xref: /linux/kernel/trace/ftrace.c (revision 160321b2602ff8e42ea77a09f2e3f1b35e3acfaf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Infrastructure for profiling code inserted by 'gcc -pg'.
4  *
5  * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
6  * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com>
7  *
8  * Originally ported from the -rt patch by:
9  *   Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com>
10  *
11  * Based on code in the latency_tracer, that is:
12  *
13  *  Copyright (C) 2004-2006 Ingo Molnar
14  *  Copyright (C) 2004 Nadia Yvette Chambers
15  */
16 
17 #include <linux/stop_machine.h>
18 #include <linux/clocksource.h>
19 #include <linux/sched/task.h>
20 #include <linux/kallsyms.h>
21 #include <linux/security.h>
22 #include <linux/seq_file.h>
23 #include <linux/tracefs.h>
24 #include <linux/hardirq.h>
25 #include <linux/kthread.h>
26 #include <linux/uaccess.h>
27 #include <linux/bsearch.h>
28 #include <linux/module.h>
29 #include <linux/ftrace.h>
30 #include <linux/sysctl.h>
31 #include <linux/slab.h>
32 #include <linux/ctype.h>
33 #include <linux/sort.h>
34 #include <linux/list.h>
35 #include <linux/hash.h>
36 #include <linux/rcupdate.h>
37 #include <linux/kprobes.h>
38 
39 #include <trace/events/sched.h>
40 
41 #include <asm/sections.h>
42 #include <asm/setup.h>
43 
44 #include "ftrace_internal.h"
45 #include "trace_output.h"
46 #include "trace_stat.h"
47 
48 #define FTRACE_WARN_ON(cond)			\
49 	({					\
50 		int ___r = cond;		\
51 		if (WARN_ON(___r))		\
52 			ftrace_kill();		\
53 		___r;				\
54 	})
55 
56 #define FTRACE_WARN_ON_ONCE(cond)		\
57 	({					\
58 		int ___r = cond;		\
59 		if (WARN_ON_ONCE(___r))		\
60 			ftrace_kill();		\
61 		___r;				\
62 	})
63 
64 /* hash bits for specific function selection */
65 #define FTRACE_HASH_DEFAULT_BITS 10
66 #define FTRACE_HASH_MAX_BITS 12
67 
68 #ifdef CONFIG_DYNAMIC_FTRACE
69 #define INIT_OPS_HASH(opsname)	\
70 	.func_hash		= &opsname.local_hash,			\
71 	.local_hash.regex_lock	= __MUTEX_INITIALIZER(opsname.local_hash.regex_lock),
72 #else
73 #define INIT_OPS_HASH(opsname)
74 #endif
75 
76 enum {
77 	FTRACE_MODIFY_ENABLE_FL		= (1 << 0),
78 	FTRACE_MODIFY_MAY_SLEEP_FL	= (1 << 1),
79 };
80 
81 struct ftrace_ops ftrace_list_end __read_mostly = {
82 	.func		= ftrace_stub,
83 	.flags		= FTRACE_OPS_FL_STUB,
84 	INIT_OPS_HASH(ftrace_list_end)
85 };
86 
87 /* ftrace_enabled is a method to turn ftrace on or off */
88 int ftrace_enabled __read_mostly;
89 static int last_ftrace_enabled;
90 
91 /* Current function tracing op */
92 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end;
93 /* What to set function_trace_op to */
94 static struct ftrace_ops *set_function_trace_op;
95 
96 static bool ftrace_pids_enabled(struct ftrace_ops *ops)
97 {
98 	struct trace_array *tr;
99 
100 	if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private)
101 		return false;
102 
103 	tr = ops->private;
104 
105 	return tr->function_pids != NULL || tr->function_no_pids != NULL;
106 }
107 
108 static void ftrace_update_trampoline(struct ftrace_ops *ops);
109 
110 /*
111  * ftrace_disabled is set when an anomaly is discovered.
112  * ftrace_disabled is much stronger than ftrace_enabled.
113  */
114 static int ftrace_disabled __read_mostly;
115 
116 DEFINE_MUTEX(ftrace_lock);
117 
118 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end;
119 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub;
120 struct ftrace_ops global_ops;
121 
122 #if ARCH_SUPPORTS_FTRACE_OPS
123 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
124 				 struct ftrace_ops *op, struct ftrace_regs *fregs);
125 #else
126 /* See comment below, where ftrace_ops_list_func is defined */
127 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip);
128 #define ftrace_ops_list_func ((ftrace_func_t)ftrace_ops_no_ops)
129 #endif
130 
131 static inline void ftrace_ops_init(struct ftrace_ops *ops)
132 {
133 #ifdef CONFIG_DYNAMIC_FTRACE
134 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) {
135 		mutex_init(&ops->local_hash.regex_lock);
136 		ops->func_hash = &ops->local_hash;
137 		ops->flags |= FTRACE_OPS_FL_INITIALIZED;
138 	}
139 #endif
140 }
141 
142 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip,
143 			    struct ftrace_ops *op, struct ftrace_regs *fregs)
144 {
145 	struct trace_array *tr = op->private;
146 	int pid;
147 
148 	if (tr) {
149 		pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid);
150 		if (pid == FTRACE_PID_IGNORE)
151 			return;
152 		if (pid != FTRACE_PID_TRACE &&
153 		    pid != current->pid)
154 			return;
155 	}
156 
157 	op->saved_func(ip, parent_ip, op, fregs);
158 }
159 
160 static void ftrace_sync_ipi(void *data)
161 {
162 	/* Probably not needed, but do it anyway */
163 	smp_rmb();
164 }
165 
166 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops)
167 {
168 	/*
169 	 * If this is a dynamic, RCU, or per CPU ops, or we force list func,
170 	 * then it needs to call the list anyway.
171 	 */
172 	if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) ||
173 	    FTRACE_FORCE_LIST_FUNC)
174 		return ftrace_ops_list_func;
175 
176 	return ftrace_ops_get_func(ops);
177 }
178 
179 static void update_ftrace_function(void)
180 {
181 	ftrace_func_t func;
182 
183 	/*
184 	 * Prepare the ftrace_ops that the arch callback will use.
185 	 * If there's only one ftrace_ops registered, the ftrace_ops_list
186 	 * will point to the ops we want.
187 	 */
188 	set_function_trace_op = rcu_dereference_protected(ftrace_ops_list,
189 						lockdep_is_held(&ftrace_lock));
190 
191 	/* If there's no ftrace_ops registered, just call the stub function */
192 	if (set_function_trace_op == &ftrace_list_end) {
193 		func = ftrace_stub;
194 
195 	/*
196 	 * If we are at the end of the list and this ops is
197 	 * recursion safe and not dynamic and the arch supports passing ops,
198 	 * then have the mcount trampoline call the function directly.
199 	 */
200 	} else if (rcu_dereference_protected(ftrace_ops_list->next,
201 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
202 		func = ftrace_ops_get_list_func(ftrace_ops_list);
203 
204 	} else {
205 		/* Just use the default ftrace_ops */
206 		set_function_trace_op = &ftrace_list_end;
207 		func = ftrace_ops_list_func;
208 	}
209 
210 	update_function_graph_func();
211 
212 	/* If there's no change, then do nothing more here */
213 	if (ftrace_trace_function == func)
214 		return;
215 
216 	/*
217 	 * If we are using the list function, it doesn't care
218 	 * about the function_trace_ops.
219 	 */
220 	if (func == ftrace_ops_list_func) {
221 		ftrace_trace_function = func;
222 		/*
223 		 * Don't even bother setting function_trace_ops,
224 		 * it would be racy to do so anyway.
225 		 */
226 		return;
227 	}
228 
229 #ifndef CONFIG_DYNAMIC_FTRACE
230 	/*
231 	 * For static tracing, we need to be a bit more careful.
232 	 * The function change takes affect immediately. Thus,
233 	 * we need to coordinate the setting of the function_trace_ops
234 	 * with the setting of the ftrace_trace_function.
235 	 *
236 	 * Set the function to the list ops, which will call the
237 	 * function we want, albeit indirectly, but it handles the
238 	 * ftrace_ops and doesn't depend on function_trace_op.
239 	 */
240 	ftrace_trace_function = ftrace_ops_list_func;
241 	/*
242 	 * Make sure all CPUs see this. Yes this is slow, but static
243 	 * tracing is slow and nasty to have enabled.
244 	 */
245 	synchronize_rcu_tasks_rude();
246 	/* Now all cpus are using the list ops. */
247 	function_trace_op = set_function_trace_op;
248 	/* Make sure the function_trace_op is visible on all CPUs */
249 	smp_wmb();
250 	/* Nasty way to force a rmb on all cpus */
251 	smp_call_function(ftrace_sync_ipi, NULL, 1);
252 	/* OK, we are all set to update the ftrace_trace_function now! */
253 #endif /* !CONFIG_DYNAMIC_FTRACE */
254 
255 	ftrace_trace_function = func;
256 }
257 
258 static void add_ftrace_ops(struct ftrace_ops __rcu **list,
259 			   struct ftrace_ops *ops)
260 {
261 	rcu_assign_pointer(ops->next, *list);
262 
263 	/*
264 	 * We are entering ops into the list but another
265 	 * CPU might be walking that list. We need to make sure
266 	 * the ops->next pointer is valid before another CPU sees
267 	 * the ops pointer included into the list.
268 	 */
269 	rcu_assign_pointer(*list, ops);
270 }
271 
272 static int remove_ftrace_ops(struct ftrace_ops __rcu **list,
273 			     struct ftrace_ops *ops)
274 {
275 	struct ftrace_ops **p;
276 
277 	/*
278 	 * If we are removing the last function, then simply point
279 	 * to the ftrace_stub.
280 	 */
281 	if (rcu_dereference_protected(*list,
282 			lockdep_is_held(&ftrace_lock)) == ops &&
283 	    rcu_dereference_protected(ops->next,
284 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
285 		*list = &ftrace_list_end;
286 		return 0;
287 	}
288 
289 	for (p = list; *p != &ftrace_list_end; p = &(*p)->next)
290 		if (*p == ops)
291 			break;
292 
293 	if (*p != ops)
294 		return -1;
295 
296 	*p = (*p)->next;
297 	return 0;
298 }
299 
300 static void ftrace_update_trampoline(struct ftrace_ops *ops);
301 
302 int __register_ftrace_function(struct ftrace_ops *ops)
303 {
304 	if (ops->flags & FTRACE_OPS_FL_DELETED)
305 		return -EINVAL;
306 
307 	if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED))
308 		return -EBUSY;
309 
310 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS
311 	/*
312 	 * If the ftrace_ops specifies SAVE_REGS, then it only can be used
313 	 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set.
314 	 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant.
315 	 */
316 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS &&
317 	    !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED))
318 		return -EINVAL;
319 
320 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)
321 		ops->flags |= FTRACE_OPS_FL_SAVE_REGS;
322 #endif
323 	if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT))
324 		return -EBUSY;
325 
326 	if (!core_kernel_data((unsigned long)ops))
327 		ops->flags |= FTRACE_OPS_FL_DYNAMIC;
328 
329 	add_ftrace_ops(&ftrace_ops_list, ops);
330 
331 	/* Always save the function, and reset at unregistering */
332 	ops->saved_func = ops->func;
333 
334 	if (ftrace_pids_enabled(ops))
335 		ops->func = ftrace_pid_func;
336 
337 	ftrace_update_trampoline(ops);
338 
339 	if (ftrace_enabled)
340 		update_ftrace_function();
341 
342 	return 0;
343 }
344 
345 int __unregister_ftrace_function(struct ftrace_ops *ops)
346 {
347 	int ret;
348 
349 	if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED)))
350 		return -EBUSY;
351 
352 	ret = remove_ftrace_ops(&ftrace_ops_list, ops);
353 
354 	if (ret < 0)
355 		return ret;
356 
357 	if (ftrace_enabled)
358 		update_ftrace_function();
359 
360 	ops->func = ops->saved_func;
361 
362 	return 0;
363 }
364 
365 static void ftrace_update_pid_func(void)
366 {
367 	struct ftrace_ops *op;
368 
369 	/* Only do something if we are tracing something */
370 	if (ftrace_trace_function == ftrace_stub)
371 		return;
372 
373 	do_for_each_ftrace_op(op, ftrace_ops_list) {
374 		if (op->flags & FTRACE_OPS_FL_PID) {
375 			op->func = ftrace_pids_enabled(op) ?
376 				ftrace_pid_func : op->saved_func;
377 			ftrace_update_trampoline(op);
378 		}
379 	} while_for_each_ftrace_op(op);
380 
381 	update_ftrace_function();
382 }
383 
384 #ifdef CONFIG_FUNCTION_PROFILER
385 struct ftrace_profile {
386 	struct hlist_node		node;
387 	unsigned long			ip;
388 	unsigned long			counter;
389 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
390 	unsigned long long		time;
391 	unsigned long long		time_squared;
392 #endif
393 };
394 
395 struct ftrace_profile_page {
396 	struct ftrace_profile_page	*next;
397 	unsigned long			index;
398 	struct ftrace_profile		records[];
399 };
400 
401 struct ftrace_profile_stat {
402 	atomic_t			disabled;
403 	struct hlist_head		*hash;
404 	struct ftrace_profile_page	*pages;
405 	struct ftrace_profile_page	*start;
406 	struct tracer_stat		stat;
407 };
408 
409 #define PROFILE_RECORDS_SIZE						\
410 	(PAGE_SIZE - offsetof(struct ftrace_profile_page, records))
411 
412 #define PROFILES_PER_PAGE					\
413 	(PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile))
414 
415 static int ftrace_profile_enabled __read_mostly;
416 
417 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */
418 static DEFINE_MUTEX(ftrace_profile_lock);
419 
420 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats);
421 
422 #define FTRACE_PROFILE_HASH_BITS 10
423 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS)
424 
425 static void *
426 function_stat_next(void *v, int idx)
427 {
428 	struct ftrace_profile *rec = v;
429 	struct ftrace_profile_page *pg;
430 
431 	pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK);
432 
433  again:
434 	if (idx != 0)
435 		rec++;
436 
437 	if ((void *)rec >= (void *)&pg->records[pg->index]) {
438 		pg = pg->next;
439 		if (!pg)
440 			return NULL;
441 		rec = &pg->records[0];
442 		if (!rec->counter)
443 			goto again;
444 	}
445 
446 	return rec;
447 }
448 
449 static void *function_stat_start(struct tracer_stat *trace)
450 {
451 	struct ftrace_profile_stat *stat =
452 		container_of(trace, struct ftrace_profile_stat, stat);
453 
454 	if (!stat || !stat->start)
455 		return NULL;
456 
457 	return function_stat_next(&stat->start->records[0], 0);
458 }
459 
460 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
461 /* function graph compares on total time */
462 static int function_stat_cmp(const void *p1, const void *p2)
463 {
464 	const struct ftrace_profile *a = p1;
465 	const struct ftrace_profile *b = p2;
466 
467 	if (a->time < b->time)
468 		return -1;
469 	if (a->time > b->time)
470 		return 1;
471 	else
472 		return 0;
473 }
474 #else
475 /* not function graph compares against hits */
476 static int function_stat_cmp(const void *p1, const void *p2)
477 {
478 	const struct ftrace_profile *a = p1;
479 	const struct ftrace_profile *b = p2;
480 
481 	if (a->counter < b->counter)
482 		return -1;
483 	if (a->counter > b->counter)
484 		return 1;
485 	else
486 		return 0;
487 }
488 #endif
489 
490 static int function_stat_headers(struct seq_file *m)
491 {
492 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
493 	seq_puts(m, "  Function                               "
494 		 "Hit    Time            Avg             s^2\n"
495 		    "  --------                               "
496 		 "---    ----            ---             ---\n");
497 #else
498 	seq_puts(m, "  Function                               Hit\n"
499 		    "  --------                               ---\n");
500 #endif
501 	return 0;
502 }
503 
504 static int function_stat_show(struct seq_file *m, void *v)
505 {
506 	struct ftrace_profile *rec = v;
507 	char str[KSYM_SYMBOL_LEN];
508 	int ret = 0;
509 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
510 	static struct trace_seq s;
511 	unsigned long long avg;
512 	unsigned long long stddev;
513 #endif
514 	mutex_lock(&ftrace_profile_lock);
515 
516 	/* we raced with function_profile_reset() */
517 	if (unlikely(rec->counter == 0)) {
518 		ret = -EBUSY;
519 		goto out;
520 	}
521 
522 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
523 	avg = div64_ul(rec->time, rec->counter);
524 	if (tracing_thresh && (avg < tracing_thresh))
525 		goto out;
526 #endif
527 
528 	kallsyms_lookup(rec->ip, NULL, NULL, NULL, str);
529 	seq_printf(m, "  %-30.30s  %10lu", str, rec->counter);
530 
531 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
532 	seq_puts(m, "    ");
533 
534 	/* Sample standard deviation (s^2) */
535 	if (rec->counter <= 1)
536 		stddev = 0;
537 	else {
538 		/*
539 		 * Apply Welford's method:
540 		 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2)
541 		 */
542 		stddev = rec->counter * rec->time_squared -
543 			 rec->time * rec->time;
544 
545 		/*
546 		 * Divide only 1000 for ns^2 -> us^2 conversion.
547 		 * trace_print_graph_duration will divide 1000 again.
548 		 */
549 		stddev = div64_ul(stddev,
550 				  rec->counter * (rec->counter - 1) * 1000);
551 	}
552 
553 	trace_seq_init(&s);
554 	trace_print_graph_duration(rec->time, &s);
555 	trace_seq_puts(&s, "    ");
556 	trace_print_graph_duration(avg, &s);
557 	trace_seq_puts(&s, "    ");
558 	trace_print_graph_duration(stddev, &s);
559 	trace_print_seq(m, &s);
560 #endif
561 	seq_putc(m, '\n');
562 out:
563 	mutex_unlock(&ftrace_profile_lock);
564 
565 	return ret;
566 }
567 
568 static void ftrace_profile_reset(struct ftrace_profile_stat *stat)
569 {
570 	struct ftrace_profile_page *pg;
571 
572 	pg = stat->pages = stat->start;
573 
574 	while (pg) {
575 		memset(pg->records, 0, PROFILE_RECORDS_SIZE);
576 		pg->index = 0;
577 		pg = pg->next;
578 	}
579 
580 	memset(stat->hash, 0,
581 	       FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head));
582 }
583 
584 int ftrace_profile_pages_init(struct ftrace_profile_stat *stat)
585 {
586 	struct ftrace_profile_page *pg;
587 	int functions;
588 	int pages;
589 	int i;
590 
591 	/* If we already allocated, do nothing */
592 	if (stat->pages)
593 		return 0;
594 
595 	stat->pages = (void *)get_zeroed_page(GFP_KERNEL);
596 	if (!stat->pages)
597 		return -ENOMEM;
598 
599 #ifdef CONFIG_DYNAMIC_FTRACE
600 	functions = ftrace_update_tot_cnt;
601 #else
602 	/*
603 	 * We do not know the number of functions that exist because
604 	 * dynamic tracing is what counts them. With past experience
605 	 * we have around 20K functions. That should be more than enough.
606 	 * It is highly unlikely we will execute every function in
607 	 * the kernel.
608 	 */
609 	functions = 20000;
610 #endif
611 
612 	pg = stat->start = stat->pages;
613 
614 	pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE);
615 
616 	for (i = 1; i < pages; i++) {
617 		pg->next = (void *)get_zeroed_page(GFP_KERNEL);
618 		if (!pg->next)
619 			goto out_free;
620 		pg = pg->next;
621 	}
622 
623 	return 0;
624 
625  out_free:
626 	pg = stat->start;
627 	while (pg) {
628 		unsigned long tmp = (unsigned long)pg;
629 
630 		pg = pg->next;
631 		free_page(tmp);
632 	}
633 
634 	stat->pages = NULL;
635 	stat->start = NULL;
636 
637 	return -ENOMEM;
638 }
639 
640 static int ftrace_profile_init_cpu(int cpu)
641 {
642 	struct ftrace_profile_stat *stat;
643 	int size;
644 
645 	stat = &per_cpu(ftrace_profile_stats, cpu);
646 
647 	if (stat->hash) {
648 		/* If the profile is already created, simply reset it */
649 		ftrace_profile_reset(stat);
650 		return 0;
651 	}
652 
653 	/*
654 	 * We are profiling all functions, but usually only a few thousand
655 	 * functions are hit. We'll make a hash of 1024 items.
656 	 */
657 	size = FTRACE_PROFILE_HASH_SIZE;
658 
659 	stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL);
660 
661 	if (!stat->hash)
662 		return -ENOMEM;
663 
664 	/* Preallocate the function profiling pages */
665 	if (ftrace_profile_pages_init(stat) < 0) {
666 		kfree(stat->hash);
667 		stat->hash = NULL;
668 		return -ENOMEM;
669 	}
670 
671 	return 0;
672 }
673 
674 static int ftrace_profile_init(void)
675 {
676 	int cpu;
677 	int ret = 0;
678 
679 	for_each_possible_cpu(cpu) {
680 		ret = ftrace_profile_init_cpu(cpu);
681 		if (ret)
682 			break;
683 	}
684 
685 	return ret;
686 }
687 
688 /* interrupts must be disabled */
689 static struct ftrace_profile *
690 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip)
691 {
692 	struct ftrace_profile *rec;
693 	struct hlist_head *hhd;
694 	unsigned long key;
695 
696 	key = hash_long(ip, FTRACE_PROFILE_HASH_BITS);
697 	hhd = &stat->hash[key];
698 
699 	if (hlist_empty(hhd))
700 		return NULL;
701 
702 	hlist_for_each_entry_rcu_notrace(rec, hhd, node) {
703 		if (rec->ip == ip)
704 			return rec;
705 	}
706 
707 	return NULL;
708 }
709 
710 static void ftrace_add_profile(struct ftrace_profile_stat *stat,
711 			       struct ftrace_profile *rec)
712 {
713 	unsigned long key;
714 
715 	key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS);
716 	hlist_add_head_rcu(&rec->node, &stat->hash[key]);
717 }
718 
719 /*
720  * The memory is already allocated, this simply finds a new record to use.
721  */
722 static struct ftrace_profile *
723 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip)
724 {
725 	struct ftrace_profile *rec = NULL;
726 
727 	/* prevent recursion (from NMIs) */
728 	if (atomic_inc_return(&stat->disabled) != 1)
729 		goto out;
730 
731 	/*
732 	 * Try to find the function again since an NMI
733 	 * could have added it
734 	 */
735 	rec = ftrace_find_profiled_func(stat, ip);
736 	if (rec)
737 		goto out;
738 
739 	if (stat->pages->index == PROFILES_PER_PAGE) {
740 		if (!stat->pages->next)
741 			goto out;
742 		stat->pages = stat->pages->next;
743 	}
744 
745 	rec = &stat->pages->records[stat->pages->index++];
746 	rec->ip = ip;
747 	ftrace_add_profile(stat, rec);
748 
749  out:
750 	atomic_dec(&stat->disabled);
751 
752 	return rec;
753 }
754 
755 static void
756 function_profile_call(unsigned long ip, unsigned long parent_ip,
757 		      struct ftrace_ops *ops, struct ftrace_regs *fregs)
758 {
759 	struct ftrace_profile_stat *stat;
760 	struct ftrace_profile *rec;
761 	unsigned long flags;
762 
763 	if (!ftrace_profile_enabled)
764 		return;
765 
766 	local_irq_save(flags);
767 
768 	stat = this_cpu_ptr(&ftrace_profile_stats);
769 	if (!stat->hash || !ftrace_profile_enabled)
770 		goto out;
771 
772 	rec = ftrace_find_profiled_func(stat, ip);
773 	if (!rec) {
774 		rec = ftrace_profile_alloc(stat, ip);
775 		if (!rec)
776 			goto out;
777 	}
778 
779 	rec->counter++;
780  out:
781 	local_irq_restore(flags);
782 }
783 
784 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
785 static bool fgraph_graph_time = true;
786 
787 void ftrace_graph_graph_time_control(bool enable)
788 {
789 	fgraph_graph_time = enable;
790 }
791 
792 static int profile_graph_entry(struct ftrace_graph_ent *trace)
793 {
794 	struct ftrace_ret_stack *ret_stack;
795 
796 	function_profile_call(trace->func, 0, NULL, NULL);
797 
798 	/* If function graph is shutting down, ret_stack can be NULL */
799 	if (!current->ret_stack)
800 		return 0;
801 
802 	ret_stack = ftrace_graph_get_ret_stack(current, 0);
803 	if (ret_stack)
804 		ret_stack->subtime = 0;
805 
806 	return 1;
807 }
808 
809 static void profile_graph_return(struct ftrace_graph_ret *trace)
810 {
811 	struct ftrace_ret_stack *ret_stack;
812 	struct ftrace_profile_stat *stat;
813 	unsigned long long calltime;
814 	struct ftrace_profile *rec;
815 	unsigned long flags;
816 
817 	local_irq_save(flags);
818 	stat = this_cpu_ptr(&ftrace_profile_stats);
819 	if (!stat->hash || !ftrace_profile_enabled)
820 		goto out;
821 
822 	/* If the calltime was zero'd ignore it */
823 	if (!trace->calltime)
824 		goto out;
825 
826 	calltime = trace->rettime - trace->calltime;
827 
828 	if (!fgraph_graph_time) {
829 
830 		/* Append this call time to the parent time to subtract */
831 		ret_stack = ftrace_graph_get_ret_stack(current, 1);
832 		if (ret_stack)
833 			ret_stack->subtime += calltime;
834 
835 		ret_stack = ftrace_graph_get_ret_stack(current, 0);
836 		if (ret_stack && ret_stack->subtime < calltime)
837 			calltime -= ret_stack->subtime;
838 		else
839 			calltime = 0;
840 	}
841 
842 	rec = ftrace_find_profiled_func(stat, trace->func);
843 	if (rec) {
844 		rec->time += calltime;
845 		rec->time_squared += calltime * calltime;
846 	}
847 
848  out:
849 	local_irq_restore(flags);
850 }
851 
852 static struct fgraph_ops fprofiler_ops = {
853 	.entryfunc = &profile_graph_entry,
854 	.retfunc = &profile_graph_return,
855 };
856 
857 static int register_ftrace_profiler(void)
858 {
859 	return register_ftrace_graph(&fprofiler_ops);
860 }
861 
862 static void unregister_ftrace_profiler(void)
863 {
864 	unregister_ftrace_graph(&fprofiler_ops);
865 }
866 #else
867 static struct ftrace_ops ftrace_profile_ops __read_mostly = {
868 	.func		= function_profile_call,
869 	.flags		= FTRACE_OPS_FL_INITIALIZED,
870 	INIT_OPS_HASH(ftrace_profile_ops)
871 };
872 
873 static int register_ftrace_profiler(void)
874 {
875 	return register_ftrace_function(&ftrace_profile_ops);
876 }
877 
878 static void unregister_ftrace_profiler(void)
879 {
880 	unregister_ftrace_function(&ftrace_profile_ops);
881 }
882 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
883 
884 static ssize_t
885 ftrace_profile_write(struct file *filp, const char __user *ubuf,
886 		     size_t cnt, loff_t *ppos)
887 {
888 	unsigned long val;
889 	int ret;
890 
891 	ret = kstrtoul_from_user(ubuf, cnt, 10, &val);
892 	if (ret)
893 		return ret;
894 
895 	val = !!val;
896 
897 	mutex_lock(&ftrace_profile_lock);
898 	if (ftrace_profile_enabled ^ val) {
899 		if (val) {
900 			ret = ftrace_profile_init();
901 			if (ret < 0) {
902 				cnt = ret;
903 				goto out;
904 			}
905 
906 			ret = register_ftrace_profiler();
907 			if (ret < 0) {
908 				cnt = ret;
909 				goto out;
910 			}
911 			ftrace_profile_enabled = 1;
912 		} else {
913 			ftrace_profile_enabled = 0;
914 			/*
915 			 * unregister_ftrace_profiler calls stop_machine
916 			 * so this acts like an synchronize_rcu.
917 			 */
918 			unregister_ftrace_profiler();
919 		}
920 	}
921  out:
922 	mutex_unlock(&ftrace_profile_lock);
923 
924 	*ppos += cnt;
925 
926 	return cnt;
927 }
928 
929 static ssize_t
930 ftrace_profile_read(struct file *filp, char __user *ubuf,
931 		     size_t cnt, loff_t *ppos)
932 {
933 	char buf[64];		/* big enough to hold a number */
934 	int r;
935 
936 	r = sprintf(buf, "%u\n", ftrace_profile_enabled);
937 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
938 }
939 
940 static const struct file_operations ftrace_profile_fops = {
941 	.open		= tracing_open_generic,
942 	.read		= ftrace_profile_read,
943 	.write		= ftrace_profile_write,
944 	.llseek		= default_llseek,
945 };
946 
947 /* used to initialize the real stat files */
948 static struct tracer_stat function_stats __initdata = {
949 	.name		= "functions",
950 	.stat_start	= function_stat_start,
951 	.stat_next	= function_stat_next,
952 	.stat_cmp	= function_stat_cmp,
953 	.stat_headers	= function_stat_headers,
954 	.stat_show	= function_stat_show
955 };
956 
957 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
958 {
959 	struct ftrace_profile_stat *stat;
960 	struct dentry *entry;
961 	char *name;
962 	int ret;
963 	int cpu;
964 
965 	for_each_possible_cpu(cpu) {
966 		stat = &per_cpu(ftrace_profile_stats, cpu);
967 
968 		name = kasprintf(GFP_KERNEL, "function%d", cpu);
969 		if (!name) {
970 			/*
971 			 * The files created are permanent, if something happens
972 			 * we still do not free memory.
973 			 */
974 			WARN(1,
975 			     "Could not allocate stat file for cpu %d\n",
976 			     cpu);
977 			return;
978 		}
979 		stat->stat = function_stats;
980 		stat->stat.name = name;
981 		ret = register_stat_tracer(&stat->stat);
982 		if (ret) {
983 			WARN(1,
984 			     "Could not register function stat for cpu %d\n",
985 			     cpu);
986 			kfree(name);
987 			return;
988 		}
989 	}
990 
991 	entry = tracefs_create_file("function_profile_enabled",
992 				    TRACE_MODE_WRITE, d_tracer, NULL,
993 				    &ftrace_profile_fops);
994 	if (!entry)
995 		pr_warn("Could not create tracefs 'function_profile_enabled' entry\n");
996 }
997 
998 #else /* CONFIG_FUNCTION_PROFILER */
999 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
1000 {
1001 }
1002 #endif /* CONFIG_FUNCTION_PROFILER */
1003 
1004 #ifdef CONFIG_DYNAMIC_FTRACE
1005 
1006 static struct ftrace_ops *removed_ops;
1007 
1008 /*
1009  * Set when doing a global update, like enabling all recs or disabling them.
1010  * It is not set when just updating a single ftrace_ops.
1011  */
1012 static bool update_all_ops;
1013 
1014 #ifndef CONFIG_FTRACE_MCOUNT_RECORD
1015 # error Dynamic ftrace depends on MCOUNT_RECORD
1016 #endif
1017 
1018 struct ftrace_func_probe {
1019 	struct ftrace_probe_ops	*probe_ops;
1020 	struct ftrace_ops	ops;
1021 	struct trace_array	*tr;
1022 	struct list_head	list;
1023 	void			*data;
1024 	int			ref;
1025 };
1026 
1027 /*
1028  * We make these constant because no one should touch them,
1029  * but they are used as the default "empty hash", to avoid allocating
1030  * it all the time. These are in a read only section such that if
1031  * anyone does try to modify it, it will cause an exception.
1032  */
1033 static const struct hlist_head empty_buckets[1];
1034 static const struct ftrace_hash empty_hash = {
1035 	.buckets = (struct hlist_head *)empty_buckets,
1036 };
1037 #define EMPTY_HASH	((struct ftrace_hash *)&empty_hash)
1038 
1039 struct ftrace_ops global_ops = {
1040 	.func				= ftrace_stub,
1041 	.local_hash.notrace_hash	= EMPTY_HASH,
1042 	.local_hash.filter_hash		= EMPTY_HASH,
1043 	INIT_OPS_HASH(global_ops)
1044 	.flags				= FTRACE_OPS_FL_INITIALIZED |
1045 					  FTRACE_OPS_FL_PID,
1046 };
1047 
1048 /*
1049  * Used by the stack unwinder to know about dynamic ftrace trampolines.
1050  */
1051 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr)
1052 {
1053 	struct ftrace_ops *op = NULL;
1054 
1055 	/*
1056 	 * Some of the ops may be dynamically allocated,
1057 	 * they are freed after a synchronize_rcu().
1058 	 */
1059 	preempt_disable_notrace();
1060 
1061 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1062 		/*
1063 		 * This is to check for dynamically allocated trampolines.
1064 		 * Trampolines that are in kernel text will have
1065 		 * core_kernel_text() return true.
1066 		 */
1067 		if (op->trampoline && op->trampoline_size)
1068 			if (addr >= op->trampoline &&
1069 			    addr < op->trampoline + op->trampoline_size) {
1070 				preempt_enable_notrace();
1071 				return op;
1072 			}
1073 	} while_for_each_ftrace_op(op);
1074 	preempt_enable_notrace();
1075 
1076 	return NULL;
1077 }
1078 
1079 /*
1080  * This is used by __kernel_text_address() to return true if the
1081  * address is on a dynamically allocated trampoline that would
1082  * not return true for either core_kernel_text() or
1083  * is_module_text_address().
1084  */
1085 bool is_ftrace_trampoline(unsigned long addr)
1086 {
1087 	return ftrace_ops_trampoline(addr) != NULL;
1088 }
1089 
1090 struct ftrace_page {
1091 	struct ftrace_page	*next;
1092 	struct dyn_ftrace	*records;
1093 	int			index;
1094 	int			order;
1095 };
1096 
1097 #define ENTRY_SIZE sizeof(struct dyn_ftrace)
1098 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE)
1099 
1100 static struct ftrace_page	*ftrace_pages_start;
1101 static struct ftrace_page	*ftrace_pages;
1102 
1103 static __always_inline unsigned long
1104 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip)
1105 {
1106 	if (hash->size_bits > 0)
1107 		return hash_long(ip, hash->size_bits);
1108 
1109 	return 0;
1110 }
1111 
1112 /* Only use this function if ftrace_hash_empty() has already been tested */
1113 static __always_inline struct ftrace_func_entry *
1114 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1115 {
1116 	unsigned long key;
1117 	struct ftrace_func_entry *entry;
1118 	struct hlist_head *hhd;
1119 
1120 	key = ftrace_hash_key(hash, ip);
1121 	hhd = &hash->buckets[key];
1122 
1123 	hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) {
1124 		if (entry->ip == ip)
1125 			return entry;
1126 	}
1127 	return NULL;
1128 }
1129 
1130 /**
1131  * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash
1132  * @hash: The hash to look at
1133  * @ip: The instruction pointer to test
1134  *
1135  * Search a given @hash to see if a given instruction pointer (@ip)
1136  * exists in it.
1137  *
1138  * Returns the entry that holds the @ip if found. NULL otherwise.
1139  */
1140 struct ftrace_func_entry *
1141 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1142 {
1143 	if (ftrace_hash_empty(hash))
1144 		return NULL;
1145 
1146 	return __ftrace_lookup_ip(hash, ip);
1147 }
1148 
1149 static void __add_hash_entry(struct ftrace_hash *hash,
1150 			     struct ftrace_func_entry *entry)
1151 {
1152 	struct hlist_head *hhd;
1153 	unsigned long key;
1154 
1155 	key = ftrace_hash_key(hash, entry->ip);
1156 	hhd = &hash->buckets[key];
1157 	hlist_add_head(&entry->hlist, hhd);
1158 	hash->count++;
1159 }
1160 
1161 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip)
1162 {
1163 	struct ftrace_func_entry *entry;
1164 
1165 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1166 	if (!entry)
1167 		return -ENOMEM;
1168 
1169 	entry->ip = ip;
1170 	__add_hash_entry(hash, entry);
1171 
1172 	return 0;
1173 }
1174 
1175 static void
1176 free_hash_entry(struct ftrace_hash *hash,
1177 		  struct ftrace_func_entry *entry)
1178 {
1179 	hlist_del(&entry->hlist);
1180 	kfree(entry);
1181 	hash->count--;
1182 }
1183 
1184 static void
1185 remove_hash_entry(struct ftrace_hash *hash,
1186 		  struct ftrace_func_entry *entry)
1187 {
1188 	hlist_del_rcu(&entry->hlist);
1189 	hash->count--;
1190 }
1191 
1192 static void ftrace_hash_clear(struct ftrace_hash *hash)
1193 {
1194 	struct hlist_head *hhd;
1195 	struct hlist_node *tn;
1196 	struct ftrace_func_entry *entry;
1197 	int size = 1 << hash->size_bits;
1198 	int i;
1199 
1200 	if (!hash->count)
1201 		return;
1202 
1203 	for (i = 0; i < size; i++) {
1204 		hhd = &hash->buckets[i];
1205 		hlist_for_each_entry_safe(entry, tn, hhd, hlist)
1206 			free_hash_entry(hash, entry);
1207 	}
1208 	FTRACE_WARN_ON(hash->count);
1209 }
1210 
1211 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod)
1212 {
1213 	list_del(&ftrace_mod->list);
1214 	kfree(ftrace_mod->module);
1215 	kfree(ftrace_mod->func);
1216 	kfree(ftrace_mod);
1217 }
1218 
1219 static void clear_ftrace_mod_list(struct list_head *head)
1220 {
1221 	struct ftrace_mod_load *p, *n;
1222 
1223 	/* stack tracer isn't supported yet */
1224 	if (!head)
1225 		return;
1226 
1227 	mutex_lock(&ftrace_lock);
1228 	list_for_each_entry_safe(p, n, head, list)
1229 		free_ftrace_mod(p);
1230 	mutex_unlock(&ftrace_lock);
1231 }
1232 
1233 static void free_ftrace_hash(struct ftrace_hash *hash)
1234 {
1235 	if (!hash || hash == EMPTY_HASH)
1236 		return;
1237 	ftrace_hash_clear(hash);
1238 	kfree(hash->buckets);
1239 	kfree(hash);
1240 }
1241 
1242 static void __free_ftrace_hash_rcu(struct rcu_head *rcu)
1243 {
1244 	struct ftrace_hash *hash;
1245 
1246 	hash = container_of(rcu, struct ftrace_hash, rcu);
1247 	free_ftrace_hash(hash);
1248 }
1249 
1250 static void free_ftrace_hash_rcu(struct ftrace_hash *hash)
1251 {
1252 	if (!hash || hash == EMPTY_HASH)
1253 		return;
1254 	call_rcu(&hash->rcu, __free_ftrace_hash_rcu);
1255 }
1256 
1257 void ftrace_free_filter(struct ftrace_ops *ops)
1258 {
1259 	ftrace_ops_init(ops);
1260 	free_ftrace_hash(ops->func_hash->filter_hash);
1261 	free_ftrace_hash(ops->func_hash->notrace_hash);
1262 }
1263 
1264 static struct ftrace_hash *alloc_ftrace_hash(int size_bits)
1265 {
1266 	struct ftrace_hash *hash;
1267 	int size;
1268 
1269 	hash = kzalloc(sizeof(*hash), GFP_KERNEL);
1270 	if (!hash)
1271 		return NULL;
1272 
1273 	size = 1 << size_bits;
1274 	hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL);
1275 
1276 	if (!hash->buckets) {
1277 		kfree(hash);
1278 		return NULL;
1279 	}
1280 
1281 	hash->size_bits = size_bits;
1282 
1283 	return hash;
1284 }
1285 
1286 
1287 static int ftrace_add_mod(struct trace_array *tr,
1288 			  const char *func, const char *module,
1289 			  int enable)
1290 {
1291 	struct ftrace_mod_load *ftrace_mod;
1292 	struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace;
1293 
1294 	ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL);
1295 	if (!ftrace_mod)
1296 		return -ENOMEM;
1297 
1298 	ftrace_mod->func = kstrdup(func, GFP_KERNEL);
1299 	ftrace_mod->module = kstrdup(module, GFP_KERNEL);
1300 	ftrace_mod->enable = enable;
1301 
1302 	if (!ftrace_mod->func || !ftrace_mod->module)
1303 		goto out_free;
1304 
1305 	list_add(&ftrace_mod->list, mod_head);
1306 
1307 	return 0;
1308 
1309  out_free:
1310 	free_ftrace_mod(ftrace_mod);
1311 
1312 	return -ENOMEM;
1313 }
1314 
1315 static struct ftrace_hash *
1316 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash)
1317 {
1318 	struct ftrace_func_entry *entry;
1319 	struct ftrace_hash *new_hash;
1320 	int size;
1321 	int ret;
1322 	int i;
1323 
1324 	new_hash = alloc_ftrace_hash(size_bits);
1325 	if (!new_hash)
1326 		return NULL;
1327 
1328 	if (hash)
1329 		new_hash->flags = hash->flags;
1330 
1331 	/* Empty hash? */
1332 	if (ftrace_hash_empty(hash))
1333 		return new_hash;
1334 
1335 	size = 1 << hash->size_bits;
1336 	for (i = 0; i < size; i++) {
1337 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
1338 			ret = add_hash_entry(new_hash, entry->ip);
1339 			if (ret < 0)
1340 				goto free_hash;
1341 		}
1342 	}
1343 
1344 	FTRACE_WARN_ON(new_hash->count != hash->count);
1345 
1346 	return new_hash;
1347 
1348  free_hash:
1349 	free_ftrace_hash(new_hash);
1350 	return NULL;
1351 }
1352 
1353 static void
1354 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash);
1355 static void
1356 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash);
1357 
1358 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1359 				       struct ftrace_hash *new_hash);
1360 
1361 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size)
1362 {
1363 	struct ftrace_func_entry *entry;
1364 	struct ftrace_hash *new_hash;
1365 	struct hlist_head *hhd;
1366 	struct hlist_node *tn;
1367 	int bits = 0;
1368 	int i;
1369 
1370 	/*
1371 	 * Use around half the size (max bit of it), but
1372 	 * a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits).
1373 	 */
1374 	bits = fls(size / 2);
1375 
1376 	/* Don't allocate too much */
1377 	if (bits > FTRACE_HASH_MAX_BITS)
1378 		bits = FTRACE_HASH_MAX_BITS;
1379 
1380 	new_hash = alloc_ftrace_hash(bits);
1381 	if (!new_hash)
1382 		return NULL;
1383 
1384 	new_hash->flags = src->flags;
1385 
1386 	size = 1 << src->size_bits;
1387 	for (i = 0; i < size; i++) {
1388 		hhd = &src->buckets[i];
1389 		hlist_for_each_entry_safe(entry, tn, hhd, hlist) {
1390 			remove_hash_entry(src, entry);
1391 			__add_hash_entry(new_hash, entry);
1392 		}
1393 	}
1394 	return new_hash;
1395 }
1396 
1397 static struct ftrace_hash *
1398 __ftrace_hash_move(struct ftrace_hash *src)
1399 {
1400 	int size = src->count;
1401 
1402 	/*
1403 	 * If the new source is empty, just return the empty_hash.
1404 	 */
1405 	if (ftrace_hash_empty(src))
1406 		return EMPTY_HASH;
1407 
1408 	return dup_hash(src, size);
1409 }
1410 
1411 static int
1412 ftrace_hash_move(struct ftrace_ops *ops, int enable,
1413 		 struct ftrace_hash **dst, struct ftrace_hash *src)
1414 {
1415 	struct ftrace_hash *new_hash;
1416 	int ret;
1417 
1418 	/* Reject setting notrace hash on IPMODIFY ftrace_ops */
1419 	if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable)
1420 		return -EINVAL;
1421 
1422 	new_hash = __ftrace_hash_move(src);
1423 	if (!new_hash)
1424 		return -ENOMEM;
1425 
1426 	/* Make sure this can be applied if it is IPMODIFY ftrace_ops */
1427 	if (enable) {
1428 		/* IPMODIFY should be updated only when filter_hash updating */
1429 		ret = ftrace_hash_ipmodify_update(ops, new_hash);
1430 		if (ret < 0) {
1431 			free_ftrace_hash(new_hash);
1432 			return ret;
1433 		}
1434 	}
1435 
1436 	/*
1437 	 * Remove the current set, update the hash and add
1438 	 * them back.
1439 	 */
1440 	ftrace_hash_rec_disable_modify(ops, enable);
1441 
1442 	rcu_assign_pointer(*dst, new_hash);
1443 
1444 	ftrace_hash_rec_enable_modify(ops, enable);
1445 
1446 	return 0;
1447 }
1448 
1449 static bool hash_contains_ip(unsigned long ip,
1450 			     struct ftrace_ops_hash *hash)
1451 {
1452 	/*
1453 	 * The function record is a match if it exists in the filter
1454 	 * hash and not in the notrace hash. Note, an empty hash is
1455 	 * considered a match for the filter hash, but an empty
1456 	 * notrace hash is considered not in the notrace hash.
1457 	 */
1458 	return (ftrace_hash_empty(hash->filter_hash) ||
1459 		__ftrace_lookup_ip(hash->filter_hash, ip)) &&
1460 		(ftrace_hash_empty(hash->notrace_hash) ||
1461 		 !__ftrace_lookup_ip(hash->notrace_hash, ip));
1462 }
1463 
1464 /*
1465  * Test the hashes for this ops to see if we want to call
1466  * the ops->func or not.
1467  *
1468  * It's a match if the ip is in the ops->filter_hash or
1469  * the filter_hash does not exist or is empty,
1470  *  AND
1471  * the ip is not in the ops->notrace_hash.
1472  *
1473  * This needs to be called with preemption disabled as
1474  * the hashes are freed with call_rcu().
1475  */
1476 int
1477 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs)
1478 {
1479 	struct ftrace_ops_hash hash;
1480 	int ret;
1481 
1482 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
1483 	/*
1484 	 * There's a small race when adding ops that the ftrace handler
1485 	 * that wants regs, may be called without them. We can not
1486 	 * allow that handler to be called if regs is NULL.
1487 	 */
1488 	if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS))
1489 		return 0;
1490 #endif
1491 
1492 	rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash);
1493 	rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash);
1494 
1495 	if (hash_contains_ip(ip, &hash))
1496 		ret = 1;
1497 	else
1498 		ret = 0;
1499 
1500 	return ret;
1501 }
1502 
1503 /*
1504  * This is a double for. Do not use 'break' to break out of the loop,
1505  * you must use a goto.
1506  */
1507 #define do_for_each_ftrace_rec(pg, rec)					\
1508 	for (pg = ftrace_pages_start; pg; pg = pg->next) {		\
1509 		int _____i;						\
1510 		for (_____i = 0; _____i < pg->index; _____i++) {	\
1511 			rec = &pg->records[_____i];
1512 
1513 #define while_for_each_ftrace_rec()		\
1514 		}				\
1515 	}
1516 
1517 
1518 static int ftrace_cmp_recs(const void *a, const void *b)
1519 {
1520 	const struct dyn_ftrace *key = a;
1521 	const struct dyn_ftrace *rec = b;
1522 
1523 	if (key->flags < rec->ip)
1524 		return -1;
1525 	if (key->ip >= rec->ip + MCOUNT_INSN_SIZE)
1526 		return 1;
1527 	return 0;
1528 }
1529 
1530 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end)
1531 {
1532 	struct ftrace_page *pg;
1533 	struct dyn_ftrace *rec = NULL;
1534 	struct dyn_ftrace key;
1535 
1536 	key.ip = start;
1537 	key.flags = end;	/* overload flags, as it is unsigned long */
1538 
1539 	for (pg = ftrace_pages_start; pg; pg = pg->next) {
1540 		if (end < pg->records[0].ip ||
1541 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
1542 			continue;
1543 		rec = bsearch(&key, pg->records, pg->index,
1544 			      sizeof(struct dyn_ftrace),
1545 			      ftrace_cmp_recs);
1546 		if (rec)
1547 			break;
1548 	}
1549 	return rec;
1550 }
1551 
1552 /**
1553  * ftrace_location_range - return the first address of a traced location
1554  *	if it touches the given ip range
1555  * @start: start of range to search.
1556  * @end: end of range to search (inclusive). @end points to the last byte
1557  *	to check.
1558  *
1559  * Returns rec->ip if the related ftrace location is a least partly within
1560  * the given address range. That is, the first address of the instruction
1561  * that is either a NOP or call to the function tracer. It checks the ftrace
1562  * internal tables to determine if the address belongs or not.
1563  */
1564 unsigned long ftrace_location_range(unsigned long start, unsigned long end)
1565 {
1566 	struct dyn_ftrace *rec;
1567 
1568 	rec = lookup_rec(start, end);
1569 	if (rec)
1570 		return rec->ip;
1571 
1572 	return 0;
1573 }
1574 
1575 /**
1576  * ftrace_location - return true if the ip giving is a traced location
1577  * @ip: the instruction pointer to check
1578  *
1579  * Returns rec->ip if @ip given is a pointer to a ftrace location.
1580  * That is, the instruction that is either a NOP or call to
1581  * the function tracer. It checks the ftrace internal tables to
1582  * determine if the address belongs or not.
1583  */
1584 unsigned long ftrace_location(unsigned long ip)
1585 {
1586 	return ftrace_location_range(ip, ip);
1587 }
1588 
1589 /**
1590  * ftrace_text_reserved - return true if range contains an ftrace location
1591  * @start: start of range to search
1592  * @end: end of range to search (inclusive). @end points to the last byte to check.
1593  *
1594  * Returns 1 if @start and @end contains a ftrace location.
1595  * That is, the instruction that is either a NOP or call to
1596  * the function tracer. It checks the ftrace internal tables to
1597  * determine if the address belongs or not.
1598  */
1599 int ftrace_text_reserved(const void *start, const void *end)
1600 {
1601 	unsigned long ret;
1602 
1603 	ret = ftrace_location_range((unsigned long)start,
1604 				    (unsigned long)end);
1605 
1606 	return (int)!!ret;
1607 }
1608 
1609 /* Test if ops registered to this rec needs regs */
1610 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec)
1611 {
1612 	struct ftrace_ops *ops;
1613 	bool keep_regs = false;
1614 
1615 	for (ops = ftrace_ops_list;
1616 	     ops != &ftrace_list_end; ops = ops->next) {
1617 		/* pass rec in as regs to have non-NULL val */
1618 		if (ftrace_ops_test(ops, rec->ip, rec)) {
1619 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1620 				keep_regs = true;
1621 				break;
1622 			}
1623 		}
1624 	}
1625 
1626 	return  keep_regs;
1627 }
1628 
1629 static struct ftrace_ops *
1630 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec);
1631 static struct ftrace_ops *
1632 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude);
1633 static struct ftrace_ops *
1634 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops);
1635 
1636 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops,
1637 				     int filter_hash,
1638 				     bool inc)
1639 {
1640 	struct ftrace_hash *hash;
1641 	struct ftrace_hash *other_hash;
1642 	struct ftrace_page *pg;
1643 	struct dyn_ftrace *rec;
1644 	bool update = false;
1645 	int count = 0;
1646 	int all = false;
1647 
1648 	/* Only update if the ops has been registered */
1649 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1650 		return false;
1651 
1652 	/*
1653 	 * In the filter_hash case:
1654 	 *   If the count is zero, we update all records.
1655 	 *   Otherwise we just update the items in the hash.
1656 	 *
1657 	 * In the notrace_hash case:
1658 	 *   We enable the update in the hash.
1659 	 *   As disabling notrace means enabling the tracing,
1660 	 *   and enabling notrace means disabling, the inc variable
1661 	 *   gets inversed.
1662 	 */
1663 	if (filter_hash) {
1664 		hash = ops->func_hash->filter_hash;
1665 		other_hash = ops->func_hash->notrace_hash;
1666 		if (ftrace_hash_empty(hash))
1667 			all = true;
1668 	} else {
1669 		inc = !inc;
1670 		hash = ops->func_hash->notrace_hash;
1671 		other_hash = ops->func_hash->filter_hash;
1672 		/*
1673 		 * If the notrace hash has no items,
1674 		 * then there's nothing to do.
1675 		 */
1676 		if (ftrace_hash_empty(hash))
1677 			return false;
1678 	}
1679 
1680 	do_for_each_ftrace_rec(pg, rec) {
1681 		int in_other_hash = 0;
1682 		int in_hash = 0;
1683 		int match = 0;
1684 
1685 		if (rec->flags & FTRACE_FL_DISABLED)
1686 			continue;
1687 
1688 		if (all) {
1689 			/*
1690 			 * Only the filter_hash affects all records.
1691 			 * Update if the record is not in the notrace hash.
1692 			 */
1693 			if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip))
1694 				match = 1;
1695 		} else {
1696 			in_hash = !!ftrace_lookup_ip(hash, rec->ip);
1697 			in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip);
1698 
1699 			/*
1700 			 * If filter_hash is set, we want to match all functions
1701 			 * that are in the hash but not in the other hash.
1702 			 *
1703 			 * If filter_hash is not set, then we are decrementing.
1704 			 * That means we match anything that is in the hash
1705 			 * and also in the other_hash. That is, we need to turn
1706 			 * off functions in the other hash because they are disabled
1707 			 * by this hash.
1708 			 */
1709 			if (filter_hash && in_hash && !in_other_hash)
1710 				match = 1;
1711 			else if (!filter_hash && in_hash &&
1712 				 (in_other_hash || ftrace_hash_empty(other_hash)))
1713 				match = 1;
1714 		}
1715 		if (!match)
1716 			continue;
1717 
1718 		if (inc) {
1719 			rec->flags++;
1720 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX))
1721 				return false;
1722 
1723 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1724 				rec->flags |= FTRACE_FL_DIRECT;
1725 
1726 			/*
1727 			 * If there's only a single callback registered to a
1728 			 * function, and the ops has a trampoline registered
1729 			 * for it, then we can call it directly.
1730 			 */
1731 			if (ftrace_rec_count(rec) == 1 && ops->trampoline)
1732 				rec->flags |= FTRACE_FL_TRAMP;
1733 			else
1734 				/*
1735 				 * If we are adding another function callback
1736 				 * to this function, and the previous had a
1737 				 * custom trampoline in use, then we need to go
1738 				 * back to the default trampoline.
1739 				 */
1740 				rec->flags &= ~FTRACE_FL_TRAMP;
1741 
1742 			/*
1743 			 * If any ops wants regs saved for this function
1744 			 * then all ops will get saved regs.
1745 			 */
1746 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
1747 				rec->flags |= FTRACE_FL_REGS;
1748 		} else {
1749 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0))
1750 				return false;
1751 			rec->flags--;
1752 
1753 			/*
1754 			 * Only the internal direct_ops should have the
1755 			 * DIRECT flag set. Thus, if it is removing a
1756 			 * function, then that function should no longer
1757 			 * be direct.
1758 			 */
1759 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1760 				rec->flags &= ~FTRACE_FL_DIRECT;
1761 
1762 			/*
1763 			 * If the rec had REGS enabled and the ops that is
1764 			 * being removed had REGS set, then see if there is
1765 			 * still any ops for this record that wants regs.
1766 			 * If not, we can stop recording them.
1767 			 */
1768 			if (ftrace_rec_count(rec) > 0 &&
1769 			    rec->flags & FTRACE_FL_REGS &&
1770 			    ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1771 				if (!test_rec_ops_needs_regs(rec))
1772 					rec->flags &= ~FTRACE_FL_REGS;
1773 			}
1774 
1775 			/*
1776 			 * The TRAMP needs to be set only if rec count
1777 			 * is decremented to one, and the ops that is
1778 			 * left has a trampoline. As TRAMP can only be
1779 			 * enabled if there is only a single ops attached
1780 			 * to it.
1781 			 */
1782 			if (ftrace_rec_count(rec) == 1 &&
1783 			    ftrace_find_tramp_ops_any_other(rec, ops))
1784 				rec->flags |= FTRACE_FL_TRAMP;
1785 			else
1786 				rec->flags &= ~FTRACE_FL_TRAMP;
1787 
1788 			/*
1789 			 * flags will be cleared in ftrace_check_record()
1790 			 * if rec count is zero.
1791 			 */
1792 		}
1793 		count++;
1794 
1795 		/* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */
1796 		update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE;
1797 
1798 		/* Shortcut, if we handled all records, we are done. */
1799 		if (!all && count == hash->count)
1800 			return update;
1801 	} while_for_each_ftrace_rec();
1802 
1803 	return update;
1804 }
1805 
1806 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops,
1807 				    int filter_hash)
1808 {
1809 	return __ftrace_hash_rec_update(ops, filter_hash, 0);
1810 }
1811 
1812 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops,
1813 				   int filter_hash)
1814 {
1815 	return __ftrace_hash_rec_update(ops, filter_hash, 1);
1816 }
1817 
1818 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops,
1819 					  int filter_hash, int inc)
1820 {
1821 	struct ftrace_ops *op;
1822 
1823 	__ftrace_hash_rec_update(ops, filter_hash, inc);
1824 
1825 	if (ops->func_hash != &global_ops.local_hash)
1826 		return;
1827 
1828 	/*
1829 	 * If the ops shares the global_ops hash, then we need to update
1830 	 * all ops that are enabled and use this hash.
1831 	 */
1832 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1833 		/* Already done */
1834 		if (op == ops)
1835 			continue;
1836 		if (op->func_hash == &global_ops.local_hash)
1837 			__ftrace_hash_rec_update(op, filter_hash, inc);
1838 	} while_for_each_ftrace_op(op);
1839 }
1840 
1841 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops,
1842 					   int filter_hash)
1843 {
1844 	ftrace_hash_rec_update_modify(ops, filter_hash, 0);
1845 }
1846 
1847 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops,
1848 					  int filter_hash)
1849 {
1850 	ftrace_hash_rec_update_modify(ops, filter_hash, 1);
1851 }
1852 
1853 /*
1854  * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK
1855  * or no-needed to update, -EBUSY if it detects a conflict of the flag
1856  * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs.
1857  * Note that old_hash and new_hash has below meanings
1858  *  - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected)
1859  *  - If the hash is EMPTY_HASH, it hits nothing
1860  *  - Anything else hits the recs which match the hash entries.
1861  */
1862 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops,
1863 					 struct ftrace_hash *old_hash,
1864 					 struct ftrace_hash *new_hash)
1865 {
1866 	struct ftrace_page *pg;
1867 	struct dyn_ftrace *rec, *end = NULL;
1868 	int in_old, in_new;
1869 
1870 	/* Only update if the ops has been registered */
1871 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1872 		return 0;
1873 
1874 	if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
1875 		return 0;
1876 
1877 	/*
1878 	 * Since the IPMODIFY is a very address sensitive action, we do not
1879 	 * allow ftrace_ops to set all functions to new hash.
1880 	 */
1881 	if (!new_hash || !old_hash)
1882 		return -EINVAL;
1883 
1884 	/* Update rec->flags */
1885 	do_for_each_ftrace_rec(pg, rec) {
1886 
1887 		if (rec->flags & FTRACE_FL_DISABLED)
1888 			continue;
1889 
1890 		/* We need to update only differences of filter_hash */
1891 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1892 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1893 		if (in_old == in_new)
1894 			continue;
1895 
1896 		if (in_new) {
1897 			/* New entries must ensure no others are using it */
1898 			if (rec->flags & FTRACE_FL_IPMODIFY)
1899 				goto rollback;
1900 			rec->flags |= FTRACE_FL_IPMODIFY;
1901 		} else /* Removed entry */
1902 			rec->flags &= ~FTRACE_FL_IPMODIFY;
1903 	} while_for_each_ftrace_rec();
1904 
1905 	return 0;
1906 
1907 rollback:
1908 	end = rec;
1909 
1910 	/* Roll back what we did above */
1911 	do_for_each_ftrace_rec(pg, rec) {
1912 
1913 		if (rec->flags & FTRACE_FL_DISABLED)
1914 			continue;
1915 
1916 		if (rec == end)
1917 			goto err_out;
1918 
1919 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1920 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1921 		if (in_old == in_new)
1922 			continue;
1923 
1924 		if (in_new)
1925 			rec->flags &= ~FTRACE_FL_IPMODIFY;
1926 		else
1927 			rec->flags |= FTRACE_FL_IPMODIFY;
1928 	} while_for_each_ftrace_rec();
1929 
1930 err_out:
1931 	return -EBUSY;
1932 }
1933 
1934 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops)
1935 {
1936 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
1937 
1938 	if (ftrace_hash_empty(hash))
1939 		hash = NULL;
1940 
1941 	return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash);
1942 }
1943 
1944 /* Disabling always succeeds */
1945 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops)
1946 {
1947 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
1948 
1949 	if (ftrace_hash_empty(hash))
1950 		hash = NULL;
1951 
1952 	__ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH);
1953 }
1954 
1955 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1956 				       struct ftrace_hash *new_hash)
1957 {
1958 	struct ftrace_hash *old_hash = ops->func_hash->filter_hash;
1959 
1960 	if (ftrace_hash_empty(old_hash))
1961 		old_hash = NULL;
1962 
1963 	if (ftrace_hash_empty(new_hash))
1964 		new_hash = NULL;
1965 
1966 	return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash);
1967 }
1968 
1969 static void print_ip_ins(const char *fmt, const unsigned char *p)
1970 {
1971 	char ins[MCOUNT_INSN_SIZE];
1972 	int i;
1973 
1974 	if (copy_from_kernel_nofault(ins, p, MCOUNT_INSN_SIZE)) {
1975 		printk(KERN_CONT "%s[FAULT] %px\n", fmt, p);
1976 		return;
1977 	}
1978 
1979 	printk(KERN_CONT "%s", fmt);
1980 
1981 	for (i = 0; i < MCOUNT_INSN_SIZE; i++)
1982 		printk(KERN_CONT "%s%02x", i ? ":" : "", ins[i]);
1983 }
1984 
1985 enum ftrace_bug_type ftrace_bug_type;
1986 const void *ftrace_expected;
1987 
1988 static void print_bug_type(void)
1989 {
1990 	switch (ftrace_bug_type) {
1991 	case FTRACE_BUG_UNKNOWN:
1992 		break;
1993 	case FTRACE_BUG_INIT:
1994 		pr_info("Initializing ftrace call sites\n");
1995 		break;
1996 	case FTRACE_BUG_NOP:
1997 		pr_info("Setting ftrace call site to NOP\n");
1998 		break;
1999 	case FTRACE_BUG_CALL:
2000 		pr_info("Setting ftrace call site to call ftrace function\n");
2001 		break;
2002 	case FTRACE_BUG_UPDATE:
2003 		pr_info("Updating ftrace call site to call a different ftrace function\n");
2004 		break;
2005 	}
2006 }
2007 
2008 /**
2009  * ftrace_bug - report and shutdown function tracer
2010  * @failed: The failed type (EFAULT, EINVAL, EPERM)
2011  * @rec: The record that failed
2012  *
2013  * The arch code that enables or disables the function tracing
2014  * can call ftrace_bug() when it has detected a problem in
2015  * modifying the code. @failed should be one of either:
2016  * EFAULT - if the problem happens on reading the @ip address
2017  * EINVAL - if what is read at @ip is not what was expected
2018  * EPERM - if the problem happens on writing to the @ip address
2019  */
2020 void ftrace_bug(int failed, struct dyn_ftrace *rec)
2021 {
2022 	unsigned long ip = rec ? rec->ip : 0;
2023 
2024 	pr_info("------------[ ftrace bug ]------------\n");
2025 
2026 	switch (failed) {
2027 	case -EFAULT:
2028 		pr_info("ftrace faulted on modifying ");
2029 		print_ip_sym(KERN_INFO, ip);
2030 		break;
2031 	case -EINVAL:
2032 		pr_info("ftrace failed to modify ");
2033 		print_ip_sym(KERN_INFO, ip);
2034 		print_ip_ins(" actual:   ", (unsigned char *)ip);
2035 		pr_cont("\n");
2036 		if (ftrace_expected) {
2037 			print_ip_ins(" expected: ", ftrace_expected);
2038 			pr_cont("\n");
2039 		}
2040 		break;
2041 	case -EPERM:
2042 		pr_info("ftrace faulted on writing ");
2043 		print_ip_sym(KERN_INFO, ip);
2044 		break;
2045 	default:
2046 		pr_info("ftrace faulted on unknown error ");
2047 		print_ip_sym(KERN_INFO, ip);
2048 	}
2049 	print_bug_type();
2050 	if (rec) {
2051 		struct ftrace_ops *ops = NULL;
2052 
2053 		pr_info("ftrace record flags: %lx\n", rec->flags);
2054 		pr_cont(" (%ld)%s", ftrace_rec_count(rec),
2055 			rec->flags & FTRACE_FL_REGS ? " R" : "  ");
2056 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
2057 			ops = ftrace_find_tramp_ops_any(rec);
2058 			if (ops) {
2059 				do {
2060 					pr_cont("\ttramp: %pS (%pS)",
2061 						(void *)ops->trampoline,
2062 						(void *)ops->func);
2063 					ops = ftrace_find_tramp_ops_next(rec, ops);
2064 				} while (ops);
2065 			} else
2066 				pr_cont("\ttramp: ERROR!");
2067 
2068 		}
2069 		ip = ftrace_get_addr_curr(rec);
2070 		pr_cont("\n expected tramp: %lx\n", ip);
2071 	}
2072 
2073 	FTRACE_WARN_ON_ONCE(1);
2074 }
2075 
2076 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update)
2077 {
2078 	unsigned long flag = 0UL;
2079 
2080 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2081 
2082 	if (rec->flags & FTRACE_FL_DISABLED)
2083 		return FTRACE_UPDATE_IGNORE;
2084 
2085 	/*
2086 	 * If we are updating calls:
2087 	 *
2088 	 *   If the record has a ref count, then we need to enable it
2089 	 *   because someone is using it.
2090 	 *
2091 	 *   Otherwise we make sure its disabled.
2092 	 *
2093 	 * If we are disabling calls, then disable all records that
2094 	 * are enabled.
2095 	 */
2096 	if (enable && ftrace_rec_count(rec))
2097 		flag = FTRACE_FL_ENABLED;
2098 
2099 	/*
2100 	 * If enabling and the REGS flag does not match the REGS_EN, or
2101 	 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore
2102 	 * this record. Set flags to fail the compare against ENABLED.
2103 	 * Same for direct calls.
2104 	 */
2105 	if (flag) {
2106 		if (!(rec->flags & FTRACE_FL_REGS) !=
2107 		    !(rec->flags & FTRACE_FL_REGS_EN))
2108 			flag |= FTRACE_FL_REGS;
2109 
2110 		if (!(rec->flags & FTRACE_FL_TRAMP) !=
2111 		    !(rec->flags & FTRACE_FL_TRAMP_EN))
2112 			flag |= FTRACE_FL_TRAMP;
2113 
2114 		/*
2115 		 * Direct calls are special, as count matters.
2116 		 * We must test the record for direct, if the
2117 		 * DIRECT and DIRECT_EN do not match, but only
2118 		 * if the count is 1. That's because, if the
2119 		 * count is something other than one, we do not
2120 		 * want the direct enabled (it will be done via the
2121 		 * direct helper). But if DIRECT_EN is set, and
2122 		 * the count is not one, we need to clear it.
2123 		 */
2124 		if (ftrace_rec_count(rec) == 1) {
2125 			if (!(rec->flags & FTRACE_FL_DIRECT) !=
2126 			    !(rec->flags & FTRACE_FL_DIRECT_EN))
2127 				flag |= FTRACE_FL_DIRECT;
2128 		} else if (rec->flags & FTRACE_FL_DIRECT_EN) {
2129 			flag |= FTRACE_FL_DIRECT;
2130 		}
2131 	}
2132 
2133 	/* If the state of this record hasn't changed, then do nothing */
2134 	if ((rec->flags & FTRACE_FL_ENABLED) == flag)
2135 		return FTRACE_UPDATE_IGNORE;
2136 
2137 	if (flag) {
2138 		/* Save off if rec is being enabled (for return value) */
2139 		flag ^= rec->flags & FTRACE_FL_ENABLED;
2140 
2141 		if (update) {
2142 			rec->flags |= FTRACE_FL_ENABLED;
2143 			if (flag & FTRACE_FL_REGS) {
2144 				if (rec->flags & FTRACE_FL_REGS)
2145 					rec->flags |= FTRACE_FL_REGS_EN;
2146 				else
2147 					rec->flags &= ~FTRACE_FL_REGS_EN;
2148 			}
2149 			if (flag & FTRACE_FL_TRAMP) {
2150 				if (rec->flags & FTRACE_FL_TRAMP)
2151 					rec->flags |= FTRACE_FL_TRAMP_EN;
2152 				else
2153 					rec->flags &= ~FTRACE_FL_TRAMP_EN;
2154 			}
2155 
2156 			if (flag & FTRACE_FL_DIRECT) {
2157 				/*
2158 				 * If there's only one user (direct_ops helper)
2159 				 * then we can call the direct function
2160 				 * directly (no ftrace trampoline).
2161 				 */
2162 				if (ftrace_rec_count(rec) == 1) {
2163 					if (rec->flags & FTRACE_FL_DIRECT)
2164 						rec->flags |= FTRACE_FL_DIRECT_EN;
2165 					else
2166 						rec->flags &= ~FTRACE_FL_DIRECT_EN;
2167 				} else {
2168 					/*
2169 					 * Can only call directly if there's
2170 					 * only one callback to the function.
2171 					 */
2172 					rec->flags &= ~FTRACE_FL_DIRECT_EN;
2173 				}
2174 			}
2175 		}
2176 
2177 		/*
2178 		 * If this record is being updated from a nop, then
2179 		 *   return UPDATE_MAKE_CALL.
2180 		 * Otherwise,
2181 		 *   return UPDATE_MODIFY_CALL to tell the caller to convert
2182 		 *   from the save regs, to a non-save regs function or
2183 		 *   vice versa, or from a trampoline call.
2184 		 */
2185 		if (flag & FTRACE_FL_ENABLED) {
2186 			ftrace_bug_type = FTRACE_BUG_CALL;
2187 			return FTRACE_UPDATE_MAKE_CALL;
2188 		}
2189 
2190 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2191 		return FTRACE_UPDATE_MODIFY_CALL;
2192 	}
2193 
2194 	if (update) {
2195 		/* If there's no more users, clear all flags */
2196 		if (!ftrace_rec_count(rec))
2197 			rec->flags = 0;
2198 		else
2199 			/*
2200 			 * Just disable the record, but keep the ops TRAMP
2201 			 * and REGS states. The _EN flags must be disabled though.
2202 			 */
2203 			rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN |
2204 					FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN);
2205 	}
2206 
2207 	ftrace_bug_type = FTRACE_BUG_NOP;
2208 	return FTRACE_UPDATE_MAKE_NOP;
2209 }
2210 
2211 /**
2212  * ftrace_update_record, set a record that now is tracing or not
2213  * @rec: the record to update
2214  * @enable: set to true if the record is tracing, false to force disable
2215  *
2216  * The records that represent all functions that can be traced need
2217  * to be updated when tracing has been enabled.
2218  */
2219 int ftrace_update_record(struct dyn_ftrace *rec, bool enable)
2220 {
2221 	return ftrace_check_record(rec, enable, true);
2222 }
2223 
2224 /**
2225  * ftrace_test_record, check if the record has been enabled or not
2226  * @rec: the record to test
2227  * @enable: set to true to check if enabled, false if it is disabled
2228  *
2229  * The arch code may need to test if a record is already set to
2230  * tracing to determine how to modify the function code that it
2231  * represents.
2232  */
2233 int ftrace_test_record(struct dyn_ftrace *rec, bool enable)
2234 {
2235 	return ftrace_check_record(rec, enable, false);
2236 }
2237 
2238 static struct ftrace_ops *
2239 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec)
2240 {
2241 	struct ftrace_ops *op;
2242 	unsigned long ip = rec->ip;
2243 
2244 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2245 
2246 		if (!op->trampoline)
2247 			continue;
2248 
2249 		if (hash_contains_ip(ip, op->func_hash))
2250 			return op;
2251 	} while_for_each_ftrace_op(op);
2252 
2253 	return NULL;
2254 }
2255 
2256 static struct ftrace_ops *
2257 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude)
2258 {
2259 	struct ftrace_ops *op;
2260 	unsigned long ip = rec->ip;
2261 
2262 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2263 
2264 		if (op == op_exclude || !op->trampoline)
2265 			continue;
2266 
2267 		if (hash_contains_ip(ip, op->func_hash))
2268 			return op;
2269 	} while_for_each_ftrace_op(op);
2270 
2271 	return NULL;
2272 }
2273 
2274 static struct ftrace_ops *
2275 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec,
2276 			   struct ftrace_ops *op)
2277 {
2278 	unsigned long ip = rec->ip;
2279 
2280 	while_for_each_ftrace_op(op) {
2281 
2282 		if (!op->trampoline)
2283 			continue;
2284 
2285 		if (hash_contains_ip(ip, op->func_hash))
2286 			return op;
2287 	}
2288 
2289 	return NULL;
2290 }
2291 
2292 static struct ftrace_ops *
2293 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec)
2294 {
2295 	struct ftrace_ops *op;
2296 	unsigned long ip = rec->ip;
2297 
2298 	/*
2299 	 * Need to check removed ops first.
2300 	 * If they are being removed, and this rec has a tramp,
2301 	 * and this rec is in the ops list, then it would be the
2302 	 * one with the tramp.
2303 	 */
2304 	if (removed_ops) {
2305 		if (hash_contains_ip(ip, &removed_ops->old_hash))
2306 			return removed_ops;
2307 	}
2308 
2309 	/*
2310 	 * Need to find the current trampoline for a rec.
2311 	 * Now, a trampoline is only attached to a rec if there
2312 	 * was a single 'ops' attached to it. But this can be called
2313 	 * when we are adding another op to the rec or removing the
2314 	 * current one. Thus, if the op is being added, we can
2315 	 * ignore it because it hasn't attached itself to the rec
2316 	 * yet.
2317 	 *
2318 	 * If an ops is being modified (hooking to different functions)
2319 	 * then we don't care about the new functions that are being
2320 	 * added, just the old ones (that are probably being removed).
2321 	 *
2322 	 * If we are adding an ops to a function that already is using
2323 	 * a trampoline, it needs to be removed (trampolines are only
2324 	 * for single ops connected), then an ops that is not being
2325 	 * modified also needs to be checked.
2326 	 */
2327 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2328 
2329 		if (!op->trampoline)
2330 			continue;
2331 
2332 		/*
2333 		 * If the ops is being added, it hasn't gotten to
2334 		 * the point to be removed from this tree yet.
2335 		 */
2336 		if (op->flags & FTRACE_OPS_FL_ADDING)
2337 			continue;
2338 
2339 
2340 		/*
2341 		 * If the ops is being modified and is in the old
2342 		 * hash, then it is probably being removed from this
2343 		 * function.
2344 		 */
2345 		if ((op->flags & FTRACE_OPS_FL_MODIFYING) &&
2346 		    hash_contains_ip(ip, &op->old_hash))
2347 			return op;
2348 		/*
2349 		 * If the ops is not being added or modified, and it's
2350 		 * in its normal filter hash, then this must be the one
2351 		 * we want!
2352 		 */
2353 		if (!(op->flags & FTRACE_OPS_FL_MODIFYING) &&
2354 		    hash_contains_ip(ip, op->func_hash))
2355 			return op;
2356 
2357 	} while_for_each_ftrace_op(op);
2358 
2359 	return NULL;
2360 }
2361 
2362 static struct ftrace_ops *
2363 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec)
2364 {
2365 	struct ftrace_ops *op;
2366 	unsigned long ip = rec->ip;
2367 
2368 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2369 		/* pass rec in as regs to have non-NULL val */
2370 		if (hash_contains_ip(ip, op->func_hash))
2371 			return op;
2372 	} while_for_each_ftrace_op(op);
2373 
2374 	return NULL;
2375 }
2376 
2377 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
2378 /* Protected by rcu_tasks for reading, and direct_mutex for writing */
2379 static struct ftrace_hash *direct_functions = EMPTY_HASH;
2380 static DEFINE_MUTEX(direct_mutex);
2381 int ftrace_direct_func_count;
2382 
2383 /*
2384  * Search the direct_functions hash to see if the given instruction pointer
2385  * has a direct caller attached to it.
2386  */
2387 unsigned long ftrace_find_rec_direct(unsigned long ip)
2388 {
2389 	struct ftrace_func_entry *entry;
2390 
2391 	entry = __ftrace_lookup_ip(direct_functions, ip);
2392 	if (!entry)
2393 		return 0;
2394 
2395 	return entry->direct;
2396 }
2397 
2398 static void call_direct_funcs(unsigned long ip, unsigned long pip,
2399 			      struct ftrace_ops *ops, struct ftrace_regs *fregs)
2400 {
2401 	struct pt_regs *regs = ftrace_get_regs(fregs);
2402 	unsigned long addr;
2403 
2404 	addr = ftrace_find_rec_direct(ip);
2405 	if (!addr)
2406 		return;
2407 
2408 	arch_ftrace_set_direct_caller(regs, addr);
2409 }
2410 
2411 struct ftrace_ops direct_ops = {
2412 	.func		= call_direct_funcs,
2413 	.flags		= FTRACE_OPS_FL_IPMODIFY
2414 			  | FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS
2415 			  | FTRACE_OPS_FL_PERMANENT,
2416 	/*
2417 	 * By declaring the main trampoline as this trampoline
2418 	 * it will never have one allocated for it. Allocated
2419 	 * trampolines should not call direct functions.
2420 	 * The direct_ops should only be called by the builtin
2421 	 * ftrace_regs_caller trampoline.
2422 	 */
2423 	.trampoline	= FTRACE_REGS_ADDR,
2424 };
2425 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
2426 
2427 /**
2428  * ftrace_get_addr_new - Get the call address to set to
2429  * @rec:  The ftrace record descriptor
2430  *
2431  * If the record has the FTRACE_FL_REGS set, that means that it
2432  * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS
2433  * is not set, then it wants to convert to the normal callback.
2434  *
2435  * Returns the address of the trampoline to set to
2436  */
2437 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec)
2438 {
2439 	struct ftrace_ops *ops;
2440 	unsigned long addr;
2441 
2442 	if ((rec->flags & FTRACE_FL_DIRECT) &&
2443 	    (ftrace_rec_count(rec) == 1)) {
2444 		addr = ftrace_find_rec_direct(rec->ip);
2445 		if (addr)
2446 			return addr;
2447 		WARN_ON_ONCE(1);
2448 	}
2449 
2450 	/* Trampolines take precedence over regs */
2451 	if (rec->flags & FTRACE_FL_TRAMP) {
2452 		ops = ftrace_find_tramp_ops_new(rec);
2453 		if (FTRACE_WARN_ON(!ops || !ops->trampoline)) {
2454 			pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n",
2455 				(void *)rec->ip, (void *)rec->ip, rec->flags);
2456 			/* Ftrace is shutting down, return anything */
2457 			return (unsigned long)FTRACE_ADDR;
2458 		}
2459 		return ops->trampoline;
2460 	}
2461 
2462 	if (rec->flags & FTRACE_FL_REGS)
2463 		return (unsigned long)FTRACE_REGS_ADDR;
2464 	else
2465 		return (unsigned long)FTRACE_ADDR;
2466 }
2467 
2468 /**
2469  * ftrace_get_addr_curr - Get the call address that is already there
2470  * @rec:  The ftrace record descriptor
2471  *
2472  * The FTRACE_FL_REGS_EN is set when the record already points to
2473  * a function that saves all the regs. Basically the '_EN' version
2474  * represents the current state of the function.
2475  *
2476  * Returns the address of the trampoline that is currently being called
2477  */
2478 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec)
2479 {
2480 	struct ftrace_ops *ops;
2481 	unsigned long addr;
2482 
2483 	/* Direct calls take precedence over trampolines */
2484 	if (rec->flags & FTRACE_FL_DIRECT_EN) {
2485 		addr = ftrace_find_rec_direct(rec->ip);
2486 		if (addr)
2487 			return addr;
2488 		WARN_ON_ONCE(1);
2489 	}
2490 
2491 	/* Trampolines take precedence over regs */
2492 	if (rec->flags & FTRACE_FL_TRAMP_EN) {
2493 		ops = ftrace_find_tramp_ops_curr(rec);
2494 		if (FTRACE_WARN_ON(!ops)) {
2495 			pr_warn("Bad trampoline accounting at: %p (%pS)\n",
2496 				(void *)rec->ip, (void *)rec->ip);
2497 			/* Ftrace is shutting down, return anything */
2498 			return (unsigned long)FTRACE_ADDR;
2499 		}
2500 		return ops->trampoline;
2501 	}
2502 
2503 	if (rec->flags & FTRACE_FL_REGS_EN)
2504 		return (unsigned long)FTRACE_REGS_ADDR;
2505 	else
2506 		return (unsigned long)FTRACE_ADDR;
2507 }
2508 
2509 static int
2510 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable)
2511 {
2512 	unsigned long ftrace_old_addr;
2513 	unsigned long ftrace_addr;
2514 	int ret;
2515 
2516 	ftrace_addr = ftrace_get_addr_new(rec);
2517 
2518 	/* This needs to be done before we call ftrace_update_record */
2519 	ftrace_old_addr = ftrace_get_addr_curr(rec);
2520 
2521 	ret = ftrace_update_record(rec, enable);
2522 
2523 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2524 
2525 	switch (ret) {
2526 	case FTRACE_UPDATE_IGNORE:
2527 		return 0;
2528 
2529 	case FTRACE_UPDATE_MAKE_CALL:
2530 		ftrace_bug_type = FTRACE_BUG_CALL;
2531 		return ftrace_make_call(rec, ftrace_addr);
2532 
2533 	case FTRACE_UPDATE_MAKE_NOP:
2534 		ftrace_bug_type = FTRACE_BUG_NOP;
2535 		return ftrace_make_nop(NULL, rec, ftrace_old_addr);
2536 
2537 	case FTRACE_UPDATE_MODIFY_CALL:
2538 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2539 		return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr);
2540 	}
2541 
2542 	return -1; /* unknown ftrace bug */
2543 }
2544 
2545 void __weak ftrace_replace_code(int mod_flags)
2546 {
2547 	struct dyn_ftrace *rec;
2548 	struct ftrace_page *pg;
2549 	bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL;
2550 	int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL;
2551 	int failed;
2552 
2553 	if (unlikely(ftrace_disabled))
2554 		return;
2555 
2556 	do_for_each_ftrace_rec(pg, rec) {
2557 
2558 		if (rec->flags & FTRACE_FL_DISABLED)
2559 			continue;
2560 
2561 		failed = __ftrace_replace_code(rec, enable);
2562 		if (failed) {
2563 			ftrace_bug(failed, rec);
2564 			/* Stop processing */
2565 			return;
2566 		}
2567 		if (schedulable)
2568 			cond_resched();
2569 	} while_for_each_ftrace_rec();
2570 }
2571 
2572 struct ftrace_rec_iter {
2573 	struct ftrace_page	*pg;
2574 	int			index;
2575 };
2576 
2577 /**
2578  * ftrace_rec_iter_start, start up iterating over traced functions
2579  *
2580  * Returns an iterator handle that is used to iterate over all
2581  * the records that represent address locations where functions
2582  * are traced.
2583  *
2584  * May return NULL if no records are available.
2585  */
2586 struct ftrace_rec_iter *ftrace_rec_iter_start(void)
2587 {
2588 	/*
2589 	 * We only use a single iterator.
2590 	 * Protected by the ftrace_lock mutex.
2591 	 */
2592 	static struct ftrace_rec_iter ftrace_rec_iter;
2593 	struct ftrace_rec_iter *iter = &ftrace_rec_iter;
2594 
2595 	iter->pg = ftrace_pages_start;
2596 	iter->index = 0;
2597 
2598 	/* Could have empty pages */
2599 	while (iter->pg && !iter->pg->index)
2600 		iter->pg = iter->pg->next;
2601 
2602 	if (!iter->pg)
2603 		return NULL;
2604 
2605 	return iter;
2606 }
2607 
2608 /**
2609  * ftrace_rec_iter_next, get the next record to process.
2610  * @iter: The handle to the iterator.
2611  *
2612  * Returns the next iterator after the given iterator @iter.
2613  */
2614 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter)
2615 {
2616 	iter->index++;
2617 
2618 	if (iter->index >= iter->pg->index) {
2619 		iter->pg = iter->pg->next;
2620 		iter->index = 0;
2621 
2622 		/* Could have empty pages */
2623 		while (iter->pg && !iter->pg->index)
2624 			iter->pg = iter->pg->next;
2625 	}
2626 
2627 	if (!iter->pg)
2628 		return NULL;
2629 
2630 	return iter;
2631 }
2632 
2633 /**
2634  * ftrace_rec_iter_record, get the record at the iterator location
2635  * @iter: The current iterator location
2636  *
2637  * Returns the record that the current @iter is at.
2638  */
2639 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter)
2640 {
2641 	return &iter->pg->records[iter->index];
2642 }
2643 
2644 static int
2645 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec)
2646 {
2647 	int ret;
2648 
2649 	if (unlikely(ftrace_disabled))
2650 		return 0;
2651 
2652 	ret = ftrace_init_nop(mod, rec);
2653 	if (ret) {
2654 		ftrace_bug_type = FTRACE_BUG_INIT;
2655 		ftrace_bug(ret, rec);
2656 		return 0;
2657 	}
2658 	return 1;
2659 }
2660 
2661 /*
2662  * archs can override this function if they must do something
2663  * before the modifying code is performed.
2664  */
2665 int __weak ftrace_arch_code_modify_prepare(void)
2666 {
2667 	return 0;
2668 }
2669 
2670 /*
2671  * archs can override this function if they must do something
2672  * after the modifying code is performed.
2673  */
2674 int __weak ftrace_arch_code_modify_post_process(void)
2675 {
2676 	return 0;
2677 }
2678 
2679 void ftrace_modify_all_code(int command)
2680 {
2681 	int update = command & FTRACE_UPDATE_TRACE_FUNC;
2682 	int mod_flags = 0;
2683 	int err = 0;
2684 
2685 	if (command & FTRACE_MAY_SLEEP)
2686 		mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL;
2687 
2688 	/*
2689 	 * If the ftrace_caller calls a ftrace_ops func directly,
2690 	 * we need to make sure that it only traces functions it
2691 	 * expects to trace. When doing the switch of functions,
2692 	 * we need to update to the ftrace_ops_list_func first
2693 	 * before the transition between old and new calls are set,
2694 	 * as the ftrace_ops_list_func will check the ops hashes
2695 	 * to make sure the ops are having the right functions
2696 	 * traced.
2697 	 */
2698 	if (update) {
2699 		err = ftrace_update_ftrace_func(ftrace_ops_list_func);
2700 		if (FTRACE_WARN_ON(err))
2701 			return;
2702 	}
2703 
2704 	if (command & FTRACE_UPDATE_CALLS)
2705 		ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL);
2706 	else if (command & FTRACE_DISABLE_CALLS)
2707 		ftrace_replace_code(mod_flags);
2708 
2709 	if (update && ftrace_trace_function != ftrace_ops_list_func) {
2710 		function_trace_op = set_function_trace_op;
2711 		smp_wmb();
2712 		/* If irqs are disabled, we are in stop machine */
2713 		if (!irqs_disabled())
2714 			smp_call_function(ftrace_sync_ipi, NULL, 1);
2715 		err = ftrace_update_ftrace_func(ftrace_trace_function);
2716 		if (FTRACE_WARN_ON(err))
2717 			return;
2718 	}
2719 
2720 	if (command & FTRACE_START_FUNC_RET)
2721 		err = ftrace_enable_ftrace_graph_caller();
2722 	else if (command & FTRACE_STOP_FUNC_RET)
2723 		err = ftrace_disable_ftrace_graph_caller();
2724 	FTRACE_WARN_ON(err);
2725 }
2726 
2727 static int __ftrace_modify_code(void *data)
2728 {
2729 	int *command = data;
2730 
2731 	ftrace_modify_all_code(*command);
2732 
2733 	return 0;
2734 }
2735 
2736 /**
2737  * ftrace_run_stop_machine, go back to the stop machine method
2738  * @command: The command to tell ftrace what to do
2739  *
2740  * If an arch needs to fall back to the stop machine method, the
2741  * it can call this function.
2742  */
2743 void ftrace_run_stop_machine(int command)
2744 {
2745 	stop_machine(__ftrace_modify_code, &command, NULL);
2746 }
2747 
2748 /**
2749  * arch_ftrace_update_code, modify the code to trace or not trace
2750  * @command: The command that needs to be done
2751  *
2752  * Archs can override this function if it does not need to
2753  * run stop_machine() to modify code.
2754  */
2755 void __weak arch_ftrace_update_code(int command)
2756 {
2757 	ftrace_run_stop_machine(command);
2758 }
2759 
2760 static void ftrace_run_update_code(int command)
2761 {
2762 	int ret;
2763 
2764 	ret = ftrace_arch_code_modify_prepare();
2765 	FTRACE_WARN_ON(ret);
2766 	if (ret)
2767 		return;
2768 
2769 	/*
2770 	 * By default we use stop_machine() to modify the code.
2771 	 * But archs can do what ever they want as long as it
2772 	 * is safe. The stop_machine() is the safest, but also
2773 	 * produces the most overhead.
2774 	 */
2775 	arch_ftrace_update_code(command);
2776 
2777 	ret = ftrace_arch_code_modify_post_process();
2778 	FTRACE_WARN_ON(ret);
2779 }
2780 
2781 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command,
2782 				   struct ftrace_ops_hash *old_hash)
2783 {
2784 	ops->flags |= FTRACE_OPS_FL_MODIFYING;
2785 	ops->old_hash.filter_hash = old_hash->filter_hash;
2786 	ops->old_hash.notrace_hash = old_hash->notrace_hash;
2787 	ftrace_run_update_code(command);
2788 	ops->old_hash.filter_hash = NULL;
2789 	ops->old_hash.notrace_hash = NULL;
2790 	ops->flags &= ~FTRACE_OPS_FL_MODIFYING;
2791 }
2792 
2793 static ftrace_func_t saved_ftrace_func;
2794 static int ftrace_start_up;
2795 
2796 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops)
2797 {
2798 }
2799 
2800 /* List of trace_ops that have allocated trampolines */
2801 static LIST_HEAD(ftrace_ops_trampoline_list);
2802 
2803 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops)
2804 {
2805 	lockdep_assert_held(&ftrace_lock);
2806 	list_add_rcu(&ops->list, &ftrace_ops_trampoline_list);
2807 }
2808 
2809 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops)
2810 {
2811 	lockdep_assert_held(&ftrace_lock);
2812 	list_del_rcu(&ops->list);
2813 	synchronize_rcu();
2814 }
2815 
2816 /*
2817  * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols
2818  * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is
2819  * not a module.
2820  */
2821 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace"
2822 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline"
2823 
2824 static void ftrace_trampoline_free(struct ftrace_ops *ops)
2825 {
2826 	if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) &&
2827 	    ops->trampoline) {
2828 		/*
2829 		 * Record the text poke event before the ksymbol unregister
2830 		 * event.
2831 		 */
2832 		perf_event_text_poke((void *)ops->trampoline,
2833 				     (void *)ops->trampoline,
2834 				     ops->trampoline_size, NULL, 0);
2835 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
2836 				   ops->trampoline, ops->trampoline_size,
2837 				   true, FTRACE_TRAMPOLINE_SYM);
2838 		/* Remove from kallsyms after the perf events */
2839 		ftrace_remove_trampoline_from_kallsyms(ops);
2840 	}
2841 
2842 	arch_ftrace_trampoline_free(ops);
2843 }
2844 
2845 static void ftrace_startup_enable(int command)
2846 {
2847 	if (saved_ftrace_func != ftrace_trace_function) {
2848 		saved_ftrace_func = ftrace_trace_function;
2849 		command |= FTRACE_UPDATE_TRACE_FUNC;
2850 	}
2851 
2852 	if (!command || !ftrace_enabled)
2853 		return;
2854 
2855 	ftrace_run_update_code(command);
2856 }
2857 
2858 static void ftrace_startup_all(int command)
2859 {
2860 	update_all_ops = true;
2861 	ftrace_startup_enable(command);
2862 	update_all_ops = false;
2863 }
2864 
2865 int ftrace_startup(struct ftrace_ops *ops, int command)
2866 {
2867 	int ret;
2868 
2869 	if (unlikely(ftrace_disabled))
2870 		return -ENODEV;
2871 
2872 	ret = __register_ftrace_function(ops);
2873 	if (ret)
2874 		return ret;
2875 
2876 	ftrace_start_up++;
2877 
2878 	/*
2879 	 * Note that ftrace probes uses this to start up
2880 	 * and modify functions it will probe. But we still
2881 	 * set the ADDING flag for modification, as probes
2882 	 * do not have trampolines. If they add them in the
2883 	 * future, then the probes will need to distinguish
2884 	 * between adding and updating probes.
2885 	 */
2886 	ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING;
2887 
2888 	ret = ftrace_hash_ipmodify_enable(ops);
2889 	if (ret < 0) {
2890 		/* Rollback registration process */
2891 		__unregister_ftrace_function(ops);
2892 		ftrace_start_up--;
2893 		ops->flags &= ~FTRACE_OPS_FL_ENABLED;
2894 		if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
2895 			ftrace_trampoline_free(ops);
2896 		return ret;
2897 	}
2898 
2899 	if (ftrace_hash_rec_enable(ops, 1))
2900 		command |= FTRACE_UPDATE_CALLS;
2901 
2902 	ftrace_startup_enable(command);
2903 
2904 	ops->flags &= ~FTRACE_OPS_FL_ADDING;
2905 
2906 	return 0;
2907 }
2908 
2909 int ftrace_shutdown(struct ftrace_ops *ops, int command)
2910 {
2911 	int ret;
2912 
2913 	if (unlikely(ftrace_disabled))
2914 		return -ENODEV;
2915 
2916 	ret = __unregister_ftrace_function(ops);
2917 	if (ret)
2918 		return ret;
2919 
2920 	ftrace_start_up--;
2921 	/*
2922 	 * Just warn in case of unbalance, no need to kill ftrace, it's not
2923 	 * critical but the ftrace_call callers may be never nopped again after
2924 	 * further ftrace uses.
2925 	 */
2926 	WARN_ON_ONCE(ftrace_start_up < 0);
2927 
2928 	/* Disabling ipmodify never fails */
2929 	ftrace_hash_ipmodify_disable(ops);
2930 
2931 	if (ftrace_hash_rec_disable(ops, 1))
2932 		command |= FTRACE_UPDATE_CALLS;
2933 
2934 	ops->flags &= ~FTRACE_OPS_FL_ENABLED;
2935 
2936 	if (saved_ftrace_func != ftrace_trace_function) {
2937 		saved_ftrace_func = ftrace_trace_function;
2938 		command |= FTRACE_UPDATE_TRACE_FUNC;
2939 	}
2940 
2941 	if (!command || !ftrace_enabled) {
2942 		/*
2943 		 * If these are dynamic or per_cpu ops, they still
2944 		 * need their data freed. Since, function tracing is
2945 		 * not currently active, we can just free them
2946 		 * without synchronizing all CPUs.
2947 		 */
2948 		if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
2949 			goto free_ops;
2950 
2951 		return 0;
2952 	}
2953 
2954 	/*
2955 	 * If the ops uses a trampoline, then it needs to be
2956 	 * tested first on update.
2957 	 */
2958 	ops->flags |= FTRACE_OPS_FL_REMOVING;
2959 	removed_ops = ops;
2960 
2961 	/* The trampoline logic checks the old hashes */
2962 	ops->old_hash.filter_hash = ops->func_hash->filter_hash;
2963 	ops->old_hash.notrace_hash = ops->func_hash->notrace_hash;
2964 
2965 	ftrace_run_update_code(command);
2966 
2967 	/*
2968 	 * If there's no more ops registered with ftrace, run a
2969 	 * sanity check to make sure all rec flags are cleared.
2970 	 */
2971 	if (rcu_dereference_protected(ftrace_ops_list,
2972 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
2973 		struct ftrace_page *pg;
2974 		struct dyn_ftrace *rec;
2975 
2976 		do_for_each_ftrace_rec(pg, rec) {
2977 			if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED))
2978 				pr_warn("  %pS flags:%lx\n",
2979 					(void *)rec->ip, rec->flags);
2980 		} while_for_each_ftrace_rec();
2981 	}
2982 
2983 	ops->old_hash.filter_hash = NULL;
2984 	ops->old_hash.notrace_hash = NULL;
2985 
2986 	removed_ops = NULL;
2987 	ops->flags &= ~FTRACE_OPS_FL_REMOVING;
2988 
2989 	/*
2990 	 * Dynamic ops may be freed, we must make sure that all
2991 	 * callers are done before leaving this function.
2992 	 * The same goes for freeing the per_cpu data of the per_cpu
2993 	 * ops.
2994 	 */
2995 	if (ops->flags & FTRACE_OPS_FL_DYNAMIC) {
2996 		/*
2997 		 * We need to do a hard force of sched synchronization.
2998 		 * This is because we use preempt_disable() to do RCU, but
2999 		 * the function tracers can be called where RCU is not watching
3000 		 * (like before user_exit()). We can not rely on the RCU
3001 		 * infrastructure to do the synchronization, thus we must do it
3002 		 * ourselves.
3003 		 */
3004 		synchronize_rcu_tasks_rude();
3005 
3006 		/*
3007 		 * When the kernel is preemptive, tasks can be preempted
3008 		 * while on a ftrace trampoline. Just scheduling a task on
3009 		 * a CPU is not good enough to flush them. Calling
3010 		 * synchronize_rcu_tasks() will wait for those tasks to
3011 		 * execute and either schedule voluntarily or enter user space.
3012 		 */
3013 		if (IS_ENABLED(CONFIG_PREEMPTION))
3014 			synchronize_rcu_tasks();
3015 
3016  free_ops:
3017 		ftrace_trampoline_free(ops);
3018 	}
3019 
3020 	return 0;
3021 }
3022 
3023 static void ftrace_startup_sysctl(void)
3024 {
3025 	int command;
3026 
3027 	if (unlikely(ftrace_disabled))
3028 		return;
3029 
3030 	/* Force update next time */
3031 	saved_ftrace_func = NULL;
3032 	/* ftrace_start_up is true if we want ftrace running */
3033 	if (ftrace_start_up) {
3034 		command = FTRACE_UPDATE_CALLS;
3035 		if (ftrace_graph_active)
3036 			command |= FTRACE_START_FUNC_RET;
3037 		ftrace_startup_enable(command);
3038 	}
3039 }
3040 
3041 static void ftrace_shutdown_sysctl(void)
3042 {
3043 	int command;
3044 
3045 	if (unlikely(ftrace_disabled))
3046 		return;
3047 
3048 	/* ftrace_start_up is true if ftrace is running */
3049 	if (ftrace_start_up) {
3050 		command = FTRACE_DISABLE_CALLS;
3051 		if (ftrace_graph_active)
3052 			command |= FTRACE_STOP_FUNC_RET;
3053 		ftrace_run_update_code(command);
3054 	}
3055 }
3056 
3057 static u64		ftrace_update_time;
3058 unsigned long		ftrace_update_tot_cnt;
3059 unsigned long		ftrace_number_of_pages;
3060 unsigned long		ftrace_number_of_groups;
3061 
3062 static inline int ops_traces_mod(struct ftrace_ops *ops)
3063 {
3064 	/*
3065 	 * Filter_hash being empty will default to trace module.
3066 	 * But notrace hash requires a test of individual module functions.
3067 	 */
3068 	return ftrace_hash_empty(ops->func_hash->filter_hash) &&
3069 		ftrace_hash_empty(ops->func_hash->notrace_hash);
3070 }
3071 
3072 /*
3073  * Check if the current ops references the record.
3074  *
3075  * If the ops traces all functions, then it was already accounted for.
3076  * If the ops does not trace the current record function, skip it.
3077  * If the ops ignores the function via notrace filter, skip it.
3078  */
3079 static inline bool
3080 ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec)
3081 {
3082 	/* If ops isn't enabled, ignore it */
3083 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
3084 		return false;
3085 
3086 	/* If ops traces all then it includes this function */
3087 	if (ops_traces_mod(ops))
3088 		return true;
3089 
3090 	/* The function must be in the filter */
3091 	if (!ftrace_hash_empty(ops->func_hash->filter_hash) &&
3092 	    !__ftrace_lookup_ip(ops->func_hash->filter_hash, rec->ip))
3093 		return false;
3094 
3095 	/* If in notrace hash, we ignore it too */
3096 	if (ftrace_lookup_ip(ops->func_hash->notrace_hash, rec->ip))
3097 		return false;
3098 
3099 	return true;
3100 }
3101 
3102 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs)
3103 {
3104 	bool init_nop = ftrace_need_init_nop();
3105 	struct ftrace_page *pg;
3106 	struct dyn_ftrace *p;
3107 	u64 start, stop;
3108 	unsigned long update_cnt = 0;
3109 	unsigned long rec_flags = 0;
3110 	int i;
3111 
3112 	start = ftrace_now(raw_smp_processor_id());
3113 
3114 	/*
3115 	 * When a module is loaded, this function is called to convert
3116 	 * the calls to mcount in its text to nops, and also to create
3117 	 * an entry in the ftrace data. Now, if ftrace is activated
3118 	 * after this call, but before the module sets its text to
3119 	 * read-only, the modification of enabling ftrace can fail if
3120 	 * the read-only is done while ftrace is converting the calls.
3121 	 * To prevent this, the module's records are set as disabled
3122 	 * and will be enabled after the call to set the module's text
3123 	 * to read-only.
3124 	 */
3125 	if (mod)
3126 		rec_flags |= FTRACE_FL_DISABLED;
3127 
3128 	for (pg = new_pgs; pg; pg = pg->next) {
3129 
3130 		for (i = 0; i < pg->index; i++) {
3131 
3132 			/* If something went wrong, bail without enabling anything */
3133 			if (unlikely(ftrace_disabled))
3134 				return -1;
3135 
3136 			p = &pg->records[i];
3137 			p->flags = rec_flags;
3138 
3139 			/*
3140 			 * Do the initial record conversion from mcount jump
3141 			 * to the NOP instructions.
3142 			 */
3143 			if (init_nop && !ftrace_nop_initialize(mod, p))
3144 				break;
3145 
3146 			update_cnt++;
3147 		}
3148 	}
3149 
3150 	stop = ftrace_now(raw_smp_processor_id());
3151 	ftrace_update_time = stop - start;
3152 	ftrace_update_tot_cnt += update_cnt;
3153 
3154 	return 0;
3155 }
3156 
3157 static int ftrace_allocate_records(struct ftrace_page *pg, int count)
3158 {
3159 	int order;
3160 	int pages;
3161 	int cnt;
3162 
3163 	if (WARN_ON(!count))
3164 		return -EINVAL;
3165 
3166 	/* We want to fill as much as possible, with no empty pages */
3167 	pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE);
3168 	order = fls(pages) - 1;
3169 
3170  again:
3171 	pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
3172 
3173 	if (!pg->records) {
3174 		/* if we can't allocate this size, try something smaller */
3175 		if (!order)
3176 			return -ENOMEM;
3177 		order >>= 1;
3178 		goto again;
3179 	}
3180 
3181 	ftrace_number_of_pages += 1 << order;
3182 	ftrace_number_of_groups++;
3183 
3184 	cnt = (PAGE_SIZE << order) / ENTRY_SIZE;
3185 	pg->order = order;
3186 
3187 	if (cnt > count)
3188 		cnt = count;
3189 
3190 	return cnt;
3191 }
3192 
3193 static struct ftrace_page *
3194 ftrace_allocate_pages(unsigned long num_to_init)
3195 {
3196 	struct ftrace_page *start_pg;
3197 	struct ftrace_page *pg;
3198 	int cnt;
3199 
3200 	if (!num_to_init)
3201 		return NULL;
3202 
3203 	start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL);
3204 	if (!pg)
3205 		return NULL;
3206 
3207 	/*
3208 	 * Try to allocate as much as possible in one continues
3209 	 * location that fills in all of the space. We want to
3210 	 * waste as little space as possible.
3211 	 */
3212 	for (;;) {
3213 		cnt = ftrace_allocate_records(pg, num_to_init);
3214 		if (cnt < 0)
3215 			goto free_pages;
3216 
3217 		num_to_init -= cnt;
3218 		if (!num_to_init)
3219 			break;
3220 
3221 		pg->next = kzalloc(sizeof(*pg), GFP_KERNEL);
3222 		if (!pg->next)
3223 			goto free_pages;
3224 
3225 		pg = pg->next;
3226 	}
3227 
3228 	return start_pg;
3229 
3230  free_pages:
3231 	pg = start_pg;
3232 	while (pg) {
3233 		if (pg->records) {
3234 			free_pages((unsigned long)pg->records, pg->order);
3235 			ftrace_number_of_pages -= 1 << pg->order;
3236 		}
3237 		start_pg = pg->next;
3238 		kfree(pg);
3239 		pg = start_pg;
3240 		ftrace_number_of_groups--;
3241 	}
3242 	pr_info("ftrace: FAILED to allocate memory for functions\n");
3243 	return NULL;
3244 }
3245 
3246 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */
3247 
3248 struct ftrace_iterator {
3249 	loff_t				pos;
3250 	loff_t				func_pos;
3251 	loff_t				mod_pos;
3252 	struct ftrace_page		*pg;
3253 	struct dyn_ftrace		*func;
3254 	struct ftrace_func_probe	*probe;
3255 	struct ftrace_func_entry	*probe_entry;
3256 	struct trace_parser		parser;
3257 	struct ftrace_hash		*hash;
3258 	struct ftrace_ops		*ops;
3259 	struct trace_array		*tr;
3260 	struct list_head		*mod_list;
3261 	int				pidx;
3262 	int				idx;
3263 	unsigned			flags;
3264 };
3265 
3266 static void *
3267 t_probe_next(struct seq_file *m, loff_t *pos)
3268 {
3269 	struct ftrace_iterator *iter = m->private;
3270 	struct trace_array *tr = iter->ops->private;
3271 	struct list_head *func_probes;
3272 	struct ftrace_hash *hash;
3273 	struct list_head *next;
3274 	struct hlist_node *hnd = NULL;
3275 	struct hlist_head *hhd;
3276 	int size;
3277 
3278 	(*pos)++;
3279 	iter->pos = *pos;
3280 
3281 	if (!tr)
3282 		return NULL;
3283 
3284 	func_probes = &tr->func_probes;
3285 	if (list_empty(func_probes))
3286 		return NULL;
3287 
3288 	if (!iter->probe) {
3289 		next = func_probes->next;
3290 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3291 	}
3292 
3293 	if (iter->probe_entry)
3294 		hnd = &iter->probe_entry->hlist;
3295 
3296 	hash = iter->probe->ops.func_hash->filter_hash;
3297 
3298 	/*
3299 	 * A probe being registered may temporarily have an empty hash
3300 	 * and it's at the end of the func_probes list.
3301 	 */
3302 	if (!hash || hash == EMPTY_HASH)
3303 		return NULL;
3304 
3305 	size = 1 << hash->size_bits;
3306 
3307  retry:
3308 	if (iter->pidx >= size) {
3309 		if (iter->probe->list.next == func_probes)
3310 			return NULL;
3311 		next = iter->probe->list.next;
3312 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3313 		hash = iter->probe->ops.func_hash->filter_hash;
3314 		size = 1 << hash->size_bits;
3315 		iter->pidx = 0;
3316 	}
3317 
3318 	hhd = &hash->buckets[iter->pidx];
3319 
3320 	if (hlist_empty(hhd)) {
3321 		iter->pidx++;
3322 		hnd = NULL;
3323 		goto retry;
3324 	}
3325 
3326 	if (!hnd)
3327 		hnd = hhd->first;
3328 	else {
3329 		hnd = hnd->next;
3330 		if (!hnd) {
3331 			iter->pidx++;
3332 			goto retry;
3333 		}
3334 	}
3335 
3336 	if (WARN_ON_ONCE(!hnd))
3337 		return NULL;
3338 
3339 	iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist);
3340 
3341 	return iter;
3342 }
3343 
3344 static void *t_probe_start(struct seq_file *m, loff_t *pos)
3345 {
3346 	struct ftrace_iterator *iter = m->private;
3347 	void *p = NULL;
3348 	loff_t l;
3349 
3350 	if (!(iter->flags & FTRACE_ITER_DO_PROBES))
3351 		return NULL;
3352 
3353 	if (iter->mod_pos > *pos)
3354 		return NULL;
3355 
3356 	iter->probe = NULL;
3357 	iter->probe_entry = NULL;
3358 	iter->pidx = 0;
3359 	for (l = 0; l <= (*pos - iter->mod_pos); ) {
3360 		p = t_probe_next(m, &l);
3361 		if (!p)
3362 			break;
3363 	}
3364 	if (!p)
3365 		return NULL;
3366 
3367 	/* Only set this if we have an item */
3368 	iter->flags |= FTRACE_ITER_PROBE;
3369 
3370 	return iter;
3371 }
3372 
3373 static int
3374 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter)
3375 {
3376 	struct ftrace_func_entry *probe_entry;
3377 	struct ftrace_probe_ops *probe_ops;
3378 	struct ftrace_func_probe *probe;
3379 
3380 	probe = iter->probe;
3381 	probe_entry = iter->probe_entry;
3382 
3383 	if (WARN_ON_ONCE(!probe || !probe_entry))
3384 		return -EIO;
3385 
3386 	probe_ops = probe->probe_ops;
3387 
3388 	if (probe_ops->print)
3389 		return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data);
3390 
3391 	seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip,
3392 		   (void *)probe_ops->func);
3393 
3394 	return 0;
3395 }
3396 
3397 static void *
3398 t_mod_next(struct seq_file *m, loff_t *pos)
3399 {
3400 	struct ftrace_iterator *iter = m->private;
3401 	struct trace_array *tr = iter->tr;
3402 
3403 	(*pos)++;
3404 	iter->pos = *pos;
3405 
3406 	iter->mod_list = iter->mod_list->next;
3407 
3408 	if (iter->mod_list == &tr->mod_trace ||
3409 	    iter->mod_list == &tr->mod_notrace) {
3410 		iter->flags &= ~FTRACE_ITER_MOD;
3411 		return NULL;
3412 	}
3413 
3414 	iter->mod_pos = *pos;
3415 
3416 	return iter;
3417 }
3418 
3419 static void *t_mod_start(struct seq_file *m, loff_t *pos)
3420 {
3421 	struct ftrace_iterator *iter = m->private;
3422 	void *p = NULL;
3423 	loff_t l;
3424 
3425 	if (iter->func_pos > *pos)
3426 		return NULL;
3427 
3428 	iter->mod_pos = iter->func_pos;
3429 
3430 	/* probes are only available if tr is set */
3431 	if (!iter->tr)
3432 		return NULL;
3433 
3434 	for (l = 0; l <= (*pos - iter->func_pos); ) {
3435 		p = t_mod_next(m, &l);
3436 		if (!p)
3437 			break;
3438 	}
3439 	if (!p) {
3440 		iter->flags &= ~FTRACE_ITER_MOD;
3441 		return t_probe_start(m, pos);
3442 	}
3443 
3444 	/* Only set this if we have an item */
3445 	iter->flags |= FTRACE_ITER_MOD;
3446 
3447 	return iter;
3448 }
3449 
3450 static int
3451 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter)
3452 {
3453 	struct ftrace_mod_load *ftrace_mod;
3454 	struct trace_array *tr = iter->tr;
3455 
3456 	if (WARN_ON_ONCE(!iter->mod_list) ||
3457 			 iter->mod_list == &tr->mod_trace ||
3458 			 iter->mod_list == &tr->mod_notrace)
3459 		return -EIO;
3460 
3461 	ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list);
3462 
3463 	if (ftrace_mod->func)
3464 		seq_printf(m, "%s", ftrace_mod->func);
3465 	else
3466 		seq_putc(m, '*');
3467 
3468 	seq_printf(m, ":mod:%s\n", ftrace_mod->module);
3469 
3470 	return 0;
3471 }
3472 
3473 static void *
3474 t_func_next(struct seq_file *m, loff_t *pos)
3475 {
3476 	struct ftrace_iterator *iter = m->private;
3477 	struct dyn_ftrace *rec = NULL;
3478 
3479 	(*pos)++;
3480 
3481  retry:
3482 	if (iter->idx >= iter->pg->index) {
3483 		if (iter->pg->next) {
3484 			iter->pg = iter->pg->next;
3485 			iter->idx = 0;
3486 			goto retry;
3487 		}
3488 	} else {
3489 		rec = &iter->pg->records[iter->idx++];
3490 		if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3491 		     !ftrace_lookup_ip(iter->hash, rec->ip)) ||
3492 
3493 		    ((iter->flags & FTRACE_ITER_ENABLED) &&
3494 		     !(rec->flags & FTRACE_FL_ENABLED))) {
3495 
3496 			rec = NULL;
3497 			goto retry;
3498 		}
3499 	}
3500 
3501 	if (!rec)
3502 		return NULL;
3503 
3504 	iter->pos = iter->func_pos = *pos;
3505 	iter->func = rec;
3506 
3507 	return iter;
3508 }
3509 
3510 static void *
3511 t_next(struct seq_file *m, void *v, loff_t *pos)
3512 {
3513 	struct ftrace_iterator *iter = m->private;
3514 	loff_t l = *pos; /* t_probe_start() must use original pos */
3515 	void *ret;
3516 
3517 	if (unlikely(ftrace_disabled))
3518 		return NULL;
3519 
3520 	if (iter->flags & FTRACE_ITER_PROBE)
3521 		return t_probe_next(m, pos);
3522 
3523 	if (iter->flags & FTRACE_ITER_MOD)
3524 		return t_mod_next(m, pos);
3525 
3526 	if (iter->flags & FTRACE_ITER_PRINTALL) {
3527 		/* next must increment pos, and t_probe_start does not */
3528 		(*pos)++;
3529 		return t_mod_start(m, &l);
3530 	}
3531 
3532 	ret = t_func_next(m, pos);
3533 
3534 	if (!ret)
3535 		return t_mod_start(m, &l);
3536 
3537 	return ret;
3538 }
3539 
3540 static void reset_iter_read(struct ftrace_iterator *iter)
3541 {
3542 	iter->pos = 0;
3543 	iter->func_pos = 0;
3544 	iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD);
3545 }
3546 
3547 static void *t_start(struct seq_file *m, loff_t *pos)
3548 {
3549 	struct ftrace_iterator *iter = m->private;
3550 	void *p = NULL;
3551 	loff_t l;
3552 
3553 	mutex_lock(&ftrace_lock);
3554 
3555 	if (unlikely(ftrace_disabled))
3556 		return NULL;
3557 
3558 	/*
3559 	 * If an lseek was done, then reset and start from beginning.
3560 	 */
3561 	if (*pos < iter->pos)
3562 		reset_iter_read(iter);
3563 
3564 	/*
3565 	 * For set_ftrace_filter reading, if we have the filter
3566 	 * off, we can short cut and just print out that all
3567 	 * functions are enabled.
3568 	 */
3569 	if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3570 	    ftrace_hash_empty(iter->hash)) {
3571 		iter->func_pos = 1; /* Account for the message */
3572 		if (*pos > 0)
3573 			return t_mod_start(m, pos);
3574 		iter->flags |= FTRACE_ITER_PRINTALL;
3575 		/* reset in case of seek/pread */
3576 		iter->flags &= ~FTRACE_ITER_PROBE;
3577 		return iter;
3578 	}
3579 
3580 	if (iter->flags & FTRACE_ITER_MOD)
3581 		return t_mod_start(m, pos);
3582 
3583 	/*
3584 	 * Unfortunately, we need to restart at ftrace_pages_start
3585 	 * every time we let go of the ftrace_mutex. This is because
3586 	 * those pointers can change without the lock.
3587 	 */
3588 	iter->pg = ftrace_pages_start;
3589 	iter->idx = 0;
3590 	for (l = 0; l <= *pos; ) {
3591 		p = t_func_next(m, &l);
3592 		if (!p)
3593 			break;
3594 	}
3595 
3596 	if (!p)
3597 		return t_mod_start(m, pos);
3598 
3599 	return iter;
3600 }
3601 
3602 static void t_stop(struct seq_file *m, void *p)
3603 {
3604 	mutex_unlock(&ftrace_lock);
3605 }
3606 
3607 void * __weak
3608 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec)
3609 {
3610 	return NULL;
3611 }
3612 
3613 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops,
3614 				struct dyn_ftrace *rec)
3615 {
3616 	void *ptr;
3617 
3618 	ptr = arch_ftrace_trampoline_func(ops, rec);
3619 	if (ptr)
3620 		seq_printf(m, " ->%pS", ptr);
3621 }
3622 
3623 static int t_show(struct seq_file *m, void *v)
3624 {
3625 	struct ftrace_iterator *iter = m->private;
3626 	struct dyn_ftrace *rec;
3627 
3628 	if (iter->flags & FTRACE_ITER_PROBE)
3629 		return t_probe_show(m, iter);
3630 
3631 	if (iter->flags & FTRACE_ITER_MOD)
3632 		return t_mod_show(m, iter);
3633 
3634 	if (iter->flags & FTRACE_ITER_PRINTALL) {
3635 		if (iter->flags & FTRACE_ITER_NOTRACE)
3636 			seq_puts(m, "#### no functions disabled ####\n");
3637 		else
3638 			seq_puts(m, "#### all functions enabled ####\n");
3639 		return 0;
3640 	}
3641 
3642 	rec = iter->func;
3643 
3644 	if (!rec)
3645 		return 0;
3646 
3647 	seq_printf(m, "%ps", (void *)rec->ip);
3648 	if (iter->flags & FTRACE_ITER_ENABLED) {
3649 		struct ftrace_ops *ops;
3650 
3651 		seq_printf(m, " (%ld)%s%s%s",
3652 			   ftrace_rec_count(rec),
3653 			   rec->flags & FTRACE_FL_REGS ? " R" : "  ",
3654 			   rec->flags & FTRACE_FL_IPMODIFY ? " I" : "  ",
3655 			   rec->flags & FTRACE_FL_DIRECT ? " D" : "  ");
3656 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
3657 			ops = ftrace_find_tramp_ops_any(rec);
3658 			if (ops) {
3659 				do {
3660 					seq_printf(m, "\ttramp: %pS (%pS)",
3661 						   (void *)ops->trampoline,
3662 						   (void *)ops->func);
3663 					add_trampoline_func(m, ops, rec);
3664 					ops = ftrace_find_tramp_ops_next(rec, ops);
3665 				} while (ops);
3666 			} else
3667 				seq_puts(m, "\ttramp: ERROR!");
3668 		} else {
3669 			add_trampoline_func(m, NULL, rec);
3670 		}
3671 		if (rec->flags & FTRACE_FL_DIRECT) {
3672 			unsigned long direct;
3673 
3674 			direct = ftrace_find_rec_direct(rec->ip);
3675 			if (direct)
3676 				seq_printf(m, "\n\tdirect-->%pS", (void *)direct);
3677 		}
3678 	}
3679 
3680 	seq_putc(m, '\n');
3681 
3682 	return 0;
3683 }
3684 
3685 static const struct seq_operations show_ftrace_seq_ops = {
3686 	.start = t_start,
3687 	.next = t_next,
3688 	.stop = t_stop,
3689 	.show = t_show,
3690 };
3691 
3692 static int
3693 ftrace_avail_open(struct inode *inode, struct file *file)
3694 {
3695 	struct ftrace_iterator *iter;
3696 	int ret;
3697 
3698 	ret = security_locked_down(LOCKDOWN_TRACEFS);
3699 	if (ret)
3700 		return ret;
3701 
3702 	if (unlikely(ftrace_disabled))
3703 		return -ENODEV;
3704 
3705 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3706 	if (!iter)
3707 		return -ENOMEM;
3708 
3709 	iter->pg = ftrace_pages_start;
3710 	iter->ops = &global_ops;
3711 
3712 	return 0;
3713 }
3714 
3715 static int
3716 ftrace_enabled_open(struct inode *inode, struct file *file)
3717 {
3718 	struct ftrace_iterator *iter;
3719 
3720 	/*
3721 	 * This shows us what functions are currently being
3722 	 * traced and by what. Not sure if we want lockdown
3723 	 * to hide such critical information for an admin.
3724 	 * Although, perhaps it can show information we don't
3725 	 * want people to see, but if something is tracing
3726 	 * something, we probably want to know about it.
3727 	 */
3728 
3729 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3730 	if (!iter)
3731 		return -ENOMEM;
3732 
3733 	iter->pg = ftrace_pages_start;
3734 	iter->flags = FTRACE_ITER_ENABLED;
3735 	iter->ops = &global_ops;
3736 
3737 	return 0;
3738 }
3739 
3740 /**
3741  * ftrace_regex_open - initialize function tracer filter files
3742  * @ops: The ftrace_ops that hold the hash filters
3743  * @flag: The type of filter to process
3744  * @inode: The inode, usually passed in to your open routine
3745  * @file: The file, usually passed in to your open routine
3746  *
3747  * ftrace_regex_open() initializes the filter files for the
3748  * @ops. Depending on @flag it may process the filter hash or
3749  * the notrace hash of @ops. With this called from the open
3750  * routine, you can use ftrace_filter_write() for the write
3751  * routine if @flag has FTRACE_ITER_FILTER set, or
3752  * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set.
3753  * tracing_lseek() should be used as the lseek routine, and
3754  * release must call ftrace_regex_release().
3755  */
3756 int
3757 ftrace_regex_open(struct ftrace_ops *ops, int flag,
3758 		  struct inode *inode, struct file *file)
3759 {
3760 	struct ftrace_iterator *iter;
3761 	struct ftrace_hash *hash;
3762 	struct list_head *mod_head;
3763 	struct trace_array *tr = ops->private;
3764 	int ret = -ENOMEM;
3765 
3766 	ftrace_ops_init(ops);
3767 
3768 	if (unlikely(ftrace_disabled))
3769 		return -ENODEV;
3770 
3771 	if (tracing_check_open_get_tr(tr))
3772 		return -ENODEV;
3773 
3774 	iter = kzalloc(sizeof(*iter), GFP_KERNEL);
3775 	if (!iter)
3776 		goto out;
3777 
3778 	if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX))
3779 		goto out;
3780 
3781 	iter->ops = ops;
3782 	iter->flags = flag;
3783 	iter->tr = tr;
3784 
3785 	mutex_lock(&ops->func_hash->regex_lock);
3786 
3787 	if (flag & FTRACE_ITER_NOTRACE) {
3788 		hash = ops->func_hash->notrace_hash;
3789 		mod_head = tr ? &tr->mod_notrace : NULL;
3790 	} else {
3791 		hash = ops->func_hash->filter_hash;
3792 		mod_head = tr ? &tr->mod_trace : NULL;
3793 	}
3794 
3795 	iter->mod_list = mod_head;
3796 
3797 	if (file->f_mode & FMODE_WRITE) {
3798 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
3799 
3800 		if (file->f_flags & O_TRUNC) {
3801 			iter->hash = alloc_ftrace_hash(size_bits);
3802 			clear_ftrace_mod_list(mod_head);
3803 	        } else {
3804 			iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash);
3805 		}
3806 
3807 		if (!iter->hash) {
3808 			trace_parser_put(&iter->parser);
3809 			goto out_unlock;
3810 		}
3811 	} else
3812 		iter->hash = hash;
3813 
3814 	ret = 0;
3815 
3816 	if (file->f_mode & FMODE_READ) {
3817 		iter->pg = ftrace_pages_start;
3818 
3819 		ret = seq_open(file, &show_ftrace_seq_ops);
3820 		if (!ret) {
3821 			struct seq_file *m = file->private_data;
3822 			m->private = iter;
3823 		} else {
3824 			/* Failed */
3825 			free_ftrace_hash(iter->hash);
3826 			trace_parser_put(&iter->parser);
3827 		}
3828 	} else
3829 		file->private_data = iter;
3830 
3831  out_unlock:
3832 	mutex_unlock(&ops->func_hash->regex_lock);
3833 
3834  out:
3835 	if (ret) {
3836 		kfree(iter);
3837 		if (tr)
3838 			trace_array_put(tr);
3839 	}
3840 
3841 	return ret;
3842 }
3843 
3844 static int
3845 ftrace_filter_open(struct inode *inode, struct file *file)
3846 {
3847 	struct ftrace_ops *ops = inode->i_private;
3848 
3849 	/* Checks for tracefs lockdown */
3850 	return ftrace_regex_open(ops,
3851 			FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES,
3852 			inode, file);
3853 }
3854 
3855 static int
3856 ftrace_notrace_open(struct inode *inode, struct file *file)
3857 {
3858 	struct ftrace_ops *ops = inode->i_private;
3859 
3860 	/* Checks for tracefs lockdown */
3861 	return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE,
3862 				 inode, file);
3863 }
3864 
3865 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */
3866 struct ftrace_glob {
3867 	char *search;
3868 	unsigned len;
3869 	int type;
3870 };
3871 
3872 /*
3873  * If symbols in an architecture don't correspond exactly to the user-visible
3874  * name of what they represent, it is possible to define this function to
3875  * perform the necessary adjustments.
3876 */
3877 char * __weak arch_ftrace_match_adjust(char *str, const char *search)
3878 {
3879 	return str;
3880 }
3881 
3882 static int ftrace_match(char *str, struct ftrace_glob *g)
3883 {
3884 	int matched = 0;
3885 	int slen;
3886 
3887 	str = arch_ftrace_match_adjust(str, g->search);
3888 
3889 	switch (g->type) {
3890 	case MATCH_FULL:
3891 		if (strcmp(str, g->search) == 0)
3892 			matched = 1;
3893 		break;
3894 	case MATCH_FRONT_ONLY:
3895 		if (strncmp(str, g->search, g->len) == 0)
3896 			matched = 1;
3897 		break;
3898 	case MATCH_MIDDLE_ONLY:
3899 		if (strstr(str, g->search))
3900 			matched = 1;
3901 		break;
3902 	case MATCH_END_ONLY:
3903 		slen = strlen(str);
3904 		if (slen >= g->len &&
3905 		    memcmp(str + slen - g->len, g->search, g->len) == 0)
3906 			matched = 1;
3907 		break;
3908 	case MATCH_GLOB:
3909 		if (glob_match(g->search, str))
3910 			matched = 1;
3911 		break;
3912 	}
3913 
3914 	return matched;
3915 }
3916 
3917 static int
3918 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter)
3919 {
3920 	struct ftrace_func_entry *entry;
3921 	int ret = 0;
3922 
3923 	entry = ftrace_lookup_ip(hash, rec->ip);
3924 	if (clear_filter) {
3925 		/* Do nothing if it doesn't exist */
3926 		if (!entry)
3927 			return 0;
3928 
3929 		free_hash_entry(hash, entry);
3930 	} else {
3931 		/* Do nothing if it exists */
3932 		if (entry)
3933 			return 0;
3934 
3935 		ret = add_hash_entry(hash, rec->ip);
3936 	}
3937 	return ret;
3938 }
3939 
3940 static int
3941 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g,
3942 		 int clear_filter)
3943 {
3944 	long index = simple_strtoul(func_g->search, NULL, 0);
3945 	struct ftrace_page *pg;
3946 	struct dyn_ftrace *rec;
3947 
3948 	/* The index starts at 1 */
3949 	if (--index < 0)
3950 		return 0;
3951 
3952 	do_for_each_ftrace_rec(pg, rec) {
3953 		if (pg->index <= index) {
3954 			index -= pg->index;
3955 			/* this is a double loop, break goes to the next page */
3956 			break;
3957 		}
3958 		rec = &pg->records[index];
3959 		enter_record(hash, rec, clear_filter);
3960 		return 1;
3961 	} while_for_each_ftrace_rec();
3962 	return 0;
3963 }
3964 
3965 static int
3966 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g,
3967 		struct ftrace_glob *mod_g, int exclude_mod)
3968 {
3969 	char str[KSYM_SYMBOL_LEN];
3970 	char *modname;
3971 
3972 	kallsyms_lookup(rec->ip, NULL, NULL, &modname, str);
3973 
3974 	if (mod_g) {
3975 		int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0;
3976 
3977 		/* blank module name to match all modules */
3978 		if (!mod_g->len) {
3979 			/* blank module globbing: modname xor exclude_mod */
3980 			if (!exclude_mod != !modname)
3981 				goto func_match;
3982 			return 0;
3983 		}
3984 
3985 		/*
3986 		 * exclude_mod is set to trace everything but the given
3987 		 * module. If it is set and the module matches, then
3988 		 * return 0. If it is not set, and the module doesn't match
3989 		 * also return 0. Otherwise, check the function to see if
3990 		 * that matches.
3991 		 */
3992 		if (!mod_matches == !exclude_mod)
3993 			return 0;
3994 func_match:
3995 		/* blank search means to match all funcs in the mod */
3996 		if (!func_g->len)
3997 			return 1;
3998 	}
3999 
4000 	return ftrace_match(str, func_g);
4001 }
4002 
4003 static int
4004 match_records(struct ftrace_hash *hash, char *func, int len, char *mod)
4005 {
4006 	struct ftrace_page *pg;
4007 	struct dyn_ftrace *rec;
4008 	struct ftrace_glob func_g = { .type = MATCH_FULL };
4009 	struct ftrace_glob mod_g = { .type = MATCH_FULL };
4010 	struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL;
4011 	int exclude_mod = 0;
4012 	int found = 0;
4013 	int ret;
4014 	int clear_filter = 0;
4015 
4016 	if (func) {
4017 		func_g.type = filter_parse_regex(func, len, &func_g.search,
4018 						 &clear_filter);
4019 		func_g.len = strlen(func_g.search);
4020 	}
4021 
4022 	if (mod) {
4023 		mod_g.type = filter_parse_regex(mod, strlen(mod),
4024 				&mod_g.search, &exclude_mod);
4025 		mod_g.len = strlen(mod_g.search);
4026 	}
4027 
4028 	mutex_lock(&ftrace_lock);
4029 
4030 	if (unlikely(ftrace_disabled))
4031 		goto out_unlock;
4032 
4033 	if (func_g.type == MATCH_INDEX) {
4034 		found = add_rec_by_index(hash, &func_g, clear_filter);
4035 		goto out_unlock;
4036 	}
4037 
4038 	do_for_each_ftrace_rec(pg, rec) {
4039 
4040 		if (rec->flags & FTRACE_FL_DISABLED)
4041 			continue;
4042 
4043 		if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) {
4044 			ret = enter_record(hash, rec, clear_filter);
4045 			if (ret < 0) {
4046 				found = ret;
4047 				goto out_unlock;
4048 			}
4049 			found = 1;
4050 		}
4051 	} while_for_each_ftrace_rec();
4052  out_unlock:
4053 	mutex_unlock(&ftrace_lock);
4054 
4055 	return found;
4056 }
4057 
4058 static int
4059 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len)
4060 {
4061 	return match_records(hash, buff, len, NULL);
4062 }
4063 
4064 static void ftrace_ops_update_code(struct ftrace_ops *ops,
4065 				   struct ftrace_ops_hash *old_hash)
4066 {
4067 	struct ftrace_ops *op;
4068 
4069 	if (!ftrace_enabled)
4070 		return;
4071 
4072 	if (ops->flags & FTRACE_OPS_FL_ENABLED) {
4073 		ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash);
4074 		return;
4075 	}
4076 
4077 	/*
4078 	 * If this is the shared global_ops filter, then we need to
4079 	 * check if there is another ops that shares it, is enabled.
4080 	 * If so, we still need to run the modify code.
4081 	 */
4082 	if (ops->func_hash != &global_ops.local_hash)
4083 		return;
4084 
4085 	do_for_each_ftrace_op(op, ftrace_ops_list) {
4086 		if (op->func_hash == &global_ops.local_hash &&
4087 		    op->flags & FTRACE_OPS_FL_ENABLED) {
4088 			ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash);
4089 			/* Only need to do this once */
4090 			return;
4091 		}
4092 	} while_for_each_ftrace_op(op);
4093 }
4094 
4095 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops,
4096 					   struct ftrace_hash **orig_hash,
4097 					   struct ftrace_hash *hash,
4098 					   int enable)
4099 {
4100 	struct ftrace_ops_hash old_hash_ops;
4101 	struct ftrace_hash *old_hash;
4102 	int ret;
4103 
4104 	old_hash = *orig_hash;
4105 	old_hash_ops.filter_hash = ops->func_hash->filter_hash;
4106 	old_hash_ops.notrace_hash = ops->func_hash->notrace_hash;
4107 	ret = ftrace_hash_move(ops, enable, orig_hash, hash);
4108 	if (!ret) {
4109 		ftrace_ops_update_code(ops, &old_hash_ops);
4110 		free_ftrace_hash_rcu(old_hash);
4111 	}
4112 	return ret;
4113 }
4114 
4115 static bool module_exists(const char *module)
4116 {
4117 	/* All modules have the symbol __this_module */
4118 	static const char this_mod[] = "__this_module";
4119 	char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2];
4120 	unsigned long val;
4121 	int n;
4122 
4123 	n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod);
4124 
4125 	if (n > sizeof(modname) - 1)
4126 		return false;
4127 
4128 	val = module_kallsyms_lookup_name(modname);
4129 	return val != 0;
4130 }
4131 
4132 static int cache_mod(struct trace_array *tr,
4133 		     const char *func, char *module, int enable)
4134 {
4135 	struct ftrace_mod_load *ftrace_mod, *n;
4136 	struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace;
4137 	int ret;
4138 
4139 	mutex_lock(&ftrace_lock);
4140 
4141 	/* We do not cache inverse filters */
4142 	if (func[0] == '!') {
4143 		func++;
4144 		ret = -EINVAL;
4145 
4146 		/* Look to remove this hash */
4147 		list_for_each_entry_safe(ftrace_mod, n, head, list) {
4148 			if (strcmp(ftrace_mod->module, module) != 0)
4149 				continue;
4150 
4151 			/* no func matches all */
4152 			if (strcmp(func, "*") == 0 ||
4153 			    (ftrace_mod->func &&
4154 			     strcmp(ftrace_mod->func, func) == 0)) {
4155 				ret = 0;
4156 				free_ftrace_mod(ftrace_mod);
4157 				continue;
4158 			}
4159 		}
4160 		goto out;
4161 	}
4162 
4163 	ret = -EINVAL;
4164 	/* We only care about modules that have not been loaded yet */
4165 	if (module_exists(module))
4166 		goto out;
4167 
4168 	/* Save this string off, and execute it when the module is loaded */
4169 	ret = ftrace_add_mod(tr, func, module, enable);
4170  out:
4171 	mutex_unlock(&ftrace_lock);
4172 
4173 	return ret;
4174 }
4175 
4176 static int
4177 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
4178 		 int reset, int enable);
4179 
4180 #ifdef CONFIG_MODULES
4181 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops,
4182 			     char *mod, bool enable)
4183 {
4184 	struct ftrace_mod_load *ftrace_mod, *n;
4185 	struct ftrace_hash **orig_hash, *new_hash;
4186 	LIST_HEAD(process_mods);
4187 	char *func;
4188 
4189 	mutex_lock(&ops->func_hash->regex_lock);
4190 
4191 	if (enable)
4192 		orig_hash = &ops->func_hash->filter_hash;
4193 	else
4194 		orig_hash = &ops->func_hash->notrace_hash;
4195 
4196 	new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS,
4197 					      *orig_hash);
4198 	if (!new_hash)
4199 		goto out; /* warn? */
4200 
4201 	mutex_lock(&ftrace_lock);
4202 
4203 	list_for_each_entry_safe(ftrace_mod, n, head, list) {
4204 
4205 		if (strcmp(ftrace_mod->module, mod) != 0)
4206 			continue;
4207 
4208 		if (ftrace_mod->func)
4209 			func = kstrdup(ftrace_mod->func, GFP_KERNEL);
4210 		else
4211 			func = kstrdup("*", GFP_KERNEL);
4212 
4213 		if (!func) /* warn? */
4214 			continue;
4215 
4216 		list_move(&ftrace_mod->list, &process_mods);
4217 
4218 		/* Use the newly allocated func, as it may be "*" */
4219 		kfree(ftrace_mod->func);
4220 		ftrace_mod->func = func;
4221 	}
4222 
4223 	mutex_unlock(&ftrace_lock);
4224 
4225 	list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) {
4226 
4227 		func = ftrace_mod->func;
4228 
4229 		/* Grabs ftrace_lock, which is why we have this extra step */
4230 		match_records(new_hash, func, strlen(func), mod);
4231 		free_ftrace_mod(ftrace_mod);
4232 	}
4233 
4234 	if (enable && list_empty(head))
4235 		new_hash->flags &= ~FTRACE_HASH_FL_MOD;
4236 
4237 	mutex_lock(&ftrace_lock);
4238 
4239 	ftrace_hash_move_and_update_ops(ops, orig_hash,
4240 					      new_hash, enable);
4241 	mutex_unlock(&ftrace_lock);
4242 
4243  out:
4244 	mutex_unlock(&ops->func_hash->regex_lock);
4245 
4246 	free_ftrace_hash(new_hash);
4247 }
4248 
4249 static void process_cached_mods(const char *mod_name)
4250 {
4251 	struct trace_array *tr;
4252 	char *mod;
4253 
4254 	mod = kstrdup(mod_name, GFP_KERNEL);
4255 	if (!mod)
4256 		return;
4257 
4258 	mutex_lock(&trace_types_lock);
4259 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
4260 		if (!list_empty(&tr->mod_trace))
4261 			process_mod_list(&tr->mod_trace, tr->ops, mod, true);
4262 		if (!list_empty(&tr->mod_notrace))
4263 			process_mod_list(&tr->mod_notrace, tr->ops, mod, false);
4264 	}
4265 	mutex_unlock(&trace_types_lock);
4266 
4267 	kfree(mod);
4268 }
4269 #endif
4270 
4271 /*
4272  * We register the module command as a template to show others how
4273  * to register the a command as well.
4274  */
4275 
4276 static int
4277 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash,
4278 		    char *func_orig, char *cmd, char *module, int enable)
4279 {
4280 	char *func;
4281 	int ret;
4282 
4283 	/* match_records() modifies func, and we need the original */
4284 	func = kstrdup(func_orig, GFP_KERNEL);
4285 	if (!func)
4286 		return -ENOMEM;
4287 
4288 	/*
4289 	 * cmd == 'mod' because we only registered this func
4290 	 * for the 'mod' ftrace_func_command.
4291 	 * But if you register one func with multiple commands,
4292 	 * you can tell which command was used by the cmd
4293 	 * parameter.
4294 	 */
4295 	ret = match_records(hash, func, strlen(func), module);
4296 	kfree(func);
4297 
4298 	if (!ret)
4299 		return cache_mod(tr, func_orig, module, enable);
4300 	if (ret < 0)
4301 		return ret;
4302 	return 0;
4303 }
4304 
4305 static struct ftrace_func_command ftrace_mod_cmd = {
4306 	.name			= "mod",
4307 	.func			= ftrace_mod_callback,
4308 };
4309 
4310 static int __init ftrace_mod_cmd_init(void)
4311 {
4312 	return register_ftrace_command(&ftrace_mod_cmd);
4313 }
4314 core_initcall(ftrace_mod_cmd_init);
4315 
4316 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip,
4317 				      struct ftrace_ops *op, struct ftrace_regs *fregs)
4318 {
4319 	struct ftrace_probe_ops *probe_ops;
4320 	struct ftrace_func_probe *probe;
4321 
4322 	probe = container_of(op, struct ftrace_func_probe, ops);
4323 	probe_ops = probe->probe_ops;
4324 
4325 	/*
4326 	 * Disable preemption for these calls to prevent a RCU grace
4327 	 * period. This syncs the hash iteration and freeing of items
4328 	 * on the hash. rcu_read_lock is too dangerous here.
4329 	 */
4330 	preempt_disable_notrace();
4331 	probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data);
4332 	preempt_enable_notrace();
4333 }
4334 
4335 struct ftrace_func_map {
4336 	struct ftrace_func_entry	entry;
4337 	void				*data;
4338 };
4339 
4340 struct ftrace_func_mapper {
4341 	struct ftrace_hash		hash;
4342 };
4343 
4344 /**
4345  * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper
4346  *
4347  * Returns a ftrace_func_mapper descriptor that can be used to map ips to data.
4348  */
4349 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void)
4350 {
4351 	struct ftrace_hash *hash;
4352 
4353 	/*
4354 	 * The mapper is simply a ftrace_hash, but since the entries
4355 	 * in the hash are not ftrace_func_entry type, we define it
4356 	 * as a separate structure.
4357 	 */
4358 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
4359 	return (struct ftrace_func_mapper *)hash;
4360 }
4361 
4362 /**
4363  * ftrace_func_mapper_find_ip - Find some data mapped to an ip
4364  * @mapper: The mapper that has the ip maps
4365  * @ip: the instruction pointer to find the data for
4366  *
4367  * Returns the data mapped to @ip if found otherwise NULL. The return
4368  * is actually the address of the mapper data pointer. The address is
4369  * returned for use cases where the data is no bigger than a long, and
4370  * the user can use the data pointer as its data instead of having to
4371  * allocate more memory for the reference.
4372  */
4373 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper,
4374 				  unsigned long ip)
4375 {
4376 	struct ftrace_func_entry *entry;
4377 	struct ftrace_func_map *map;
4378 
4379 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4380 	if (!entry)
4381 		return NULL;
4382 
4383 	map = (struct ftrace_func_map *)entry;
4384 	return &map->data;
4385 }
4386 
4387 /**
4388  * ftrace_func_mapper_add_ip - Map some data to an ip
4389  * @mapper: The mapper that has the ip maps
4390  * @ip: The instruction pointer address to map @data to
4391  * @data: The data to map to @ip
4392  *
4393  * Returns 0 on success otherwise an error.
4394  */
4395 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper,
4396 			      unsigned long ip, void *data)
4397 {
4398 	struct ftrace_func_entry *entry;
4399 	struct ftrace_func_map *map;
4400 
4401 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4402 	if (entry)
4403 		return -EBUSY;
4404 
4405 	map = kmalloc(sizeof(*map), GFP_KERNEL);
4406 	if (!map)
4407 		return -ENOMEM;
4408 
4409 	map->entry.ip = ip;
4410 	map->data = data;
4411 
4412 	__add_hash_entry(&mapper->hash, &map->entry);
4413 
4414 	return 0;
4415 }
4416 
4417 /**
4418  * ftrace_func_mapper_remove_ip - Remove an ip from the mapping
4419  * @mapper: The mapper that has the ip maps
4420  * @ip: The instruction pointer address to remove the data from
4421  *
4422  * Returns the data if it is found, otherwise NULL.
4423  * Note, if the data pointer is used as the data itself, (see
4424  * ftrace_func_mapper_find_ip(), then the return value may be meaningless,
4425  * if the data pointer was set to zero.
4426  */
4427 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper,
4428 				   unsigned long ip)
4429 {
4430 	struct ftrace_func_entry *entry;
4431 	struct ftrace_func_map *map;
4432 	void *data;
4433 
4434 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4435 	if (!entry)
4436 		return NULL;
4437 
4438 	map = (struct ftrace_func_map *)entry;
4439 	data = map->data;
4440 
4441 	remove_hash_entry(&mapper->hash, entry);
4442 	kfree(entry);
4443 
4444 	return data;
4445 }
4446 
4447 /**
4448  * free_ftrace_func_mapper - free a mapping of ips and data
4449  * @mapper: The mapper that has the ip maps
4450  * @free_func: A function to be called on each data item.
4451  *
4452  * This is used to free the function mapper. The @free_func is optional
4453  * and can be used if the data needs to be freed as well.
4454  */
4455 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper,
4456 			     ftrace_mapper_func free_func)
4457 {
4458 	struct ftrace_func_entry *entry;
4459 	struct ftrace_func_map *map;
4460 	struct hlist_head *hhd;
4461 	int size, i;
4462 
4463 	if (!mapper)
4464 		return;
4465 
4466 	if (free_func && mapper->hash.count) {
4467 		size = 1 << mapper->hash.size_bits;
4468 		for (i = 0; i < size; i++) {
4469 			hhd = &mapper->hash.buckets[i];
4470 			hlist_for_each_entry(entry, hhd, hlist) {
4471 				map = (struct ftrace_func_map *)entry;
4472 				free_func(map);
4473 			}
4474 		}
4475 	}
4476 	free_ftrace_hash(&mapper->hash);
4477 }
4478 
4479 static void release_probe(struct ftrace_func_probe *probe)
4480 {
4481 	struct ftrace_probe_ops *probe_ops;
4482 
4483 	mutex_lock(&ftrace_lock);
4484 
4485 	WARN_ON(probe->ref <= 0);
4486 
4487 	/* Subtract the ref that was used to protect this instance */
4488 	probe->ref--;
4489 
4490 	if (!probe->ref) {
4491 		probe_ops = probe->probe_ops;
4492 		/*
4493 		 * Sending zero as ip tells probe_ops to free
4494 		 * the probe->data itself
4495 		 */
4496 		if (probe_ops->free)
4497 			probe_ops->free(probe_ops, probe->tr, 0, probe->data);
4498 		list_del(&probe->list);
4499 		kfree(probe);
4500 	}
4501 	mutex_unlock(&ftrace_lock);
4502 }
4503 
4504 static void acquire_probe_locked(struct ftrace_func_probe *probe)
4505 {
4506 	/*
4507 	 * Add one ref to keep it from being freed when releasing the
4508 	 * ftrace_lock mutex.
4509 	 */
4510 	probe->ref++;
4511 }
4512 
4513 int
4514 register_ftrace_function_probe(char *glob, struct trace_array *tr,
4515 			       struct ftrace_probe_ops *probe_ops,
4516 			       void *data)
4517 {
4518 	struct ftrace_func_entry *entry;
4519 	struct ftrace_func_probe *probe;
4520 	struct ftrace_hash **orig_hash;
4521 	struct ftrace_hash *old_hash;
4522 	struct ftrace_hash *hash;
4523 	int count = 0;
4524 	int size;
4525 	int ret;
4526 	int i;
4527 
4528 	if (WARN_ON(!tr))
4529 		return -EINVAL;
4530 
4531 	/* We do not support '!' for function probes */
4532 	if (WARN_ON(glob[0] == '!'))
4533 		return -EINVAL;
4534 
4535 
4536 	mutex_lock(&ftrace_lock);
4537 	/* Check if the probe_ops is already registered */
4538 	list_for_each_entry(probe, &tr->func_probes, list) {
4539 		if (probe->probe_ops == probe_ops)
4540 			break;
4541 	}
4542 	if (&probe->list == &tr->func_probes) {
4543 		probe = kzalloc(sizeof(*probe), GFP_KERNEL);
4544 		if (!probe) {
4545 			mutex_unlock(&ftrace_lock);
4546 			return -ENOMEM;
4547 		}
4548 		probe->probe_ops = probe_ops;
4549 		probe->ops.func = function_trace_probe_call;
4550 		probe->tr = tr;
4551 		ftrace_ops_init(&probe->ops);
4552 		list_add(&probe->list, &tr->func_probes);
4553 	}
4554 
4555 	acquire_probe_locked(probe);
4556 
4557 	mutex_unlock(&ftrace_lock);
4558 
4559 	/*
4560 	 * Note, there's a small window here that the func_hash->filter_hash
4561 	 * may be NULL or empty. Need to be careful when reading the loop.
4562 	 */
4563 	mutex_lock(&probe->ops.func_hash->regex_lock);
4564 
4565 	orig_hash = &probe->ops.func_hash->filter_hash;
4566 	old_hash = *orig_hash;
4567 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4568 
4569 	if (!hash) {
4570 		ret = -ENOMEM;
4571 		goto out;
4572 	}
4573 
4574 	ret = ftrace_match_records(hash, glob, strlen(glob));
4575 
4576 	/* Nothing found? */
4577 	if (!ret)
4578 		ret = -EINVAL;
4579 
4580 	if (ret < 0)
4581 		goto out;
4582 
4583 	size = 1 << hash->size_bits;
4584 	for (i = 0; i < size; i++) {
4585 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4586 			if (ftrace_lookup_ip(old_hash, entry->ip))
4587 				continue;
4588 			/*
4589 			 * The caller might want to do something special
4590 			 * for each function we find. We call the callback
4591 			 * to give the caller an opportunity to do so.
4592 			 */
4593 			if (probe_ops->init) {
4594 				ret = probe_ops->init(probe_ops, tr,
4595 						      entry->ip, data,
4596 						      &probe->data);
4597 				if (ret < 0) {
4598 					if (probe_ops->free && count)
4599 						probe_ops->free(probe_ops, tr,
4600 								0, probe->data);
4601 					probe->data = NULL;
4602 					goto out;
4603 				}
4604 			}
4605 			count++;
4606 		}
4607 	}
4608 
4609 	mutex_lock(&ftrace_lock);
4610 
4611 	if (!count) {
4612 		/* Nothing was added? */
4613 		ret = -EINVAL;
4614 		goto out_unlock;
4615 	}
4616 
4617 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
4618 					      hash, 1);
4619 	if (ret < 0)
4620 		goto err_unlock;
4621 
4622 	/* One ref for each new function traced */
4623 	probe->ref += count;
4624 
4625 	if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED))
4626 		ret = ftrace_startup(&probe->ops, 0);
4627 
4628  out_unlock:
4629 	mutex_unlock(&ftrace_lock);
4630 
4631 	if (!ret)
4632 		ret = count;
4633  out:
4634 	mutex_unlock(&probe->ops.func_hash->regex_lock);
4635 	free_ftrace_hash(hash);
4636 
4637 	release_probe(probe);
4638 
4639 	return ret;
4640 
4641  err_unlock:
4642 	if (!probe_ops->free || !count)
4643 		goto out_unlock;
4644 
4645 	/* Failed to do the move, need to call the free functions */
4646 	for (i = 0; i < size; i++) {
4647 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4648 			if (ftrace_lookup_ip(old_hash, entry->ip))
4649 				continue;
4650 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
4651 		}
4652 	}
4653 	goto out_unlock;
4654 }
4655 
4656 int
4657 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr,
4658 				      struct ftrace_probe_ops *probe_ops)
4659 {
4660 	struct ftrace_ops_hash old_hash_ops;
4661 	struct ftrace_func_entry *entry;
4662 	struct ftrace_func_probe *probe;
4663 	struct ftrace_glob func_g;
4664 	struct ftrace_hash **orig_hash;
4665 	struct ftrace_hash *old_hash;
4666 	struct ftrace_hash *hash = NULL;
4667 	struct hlist_node *tmp;
4668 	struct hlist_head hhd;
4669 	char str[KSYM_SYMBOL_LEN];
4670 	int count = 0;
4671 	int i, ret = -ENODEV;
4672 	int size;
4673 
4674 	if (!glob || !strlen(glob) || !strcmp(glob, "*"))
4675 		func_g.search = NULL;
4676 	else {
4677 		int not;
4678 
4679 		func_g.type = filter_parse_regex(glob, strlen(glob),
4680 						 &func_g.search, &not);
4681 		func_g.len = strlen(func_g.search);
4682 
4683 		/* we do not support '!' for function probes */
4684 		if (WARN_ON(not))
4685 			return -EINVAL;
4686 	}
4687 
4688 	mutex_lock(&ftrace_lock);
4689 	/* Check if the probe_ops is already registered */
4690 	list_for_each_entry(probe, &tr->func_probes, list) {
4691 		if (probe->probe_ops == probe_ops)
4692 			break;
4693 	}
4694 	if (&probe->list == &tr->func_probes)
4695 		goto err_unlock_ftrace;
4696 
4697 	ret = -EINVAL;
4698 	if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED))
4699 		goto err_unlock_ftrace;
4700 
4701 	acquire_probe_locked(probe);
4702 
4703 	mutex_unlock(&ftrace_lock);
4704 
4705 	mutex_lock(&probe->ops.func_hash->regex_lock);
4706 
4707 	orig_hash = &probe->ops.func_hash->filter_hash;
4708 	old_hash = *orig_hash;
4709 
4710 	if (ftrace_hash_empty(old_hash))
4711 		goto out_unlock;
4712 
4713 	old_hash_ops.filter_hash = old_hash;
4714 	/* Probes only have filters */
4715 	old_hash_ops.notrace_hash = NULL;
4716 
4717 	ret = -ENOMEM;
4718 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4719 	if (!hash)
4720 		goto out_unlock;
4721 
4722 	INIT_HLIST_HEAD(&hhd);
4723 
4724 	size = 1 << hash->size_bits;
4725 	for (i = 0; i < size; i++) {
4726 		hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) {
4727 
4728 			if (func_g.search) {
4729 				kallsyms_lookup(entry->ip, NULL, NULL,
4730 						NULL, str);
4731 				if (!ftrace_match(str, &func_g))
4732 					continue;
4733 			}
4734 			count++;
4735 			remove_hash_entry(hash, entry);
4736 			hlist_add_head(&entry->hlist, &hhd);
4737 		}
4738 	}
4739 
4740 	/* Nothing found? */
4741 	if (!count) {
4742 		ret = -EINVAL;
4743 		goto out_unlock;
4744 	}
4745 
4746 	mutex_lock(&ftrace_lock);
4747 
4748 	WARN_ON(probe->ref < count);
4749 
4750 	probe->ref -= count;
4751 
4752 	if (ftrace_hash_empty(hash))
4753 		ftrace_shutdown(&probe->ops, 0);
4754 
4755 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
4756 					      hash, 1);
4757 
4758 	/* still need to update the function call sites */
4759 	if (ftrace_enabled && !ftrace_hash_empty(hash))
4760 		ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS,
4761 				       &old_hash_ops);
4762 	synchronize_rcu();
4763 
4764 	hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) {
4765 		hlist_del(&entry->hlist);
4766 		if (probe_ops->free)
4767 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
4768 		kfree(entry);
4769 	}
4770 	mutex_unlock(&ftrace_lock);
4771 
4772  out_unlock:
4773 	mutex_unlock(&probe->ops.func_hash->regex_lock);
4774 	free_ftrace_hash(hash);
4775 
4776 	release_probe(probe);
4777 
4778 	return ret;
4779 
4780  err_unlock_ftrace:
4781 	mutex_unlock(&ftrace_lock);
4782 	return ret;
4783 }
4784 
4785 void clear_ftrace_function_probes(struct trace_array *tr)
4786 {
4787 	struct ftrace_func_probe *probe, *n;
4788 
4789 	list_for_each_entry_safe(probe, n, &tr->func_probes, list)
4790 		unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops);
4791 }
4792 
4793 static LIST_HEAD(ftrace_commands);
4794 static DEFINE_MUTEX(ftrace_cmd_mutex);
4795 
4796 /*
4797  * Currently we only register ftrace commands from __init, so mark this
4798  * __init too.
4799  */
4800 __init int register_ftrace_command(struct ftrace_func_command *cmd)
4801 {
4802 	struct ftrace_func_command *p;
4803 	int ret = 0;
4804 
4805 	mutex_lock(&ftrace_cmd_mutex);
4806 	list_for_each_entry(p, &ftrace_commands, list) {
4807 		if (strcmp(cmd->name, p->name) == 0) {
4808 			ret = -EBUSY;
4809 			goto out_unlock;
4810 		}
4811 	}
4812 	list_add(&cmd->list, &ftrace_commands);
4813  out_unlock:
4814 	mutex_unlock(&ftrace_cmd_mutex);
4815 
4816 	return ret;
4817 }
4818 
4819 /*
4820  * Currently we only unregister ftrace commands from __init, so mark
4821  * this __init too.
4822  */
4823 __init int unregister_ftrace_command(struct ftrace_func_command *cmd)
4824 {
4825 	struct ftrace_func_command *p, *n;
4826 	int ret = -ENODEV;
4827 
4828 	mutex_lock(&ftrace_cmd_mutex);
4829 	list_for_each_entry_safe(p, n, &ftrace_commands, list) {
4830 		if (strcmp(cmd->name, p->name) == 0) {
4831 			ret = 0;
4832 			list_del_init(&p->list);
4833 			goto out_unlock;
4834 		}
4835 	}
4836  out_unlock:
4837 	mutex_unlock(&ftrace_cmd_mutex);
4838 
4839 	return ret;
4840 }
4841 
4842 static int ftrace_process_regex(struct ftrace_iterator *iter,
4843 				char *buff, int len, int enable)
4844 {
4845 	struct ftrace_hash *hash = iter->hash;
4846 	struct trace_array *tr = iter->ops->private;
4847 	char *func, *command, *next = buff;
4848 	struct ftrace_func_command *p;
4849 	int ret = -EINVAL;
4850 
4851 	func = strsep(&next, ":");
4852 
4853 	if (!next) {
4854 		ret = ftrace_match_records(hash, func, len);
4855 		if (!ret)
4856 			ret = -EINVAL;
4857 		if (ret < 0)
4858 			return ret;
4859 		return 0;
4860 	}
4861 
4862 	/* command found */
4863 
4864 	command = strsep(&next, ":");
4865 
4866 	mutex_lock(&ftrace_cmd_mutex);
4867 	list_for_each_entry(p, &ftrace_commands, list) {
4868 		if (strcmp(p->name, command) == 0) {
4869 			ret = p->func(tr, hash, func, command, next, enable);
4870 			goto out_unlock;
4871 		}
4872 	}
4873  out_unlock:
4874 	mutex_unlock(&ftrace_cmd_mutex);
4875 
4876 	return ret;
4877 }
4878 
4879 static ssize_t
4880 ftrace_regex_write(struct file *file, const char __user *ubuf,
4881 		   size_t cnt, loff_t *ppos, int enable)
4882 {
4883 	struct ftrace_iterator *iter;
4884 	struct trace_parser *parser;
4885 	ssize_t ret, read;
4886 
4887 	if (!cnt)
4888 		return 0;
4889 
4890 	if (file->f_mode & FMODE_READ) {
4891 		struct seq_file *m = file->private_data;
4892 		iter = m->private;
4893 	} else
4894 		iter = file->private_data;
4895 
4896 	if (unlikely(ftrace_disabled))
4897 		return -ENODEV;
4898 
4899 	/* iter->hash is a local copy, so we don't need regex_lock */
4900 
4901 	parser = &iter->parser;
4902 	read = trace_get_user(parser, ubuf, cnt, ppos);
4903 
4904 	if (read >= 0 && trace_parser_loaded(parser) &&
4905 	    !trace_parser_cont(parser)) {
4906 		ret = ftrace_process_regex(iter, parser->buffer,
4907 					   parser->idx, enable);
4908 		trace_parser_clear(parser);
4909 		if (ret < 0)
4910 			goto out;
4911 	}
4912 
4913 	ret = read;
4914  out:
4915 	return ret;
4916 }
4917 
4918 ssize_t
4919 ftrace_filter_write(struct file *file, const char __user *ubuf,
4920 		    size_t cnt, loff_t *ppos)
4921 {
4922 	return ftrace_regex_write(file, ubuf, cnt, ppos, 1);
4923 }
4924 
4925 ssize_t
4926 ftrace_notrace_write(struct file *file, const char __user *ubuf,
4927 		     size_t cnt, loff_t *ppos)
4928 {
4929 	return ftrace_regex_write(file, ubuf, cnt, ppos, 0);
4930 }
4931 
4932 static int
4933 ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove)
4934 {
4935 	struct ftrace_func_entry *entry;
4936 
4937 	if (!ftrace_location(ip))
4938 		return -EINVAL;
4939 
4940 	if (remove) {
4941 		entry = ftrace_lookup_ip(hash, ip);
4942 		if (!entry)
4943 			return -ENOENT;
4944 		free_hash_entry(hash, entry);
4945 		return 0;
4946 	}
4947 
4948 	return add_hash_entry(hash, ip);
4949 }
4950 
4951 static int
4952 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len,
4953 		unsigned long ip, int remove, int reset, int enable)
4954 {
4955 	struct ftrace_hash **orig_hash;
4956 	struct ftrace_hash *hash;
4957 	int ret;
4958 
4959 	if (unlikely(ftrace_disabled))
4960 		return -ENODEV;
4961 
4962 	mutex_lock(&ops->func_hash->regex_lock);
4963 
4964 	if (enable)
4965 		orig_hash = &ops->func_hash->filter_hash;
4966 	else
4967 		orig_hash = &ops->func_hash->notrace_hash;
4968 
4969 	if (reset)
4970 		hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
4971 	else
4972 		hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash);
4973 
4974 	if (!hash) {
4975 		ret = -ENOMEM;
4976 		goto out_regex_unlock;
4977 	}
4978 
4979 	if (buf && !ftrace_match_records(hash, buf, len)) {
4980 		ret = -EINVAL;
4981 		goto out_regex_unlock;
4982 	}
4983 	if (ip) {
4984 		ret = ftrace_match_addr(hash, ip, remove);
4985 		if (ret < 0)
4986 			goto out_regex_unlock;
4987 	}
4988 
4989 	mutex_lock(&ftrace_lock);
4990 	ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable);
4991 	mutex_unlock(&ftrace_lock);
4992 
4993  out_regex_unlock:
4994 	mutex_unlock(&ops->func_hash->regex_lock);
4995 
4996 	free_ftrace_hash(hash);
4997 	return ret;
4998 }
4999 
5000 static int
5001 ftrace_set_addr(struct ftrace_ops *ops, unsigned long ip, int remove,
5002 		int reset, int enable)
5003 {
5004 	return ftrace_set_hash(ops, NULL, 0, ip, remove, reset, enable);
5005 }
5006 
5007 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
5008 
5009 struct ftrace_direct_func {
5010 	struct list_head	next;
5011 	unsigned long		addr;
5012 	int			count;
5013 };
5014 
5015 static LIST_HEAD(ftrace_direct_funcs);
5016 
5017 /**
5018  * ftrace_find_direct_func - test an address if it is a registered direct caller
5019  * @addr: The address of a registered direct caller
5020  *
5021  * This searches to see if a ftrace direct caller has been registered
5022  * at a specific address, and if so, it returns a descriptor for it.
5023  *
5024  * This can be used by architecture code to see if an address is
5025  * a direct caller (trampoline) attached to a fentry/mcount location.
5026  * This is useful for the function_graph tracer, as it may need to
5027  * do adjustments if it traced a location that also has a direct
5028  * trampoline attached to it.
5029  */
5030 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr)
5031 {
5032 	struct ftrace_direct_func *entry;
5033 	bool found = false;
5034 
5035 	/* May be called by fgraph trampoline (protected by rcu tasks) */
5036 	list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) {
5037 		if (entry->addr == addr) {
5038 			found = true;
5039 			break;
5040 		}
5041 	}
5042 	if (found)
5043 		return entry;
5044 
5045 	return NULL;
5046 }
5047 
5048 static struct ftrace_direct_func *ftrace_alloc_direct_func(unsigned long addr)
5049 {
5050 	struct ftrace_direct_func *direct;
5051 
5052 	direct = kmalloc(sizeof(*direct), GFP_KERNEL);
5053 	if (!direct)
5054 		return NULL;
5055 	direct->addr = addr;
5056 	direct->count = 0;
5057 	list_add_rcu(&direct->next, &ftrace_direct_funcs);
5058 	ftrace_direct_func_count++;
5059 	return direct;
5060 }
5061 
5062 /**
5063  * register_ftrace_direct - Call a custom trampoline directly
5064  * @ip: The address of the nop at the beginning of a function
5065  * @addr: The address of the trampoline to call at @ip
5066  *
5067  * This is used to connect a direct call from the nop location (@ip)
5068  * at the start of ftrace traced functions. The location that it calls
5069  * (@addr) must be able to handle a direct call, and save the parameters
5070  * of the function being traced, and restore them (or inject new ones
5071  * if needed), before returning.
5072  *
5073  * Returns:
5074  *  0 on success
5075  *  -EBUSY - Another direct function is already attached (there can be only one)
5076  *  -ENODEV - @ip does not point to a ftrace nop location (or not supported)
5077  *  -ENOMEM - There was an allocation failure.
5078  */
5079 int register_ftrace_direct(unsigned long ip, unsigned long addr)
5080 {
5081 	struct ftrace_direct_func *direct;
5082 	struct ftrace_func_entry *entry;
5083 	struct ftrace_hash *free_hash = NULL;
5084 	struct dyn_ftrace *rec;
5085 	int ret = -EBUSY;
5086 
5087 	mutex_lock(&direct_mutex);
5088 
5089 	/* See if there's a direct function at @ip already */
5090 	if (ftrace_find_rec_direct(ip))
5091 		goto out_unlock;
5092 
5093 	ret = -ENODEV;
5094 	rec = lookup_rec(ip, ip);
5095 	if (!rec)
5096 		goto out_unlock;
5097 
5098 	/*
5099 	 * Check if the rec says it has a direct call but we didn't
5100 	 * find one earlier?
5101 	 */
5102 	if (WARN_ON(rec->flags & FTRACE_FL_DIRECT))
5103 		goto out_unlock;
5104 
5105 	/* Make sure the ip points to the exact record */
5106 	if (ip != rec->ip) {
5107 		ip = rec->ip;
5108 		/* Need to check this ip for a direct. */
5109 		if (ftrace_find_rec_direct(ip))
5110 			goto out_unlock;
5111 	}
5112 
5113 	ret = -ENOMEM;
5114 	if (ftrace_hash_empty(direct_functions) ||
5115 	    direct_functions->count > 2 * (1 << direct_functions->size_bits)) {
5116 		struct ftrace_hash *new_hash;
5117 		int size = ftrace_hash_empty(direct_functions) ? 0 :
5118 			direct_functions->count + 1;
5119 
5120 		if (size < 32)
5121 			size = 32;
5122 
5123 		new_hash = dup_hash(direct_functions, size);
5124 		if (!new_hash)
5125 			goto out_unlock;
5126 
5127 		free_hash = direct_functions;
5128 		direct_functions = new_hash;
5129 	}
5130 
5131 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
5132 	if (!entry)
5133 		goto out_unlock;
5134 
5135 	direct = ftrace_find_direct_func(addr);
5136 	if (!direct) {
5137 		direct = ftrace_alloc_direct_func(addr);
5138 		if (!direct) {
5139 			kfree(entry);
5140 			goto out_unlock;
5141 		}
5142 	}
5143 
5144 	entry->ip = ip;
5145 	entry->direct = addr;
5146 	__add_hash_entry(direct_functions, entry);
5147 
5148 	ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0);
5149 	if (ret)
5150 		remove_hash_entry(direct_functions, entry);
5151 
5152 	if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) {
5153 		ret = register_ftrace_function(&direct_ops);
5154 		if (ret)
5155 			ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
5156 	}
5157 
5158 	if (ret) {
5159 		kfree(entry);
5160 		if (!direct->count) {
5161 			list_del_rcu(&direct->next);
5162 			synchronize_rcu_tasks();
5163 			kfree(direct);
5164 			if (free_hash)
5165 				free_ftrace_hash(free_hash);
5166 			free_hash = NULL;
5167 			ftrace_direct_func_count--;
5168 		}
5169 	} else {
5170 		direct->count++;
5171 	}
5172  out_unlock:
5173 	mutex_unlock(&direct_mutex);
5174 
5175 	if (free_hash) {
5176 		synchronize_rcu_tasks();
5177 		free_ftrace_hash(free_hash);
5178 	}
5179 
5180 	return ret;
5181 }
5182 EXPORT_SYMBOL_GPL(register_ftrace_direct);
5183 
5184 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip,
5185 						   struct dyn_ftrace **recp)
5186 {
5187 	struct ftrace_func_entry *entry;
5188 	struct dyn_ftrace *rec;
5189 
5190 	rec = lookup_rec(*ip, *ip);
5191 	if (!rec)
5192 		return NULL;
5193 
5194 	entry = __ftrace_lookup_ip(direct_functions, rec->ip);
5195 	if (!entry) {
5196 		WARN_ON(rec->flags & FTRACE_FL_DIRECT);
5197 		return NULL;
5198 	}
5199 
5200 	WARN_ON(!(rec->flags & FTRACE_FL_DIRECT));
5201 
5202 	/* Passed in ip just needs to be on the call site */
5203 	*ip = rec->ip;
5204 
5205 	if (recp)
5206 		*recp = rec;
5207 
5208 	return entry;
5209 }
5210 
5211 int unregister_ftrace_direct(unsigned long ip, unsigned long addr)
5212 {
5213 	struct ftrace_direct_func *direct;
5214 	struct ftrace_func_entry *entry;
5215 	int ret = -ENODEV;
5216 
5217 	mutex_lock(&direct_mutex);
5218 
5219 	entry = find_direct_entry(&ip, NULL);
5220 	if (!entry)
5221 		goto out_unlock;
5222 
5223 	if (direct_functions->count == 1)
5224 		unregister_ftrace_function(&direct_ops);
5225 
5226 	ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
5227 
5228 	WARN_ON(ret);
5229 
5230 	remove_hash_entry(direct_functions, entry);
5231 
5232 	direct = ftrace_find_direct_func(addr);
5233 	if (!WARN_ON(!direct)) {
5234 		/* This is the good path (see the ! before WARN) */
5235 		direct->count--;
5236 		WARN_ON(direct->count < 0);
5237 		if (!direct->count) {
5238 			list_del_rcu(&direct->next);
5239 			synchronize_rcu_tasks();
5240 			kfree(direct);
5241 			kfree(entry);
5242 			ftrace_direct_func_count--;
5243 		}
5244 	}
5245  out_unlock:
5246 	mutex_unlock(&direct_mutex);
5247 
5248 	return ret;
5249 }
5250 EXPORT_SYMBOL_GPL(unregister_ftrace_direct);
5251 
5252 static struct ftrace_ops stub_ops = {
5253 	.func		= ftrace_stub,
5254 };
5255 
5256 /**
5257  * ftrace_modify_direct_caller - modify ftrace nop directly
5258  * @entry: The ftrace hash entry of the direct helper for @rec
5259  * @rec: The record representing the function site to patch
5260  * @old_addr: The location that the site at @rec->ip currently calls
5261  * @new_addr: The location that the site at @rec->ip should call
5262  *
5263  * An architecture may overwrite this function to optimize the
5264  * changing of the direct callback on an ftrace nop location.
5265  * This is called with the ftrace_lock mutex held, and no other
5266  * ftrace callbacks are on the associated record (@rec). Thus,
5267  * it is safe to modify the ftrace record, where it should be
5268  * currently calling @old_addr directly, to call @new_addr.
5269  *
5270  * Safety checks should be made to make sure that the code at
5271  * @rec->ip is currently calling @old_addr. And this must
5272  * also update entry->direct to @new_addr.
5273  */
5274 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry,
5275 				       struct dyn_ftrace *rec,
5276 				       unsigned long old_addr,
5277 				       unsigned long new_addr)
5278 {
5279 	unsigned long ip = rec->ip;
5280 	int ret;
5281 
5282 	/*
5283 	 * The ftrace_lock was used to determine if the record
5284 	 * had more than one registered user to it. If it did,
5285 	 * we needed to prevent that from changing to do the quick
5286 	 * switch. But if it did not (only a direct caller was attached)
5287 	 * then this function is called. But this function can deal
5288 	 * with attached callers to the rec that we care about, and
5289 	 * since this function uses standard ftrace calls that take
5290 	 * the ftrace_lock mutex, we need to release it.
5291 	 */
5292 	mutex_unlock(&ftrace_lock);
5293 
5294 	/*
5295 	 * By setting a stub function at the same address, we force
5296 	 * the code to call the iterator and the direct_ops helper.
5297 	 * This means that @ip does not call the direct call, and
5298 	 * we can simply modify it.
5299 	 */
5300 	ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0);
5301 	if (ret)
5302 		goto out_lock;
5303 
5304 	ret = register_ftrace_function(&stub_ops);
5305 	if (ret) {
5306 		ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
5307 		goto out_lock;
5308 	}
5309 
5310 	entry->direct = new_addr;
5311 
5312 	/*
5313 	 * By removing the stub, we put back the direct call, calling
5314 	 * the @new_addr.
5315 	 */
5316 	unregister_ftrace_function(&stub_ops);
5317 	ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
5318 
5319  out_lock:
5320 	mutex_lock(&ftrace_lock);
5321 
5322 	return ret;
5323 }
5324 
5325 /**
5326  * modify_ftrace_direct - Modify an existing direct call to call something else
5327  * @ip: The instruction pointer to modify
5328  * @old_addr: The address that the current @ip calls directly
5329  * @new_addr: The address that the @ip should call
5330  *
5331  * This modifies a ftrace direct caller at an instruction pointer without
5332  * having to disable it first. The direct call will switch over to the
5333  * @new_addr without missing anything.
5334  *
5335  * Returns: zero on success. Non zero on error, which includes:
5336  *  -ENODEV : the @ip given has no direct caller attached
5337  *  -EINVAL : the @old_addr does not match the current direct caller
5338  */
5339 int modify_ftrace_direct(unsigned long ip,
5340 			 unsigned long old_addr, unsigned long new_addr)
5341 {
5342 	struct ftrace_direct_func *direct, *new_direct = NULL;
5343 	struct ftrace_func_entry *entry;
5344 	struct dyn_ftrace *rec;
5345 	int ret = -ENODEV;
5346 
5347 	mutex_lock(&direct_mutex);
5348 
5349 	mutex_lock(&ftrace_lock);
5350 	entry = find_direct_entry(&ip, &rec);
5351 	if (!entry)
5352 		goto out_unlock;
5353 
5354 	ret = -EINVAL;
5355 	if (entry->direct != old_addr)
5356 		goto out_unlock;
5357 
5358 	direct = ftrace_find_direct_func(old_addr);
5359 	if (WARN_ON(!direct))
5360 		goto out_unlock;
5361 	if (direct->count > 1) {
5362 		ret = -ENOMEM;
5363 		new_direct = ftrace_alloc_direct_func(new_addr);
5364 		if (!new_direct)
5365 			goto out_unlock;
5366 		direct->count--;
5367 		new_direct->count++;
5368 	} else {
5369 		direct->addr = new_addr;
5370 	}
5371 
5372 	/*
5373 	 * If there's no other ftrace callback on the rec->ip location,
5374 	 * then it can be changed directly by the architecture.
5375 	 * If there is another caller, then we just need to change the
5376 	 * direct caller helper to point to @new_addr.
5377 	 */
5378 	if (ftrace_rec_count(rec) == 1) {
5379 		ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr);
5380 	} else {
5381 		entry->direct = new_addr;
5382 		ret = 0;
5383 	}
5384 
5385 	if (unlikely(ret && new_direct)) {
5386 		direct->count++;
5387 		list_del_rcu(&new_direct->next);
5388 		synchronize_rcu_tasks();
5389 		kfree(new_direct);
5390 		ftrace_direct_func_count--;
5391 	}
5392 
5393  out_unlock:
5394 	mutex_unlock(&ftrace_lock);
5395 	mutex_unlock(&direct_mutex);
5396 	return ret;
5397 }
5398 EXPORT_SYMBOL_GPL(modify_ftrace_direct);
5399 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
5400 
5401 /**
5402  * ftrace_set_filter_ip - set a function to filter on in ftrace by address
5403  * @ops - the ops to set the filter with
5404  * @ip - the address to add to or remove from the filter.
5405  * @remove - non zero to remove the ip from the filter
5406  * @reset - non zero to reset all filters before applying this filter.
5407  *
5408  * Filters denote which functions should be enabled when tracing is enabled
5409  * If @ip is NULL, it fails to update filter.
5410  */
5411 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip,
5412 			 int remove, int reset)
5413 {
5414 	ftrace_ops_init(ops);
5415 	return ftrace_set_addr(ops, ip, remove, reset, 1);
5416 }
5417 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip);
5418 
5419 /**
5420  * ftrace_ops_set_global_filter - setup ops to use global filters
5421  * @ops - the ops which will use the global filters
5422  *
5423  * ftrace users who need global function trace filtering should call this.
5424  * It can set the global filter only if ops were not initialized before.
5425  */
5426 void ftrace_ops_set_global_filter(struct ftrace_ops *ops)
5427 {
5428 	if (ops->flags & FTRACE_OPS_FL_INITIALIZED)
5429 		return;
5430 
5431 	ftrace_ops_init(ops);
5432 	ops->func_hash = &global_ops.local_hash;
5433 }
5434 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter);
5435 
5436 static int
5437 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
5438 		 int reset, int enable)
5439 {
5440 	return ftrace_set_hash(ops, buf, len, 0, 0, reset, enable);
5441 }
5442 
5443 /**
5444  * ftrace_set_filter - set a function to filter on in ftrace
5445  * @ops - the ops to set the filter with
5446  * @buf - the string that holds the function filter text.
5447  * @len - the length of the string.
5448  * @reset - non zero to reset all filters before applying this filter.
5449  *
5450  * Filters denote which functions should be enabled when tracing is enabled.
5451  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
5452  */
5453 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf,
5454 		       int len, int reset)
5455 {
5456 	ftrace_ops_init(ops);
5457 	return ftrace_set_regex(ops, buf, len, reset, 1);
5458 }
5459 EXPORT_SYMBOL_GPL(ftrace_set_filter);
5460 
5461 /**
5462  * ftrace_set_notrace - set a function to not trace in ftrace
5463  * @ops - the ops to set the notrace filter with
5464  * @buf - the string that holds the function notrace text.
5465  * @len - the length of the string.
5466  * @reset - non zero to reset all filters before applying this filter.
5467  *
5468  * Notrace Filters denote which functions should not be enabled when tracing
5469  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
5470  * for tracing.
5471  */
5472 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf,
5473 			int len, int reset)
5474 {
5475 	ftrace_ops_init(ops);
5476 	return ftrace_set_regex(ops, buf, len, reset, 0);
5477 }
5478 EXPORT_SYMBOL_GPL(ftrace_set_notrace);
5479 /**
5480  * ftrace_set_global_filter - set a function to filter on with global tracers
5481  * @buf - the string that holds the function filter text.
5482  * @len - the length of the string.
5483  * @reset - non zero to reset all filters before applying this filter.
5484  *
5485  * Filters denote which functions should be enabled when tracing is enabled.
5486  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
5487  */
5488 void ftrace_set_global_filter(unsigned char *buf, int len, int reset)
5489 {
5490 	ftrace_set_regex(&global_ops, buf, len, reset, 1);
5491 }
5492 EXPORT_SYMBOL_GPL(ftrace_set_global_filter);
5493 
5494 /**
5495  * ftrace_set_global_notrace - set a function to not trace with global tracers
5496  * @buf - the string that holds the function notrace text.
5497  * @len - the length of the string.
5498  * @reset - non zero to reset all filters before applying this filter.
5499  *
5500  * Notrace Filters denote which functions should not be enabled when tracing
5501  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
5502  * for tracing.
5503  */
5504 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset)
5505 {
5506 	ftrace_set_regex(&global_ops, buf, len, reset, 0);
5507 }
5508 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace);
5509 
5510 /*
5511  * command line interface to allow users to set filters on boot up.
5512  */
5513 #define FTRACE_FILTER_SIZE		COMMAND_LINE_SIZE
5514 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
5515 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata;
5516 
5517 /* Used by function selftest to not test if filter is set */
5518 bool ftrace_filter_param __initdata;
5519 
5520 static int __init set_ftrace_notrace(char *str)
5521 {
5522 	ftrace_filter_param = true;
5523 	strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE);
5524 	return 1;
5525 }
5526 __setup("ftrace_notrace=", set_ftrace_notrace);
5527 
5528 static int __init set_ftrace_filter(char *str)
5529 {
5530 	ftrace_filter_param = true;
5531 	strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE);
5532 	return 1;
5533 }
5534 __setup("ftrace_filter=", set_ftrace_filter);
5535 
5536 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5537 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata;
5538 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
5539 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer);
5540 
5541 static int __init set_graph_function(char *str)
5542 {
5543 	strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE);
5544 	return 1;
5545 }
5546 __setup("ftrace_graph_filter=", set_graph_function);
5547 
5548 static int __init set_graph_notrace_function(char *str)
5549 {
5550 	strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE);
5551 	return 1;
5552 }
5553 __setup("ftrace_graph_notrace=", set_graph_notrace_function);
5554 
5555 static int __init set_graph_max_depth_function(char *str)
5556 {
5557 	if (!str)
5558 		return 0;
5559 	fgraph_max_depth = simple_strtoul(str, NULL, 0);
5560 	return 1;
5561 }
5562 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function);
5563 
5564 static void __init set_ftrace_early_graph(char *buf, int enable)
5565 {
5566 	int ret;
5567 	char *func;
5568 	struct ftrace_hash *hash;
5569 
5570 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
5571 	if (MEM_FAIL(!hash, "Failed to allocate hash\n"))
5572 		return;
5573 
5574 	while (buf) {
5575 		func = strsep(&buf, ",");
5576 		/* we allow only one expression at a time */
5577 		ret = ftrace_graph_set_hash(hash, func);
5578 		if (ret)
5579 			printk(KERN_DEBUG "ftrace: function %s not "
5580 					  "traceable\n", func);
5581 	}
5582 
5583 	if (enable)
5584 		ftrace_graph_hash = hash;
5585 	else
5586 		ftrace_graph_notrace_hash = hash;
5587 }
5588 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
5589 
5590 void __init
5591 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable)
5592 {
5593 	char *func;
5594 
5595 	ftrace_ops_init(ops);
5596 
5597 	while (buf) {
5598 		func = strsep(&buf, ",");
5599 		ftrace_set_regex(ops, func, strlen(func), 0, enable);
5600 	}
5601 }
5602 
5603 static void __init set_ftrace_early_filters(void)
5604 {
5605 	if (ftrace_filter_buf[0])
5606 		ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1);
5607 	if (ftrace_notrace_buf[0])
5608 		ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0);
5609 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5610 	if (ftrace_graph_buf[0])
5611 		set_ftrace_early_graph(ftrace_graph_buf, 1);
5612 	if (ftrace_graph_notrace_buf[0])
5613 		set_ftrace_early_graph(ftrace_graph_notrace_buf, 0);
5614 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
5615 }
5616 
5617 int ftrace_regex_release(struct inode *inode, struct file *file)
5618 {
5619 	struct seq_file *m = (struct seq_file *)file->private_data;
5620 	struct ftrace_iterator *iter;
5621 	struct ftrace_hash **orig_hash;
5622 	struct trace_parser *parser;
5623 	int filter_hash;
5624 
5625 	if (file->f_mode & FMODE_READ) {
5626 		iter = m->private;
5627 		seq_release(inode, file);
5628 	} else
5629 		iter = file->private_data;
5630 
5631 	parser = &iter->parser;
5632 	if (trace_parser_loaded(parser)) {
5633 		int enable = !(iter->flags & FTRACE_ITER_NOTRACE);
5634 
5635 		ftrace_process_regex(iter, parser->buffer,
5636 				     parser->idx, enable);
5637 	}
5638 
5639 	trace_parser_put(parser);
5640 
5641 	mutex_lock(&iter->ops->func_hash->regex_lock);
5642 
5643 	if (file->f_mode & FMODE_WRITE) {
5644 		filter_hash = !!(iter->flags & FTRACE_ITER_FILTER);
5645 
5646 		if (filter_hash) {
5647 			orig_hash = &iter->ops->func_hash->filter_hash;
5648 			if (iter->tr && !list_empty(&iter->tr->mod_trace))
5649 				iter->hash->flags |= FTRACE_HASH_FL_MOD;
5650 		} else
5651 			orig_hash = &iter->ops->func_hash->notrace_hash;
5652 
5653 		mutex_lock(&ftrace_lock);
5654 		ftrace_hash_move_and_update_ops(iter->ops, orig_hash,
5655 						      iter->hash, filter_hash);
5656 		mutex_unlock(&ftrace_lock);
5657 	} else {
5658 		/* For read only, the hash is the ops hash */
5659 		iter->hash = NULL;
5660 	}
5661 
5662 	mutex_unlock(&iter->ops->func_hash->regex_lock);
5663 	free_ftrace_hash(iter->hash);
5664 	if (iter->tr)
5665 		trace_array_put(iter->tr);
5666 	kfree(iter);
5667 
5668 	return 0;
5669 }
5670 
5671 static const struct file_operations ftrace_avail_fops = {
5672 	.open = ftrace_avail_open,
5673 	.read = seq_read,
5674 	.llseek = seq_lseek,
5675 	.release = seq_release_private,
5676 };
5677 
5678 static const struct file_operations ftrace_enabled_fops = {
5679 	.open = ftrace_enabled_open,
5680 	.read = seq_read,
5681 	.llseek = seq_lseek,
5682 	.release = seq_release_private,
5683 };
5684 
5685 static const struct file_operations ftrace_filter_fops = {
5686 	.open = ftrace_filter_open,
5687 	.read = seq_read,
5688 	.write = ftrace_filter_write,
5689 	.llseek = tracing_lseek,
5690 	.release = ftrace_regex_release,
5691 };
5692 
5693 static const struct file_operations ftrace_notrace_fops = {
5694 	.open = ftrace_notrace_open,
5695 	.read = seq_read,
5696 	.write = ftrace_notrace_write,
5697 	.llseek = tracing_lseek,
5698 	.release = ftrace_regex_release,
5699 };
5700 
5701 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5702 
5703 static DEFINE_MUTEX(graph_lock);
5704 
5705 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH;
5706 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH;
5707 
5708 enum graph_filter_type {
5709 	GRAPH_FILTER_NOTRACE	= 0,
5710 	GRAPH_FILTER_FUNCTION,
5711 };
5712 
5713 #define FTRACE_GRAPH_EMPTY	((void *)1)
5714 
5715 struct ftrace_graph_data {
5716 	struct ftrace_hash		*hash;
5717 	struct ftrace_func_entry	*entry;
5718 	int				idx;   /* for hash table iteration */
5719 	enum graph_filter_type		type;
5720 	struct ftrace_hash		*new_hash;
5721 	const struct seq_operations	*seq_ops;
5722 	struct trace_parser		parser;
5723 };
5724 
5725 static void *
5726 __g_next(struct seq_file *m, loff_t *pos)
5727 {
5728 	struct ftrace_graph_data *fgd = m->private;
5729 	struct ftrace_func_entry *entry = fgd->entry;
5730 	struct hlist_head *head;
5731 	int i, idx = fgd->idx;
5732 
5733 	if (*pos >= fgd->hash->count)
5734 		return NULL;
5735 
5736 	if (entry) {
5737 		hlist_for_each_entry_continue(entry, hlist) {
5738 			fgd->entry = entry;
5739 			return entry;
5740 		}
5741 
5742 		idx++;
5743 	}
5744 
5745 	for (i = idx; i < 1 << fgd->hash->size_bits; i++) {
5746 		head = &fgd->hash->buckets[i];
5747 		hlist_for_each_entry(entry, head, hlist) {
5748 			fgd->entry = entry;
5749 			fgd->idx = i;
5750 			return entry;
5751 		}
5752 	}
5753 	return NULL;
5754 }
5755 
5756 static void *
5757 g_next(struct seq_file *m, void *v, loff_t *pos)
5758 {
5759 	(*pos)++;
5760 	return __g_next(m, pos);
5761 }
5762 
5763 static void *g_start(struct seq_file *m, loff_t *pos)
5764 {
5765 	struct ftrace_graph_data *fgd = m->private;
5766 
5767 	mutex_lock(&graph_lock);
5768 
5769 	if (fgd->type == GRAPH_FILTER_FUNCTION)
5770 		fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
5771 					lockdep_is_held(&graph_lock));
5772 	else
5773 		fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
5774 					lockdep_is_held(&graph_lock));
5775 
5776 	/* Nothing, tell g_show to print all functions are enabled */
5777 	if (ftrace_hash_empty(fgd->hash) && !*pos)
5778 		return FTRACE_GRAPH_EMPTY;
5779 
5780 	fgd->idx = 0;
5781 	fgd->entry = NULL;
5782 	return __g_next(m, pos);
5783 }
5784 
5785 static void g_stop(struct seq_file *m, void *p)
5786 {
5787 	mutex_unlock(&graph_lock);
5788 }
5789 
5790 static int g_show(struct seq_file *m, void *v)
5791 {
5792 	struct ftrace_func_entry *entry = v;
5793 
5794 	if (!entry)
5795 		return 0;
5796 
5797 	if (entry == FTRACE_GRAPH_EMPTY) {
5798 		struct ftrace_graph_data *fgd = m->private;
5799 
5800 		if (fgd->type == GRAPH_FILTER_FUNCTION)
5801 			seq_puts(m, "#### all functions enabled ####\n");
5802 		else
5803 			seq_puts(m, "#### no functions disabled ####\n");
5804 		return 0;
5805 	}
5806 
5807 	seq_printf(m, "%ps\n", (void *)entry->ip);
5808 
5809 	return 0;
5810 }
5811 
5812 static const struct seq_operations ftrace_graph_seq_ops = {
5813 	.start = g_start,
5814 	.next = g_next,
5815 	.stop = g_stop,
5816 	.show = g_show,
5817 };
5818 
5819 static int
5820 __ftrace_graph_open(struct inode *inode, struct file *file,
5821 		    struct ftrace_graph_data *fgd)
5822 {
5823 	int ret;
5824 	struct ftrace_hash *new_hash = NULL;
5825 
5826 	ret = security_locked_down(LOCKDOWN_TRACEFS);
5827 	if (ret)
5828 		return ret;
5829 
5830 	if (file->f_mode & FMODE_WRITE) {
5831 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
5832 
5833 		if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX))
5834 			return -ENOMEM;
5835 
5836 		if (file->f_flags & O_TRUNC)
5837 			new_hash = alloc_ftrace_hash(size_bits);
5838 		else
5839 			new_hash = alloc_and_copy_ftrace_hash(size_bits,
5840 							      fgd->hash);
5841 		if (!new_hash) {
5842 			ret = -ENOMEM;
5843 			goto out;
5844 		}
5845 	}
5846 
5847 	if (file->f_mode & FMODE_READ) {
5848 		ret = seq_open(file, &ftrace_graph_seq_ops);
5849 		if (!ret) {
5850 			struct seq_file *m = file->private_data;
5851 			m->private = fgd;
5852 		} else {
5853 			/* Failed */
5854 			free_ftrace_hash(new_hash);
5855 			new_hash = NULL;
5856 		}
5857 	} else
5858 		file->private_data = fgd;
5859 
5860 out:
5861 	if (ret < 0 && file->f_mode & FMODE_WRITE)
5862 		trace_parser_put(&fgd->parser);
5863 
5864 	fgd->new_hash = new_hash;
5865 
5866 	/*
5867 	 * All uses of fgd->hash must be taken with the graph_lock
5868 	 * held. The graph_lock is going to be released, so force
5869 	 * fgd->hash to be reinitialized when it is taken again.
5870 	 */
5871 	fgd->hash = NULL;
5872 
5873 	return ret;
5874 }
5875 
5876 static int
5877 ftrace_graph_open(struct inode *inode, struct file *file)
5878 {
5879 	struct ftrace_graph_data *fgd;
5880 	int ret;
5881 
5882 	if (unlikely(ftrace_disabled))
5883 		return -ENODEV;
5884 
5885 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
5886 	if (fgd == NULL)
5887 		return -ENOMEM;
5888 
5889 	mutex_lock(&graph_lock);
5890 
5891 	fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
5892 					lockdep_is_held(&graph_lock));
5893 	fgd->type = GRAPH_FILTER_FUNCTION;
5894 	fgd->seq_ops = &ftrace_graph_seq_ops;
5895 
5896 	ret = __ftrace_graph_open(inode, file, fgd);
5897 	if (ret < 0)
5898 		kfree(fgd);
5899 
5900 	mutex_unlock(&graph_lock);
5901 	return ret;
5902 }
5903 
5904 static int
5905 ftrace_graph_notrace_open(struct inode *inode, struct file *file)
5906 {
5907 	struct ftrace_graph_data *fgd;
5908 	int ret;
5909 
5910 	if (unlikely(ftrace_disabled))
5911 		return -ENODEV;
5912 
5913 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
5914 	if (fgd == NULL)
5915 		return -ENOMEM;
5916 
5917 	mutex_lock(&graph_lock);
5918 
5919 	fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
5920 					lockdep_is_held(&graph_lock));
5921 	fgd->type = GRAPH_FILTER_NOTRACE;
5922 	fgd->seq_ops = &ftrace_graph_seq_ops;
5923 
5924 	ret = __ftrace_graph_open(inode, file, fgd);
5925 	if (ret < 0)
5926 		kfree(fgd);
5927 
5928 	mutex_unlock(&graph_lock);
5929 	return ret;
5930 }
5931 
5932 static int
5933 ftrace_graph_release(struct inode *inode, struct file *file)
5934 {
5935 	struct ftrace_graph_data *fgd;
5936 	struct ftrace_hash *old_hash, *new_hash;
5937 	struct trace_parser *parser;
5938 	int ret = 0;
5939 
5940 	if (file->f_mode & FMODE_READ) {
5941 		struct seq_file *m = file->private_data;
5942 
5943 		fgd = m->private;
5944 		seq_release(inode, file);
5945 	} else {
5946 		fgd = file->private_data;
5947 	}
5948 
5949 
5950 	if (file->f_mode & FMODE_WRITE) {
5951 
5952 		parser = &fgd->parser;
5953 
5954 		if (trace_parser_loaded((parser))) {
5955 			ret = ftrace_graph_set_hash(fgd->new_hash,
5956 						    parser->buffer);
5957 		}
5958 
5959 		trace_parser_put(parser);
5960 
5961 		new_hash = __ftrace_hash_move(fgd->new_hash);
5962 		if (!new_hash) {
5963 			ret = -ENOMEM;
5964 			goto out;
5965 		}
5966 
5967 		mutex_lock(&graph_lock);
5968 
5969 		if (fgd->type == GRAPH_FILTER_FUNCTION) {
5970 			old_hash = rcu_dereference_protected(ftrace_graph_hash,
5971 					lockdep_is_held(&graph_lock));
5972 			rcu_assign_pointer(ftrace_graph_hash, new_hash);
5973 		} else {
5974 			old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
5975 					lockdep_is_held(&graph_lock));
5976 			rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash);
5977 		}
5978 
5979 		mutex_unlock(&graph_lock);
5980 
5981 		/*
5982 		 * We need to do a hard force of sched synchronization.
5983 		 * This is because we use preempt_disable() to do RCU, but
5984 		 * the function tracers can be called where RCU is not watching
5985 		 * (like before user_exit()). We can not rely on the RCU
5986 		 * infrastructure to do the synchronization, thus we must do it
5987 		 * ourselves.
5988 		 */
5989 		if (old_hash != EMPTY_HASH)
5990 			synchronize_rcu_tasks_rude();
5991 
5992 		free_ftrace_hash(old_hash);
5993 	}
5994 
5995  out:
5996 	free_ftrace_hash(fgd->new_hash);
5997 	kfree(fgd);
5998 
5999 	return ret;
6000 }
6001 
6002 static int
6003 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer)
6004 {
6005 	struct ftrace_glob func_g;
6006 	struct dyn_ftrace *rec;
6007 	struct ftrace_page *pg;
6008 	struct ftrace_func_entry *entry;
6009 	int fail = 1;
6010 	int not;
6011 
6012 	/* decode regex */
6013 	func_g.type = filter_parse_regex(buffer, strlen(buffer),
6014 					 &func_g.search, &not);
6015 
6016 	func_g.len = strlen(func_g.search);
6017 
6018 	mutex_lock(&ftrace_lock);
6019 
6020 	if (unlikely(ftrace_disabled)) {
6021 		mutex_unlock(&ftrace_lock);
6022 		return -ENODEV;
6023 	}
6024 
6025 	do_for_each_ftrace_rec(pg, rec) {
6026 
6027 		if (rec->flags & FTRACE_FL_DISABLED)
6028 			continue;
6029 
6030 		if (ftrace_match_record(rec, &func_g, NULL, 0)) {
6031 			entry = ftrace_lookup_ip(hash, rec->ip);
6032 
6033 			if (!not) {
6034 				fail = 0;
6035 
6036 				if (entry)
6037 					continue;
6038 				if (add_hash_entry(hash, rec->ip) < 0)
6039 					goto out;
6040 			} else {
6041 				if (entry) {
6042 					free_hash_entry(hash, entry);
6043 					fail = 0;
6044 				}
6045 			}
6046 		}
6047 	} while_for_each_ftrace_rec();
6048 out:
6049 	mutex_unlock(&ftrace_lock);
6050 
6051 	if (fail)
6052 		return -EINVAL;
6053 
6054 	return 0;
6055 }
6056 
6057 static ssize_t
6058 ftrace_graph_write(struct file *file, const char __user *ubuf,
6059 		   size_t cnt, loff_t *ppos)
6060 {
6061 	ssize_t read, ret = 0;
6062 	struct ftrace_graph_data *fgd = file->private_data;
6063 	struct trace_parser *parser;
6064 
6065 	if (!cnt)
6066 		return 0;
6067 
6068 	/* Read mode uses seq functions */
6069 	if (file->f_mode & FMODE_READ) {
6070 		struct seq_file *m = file->private_data;
6071 		fgd = m->private;
6072 	}
6073 
6074 	parser = &fgd->parser;
6075 
6076 	read = trace_get_user(parser, ubuf, cnt, ppos);
6077 
6078 	if (read >= 0 && trace_parser_loaded(parser) &&
6079 	    !trace_parser_cont(parser)) {
6080 
6081 		ret = ftrace_graph_set_hash(fgd->new_hash,
6082 					    parser->buffer);
6083 		trace_parser_clear(parser);
6084 	}
6085 
6086 	if (!ret)
6087 		ret = read;
6088 
6089 	return ret;
6090 }
6091 
6092 static const struct file_operations ftrace_graph_fops = {
6093 	.open		= ftrace_graph_open,
6094 	.read		= seq_read,
6095 	.write		= ftrace_graph_write,
6096 	.llseek		= tracing_lseek,
6097 	.release	= ftrace_graph_release,
6098 };
6099 
6100 static const struct file_operations ftrace_graph_notrace_fops = {
6101 	.open		= ftrace_graph_notrace_open,
6102 	.read		= seq_read,
6103 	.write		= ftrace_graph_write,
6104 	.llseek		= tracing_lseek,
6105 	.release	= ftrace_graph_release,
6106 };
6107 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6108 
6109 void ftrace_create_filter_files(struct ftrace_ops *ops,
6110 				struct dentry *parent)
6111 {
6112 
6113 	trace_create_file("set_ftrace_filter", TRACE_MODE_WRITE, parent,
6114 			  ops, &ftrace_filter_fops);
6115 
6116 	trace_create_file("set_ftrace_notrace", TRACE_MODE_WRITE, parent,
6117 			  ops, &ftrace_notrace_fops);
6118 }
6119 
6120 /*
6121  * The name "destroy_filter_files" is really a misnomer. Although
6122  * in the future, it may actually delete the files, but this is
6123  * really intended to make sure the ops passed in are disabled
6124  * and that when this function returns, the caller is free to
6125  * free the ops.
6126  *
6127  * The "destroy" name is only to match the "create" name that this
6128  * should be paired with.
6129  */
6130 void ftrace_destroy_filter_files(struct ftrace_ops *ops)
6131 {
6132 	mutex_lock(&ftrace_lock);
6133 	if (ops->flags & FTRACE_OPS_FL_ENABLED)
6134 		ftrace_shutdown(ops, 0);
6135 	ops->flags |= FTRACE_OPS_FL_DELETED;
6136 	ftrace_free_filter(ops);
6137 	mutex_unlock(&ftrace_lock);
6138 }
6139 
6140 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer)
6141 {
6142 
6143 	trace_create_file("available_filter_functions", TRACE_MODE_READ,
6144 			d_tracer, NULL, &ftrace_avail_fops);
6145 
6146 	trace_create_file("enabled_functions", TRACE_MODE_READ,
6147 			d_tracer, NULL, &ftrace_enabled_fops);
6148 
6149 	ftrace_create_filter_files(&global_ops, d_tracer);
6150 
6151 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6152 	trace_create_file("set_graph_function", TRACE_MODE_WRITE, d_tracer,
6153 				    NULL,
6154 				    &ftrace_graph_fops);
6155 	trace_create_file("set_graph_notrace", TRACE_MODE_WRITE, d_tracer,
6156 				    NULL,
6157 				    &ftrace_graph_notrace_fops);
6158 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6159 
6160 	return 0;
6161 }
6162 
6163 static int ftrace_cmp_ips(const void *a, const void *b)
6164 {
6165 	const unsigned long *ipa = a;
6166 	const unsigned long *ipb = b;
6167 
6168 	if (*ipa > *ipb)
6169 		return 1;
6170 	if (*ipa < *ipb)
6171 		return -1;
6172 	return 0;
6173 }
6174 
6175 static int ftrace_process_locs(struct module *mod,
6176 			       unsigned long *start,
6177 			       unsigned long *end)
6178 {
6179 	struct ftrace_page *start_pg;
6180 	struct ftrace_page *pg;
6181 	struct dyn_ftrace *rec;
6182 	unsigned long count;
6183 	unsigned long *p;
6184 	unsigned long addr;
6185 	unsigned long flags = 0; /* Shut up gcc */
6186 	int ret = -ENOMEM;
6187 
6188 	count = end - start;
6189 
6190 	if (!count)
6191 		return 0;
6192 
6193 	sort(start, count, sizeof(*start),
6194 	     ftrace_cmp_ips, NULL);
6195 
6196 	start_pg = ftrace_allocate_pages(count);
6197 	if (!start_pg)
6198 		return -ENOMEM;
6199 
6200 	mutex_lock(&ftrace_lock);
6201 
6202 	/*
6203 	 * Core and each module needs their own pages, as
6204 	 * modules will free them when they are removed.
6205 	 * Force a new page to be allocated for modules.
6206 	 */
6207 	if (!mod) {
6208 		WARN_ON(ftrace_pages || ftrace_pages_start);
6209 		/* First initialization */
6210 		ftrace_pages = ftrace_pages_start = start_pg;
6211 	} else {
6212 		if (!ftrace_pages)
6213 			goto out;
6214 
6215 		if (WARN_ON(ftrace_pages->next)) {
6216 			/* Hmm, we have free pages? */
6217 			while (ftrace_pages->next)
6218 				ftrace_pages = ftrace_pages->next;
6219 		}
6220 
6221 		ftrace_pages->next = start_pg;
6222 	}
6223 
6224 	p = start;
6225 	pg = start_pg;
6226 	while (p < end) {
6227 		unsigned long end_offset;
6228 		addr = ftrace_call_adjust(*p++);
6229 		/*
6230 		 * Some architecture linkers will pad between
6231 		 * the different mcount_loc sections of different
6232 		 * object files to satisfy alignments.
6233 		 * Skip any NULL pointers.
6234 		 */
6235 		if (!addr)
6236 			continue;
6237 
6238 		end_offset = (pg->index+1) * sizeof(pg->records[0]);
6239 		if (end_offset > PAGE_SIZE << pg->order) {
6240 			/* We should have allocated enough */
6241 			if (WARN_ON(!pg->next))
6242 				break;
6243 			pg = pg->next;
6244 		}
6245 
6246 		rec = &pg->records[pg->index++];
6247 		rec->ip = addr;
6248 	}
6249 
6250 	/* We should have used all pages */
6251 	WARN_ON(pg->next);
6252 
6253 	/* Assign the last page to ftrace_pages */
6254 	ftrace_pages = pg;
6255 
6256 	/*
6257 	 * We only need to disable interrupts on start up
6258 	 * because we are modifying code that an interrupt
6259 	 * may execute, and the modification is not atomic.
6260 	 * But for modules, nothing runs the code we modify
6261 	 * until we are finished with it, and there's no
6262 	 * reason to cause large interrupt latencies while we do it.
6263 	 */
6264 	if (!mod)
6265 		local_irq_save(flags);
6266 	ftrace_update_code(mod, start_pg);
6267 	if (!mod)
6268 		local_irq_restore(flags);
6269 	ret = 0;
6270  out:
6271 	mutex_unlock(&ftrace_lock);
6272 
6273 	return ret;
6274 }
6275 
6276 struct ftrace_mod_func {
6277 	struct list_head	list;
6278 	char			*name;
6279 	unsigned long		ip;
6280 	unsigned int		size;
6281 };
6282 
6283 struct ftrace_mod_map {
6284 	struct rcu_head		rcu;
6285 	struct list_head	list;
6286 	struct module		*mod;
6287 	unsigned long		start_addr;
6288 	unsigned long		end_addr;
6289 	struct list_head	funcs;
6290 	unsigned int		num_funcs;
6291 };
6292 
6293 static int ftrace_get_trampoline_kallsym(unsigned int symnum,
6294 					 unsigned long *value, char *type,
6295 					 char *name, char *module_name,
6296 					 int *exported)
6297 {
6298 	struct ftrace_ops *op;
6299 
6300 	list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) {
6301 		if (!op->trampoline || symnum--)
6302 			continue;
6303 		*value = op->trampoline;
6304 		*type = 't';
6305 		strlcpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN);
6306 		strlcpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN);
6307 		*exported = 0;
6308 		return 0;
6309 	}
6310 
6311 	return -ERANGE;
6312 }
6313 
6314 #ifdef CONFIG_MODULES
6315 
6316 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next)
6317 
6318 static LIST_HEAD(ftrace_mod_maps);
6319 
6320 static int referenced_filters(struct dyn_ftrace *rec)
6321 {
6322 	struct ftrace_ops *ops;
6323 	int cnt = 0;
6324 
6325 	for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) {
6326 		if (ops_references_rec(ops, rec)) {
6327 			if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT))
6328 				continue;
6329 			if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY))
6330 				continue;
6331 			cnt++;
6332 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
6333 				rec->flags |= FTRACE_FL_REGS;
6334 			if (cnt == 1 && ops->trampoline)
6335 				rec->flags |= FTRACE_FL_TRAMP;
6336 			else
6337 				rec->flags &= ~FTRACE_FL_TRAMP;
6338 		}
6339 	}
6340 
6341 	return cnt;
6342 }
6343 
6344 static void
6345 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash)
6346 {
6347 	struct ftrace_func_entry *entry;
6348 	struct dyn_ftrace *rec;
6349 	int i;
6350 
6351 	if (ftrace_hash_empty(hash))
6352 		return;
6353 
6354 	for (i = 0; i < pg->index; i++) {
6355 		rec = &pg->records[i];
6356 		entry = __ftrace_lookup_ip(hash, rec->ip);
6357 		/*
6358 		 * Do not allow this rec to match again.
6359 		 * Yeah, it may waste some memory, but will be removed
6360 		 * if/when the hash is modified again.
6361 		 */
6362 		if (entry)
6363 			entry->ip = 0;
6364 	}
6365 }
6366 
6367 /* Clear any records from hashes */
6368 static void clear_mod_from_hashes(struct ftrace_page *pg)
6369 {
6370 	struct trace_array *tr;
6371 
6372 	mutex_lock(&trace_types_lock);
6373 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
6374 		if (!tr->ops || !tr->ops->func_hash)
6375 			continue;
6376 		mutex_lock(&tr->ops->func_hash->regex_lock);
6377 		clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash);
6378 		clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash);
6379 		mutex_unlock(&tr->ops->func_hash->regex_lock);
6380 	}
6381 	mutex_unlock(&trace_types_lock);
6382 }
6383 
6384 static void ftrace_free_mod_map(struct rcu_head *rcu)
6385 {
6386 	struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu);
6387 	struct ftrace_mod_func *mod_func;
6388 	struct ftrace_mod_func *n;
6389 
6390 	/* All the contents of mod_map are now not visible to readers */
6391 	list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) {
6392 		kfree(mod_func->name);
6393 		list_del(&mod_func->list);
6394 		kfree(mod_func);
6395 	}
6396 
6397 	kfree(mod_map);
6398 }
6399 
6400 void ftrace_release_mod(struct module *mod)
6401 {
6402 	struct ftrace_mod_map *mod_map;
6403 	struct ftrace_mod_map *n;
6404 	struct dyn_ftrace *rec;
6405 	struct ftrace_page **last_pg;
6406 	struct ftrace_page *tmp_page = NULL;
6407 	struct ftrace_page *pg;
6408 
6409 	mutex_lock(&ftrace_lock);
6410 
6411 	if (ftrace_disabled)
6412 		goto out_unlock;
6413 
6414 	list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) {
6415 		if (mod_map->mod == mod) {
6416 			list_del_rcu(&mod_map->list);
6417 			call_rcu(&mod_map->rcu, ftrace_free_mod_map);
6418 			break;
6419 		}
6420 	}
6421 
6422 	/*
6423 	 * Each module has its own ftrace_pages, remove
6424 	 * them from the list.
6425 	 */
6426 	last_pg = &ftrace_pages_start;
6427 	for (pg = ftrace_pages_start; pg; pg = *last_pg) {
6428 		rec = &pg->records[0];
6429 		if (within_module_core(rec->ip, mod) ||
6430 		    within_module_init(rec->ip, mod)) {
6431 			/*
6432 			 * As core pages are first, the first
6433 			 * page should never be a module page.
6434 			 */
6435 			if (WARN_ON(pg == ftrace_pages_start))
6436 				goto out_unlock;
6437 
6438 			/* Check if we are deleting the last page */
6439 			if (pg == ftrace_pages)
6440 				ftrace_pages = next_to_ftrace_page(last_pg);
6441 
6442 			ftrace_update_tot_cnt -= pg->index;
6443 			*last_pg = pg->next;
6444 
6445 			pg->next = tmp_page;
6446 			tmp_page = pg;
6447 		} else
6448 			last_pg = &pg->next;
6449 	}
6450  out_unlock:
6451 	mutex_unlock(&ftrace_lock);
6452 
6453 	for (pg = tmp_page; pg; pg = tmp_page) {
6454 
6455 		/* Needs to be called outside of ftrace_lock */
6456 		clear_mod_from_hashes(pg);
6457 
6458 		if (pg->records) {
6459 			free_pages((unsigned long)pg->records, pg->order);
6460 			ftrace_number_of_pages -= 1 << pg->order;
6461 		}
6462 		tmp_page = pg->next;
6463 		kfree(pg);
6464 		ftrace_number_of_groups--;
6465 	}
6466 }
6467 
6468 void ftrace_module_enable(struct module *mod)
6469 {
6470 	struct dyn_ftrace *rec;
6471 	struct ftrace_page *pg;
6472 
6473 	mutex_lock(&ftrace_lock);
6474 
6475 	if (ftrace_disabled)
6476 		goto out_unlock;
6477 
6478 	/*
6479 	 * If the tracing is enabled, go ahead and enable the record.
6480 	 *
6481 	 * The reason not to enable the record immediately is the
6482 	 * inherent check of ftrace_make_nop/ftrace_make_call for
6483 	 * correct previous instructions.  Making first the NOP
6484 	 * conversion puts the module to the correct state, thus
6485 	 * passing the ftrace_make_call check.
6486 	 *
6487 	 * We also delay this to after the module code already set the
6488 	 * text to read-only, as we now need to set it back to read-write
6489 	 * so that we can modify the text.
6490 	 */
6491 	if (ftrace_start_up)
6492 		ftrace_arch_code_modify_prepare();
6493 
6494 	do_for_each_ftrace_rec(pg, rec) {
6495 		int cnt;
6496 		/*
6497 		 * do_for_each_ftrace_rec() is a double loop.
6498 		 * module text shares the pg. If a record is
6499 		 * not part of this module, then skip this pg,
6500 		 * which the "break" will do.
6501 		 */
6502 		if (!within_module_core(rec->ip, mod) &&
6503 		    !within_module_init(rec->ip, mod))
6504 			break;
6505 
6506 		cnt = 0;
6507 
6508 		/*
6509 		 * When adding a module, we need to check if tracers are
6510 		 * currently enabled and if they are, and can trace this record,
6511 		 * we need to enable the module functions as well as update the
6512 		 * reference counts for those function records.
6513 		 */
6514 		if (ftrace_start_up)
6515 			cnt += referenced_filters(rec);
6516 
6517 		rec->flags &= ~FTRACE_FL_DISABLED;
6518 		rec->flags += cnt;
6519 
6520 		if (ftrace_start_up && cnt) {
6521 			int failed = __ftrace_replace_code(rec, 1);
6522 			if (failed) {
6523 				ftrace_bug(failed, rec);
6524 				goto out_loop;
6525 			}
6526 		}
6527 
6528 	} while_for_each_ftrace_rec();
6529 
6530  out_loop:
6531 	if (ftrace_start_up)
6532 		ftrace_arch_code_modify_post_process();
6533 
6534  out_unlock:
6535 	mutex_unlock(&ftrace_lock);
6536 
6537 	process_cached_mods(mod->name);
6538 }
6539 
6540 void ftrace_module_init(struct module *mod)
6541 {
6542 	if (ftrace_disabled || !mod->num_ftrace_callsites)
6543 		return;
6544 
6545 	ftrace_process_locs(mod, mod->ftrace_callsites,
6546 			    mod->ftrace_callsites + mod->num_ftrace_callsites);
6547 }
6548 
6549 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
6550 				struct dyn_ftrace *rec)
6551 {
6552 	struct ftrace_mod_func *mod_func;
6553 	unsigned long symsize;
6554 	unsigned long offset;
6555 	char str[KSYM_SYMBOL_LEN];
6556 	char *modname;
6557 	const char *ret;
6558 
6559 	ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str);
6560 	if (!ret)
6561 		return;
6562 
6563 	mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL);
6564 	if (!mod_func)
6565 		return;
6566 
6567 	mod_func->name = kstrdup(str, GFP_KERNEL);
6568 	if (!mod_func->name) {
6569 		kfree(mod_func);
6570 		return;
6571 	}
6572 
6573 	mod_func->ip = rec->ip - offset;
6574 	mod_func->size = symsize;
6575 
6576 	mod_map->num_funcs++;
6577 
6578 	list_add_rcu(&mod_func->list, &mod_map->funcs);
6579 }
6580 
6581 static struct ftrace_mod_map *
6582 allocate_ftrace_mod_map(struct module *mod,
6583 			unsigned long start, unsigned long end)
6584 {
6585 	struct ftrace_mod_map *mod_map;
6586 
6587 	mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL);
6588 	if (!mod_map)
6589 		return NULL;
6590 
6591 	mod_map->mod = mod;
6592 	mod_map->start_addr = start;
6593 	mod_map->end_addr = end;
6594 	mod_map->num_funcs = 0;
6595 
6596 	INIT_LIST_HEAD_RCU(&mod_map->funcs);
6597 
6598 	list_add_rcu(&mod_map->list, &ftrace_mod_maps);
6599 
6600 	return mod_map;
6601 }
6602 
6603 static const char *
6604 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map,
6605 			   unsigned long addr, unsigned long *size,
6606 			   unsigned long *off, char *sym)
6607 {
6608 	struct ftrace_mod_func *found_func =  NULL;
6609 	struct ftrace_mod_func *mod_func;
6610 
6611 	list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
6612 		if (addr >= mod_func->ip &&
6613 		    addr < mod_func->ip + mod_func->size) {
6614 			found_func = mod_func;
6615 			break;
6616 		}
6617 	}
6618 
6619 	if (found_func) {
6620 		if (size)
6621 			*size = found_func->size;
6622 		if (off)
6623 			*off = addr - found_func->ip;
6624 		if (sym)
6625 			strlcpy(sym, found_func->name, KSYM_NAME_LEN);
6626 
6627 		return found_func->name;
6628 	}
6629 
6630 	return NULL;
6631 }
6632 
6633 const char *
6634 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size,
6635 		   unsigned long *off, char **modname, char *sym)
6636 {
6637 	struct ftrace_mod_map *mod_map;
6638 	const char *ret = NULL;
6639 
6640 	/* mod_map is freed via call_rcu() */
6641 	preempt_disable();
6642 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
6643 		ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym);
6644 		if (ret) {
6645 			if (modname)
6646 				*modname = mod_map->mod->name;
6647 			break;
6648 		}
6649 	}
6650 	preempt_enable();
6651 
6652 	return ret;
6653 }
6654 
6655 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
6656 			   char *type, char *name,
6657 			   char *module_name, int *exported)
6658 {
6659 	struct ftrace_mod_map *mod_map;
6660 	struct ftrace_mod_func *mod_func;
6661 	int ret;
6662 
6663 	preempt_disable();
6664 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
6665 
6666 		if (symnum >= mod_map->num_funcs) {
6667 			symnum -= mod_map->num_funcs;
6668 			continue;
6669 		}
6670 
6671 		list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
6672 			if (symnum > 1) {
6673 				symnum--;
6674 				continue;
6675 			}
6676 
6677 			*value = mod_func->ip;
6678 			*type = 'T';
6679 			strlcpy(name, mod_func->name, KSYM_NAME_LEN);
6680 			strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN);
6681 			*exported = 1;
6682 			preempt_enable();
6683 			return 0;
6684 		}
6685 		WARN_ON(1);
6686 		break;
6687 	}
6688 	ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
6689 					    module_name, exported);
6690 	preempt_enable();
6691 	return ret;
6692 }
6693 
6694 #else
6695 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
6696 				struct dyn_ftrace *rec) { }
6697 static inline struct ftrace_mod_map *
6698 allocate_ftrace_mod_map(struct module *mod,
6699 			unsigned long start, unsigned long end)
6700 {
6701 	return NULL;
6702 }
6703 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
6704 			   char *type, char *name, char *module_name,
6705 			   int *exported)
6706 {
6707 	int ret;
6708 
6709 	preempt_disable();
6710 	ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
6711 					    module_name, exported);
6712 	preempt_enable();
6713 	return ret;
6714 }
6715 #endif /* CONFIG_MODULES */
6716 
6717 struct ftrace_init_func {
6718 	struct list_head list;
6719 	unsigned long ip;
6720 };
6721 
6722 /* Clear any init ips from hashes */
6723 static void
6724 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash)
6725 {
6726 	struct ftrace_func_entry *entry;
6727 
6728 	entry = ftrace_lookup_ip(hash, func->ip);
6729 	/*
6730 	 * Do not allow this rec to match again.
6731 	 * Yeah, it may waste some memory, but will be removed
6732 	 * if/when the hash is modified again.
6733 	 */
6734 	if (entry)
6735 		entry->ip = 0;
6736 }
6737 
6738 static void
6739 clear_func_from_hashes(struct ftrace_init_func *func)
6740 {
6741 	struct trace_array *tr;
6742 
6743 	mutex_lock(&trace_types_lock);
6744 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
6745 		if (!tr->ops || !tr->ops->func_hash)
6746 			continue;
6747 		mutex_lock(&tr->ops->func_hash->regex_lock);
6748 		clear_func_from_hash(func, tr->ops->func_hash->filter_hash);
6749 		clear_func_from_hash(func, tr->ops->func_hash->notrace_hash);
6750 		mutex_unlock(&tr->ops->func_hash->regex_lock);
6751 	}
6752 	mutex_unlock(&trace_types_lock);
6753 }
6754 
6755 static void add_to_clear_hash_list(struct list_head *clear_list,
6756 				   struct dyn_ftrace *rec)
6757 {
6758 	struct ftrace_init_func *func;
6759 
6760 	func = kmalloc(sizeof(*func), GFP_KERNEL);
6761 	if (!func) {
6762 		MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n");
6763 		return;
6764 	}
6765 
6766 	func->ip = rec->ip;
6767 	list_add(&func->list, clear_list);
6768 }
6769 
6770 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr)
6771 {
6772 	unsigned long start = (unsigned long)(start_ptr);
6773 	unsigned long end = (unsigned long)(end_ptr);
6774 	struct ftrace_page **last_pg = &ftrace_pages_start;
6775 	struct ftrace_page *pg;
6776 	struct dyn_ftrace *rec;
6777 	struct dyn_ftrace key;
6778 	struct ftrace_mod_map *mod_map = NULL;
6779 	struct ftrace_init_func *func, *func_next;
6780 	struct list_head clear_hash;
6781 
6782 	INIT_LIST_HEAD(&clear_hash);
6783 
6784 	key.ip = start;
6785 	key.flags = end;	/* overload flags, as it is unsigned long */
6786 
6787 	mutex_lock(&ftrace_lock);
6788 
6789 	/*
6790 	 * If we are freeing module init memory, then check if
6791 	 * any tracer is active. If so, we need to save a mapping of
6792 	 * the module functions being freed with the address.
6793 	 */
6794 	if (mod && ftrace_ops_list != &ftrace_list_end)
6795 		mod_map = allocate_ftrace_mod_map(mod, start, end);
6796 
6797 	for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) {
6798 		if (end < pg->records[0].ip ||
6799 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
6800 			continue;
6801  again:
6802 		rec = bsearch(&key, pg->records, pg->index,
6803 			      sizeof(struct dyn_ftrace),
6804 			      ftrace_cmp_recs);
6805 		if (!rec)
6806 			continue;
6807 
6808 		/* rec will be cleared from hashes after ftrace_lock unlock */
6809 		add_to_clear_hash_list(&clear_hash, rec);
6810 
6811 		if (mod_map)
6812 			save_ftrace_mod_rec(mod_map, rec);
6813 
6814 		pg->index--;
6815 		ftrace_update_tot_cnt--;
6816 		if (!pg->index) {
6817 			*last_pg = pg->next;
6818 			if (pg->records) {
6819 				free_pages((unsigned long)pg->records, pg->order);
6820 				ftrace_number_of_pages -= 1 << pg->order;
6821 			}
6822 			ftrace_number_of_groups--;
6823 			kfree(pg);
6824 			pg = container_of(last_pg, struct ftrace_page, next);
6825 			if (!(*last_pg))
6826 				ftrace_pages = pg;
6827 			continue;
6828 		}
6829 		memmove(rec, rec + 1,
6830 			(pg->index - (rec - pg->records)) * sizeof(*rec));
6831 		/* More than one function may be in this block */
6832 		goto again;
6833 	}
6834 	mutex_unlock(&ftrace_lock);
6835 
6836 	list_for_each_entry_safe(func, func_next, &clear_hash, list) {
6837 		clear_func_from_hashes(func);
6838 		kfree(func);
6839 	}
6840 }
6841 
6842 void __init ftrace_free_init_mem(void)
6843 {
6844 	void *start = (void *)(&__init_begin);
6845 	void *end = (void *)(&__init_end);
6846 
6847 	ftrace_free_mem(NULL, start, end);
6848 }
6849 
6850 int __init __weak ftrace_dyn_arch_init(void)
6851 {
6852 	return 0;
6853 }
6854 
6855 void __init ftrace_init(void)
6856 {
6857 	extern unsigned long __start_mcount_loc[];
6858 	extern unsigned long __stop_mcount_loc[];
6859 	unsigned long count, flags;
6860 	int ret;
6861 
6862 	local_irq_save(flags);
6863 	ret = ftrace_dyn_arch_init();
6864 	local_irq_restore(flags);
6865 	if (ret)
6866 		goto failed;
6867 
6868 	count = __stop_mcount_loc - __start_mcount_loc;
6869 	if (!count) {
6870 		pr_info("ftrace: No functions to be traced?\n");
6871 		goto failed;
6872 	}
6873 
6874 	pr_info("ftrace: allocating %ld entries in %ld pages\n",
6875 		count, count / ENTRIES_PER_PAGE + 1);
6876 
6877 	last_ftrace_enabled = ftrace_enabled = 1;
6878 
6879 	ret = ftrace_process_locs(NULL,
6880 				  __start_mcount_loc,
6881 				  __stop_mcount_loc);
6882 
6883 	pr_info("ftrace: allocated %ld pages with %ld groups\n",
6884 		ftrace_number_of_pages, ftrace_number_of_groups);
6885 
6886 	set_ftrace_early_filters();
6887 
6888 	return;
6889  failed:
6890 	ftrace_disabled = 1;
6891 }
6892 
6893 /* Do nothing if arch does not support this */
6894 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops)
6895 {
6896 }
6897 
6898 static void ftrace_update_trampoline(struct ftrace_ops *ops)
6899 {
6900 	unsigned long trampoline = ops->trampoline;
6901 
6902 	arch_ftrace_update_trampoline(ops);
6903 	if (ops->trampoline && ops->trampoline != trampoline &&
6904 	    (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) {
6905 		/* Add to kallsyms before the perf events */
6906 		ftrace_add_trampoline_to_kallsyms(ops);
6907 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
6908 				   ops->trampoline, ops->trampoline_size, false,
6909 				   FTRACE_TRAMPOLINE_SYM);
6910 		/*
6911 		 * Record the perf text poke event after the ksymbol register
6912 		 * event.
6913 		 */
6914 		perf_event_text_poke((void *)ops->trampoline, NULL, 0,
6915 				     (void *)ops->trampoline,
6916 				     ops->trampoline_size);
6917 	}
6918 }
6919 
6920 void ftrace_init_trace_array(struct trace_array *tr)
6921 {
6922 	INIT_LIST_HEAD(&tr->func_probes);
6923 	INIT_LIST_HEAD(&tr->mod_trace);
6924 	INIT_LIST_HEAD(&tr->mod_notrace);
6925 }
6926 #else
6927 
6928 struct ftrace_ops global_ops = {
6929 	.func			= ftrace_stub,
6930 	.flags			= FTRACE_OPS_FL_INITIALIZED |
6931 				  FTRACE_OPS_FL_PID,
6932 };
6933 
6934 static int __init ftrace_nodyn_init(void)
6935 {
6936 	ftrace_enabled = 1;
6937 	return 0;
6938 }
6939 core_initcall(ftrace_nodyn_init);
6940 
6941 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; }
6942 static inline void ftrace_startup_enable(int command) { }
6943 static inline void ftrace_startup_all(int command) { }
6944 
6945 # define ftrace_startup_sysctl()	do { } while (0)
6946 # define ftrace_shutdown_sysctl()	do { } while (0)
6947 
6948 static void ftrace_update_trampoline(struct ftrace_ops *ops)
6949 {
6950 }
6951 
6952 #endif /* CONFIG_DYNAMIC_FTRACE */
6953 
6954 __init void ftrace_init_global_array_ops(struct trace_array *tr)
6955 {
6956 	tr->ops = &global_ops;
6957 	tr->ops->private = tr;
6958 	ftrace_init_trace_array(tr);
6959 }
6960 
6961 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func)
6962 {
6963 	/* If we filter on pids, update to use the pid function */
6964 	if (tr->flags & TRACE_ARRAY_FL_GLOBAL) {
6965 		if (WARN_ON(tr->ops->func != ftrace_stub))
6966 			printk("ftrace ops had %pS for function\n",
6967 			       tr->ops->func);
6968 	}
6969 	tr->ops->func = func;
6970 	tr->ops->private = tr;
6971 }
6972 
6973 void ftrace_reset_array_ops(struct trace_array *tr)
6974 {
6975 	tr->ops->func = ftrace_stub;
6976 }
6977 
6978 static nokprobe_inline void
6979 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
6980 		       struct ftrace_ops *ignored, struct ftrace_regs *fregs)
6981 {
6982 	struct pt_regs *regs = ftrace_get_regs(fregs);
6983 	struct ftrace_ops *op;
6984 	int bit;
6985 
6986 	bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START, TRACE_LIST_MAX);
6987 	if (bit < 0)
6988 		return;
6989 
6990 	/*
6991 	 * Some of the ops may be dynamically allocated,
6992 	 * they must be freed after a synchronize_rcu().
6993 	 */
6994 	preempt_disable_notrace();
6995 
6996 	do_for_each_ftrace_op(op, ftrace_ops_list) {
6997 		/* Stub functions don't need to be called nor tested */
6998 		if (op->flags & FTRACE_OPS_FL_STUB)
6999 			continue;
7000 		/*
7001 		 * Check the following for each ops before calling their func:
7002 		 *  if RCU flag is set, then rcu_is_watching() must be true
7003 		 *  if PER_CPU is set, then ftrace_function_local_disable()
7004 		 *                          must be false
7005 		 *  Otherwise test if the ip matches the ops filter
7006 		 *
7007 		 * If any of the above fails then the op->func() is not executed.
7008 		 */
7009 		if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) &&
7010 		    ftrace_ops_test(op, ip, regs)) {
7011 			if (FTRACE_WARN_ON(!op->func)) {
7012 				pr_warn("op=%p %pS\n", op, op);
7013 				goto out;
7014 			}
7015 			op->func(ip, parent_ip, op, fregs);
7016 		}
7017 	} while_for_each_ftrace_op(op);
7018 out:
7019 	preempt_enable_notrace();
7020 	trace_clear_recursion(bit);
7021 }
7022 
7023 /*
7024  * Some archs only support passing ip and parent_ip. Even though
7025  * the list function ignores the op parameter, we do not want any
7026  * C side effects, where a function is called without the caller
7027  * sending a third parameter.
7028  * Archs are to support both the regs and ftrace_ops at the same time.
7029  * If they support ftrace_ops, it is assumed they support regs.
7030  * If call backs want to use regs, they must either check for regs
7031  * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS.
7032  * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved.
7033  * An architecture can pass partial regs with ftrace_ops and still
7034  * set the ARCH_SUPPORTS_FTRACE_OPS.
7035  */
7036 #if ARCH_SUPPORTS_FTRACE_OPS
7037 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
7038 				 struct ftrace_ops *op, struct ftrace_regs *fregs)
7039 {
7040 	__ftrace_ops_list_func(ip, parent_ip, NULL, fregs);
7041 }
7042 NOKPROBE_SYMBOL(ftrace_ops_list_func);
7043 #else
7044 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip)
7045 {
7046 	__ftrace_ops_list_func(ip, parent_ip, NULL, NULL);
7047 }
7048 NOKPROBE_SYMBOL(ftrace_ops_no_ops);
7049 #endif
7050 
7051 /*
7052  * If there's only one function registered but it does not support
7053  * recursion, needs RCU protection and/or requires per cpu handling, then
7054  * this function will be called by the mcount trampoline.
7055  */
7056 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip,
7057 				   struct ftrace_ops *op, struct ftrace_regs *fregs)
7058 {
7059 	int bit;
7060 
7061 	bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START, TRACE_LIST_MAX);
7062 	if (bit < 0)
7063 		return;
7064 
7065 	preempt_disable_notrace();
7066 
7067 	if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching())
7068 		op->func(ip, parent_ip, op, fregs);
7069 
7070 	preempt_enable_notrace();
7071 	trace_clear_recursion(bit);
7072 }
7073 NOKPROBE_SYMBOL(ftrace_ops_assist_func);
7074 
7075 /**
7076  * ftrace_ops_get_func - get the function a trampoline should call
7077  * @ops: the ops to get the function for
7078  *
7079  * Normally the mcount trampoline will call the ops->func, but there
7080  * are times that it should not. For example, if the ops does not
7081  * have its own recursion protection, then it should call the
7082  * ftrace_ops_assist_func() instead.
7083  *
7084  * Returns the function that the trampoline should call for @ops.
7085  */
7086 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops)
7087 {
7088 	/*
7089 	 * If the function does not handle recursion or needs to be RCU safe,
7090 	 * then we need to call the assist handler.
7091 	 */
7092 	if (ops->flags & (FTRACE_OPS_FL_RECURSION |
7093 			  FTRACE_OPS_FL_RCU))
7094 		return ftrace_ops_assist_func;
7095 
7096 	return ops->func;
7097 }
7098 
7099 static void
7100 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt,
7101 		    struct task_struct *prev, struct task_struct *next)
7102 {
7103 	struct trace_array *tr = data;
7104 	struct trace_pid_list *pid_list;
7105 	struct trace_pid_list *no_pid_list;
7106 
7107 	pid_list = rcu_dereference_sched(tr->function_pids);
7108 	no_pid_list = rcu_dereference_sched(tr->function_no_pids);
7109 
7110 	if (trace_ignore_this_task(pid_list, no_pid_list, next))
7111 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7112 			       FTRACE_PID_IGNORE);
7113 	else
7114 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7115 			       next->pid);
7116 }
7117 
7118 static void
7119 ftrace_pid_follow_sched_process_fork(void *data,
7120 				     struct task_struct *self,
7121 				     struct task_struct *task)
7122 {
7123 	struct trace_pid_list *pid_list;
7124 	struct trace_array *tr = data;
7125 
7126 	pid_list = rcu_dereference_sched(tr->function_pids);
7127 	trace_filter_add_remove_task(pid_list, self, task);
7128 
7129 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7130 	trace_filter_add_remove_task(pid_list, self, task);
7131 }
7132 
7133 static void
7134 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task)
7135 {
7136 	struct trace_pid_list *pid_list;
7137 	struct trace_array *tr = data;
7138 
7139 	pid_list = rcu_dereference_sched(tr->function_pids);
7140 	trace_filter_add_remove_task(pid_list, NULL, task);
7141 
7142 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7143 	trace_filter_add_remove_task(pid_list, NULL, task);
7144 }
7145 
7146 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable)
7147 {
7148 	if (enable) {
7149 		register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
7150 						  tr);
7151 		register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
7152 						  tr);
7153 	} else {
7154 		unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
7155 						    tr);
7156 		unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
7157 						    tr);
7158 	}
7159 }
7160 
7161 static void clear_ftrace_pids(struct trace_array *tr, int type)
7162 {
7163 	struct trace_pid_list *pid_list;
7164 	struct trace_pid_list *no_pid_list;
7165 	int cpu;
7166 
7167 	pid_list = rcu_dereference_protected(tr->function_pids,
7168 					     lockdep_is_held(&ftrace_lock));
7169 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
7170 						lockdep_is_held(&ftrace_lock));
7171 
7172 	/* Make sure there's something to do */
7173 	if (!pid_type_enabled(type, pid_list, no_pid_list))
7174 		return;
7175 
7176 	/* See if the pids still need to be checked after this */
7177 	if (!still_need_pid_events(type, pid_list, no_pid_list)) {
7178 		unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
7179 		for_each_possible_cpu(cpu)
7180 			per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE;
7181 	}
7182 
7183 	if (type & TRACE_PIDS)
7184 		rcu_assign_pointer(tr->function_pids, NULL);
7185 
7186 	if (type & TRACE_NO_PIDS)
7187 		rcu_assign_pointer(tr->function_no_pids, NULL);
7188 
7189 	/* Wait till all users are no longer using pid filtering */
7190 	synchronize_rcu();
7191 
7192 	if ((type & TRACE_PIDS) && pid_list)
7193 		trace_pid_list_free(pid_list);
7194 
7195 	if ((type & TRACE_NO_PIDS) && no_pid_list)
7196 		trace_pid_list_free(no_pid_list);
7197 }
7198 
7199 void ftrace_clear_pids(struct trace_array *tr)
7200 {
7201 	mutex_lock(&ftrace_lock);
7202 
7203 	clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS);
7204 
7205 	mutex_unlock(&ftrace_lock);
7206 }
7207 
7208 static void ftrace_pid_reset(struct trace_array *tr, int type)
7209 {
7210 	mutex_lock(&ftrace_lock);
7211 	clear_ftrace_pids(tr, type);
7212 
7213 	ftrace_update_pid_func();
7214 	ftrace_startup_all(0);
7215 
7216 	mutex_unlock(&ftrace_lock);
7217 }
7218 
7219 /* Greater than any max PID */
7220 #define FTRACE_NO_PIDS		(void *)(PID_MAX_LIMIT + 1)
7221 
7222 static void *fpid_start(struct seq_file *m, loff_t *pos)
7223 	__acquires(RCU)
7224 {
7225 	struct trace_pid_list *pid_list;
7226 	struct trace_array *tr = m->private;
7227 
7228 	mutex_lock(&ftrace_lock);
7229 	rcu_read_lock_sched();
7230 
7231 	pid_list = rcu_dereference_sched(tr->function_pids);
7232 
7233 	if (!pid_list)
7234 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
7235 
7236 	return trace_pid_start(pid_list, pos);
7237 }
7238 
7239 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos)
7240 {
7241 	struct trace_array *tr = m->private;
7242 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids);
7243 
7244 	if (v == FTRACE_NO_PIDS) {
7245 		(*pos)++;
7246 		return NULL;
7247 	}
7248 	return trace_pid_next(pid_list, v, pos);
7249 }
7250 
7251 static void fpid_stop(struct seq_file *m, void *p)
7252 	__releases(RCU)
7253 {
7254 	rcu_read_unlock_sched();
7255 	mutex_unlock(&ftrace_lock);
7256 }
7257 
7258 static int fpid_show(struct seq_file *m, void *v)
7259 {
7260 	if (v == FTRACE_NO_PIDS) {
7261 		seq_puts(m, "no pid\n");
7262 		return 0;
7263 	}
7264 
7265 	return trace_pid_show(m, v);
7266 }
7267 
7268 static const struct seq_operations ftrace_pid_sops = {
7269 	.start = fpid_start,
7270 	.next = fpid_next,
7271 	.stop = fpid_stop,
7272 	.show = fpid_show,
7273 };
7274 
7275 static void *fnpid_start(struct seq_file *m, loff_t *pos)
7276 	__acquires(RCU)
7277 {
7278 	struct trace_pid_list *pid_list;
7279 	struct trace_array *tr = m->private;
7280 
7281 	mutex_lock(&ftrace_lock);
7282 	rcu_read_lock_sched();
7283 
7284 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7285 
7286 	if (!pid_list)
7287 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
7288 
7289 	return trace_pid_start(pid_list, pos);
7290 }
7291 
7292 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos)
7293 {
7294 	struct trace_array *tr = m->private;
7295 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids);
7296 
7297 	if (v == FTRACE_NO_PIDS) {
7298 		(*pos)++;
7299 		return NULL;
7300 	}
7301 	return trace_pid_next(pid_list, v, pos);
7302 }
7303 
7304 static const struct seq_operations ftrace_no_pid_sops = {
7305 	.start = fnpid_start,
7306 	.next = fnpid_next,
7307 	.stop = fpid_stop,
7308 	.show = fpid_show,
7309 };
7310 
7311 static int pid_open(struct inode *inode, struct file *file, int type)
7312 {
7313 	const struct seq_operations *seq_ops;
7314 	struct trace_array *tr = inode->i_private;
7315 	struct seq_file *m;
7316 	int ret = 0;
7317 
7318 	ret = tracing_check_open_get_tr(tr);
7319 	if (ret)
7320 		return ret;
7321 
7322 	if ((file->f_mode & FMODE_WRITE) &&
7323 	    (file->f_flags & O_TRUNC))
7324 		ftrace_pid_reset(tr, type);
7325 
7326 	switch (type) {
7327 	case TRACE_PIDS:
7328 		seq_ops = &ftrace_pid_sops;
7329 		break;
7330 	case TRACE_NO_PIDS:
7331 		seq_ops = &ftrace_no_pid_sops;
7332 		break;
7333 	default:
7334 		trace_array_put(tr);
7335 		WARN_ON_ONCE(1);
7336 		return -EINVAL;
7337 	}
7338 
7339 	ret = seq_open(file, seq_ops);
7340 	if (ret < 0) {
7341 		trace_array_put(tr);
7342 	} else {
7343 		m = file->private_data;
7344 		/* copy tr over to seq ops */
7345 		m->private = tr;
7346 	}
7347 
7348 	return ret;
7349 }
7350 
7351 static int
7352 ftrace_pid_open(struct inode *inode, struct file *file)
7353 {
7354 	return pid_open(inode, file, TRACE_PIDS);
7355 }
7356 
7357 static int
7358 ftrace_no_pid_open(struct inode *inode, struct file *file)
7359 {
7360 	return pid_open(inode, file, TRACE_NO_PIDS);
7361 }
7362 
7363 static void ignore_task_cpu(void *data)
7364 {
7365 	struct trace_array *tr = data;
7366 	struct trace_pid_list *pid_list;
7367 	struct trace_pid_list *no_pid_list;
7368 
7369 	/*
7370 	 * This function is called by on_each_cpu() while the
7371 	 * event_mutex is held.
7372 	 */
7373 	pid_list = rcu_dereference_protected(tr->function_pids,
7374 					     mutex_is_locked(&ftrace_lock));
7375 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
7376 						mutex_is_locked(&ftrace_lock));
7377 
7378 	if (trace_ignore_this_task(pid_list, no_pid_list, current))
7379 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7380 			       FTRACE_PID_IGNORE);
7381 	else
7382 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7383 			       current->pid);
7384 }
7385 
7386 static ssize_t
7387 pid_write(struct file *filp, const char __user *ubuf,
7388 	  size_t cnt, loff_t *ppos, int type)
7389 {
7390 	struct seq_file *m = filp->private_data;
7391 	struct trace_array *tr = m->private;
7392 	struct trace_pid_list *filtered_pids;
7393 	struct trace_pid_list *other_pids;
7394 	struct trace_pid_list *pid_list;
7395 	ssize_t ret;
7396 
7397 	if (!cnt)
7398 		return 0;
7399 
7400 	mutex_lock(&ftrace_lock);
7401 
7402 	switch (type) {
7403 	case TRACE_PIDS:
7404 		filtered_pids = rcu_dereference_protected(tr->function_pids,
7405 					     lockdep_is_held(&ftrace_lock));
7406 		other_pids = rcu_dereference_protected(tr->function_no_pids,
7407 					     lockdep_is_held(&ftrace_lock));
7408 		break;
7409 	case TRACE_NO_PIDS:
7410 		filtered_pids = rcu_dereference_protected(tr->function_no_pids,
7411 					     lockdep_is_held(&ftrace_lock));
7412 		other_pids = rcu_dereference_protected(tr->function_pids,
7413 					     lockdep_is_held(&ftrace_lock));
7414 		break;
7415 	default:
7416 		ret = -EINVAL;
7417 		WARN_ON_ONCE(1);
7418 		goto out;
7419 	}
7420 
7421 	ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt);
7422 	if (ret < 0)
7423 		goto out;
7424 
7425 	switch (type) {
7426 	case TRACE_PIDS:
7427 		rcu_assign_pointer(tr->function_pids, pid_list);
7428 		break;
7429 	case TRACE_NO_PIDS:
7430 		rcu_assign_pointer(tr->function_no_pids, pid_list);
7431 		break;
7432 	}
7433 
7434 
7435 	if (filtered_pids) {
7436 		synchronize_rcu();
7437 		trace_pid_list_free(filtered_pids);
7438 	} else if (pid_list && !other_pids) {
7439 		/* Register a probe to set whether to ignore the tracing of a task */
7440 		register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
7441 	}
7442 
7443 	/*
7444 	 * Ignoring of pids is done at task switch. But we have to
7445 	 * check for those tasks that are currently running.
7446 	 * Always do this in case a pid was appended or removed.
7447 	 */
7448 	on_each_cpu(ignore_task_cpu, tr, 1);
7449 
7450 	ftrace_update_pid_func();
7451 	ftrace_startup_all(0);
7452  out:
7453 	mutex_unlock(&ftrace_lock);
7454 
7455 	if (ret > 0)
7456 		*ppos += ret;
7457 
7458 	return ret;
7459 }
7460 
7461 static ssize_t
7462 ftrace_pid_write(struct file *filp, const char __user *ubuf,
7463 		 size_t cnt, loff_t *ppos)
7464 {
7465 	return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS);
7466 }
7467 
7468 static ssize_t
7469 ftrace_no_pid_write(struct file *filp, const char __user *ubuf,
7470 		    size_t cnt, loff_t *ppos)
7471 {
7472 	return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS);
7473 }
7474 
7475 static int
7476 ftrace_pid_release(struct inode *inode, struct file *file)
7477 {
7478 	struct trace_array *tr = inode->i_private;
7479 
7480 	trace_array_put(tr);
7481 
7482 	return seq_release(inode, file);
7483 }
7484 
7485 static const struct file_operations ftrace_pid_fops = {
7486 	.open		= ftrace_pid_open,
7487 	.write		= ftrace_pid_write,
7488 	.read		= seq_read,
7489 	.llseek		= tracing_lseek,
7490 	.release	= ftrace_pid_release,
7491 };
7492 
7493 static const struct file_operations ftrace_no_pid_fops = {
7494 	.open		= ftrace_no_pid_open,
7495 	.write		= ftrace_no_pid_write,
7496 	.read		= seq_read,
7497 	.llseek		= tracing_lseek,
7498 	.release	= ftrace_pid_release,
7499 };
7500 
7501 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer)
7502 {
7503 	trace_create_file("set_ftrace_pid", TRACE_MODE_WRITE, d_tracer,
7504 			    tr, &ftrace_pid_fops);
7505 	trace_create_file("set_ftrace_notrace_pid", TRACE_MODE_WRITE,
7506 			  d_tracer, tr, &ftrace_no_pid_fops);
7507 }
7508 
7509 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr,
7510 					 struct dentry *d_tracer)
7511 {
7512 	/* Only the top level directory has the dyn_tracefs and profile */
7513 	WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL));
7514 
7515 	ftrace_init_dyn_tracefs(d_tracer);
7516 	ftrace_profile_tracefs(d_tracer);
7517 }
7518 
7519 /**
7520  * ftrace_kill - kill ftrace
7521  *
7522  * This function should be used by panic code. It stops ftrace
7523  * but in a not so nice way. If you need to simply kill ftrace
7524  * from a non-atomic section, use ftrace_kill.
7525  */
7526 void ftrace_kill(void)
7527 {
7528 	ftrace_disabled = 1;
7529 	ftrace_enabled = 0;
7530 	ftrace_trace_function = ftrace_stub;
7531 }
7532 
7533 /**
7534  * Test if ftrace is dead or not.
7535  */
7536 int ftrace_is_dead(void)
7537 {
7538 	return ftrace_disabled;
7539 }
7540 
7541 /**
7542  * register_ftrace_function - register a function for profiling
7543  * @ops - ops structure that holds the function for profiling.
7544  *
7545  * Register a function to be called by all functions in the
7546  * kernel.
7547  *
7548  * Note: @ops->func and all the functions it calls must be labeled
7549  *       with "notrace", otherwise it will go into a
7550  *       recursive loop.
7551  */
7552 int register_ftrace_function(struct ftrace_ops *ops)
7553 {
7554 	int ret;
7555 
7556 	ftrace_ops_init(ops);
7557 
7558 	mutex_lock(&ftrace_lock);
7559 
7560 	ret = ftrace_startup(ops, 0);
7561 
7562 	mutex_unlock(&ftrace_lock);
7563 
7564 	return ret;
7565 }
7566 EXPORT_SYMBOL_GPL(register_ftrace_function);
7567 
7568 /**
7569  * unregister_ftrace_function - unregister a function for profiling.
7570  * @ops - ops structure that holds the function to unregister
7571  *
7572  * Unregister a function that was added to be called by ftrace profiling.
7573  */
7574 int unregister_ftrace_function(struct ftrace_ops *ops)
7575 {
7576 	int ret;
7577 
7578 	mutex_lock(&ftrace_lock);
7579 	ret = ftrace_shutdown(ops, 0);
7580 	mutex_unlock(&ftrace_lock);
7581 
7582 	return ret;
7583 }
7584 EXPORT_SYMBOL_GPL(unregister_ftrace_function);
7585 
7586 static bool is_permanent_ops_registered(void)
7587 {
7588 	struct ftrace_ops *op;
7589 
7590 	do_for_each_ftrace_op(op, ftrace_ops_list) {
7591 		if (op->flags & FTRACE_OPS_FL_PERMANENT)
7592 			return true;
7593 	} while_for_each_ftrace_op(op);
7594 
7595 	return false;
7596 }
7597 
7598 int
7599 ftrace_enable_sysctl(struct ctl_table *table, int write,
7600 		     void *buffer, size_t *lenp, loff_t *ppos)
7601 {
7602 	int ret = -ENODEV;
7603 
7604 	mutex_lock(&ftrace_lock);
7605 
7606 	if (unlikely(ftrace_disabled))
7607 		goto out;
7608 
7609 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7610 
7611 	if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled))
7612 		goto out;
7613 
7614 	if (ftrace_enabled) {
7615 
7616 		/* we are starting ftrace again */
7617 		if (rcu_dereference_protected(ftrace_ops_list,
7618 			lockdep_is_held(&ftrace_lock)) != &ftrace_list_end)
7619 			update_ftrace_function();
7620 
7621 		ftrace_startup_sysctl();
7622 
7623 	} else {
7624 		if (is_permanent_ops_registered()) {
7625 			ftrace_enabled = true;
7626 			ret = -EBUSY;
7627 			goto out;
7628 		}
7629 
7630 		/* stopping ftrace calls (just send to ftrace_stub) */
7631 		ftrace_trace_function = ftrace_stub;
7632 
7633 		ftrace_shutdown_sysctl();
7634 	}
7635 
7636 	last_ftrace_enabled = !!ftrace_enabled;
7637  out:
7638 	mutex_unlock(&ftrace_lock);
7639 	return ret;
7640 }
7641