5528 	old_hash_ops.filter_hash = old_hash;
5529 	/* Probes only have filters */
5530 	old_hash_ops.notrace_hash = NULL;
5531 
5532 	ret = -ENOMEM;
5533 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
5534 	if (!hash)
5535 		goto out_unlock;
5536 
5537 	INIT_HLIST_HEAD(&hhd);
5538 
5539 	size = 1 << hash->size_bits;
5540 	for (i = 0; i < size; i++) {
5541 		hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) {
5542 
5543 			if (func_g.search) {
5544 				kallsyms_lookup(entry->ip, NULL, NULL,
5545 						NULL, str);
5546 				if (!ftrace_match(str, &func_g))
5547 					continue;
5548 			}
5549 			count++;
5550 			remove_hash_entry(hash, entry);
5551 			hlist_add_head(&entry->hlist, &hhd);
5552 		}
5553 	}
5554 
5555 	/* Nothing found? */
5556 	if (!count) {
5557 		ret = -EINVAL;
5558 		goto out_unlock;
5559 	}
5560 
5561 	mutex_lock(&ftrace_lock);
5562 
5563 	WARN_ON(probe->ref < count);
5564 
5565 	probe->ref -= count;
5566 
5567 	if (ftrace_hash_empty(hash))
5568 		ftrace_shutdown(&probe->ops, 0);
5569 
5570 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
5571 					      hash, 1);
5572 
5573 	/* still need to update the function call sites */
5574 	if (ftrace_enabled && !ftrace_hash_empty(hash))
5575 		ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS,
5576 				       &old_hash_ops);
5577 	synchronize_rcu();
5578 
5579 	hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) {
5580 		hlist_del(&entry->hlist);
5581 		if (probe_ops->free)
5582 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
5583 		kfree(entry);
5584 	}
5585 	mutex_unlock(&ftrace_lock);
5586 
5587  out_unlock:
5588 	mutex_unlock(&probe->ops.func_hash->regex_lock);
5589 	free_ftrace_hash(hash);
5590 
5591 	release_probe(probe);
5592 
5593 	return ret;
5594 
5595  err_unlock_ftrace:
5596 	mutex_unlock(&ftrace_lock);
5597 	return ret;
5598 }
5599 
5600 void clear_ftrace_function_probes(struct trace_array *tr)
5601 {
5602 	struct ftrace_func_probe *probe, *n;
5603 
5604 	list_for_each_entry_safe(probe, n, &tr->func_probes, list)
5605 		unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops);
5606 }
5607 
5608 static LIST_HEAD(ftrace_commands);
5609 static DEFINE_MUTEX(ftrace_cmd_mutex);
5610 
5611 /*
5612  * Currently we only register ftrace commands from __init, so mark this
5613  * __init too.
5614  */
5615 __init int register_ftrace_command(struct ftrace_func_command *cmd)
5616 {
5617 	struct ftrace_func_command *p;
5618 	int ret = 0;
5619 
5620 	mutex_lock(&ftrace_cmd_mutex);
5621 	list_for_each_entry(p, &ftrace_commands, list) {
5622 		if (strcmp(cmd->name, p->name) == 0) {
5623 			ret = -EBUSY;
5624 			goto out_unlock;
5625 		}
5626 	}
5627 	list_add(&cmd->list, &ftrace_commands);
5628  out_unlock:
5629 	mutex_unlock(&ftrace_cmd_mutex);
5630 
5631 	return ret;
5632 }
5633 
5634 /*
5635  * Currently we only unregister ftrace commands from __init, so mark
5636  * this __init too.
5637  */
5638 __init int unregister_ftrace_command(struct ftrace_func_command *cmd)
5639 {
5640 	struct ftrace_func_command *p, *n;
5641 	int ret = -ENODEV;
5642 
5643 	mutex_lock(&ftrace_cmd_mutex);
5644 	list_for_each_entry_safe(p, n, &ftrace_commands, list) {
5645 		if (strcmp(cmd->name, p->name) == 0) {
5646 			ret = 0;
5647 			list_del_init(&p->list);
5648 			goto out_unlock;
5649 		}
5650 	}
5651  out_unlock:
5652 	mutex_unlock(&ftrace_cmd_mutex);
5653 
5654 	return ret;
5655 }
5656 
5657 static int ftrace_process_regex(struct ftrace_iterator *iter,
5658 				char *buff, int len, int enable)
5659 {
5660 	struct ftrace_hash *hash = iter->hash;
5661 	struct trace_array *tr = iter->ops->private;
5662 	char *func, *command, *next = buff;
5663 	struct ftrace_func_command *p;
5664 	int ret = -EINVAL;
5665 
5666 	func = strsep(&next, ":");
5667 
5668 	if (!next) {
5669 		ret = ftrace_match_records(hash, func, len);
5670 		if (!ret)
5671 			ret = -EINVAL;
5672 		if (ret < 0)
5673 			return ret;
5674 		return 0;
5675 	}
5676 
5677 	/* command found */
5678 
5679 	command = strsep(&next, ":");
5680 
5681 	mutex_lock(&ftrace_cmd_mutex);
5682 	list_for_each_entry(p, &ftrace_commands, list) {
5683 		if (strcmp(p->name, command) == 0) {
5684 			ret = p->func(tr, hash, func, command, next, enable);
5685 			goto out_unlock;
5686 		}
5687 	}
5688  out_unlock:
5689 	mutex_unlock(&ftrace_cmd_mutex);
5690 
5691 	return ret;
5692 }
5693 
5694 static ssize_t
5695 ftrace_regex_write(struct file *file, const char __user *ubuf,
5696 		   size_t cnt, loff_t *ppos, int enable)
5697 {
5698 	struct ftrace_iterator *iter;
5699 	struct trace_parser *parser;
5700 	ssize_t ret, read;
5701 
5702 	if (!cnt)
5703 		return 0;
5704 
5705 	if (file->f_mode & FMODE_READ) {
5706 		struct seq_file *m = file->private_data;
5707 		iter = m->private;
5708 	} else
5709 		iter = file->private_data;
5710 
5711 	if (unlikely(ftrace_disabled))
5712 		return -ENODEV;
5713 
5714 	/* iter->hash is a local copy, so we don't need regex_lock */
5715 
5716 	parser = &iter->parser;
5717 	read = trace_get_user(parser, ubuf, cnt, ppos);
5718 
5719 	if (read >= 0 && trace_parser_loaded(parser) &&
5720 	    !trace_parser_cont(parser)) {
5721 		ret = ftrace_process_regex(iter, parser->buffer,
5722 					   parser->idx, enable);
5723 		trace_parser_clear(parser);
5724 		if (ret < 0)
5725 			goto out;
5726 	}
5727 
5728 	ret = read;
5729  out:
5730 	return ret;
5731 }
5732 
5733 ssize_t
5734 ftrace_filter_write(struct file *file, const char __user *ubuf,
5735 		    size_t cnt, loff_t *ppos)
5736 {
5737 	return ftrace_regex_write(file, ubuf, cnt, ppos, 1);
5738 }
5739 
5740 ssize_t
5741 ftrace_notrace_write(struct file *file, const char __user *ubuf,
5742 		     size_t cnt, loff_t *ppos)
5743 {
5744 	return ftrace_regex_write(file, ubuf, cnt, ppos, 0);
5745 }
5746 
5747 static int
5748 __ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove)
5749 {
5750 	struct ftrace_func_entry *entry;
5751 
5752 	ip = ftrace_location(ip);
5753 	if (!ip)
5754 		return -EINVAL;
5755 
5756 	if (remove) {
5757 		entry = ftrace_lookup_ip(hash, ip);
5758 		if (!entry)
5759 			return -ENOENT;
5760 		free_hash_entry(hash, entry);
5761 		return 0;
5762 	}
5763 
5764 	entry = add_hash_entry(hash, ip);
5765 	return entry ? 0 :  -ENOMEM;
5766 }
5767 
5768 static int
5769 ftrace_match_addr(struct ftrace_hash *hash, unsigned long *ips,
5770 		  unsigned int cnt, int remove)
5771 {
5772 	unsigned int i;
5773 	int err;
5774 
5775 	for (i = 0; i < cnt; i++) {
5776 		err = __ftrace_match_addr(hash, ips[i], remove);
5777 		if (err) {
5778 			/*
5779 			 * This expects the @hash is a temporary hash and if this
5780 			 * fails the caller must free the @hash.
5781 			 */
5782 			return err;
5783 		}
5784 	}
5785 	return 0;
5786 }
5787 
5788 static int
5789 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len,
5790 		unsigned long *ips, unsigned int cnt,
5791 		int remove, int reset, int enable)
5792 {
5793 	struct ftrace_hash **orig_hash;
5794 	struct ftrace_hash *hash;
5795 	int ret;
5796 
5797 	if (unlikely(ftrace_disabled))
5798 		return -ENODEV;
5799 
5800 	mutex_lock(&ops->func_hash->regex_lock);
5801 
5802 	if (enable)
5803 		orig_hash = &ops->func_hash->filter_hash;
5804 	else
5805 		orig_hash = &ops->func_hash->notrace_hash;
5806 
5807 	if (reset)
5808 		hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
5809 	else
5810 		hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash);
5811 
5812 	if (!hash) {
5813 		ret = -ENOMEM;
5814 		goto out_regex_unlock;
5815 	}
5816 
5817 	if (buf && !ftrace_match_records(hash, buf, len)) {
5818 		ret = -EINVAL;
5819 		goto out_regex_unlock;
5820 	}
5821 	if (ips) {
5822 		ret = ftrace_match_addr(hash, ips, cnt, remove);
5823 		if (ret < 0)
5824 			goto out_regex_unlock;
5825 	}
5826 
5827 	mutex_lock(&ftrace_lock);
5828 	ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable);
5829 	mutex_unlock(&ftrace_lock);
5830 
5831  out_regex_unlock:
5832 	mutex_unlock(&ops->func_hash->regex_lock);
5833 
5834 	free_ftrace_hash(hash);
5835 	return ret;
5836 }
5837 
5838 static int
5839 ftrace_set_addr(struct ftrace_ops *ops, unsigned long *ips, unsigned int cnt,
5840 		int remove, int reset, int enable)
5841 {
5842 	return ftrace_set_hash(ops, NULL, 0, ips, cnt, remove, reset, enable);
5843 }
5844 
5845 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
5846 
5847 static int register_ftrace_function_nolock(struct ftrace_ops *ops);
5848 
5849 /*
5850  * If there are multiple ftrace_ops, use SAVE_REGS by default, so that direct
5851  * call will be jumped from ftrace_regs_caller. Only if the architecture does
5852  * not support ftrace_regs_caller but direct_call, use SAVE_ARGS so that it
5853  * jumps from ftrace_caller for multiple ftrace_ops.
5854  */
5855 #ifndef CONFIG_HAVE_DYNAMIC_FTRACE_WITH_REGS
5856 #define MULTI_FLAGS (FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_ARGS)
5857 #else
5858 #define MULTI_FLAGS (FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS)
5859 #endif
5860 
5861 static int check_direct_multi(struct ftrace_ops *ops)
5862 {
5863 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED))
5864 		return -EINVAL;
5865 	if ((ops->flags & MULTI_FLAGS) != MULTI_FLAGS)
5866 		return -EINVAL;
5867 	return 0;
5868 }
5869 
5870 static void remove_direct_functions_hash(struct ftrace_hash *hash, unsigned long addr)
5871 {
5872 	struct ftrace_func_entry *entry, *del;
5873 	int size, i;
5874 
5875 	size = 1 << hash->size_bits;
5876 	for (i = 0; i < size; i++) {
5877 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5878 			del = __ftrace_lookup_ip(direct_functions, entry->ip);
5879 			if (del && del->direct == addr) {
5880 				remove_hash_entry(direct_functions, del);
5881 				kfree(del);
5882 			}
5883 		}
5884 	}
5885 }
5886 
5887 static void register_ftrace_direct_cb(struct rcu_head *rhp)
5888 {
5889 	struct ftrace_hash *fhp = container_of(rhp, struct ftrace_hash, rcu);
5890 
5891 	free_ftrace_hash(fhp);
5892 }
5893 
5894 /**
5895  * register_ftrace_direct - Call a custom trampoline directly
5896  * for multiple functions registered in @ops
5897  * @ops: The address of the struct ftrace_ops object
5898  * @addr: The address of the trampoline to call at @ops functions
5899  *
5900  * This is used to connect a direct calls to @addr from the nop locations
5901  * of the functions registered in @ops (with by ftrace_set_filter_ip
5902  * function).
5903  *
5904  * The location that it calls (@addr) must be able to handle a direct call,
5905  * and save the parameters of the function being traced, and restore them
5906  * (or inject new ones if needed), before returning.
5907  *
5908  * Returns:
5909  *  0 on success
5910  *  -EINVAL  - The @ops object was already registered with this call or
5911  *             when there are no functions in @ops object.
5912  *  -EBUSY   - Another direct function is already attached (there can be only one)
5913  *  -ENODEV  - @ip does not point to a ftrace nop location (or not supported)
5914  *  -ENOMEM  - There was an allocation failure.
5915  */
5916 int register_ftrace_direct(struct ftrace_ops *ops, unsigned long addr)
5917 {
5918 	struct ftrace_hash *hash, *new_hash = NULL, *free_hash = NULL;
5919 	struct ftrace_func_entry *entry, *new;
5920 	int err = -EBUSY, size, i;
5921 
5922 	if (ops->func || ops->trampoline)
5923 		return -EINVAL;
5924 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED))
5925 		return -EINVAL;
5926 	if (ops->flags & FTRACE_OPS_FL_ENABLED)
5927 		return -EINVAL;
5928 
5929 	hash = ops->func_hash->filter_hash;
5930 	if (ftrace_hash_empty(hash))
5931 		return -EINVAL;
5932 
5933 	mutex_lock(&direct_mutex);
5934 
5935 	/* Make sure requested entries are not already registered.. */
5936 	size = 1 << hash->size_bits;
5937 	for (i = 0; i < size; i++) {
5938 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5939 			if (ftrace_find_rec_direct(entry->ip))
5940 				goto out_unlock;
5941 		}
5942 	}
5943 
5944 	err = -ENOMEM;
5945 
5946 	/* Make a copy hash to place the new and the old entries in */
5947 	size = hash->count + direct_functions->count;
5948 	if (size > 32)
5949 		size = 32;
5950 	new_hash = alloc_ftrace_hash(fls(size));
5951 	if (!new_hash)
5952 		goto out_unlock;
5953 
5954 	/* Now copy over the existing direct entries */
5955 	size = 1 << direct_functions->size_bits;
5956 	for (i = 0; i < size; i++) {
5957 		hlist_for_each_entry(entry, &direct_functions->buckets[i], hlist) {
5958 			new = add_hash_entry(new_hash, entry->ip);
5959 			if (!new)
5960 				goto out_unlock;
5961 			new->direct = entry->direct;
5962 		}
5963 	}
5964 
5965 	/* ... and add the new entries */
5966 	size = 1 << hash->size_bits;
5967 	for (i = 0; i < size; i++) {
5968 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5969 			new = add_hash_entry(new_hash, entry->ip);
5970 			if (!new)
5971 				goto out_unlock;
5972 			/* Update both the copy and the hash entry */
5973 			new->direct = addr;
5974 			entry->direct = addr;
5975 		}
5976 	}
5977 
5978 	free_hash = direct_functions;
5979 	rcu_assign_pointer(direct_functions, new_hash);
5980 	new_hash = NULL;
5981 
5982 	ops->func = call_direct_funcs;
5983 	ops->flags = MULTI_FLAGS;
5984 	ops->trampoline = FTRACE_REGS_ADDR;
5985 	ops->direct_call = addr;
5986 
5987 	err = register_ftrace_function_nolock(ops);
5988 
5989  out_unlock:
5990 	mutex_unlock(&direct_mutex);
5991 
5992 	if (free_hash && free_hash != EMPTY_HASH)
5993 		call_rcu_tasks(&free_hash->rcu, register_ftrace_direct_cb);
5994 
5995 	if (new_hash)
5996 		free_ftrace_hash(new_hash);
5997 
5998 	return err;
5999 }
6000 EXPORT_SYMBOL_GPL(register_ftrace_direct);
6001 
6002 /**
6003  * unregister_ftrace_direct - Remove calls to custom trampoline
6004  * previously registered by register_ftrace_direct for @ops object.
6005  * @ops: The address of the struct ftrace_ops object
6006  * @addr: The address of the direct function that is called by the @ops functions
6007  * @free_filters: Set to true to remove all filters for the ftrace_ops, false otherwise
6008  *
6009  * This is used to remove a direct calls to @addr from the nop locations
6010  * of the functions registered in @ops (with by ftrace_set_filter_ip
6011  * function).
6012  *
6013  * Returns:
6014  *  0 on success
6015  *  -EINVAL - The @ops object was not properly registered.
6016  */
6017 int unregister_ftrace_direct(struct ftrace_ops *ops, unsigned long addr,
6018 			     bool free_filters)
6019 {
6020 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
6021 	int err;
6022 
6023 	if (check_direct_multi(ops))
6024 		return -EINVAL;
6025 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
6026 		return -EINVAL;
6027 
6028 	mutex_lock(&direct_mutex);
6029 	err = unregister_ftrace_function(ops);
6030 	remove_direct_functions_hash(hash, addr);
6031 	mutex_unlock(&direct_mutex);
6032 
6033 	/* cleanup for possible another register call */
6034 	ops->func = NULL;
6035 	ops->trampoline = 0;
6036 
6037 	if (free_filters)
6038 		ftrace_free_filter(ops);
6039 	return err;
6040 }
6041 EXPORT_SYMBOL_GPL(unregister_ftrace_direct);
6042 
6043 static int
6044 __modify_ftrace_direct(struct ftrace_ops *ops, unsigned long addr)
6045 {
6046 	struct ftrace_hash *hash;
6047 	struct ftrace_func_entry *entry, *iter;
6048 	static struct ftrace_ops tmp_ops = {
6049 		.func		= ftrace_stub,
6050 		.flags		= FTRACE_OPS_FL_STUB,
6051 	};
6052 	int i, size;
6053 	int err;
6054 
6055 	lockdep_assert_held_once(&direct_mutex);
6056 
6057 	/* Enable the tmp_ops to have the same functions as the direct ops */
6058 	ftrace_ops_init(&tmp_ops);
6059 	tmp_ops.func_hash = ops->func_hash;
6060 	tmp_ops.direct_call = addr;
6061 
6062 	err = register_ftrace_function_nolock(&tmp_ops);
6063 	if (err)
6064 		return err;
6065 
6066 	/*
6067 	 * Now the ftrace_ops_list_func() is called to do the direct callers.
6068 	 * We can safely change the direct functions attached to each entry.
6069 	 */
6070 	mutex_lock(&ftrace_lock);
6071 
6072 	hash = ops->func_hash->filter_hash;
6073 	size = 1 << hash->size_bits;
6074 	for (i = 0; i < size; i++) {
6075 		hlist_for_each_entry(iter, &hash->buckets[i], hlist) {
6076 			entry = __ftrace_lookup_ip(direct_functions, iter->ip);
6077 			if (!entry)
6078 				continue;
6079 			entry->direct = addr;
6080 		}
6081 	}
6082 	/* Prevent store tearing if a trampoline concurrently accesses the value */
6083 	WRITE_ONCE(ops->direct_call, addr);
6084 
6085 	mutex_unlock(&ftrace_lock);
6086 
6087 	/* Removing the tmp_ops will add the updated direct callers to the functions */
6088 	unregister_ftrace_function(&tmp_ops);
6089 
6090 	return err;
6091 }
6092 
6093 /**
6094  * modify_ftrace_direct_nolock - Modify an existing direct 'multi' call
6095  * to call something else
6096  * @ops: The address of the struct ftrace_ops object
6097  * @addr: The address of the new trampoline to call at @ops functions
6098  *
6099  * This is used to unregister currently registered direct caller and
6100  * register new one @addr on functions registered in @ops object.
6101  *
6102  * Note there's window between ftrace_shutdown and ftrace_startup calls
6103  * where there will be no callbacks called.
6104  *
6105  * Caller should already have direct_mutex locked, so we don't lock
6106  * direct_mutex here.
6107  *
6108  * Returns: zero on success. Non zero on error, which includes:
6109  *  -EINVAL - The @ops object was not properly registered.
6110  */
6111 int modify_ftrace_direct_nolock(struct ftrace_ops *ops, unsigned long addr)
6112 {
6113 	if (check_direct_multi(ops))
6114 		return -EINVAL;
6115 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
6116 		return -EINVAL;
6117 
6118 	return __modify_ftrace_direct(ops, addr);
6119 }
6120 EXPORT_SYMBOL_GPL(modify_ftrace_direct_nolock);
6121 
6122 /**
6123  * modify_ftrace_direct - Modify an existing direct 'multi' call
6124  * to call something else
6125  * @ops: The address of the struct ftrace_ops object
6126  * @addr: The address of the new trampoline to call at @ops functions
6127  *
6128  * This is used to unregister currently registered direct caller and
6129  * register new one @addr on functions registered in @ops object.
6130  *
6131  * Note there's window between ftrace_shutdown and ftrace_startup calls
6132  * where there will be no callbacks called.
6133  *
6134  * Returns: zero on success. Non zero on error, which includes:
6135  *  -EINVAL - The @ops object was not properly registered.
6136  */
6137 int modify_ftrace_direct(struct ftrace_ops *ops, unsigned long addr)
6138 {
6139 	int err;
6140 
6141 	if (check_direct_multi(ops))
6142 		return -EINVAL;
6143 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
6144 		return -EINVAL;
6145 
6146 	mutex_lock(&direct_mutex);
6147 	err = __modify_ftrace_direct(ops, addr);
6148 	mutex_unlock(&direct_mutex);
6149 	return err;
6150 }
6151 EXPORT_SYMBOL_GPL(modify_ftrace_direct);
6152 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
6153 
6154 /**
6155  * ftrace_set_filter_ip - set a function to filter on in ftrace by address
6156  * @ops: the ops to set the filter with
6157  * @ip: the address to add to or remove from the filter.
6158  * @remove: non zero to remove the ip from the filter
6159  * @reset: non zero to reset all filters before applying this filter.
6160  *
6161  * Filters denote which functions should be enabled when tracing is enabled
6162  * If @ip is NULL, it fails to update filter.
6163  *
6164  * This can allocate memory which must be freed before @ops can be freed,
6165  * either by removing each filtered addr or by using
6166  * ftrace_free_filter(@ops).
6167  */
6168 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip,
6169 			 int remove, int reset)
6170 {
6171 	ftrace_ops_init(ops);
6172 	return ftrace_set_addr(ops, &ip, 1, remove, reset, 1);
6173 }
6174 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip);
6175 
6176 /**
6177  * ftrace_set_filter_ips - set functions to filter on in ftrace by addresses
6178  * @ops: the ops to set the filter with
6179  * @ips: the array of addresses to add to or remove from the filter.
6180  * @cnt: the number of addresses in @ips
6181  * @remove: non zero to remove ips from the filter
6182  * @reset: non zero to reset all filters before applying this filter.
6183  *
6184  * Filters denote which functions should be enabled when tracing is enabled
6185  * If @ips array or any ip specified within is NULL , it fails to update filter.
6186  *
6187  * This can allocate memory which must be freed before @ops can be freed,
6188  * either by removing each filtered addr or by using
6189  * ftrace_free_filter(@ops).
6190 */
6191 int ftrace_set_filter_ips(struct ftrace_ops *ops, unsigned long *ips,
6192 			  unsigned int cnt, int remove, int reset)
6193 {
6194 	ftrace_ops_init(ops);
6195 	return ftrace_set_addr(ops, ips, cnt, remove, reset, 1);
6196 }
6197 EXPORT_SYMBOL_GPL(ftrace_set_filter_ips);
6198 
6199 /**
6200  * ftrace_ops_set_global_filter - setup ops to use global filters
6201  * @ops: the ops which will use the global filters
6202  *
6203  * ftrace users who need global function trace filtering should call this.
6204  * It can set the global filter only if ops were not initialized before.
6205  */
6206 void ftrace_ops_set_global_filter(struct ftrace_ops *ops)
6207 {
6208 	if (ops->flags & FTRACE_OPS_FL_INITIALIZED)
6209 		return;
6210 
6211 	ftrace_ops_init(ops);
6212 	ops->func_hash = &global_ops.local_hash;
6213 }
6214 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter);
6215 
6216 static int
6217 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
6218 		 int reset, int enable)
6219 {
6220 	return ftrace_set_hash(ops, buf, len, NULL, 0, 0, reset, enable);
6221 }
6222 
6223 /**
6224  * ftrace_set_filter - set a function to filter on in ftrace
6225  * @ops: the ops to set the filter with
6226  * @buf: the string that holds the function filter text.
6227  * @len: the length of the string.
6228  * @reset: non-zero to reset all filters before applying this filter.
6229  *
6230  * Filters denote which functions should be enabled when tracing is enabled.
6231  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
6232  *
6233  * This can allocate memory which must be freed before @ops can be freed,
6234  * either by removing each filtered addr or by using
6235  * ftrace_free_filter(@ops).
6236  */
6237 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf,
6238 		       int len, int reset)
6239 {
6240 	ftrace_ops_init(ops);
6241 	return ftrace_set_regex(ops, buf, len, reset, 1);
6242 }
6243 EXPORT_SYMBOL_GPL(ftrace_set_filter);
6244 
6245 /**
6246  * ftrace_set_notrace - set a function to not trace in ftrace
6247  * @ops: the ops to set the notrace filter with
6248  * @buf: the string that holds the function notrace text.
6249  * @len: the length of the string.
6250  * @reset: non-zero to reset all filters before applying this filter.
6251  *
6252  * Notrace Filters denote which functions should not be enabled when tracing
6253  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
6254  * for tracing.
6255  *
6256  * This can allocate memory which must be freed before @ops can be freed,
6257  * either by removing each filtered addr or by using
6258  * ftrace_free_filter(@ops).
6259  */
6260 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf,
6261 			int len, int reset)
6262 {
6263 	ftrace_ops_init(ops);
6264 	return ftrace_set_regex(ops, buf, len, reset, 0);
6265 }
6266 EXPORT_SYMBOL_GPL(ftrace_set_notrace);
6267 /**
6268  * ftrace_set_global_filter - set a function to filter on with global tracers
6269  * @buf: the string that holds the function filter text.
6270  * @len: the length of the string.
6271  * @reset: non-zero to reset all filters before applying this filter.
6272  *
6273  * Filters denote which functions should be enabled when tracing is enabled.
6274  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
6275  */
6276 void ftrace_set_global_filter(unsigned char *buf, int len, int reset)
6277 {
6278 	ftrace_set_regex(&global_ops, buf, len, reset, 1);
6279 }
6280 EXPORT_SYMBOL_GPL(ftrace_set_global_filter);
6281 
6282 /**
6283  * ftrace_set_global_notrace - set a function to not trace with global tracers
6284  * @buf: the string that holds the function notrace text.
6285  * @len: the length of the string.
6286  * @reset: non-zero to reset all filters before applying this filter.
6287  *
6288  * Notrace Filters denote which functions should not be enabled when tracing
6289  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
6290  * for tracing.
6291  */
6292 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset)
6293 {
6294 	ftrace_set_regex(&global_ops, buf, len, reset, 0);
6295 }
6296 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace);
6297 
6298 /*
6299  * command line interface to allow users to set filters on boot up.
6300  */
6301 #define FTRACE_FILTER_SIZE		COMMAND_LINE_SIZE
6302 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
6303 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata;
6304 
6305 /* Used by function selftest to not test if filter is set */
6306 bool ftrace_filter_param __initdata;
6307 
6308 static int __init set_ftrace_notrace(char *str)
6309 {
6310 	ftrace_filter_param = true;
6311 	strscpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE);
6312 	return 1;
6313 }
6314 __setup("ftrace_notrace=", set_ftrace_notrace);
6315 
6316 static int __init set_ftrace_filter(char *str)
6317 {
6318 	ftrace_filter_param = true;
6319 	strscpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE);
6320 	return 1;
6321 }
6322 __setup("ftrace_filter=", set_ftrace_filter);
6323 
6324 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6325 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata;
6326 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
6327 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer);
6328 
6329 static int __init set_graph_function(char *str)
6330 {
6331 	strscpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE);
6332 	return 1;
6333 }
6334 __setup("ftrace_graph_filter=", set_graph_function);
6335 
6336 static int __init set_graph_notrace_function(char *str)
6337 {
6338 	strscpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE);
6339 	return 1;
6340 }
6341 __setup("ftrace_graph_notrace=", set_graph_notrace_function);
6342 
6343 static int __init set_graph_max_depth_function(char *str)
6344 {
6345 	if (!str || kstrtouint(str, 0, &fgraph_max_depth))
6346 		return 0;
6347 	return 1;
6348 }
6349 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function);
6350 
6351 static void __init set_ftrace_early_graph(char *buf, int enable)
6352 {
6353 	int ret;
6354 	char *func;
6355 	struct ftrace_hash *hash;
6356 
6357 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
6358 	if (MEM_FAIL(!hash, "Failed to allocate hash\n"))
6359 		return;
6360 
6361 	while (buf) {
6362 		func = strsep(&buf, ",");
6363 		/* we allow only one expression at a time */
6364 		ret = ftrace_graph_set_hash(hash, func);
6365 		if (ret)
6366 			printk(KERN_DEBUG "ftrace: function %s not "
6367 					  "traceable\n", func);
6368 	}
6369 
6370 	if (enable)
6371 		ftrace_graph_hash = hash;
6372 	else
6373 		ftrace_graph_notrace_hash = hash;
6374 }
6375 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6376 
6377 void __init
6378 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable)
6379 {
6380 	char *func;
6381 
6382 	ftrace_ops_init(ops);
6383 
6384 	while (buf) {
6385 		func = strsep(&buf, ",");
6386 		ftrace_set_regex(ops, func, strlen(func), 0, enable);
6387 	}
6388 }
6389 
6390 static void __init set_ftrace_early_filters(void)
6391 {
6392 	if (ftrace_filter_buf[0])
6393 		ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1);
6394 	if (ftrace_notrace_buf[0])
6395 		ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0);
6396 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6397 	if (ftrace_graph_buf[0])
6398 		set_ftrace_early_graph(ftrace_graph_buf, 1);
6399 	if (ftrace_graph_notrace_buf[0])
6400 		set_ftrace_early_graph(ftrace_graph_notrace_buf, 0);
6401 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6402 }
6403 
6404 int ftrace_regex_release(struct inode *inode, struct file *file)
6405 {
6406 	struct seq_file *m = (struct seq_file *)file->private_data;
6407 	struct ftrace_iterator *iter;
6408 	struct ftrace_hash **orig_hash;
6409 	struct trace_parser *parser;
6410 	int filter_hash;
6411 
6412 	if (file->f_mode & FMODE_READ) {
6413 		iter = m->private;
6414 		seq_release(inode, file);
6415 	} else
6416 		iter = file->private_data;
6417 
6418 	parser = &iter->parser;
6419 	if (trace_parser_loaded(parser)) {
6420 		int enable = !(iter->flags & FTRACE_ITER_NOTRACE);
6421 
6422 		ftrace_process_regex(iter, parser->buffer,
6423 				     parser->idx, enable);
6424 	}
6425 
6426 	trace_parser_put(parser);
6427 
6428 	mutex_lock(&iter->ops->func_hash->regex_lock);
6429 
6430 	if (file->f_mode & FMODE_WRITE) {
6431 		filter_hash = !!(iter->flags & FTRACE_ITER_FILTER);
6432 
6433 		if (filter_hash) {
6434 			orig_hash = &iter->ops->func_hash->filter_hash;
6435 			if (iter->tr) {
6436 				if (list_empty(&iter->tr->mod_trace))
6437 					iter->hash->flags &= ~FTRACE_HASH_FL_MOD;
6438 				else
6439 					iter->hash->flags |= FTRACE_HASH_FL_MOD;
6440 			}
6441 		} else
6442 			orig_hash = &iter->ops->func_hash->notrace_hash;
6443 
6444 		mutex_lock(&ftrace_lock);
6445 		ftrace_hash_move_and_update_ops(iter->ops, orig_hash,
6446 						      iter->hash, filter_hash);
6447 		mutex_unlock(&ftrace_lock);
6448 	} else {
6449 		/* For read only, the hash is the ops hash */
6450 		iter->hash = NULL;
6451 	}
6452 
6453 	mutex_unlock(&iter->ops->func_hash->regex_lock);
6454 	free_ftrace_hash(iter->hash);
6455 	if (iter->tr)
6456 		trace_array_put(iter->tr);
6457 	kfree(iter);
6458 
6459 	return 0;
6460 }
6461 
6462 static const struct file_operations ftrace_avail_fops = {
6463 	.open = ftrace_avail_open,
6464 	.read = seq_read,
6465 	.llseek = seq_lseek,
6466 	.release = seq_release_private,
6467 };
6468 
6469 static const struct file_operations ftrace_enabled_fops = {
6470 	.open = ftrace_enabled_open,
6471 	.read = seq_read,
6472 	.llseek = seq_lseek,
6473 	.release = seq_release_private,
6474 };
6475 
6476 static const struct file_operations ftrace_touched_fops = {
6477 	.open = ftrace_touched_open,
6478 	.read = seq_read,
6479 	.llseek = seq_lseek,
6480 	.release = seq_release_private,
6481 };
6482 
6483 static const struct file_operations ftrace_avail_addrs_fops = {
6484 	.open = ftrace_avail_addrs_open,
6485 	.read = seq_read,
6486 	.llseek = seq_lseek,
6487 	.release = seq_release_private,
6488 };
6489 
6490 static const struct file_operations ftrace_filter_fops = {
6491 	.open = ftrace_filter_open,
6492 	.read = seq_read,
6493 	.write = ftrace_filter_write,
6494 	.llseek = tracing_lseek,
6495 	.release = ftrace_regex_release,
6496 };
6497 
6498 static const struct file_operations ftrace_notrace_fops = {
6499 	.open = ftrace_notrace_open,
6500 	.read = seq_read,
6501 	.write = ftrace_notrace_write,
6502 	.llseek = tracing_lseek,
6503 	.release = ftrace_regex_release,
6504 };
6505 
6506 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6507 
6508 static DEFINE_MUTEX(graph_lock);
6509 
6510 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH;
6511 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH;
6512 
6513 enum graph_filter_type {
6514 	GRAPH_FILTER_NOTRACE	= 0,
6515 	GRAPH_FILTER_FUNCTION,
6516 };
6517 
6518 #define FTRACE_GRAPH_EMPTY	((void *)1)
6519 
6520 struct ftrace_graph_data {
6521 	struct ftrace_hash		*hash;
6522 	struct ftrace_func_entry	*entry;
6523 	int				idx;   /* for hash table iteration */
6524 	enum graph_filter_type		type;
6525 	struct ftrace_hash		*new_hash;
6526 	const struct seq_operations	*seq_ops;
6527 	struct trace_parser		parser;
6528 };
6529 
6530 static void *
6531 __g_next(struct seq_file *m, loff_t *pos)
6532 {
6533 	struct ftrace_graph_data *fgd = m->private;
6534 	struct ftrace_func_entry *entry = fgd->entry;
6535 	struct hlist_head *head;
6536 	int i, idx = fgd->idx;
6537 
6538 	if (*pos >= fgd->hash->count)
6539 		return NULL;
6540 
6541 	if (entry) {
6542 		hlist_for_each_entry_continue(entry, hlist) {
6543 			fgd->entry = entry;
6544 			return entry;
6545 		}
6546 
6547 		idx++;
6548 	}
6549 
6550 	for (i = idx; i < 1 << fgd->hash->size_bits; i++) {
6551 		head = &fgd->hash->buckets[i];
6552 		hlist_for_each_entry(entry, head, hlist) {
6553 			fgd->entry = entry;
6554 			fgd->idx = i;
6555 			return entry;
6556 		}
6557 	}
6558 	return NULL;
6559 }
6560 
6561 static void *
6562 g_next(struct seq_file *m, void *v, loff_t *pos)
6563 {
6564 	(*pos)++;
6565 	return __g_next(m, pos);
6566 }
6567 
6568 static void *g_start(struct seq_file *m, loff_t *pos)
6569 {
6570 	struct ftrace_graph_data *fgd = m->private;
6571 
6572 	mutex_lock(&graph_lock);
6573 
6574 	if (fgd->type == GRAPH_FILTER_FUNCTION)
6575 		fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
6576 					lockdep_is_held(&graph_lock));
6577 	else
6578 		fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
6579 					lockdep_is_held(&graph_lock));
6580 
6581 	/* Nothing, tell g_show to print all functions are enabled */
6582 	if (ftrace_hash_empty(fgd->hash) && !*pos)
6583 		return FTRACE_GRAPH_EMPTY;
6584 
6585 	fgd->idx = 0;
6586 	fgd->entry = NULL;
6587 	return __g_next(m, pos);
6588 }
6589 
6590 static void g_stop(struct seq_file *m, void *p)
6591 {
6592 	mutex_unlock(&graph_lock);
6593 }
6594 
6595 static int g_show(struct seq_file *m, void *v)
6596 {
6597 	struct ftrace_func_entry *entry = v;
6598 
6599 	if (!entry)
6600 		return 0;
6601 
6602 	if (entry == FTRACE_GRAPH_EMPTY) {
6603 		struct ftrace_graph_data *fgd = m->private;
6604 
6605 		if (fgd->type == GRAPH_FILTER_FUNCTION)
6606 			seq_puts(m, "#### all functions enabled ####\n");
6607 		else
6608 			seq_puts(m, "#### no functions disabled ####\n");
6609 		return 0;
6610 	}
6611 
6612 	seq_printf(m, "%ps\n", (void *)entry->ip);
6613 
6614 	return 0;
6615 }
6616 
6617 static const struct seq_operations ftrace_graph_seq_ops = {
6618 	.start = g_start,
6619 	.next = g_next,
6620 	.stop = g_stop,
6621 	.show = g_show,
6622 };
6623 
6624 static int
6625 __ftrace_graph_open(struct inode *inode, struct file *file,
6626 		    struct ftrace_graph_data *fgd)
6627 {
6628 	int ret;
6629 	struct ftrace_hash *new_hash = NULL;
6630 
6631 	ret = security_locked_down(LOCKDOWN_TRACEFS);
6632 	if (ret)
6633 		return ret;
6634 
6635 	if (file->f_mode & FMODE_WRITE) {
6636 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
6637 
6638 		if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX))
6639 			return -ENOMEM;
6640 
6641 		if (file->f_flags & O_TRUNC)
6642 			new_hash = alloc_ftrace_hash(size_bits);
6643 		else
6644 			new_hash = alloc_and_copy_ftrace_hash(size_bits,
6645 							      fgd->hash);
6646 		if (!new_hash) {
6647 			ret = -ENOMEM;
6648 			goto out;
6649 		}
6650 	}
6651 
6652 	if (file->f_mode & FMODE_READ) {
6653 		ret = seq_open(file, &ftrace_graph_seq_ops);
6654 		if (!ret) {
6655 			struct seq_file *m = file->private_data;
6656 			m->private = fgd;
6657 		} else {
6658 			/* Failed */
6659 			free_ftrace_hash(new_hash);
6660 			new_hash = NULL;
6661 		}
6662 	} else
6663 		file->private_data = fgd;
6664 
6665 out:
6666 	if (ret < 0 && file->f_mode & FMODE_WRITE)
6667 		trace_parser_put(&fgd->parser);
6668 
6669 	fgd->new_hash = new_hash;
6670 
6671 	/*
6672 	 * All uses of fgd->hash must be taken with the graph_lock
6673 	 * held. The graph_lock is going to be released, so force
6674 	 * fgd->hash to be reinitialized when it is taken again.
6675 	 */
6676 	fgd->hash = NULL;
6677 
6678 	return ret;
6679 }
6680 
6681 static int
6682 ftrace_graph_open(struct inode *inode, struct file *file)
6683 {
6684 	struct ftrace_graph_data *fgd;
6685 	int ret;
6686 
6687 	if (unlikely(ftrace_disabled))
6688 		return -ENODEV;
6689 
6690 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
6691 	if (fgd == NULL)
6692 		return -ENOMEM;
6693 
6694 	mutex_lock(&graph_lock);
6695 
6696 	fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
6697 					lockdep_is_held(&graph_lock));
6698 	fgd->type = GRAPH_FILTER_FUNCTION;
6699 	fgd->seq_ops = &ftrace_graph_seq_ops;
6700 
6701 	ret = __ftrace_graph_open(inode, file, fgd);
6702 	if (ret < 0)
6703 		kfree(fgd);
6704 
6705 	mutex_unlock(&graph_lock);
6706 	return ret;
6707 }
6708 
6709 static int
6710 ftrace_graph_notrace_open(struct inode *inode, struct file *file)
6711 {
6712 	struct ftrace_graph_data *fgd;
6713 	int ret;
6714 
6715 	if (unlikely(ftrace_disabled))
6716 		return -ENODEV;
6717 
6718 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
6719 	if (fgd == NULL)
6720 		return -ENOMEM;
6721 
6722 	mutex_lock(&graph_lock);
6723 
6724 	fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
6725 					lockdep_is_held(&graph_lock));
6726 	fgd->type = GRAPH_FILTER_NOTRACE;
6727 	fgd->seq_ops = &ftrace_graph_seq_ops;
6728 
6729 	ret = __ftrace_graph_open(inode, file, fgd);
6730 	if (ret < 0)
6731 		kfree(fgd);
6732 
6733 	mutex_unlock(&graph_lock);
6734 	return ret;
6735 }
6736 
6737 static int
6738 ftrace_graph_release(struct inode *inode, struct file *file)
6739 {
6740 	struct ftrace_graph_data *fgd;
6741 	struct ftrace_hash *old_hash, *new_hash;
6742 	struct trace_parser *parser;
6743 	int ret = 0;
6744 
6745 	if (file->f_mode & FMODE_READ) {
6746 		struct seq_file *m = file->private_data;
6747 
6748 		fgd = m->private;
6749 		seq_release(inode, file);
6750 	} else {
6751 		fgd = file->private_data;
6752 	}
6753 
6754 
6755 	if (file->f_mode & FMODE_WRITE) {
6756 
6757 		parser = &fgd->parser;
6758 
6759 		if (trace_parser_loaded((parser))) {
6760 			ret = ftrace_graph_set_hash(fgd->new_hash,
6761 						    parser->buffer);
6762 		}
6763 
6764 		trace_parser_put(parser);
6765 
6766 		new_hash = __ftrace_hash_move(fgd->new_hash);
6767 		if (!new_hash) {
6768 			ret = -ENOMEM;
6769 			goto out;
6770 		}
6771 
6772 		mutex_lock(&graph_lock);
6773 
6774 		if (fgd->type == GRAPH_FILTER_FUNCTION) {
6775 			old_hash = rcu_dereference_protected(ftrace_graph_hash,
6776 					lockdep_is_held(&graph_lock));
6777 			rcu_assign_pointer(ftrace_graph_hash, new_hash);
6778 		} else {
6779 			old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
6780 					lockdep_is_held(&graph_lock));
6781 			rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash);
6782 		}
6783 
6784 		mutex_unlock(&graph_lock);
6785 
6786 		/*
6787 		 * We need to do a hard force of sched synchronization.
6788 		 * This is because we use preempt_disable() to do RCU, but
6789 		 * the function tracers can be called where RCU is not watching
6790 		 * (like before user_exit()). We can not rely on the RCU
6791 		 * infrastructure to do the synchronization, thus we must do it
6792 		 * ourselves.
6793 		 */
6794 		if (old_hash != EMPTY_HASH)
6795 			synchronize_rcu_tasks_rude();
6796 
6797 		free_ftrace_hash(old_hash);
6798 	}
6799 
6800  out:
6801 	free_ftrace_hash(fgd->new_hash);
6802 	kfree(fgd);
6803 
6804 	return ret;
6805 }
6806 
6807 static int
6808 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer)
6809 {
6810 	struct ftrace_glob func_g;
6811 	struct dyn_ftrace *rec;
6812 	struct ftrace_page *pg;
6813 	struct ftrace_func_entry *entry;
6814 	int fail = 1;
6815 	int not;
6816 
6817 	/* decode regex */
6818 	func_g.type = filter_parse_regex(buffer, strlen(buffer),
6819 					 &func_g.search, &not);
6820 
6821 	func_g.len = strlen(func_g.search);
6822 
6823 	guard(mutex)(&ftrace_lock);
6824 
6825 	if (unlikely(ftrace_disabled))
6826 		return -ENODEV;
6827 
6828 	do_for_each_ftrace_rec(pg, rec) {
6829 
6830 		if (rec->flags & FTRACE_FL_DISABLED)
6831 			continue;
6832 
6833 		if (ftrace_match_record(rec, &func_g, NULL, 0)) {
6834 			entry = ftrace_lookup_ip(hash, rec->ip);
6835 
6836 			if (!not) {
6837 				fail = 0;
6838 
6839 				if (entry)
6840 					continue;
6841 				if (add_hash_entry(hash, rec->ip) == NULL)
6842 					return 0;
6843 			} else {
6844 				if (entry) {
6845 					free_hash_entry(hash, entry);
6846 					fail = 0;
6847 				}
6848 			}
6849 		}
6850 	} while_for_each_ftrace_rec();
6851 
6852 	return fail ? -EINVAL : 0;
6853 }
6854 
6855 static ssize_t
6856 ftrace_graph_write(struct file *file, const char __user *ubuf,
6857 		   size_t cnt, loff_t *ppos)
6858 {
6859 	ssize_t read, ret = 0;
6860 	struct ftrace_graph_data *fgd = file->private_data;
6861 	struct trace_parser *parser;
6862 
6863 	if (!cnt)
6864 		return 0;
6865 
6866 	/* Read mode uses seq functions */
6867 	if (file->f_mode & FMODE_READ) {
6868 		struct seq_file *m = file->private_data;
6869 		fgd = m->private;
6870 	}
6871 
6872 	parser = &fgd->parser;
6873 
6874 	read = trace_get_user(parser, ubuf, cnt, ppos);
6875 
6876 	if (read >= 0 && trace_parser_loaded(parser) &&
6877 	    !trace_parser_cont(parser)) {
6878 
6879 		ret = ftrace_graph_set_hash(fgd->new_hash,
6880 					    parser->buffer);
6881 		trace_parser_clear(parser);
6882 	}
6883 
6884 	if (!ret)
6885 		ret = read;
6886 
6887 	return ret;
6888 }
6889 
6890 static const struct file_operations ftrace_graph_fops = {
6891 	.open		= ftrace_graph_open,
6892 	.read		= seq_read,
6893 	.write		= ftrace_graph_write,
6894 	.llseek		= tracing_lseek,
6895 	.release	= ftrace_graph_release,
6896 };
6897 
6898 static const struct file_operations ftrace_graph_notrace_fops = {
6899 	.open		= ftrace_graph_notrace_open,
6900 	.read		= seq_read,
6901 	.write		= ftrace_graph_write,
6902 	.llseek		= tracing_lseek,
6903 	.release	= ftrace_graph_release,
6904 };
6905 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6906 
6907 void ftrace_create_filter_files(struct ftrace_ops *ops,
6908 				struct dentry *parent)
6909 {
6910 
6911 	trace_create_file("set_ftrace_filter", TRACE_MODE_WRITE, parent,
6912 			  ops, &ftrace_filter_fops);
6913 
6914 	trace_create_file("set_ftrace_notrace", TRACE_MODE_WRITE, parent,
6915 			  ops, &ftrace_notrace_fops);
6916 }
6917 
6918 /*
6919  * The name "destroy_filter_files" is really a misnomer. Although
6920  * in the future, it may actually delete the files, but this is
6921  * really intended to make sure the ops passed in are disabled
6922  * and that when this function returns, the caller is free to
6923  * free the ops.
6924  *
6925  * The "destroy" name is only to match the "create" name that this
6926  * should be paired with.
6927  */
6928 void ftrace_destroy_filter_files(struct ftrace_ops *ops)
6929 {
6930 	mutex_lock(&ftrace_lock);
6931 	if (ops->flags & FTRACE_OPS_FL_ENABLED)
6932 		ftrace_shutdown(ops, 0);
6933 	ops->flags |= FTRACE_OPS_FL_DELETED;
6934 	ftrace_free_filter(ops);
6935 	mutex_unlock(&ftrace_lock);
6936 }
6937 
6938 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer)
6939 {
6940 
6941 	trace_create_file("available_filter_functions", TRACE_MODE_READ,
6942 			d_tracer, NULL, &ftrace_avail_fops);
6943 
6944 	trace_create_file("available_filter_functions_addrs", TRACE_MODE_READ,
6945 			d_tracer, NULL, &ftrace_avail_addrs_fops);
6946 
6947 	trace_create_file("enabled_functions", TRACE_MODE_READ,
6948 			d_tracer, NULL, &ftrace_enabled_fops);
6949 
6950 	trace_create_file("touched_functions", TRACE_MODE_READ,
6951 			d_tracer, NULL, &ftrace_touched_fops);
6952 
6953 	ftrace_create_filter_files(&global_ops, d_tracer);
6954 
6955 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6956 	trace_create_file("set_graph_function", TRACE_MODE_WRITE, d_tracer,
6957 				    NULL,
6958 				    &ftrace_graph_fops);
6959 	trace_create_file("set_graph_notrace", TRACE_MODE_WRITE, d_tracer,
6960 				    NULL,
6961 				    &ftrace_graph_notrace_fops);
6962 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6963 
6964 	return 0;
6965 }
6966 
6967 static int ftrace_cmp_ips(const void *a, const void *b)
6968 {
6969 	const unsigned long *ipa = a;
6970 	const unsigned long *ipb = b;
6971 
6972 	if (*ipa > *ipb)
6973 		return 1;
6974 	if (*ipa < *ipb)
6975 		return -1;
6976 	return 0;
6977 }
6978 
6979 #ifdef CONFIG_FTRACE_SORT_STARTUP_TEST
6980 static void test_is_sorted(unsigned long *start, unsigned long count)
6981 {
6982 	int i;
6983 
6984 	for (i = 1; i < count; i++) {
6985 		if (WARN(start[i - 1] > start[i],
6986 			 "[%d] %pS at %lx is not sorted with %pS at %lx\n", i,
6987 			 (void *)start[i - 1], start[i - 1],
6988 			 (void *)start[i], start[i]))
6989 			break;
6990 	}
6991 	if (i == count)
6992 		pr_info("ftrace section at %px sorted properly\n", start);
6993 }
6994 #else
6995 static void test_is_sorted(unsigned long *start, unsigned long count)
6996 {
6997 }
6998 #endif
6999 
7000 static int ftrace_process_locs(struct module *mod,
7001 			       unsigned long *start,
7002 			       unsigned long *end)
7003 {
7004 	struct ftrace_page *pg_unuse = NULL;
7005 	struct ftrace_page *start_pg;
7006 	struct ftrace_page *pg;
7007 	struct dyn_ftrace *rec;
7008 	unsigned long skipped = 0;
7009 	unsigned long count;
7010 	unsigned long *p;
7011 	unsigned long addr;
7012 	unsigned long flags = 0; /* Shut up gcc */
7013 	int ret = -ENOMEM;
7014 
7015 	count = end - start;
7016 
7017 	if (!count)
7018 		return 0;
7019 
7020 	/*
7021 	 * Sorting mcount in vmlinux at build time depend on
7022 	 * CONFIG_BUILDTIME_MCOUNT_SORT, while mcount loc in
7023 	 * modules can not be sorted at build time.
7024 	 */
7025 	if (!IS_ENABLED(CONFIG_BUILDTIME_MCOUNT_SORT) || mod) {
7026 		sort(start, count, sizeof(*start),
7027 		     ftrace_cmp_ips, NULL);
7028 	} else {
7029 		test_is_sorted(start, count);
7030 	}
7031 
7032 	start_pg = ftrace_allocate_pages(count);
7033 	if (!start_pg)
7034 		return -ENOMEM;
7035 
7036 	mutex_lock(&ftrace_lock);
7037 
7038 	/*
7039 	 * Core and each module needs their own pages, as
7040 	 * modules will free them when they are removed.
7041 	 * Force a new page to be allocated for modules.
7042 	 */
7043 	if (!mod) {
7044 		WARN_ON(ftrace_pages || ftrace_pages_start);
7045 		/* First initialization */
7046 		ftrace_pages = ftrace_pages_start = start_pg;
7047 	} else {
7048 		if (!ftrace_pages)
7049 			goto out;
7050 
7051 		if (WARN_ON(ftrace_pages->next)) {
7052 			/* Hmm, we have free pages? */
7053 			while (ftrace_pages->next)
7054 				ftrace_pages = ftrace_pages->next;
7055 		}
7056 
7057 		ftrace_pages->next = start_pg;
7058 	}
7059 
7060 	p = start;
7061 	pg = start_pg;
7062 	while (p < end) {
7063 		unsigned long end_offset;
7064 		addr = ftrace_call_adjust(*p++);
7065 		/*
7066 		 * Some architecture linkers will pad between
7067 		 * the different mcount_loc sections of different
7068 		 * object files to satisfy alignments.
7069 		 * Skip any NULL pointers.
7070 		 */
7071 		if (!addr) {
7072 			skipped++;
7073 			continue;
7074 		}
7075 
7076 		end_offset = (pg->index+1) * sizeof(pg->records[0]);
7077 		if (end_offset > PAGE_SIZE << pg->order) {
7078 			/* We should have allocated enough */
7079 			if (WARN_ON(!pg->next))
7080 				break;
7081 			pg = pg->next;
7082 		}
7083 
7084 		rec = &pg->records[pg->index++];
7085 		rec->ip = addr;
7086 	}
7087 
7088 	if (pg->next) {
7089 		pg_unuse = pg->next;
7090 		pg->next = NULL;
7091 	}
7092 
7093 	/* Assign the last page to ftrace_pages */
7094 	ftrace_pages = pg;
7095 
7096 	/*
7097 	 * We only need to disable interrupts on start up
7098 	 * because we are modifying code that an interrupt
7099 	 * may execute, and the modification is not atomic.
7100 	 * But for modules, nothing runs the code we modify
7101 	 * until we are finished with it, and there's no
7102 	 * reason to cause large interrupt latencies while we do it.
7103 	 */
7104 	if (!mod)
7105 		local_irq_save(flags);
7106 	ftrace_update_code(mod, start_pg);
7107 	if (!mod)
7108 		local_irq_restore(flags);
7109 	ret = 0;
7110  out:
7111 	mutex_unlock(&ftrace_lock);
7112 
7113 	/* We should have used all pages unless we skipped some */
7114 	if (pg_unuse) {
7115 		WARN_ON(!skipped);
7116 		/* Need to synchronize with ftrace_location_range() */
7117 		synchronize_rcu();
7118 		ftrace_free_pages(pg_unuse);
7119 	}
7120 	return ret;
7121 }
7122 
7123 struct ftrace_mod_func {
7124 	struct list_head	list;
7125 	char			*name;
7126 	unsigned long		ip;
7127 	unsigned int		size;
7128 };
7129 
7130 struct ftrace_mod_map {
7131 	struct rcu_head		rcu;
7132 	struct list_head	list;
7133 	struct module		*mod;
7134 	unsigned long		start_addr;
7135 	unsigned long		end_addr;
7136 	struct list_head	funcs;
7137 	unsigned int		num_funcs;
7138 };
7139 
7140 static int ftrace_get_trampoline_kallsym(unsigned int symnum,
7141 					 unsigned long *value, char *type,
7142 					 char *name, char *module_name,
7143 					 int *exported)
7144 {
7145 	struct ftrace_ops *op;
7146 
7147 	list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) {
7148 		if (!op->trampoline || symnum--)
7149 			continue;
7150 		*value = op->trampoline;
7151 		*type = 't';
7152 		strscpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN);
7153 		strscpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN);
7154 		*exported = 0;
7155 		return 0;
7156 	}
7157 
7158 	return -ERANGE;
7159 }
7160 
7161 #if defined(CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS) || defined(CONFIG_MODULES)
7162 /*
7163  * Check if the current ops references the given ip.
7164  *
7165  * If the ops traces all functions, then it was already accounted for.
7166  * If the ops does not trace the current record function, skip it.
7167  * If the ops ignores the function via notrace filter, skip it.
7168  */
7169 static bool
7170 ops_references_ip(struct ftrace_ops *ops, unsigned long ip)
7171 {
7172 	/* If ops isn't enabled, ignore it */
7173 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
7174 		return false;
7175 
7176 	/* If ops traces all then it includes this function */
7177 	if (ops_traces_mod(ops))
7178 		return true;
7179 
7180 	/* The function must be in the filter */
7181 	if (!ftrace_hash_empty(ops->func_hash->filter_hash) &&
7182 	    !__ftrace_lookup_ip(ops->func_hash->filter_hash, ip))
7183 		return false;
7184 
7185 	/* If in notrace hash, we ignore it too */
7186 	if (ftrace_lookup_ip(ops->func_hash->notrace_hash, ip))
7187 		return false;
7188 
7189 	return true;
7190 }
7191 #endif
7192 
7193 #ifdef CONFIG_MODULES
7194 
7195 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next)
7196 
7197 static LIST_HEAD(ftrace_mod_maps);
7198 
7199 static int referenced_filters(struct dyn_ftrace *rec)
7200 {
7201 	struct ftrace_ops *ops;
7202 	int cnt = 0;
7203 
7204 	for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) {
7205 		if (ops_references_ip(ops, rec->ip)) {
7206 			if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT))
7207 				continue;
7208 			if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY))
7209 				continue;
7210 			cnt++;
7211 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
7212 				rec->flags |= FTRACE_FL_REGS;
7213 			if (cnt == 1 && ops->trampoline)
7214 				rec->flags |= FTRACE_FL_TRAMP;
7215 			else
7216 				rec->flags &= ~FTRACE_FL_TRAMP;
7217 		}
7218 	}
7219 
7220 	return cnt;
7221 }
7222 
7223 static void
7224 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash)
7225 {
7226 	struct ftrace_func_entry *entry;
7227 	struct dyn_ftrace *rec;
7228 	int i;
7229 
7230 	if (ftrace_hash_empty(hash))
7231 		return;
7232 
7233 	for (i = 0; i < pg->index; i++) {
7234 		rec = &pg->records[i];
7235 		entry = __ftrace_lookup_ip(hash, rec->ip);
7236 		/*
7237 		 * Do not allow this rec to match again.
7238 		 * Yeah, it may waste some memory, but will be removed
7239 		 * if/when the hash is modified again.
7240 		 */
7241 		if (entry)
7242 			entry->ip = 0;
7243 	}
7244 }
7245 
7246 /* Clear any records from hashes */
7247 static void clear_mod_from_hashes(struct ftrace_page *pg)
7248 {
7249 	struct trace_array *tr;
7250 
7251 	mutex_lock(&trace_types_lock);
7252 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
7253 		if (!tr->ops || !tr->ops->func_hash)
7254 			continue;
7255 		mutex_lock(&tr->ops->func_hash->regex_lock);
7256 		clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash);
7257 		clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash);
7258 		mutex_unlock(&tr->ops->func_hash->regex_lock);
7259 	}
7260 	mutex_unlock(&trace_types_lock);
7261 }
7262 
7263 static void ftrace_free_mod_map(struct rcu_head *rcu)
7264 {
7265 	struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu);
7266 	struct ftrace_mod_func *mod_func;
7267 	struct ftrace_mod_func *n;
7268 
7269 	/* All the contents of mod_map are now not visible to readers */
7270 	list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) {
7271 		kfree(mod_func->name);
7272 		list_del(&mod_func->list);
7273 		kfree(mod_func);
7274 	}
7275 
7276 	kfree(mod_map);
7277 }
7278 
7279 void ftrace_release_mod(struct module *mod)
7280 {
7281 	struct ftrace_mod_map *mod_map;
7282 	struct ftrace_mod_map *n;
7283 	struct dyn_ftrace *rec;
7284 	struct ftrace_page **last_pg;
7285 	struct ftrace_page *tmp_page = NULL;
7286 	struct ftrace_page *pg;
7287 
7288 	mutex_lock(&ftrace_lock);
7289 
7290 	if (ftrace_disabled)
7291 		goto out_unlock;
7292 
7293 	list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) {
7294 		if (mod_map->mod == mod) {
7295 			list_del_rcu(&mod_map->list);
7296 			call_rcu(&mod_map->rcu, ftrace_free_mod_map);
7297 			break;
7298 		}
7299 	}
7300 
7301 	/*
7302 	 * Each module has its own ftrace_pages, remove
7303 	 * them from the list.
7304 	 */
7305 	last_pg = &ftrace_pages_start;
7306 	for (pg = ftrace_pages_start; pg; pg = *last_pg) {
7307 		rec = &pg->records[0];
7308 		if (within_module(rec->ip, mod)) {
7309 			/*
7310 			 * As core pages are first, the first
7311 			 * page should never be a module page.
7312 			 */
7313 			if (WARN_ON(pg == ftrace_pages_start))
7314 				goto out_unlock;
7315 
7316 			/* Check if we are deleting the last page */
7317 			if (pg == ftrace_pages)
7318 				ftrace_pages = next_to_ftrace_page(last_pg);
7319 
7320 			ftrace_update_tot_cnt -= pg->index;
7321 			*last_pg = pg->next;
7322 
7323 			pg->next = tmp_page;
7324 			tmp_page = pg;
7325 		} else
7326 			last_pg = &pg->next;
7327 	}
7328  out_unlock:
7329 	mutex_unlock(&ftrace_lock);
7330 
7331 	/* Need to synchronize with ftrace_location_range() */
7332 	if (tmp_page)
7333 		synchronize_rcu();
7334 	for (pg = tmp_page; pg; pg = tmp_page) {
7335 
7336 		/* Needs to be called outside of ftrace_lock */
7337 		clear_mod_from_hashes(pg);
7338 
7339 		if (pg->records) {
7340 			free_pages((unsigned long)pg->records, pg->order);
7341 			ftrace_number_of_pages -= 1 << pg->order;
7342 		}
7343 		tmp_page = pg->next;
7344 		kfree(pg);
7345 		ftrace_number_of_groups--;
7346 	}
7347 }
7348 
7349 void ftrace_module_enable(struct module *mod)
7350 {
7351 	struct dyn_ftrace *rec;
7352 	struct ftrace_page *pg;
7353 
7354 	mutex_lock(&ftrace_lock);
7355 
7356 	if (ftrace_disabled)
7357 		goto out_unlock;
7358 
7359 	/*
7360 	 * If the tracing is enabled, go ahead and enable the record.
7361 	 *
7362 	 * The reason not to enable the record immediately is the
7363 	 * inherent check of ftrace_make_nop/ftrace_make_call for
7364 	 * correct previous instructions.  Making first the NOP
7365 	 * conversion puts the module to the correct state, thus
7366 	 * passing the ftrace_make_call check.
7367 	 *
7368 	 * We also delay this to after the module code already set the
7369 	 * text to read-only, as we now need to set it back to read-write
7370 	 * so that we can modify the text.
7371 	 */
7372 	if (ftrace_start_up)
7373 		ftrace_arch_code_modify_prepare();
7374 
7375 	do_for_each_ftrace_rec(pg, rec) {
7376 		int cnt;
7377 		/*
7378 		 * do_for_each_ftrace_rec() is a double loop.
7379 		 * module text shares the pg. If a record is
7380 		 * not part of this module, then skip this pg,
7381 		 * which the "break" will do.
7382 		 */
7383 		if (!within_module(rec->ip, mod))
7384 			break;
7385 
7386 		/* Weak functions should still be ignored */
7387 		if (!test_for_valid_rec(rec)) {
7388 			/* Clear all other flags. Should not be enabled anyway */
7389 			rec->flags = FTRACE_FL_DISABLED;
7390 			continue;
7391 		}
7392 
7393 		cnt = 0;
7394 
7395 		/*
7396 		 * When adding a module, we need to check if tracers are
7397 		 * currently enabled and if they are, and can trace this record,
7398 		 * we need to enable the module functions as well as update the
7399 		 * reference counts for those function records.
7400 		 */
7401 		if (ftrace_start_up)
7402 			cnt += referenced_filters(rec);
7403 
7404 		rec->flags &= ~FTRACE_FL_DISABLED;
7405 		rec->flags += cnt;
7406 
7407 		if (ftrace_start_up && cnt) {
7408 			int failed = __ftrace_replace_code(rec, 1);
7409 			if (failed) {
7410 				ftrace_bug(failed, rec);
7411 				goto out_loop;
7412 			}
7413 		}
7414 
7415 	} while_for_each_ftrace_rec();
7416 
7417  out_loop:
7418 	if (ftrace_start_up)
7419 		ftrace_arch_code_modify_post_process();
7420 
7421  out_unlock:
7422 	mutex_unlock(&ftrace_lock);
7423 
7424 	process_cached_mods(mod->name);
7425 }
7426 
7427 void ftrace_module_init(struct module *mod)
7428 {
7429 	int ret;
7430 
7431 	if (ftrace_disabled || !mod->num_ftrace_callsites)
7432 		return;
7433 
7434 	ret = ftrace_process_locs(mod, mod->ftrace_callsites,
7435 				  mod->ftrace_callsites + mod->num_ftrace_callsites);
7436 	if (ret)
7437 		pr_warn("ftrace: failed to allocate entries for module '%s' functions\n",
7438 			mod->name);
7439 }
7440 
7441 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
7442 				struct dyn_ftrace *rec)
7443 {
7444 	struct ftrace_mod_func *mod_func;
7445 	unsigned long symsize;
7446 	unsigned long offset;
7447 	char str[KSYM_SYMBOL_LEN];
7448 	char *modname;
7449 	const char *ret;
7450 
7451 	ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str);
7452 	if (!ret)
7453 		return;
7454 
7455 	mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL);
7456 	if (!mod_func)
7457 		return;
7458 
7459 	mod_func->name = kstrdup(str, GFP_KERNEL);
7460 	if (!mod_func->name) {
7461 		kfree(mod_func);
7462 		return;
7463 	}
7464 
7465 	mod_func->ip = rec->ip - offset;
7466 	mod_func->size = symsize;
7467 
7468 	mod_map->num_funcs++;
7469 
7470 	list_add_rcu(&mod_func->list, &mod_map->funcs);
7471 }
7472 
7473 static struct ftrace_mod_map *
7474 allocate_ftrace_mod_map(struct module *mod,
7475 			unsigned long start, unsigned long end)
7476 {
7477 	struct ftrace_mod_map *mod_map;
7478 
7479 	mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL);
7480 	if (!mod_map)
7481 		return NULL;
7482 
7483 	mod_map->mod = mod;
7484 	mod_map->start_addr = start;
7485 	mod_map->end_addr = end;
7486 	mod_map->num_funcs = 0;
7487 
7488 	INIT_LIST_HEAD_RCU(&mod_map->funcs);
7489 
7490 	list_add_rcu(&mod_map->list, &ftrace_mod_maps);
7491 
7492 	return mod_map;
7493 }
7494 
7495 static int
7496 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map,
7497 			   unsigned long addr, unsigned long *size,
7498 			   unsigned long *off, char *sym)
7499 {
7500 	struct ftrace_mod_func *found_func =  NULL;
7501 	struct ftrace_mod_func *mod_func;
7502 
7503 	list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
7504 		if (addr >= mod_func->ip &&
7505 		    addr < mod_func->ip + mod_func->size) {
7506 			found_func = mod_func;
7507 			break;
7508 		}
7509 	}
7510 
7511 	if (found_func) {
7512 		if (size)
7513 			*size = found_func->size;
7514 		if (off)
7515 			*off = addr - found_func->ip;
7516 		return strscpy(sym, found_func->name, KSYM_NAME_LEN);
7517 	}
7518 
7519 	return 0;
7520 }
7521 
7522 int
7523 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size,
7524 		   unsigned long *off, char **modname, char *sym)
7525 {
7526 	struct ftrace_mod_map *mod_map;
7527 	int ret = 0;
7528 
7529 	/* mod_map is freed via call_rcu() */
7530 	preempt_disable();
7531 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
7532 		ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym);
7533 		if (ret) {
7534 			if (modname)
7535 				*modname = mod_map->mod->name;
7536 			break;
7537 		}
7538 	}
7539 	preempt_enable();
7540 
7541 	return ret;
7542 }
7543 
7544 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
7545 			   char *type, char *name,
7546 			   char *module_name, int *exported)
7547 {
7548 	struct ftrace_mod_map *mod_map;
7549 	struct ftrace_mod_func *mod_func;
7550 	int ret;
7551 
7552 	preempt_disable();
7553 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
7554 
7555 		if (symnum >= mod_map->num_funcs) {
7556 			symnum -= mod_map->num_funcs;
7557 			continue;
7558 		}
7559 
7560 		list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
7561 			if (symnum > 1) {
7562 				symnum--;
7563 				continue;
7564 			}
7565 
7566 			*value = mod_func->ip;
7567 			*type = 'T';
7568 			strscpy(name, mod_func->name, KSYM_NAME_LEN);
7569 			strscpy(module_name, mod_map->mod->name, MODULE_NAME_LEN);
7570 			*exported = 1;
7571 			preempt_enable();
7572 			return 0;
7573 		}
7574 		WARN_ON(1);
7575 		break;
7576 	}
7577 	ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
7578 					    module_name, exported);
7579 	preempt_enable();
7580 	return ret;
7581 }
7582 
7583 #else
7584 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
7585 				struct dyn_ftrace *rec) { }
7586 static inline struct ftrace_mod_map *
7587 allocate_ftrace_mod_map(struct module *mod,
7588 			unsigned long start, unsigned long end)
7589 {
7590 	return NULL;
7591 }
7592 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
7593 			   char *type, char *name, char *module_name,
7594 			   int *exported)
7595 {
7596 	int ret;
7597 
7598 	preempt_disable();
7599 	ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
7600 					    module_name, exported);
7601 	preempt_enable();
7602 	return ret;
7603 }
7604 #endif /* CONFIG_MODULES */
7605 
7606 struct ftrace_init_func {
7607 	struct list_head list;
7608 	unsigned long ip;
7609 };
7610 
7611 /* Clear any init ips from hashes */
7612 static void
7613 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash)
7614 {
7615 	struct ftrace_func_entry *entry;
7616 
7617 	entry = ftrace_lookup_ip(hash, func->ip);
7618 	/*
7619 	 * Do not allow this rec to match again.
7620 	 * Yeah, it may waste some memory, but will be removed
7621 	 * if/when the hash is modified again.
7622 	 */
7623 	if (entry)
7624 		entry->ip = 0;
7625 }
7626 
7627 static void
7628 clear_func_from_hashes(struct ftrace_init_func *func)
7629 {
7630 	struct trace_array *tr;
7631 
7632 	mutex_lock(&trace_types_lock);
7633 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
7634 		if (!tr->ops || !tr->ops->func_hash)
7635 			continue;
7636 		mutex_lock(&tr->ops->func_hash->regex_lock);
7637 		clear_func_from_hash(func, tr->ops->func_hash->filter_hash);
7638 		clear_func_from_hash(func, tr->ops->func_hash->notrace_hash);
7639 		mutex_unlock(&tr->ops->func_hash->regex_lock);
7640 	}
7641 	mutex_unlock(&trace_types_lock);
7642 }
7643 
7644 static void add_to_clear_hash_list(struct list_head *clear_list,
7645 				   struct dyn_ftrace *rec)
7646 {
7647 	struct ftrace_init_func *func;
7648 
7649 	func = kmalloc(sizeof(*func), GFP_KERNEL);
7650 	if (!func) {
7651 		MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n");
7652 		return;
7653 	}
7654 
7655 	func->ip = rec->ip;
7656 	list_add(&func->list, clear_list);
7657 }
7658 
7659 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr)
7660 {
7661 	unsigned long start = (unsigned long)(start_ptr);
7662 	unsigned long end = (unsigned long)(end_ptr);
7663 	struct ftrace_page **last_pg = &ftrace_pages_start;
7664 	struct ftrace_page *tmp_page = NULL;
7665 	struct ftrace_page *pg;
7666 	struct dyn_ftrace *rec;
7667 	struct dyn_ftrace key;
7668 	struct ftrace_mod_map *mod_map = NULL;
7669 	struct ftrace_init_func *func, *func_next;
7670 	LIST_HEAD(clear_hash);
7671 
7672 	key.ip = start;
7673 	key.flags = end;	/* overload flags, as it is unsigned long */
7674 
7675 	mutex_lock(&ftrace_lock);
7676 
7677 	/*
7678 	 * If we are freeing module init memory, then check if
7679 	 * any tracer is active. If so, we need to save a mapping of
7680 	 * the module functions being freed with the address.
7681 	 */
7682 	if (mod && ftrace_ops_list != &ftrace_list_end)
7683 		mod_map = allocate_ftrace_mod_map(mod, start, end);
7684 
7685 	for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) {
7686 		if (end < pg->records[0].ip ||
7687 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
7688 			continue;
7689  again:
7690 		rec = bsearch(&key, pg->records, pg->index,
7691 			      sizeof(struct dyn_ftrace),
7692 			      ftrace_cmp_recs);
7693 		if (!rec)
7694 			continue;
7695 
7696 		/* rec will be cleared from hashes after ftrace_lock unlock */
7697 		add_to_clear_hash_list(&clear_hash, rec);
7698 
7699 		if (mod_map)
7700 			save_ftrace_mod_rec(mod_map, rec);
7701 
7702 		pg->index--;
7703 		ftrace_update_tot_cnt--;
7704 		if (!pg->index) {
7705 			*last_pg = pg->next;
7706 			pg->next = tmp_page;
7707 			tmp_page = pg;
7708 			pg = container_of(last_pg, struct ftrace_page, next);
7709 			if (!(*last_pg))
7710 				ftrace_pages = pg;
7711 			continue;
7712 		}
7713 		memmove(rec, rec + 1,
7714 			(pg->index - (rec - pg->records)) * sizeof(*rec));
7715 		/* More than one function may be in this block */
7716 		goto again;
7717 	}
7718 	mutex_unlock(&ftrace_lock);
7719 
7720 	list_for_each_entry_safe(func, func_next, &clear_hash, list) {
7721 		clear_func_from_hashes(func);
7722 		kfree(func);
7723 	}
7724 	/* Need to synchronize with ftrace_location_range() */
7725 	if (tmp_page) {
7726 		synchronize_rcu();
7727 		ftrace_free_pages(tmp_page);
7728 	}
7729 }
7730 
7731 void __init ftrace_free_init_mem(void)
7732 {
7733 	void *start = (void *)(&__init_begin);
7734 	void *end = (void *)(&__init_end);
7735 
7736 	ftrace_boot_snapshot();
7737 
7738 	ftrace_free_mem(NULL, start, end);
7739 }
7740 
7741 int __init __weak ftrace_dyn_arch_init(void)
7742 {
7743 	return 0;
7744 }
7745 
7746 void __init ftrace_init(void)
7747 {
7748 	extern unsigned long __start_mcount_loc[];
7749 	extern unsigned long __stop_mcount_loc[];
7750 	unsigned long count, flags;
7751 	int ret;
7752 
7753 	local_irq_save(flags);
7754 	ret = ftrace_dyn_arch_init();
7755 	local_irq_restore(flags);
7756 	if (ret)
7757 		goto failed;
7758 
7759 	count = __stop_mcount_loc - __start_mcount_loc;
7760 	if (!count) {
7761 		pr_info("ftrace: No functions to be traced?\n");
7762 		goto failed;
7763 	}
7764 
7765 	pr_info("ftrace: allocating %ld entries in %ld pages\n",
7766 		count, DIV_ROUND_UP(count, ENTRIES_PER_PAGE));
7767 
7768 	ret = ftrace_process_locs(NULL,
7769 				  __start_mcount_loc,
7770 				  __stop_mcount_loc);
7771 	if (ret) {
7772 		pr_warn("ftrace: failed to allocate entries for functions\n");
7773 		goto failed;
7774 	}
7775 
7776 	pr_info("ftrace: allocated %ld pages with %ld groups\n",
7777 		ftrace_number_of_pages, ftrace_number_of_groups);
7778 
7779 	last_ftrace_enabled = ftrace_enabled = 1;
7780 
7781 	set_ftrace_early_filters();
7782 
7783 	return;
7784  failed:
7785 	ftrace_disabled = 1;
7786 }
7787 
7788 /* Do nothing if arch does not support this */
7789 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops)
7790 {
7791 }
7792 
7793 static void ftrace_update_trampoline(struct ftrace_ops *ops)
7794 {
7795 	unsigned long trampoline = ops->trampoline;
7796 
7797 	arch_ftrace_update_trampoline(ops);
7798 	if (ops->trampoline && ops->trampoline != trampoline &&
7799 	    (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) {
7800 		/* Add to kallsyms before the perf events */
7801 		ftrace_add_trampoline_to_kallsyms(ops);
7802 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
7803 				   ops->trampoline, ops->trampoline_size, false,
7804 				   FTRACE_TRAMPOLINE_SYM);
7805 		/*
7806 		 * Record the perf text poke event after the ksymbol register
7807 		 * event.
7808 		 */
7809 		perf_event_text_poke((void *)ops->trampoline, NULL, 0,
7810 				     (void *)ops->trampoline,
7811 				     ops->trampoline_size);
7812 	}
7813 }
7814 
7815 void ftrace_init_trace_array(struct trace_array *tr)
7816 {
7817 	INIT_LIST_HEAD(&tr->func_probes);
7818 	INIT_LIST_HEAD(&tr->mod_trace);
7819 	INIT_LIST_HEAD(&tr->mod_notrace);
7820 }
7821 #else
7822 
7823 struct ftrace_ops global_ops = {
7824 	.func			= ftrace_stub,
7825 	.flags			= FTRACE_OPS_FL_INITIALIZED |
7826 				  FTRACE_OPS_FL_PID,
7827 };
7828 
7829 static int __init ftrace_nodyn_init(void)
7830 {
7831 	ftrace_enabled = 1;
7832 	return 0;
7833 }
7834 core_initcall(ftrace_nodyn_init);
7835 
7836 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; }
7837 static inline void ftrace_startup_all(int command) { }
7838 
7839 static void ftrace_update_trampoline(struct ftrace_ops *ops)
7840 {
7841 }
7842 
7843 #endif /* CONFIG_DYNAMIC_FTRACE */
7844 
7845 __init void ftrace_init_global_array_ops(struct trace_array *tr)
7846 {
7847 	tr->ops = &global_ops;
7848 	tr->ops->private = tr;
7849 	ftrace_init_trace_array(tr);
7850 	init_array_fgraph_ops(tr, tr->ops);
7851 }
7852 
7853 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func)
7854 {
7855 	/* If we filter on pids, update to use the pid function */
7856 	if (tr->flags & TRACE_ARRAY_FL_GLOBAL) {
7857 		if (WARN_ON(tr->ops->func != ftrace_stub))
7858 			printk("ftrace ops had %pS for function\n",
7859 			       tr->ops->func);
7860 	}
7861 	tr->ops->func = func;
7862 	tr->ops->private = tr;
7863 }
7864 
7865 void ftrace_reset_array_ops(struct trace_array *tr)
7866 {
7867 	tr->ops->func = ftrace_stub;
7868 }
7869 
7870 static nokprobe_inline void
7871 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
7872 		       struct ftrace_ops *ignored, struct ftrace_regs *fregs)
7873 {
7874 	struct pt_regs *regs = ftrace_get_regs(fregs);
7875 	struct ftrace_ops *op;
7876 	int bit;
7877 
7878 	/*
7879 	 * The ftrace_test_and_set_recursion() will disable preemption,
7880 	 * which is required since some of the ops may be dynamically
7881 	 * allocated, they must be freed after a synchronize_rcu().
7882 	 */
7883 	bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START);
7884 	if (bit < 0)
7885 		return;
7886 
7887 	do_for_each_ftrace_op(op, ftrace_ops_list) {
7888 		/* Stub functions don't need to be called nor tested */
7889 		if (op->flags & FTRACE_OPS_FL_STUB)
7890 			continue;
7891 		/*
7892 		 * Check the following for each ops before calling their func:
7893 		 *  if RCU flag is set, then rcu_is_watching() must be true
7894 		 *  Otherwise test if the ip matches the ops filter
7895 		 *
7896 		 * If any of the above fails then the op->func() is not executed.
7897 		 */
7898 		if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) &&
7899 		    ftrace_ops_test(op, ip, regs)) {
7900 			if (FTRACE_WARN_ON(!op->func)) {
7901 				pr_warn("op=%p %pS\n", op, op);
7902 				goto out;
7903 			}
7904 			op->func(ip, parent_ip, op, fregs);
7905 		}
7906 	} while_for_each_ftrace_op(op);
7907 out:
7908 	trace_clear_recursion(bit);
7909 }
7910 
7911 /*
7912  * Some archs only support passing ip and parent_ip. Even though
7913  * the list function ignores the op parameter, we do not want any
7914  * C side effects, where a function is called without the caller
7915  * sending a third parameter.
7916  * Archs are to support both the regs and ftrace_ops at the same time.
7917  * If they support ftrace_ops, it is assumed they support regs.
7918  * If call backs want to use regs, they must either check for regs
7919  * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS.
7920  * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved.
7921  * An architecture can pass partial regs with ftrace_ops and still
7922  * set the ARCH_SUPPORTS_FTRACE_OPS.
7923  *
7924  * In vmlinux.lds.h, ftrace_ops_list_func() is defined to be
7925  * arch_ftrace_ops_list_func.
7926  */
7927 #if ARCH_SUPPORTS_FTRACE_OPS
7928 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
7929 			       struct ftrace_ops *op, struct ftrace_regs *fregs)
7930 {
7931 	kmsan_unpoison_memory(fregs, ftrace_regs_size());
7932 	__ftrace_ops_list_func(ip, parent_ip, NULL, fregs);
7933 }
7934 #else
7935 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip)
7936 {
7937 	__ftrace_ops_list_func(ip, parent_ip, NULL, NULL);
7938 }
7939 #endif
7940 NOKPROBE_SYMBOL(arch_ftrace_ops_list_func);
7941 
7942 /*
7943  * If there's only one function registered but it does not support
7944  * recursion, needs RCU protection, then this function will be called
7945  * by the mcount trampoline.
7946  */
7947 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip,
7948 				   struct ftrace_ops *op, struct ftrace_regs *fregs)
7949 {
7950 	int bit;
7951 
7952 	bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START);
7953 	if (bit < 0)
7954 		return;
7955 
7956 	if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching())
7957 		op->func(ip, parent_ip, op, fregs);
7958 
7959 	trace_clear_recursion(bit);
7960 }
7961 NOKPROBE_SYMBOL(ftrace_ops_assist_func);
7962 
7963 /**
7964  * ftrace_ops_get_func - get the function a trampoline should call
7965  * @ops: the ops to get the function for
7966  *
7967  * Normally the mcount trampoline will call the ops->func, but there
7968  * are times that it should not. For example, if the ops does not
7969  * have its own recursion protection, then it should call the
7970  * ftrace_ops_assist_func() instead.
7971  *
7972  * Returns: the function that the trampoline should call for @ops.
7973  */
7974 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops)
7975 {
7976 	/*
7977 	 * If the function does not handle recursion or needs to be RCU safe,
7978 	 * then we need to call the assist handler.
7979 	 */
7980 	if (ops->flags & (FTRACE_OPS_FL_RECURSION |
7981 			  FTRACE_OPS_FL_RCU))
7982 		return ftrace_ops_assist_func;
7983 
7984 	return ops->func;
7985 }
7986 
7987 static void
7988 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt,
7989 				     struct task_struct *prev,
7990 				     struct task_struct *next,
7991 				     unsigned int prev_state)
7992 {
7993 	struct trace_array *tr = data;
7994 	struct trace_pid_list *pid_list;
7995 	struct trace_pid_list *no_pid_list;
7996 
7997 	pid_list = rcu_dereference_sched(tr->function_pids);
7998 	no_pid_list = rcu_dereference_sched(tr->function_no_pids);
7999 
8000 	if (trace_ignore_this_task(pid_list, no_pid_list, next))
8001 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
8002 			       FTRACE_PID_IGNORE);
8003 	else
8004 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
8005 			       next->pid);
8006 }
8007 
8008 static void
8009 ftrace_pid_follow_sched_process_fork(void *data,
8010 				     struct task_struct *self,
8011 				     struct task_struct *task)
8012 {
8013 	struct trace_pid_list *pid_list;
8014 	struct trace_array *tr = data;
8015 
8016 	pid_list = rcu_dereference_sched(tr->function_pids);
8017 	trace_filter_add_remove_task(pid_list, self, task);
8018 
8019 	pid_list = rcu_dereference_sched(tr->function_no_pids);
8020 	trace_filter_add_remove_task(pid_list, self, task);
8021 }
8022 
8023 static void
8024 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task)
8025 {
8026 	struct trace_pid_list *pid_list;
8027 	struct trace_array *tr = data;
8028 
8029 	pid_list = rcu_dereference_sched(tr->function_pids);
8030 	trace_filter_add_remove_task(pid_list, NULL, task);
8031 
8032 	pid_list = rcu_dereference_sched(tr->function_no_pids);
8033 	trace_filter_add_remove_task(pid_list, NULL, task);
8034 }
8035 
8036 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable)
8037 {
8038 	if (enable) {
8039 		register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
8040 						  tr);
8041 		register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
8042 						  tr);
8043 	} else {
8044 		unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
8045 						    tr);
8046 		unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
8047 						    tr);
8048 	}
8049 }
8050 
8051 static void clear_ftrace_pids(struct trace_array *tr, int type)
8052 {
8053 	struct trace_pid_list *pid_list;
8054 	struct trace_pid_list *no_pid_list;
8055 	int cpu;
8056 
8057 	pid_list = rcu_dereference_protected(tr->function_pids,
8058 					     lockdep_is_held(&ftrace_lock));
8059 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
8060 						lockdep_is_held(&ftrace_lock));
8061 
8062 	/* Make sure there's something to do */
8063 	if (!pid_type_enabled(type, pid_list, no_pid_list))
8064 		return;
8065 
8066 	/* See if the pids still need to be checked after this */
8067 	if (!still_need_pid_events(type, pid_list, no_pid_list)) {
8068 		unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
8069 		for_each_possible_cpu(cpu)
8070 			per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE;
8071 	}
8072 
8073 	if (type & TRACE_PIDS)
8074 		rcu_assign_pointer(tr->function_pids, NULL);
8075 
8076 	if (type & TRACE_NO_PIDS)
8077 		rcu_assign_pointer(tr->function_no_pids, NULL);
8078 
8079 	/* Wait till all users are no longer using pid filtering */
8080 	synchronize_rcu();
8081 
8082 	if ((type & TRACE_PIDS) && pid_list)
8083 		trace_pid_list_free(pid_list);
8084 
8085 	if ((type & TRACE_NO_PIDS) && no_pid_list)
8086 		trace_pid_list_free(no_pid_list);
8087 }
8088 
8089 void ftrace_clear_pids(struct trace_array *tr)
8090 {
8091 	mutex_lock(&ftrace_lock);
8092 
8093 	clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS);
8094 
8095 	mutex_unlock(&ftrace_lock);
8096 }
8097 
8098 static void ftrace_pid_reset(struct trace_array *tr, int type)
8099 {
8100 	mutex_lock(&ftrace_lock);
8101 	clear_ftrace_pids(tr, type);
8102 
8103 	ftrace_update_pid_func();
8104 	ftrace_startup_all(0);
8105 
8106 	mutex_unlock(&ftrace_lock);
8107 }
8108 
8109 /* Greater than any max PID */
8110 #define FTRACE_NO_PIDS		(void *)(PID_MAX_LIMIT + 1)
8111 
8112 static void *fpid_start(struct seq_file *m, loff_t *pos)
8113 	__acquires(RCU)
8114 {
8115 	struct trace_pid_list *pid_list;
8116 	struct trace_array *tr = m->private;
8117 
8118 	mutex_lock(&ftrace_lock);
8119 	rcu_read_lock_sched();
8120 
8121 	pid_list = rcu_dereference_sched(tr->function_pids);
8122 
8123 	if (!pid_list)
8124 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
8125 
8126 	return trace_pid_start(pid_list, pos);
8127 }
8128 
8129 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos)
8130 {
8131 	struct trace_array *tr = m->private;
8132 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids);
8133 
8134 	if (v == FTRACE_NO_PIDS) {
8135 		(*pos)++;
8136 		return NULL;
8137 	}
8138 	return trace_pid_next(pid_list, v, pos);
8139 }
8140 
8141 static void fpid_stop(struct seq_file *m, void *p)
8142 	__releases(RCU)
8143 {
8144 	rcu_read_unlock_sched();
8145 	mutex_unlock(&ftrace_lock);
8146 }
8147 
8148 static int fpid_show(struct seq_file *m, void *v)
8149 {
8150 	if (v == FTRACE_NO_PIDS) {
8151 		seq_puts(m, "no pid\n");
8152 		return 0;
8153 	}
8154 
8155 	return trace_pid_show(m, v);
8156 }
8157 
8158 static const struct seq_operations ftrace_pid_sops = {
8159 	.start = fpid_start,
8160 	.next = fpid_next,
8161 	.stop = fpid_stop,
8162 	.show = fpid_show,
8163 };
8164 
8165 static void *fnpid_start(struct seq_file *m, loff_t *pos)
8166 	__acquires(RCU)
8167 {
8168 	struct trace_pid_list *pid_list;
8169 	struct trace_array *tr = m->private;
8170 
8171 	mutex_lock(&ftrace_lock);
8172 	rcu_read_lock_sched();
8173 
8174 	pid_list = rcu_dereference_sched(tr->function_no_pids);
8175 
8176 	if (!pid_list)
8177 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
8178 
8179 	return trace_pid_start(pid_list, pos);
8180 }
8181 
8182 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos)
8183 {
8184 	struct trace_array *tr = m->private;
8185 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids);
8186 
8187 	if (v == FTRACE_NO_PIDS) {
8188 		(*pos)++;
8189 		return NULL;
8190 	}
8191 	return trace_pid_next(pid_list, v, pos);
8192 }
8193 
8194 static const struct seq_operations ftrace_no_pid_sops = {
8195 	.start = fnpid_start,
8196 	.next = fnpid_next,
8197 	.stop = fpid_stop,
8198 	.show = fpid_show,
8199 };
8200 
8201 static int pid_open(struct inode *inode, struct file *file, int type)
8202 {
8203 	const struct seq_operations *seq_ops;
8204 	struct trace_array *tr = inode->i_private;
8205 	struct seq_file *m;
8206 	int ret = 0;
8207 
8208 	ret = tracing_check_open_get_tr(tr);
8209 	if (ret)
8210 		return ret;
8211 
8212 	if ((file->f_mode & FMODE_WRITE) &&
8213 	    (file->f_flags & O_TRUNC))
8214 		ftrace_pid_reset(tr, type);
8215 
8216 	switch (type) {
8217 	case TRACE_PIDS:
8218 		seq_ops = &ftrace_pid_sops;
8219 		break;
8220 	case TRACE_NO_PIDS:
8221 		seq_ops = &ftrace_no_pid_sops;
8222 		break;
8223 	default:
8224 		trace_array_put(tr);
8225 		WARN_ON_ONCE(1);
8226 		return -EINVAL;
8227 	}
8228 
8229 	ret = seq_open(file, seq_ops);
8230 	if (ret < 0) {
8231 		trace_array_put(tr);
8232 	} else {
8233 		m = file->private_data;
8234 		/* copy tr over to seq ops */
8235 		m->private = tr;
8236 	}
8237 
8238 	return ret;
8239 }
8240 
8241 static int
8242 ftrace_pid_open(struct inode *inode, struct file *file)
8243 {
8244 	return pid_open(inode, file, TRACE_PIDS);
8245 }
8246 
8247 static int
8248 ftrace_no_pid_open(struct inode *inode, struct file *file)
8249 {
8250 	return pid_open(inode, file, TRACE_NO_PIDS);
8251 }
8252 
8253 static void ignore_task_cpu(void *data)
8254 {
8255 	struct trace_array *tr = data;
8256 	struct trace_pid_list *pid_list;
8257 	struct trace_pid_list *no_pid_list;
8258 
8259 	/*
8260 	 * This function is called by on_each_cpu() while the
8261 	 * event_mutex is held.
8262 	 */
8263 	pid_list = rcu_dereference_protected(tr->function_pids,
8264 					     mutex_is_locked(&ftrace_lock));
8265 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
8266 						mutex_is_locked(&ftrace_lock));
8267 
8268 	if (trace_ignore_this_task(pid_list, no_pid_list, current))
8269 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
8270 			       FTRACE_PID_IGNORE);
8271 	else
8272 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
8273 			       current->pid);
8274 }
8275 
8276 static ssize_t
8277 pid_write(struct file *filp, const char __user *ubuf,
8278 	  size_t cnt, loff_t *ppos, int type)
8279 {
8280 	struct seq_file *m = filp->private_data;
8281 	struct trace_array *tr = m->private;
8282 	struct trace_pid_list *filtered_pids;
8283 	struct trace_pid_list *other_pids;
8284 	struct trace_pid_list *pid_list;
8285 	ssize_t ret;
8286 
8287 	if (!cnt)
8288 		return 0;
8289 
8290 	mutex_lock(&ftrace_lock);
8291 
8292 	switch (type) {
8293 	case TRACE_PIDS:
8294 		filtered_pids = rcu_dereference_protected(tr->function_pids,
8295 					     lockdep_is_held(&ftrace_lock));
8296 		other_pids = rcu_dereference_protected(tr->function_no_pids,
8297 					     lockdep_is_held(&ftrace_lock));
8298 		break;
8299 	case TRACE_NO_PIDS:
8300 		filtered_pids = rcu_dereference_protected(tr->function_no_pids,
8301 					     lockdep_is_held(&ftrace_lock));
8302 		other_pids = rcu_dereference_protected(tr->function_pids,
8303 					     lockdep_is_held(&ftrace_lock));
8304 		break;
8305 	default:
8306 		ret = -EINVAL;
8307 		WARN_ON_ONCE(1);
8308 		goto out;
8309 	}
8310 
8311 	ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt);
8312 	if (ret < 0)
8313 		goto out;
8314 
8315 	switch (type) {
8316 	case TRACE_PIDS:
8317 		rcu_assign_pointer(tr->function_pids, pid_list);
8318 		break;
8319 	case TRACE_NO_PIDS:
8320 		rcu_assign_pointer(tr->function_no_pids, pid_list);
8321 		break;
8322 	}
8323 
8324 
8325 	if (filtered_pids) {
8326 		synchronize_rcu();
8327 		trace_pid_list_free(filtered_pids);
8328 	} else if (pid_list && !other_pids) {
8329 		/* Register a probe to set whether to ignore the tracing of a task */
8330 		register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
8331 	}
8332 
8333 	/*
8334 	 * Ignoring of pids is done at task switch. But we have to
8335 	 * check for those tasks that are currently running.
8336 	 * Always do this in case a pid was appended or removed.
8337 	 */
8338 	on_each_cpu(ignore_task_cpu, tr, 1);
8339 
8340 	ftrace_update_pid_func();
8341 	ftrace_startup_all(0);
8342  out:
8343 	mutex_unlock(&ftrace_lock);
8344 
8345 	if (ret > 0)
8346 		*ppos += ret;
8347 
8348 	return ret;
8349 }
8350 
8351 static ssize_t
8352 ftrace_pid_write(struct file *filp, const char __user *ubuf,
8353 		 size_t cnt, loff_t *ppos)
8354 {
8355 	return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS);
8356 }
8357 
8358 static ssize_t
8359 ftrace_no_pid_write(struct file *filp, const char __user *ubuf,
8360 		    size_t cnt, loff_t *ppos)
8361 {
8362 	return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS);
8363 }
8364 
8365 static int
8366 ftrace_pid_release(struct inode *inode, struct file *file)
8367 {
8368 	struct trace_array *tr = inode->i_private;
8369 
8370 	trace_array_put(tr);
8371 
8372 	return seq_release(inode, file);
8373 }
8374 
8375 static const struct file_operations ftrace_pid_fops = {
8376 	.open		= ftrace_pid_open,
8377 	.write		= ftrace_pid_write,
8378 	.read		= seq_read,
8379 	.llseek		= tracing_lseek,
8380 	.release	= ftrace_pid_release,
8381 };
8382 
8383 static const struct file_operations ftrace_no_pid_fops = {
8384 	.open		= ftrace_no_pid_open,
8385 	.write		= ftrace_no_pid_write,
8386 	.read		= seq_read,
8387 	.llseek		= tracing_lseek,
8388 	.release	= ftrace_pid_release,
8389 };
8390 
8391 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer)
8392 {
8393 	trace_create_file("set_ftrace_pid", TRACE_MODE_WRITE, d_tracer,
8394 			    tr, &ftrace_pid_fops);
8395 	trace_create_file("set_ftrace_notrace_pid", TRACE_MODE_WRITE,
8396 			  d_tracer, tr, &ftrace_no_pid_fops);
8397 }
8398 
8399 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr,
8400 					 struct dentry *d_tracer)
8401 {
8402 	/* Only the top level directory has the dyn_tracefs and profile */
8403 	WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL));
8404 
8405 	ftrace_init_dyn_tracefs(d_tracer);
8406 	ftrace_profile_tracefs(d_tracer);
8407 }
8408 
8409 /**
8410  * ftrace_kill - kill ftrace
8411  *
8412  * This function should be used by panic code. It stops ftrace
8413  * but in a not so nice way. If you need to simply kill ftrace
8414  * from a non-atomic section, use ftrace_kill.
8415  */
8416 void ftrace_kill(void)
8417 {
8418 	ftrace_disabled = 1;
8419 	ftrace_enabled = 0;
8420 	ftrace_trace_function = ftrace_stub;
8421 	kprobe_ftrace_kill();
8422 }
8423 
8424 /**
8425  * ftrace_is_dead - Test if ftrace is dead or not.
8426  *
8427  * Returns: 1 if ftrace is "dead", zero otherwise.
8428  */
8429 int ftrace_is_dead(void)
8430 {
8431 	return ftrace_disabled;
8432 }
8433 
8434 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
8435 /*
8436  * When registering ftrace_ops with IPMODIFY, it is necessary to make sure
8437  * it doesn't conflict with any direct ftrace_ops. If there is existing
8438  * direct ftrace_ops on a kernel function being patched, call
8439  * FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER on it to enable sharing.
8440  *
8441  * @ops:     ftrace_ops being registered.
8442  *
8443  * Returns:
8444  *         0 on success;
8445  *         Negative on failure.
8446  */
8447 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops)
8448 {
8449 	struct ftrace_func_entry *entry;
8450 	struct ftrace_hash *hash;
8451 	struct ftrace_ops *op;
8452 	int size, i, ret;
8453 
8454 	lockdep_assert_held_once(&direct_mutex);
8455 
8456 	if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
8457 		return 0;
8458 
8459 	hash = ops->func_hash->filter_hash;
8460 	size = 1 << hash->size_bits;
8461 	for (i = 0; i < size; i++) {
8462 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
8463 			unsigned long ip = entry->ip;
8464 			bool found_op = false;
8465 
8466 			mutex_lock(&ftrace_lock);
8467 			do_for_each_ftrace_op(op, ftrace_ops_list) {
8468 				if (!(op->flags & FTRACE_OPS_FL_DIRECT))
8469 					continue;
8470 				if (ops_references_ip(op, ip)) {
8471 					found_op = true;
8472 					break;
8473 				}
8474 			} while_for_each_ftrace_op(op);
8475 			mutex_unlock(&ftrace_lock);
8476 
8477 			if (found_op) {
8478 				if (!op->ops_func)
8479 					return -EBUSY;
8480 
8481 				ret = op->ops_func(op, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER);
8482 				if (ret)
8483 					return ret;
8484 			}
8485 		}
8486 	}
8487 
8488 	return 0;
8489 }
8490 
8491 /*
8492  * Similar to prepare_direct_functions_for_ipmodify, clean up after ops
8493  * with IPMODIFY is unregistered. The cleanup is optional for most DIRECT
8494  * ops.
8495  */
8496 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops)
8497 {
8498 	struct ftrace_func_entry *entry;
8499 	struct ftrace_hash *hash;
8500 	struct ftrace_ops *op;
8501 	int size, i;
8502 
8503 	if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
8504 		return;
8505 
8506 	mutex_lock(&direct_mutex);
8507 
8508 	hash = ops->func_hash->filter_hash;
8509 	size = 1 << hash->size_bits;
8510 	for (i = 0; i < size; i++) {
8511 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
8512 			unsigned long ip = entry->ip;
8513 			bool found_op = false;
8514 
8515 			mutex_lock(&ftrace_lock);
8516 			do_for_each_ftrace_op(op, ftrace_ops_list) {
8517 				if (!(op->flags & FTRACE_OPS_FL_DIRECT))
8518 					continue;
8519 				if (ops_references_ip(op, ip)) {
8520 					found_op = true;
8521 					break;
8522 				}
8523 			} while_for_each_ftrace_op(op);
8524 			mutex_unlock(&ftrace_lock);
8525 
8526 			/* The cleanup is optional, ignore any errors */
8527 			if (found_op && op->ops_func)
8528 				op->ops_func(op, FTRACE_OPS_CMD_DISABLE_SHARE_IPMODIFY_PEER);
8529 		}
8530 	}
8531 	mutex_unlock(&direct_mutex);
8532 }
8533 
8534 #define lock_direct_mutex()	mutex_lock(&direct_mutex)
8535 #define unlock_direct_mutex()	mutex_unlock(&direct_mutex)
8536 
8537 #else  /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
8538 
8539 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops)
8540 {
8541 	return 0;
8542 }
8543 
8544 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops)
8545 {
8546 }
8547 
8548 #define lock_direct_mutex()	do { } while (0)
8549 #define unlock_direct_mutex()	do { } while (0)
8550 
8551 #endif  /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
8552 
8553 /*
8554  * Similar to register_ftrace_function, except we don't lock direct_mutex.
8555  */
8556 static int register_ftrace_function_nolock(struct ftrace_ops *ops)
8557 {
8558 	int ret;
8559 
8560 	ftrace_ops_init(ops);
8561 
8562 	mutex_lock(&ftrace_lock);
8563 
8564 	ret = ftrace_startup(ops, 0);
8565 
8566 	mutex_unlock(&ftrace_lock);
8567 
8568 	return ret;
8569 }
8570 
8571 /**
8572  * register_ftrace_function - register a function for profiling
8573  * @ops:	ops structure that holds the function for profiling.
8574  *
8575  * Register a function to be called by all functions in the
8576  * kernel.
8577  *
8578  * Note: @ops->func and all the functions it calls must be labeled
8579  *       with "notrace", otherwise it will go into a
8580  *       recursive loop.
8581  */
8582 int register_ftrace_function(struct ftrace_ops *ops)
8583 {
8584 	int ret;
8585 
8586 	lock_direct_mutex();
8587 	ret = prepare_direct_functions_for_ipmodify(ops);
8588 	if (ret < 0)
8589 		goto out_unlock;
8590 
8591 	ret = register_ftrace_function_nolock(ops);
8592 
8593 out_unlock:
8594 	unlock_direct_mutex();
8595 	return ret;
8596 }
8597 EXPORT_SYMBOL_GPL(register_ftrace_function);
8598 
8599 /**
8600  * unregister_ftrace_function - unregister a function for profiling.
8601  * @ops:	ops structure that holds the function to unregister
8602  *
8603  * Unregister a function that was added to be called by ftrace profiling.
8604  */
8605 int unregister_ftrace_function(struct ftrace_ops *ops)
8606 {
8607 	int ret;
8608 
8609 	mutex_lock(&ftrace_lock);
8610 	ret = ftrace_shutdown(ops, 0);
8611 	mutex_unlock(&ftrace_lock);
8612 
8613 	cleanup_direct_functions_after_ipmodify(ops);
8614 	return ret;
8615 }
8616 EXPORT_SYMBOL_GPL(unregister_ftrace_function);
8617 
8618 static int symbols_cmp(const void *a, const void *b)
8619 {
8620 	const char **str_a = (const char **) a;
8621 	const char **str_b = (const char **) b;
8622 
8623 	return strcmp(*str_a, *str_b);
8624 }
8625 
8626 struct kallsyms_data {
8627 	unsigned long *addrs;
8628 	const char **syms;
8629 	size_t cnt;
8630 	size_t found;
8631 };
8632 
8633 /* This function gets called for all kernel and module symbols
8634  * and returns 1 in case we resolved all the requested symbols,
8635  * 0 otherwise.
8636  */
8637 static int kallsyms_callback(void *data, const char *name, unsigned long addr)
8638 {
8639 	struct kallsyms_data *args = data;
8640 	const char **sym;
8641 	int idx;
8642 
8643 	sym = bsearch(&name, args->syms, args->cnt, sizeof(*args->syms), symbols_cmp);
8644 	if (!sym)
8645 		return 0;
8646 
8647 	idx = sym - args->syms;
8648 	if (args->addrs[idx])
8649 		return 0;
8650 
8651 	if (!ftrace_location(addr))
8652 		return 0;
8653 
8654 	args->addrs[idx] = addr;
8655 	args->found++;
8656 	return args->found == args->cnt ? 1 : 0;
8657 }
8658 
8659 /**
8660  * ftrace_lookup_symbols - Lookup addresses for array of symbols
8661  *
8662  * @sorted_syms: array of symbols pointers symbols to resolve,
8663  * must be alphabetically sorted
8664  * @cnt: number of symbols/addresses in @syms/@addrs arrays
8665  * @addrs: array for storing resulting addresses
8666  *
8667  * This function looks up addresses for array of symbols provided in
8668  * @syms array (must be alphabetically sorted) and stores them in
8669  * @addrs array, which needs to be big enough to store at least @cnt
8670  * addresses.
8671  *
8672  * Returns: 0 if all provided symbols are found, -ESRCH otherwise.
8673  */
8674 int ftrace_lookup_symbols(const char **sorted_syms, size_t cnt, unsigned long *addrs)
8675 {
8676 	struct kallsyms_data args;
8677 	int found_all;
8678 
8679 	memset(addrs, 0, sizeof(*addrs) * cnt);
8680 	args.addrs = addrs;
8681 	args.syms = sorted_syms;
8682 	args.cnt = cnt;
8683 	args.found = 0;
8684 
8685 	found_all = kallsyms_on_each_symbol(kallsyms_callback, &args);
8686 	if (found_all)
8687 		return 0;
8688 	found_all = module_kallsyms_on_each_symbol(NULL, kallsyms_callback, &args);
8689 	return found_all ? 0 : -ESRCH;
8690 }
8691 
8692 #ifdef CONFIG_SYSCTL
8693 
8694 #ifdef CONFIG_DYNAMIC_FTRACE
8695 static void ftrace_startup_sysctl(void)
8696 {
8697 	int command;
8698 
8699 	if (unlikely(ftrace_disabled))
8700 		return;
8701 
8702 	/* Force update next time */
8703 	saved_ftrace_func = NULL;
8704 	/* ftrace_start_up is true if we want ftrace running */
8705 	if (ftrace_start_up) {
8706 		command = FTRACE_UPDATE_CALLS;
8707 		if (ftrace_graph_active)
8708 			command |= FTRACE_START_FUNC_RET;
8709 		ftrace_startup_enable(command);
8710 	}
8711 }
8712 
8713 static void ftrace_shutdown_sysctl(void)
8714 {
8715 	int command;
8716 
8717 	if (unlikely(ftrace_disabled))
8718 		return;
8719 
8720 	/* ftrace_start_up is true if ftrace is running */
8721 	if (ftrace_start_up) {
8722 		command = FTRACE_DISABLE_CALLS;
8723 		if (ftrace_graph_active)
8724 			command |= FTRACE_STOP_FUNC_RET;
8725 		ftrace_run_update_code(command);
8726 	}
8727 }
8728 #else
8729 # define ftrace_startup_sysctl()       do { } while (0)
8730 # define ftrace_shutdown_sysctl()      do { } while (0)
8731 #endif /* CONFIG_DYNAMIC_FTRACE */
8732 
8733 static bool is_permanent_ops_registered(void)
8734 {
8735 	struct ftrace_ops *op;
8736 
8737 	do_for_each_ftrace_op(op, ftrace_ops_list) {
8738 		if (op->flags & FTRACE_OPS_FL_PERMANENT)
8739 			return true;
8740 	} while_for_each_ftrace_op(op);
8741 
8742 	return false;
8743 }
8744 
8745 static int
8746 ftrace_enable_sysctl(const struct ctl_table *table, int write,
8747 		     void *buffer, size_t *lenp, loff_t *ppos)
8748 {
8749 	int ret = -ENODEV;
8750 
8751 	mutex_lock(&ftrace_lock);
8752 
8753 	if (unlikely(ftrace_disabled))
8754 		goto out;
8755 
8756 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8757 
8758 	if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled))
8759 		goto out;
8760 
8761 	if (ftrace_enabled) {
8762 
8763 		/* we are starting ftrace again */
8764 		if (rcu_dereference_protected(ftrace_ops_list,
8765 			lockdep_is_held(&ftrace_lock)) != &ftrace_list_end)
8766 			update_ftrace_function();
8767 
8768 		ftrace_startup_sysctl();
8769 
8770 	} else {
8771 		if (is_permanent_ops_registered()) {
8772 			ftrace_enabled = true;
8773 			ret = -EBUSY;
8774 			goto out;
8775 		}
8776 
8777 		/* stopping ftrace calls (just send to ftrace_stub) */
8778 		ftrace_trace_function = ftrace_stub;
8779 
8780 		ftrace_shutdown_sysctl();
8781 	}
8782 
8783 	last_ftrace_enabled = !!ftrace_enabled;
8784  out:
8785 	mutex_unlock(&ftrace_lock);
8786 	return ret;
8787 }
8788 
8789 static struct ctl_table ftrace_sysctls[] = {
8790 	{
8791 		.procname       = "ftrace_enabled",
8792 		.data           = &ftrace_enabled,
8793 		.maxlen         = sizeof(int),
8794 		.mode           = 0644,
8795 		.proc_handler   = ftrace_enable_sysctl,
8796 	},
8797 };
8798 
8799 static int __init ftrace_sysctl_init(void)
8800 {
8801 	register_sysctl_init("kernel", ftrace_sysctls);
8802 	return 0;
8803 }
8804 late_initcall(ftrace_sysctl_init);
8805 #endif
8806