1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Infrastructure for profiling code inserted by 'gcc -pg'. 4 * 5 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com> 6 * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com> 7 * 8 * Originally ported from the -rt patch by: 9 * Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com> 10 * 11 * Based on code in the latency_tracer, that is: 12 * 13 * Copyright (C) 2004-2006 Ingo Molnar 14 * Copyright (C) 2004 Nadia Yvette Chambers 15 */ 16 17 #include <linux/stop_machine.h> 18 #include <linux/clocksource.h> 19 #include <linux/sched/task.h> 20 #include <linux/kallsyms.h> 21 #include <linux/security.h> 22 #include <linux/seq_file.h> 23 #include <linux/tracefs.h> 24 #include <linux/hardirq.h> 25 #include <linux/kthread.h> 26 #include <linux/uaccess.h> 27 #include <linux/bsearch.h> 28 #include <linux/module.h> 29 #include <linux/ftrace.h> 30 #include <linux/sysctl.h> 31 #include <linux/slab.h> 32 #include <linux/ctype.h> 33 #include <linux/sort.h> 34 #include <linux/list.h> 35 #include <linux/hash.h> 36 #include <linux/rcupdate.h> 37 #include <linux/kprobes.h> 38 39 #include <trace/events/sched.h> 40 41 #include <asm/sections.h> 42 #include <asm/setup.h> 43 44 #include "ftrace_internal.h" 45 #include "trace_output.h" 46 #include "trace_stat.h" 47 48 #define FTRACE_WARN_ON(cond) \ 49 ({ \ 50 int ___r = cond; \ 51 if (WARN_ON(___r)) \ 52 ftrace_kill(); \ 53 ___r; \ 54 }) 55 56 #define FTRACE_WARN_ON_ONCE(cond) \ 57 ({ \ 58 int ___r = cond; \ 59 if (WARN_ON_ONCE(___r)) \ 60 ftrace_kill(); \ 61 ___r; \ 62 }) 63 64 /* hash bits for specific function selection */ 65 #define FTRACE_HASH_DEFAULT_BITS 10 66 #define FTRACE_HASH_MAX_BITS 12 67 68 #ifdef CONFIG_DYNAMIC_FTRACE 69 #define INIT_OPS_HASH(opsname) \ 70 .func_hash = &opsname.local_hash, \ 71 .local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock), 72 #else 73 #define INIT_OPS_HASH(opsname) 74 #endif 75 76 enum { 77 FTRACE_MODIFY_ENABLE_FL = (1 << 0), 78 FTRACE_MODIFY_MAY_SLEEP_FL = (1 << 1), 79 }; 80 81 struct ftrace_ops ftrace_list_end __read_mostly = { 82 .func = ftrace_stub, 83 .flags = FTRACE_OPS_FL_STUB, 84 INIT_OPS_HASH(ftrace_list_end) 85 }; 86 87 /* ftrace_enabled is a method to turn ftrace on or off */ 88 int ftrace_enabled __read_mostly; 89 static int last_ftrace_enabled; 90 91 /* Current function tracing op */ 92 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end; 93 /* What to set function_trace_op to */ 94 static struct ftrace_ops *set_function_trace_op; 95 96 static bool ftrace_pids_enabled(struct ftrace_ops *ops) 97 { 98 struct trace_array *tr; 99 100 if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private) 101 return false; 102 103 tr = ops->private; 104 105 return tr->function_pids != NULL || tr->function_no_pids != NULL; 106 } 107 108 static void ftrace_update_trampoline(struct ftrace_ops *ops); 109 110 /* 111 * ftrace_disabled is set when an anomaly is discovered. 112 * ftrace_disabled is much stronger than ftrace_enabled. 113 */ 114 static int ftrace_disabled __read_mostly; 115 116 DEFINE_MUTEX(ftrace_lock); 117 118 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end; 119 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub; 120 struct ftrace_ops global_ops; 121 122 #if ARCH_SUPPORTS_FTRACE_OPS 123 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 124 struct ftrace_ops *op, struct ftrace_regs *fregs); 125 #else 126 /* See comment below, where ftrace_ops_list_func is defined */ 127 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip); 128 #define ftrace_ops_list_func ((ftrace_func_t)ftrace_ops_no_ops) 129 #endif 130 131 static inline void ftrace_ops_init(struct ftrace_ops *ops) 132 { 133 #ifdef CONFIG_DYNAMIC_FTRACE 134 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) { 135 mutex_init(&ops->local_hash.regex_lock); 136 ops->func_hash = &ops->local_hash; 137 ops->flags |= FTRACE_OPS_FL_INITIALIZED; 138 } 139 #endif 140 } 141 142 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip, 143 struct ftrace_ops *op, struct ftrace_regs *fregs) 144 { 145 struct trace_array *tr = op->private; 146 int pid; 147 148 if (tr) { 149 pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid); 150 if (pid == FTRACE_PID_IGNORE) 151 return; 152 if (pid != FTRACE_PID_TRACE && 153 pid != current->pid) 154 return; 155 } 156 157 op->saved_func(ip, parent_ip, op, fregs); 158 } 159 160 static void ftrace_sync_ipi(void *data) 161 { 162 /* Probably not needed, but do it anyway */ 163 smp_rmb(); 164 } 165 166 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops) 167 { 168 /* 169 * If this is a dynamic, RCU, or per CPU ops, or we force list func, 170 * then it needs to call the list anyway. 171 */ 172 if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) || 173 FTRACE_FORCE_LIST_FUNC) 174 return ftrace_ops_list_func; 175 176 return ftrace_ops_get_func(ops); 177 } 178 179 static void update_ftrace_function(void) 180 { 181 ftrace_func_t func; 182 183 /* 184 * Prepare the ftrace_ops that the arch callback will use. 185 * If there's only one ftrace_ops registered, the ftrace_ops_list 186 * will point to the ops we want. 187 */ 188 set_function_trace_op = rcu_dereference_protected(ftrace_ops_list, 189 lockdep_is_held(&ftrace_lock)); 190 191 /* If there's no ftrace_ops registered, just call the stub function */ 192 if (set_function_trace_op == &ftrace_list_end) { 193 func = ftrace_stub; 194 195 /* 196 * If we are at the end of the list and this ops is 197 * recursion safe and not dynamic and the arch supports passing ops, 198 * then have the mcount trampoline call the function directly. 199 */ 200 } else if (rcu_dereference_protected(ftrace_ops_list->next, 201 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 202 func = ftrace_ops_get_list_func(ftrace_ops_list); 203 204 } else { 205 /* Just use the default ftrace_ops */ 206 set_function_trace_op = &ftrace_list_end; 207 func = ftrace_ops_list_func; 208 } 209 210 update_function_graph_func(); 211 212 /* If there's no change, then do nothing more here */ 213 if (ftrace_trace_function == func) 214 return; 215 216 /* 217 * If we are using the list function, it doesn't care 218 * about the function_trace_ops. 219 */ 220 if (func == ftrace_ops_list_func) { 221 ftrace_trace_function = func; 222 /* 223 * Don't even bother setting function_trace_ops, 224 * it would be racy to do so anyway. 225 */ 226 return; 227 } 228 229 #ifndef CONFIG_DYNAMIC_FTRACE 230 /* 231 * For static tracing, we need to be a bit more careful. 232 * The function change takes affect immediately. Thus, 233 * we need to coordinate the setting of the function_trace_ops 234 * with the setting of the ftrace_trace_function. 235 * 236 * Set the function to the list ops, which will call the 237 * function we want, albeit indirectly, but it handles the 238 * ftrace_ops and doesn't depend on function_trace_op. 239 */ 240 ftrace_trace_function = ftrace_ops_list_func; 241 /* 242 * Make sure all CPUs see this. Yes this is slow, but static 243 * tracing is slow and nasty to have enabled. 244 */ 245 synchronize_rcu_tasks_rude(); 246 /* Now all cpus are using the list ops. */ 247 function_trace_op = set_function_trace_op; 248 /* Make sure the function_trace_op is visible on all CPUs */ 249 smp_wmb(); 250 /* Nasty way to force a rmb on all cpus */ 251 smp_call_function(ftrace_sync_ipi, NULL, 1); 252 /* OK, we are all set to update the ftrace_trace_function now! */ 253 #endif /* !CONFIG_DYNAMIC_FTRACE */ 254 255 ftrace_trace_function = func; 256 } 257 258 static void add_ftrace_ops(struct ftrace_ops __rcu **list, 259 struct ftrace_ops *ops) 260 { 261 rcu_assign_pointer(ops->next, *list); 262 263 /* 264 * We are entering ops into the list but another 265 * CPU might be walking that list. We need to make sure 266 * the ops->next pointer is valid before another CPU sees 267 * the ops pointer included into the list. 268 */ 269 rcu_assign_pointer(*list, ops); 270 } 271 272 static int remove_ftrace_ops(struct ftrace_ops __rcu **list, 273 struct ftrace_ops *ops) 274 { 275 struct ftrace_ops **p; 276 277 /* 278 * If we are removing the last function, then simply point 279 * to the ftrace_stub. 280 */ 281 if (rcu_dereference_protected(*list, 282 lockdep_is_held(&ftrace_lock)) == ops && 283 rcu_dereference_protected(ops->next, 284 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 285 *list = &ftrace_list_end; 286 return 0; 287 } 288 289 for (p = list; *p != &ftrace_list_end; p = &(*p)->next) 290 if (*p == ops) 291 break; 292 293 if (*p != ops) 294 return -1; 295 296 *p = (*p)->next; 297 return 0; 298 } 299 300 static void ftrace_update_trampoline(struct ftrace_ops *ops); 301 302 int __register_ftrace_function(struct ftrace_ops *ops) 303 { 304 if (ops->flags & FTRACE_OPS_FL_DELETED) 305 return -EINVAL; 306 307 if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED)) 308 return -EBUSY; 309 310 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS 311 /* 312 * If the ftrace_ops specifies SAVE_REGS, then it only can be used 313 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set. 314 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant. 315 */ 316 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS && 317 !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)) 318 return -EINVAL; 319 320 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED) 321 ops->flags |= FTRACE_OPS_FL_SAVE_REGS; 322 #endif 323 if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT)) 324 return -EBUSY; 325 326 if (!core_kernel_data((unsigned long)ops)) 327 ops->flags |= FTRACE_OPS_FL_DYNAMIC; 328 329 add_ftrace_ops(&ftrace_ops_list, ops); 330 331 /* Always save the function, and reset at unregistering */ 332 ops->saved_func = ops->func; 333 334 if (ftrace_pids_enabled(ops)) 335 ops->func = ftrace_pid_func; 336 337 ftrace_update_trampoline(ops); 338 339 if (ftrace_enabled) 340 update_ftrace_function(); 341 342 return 0; 343 } 344 345 int __unregister_ftrace_function(struct ftrace_ops *ops) 346 { 347 int ret; 348 349 if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED))) 350 return -EBUSY; 351 352 ret = remove_ftrace_ops(&ftrace_ops_list, ops); 353 354 if (ret < 0) 355 return ret; 356 357 if (ftrace_enabled) 358 update_ftrace_function(); 359 360 ops->func = ops->saved_func; 361 362 return 0; 363 } 364 365 static void ftrace_update_pid_func(void) 366 { 367 struct ftrace_ops *op; 368 369 /* Only do something if we are tracing something */ 370 if (ftrace_trace_function == ftrace_stub) 371 return; 372 373 do_for_each_ftrace_op(op, ftrace_ops_list) { 374 if (op->flags & FTRACE_OPS_FL_PID) { 375 op->func = ftrace_pids_enabled(op) ? 376 ftrace_pid_func : op->saved_func; 377 ftrace_update_trampoline(op); 378 } 379 } while_for_each_ftrace_op(op); 380 381 update_ftrace_function(); 382 } 383 384 #ifdef CONFIG_FUNCTION_PROFILER 385 struct ftrace_profile { 386 struct hlist_node node; 387 unsigned long ip; 388 unsigned long counter; 389 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 390 unsigned long long time; 391 unsigned long long time_squared; 392 #endif 393 }; 394 395 struct ftrace_profile_page { 396 struct ftrace_profile_page *next; 397 unsigned long index; 398 struct ftrace_profile records[]; 399 }; 400 401 struct ftrace_profile_stat { 402 atomic_t disabled; 403 struct hlist_head *hash; 404 struct ftrace_profile_page *pages; 405 struct ftrace_profile_page *start; 406 struct tracer_stat stat; 407 }; 408 409 #define PROFILE_RECORDS_SIZE \ 410 (PAGE_SIZE - offsetof(struct ftrace_profile_page, records)) 411 412 #define PROFILES_PER_PAGE \ 413 (PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile)) 414 415 static int ftrace_profile_enabled __read_mostly; 416 417 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */ 418 static DEFINE_MUTEX(ftrace_profile_lock); 419 420 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats); 421 422 #define FTRACE_PROFILE_HASH_BITS 10 423 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS) 424 425 static void * 426 function_stat_next(void *v, int idx) 427 { 428 struct ftrace_profile *rec = v; 429 struct ftrace_profile_page *pg; 430 431 pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK); 432 433 again: 434 if (idx != 0) 435 rec++; 436 437 if ((void *)rec >= (void *)&pg->records[pg->index]) { 438 pg = pg->next; 439 if (!pg) 440 return NULL; 441 rec = &pg->records[0]; 442 if (!rec->counter) 443 goto again; 444 } 445 446 return rec; 447 } 448 449 static void *function_stat_start(struct tracer_stat *trace) 450 { 451 struct ftrace_profile_stat *stat = 452 container_of(trace, struct ftrace_profile_stat, stat); 453 454 if (!stat || !stat->start) 455 return NULL; 456 457 return function_stat_next(&stat->start->records[0], 0); 458 } 459 460 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 461 /* function graph compares on total time */ 462 static int function_stat_cmp(const void *p1, const void *p2) 463 { 464 const struct ftrace_profile *a = p1; 465 const struct ftrace_profile *b = p2; 466 467 if (a->time < b->time) 468 return -1; 469 if (a->time > b->time) 470 return 1; 471 else 472 return 0; 473 } 474 #else 475 /* not function graph compares against hits */ 476 static int function_stat_cmp(const void *p1, const void *p2) 477 { 478 const struct ftrace_profile *a = p1; 479 const struct ftrace_profile *b = p2; 480 481 if (a->counter < b->counter) 482 return -1; 483 if (a->counter > b->counter) 484 return 1; 485 else 486 return 0; 487 } 488 #endif 489 490 static int function_stat_headers(struct seq_file *m) 491 { 492 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 493 seq_puts(m, " Function " 494 "Hit Time Avg s^2\n" 495 " -------- " 496 "--- ---- --- ---\n"); 497 #else 498 seq_puts(m, " Function Hit\n" 499 " -------- ---\n"); 500 #endif 501 return 0; 502 } 503 504 static int function_stat_show(struct seq_file *m, void *v) 505 { 506 struct ftrace_profile *rec = v; 507 char str[KSYM_SYMBOL_LEN]; 508 int ret = 0; 509 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 510 static struct trace_seq s; 511 unsigned long long avg; 512 unsigned long long stddev; 513 #endif 514 mutex_lock(&ftrace_profile_lock); 515 516 /* we raced with function_profile_reset() */ 517 if (unlikely(rec->counter == 0)) { 518 ret = -EBUSY; 519 goto out; 520 } 521 522 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 523 avg = div64_ul(rec->time, rec->counter); 524 if (tracing_thresh && (avg < tracing_thresh)) 525 goto out; 526 #endif 527 528 kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); 529 seq_printf(m, " %-30.30s %10lu", str, rec->counter); 530 531 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 532 seq_puts(m, " "); 533 534 /* Sample standard deviation (s^2) */ 535 if (rec->counter <= 1) 536 stddev = 0; 537 else { 538 /* 539 * Apply Welford's method: 540 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2) 541 */ 542 stddev = rec->counter * rec->time_squared - 543 rec->time * rec->time; 544 545 /* 546 * Divide only 1000 for ns^2 -> us^2 conversion. 547 * trace_print_graph_duration will divide 1000 again. 548 */ 549 stddev = div64_ul(stddev, 550 rec->counter * (rec->counter - 1) * 1000); 551 } 552 553 trace_seq_init(&s); 554 trace_print_graph_duration(rec->time, &s); 555 trace_seq_puts(&s, " "); 556 trace_print_graph_duration(avg, &s); 557 trace_seq_puts(&s, " "); 558 trace_print_graph_duration(stddev, &s); 559 trace_print_seq(m, &s); 560 #endif 561 seq_putc(m, '\n'); 562 out: 563 mutex_unlock(&ftrace_profile_lock); 564 565 return ret; 566 } 567 568 static void ftrace_profile_reset(struct ftrace_profile_stat *stat) 569 { 570 struct ftrace_profile_page *pg; 571 572 pg = stat->pages = stat->start; 573 574 while (pg) { 575 memset(pg->records, 0, PROFILE_RECORDS_SIZE); 576 pg->index = 0; 577 pg = pg->next; 578 } 579 580 memset(stat->hash, 0, 581 FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head)); 582 } 583 584 int ftrace_profile_pages_init(struct ftrace_profile_stat *stat) 585 { 586 struct ftrace_profile_page *pg; 587 int functions; 588 int pages; 589 int i; 590 591 /* If we already allocated, do nothing */ 592 if (stat->pages) 593 return 0; 594 595 stat->pages = (void *)get_zeroed_page(GFP_KERNEL); 596 if (!stat->pages) 597 return -ENOMEM; 598 599 #ifdef CONFIG_DYNAMIC_FTRACE 600 functions = ftrace_update_tot_cnt; 601 #else 602 /* 603 * We do not know the number of functions that exist because 604 * dynamic tracing is what counts them. With past experience 605 * we have around 20K functions. That should be more than enough. 606 * It is highly unlikely we will execute every function in 607 * the kernel. 608 */ 609 functions = 20000; 610 #endif 611 612 pg = stat->start = stat->pages; 613 614 pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE); 615 616 for (i = 1; i < pages; i++) { 617 pg->next = (void *)get_zeroed_page(GFP_KERNEL); 618 if (!pg->next) 619 goto out_free; 620 pg = pg->next; 621 } 622 623 return 0; 624 625 out_free: 626 pg = stat->start; 627 while (pg) { 628 unsigned long tmp = (unsigned long)pg; 629 630 pg = pg->next; 631 free_page(tmp); 632 } 633 634 stat->pages = NULL; 635 stat->start = NULL; 636 637 return -ENOMEM; 638 } 639 640 static int ftrace_profile_init_cpu(int cpu) 641 { 642 struct ftrace_profile_stat *stat; 643 int size; 644 645 stat = &per_cpu(ftrace_profile_stats, cpu); 646 647 if (stat->hash) { 648 /* If the profile is already created, simply reset it */ 649 ftrace_profile_reset(stat); 650 return 0; 651 } 652 653 /* 654 * We are profiling all functions, but usually only a few thousand 655 * functions are hit. We'll make a hash of 1024 items. 656 */ 657 size = FTRACE_PROFILE_HASH_SIZE; 658 659 stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL); 660 661 if (!stat->hash) 662 return -ENOMEM; 663 664 /* Preallocate the function profiling pages */ 665 if (ftrace_profile_pages_init(stat) < 0) { 666 kfree(stat->hash); 667 stat->hash = NULL; 668 return -ENOMEM; 669 } 670 671 return 0; 672 } 673 674 static int ftrace_profile_init(void) 675 { 676 int cpu; 677 int ret = 0; 678 679 for_each_possible_cpu(cpu) { 680 ret = ftrace_profile_init_cpu(cpu); 681 if (ret) 682 break; 683 } 684 685 return ret; 686 } 687 688 /* interrupts must be disabled */ 689 static struct ftrace_profile * 690 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip) 691 { 692 struct ftrace_profile *rec; 693 struct hlist_head *hhd; 694 unsigned long key; 695 696 key = hash_long(ip, FTRACE_PROFILE_HASH_BITS); 697 hhd = &stat->hash[key]; 698 699 if (hlist_empty(hhd)) 700 return NULL; 701 702 hlist_for_each_entry_rcu_notrace(rec, hhd, node) { 703 if (rec->ip == ip) 704 return rec; 705 } 706 707 return NULL; 708 } 709 710 static void ftrace_add_profile(struct ftrace_profile_stat *stat, 711 struct ftrace_profile *rec) 712 { 713 unsigned long key; 714 715 key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS); 716 hlist_add_head_rcu(&rec->node, &stat->hash[key]); 717 } 718 719 /* 720 * The memory is already allocated, this simply finds a new record to use. 721 */ 722 static struct ftrace_profile * 723 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip) 724 { 725 struct ftrace_profile *rec = NULL; 726 727 /* prevent recursion (from NMIs) */ 728 if (atomic_inc_return(&stat->disabled) != 1) 729 goto out; 730 731 /* 732 * Try to find the function again since an NMI 733 * could have added it 734 */ 735 rec = ftrace_find_profiled_func(stat, ip); 736 if (rec) 737 goto out; 738 739 if (stat->pages->index == PROFILES_PER_PAGE) { 740 if (!stat->pages->next) 741 goto out; 742 stat->pages = stat->pages->next; 743 } 744 745 rec = &stat->pages->records[stat->pages->index++]; 746 rec->ip = ip; 747 ftrace_add_profile(stat, rec); 748 749 out: 750 atomic_dec(&stat->disabled); 751 752 return rec; 753 } 754 755 static void 756 function_profile_call(unsigned long ip, unsigned long parent_ip, 757 struct ftrace_ops *ops, struct ftrace_regs *fregs) 758 { 759 struct ftrace_profile_stat *stat; 760 struct ftrace_profile *rec; 761 unsigned long flags; 762 763 if (!ftrace_profile_enabled) 764 return; 765 766 local_irq_save(flags); 767 768 stat = this_cpu_ptr(&ftrace_profile_stats); 769 if (!stat->hash || !ftrace_profile_enabled) 770 goto out; 771 772 rec = ftrace_find_profiled_func(stat, ip); 773 if (!rec) { 774 rec = ftrace_profile_alloc(stat, ip); 775 if (!rec) 776 goto out; 777 } 778 779 rec->counter++; 780 out: 781 local_irq_restore(flags); 782 } 783 784 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 785 static bool fgraph_graph_time = true; 786 787 void ftrace_graph_graph_time_control(bool enable) 788 { 789 fgraph_graph_time = enable; 790 } 791 792 static int profile_graph_entry(struct ftrace_graph_ent *trace) 793 { 794 struct ftrace_ret_stack *ret_stack; 795 796 function_profile_call(trace->func, 0, NULL, NULL); 797 798 /* If function graph is shutting down, ret_stack can be NULL */ 799 if (!current->ret_stack) 800 return 0; 801 802 ret_stack = ftrace_graph_get_ret_stack(current, 0); 803 if (ret_stack) 804 ret_stack->subtime = 0; 805 806 return 1; 807 } 808 809 static void profile_graph_return(struct ftrace_graph_ret *trace) 810 { 811 struct ftrace_ret_stack *ret_stack; 812 struct ftrace_profile_stat *stat; 813 unsigned long long calltime; 814 struct ftrace_profile *rec; 815 unsigned long flags; 816 817 local_irq_save(flags); 818 stat = this_cpu_ptr(&ftrace_profile_stats); 819 if (!stat->hash || !ftrace_profile_enabled) 820 goto out; 821 822 /* If the calltime was zero'd ignore it */ 823 if (!trace->calltime) 824 goto out; 825 826 calltime = trace->rettime - trace->calltime; 827 828 if (!fgraph_graph_time) { 829 830 /* Append this call time to the parent time to subtract */ 831 ret_stack = ftrace_graph_get_ret_stack(current, 1); 832 if (ret_stack) 833 ret_stack->subtime += calltime; 834 835 ret_stack = ftrace_graph_get_ret_stack(current, 0); 836 if (ret_stack && ret_stack->subtime < calltime) 837 calltime -= ret_stack->subtime; 838 else 839 calltime = 0; 840 } 841 842 rec = ftrace_find_profiled_func(stat, trace->func); 843 if (rec) { 844 rec->time += calltime; 845 rec->time_squared += calltime * calltime; 846 } 847 848 out: 849 local_irq_restore(flags); 850 } 851 852 static struct fgraph_ops fprofiler_ops = { 853 .entryfunc = &profile_graph_entry, 854 .retfunc = &profile_graph_return, 855 }; 856 857 static int register_ftrace_profiler(void) 858 { 859 return register_ftrace_graph(&fprofiler_ops); 860 } 861 862 static void unregister_ftrace_profiler(void) 863 { 864 unregister_ftrace_graph(&fprofiler_ops); 865 } 866 #else 867 static struct ftrace_ops ftrace_profile_ops __read_mostly = { 868 .func = function_profile_call, 869 .flags = FTRACE_OPS_FL_INITIALIZED, 870 INIT_OPS_HASH(ftrace_profile_ops) 871 }; 872 873 static int register_ftrace_profiler(void) 874 { 875 return register_ftrace_function(&ftrace_profile_ops); 876 } 877 878 static void unregister_ftrace_profiler(void) 879 { 880 unregister_ftrace_function(&ftrace_profile_ops); 881 } 882 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 883 884 static ssize_t 885 ftrace_profile_write(struct file *filp, const char __user *ubuf, 886 size_t cnt, loff_t *ppos) 887 { 888 unsigned long val; 889 int ret; 890 891 ret = kstrtoul_from_user(ubuf, cnt, 10, &val); 892 if (ret) 893 return ret; 894 895 val = !!val; 896 897 mutex_lock(&ftrace_profile_lock); 898 if (ftrace_profile_enabled ^ val) { 899 if (val) { 900 ret = ftrace_profile_init(); 901 if (ret < 0) { 902 cnt = ret; 903 goto out; 904 } 905 906 ret = register_ftrace_profiler(); 907 if (ret < 0) { 908 cnt = ret; 909 goto out; 910 } 911 ftrace_profile_enabled = 1; 912 } else { 913 ftrace_profile_enabled = 0; 914 /* 915 * unregister_ftrace_profiler calls stop_machine 916 * so this acts like an synchronize_rcu. 917 */ 918 unregister_ftrace_profiler(); 919 } 920 } 921 out: 922 mutex_unlock(&ftrace_profile_lock); 923 924 *ppos += cnt; 925 926 return cnt; 927 } 928 929 static ssize_t 930 ftrace_profile_read(struct file *filp, char __user *ubuf, 931 size_t cnt, loff_t *ppos) 932 { 933 char buf[64]; /* big enough to hold a number */ 934 int r; 935 936 r = sprintf(buf, "%u\n", ftrace_profile_enabled); 937 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 938 } 939 940 static const struct file_operations ftrace_profile_fops = { 941 .open = tracing_open_generic, 942 .read = ftrace_profile_read, 943 .write = ftrace_profile_write, 944 .llseek = default_llseek, 945 }; 946 947 /* used to initialize the real stat files */ 948 static struct tracer_stat function_stats __initdata = { 949 .name = "functions", 950 .stat_start = function_stat_start, 951 .stat_next = function_stat_next, 952 .stat_cmp = function_stat_cmp, 953 .stat_headers = function_stat_headers, 954 .stat_show = function_stat_show 955 }; 956 957 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 958 { 959 struct ftrace_profile_stat *stat; 960 struct dentry *entry; 961 char *name; 962 int ret; 963 int cpu; 964 965 for_each_possible_cpu(cpu) { 966 stat = &per_cpu(ftrace_profile_stats, cpu); 967 968 name = kasprintf(GFP_KERNEL, "function%d", cpu); 969 if (!name) { 970 /* 971 * The files created are permanent, if something happens 972 * we still do not free memory. 973 */ 974 WARN(1, 975 "Could not allocate stat file for cpu %d\n", 976 cpu); 977 return; 978 } 979 stat->stat = function_stats; 980 stat->stat.name = name; 981 ret = register_stat_tracer(&stat->stat); 982 if (ret) { 983 WARN(1, 984 "Could not register function stat for cpu %d\n", 985 cpu); 986 kfree(name); 987 return; 988 } 989 } 990 991 entry = tracefs_create_file("function_profile_enabled", 992 TRACE_MODE_WRITE, d_tracer, NULL, 993 &ftrace_profile_fops); 994 if (!entry) 995 pr_warn("Could not create tracefs 'function_profile_enabled' entry\n"); 996 } 997 998 #else /* CONFIG_FUNCTION_PROFILER */ 999 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 1000 { 1001 } 1002 #endif /* CONFIG_FUNCTION_PROFILER */ 1003 1004 #ifdef CONFIG_DYNAMIC_FTRACE 1005 1006 static struct ftrace_ops *removed_ops; 1007 1008 /* 1009 * Set when doing a global update, like enabling all recs or disabling them. 1010 * It is not set when just updating a single ftrace_ops. 1011 */ 1012 static bool update_all_ops; 1013 1014 #ifndef CONFIG_FTRACE_MCOUNT_RECORD 1015 # error Dynamic ftrace depends on MCOUNT_RECORD 1016 #endif 1017 1018 struct ftrace_func_probe { 1019 struct ftrace_probe_ops *probe_ops; 1020 struct ftrace_ops ops; 1021 struct trace_array *tr; 1022 struct list_head list; 1023 void *data; 1024 int ref; 1025 }; 1026 1027 /* 1028 * We make these constant because no one should touch them, 1029 * but they are used as the default "empty hash", to avoid allocating 1030 * it all the time. These are in a read only section such that if 1031 * anyone does try to modify it, it will cause an exception. 1032 */ 1033 static const struct hlist_head empty_buckets[1]; 1034 static const struct ftrace_hash empty_hash = { 1035 .buckets = (struct hlist_head *)empty_buckets, 1036 }; 1037 #define EMPTY_HASH ((struct ftrace_hash *)&empty_hash) 1038 1039 struct ftrace_ops global_ops = { 1040 .func = ftrace_stub, 1041 .local_hash.notrace_hash = EMPTY_HASH, 1042 .local_hash.filter_hash = EMPTY_HASH, 1043 INIT_OPS_HASH(global_ops) 1044 .flags = FTRACE_OPS_FL_INITIALIZED | 1045 FTRACE_OPS_FL_PID, 1046 }; 1047 1048 /* 1049 * Used by the stack unwinder to know about dynamic ftrace trampolines. 1050 */ 1051 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr) 1052 { 1053 struct ftrace_ops *op = NULL; 1054 1055 /* 1056 * Some of the ops may be dynamically allocated, 1057 * they are freed after a synchronize_rcu(). 1058 */ 1059 preempt_disable_notrace(); 1060 1061 do_for_each_ftrace_op(op, ftrace_ops_list) { 1062 /* 1063 * This is to check for dynamically allocated trampolines. 1064 * Trampolines that are in kernel text will have 1065 * core_kernel_text() return true. 1066 */ 1067 if (op->trampoline && op->trampoline_size) 1068 if (addr >= op->trampoline && 1069 addr < op->trampoline + op->trampoline_size) { 1070 preempt_enable_notrace(); 1071 return op; 1072 } 1073 } while_for_each_ftrace_op(op); 1074 preempt_enable_notrace(); 1075 1076 return NULL; 1077 } 1078 1079 /* 1080 * This is used by __kernel_text_address() to return true if the 1081 * address is on a dynamically allocated trampoline that would 1082 * not return true for either core_kernel_text() or 1083 * is_module_text_address(). 1084 */ 1085 bool is_ftrace_trampoline(unsigned long addr) 1086 { 1087 return ftrace_ops_trampoline(addr) != NULL; 1088 } 1089 1090 struct ftrace_page { 1091 struct ftrace_page *next; 1092 struct dyn_ftrace *records; 1093 int index; 1094 int order; 1095 }; 1096 1097 #define ENTRY_SIZE sizeof(struct dyn_ftrace) 1098 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE) 1099 1100 static struct ftrace_page *ftrace_pages_start; 1101 static struct ftrace_page *ftrace_pages; 1102 1103 static __always_inline unsigned long 1104 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip) 1105 { 1106 if (hash->size_bits > 0) 1107 return hash_long(ip, hash->size_bits); 1108 1109 return 0; 1110 } 1111 1112 /* Only use this function if ftrace_hash_empty() has already been tested */ 1113 static __always_inline struct ftrace_func_entry * 1114 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1115 { 1116 unsigned long key; 1117 struct ftrace_func_entry *entry; 1118 struct hlist_head *hhd; 1119 1120 key = ftrace_hash_key(hash, ip); 1121 hhd = &hash->buckets[key]; 1122 1123 hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) { 1124 if (entry->ip == ip) 1125 return entry; 1126 } 1127 return NULL; 1128 } 1129 1130 /** 1131 * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash 1132 * @hash: The hash to look at 1133 * @ip: The instruction pointer to test 1134 * 1135 * Search a given @hash to see if a given instruction pointer (@ip) 1136 * exists in it. 1137 * 1138 * Returns the entry that holds the @ip if found. NULL otherwise. 1139 */ 1140 struct ftrace_func_entry * 1141 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1142 { 1143 if (ftrace_hash_empty(hash)) 1144 return NULL; 1145 1146 return __ftrace_lookup_ip(hash, ip); 1147 } 1148 1149 static void __add_hash_entry(struct ftrace_hash *hash, 1150 struct ftrace_func_entry *entry) 1151 { 1152 struct hlist_head *hhd; 1153 unsigned long key; 1154 1155 key = ftrace_hash_key(hash, entry->ip); 1156 hhd = &hash->buckets[key]; 1157 hlist_add_head(&entry->hlist, hhd); 1158 hash->count++; 1159 } 1160 1161 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip) 1162 { 1163 struct ftrace_func_entry *entry; 1164 1165 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 1166 if (!entry) 1167 return -ENOMEM; 1168 1169 entry->ip = ip; 1170 __add_hash_entry(hash, entry); 1171 1172 return 0; 1173 } 1174 1175 static void 1176 free_hash_entry(struct ftrace_hash *hash, 1177 struct ftrace_func_entry *entry) 1178 { 1179 hlist_del(&entry->hlist); 1180 kfree(entry); 1181 hash->count--; 1182 } 1183 1184 static void 1185 remove_hash_entry(struct ftrace_hash *hash, 1186 struct ftrace_func_entry *entry) 1187 { 1188 hlist_del_rcu(&entry->hlist); 1189 hash->count--; 1190 } 1191 1192 static void ftrace_hash_clear(struct ftrace_hash *hash) 1193 { 1194 struct hlist_head *hhd; 1195 struct hlist_node *tn; 1196 struct ftrace_func_entry *entry; 1197 int size = 1 << hash->size_bits; 1198 int i; 1199 1200 if (!hash->count) 1201 return; 1202 1203 for (i = 0; i < size; i++) { 1204 hhd = &hash->buckets[i]; 1205 hlist_for_each_entry_safe(entry, tn, hhd, hlist) 1206 free_hash_entry(hash, entry); 1207 } 1208 FTRACE_WARN_ON(hash->count); 1209 } 1210 1211 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod) 1212 { 1213 list_del(&ftrace_mod->list); 1214 kfree(ftrace_mod->module); 1215 kfree(ftrace_mod->func); 1216 kfree(ftrace_mod); 1217 } 1218 1219 static void clear_ftrace_mod_list(struct list_head *head) 1220 { 1221 struct ftrace_mod_load *p, *n; 1222 1223 /* stack tracer isn't supported yet */ 1224 if (!head) 1225 return; 1226 1227 mutex_lock(&ftrace_lock); 1228 list_for_each_entry_safe(p, n, head, list) 1229 free_ftrace_mod(p); 1230 mutex_unlock(&ftrace_lock); 1231 } 1232 1233 static void free_ftrace_hash(struct ftrace_hash *hash) 1234 { 1235 if (!hash || hash == EMPTY_HASH) 1236 return; 1237 ftrace_hash_clear(hash); 1238 kfree(hash->buckets); 1239 kfree(hash); 1240 } 1241 1242 static void __free_ftrace_hash_rcu(struct rcu_head *rcu) 1243 { 1244 struct ftrace_hash *hash; 1245 1246 hash = container_of(rcu, struct ftrace_hash, rcu); 1247 free_ftrace_hash(hash); 1248 } 1249 1250 static void free_ftrace_hash_rcu(struct ftrace_hash *hash) 1251 { 1252 if (!hash || hash == EMPTY_HASH) 1253 return; 1254 call_rcu(&hash->rcu, __free_ftrace_hash_rcu); 1255 } 1256 1257 void ftrace_free_filter(struct ftrace_ops *ops) 1258 { 1259 ftrace_ops_init(ops); 1260 free_ftrace_hash(ops->func_hash->filter_hash); 1261 free_ftrace_hash(ops->func_hash->notrace_hash); 1262 } 1263 1264 static struct ftrace_hash *alloc_ftrace_hash(int size_bits) 1265 { 1266 struct ftrace_hash *hash; 1267 int size; 1268 1269 hash = kzalloc(sizeof(*hash), GFP_KERNEL); 1270 if (!hash) 1271 return NULL; 1272 1273 size = 1 << size_bits; 1274 hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL); 1275 1276 if (!hash->buckets) { 1277 kfree(hash); 1278 return NULL; 1279 } 1280 1281 hash->size_bits = size_bits; 1282 1283 return hash; 1284 } 1285 1286 1287 static int ftrace_add_mod(struct trace_array *tr, 1288 const char *func, const char *module, 1289 int enable) 1290 { 1291 struct ftrace_mod_load *ftrace_mod; 1292 struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace; 1293 1294 ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL); 1295 if (!ftrace_mod) 1296 return -ENOMEM; 1297 1298 ftrace_mod->func = kstrdup(func, GFP_KERNEL); 1299 ftrace_mod->module = kstrdup(module, GFP_KERNEL); 1300 ftrace_mod->enable = enable; 1301 1302 if (!ftrace_mod->func || !ftrace_mod->module) 1303 goto out_free; 1304 1305 list_add(&ftrace_mod->list, mod_head); 1306 1307 return 0; 1308 1309 out_free: 1310 free_ftrace_mod(ftrace_mod); 1311 1312 return -ENOMEM; 1313 } 1314 1315 static struct ftrace_hash * 1316 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash) 1317 { 1318 struct ftrace_func_entry *entry; 1319 struct ftrace_hash *new_hash; 1320 int size; 1321 int ret; 1322 int i; 1323 1324 new_hash = alloc_ftrace_hash(size_bits); 1325 if (!new_hash) 1326 return NULL; 1327 1328 if (hash) 1329 new_hash->flags = hash->flags; 1330 1331 /* Empty hash? */ 1332 if (ftrace_hash_empty(hash)) 1333 return new_hash; 1334 1335 size = 1 << hash->size_bits; 1336 for (i = 0; i < size; i++) { 1337 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 1338 ret = add_hash_entry(new_hash, entry->ip); 1339 if (ret < 0) 1340 goto free_hash; 1341 } 1342 } 1343 1344 FTRACE_WARN_ON(new_hash->count != hash->count); 1345 1346 return new_hash; 1347 1348 free_hash: 1349 free_ftrace_hash(new_hash); 1350 return NULL; 1351 } 1352 1353 static void 1354 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash); 1355 static void 1356 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash); 1357 1358 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1359 struct ftrace_hash *new_hash); 1360 1361 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size) 1362 { 1363 struct ftrace_func_entry *entry; 1364 struct ftrace_hash *new_hash; 1365 struct hlist_head *hhd; 1366 struct hlist_node *tn; 1367 int bits = 0; 1368 int i; 1369 1370 /* 1371 * Use around half the size (max bit of it), but 1372 * a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits). 1373 */ 1374 bits = fls(size / 2); 1375 1376 /* Don't allocate too much */ 1377 if (bits > FTRACE_HASH_MAX_BITS) 1378 bits = FTRACE_HASH_MAX_BITS; 1379 1380 new_hash = alloc_ftrace_hash(bits); 1381 if (!new_hash) 1382 return NULL; 1383 1384 new_hash->flags = src->flags; 1385 1386 size = 1 << src->size_bits; 1387 for (i = 0; i < size; i++) { 1388 hhd = &src->buckets[i]; 1389 hlist_for_each_entry_safe(entry, tn, hhd, hlist) { 1390 remove_hash_entry(src, entry); 1391 __add_hash_entry(new_hash, entry); 1392 } 1393 } 1394 return new_hash; 1395 } 1396 1397 static struct ftrace_hash * 1398 __ftrace_hash_move(struct ftrace_hash *src) 1399 { 1400 int size = src->count; 1401 1402 /* 1403 * If the new source is empty, just return the empty_hash. 1404 */ 1405 if (ftrace_hash_empty(src)) 1406 return EMPTY_HASH; 1407 1408 return dup_hash(src, size); 1409 } 1410 1411 static int 1412 ftrace_hash_move(struct ftrace_ops *ops, int enable, 1413 struct ftrace_hash **dst, struct ftrace_hash *src) 1414 { 1415 struct ftrace_hash *new_hash; 1416 int ret; 1417 1418 /* Reject setting notrace hash on IPMODIFY ftrace_ops */ 1419 if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable) 1420 return -EINVAL; 1421 1422 new_hash = __ftrace_hash_move(src); 1423 if (!new_hash) 1424 return -ENOMEM; 1425 1426 /* Make sure this can be applied if it is IPMODIFY ftrace_ops */ 1427 if (enable) { 1428 /* IPMODIFY should be updated only when filter_hash updating */ 1429 ret = ftrace_hash_ipmodify_update(ops, new_hash); 1430 if (ret < 0) { 1431 free_ftrace_hash(new_hash); 1432 return ret; 1433 } 1434 } 1435 1436 /* 1437 * Remove the current set, update the hash and add 1438 * them back. 1439 */ 1440 ftrace_hash_rec_disable_modify(ops, enable); 1441 1442 rcu_assign_pointer(*dst, new_hash); 1443 1444 ftrace_hash_rec_enable_modify(ops, enable); 1445 1446 return 0; 1447 } 1448 1449 static bool hash_contains_ip(unsigned long ip, 1450 struct ftrace_ops_hash *hash) 1451 { 1452 /* 1453 * The function record is a match if it exists in the filter 1454 * hash and not in the notrace hash. Note, an empty hash is 1455 * considered a match for the filter hash, but an empty 1456 * notrace hash is considered not in the notrace hash. 1457 */ 1458 return (ftrace_hash_empty(hash->filter_hash) || 1459 __ftrace_lookup_ip(hash->filter_hash, ip)) && 1460 (ftrace_hash_empty(hash->notrace_hash) || 1461 !__ftrace_lookup_ip(hash->notrace_hash, ip)); 1462 } 1463 1464 /* 1465 * Test the hashes for this ops to see if we want to call 1466 * the ops->func or not. 1467 * 1468 * It's a match if the ip is in the ops->filter_hash or 1469 * the filter_hash does not exist or is empty, 1470 * AND 1471 * the ip is not in the ops->notrace_hash. 1472 * 1473 * This needs to be called with preemption disabled as 1474 * the hashes are freed with call_rcu(). 1475 */ 1476 int 1477 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs) 1478 { 1479 struct ftrace_ops_hash hash; 1480 int ret; 1481 1482 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS 1483 /* 1484 * There's a small race when adding ops that the ftrace handler 1485 * that wants regs, may be called without them. We can not 1486 * allow that handler to be called if regs is NULL. 1487 */ 1488 if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS)) 1489 return 0; 1490 #endif 1491 1492 rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash); 1493 rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash); 1494 1495 if (hash_contains_ip(ip, &hash)) 1496 ret = 1; 1497 else 1498 ret = 0; 1499 1500 return ret; 1501 } 1502 1503 /* 1504 * This is a double for. Do not use 'break' to break out of the loop, 1505 * you must use a goto. 1506 */ 1507 #define do_for_each_ftrace_rec(pg, rec) \ 1508 for (pg = ftrace_pages_start; pg; pg = pg->next) { \ 1509 int _____i; \ 1510 for (_____i = 0; _____i < pg->index; _____i++) { \ 1511 rec = &pg->records[_____i]; 1512 1513 #define while_for_each_ftrace_rec() \ 1514 } \ 1515 } 1516 1517 1518 static int ftrace_cmp_recs(const void *a, const void *b) 1519 { 1520 const struct dyn_ftrace *key = a; 1521 const struct dyn_ftrace *rec = b; 1522 1523 if (key->flags < rec->ip) 1524 return -1; 1525 if (key->ip >= rec->ip + MCOUNT_INSN_SIZE) 1526 return 1; 1527 return 0; 1528 } 1529 1530 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end) 1531 { 1532 struct ftrace_page *pg; 1533 struct dyn_ftrace *rec = NULL; 1534 struct dyn_ftrace key; 1535 1536 key.ip = start; 1537 key.flags = end; /* overload flags, as it is unsigned long */ 1538 1539 for (pg = ftrace_pages_start; pg; pg = pg->next) { 1540 if (end < pg->records[0].ip || 1541 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 1542 continue; 1543 rec = bsearch(&key, pg->records, pg->index, 1544 sizeof(struct dyn_ftrace), 1545 ftrace_cmp_recs); 1546 if (rec) 1547 break; 1548 } 1549 return rec; 1550 } 1551 1552 /** 1553 * ftrace_location_range - return the first address of a traced location 1554 * if it touches the given ip range 1555 * @start: start of range to search. 1556 * @end: end of range to search (inclusive). @end points to the last byte 1557 * to check. 1558 * 1559 * Returns rec->ip if the related ftrace location is a least partly within 1560 * the given address range. That is, the first address of the instruction 1561 * that is either a NOP or call to the function tracer. It checks the ftrace 1562 * internal tables to determine if the address belongs or not. 1563 */ 1564 unsigned long ftrace_location_range(unsigned long start, unsigned long end) 1565 { 1566 struct dyn_ftrace *rec; 1567 1568 rec = lookup_rec(start, end); 1569 if (rec) 1570 return rec->ip; 1571 1572 return 0; 1573 } 1574 1575 /** 1576 * ftrace_location - return true if the ip giving is a traced location 1577 * @ip: the instruction pointer to check 1578 * 1579 * Returns rec->ip if @ip given is a pointer to a ftrace location. 1580 * That is, the instruction that is either a NOP or call to 1581 * the function tracer. It checks the ftrace internal tables to 1582 * determine if the address belongs or not. 1583 */ 1584 unsigned long ftrace_location(unsigned long ip) 1585 { 1586 return ftrace_location_range(ip, ip); 1587 } 1588 1589 /** 1590 * ftrace_text_reserved - return true if range contains an ftrace location 1591 * @start: start of range to search 1592 * @end: end of range to search (inclusive). @end points to the last byte to check. 1593 * 1594 * Returns 1 if @start and @end contains a ftrace location. 1595 * That is, the instruction that is either a NOP or call to 1596 * the function tracer. It checks the ftrace internal tables to 1597 * determine if the address belongs or not. 1598 */ 1599 int ftrace_text_reserved(const void *start, const void *end) 1600 { 1601 unsigned long ret; 1602 1603 ret = ftrace_location_range((unsigned long)start, 1604 (unsigned long)end); 1605 1606 return (int)!!ret; 1607 } 1608 1609 /* Test if ops registered to this rec needs regs */ 1610 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec) 1611 { 1612 struct ftrace_ops *ops; 1613 bool keep_regs = false; 1614 1615 for (ops = ftrace_ops_list; 1616 ops != &ftrace_list_end; ops = ops->next) { 1617 /* pass rec in as regs to have non-NULL val */ 1618 if (ftrace_ops_test(ops, rec->ip, rec)) { 1619 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1620 keep_regs = true; 1621 break; 1622 } 1623 } 1624 } 1625 1626 return keep_regs; 1627 } 1628 1629 static struct ftrace_ops * 1630 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec); 1631 static struct ftrace_ops * 1632 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude); 1633 static struct ftrace_ops * 1634 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops); 1635 1636 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops, 1637 int filter_hash, 1638 bool inc) 1639 { 1640 struct ftrace_hash *hash; 1641 struct ftrace_hash *other_hash; 1642 struct ftrace_page *pg; 1643 struct dyn_ftrace *rec; 1644 bool update = false; 1645 int count = 0; 1646 int all = false; 1647 1648 /* Only update if the ops has been registered */ 1649 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1650 return false; 1651 1652 /* 1653 * In the filter_hash case: 1654 * If the count is zero, we update all records. 1655 * Otherwise we just update the items in the hash. 1656 * 1657 * In the notrace_hash case: 1658 * We enable the update in the hash. 1659 * As disabling notrace means enabling the tracing, 1660 * and enabling notrace means disabling, the inc variable 1661 * gets inversed. 1662 */ 1663 if (filter_hash) { 1664 hash = ops->func_hash->filter_hash; 1665 other_hash = ops->func_hash->notrace_hash; 1666 if (ftrace_hash_empty(hash)) 1667 all = true; 1668 } else { 1669 inc = !inc; 1670 hash = ops->func_hash->notrace_hash; 1671 other_hash = ops->func_hash->filter_hash; 1672 /* 1673 * If the notrace hash has no items, 1674 * then there's nothing to do. 1675 */ 1676 if (ftrace_hash_empty(hash)) 1677 return false; 1678 } 1679 1680 do_for_each_ftrace_rec(pg, rec) { 1681 int in_other_hash = 0; 1682 int in_hash = 0; 1683 int match = 0; 1684 1685 if (rec->flags & FTRACE_FL_DISABLED) 1686 continue; 1687 1688 if (all) { 1689 /* 1690 * Only the filter_hash affects all records. 1691 * Update if the record is not in the notrace hash. 1692 */ 1693 if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip)) 1694 match = 1; 1695 } else { 1696 in_hash = !!ftrace_lookup_ip(hash, rec->ip); 1697 in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip); 1698 1699 /* 1700 * If filter_hash is set, we want to match all functions 1701 * that are in the hash but not in the other hash. 1702 * 1703 * If filter_hash is not set, then we are decrementing. 1704 * That means we match anything that is in the hash 1705 * and also in the other_hash. That is, we need to turn 1706 * off functions in the other hash because they are disabled 1707 * by this hash. 1708 */ 1709 if (filter_hash && in_hash && !in_other_hash) 1710 match = 1; 1711 else if (!filter_hash && in_hash && 1712 (in_other_hash || ftrace_hash_empty(other_hash))) 1713 match = 1; 1714 } 1715 if (!match) 1716 continue; 1717 1718 if (inc) { 1719 rec->flags++; 1720 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX)) 1721 return false; 1722 1723 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1724 rec->flags |= FTRACE_FL_DIRECT; 1725 1726 /* 1727 * If there's only a single callback registered to a 1728 * function, and the ops has a trampoline registered 1729 * for it, then we can call it directly. 1730 */ 1731 if (ftrace_rec_count(rec) == 1 && ops->trampoline) 1732 rec->flags |= FTRACE_FL_TRAMP; 1733 else 1734 /* 1735 * If we are adding another function callback 1736 * to this function, and the previous had a 1737 * custom trampoline in use, then we need to go 1738 * back to the default trampoline. 1739 */ 1740 rec->flags &= ~FTRACE_FL_TRAMP; 1741 1742 /* 1743 * If any ops wants regs saved for this function 1744 * then all ops will get saved regs. 1745 */ 1746 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 1747 rec->flags |= FTRACE_FL_REGS; 1748 } else { 1749 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0)) 1750 return false; 1751 rec->flags--; 1752 1753 /* 1754 * Only the internal direct_ops should have the 1755 * DIRECT flag set. Thus, if it is removing a 1756 * function, then that function should no longer 1757 * be direct. 1758 */ 1759 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1760 rec->flags &= ~FTRACE_FL_DIRECT; 1761 1762 /* 1763 * If the rec had REGS enabled and the ops that is 1764 * being removed had REGS set, then see if there is 1765 * still any ops for this record that wants regs. 1766 * If not, we can stop recording them. 1767 */ 1768 if (ftrace_rec_count(rec) > 0 && 1769 rec->flags & FTRACE_FL_REGS && 1770 ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1771 if (!test_rec_ops_needs_regs(rec)) 1772 rec->flags &= ~FTRACE_FL_REGS; 1773 } 1774 1775 /* 1776 * The TRAMP needs to be set only if rec count 1777 * is decremented to one, and the ops that is 1778 * left has a trampoline. As TRAMP can only be 1779 * enabled if there is only a single ops attached 1780 * to it. 1781 */ 1782 if (ftrace_rec_count(rec) == 1 && 1783 ftrace_find_tramp_ops_any_other(rec, ops)) 1784 rec->flags |= FTRACE_FL_TRAMP; 1785 else 1786 rec->flags &= ~FTRACE_FL_TRAMP; 1787 1788 /* 1789 * flags will be cleared in ftrace_check_record() 1790 * if rec count is zero. 1791 */ 1792 } 1793 count++; 1794 1795 /* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */ 1796 update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE; 1797 1798 /* Shortcut, if we handled all records, we are done. */ 1799 if (!all && count == hash->count) 1800 return update; 1801 } while_for_each_ftrace_rec(); 1802 1803 return update; 1804 } 1805 1806 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops, 1807 int filter_hash) 1808 { 1809 return __ftrace_hash_rec_update(ops, filter_hash, 0); 1810 } 1811 1812 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops, 1813 int filter_hash) 1814 { 1815 return __ftrace_hash_rec_update(ops, filter_hash, 1); 1816 } 1817 1818 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops, 1819 int filter_hash, int inc) 1820 { 1821 struct ftrace_ops *op; 1822 1823 __ftrace_hash_rec_update(ops, filter_hash, inc); 1824 1825 if (ops->func_hash != &global_ops.local_hash) 1826 return; 1827 1828 /* 1829 * If the ops shares the global_ops hash, then we need to update 1830 * all ops that are enabled and use this hash. 1831 */ 1832 do_for_each_ftrace_op(op, ftrace_ops_list) { 1833 /* Already done */ 1834 if (op == ops) 1835 continue; 1836 if (op->func_hash == &global_ops.local_hash) 1837 __ftrace_hash_rec_update(op, filter_hash, inc); 1838 } while_for_each_ftrace_op(op); 1839 } 1840 1841 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, 1842 int filter_hash) 1843 { 1844 ftrace_hash_rec_update_modify(ops, filter_hash, 0); 1845 } 1846 1847 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, 1848 int filter_hash) 1849 { 1850 ftrace_hash_rec_update_modify(ops, filter_hash, 1); 1851 } 1852 1853 /* 1854 * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK 1855 * or no-needed to update, -EBUSY if it detects a conflict of the flag 1856 * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs. 1857 * Note that old_hash and new_hash has below meanings 1858 * - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected) 1859 * - If the hash is EMPTY_HASH, it hits nothing 1860 * - Anything else hits the recs which match the hash entries. 1861 */ 1862 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops, 1863 struct ftrace_hash *old_hash, 1864 struct ftrace_hash *new_hash) 1865 { 1866 struct ftrace_page *pg; 1867 struct dyn_ftrace *rec, *end = NULL; 1868 int in_old, in_new; 1869 1870 /* Only update if the ops has been registered */ 1871 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1872 return 0; 1873 1874 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 1875 return 0; 1876 1877 /* 1878 * Since the IPMODIFY is a very address sensitive action, we do not 1879 * allow ftrace_ops to set all functions to new hash. 1880 */ 1881 if (!new_hash || !old_hash) 1882 return -EINVAL; 1883 1884 /* Update rec->flags */ 1885 do_for_each_ftrace_rec(pg, rec) { 1886 1887 if (rec->flags & FTRACE_FL_DISABLED) 1888 continue; 1889 1890 /* We need to update only differences of filter_hash */ 1891 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1892 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1893 if (in_old == in_new) 1894 continue; 1895 1896 if (in_new) { 1897 /* New entries must ensure no others are using it */ 1898 if (rec->flags & FTRACE_FL_IPMODIFY) 1899 goto rollback; 1900 rec->flags |= FTRACE_FL_IPMODIFY; 1901 } else /* Removed entry */ 1902 rec->flags &= ~FTRACE_FL_IPMODIFY; 1903 } while_for_each_ftrace_rec(); 1904 1905 return 0; 1906 1907 rollback: 1908 end = rec; 1909 1910 /* Roll back what we did above */ 1911 do_for_each_ftrace_rec(pg, rec) { 1912 1913 if (rec->flags & FTRACE_FL_DISABLED) 1914 continue; 1915 1916 if (rec == end) 1917 goto err_out; 1918 1919 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1920 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1921 if (in_old == in_new) 1922 continue; 1923 1924 if (in_new) 1925 rec->flags &= ~FTRACE_FL_IPMODIFY; 1926 else 1927 rec->flags |= FTRACE_FL_IPMODIFY; 1928 } while_for_each_ftrace_rec(); 1929 1930 err_out: 1931 return -EBUSY; 1932 } 1933 1934 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops) 1935 { 1936 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1937 1938 if (ftrace_hash_empty(hash)) 1939 hash = NULL; 1940 1941 return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash); 1942 } 1943 1944 /* Disabling always succeeds */ 1945 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops) 1946 { 1947 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1948 1949 if (ftrace_hash_empty(hash)) 1950 hash = NULL; 1951 1952 __ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH); 1953 } 1954 1955 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1956 struct ftrace_hash *new_hash) 1957 { 1958 struct ftrace_hash *old_hash = ops->func_hash->filter_hash; 1959 1960 if (ftrace_hash_empty(old_hash)) 1961 old_hash = NULL; 1962 1963 if (ftrace_hash_empty(new_hash)) 1964 new_hash = NULL; 1965 1966 return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash); 1967 } 1968 1969 static void print_ip_ins(const char *fmt, const unsigned char *p) 1970 { 1971 char ins[MCOUNT_INSN_SIZE]; 1972 int i; 1973 1974 if (copy_from_kernel_nofault(ins, p, MCOUNT_INSN_SIZE)) { 1975 printk(KERN_CONT "%s[FAULT] %px\n", fmt, p); 1976 return; 1977 } 1978 1979 printk(KERN_CONT "%s", fmt); 1980 1981 for (i = 0; i < MCOUNT_INSN_SIZE; i++) 1982 printk(KERN_CONT "%s%02x", i ? ":" : "", ins[i]); 1983 } 1984 1985 enum ftrace_bug_type ftrace_bug_type; 1986 const void *ftrace_expected; 1987 1988 static void print_bug_type(void) 1989 { 1990 switch (ftrace_bug_type) { 1991 case FTRACE_BUG_UNKNOWN: 1992 break; 1993 case FTRACE_BUG_INIT: 1994 pr_info("Initializing ftrace call sites\n"); 1995 break; 1996 case FTRACE_BUG_NOP: 1997 pr_info("Setting ftrace call site to NOP\n"); 1998 break; 1999 case FTRACE_BUG_CALL: 2000 pr_info("Setting ftrace call site to call ftrace function\n"); 2001 break; 2002 case FTRACE_BUG_UPDATE: 2003 pr_info("Updating ftrace call site to call a different ftrace function\n"); 2004 break; 2005 } 2006 } 2007 2008 /** 2009 * ftrace_bug - report and shutdown function tracer 2010 * @failed: The failed type (EFAULT, EINVAL, EPERM) 2011 * @rec: The record that failed 2012 * 2013 * The arch code that enables or disables the function tracing 2014 * can call ftrace_bug() when it has detected a problem in 2015 * modifying the code. @failed should be one of either: 2016 * EFAULT - if the problem happens on reading the @ip address 2017 * EINVAL - if what is read at @ip is not what was expected 2018 * EPERM - if the problem happens on writing to the @ip address 2019 */ 2020 void ftrace_bug(int failed, struct dyn_ftrace *rec) 2021 { 2022 unsigned long ip = rec ? rec->ip : 0; 2023 2024 pr_info("------------[ ftrace bug ]------------\n"); 2025 2026 switch (failed) { 2027 case -EFAULT: 2028 pr_info("ftrace faulted on modifying "); 2029 print_ip_sym(KERN_INFO, ip); 2030 break; 2031 case -EINVAL: 2032 pr_info("ftrace failed to modify "); 2033 print_ip_sym(KERN_INFO, ip); 2034 print_ip_ins(" actual: ", (unsigned char *)ip); 2035 pr_cont("\n"); 2036 if (ftrace_expected) { 2037 print_ip_ins(" expected: ", ftrace_expected); 2038 pr_cont("\n"); 2039 } 2040 break; 2041 case -EPERM: 2042 pr_info("ftrace faulted on writing "); 2043 print_ip_sym(KERN_INFO, ip); 2044 break; 2045 default: 2046 pr_info("ftrace faulted on unknown error "); 2047 print_ip_sym(KERN_INFO, ip); 2048 } 2049 print_bug_type(); 2050 if (rec) { 2051 struct ftrace_ops *ops = NULL; 2052 2053 pr_info("ftrace record flags: %lx\n", rec->flags); 2054 pr_cont(" (%ld)%s", ftrace_rec_count(rec), 2055 rec->flags & FTRACE_FL_REGS ? " R" : " "); 2056 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2057 ops = ftrace_find_tramp_ops_any(rec); 2058 if (ops) { 2059 do { 2060 pr_cont("\ttramp: %pS (%pS)", 2061 (void *)ops->trampoline, 2062 (void *)ops->func); 2063 ops = ftrace_find_tramp_ops_next(rec, ops); 2064 } while (ops); 2065 } else 2066 pr_cont("\ttramp: ERROR!"); 2067 2068 } 2069 ip = ftrace_get_addr_curr(rec); 2070 pr_cont("\n expected tramp: %lx\n", ip); 2071 } 2072 2073 FTRACE_WARN_ON_ONCE(1); 2074 } 2075 2076 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update) 2077 { 2078 unsigned long flag = 0UL; 2079 2080 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2081 2082 if (rec->flags & FTRACE_FL_DISABLED) 2083 return FTRACE_UPDATE_IGNORE; 2084 2085 /* 2086 * If we are updating calls: 2087 * 2088 * If the record has a ref count, then we need to enable it 2089 * because someone is using it. 2090 * 2091 * Otherwise we make sure its disabled. 2092 * 2093 * If we are disabling calls, then disable all records that 2094 * are enabled. 2095 */ 2096 if (enable && ftrace_rec_count(rec)) 2097 flag = FTRACE_FL_ENABLED; 2098 2099 /* 2100 * If enabling and the REGS flag does not match the REGS_EN, or 2101 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore 2102 * this record. Set flags to fail the compare against ENABLED. 2103 * Same for direct calls. 2104 */ 2105 if (flag) { 2106 if (!(rec->flags & FTRACE_FL_REGS) != 2107 !(rec->flags & FTRACE_FL_REGS_EN)) 2108 flag |= FTRACE_FL_REGS; 2109 2110 if (!(rec->flags & FTRACE_FL_TRAMP) != 2111 !(rec->flags & FTRACE_FL_TRAMP_EN)) 2112 flag |= FTRACE_FL_TRAMP; 2113 2114 /* 2115 * Direct calls are special, as count matters. 2116 * We must test the record for direct, if the 2117 * DIRECT and DIRECT_EN do not match, but only 2118 * if the count is 1. That's because, if the 2119 * count is something other than one, we do not 2120 * want the direct enabled (it will be done via the 2121 * direct helper). But if DIRECT_EN is set, and 2122 * the count is not one, we need to clear it. 2123 */ 2124 if (ftrace_rec_count(rec) == 1) { 2125 if (!(rec->flags & FTRACE_FL_DIRECT) != 2126 !(rec->flags & FTRACE_FL_DIRECT_EN)) 2127 flag |= FTRACE_FL_DIRECT; 2128 } else if (rec->flags & FTRACE_FL_DIRECT_EN) { 2129 flag |= FTRACE_FL_DIRECT; 2130 } 2131 } 2132 2133 /* If the state of this record hasn't changed, then do nothing */ 2134 if ((rec->flags & FTRACE_FL_ENABLED) == flag) 2135 return FTRACE_UPDATE_IGNORE; 2136 2137 if (flag) { 2138 /* Save off if rec is being enabled (for return value) */ 2139 flag ^= rec->flags & FTRACE_FL_ENABLED; 2140 2141 if (update) { 2142 rec->flags |= FTRACE_FL_ENABLED; 2143 if (flag & FTRACE_FL_REGS) { 2144 if (rec->flags & FTRACE_FL_REGS) 2145 rec->flags |= FTRACE_FL_REGS_EN; 2146 else 2147 rec->flags &= ~FTRACE_FL_REGS_EN; 2148 } 2149 if (flag & FTRACE_FL_TRAMP) { 2150 if (rec->flags & FTRACE_FL_TRAMP) 2151 rec->flags |= FTRACE_FL_TRAMP_EN; 2152 else 2153 rec->flags &= ~FTRACE_FL_TRAMP_EN; 2154 } 2155 2156 if (flag & FTRACE_FL_DIRECT) { 2157 /* 2158 * If there's only one user (direct_ops helper) 2159 * then we can call the direct function 2160 * directly (no ftrace trampoline). 2161 */ 2162 if (ftrace_rec_count(rec) == 1) { 2163 if (rec->flags & FTRACE_FL_DIRECT) 2164 rec->flags |= FTRACE_FL_DIRECT_EN; 2165 else 2166 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2167 } else { 2168 /* 2169 * Can only call directly if there's 2170 * only one callback to the function. 2171 */ 2172 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2173 } 2174 } 2175 } 2176 2177 /* 2178 * If this record is being updated from a nop, then 2179 * return UPDATE_MAKE_CALL. 2180 * Otherwise, 2181 * return UPDATE_MODIFY_CALL to tell the caller to convert 2182 * from the save regs, to a non-save regs function or 2183 * vice versa, or from a trampoline call. 2184 */ 2185 if (flag & FTRACE_FL_ENABLED) { 2186 ftrace_bug_type = FTRACE_BUG_CALL; 2187 return FTRACE_UPDATE_MAKE_CALL; 2188 } 2189 2190 ftrace_bug_type = FTRACE_BUG_UPDATE; 2191 return FTRACE_UPDATE_MODIFY_CALL; 2192 } 2193 2194 if (update) { 2195 /* If there's no more users, clear all flags */ 2196 if (!ftrace_rec_count(rec)) 2197 rec->flags = 0; 2198 else 2199 /* 2200 * Just disable the record, but keep the ops TRAMP 2201 * and REGS states. The _EN flags must be disabled though. 2202 */ 2203 rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN | 2204 FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN); 2205 } 2206 2207 ftrace_bug_type = FTRACE_BUG_NOP; 2208 return FTRACE_UPDATE_MAKE_NOP; 2209 } 2210 2211 /** 2212 * ftrace_update_record, set a record that now is tracing or not 2213 * @rec: the record to update 2214 * @enable: set to true if the record is tracing, false to force disable 2215 * 2216 * The records that represent all functions that can be traced need 2217 * to be updated when tracing has been enabled. 2218 */ 2219 int ftrace_update_record(struct dyn_ftrace *rec, bool enable) 2220 { 2221 return ftrace_check_record(rec, enable, true); 2222 } 2223 2224 /** 2225 * ftrace_test_record, check if the record has been enabled or not 2226 * @rec: the record to test 2227 * @enable: set to true to check if enabled, false if it is disabled 2228 * 2229 * The arch code may need to test if a record is already set to 2230 * tracing to determine how to modify the function code that it 2231 * represents. 2232 */ 2233 int ftrace_test_record(struct dyn_ftrace *rec, bool enable) 2234 { 2235 return ftrace_check_record(rec, enable, false); 2236 } 2237 2238 static struct ftrace_ops * 2239 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec) 2240 { 2241 struct ftrace_ops *op; 2242 unsigned long ip = rec->ip; 2243 2244 do_for_each_ftrace_op(op, ftrace_ops_list) { 2245 2246 if (!op->trampoline) 2247 continue; 2248 2249 if (hash_contains_ip(ip, op->func_hash)) 2250 return op; 2251 } while_for_each_ftrace_op(op); 2252 2253 return NULL; 2254 } 2255 2256 static struct ftrace_ops * 2257 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude) 2258 { 2259 struct ftrace_ops *op; 2260 unsigned long ip = rec->ip; 2261 2262 do_for_each_ftrace_op(op, ftrace_ops_list) { 2263 2264 if (op == op_exclude || !op->trampoline) 2265 continue; 2266 2267 if (hash_contains_ip(ip, op->func_hash)) 2268 return op; 2269 } while_for_each_ftrace_op(op); 2270 2271 return NULL; 2272 } 2273 2274 static struct ftrace_ops * 2275 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, 2276 struct ftrace_ops *op) 2277 { 2278 unsigned long ip = rec->ip; 2279 2280 while_for_each_ftrace_op(op) { 2281 2282 if (!op->trampoline) 2283 continue; 2284 2285 if (hash_contains_ip(ip, op->func_hash)) 2286 return op; 2287 } 2288 2289 return NULL; 2290 } 2291 2292 static struct ftrace_ops * 2293 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec) 2294 { 2295 struct ftrace_ops *op; 2296 unsigned long ip = rec->ip; 2297 2298 /* 2299 * Need to check removed ops first. 2300 * If they are being removed, and this rec has a tramp, 2301 * and this rec is in the ops list, then it would be the 2302 * one with the tramp. 2303 */ 2304 if (removed_ops) { 2305 if (hash_contains_ip(ip, &removed_ops->old_hash)) 2306 return removed_ops; 2307 } 2308 2309 /* 2310 * Need to find the current trampoline for a rec. 2311 * Now, a trampoline is only attached to a rec if there 2312 * was a single 'ops' attached to it. But this can be called 2313 * when we are adding another op to the rec or removing the 2314 * current one. Thus, if the op is being added, we can 2315 * ignore it because it hasn't attached itself to the rec 2316 * yet. 2317 * 2318 * If an ops is being modified (hooking to different functions) 2319 * then we don't care about the new functions that are being 2320 * added, just the old ones (that are probably being removed). 2321 * 2322 * If we are adding an ops to a function that already is using 2323 * a trampoline, it needs to be removed (trampolines are only 2324 * for single ops connected), then an ops that is not being 2325 * modified also needs to be checked. 2326 */ 2327 do_for_each_ftrace_op(op, ftrace_ops_list) { 2328 2329 if (!op->trampoline) 2330 continue; 2331 2332 /* 2333 * If the ops is being added, it hasn't gotten to 2334 * the point to be removed from this tree yet. 2335 */ 2336 if (op->flags & FTRACE_OPS_FL_ADDING) 2337 continue; 2338 2339 2340 /* 2341 * If the ops is being modified and is in the old 2342 * hash, then it is probably being removed from this 2343 * function. 2344 */ 2345 if ((op->flags & FTRACE_OPS_FL_MODIFYING) && 2346 hash_contains_ip(ip, &op->old_hash)) 2347 return op; 2348 /* 2349 * If the ops is not being added or modified, and it's 2350 * in its normal filter hash, then this must be the one 2351 * we want! 2352 */ 2353 if (!(op->flags & FTRACE_OPS_FL_MODIFYING) && 2354 hash_contains_ip(ip, op->func_hash)) 2355 return op; 2356 2357 } while_for_each_ftrace_op(op); 2358 2359 return NULL; 2360 } 2361 2362 static struct ftrace_ops * 2363 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec) 2364 { 2365 struct ftrace_ops *op; 2366 unsigned long ip = rec->ip; 2367 2368 do_for_each_ftrace_op(op, ftrace_ops_list) { 2369 /* pass rec in as regs to have non-NULL val */ 2370 if (hash_contains_ip(ip, op->func_hash)) 2371 return op; 2372 } while_for_each_ftrace_op(op); 2373 2374 return NULL; 2375 } 2376 2377 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 2378 /* Protected by rcu_tasks for reading, and direct_mutex for writing */ 2379 static struct ftrace_hash *direct_functions = EMPTY_HASH; 2380 static DEFINE_MUTEX(direct_mutex); 2381 int ftrace_direct_func_count; 2382 2383 /* 2384 * Search the direct_functions hash to see if the given instruction pointer 2385 * has a direct caller attached to it. 2386 */ 2387 unsigned long ftrace_find_rec_direct(unsigned long ip) 2388 { 2389 struct ftrace_func_entry *entry; 2390 2391 entry = __ftrace_lookup_ip(direct_functions, ip); 2392 if (!entry) 2393 return 0; 2394 2395 return entry->direct; 2396 } 2397 2398 static void call_direct_funcs(unsigned long ip, unsigned long pip, 2399 struct ftrace_ops *ops, struct ftrace_regs *fregs) 2400 { 2401 struct pt_regs *regs = ftrace_get_regs(fregs); 2402 unsigned long addr; 2403 2404 addr = ftrace_find_rec_direct(ip); 2405 if (!addr) 2406 return; 2407 2408 arch_ftrace_set_direct_caller(regs, addr); 2409 } 2410 2411 struct ftrace_ops direct_ops = { 2412 .func = call_direct_funcs, 2413 .flags = FTRACE_OPS_FL_IPMODIFY 2414 | FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS 2415 | FTRACE_OPS_FL_PERMANENT, 2416 /* 2417 * By declaring the main trampoline as this trampoline 2418 * it will never have one allocated for it. Allocated 2419 * trampolines should not call direct functions. 2420 * The direct_ops should only be called by the builtin 2421 * ftrace_regs_caller trampoline. 2422 */ 2423 .trampoline = FTRACE_REGS_ADDR, 2424 }; 2425 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 2426 2427 /** 2428 * ftrace_get_addr_new - Get the call address to set to 2429 * @rec: The ftrace record descriptor 2430 * 2431 * If the record has the FTRACE_FL_REGS set, that means that it 2432 * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS 2433 * is not set, then it wants to convert to the normal callback. 2434 * 2435 * Returns the address of the trampoline to set to 2436 */ 2437 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec) 2438 { 2439 struct ftrace_ops *ops; 2440 unsigned long addr; 2441 2442 if ((rec->flags & FTRACE_FL_DIRECT) && 2443 (ftrace_rec_count(rec) == 1)) { 2444 addr = ftrace_find_rec_direct(rec->ip); 2445 if (addr) 2446 return addr; 2447 WARN_ON_ONCE(1); 2448 } 2449 2450 /* Trampolines take precedence over regs */ 2451 if (rec->flags & FTRACE_FL_TRAMP) { 2452 ops = ftrace_find_tramp_ops_new(rec); 2453 if (FTRACE_WARN_ON(!ops || !ops->trampoline)) { 2454 pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n", 2455 (void *)rec->ip, (void *)rec->ip, rec->flags); 2456 /* Ftrace is shutting down, return anything */ 2457 return (unsigned long)FTRACE_ADDR; 2458 } 2459 return ops->trampoline; 2460 } 2461 2462 if (rec->flags & FTRACE_FL_REGS) 2463 return (unsigned long)FTRACE_REGS_ADDR; 2464 else 2465 return (unsigned long)FTRACE_ADDR; 2466 } 2467 2468 /** 2469 * ftrace_get_addr_curr - Get the call address that is already there 2470 * @rec: The ftrace record descriptor 2471 * 2472 * The FTRACE_FL_REGS_EN is set when the record already points to 2473 * a function that saves all the regs. Basically the '_EN' version 2474 * represents the current state of the function. 2475 * 2476 * Returns the address of the trampoline that is currently being called 2477 */ 2478 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec) 2479 { 2480 struct ftrace_ops *ops; 2481 unsigned long addr; 2482 2483 /* Direct calls take precedence over trampolines */ 2484 if (rec->flags & FTRACE_FL_DIRECT_EN) { 2485 addr = ftrace_find_rec_direct(rec->ip); 2486 if (addr) 2487 return addr; 2488 WARN_ON_ONCE(1); 2489 } 2490 2491 /* Trampolines take precedence over regs */ 2492 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2493 ops = ftrace_find_tramp_ops_curr(rec); 2494 if (FTRACE_WARN_ON(!ops)) { 2495 pr_warn("Bad trampoline accounting at: %p (%pS)\n", 2496 (void *)rec->ip, (void *)rec->ip); 2497 /* Ftrace is shutting down, return anything */ 2498 return (unsigned long)FTRACE_ADDR; 2499 } 2500 return ops->trampoline; 2501 } 2502 2503 if (rec->flags & FTRACE_FL_REGS_EN) 2504 return (unsigned long)FTRACE_REGS_ADDR; 2505 else 2506 return (unsigned long)FTRACE_ADDR; 2507 } 2508 2509 static int 2510 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable) 2511 { 2512 unsigned long ftrace_old_addr; 2513 unsigned long ftrace_addr; 2514 int ret; 2515 2516 ftrace_addr = ftrace_get_addr_new(rec); 2517 2518 /* This needs to be done before we call ftrace_update_record */ 2519 ftrace_old_addr = ftrace_get_addr_curr(rec); 2520 2521 ret = ftrace_update_record(rec, enable); 2522 2523 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2524 2525 switch (ret) { 2526 case FTRACE_UPDATE_IGNORE: 2527 return 0; 2528 2529 case FTRACE_UPDATE_MAKE_CALL: 2530 ftrace_bug_type = FTRACE_BUG_CALL; 2531 return ftrace_make_call(rec, ftrace_addr); 2532 2533 case FTRACE_UPDATE_MAKE_NOP: 2534 ftrace_bug_type = FTRACE_BUG_NOP; 2535 return ftrace_make_nop(NULL, rec, ftrace_old_addr); 2536 2537 case FTRACE_UPDATE_MODIFY_CALL: 2538 ftrace_bug_type = FTRACE_BUG_UPDATE; 2539 return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr); 2540 } 2541 2542 return -1; /* unknown ftrace bug */ 2543 } 2544 2545 void __weak ftrace_replace_code(int mod_flags) 2546 { 2547 struct dyn_ftrace *rec; 2548 struct ftrace_page *pg; 2549 bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL; 2550 int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL; 2551 int failed; 2552 2553 if (unlikely(ftrace_disabled)) 2554 return; 2555 2556 do_for_each_ftrace_rec(pg, rec) { 2557 2558 if (rec->flags & FTRACE_FL_DISABLED) 2559 continue; 2560 2561 failed = __ftrace_replace_code(rec, enable); 2562 if (failed) { 2563 ftrace_bug(failed, rec); 2564 /* Stop processing */ 2565 return; 2566 } 2567 if (schedulable) 2568 cond_resched(); 2569 } while_for_each_ftrace_rec(); 2570 } 2571 2572 struct ftrace_rec_iter { 2573 struct ftrace_page *pg; 2574 int index; 2575 }; 2576 2577 /** 2578 * ftrace_rec_iter_start, start up iterating over traced functions 2579 * 2580 * Returns an iterator handle that is used to iterate over all 2581 * the records that represent address locations where functions 2582 * are traced. 2583 * 2584 * May return NULL if no records are available. 2585 */ 2586 struct ftrace_rec_iter *ftrace_rec_iter_start(void) 2587 { 2588 /* 2589 * We only use a single iterator. 2590 * Protected by the ftrace_lock mutex. 2591 */ 2592 static struct ftrace_rec_iter ftrace_rec_iter; 2593 struct ftrace_rec_iter *iter = &ftrace_rec_iter; 2594 2595 iter->pg = ftrace_pages_start; 2596 iter->index = 0; 2597 2598 /* Could have empty pages */ 2599 while (iter->pg && !iter->pg->index) 2600 iter->pg = iter->pg->next; 2601 2602 if (!iter->pg) 2603 return NULL; 2604 2605 return iter; 2606 } 2607 2608 /** 2609 * ftrace_rec_iter_next, get the next record to process. 2610 * @iter: The handle to the iterator. 2611 * 2612 * Returns the next iterator after the given iterator @iter. 2613 */ 2614 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter) 2615 { 2616 iter->index++; 2617 2618 if (iter->index >= iter->pg->index) { 2619 iter->pg = iter->pg->next; 2620 iter->index = 0; 2621 2622 /* Could have empty pages */ 2623 while (iter->pg && !iter->pg->index) 2624 iter->pg = iter->pg->next; 2625 } 2626 2627 if (!iter->pg) 2628 return NULL; 2629 2630 return iter; 2631 } 2632 2633 /** 2634 * ftrace_rec_iter_record, get the record at the iterator location 2635 * @iter: The current iterator location 2636 * 2637 * Returns the record that the current @iter is at. 2638 */ 2639 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter) 2640 { 2641 return &iter->pg->records[iter->index]; 2642 } 2643 2644 static int 2645 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec) 2646 { 2647 int ret; 2648 2649 if (unlikely(ftrace_disabled)) 2650 return 0; 2651 2652 ret = ftrace_init_nop(mod, rec); 2653 if (ret) { 2654 ftrace_bug_type = FTRACE_BUG_INIT; 2655 ftrace_bug(ret, rec); 2656 return 0; 2657 } 2658 return 1; 2659 } 2660 2661 /* 2662 * archs can override this function if they must do something 2663 * before the modifying code is performed. 2664 */ 2665 int __weak ftrace_arch_code_modify_prepare(void) 2666 { 2667 return 0; 2668 } 2669 2670 /* 2671 * archs can override this function if they must do something 2672 * after the modifying code is performed. 2673 */ 2674 int __weak ftrace_arch_code_modify_post_process(void) 2675 { 2676 return 0; 2677 } 2678 2679 void ftrace_modify_all_code(int command) 2680 { 2681 int update = command & FTRACE_UPDATE_TRACE_FUNC; 2682 int mod_flags = 0; 2683 int err = 0; 2684 2685 if (command & FTRACE_MAY_SLEEP) 2686 mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL; 2687 2688 /* 2689 * If the ftrace_caller calls a ftrace_ops func directly, 2690 * we need to make sure that it only traces functions it 2691 * expects to trace. When doing the switch of functions, 2692 * we need to update to the ftrace_ops_list_func first 2693 * before the transition between old and new calls are set, 2694 * as the ftrace_ops_list_func will check the ops hashes 2695 * to make sure the ops are having the right functions 2696 * traced. 2697 */ 2698 if (update) { 2699 err = ftrace_update_ftrace_func(ftrace_ops_list_func); 2700 if (FTRACE_WARN_ON(err)) 2701 return; 2702 } 2703 2704 if (command & FTRACE_UPDATE_CALLS) 2705 ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL); 2706 else if (command & FTRACE_DISABLE_CALLS) 2707 ftrace_replace_code(mod_flags); 2708 2709 if (update && ftrace_trace_function != ftrace_ops_list_func) { 2710 function_trace_op = set_function_trace_op; 2711 smp_wmb(); 2712 /* If irqs are disabled, we are in stop machine */ 2713 if (!irqs_disabled()) 2714 smp_call_function(ftrace_sync_ipi, NULL, 1); 2715 err = ftrace_update_ftrace_func(ftrace_trace_function); 2716 if (FTRACE_WARN_ON(err)) 2717 return; 2718 } 2719 2720 if (command & FTRACE_START_FUNC_RET) 2721 err = ftrace_enable_ftrace_graph_caller(); 2722 else if (command & FTRACE_STOP_FUNC_RET) 2723 err = ftrace_disable_ftrace_graph_caller(); 2724 FTRACE_WARN_ON(err); 2725 } 2726 2727 static int __ftrace_modify_code(void *data) 2728 { 2729 int *command = data; 2730 2731 ftrace_modify_all_code(*command); 2732 2733 return 0; 2734 } 2735 2736 /** 2737 * ftrace_run_stop_machine, go back to the stop machine method 2738 * @command: The command to tell ftrace what to do 2739 * 2740 * If an arch needs to fall back to the stop machine method, the 2741 * it can call this function. 2742 */ 2743 void ftrace_run_stop_machine(int command) 2744 { 2745 stop_machine(__ftrace_modify_code, &command, NULL); 2746 } 2747 2748 /** 2749 * arch_ftrace_update_code, modify the code to trace or not trace 2750 * @command: The command that needs to be done 2751 * 2752 * Archs can override this function if it does not need to 2753 * run stop_machine() to modify code. 2754 */ 2755 void __weak arch_ftrace_update_code(int command) 2756 { 2757 ftrace_run_stop_machine(command); 2758 } 2759 2760 static void ftrace_run_update_code(int command) 2761 { 2762 int ret; 2763 2764 ret = ftrace_arch_code_modify_prepare(); 2765 FTRACE_WARN_ON(ret); 2766 if (ret) 2767 return; 2768 2769 /* 2770 * By default we use stop_machine() to modify the code. 2771 * But archs can do what ever they want as long as it 2772 * is safe. The stop_machine() is the safest, but also 2773 * produces the most overhead. 2774 */ 2775 arch_ftrace_update_code(command); 2776 2777 ret = ftrace_arch_code_modify_post_process(); 2778 FTRACE_WARN_ON(ret); 2779 } 2780 2781 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command, 2782 struct ftrace_ops_hash *old_hash) 2783 { 2784 ops->flags |= FTRACE_OPS_FL_MODIFYING; 2785 ops->old_hash.filter_hash = old_hash->filter_hash; 2786 ops->old_hash.notrace_hash = old_hash->notrace_hash; 2787 ftrace_run_update_code(command); 2788 ops->old_hash.filter_hash = NULL; 2789 ops->old_hash.notrace_hash = NULL; 2790 ops->flags &= ~FTRACE_OPS_FL_MODIFYING; 2791 } 2792 2793 static ftrace_func_t saved_ftrace_func; 2794 static int ftrace_start_up; 2795 2796 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops) 2797 { 2798 } 2799 2800 /* List of trace_ops that have allocated trampolines */ 2801 static LIST_HEAD(ftrace_ops_trampoline_list); 2802 2803 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops) 2804 { 2805 lockdep_assert_held(&ftrace_lock); 2806 list_add_rcu(&ops->list, &ftrace_ops_trampoline_list); 2807 } 2808 2809 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops) 2810 { 2811 lockdep_assert_held(&ftrace_lock); 2812 list_del_rcu(&ops->list); 2813 synchronize_rcu(); 2814 } 2815 2816 /* 2817 * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols 2818 * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is 2819 * not a module. 2820 */ 2821 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace" 2822 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline" 2823 2824 static void ftrace_trampoline_free(struct ftrace_ops *ops) 2825 { 2826 if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) && 2827 ops->trampoline) { 2828 /* 2829 * Record the text poke event before the ksymbol unregister 2830 * event. 2831 */ 2832 perf_event_text_poke((void *)ops->trampoline, 2833 (void *)ops->trampoline, 2834 ops->trampoline_size, NULL, 0); 2835 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 2836 ops->trampoline, ops->trampoline_size, 2837 true, FTRACE_TRAMPOLINE_SYM); 2838 /* Remove from kallsyms after the perf events */ 2839 ftrace_remove_trampoline_from_kallsyms(ops); 2840 } 2841 2842 arch_ftrace_trampoline_free(ops); 2843 } 2844 2845 static void ftrace_startup_enable(int command) 2846 { 2847 if (saved_ftrace_func != ftrace_trace_function) { 2848 saved_ftrace_func = ftrace_trace_function; 2849 command |= FTRACE_UPDATE_TRACE_FUNC; 2850 } 2851 2852 if (!command || !ftrace_enabled) 2853 return; 2854 2855 ftrace_run_update_code(command); 2856 } 2857 2858 static void ftrace_startup_all(int command) 2859 { 2860 update_all_ops = true; 2861 ftrace_startup_enable(command); 2862 update_all_ops = false; 2863 } 2864 2865 int ftrace_startup(struct ftrace_ops *ops, int command) 2866 { 2867 int ret; 2868 2869 if (unlikely(ftrace_disabled)) 2870 return -ENODEV; 2871 2872 ret = __register_ftrace_function(ops); 2873 if (ret) 2874 return ret; 2875 2876 ftrace_start_up++; 2877 2878 /* 2879 * Note that ftrace probes uses this to start up 2880 * and modify functions it will probe. But we still 2881 * set the ADDING flag for modification, as probes 2882 * do not have trampolines. If they add them in the 2883 * future, then the probes will need to distinguish 2884 * between adding and updating probes. 2885 */ 2886 ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING; 2887 2888 ret = ftrace_hash_ipmodify_enable(ops); 2889 if (ret < 0) { 2890 /* Rollback registration process */ 2891 __unregister_ftrace_function(ops); 2892 ftrace_start_up--; 2893 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2894 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 2895 ftrace_trampoline_free(ops); 2896 return ret; 2897 } 2898 2899 if (ftrace_hash_rec_enable(ops, 1)) 2900 command |= FTRACE_UPDATE_CALLS; 2901 2902 ftrace_startup_enable(command); 2903 2904 ops->flags &= ~FTRACE_OPS_FL_ADDING; 2905 2906 return 0; 2907 } 2908 2909 int ftrace_shutdown(struct ftrace_ops *ops, int command) 2910 { 2911 int ret; 2912 2913 if (unlikely(ftrace_disabled)) 2914 return -ENODEV; 2915 2916 ret = __unregister_ftrace_function(ops); 2917 if (ret) 2918 return ret; 2919 2920 ftrace_start_up--; 2921 /* 2922 * Just warn in case of unbalance, no need to kill ftrace, it's not 2923 * critical but the ftrace_call callers may be never nopped again after 2924 * further ftrace uses. 2925 */ 2926 WARN_ON_ONCE(ftrace_start_up < 0); 2927 2928 /* Disabling ipmodify never fails */ 2929 ftrace_hash_ipmodify_disable(ops); 2930 2931 if (ftrace_hash_rec_disable(ops, 1)) 2932 command |= FTRACE_UPDATE_CALLS; 2933 2934 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2935 2936 if (saved_ftrace_func != ftrace_trace_function) { 2937 saved_ftrace_func = ftrace_trace_function; 2938 command |= FTRACE_UPDATE_TRACE_FUNC; 2939 } 2940 2941 if (!command || !ftrace_enabled) { 2942 /* 2943 * If these are dynamic or per_cpu ops, they still 2944 * need their data freed. Since, function tracing is 2945 * not currently active, we can just free them 2946 * without synchronizing all CPUs. 2947 */ 2948 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 2949 goto free_ops; 2950 2951 return 0; 2952 } 2953 2954 /* 2955 * If the ops uses a trampoline, then it needs to be 2956 * tested first on update. 2957 */ 2958 ops->flags |= FTRACE_OPS_FL_REMOVING; 2959 removed_ops = ops; 2960 2961 /* The trampoline logic checks the old hashes */ 2962 ops->old_hash.filter_hash = ops->func_hash->filter_hash; 2963 ops->old_hash.notrace_hash = ops->func_hash->notrace_hash; 2964 2965 ftrace_run_update_code(command); 2966 2967 /* 2968 * If there's no more ops registered with ftrace, run a 2969 * sanity check to make sure all rec flags are cleared. 2970 */ 2971 if (rcu_dereference_protected(ftrace_ops_list, 2972 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 2973 struct ftrace_page *pg; 2974 struct dyn_ftrace *rec; 2975 2976 do_for_each_ftrace_rec(pg, rec) { 2977 if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED)) 2978 pr_warn(" %pS flags:%lx\n", 2979 (void *)rec->ip, rec->flags); 2980 } while_for_each_ftrace_rec(); 2981 } 2982 2983 ops->old_hash.filter_hash = NULL; 2984 ops->old_hash.notrace_hash = NULL; 2985 2986 removed_ops = NULL; 2987 ops->flags &= ~FTRACE_OPS_FL_REMOVING; 2988 2989 /* 2990 * Dynamic ops may be freed, we must make sure that all 2991 * callers are done before leaving this function. 2992 * The same goes for freeing the per_cpu data of the per_cpu 2993 * ops. 2994 */ 2995 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) { 2996 /* 2997 * We need to do a hard force of sched synchronization. 2998 * This is because we use preempt_disable() to do RCU, but 2999 * the function tracers can be called where RCU is not watching 3000 * (like before user_exit()). We can not rely on the RCU 3001 * infrastructure to do the synchronization, thus we must do it 3002 * ourselves. 3003 */ 3004 synchronize_rcu_tasks_rude(); 3005 3006 /* 3007 * When the kernel is preemptive, tasks can be preempted 3008 * while on a ftrace trampoline. Just scheduling a task on 3009 * a CPU is not good enough to flush them. Calling 3010 * synchronize_rcu_tasks() will wait for those tasks to 3011 * execute and either schedule voluntarily or enter user space. 3012 */ 3013 if (IS_ENABLED(CONFIG_PREEMPTION)) 3014 synchronize_rcu_tasks(); 3015 3016 free_ops: 3017 ftrace_trampoline_free(ops); 3018 } 3019 3020 return 0; 3021 } 3022 3023 static void ftrace_startup_sysctl(void) 3024 { 3025 int command; 3026 3027 if (unlikely(ftrace_disabled)) 3028 return; 3029 3030 /* Force update next time */ 3031 saved_ftrace_func = NULL; 3032 /* ftrace_start_up is true if we want ftrace running */ 3033 if (ftrace_start_up) { 3034 command = FTRACE_UPDATE_CALLS; 3035 if (ftrace_graph_active) 3036 command |= FTRACE_START_FUNC_RET; 3037 ftrace_startup_enable(command); 3038 } 3039 } 3040 3041 static void ftrace_shutdown_sysctl(void) 3042 { 3043 int command; 3044 3045 if (unlikely(ftrace_disabled)) 3046 return; 3047 3048 /* ftrace_start_up is true if ftrace is running */ 3049 if (ftrace_start_up) { 3050 command = FTRACE_DISABLE_CALLS; 3051 if (ftrace_graph_active) 3052 command |= FTRACE_STOP_FUNC_RET; 3053 ftrace_run_update_code(command); 3054 } 3055 } 3056 3057 static u64 ftrace_update_time; 3058 unsigned long ftrace_update_tot_cnt; 3059 unsigned long ftrace_number_of_pages; 3060 unsigned long ftrace_number_of_groups; 3061 3062 static inline int ops_traces_mod(struct ftrace_ops *ops) 3063 { 3064 /* 3065 * Filter_hash being empty will default to trace module. 3066 * But notrace hash requires a test of individual module functions. 3067 */ 3068 return ftrace_hash_empty(ops->func_hash->filter_hash) && 3069 ftrace_hash_empty(ops->func_hash->notrace_hash); 3070 } 3071 3072 /* 3073 * Check if the current ops references the record. 3074 * 3075 * If the ops traces all functions, then it was already accounted for. 3076 * If the ops does not trace the current record function, skip it. 3077 * If the ops ignores the function via notrace filter, skip it. 3078 */ 3079 static inline bool 3080 ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3081 { 3082 /* If ops isn't enabled, ignore it */ 3083 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 3084 return false; 3085 3086 /* If ops traces all then it includes this function */ 3087 if (ops_traces_mod(ops)) 3088 return true; 3089 3090 /* The function must be in the filter */ 3091 if (!ftrace_hash_empty(ops->func_hash->filter_hash) && 3092 !__ftrace_lookup_ip(ops->func_hash->filter_hash, rec->ip)) 3093 return false; 3094 3095 /* If in notrace hash, we ignore it too */ 3096 if (ftrace_lookup_ip(ops->func_hash->notrace_hash, rec->ip)) 3097 return false; 3098 3099 return true; 3100 } 3101 3102 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs) 3103 { 3104 bool init_nop = ftrace_need_init_nop(); 3105 struct ftrace_page *pg; 3106 struct dyn_ftrace *p; 3107 u64 start, stop; 3108 unsigned long update_cnt = 0; 3109 unsigned long rec_flags = 0; 3110 int i; 3111 3112 start = ftrace_now(raw_smp_processor_id()); 3113 3114 /* 3115 * When a module is loaded, this function is called to convert 3116 * the calls to mcount in its text to nops, and also to create 3117 * an entry in the ftrace data. Now, if ftrace is activated 3118 * after this call, but before the module sets its text to 3119 * read-only, the modification of enabling ftrace can fail if 3120 * the read-only is done while ftrace is converting the calls. 3121 * To prevent this, the module's records are set as disabled 3122 * and will be enabled after the call to set the module's text 3123 * to read-only. 3124 */ 3125 if (mod) 3126 rec_flags |= FTRACE_FL_DISABLED; 3127 3128 for (pg = new_pgs; pg; pg = pg->next) { 3129 3130 for (i = 0; i < pg->index; i++) { 3131 3132 /* If something went wrong, bail without enabling anything */ 3133 if (unlikely(ftrace_disabled)) 3134 return -1; 3135 3136 p = &pg->records[i]; 3137 p->flags = rec_flags; 3138 3139 /* 3140 * Do the initial record conversion from mcount jump 3141 * to the NOP instructions. 3142 */ 3143 if (init_nop && !ftrace_nop_initialize(mod, p)) 3144 break; 3145 3146 update_cnt++; 3147 } 3148 } 3149 3150 stop = ftrace_now(raw_smp_processor_id()); 3151 ftrace_update_time = stop - start; 3152 ftrace_update_tot_cnt += update_cnt; 3153 3154 return 0; 3155 } 3156 3157 static int ftrace_allocate_records(struct ftrace_page *pg, int count) 3158 { 3159 int order; 3160 int pages; 3161 int cnt; 3162 3163 if (WARN_ON(!count)) 3164 return -EINVAL; 3165 3166 /* We want to fill as much as possible, with no empty pages */ 3167 pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE); 3168 order = fls(pages) - 1; 3169 3170 again: 3171 pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 3172 3173 if (!pg->records) { 3174 /* if we can't allocate this size, try something smaller */ 3175 if (!order) 3176 return -ENOMEM; 3177 order >>= 1; 3178 goto again; 3179 } 3180 3181 ftrace_number_of_pages += 1 << order; 3182 ftrace_number_of_groups++; 3183 3184 cnt = (PAGE_SIZE << order) / ENTRY_SIZE; 3185 pg->order = order; 3186 3187 if (cnt > count) 3188 cnt = count; 3189 3190 return cnt; 3191 } 3192 3193 static struct ftrace_page * 3194 ftrace_allocate_pages(unsigned long num_to_init) 3195 { 3196 struct ftrace_page *start_pg; 3197 struct ftrace_page *pg; 3198 int cnt; 3199 3200 if (!num_to_init) 3201 return NULL; 3202 3203 start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL); 3204 if (!pg) 3205 return NULL; 3206 3207 /* 3208 * Try to allocate as much as possible in one continues 3209 * location that fills in all of the space. We want to 3210 * waste as little space as possible. 3211 */ 3212 for (;;) { 3213 cnt = ftrace_allocate_records(pg, num_to_init); 3214 if (cnt < 0) 3215 goto free_pages; 3216 3217 num_to_init -= cnt; 3218 if (!num_to_init) 3219 break; 3220 3221 pg->next = kzalloc(sizeof(*pg), GFP_KERNEL); 3222 if (!pg->next) 3223 goto free_pages; 3224 3225 pg = pg->next; 3226 } 3227 3228 return start_pg; 3229 3230 free_pages: 3231 pg = start_pg; 3232 while (pg) { 3233 if (pg->records) { 3234 free_pages((unsigned long)pg->records, pg->order); 3235 ftrace_number_of_pages -= 1 << pg->order; 3236 } 3237 start_pg = pg->next; 3238 kfree(pg); 3239 pg = start_pg; 3240 ftrace_number_of_groups--; 3241 } 3242 pr_info("ftrace: FAILED to allocate memory for functions\n"); 3243 return NULL; 3244 } 3245 3246 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */ 3247 3248 struct ftrace_iterator { 3249 loff_t pos; 3250 loff_t func_pos; 3251 loff_t mod_pos; 3252 struct ftrace_page *pg; 3253 struct dyn_ftrace *func; 3254 struct ftrace_func_probe *probe; 3255 struct ftrace_func_entry *probe_entry; 3256 struct trace_parser parser; 3257 struct ftrace_hash *hash; 3258 struct ftrace_ops *ops; 3259 struct trace_array *tr; 3260 struct list_head *mod_list; 3261 int pidx; 3262 int idx; 3263 unsigned flags; 3264 }; 3265 3266 static void * 3267 t_probe_next(struct seq_file *m, loff_t *pos) 3268 { 3269 struct ftrace_iterator *iter = m->private; 3270 struct trace_array *tr = iter->ops->private; 3271 struct list_head *func_probes; 3272 struct ftrace_hash *hash; 3273 struct list_head *next; 3274 struct hlist_node *hnd = NULL; 3275 struct hlist_head *hhd; 3276 int size; 3277 3278 (*pos)++; 3279 iter->pos = *pos; 3280 3281 if (!tr) 3282 return NULL; 3283 3284 func_probes = &tr->func_probes; 3285 if (list_empty(func_probes)) 3286 return NULL; 3287 3288 if (!iter->probe) { 3289 next = func_probes->next; 3290 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3291 } 3292 3293 if (iter->probe_entry) 3294 hnd = &iter->probe_entry->hlist; 3295 3296 hash = iter->probe->ops.func_hash->filter_hash; 3297 3298 /* 3299 * A probe being registered may temporarily have an empty hash 3300 * and it's at the end of the func_probes list. 3301 */ 3302 if (!hash || hash == EMPTY_HASH) 3303 return NULL; 3304 3305 size = 1 << hash->size_bits; 3306 3307 retry: 3308 if (iter->pidx >= size) { 3309 if (iter->probe->list.next == func_probes) 3310 return NULL; 3311 next = iter->probe->list.next; 3312 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3313 hash = iter->probe->ops.func_hash->filter_hash; 3314 size = 1 << hash->size_bits; 3315 iter->pidx = 0; 3316 } 3317 3318 hhd = &hash->buckets[iter->pidx]; 3319 3320 if (hlist_empty(hhd)) { 3321 iter->pidx++; 3322 hnd = NULL; 3323 goto retry; 3324 } 3325 3326 if (!hnd) 3327 hnd = hhd->first; 3328 else { 3329 hnd = hnd->next; 3330 if (!hnd) { 3331 iter->pidx++; 3332 goto retry; 3333 } 3334 } 3335 3336 if (WARN_ON_ONCE(!hnd)) 3337 return NULL; 3338 3339 iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist); 3340 3341 return iter; 3342 } 3343 3344 static void *t_probe_start(struct seq_file *m, loff_t *pos) 3345 { 3346 struct ftrace_iterator *iter = m->private; 3347 void *p = NULL; 3348 loff_t l; 3349 3350 if (!(iter->flags & FTRACE_ITER_DO_PROBES)) 3351 return NULL; 3352 3353 if (iter->mod_pos > *pos) 3354 return NULL; 3355 3356 iter->probe = NULL; 3357 iter->probe_entry = NULL; 3358 iter->pidx = 0; 3359 for (l = 0; l <= (*pos - iter->mod_pos); ) { 3360 p = t_probe_next(m, &l); 3361 if (!p) 3362 break; 3363 } 3364 if (!p) 3365 return NULL; 3366 3367 /* Only set this if we have an item */ 3368 iter->flags |= FTRACE_ITER_PROBE; 3369 3370 return iter; 3371 } 3372 3373 static int 3374 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter) 3375 { 3376 struct ftrace_func_entry *probe_entry; 3377 struct ftrace_probe_ops *probe_ops; 3378 struct ftrace_func_probe *probe; 3379 3380 probe = iter->probe; 3381 probe_entry = iter->probe_entry; 3382 3383 if (WARN_ON_ONCE(!probe || !probe_entry)) 3384 return -EIO; 3385 3386 probe_ops = probe->probe_ops; 3387 3388 if (probe_ops->print) 3389 return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data); 3390 3391 seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip, 3392 (void *)probe_ops->func); 3393 3394 return 0; 3395 } 3396 3397 static void * 3398 t_mod_next(struct seq_file *m, loff_t *pos) 3399 { 3400 struct ftrace_iterator *iter = m->private; 3401 struct trace_array *tr = iter->tr; 3402 3403 (*pos)++; 3404 iter->pos = *pos; 3405 3406 iter->mod_list = iter->mod_list->next; 3407 3408 if (iter->mod_list == &tr->mod_trace || 3409 iter->mod_list == &tr->mod_notrace) { 3410 iter->flags &= ~FTRACE_ITER_MOD; 3411 return NULL; 3412 } 3413 3414 iter->mod_pos = *pos; 3415 3416 return iter; 3417 } 3418 3419 static void *t_mod_start(struct seq_file *m, loff_t *pos) 3420 { 3421 struct ftrace_iterator *iter = m->private; 3422 void *p = NULL; 3423 loff_t l; 3424 3425 if (iter->func_pos > *pos) 3426 return NULL; 3427 3428 iter->mod_pos = iter->func_pos; 3429 3430 /* probes are only available if tr is set */ 3431 if (!iter->tr) 3432 return NULL; 3433 3434 for (l = 0; l <= (*pos - iter->func_pos); ) { 3435 p = t_mod_next(m, &l); 3436 if (!p) 3437 break; 3438 } 3439 if (!p) { 3440 iter->flags &= ~FTRACE_ITER_MOD; 3441 return t_probe_start(m, pos); 3442 } 3443 3444 /* Only set this if we have an item */ 3445 iter->flags |= FTRACE_ITER_MOD; 3446 3447 return iter; 3448 } 3449 3450 static int 3451 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter) 3452 { 3453 struct ftrace_mod_load *ftrace_mod; 3454 struct trace_array *tr = iter->tr; 3455 3456 if (WARN_ON_ONCE(!iter->mod_list) || 3457 iter->mod_list == &tr->mod_trace || 3458 iter->mod_list == &tr->mod_notrace) 3459 return -EIO; 3460 3461 ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list); 3462 3463 if (ftrace_mod->func) 3464 seq_printf(m, "%s", ftrace_mod->func); 3465 else 3466 seq_putc(m, '*'); 3467 3468 seq_printf(m, ":mod:%s\n", ftrace_mod->module); 3469 3470 return 0; 3471 } 3472 3473 static void * 3474 t_func_next(struct seq_file *m, loff_t *pos) 3475 { 3476 struct ftrace_iterator *iter = m->private; 3477 struct dyn_ftrace *rec = NULL; 3478 3479 (*pos)++; 3480 3481 retry: 3482 if (iter->idx >= iter->pg->index) { 3483 if (iter->pg->next) { 3484 iter->pg = iter->pg->next; 3485 iter->idx = 0; 3486 goto retry; 3487 } 3488 } else { 3489 rec = &iter->pg->records[iter->idx++]; 3490 if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3491 !ftrace_lookup_ip(iter->hash, rec->ip)) || 3492 3493 ((iter->flags & FTRACE_ITER_ENABLED) && 3494 !(rec->flags & FTRACE_FL_ENABLED))) { 3495 3496 rec = NULL; 3497 goto retry; 3498 } 3499 } 3500 3501 if (!rec) 3502 return NULL; 3503 3504 iter->pos = iter->func_pos = *pos; 3505 iter->func = rec; 3506 3507 return iter; 3508 } 3509 3510 static void * 3511 t_next(struct seq_file *m, void *v, loff_t *pos) 3512 { 3513 struct ftrace_iterator *iter = m->private; 3514 loff_t l = *pos; /* t_probe_start() must use original pos */ 3515 void *ret; 3516 3517 if (unlikely(ftrace_disabled)) 3518 return NULL; 3519 3520 if (iter->flags & FTRACE_ITER_PROBE) 3521 return t_probe_next(m, pos); 3522 3523 if (iter->flags & FTRACE_ITER_MOD) 3524 return t_mod_next(m, pos); 3525 3526 if (iter->flags & FTRACE_ITER_PRINTALL) { 3527 /* next must increment pos, and t_probe_start does not */ 3528 (*pos)++; 3529 return t_mod_start(m, &l); 3530 } 3531 3532 ret = t_func_next(m, pos); 3533 3534 if (!ret) 3535 return t_mod_start(m, &l); 3536 3537 return ret; 3538 } 3539 3540 static void reset_iter_read(struct ftrace_iterator *iter) 3541 { 3542 iter->pos = 0; 3543 iter->func_pos = 0; 3544 iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD); 3545 } 3546 3547 static void *t_start(struct seq_file *m, loff_t *pos) 3548 { 3549 struct ftrace_iterator *iter = m->private; 3550 void *p = NULL; 3551 loff_t l; 3552 3553 mutex_lock(&ftrace_lock); 3554 3555 if (unlikely(ftrace_disabled)) 3556 return NULL; 3557 3558 /* 3559 * If an lseek was done, then reset and start from beginning. 3560 */ 3561 if (*pos < iter->pos) 3562 reset_iter_read(iter); 3563 3564 /* 3565 * For set_ftrace_filter reading, if we have the filter 3566 * off, we can short cut and just print out that all 3567 * functions are enabled. 3568 */ 3569 if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3570 ftrace_hash_empty(iter->hash)) { 3571 iter->func_pos = 1; /* Account for the message */ 3572 if (*pos > 0) 3573 return t_mod_start(m, pos); 3574 iter->flags |= FTRACE_ITER_PRINTALL; 3575 /* reset in case of seek/pread */ 3576 iter->flags &= ~FTRACE_ITER_PROBE; 3577 return iter; 3578 } 3579 3580 if (iter->flags & FTRACE_ITER_MOD) 3581 return t_mod_start(m, pos); 3582 3583 /* 3584 * Unfortunately, we need to restart at ftrace_pages_start 3585 * every time we let go of the ftrace_mutex. This is because 3586 * those pointers can change without the lock. 3587 */ 3588 iter->pg = ftrace_pages_start; 3589 iter->idx = 0; 3590 for (l = 0; l <= *pos; ) { 3591 p = t_func_next(m, &l); 3592 if (!p) 3593 break; 3594 } 3595 3596 if (!p) 3597 return t_mod_start(m, pos); 3598 3599 return iter; 3600 } 3601 3602 static void t_stop(struct seq_file *m, void *p) 3603 { 3604 mutex_unlock(&ftrace_lock); 3605 } 3606 3607 void * __weak 3608 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3609 { 3610 return NULL; 3611 } 3612 3613 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops, 3614 struct dyn_ftrace *rec) 3615 { 3616 void *ptr; 3617 3618 ptr = arch_ftrace_trampoline_func(ops, rec); 3619 if (ptr) 3620 seq_printf(m, " ->%pS", ptr); 3621 } 3622 3623 static int t_show(struct seq_file *m, void *v) 3624 { 3625 struct ftrace_iterator *iter = m->private; 3626 struct dyn_ftrace *rec; 3627 3628 if (iter->flags & FTRACE_ITER_PROBE) 3629 return t_probe_show(m, iter); 3630 3631 if (iter->flags & FTRACE_ITER_MOD) 3632 return t_mod_show(m, iter); 3633 3634 if (iter->flags & FTRACE_ITER_PRINTALL) { 3635 if (iter->flags & FTRACE_ITER_NOTRACE) 3636 seq_puts(m, "#### no functions disabled ####\n"); 3637 else 3638 seq_puts(m, "#### all functions enabled ####\n"); 3639 return 0; 3640 } 3641 3642 rec = iter->func; 3643 3644 if (!rec) 3645 return 0; 3646 3647 seq_printf(m, "%ps", (void *)rec->ip); 3648 if (iter->flags & FTRACE_ITER_ENABLED) { 3649 struct ftrace_ops *ops; 3650 3651 seq_printf(m, " (%ld)%s%s%s", 3652 ftrace_rec_count(rec), 3653 rec->flags & FTRACE_FL_REGS ? " R" : " ", 3654 rec->flags & FTRACE_FL_IPMODIFY ? " I" : " ", 3655 rec->flags & FTRACE_FL_DIRECT ? " D" : " "); 3656 if (rec->flags & FTRACE_FL_TRAMP_EN) { 3657 ops = ftrace_find_tramp_ops_any(rec); 3658 if (ops) { 3659 do { 3660 seq_printf(m, "\ttramp: %pS (%pS)", 3661 (void *)ops->trampoline, 3662 (void *)ops->func); 3663 add_trampoline_func(m, ops, rec); 3664 ops = ftrace_find_tramp_ops_next(rec, ops); 3665 } while (ops); 3666 } else 3667 seq_puts(m, "\ttramp: ERROR!"); 3668 } else { 3669 add_trampoline_func(m, NULL, rec); 3670 } 3671 if (rec->flags & FTRACE_FL_DIRECT) { 3672 unsigned long direct; 3673 3674 direct = ftrace_find_rec_direct(rec->ip); 3675 if (direct) 3676 seq_printf(m, "\n\tdirect-->%pS", (void *)direct); 3677 } 3678 } 3679 3680 seq_putc(m, '\n'); 3681 3682 return 0; 3683 } 3684 3685 static const struct seq_operations show_ftrace_seq_ops = { 3686 .start = t_start, 3687 .next = t_next, 3688 .stop = t_stop, 3689 .show = t_show, 3690 }; 3691 3692 static int 3693 ftrace_avail_open(struct inode *inode, struct file *file) 3694 { 3695 struct ftrace_iterator *iter; 3696 int ret; 3697 3698 ret = security_locked_down(LOCKDOWN_TRACEFS); 3699 if (ret) 3700 return ret; 3701 3702 if (unlikely(ftrace_disabled)) 3703 return -ENODEV; 3704 3705 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3706 if (!iter) 3707 return -ENOMEM; 3708 3709 iter->pg = ftrace_pages_start; 3710 iter->ops = &global_ops; 3711 3712 return 0; 3713 } 3714 3715 static int 3716 ftrace_enabled_open(struct inode *inode, struct file *file) 3717 { 3718 struct ftrace_iterator *iter; 3719 3720 /* 3721 * This shows us what functions are currently being 3722 * traced and by what. Not sure if we want lockdown 3723 * to hide such critical information for an admin. 3724 * Although, perhaps it can show information we don't 3725 * want people to see, but if something is tracing 3726 * something, we probably want to know about it. 3727 */ 3728 3729 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3730 if (!iter) 3731 return -ENOMEM; 3732 3733 iter->pg = ftrace_pages_start; 3734 iter->flags = FTRACE_ITER_ENABLED; 3735 iter->ops = &global_ops; 3736 3737 return 0; 3738 } 3739 3740 /** 3741 * ftrace_regex_open - initialize function tracer filter files 3742 * @ops: The ftrace_ops that hold the hash filters 3743 * @flag: The type of filter to process 3744 * @inode: The inode, usually passed in to your open routine 3745 * @file: The file, usually passed in to your open routine 3746 * 3747 * ftrace_regex_open() initializes the filter files for the 3748 * @ops. Depending on @flag it may process the filter hash or 3749 * the notrace hash of @ops. With this called from the open 3750 * routine, you can use ftrace_filter_write() for the write 3751 * routine if @flag has FTRACE_ITER_FILTER set, or 3752 * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set. 3753 * tracing_lseek() should be used as the lseek routine, and 3754 * release must call ftrace_regex_release(). 3755 */ 3756 int 3757 ftrace_regex_open(struct ftrace_ops *ops, int flag, 3758 struct inode *inode, struct file *file) 3759 { 3760 struct ftrace_iterator *iter; 3761 struct ftrace_hash *hash; 3762 struct list_head *mod_head; 3763 struct trace_array *tr = ops->private; 3764 int ret = -ENOMEM; 3765 3766 ftrace_ops_init(ops); 3767 3768 if (unlikely(ftrace_disabled)) 3769 return -ENODEV; 3770 3771 if (tracing_check_open_get_tr(tr)) 3772 return -ENODEV; 3773 3774 iter = kzalloc(sizeof(*iter), GFP_KERNEL); 3775 if (!iter) 3776 goto out; 3777 3778 if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) 3779 goto out; 3780 3781 iter->ops = ops; 3782 iter->flags = flag; 3783 iter->tr = tr; 3784 3785 mutex_lock(&ops->func_hash->regex_lock); 3786 3787 if (flag & FTRACE_ITER_NOTRACE) { 3788 hash = ops->func_hash->notrace_hash; 3789 mod_head = tr ? &tr->mod_notrace : NULL; 3790 } else { 3791 hash = ops->func_hash->filter_hash; 3792 mod_head = tr ? &tr->mod_trace : NULL; 3793 } 3794 3795 iter->mod_list = mod_head; 3796 3797 if (file->f_mode & FMODE_WRITE) { 3798 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 3799 3800 if (file->f_flags & O_TRUNC) { 3801 iter->hash = alloc_ftrace_hash(size_bits); 3802 clear_ftrace_mod_list(mod_head); 3803 } else { 3804 iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash); 3805 } 3806 3807 if (!iter->hash) { 3808 trace_parser_put(&iter->parser); 3809 goto out_unlock; 3810 } 3811 } else 3812 iter->hash = hash; 3813 3814 ret = 0; 3815 3816 if (file->f_mode & FMODE_READ) { 3817 iter->pg = ftrace_pages_start; 3818 3819 ret = seq_open(file, &show_ftrace_seq_ops); 3820 if (!ret) { 3821 struct seq_file *m = file->private_data; 3822 m->private = iter; 3823 } else { 3824 /* Failed */ 3825 free_ftrace_hash(iter->hash); 3826 trace_parser_put(&iter->parser); 3827 } 3828 } else 3829 file->private_data = iter; 3830 3831 out_unlock: 3832 mutex_unlock(&ops->func_hash->regex_lock); 3833 3834 out: 3835 if (ret) { 3836 kfree(iter); 3837 if (tr) 3838 trace_array_put(tr); 3839 } 3840 3841 return ret; 3842 } 3843 3844 static int 3845 ftrace_filter_open(struct inode *inode, struct file *file) 3846 { 3847 struct ftrace_ops *ops = inode->i_private; 3848 3849 /* Checks for tracefs lockdown */ 3850 return ftrace_regex_open(ops, 3851 FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES, 3852 inode, file); 3853 } 3854 3855 static int 3856 ftrace_notrace_open(struct inode *inode, struct file *file) 3857 { 3858 struct ftrace_ops *ops = inode->i_private; 3859 3860 /* Checks for tracefs lockdown */ 3861 return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE, 3862 inode, file); 3863 } 3864 3865 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */ 3866 struct ftrace_glob { 3867 char *search; 3868 unsigned len; 3869 int type; 3870 }; 3871 3872 /* 3873 * If symbols in an architecture don't correspond exactly to the user-visible 3874 * name of what they represent, it is possible to define this function to 3875 * perform the necessary adjustments. 3876 */ 3877 char * __weak arch_ftrace_match_adjust(char *str, const char *search) 3878 { 3879 return str; 3880 } 3881 3882 static int ftrace_match(char *str, struct ftrace_glob *g) 3883 { 3884 int matched = 0; 3885 int slen; 3886 3887 str = arch_ftrace_match_adjust(str, g->search); 3888 3889 switch (g->type) { 3890 case MATCH_FULL: 3891 if (strcmp(str, g->search) == 0) 3892 matched = 1; 3893 break; 3894 case MATCH_FRONT_ONLY: 3895 if (strncmp(str, g->search, g->len) == 0) 3896 matched = 1; 3897 break; 3898 case MATCH_MIDDLE_ONLY: 3899 if (strstr(str, g->search)) 3900 matched = 1; 3901 break; 3902 case MATCH_END_ONLY: 3903 slen = strlen(str); 3904 if (slen >= g->len && 3905 memcmp(str + slen - g->len, g->search, g->len) == 0) 3906 matched = 1; 3907 break; 3908 case MATCH_GLOB: 3909 if (glob_match(g->search, str)) 3910 matched = 1; 3911 break; 3912 } 3913 3914 return matched; 3915 } 3916 3917 static int 3918 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter) 3919 { 3920 struct ftrace_func_entry *entry; 3921 int ret = 0; 3922 3923 entry = ftrace_lookup_ip(hash, rec->ip); 3924 if (clear_filter) { 3925 /* Do nothing if it doesn't exist */ 3926 if (!entry) 3927 return 0; 3928 3929 free_hash_entry(hash, entry); 3930 } else { 3931 /* Do nothing if it exists */ 3932 if (entry) 3933 return 0; 3934 3935 ret = add_hash_entry(hash, rec->ip); 3936 } 3937 return ret; 3938 } 3939 3940 static int 3941 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g, 3942 int clear_filter) 3943 { 3944 long index = simple_strtoul(func_g->search, NULL, 0); 3945 struct ftrace_page *pg; 3946 struct dyn_ftrace *rec; 3947 3948 /* The index starts at 1 */ 3949 if (--index < 0) 3950 return 0; 3951 3952 do_for_each_ftrace_rec(pg, rec) { 3953 if (pg->index <= index) { 3954 index -= pg->index; 3955 /* this is a double loop, break goes to the next page */ 3956 break; 3957 } 3958 rec = &pg->records[index]; 3959 enter_record(hash, rec, clear_filter); 3960 return 1; 3961 } while_for_each_ftrace_rec(); 3962 return 0; 3963 } 3964 3965 static int 3966 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g, 3967 struct ftrace_glob *mod_g, int exclude_mod) 3968 { 3969 char str[KSYM_SYMBOL_LEN]; 3970 char *modname; 3971 3972 kallsyms_lookup(rec->ip, NULL, NULL, &modname, str); 3973 3974 if (mod_g) { 3975 int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0; 3976 3977 /* blank module name to match all modules */ 3978 if (!mod_g->len) { 3979 /* blank module globbing: modname xor exclude_mod */ 3980 if (!exclude_mod != !modname) 3981 goto func_match; 3982 return 0; 3983 } 3984 3985 /* 3986 * exclude_mod is set to trace everything but the given 3987 * module. If it is set and the module matches, then 3988 * return 0. If it is not set, and the module doesn't match 3989 * also return 0. Otherwise, check the function to see if 3990 * that matches. 3991 */ 3992 if (!mod_matches == !exclude_mod) 3993 return 0; 3994 func_match: 3995 /* blank search means to match all funcs in the mod */ 3996 if (!func_g->len) 3997 return 1; 3998 } 3999 4000 return ftrace_match(str, func_g); 4001 } 4002 4003 static int 4004 match_records(struct ftrace_hash *hash, char *func, int len, char *mod) 4005 { 4006 struct ftrace_page *pg; 4007 struct dyn_ftrace *rec; 4008 struct ftrace_glob func_g = { .type = MATCH_FULL }; 4009 struct ftrace_glob mod_g = { .type = MATCH_FULL }; 4010 struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL; 4011 int exclude_mod = 0; 4012 int found = 0; 4013 int ret; 4014 int clear_filter = 0; 4015 4016 if (func) { 4017 func_g.type = filter_parse_regex(func, len, &func_g.search, 4018 &clear_filter); 4019 func_g.len = strlen(func_g.search); 4020 } 4021 4022 if (mod) { 4023 mod_g.type = filter_parse_regex(mod, strlen(mod), 4024 &mod_g.search, &exclude_mod); 4025 mod_g.len = strlen(mod_g.search); 4026 } 4027 4028 mutex_lock(&ftrace_lock); 4029 4030 if (unlikely(ftrace_disabled)) 4031 goto out_unlock; 4032 4033 if (func_g.type == MATCH_INDEX) { 4034 found = add_rec_by_index(hash, &func_g, clear_filter); 4035 goto out_unlock; 4036 } 4037 4038 do_for_each_ftrace_rec(pg, rec) { 4039 4040 if (rec->flags & FTRACE_FL_DISABLED) 4041 continue; 4042 4043 if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) { 4044 ret = enter_record(hash, rec, clear_filter); 4045 if (ret < 0) { 4046 found = ret; 4047 goto out_unlock; 4048 } 4049 found = 1; 4050 } 4051 } while_for_each_ftrace_rec(); 4052 out_unlock: 4053 mutex_unlock(&ftrace_lock); 4054 4055 return found; 4056 } 4057 4058 static int 4059 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len) 4060 { 4061 return match_records(hash, buff, len, NULL); 4062 } 4063 4064 static void ftrace_ops_update_code(struct ftrace_ops *ops, 4065 struct ftrace_ops_hash *old_hash) 4066 { 4067 struct ftrace_ops *op; 4068 4069 if (!ftrace_enabled) 4070 return; 4071 4072 if (ops->flags & FTRACE_OPS_FL_ENABLED) { 4073 ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash); 4074 return; 4075 } 4076 4077 /* 4078 * If this is the shared global_ops filter, then we need to 4079 * check if there is another ops that shares it, is enabled. 4080 * If so, we still need to run the modify code. 4081 */ 4082 if (ops->func_hash != &global_ops.local_hash) 4083 return; 4084 4085 do_for_each_ftrace_op(op, ftrace_ops_list) { 4086 if (op->func_hash == &global_ops.local_hash && 4087 op->flags & FTRACE_OPS_FL_ENABLED) { 4088 ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash); 4089 /* Only need to do this once */ 4090 return; 4091 } 4092 } while_for_each_ftrace_op(op); 4093 } 4094 4095 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops, 4096 struct ftrace_hash **orig_hash, 4097 struct ftrace_hash *hash, 4098 int enable) 4099 { 4100 struct ftrace_ops_hash old_hash_ops; 4101 struct ftrace_hash *old_hash; 4102 int ret; 4103 4104 old_hash = *orig_hash; 4105 old_hash_ops.filter_hash = ops->func_hash->filter_hash; 4106 old_hash_ops.notrace_hash = ops->func_hash->notrace_hash; 4107 ret = ftrace_hash_move(ops, enable, orig_hash, hash); 4108 if (!ret) { 4109 ftrace_ops_update_code(ops, &old_hash_ops); 4110 free_ftrace_hash_rcu(old_hash); 4111 } 4112 return ret; 4113 } 4114 4115 static bool module_exists(const char *module) 4116 { 4117 /* All modules have the symbol __this_module */ 4118 static const char this_mod[] = "__this_module"; 4119 char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2]; 4120 unsigned long val; 4121 int n; 4122 4123 n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod); 4124 4125 if (n > sizeof(modname) - 1) 4126 return false; 4127 4128 val = module_kallsyms_lookup_name(modname); 4129 return val != 0; 4130 } 4131 4132 static int cache_mod(struct trace_array *tr, 4133 const char *func, char *module, int enable) 4134 { 4135 struct ftrace_mod_load *ftrace_mod, *n; 4136 struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace; 4137 int ret; 4138 4139 mutex_lock(&ftrace_lock); 4140 4141 /* We do not cache inverse filters */ 4142 if (func[0] == '!') { 4143 func++; 4144 ret = -EINVAL; 4145 4146 /* Look to remove this hash */ 4147 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4148 if (strcmp(ftrace_mod->module, module) != 0) 4149 continue; 4150 4151 /* no func matches all */ 4152 if (strcmp(func, "*") == 0 || 4153 (ftrace_mod->func && 4154 strcmp(ftrace_mod->func, func) == 0)) { 4155 ret = 0; 4156 free_ftrace_mod(ftrace_mod); 4157 continue; 4158 } 4159 } 4160 goto out; 4161 } 4162 4163 ret = -EINVAL; 4164 /* We only care about modules that have not been loaded yet */ 4165 if (module_exists(module)) 4166 goto out; 4167 4168 /* Save this string off, and execute it when the module is loaded */ 4169 ret = ftrace_add_mod(tr, func, module, enable); 4170 out: 4171 mutex_unlock(&ftrace_lock); 4172 4173 return ret; 4174 } 4175 4176 static int 4177 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 4178 int reset, int enable); 4179 4180 #ifdef CONFIG_MODULES 4181 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops, 4182 char *mod, bool enable) 4183 { 4184 struct ftrace_mod_load *ftrace_mod, *n; 4185 struct ftrace_hash **orig_hash, *new_hash; 4186 LIST_HEAD(process_mods); 4187 char *func; 4188 4189 mutex_lock(&ops->func_hash->regex_lock); 4190 4191 if (enable) 4192 orig_hash = &ops->func_hash->filter_hash; 4193 else 4194 orig_hash = &ops->func_hash->notrace_hash; 4195 4196 new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, 4197 *orig_hash); 4198 if (!new_hash) 4199 goto out; /* warn? */ 4200 4201 mutex_lock(&ftrace_lock); 4202 4203 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4204 4205 if (strcmp(ftrace_mod->module, mod) != 0) 4206 continue; 4207 4208 if (ftrace_mod->func) 4209 func = kstrdup(ftrace_mod->func, GFP_KERNEL); 4210 else 4211 func = kstrdup("*", GFP_KERNEL); 4212 4213 if (!func) /* warn? */ 4214 continue; 4215 4216 list_move(&ftrace_mod->list, &process_mods); 4217 4218 /* Use the newly allocated func, as it may be "*" */ 4219 kfree(ftrace_mod->func); 4220 ftrace_mod->func = func; 4221 } 4222 4223 mutex_unlock(&ftrace_lock); 4224 4225 list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) { 4226 4227 func = ftrace_mod->func; 4228 4229 /* Grabs ftrace_lock, which is why we have this extra step */ 4230 match_records(new_hash, func, strlen(func), mod); 4231 free_ftrace_mod(ftrace_mod); 4232 } 4233 4234 if (enable && list_empty(head)) 4235 new_hash->flags &= ~FTRACE_HASH_FL_MOD; 4236 4237 mutex_lock(&ftrace_lock); 4238 4239 ftrace_hash_move_and_update_ops(ops, orig_hash, 4240 new_hash, enable); 4241 mutex_unlock(&ftrace_lock); 4242 4243 out: 4244 mutex_unlock(&ops->func_hash->regex_lock); 4245 4246 free_ftrace_hash(new_hash); 4247 } 4248 4249 static void process_cached_mods(const char *mod_name) 4250 { 4251 struct trace_array *tr; 4252 char *mod; 4253 4254 mod = kstrdup(mod_name, GFP_KERNEL); 4255 if (!mod) 4256 return; 4257 4258 mutex_lock(&trace_types_lock); 4259 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 4260 if (!list_empty(&tr->mod_trace)) 4261 process_mod_list(&tr->mod_trace, tr->ops, mod, true); 4262 if (!list_empty(&tr->mod_notrace)) 4263 process_mod_list(&tr->mod_notrace, tr->ops, mod, false); 4264 } 4265 mutex_unlock(&trace_types_lock); 4266 4267 kfree(mod); 4268 } 4269 #endif 4270 4271 /* 4272 * We register the module command as a template to show others how 4273 * to register the a command as well. 4274 */ 4275 4276 static int 4277 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash, 4278 char *func_orig, char *cmd, char *module, int enable) 4279 { 4280 char *func; 4281 int ret; 4282 4283 /* match_records() modifies func, and we need the original */ 4284 func = kstrdup(func_orig, GFP_KERNEL); 4285 if (!func) 4286 return -ENOMEM; 4287 4288 /* 4289 * cmd == 'mod' because we only registered this func 4290 * for the 'mod' ftrace_func_command. 4291 * But if you register one func with multiple commands, 4292 * you can tell which command was used by the cmd 4293 * parameter. 4294 */ 4295 ret = match_records(hash, func, strlen(func), module); 4296 kfree(func); 4297 4298 if (!ret) 4299 return cache_mod(tr, func_orig, module, enable); 4300 if (ret < 0) 4301 return ret; 4302 return 0; 4303 } 4304 4305 static struct ftrace_func_command ftrace_mod_cmd = { 4306 .name = "mod", 4307 .func = ftrace_mod_callback, 4308 }; 4309 4310 static int __init ftrace_mod_cmd_init(void) 4311 { 4312 return register_ftrace_command(&ftrace_mod_cmd); 4313 } 4314 core_initcall(ftrace_mod_cmd_init); 4315 4316 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip, 4317 struct ftrace_ops *op, struct ftrace_regs *fregs) 4318 { 4319 struct ftrace_probe_ops *probe_ops; 4320 struct ftrace_func_probe *probe; 4321 4322 probe = container_of(op, struct ftrace_func_probe, ops); 4323 probe_ops = probe->probe_ops; 4324 4325 /* 4326 * Disable preemption for these calls to prevent a RCU grace 4327 * period. This syncs the hash iteration and freeing of items 4328 * on the hash. rcu_read_lock is too dangerous here. 4329 */ 4330 preempt_disable_notrace(); 4331 probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data); 4332 preempt_enable_notrace(); 4333 } 4334 4335 struct ftrace_func_map { 4336 struct ftrace_func_entry entry; 4337 void *data; 4338 }; 4339 4340 struct ftrace_func_mapper { 4341 struct ftrace_hash hash; 4342 }; 4343 4344 /** 4345 * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper 4346 * 4347 * Returns a ftrace_func_mapper descriptor that can be used to map ips to data. 4348 */ 4349 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void) 4350 { 4351 struct ftrace_hash *hash; 4352 4353 /* 4354 * The mapper is simply a ftrace_hash, but since the entries 4355 * in the hash are not ftrace_func_entry type, we define it 4356 * as a separate structure. 4357 */ 4358 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4359 return (struct ftrace_func_mapper *)hash; 4360 } 4361 4362 /** 4363 * ftrace_func_mapper_find_ip - Find some data mapped to an ip 4364 * @mapper: The mapper that has the ip maps 4365 * @ip: the instruction pointer to find the data for 4366 * 4367 * Returns the data mapped to @ip if found otherwise NULL. The return 4368 * is actually the address of the mapper data pointer. The address is 4369 * returned for use cases where the data is no bigger than a long, and 4370 * the user can use the data pointer as its data instead of having to 4371 * allocate more memory for the reference. 4372 */ 4373 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper, 4374 unsigned long ip) 4375 { 4376 struct ftrace_func_entry *entry; 4377 struct ftrace_func_map *map; 4378 4379 entry = ftrace_lookup_ip(&mapper->hash, ip); 4380 if (!entry) 4381 return NULL; 4382 4383 map = (struct ftrace_func_map *)entry; 4384 return &map->data; 4385 } 4386 4387 /** 4388 * ftrace_func_mapper_add_ip - Map some data to an ip 4389 * @mapper: The mapper that has the ip maps 4390 * @ip: The instruction pointer address to map @data to 4391 * @data: The data to map to @ip 4392 * 4393 * Returns 0 on success otherwise an error. 4394 */ 4395 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper, 4396 unsigned long ip, void *data) 4397 { 4398 struct ftrace_func_entry *entry; 4399 struct ftrace_func_map *map; 4400 4401 entry = ftrace_lookup_ip(&mapper->hash, ip); 4402 if (entry) 4403 return -EBUSY; 4404 4405 map = kmalloc(sizeof(*map), GFP_KERNEL); 4406 if (!map) 4407 return -ENOMEM; 4408 4409 map->entry.ip = ip; 4410 map->data = data; 4411 4412 __add_hash_entry(&mapper->hash, &map->entry); 4413 4414 return 0; 4415 } 4416 4417 /** 4418 * ftrace_func_mapper_remove_ip - Remove an ip from the mapping 4419 * @mapper: The mapper that has the ip maps 4420 * @ip: The instruction pointer address to remove the data from 4421 * 4422 * Returns the data if it is found, otherwise NULL. 4423 * Note, if the data pointer is used as the data itself, (see 4424 * ftrace_func_mapper_find_ip(), then the return value may be meaningless, 4425 * if the data pointer was set to zero. 4426 */ 4427 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper, 4428 unsigned long ip) 4429 { 4430 struct ftrace_func_entry *entry; 4431 struct ftrace_func_map *map; 4432 void *data; 4433 4434 entry = ftrace_lookup_ip(&mapper->hash, ip); 4435 if (!entry) 4436 return NULL; 4437 4438 map = (struct ftrace_func_map *)entry; 4439 data = map->data; 4440 4441 remove_hash_entry(&mapper->hash, entry); 4442 kfree(entry); 4443 4444 return data; 4445 } 4446 4447 /** 4448 * free_ftrace_func_mapper - free a mapping of ips and data 4449 * @mapper: The mapper that has the ip maps 4450 * @free_func: A function to be called on each data item. 4451 * 4452 * This is used to free the function mapper. The @free_func is optional 4453 * and can be used if the data needs to be freed as well. 4454 */ 4455 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper, 4456 ftrace_mapper_func free_func) 4457 { 4458 struct ftrace_func_entry *entry; 4459 struct ftrace_func_map *map; 4460 struct hlist_head *hhd; 4461 int size, i; 4462 4463 if (!mapper) 4464 return; 4465 4466 if (free_func && mapper->hash.count) { 4467 size = 1 << mapper->hash.size_bits; 4468 for (i = 0; i < size; i++) { 4469 hhd = &mapper->hash.buckets[i]; 4470 hlist_for_each_entry(entry, hhd, hlist) { 4471 map = (struct ftrace_func_map *)entry; 4472 free_func(map); 4473 } 4474 } 4475 } 4476 free_ftrace_hash(&mapper->hash); 4477 } 4478 4479 static void release_probe(struct ftrace_func_probe *probe) 4480 { 4481 struct ftrace_probe_ops *probe_ops; 4482 4483 mutex_lock(&ftrace_lock); 4484 4485 WARN_ON(probe->ref <= 0); 4486 4487 /* Subtract the ref that was used to protect this instance */ 4488 probe->ref--; 4489 4490 if (!probe->ref) { 4491 probe_ops = probe->probe_ops; 4492 /* 4493 * Sending zero as ip tells probe_ops to free 4494 * the probe->data itself 4495 */ 4496 if (probe_ops->free) 4497 probe_ops->free(probe_ops, probe->tr, 0, probe->data); 4498 list_del(&probe->list); 4499 kfree(probe); 4500 } 4501 mutex_unlock(&ftrace_lock); 4502 } 4503 4504 static void acquire_probe_locked(struct ftrace_func_probe *probe) 4505 { 4506 /* 4507 * Add one ref to keep it from being freed when releasing the 4508 * ftrace_lock mutex. 4509 */ 4510 probe->ref++; 4511 } 4512 4513 int 4514 register_ftrace_function_probe(char *glob, struct trace_array *tr, 4515 struct ftrace_probe_ops *probe_ops, 4516 void *data) 4517 { 4518 struct ftrace_func_entry *entry; 4519 struct ftrace_func_probe *probe; 4520 struct ftrace_hash **orig_hash; 4521 struct ftrace_hash *old_hash; 4522 struct ftrace_hash *hash; 4523 int count = 0; 4524 int size; 4525 int ret; 4526 int i; 4527 4528 if (WARN_ON(!tr)) 4529 return -EINVAL; 4530 4531 /* We do not support '!' for function probes */ 4532 if (WARN_ON(glob[0] == '!')) 4533 return -EINVAL; 4534 4535 4536 mutex_lock(&ftrace_lock); 4537 /* Check if the probe_ops is already registered */ 4538 list_for_each_entry(probe, &tr->func_probes, list) { 4539 if (probe->probe_ops == probe_ops) 4540 break; 4541 } 4542 if (&probe->list == &tr->func_probes) { 4543 probe = kzalloc(sizeof(*probe), GFP_KERNEL); 4544 if (!probe) { 4545 mutex_unlock(&ftrace_lock); 4546 return -ENOMEM; 4547 } 4548 probe->probe_ops = probe_ops; 4549 probe->ops.func = function_trace_probe_call; 4550 probe->tr = tr; 4551 ftrace_ops_init(&probe->ops); 4552 list_add(&probe->list, &tr->func_probes); 4553 } 4554 4555 acquire_probe_locked(probe); 4556 4557 mutex_unlock(&ftrace_lock); 4558 4559 /* 4560 * Note, there's a small window here that the func_hash->filter_hash 4561 * may be NULL or empty. Need to be careful when reading the loop. 4562 */ 4563 mutex_lock(&probe->ops.func_hash->regex_lock); 4564 4565 orig_hash = &probe->ops.func_hash->filter_hash; 4566 old_hash = *orig_hash; 4567 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4568 4569 if (!hash) { 4570 ret = -ENOMEM; 4571 goto out; 4572 } 4573 4574 ret = ftrace_match_records(hash, glob, strlen(glob)); 4575 4576 /* Nothing found? */ 4577 if (!ret) 4578 ret = -EINVAL; 4579 4580 if (ret < 0) 4581 goto out; 4582 4583 size = 1 << hash->size_bits; 4584 for (i = 0; i < size; i++) { 4585 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4586 if (ftrace_lookup_ip(old_hash, entry->ip)) 4587 continue; 4588 /* 4589 * The caller might want to do something special 4590 * for each function we find. We call the callback 4591 * to give the caller an opportunity to do so. 4592 */ 4593 if (probe_ops->init) { 4594 ret = probe_ops->init(probe_ops, tr, 4595 entry->ip, data, 4596 &probe->data); 4597 if (ret < 0) { 4598 if (probe_ops->free && count) 4599 probe_ops->free(probe_ops, tr, 4600 0, probe->data); 4601 probe->data = NULL; 4602 goto out; 4603 } 4604 } 4605 count++; 4606 } 4607 } 4608 4609 mutex_lock(&ftrace_lock); 4610 4611 if (!count) { 4612 /* Nothing was added? */ 4613 ret = -EINVAL; 4614 goto out_unlock; 4615 } 4616 4617 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4618 hash, 1); 4619 if (ret < 0) 4620 goto err_unlock; 4621 4622 /* One ref for each new function traced */ 4623 probe->ref += count; 4624 4625 if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED)) 4626 ret = ftrace_startup(&probe->ops, 0); 4627 4628 out_unlock: 4629 mutex_unlock(&ftrace_lock); 4630 4631 if (!ret) 4632 ret = count; 4633 out: 4634 mutex_unlock(&probe->ops.func_hash->regex_lock); 4635 free_ftrace_hash(hash); 4636 4637 release_probe(probe); 4638 4639 return ret; 4640 4641 err_unlock: 4642 if (!probe_ops->free || !count) 4643 goto out_unlock; 4644 4645 /* Failed to do the move, need to call the free functions */ 4646 for (i = 0; i < size; i++) { 4647 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4648 if (ftrace_lookup_ip(old_hash, entry->ip)) 4649 continue; 4650 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4651 } 4652 } 4653 goto out_unlock; 4654 } 4655 4656 int 4657 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr, 4658 struct ftrace_probe_ops *probe_ops) 4659 { 4660 struct ftrace_ops_hash old_hash_ops; 4661 struct ftrace_func_entry *entry; 4662 struct ftrace_func_probe *probe; 4663 struct ftrace_glob func_g; 4664 struct ftrace_hash **orig_hash; 4665 struct ftrace_hash *old_hash; 4666 struct ftrace_hash *hash = NULL; 4667 struct hlist_node *tmp; 4668 struct hlist_head hhd; 4669 char str[KSYM_SYMBOL_LEN]; 4670 int count = 0; 4671 int i, ret = -ENODEV; 4672 int size; 4673 4674 if (!glob || !strlen(glob) || !strcmp(glob, "*")) 4675 func_g.search = NULL; 4676 else { 4677 int not; 4678 4679 func_g.type = filter_parse_regex(glob, strlen(glob), 4680 &func_g.search, ¬); 4681 func_g.len = strlen(func_g.search); 4682 4683 /* we do not support '!' for function probes */ 4684 if (WARN_ON(not)) 4685 return -EINVAL; 4686 } 4687 4688 mutex_lock(&ftrace_lock); 4689 /* Check if the probe_ops is already registered */ 4690 list_for_each_entry(probe, &tr->func_probes, list) { 4691 if (probe->probe_ops == probe_ops) 4692 break; 4693 } 4694 if (&probe->list == &tr->func_probes) 4695 goto err_unlock_ftrace; 4696 4697 ret = -EINVAL; 4698 if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED)) 4699 goto err_unlock_ftrace; 4700 4701 acquire_probe_locked(probe); 4702 4703 mutex_unlock(&ftrace_lock); 4704 4705 mutex_lock(&probe->ops.func_hash->regex_lock); 4706 4707 orig_hash = &probe->ops.func_hash->filter_hash; 4708 old_hash = *orig_hash; 4709 4710 if (ftrace_hash_empty(old_hash)) 4711 goto out_unlock; 4712 4713 old_hash_ops.filter_hash = old_hash; 4714 /* Probes only have filters */ 4715 old_hash_ops.notrace_hash = NULL; 4716 4717 ret = -ENOMEM; 4718 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4719 if (!hash) 4720 goto out_unlock; 4721 4722 INIT_HLIST_HEAD(&hhd); 4723 4724 size = 1 << hash->size_bits; 4725 for (i = 0; i < size; i++) { 4726 hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) { 4727 4728 if (func_g.search) { 4729 kallsyms_lookup(entry->ip, NULL, NULL, 4730 NULL, str); 4731 if (!ftrace_match(str, &func_g)) 4732 continue; 4733 } 4734 count++; 4735 remove_hash_entry(hash, entry); 4736 hlist_add_head(&entry->hlist, &hhd); 4737 } 4738 } 4739 4740 /* Nothing found? */ 4741 if (!count) { 4742 ret = -EINVAL; 4743 goto out_unlock; 4744 } 4745 4746 mutex_lock(&ftrace_lock); 4747 4748 WARN_ON(probe->ref < count); 4749 4750 probe->ref -= count; 4751 4752 if (ftrace_hash_empty(hash)) 4753 ftrace_shutdown(&probe->ops, 0); 4754 4755 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4756 hash, 1); 4757 4758 /* still need to update the function call sites */ 4759 if (ftrace_enabled && !ftrace_hash_empty(hash)) 4760 ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS, 4761 &old_hash_ops); 4762 synchronize_rcu(); 4763 4764 hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) { 4765 hlist_del(&entry->hlist); 4766 if (probe_ops->free) 4767 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4768 kfree(entry); 4769 } 4770 mutex_unlock(&ftrace_lock); 4771 4772 out_unlock: 4773 mutex_unlock(&probe->ops.func_hash->regex_lock); 4774 free_ftrace_hash(hash); 4775 4776 release_probe(probe); 4777 4778 return ret; 4779 4780 err_unlock_ftrace: 4781 mutex_unlock(&ftrace_lock); 4782 return ret; 4783 } 4784 4785 void clear_ftrace_function_probes(struct trace_array *tr) 4786 { 4787 struct ftrace_func_probe *probe, *n; 4788 4789 list_for_each_entry_safe(probe, n, &tr->func_probes, list) 4790 unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops); 4791 } 4792 4793 static LIST_HEAD(ftrace_commands); 4794 static DEFINE_MUTEX(ftrace_cmd_mutex); 4795 4796 /* 4797 * Currently we only register ftrace commands from __init, so mark this 4798 * __init too. 4799 */ 4800 __init int register_ftrace_command(struct ftrace_func_command *cmd) 4801 { 4802 struct ftrace_func_command *p; 4803 int ret = 0; 4804 4805 mutex_lock(&ftrace_cmd_mutex); 4806 list_for_each_entry(p, &ftrace_commands, list) { 4807 if (strcmp(cmd->name, p->name) == 0) { 4808 ret = -EBUSY; 4809 goto out_unlock; 4810 } 4811 } 4812 list_add(&cmd->list, &ftrace_commands); 4813 out_unlock: 4814 mutex_unlock(&ftrace_cmd_mutex); 4815 4816 return ret; 4817 } 4818 4819 /* 4820 * Currently we only unregister ftrace commands from __init, so mark 4821 * this __init too. 4822 */ 4823 __init int unregister_ftrace_command(struct ftrace_func_command *cmd) 4824 { 4825 struct ftrace_func_command *p, *n; 4826 int ret = -ENODEV; 4827 4828 mutex_lock(&ftrace_cmd_mutex); 4829 list_for_each_entry_safe(p, n, &ftrace_commands, list) { 4830 if (strcmp(cmd->name, p->name) == 0) { 4831 ret = 0; 4832 list_del_init(&p->list); 4833 goto out_unlock; 4834 } 4835 } 4836 out_unlock: 4837 mutex_unlock(&ftrace_cmd_mutex); 4838 4839 return ret; 4840 } 4841 4842 static int ftrace_process_regex(struct ftrace_iterator *iter, 4843 char *buff, int len, int enable) 4844 { 4845 struct ftrace_hash *hash = iter->hash; 4846 struct trace_array *tr = iter->ops->private; 4847 char *func, *command, *next = buff; 4848 struct ftrace_func_command *p; 4849 int ret = -EINVAL; 4850 4851 func = strsep(&next, ":"); 4852 4853 if (!next) { 4854 ret = ftrace_match_records(hash, func, len); 4855 if (!ret) 4856 ret = -EINVAL; 4857 if (ret < 0) 4858 return ret; 4859 return 0; 4860 } 4861 4862 /* command found */ 4863 4864 command = strsep(&next, ":"); 4865 4866 mutex_lock(&ftrace_cmd_mutex); 4867 list_for_each_entry(p, &ftrace_commands, list) { 4868 if (strcmp(p->name, command) == 0) { 4869 ret = p->func(tr, hash, func, command, next, enable); 4870 goto out_unlock; 4871 } 4872 } 4873 out_unlock: 4874 mutex_unlock(&ftrace_cmd_mutex); 4875 4876 return ret; 4877 } 4878 4879 static ssize_t 4880 ftrace_regex_write(struct file *file, const char __user *ubuf, 4881 size_t cnt, loff_t *ppos, int enable) 4882 { 4883 struct ftrace_iterator *iter; 4884 struct trace_parser *parser; 4885 ssize_t ret, read; 4886 4887 if (!cnt) 4888 return 0; 4889 4890 if (file->f_mode & FMODE_READ) { 4891 struct seq_file *m = file->private_data; 4892 iter = m->private; 4893 } else 4894 iter = file->private_data; 4895 4896 if (unlikely(ftrace_disabled)) 4897 return -ENODEV; 4898 4899 /* iter->hash is a local copy, so we don't need regex_lock */ 4900 4901 parser = &iter->parser; 4902 read = trace_get_user(parser, ubuf, cnt, ppos); 4903 4904 if (read >= 0 && trace_parser_loaded(parser) && 4905 !trace_parser_cont(parser)) { 4906 ret = ftrace_process_regex(iter, parser->buffer, 4907 parser->idx, enable); 4908 trace_parser_clear(parser); 4909 if (ret < 0) 4910 goto out; 4911 } 4912 4913 ret = read; 4914 out: 4915 return ret; 4916 } 4917 4918 ssize_t 4919 ftrace_filter_write(struct file *file, const char __user *ubuf, 4920 size_t cnt, loff_t *ppos) 4921 { 4922 return ftrace_regex_write(file, ubuf, cnt, ppos, 1); 4923 } 4924 4925 ssize_t 4926 ftrace_notrace_write(struct file *file, const char __user *ubuf, 4927 size_t cnt, loff_t *ppos) 4928 { 4929 return ftrace_regex_write(file, ubuf, cnt, ppos, 0); 4930 } 4931 4932 static int 4933 ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove) 4934 { 4935 struct ftrace_func_entry *entry; 4936 4937 if (!ftrace_location(ip)) 4938 return -EINVAL; 4939 4940 if (remove) { 4941 entry = ftrace_lookup_ip(hash, ip); 4942 if (!entry) 4943 return -ENOENT; 4944 free_hash_entry(hash, entry); 4945 return 0; 4946 } 4947 4948 return add_hash_entry(hash, ip); 4949 } 4950 4951 static int 4952 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len, 4953 unsigned long ip, int remove, int reset, int enable) 4954 { 4955 struct ftrace_hash **orig_hash; 4956 struct ftrace_hash *hash; 4957 int ret; 4958 4959 if (unlikely(ftrace_disabled)) 4960 return -ENODEV; 4961 4962 mutex_lock(&ops->func_hash->regex_lock); 4963 4964 if (enable) 4965 orig_hash = &ops->func_hash->filter_hash; 4966 else 4967 orig_hash = &ops->func_hash->notrace_hash; 4968 4969 if (reset) 4970 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4971 else 4972 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash); 4973 4974 if (!hash) { 4975 ret = -ENOMEM; 4976 goto out_regex_unlock; 4977 } 4978 4979 if (buf && !ftrace_match_records(hash, buf, len)) { 4980 ret = -EINVAL; 4981 goto out_regex_unlock; 4982 } 4983 if (ip) { 4984 ret = ftrace_match_addr(hash, ip, remove); 4985 if (ret < 0) 4986 goto out_regex_unlock; 4987 } 4988 4989 mutex_lock(&ftrace_lock); 4990 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable); 4991 mutex_unlock(&ftrace_lock); 4992 4993 out_regex_unlock: 4994 mutex_unlock(&ops->func_hash->regex_lock); 4995 4996 free_ftrace_hash(hash); 4997 return ret; 4998 } 4999 5000 static int 5001 ftrace_set_addr(struct ftrace_ops *ops, unsigned long ip, int remove, 5002 int reset, int enable) 5003 { 5004 return ftrace_set_hash(ops, NULL, 0, ip, remove, reset, enable); 5005 } 5006 5007 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 5008 5009 struct ftrace_direct_func { 5010 struct list_head next; 5011 unsigned long addr; 5012 int count; 5013 }; 5014 5015 static LIST_HEAD(ftrace_direct_funcs); 5016 5017 /** 5018 * ftrace_find_direct_func - test an address if it is a registered direct caller 5019 * @addr: The address of a registered direct caller 5020 * 5021 * This searches to see if a ftrace direct caller has been registered 5022 * at a specific address, and if so, it returns a descriptor for it. 5023 * 5024 * This can be used by architecture code to see if an address is 5025 * a direct caller (trampoline) attached to a fentry/mcount location. 5026 * This is useful for the function_graph tracer, as it may need to 5027 * do adjustments if it traced a location that also has a direct 5028 * trampoline attached to it. 5029 */ 5030 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr) 5031 { 5032 struct ftrace_direct_func *entry; 5033 bool found = false; 5034 5035 /* May be called by fgraph trampoline (protected by rcu tasks) */ 5036 list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) { 5037 if (entry->addr == addr) { 5038 found = true; 5039 break; 5040 } 5041 } 5042 if (found) 5043 return entry; 5044 5045 return NULL; 5046 } 5047 5048 static struct ftrace_direct_func *ftrace_alloc_direct_func(unsigned long addr) 5049 { 5050 struct ftrace_direct_func *direct; 5051 5052 direct = kmalloc(sizeof(*direct), GFP_KERNEL); 5053 if (!direct) 5054 return NULL; 5055 direct->addr = addr; 5056 direct->count = 0; 5057 list_add_rcu(&direct->next, &ftrace_direct_funcs); 5058 ftrace_direct_func_count++; 5059 return direct; 5060 } 5061 5062 /** 5063 * register_ftrace_direct - Call a custom trampoline directly 5064 * @ip: The address of the nop at the beginning of a function 5065 * @addr: The address of the trampoline to call at @ip 5066 * 5067 * This is used to connect a direct call from the nop location (@ip) 5068 * at the start of ftrace traced functions. The location that it calls 5069 * (@addr) must be able to handle a direct call, and save the parameters 5070 * of the function being traced, and restore them (or inject new ones 5071 * if needed), before returning. 5072 * 5073 * Returns: 5074 * 0 on success 5075 * -EBUSY - Another direct function is already attached (there can be only one) 5076 * -ENODEV - @ip does not point to a ftrace nop location (or not supported) 5077 * -ENOMEM - There was an allocation failure. 5078 */ 5079 int register_ftrace_direct(unsigned long ip, unsigned long addr) 5080 { 5081 struct ftrace_direct_func *direct; 5082 struct ftrace_func_entry *entry; 5083 struct ftrace_hash *free_hash = NULL; 5084 struct dyn_ftrace *rec; 5085 int ret = -EBUSY; 5086 5087 mutex_lock(&direct_mutex); 5088 5089 /* See if there's a direct function at @ip already */ 5090 if (ftrace_find_rec_direct(ip)) 5091 goto out_unlock; 5092 5093 ret = -ENODEV; 5094 rec = lookup_rec(ip, ip); 5095 if (!rec) 5096 goto out_unlock; 5097 5098 /* 5099 * Check if the rec says it has a direct call but we didn't 5100 * find one earlier? 5101 */ 5102 if (WARN_ON(rec->flags & FTRACE_FL_DIRECT)) 5103 goto out_unlock; 5104 5105 /* Make sure the ip points to the exact record */ 5106 if (ip != rec->ip) { 5107 ip = rec->ip; 5108 /* Need to check this ip for a direct. */ 5109 if (ftrace_find_rec_direct(ip)) 5110 goto out_unlock; 5111 } 5112 5113 ret = -ENOMEM; 5114 if (ftrace_hash_empty(direct_functions) || 5115 direct_functions->count > 2 * (1 << direct_functions->size_bits)) { 5116 struct ftrace_hash *new_hash; 5117 int size = ftrace_hash_empty(direct_functions) ? 0 : 5118 direct_functions->count + 1; 5119 5120 if (size < 32) 5121 size = 32; 5122 5123 new_hash = dup_hash(direct_functions, size); 5124 if (!new_hash) 5125 goto out_unlock; 5126 5127 free_hash = direct_functions; 5128 direct_functions = new_hash; 5129 } 5130 5131 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 5132 if (!entry) 5133 goto out_unlock; 5134 5135 direct = ftrace_find_direct_func(addr); 5136 if (!direct) { 5137 direct = ftrace_alloc_direct_func(addr); 5138 if (!direct) { 5139 kfree(entry); 5140 goto out_unlock; 5141 } 5142 } 5143 5144 entry->ip = ip; 5145 entry->direct = addr; 5146 __add_hash_entry(direct_functions, entry); 5147 5148 ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0); 5149 if (ret) 5150 remove_hash_entry(direct_functions, entry); 5151 5152 if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) { 5153 ret = register_ftrace_function(&direct_ops); 5154 if (ret) 5155 ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5156 } 5157 5158 if (ret) { 5159 kfree(entry); 5160 if (!direct->count) { 5161 list_del_rcu(&direct->next); 5162 synchronize_rcu_tasks(); 5163 kfree(direct); 5164 if (free_hash) 5165 free_ftrace_hash(free_hash); 5166 free_hash = NULL; 5167 ftrace_direct_func_count--; 5168 } 5169 } else { 5170 direct->count++; 5171 } 5172 out_unlock: 5173 mutex_unlock(&direct_mutex); 5174 5175 if (free_hash) { 5176 synchronize_rcu_tasks(); 5177 free_ftrace_hash(free_hash); 5178 } 5179 5180 return ret; 5181 } 5182 EXPORT_SYMBOL_GPL(register_ftrace_direct); 5183 5184 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip, 5185 struct dyn_ftrace **recp) 5186 { 5187 struct ftrace_func_entry *entry; 5188 struct dyn_ftrace *rec; 5189 5190 rec = lookup_rec(*ip, *ip); 5191 if (!rec) 5192 return NULL; 5193 5194 entry = __ftrace_lookup_ip(direct_functions, rec->ip); 5195 if (!entry) { 5196 WARN_ON(rec->flags & FTRACE_FL_DIRECT); 5197 return NULL; 5198 } 5199 5200 WARN_ON(!(rec->flags & FTRACE_FL_DIRECT)); 5201 5202 /* Passed in ip just needs to be on the call site */ 5203 *ip = rec->ip; 5204 5205 if (recp) 5206 *recp = rec; 5207 5208 return entry; 5209 } 5210 5211 int unregister_ftrace_direct(unsigned long ip, unsigned long addr) 5212 { 5213 struct ftrace_direct_func *direct; 5214 struct ftrace_func_entry *entry; 5215 int ret = -ENODEV; 5216 5217 mutex_lock(&direct_mutex); 5218 5219 entry = find_direct_entry(&ip, NULL); 5220 if (!entry) 5221 goto out_unlock; 5222 5223 if (direct_functions->count == 1) 5224 unregister_ftrace_function(&direct_ops); 5225 5226 ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5227 5228 WARN_ON(ret); 5229 5230 remove_hash_entry(direct_functions, entry); 5231 5232 direct = ftrace_find_direct_func(addr); 5233 if (!WARN_ON(!direct)) { 5234 /* This is the good path (see the ! before WARN) */ 5235 direct->count--; 5236 WARN_ON(direct->count < 0); 5237 if (!direct->count) { 5238 list_del_rcu(&direct->next); 5239 synchronize_rcu_tasks(); 5240 kfree(direct); 5241 kfree(entry); 5242 ftrace_direct_func_count--; 5243 } 5244 } 5245 out_unlock: 5246 mutex_unlock(&direct_mutex); 5247 5248 return ret; 5249 } 5250 EXPORT_SYMBOL_GPL(unregister_ftrace_direct); 5251 5252 static struct ftrace_ops stub_ops = { 5253 .func = ftrace_stub, 5254 }; 5255 5256 /** 5257 * ftrace_modify_direct_caller - modify ftrace nop directly 5258 * @entry: The ftrace hash entry of the direct helper for @rec 5259 * @rec: The record representing the function site to patch 5260 * @old_addr: The location that the site at @rec->ip currently calls 5261 * @new_addr: The location that the site at @rec->ip should call 5262 * 5263 * An architecture may overwrite this function to optimize the 5264 * changing of the direct callback on an ftrace nop location. 5265 * This is called with the ftrace_lock mutex held, and no other 5266 * ftrace callbacks are on the associated record (@rec). Thus, 5267 * it is safe to modify the ftrace record, where it should be 5268 * currently calling @old_addr directly, to call @new_addr. 5269 * 5270 * Safety checks should be made to make sure that the code at 5271 * @rec->ip is currently calling @old_addr. And this must 5272 * also update entry->direct to @new_addr. 5273 */ 5274 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry, 5275 struct dyn_ftrace *rec, 5276 unsigned long old_addr, 5277 unsigned long new_addr) 5278 { 5279 unsigned long ip = rec->ip; 5280 int ret; 5281 5282 /* 5283 * The ftrace_lock was used to determine if the record 5284 * had more than one registered user to it. If it did, 5285 * we needed to prevent that from changing to do the quick 5286 * switch. But if it did not (only a direct caller was attached) 5287 * then this function is called. But this function can deal 5288 * with attached callers to the rec that we care about, and 5289 * since this function uses standard ftrace calls that take 5290 * the ftrace_lock mutex, we need to release it. 5291 */ 5292 mutex_unlock(&ftrace_lock); 5293 5294 /* 5295 * By setting a stub function at the same address, we force 5296 * the code to call the iterator and the direct_ops helper. 5297 * This means that @ip does not call the direct call, and 5298 * we can simply modify it. 5299 */ 5300 ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0); 5301 if (ret) 5302 goto out_lock; 5303 5304 ret = register_ftrace_function(&stub_ops); 5305 if (ret) { 5306 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5307 goto out_lock; 5308 } 5309 5310 entry->direct = new_addr; 5311 5312 /* 5313 * By removing the stub, we put back the direct call, calling 5314 * the @new_addr. 5315 */ 5316 unregister_ftrace_function(&stub_ops); 5317 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5318 5319 out_lock: 5320 mutex_lock(&ftrace_lock); 5321 5322 return ret; 5323 } 5324 5325 /** 5326 * modify_ftrace_direct - Modify an existing direct call to call something else 5327 * @ip: The instruction pointer to modify 5328 * @old_addr: The address that the current @ip calls directly 5329 * @new_addr: The address that the @ip should call 5330 * 5331 * This modifies a ftrace direct caller at an instruction pointer without 5332 * having to disable it first. The direct call will switch over to the 5333 * @new_addr without missing anything. 5334 * 5335 * Returns: zero on success. Non zero on error, which includes: 5336 * -ENODEV : the @ip given has no direct caller attached 5337 * -EINVAL : the @old_addr does not match the current direct caller 5338 */ 5339 int modify_ftrace_direct(unsigned long ip, 5340 unsigned long old_addr, unsigned long new_addr) 5341 { 5342 struct ftrace_direct_func *direct, *new_direct = NULL; 5343 struct ftrace_func_entry *entry; 5344 struct dyn_ftrace *rec; 5345 int ret = -ENODEV; 5346 5347 mutex_lock(&direct_mutex); 5348 5349 mutex_lock(&ftrace_lock); 5350 entry = find_direct_entry(&ip, &rec); 5351 if (!entry) 5352 goto out_unlock; 5353 5354 ret = -EINVAL; 5355 if (entry->direct != old_addr) 5356 goto out_unlock; 5357 5358 direct = ftrace_find_direct_func(old_addr); 5359 if (WARN_ON(!direct)) 5360 goto out_unlock; 5361 if (direct->count > 1) { 5362 ret = -ENOMEM; 5363 new_direct = ftrace_alloc_direct_func(new_addr); 5364 if (!new_direct) 5365 goto out_unlock; 5366 direct->count--; 5367 new_direct->count++; 5368 } else { 5369 direct->addr = new_addr; 5370 } 5371 5372 /* 5373 * If there's no other ftrace callback on the rec->ip location, 5374 * then it can be changed directly by the architecture. 5375 * If there is another caller, then we just need to change the 5376 * direct caller helper to point to @new_addr. 5377 */ 5378 if (ftrace_rec_count(rec) == 1) { 5379 ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr); 5380 } else { 5381 entry->direct = new_addr; 5382 ret = 0; 5383 } 5384 5385 if (unlikely(ret && new_direct)) { 5386 direct->count++; 5387 list_del_rcu(&new_direct->next); 5388 synchronize_rcu_tasks(); 5389 kfree(new_direct); 5390 ftrace_direct_func_count--; 5391 } 5392 5393 out_unlock: 5394 mutex_unlock(&ftrace_lock); 5395 mutex_unlock(&direct_mutex); 5396 return ret; 5397 } 5398 EXPORT_SYMBOL_GPL(modify_ftrace_direct); 5399 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 5400 5401 /** 5402 * ftrace_set_filter_ip - set a function to filter on in ftrace by address 5403 * @ops - the ops to set the filter with 5404 * @ip - the address to add to or remove from the filter. 5405 * @remove - non zero to remove the ip from the filter 5406 * @reset - non zero to reset all filters before applying this filter. 5407 * 5408 * Filters denote which functions should be enabled when tracing is enabled 5409 * If @ip is NULL, it fails to update filter. 5410 */ 5411 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip, 5412 int remove, int reset) 5413 { 5414 ftrace_ops_init(ops); 5415 return ftrace_set_addr(ops, ip, remove, reset, 1); 5416 } 5417 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip); 5418 5419 /** 5420 * ftrace_ops_set_global_filter - setup ops to use global filters 5421 * @ops - the ops which will use the global filters 5422 * 5423 * ftrace users who need global function trace filtering should call this. 5424 * It can set the global filter only if ops were not initialized before. 5425 */ 5426 void ftrace_ops_set_global_filter(struct ftrace_ops *ops) 5427 { 5428 if (ops->flags & FTRACE_OPS_FL_INITIALIZED) 5429 return; 5430 5431 ftrace_ops_init(ops); 5432 ops->func_hash = &global_ops.local_hash; 5433 } 5434 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter); 5435 5436 static int 5437 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 5438 int reset, int enable) 5439 { 5440 return ftrace_set_hash(ops, buf, len, 0, 0, reset, enable); 5441 } 5442 5443 /** 5444 * ftrace_set_filter - set a function to filter on in ftrace 5445 * @ops - the ops to set the filter with 5446 * @buf - the string that holds the function filter text. 5447 * @len - the length of the string. 5448 * @reset - non zero to reset all filters before applying this filter. 5449 * 5450 * Filters denote which functions should be enabled when tracing is enabled. 5451 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5452 */ 5453 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf, 5454 int len, int reset) 5455 { 5456 ftrace_ops_init(ops); 5457 return ftrace_set_regex(ops, buf, len, reset, 1); 5458 } 5459 EXPORT_SYMBOL_GPL(ftrace_set_filter); 5460 5461 /** 5462 * ftrace_set_notrace - set a function to not trace in ftrace 5463 * @ops - the ops to set the notrace filter with 5464 * @buf - the string that holds the function notrace text. 5465 * @len - the length of the string. 5466 * @reset - non zero to reset all filters before applying this filter. 5467 * 5468 * Notrace Filters denote which functions should not be enabled when tracing 5469 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5470 * for tracing. 5471 */ 5472 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf, 5473 int len, int reset) 5474 { 5475 ftrace_ops_init(ops); 5476 return ftrace_set_regex(ops, buf, len, reset, 0); 5477 } 5478 EXPORT_SYMBOL_GPL(ftrace_set_notrace); 5479 /** 5480 * ftrace_set_global_filter - set a function to filter on with global tracers 5481 * @buf - the string that holds the function filter text. 5482 * @len - the length of the string. 5483 * @reset - non zero to reset all filters before applying this filter. 5484 * 5485 * Filters denote which functions should be enabled when tracing is enabled. 5486 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5487 */ 5488 void ftrace_set_global_filter(unsigned char *buf, int len, int reset) 5489 { 5490 ftrace_set_regex(&global_ops, buf, len, reset, 1); 5491 } 5492 EXPORT_SYMBOL_GPL(ftrace_set_global_filter); 5493 5494 /** 5495 * ftrace_set_global_notrace - set a function to not trace with global tracers 5496 * @buf - the string that holds the function notrace text. 5497 * @len - the length of the string. 5498 * @reset - non zero to reset all filters before applying this filter. 5499 * 5500 * Notrace Filters denote which functions should not be enabled when tracing 5501 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5502 * for tracing. 5503 */ 5504 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset) 5505 { 5506 ftrace_set_regex(&global_ops, buf, len, reset, 0); 5507 } 5508 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace); 5509 5510 /* 5511 * command line interface to allow users to set filters on boot up. 5512 */ 5513 #define FTRACE_FILTER_SIZE COMMAND_LINE_SIZE 5514 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5515 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata; 5516 5517 /* Used by function selftest to not test if filter is set */ 5518 bool ftrace_filter_param __initdata; 5519 5520 static int __init set_ftrace_notrace(char *str) 5521 { 5522 ftrace_filter_param = true; 5523 strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE); 5524 return 1; 5525 } 5526 __setup("ftrace_notrace=", set_ftrace_notrace); 5527 5528 static int __init set_ftrace_filter(char *str) 5529 { 5530 ftrace_filter_param = true; 5531 strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE); 5532 return 1; 5533 } 5534 __setup("ftrace_filter=", set_ftrace_filter); 5535 5536 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5537 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata; 5538 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5539 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer); 5540 5541 static int __init set_graph_function(char *str) 5542 { 5543 strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE); 5544 return 1; 5545 } 5546 __setup("ftrace_graph_filter=", set_graph_function); 5547 5548 static int __init set_graph_notrace_function(char *str) 5549 { 5550 strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE); 5551 return 1; 5552 } 5553 __setup("ftrace_graph_notrace=", set_graph_notrace_function); 5554 5555 static int __init set_graph_max_depth_function(char *str) 5556 { 5557 if (!str) 5558 return 0; 5559 fgraph_max_depth = simple_strtoul(str, NULL, 0); 5560 return 1; 5561 } 5562 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function); 5563 5564 static void __init set_ftrace_early_graph(char *buf, int enable) 5565 { 5566 int ret; 5567 char *func; 5568 struct ftrace_hash *hash; 5569 5570 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 5571 if (MEM_FAIL(!hash, "Failed to allocate hash\n")) 5572 return; 5573 5574 while (buf) { 5575 func = strsep(&buf, ","); 5576 /* we allow only one expression at a time */ 5577 ret = ftrace_graph_set_hash(hash, func); 5578 if (ret) 5579 printk(KERN_DEBUG "ftrace: function %s not " 5580 "traceable\n", func); 5581 } 5582 5583 if (enable) 5584 ftrace_graph_hash = hash; 5585 else 5586 ftrace_graph_notrace_hash = hash; 5587 } 5588 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5589 5590 void __init 5591 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable) 5592 { 5593 char *func; 5594 5595 ftrace_ops_init(ops); 5596 5597 while (buf) { 5598 func = strsep(&buf, ","); 5599 ftrace_set_regex(ops, func, strlen(func), 0, enable); 5600 } 5601 } 5602 5603 static void __init set_ftrace_early_filters(void) 5604 { 5605 if (ftrace_filter_buf[0]) 5606 ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1); 5607 if (ftrace_notrace_buf[0]) 5608 ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0); 5609 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5610 if (ftrace_graph_buf[0]) 5611 set_ftrace_early_graph(ftrace_graph_buf, 1); 5612 if (ftrace_graph_notrace_buf[0]) 5613 set_ftrace_early_graph(ftrace_graph_notrace_buf, 0); 5614 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5615 } 5616 5617 int ftrace_regex_release(struct inode *inode, struct file *file) 5618 { 5619 struct seq_file *m = (struct seq_file *)file->private_data; 5620 struct ftrace_iterator *iter; 5621 struct ftrace_hash **orig_hash; 5622 struct trace_parser *parser; 5623 int filter_hash; 5624 5625 if (file->f_mode & FMODE_READ) { 5626 iter = m->private; 5627 seq_release(inode, file); 5628 } else 5629 iter = file->private_data; 5630 5631 parser = &iter->parser; 5632 if (trace_parser_loaded(parser)) { 5633 int enable = !(iter->flags & FTRACE_ITER_NOTRACE); 5634 5635 ftrace_process_regex(iter, parser->buffer, 5636 parser->idx, enable); 5637 } 5638 5639 trace_parser_put(parser); 5640 5641 mutex_lock(&iter->ops->func_hash->regex_lock); 5642 5643 if (file->f_mode & FMODE_WRITE) { 5644 filter_hash = !!(iter->flags & FTRACE_ITER_FILTER); 5645 5646 if (filter_hash) { 5647 orig_hash = &iter->ops->func_hash->filter_hash; 5648 if (iter->tr && !list_empty(&iter->tr->mod_trace)) 5649 iter->hash->flags |= FTRACE_HASH_FL_MOD; 5650 } else 5651 orig_hash = &iter->ops->func_hash->notrace_hash; 5652 5653 mutex_lock(&ftrace_lock); 5654 ftrace_hash_move_and_update_ops(iter->ops, orig_hash, 5655 iter->hash, filter_hash); 5656 mutex_unlock(&ftrace_lock); 5657 } else { 5658 /* For read only, the hash is the ops hash */ 5659 iter->hash = NULL; 5660 } 5661 5662 mutex_unlock(&iter->ops->func_hash->regex_lock); 5663 free_ftrace_hash(iter->hash); 5664 if (iter->tr) 5665 trace_array_put(iter->tr); 5666 kfree(iter); 5667 5668 return 0; 5669 } 5670 5671 static const struct file_operations ftrace_avail_fops = { 5672 .open = ftrace_avail_open, 5673 .read = seq_read, 5674 .llseek = seq_lseek, 5675 .release = seq_release_private, 5676 }; 5677 5678 static const struct file_operations ftrace_enabled_fops = { 5679 .open = ftrace_enabled_open, 5680 .read = seq_read, 5681 .llseek = seq_lseek, 5682 .release = seq_release_private, 5683 }; 5684 5685 static const struct file_operations ftrace_filter_fops = { 5686 .open = ftrace_filter_open, 5687 .read = seq_read, 5688 .write = ftrace_filter_write, 5689 .llseek = tracing_lseek, 5690 .release = ftrace_regex_release, 5691 }; 5692 5693 static const struct file_operations ftrace_notrace_fops = { 5694 .open = ftrace_notrace_open, 5695 .read = seq_read, 5696 .write = ftrace_notrace_write, 5697 .llseek = tracing_lseek, 5698 .release = ftrace_regex_release, 5699 }; 5700 5701 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5702 5703 static DEFINE_MUTEX(graph_lock); 5704 5705 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH; 5706 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH; 5707 5708 enum graph_filter_type { 5709 GRAPH_FILTER_NOTRACE = 0, 5710 GRAPH_FILTER_FUNCTION, 5711 }; 5712 5713 #define FTRACE_GRAPH_EMPTY ((void *)1) 5714 5715 struct ftrace_graph_data { 5716 struct ftrace_hash *hash; 5717 struct ftrace_func_entry *entry; 5718 int idx; /* for hash table iteration */ 5719 enum graph_filter_type type; 5720 struct ftrace_hash *new_hash; 5721 const struct seq_operations *seq_ops; 5722 struct trace_parser parser; 5723 }; 5724 5725 static void * 5726 __g_next(struct seq_file *m, loff_t *pos) 5727 { 5728 struct ftrace_graph_data *fgd = m->private; 5729 struct ftrace_func_entry *entry = fgd->entry; 5730 struct hlist_head *head; 5731 int i, idx = fgd->idx; 5732 5733 if (*pos >= fgd->hash->count) 5734 return NULL; 5735 5736 if (entry) { 5737 hlist_for_each_entry_continue(entry, hlist) { 5738 fgd->entry = entry; 5739 return entry; 5740 } 5741 5742 idx++; 5743 } 5744 5745 for (i = idx; i < 1 << fgd->hash->size_bits; i++) { 5746 head = &fgd->hash->buckets[i]; 5747 hlist_for_each_entry(entry, head, hlist) { 5748 fgd->entry = entry; 5749 fgd->idx = i; 5750 return entry; 5751 } 5752 } 5753 return NULL; 5754 } 5755 5756 static void * 5757 g_next(struct seq_file *m, void *v, loff_t *pos) 5758 { 5759 (*pos)++; 5760 return __g_next(m, pos); 5761 } 5762 5763 static void *g_start(struct seq_file *m, loff_t *pos) 5764 { 5765 struct ftrace_graph_data *fgd = m->private; 5766 5767 mutex_lock(&graph_lock); 5768 5769 if (fgd->type == GRAPH_FILTER_FUNCTION) 5770 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 5771 lockdep_is_held(&graph_lock)); 5772 else 5773 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5774 lockdep_is_held(&graph_lock)); 5775 5776 /* Nothing, tell g_show to print all functions are enabled */ 5777 if (ftrace_hash_empty(fgd->hash) && !*pos) 5778 return FTRACE_GRAPH_EMPTY; 5779 5780 fgd->idx = 0; 5781 fgd->entry = NULL; 5782 return __g_next(m, pos); 5783 } 5784 5785 static void g_stop(struct seq_file *m, void *p) 5786 { 5787 mutex_unlock(&graph_lock); 5788 } 5789 5790 static int g_show(struct seq_file *m, void *v) 5791 { 5792 struct ftrace_func_entry *entry = v; 5793 5794 if (!entry) 5795 return 0; 5796 5797 if (entry == FTRACE_GRAPH_EMPTY) { 5798 struct ftrace_graph_data *fgd = m->private; 5799 5800 if (fgd->type == GRAPH_FILTER_FUNCTION) 5801 seq_puts(m, "#### all functions enabled ####\n"); 5802 else 5803 seq_puts(m, "#### no functions disabled ####\n"); 5804 return 0; 5805 } 5806 5807 seq_printf(m, "%ps\n", (void *)entry->ip); 5808 5809 return 0; 5810 } 5811 5812 static const struct seq_operations ftrace_graph_seq_ops = { 5813 .start = g_start, 5814 .next = g_next, 5815 .stop = g_stop, 5816 .show = g_show, 5817 }; 5818 5819 static int 5820 __ftrace_graph_open(struct inode *inode, struct file *file, 5821 struct ftrace_graph_data *fgd) 5822 { 5823 int ret; 5824 struct ftrace_hash *new_hash = NULL; 5825 5826 ret = security_locked_down(LOCKDOWN_TRACEFS); 5827 if (ret) 5828 return ret; 5829 5830 if (file->f_mode & FMODE_WRITE) { 5831 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 5832 5833 if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX)) 5834 return -ENOMEM; 5835 5836 if (file->f_flags & O_TRUNC) 5837 new_hash = alloc_ftrace_hash(size_bits); 5838 else 5839 new_hash = alloc_and_copy_ftrace_hash(size_bits, 5840 fgd->hash); 5841 if (!new_hash) { 5842 ret = -ENOMEM; 5843 goto out; 5844 } 5845 } 5846 5847 if (file->f_mode & FMODE_READ) { 5848 ret = seq_open(file, &ftrace_graph_seq_ops); 5849 if (!ret) { 5850 struct seq_file *m = file->private_data; 5851 m->private = fgd; 5852 } else { 5853 /* Failed */ 5854 free_ftrace_hash(new_hash); 5855 new_hash = NULL; 5856 } 5857 } else 5858 file->private_data = fgd; 5859 5860 out: 5861 if (ret < 0 && file->f_mode & FMODE_WRITE) 5862 trace_parser_put(&fgd->parser); 5863 5864 fgd->new_hash = new_hash; 5865 5866 /* 5867 * All uses of fgd->hash must be taken with the graph_lock 5868 * held. The graph_lock is going to be released, so force 5869 * fgd->hash to be reinitialized when it is taken again. 5870 */ 5871 fgd->hash = NULL; 5872 5873 return ret; 5874 } 5875 5876 static int 5877 ftrace_graph_open(struct inode *inode, struct file *file) 5878 { 5879 struct ftrace_graph_data *fgd; 5880 int ret; 5881 5882 if (unlikely(ftrace_disabled)) 5883 return -ENODEV; 5884 5885 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 5886 if (fgd == NULL) 5887 return -ENOMEM; 5888 5889 mutex_lock(&graph_lock); 5890 5891 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 5892 lockdep_is_held(&graph_lock)); 5893 fgd->type = GRAPH_FILTER_FUNCTION; 5894 fgd->seq_ops = &ftrace_graph_seq_ops; 5895 5896 ret = __ftrace_graph_open(inode, file, fgd); 5897 if (ret < 0) 5898 kfree(fgd); 5899 5900 mutex_unlock(&graph_lock); 5901 return ret; 5902 } 5903 5904 static int 5905 ftrace_graph_notrace_open(struct inode *inode, struct file *file) 5906 { 5907 struct ftrace_graph_data *fgd; 5908 int ret; 5909 5910 if (unlikely(ftrace_disabled)) 5911 return -ENODEV; 5912 5913 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 5914 if (fgd == NULL) 5915 return -ENOMEM; 5916 5917 mutex_lock(&graph_lock); 5918 5919 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5920 lockdep_is_held(&graph_lock)); 5921 fgd->type = GRAPH_FILTER_NOTRACE; 5922 fgd->seq_ops = &ftrace_graph_seq_ops; 5923 5924 ret = __ftrace_graph_open(inode, file, fgd); 5925 if (ret < 0) 5926 kfree(fgd); 5927 5928 mutex_unlock(&graph_lock); 5929 return ret; 5930 } 5931 5932 static int 5933 ftrace_graph_release(struct inode *inode, struct file *file) 5934 { 5935 struct ftrace_graph_data *fgd; 5936 struct ftrace_hash *old_hash, *new_hash; 5937 struct trace_parser *parser; 5938 int ret = 0; 5939 5940 if (file->f_mode & FMODE_READ) { 5941 struct seq_file *m = file->private_data; 5942 5943 fgd = m->private; 5944 seq_release(inode, file); 5945 } else { 5946 fgd = file->private_data; 5947 } 5948 5949 5950 if (file->f_mode & FMODE_WRITE) { 5951 5952 parser = &fgd->parser; 5953 5954 if (trace_parser_loaded((parser))) { 5955 ret = ftrace_graph_set_hash(fgd->new_hash, 5956 parser->buffer); 5957 } 5958 5959 trace_parser_put(parser); 5960 5961 new_hash = __ftrace_hash_move(fgd->new_hash); 5962 if (!new_hash) { 5963 ret = -ENOMEM; 5964 goto out; 5965 } 5966 5967 mutex_lock(&graph_lock); 5968 5969 if (fgd->type == GRAPH_FILTER_FUNCTION) { 5970 old_hash = rcu_dereference_protected(ftrace_graph_hash, 5971 lockdep_is_held(&graph_lock)); 5972 rcu_assign_pointer(ftrace_graph_hash, new_hash); 5973 } else { 5974 old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5975 lockdep_is_held(&graph_lock)); 5976 rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash); 5977 } 5978 5979 mutex_unlock(&graph_lock); 5980 5981 /* 5982 * We need to do a hard force of sched synchronization. 5983 * This is because we use preempt_disable() to do RCU, but 5984 * the function tracers can be called where RCU is not watching 5985 * (like before user_exit()). We can not rely on the RCU 5986 * infrastructure to do the synchronization, thus we must do it 5987 * ourselves. 5988 */ 5989 if (old_hash != EMPTY_HASH) 5990 synchronize_rcu_tasks_rude(); 5991 5992 free_ftrace_hash(old_hash); 5993 } 5994 5995 out: 5996 free_ftrace_hash(fgd->new_hash); 5997 kfree(fgd); 5998 5999 return ret; 6000 } 6001 6002 static int 6003 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer) 6004 { 6005 struct ftrace_glob func_g; 6006 struct dyn_ftrace *rec; 6007 struct ftrace_page *pg; 6008 struct ftrace_func_entry *entry; 6009 int fail = 1; 6010 int not; 6011 6012 /* decode regex */ 6013 func_g.type = filter_parse_regex(buffer, strlen(buffer), 6014 &func_g.search, ¬); 6015 6016 func_g.len = strlen(func_g.search); 6017 6018 mutex_lock(&ftrace_lock); 6019 6020 if (unlikely(ftrace_disabled)) { 6021 mutex_unlock(&ftrace_lock); 6022 return -ENODEV; 6023 } 6024 6025 do_for_each_ftrace_rec(pg, rec) { 6026 6027 if (rec->flags & FTRACE_FL_DISABLED) 6028 continue; 6029 6030 if (ftrace_match_record(rec, &func_g, NULL, 0)) { 6031 entry = ftrace_lookup_ip(hash, rec->ip); 6032 6033 if (!not) { 6034 fail = 0; 6035 6036 if (entry) 6037 continue; 6038 if (add_hash_entry(hash, rec->ip) < 0) 6039 goto out; 6040 } else { 6041 if (entry) { 6042 free_hash_entry(hash, entry); 6043 fail = 0; 6044 } 6045 } 6046 } 6047 } while_for_each_ftrace_rec(); 6048 out: 6049 mutex_unlock(&ftrace_lock); 6050 6051 if (fail) 6052 return -EINVAL; 6053 6054 return 0; 6055 } 6056 6057 static ssize_t 6058 ftrace_graph_write(struct file *file, const char __user *ubuf, 6059 size_t cnt, loff_t *ppos) 6060 { 6061 ssize_t read, ret = 0; 6062 struct ftrace_graph_data *fgd = file->private_data; 6063 struct trace_parser *parser; 6064 6065 if (!cnt) 6066 return 0; 6067 6068 /* Read mode uses seq functions */ 6069 if (file->f_mode & FMODE_READ) { 6070 struct seq_file *m = file->private_data; 6071 fgd = m->private; 6072 } 6073 6074 parser = &fgd->parser; 6075 6076 read = trace_get_user(parser, ubuf, cnt, ppos); 6077 6078 if (read >= 0 && trace_parser_loaded(parser) && 6079 !trace_parser_cont(parser)) { 6080 6081 ret = ftrace_graph_set_hash(fgd->new_hash, 6082 parser->buffer); 6083 trace_parser_clear(parser); 6084 } 6085 6086 if (!ret) 6087 ret = read; 6088 6089 return ret; 6090 } 6091 6092 static const struct file_operations ftrace_graph_fops = { 6093 .open = ftrace_graph_open, 6094 .read = seq_read, 6095 .write = ftrace_graph_write, 6096 .llseek = tracing_lseek, 6097 .release = ftrace_graph_release, 6098 }; 6099 6100 static const struct file_operations ftrace_graph_notrace_fops = { 6101 .open = ftrace_graph_notrace_open, 6102 .read = seq_read, 6103 .write = ftrace_graph_write, 6104 .llseek = tracing_lseek, 6105 .release = ftrace_graph_release, 6106 }; 6107 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6108 6109 void ftrace_create_filter_files(struct ftrace_ops *ops, 6110 struct dentry *parent) 6111 { 6112 6113 trace_create_file("set_ftrace_filter", TRACE_MODE_WRITE, parent, 6114 ops, &ftrace_filter_fops); 6115 6116 trace_create_file("set_ftrace_notrace", TRACE_MODE_WRITE, parent, 6117 ops, &ftrace_notrace_fops); 6118 } 6119 6120 /* 6121 * The name "destroy_filter_files" is really a misnomer. Although 6122 * in the future, it may actually delete the files, but this is 6123 * really intended to make sure the ops passed in are disabled 6124 * and that when this function returns, the caller is free to 6125 * free the ops. 6126 * 6127 * The "destroy" name is only to match the "create" name that this 6128 * should be paired with. 6129 */ 6130 void ftrace_destroy_filter_files(struct ftrace_ops *ops) 6131 { 6132 mutex_lock(&ftrace_lock); 6133 if (ops->flags & FTRACE_OPS_FL_ENABLED) 6134 ftrace_shutdown(ops, 0); 6135 ops->flags |= FTRACE_OPS_FL_DELETED; 6136 ftrace_free_filter(ops); 6137 mutex_unlock(&ftrace_lock); 6138 } 6139 6140 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer) 6141 { 6142 6143 trace_create_file("available_filter_functions", TRACE_MODE_READ, 6144 d_tracer, NULL, &ftrace_avail_fops); 6145 6146 trace_create_file("enabled_functions", TRACE_MODE_READ, 6147 d_tracer, NULL, &ftrace_enabled_fops); 6148 6149 ftrace_create_filter_files(&global_ops, d_tracer); 6150 6151 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6152 trace_create_file("set_graph_function", TRACE_MODE_WRITE, d_tracer, 6153 NULL, 6154 &ftrace_graph_fops); 6155 trace_create_file("set_graph_notrace", TRACE_MODE_WRITE, d_tracer, 6156 NULL, 6157 &ftrace_graph_notrace_fops); 6158 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6159 6160 return 0; 6161 } 6162 6163 static int ftrace_cmp_ips(const void *a, const void *b) 6164 { 6165 const unsigned long *ipa = a; 6166 const unsigned long *ipb = b; 6167 6168 if (*ipa > *ipb) 6169 return 1; 6170 if (*ipa < *ipb) 6171 return -1; 6172 return 0; 6173 } 6174 6175 static int ftrace_process_locs(struct module *mod, 6176 unsigned long *start, 6177 unsigned long *end) 6178 { 6179 struct ftrace_page *start_pg; 6180 struct ftrace_page *pg; 6181 struct dyn_ftrace *rec; 6182 unsigned long count; 6183 unsigned long *p; 6184 unsigned long addr; 6185 unsigned long flags = 0; /* Shut up gcc */ 6186 int ret = -ENOMEM; 6187 6188 count = end - start; 6189 6190 if (!count) 6191 return 0; 6192 6193 sort(start, count, sizeof(*start), 6194 ftrace_cmp_ips, NULL); 6195 6196 start_pg = ftrace_allocate_pages(count); 6197 if (!start_pg) 6198 return -ENOMEM; 6199 6200 mutex_lock(&ftrace_lock); 6201 6202 /* 6203 * Core and each module needs their own pages, as 6204 * modules will free them when they are removed. 6205 * Force a new page to be allocated for modules. 6206 */ 6207 if (!mod) { 6208 WARN_ON(ftrace_pages || ftrace_pages_start); 6209 /* First initialization */ 6210 ftrace_pages = ftrace_pages_start = start_pg; 6211 } else { 6212 if (!ftrace_pages) 6213 goto out; 6214 6215 if (WARN_ON(ftrace_pages->next)) { 6216 /* Hmm, we have free pages? */ 6217 while (ftrace_pages->next) 6218 ftrace_pages = ftrace_pages->next; 6219 } 6220 6221 ftrace_pages->next = start_pg; 6222 } 6223 6224 p = start; 6225 pg = start_pg; 6226 while (p < end) { 6227 unsigned long end_offset; 6228 addr = ftrace_call_adjust(*p++); 6229 /* 6230 * Some architecture linkers will pad between 6231 * the different mcount_loc sections of different 6232 * object files to satisfy alignments. 6233 * Skip any NULL pointers. 6234 */ 6235 if (!addr) 6236 continue; 6237 6238 end_offset = (pg->index+1) * sizeof(pg->records[0]); 6239 if (end_offset > PAGE_SIZE << pg->order) { 6240 /* We should have allocated enough */ 6241 if (WARN_ON(!pg->next)) 6242 break; 6243 pg = pg->next; 6244 } 6245 6246 rec = &pg->records[pg->index++]; 6247 rec->ip = addr; 6248 } 6249 6250 /* We should have used all pages */ 6251 WARN_ON(pg->next); 6252 6253 /* Assign the last page to ftrace_pages */ 6254 ftrace_pages = pg; 6255 6256 /* 6257 * We only need to disable interrupts on start up 6258 * because we are modifying code that an interrupt 6259 * may execute, and the modification is not atomic. 6260 * But for modules, nothing runs the code we modify 6261 * until we are finished with it, and there's no 6262 * reason to cause large interrupt latencies while we do it. 6263 */ 6264 if (!mod) 6265 local_irq_save(flags); 6266 ftrace_update_code(mod, start_pg); 6267 if (!mod) 6268 local_irq_restore(flags); 6269 ret = 0; 6270 out: 6271 mutex_unlock(&ftrace_lock); 6272 6273 return ret; 6274 } 6275 6276 struct ftrace_mod_func { 6277 struct list_head list; 6278 char *name; 6279 unsigned long ip; 6280 unsigned int size; 6281 }; 6282 6283 struct ftrace_mod_map { 6284 struct rcu_head rcu; 6285 struct list_head list; 6286 struct module *mod; 6287 unsigned long start_addr; 6288 unsigned long end_addr; 6289 struct list_head funcs; 6290 unsigned int num_funcs; 6291 }; 6292 6293 static int ftrace_get_trampoline_kallsym(unsigned int symnum, 6294 unsigned long *value, char *type, 6295 char *name, char *module_name, 6296 int *exported) 6297 { 6298 struct ftrace_ops *op; 6299 6300 list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) { 6301 if (!op->trampoline || symnum--) 6302 continue; 6303 *value = op->trampoline; 6304 *type = 't'; 6305 strlcpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN); 6306 strlcpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN); 6307 *exported = 0; 6308 return 0; 6309 } 6310 6311 return -ERANGE; 6312 } 6313 6314 #ifdef CONFIG_MODULES 6315 6316 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next) 6317 6318 static LIST_HEAD(ftrace_mod_maps); 6319 6320 static int referenced_filters(struct dyn_ftrace *rec) 6321 { 6322 struct ftrace_ops *ops; 6323 int cnt = 0; 6324 6325 for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) { 6326 if (ops_references_rec(ops, rec)) { 6327 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT)) 6328 continue; 6329 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 6330 continue; 6331 cnt++; 6332 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 6333 rec->flags |= FTRACE_FL_REGS; 6334 if (cnt == 1 && ops->trampoline) 6335 rec->flags |= FTRACE_FL_TRAMP; 6336 else 6337 rec->flags &= ~FTRACE_FL_TRAMP; 6338 } 6339 } 6340 6341 return cnt; 6342 } 6343 6344 static void 6345 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash) 6346 { 6347 struct ftrace_func_entry *entry; 6348 struct dyn_ftrace *rec; 6349 int i; 6350 6351 if (ftrace_hash_empty(hash)) 6352 return; 6353 6354 for (i = 0; i < pg->index; i++) { 6355 rec = &pg->records[i]; 6356 entry = __ftrace_lookup_ip(hash, rec->ip); 6357 /* 6358 * Do not allow this rec to match again. 6359 * Yeah, it may waste some memory, but will be removed 6360 * if/when the hash is modified again. 6361 */ 6362 if (entry) 6363 entry->ip = 0; 6364 } 6365 } 6366 6367 /* Clear any records from hashes */ 6368 static void clear_mod_from_hashes(struct ftrace_page *pg) 6369 { 6370 struct trace_array *tr; 6371 6372 mutex_lock(&trace_types_lock); 6373 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 6374 if (!tr->ops || !tr->ops->func_hash) 6375 continue; 6376 mutex_lock(&tr->ops->func_hash->regex_lock); 6377 clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash); 6378 clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash); 6379 mutex_unlock(&tr->ops->func_hash->regex_lock); 6380 } 6381 mutex_unlock(&trace_types_lock); 6382 } 6383 6384 static void ftrace_free_mod_map(struct rcu_head *rcu) 6385 { 6386 struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu); 6387 struct ftrace_mod_func *mod_func; 6388 struct ftrace_mod_func *n; 6389 6390 /* All the contents of mod_map are now not visible to readers */ 6391 list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) { 6392 kfree(mod_func->name); 6393 list_del(&mod_func->list); 6394 kfree(mod_func); 6395 } 6396 6397 kfree(mod_map); 6398 } 6399 6400 void ftrace_release_mod(struct module *mod) 6401 { 6402 struct ftrace_mod_map *mod_map; 6403 struct ftrace_mod_map *n; 6404 struct dyn_ftrace *rec; 6405 struct ftrace_page **last_pg; 6406 struct ftrace_page *tmp_page = NULL; 6407 struct ftrace_page *pg; 6408 6409 mutex_lock(&ftrace_lock); 6410 6411 if (ftrace_disabled) 6412 goto out_unlock; 6413 6414 list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) { 6415 if (mod_map->mod == mod) { 6416 list_del_rcu(&mod_map->list); 6417 call_rcu(&mod_map->rcu, ftrace_free_mod_map); 6418 break; 6419 } 6420 } 6421 6422 /* 6423 * Each module has its own ftrace_pages, remove 6424 * them from the list. 6425 */ 6426 last_pg = &ftrace_pages_start; 6427 for (pg = ftrace_pages_start; pg; pg = *last_pg) { 6428 rec = &pg->records[0]; 6429 if (within_module_core(rec->ip, mod) || 6430 within_module_init(rec->ip, mod)) { 6431 /* 6432 * As core pages are first, the first 6433 * page should never be a module page. 6434 */ 6435 if (WARN_ON(pg == ftrace_pages_start)) 6436 goto out_unlock; 6437 6438 /* Check if we are deleting the last page */ 6439 if (pg == ftrace_pages) 6440 ftrace_pages = next_to_ftrace_page(last_pg); 6441 6442 ftrace_update_tot_cnt -= pg->index; 6443 *last_pg = pg->next; 6444 6445 pg->next = tmp_page; 6446 tmp_page = pg; 6447 } else 6448 last_pg = &pg->next; 6449 } 6450 out_unlock: 6451 mutex_unlock(&ftrace_lock); 6452 6453 for (pg = tmp_page; pg; pg = tmp_page) { 6454 6455 /* Needs to be called outside of ftrace_lock */ 6456 clear_mod_from_hashes(pg); 6457 6458 if (pg->records) { 6459 free_pages((unsigned long)pg->records, pg->order); 6460 ftrace_number_of_pages -= 1 << pg->order; 6461 } 6462 tmp_page = pg->next; 6463 kfree(pg); 6464 ftrace_number_of_groups--; 6465 } 6466 } 6467 6468 void ftrace_module_enable(struct module *mod) 6469 { 6470 struct dyn_ftrace *rec; 6471 struct ftrace_page *pg; 6472 6473 mutex_lock(&ftrace_lock); 6474 6475 if (ftrace_disabled) 6476 goto out_unlock; 6477 6478 /* 6479 * If the tracing is enabled, go ahead and enable the record. 6480 * 6481 * The reason not to enable the record immediately is the 6482 * inherent check of ftrace_make_nop/ftrace_make_call for 6483 * correct previous instructions. Making first the NOP 6484 * conversion puts the module to the correct state, thus 6485 * passing the ftrace_make_call check. 6486 * 6487 * We also delay this to after the module code already set the 6488 * text to read-only, as we now need to set it back to read-write 6489 * so that we can modify the text. 6490 */ 6491 if (ftrace_start_up) 6492 ftrace_arch_code_modify_prepare(); 6493 6494 do_for_each_ftrace_rec(pg, rec) { 6495 int cnt; 6496 /* 6497 * do_for_each_ftrace_rec() is a double loop. 6498 * module text shares the pg. If a record is 6499 * not part of this module, then skip this pg, 6500 * which the "break" will do. 6501 */ 6502 if (!within_module_core(rec->ip, mod) && 6503 !within_module_init(rec->ip, mod)) 6504 break; 6505 6506 cnt = 0; 6507 6508 /* 6509 * When adding a module, we need to check if tracers are 6510 * currently enabled and if they are, and can trace this record, 6511 * we need to enable the module functions as well as update the 6512 * reference counts for those function records. 6513 */ 6514 if (ftrace_start_up) 6515 cnt += referenced_filters(rec); 6516 6517 rec->flags &= ~FTRACE_FL_DISABLED; 6518 rec->flags += cnt; 6519 6520 if (ftrace_start_up && cnt) { 6521 int failed = __ftrace_replace_code(rec, 1); 6522 if (failed) { 6523 ftrace_bug(failed, rec); 6524 goto out_loop; 6525 } 6526 } 6527 6528 } while_for_each_ftrace_rec(); 6529 6530 out_loop: 6531 if (ftrace_start_up) 6532 ftrace_arch_code_modify_post_process(); 6533 6534 out_unlock: 6535 mutex_unlock(&ftrace_lock); 6536 6537 process_cached_mods(mod->name); 6538 } 6539 6540 void ftrace_module_init(struct module *mod) 6541 { 6542 if (ftrace_disabled || !mod->num_ftrace_callsites) 6543 return; 6544 6545 ftrace_process_locs(mod, mod->ftrace_callsites, 6546 mod->ftrace_callsites + mod->num_ftrace_callsites); 6547 } 6548 6549 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 6550 struct dyn_ftrace *rec) 6551 { 6552 struct ftrace_mod_func *mod_func; 6553 unsigned long symsize; 6554 unsigned long offset; 6555 char str[KSYM_SYMBOL_LEN]; 6556 char *modname; 6557 const char *ret; 6558 6559 ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str); 6560 if (!ret) 6561 return; 6562 6563 mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL); 6564 if (!mod_func) 6565 return; 6566 6567 mod_func->name = kstrdup(str, GFP_KERNEL); 6568 if (!mod_func->name) { 6569 kfree(mod_func); 6570 return; 6571 } 6572 6573 mod_func->ip = rec->ip - offset; 6574 mod_func->size = symsize; 6575 6576 mod_map->num_funcs++; 6577 6578 list_add_rcu(&mod_func->list, &mod_map->funcs); 6579 } 6580 6581 static struct ftrace_mod_map * 6582 allocate_ftrace_mod_map(struct module *mod, 6583 unsigned long start, unsigned long end) 6584 { 6585 struct ftrace_mod_map *mod_map; 6586 6587 mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL); 6588 if (!mod_map) 6589 return NULL; 6590 6591 mod_map->mod = mod; 6592 mod_map->start_addr = start; 6593 mod_map->end_addr = end; 6594 mod_map->num_funcs = 0; 6595 6596 INIT_LIST_HEAD_RCU(&mod_map->funcs); 6597 6598 list_add_rcu(&mod_map->list, &ftrace_mod_maps); 6599 6600 return mod_map; 6601 } 6602 6603 static const char * 6604 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map, 6605 unsigned long addr, unsigned long *size, 6606 unsigned long *off, char *sym) 6607 { 6608 struct ftrace_mod_func *found_func = NULL; 6609 struct ftrace_mod_func *mod_func; 6610 6611 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 6612 if (addr >= mod_func->ip && 6613 addr < mod_func->ip + mod_func->size) { 6614 found_func = mod_func; 6615 break; 6616 } 6617 } 6618 6619 if (found_func) { 6620 if (size) 6621 *size = found_func->size; 6622 if (off) 6623 *off = addr - found_func->ip; 6624 if (sym) 6625 strlcpy(sym, found_func->name, KSYM_NAME_LEN); 6626 6627 return found_func->name; 6628 } 6629 6630 return NULL; 6631 } 6632 6633 const char * 6634 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size, 6635 unsigned long *off, char **modname, char *sym) 6636 { 6637 struct ftrace_mod_map *mod_map; 6638 const char *ret = NULL; 6639 6640 /* mod_map is freed via call_rcu() */ 6641 preempt_disable(); 6642 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 6643 ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym); 6644 if (ret) { 6645 if (modname) 6646 *modname = mod_map->mod->name; 6647 break; 6648 } 6649 } 6650 preempt_enable(); 6651 6652 return ret; 6653 } 6654 6655 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 6656 char *type, char *name, 6657 char *module_name, int *exported) 6658 { 6659 struct ftrace_mod_map *mod_map; 6660 struct ftrace_mod_func *mod_func; 6661 int ret; 6662 6663 preempt_disable(); 6664 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 6665 6666 if (symnum >= mod_map->num_funcs) { 6667 symnum -= mod_map->num_funcs; 6668 continue; 6669 } 6670 6671 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 6672 if (symnum > 1) { 6673 symnum--; 6674 continue; 6675 } 6676 6677 *value = mod_func->ip; 6678 *type = 'T'; 6679 strlcpy(name, mod_func->name, KSYM_NAME_LEN); 6680 strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN); 6681 *exported = 1; 6682 preempt_enable(); 6683 return 0; 6684 } 6685 WARN_ON(1); 6686 break; 6687 } 6688 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 6689 module_name, exported); 6690 preempt_enable(); 6691 return ret; 6692 } 6693 6694 #else 6695 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 6696 struct dyn_ftrace *rec) { } 6697 static inline struct ftrace_mod_map * 6698 allocate_ftrace_mod_map(struct module *mod, 6699 unsigned long start, unsigned long end) 6700 { 6701 return NULL; 6702 } 6703 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 6704 char *type, char *name, char *module_name, 6705 int *exported) 6706 { 6707 int ret; 6708 6709 preempt_disable(); 6710 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 6711 module_name, exported); 6712 preempt_enable(); 6713 return ret; 6714 } 6715 #endif /* CONFIG_MODULES */ 6716 6717 struct ftrace_init_func { 6718 struct list_head list; 6719 unsigned long ip; 6720 }; 6721 6722 /* Clear any init ips from hashes */ 6723 static void 6724 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash) 6725 { 6726 struct ftrace_func_entry *entry; 6727 6728 entry = ftrace_lookup_ip(hash, func->ip); 6729 /* 6730 * Do not allow this rec to match again. 6731 * Yeah, it may waste some memory, but will be removed 6732 * if/when the hash is modified again. 6733 */ 6734 if (entry) 6735 entry->ip = 0; 6736 } 6737 6738 static void 6739 clear_func_from_hashes(struct ftrace_init_func *func) 6740 { 6741 struct trace_array *tr; 6742 6743 mutex_lock(&trace_types_lock); 6744 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 6745 if (!tr->ops || !tr->ops->func_hash) 6746 continue; 6747 mutex_lock(&tr->ops->func_hash->regex_lock); 6748 clear_func_from_hash(func, tr->ops->func_hash->filter_hash); 6749 clear_func_from_hash(func, tr->ops->func_hash->notrace_hash); 6750 mutex_unlock(&tr->ops->func_hash->regex_lock); 6751 } 6752 mutex_unlock(&trace_types_lock); 6753 } 6754 6755 static void add_to_clear_hash_list(struct list_head *clear_list, 6756 struct dyn_ftrace *rec) 6757 { 6758 struct ftrace_init_func *func; 6759 6760 func = kmalloc(sizeof(*func), GFP_KERNEL); 6761 if (!func) { 6762 MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n"); 6763 return; 6764 } 6765 6766 func->ip = rec->ip; 6767 list_add(&func->list, clear_list); 6768 } 6769 6770 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr) 6771 { 6772 unsigned long start = (unsigned long)(start_ptr); 6773 unsigned long end = (unsigned long)(end_ptr); 6774 struct ftrace_page **last_pg = &ftrace_pages_start; 6775 struct ftrace_page *pg; 6776 struct dyn_ftrace *rec; 6777 struct dyn_ftrace key; 6778 struct ftrace_mod_map *mod_map = NULL; 6779 struct ftrace_init_func *func, *func_next; 6780 struct list_head clear_hash; 6781 6782 INIT_LIST_HEAD(&clear_hash); 6783 6784 key.ip = start; 6785 key.flags = end; /* overload flags, as it is unsigned long */ 6786 6787 mutex_lock(&ftrace_lock); 6788 6789 /* 6790 * If we are freeing module init memory, then check if 6791 * any tracer is active. If so, we need to save a mapping of 6792 * the module functions being freed with the address. 6793 */ 6794 if (mod && ftrace_ops_list != &ftrace_list_end) 6795 mod_map = allocate_ftrace_mod_map(mod, start, end); 6796 6797 for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) { 6798 if (end < pg->records[0].ip || 6799 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 6800 continue; 6801 again: 6802 rec = bsearch(&key, pg->records, pg->index, 6803 sizeof(struct dyn_ftrace), 6804 ftrace_cmp_recs); 6805 if (!rec) 6806 continue; 6807 6808 /* rec will be cleared from hashes after ftrace_lock unlock */ 6809 add_to_clear_hash_list(&clear_hash, rec); 6810 6811 if (mod_map) 6812 save_ftrace_mod_rec(mod_map, rec); 6813 6814 pg->index--; 6815 ftrace_update_tot_cnt--; 6816 if (!pg->index) { 6817 *last_pg = pg->next; 6818 if (pg->records) { 6819 free_pages((unsigned long)pg->records, pg->order); 6820 ftrace_number_of_pages -= 1 << pg->order; 6821 } 6822 ftrace_number_of_groups--; 6823 kfree(pg); 6824 pg = container_of(last_pg, struct ftrace_page, next); 6825 if (!(*last_pg)) 6826 ftrace_pages = pg; 6827 continue; 6828 } 6829 memmove(rec, rec + 1, 6830 (pg->index - (rec - pg->records)) * sizeof(*rec)); 6831 /* More than one function may be in this block */ 6832 goto again; 6833 } 6834 mutex_unlock(&ftrace_lock); 6835 6836 list_for_each_entry_safe(func, func_next, &clear_hash, list) { 6837 clear_func_from_hashes(func); 6838 kfree(func); 6839 } 6840 } 6841 6842 void __init ftrace_free_init_mem(void) 6843 { 6844 void *start = (void *)(&__init_begin); 6845 void *end = (void *)(&__init_end); 6846 6847 ftrace_free_mem(NULL, start, end); 6848 } 6849 6850 int __init __weak ftrace_dyn_arch_init(void) 6851 { 6852 return 0; 6853 } 6854 6855 void __init ftrace_init(void) 6856 { 6857 extern unsigned long __start_mcount_loc[]; 6858 extern unsigned long __stop_mcount_loc[]; 6859 unsigned long count, flags; 6860 int ret; 6861 6862 local_irq_save(flags); 6863 ret = ftrace_dyn_arch_init(); 6864 local_irq_restore(flags); 6865 if (ret) 6866 goto failed; 6867 6868 count = __stop_mcount_loc - __start_mcount_loc; 6869 if (!count) { 6870 pr_info("ftrace: No functions to be traced?\n"); 6871 goto failed; 6872 } 6873 6874 pr_info("ftrace: allocating %ld entries in %ld pages\n", 6875 count, count / ENTRIES_PER_PAGE + 1); 6876 6877 last_ftrace_enabled = ftrace_enabled = 1; 6878 6879 ret = ftrace_process_locs(NULL, 6880 __start_mcount_loc, 6881 __stop_mcount_loc); 6882 6883 pr_info("ftrace: allocated %ld pages with %ld groups\n", 6884 ftrace_number_of_pages, ftrace_number_of_groups); 6885 6886 set_ftrace_early_filters(); 6887 6888 return; 6889 failed: 6890 ftrace_disabled = 1; 6891 } 6892 6893 /* Do nothing if arch does not support this */ 6894 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops) 6895 { 6896 } 6897 6898 static void ftrace_update_trampoline(struct ftrace_ops *ops) 6899 { 6900 unsigned long trampoline = ops->trampoline; 6901 6902 arch_ftrace_update_trampoline(ops); 6903 if (ops->trampoline && ops->trampoline != trampoline && 6904 (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) { 6905 /* Add to kallsyms before the perf events */ 6906 ftrace_add_trampoline_to_kallsyms(ops); 6907 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 6908 ops->trampoline, ops->trampoline_size, false, 6909 FTRACE_TRAMPOLINE_SYM); 6910 /* 6911 * Record the perf text poke event after the ksymbol register 6912 * event. 6913 */ 6914 perf_event_text_poke((void *)ops->trampoline, NULL, 0, 6915 (void *)ops->trampoline, 6916 ops->trampoline_size); 6917 } 6918 } 6919 6920 void ftrace_init_trace_array(struct trace_array *tr) 6921 { 6922 INIT_LIST_HEAD(&tr->func_probes); 6923 INIT_LIST_HEAD(&tr->mod_trace); 6924 INIT_LIST_HEAD(&tr->mod_notrace); 6925 } 6926 #else 6927 6928 struct ftrace_ops global_ops = { 6929 .func = ftrace_stub, 6930 .flags = FTRACE_OPS_FL_INITIALIZED | 6931 FTRACE_OPS_FL_PID, 6932 }; 6933 6934 static int __init ftrace_nodyn_init(void) 6935 { 6936 ftrace_enabled = 1; 6937 return 0; 6938 } 6939 core_initcall(ftrace_nodyn_init); 6940 6941 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; } 6942 static inline void ftrace_startup_enable(int command) { } 6943 static inline void ftrace_startup_all(int command) { } 6944 6945 # define ftrace_startup_sysctl() do { } while (0) 6946 # define ftrace_shutdown_sysctl() do { } while (0) 6947 6948 static void ftrace_update_trampoline(struct ftrace_ops *ops) 6949 { 6950 } 6951 6952 #endif /* CONFIG_DYNAMIC_FTRACE */ 6953 6954 __init void ftrace_init_global_array_ops(struct trace_array *tr) 6955 { 6956 tr->ops = &global_ops; 6957 tr->ops->private = tr; 6958 ftrace_init_trace_array(tr); 6959 } 6960 6961 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func) 6962 { 6963 /* If we filter on pids, update to use the pid function */ 6964 if (tr->flags & TRACE_ARRAY_FL_GLOBAL) { 6965 if (WARN_ON(tr->ops->func != ftrace_stub)) 6966 printk("ftrace ops had %pS for function\n", 6967 tr->ops->func); 6968 } 6969 tr->ops->func = func; 6970 tr->ops->private = tr; 6971 } 6972 6973 void ftrace_reset_array_ops(struct trace_array *tr) 6974 { 6975 tr->ops->func = ftrace_stub; 6976 } 6977 6978 static nokprobe_inline void 6979 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 6980 struct ftrace_ops *ignored, struct ftrace_regs *fregs) 6981 { 6982 struct pt_regs *regs = ftrace_get_regs(fregs); 6983 struct ftrace_ops *op; 6984 int bit; 6985 6986 bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START, TRACE_LIST_MAX); 6987 if (bit < 0) 6988 return; 6989 6990 /* 6991 * Some of the ops may be dynamically allocated, 6992 * they must be freed after a synchronize_rcu(). 6993 */ 6994 preempt_disable_notrace(); 6995 6996 do_for_each_ftrace_op(op, ftrace_ops_list) { 6997 /* Stub functions don't need to be called nor tested */ 6998 if (op->flags & FTRACE_OPS_FL_STUB) 6999 continue; 7000 /* 7001 * Check the following for each ops before calling their func: 7002 * if RCU flag is set, then rcu_is_watching() must be true 7003 * if PER_CPU is set, then ftrace_function_local_disable() 7004 * must be false 7005 * Otherwise test if the ip matches the ops filter 7006 * 7007 * If any of the above fails then the op->func() is not executed. 7008 */ 7009 if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) && 7010 ftrace_ops_test(op, ip, regs)) { 7011 if (FTRACE_WARN_ON(!op->func)) { 7012 pr_warn("op=%p %pS\n", op, op); 7013 goto out; 7014 } 7015 op->func(ip, parent_ip, op, fregs); 7016 } 7017 } while_for_each_ftrace_op(op); 7018 out: 7019 preempt_enable_notrace(); 7020 trace_clear_recursion(bit); 7021 } 7022 7023 /* 7024 * Some archs only support passing ip and parent_ip. Even though 7025 * the list function ignores the op parameter, we do not want any 7026 * C side effects, where a function is called without the caller 7027 * sending a third parameter. 7028 * Archs are to support both the regs and ftrace_ops at the same time. 7029 * If they support ftrace_ops, it is assumed they support regs. 7030 * If call backs want to use regs, they must either check for regs 7031 * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS. 7032 * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved. 7033 * An architecture can pass partial regs with ftrace_ops and still 7034 * set the ARCH_SUPPORTS_FTRACE_OPS. 7035 */ 7036 #if ARCH_SUPPORTS_FTRACE_OPS 7037 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 7038 struct ftrace_ops *op, struct ftrace_regs *fregs) 7039 { 7040 __ftrace_ops_list_func(ip, parent_ip, NULL, fregs); 7041 } 7042 NOKPROBE_SYMBOL(ftrace_ops_list_func); 7043 #else 7044 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip) 7045 { 7046 __ftrace_ops_list_func(ip, parent_ip, NULL, NULL); 7047 } 7048 NOKPROBE_SYMBOL(ftrace_ops_no_ops); 7049 #endif 7050 7051 /* 7052 * If there's only one function registered but it does not support 7053 * recursion, needs RCU protection and/or requires per cpu handling, then 7054 * this function will be called by the mcount trampoline. 7055 */ 7056 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip, 7057 struct ftrace_ops *op, struct ftrace_regs *fregs) 7058 { 7059 int bit; 7060 7061 bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START, TRACE_LIST_MAX); 7062 if (bit < 0) 7063 return; 7064 7065 preempt_disable_notrace(); 7066 7067 if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) 7068 op->func(ip, parent_ip, op, fregs); 7069 7070 preempt_enable_notrace(); 7071 trace_clear_recursion(bit); 7072 } 7073 NOKPROBE_SYMBOL(ftrace_ops_assist_func); 7074 7075 /** 7076 * ftrace_ops_get_func - get the function a trampoline should call 7077 * @ops: the ops to get the function for 7078 * 7079 * Normally the mcount trampoline will call the ops->func, but there 7080 * are times that it should not. For example, if the ops does not 7081 * have its own recursion protection, then it should call the 7082 * ftrace_ops_assist_func() instead. 7083 * 7084 * Returns the function that the trampoline should call for @ops. 7085 */ 7086 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops) 7087 { 7088 /* 7089 * If the function does not handle recursion or needs to be RCU safe, 7090 * then we need to call the assist handler. 7091 */ 7092 if (ops->flags & (FTRACE_OPS_FL_RECURSION | 7093 FTRACE_OPS_FL_RCU)) 7094 return ftrace_ops_assist_func; 7095 7096 return ops->func; 7097 } 7098 7099 static void 7100 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt, 7101 struct task_struct *prev, struct task_struct *next) 7102 { 7103 struct trace_array *tr = data; 7104 struct trace_pid_list *pid_list; 7105 struct trace_pid_list *no_pid_list; 7106 7107 pid_list = rcu_dereference_sched(tr->function_pids); 7108 no_pid_list = rcu_dereference_sched(tr->function_no_pids); 7109 7110 if (trace_ignore_this_task(pid_list, no_pid_list, next)) 7111 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7112 FTRACE_PID_IGNORE); 7113 else 7114 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7115 next->pid); 7116 } 7117 7118 static void 7119 ftrace_pid_follow_sched_process_fork(void *data, 7120 struct task_struct *self, 7121 struct task_struct *task) 7122 { 7123 struct trace_pid_list *pid_list; 7124 struct trace_array *tr = data; 7125 7126 pid_list = rcu_dereference_sched(tr->function_pids); 7127 trace_filter_add_remove_task(pid_list, self, task); 7128 7129 pid_list = rcu_dereference_sched(tr->function_no_pids); 7130 trace_filter_add_remove_task(pid_list, self, task); 7131 } 7132 7133 static void 7134 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task) 7135 { 7136 struct trace_pid_list *pid_list; 7137 struct trace_array *tr = data; 7138 7139 pid_list = rcu_dereference_sched(tr->function_pids); 7140 trace_filter_add_remove_task(pid_list, NULL, task); 7141 7142 pid_list = rcu_dereference_sched(tr->function_no_pids); 7143 trace_filter_add_remove_task(pid_list, NULL, task); 7144 } 7145 7146 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable) 7147 { 7148 if (enable) { 7149 register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 7150 tr); 7151 register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 7152 tr); 7153 } else { 7154 unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 7155 tr); 7156 unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 7157 tr); 7158 } 7159 } 7160 7161 static void clear_ftrace_pids(struct trace_array *tr, int type) 7162 { 7163 struct trace_pid_list *pid_list; 7164 struct trace_pid_list *no_pid_list; 7165 int cpu; 7166 7167 pid_list = rcu_dereference_protected(tr->function_pids, 7168 lockdep_is_held(&ftrace_lock)); 7169 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 7170 lockdep_is_held(&ftrace_lock)); 7171 7172 /* Make sure there's something to do */ 7173 if (!pid_type_enabled(type, pid_list, no_pid_list)) 7174 return; 7175 7176 /* See if the pids still need to be checked after this */ 7177 if (!still_need_pid_events(type, pid_list, no_pid_list)) { 7178 unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7179 for_each_possible_cpu(cpu) 7180 per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE; 7181 } 7182 7183 if (type & TRACE_PIDS) 7184 rcu_assign_pointer(tr->function_pids, NULL); 7185 7186 if (type & TRACE_NO_PIDS) 7187 rcu_assign_pointer(tr->function_no_pids, NULL); 7188 7189 /* Wait till all users are no longer using pid filtering */ 7190 synchronize_rcu(); 7191 7192 if ((type & TRACE_PIDS) && pid_list) 7193 trace_pid_list_free(pid_list); 7194 7195 if ((type & TRACE_NO_PIDS) && no_pid_list) 7196 trace_pid_list_free(no_pid_list); 7197 } 7198 7199 void ftrace_clear_pids(struct trace_array *tr) 7200 { 7201 mutex_lock(&ftrace_lock); 7202 7203 clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS); 7204 7205 mutex_unlock(&ftrace_lock); 7206 } 7207 7208 static void ftrace_pid_reset(struct trace_array *tr, int type) 7209 { 7210 mutex_lock(&ftrace_lock); 7211 clear_ftrace_pids(tr, type); 7212 7213 ftrace_update_pid_func(); 7214 ftrace_startup_all(0); 7215 7216 mutex_unlock(&ftrace_lock); 7217 } 7218 7219 /* Greater than any max PID */ 7220 #define FTRACE_NO_PIDS (void *)(PID_MAX_LIMIT + 1) 7221 7222 static void *fpid_start(struct seq_file *m, loff_t *pos) 7223 __acquires(RCU) 7224 { 7225 struct trace_pid_list *pid_list; 7226 struct trace_array *tr = m->private; 7227 7228 mutex_lock(&ftrace_lock); 7229 rcu_read_lock_sched(); 7230 7231 pid_list = rcu_dereference_sched(tr->function_pids); 7232 7233 if (!pid_list) 7234 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7235 7236 return trace_pid_start(pid_list, pos); 7237 } 7238 7239 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos) 7240 { 7241 struct trace_array *tr = m->private; 7242 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids); 7243 7244 if (v == FTRACE_NO_PIDS) { 7245 (*pos)++; 7246 return NULL; 7247 } 7248 return trace_pid_next(pid_list, v, pos); 7249 } 7250 7251 static void fpid_stop(struct seq_file *m, void *p) 7252 __releases(RCU) 7253 { 7254 rcu_read_unlock_sched(); 7255 mutex_unlock(&ftrace_lock); 7256 } 7257 7258 static int fpid_show(struct seq_file *m, void *v) 7259 { 7260 if (v == FTRACE_NO_PIDS) { 7261 seq_puts(m, "no pid\n"); 7262 return 0; 7263 } 7264 7265 return trace_pid_show(m, v); 7266 } 7267 7268 static const struct seq_operations ftrace_pid_sops = { 7269 .start = fpid_start, 7270 .next = fpid_next, 7271 .stop = fpid_stop, 7272 .show = fpid_show, 7273 }; 7274 7275 static void *fnpid_start(struct seq_file *m, loff_t *pos) 7276 __acquires(RCU) 7277 { 7278 struct trace_pid_list *pid_list; 7279 struct trace_array *tr = m->private; 7280 7281 mutex_lock(&ftrace_lock); 7282 rcu_read_lock_sched(); 7283 7284 pid_list = rcu_dereference_sched(tr->function_no_pids); 7285 7286 if (!pid_list) 7287 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7288 7289 return trace_pid_start(pid_list, pos); 7290 } 7291 7292 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos) 7293 { 7294 struct trace_array *tr = m->private; 7295 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids); 7296 7297 if (v == FTRACE_NO_PIDS) { 7298 (*pos)++; 7299 return NULL; 7300 } 7301 return trace_pid_next(pid_list, v, pos); 7302 } 7303 7304 static const struct seq_operations ftrace_no_pid_sops = { 7305 .start = fnpid_start, 7306 .next = fnpid_next, 7307 .stop = fpid_stop, 7308 .show = fpid_show, 7309 }; 7310 7311 static int pid_open(struct inode *inode, struct file *file, int type) 7312 { 7313 const struct seq_operations *seq_ops; 7314 struct trace_array *tr = inode->i_private; 7315 struct seq_file *m; 7316 int ret = 0; 7317 7318 ret = tracing_check_open_get_tr(tr); 7319 if (ret) 7320 return ret; 7321 7322 if ((file->f_mode & FMODE_WRITE) && 7323 (file->f_flags & O_TRUNC)) 7324 ftrace_pid_reset(tr, type); 7325 7326 switch (type) { 7327 case TRACE_PIDS: 7328 seq_ops = &ftrace_pid_sops; 7329 break; 7330 case TRACE_NO_PIDS: 7331 seq_ops = &ftrace_no_pid_sops; 7332 break; 7333 default: 7334 trace_array_put(tr); 7335 WARN_ON_ONCE(1); 7336 return -EINVAL; 7337 } 7338 7339 ret = seq_open(file, seq_ops); 7340 if (ret < 0) { 7341 trace_array_put(tr); 7342 } else { 7343 m = file->private_data; 7344 /* copy tr over to seq ops */ 7345 m->private = tr; 7346 } 7347 7348 return ret; 7349 } 7350 7351 static int 7352 ftrace_pid_open(struct inode *inode, struct file *file) 7353 { 7354 return pid_open(inode, file, TRACE_PIDS); 7355 } 7356 7357 static int 7358 ftrace_no_pid_open(struct inode *inode, struct file *file) 7359 { 7360 return pid_open(inode, file, TRACE_NO_PIDS); 7361 } 7362 7363 static void ignore_task_cpu(void *data) 7364 { 7365 struct trace_array *tr = data; 7366 struct trace_pid_list *pid_list; 7367 struct trace_pid_list *no_pid_list; 7368 7369 /* 7370 * This function is called by on_each_cpu() while the 7371 * event_mutex is held. 7372 */ 7373 pid_list = rcu_dereference_protected(tr->function_pids, 7374 mutex_is_locked(&ftrace_lock)); 7375 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 7376 mutex_is_locked(&ftrace_lock)); 7377 7378 if (trace_ignore_this_task(pid_list, no_pid_list, current)) 7379 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7380 FTRACE_PID_IGNORE); 7381 else 7382 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7383 current->pid); 7384 } 7385 7386 static ssize_t 7387 pid_write(struct file *filp, const char __user *ubuf, 7388 size_t cnt, loff_t *ppos, int type) 7389 { 7390 struct seq_file *m = filp->private_data; 7391 struct trace_array *tr = m->private; 7392 struct trace_pid_list *filtered_pids; 7393 struct trace_pid_list *other_pids; 7394 struct trace_pid_list *pid_list; 7395 ssize_t ret; 7396 7397 if (!cnt) 7398 return 0; 7399 7400 mutex_lock(&ftrace_lock); 7401 7402 switch (type) { 7403 case TRACE_PIDS: 7404 filtered_pids = rcu_dereference_protected(tr->function_pids, 7405 lockdep_is_held(&ftrace_lock)); 7406 other_pids = rcu_dereference_protected(tr->function_no_pids, 7407 lockdep_is_held(&ftrace_lock)); 7408 break; 7409 case TRACE_NO_PIDS: 7410 filtered_pids = rcu_dereference_protected(tr->function_no_pids, 7411 lockdep_is_held(&ftrace_lock)); 7412 other_pids = rcu_dereference_protected(tr->function_pids, 7413 lockdep_is_held(&ftrace_lock)); 7414 break; 7415 default: 7416 ret = -EINVAL; 7417 WARN_ON_ONCE(1); 7418 goto out; 7419 } 7420 7421 ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt); 7422 if (ret < 0) 7423 goto out; 7424 7425 switch (type) { 7426 case TRACE_PIDS: 7427 rcu_assign_pointer(tr->function_pids, pid_list); 7428 break; 7429 case TRACE_NO_PIDS: 7430 rcu_assign_pointer(tr->function_no_pids, pid_list); 7431 break; 7432 } 7433 7434 7435 if (filtered_pids) { 7436 synchronize_rcu(); 7437 trace_pid_list_free(filtered_pids); 7438 } else if (pid_list && !other_pids) { 7439 /* Register a probe to set whether to ignore the tracing of a task */ 7440 register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7441 } 7442 7443 /* 7444 * Ignoring of pids is done at task switch. But we have to 7445 * check for those tasks that are currently running. 7446 * Always do this in case a pid was appended or removed. 7447 */ 7448 on_each_cpu(ignore_task_cpu, tr, 1); 7449 7450 ftrace_update_pid_func(); 7451 ftrace_startup_all(0); 7452 out: 7453 mutex_unlock(&ftrace_lock); 7454 7455 if (ret > 0) 7456 *ppos += ret; 7457 7458 return ret; 7459 } 7460 7461 static ssize_t 7462 ftrace_pid_write(struct file *filp, const char __user *ubuf, 7463 size_t cnt, loff_t *ppos) 7464 { 7465 return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS); 7466 } 7467 7468 static ssize_t 7469 ftrace_no_pid_write(struct file *filp, const char __user *ubuf, 7470 size_t cnt, loff_t *ppos) 7471 { 7472 return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS); 7473 } 7474 7475 static int 7476 ftrace_pid_release(struct inode *inode, struct file *file) 7477 { 7478 struct trace_array *tr = inode->i_private; 7479 7480 trace_array_put(tr); 7481 7482 return seq_release(inode, file); 7483 } 7484 7485 static const struct file_operations ftrace_pid_fops = { 7486 .open = ftrace_pid_open, 7487 .write = ftrace_pid_write, 7488 .read = seq_read, 7489 .llseek = tracing_lseek, 7490 .release = ftrace_pid_release, 7491 }; 7492 7493 static const struct file_operations ftrace_no_pid_fops = { 7494 .open = ftrace_no_pid_open, 7495 .write = ftrace_no_pid_write, 7496 .read = seq_read, 7497 .llseek = tracing_lseek, 7498 .release = ftrace_pid_release, 7499 }; 7500 7501 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer) 7502 { 7503 trace_create_file("set_ftrace_pid", TRACE_MODE_WRITE, d_tracer, 7504 tr, &ftrace_pid_fops); 7505 trace_create_file("set_ftrace_notrace_pid", TRACE_MODE_WRITE, 7506 d_tracer, tr, &ftrace_no_pid_fops); 7507 } 7508 7509 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr, 7510 struct dentry *d_tracer) 7511 { 7512 /* Only the top level directory has the dyn_tracefs and profile */ 7513 WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL)); 7514 7515 ftrace_init_dyn_tracefs(d_tracer); 7516 ftrace_profile_tracefs(d_tracer); 7517 } 7518 7519 /** 7520 * ftrace_kill - kill ftrace 7521 * 7522 * This function should be used by panic code. It stops ftrace 7523 * but in a not so nice way. If you need to simply kill ftrace 7524 * from a non-atomic section, use ftrace_kill. 7525 */ 7526 void ftrace_kill(void) 7527 { 7528 ftrace_disabled = 1; 7529 ftrace_enabled = 0; 7530 ftrace_trace_function = ftrace_stub; 7531 } 7532 7533 /** 7534 * Test if ftrace is dead or not. 7535 */ 7536 int ftrace_is_dead(void) 7537 { 7538 return ftrace_disabled; 7539 } 7540 7541 /** 7542 * register_ftrace_function - register a function for profiling 7543 * @ops - ops structure that holds the function for profiling. 7544 * 7545 * Register a function to be called by all functions in the 7546 * kernel. 7547 * 7548 * Note: @ops->func and all the functions it calls must be labeled 7549 * with "notrace", otherwise it will go into a 7550 * recursive loop. 7551 */ 7552 int register_ftrace_function(struct ftrace_ops *ops) 7553 { 7554 int ret; 7555 7556 ftrace_ops_init(ops); 7557 7558 mutex_lock(&ftrace_lock); 7559 7560 ret = ftrace_startup(ops, 0); 7561 7562 mutex_unlock(&ftrace_lock); 7563 7564 return ret; 7565 } 7566 EXPORT_SYMBOL_GPL(register_ftrace_function); 7567 7568 /** 7569 * unregister_ftrace_function - unregister a function for profiling. 7570 * @ops - ops structure that holds the function to unregister 7571 * 7572 * Unregister a function that was added to be called by ftrace profiling. 7573 */ 7574 int unregister_ftrace_function(struct ftrace_ops *ops) 7575 { 7576 int ret; 7577 7578 mutex_lock(&ftrace_lock); 7579 ret = ftrace_shutdown(ops, 0); 7580 mutex_unlock(&ftrace_lock); 7581 7582 return ret; 7583 } 7584 EXPORT_SYMBOL_GPL(unregister_ftrace_function); 7585 7586 static bool is_permanent_ops_registered(void) 7587 { 7588 struct ftrace_ops *op; 7589 7590 do_for_each_ftrace_op(op, ftrace_ops_list) { 7591 if (op->flags & FTRACE_OPS_FL_PERMANENT) 7592 return true; 7593 } while_for_each_ftrace_op(op); 7594 7595 return false; 7596 } 7597 7598 int 7599 ftrace_enable_sysctl(struct ctl_table *table, int write, 7600 void *buffer, size_t *lenp, loff_t *ppos) 7601 { 7602 int ret = -ENODEV; 7603 7604 mutex_lock(&ftrace_lock); 7605 7606 if (unlikely(ftrace_disabled)) 7607 goto out; 7608 7609 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7610 7611 if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) 7612 goto out; 7613 7614 if (ftrace_enabled) { 7615 7616 /* we are starting ftrace again */ 7617 if (rcu_dereference_protected(ftrace_ops_list, 7618 lockdep_is_held(&ftrace_lock)) != &ftrace_list_end) 7619 update_ftrace_function(); 7620 7621 ftrace_startup_sysctl(); 7622 7623 } else { 7624 if (is_permanent_ops_registered()) { 7625 ftrace_enabled = true; 7626 ret = -EBUSY; 7627 goto out; 7628 } 7629 7630 /* stopping ftrace calls (just send to ftrace_stub) */ 7631 ftrace_trace_function = ftrace_stub; 7632 7633 ftrace_shutdown_sysctl(); 7634 } 7635 7636 last_ftrace_enabled = !!ftrace_enabled; 7637 out: 7638 mutex_unlock(&ftrace_lock); 7639 return ret; 7640 } 7641