xref: /linux/kernel/trace/ftrace.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Infrastructure for profiling code inserted by 'gcc -pg'.
4  *
5  * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
6  * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com>
7  *
8  * Originally ported from the -rt patch by:
9  *   Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com>
10  *
11  * Based on code in the latency_tracer, that is:
12  *
13  *  Copyright (C) 2004-2006 Ingo Molnar
14  *  Copyright (C) 2004 Nadia Yvette Chambers
15  */
16 
17 #include <linux/stop_machine.h>
18 #include <linux/clocksource.h>
19 #include <linux/sched/task.h>
20 #include <linux/kallsyms.h>
21 #include <linux/security.h>
22 #include <linux/seq_file.h>
23 #include <linux/tracefs.h>
24 #include <linux/hardirq.h>
25 #include <linux/kthread.h>
26 #include <linux/uaccess.h>
27 #include <linux/bsearch.h>
28 #include <linux/module.h>
29 #include <linux/ftrace.h>
30 #include <linux/sysctl.h>
31 #include <linux/slab.h>
32 #include <linux/ctype.h>
33 #include <linux/sort.h>
34 #include <linux/list.h>
35 #include <linux/hash.h>
36 #include <linux/rcupdate.h>
37 #include <linux/kprobes.h>
38 
39 #include <trace/events/sched.h>
40 
41 #include <asm/sections.h>
42 #include <asm/setup.h>
43 
44 #include "ftrace_internal.h"
45 #include "trace_output.h"
46 #include "trace_stat.h"
47 
48 #define FTRACE_WARN_ON(cond)			\
49 	({					\
50 		int ___r = cond;		\
51 		if (WARN_ON(___r))		\
52 			ftrace_kill();		\
53 		___r;				\
54 	})
55 
56 #define FTRACE_WARN_ON_ONCE(cond)		\
57 	({					\
58 		int ___r = cond;		\
59 		if (WARN_ON_ONCE(___r))		\
60 			ftrace_kill();		\
61 		___r;				\
62 	})
63 
64 /* hash bits for specific function selection */
65 #define FTRACE_HASH_DEFAULT_BITS 10
66 #define FTRACE_HASH_MAX_BITS 12
67 
68 #ifdef CONFIG_DYNAMIC_FTRACE
69 #define INIT_OPS_HASH(opsname)	\
70 	.func_hash		= &opsname.local_hash,			\
71 	.local_hash.regex_lock	= __MUTEX_INITIALIZER(opsname.local_hash.regex_lock),
72 #else
73 #define INIT_OPS_HASH(opsname)
74 #endif
75 
76 enum {
77 	FTRACE_MODIFY_ENABLE_FL		= (1 << 0),
78 	FTRACE_MODIFY_MAY_SLEEP_FL	= (1 << 1),
79 };
80 
81 struct ftrace_ops ftrace_list_end __read_mostly = {
82 	.func		= ftrace_stub,
83 	.flags		= FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_STUB,
84 	INIT_OPS_HASH(ftrace_list_end)
85 };
86 
87 /* ftrace_enabled is a method to turn ftrace on or off */
88 int ftrace_enabled __read_mostly;
89 static int last_ftrace_enabled;
90 
91 /* Current function tracing op */
92 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end;
93 /* What to set function_trace_op to */
94 static struct ftrace_ops *set_function_trace_op;
95 
96 static bool ftrace_pids_enabled(struct ftrace_ops *ops)
97 {
98 	struct trace_array *tr;
99 
100 	if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private)
101 		return false;
102 
103 	tr = ops->private;
104 
105 	return tr->function_pids != NULL;
106 }
107 
108 static void ftrace_update_trampoline(struct ftrace_ops *ops);
109 
110 /*
111  * ftrace_disabled is set when an anomaly is discovered.
112  * ftrace_disabled is much stronger than ftrace_enabled.
113  */
114 static int ftrace_disabled __read_mostly;
115 
116 DEFINE_MUTEX(ftrace_lock);
117 
118 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end;
119 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub;
120 struct ftrace_ops global_ops;
121 
122 #if ARCH_SUPPORTS_FTRACE_OPS
123 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
124 				 struct ftrace_ops *op, struct pt_regs *regs);
125 #else
126 /* See comment below, where ftrace_ops_list_func is defined */
127 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip);
128 #define ftrace_ops_list_func ((ftrace_func_t)ftrace_ops_no_ops)
129 #endif
130 
131 static inline void ftrace_ops_init(struct ftrace_ops *ops)
132 {
133 #ifdef CONFIG_DYNAMIC_FTRACE
134 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) {
135 		mutex_init(&ops->local_hash.regex_lock);
136 		ops->func_hash = &ops->local_hash;
137 		ops->flags |= FTRACE_OPS_FL_INITIALIZED;
138 	}
139 #endif
140 }
141 
142 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip,
143 			    struct ftrace_ops *op, struct pt_regs *regs)
144 {
145 	struct trace_array *tr = op->private;
146 
147 	if (tr && this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid))
148 		return;
149 
150 	op->saved_func(ip, parent_ip, op, regs);
151 }
152 
153 static void ftrace_sync(struct work_struct *work)
154 {
155 	/*
156 	 * This function is just a stub to implement a hard force
157 	 * of synchronize_rcu(). This requires synchronizing
158 	 * tasks even in userspace and idle.
159 	 *
160 	 * Yes, function tracing is rude.
161 	 */
162 }
163 
164 static void ftrace_sync_ipi(void *data)
165 {
166 	/* Probably not needed, but do it anyway */
167 	smp_rmb();
168 }
169 
170 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops)
171 {
172 	/*
173 	 * If this is a dynamic, RCU, or per CPU ops, or we force list func,
174 	 * then it needs to call the list anyway.
175 	 */
176 	if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) ||
177 	    FTRACE_FORCE_LIST_FUNC)
178 		return ftrace_ops_list_func;
179 
180 	return ftrace_ops_get_func(ops);
181 }
182 
183 static void update_ftrace_function(void)
184 {
185 	ftrace_func_t func;
186 
187 	/*
188 	 * Prepare the ftrace_ops that the arch callback will use.
189 	 * If there's only one ftrace_ops registered, the ftrace_ops_list
190 	 * will point to the ops we want.
191 	 */
192 	set_function_trace_op = rcu_dereference_protected(ftrace_ops_list,
193 						lockdep_is_held(&ftrace_lock));
194 
195 	/* If there's no ftrace_ops registered, just call the stub function */
196 	if (set_function_trace_op == &ftrace_list_end) {
197 		func = ftrace_stub;
198 
199 	/*
200 	 * If we are at the end of the list and this ops is
201 	 * recursion safe and not dynamic and the arch supports passing ops,
202 	 * then have the mcount trampoline call the function directly.
203 	 */
204 	} else if (rcu_dereference_protected(ftrace_ops_list->next,
205 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
206 		func = ftrace_ops_get_list_func(ftrace_ops_list);
207 
208 	} else {
209 		/* Just use the default ftrace_ops */
210 		set_function_trace_op = &ftrace_list_end;
211 		func = ftrace_ops_list_func;
212 	}
213 
214 	update_function_graph_func();
215 
216 	/* If there's no change, then do nothing more here */
217 	if (ftrace_trace_function == func)
218 		return;
219 
220 	/*
221 	 * If we are using the list function, it doesn't care
222 	 * about the function_trace_ops.
223 	 */
224 	if (func == ftrace_ops_list_func) {
225 		ftrace_trace_function = func;
226 		/*
227 		 * Don't even bother setting function_trace_ops,
228 		 * it would be racy to do so anyway.
229 		 */
230 		return;
231 	}
232 
233 #ifndef CONFIG_DYNAMIC_FTRACE
234 	/*
235 	 * For static tracing, we need to be a bit more careful.
236 	 * The function change takes affect immediately. Thus,
237 	 * we need to coorditate the setting of the function_trace_ops
238 	 * with the setting of the ftrace_trace_function.
239 	 *
240 	 * Set the function to the list ops, which will call the
241 	 * function we want, albeit indirectly, but it handles the
242 	 * ftrace_ops and doesn't depend on function_trace_op.
243 	 */
244 	ftrace_trace_function = ftrace_ops_list_func;
245 	/*
246 	 * Make sure all CPUs see this. Yes this is slow, but static
247 	 * tracing is slow and nasty to have enabled.
248 	 */
249 	schedule_on_each_cpu(ftrace_sync);
250 	/* Now all cpus are using the list ops. */
251 	function_trace_op = set_function_trace_op;
252 	/* Make sure the function_trace_op is visible on all CPUs */
253 	smp_wmb();
254 	/* Nasty way to force a rmb on all cpus */
255 	smp_call_function(ftrace_sync_ipi, NULL, 1);
256 	/* OK, we are all set to update the ftrace_trace_function now! */
257 #endif /* !CONFIG_DYNAMIC_FTRACE */
258 
259 	ftrace_trace_function = func;
260 }
261 
262 static void add_ftrace_ops(struct ftrace_ops __rcu **list,
263 			   struct ftrace_ops *ops)
264 {
265 	rcu_assign_pointer(ops->next, *list);
266 
267 	/*
268 	 * We are entering ops into the list but another
269 	 * CPU might be walking that list. We need to make sure
270 	 * the ops->next pointer is valid before another CPU sees
271 	 * the ops pointer included into the list.
272 	 */
273 	rcu_assign_pointer(*list, ops);
274 }
275 
276 static int remove_ftrace_ops(struct ftrace_ops __rcu **list,
277 			     struct ftrace_ops *ops)
278 {
279 	struct ftrace_ops **p;
280 
281 	/*
282 	 * If we are removing the last function, then simply point
283 	 * to the ftrace_stub.
284 	 */
285 	if (rcu_dereference_protected(*list,
286 			lockdep_is_held(&ftrace_lock)) == ops &&
287 	    rcu_dereference_protected(ops->next,
288 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
289 		*list = &ftrace_list_end;
290 		return 0;
291 	}
292 
293 	for (p = list; *p != &ftrace_list_end; p = &(*p)->next)
294 		if (*p == ops)
295 			break;
296 
297 	if (*p != ops)
298 		return -1;
299 
300 	*p = (*p)->next;
301 	return 0;
302 }
303 
304 static void ftrace_update_trampoline(struct ftrace_ops *ops);
305 
306 int __register_ftrace_function(struct ftrace_ops *ops)
307 {
308 	if (ops->flags & FTRACE_OPS_FL_DELETED)
309 		return -EINVAL;
310 
311 	if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED))
312 		return -EBUSY;
313 
314 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS
315 	/*
316 	 * If the ftrace_ops specifies SAVE_REGS, then it only can be used
317 	 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set.
318 	 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant.
319 	 */
320 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS &&
321 	    !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED))
322 		return -EINVAL;
323 
324 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)
325 		ops->flags |= FTRACE_OPS_FL_SAVE_REGS;
326 #endif
327 	if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT))
328 		return -EBUSY;
329 
330 	if (!core_kernel_data((unsigned long)ops))
331 		ops->flags |= FTRACE_OPS_FL_DYNAMIC;
332 
333 	add_ftrace_ops(&ftrace_ops_list, ops);
334 
335 	/* Always save the function, and reset at unregistering */
336 	ops->saved_func = ops->func;
337 
338 	if (ftrace_pids_enabled(ops))
339 		ops->func = ftrace_pid_func;
340 
341 	ftrace_update_trampoline(ops);
342 
343 	if (ftrace_enabled)
344 		update_ftrace_function();
345 
346 	return 0;
347 }
348 
349 int __unregister_ftrace_function(struct ftrace_ops *ops)
350 {
351 	int ret;
352 
353 	if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED)))
354 		return -EBUSY;
355 
356 	ret = remove_ftrace_ops(&ftrace_ops_list, ops);
357 
358 	if (ret < 0)
359 		return ret;
360 
361 	if (ftrace_enabled)
362 		update_ftrace_function();
363 
364 	ops->func = ops->saved_func;
365 
366 	return 0;
367 }
368 
369 static void ftrace_update_pid_func(void)
370 {
371 	struct ftrace_ops *op;
372 
373 	/* Only do something if we are tracing something */
374 	if (ftrace_trace_function == ftrace_stub)
375 		return;
376 
377 	do_for_each_ftrace_op(op, ftrace_ops_list) {
378 		if (op->flags & FTRACE_OPS_FL_PID) {
379 			op->func = ftrace_pids_enabled(op) ?
380 				ftrace_pid_func : op->saved_func;
381 			ftrace_update_trampoline(op);
382 		}
383 	} while_for_each_ftrace_op(op);
384 
385 	update_ftrace_function();
386 }
387 
388 #ifdef CONFIG_FUNCTION_PROFILER
389 struct ftrace_profile {
390 	struct hlist_node		node;
391 	unsigned long			ip;
392 	unsigned long			counter;
393 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
394 	unsigned long long		time;
395 	unsigned long long		time_squared;
396 #endif
397 };
398 
399 struct ftrace_profile_page {
400 	struct ftrace_profile_page	*next;
401 	unsigned long			index;
402 	struct ftrace_profile		records[];
403 };
404 
405 struct ftrace_profile_stat {
406 	atomic_t			disabled;
407 	struct hlist_head		*hash;
408 	struct ftrace_profile_page	*pages;
409 	struct ftrace_profile_page	*start;
410 	struct tracer_stat		stat;
411 };
412 
413 #define PROFILE_RECORDS_SIZE						\
414 	(PAGE_SIZE - offsetof(struct ftrace_profile_page, records))
415 
416 #define PROFILES_PER_PAGE					\
417 	(PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile))
418 
419 static int ftrace_profile_enabled __read_mostly;
420 
421 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */
422 static DEFINE_MUTEX(ftrace_profile_lock);
423 
424 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats);
425 
426 #define FTRACE_PROFILE_HASH_BITS 10
427 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS)
428 
429 static void *
430 function_stat_next(void *v, int idx)
431 {
432 	struct ftrace_profile *rec = v;
433 	struct ftrace_profile_page *pg;
434 
435 	pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK);
436 
437  again:
438 	if (idx != 0)
439 		rec++;
440 
441 	if ((void *)rec >= (void *)&pg->records[pg->index]) {
442 		pg = pg->next;
443 		if (!pg)
444 			return NULL;
445 		rec = &pg->records[0];
446 		if (!rec->counter)
447 			goto again;
448 	}
449 
450 	return rec;
451 }
452 
453 static void *function_stat_start(struct tracer_stat *trace)
454 {
455 	struct ftrace_profile_stat *stat =
456 		container_of(trace, struct ftrace_profile_stat, stat);
457 
458 	if (!stat || !stat->start)
459 		return NULL;
460 
461 	return function_stat_next(&stat->start->records[0], 0);
462 }
463 
464 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
465 /* function graph compares on total time */
466 static int function_stat_cmp(const void *p1, const void *p2)
467 {
468 	const struct ftrace_profile *a = p1;
469 	const struct ftrace_profile *b = p2;
470 
471 	if (a->time < b->time)
472 		return -1;
473 	if (a->time > b->time)
474 		return 1;
475 	else
476 		return 0;
477 }
478 #else
479 /* not function graph compares against hits */
480 static int function_stat_cmp(const void *p1, const void *p2)
481 {
482 	const struct ftrace_profile *a = p1;
483 	const struct ftrace_profile *b = p2;
484 
485 	if (a->counter < b->counter)
486 		return -1;
487 	if (a->counter > b->counter)
488 		return 1;
489 	else
490 		return 0;
491 }
492 #endif
493 
494 static int function_stat_headers(struct seq_file *m)
495 {
496 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
497 	seq_puts(m, "  Function                               "
498 		 "Hit    Time            Avg             s^2\n"
499 		    "  --------                               "
500 		 "---    ----            ---             ---\n");
501 #else
502 	seq_puts(m, "  Function                               Hit\n"
503 		    "  --------                               ---\n");
504 #endif
505 	return 0;
506 }
507 
508 static int function_stat_show(struct seq_file *m, void *v)
509 {
510 	struct ftrace_profile *rec = v;
511 	char str[KSYM_SYMBOL_LEN];
512 	int ret = 0;
513 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
514 	static struct trace_seq s;
515 	unsigned long long avg;
516 	unsigned long long stddev;
517 #endif
518 	mutex_lock(&ftrace_profile_lock);
519 
520 	/* we raced with function_profile_reset() */
521 	if (unlikely(rec->counter == 0)) {
522 		ret = -EBUSY;
523 		goto out;
524 	}
525 
526 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
527 	avg = div64_ul(rec->time, rec->counter);
528 	if (tracing_thresh && (avg < tracing_thresh))
529 		goto out;
530 #endif
531 
532 	kallsyms_lookup(rec->ip, NULL, NULL, NULL, str);
533 	seq_printf(m, "  %-30.30s  %10lu", str, rec->counter);
534 
535 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
536 	seq_puts(m, "    ");
537 
538 	/* Sample standard deviation (s^2) */
539 	if (rec->counter <= 1)
540 		stddev = 0;
541 	else {
542 		/*
543 		 * Apply Welford's method:
544 		 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2)
545 		 */
546 		stddev = rec->counter * rec->time_squared -
547 			 rec->time * rec->time;
548 
549 		/*
550 		 * Divide only 1000 for ns^2 -> us^2 conversion.
551 		 * trace_print_graph_duration will divide 1000 again.
552 		 */
553 		stddev = div64_ul(stddev,
554 				  rec->counter * (rec->counter - 1) * 1000);
555 	}
556 
557 	trace_seq_init(&s);
558 	trace_print_graph_duration(rec->time, &s);
559 	trace_seq_puts(&s, "    ");
560 	trace_print_graph_duration(avg, &s);
561 	trace_seq_puts(&s, "    ");
562 	trace_print_graph_duration(stddev, &s);
563 	trace_print_seq(m, &s);
564 #endif
565 	seq_putc(m, '\n');
566 out:
567 	mutex_unlock(&ftrace_profile_lock);
568 
569 	return ret;
570 }
571 
572 static void ftrace_profile_reset(struct ftrace_profile_stat *stat)
573 {
574 	struct ftrace_profile_page *pg;
575 
576 	pg = stat->pages = stat->start;
577 
578 	while (pg) {
579 		memset(pg->records, 0, PROFILE_RECORDS_SIZE);
580 		pg->index = 0;
581 		pg = pg->next;
582 	}
583 
584 	memset(stat->hash, 0,
585 	       FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head));
586 }
587 
588 int ftrace_profile_pages_init(struct ftrace_profile_stat *stat)
589 {
590 	struct ftrace_profile_page *pg;
591 	int functions;
592 	int pages;
593 	int i;
594 
595 	/* If we already allocated, do nothing */
596 	if (stat->pages)
597 		return 0;
598 
599 	stat->pages = (void *)get_zeroed_page(GFP_KERNEL);
600 	if (!stat->pages)
601 		return -ENOMEM;
602 
603 #ifdef CONFIG_DYNAMIC_FTRACE
604 	functions = ftrace_update_tot_cnt;
605 #else
606 	/*
607 	 * We do not know the number of functions that exist because
608 	 * dynamic tracing is what counts them. With past experience
609 	 * we have around 20K functions. That should be more than enough.
610 	 * It is highly unlikely we will execute every function in
611 	 * the kernel.
612 	 */
613 	functions = 20000;
614 #endif
615 
616 	pg = stat->start = stat->pages;
617 
618 	pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE);
619 
620 	for (i = 1; i < pages; i++) {
621 		pg->next = (void *)get_zeroed_page(GFP_KERNEL);
622 		if (!pg->next)
623 			goto out_free;
624 		pg = pg->next;
625 	}
626 
627 	return 0;
628 
629  out_free:
630 	pg = stat->start;
631 	while (pg) {
632 		unsigned long tmp = (unsigned long)pg;
633 
634 		pg = pg->next;
635 		free_page(tmp);
636 	}
637 
638 	stat->pages = NULL;
639 	stat->start = NULL;
640 
641 	return -ENOMEM;
642 }
643 
644 static int ftrace_profile_init_cpu(int cpu)
645 {
646 	struct ftrace_profile_stat *stat;
647 	int size;
648 
649 	stat = &per_cpu(ftrace_profile_stats, cpu);
650 
651 	if (stat->hash) {
652 		/* If the profile is already created, simply reset it */
653 		ftrace_profile_reset(stat);
654 		return 0;
655 	}
656 
657 	/*
658 	 * We are profiling all functions, but usually only a few thousand
659 	 * functions are hit. We'll make a hash of 1024 items.
660 	 */
661 	size = FTRACE_PROFILE_HASH_SIZE;
662 
663 	stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL);
664 
665 	if (!stat->hash)
666 		return -ENOMEM;
667 
668 	/* Preallocate the function profiling pages */
669 	if (ftrace_profile_pages_init(stat) < 0) {
670 		kfree(stat->hash);
671 		stat->hash = NULL;
672 		return -ENOMEM;
673 	}
674 
675 	return 0;
676 }
677 
678 static int ftrace_profile_init(void)
679 {
680 	int cpu;
681 	int ret = 0;
682 
683 	for_each_possible_cpu(cpu) {
684 		ret = ftrace_profile_init_cpu(cpu);
685 		if (ret)
686 			break;
687 	}
688 
689 	return ret;
690 }
691 
692 /* interrupts must be disabled */
693 static struct ftrace_profile *
694 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip)
695 {
696 	struct ftrace_profile *rec;
697 	struct hlist_head *hhd;
698 	unsigned long key;
699 
700 	key = hash_long(ip, FTRACE_PROFILE_HASH_BITS);
701 	hhd = &stat->hash[key];
702 
703 	if (hlist_empty(hhd))
704 		return NULL;
705 
706 	hlist_for_each_entry_rcu_notrace(rec, hhd, node) {
707 		if (rec->ip == ip)
708 			return rec;
709 	}
710 
711 	return NULL;
712 }
713 
714 static void ftrace_add_profile(struct ftrace_profile_stat *stat,
715 			       struct ftrace_profile *rec)
716 {
717 	unsigned long key;
718 
719 	key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS);
720 	hlist_add_head_rcu(&rec->node, &stat->hash[key]);
721 }
722 
723 /*
724  * The memory is already allocated, this simply finds a new record to use.
725  */
726 static struct ftrace_profile *
727 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip)
728 {
729 	struct ftrace_profile *rec = NULL;
730 
731 	/* prevent recursion (from NMIs) */
732 	if (atomic_inc_return(&stat->disabled) != 1)
733 		goto out;
734 
735 	/*
736 	 * Try to find the function again since an NMI
737 	 * could have added it
738 	 */
739 	rec = ftrace_find_profiled_func(stat, ip);
740 	if (rec)
741 		goto out;
742 
743 	if (stat->pages->index == PROFILES_PER_PAGE) {
744 		if (!stat->pages->next)
745 			goto out;
746 		stat->pages = stat->pages->next;
747 	}
748 
749 	rec = &stat->pages->records[stat->pages->index++];
750 	rec->ip = ip;
751 	ftrace_add_profile(stat, rec);
752 
753  out:
754 	atomic_dec(&stat->disabled);
755 
756 	return rec;
757 }
758 
759 static void
760 function_profile_call(unsigned long ip, unsigned long parent_ip,
761 		      struct ftrace_ops *ops, struct pt_regs *regs)
762 {
763 	struct ftrace_profile_stat *stat;
764 	struct ftrace_profile *rec;
765 	unsigned long flags;
766 
767 	if (!ftrace_profile_enabled)
768 		return;
769 
770 	local_irq_save(flags);
771 
772 	stat = this_cpu_ptr(&ftrace_profile_stats);
773 	if (!stat->hash || !ftrace_profile_enabled)
774 		goto out;
775 
776 	rec = ftrace_find_profiled_func(stat, ip);
777 	if (!rec) {
778 		rec = ftrace_profile_alloc(stat, ip);
779 		if (!rec)
780 			goto out;
781 	}
782 
783 	rec->counter++;
784  out:
785 	local_irq_restore(flags);
786 }
787 
788 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
789 static bool fgraph_graph_time = true;
790 
791 void ftrace_graph_graph_time_control(bool enable)
792 {
793 	fgraph_graph_time = enable;
794 }
795 
796 static int profile_graph_entry(struct ftrace_graph_ent *trace)
797 {
798 	struct ftrace_ret_stack *ret_stack;
799 
800 	function_profile_call(trace->func, 0, NULL, NULL);
801 
802 	/* If function graph is shutting down, ret_stack can be NULL */
803 	if (!current->ret_stack)
804 		return 0;
805 
806 	ret_stack = ftrace_graph_get_ret_stack(current, 0);
807 	if (ret_stack)
808 		ret_stack->subtime = 0;
809 
810 	return 1;
811 }
812 
813 static void profile_graph_return(struct ftrace_graph_ret *trace)
814 {
815 	struct ftrace_ret_stack *ret_stack;
816 	struct ftrace_profile_stat *stat;
817 	unsigned long long calltime;
818 	struct ftrace_profile *rec;
819 	unsigned long flags;
820 
821 	local_irq_save(flags);
822 	stat = this_cpu_ptr(&ftrace_profile_stats);
823 	if (!stat->hash || !ftrace_profile_enabled)
824 		goto out;
825 
826 	/* If the calltime was zero'd ignore it */
827 	if (!trace->calltime)
828 		goto out;
829 
830 	calltime = trace->rettime - trace->calltime;
831 
832 	if (!fgraph_graph_time) {
833 
834 		/* Append this call time to the parent time to subtract */
835 		ret_stack = ftrace_graph_get_ret_stack(current, 1);
836 		if (ret_stack)
837 			ret_stack->subtime += calltime;
838 
839 		ret_stack = ftrace_graph_get_ret_stack(current, 0);
840 		if (ret_stack && ret_stack->subtime < calltime)
841 			calltime -= ret_stack->subtime;
842 		else
843 			calltime = 0;
844 	}
845 
846 	rec = ftrace_find_profiled_func(stat, trace->func);
847 	if (rec) {
848 		rec->time += calltime;
849 		rec->time_squared += calltime * calltime;
850 	}
851 
852  out:
853 	local_irq_restore(flags);
854 }
855 
856 static struct fgraph_ops fprofiler_ops = {
857 	.entryfunc = &profile_graph_entry,
858 	.retfunc = &profile_graph_return,
859 };
860 
861 static int register_ftrace_profiler(void)
862 {
863 	return register_ftrace_graph(&fprofiler_ops);
864 }
865 
866 static void unregister_ftrace_profiler(void)
867 {
868 	unregister_ftrace_graph(&fprofiler_ops);
869 }
870 #else
871 static struct ftrace_ops ftrace_profile_ops __read_mostly = {
872 	.func		= function_profile_call,
873 	.flags		= FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_INITIALIZED,
874 	INIT_OPS_HASH(ftrace_profile_ops)
875 };
876 
877 static int register_ftrace_profiler(void)
878 {
879 	return register_ftrace_function(&ftrace_profile_ops);
880 }
881 
882 static void unregister_ftrace_profiler(void)
883 {
884 	unregister_ftrace_function(&ftrace_profile_ops);
885 }
886 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
887 
888 static ssize_t
889 ftrace_profile_write(struct file *filp, const char __user *ubuf,
890 		     size_t cnt, loff_t *ppos)
891 {
892 	unsigned long val;
893 	int ret;
894 
895 	ret = kstrtoul_from_user(ubuf, cnt, 10, &val);
896 	if (ret)
897 		return ret;
898 
899 	val = !!val;
900 
901 	mutex_lock(&ftrace_profile_lock);
902 	if (ftrace_profile_enabled ^ val) {
903 		if (val) {
904 			ret = ftrace_profile_init();
905 			if (ret < 0) {
906 				cnt = ret;
907 				goto out;
908 			}
909 
910 			ret = register_ftrace_profiler();
911 			if (ret < 0) {
912 				cnt = ret;
913 				goto out;
914 			}
915 			ftrace_profile_enabled = 1;
916 		} else {
917 			ftrace_profile_enabled = 0;
918 			/*
919 			 * unregister_ftrace_profiler calls stop_machine
920 			 * so this acts like an synchronize_rcu.
921 			 */
922 			unregister_ftrace_profiler();
923 		}
924 	}
925  out:
926 	mutex_unlock(&ftrace_profile_lock);
927 
928 	*ppos += cnt;
929 
930 	return cnt;
931 }
932 
933 static ssize_t
934 ftrace_profile_read(struct file *filp, char __user *ubuf,
935 		     size_t cnt, loff_t *ppos)
936 {
937 	char buf[64];		/* big enough to hold a number */
938 	int r;
939 
940 	r = sprintf(buf, "%u\n", ftrace_profile_enabled);
941 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
942 }
943 
944 static const struct file_operations ftrace_profile_fops = {
945 	.open		= tracing_open_generic,
946 	.read		= ftrace_profile_read,
947 	.write		= ftrace_profile_write,
948 	.llseek		= default_llseek,
949 };
950 
951 /* used to initialize the real stat files */
952 static struct tracer_stat function_stats __initdata = {
953 	.name		= "functions",
954 	.stat_start	= function_stat_start,
955 	.stat_next	= function_stat_next,
956 	.stat_cmp	= function_stat_cmp,
957 	.stat_headers	= function_stat_headers,
958 	.stat_show	= function_stat_show
959 };
960 
961 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
962 {
963 	struct ftrace_profile_stat *stat;
964 	struct dentry *entry;
965 	char *name;
966 	int ret;
967 	int cpu;
968 
969 	for_each_possible_cpu(cpu) {
970 		stat = &per_cpu(ftrace_profile_stats, cpu);
971 
972 		name = kasprintf(GFP_KERNEL, "function%d", cpu);
973 		if (!name) {
974 			/*
975 			 * The files created are permanent, if something happens
976 			 * we still do not free memory.
977 			 */
978 			WARN(1,
979 			     "Could not allocate stat file for cpu %d\n",
980 			     cpu);
981 			return;
982 		}
983 		stat->stat = function_stats;
984 		stat->stat.name = name;
985 		ret = register_stat_tracer(&stat->stat);
986 		if (ret) {
987 			WARN(1,
988 			     "Could not register function stat for cpu %d\n",
989 			     cpu);
990 			kfree(name);
991 			return;
992 		}
993 	}
994 
995 	entry = tracefs_create_file("function_profile_enabled", 0644,
996 				    d_tracer, NULL, &ftrace_profile_fops);
997 	if (!entry)
998 		pr_warn("Could not create tracefs 'function_profile_enabled' entry\n");
999 }
1000 
1001 #else /* CONFIG_FUNCTION_PROFILER */
1002 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
1003 {
1004 }
1005 #endif /* CONFIG_FUNCTION_PROFILER */
1006 
1007 #ifdef CONFIG_DYNAMIC_FTRACE
1008 
1009 static struct ftrace_ops *removed_ops;
1010 
1011 /*
1012  * Set when doing a global update, like enabling all recs or disabling them.
1013  * It is not set when just updating a single ftrace_ops.
1014  */
1015 static bool update_all_ops;
1016 
1017 #ifndef CONFIG_FTRACE_MCOUNT_RECORD
1018 # error Dynamic ftrace depends on MCOUNT_RECORD
1019 #endif
1020 
1021 struct ftrace_func_probe {
1022 	struct ftrace_probe_ops	*probe_ops;
1023 	struct ftrace_ops	ops;
1024 	struct trace_array	*tr;
1025 	struct list_head	list;
1026 	void			*data;
1027 	int			ref;
1028 };
1029 
1030 /*
1031  * We make these constant because no one should touch them,
1032  * but they are used as the default "empty hash", to avoid allocating
1033  * it all the time. These are in a read only section such that if
1034  * anyone does try to modify it, it will cause an exception.
1035  */
1036 static const struct hlist_head empty_buckets[1];
1037 static const struct ftrace_hash empty_hash = {
1038 	.buckets = (struct hlist_head *)empty_buckets,
1039 };
1040 #define EMPTY_HASH	((struct ftrace_hash *)&empty_hash)
1041 
1042 struct ftrace_ops global_ops = {
1043 	.func				= ftrace_stub,
1044 	.local_hash.notrace_hash	= EMPTY_HASH,
1045 	.local_hash.filter_hash		= EMPTY_HASH,
1046 	INIT_OPS_HASH(global_ops)
1047 	.flags				= FTRACE_OPS_FL_RECURSION_SAFE |
1048 					  FTRACE_OPS_FL_INITIALIZED |
1049 					  FTRACE_OPS_FL_PID,
1050 };
1051 
1052 /*
1053  * Used by the stack undwinder to know about dynamic ftrace trampolines.
1054  */
1055 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr)
1056 {
1057 	struct ftrace_ops *op = NULL;
1058 
1059 	/*
1060 	 * Some of the ops may be dynamically allocated,
1061 	 * they are freed after a synchronize_rcu().
1062 	 */
1063 	preempt_disable_notrace();
1064 
1065 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1066 		/*
1067 		 * This is to check for dynamically allocated trampolines.
1068 		 * Trampolines that are in kernel text will have
1069 		 * core_kernel_text() return true.
1070 		 */
1071 		if (op->trampoline && op->trampoline_size)
1072 			if (addr >= op->trampoline &&
1073 			    addr < op->trampoline + op->trampoline_size) {
1074 				preempt_enable_notrace();
1075 				return op;
1076 			}
1077 	} while_for_each_ftrace_op(op);
1078 	preempt_enable_notrace();
1079 
1080 	return NULL;
1081 }
1082 
1083 /*
1084  * This is used by __kernel_text_address() to return true if the
1085  * address is on a dynamically allocated trampoline that would
1086  * not return true for either core_kernel_text() or
1087  * is_module_text_address().
1088  */
1089 bool is_ftrace_trampoline(unsigned long addr)
1090 {
1091 	return ftrace_ops_trampoline(addr) != NULL;
1092 }
1093 
1094 struct ftrace_page {
1095 	struct ftrace_page	*next;
1096 	struct dyn_ftrace	*records;
1097 	int			index;
1098 	int			size;
1099 };
1100 
1101 #define ENTRY_SIZE sizeof(struct dyn_ftrace)
1102 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE)
1103 
1104 static struct ftrace_page	*ftrace_pages_start;
1105 static struct ftrace_page	*ftrace_pages;
1106 
1107 static __always_inline unsigned long
1108 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip)
1109 {
1110 	if (hash->size_bits > 0)
1111 		return hash_long(ip, hash->size_bits);
1112 
1113 	return 0;
1114 }
1115 
1116 /* Only use this function if ftrace_hash_empty() has already been tested */
1117 static __always_inline struct ftrace_func_entry *
1118 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1119 {
1120 	unsigned long key;
1121 	struct ftrace_func_entry *entry;
1122 	struct hlist_head *hhd;
1123 
1124 	key = ftrace_hash_key(hash, ip);
1125 	hhd = &hash->buckets[key];
1126 
1127 	hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) {
1128 		if (entry->ip == ip)
1129 			return entry;
1130 	}
1131 	return NULL;
1132 }
1133 
1134 /**
1135  * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash
1136  * @hash: The hash to look at
1137  * @ip: The instruction pointer to test
1138  *
1139  * Search a given @hash to see if a given instruction pointer (@ip)
1140  * exists in it.
1141  *
1142  * Returns the entry that holds the @ip if found. NULL otherwise.
1143  */
1144 struct ftrace_func_entry *
1145 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1146 {
1147 	if (ftrace_hash_empty(hash))
1148 		return NULL;
1149 
1150 	return __ftrace_lookup_ip(hash, ip);
1151 }
1152 
1153 static void __add_hash_entry(struct ftrace_hash *hash,
1154 			     struct ftrace_func_entry *entry)
1155 {
1156 	struct hlist_head *hhd;
1157 	unsigned long key;
1158 
1159 	key = ftrace_hash_key(hash, entry->ip);
1160 	hhd = &hash->buckets[key];
1161 	hlist_add_head(&entry->hlist, hhd);
1162 	hash->count++;
1163 }
1164 
1165 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip)
1166 {
1167 	struct ftrace_func_entry *entry;
1168 
1169 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1170 	if (!entry)
1171 		return -ENOMEM;
1172 
1173 	entry->ip = ip;
1174 	__add_hash_entry(hash, entry);
1175 
1176 	return 0;
1177 }
1178 
1179 static void
1180 free_hash_entry(struct ftrace_hash *hash,
1181 		  struct ftrace_func_entry *entry)
1182 {
1183 	hlist_del(&entry->hlist);
1184 	kfree(entry);
1185 	hash->count--;
1186 }
1187 
1188 static void
1189 remove_hash_entry(struct ftrace_hash *hash,
1190 		  struct ftrace_func_entry *entry)
1191 {
1192 	hlist_del_rcu(&entry->hlist);
1193 	hash->count--;
1194 }
1195 
1196 static void ftrace_hash_clear(struct ftrace_hash *hash)
1197 {
1198 	struct hlist_head *hhd;
1199 	struct hlist_node *tn;
1200 	struct ftrace_func_entry *entry;
1201 	int size = 1 << hash->size_bits;
1202 	int i;
1203 
1204 	if (!hash->count)
1205 		return;
1206 
1207 	for (i = 0; i < size; i++) {
1208 		hhd = &hash->buckets[i];
1209 		hlist_for_each_entry_safe(entry, tn, hhd, hlist)
1210 			free_hash_entry(hash, entry);
1211 	}
1212 	FTRACE_WARN_ON(hash->count);
1213 }
1214 
1215 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod)
1216 {
1217 	list_del(&ftrace_mod->list);
1218 	kfree(ftrace_mod->module);
1219 	kfree(ftrace_mod->func);
1220 	kfree(ftrace_mod);
1221 }
1222 
1223 static void clear_ftrace_mod_list(struct list_head *head)
1224 {
1225 	struct ftrace_mod_load *p, *n;
1226 
1227 	/* stack tracer isn't supported yet */
1228 	if (!head)
1229 		return;
1230 
1231 	mutex_lock(&ftrace_lock);
1232 	list_for_each_entry_safe(p, n, head, list)
1233 		free_ftrace_mod(p);
1234 	mutex_unlock(&ftrace_lock);
1235 }
1236 
1237 static void free_ftrace_hash(struct ftrace_hash *hash)
1238 {
1239 	if (!hash || hash == EMPTY_HASH)
1240 		return;
1241 	ftrace_hash_clear(hash);
1242 	kfree(hash->buckets);
1243 	kfree(hash);
1244 }
1245 
1246 static void __free_ftrace_hash_rcu(struct rcu_head *rcu)
1247 {
1248 	struct ftrace_hash *hash;
1249 
1250 	hash = container_of(rcu, struct ftrace_hash, rcu);
1251 	free_ftrace_hash(hash);
1252 }
1253 
1254 static void free_ftrace_hash_rcu(struct ftrace_hash *hash)
1255 {
1256 	if (!hash || hash == EMPTY_HASH)
1257 		return;
1258 	call_rcu(&hash->rcu, __free_ftrace_hash_rcu);
1259 }
1260 
1261 void ftrace_free_filter(struct ftrace_ops *ops)
1262 {
1263 	ftrace_ops_init(ops);
1264 	free_ftrace_hash(ops->func_hash->filter_hash);
1265 	free_ftrace_hash(ops->func_hash->notrace_hash);
1266 }
1267 
1268 static struct ftrace_hash *alloc_ftrace_hash(int size_bits)
1269 {
1270 	struct ftrace_hash *hash;
1271 	int size;
1272 
1273 	hash = kzalloc(sizeof(*hash), GFP_KERNEL);
1274 	if (!hash)
1275 		return NULL;
1276 
1277 	size = 1 << size_bits;
1278 	hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL);
1279 
1280 	if (!hash->buckets) {
1281 		kfree(hash);
1282 		return NULL;
1283 	}
1284 
1285 	hash->size_bits = size_bits;
1286 
1287 	return hash;
1288 }
1289 
1290 
1291 static int ftrace_add_mod(struct trace_array *tr,
1292 			  const char *func, const char *module,
1293 			  int enable)
1294 {
1295 	struct ftrace_mod_load *ftrace_mod;
1296 	struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace;
1297 
1298 	ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL);
1299 	if (!ftrace_mod)
1300 		return -ENOMEM;
1301 
1302 	ftrace_mod->func = kstrdup(func, GFP_KERNEL);
1303 	ftrace_mod->module = kstrdup(module, GFP_KERNEL);
1304 	ftrace_mod->enable = enable;
1305 
1306 	if (!ftrace_mod->func || !ftrace_mod->module)
1307 		goto out_free;
1308 
1309 	list_add(&ftrace_mod->list, mod_head);
1310 
1311 	return 0;
1312 
1313  out_free:
1314 	free_ftrace_mod(ftrace_mod);
1315 
1316 	return -ENOMEM;
1317 }
1318 
1319 static struct ftrace_hash *
1320 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash)
1321 {
1322 	struct ftrace_func_entry *entry;
1323 	struct ftrace_hash *new_hash;
1324 	int size;
1325 	int ret;
1326 	int i;
1327 
1328 	new_hash = alloc_ftrace_hash(size_bits);
1329 	if (!new_hash)
1330 		return NULL;
1331 
1332 	if (hash)
1333 		new_hash->flags = hash->flags;
1334 
1335 	/* Empty hash? */
1336 	if (ftrace_hash_empty(hash))
1337 		return new_hash;
1338 
1339 	size = 1 << hash->size_bits;
1340 	for (i = 0; i < size; i++) {
1341 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
1342 			ret = add_hash_entry(new_hash, entry->ip);
1343 			if (ret < 0)
1344 				goto free_hash;
1345 		}
1346 	}
1347 
1348 	FTRACE_WARN_ON(new_hash->count != hash->count);
1349 
1350 	return new_hash;
1351 
1352  free_hash:
1353 	free_ftrace_hash(new_hash);
1354 	return NULL;
1355 }
1356 
1357 static void
1358 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash);
1359 static void
1360 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash);
1361 
1362 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1363 				       struct ftrace_hash *new_hash);
1364 
1365 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size)
1366 {
1367 	struct ftrace_func_entry *entry;
1368 	struct ftrace_hash *new_hash;
1369 	struct hlist_head *hhd;
1370 	struct hlist_node *tn;
1371 	int bits = 0;
1372 	int i;
1373 
1374 	/*
1375 	 * Make the hash size about 1/2 the # found
1376 	 */
1377 	for (size /= 2; size; size >>= 1)
1378 		bits++;
1379 
1380 	/* Don't allocate too much */
1381 	if (bits > FTRACE_HASH_MAX_BITS)
1382 		bits = FTRACE_HASH_MAX_BITS;
1383 
1384 	new_hash = alloc_ftrace_hash(bits);
1385 	if (!new_hash)
1386 		return NULL;
1387 
1388 	new_hash->flags = src->flags;
1389 
1390 	size = 1 << src->size_bits;
1391 	for (i = 0; i < size; i++) {
1392 		hhd = &src->buckets[i];
1393 		hlist_for_each_entry_safe(entry, tn, hhd, hlist) {
1394 			remove_hash_entry(src, entry);
1395 			__add_hash_entry(new_hash, entry);
1396 		}
1397 	}
1398 	return new_hash;
1399 }
1400 
1401 static struct ftrace_hash *
1402 __ftrace_hash_move(struct ftrace_hash *src)
1403 {
1404 	int size = src->count;
1405 
1406 	/*
1407 	 * If the new source is empty, just return the empty_hash.
1408 	 */
1409 	if (ftrace_hash_empty(src))
1410 		return EMPTY_HASH;
1411 
1412 	return dup_hash(src, size);
1413 }
1414 
1415 static int
1416 ftrace_hash_move(struct ftrace_ops *ops, int enable,
1417 		 struct ftrace_hash **dst, struct ftrace_hash *src)
1418 {
1419 	struct ftrace_hash *new_hash;
1420 	int ret;
1421 
1422 	/* Reject setting notrace hash on IPMODIFY ftrace_ops */
1423 	if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable)
1424 		return -EINVAL;
1425 
1426 	new_hash = __ftrace_hash_move(src);
1427 	if (!new_hash)
1428 		return -ENOMEM;
1429 
1430 	/* Make sure this can be applied if it is IPMODIFY ftrace_ops */
1431 	if (enable) {
1432 		/* IPMODIFY should be updated only when filter_hash updating */
1433 		ret = ftrace_hash_ipmodify_update(ops, new_hash);
1434 		if (ret < 0) {
1435 			free_ftrace_hash(new_hash);
1436 			return ret;
1437 		}
1438 	}
1439 
1440 	/*
1441 	 * Remove the current set, update the hash and add
1442 	 * them back.
1443 	 */
1444 	ftrace_hash_rec_disable_modify(ops, enable);
1445 
1446 	rcu_assign_pointer(*dst, new_hash);
1447 
1448 	ftrace_hash_rec_enable_modify(ops, enable);
1449 
1450 	return 0;
1451 }
1452 
1453 static bool hash_contains_ip(unsigned long ip,
1454 			     struct ftrace_ops_hash *hash)
1455 {
1456 	/*
1457 	 * The function record is a match if it exists in the filter
1458 	 * hash and not in the notrace hash. Note, an emty hash is
1459 	 * considered a match for the filter hash, but an empty
1460 	 * notrace hash is considered not in the notrace hash.
1461 	 */
1462 	return (ftrace_hash_empty(hash->filter_hash) ||
1463 		__ftrace_lookup_ip(hash->filter_hash, ip)) &&
1464 		(ftrace_hash_empty(hash->notrace_hash) ||
1465 		 !__ftrace_lookup_ip(hash->notrace_hash, ip));
1466 }
1467 
1468 /*
1469  * Test the hashes for this ops to see if we want to call
1470  * the ops->func or not.
1471  *
1472  * It's a match if the ip is in the ops->filter_hash or
1473  * the filter_hash does not exist or is empty,
1474  *  AND
1475  * the ip is not in the ops->notrace_hash.
1476  *
1477  * This needs to be called with preemption disabled as
1478  * the hashes are freed with call_rcu().
1479  */
1480 int
1481 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs)
1482 {
1483 	struct ftrace_ops_hash hash;
1484 	int ret;
1485 
1486 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
1487 	/*
1488 	 * There's a small race when adding ops that the ftrace handler
1489 	 * that wants regs, may be called without them. We can not
1490 	 * allow that handler to be called if regs is NULL.
1491 	 */
1492 	if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS))
1493 		return 0;
1494 #endif
1495 
1496 	rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash);
1497 	rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash);
1498 
1499 	if (hash_contains_ip(ip, &hash))
1500 		ret = 1;
1501 	else
1502 		ret = 0;
1503 
1504 	return ret;
1505 }
1506 
1507 /*
1508  * This is a double for. Do not use 'break' to break out of the loop,
1509  * you must use a goto.
1510  */
1511 #define do_for_each_ftrace_rec(pg, rec)					\
1512 	for (pg = ftrace_pages_start; pg; pg = pg->next) {		\
1513 		int _____i;						\
1514 		for (_____i = 0; _____i < pg->index; _____i++) {	\
1515 			rec = &pg->records[_____i];
1516 
1517 #define while_for_each_ftrace_rec()		\
1518 		}				\
1519 	}
1520 
1521 
1522 static int ftrace_cmp_recs(const void *a, const void *b)
1523 {
1524 	const struct dyn_ftrace *key = a;
1525 	const struct dyn_ftrace *rec = b;
1526 
1527 	if (key->flags < rec->ip)
1528 		return -1;
1529 	if (key->ip >= rec->ip + MCOUNT_INSN_SIZE)
1530 		return 1;
1531 	return 0;
1532 }
1533 
1534 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end)
1535 {
1536 	struct ftrace_page *pg;
1537 	struct dyn_ftrace *rec = NULL;
1538 	struct dyn_ftrace key;
1539 
1540 	key.ip = start;
1541 	key.flags = end;	/* overload flags, as it is unsigned long */
1542 
1543 	for (pg = ftrace_pages_start; pg; pg = pg->next) {
1544 		if (end < pg->records[0].ip ||
1545 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
1546 			continue;
1547 		rec = bsearch(&key, pg->records, pg->index,
1548 			      sizeof(struct dyn_ftrace),
1549 			      ftrace_cmp_recs);
1550 	}
1551 	return rec;
1552 }
1553 
1554 /**
1555  * ftrace_location_range - return the first address of a traced location
1556  *	if it touches the given ip range
1557  * @start: start of range to search.
1558  * @end: end of range to search (inclusive). @end points to the last byte
1559  *	to check.
1560  *
1561  * Returns rec->ip if the related ftrace location is a least partly within
1562  * the given address range. That is, the first address of the instruction
1563  * that is either a NOP or call to the function tracer. It checks the ftrace
1564  * internal tables to determine if the address belongs or not.
1565  */
1566 unsigned long ftrace_location_range(unsigned long start, unsigned long end)
1567 {
1568 	struct dyn_ftrace *rec;
1569 
1570 	rec = lookup_rec(start, end);
1571 	if (rec)
1572 		return rec->ip;
1573 
1574 	return 0;
1575 }
1576 
1577 /**
1578  * ftrace_location - return true if the ip giving is a traced location
1579  * @ip: the instruction pointer to check
1580  *
1581  * Returns rec->ip if @ip given is a pointer to a ftrace location.
1582  * That is, the instruction that is either a NOP or call to
1583  * the function tracer. It checks the ftrace internal tables to
1584  * determine if the address belongs or not.
1585  */
1586 unsigned long ftrace_location(unsigned long ip)
1587 {
1588 	return ftrace_location_range(ip, ip);
1589 }
1590 
1591 /**
1592  * ftrace_text_reserved - return true if range contains an ftrace location
1593  * @start: start of range to search
1594  * @end: end of range to search (inclusive). @end points to the last byte to check.
1595  *
1596  * Returns 1 if @start and @end contains a ftrace location.
1597  * That is, the instruction that is either a NOP or call to
1598  * the function tracer. It checks the ftrace internal tables to
1599  * determine if the address belongs or not.
1600  */
1601 int ftrace_text_reserved(const void *start, const void *end)
1602 {
1603 	unsigned long ret;
1604 
1605 	ret = ftrace_location_range((unsigned long)start,
1606 				    (unsigned long)end);
1607 
1608 	return (int)!!ret;
1609 }
1610 
1611 /* Test if ops registered to this rec needs regs */
1612 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec)
1613 {
1614 	struct ftrace_ops *ops;
1615 	bool keep_regs = false;
1616 
1617 	for (ops = ftrace_ops_list;
1618 	     ops != &ftrace_list_end; ops = ops->next) {
1619 		/* pass rec in as regs to have non-NULL val */
1620 		if (ftrace_ops_test(ops, rec->ip, rec)) {
1621 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1622 				keep_regs = true;
1623 				break;
1624 			}
1625 		}
1626 	}
1627 
1628 	return  keep_regs;
1629 }
1630 
1631 static struct ftrace_ops *
1632 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec);
1633 static struct ftrace_ops *
1634 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops);
1635 
1636 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops,
1637 				     int filter_hash,
1638 				     bool inc)
1639 {
1640 	struct ftrace_hash *hash;
1641 	struct ftrace_hash *other_hash;
1642 	struct ftrace_page *pg;
1643 	struct dyn_ftrace *rec;
1644 	bool update = false;
1645 	int count = 0;
1646 	int all = false;
1647 
1648 	/* Only update if the ops has been registered */
1649 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1650 		return false;
1651 
1652 	/*
1653 	 * In the filter_hash case:
1654 	 *   If the count is zero, we update all records.
1655 	 *   Otherwise we just update the items in the hash.
1656 	 *
1657 	 * In the notrace_hash case:
1658 	 *   We enable the update in the hash.
1659 	 *   As disabling notrace means enabling the tracing,
1660 	 *   and enabling notrace means disabling, the inc variable
1661 	 *   gets inversed.
1662 	 */
1663 	if (filter_hash) {
1664 		hash = ops->func_hash->filter_hash;
1665 		other_hash = ops->func_hash->notrace_hash;
1666 		if (ftrace_hash_empty(hash))
1667 			all = true;
1668 	} else {
1669 		inc = !inc;
1670 		hash = ops->func_hash->notrace_hash;
1671 		other_hash = ops->func_hash->filter_hash;
1672 		/*
1673 		 * If the notrace hash has no items,
1674 		 * then there's nothing to do.
1675 		 */
1676 		if (ftrace_hash_empty(hash))
1677 			return false;
1678 	}
1679 
1680 	do_for_each_ftrace_rec(pg, rec) {
1681 		int in_other_hash = 0;
1682 		int in_hash = 0;
1683 		int match = 0;
1684 
1685 		if (rec->flags & FTRACE_FL_DISABLED)
1686 			continue;
1687 
1688 		if (all) {
1689 			/*
1690 			 * Only the filter_hash affects all records.
1691 			 * Update if the record is not in the notrace hash.
1692 			 */
1693 			if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip))
1694 				match = 1;
1695 		} else {
1696 			in_hash = !!ftrace_lookup_ip(hash, rec->ip);
1697 			in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip);
1698 
1699 			/*
1700 			 * If filter_hash is set, we want to match all functions
1701 			 * that are in the hash but not in the other hash.
1702 			 *
1703 			 * If filter_hash is not set, then we are decrementing.
1704 			 * That means we match anything that is in the hash
1705 			 * and also in the other_hash. That is, we need to turn
1706 			 * off functions in the other hash because they are disabled
1707 			 * by this hash.
1708 			 */
1709 			if (filter_hash && in_hash && !in_other_hash)
1710 				match = 1;
1711 			else if (!filter_hash && in_hash &&
1712 				 (in_other_hash || ftrace_hash_empty(other_hash)))
1713 				match = 1;
1714 		}
1715 		if (!match)
1716 			continue;
1717 
1718 		if (inc) {
1719 			rec->flags++;
1720 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX))
1721 				return false;
1722 
1723 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1724 				rec->flags |= FTRACE_FL_DIRECT;
1725 
1726 			/*
1727 			 * If there's only a single callback registered to a
1728 			 * function, and the ops has a trampoline registered
1729 			 * for it, then we can call it directly.
1730 			 */
1731 			if (ftrace_rec_count(rec) == 1 && ops->trampoline)
1732 				rec->flags |= FTRACE_FL_TRAMP;
1733 			else
1734 				/*
1735 				 * If we are adding another function callback
1736 				 * to this function, and the previous had a
1737 				 * custom trampoline in use, then we need to go
1738 				 * back to the default trampoline.
1739 				 */
1740 				rec->flags &= ~FTRACE_FL_TRAMP;
1741 
1742 			/*
1743 			 * If any ops wants regs saved for this function
1744 			 * then all ops will get saved regs.
1745 			 */
1746 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
1747 				rec->flags |= FTRACE_FL_REGS;
1748 		} else {
1749 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0))
1750 				return false;
1751 			rec->flags--;
1752 
1753 			/*
1754 			 * Only the internal direct_ops should have the
1755 			 * DIRECT flag set. Thus, if it is removing a
1756 			 * function, then that function should no longer
1757 			 * be direct.
1758 			 */
1759 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1760 				rec->flags &= ~FTRACE_FL_DIRECT;
1761 
1762 			/*
1763 			 * If the rec had REGS enabled and the ops that is
1764 			 * being removed had REGS set, then see if there is
1765 			 * still any ops for this record that wants regs.
1766 			 * If not, we can stop recording them.
1767 			 */
1768 			if (ftrace_rec_count(rec) > 0 &&
1769 			    rec->flags & FTRACE_FL_REGS &&
1770 			    ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1771 				if (!test_rec_ops_needs_regs(rec))
1772 					rec->flags &= ~FTRACE_FL_REGS;
1773 			}
1774 
1775 			/*
1776 			 * The TRAMP needs to be set only if rec count
1777 			 * is decremented to one, and the ops that is
1778 			 * left has a trampoline. As TRAMP can only be
1779 			 * enabled if there is only a single ops attached
1780 			 * to it.
1781 			 */
1782 			if (ftrace_rec_count(rec) == 1 &&
1783 			    ftrace_find_tramp_ops_any(rec))
1784 				rec->flags |= FTRACE_FL_TRAMP;
1785 			else
1786 				rec->flags &= ~FTRACE_FL_TRAMP;
1787 
1788 			/*
1789 			 * flags will be cleared in ftrace_check_record()
1790 			 * if rec count is zero.
1791 			 */
1792 		}
1793 		count++;
1794 
1795 		/* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */
1796 		update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE;
1797 
1798 		/* Shortcut, if we handled all records, we are done. */
1799 		if (!all && count == hash->count)
1800 			return update;
1801 	} while_for_each_ftrace_rec();
1802 
1803 	return update;
1804 }
1805 
1806 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops,
1807 				    int filter_hash)
1808 {
1809 	return __ftrace_hash_rec_update(ops, filter_hash, 0);
1810 }
1811 
1812 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops,
1813 				   int filter_hash)
1814 {
1815 	return __ftrace_hash_rec_update(ops, filter_hash, 1);
1816 }
1817 
1818 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops,
1819 					  int filter_hash, int inc)
1820 {
1821 	struct ftrace_ops *op;
1822 
1823 	__ftrace_hash_rec_update(ops, filter_hash, inc);
1824 
1825 	if (ops->func_hash != &global_ops.local_hash)
1826 		return;
1827 
1828 	/*
1829 	 * If the ops shares the global_ops hash, then we need to update
1830 	 * all ops that are enabled and use this hash.
1831 	 */
1832 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1833 		/* Already done */
1834 		if (op == ops)
1835 			continue;
1836 		if (op->func_hash == &global_ops.local_hash)
1837 			__ftrace_hash_rec_update(op, filter_hash, inc);
1838 	} while_for_each_ftrace_op(op);
1839 }
1840 
1841 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops,
1842 					   int filter_hash)
1843 {
1844 	ftrace_hash_rec_update_modify(ops, filter_hash, 0);
1845 }
1846 
1847 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops,
1848 					  int filter_hash)
1849 {
1850 	ftrace_hash_rec_update_modify(ops, filter_hash, 1);
1851 }
1852 
1853 /*
1854  * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK
1855  * or no-needed to update, -EBUSY if it detects a conflict of the flag
1856  * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs.
1857  * Note that old_hash and new_hash has below meanings
1858  *  - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected)
1859  *  - If the hash is EMPTY_HASH, it hits nothing
1860  *  - Anything else hits the recs which match the hash entries.
1861  */
1862 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops,
1863 					 struct ftrace_hash *old_hash,
1864 					 struct ftrace_hash *new_hash)
1865 {
1866 	struct ftrace_page *pg;
1867 	struct dyn_ftrace *rec, *end = NULL;
1868 	int in_old, in_new;
1869 
1870 	/* Only update if the ops has been registered */
1871 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1872 		return 0;
1873 
1874 	if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
1875 		return 0;
1876 
1877 	/*
1878 	 * Since the IPMODIFY is a very address sensitive action, we do not
1879 	 * allow ftrace_ops to set all functions to new hash.
1880 	 */
1881 	if (!new_hash || !old_hash)
1882 		return -EINVAL;
1883 
1884 	/* Update rec->flags */
1885 	do_for_each_ftrace_rec(pg, rec) {
1886 
1887 		if (rec->flags & FTRACE_FL_DISABLED)
1888 			continue;
1889 
1890 		/* We need to update only differences of filter_hash */
1891 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1892 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1893 		if (in_old == in_new)
1894 			continue;
1895 
1896 		if (in_new) {
1897 			/* New entries must ensure no others are using it */
1898 			if (rec->flags & FTRACE_FL_IPMODIFY)
1899 				goto rollback;
1900 			rec->flags |= FTRACE_FL_IPMODIFY;
1901 		} else /* Removed entry */
1902 			rec->flags &= ~FTRACE_FL_IPMODIFY;
1903 	} while_for_each_ftrace_rec();
1904 
1905 	return 0;
1906 
1907 rollback:
1908 	end = rec;
1909 
1910 	/* Roll back what we did above */
1911 	do_for_each_ftrace_rec(pg, rec) {
1912 
1913 		if (rec->flags & FTRACE_FL_DISABLED)
1914 			continue;
1915 
1916 		if (rec == end)
1917 			goto err_out;
1918 
1919 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1920 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1921 		if (in_old == in_new)
1922 			continue;
1923 
1924 		if (in_new)
1925 			rec->flags &= ~FTRACE_FL_IPMODIFY;
1926 		else
1927 			rec->flags |= FTRACE_FL_IPMODIFY;
1928 	} while_for_each_ftrace_rec();
1929 
1930 err_out:
1931 	return -EBUSY;
1932 }
1933 
1934 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops)
1935 {
1936 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
1937 
1938 	if (ftrace_hash_empty(hash))
1939 		hash = NULL;
1940 
1941 	return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash);
1942 }
1943 
1944 /* Disabling always succeeds */
1945 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops)
1946 {
1947 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
1948 
1949 	if (ftrace_hash_empty(hash))
1950 		hash = NULL;
1951 
1952 	__ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH);
1953 }
1954 
1955 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1956 				       struct ftrace_hash *new_hash)
1957 {
1958 	struct ftrace_hash *old_hash = ops->func_hash->filter_hash;
1959 
1960 	if (ftrace_hash_empty(old_hash))
1961 		old_hash = NULL;
1962 
1963 	if (ftrace_hash_empty(new_hash))
1964 		new_hash = NULL;
1965 
1966 	return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash);
1967 }
1968 
1969 static void print_ip_ins(const char *fmt, const unsigned char *p)
1970 {
1971 	int i;
1972 
1973 	printk(KERN_CONT "%s", fmt);
1974 
1975 	for (i = 0; i < MCOUNT_INSN_SIZE; i++)
1976 		printk(KERN_CONT "%s%02x", i ? ":" : "", p[i]);
1977 }
1978 
1979 enum ftrace_bug_type ftrace_bug_type;
1980 const void *ftrace_expected;
1981 
1982 static void print_bug_type(void)
1983 {
1984 	switch (ftrace_bug_type) {
1985 	case FTRACE_BUG_UNKNOWN:
1986 		break;
1987 	case FTRACE_BUG_INIT:
1988 		pr_info("Initializing ftrace call sites\n");
1989 		break;
1990 	case FTRACE_BUG_NOP:
1991 		pr_info("Setting ftrace call site to NOP\n");
1992 		break;
1993 	case FTRACE_BUG_CALL:
1994 		pr_info("Setting ftrace call site to call ftrace function\n");
1995 		break;
1996 	case FTRACE_BUG_UPDATE:
1997 		pr_info("Updating ftrace call site to call a different ftrace function\n");
1998 		break;
1999 	}
2000 }
2001 
2002 /**
2003  * ftrace_bug - report and shutdown function tracer
2004  * @failed: The failed type (EFAULT, EINVAL, EPERM)
2005  * @rec: The record that failed
2006  *
2007  * The arch code that enables or disables the function tracing
2008  * can call ftrace_bug() when it has detected a problem in
2009  * modifying the code. @failed should be one of either:
2010  * EFAULT - if the problem happens on reading the @ip address
2011  * EINVAL - if what is read at @ip is not what was expected
2012  * EPERM - if the problem happens on writing to the @ip address
2013  */
2014 void ftrace_bug(int failed, struct dyn_ftrace *rec)
2015 {
2016 	unsigned long ip = rec ? rec->ip : 0;
2017 
2018 	switch (failed) {
2019 	case -EFAULT:
2020 		FTRACE_WARN_ON_ONCE(1);
2021 		pr_info("ftrace faulted on modifying ");
2022 		print_ip_sym(ip);
2023 		break;
2024 	case -EINVAL:
2025 		FTRACE_WARN_ON_ONCE(1);
2026 		pr_info("ftrace failed to modify ");
2027 		print_ip_sym(ip);
2028 		print_ip_ins(" actual:   ", (unsigned char *)ip);
2029 		pr_cont("\n");
2030 		if (ftrace_expected) {
2031 			print_ip_ins(" expected: ", ftrace_expected);
2032 			pr_cont("\n");
2033 		}
2034 		break;
2035 	case -EPERM:
2036 		FTRACE_WARN_ON_ONCE(1);
2037 		pr_info("ftrace faulted on writing ");
2038 		print_ip_sym(ip);
2039 		break;
2040 	default:
2041 		FTRACE_WARN_ON_ONCE(1);
2042 		pr_info("ftrace faulted on unknown error ");
2043 		print_ip_sym(ip);
2044 	}
2045 	print_bug_type();
2046 	if (rec) {
2047 		struct ftrace_ops *ops = NULL;
2048 
2049 		pr_info("ftrace record flags: %lx\n", rec->flags);
2050 		pr_cont(" (%ld)%s", ftrace_rec_count(rec),
2051 			rec->flags & FTRACE_FL_REGS ? " R" : "  ");
2052 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
2053 			ops = ftrace_find_tramp_ops_any(rec);
2054 			if (ops) {
2055 				do {
2056 					pr_cont("\ttramp: %pS (%pS)",
2057 						(void *)ops->trampoline,
2058 						(void *)ops->func);
2059 					ops = ftrace_find_tramp_ops_next(rec, ops);
2060 				} while (ops);
2061 			} else
2062 				pr_cont("\ttramp: ERROR!");
2063 
2064 		}
2065 		ip = ftrace_get_addr_curr(rec);
2066 		pr_cont("\n expected tramp: %lx\n", ip);
2067 	}
2068 }
2069 
2070 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update)
2071 {
2072 	unsigned long flag = 0UL;
2073 
2074 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2075 
2076 	if (rec->flags & FTRACE_FL_DISABLED)
2077 		return FTRACE_UPDATE_IGNORE;
2078 
2079 	/*
2080 	 * If we are updating calls:
2081 	 *
2082 	 *   If the record has a ref count, then we need to enable it
2083 	 *   because someone is using it.
2084 	 *
2085 	 *   Otherwise we make sure its disabled.
2086 	 *
2087 	 * If we are disabling calls, then disable all records that
2088 	 * are enabled.
2089 	 */
2090 	if (enable && ftrace_rec_count(rec))
2091 		flag = FTRACE_FL_ENABLED;
2092 
2093 	/*
2094 	 * If enabling and the REGS flag does not match the REGS_EN, or
2095 	 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore
2096 	 * this record. Set flags to fail the compare against ENABLED.
2097 	 * Same for direct calls.
2098 	 */
2099 	if (flag) {
2100 		if (!(rec->flags & FTRACE_FL_REGS) !=
2101 		    !(rec->flags & FTRACE_FL_REGS_EN))
2102 			flag |= FTRACE_FL_REGS;
2103 
2104 		if (!(rec->flags & FTRACE_FL_TRAMP) !=
2105 		    !(rec->flags & FTRACE_FL_TRAMP_EN))
2106 			flag |= FTRACE_FL_TRAMP;
2107 
2108 		/*
2109 		 * Direct calls are special, as count matters.
2110 		 * We must test the record for direct, if the
2111 		 * DIRECT and DIRECT_EN do not match, but only
2112 		 * if the count is 1. That's because, if the
2113 		 * count is something other than one, we do not
2114 		 * want the direct enabled (it will be done via the
2115 		 * direct helper). But if DIRECT_EN is set, and
2116 		 * the count is not one, we need to clear it.
2117 		 */
2118 		if (ftrace_rec_count(rec) == 1) {
2119 			if (!(rec->flags & FTRACE_FL_DIRECT) !=
2120 			    !(rec->flags & FTRACE_FL_DIRECT_EN))
2121 				flag |= FTRACE_FL_DIRECT;
2122 		} else if (rec->flags & FTRACE_FL_DIRECT_EN) {
2123 			flag |= FTRACE_FL_DIRECT;
2124 		}
2125 	}
2126 
2127 	/* If the state of this record hasn't changed, then do nothing */
2128 	if ((rec->flags & FTRACE_FL_ENABLED) == flag)
2129 		return FTRACE_UPDATE_IGNORE;
2130 
2131 	if (flag) {
2132 		/* Save off if rec is being enabled (for return value) */
2133 		flag ^= rec->flags & FTRACE_FL_ENABLED;
2134 
2135 		if (update) {
2136 			rec->flags |= FTRACE_FL_ENABLED;
2137 			if (flag & FTRACE_FL_REGS) {
2138 				if (rec->flags & FTRACE_FL_REGS)
2139 					rec->flags |= FTRACE_FL_REGS_EN;
2140 				else
2141 					rec->flags &= ~FTRACE_FL_REGS_EN;
2142 			}
2143 			if (flag & FTRACE_FL_TRAMP) {
2144 				if (rec->flags & FTRACE_FL_TRAMP)
2145 					rec->flags |= FTRACE_FL_TRAMP_EN;
2146 				else
2147 					rec->flags &= ~FTRACE_FL_TRAMP_EN;
2148 			}
2149 			if (flag & FTRACE_FL_DIRECT) {
2150 				/*
2151 				 * If there's only one user (direct_ops helper)
2152 				 * then we can call the direct function
2153 				 * directly (no ftrace trampoline).
2154 				 */
2155 				if (ftrace_rec_count(rec) == 1) {
2156 					if (rec->flags & FTRACE_FL_DIRECT)
2157 						rec->flags |= FTRACE_FL_DIRECT_EN;
2158 					else
2159 						rec->flags &= ~FTRACE_FL_DIRECT_EN;
2160 				} else {
2161 					/*
2162 					 * Can only call directly if there's
2163 					 * only one callback to the function.
2164 					 */
2165 					rec->flags &= ~FTRACE_FL_DIRECT_EN;
2166 				}
2167 			}
2168 		}
2169 
2170 		/*
2171 		 * If this record is being updated from a nop, then
2172 		 *   return UPDATE_MAKE_CALL.
2173 		 * Otherwise,
2174 		 *   return UPDATE_MODIFY_CALL to tell the caller to convert
2175 		 *   from the save regs, to a non-save regs function or
2176 		 *   vice versa, or from a trampoline call.
2177 		 */
2178 		if (flag & FTRACE_FL_ENABLED) {
2179 			ftrace_bug_type = FTRACE_BUG_CALL;
2180 			return FTRACE_UPDATE_MAKE_CALL;
2181 		}
2182 
2183 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2184 		return FTRACE_UPDATE_MODIFY_CALL;
2185 	}
2186 
2187 	if (update) {
2188 		/* If there's no more users, clear all flags */
2189 		if (!ftrace_rec_count(rec))
2190 			rec->flags = 0;
2191 		else
2192 			/*
2193 			 * Just disable the record, but keep the ops TRAMP
2194 			 * and REGS states. The _EN flags must be disabled though.
2195 			 */
2196 			rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN |
2197 					FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN);
2198 	}
2199 
2200 	ftrace_bug_type = FTRACE_BUG_NOP;
2201 	return FTRACE_UPDATE_MAKE_NOP;
2202 }
2203 
2204 /**
2205  * ftrace_update_record, set a record that now is tracing or not
2206  * @rec: the record to update
2207  * @enable: set to true if the record is tracing, false to force disable
2208  *
2209  * The records that represent all functions that can be traced need
2210  * to be updated when tracing has been enabled.
2211  */
2212 int ftrace_update_record(struct dyn_ftrace *rec, bool enable)
2213 {
2214 	return ftrace_check_record(rec, enable, true);
2215 }
2216 
2217 /**
2218  * ftrace_test_record, check if the record has been enabled or not
2219  * @rec: the record to test
2220  * @enable: set to true to check if enabled, false if it is disabled
2221  *
2222  * The arch code may need to test if a record is already set to
2223  * tracing to determine how to modify the function code that it
2224  * represents.
2225  */
2226 int ftrace_test_record(struct dyn_ftrace *rec, bool enable)
2227 {
2228 	return ftrace_check_record(rec, enable, false);
2229 }
2230 
2231 static struct ftrace_ops *
2232 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec)
2233 {
2234 	struct ftrace_ops *op;
2235 	unsigned long ip = rec->ip;
2236 
2237 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2238 
2239 		if (!op->trampoline)
2240 			continue;
2241 
2242 		if (hash_contains_ip(ip, op->func_hash))
2243 			return op;
2244 	} while_for_each_ftrace_op(op);
2245 
2246 	return NULL;
2247 }
2248 
2249 static struct ftrace_ops *
2250 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec,
2251 			   struct ftrace_ops *op)
2252 {
2253 	unsigned long ip = rec->ip;
2254 
2255 	while_for_each_ftrace_op(op) {
2256 
2257 		if (!op->trampoline)
2258 			continue;
2259 
2260 		if (hash_contains_ip(ip, op->func_hash))
2261 			return op;
2262 	}
2263 
2264 	return NULL;
2265 }
2266 
2267 static struct ftrace_ops *
2268 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec)
2269 {
2270 	struct ftrace_ops *op;
2271 	unsigned long ip = rec->ip;
2272 
2273 	/*
2274 	 * Need to check removed ops first.
2275 	 * If they are being removed, and this rec has a tramp,
2276 	 * and this rec is in the ops list, then it would be the
2277 	 * one with the tramp.
2278 	 */
2279 	if (removed_ops) {
2280 		if (hash_contains_ip(ip, &removed_ops->old_hash))
2281 			return removed_ops;
2282 	}
2283 
2284 	/*
2285 	 * Need to find the current trampoline for a rec.
2286 	 * Now, a trampoline is only attached to a rec if there
2287 	 * was a single 'ops' attached to it. But this can be called
2288 	 * when we are adding another op to the rec or removing the
2289 	 * current one. Thus, if the op is being added, we can
2290 	 * ignore it because it hasn't attached itself to the rec
2291 	 * yet.
2292 	 *
2293 	 * If an ops is being modified (hooking to different functions)
2294 	 * then we don't care about the new functions that are being
2295 	 * added, just the old ones (that are probably being removed).
2296 	 *
2297 	 * If we are adding an ops to a function that already is using
2298 	 * a trampoline, it needs to be removed (trampolines are only
2299 	 * for single ops connected), then an ops that is not being
2300 	 * modified also needs to be checked.
2301 	 */
2302 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2303 
2304 		if (!op->trampoline)
2305 			continue;
2306 
2307 		/*
2308 		 * If the ops is being added, it hasn't gotten to
2309 		 * the point to be removed from this tree yet.
2310 		 */
2311 		if (op->flags & FTRACE_OPS_FL_ADDING)
2312 			continue;
2313 
2314 
2315 		/*
2316 		 * If the ops is being modified and is in the old
2317 		 * hash, then it is probably being removed from this
2318 		 * function.
2319 		 */
2320 		if ((op->flags & FTRACE_OPS_FL_MODIFYING) &&
2321 		    hash_contains_ip(ip, &op->old_hash))
2322 			return op;
2323 		/*
2324 		 * If the ops is not being added or modified, and it's
2325 		 * in its normal filter hash, then this must be the one
2326 		 * we want!
2327 		 */
2328 		if (!(op->flags & FTRACE_OPS_FL_MODIFYING) &&
2329 		    hash_contains_ip(ip, op->func_hash))
2330 			return op;
2331 
2332 	} while_for_each_ftrace_op(op);
2333 
2334 	return NULL;
2335 }
2336 
2337 static struct ftrace_ops *
2338 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec)
2339 {
2340 	struct ftrace_ops *op;
2341 	unsigned long ip = rec->ip;
2342 
2343 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2344 		/* pass rec in as regs to have non-NULL val */
2345 		if (hash_contains_ip(ip, op->func_hash))
2346 			return op;
2347 	} while_for_each_ftrace_op(op);
2348 
2349 	return NULL;
2350 }
2351 
2352 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
2353 /* Protected by rcu_tasks for reading, and direct_mutex for writing */
2354 static struct ftrace_hash *direct_functions = EMPTY_HASH;
2355 static DEFINE_MUTEX(direct_mutex);
2356 int ftrace_direct_func_count;
2357 
2358 /*
2359  * Search the direct_functions hash to see if the given instruction pointer
2360  * has a direct caller attached to it.
2361  */
2362 unsigned long ftrace_find_rec_direct(unsigned long ip)
2363 {
2364 	struct ftrace_func_entry *entry;
2365 
2366 	entry = __ftrace_lookup_ip(direct_functions, ip);
2367 	if (!entry)
2368 		return 0;
2369 
2370 	return entry->direct;
2371 }
2372 
2373 static void call_direct_funcs(unsigned long ip, unsigned long pip,
2374 			      struct ftrace_ops *ops, struct pt_regs *regs)
2375 {
2376 	unsigned long addr;
2377 
2378 	addr = ftrace_find_rec_direct(ip);
2379 	if (!addr)
2380 		return;
2381 
2382 	arch_ftrace_set_direct_caller(regs, addr);
2383 }
2384 
2385 struct ftrace_ops direct_ops = {
2386 	.func		= call_direct_funcs,
2387 	.flags		= FTRACE_OPS_FL_IPMODIFY | FTRACE_OPS_FL_RECURSION_SAFE
2388 			  | FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS
2389 			  | FTRACE_OPS_FL_PERMANENT,
2390 };
2391 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
2392 
2393 /**
2394  * ftrace_get_addr_new - Get the call address to set to
2395  * @rec:  The ftrace record descriptor
2396  *
2397  * If the record has the FTRACE_FL_REGS set, that means that it
2398  * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS
2399  * is not not set, then it wants to convert to the normal callback.
2400  *
2401  * Returns the address of the trampoline to set to
2402  */
2403 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec)
2404 {
2405 	struct ftrace_ops *ops;
2406 	unsigned long addr;
2407 
2408 	if ((rec->flags & FTRACE_FL_DIRECT) &&
2409 	    (ftrace_rec_count(rec) == 1)) {
2410 		addr = ftrace_find_rec_direct(rec->ip);
2411 		if (addr)
2412 			return addr;
2413 		WARN_ON_ONCE(1);
2414 	}
2415 
2416 	/* Trampolines take precedence over regs */
2417 	if (rec->flags & FTRACE_FL_TRAMP) {
2418 		ops = ftrace_find_tramp_ops_new(rec);
2419 		if (FTRACE_WARN_ON(!ops || !ops->trampoline)) {
2420 			pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n",
2421 				(void *)rec->ip, (void *)rec->ip, rec->flags);
2422 			/* Ftrace is shutting down, return anything */
2423 			return (unsigned long)FTRACE_ADDR;
2424 		}
2425 		return ops->trampoline;
2426 	}
2427 
2428 	if (rec->flags & FTRACE_FL_REGS)
2429 		return (unsigned long)FTRACE_REGS_ADDR;
2430 	else
2431 		return (unsigned long)FTRACE_ADDR;
2432 }
2433 
2434 /**
2435  * ftrace_get_addr_curr - Get the call address that is already there
2436  * @rec:  The ftrace record descriptor
2437  *
2438  * The FTRACE_FL_REGS_EN is set when the record already points to
2439  * a function that saves all the regs. Basically the '_EN' version
2440  * represents the current state of the function.
2441  *
2442  * Returns the address of the trampoline that is currently being called
2443  */
2444 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec)
2445 {
2446 	struct ftrace_ops *ops;
2447 	unsigned long addr;
2448 
2449 	/* Direct calls take precedence over trampolines */
2450 	if (rec->flags & FTRACE_FL_DIRECT_EN) {
2451 		addr = ftrace_find_rec_direct(rec->ip);
2452 		if (addr)
2453 			return addr;
2454 		WARN_ON_ONCE(1);
2455 	}
2456 
2457 	/* Trampolines take precedence over regs */
2458 	if (rec->flags & FTRACE_FL_TRAMP_EN) {
2459 		ops = ftrace_find_tramp_ops_curr(rec);
2460 		if (FTRACE_WARN_ON(!ops)) {
2461 			pr_warn("Bad trampoline accounting at: %p (%pS)\n",
2462 				(void *)rec->ip, (void *)rec->ip);
2463 			/* Ftrace is shutting down, return anything */
2464 			return (unsigned long)FTRACE_ADDR;
2465 		}
2466 		return ops->trampoline;
2467 	}
2468 
2469 	if (rec->flags & FTRACE_FL_REGS_EN)
2470 		return (unsigned long)FTRACE_REGS_ADDR;
2471 	else
2472 		return (unsigned long)FTRACE_ADDR;
2473 }
2474 
2475 static int
2476 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable)
2477 {
2478 	unsigned long ftrace_old_addr;
2479 	unsigned long ftrace_addr;
2480 	int ret;
2481 
2482 	ftrace_addr = ftrace_get_addr_new(rec);
2483 
2484 	/* This needs to be done before we call ftrace_update_record */
2485 	ftrace_old_addr = ftrace_get_addr_curr(rec);
2486 
2487 	ret = ftrace_update_record(rec, enable);
2488 
2489 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2490 
2491 	switch (ret) {
2492 	case FTRACE_UPDATE_IGNORE:
2493 		return 0;
2494 
2495 	case FTRACE_UPDATE_MAKE_CALL:
2496 		ftrace_bug_type = FTRACE_BUG_CALL;
2497 		return ftrace_make_call(rec, ftrace_addr);
2498 
2499 	case FTRACE_UPDATE_MAKE_NOP:
2500 		ftrace_bug_type = FTRACE_BUG_NOP;
2501 		return ftrace_make_nop(NULL, rec, ftrace_old_addr);
2502 
2503 	case FTRACE_UPDATE_MODIFY_CALL:
2504 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2505 		return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr);
2506 	}
2507 
2508 	return -1; /* unknown ftrace bug */
2509 }
2510 
2511 void __weak ftrace_replace_code(int mod_flags)
2512 {
2513 	struct dyn_ftrace *rec;
2514 	struct ftrace_page *pg;
2515 	bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL;
2516 	int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL;
2517 	int failed;
2518 
2519 	if (unlikely(ftrace_disabled))
2520 		return;
2521 
2522 	do_for_each_ftrace_rec(pg, rec) {
2523 
2524 		if (rec->flags & FTRACE_FL_DISABLED)
2525 			continue;
2526 
2527 		failed = __ftrace_replace_code(rec, enable);
2528 		if (failed) {
2529 			ftrace_bug(failed, rec);
2530 			/* Stop processing */
2531 			return;
2532 		}
2533 		if (schedulable)
2534 			cond_resched();
2535 	} while_for_each_ftrace_rec();
2536 }
2537 
2538 struct ftrace_rec_iter {
2539 	struct ftrace_page	*pg;
2540 	int			index;
2541 };
2542 
2543 /**
2544  * ftrace_rec_iter_start, start up iterating over traced functions
2545  *
2546  * Returns an iterator handle that is used to iterate over all
2547  * the records that represent address locations where functions
2548  * are traced.
2549  *
2550  * May return NULL if no records are available.
2551  */
2552 struct ftrace_rec_iter *ftrace_rec_iter_start(void)
2553 {
2554 	/*
2555 	 * We only use a single iterator.
2556 	 * Protected by the ftrace_lock mutex.
2557 	 */
2558 	static struct ftrace_rec_iter ftrace_rec_iter;
2559 	struct ftrace_rec_iter *iter = &ftrace_rec_iter;
2560 
2561 	iter->pg = ftrace_pages_start;
2562 	iter->index = 0;
2563 
2564 	/* Could have empty pages */
2565 	while (iter->pg && !iter->pg->index)
2566 		iter->pg = iter->pg->next;
2567 
2568 	if (!iter->pg)
2569 		return NULL;
2570 
2571 	return iter;
2572 }
2573 
2574 /**
2575  * ftrace_rec_iter_next, get the next record to process.
2576  * @iter: The handle to the iterator.
2577  *
2578  * Returns the next iterator after the given iterator @iter.
2579  */
2580 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter)
2581 {
2582 	iter->index++;
2583 
2584 	if (iter->index >= iter->pg->index) {
2585 		iter->pg = iter->pg->next;
2586 		iter->index = 0;
2587 
2588 		/* Could have empty pages */
2589 		while (iter->pg && !iter->pg->index)
2590 			iter->pg = iter->pg->next;
2591 	}
2592 
2593 	if (!iter->pg)
2594 		return NULL;
2595 
2596 	return iter;
2597 }
2598 
2599 /**
2600  * ftrace_rec_iter_record, get the record at the iterator location
2601  * @iter: The current iterator location
2602  *
2603  * Returns the record that the current @iter is at.
2604  */
2605 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter)
2606 {
2607 	return &iter->pg->records[iter->index];
2608 }
2609 
2610 static int
2611 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec)
2612 {
2613 	int ret;
2614 
2615 	if (unlikely(ftrace_disabled))
2616 		return 0;
2617 
2618 	ret = ftrace_init_nop(mod, rec);
2619 	if (ret) {
2620 		ftrace_bug_type = FTRACE_BUG_INIT;
2621 		ftrace_bug(ret, rec);
2622 		return 0;
2623 	}
2624 	return 1;
2625 }
2626 
2627 /*
2628  * archs can override this function if they must do something
2629  * before the modifying code is performed.
2630  */
2631 int __weak ftrace_arch_code_modify_prepare(void)
2632 {
2633 	return 0;
2634 }
2635 
2636 /*
2637  * archs can override this function if they must do something
2638  * after the modifying code is performed.
2639  */
2640 int __weak ftrace_arch_code_modify_post_process(void)
2641 {
2642 	return 0;
2643 }
2644 
2645 void ftrace_modify_all_code(int command)
2646 {
2647 	int update = command & FTRACE_UPDATE_TRACE_FUNC;
2648 	int mod_flags = 0;
2649 	int err = 0;
2650 
2651 	if (command & FTRACE_MAY_SLEEP)
2652 		mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL;
2653 
2654 	/*
2655 	 * If the ftrace_caller calls a ftrace_ops func directly,
2656 	 * we need to make sure that it only traces functions it
2657 	 * expects to trace. When doing the switch of functions,
2658 	 * we need to update to the ftrace_ops_list_func first
2659 	 * before the transition between old and new calls are set,
2660 	 * as the ftrace_ops_list_func will check the ops hashes
2661 	 * to make sure the ops are having the right functions
2662 	 * traced.
2663 	 */
2664 	if (update) {
2665 		err = ftrace_update_ftrace_func(ftrace_ops_list_func);
2666 		if (FTRACE_WARN_ON(err))
2667 			return;
2668 	}
2669 
2670 	if (command & FTRACE_UPDATE_CALLS)
2671 		ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL);
2672 	else if (command & FTRACE_DISABLE_CALLS)
2673 		ftrace_replace_code(mod_flags);
2674 
2675 	if (update && ftrace_trace_function != ftrace_ops_list_func) {
2676 		function_trace_op = set_function_trace_op;
2677 		smp_wmb();
2678 		/* If irqs are disabled, we are in stop machine */
2679 		if (!irqs_disabled())
2680 			smp_call_function(ftrace_sync_ipi, NULL, 1);
2681 		err = ftrace_update_ftrace_func(ftrace_trace_function);
2682 		if (FTRACE_WARN_ON(err))
2683 			return;
2684 	}
2685 
2686 	if (command & FTRACE_START_FUNC_RET)
2687 		err = ftrace_enable_ftrace_graph_caller();
2688 	else if (command & FTRACE_STOP_FUNC_RET)
2689 		err = ftrace_disable_ftrace_graph_caller();
2690 	FTRACE_WARN_ON(err);
2691 }
2692 
2693 static int __ftrace_modify_code(void *data)
2694 {
2695 	int *command = data;
2696 
2697 	ftrace_modify_all_code(*command);
2698 
2699 	return 0;
2700 }
2701 
2702 /**
2703  * ftrace_run_stop_machine, go back to the stop machine method
2704  * @command: The command to tell ftrace what to do
2705  *
2706  * If an arch needs to fall back to the stop machine method, the
2707  * it can call this function.
2708  */
2709 void ftrace_run_stop_machine(int command)
2710 {
2711 	stop_machine(__ftrace_modify_code, &command, NULL);
2712 }
2713 
2714 /**
2715  * arch_ftrace_update_code, modify the code to trace or not trace
2716  * @command: The command that needs to be done
2717  *
2718  * Archs can override this function if it does not need to
2719  * run stop_machine() to modify code.
2720  */
2721 void __weak arch_ftrace_update_code(int command)
2722 {
2723 	ftrace_run_stop_machine(command);
2724 }
2725 
2726 static void ftrace_run_update_code(int command)
2727 {
2728 	int ret;
2729 
2730 	ret = ftrace_arch_code_modify_prepare();
2731 	FTRACE_WARN_ON(ret);
2732 	if (ret)
2733 		return;
2734 
2735 	/*
2736 	 * By default we use stop_machine() to modify the code.
2737 	 * But archs can do what ever they want as long as it
2738 	 * is safe. The stop_machine() is the safest, but also
2739 	 * produces the most overhead.
2740 	 */
2741 	arch_ftrace_update_code(command);
2742 
2743 	ret = ftrace_arch_code_modify_post_process();
2744 	FTRACE_WARN_ON(ret);
2745 }
2746 
2747 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command,
2748 				   struct ftrace_ops_hash *old_hash)
2749 {
2750 	ops->flags |= FTRACE_OPS_FL_MODIFYING;
2751 	ops->old_hash.filter_hash = old_hash->filter_hash;
2752 	ops->old_hash.notrace_hash = old_hash->notrace_hash;
2753 	ftrace_run_update_code(command);
2754 	ops->old_hash.filter_hash = NULL;
2755 	ops->old_hash.notrace_hash = NULL;
2756 	ops->flags &= ~FTRACE_OPS_FL_MODIFYING;
2757 }
2758 
2759 static ftrace_func_t saved_ftrace_func;
2760 static int ftrace_start_up;
2761 
2762 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops)
2763 {
2764 }
2765 
2766 static void ftrace_startup_enable(int command)
2767 {
2768 	if (saved_ftrace_func != ftrace_trace_function) {
2769 		saved_ftrace_func = ftrace_trace_function;
2770 		command |= FTRACE_UPDATE_TRACE_FUNC;
2771 	}
2772 
2773 	if (!command || !ftrace_enabled)
2774 		return;
2775 
2776 	ftrace_run_update_code(command);
2777 }
2778 
2779 static void ftrace_startup_all(int command)
2780 {
2781 	update_all_ops = true;
2782 	ftrace_startup_enable(command);
2783 	update_all_ops = false;
2784 }
2785 
2786 int ftrace_startup(struct ftrace_ops *ops, int command)
2787 {
2788 	int ret;
2789 
2790 	if (unlikely(ftrace_disabled))
2791 		return -ENODEV;
2792 
2793 	ret = __register_ftrace_function(ops);
2794 	if (ret)
2795 		return ret;
2796 
2797 	ftrace_start_up++;
2798 
2799 	/*
2800 	 * Note that ftrace probes uses this to start up
2801 	 * and modify functions it will probe. But we still
2802 	 * set the ADDING flag for modification, as probes
2803 	 * do not have trampolines. If they add them in the
2804 	 * future, then the probes will need to distinguish
2805 	 * between adding and updating probes.
2806 	 */
2807 	ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING;
2808 
2809 	ret = ftrace_hash_ipmodify_enable(ops);
2810 	if (ret < 0) {
2811 		/* Rollback registration process */
2812 		__unregister_ftrace_function(ops);
2813 		ftrace_start_up--;
2814 		ops->flags &= ~FTRACE_OPS_FL_ENABLED;
2815 		return ret;
2816 	}
2817 
2818 	if (ftrace_hash_rec_enable(ops, 1))
2819 		command |= FTRACE_UPDATE_CALLS;
2820 
2821 	ftrace_startup_enable(command);
2822 
2823 	ops->flags &= ~FTRACE_OPS_FL_ADDING;
2824 
2825 	return 0;
2826 }
2827 
2828 int ftrace_shutdown(struct ftrace_ops *ops, int command)
2829 {
2830 	int ret;
2831 
2832 	if (unlikely(ftrace_disabled))
2833 		return -ENODEV;
2834 
2835 	ret = __unregister_ftrace_function(ops);
2836 	if (ret)
2837 		return ret;
2838 
2839 	ftrace_start_up--;
2840 	/*
2841 	 * Just warn in case of unbalance, no need to kill ftrace, it's not
2842 	 * critical but the ftrace_call callers may be never nopped again after
2843 	 * further ftrace uses.
2844 	 */
2845 	WARN_ON_ONCE(ftrace_start_up < 0);
2846 
2847 	/* Disabling ipmodify never fails */
2848 	ftrace_hash_ipmodify_disable(ops);
2849 
2850 	if (ftrace_hash_rec_disable(ops, 1))
2851 		command |= FTRACE_UPDATE_CALLS;
2852 
2853 	ops->flags &= ~FTRACE_OPS_FL_ENABLED;
2854 
2855 	if (saved_ftrace_func != ftrace_trace_function) {
2856 		saved_ftrace_func = ftrace_trace_function;
2857 		command |= FTRACE_UPDATE_TRACE_FUNC;
2858 	}
2859 
2860 	if (!command || !ftrace_enabled) {
2861 		/*
2862 		 * If these are dynamic or per_cpu ops, they still
2863 		 * need their data freed. Since, function tracing is
2864 		 * not currently active, we can just free them
2865 		 * without synchronizing all CPUs.
2866 		 */
2867 		if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
2868 			goto free_ops;
2869 
2870 		return 0;
2871 	}
2872 
2873 	/*
2874 	 * If the ops uses a trampoline, then it needs to be
2875 	 * tested first on update.
2876 	 */
2877 	ops->flags |= FTRACE_OPS_FL_REMOVING;
2878 	removed_ops = ops;
2879 
2880 	/* The trampoline logic checks the old hashes */
2881 	ops->old_hash.filter_hash = ops->func_hash->filter_hash;
2882 	ops->old_hash.notrace_hash = ops->func_hash->notrace_hash;
2883 
2884 	ftrace_run_update_code(command);
2885 
2886 	/*
2887 	 * If there's no more ops registered with ftrace, run a
2888 	 * sanity check to make sure all rec flags are cleared.
2889 	 */
2890 	if (rcu_dereference_protected(ftrace_ops_list,
2891 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
2892 		struct ftrace_page *pg;
2893 		struct dyn_ftrace *rec;
2894 
2895 		do_for_each_ftrace_rec(pg, rec) {
2896 			if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED))
2897 				pr_warn("  %pS flags:%lx\n",
2898 					(void *)rec->ip, rec->flags);
2899 		} while_for_each_ftrace_rec();
2900 	}
2901 
2902 	ops->old_hash.filter_hash = NULL;
2903 	ops->old_hash.notrace_hash = NULL;
2904 
2905 	removed_ops = NULL;
2906 	ops->flags &= ~FTRACE_OPS_FL_REMOVING;
2907 
2908 	/*
2909 	 * Dynamic ops may be freed, we must make sure that all
2910 	 * callers are done before leaving this function.
2911 	 * The same goes for freeing the per_cpu data of the per_cpu
2912 	 * ops.
2913 	 */
2914 	if (ops->flags & FTRACE_OPS_FL_DYNAMIC) {
2915 		/*
2916 		 * We need to do a hard force of sched synchronization.
2917 		 * This is because we use preempt_disable() to do RCU, but
2918 		 * the function tracers can be called where RCU is not watching
2919 		 * (like before user_exit()). We can not rely on the RCU
2920 		 * infrastructure to do the synchronization, thus we must do it
2921 		 * ourselves.
2922 		 */
2923 		schedule_on_each_cpu(ftrace_sync);
2924 
2925 		/*
2926 		 * When the kernel is preeptive, tasks can be preempted
2927 		 * while on a ftrace trampoline. Just scheduling a task on
2928 		 * a CPU is not good enough to flush them. Calling
2929 		 * synchornize_rcu_tasks() will wait for those tasks to
2930 		 * execute and either schedule voluntarily or enter user space.
2931 		 */
2932 		if (IS_ENABLED(CONFIG_PREEMPTION))
2933 			synchronize_rcu_tasks();
2934 
2935  free_ops:
2936 		arch_ftrace_trampoline_free(ops);
2937 	}
2938 
2939 	return 0;
2940 }
2941 
2942 static void ftrace_startup_sysctl(void)
2943 {
2944 	int command;
2945 
2946 	if (unlikely(ftrace_disabled))
2947 		return;
2948 
2949 	/* Force update next time */
2950 	saved_ftrace_func = NULL;
2951 	/* ftrace_start_up is true if we want ftrace running */
2952 	if (ftrace_start_up) {
2953 		command = FTRACE_UPDATE_CALLS;
2954 		if (ftrace_graph_active)
2955 			command |= FTRACE_START_FUNC_RET;
2956 		ftrace_startup_enable(command);
2957 	}
2958 }
2959 
2960 static void ftrace_shutdown_sysctl(void)
2961 {
2962 	int command;
2963 
2964 	if (unlikely(ftrace_disabled))
2965 		return;
2966 
2967 	/* ftrace_start_up is true if ftrace is running */
2968 	if (ftrace_start_up) {
2969 		command = FTRACE_DISABLE_CALLS;
2970 		if (ftrace_graph_active)
2971 			command |= FTRACE_STOP_FUNC_RET;
2972 		ftrace_run_update_code(command);
2973 	}
2974 }
2975 
2976 static u64		ftrace_update_time;
2977 unsigned long		ftrace_update_tot_cnt;
2978 unsigned long		ftrace_number_of_pages;
2979 unsigned long		ftrace_number_of_groups;
2980 
2981 static inline int ops_traces_mod(struct ftrace_ops *ops)
2982 {
2983 	/*
2984 	 * Filter_hash being empty will default to trace module.
2985 	 * But notrace hash requires a test of individual module functions.
2986 	 */
2987 	return ftrace_hash_empty(ops->func_hash->filter_hash) &&
2988 		ftrace_hash_empty(ops->func_hash->notrace_hash);
2989 }
2990 
2991 /*
2992  * Check if the current ops references the record.
2993  *
2994  * If the ops traces all functions, then it was already accounted for.
2995  * If the ops does not trace the current record function, skip it.
2996  * If the ops ignores the function via notrace filter, skip it.
2997  */
2998 static inline bool
2999 ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec)
3000 {
3001 	/* If ops isn't enabled, ignore it */
3002 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
3003 		return false;
3004 
3005 	/* If ops traces all then it includes this function */
3006 	if (ops_traces_mod(ops))
3007 		return true;
3008 
3009 	/* The function must be in the filter */
3010 	if (!ftrace_hash_empty(ops->func_hash->filter_hash) &&
3011 	    !__ftrace_lookup_ip(ops->func_hash->filter_hash, rec->ip))
3012 		return false;
3013 
3014 	/* If in notrace hash, we ignore it too */
3015 	if (ftrace_lookup_ip(ops->func_hash->notrace_hash, rec->ip))
3016 		return false;
3017 
3018 	return true;
3019 }
3020 
3021 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs)
3022 {
3023 	struct ftrace_page *pg;
3024 	struct dyn_ftrace *p;
3025 	u64 start, stop;
3026 	unsigned long update_cnt = 0;
3027 	unsigned long rec_flags = 0;
3028 	int i;
3029 
3030 	start = ftrace_now(raw_smp_processor_id());
3031 
3032 	/*
3033 	 * When a module is loaded, this function is called to convert
3034 	 * the calls to mcount in its text to nops, and also to create
3035 	 * an entry in the ftrace data. Now, if ftrace is activated
3036 	 * after this call, but before the module sets its text to
3037 	 * read-only, the modification of enabling ftrace can fail if
3038 	 * the read-only is done while ftrace is converting the calls.
3039 	 * To prevent this, the module's records are set as disabled
3040 	 * and will be enabled after the call to set the module's text
3041 	 * to read-only.
3042 	 */
3043 	if (mod)
3044 		rec_flags |= FTRACE_FL_DISABLED;
3045 
3046 	for (pg = new_pgs; pg; pg = pg->next) {
3047 
3048 		for (i = 0; i < pg->index; i++) {
3049 
3050 			/* If something went wrong, bail without enabling anything */
3051 			if (unlikely(ftrace_disabled))
3052 				return -1;
3053 
3054 			p = &pg->records[i];
3055 			p->flags = rec_flags;
3056 
3057 			/*
3058 			 * Do the initial record conversion from mcount jump
3059 			 * to the NOP instructions.
3060 			 */
3061 			if (!__is_defined(CC_USING_NOP_MCOUNT) &&
3062 			    !ftrace_nop_initialize(mod, p))
3063 				break;
3064 
3065 			update_cnt++;
3066 		}
3067 	}
3068 
3069 	stop = ftrace_now(raw_smp_processor_id());
3070 	ftrace_update_time = stop - start;
3071 	ftrace_update_tot_cnt += update_cnt;
3072 
3073 	return 0;
3074 }
3075 
3076 static int ftrace_allocate_records(struct ftrace_page *pg, int count)
3077 {
3078 	int order;
3079 	int cnt;
3080 
3081 	if (WARN_ON(!count))
3082 		return -EINVAL;
3083 
3084 	order = get_count_order(DIV_ROUND_UP(count, ENTRIES_PER_PAGE));
3085 
3086 	/*
3087 	 * We want to fill as much as possible. No more than a page
3088 	 * may be empty.
3089 	 */
3090 	while ((PAGE_SIZE << order) / ENTRY_SIZE >= count + ENTRIES_PER_PAGE)
3091 		order--;
3092 
3093  again:
3094 	pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
3095 
3096 	if (!pg->records) {
3097 		/* if we can't allocate this size, try something smaller */
3098 		if (!order)
3099 			return -ENOMEM;
3100 		order >>= 1;
3101 		goto again;
3102 	}
3103 
3104 	ftrace_number_of_pages += 1 << order;
3105 	ftrace_number_of_groups++;
3106 
3107 	cnt = (PAGE_SIZE << order) / ENTRY_SIZE;
3108 	pg->size = cnt;
3109 
3110 	if (cnt > count)
3111 		cnt = count;
3112 
3113 	return cnt;
3114 }
3115 
3116 static struct ftrace_page *
3117 ftrace_allocate_pages(unsigned long num_to_init)
3118 {
3119 	struct ftrace_page *start_pg;
3120 	struct ftrace_page *pg;
3121 	int order;
3122 	int cnt;
3123 
3124 	if (!num_to_init)
3125 		return NULL;
3126 
3127 	start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL);
3128 	if (!pg)
3129 		return NULL;
3130 
3131 	/*
3132 	 * Try to allocate as much as possible in one continues
3133 	 * location that fills in all of the space. We want to
3134 	 * waste as little space as possible.
3135 	 */
3136 	for (;;) {
3137 		cnt = ftrace_allocate_records(pg, num_to_init);
3138 		if (cnt < 0)
3139 			goto free_pages;
3140 
3141 		num_to_init -= cnt;
3142 		if (!num_to_init)
3143 			break;
3144 
3145 		pg->next = kzalloc(sizeof(*pg), GFP_KERNEL);
3146 		if (!pg->next)
3147 			goto free_pages;
3148 
3149 		pg = pg->next;
3150 	}
3151 
3152 	return start_pg;
3153 
3154  free_pages:
3155 	pg = start_pg;
3156 	while (pg) {
3157 		order = get_count_order(pg->size / ENTRIES_PER_PAGE);
3158 		free_pages((unsigned long)pg->records, order);
3159 		start_pg = pg->next;
3160 		kfree(pg);
3161 		pg = start_pg;
3162 		ftrace_number_of_pages -= 1 << order;
3163 		ftrace_number_of_groups--;
3164 	}
3165 	pr_info("ftrace: FAILED to allocate memory for functions\n");
3166 	return NULL;
3167 }
3168 
3169 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */
3170 
3171 struct ftrace_iterator {
3172 	loff_t				pos;
3173 	loff_t				func_pos;
3174 	loff_t				mod_pos;
3175 	struct ftrace_page		*pg;
3176 	struct dyn_ftrace		*func;
3177 	struct ftrace_func_probe	*probe;
3178 	struct ftrace_func_entry	*probe_entry;
3179 	struct trace_parser		parser;
3180 	struct ftrace_hash		*hash;
3181 	struct ftrace_ops		*ops;
3182 	struct trace_array		*tr;
3183 	struct list_head		*mod_list;
3184 	int				pidx;
3185 	int				idx;
3186 	unsigned			flags;
3187 };
3188 
3189 static void *
3190 t_probe_next(struct seq_file *m, loff_t *pos)
3191 {
3192 	struct ftrace_iterator *iter = m->private;
3193 	struct trace_array *tr = iter->ops->private;
3194 	struct list_head *func_probes;
3195 	struct ftrace_hash *hash;
3196 	struct list_head *next;
3197 	struct hlist_node *hnd = NULL;
3198 	struct hlist_head *hhd;
3199 	int size;
3200 
3201 	(*pos)++;
3202 	iter->pos = *pos;
3203 
3204 	if (!tr)
3205 		return NULL;
3206 
3207 	func_probes = &tr->func_probes;
3208 	if (list_empty(func_probes))
3209 		return NULL;
3210 
3211 	if (!iter->probe) {
3212 		next = func_probes->next;
3213 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3214 	}
3215 
3216 	if (iter->probe_entry)
3217 		hnd = &iter->probe_entry->hlist;
3218 
3219 	hash = iter->probe->ops.func_hash->filter_hash;
3220 
3221 	/*
3222 	 * A probe being registered may temporarily have an empty hash
3223 	 * and it's at the end of the func_probes list.
3224 	 */
3225 	if (!hash || hash == EMPTY_HASH)
3226 		return NULL;
3227 
3228 	size = 1 << hash->size_bits;
3229 
3230  retry:
3231 	if (iter->pidx >= size) {
3232 		if (iter->probe->list.next == func_probes)
3233 			return NULL;
3234 		next = iter->probe->list.next;
3235 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3236 		hash = iter->probe->ops.func_hash->filter_hash;
3237 		size = 1 << hash->size_bits;
3238 		iter->pidx = 0;
3239 	}
3240 
3241 	hhd = &hash->buckets[iter->pidx];
3242 
3243 	if (hlist_empty(hhd)) {
3244 		iter->pidx++;
3245 		hnd = NULL;
3246 		goto retry;
3247 	}
3248 
3249 	if (!hnd)
3250 		hnd = hhd->first;
3251 	else {
3252 		hnd = hnd->next;
3253 		if (!hnd) {
3254 			iter->pidx++;
3255 			goto retry;
3256 		}
3257 	}
3258 
3259 	if (WARN_ON_ONCE(!hnd))
3260 		return NULL;
3261 
3262 	iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist);
3263 
3264 	return iter;
3265 }
3266 
3267 static void *t_probe_start(struct seq_file *m, loff_t *pos)
3268 {
3269 	struct ftrace_iterator *iter = m->private;
3270 	void *p = NULL;
3271 	loff_t l;
3272 
3273 	if (!(iter->flags & FTRACE_ITER_DO_PROBES))
3274 		return NULL;
3275 
3276 	if (iter->mod_pos > *pos)
3277 		return NULL;
3278 
3279 	iter->probe = NULL;
3280 	iter->probe_entry = NULL;
3281 	iter->pidx = 0;
3282 	for (l = 0; l <= (*pos - iter->mod_pos); ) {
3283 		p = t_probe_next(m, &l);
3284 		if (!p)
3285 			break;
3286 	}
3287 	if (!p)
3288 		return NULL;
3289 
3290 	/* Only set this if we have an item */
3291 	iter->flags |= FTRACE_ITER_PROBE;
3292 
3293 	return iter;
3294 }
3295 
3296 static int
3297 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter)
3298 {
3299 	struct ftrace_func_entry *probe_entry;
3300 	struct ftrace_probe_ops *probe_ops;
3301 	struct ftrace_func_probe *probe;
3302 
3303 	probe = iter->probe;
3304 	probe_entry = iter->probe_entry;
3305 
3306 	if (WARN_ON_ONCE(!probe || !probe_entry))
3307 		return -EIO;
3308 
3309 	probe_ops = probe->probe_ops;
3310 
3311 	if (probe_ops->print)
3312 		return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data);
3313 
3314 	seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip,
3315 		   (void *)probe_ops->func);
3316 
3317 	return 0;
3318 }
3319 
3320 static void *
3321 t_mod_next(struct seq_file *m, loff_t *pos)
3322 {
3323 	struct ftrace_iterator *iter = m->private;
3324 	struct trace_array *tr = iter->tr;
3325 
3326 	(*pos)++;
3327 	iter->pos = *pos;
3328 
3329 	iter->mod_list = iter->mod_list->next;
3330 
3331 	if (iter->mod_list == &tr->mod_trace ||
3332 	    iter->mod_list == &tr->mod_notrace) {
3333 		iter->flags &= ~FTRACE_ITER_MOD;
3334 		return NULL;
3335 	}
3336 
3337 	iter->mod_pos = *pos;
3338 
3339 	return iter;
3340 }
3341 
3342 static void *t_mod_start(struct seq_file *m, loff_t *pos)
3343 {
3344 	struct ftrace_iterator *iter = m->private;
3345 	void *p = NULL;
3346 	loff_t l;
3347 
3348 	if (iter->func_pos > *pos)
3349 		return NULL;
3350 
3351 	iter->mod_pos = iter->func_pos;
3352 
3353 	/* probes are only available if tr is set */
3354 	if (!iter->tr)
3355 		return NULL;
3356 
3357 	for (l = 0; l <= (*pos - iter->func_pos); ) {
3358 		p = t_mod_next(m, &l);
3359 		if (!p)
3360 			break;
3361 	}
3362 	if (!p) {
3363 		iter->flags &= ~FTRACE_ITER_MOD;
3364 		return t_probe_start(m, pos);
3365 	}
3366 
3367 	/* Only set this if we have an item */
3368 	iter->flags |= FTRACE_ITER_MOD;
3369 
3370 	return iter;
3371 }
3372 
3373 static int
3374 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter)
3375 {
3376 	struct ftrace_mod_load *ftrace_mod;
3377 	struct trace_array *tr = iter->tr;
3378 
3379 	if (WARN_ON_ONCE(!iter->mod_list) ||
3380 			 iter->mod_list == &tr->mod_trace ||
3381 			 iter->mod_list == &tr->mod_notrace)
3382 		return -EIO;
3383 
3384 	ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list);
3385 
3386 	if (ftrace_mod->func)
3387 		seq_printf(m, "%s", ftrace_mod->func);
3388 	else
3389 		seq_putc(m, '*');
3390 
3391 	seq_printf(m, ":mod:%s\n", ftrace_mod->module);
3392 
3393 	return 0;
3394 }
3395 
3396 static void *
3397 t_func_next(struct seq_file *m, loff_t *pos)
3398 {
3399 	struct ftrace_iterator *iter = m->private;
3400 	struct dyn_ftrace *rec = NULL;
3401 
3402 	(*pos)++;
3403 
3404  retry:
3405 	if (iter->idx >= iter->pg->index) {
3406 		if (iter->pg->next) {
3407 			iter->pg = iter->pg->next;
3408 			iter->idx = 0;
3409 			goto retry;
3410 		}
3411 	} else {
3412 		rec = &iter->pg->records[iter->idx++];
3413 		if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3414 		     !ftrace_lookup_ip(iter->hash, rec->ip)) ||
3415 
3416 		    ((iter->flags & FTRACE_ITER_ENABLED) &&
3417 		     !(rec->flags & FTRACE_FL_ENABLED))) {
3418 
3419 			rec = NULL;
3420 			goto retry;
3421 		}
3422 	}
3423 
3424 	if (!rec)
3425 		return NULL;
3426 
3427 	iter->pos = iter->func_pos = *pos;
3428 	iter->func = rec;
3429 
3430 	return iter;
3431 }
3432 
3433 static void *
3434 t_next(struct seq_file *m, void *v, loff_t *pos)
3435 {
3436 	struct ftrace_iterator *iter = m->private;
3437 	loff_t l = *pos; /* t_probe_start() must use original pos */
3438 	void *ret;
3439 
3440 	if (unlikely(ftrace_disabled))
3441 		return NULL;
3442 
3443 	if (iter->flags & FTRACE_ITER_PROBE)
3444 		return t_probe_next(m, pos);
3445 
3446 	if (iter->flags & FTRACE_ITER_MOD)
3447 		return t_mod_next(m, pos);
3448 
3449 	if (iter->flags & FTRACE_ITER_PRINTALL) {
3450 		/* next must increment pos, and t_probe_start does not */
3451 		(*pos)++;
3452 		return t_mod_start(m, &l);
3453 	}
3454 
3455 	ret = t_func_next(m, pos);
3456 
3457 	if (!ret)
3458 		return t_mod_start(m, &l);
3459 
3460 	return ret;
3461 }
3462 
3463 static void reset_iter_read(struct ftrace_iterator *iter)
3464 {
3465 	iter->pos = 0;
3466 	iter->func_pos = 0;
3467 	iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD);
3468 }
3469 
3470 static void *t_start(struct seq_file *m, loff_t *pos)
3471 {
3472 	struct ftrace_iterator *iter = m->private;
3473 	void *p = NULL;
3474 	loff_t l;
3475 
3476 	mutex_lock(&ftrace_lock);
3477 
3478 	if (unlikely(ftrace_disabled))
3479 		return NULL;
3480 
3481 	/*
3482 	 * If an lseek was done, then reset and start from beginning.
3483 	 */
3484 	if (*pos < iter->pos)
3485 		reset_iter_read(iter);
3486 
3487 	/*
3488 	 * For set_ftrace_filter reading, if we have the filter
3489 	 * off, we can short cut and just print out that all
3490 	 * functions are enabled.
3491 	 */
3492 	if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3493 	    ftrace_hash_empty(iter->hash)) {
3494 		iter->func_pos = 1; /* Account for the message */
3495 		if (*pos > 0)
3496 			return t_mod_start(m, pos);
3497 		iter->flags |= FTRACE_ITER_PRINTALL;
3498 		/* reset in case of seek/pread */
3499 		iter->flags &= ~FTRACE_ITER_PROBE;
3500 		return iter;
3501 	}
3502 
3503 	if (iter->flags & FTRACE_ITER_MOD)
3504 		return t_mod_start(m, pos);
3505 
3506 	/*
3507 	 * Unfortunately, we need to restart at ftrace_pages_start
3508 	 * every time we let go of the ftrace_mutex. This is because
3509 	 * those pointers can change without the lock.
3510 	 */
3511 	iter->pg = ftrace_pages_start;
3512 	iter->idx = 0;
3513 	for (l = 0; l <= *pos; ) {
3514 		p = t_func_next(m, &l);
3515 		if (!p)
3516 			break;
3517 	}
3518 
3519 	if (!p)
3520 		return t_mod_start(m, pos);
3521 
3522 	return iter;
3523 }
3524 
3525 static void t_stop(struct seq_file *m, void *p)
3526 {
3527 	mutex_unlock(&ftrace_lock);
3528 }
3529 
3530 void * __weak
3531 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec)
3532 {
3533 	return NULL;
3534 }
3535 
3536 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops,
3537 				struct dyn_ftrace *rec)
3538 {
3539 	void *ptr;
3540 
3541 	ptr = arch_ftrace_trampoline_func(ops, rec);
3542 	if (ptr)
3543 		seq_printf(m, " ->%pS", ptr);
3544 }
3545 
3546 static int t_show(struct seq_file *m, void *v)
3547 {
3548 	struct ftrace_iterator *iter = m->private;
3549 	struct dyn_ftrace *rec;
3550 
3551 	if (iter->flags & FTRACE_ITER_PROBE)
3552 		return t_probe_show(m, iter);
3553 
3554 	if (iter->flags & FTRACE_ITER_MOD)
3555 		return t_mod_show(m, iter);
3556 
3557 	if (iter->flags & FTRACE_ITER_PRINTALL) {
3558 		if (iter->flags & FTRACE_ITER_NOTRACE)
3559 			seq_puts(m, "#### no functions disabled ####\n");
3560 		else
3561 			seq_puts(m, "#### all functions enabled ####\n");
3562 		return 0;
3563 	}
3564 
3565 	rec = iter->func;
3566 
3567 	if (!rec)
3568 		return 0;
3569 
3570 	seq_printf(m, "%ps", (void *)rec->ip);
3571 	if (iter->flags & FTRACE_ITER_ENABLED) {
3572 		struct ftrace_ops *ops;
3573 
3574 		seq_printf(m, " (%ld)%s%s%s",
3575 			   ftrace_rec_count(rec),
3576 			   rec->flags & FTRACE_FL_REGS ? " R" : "  ",
3577 			   rec->flags & FTRACE_FL_IPMODIFY ? " I" : "  ",
3578 			   rec->flags & FTRACE_FL_DIRECT ? " D" : "  ");
3579 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
3580 			ops = ftrace_find_tramp_ops_any(rec);
3581 			if (ops) {
3582 				do {
3583 					seq_printf(m, "\ttramp: %pS (%pS)",
3584 						   (void *)ops->trampoline,
3585 						   (void *)ops->func);
3586 					add_trampoline_func(m, ops, rec);
3587 					ops = ftrace_find_tramp_ops_next(rec, ops);
3588 				} while (ops);
3589 			} else
3590 				seq_puts(m, "\ttramp: ERROR!");
3591 		} else {
3592 			add_trampoline_func(m, NULL, rec);
3593 		}
3594 		if (rec->flags & FTRACE_FL_DIRECT) {
3595 			unsigned long direct;
3596 
3597 			direct = ftrace_find_rec_direct(rec->ip);
3598 			if (direct)
3599 				seq_printf(m, "\n\tdirect-->%pS", (void *)direct);
3600 		}
3601 	}
3602 
3603 	seq_putc(m, '\n');
3604 
3605 	return 0;
3606 }
3607 
3608 static const struct seq_operations show_ftrace_seq_ops = {
3609 	.start = t_start,
3610 	.next = t_next,
3611 	.stop = t_stop,
3612 	.show = t_show,
3613 };
3614 
3615 static int
3616 ftrace_avail_open(struct inode *inode, struct file *file)
3617 {
3618 	struct ftrace_iterator *iter;
3619 	int ret;
3620 
3621 	ret = security_locked_down(LOCKDOWN_TRACEFS);
3622 	if (ret)
3623 		return ret;
3624 
3625 	if (unlikely(ftrace_disabled))
3626 		return -ENODEV;
3627 
3628 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3629 	if (!iter)
3630 		return -ENOMEM;
3631 
3632 	iter->pg = ftrace_pages_start;
3633 	iter->ops = &global_ops;
3634 
3635 	return 0;
3636 }
3637 
3638 static int
3639 ftrace_enabled_open(struct inode *inode, struct file *file)
3640 {
3641 	struct ftrace_iterator *iter;
3642 
3643 	/*
3644 	 * This shows us what functions are currently being
3645 	 * traced and by what. Not sure if we want lockdown
3646 	 * to hide such critical information for an admin.
3647 	 * Although, perhaps it can show information we don't
3648 	 * want people to see, but if something is tracing
3649 	 * something, we probably want to know about it.
3650 	 */
3651 
3652 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3653 	if (!iter)
3654 		return -ENOMEM;
3655 
3656 	iter->pg = ftrace_pages_start;
3657 	iter->flags = FTRACE_ITER_ENABLED;
3658 	iter->ops = &global_ops;
3659 
3660 	return 0;
3661 }
3662 
3663 /**
3664  * ftrace_regex_open - initialize function tracer filter files
3665  * @ops: The ftrace_ops that hold the hash filters
3666  * @flag: The type of filter to process
3667  * @inode: The inode, usually passed in to your open routine
3668  * @file: The file, usually passed in to your open routine
3669  *
3670  * ftrace_regex_open() initializes the filter files for the
3671  * @ops. Depending on @flag it may process the filter hash or
3672  * the notrace hash of @ops. With this called from the open
3673  * routine, you can use ftrace_filter_write() for the write
3674  * routine if @flag has FTRACE_ITER_FILTER set, or
3675  * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set.
3676  * tracing_lseek() should be used as the lseek routine, and
3677  * release must call ftrace_regex_release().
3678  */
3679 int
3680 ftrace_regex_open(struct ftrace_ops *ops, int flag,
3681 		  struct inode *inode, struct file *file)
3682 {
3683 	struct ftrace_iterator *iter;
3684 	struct ftrace_hash *hash;
3685 	struct list_head *mod_head;
3686 	struct trace_array *tr = ops->private;
3687 	int ret = -ENOMEM;
3688 
3689 	ftrace_ops_init(ops);
3690 
3691 	if (unlikely(ftrace_disabled))
3692 		return -ENODEV;
3693 
3694 	if (tracing_check_open_get_tr(tr))
3695 		return -ENODEV;
3696 
3697 	iter = kzalloc(sizeof(*iter), GFP_KERNEL);
3698 	if (!iter)
3699 		goto out;
3700 
3701 	if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX))
3702 		goto out;
3703 
3704 	iter->ops = ops;
3705 	iter->flags = flag;
3706 	iter->tr = tr;
3707 
3708 	mutex_lock(&ops->func_hash->regex_lock);
3709 
3710 	if (flag & FTRACE_ITER_NOTRACE) {
3711 		hash = ops->func_hash->notrace_hash;
3712 		mod_head = tr ? &tr->mod_notrace : NULL;
3713 	} else {
3714 		hash = ops->func_hash->filter_hash;
3715 		mod_head = tr ? &tr->mod_trace : NULL;
3716 	}
3717 
3718 	iter->mod_list = mod_head;
3719 
3720 	if (file->f_mode & FMODE_WRITE) {
3721 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
3722 
3723 		if (file->f_flags & O_TRUNC) {
3724 			iter->hash = alloc_ftrace_hash(size_bits);
3725 			clear_ftrace_mod_list(mod_head);
3726 	        } else {
3727 			iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash);
3728 		}
3729 
3730 		if (!iter->hash) {
3731 			trace_parser_put(&iter->parser);
3732 			goto out_unlock;
3733 		}
3734 	} else
3735 		iter->hash = hash;
3736 
3737 	ret = 0;
3738 
3739 	if (file->f_mode & FMODE_READ) {
3740 		iter->pg = ftrace_pages_start;
3741 
3742 		ret = seq_open(file, &show_ftrace_seq_ops);
3743 		if (!ret) {
3744 			struct seq_file *m = file->private_data;
3745 			m->private = iter;
3746 		} else {
3747 			/* Failed */
3748 			free_ftrace_hash(iter->hash);
3749 			trace_parser_put(&iter->parser);
3750 		}
3751 	} else
3752 		file->private_data = iter;
3753 
3754  out_unlock:
3755 	mutex_unlock(&ops->func_hash->regex_lock);
3756 
3757  out:
3758 	if (ret) {
3759 		kfree(iter);
3760 		if (tr)
3761 			trace_array_put(tr);
3762 	}
3763 
3764 	return ret;
3765 }
3766 
3767 static int
3768 ftrace_filter_open(struct inode *inode, struct file *file)
3769 {
3770 	struct ftrace_ops *ops = inode->i_private;
3771 
3772 	/* Checks for tracefs lockdown */
3773 	return ftrace_regex_open(ops,
3774 			FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES,
3775 			inode, file);
3776 }
3777 
3778 static int
3779 ftrace_notrace_open(struct inode *inode, struct file *file)
3780 {
3781 	struct ftrace_ops *ops = inode->i_private;
3782 
3783 	/* Checks for tracefs lockdown */
3784 	return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE,
3785 				 inode, file);
3786 }
3787 
3788 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */
3789 struct ftrace_glob {
3790 	char *search;
3791 	unsigned len;
3792 	int type;
3793 };
3794 
3795 /*
3796  * If symbols in an architecture don't correspond exactly to the user-visible
3797  * name of what they represent, it is possible to define this function to
3798  * perform the necessary adjustments.
3799 */
3800 char * __weak arch_ftrace_match_adjust(char *str, const char *search)
3801 {
3802 	return str;
3803 }
3804 
3805 static int ftrace_match(char *str, struct ftrace_glob *g)
3806 {
3807 	int matched = 0;
3808 	int slen;
3809 
3810 	str = arch_ftrace_match_adjust(str, g->search);
3811 
3812 	switch (g->type) {
3813 	case MATCH_FULL:
3814 		if (strcmp(str, g->search) == 0)
3815 			matched = 1;
3816 		break;
3817 	case MATCH_FRONT_ONLY:
3818 		if (strncmp(str, g->search, g->len) == 0)
3819 			matched = 1;
3820 		break;
3821 	case MATCH_MIDDLE_ONLY:
3822 		if (strstr(str, g->search))
3823 			matched = 1;
3824 		break;
3825 	case MATCH_END_ONLY:
3826 		slen = strlen(str);
3827 		if (slen >= g->len &&
3828 		    memcmp(str + slen - g->len, g->search, g->len) == 0)
3829 			matched = 1;
3830 		break;
3831 	case MATCH_GLOB:
3832 		if (glob_match(g->search, str))
3833 			matched = 1;
3834 		break;
3835 	}
3836 
3837 	return matched;
3838 }
3839 
3840 static int
3841 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter)
3842 {
3843 	struct ftrace_func_entry *entry;
3844 	int ret = 0;
3845 
3846 	entry = ftrace_lookup_ip(hash, rec->ip);
3847 	if (clear_filter) {
3848 		/* Do nothing if it doesn't exist */
3849 		if (!entry)
3850 			return 0;
3851 
3852 		free_hash_entry(hash, entry);
3853 	} else {
3854 		/* Do nothing if it exists */
3855 		if (entry)
3856 			return 0;
3857 
3858 		ret = add_hash_entry(hash, rec->ip);
3859 	}
3860 	return ret;
3861 }
3862 
3863 static int
3864 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g,
3865 		 int clear_filter)
3866 {
3867 	long index = simple_strtoul(func_g->search, NULL, 0);
3868 	struct ftrace_page *pg;
3869 	struct dyn_ftrace *rec;
3870 
3871 	/* The index starts at 1 */
3872 	if (--index < 0)
3873 		return 0;
3874 
3875 	do_for_each_ftrace_rec(pg, rec) {
3876 		if (pg->index <= index) {
3877 			index -= pg->index;
3878 			/* this is a double loop, break goes to the next page */
3879 			break;
3880 		}
3881 		rec = &pg->records[index];
3882 		enter_record(hash, rec, clear_filter);
3883 		return 1;
3884 	} while_for_each_ftrace_rec();
3885 	return 0;
3886 }
3887 
3888 static int
3889 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g,
3890 		struct ftrace_glob *mod_g, int exclude_mod)
3891 {
3892 	char str[KSYM_SYMBOL_LEN];
3893 	char *modname;
3894 
3895 	kallsyms_lookup(rec->ip, NULL, NULL, &modname, str);
3896 
3897 	if (mod_g) {
3898 		int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0;
3899 
3900 		/* blank module name to match all modules */
3901 		if (!mod_g->len) {
3902 			/* blank module globbing: modname xor exclude_mod */
3903 			if (!exclude_mod != !modname)
3904 				goto func_match;
3905 			return 0;
3906 		}
3907 
3908 		/*
3909 		 * exclude_mod is set to trace everything but the given
3910 		 * module. If it is set and the module matches, then
3911 		 * return 0. If it is not set, and the module doesn't match
3912 		 * also return 0. Otherwise, check the function to see if
3913 		 * that matches.
3914 		 */
3915 		if (!mod_matches == !exclude_mod)
3916 			return 0;
3917 func_match:
3918 		/* blank search means to match all funcs in the mod */
3919 		if (!func_g->len)
3920 			return 1;
3921 	}
3922 
3923 	return ftrace_match(str, func_g);
3924 }
3925 
3926 static int
3927 match_records(struct ftrace_hash *hash, char *func, int len, char *mod)
3928 {
3929 	struct ftrace_page *pg;
3930 	struct dyn_ftrace *rec;
3931 	struct ftrace_glob func_g = { .type = MATCH_FULL };
3932 	struct ftrace_glob mod_g = { .type = MATCH_FULL };
3933 	struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL;
3934 	int exclude_mod = 0;
3935 	int found = 0;
3936 	int ret;
3937 	int clear_filter = 0;
3938 
3939 	if (func) {
3940 		func_g.type = filter_parse_regex(func, len, &func_g.search,
3941 						 &clear_filter);
3942 		func_g.len = strlen(func_g.search);
3943 	}
3944 
3945 	if (mod) {
3946 		mod_g.type = filter_parse_regex(mod, strlen(mod),
3947 				&mod_g.search, &exclude_mod);
3948 		mod_g.len = strlen(mod_g.search);
3949 	}
3950 
3951 	mutex_lock(&ftrace_lock);
3952 
3953 	if (unlikely(ftrace_disabled))
3954 		goto out_unlock;
3955 
3956 	if (func_g.type == MATCH_INDEX) {
3957 		found = add_rec_by_index(hash, &func_g, clear_filter);
3958 		goto out_unlock;
3959 	}
3960 
3961 	do_for_each_ftrace_rec(pg, rec) {
3962 
3963 		if (rec->flags & FTRACE_FL_DISABLED)
3964 			continue;
3965 
3966 		if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) {
3967 			ret = enter_record(hash, rec, clear_filter);
3968 			if (ret < 0) {
3969 				found = ret;
3970 				goto out_unlock;
3971 			}
3972 			found = 1;
3973 		}
3974 	} while_for_each_ftrace_rec();
3975  out_unlock:
3976 	mutex_unlock(&ftrace_lock);
3977 
3978 	return found;
3979 }
3980 
3981 static int
3982 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len)
3983 {
3984 	return match_records(hash, buff, len, NULL);
3985 }
3986 
3987 static void ftrace_ops_update_code(struct ftrace_ops *ops,
3988 				   struct ftrace_ops_hash *old_hash)
3989 {
3990 	struct ftrace_ops *op;
3991 
3992 	if (!ftrace_enabled)
3993 		return;
3994 
3995 	if (ops->flags & FTRACE_OPS_FL_ENABLED) {
3996 		ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash);
3997 		return;
3998 	}
3999 
4000 	/*
4001 	 * If this is the shared global_ops filter, then we need to
4002 	 * check if there is another ops that shares it, is enabled.
4003 	 * If so, we still need to run the modify code.
4004 	 */
4005 	if (ops->func_hash != &global_ops.local_hash)
4006 		return;
4007 
4008 	do_for_each_ftrace_op(op, ftrace_ops_list) {
4009 		if (op->func_hash == &global_ops.local_hash &&
4010 		    op->flags & FTRACE_OPS_FL_ENABLED) {
4011 			ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash);
4012 			/* Only need to do this once */
4013 			return;
4014 		}
4015 	} while_for_each_ftrace_op(op);
4016 }
4017 
4018 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops,
4019 					   struct ftrace_hash **orig_hash,
4020 					   struct ftrace_hash *hash,
4021 					   int enable)
4022 {
4023 	struct ftrace_ops_hash old_hash_ops;
4024 	struct ftrace_hash *old_hash;
4025 	int ret;
4026 
4027 	old_hash = *orig_hash;
4028 	old_hash_ops.filter_hash = ops->func_hash->filter_hash;
4029 	old_hash_ops.notrace_hash = ops->func_hash->notrace_hash;
4030 	ret = ftrace_hash_move(ops, enable, orig_hash, hash);
4031 	if (!ret) {
4032 		ftrace_ops_update_code(ops, &old_hash_ops);
4033 		free_ftrace_hash_rcu(old_hash);
4034 	}
4035 	return ret;
4036 }
4037 
4038 static bool module_exists(const char *module)
4039 {
4040 	/* All modules have the symbol __this_module */
4041 	static const char this_mod[] = "__this_module";
4042 	char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2];
4043 	unsigned long val;
4044 	int n;
4045 
4046 	n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod);
4047 
4048 	if (n > sizeof(modname) - 1)
4049 		return false;
4050 
4051 	val = module_kallsyms_lookup_name(modname);
4052 	return val != 0;
4053 }
4054 
4055 static int cache_mod(struct trace_array *tr,
4056 		     const char *func, char *module, int enable)
4057 {
4058 	struct ftrace_mod_load *ftrace_mod, *n;
4059 	struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace;
4060 	int ret;
4061 
4062 	mutex_lock(&ftrace_lock);
4063 
4064 	/* We do not cache inverse filters */
4065 	if (func[0] == '!') {
4066 		func++;
4067 		ret = -EINVAL;
4068 
4069 		/* Look to remove this hash */
4070 		list_for_each_entry_safe(ftrace_mod, n, head, list) {
4071 			if (strcmp(ftrace_mod->module, module) != 0)
4072 				continue;
4073 
4074 			/* no func matches all */
4075 			if (strcmp(func, "*") == 0 ||
4076 			    (ftrace_mod->func &&
4077 			     strcmp(ftrace_mod->func, func) == 0)) {
4078 				ret = 0;
4079 				free_ftrace_mod(ftrace_mod);
4080 				continue;
4081 			}
4082 		}
4083 		goto out;
4084 	}
4085 
4086 	ret = -EINVAL;
4087 	/* We only care about modules that have not been loaded yet */
4088 	if (module_exists(module))
4089 		goto out;
4090 
4091 	/* Save this string off, and execute it when the module is loaded */
4092 	ret = ftrace_add_mod(tr, func, module, enable);
4093  out:
4094 	mutex_unlock(&ftrace_lock);
4095 
4096 	return ret;
4097 }
4098 
4099 static int
4100 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
4101 		 int reset, int enable);
4102 
4103 #ifdef CONFIG_MODULES
4104 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops,
4105 			     char *mod, bool enable)
4106 {
4107 	struct ftrace_mod_load *ftrace_mod, *n;
4108 	struct ftrace_hash **orig_hash, *new_hash;
4109 	LIST_HEAD(process_mods);
4110 	char *func;
4111 	int ret;
4112 
4113 	mutex_lock(&ops->func_hash->regex_lock);
4114 
4115 	if (enable)
4116 		orig_hash = &ops->func_hash->filter_hash;
4117 	else
4118 		orig_hash = &ops->func_hash->notrace_hash;
4119 
4120 	new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS,
4121 					      *orig_hash);
4122 	if (!new_hash)
4123 		goto out; /* warn? */
4124 
4125 	mutex_lock(&ftrace_lock);
4126 
4127 	list_for_each_entry_safe(ftrace_mod, n, head, list) {
4128 
4129 		if (strcmp(ftrace_mod->module, mod) != 0)
4130 			continue;
4131 
4132 		if (ftrace_mod->func)
4133 			func = kstrdup(ftrace_mod->func, GFP_KERNEL);
4134 		else
4135 			func = kstrdup("*", GFP_KERNEL);
4136 
4137 		if (!func) /* warn? */
4138 			continue;
4139 
4140 		list_del(&ftrace_mod->list);
4141 		list_add(&ftrace_mod->list, &process_mods);
4142 
4143 		/* Use the newly allocated func, as it may be "*" */
4144 		kfree(ftrace_mod->func);
4145 		ftrace_mod->func = func;
4146 	}
4147 
4148 	mutex_unlock(&ftrace_lock);
4149 
4150 	list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) {
4151 
4152 		func = ftrace_mod->func;
4153 
4154 		/* Grabs ftrace_lock, which is why we have this extra step */
4155 		match_records(new_hash, func, strlen(func), mod);
4156 		free_ftrace_mod(ftrace_mod);
4157 	}
4158 
4159 	if (enable && list_empty(head))
4160 		new_hash->flags &= ~FTRACE_HASH_FL_MOD;
4161 
4162 	mutex_lock(&ftrace_lock);
4163 
4164 	ret = ftrace_hash_move_and_update_ops(ops, orig_hash,
4165 					      new_hash, enable);
4166 	mutex_unlock(&ftrace_lock);
4167 
4168  out:
4169 	mutex_unlock(&ops->func_hash->regex_lock);
4170 
4171 	free_ftrace_hash(new_hash);
4172 }
4173 
4174 static void process_cached_mods(const char *mod_name)
4175 {
4176 	struct trace_array *tr;
4177 	char *mod;
4178 
4179 	mod = kstrdup(mod_name, GFP_KERNEL);
4180 	if (!mod)
4181 		return;
4182 
4183 	mutex_lock(&trace_types_lock);
4184 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
4185 		if (!list_empty(&tr->mod_trace))
4186 			process_mod_list(&tr->mod_trace, tr->ops, mod, true);
4187 		if (!list_empty(&tr->mod_notrace))
4188 			process_mod_list(&tr->mod_notrace, tr->ops, mod, false);
4189 	}
4190 	mutex_unlock(&trace_types_lock);
4191 
4192 	kfree(mod);
4193 }
4194 #endif
4195 
4196 /*
4197  * We register the module command as a template to show others how
4198  * to register the a command as well.
4199  */
4200 
4201 static int
4202 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash,
4203 		    char *func_orig, char *cmd, char *module, int enable)
4204 {
4205 	char *func;
4206 	int ret;
4207 
4208 	/* match_records() modifies func, and we need the original */
4209 	func = kstrdup(func_orig, GFP_KERNEL);
4210 	if (!func)
4211 		return -ENOMEM;
4212 
4213 	/*
4214 	 * cmd == 'mod' because we only registered this func
4215 	 * for the 'mod' ftrace_func_command.
4216 	 * But if you register one func with multiple commands,
4217 	 * you can tell which command was used by the cmd
4218 	 * parameter.
4219 	 */
4220 	ret = match_records(hash, func, strlen(func), module);
4221 	kfree(func);
4222 
4223 	if (!ret)
4224 		return cache_mod(tr, func_orig, module, enable);
4225 	if (ret < 0)
4226 		return ret;
4227 	return 0;
4228 }
4229 
4230 static struct ftrace_func_command ftrace_mod_cmd = {
4231 	.name			= "mod",
4232 	.func			= ftrace_mod_callback,
4233 };
4234 
4235 static int __init ftrace_mod_cmd_init(void)
4236 {
4237 	return register_ftrace_command(&ftrace_mod_cmd);
4238 }
4239 core_initcall(ftrace_mod_cmd_init);
4240 
4241 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip,
4242 				      struct ftrace_ops *op, struct pt_regs *pt_regs)
4243 {
4244 	struct ftrace_probe_ops *probe_ops;
4245 	struct ftrace_func_probe *probe;
4246 
4247 	probe = container_of(op, struct ftrace_func_probe, ops);
4248 	probe_ops = probe->probe_ops;
4249 
4250 	/*
4251 	 * Disable preemption for these calls to prevent a RCU grace
4252 	 * period. This syncs the hash iteration and freeing of items
4253 	 * on the hash. rcu_read_lock is too dangerous here.
4254 	 */
4255 	preempt_disable_notrace();
4256 	probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data);
4257 	preempt_enable_notrace();
4258 }
4259 
4260 struct ftrace_func_map {
4261 	struct ftrace_func_entry	entry;
4262 	void				*data;
4263 };
4264 
4265 struct ftrace_func_mapper {
4266 	struct ftrace_hash		hash;
4267 };
4268 
4269 /**
4270  * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper
4271  *
4272  * Returns a ftrace_func_mapper descriptor that can be used to map ips to data.
4273  */
4274 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void)
4275 {
4276 	struct ftrace_hash *hash;
4277 
4278 	/*
4279 	 * The mapper is simply a ftrace_hash, but since the entries
4280 	 * in the hash are not ftrace_func_entry type, we define it
4281 	 * as a separate structure.
4282 	 */
4283 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
4284 	return (struct ftrace_func_mapper *)hash;
4285 }
4286 
4287 /**
4288  * ftrace_func_mapper_find_ip - Find some data mapped to an ip
4289  * @mapper: The mapper that has the ip maps
4290  * @ip: the instruction pointer to find the data for
4291  *
4292  * Returns the data mapped to @ip if found otherwise NULL. The return
4293  * is actually the address of the mapper data pointer. The address is
4294  * returned for use cases where the data is no bigger than a long, and
4295  * the user can use the data pointer as its data instead of having to
4296  * allocate more memory for the reference.
4297  */
4298 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper,
4299 				  unsigned long ip)
4300 {
4301 	struct ftrace_func_entry *entry;
4302 	struct ftrace_func_map *map;
4303 
4304 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4305 	if (!entry)
4306 		return NULL;
4307 
4308 	map = (struct ftrace_func_map *)entry;
4309 	return &map->data;
4310 }
4311 
4312 /**
4313  * ftrace_func_mapper_add_ip - Map some data to an ip
4314  * @mapper: The mapper that has the ip maps
4315  * @ip: The instruction pointer address to map @data to
4316  * @data: The data to map to @ip
4317  *
4318  * Returns 0 on succes otherwise an error.
4319  */
4320 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper,
4321 			      unsigned long ip, void *data)
4322 {
4323 	struct ftrace_func_entry *entry;
4324 	struct ftrace_func_map *map;
4325 
4326 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4327 	if (entry)
4328 		return -EBUSY;
4329 
4330 	map = kmalloc(sizeof(*map), GFP_KERNEL);
4331 	if (!map)
4332 		return -ENOMEM;
4333 
4334 	map->entry.ip = ip;
4335 	map->data = data;
4336 
4337 	__add_hash_entry(&mapper->hash, &map->entry);
4338 
4339 	return 0;
4340 }
4341 
4342 /**
4343  * ftrace_func_mapper_remove_ip - Remove an ip from the mapping
4344  * @mapper: The mapper that has the ip maps
4345  * @ip: The instruction pointer address to remove the data from
4346  *
4347  * Returns the data if it is found, otherwise NULL.
4348  * Note, if the data pointer is used as the data itself, (see
4349  * ftrace_func_mapper_find_ip(), then the return value may be meaningless,
4350  * if the data pointer was set to zero.
4351  */
4352 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper,
4353 				   unsigned long ip)
4354 {
4355 	struct ftrace_func_entry *entry;
4356 	struct ftrace_func_map *map;
4357 	void *data;
4358 
4359 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4360 	if (!entry)
4361 		return NULL;
4362 
4363 	map = (struct ftrace_func_map *)entry;
4364 	data = map->data;
4365 
4366 	remove_hash_entry(&mapper->hash, entry);
4367 	kfree(entry);
4368 
4369 	return data;
4370 }
4371 
4372 /**
4373  * free_ftrace_func_mapper - free a mapping of ips and data
4374  * @mapper: The mapper that has the ip maps
4375  * @free_func: A function to be called on each data item.
4376  *
4377  * This is used to free the function mapper. The @free_func is optional
4378  * and can be used if the data needs to be freed as well.
4379  */
4380 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper,
4381 			     ftrace_mapper_func free_func)
4382 {
4383 	struct ftrace_func_entry *entry;
4384 	struct ftrace_func_map *map;
4385 	struct hlist_head *hhd;
4386 	int size, i;
4387 
4388 	if (!mapper)
4389 		return;
4390 
4391 	if (free_func && mapper->hash.count) {
4392 		size = 1 << mapper->hash.size_bits;
4393 		for (i = 0; i < size; i++) {
4394 			hhd = &mapper->hash.buckets[i];
4395 			hlist_for_each_entry(entry, hhd, hlist) {
4396 				map = (struct ftrace_func_map *)entry;
4397 				free_func(map);
4398 			}
4399 		}
4400 	}
4401 	free_ftrace_hash(&mapper->hash);
4402 }
4403 
4404 static void release_probe(struct ftrace_func_probe *probe)
4405 {
4406 	struct ftrace_probe_ops *probe_ops;
4407 
4408 	mutex_lock(&ftrace_lock);
4409 
4410 	WARN_ON(probe->ref <= 0);
4411 
4412 	/* Subtract the ref that was used to protect this instance */
4413 	probe->ref--;
4414 
4415 	if (!probe->ref) {
4416 		probe_ops = probe->probe_ops;
4417 		/*
4418 		 * Sending zero as ip tells probe_ops to free
4419 		 * the probe->data itself
4420 		 */
4421 		if (probe_ops->free)
4422 			probe_ops->free(probe_ops, probe->tr, 0, probe->data);
4423 		list_del(&probe->list);
4424 		kfree(probe);
4425 	}
4426 	mutex_unlock(&ftrace_lock);
4427 }
4428 
4429 static void acquire_probe_locked(struct ftrace_func_probe *probe)
4430 {
4431 	/*
4432 	 * Add one ref to keep it from being freed when releasing the
4433 	 * ftrace_lock mutex.
4434 	 */
4435 	probe->ref++;
4436 }
4437 
4438 int
4439 register_ftrace_function_probe(char *glob, struct trace_array *tr,
4440 			       struct ftrace_probe_ops *probe_ops,
4441 			       void *data)
4442 {
4443 	struct ftrace_func_entry *entry;
4444 	struct ftrace_func_probe *probe;
4445 	struct ftrace_hash **orig_hash;
4446 	struct ftrace_hash *old_hash;
4447 	struct ftrace_hash *hash;
4448 	int count = 0;
4449 	int size;
4450 	int ret;
4451 	int i;
4452 
4453 	if (WARN_ON(!tr))
4454 		return -EINVAL;
4455 
4456 	/* We do not support '!' for function probes */
4457 	if (WARN_ON(glob[0] == '!'))
4458 		return -EINVAL;
4459 
4460 
4461 	mutex_lock(&ftrace_lock);
4462 	/* Check if the probe_ops is already registered */
4463 	list_for_each_entry(probe, &tr->func_probes, list) {
4464 		if (probe->probe_ops == probe_ops)
4465 			break;
4466 	}
4467 	if (&probe->list == &tr->func_probes) {
4468 		probe = kzalloc(sizeof(*probe), GFP_KERNEL);
4469 		if (!probe) {
4470 			mutex_unlock(&ftrace_lock);
4471 			return -ENOMEM;
4472 		}
4473 		probe->probe_ops = probe_ops;
4474 		probe->ops.func = function_trace_probe_call;
4475 		probe->tr = tr;
4476 		ftrace_ops_init(&probe->ops);
4477 		list_add(&probe->list, &tr->func_probes);
4478 	}
4479 
4480 	acquire_probe_locked(probe);
4481 
4482 	mutex_unlock(&ftrace_lock);
4483 
4484 	/*
4485 	 * Note, there's a small window here that the func_hash->filter_hash
4486 	 * may be NULL or empty. Need to be carefule when reading the loop.
4487 	 */
4488 	mutex_lock(&probe->ops.func_hash->regex_lock);
4489 
4490 	orig_hash = &probe->ops.func_hash->filter_hash;
4491 	old_hash = *orig_hash;
4492 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4493 
4494 	if (!hash) {
4495 		ret = -ENOMEM;
4496 		goto out;
4497 	}
4498 
4499 	ret = ftrace_match_records(hash, glob, strlen(glob));
4500 
4501 	/* Nothing found? */
4502 	if (!ret)
4503 		ret = -EINVAL;
4504 
4505 	if (ret < 0)
4506 		goto out;
4507 
4508 	size = 1 << hash->size_bits;
4509 	for (i = 0; i < size; i++) {
4510 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4511 			if (ftrace_lookup_ip(old_hash, entry->ip))
4512 				continue;
4513 			/*
4514 			 * The caller might want to do something special
4515 			 * for each function we find. We call the callback
4516 			 * to give the caller an opportunity to do so.
4517 			 */
4518 			if (probe_ops->init) {
4519 				ret = probe_ops->init(probe_ops, tr,
4520 						      entry->ip, data,
4521 						      &probe->data);
4522 				if (ret < 0) {
4523 					if (probe_ops->free && count)
4524 						probe_ops->free(probe_ops, tr,
4525 								0, probe->data);
4526 					probe->data = NULL;
4527 					goto out;
4528 				}
4529 			}
4530 			count++;
4531 		}
4532 	}
4533 
4534 	mutex_lock(&ftrace_lock);
4535 
4536 	if (!count) {
4537 		/* Nothing was added? */
4538 		ret = -EINVAL;
4539 		goto out_unlock;
4540 	}
4541 
4542 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
4543 					      hash, 1);
4544 	if (ret < 0)
4545 		goto err_unlock;
4546 
4547 	/* One ref for each new function traced */
4548 	probe->ref += count;
4549 
4550 	if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED))
4551 		ret = ftrace_startup(&probe->ops, 0);
4552 
4553  out_unlock:
4554 	mutex_unlock(&ftrace_lock);
4555 
4556 	if (!ret)
4557 		ret = count;
4558  out:
4559 	mutex_unlock(&probe->ops.func_hash->regex_lock);
4560 	free_ftrace_hash(hash);
4561 
4562 	release_probe(probe);
4563 
4564 	return ret;
4565 
4566  err_unlock:
4567 	if (!probe_ops->free || !count)
4568 		goto out_unlock;
4569 
4570 	/* Failed to do the move, need to call the free functions */
4571 	for (i = 0; i < size; i++) {
4572 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4573 			if (ftrace_lookup_ip(old_hash, entry->ip))
4574 				continue;
4575 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
4576 		}
4577 	}
4578 	goto out_unlock;
4579 }
4580 
4581 int
4582 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr,
4583 				      struct ftrace_probe_ops *probe_ops)
4584 {
4585 	struct ftrace_ops_hash old_hash_ops;
4586 	struct ftrace_func_entry *entry;
4587 	struct ftrace_func_probe *probe;
4588 	struct ftrace_glob func_g;
4589 	struct ftrace_hash **orig_hash;
4590 	struct ftrace_hash *old_hash;
4591 	struct ftrace_hash *hash = NULL;
4592 	struct hlist_node *tmp;
4593 	struct hlist_head hhd;
4594 	char str[KSYM_SYMBOL_LEN];
4595 	int count = 0;
4596 	int i, ret = -ENODEV;
4597 	int size;
4598 
4599 	if (!glob || !strlen(glob) || !strcmp(glob, "*"))
4600 		func_g.search = NULL;
4601 	else {
4602 		int not;
4603 
4604 		func_g.type = filter_parse_regex(glob, strlen(glob),
4605 						 &func_g.search, &not);
4606 		func_g.len = strlen(func_g.search);
4607 
4608 		/* we do not support '!' for function probes */
4609 		if (WARN_ON(not))
4610 			return -EINVAL;
4611 	}
4612 
4613 	mutex_lock(&ftrace_lock);
4614 	/* Check if the probe_ops is already registered */
4615 	list_for_each_entry(probe, &tr->func_probes, list) {
4616 		if (probe->probe_ops == probe_ops)
4617 			break;
4618 	}
4619 	if (&probe->list == &tr->func_probes)
4620 		goto err_unlock_ftrace;
4621 
4622 	ret = -EINVAL;
4623 	if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED))
4624 		goto err_unlock_ftrace;
4625 
4626 	acquire_probe_locked(probe);
4627 
4628 	mutex_unlock(&ftrace_lock);
4629 
4630 	mutex_lock(&probe->ops.func_hash->regex_lock);
4631 
4632 	orig_hash = &probe->ops.func_hash->filter_hash;
4633 	old_hash = *orig_hash;
4634 
4635 	if (ftrace_hash_empty(old_hash))
4636 		goto out_unlock;
4637 
4638 	old_hash_ops.filter_hash = old_hash;
4639 	/* Probes only have filters */
4640 	old_hash_ops.notrace_hash = NULL;
4641 
4642 	ret = -ENOMEM;
4643 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4644 	if (!hash)
4645 		goto out_unlock;
4646 
4647 	INIT_HLIST_HEAD(&hhd);
4648 
4649 	size = 1 << hash->size_bits;
4650 	for (i = 0; i < size; i++) {
4651 		hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) {
4652 
4653 			if (func_g.search) {
4654 				kallsyms_lookup(entry->ip, NULL, NULL,
4655 						NULL, str);
4656 				if (!ftrace_match(str, &func_g))
4657 					continue;
4658 			}
4659 			count++;
4660 			remove_hash_entry(hash, entry);
4661 			hlist_add_head(&entry->hlist, &hhd);
4662 		}
4663 	}
4664 
4665 	/* Nothing found? */
4666 	if (!count) {
4667 		ret = -EINVAL;
4668 		goto out_unlock;
4669 	}
4670 
4671 	mutex_lock(&ftrace_lock);
4672 
4673 	WARN_ON(probe->ref < count);
4674 
4675 	probe->ref -= count;
4676 
4677 	if (ftrace_hash_empty(hash))
4678 		ftrace_shutdown(&probe->ops, 0);
4679 
4680 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
4681 					      hash, 1);
4682 
4683 	/* still need to update the function call sites */
4684 	if (ftrace_enabled && !ftrace_hash_empty(hash))
4685 		ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS,
4686 				       &old_hash_ops);
4687 	synchronize_rcu();
4688 
4689 	hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) {
4690 		hlist_del(&entry->hlist);
4691 		if (probe_ops->free)
4692 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
4693 		kfree(entry);
4694 	}
4695 	mutex_unlock(&ftrace_lock);
4696 
4697  out_unlock:
4698 	mutex_unlock(&probe->ops.func_hash->regex_lock);
4699 	free_ftrace_hash(hash);
4700 
4701 	release_probe(probe);
4702 
4703 	return ret;
4704 
4705  err_unlock_ftrace:
4706 	mutex_unlock(&ftrace_lock);
4707 	return ret;
4708 }
4709 
4710 void clear_ftrace_function_probes(struct trace_array *tr)
4711 {
4712 	struct ftrace_func_probe *probe, *n;
4713 
4714 	list_for_each_entry_safe(probe, n, &tr->func_probes, list)
4715 		unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops);
4716 }
4717 
4718 static LIST_HEAD(ftrace_commands);
4719 static DEFINE_MUTEX(ftrace_cmd_mutex);
4720 
4721 /*
4722  * Currently we only register ftrace commands from __init, so mark this
4723  * __init too.
4724  */
4725 __init int register_ftrace_command(struct ftrace_func_command *cmd)
4726 {
4727 	struct ftrace_func_command *p;
4728 	int ret = 0;
4729 
4730 	mutex_lock(&ftrace_cmd_mutex);
4731 	list_for_each_entry(p, &ftrace_commands, list) {
4732 		if (strcmp(cmd->name, p->name) == 0) {
4733 			ret = -EBUSY;
4734 			goto out_unlock;
4735 		}
4736 	}
4737 	list_add(&cmd->list, &ftrace_commands);
4738  out_unlock:
4739 	mutex_unlock(&ftrace_cmd_mutex);
4740 
4741 	return ret;
4742 }
4743 
4744 /*
4745  * Currently we only unregister ftrace commands from __init, so mark
4746  * this __init too.
4747  */
4748 __init int unregister_ftrace_command(struct ftrace_func_command *cmd)
4749 {
4750 	struct ftrace_func_command *p, *n;
4751 	int ret = -ENODEV;
4752 
4753 	mutex_lock(&ftrace_cmd_mutex);
4754 	list_for_each_entry_safe(p, n, &ftrace_commands, list) {
4755 		if (strcmp(cmd->name, p->name) == 0) {
4756 			ret = 0;
4757 			list_del_init(&p->list);
4758 			goto out_unlock;
4759 		}
4760 	}
4761  out_unlock:
4762 	mutex_unlock(&ftrace_cmd_mutex);
4763 
4764 	return ret;
4765 }
4766 
4767 static int ftrace_process_regex(struct ftrace_iterator *iter,
4768 				char *buff, int len, int enable)
4769 {
4770 	struct ftrace_hash *hash = iter->hash;
4771 	struct trace_array *tr = iter->ops->private;
4772 	char *func, *command, *next = buff;
4773 	struct ftrace_func_command *p;
4774 	int ret = -EINVAL;
4775 
4776 	func = strsep(&next, ":");
4777 
4778 	if (!next) {
4779 		ret = ftrace_match_records(hash, func, len);
4780 		if (!ret)
4781 			ret = -EINVAL;
4782 		if (ret < 0)
4783 			return ret;
4784 		return 0;
4785 	}
4786 
4787 	/* command found */
4788 
4789 	command = strsep(&next, ":");
4790 
4791 	mutex_lock(&ftrace_cmd_mutex);
4792 	list_for_each_entry(p, &ftrace_commands, list) {
4793 		if (strcmp(p->name, command) == 0) {
4794 			ret = p->func(tr, hash, func, command, next, enable);
4795 			goto out_unlock;
4796 		}
4797 	}
4798  out_unlock:
4799 	mutex_unlock(&ftrace_cmd_mutex);
4800 
4801 	return ret;
4802 }
4803 
4804 static ssize_t
4805 ftrace_regex_write(struct file *file, const char __user *ubuf,
4806 		   size_t cnt, loff_t *ppos, int enable)
4807 {
4808 	struct ftrace_iterator *iter;
4809 	struct trace_parser *parser;
4810 	ssize_t ret, read;
4811 
4812 	if (!cnt)
4813 		return 0;
4814 
4815 	if (file->f_mode & FMODE_READ) {
4816 		struct seq_file *m = file->private_data;
4817 		iter = m->private;
4818 	} else
4819 		iter = file->private_data;
4820 
4821 	if (unlikely(ftrace_disabled))
4822 		return -ENODEV;
4823 
4824 	/* iter->hash is a local copy, so we don't need regex_lock */
4825 
4826 	parser = &iter->parser;
4827 	read = trace_get_user(parser, ubuf, cnt, ppos);
4828 
4829 	if (read >= 0 && trace_parser_loaded(parser) &&
4830 	    !trace_parser_cont(parser)) {
4831 		ret = ftrace_process_regex(iter, parser->buffer,
4832 					   parser->idx, enable);
4833 		trace_parser_clear(parser);
4834 		if (ret < 0)
4835 			goto out;
4836 	}
4837 
4838 	ret = read;
4839  out:
4840 	return ret;
4841 }
4842 
4843 ssize_t
4844 ftrace_filter_write(struct file *file, const char __user *ubuf,
4845 		    size_t cnt, loff_t *ppos)
4846 {
4847 	return ftrace_regex_write(file, ubuf, cnt, ppos, 1);
4848 }
4849 
4850 ssize_t
4851 ftrace_notrace_write(struct file *file, const char __user *ubuf,
4852 		     size_t cnt, loff_t *ppos)
4853 {
4854 	return ftrace_regex_write(file, ubuf, cnt, ppos, 0);
4855 }
4856 
4857 static int
4858 ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove)
4859 {
4860 	struct ftrace_func_entry *entry;
4861 
4862 	if (!ftrace_location(ip))
4863 		return -EINVAL;
4864 
4865 	if (remove) {
4866 		entry = ftrace_lookup_ip(hash, ip);
4867 		if (!entry)
4868 			return -ENOENT;
4869 		free_hash_entry(hash, entry);
4870 		return 0;
4871 	}
4872 
4873 	return add_hash_entry(hash, ip);
4874 }
4875 
4876 static int
4877 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len,
4878 		unsigned long ip, int remove, int reset, int enable)
4879 {
4880 	struct ftrace_hash **orig_hash;
4881 	struct ftrace_hash *hash;
4882 	int ret;
4883 
4884 	if (unlikely(ftrace_disabled))
4885 		return -ENODEV;
4886 
4887 	mutex_lock(&ops->func_hash->regex_lock);
4888 
4889 	if (enable)
4890 		orig_hash = &ops->func_hash->filter_hash;
4891 	else
4892 		orig_hash = &ops->func_hash->notrace_hash;
4893 
4894 	if (reset)
4895 		hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
4896 	else
4897 		hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash);
4898 
4899 	if (!hash) {
4900 		ret = -ENOMEM;
4901 		goto out_regex_unlock;
4902 	}
4903 
4904 	if (buf && !ftrace_match_records(hash, buf, len)) {
4905 		ret = -EINVAL;
4906 		goto out_regex_unlock;
4907 	}
4908 	if (ip) {
4909 		ret = ftrace_match_addr(hash, ip, remove);
4910 		if (ret < 0)
4911 			goto out_regex_unlock;
4912 	}
4913 
4914 	mutex_lock(&ftrace_lock);
4915 	ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable);
4916 	mutex_unlock(&ftrace_lock);
4917 
4918  out_regex_unlock:
4919 	mutex_unlock(&ops->func_hash->regex_lock);
4920 
4921 	free_ftrace_hash(hash);
4922 	return ret;
4923 }
4924 
4925 static int
4926 ftrace_set_addr(struct ftrace_ops *ops, unsigned long ip, int remove,
4927 		int reset, int enable)
4928 {
4929 	return ftrace_set_hash(ops, NULL, 0, ip, remove, reset, enable);
4930 }
4931 
4932 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
4933 
4934 struct ftrace_direct_func {
4935 	struct list_head	next;
4936 	unsigned long		addr;
4937 	int			count;
4938 };
4939 
4940 static LIST_HEAD(ftrace_direct_funcs);
4941 
4942 /**
4943  * ftrace_find_direct_func - test an address if it is a registered direct caller
4944  * @addr: The address of a registered direct caller
4945  *
4946  * This searches to see if a ftrace direct caller has been registered
4947  * at a specific address, and if so, it returns a descriptor for it.
4948  *
4949  * This can be used by architecture code to see if an address is
4950  * a direct caller (trampoline) attached to a fentry/mcount location.
4951  * This is useful for the function_graph tracer, as it may need to
4952  * do adjustments if it traced a location that also has a direct
4953  * trampoline attached to it.
4954  */
4955 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr)
4956 {
4957 	struct ftrace_direct_func *entry;
4958 	bool found = false;
4959 
4960 	/* May be called by fgraph trampoline (protected by rcu tasks) */
4961 	list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) {
4962 		if (entry->addr == addr) {
4963 			found = true;
4964 			break;
4965 		}
4966 	}
4967 	if (found)
4968 		return entry;
4969 
4970 	return NULL;
4971 }
4972 
4973 /**
4974  * register_ftrace_direct - Call a custom trampoline directly
4975  * @ip: The address of the nop at the beginning of a function
4976  * @addr: The address of the trampoline to call at @ip
4977  *
4978  * This is used to connect a direct call from the nop location (@ip)
4979  * at the start of ftrace traced functions. The location that it calls
4980  * (@addr) must be able to handle a direct call, and save the parameters
4981  * of the function being traced, and restore them (or inject new ones
4982  * if needed), before returning.
4983  *
4984  * Returns:
4985  *  0 on success
4986  *  -EBUSY - Another direct function is already attached (there can be only one)
4987  *  -ENODEV - @ip does not point to a ftrace nop location (or not supported)
4988  *  -ENOMEM - There was an allocation failure.
4989  */
4990 int register_ftrace_direct(unsigned long ip, unsigned long addr)
4991 {
4992 	struct ftrace_direct_func *direct;
4993 	struct ftrace_func_entry *entry;
4994 	struct ftrace_hash *free_hash = NULL;
4995 	struct dyn_ftrace *rec;
4996 	int ret = -EBUSY;
4997 
4998 	mutex_lock(&direct_mutex);
4999 
5000 	/* See if there's a direct function at @ip already */
5001 	if (ftrace_find_rec_direct(ip))
5002 		goto out_unlock;
5003 
5004 	ret = -ENODEV;
5005 	rec = lookup_rec(ip, ip);
5006 	if (!rec)
5007 		goto out_unlock;
5008 
5009 	/*
5010 	 * Check if the rec says it has a direct call but we didn't
5011 	 * find one earlier?
5012 	 */
5013 	if (WARN_ON(rec->flags & FTRACE_FL_DIRECT))
5014 		goto out_unlock;
5015 
5016 	/* Make sure the ip points to the exact record */
5017 	if (ip != rec->ip) {
5018 		ip = rec->ip;
5019 		/* Need to check this ip for a direct. */
5020 		if (ftrace_find_rec_direct(ip))
5021 			goto out_unlock;
5022 	}
5023 
5024 	ret = -ENOMEM;
5025 	if (ftrace_hash_empty(direct_functions) ||
5026 	    direct_functions->count > 2 * (1 << direct_functions->size_bits)) {
5027 		struct ftrace_hash *new_hash;
5028 		int size = ftrace_hash_empty(direct_functions) ? 0 :
5029 			direct_functions->count + 1;
5030 
5031 		if (size < 32)
5032 			size = 32;
5033 
5034 		new_hash = dup_hash(direct_functions, size);
5035 		if (!new_hash)
5036 			goto out_unlock;
5037 
5038 		free_hash = direct_functions;
5039 		direct_functions = new_hash;
5040 	}
5041 
5042 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
5043 	if (!entry)
5044 		goto out_unlock;
5045 
5046 	direct = ftrace_find_direct_func(addr);
5047 	if (!direct) {
5048 		direct = kmalloc(sizeof(*direct), GFP_KERNEL);
5049 		if (!direct) {
5050 			kfree(entry);
5051 			goto out_unlock;
5052 		}
5053 		direct->addr = addr;
5054 		direct->count = 0;
5055 		list_add_rcu(&direct->next, &ftrace_direct_funcs);
5056 		ftrace_direct_func_count++;
5057 	}
5058 
5059 	entry->ip = ip;
5060 	entry->direct = addr;
5061 	__add_hash_entry(direct_functions, entry);
5062 
5063 	ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0);
5064 	if (ret)
5065 		remove_hash_entry(direct_functions, entry);
5066 
5067 	if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) {
5068 		ret = register_ftrace_function(&direct_ops);
5069 		if (ret)
5070 			ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
5071 	}
5072 
5073 	if (ret) {
5074 		kfree(entry);
5075 		if (!direct->count) {
5076 			list_del_rcu(&direct->next);
5077 			synchronize_rcu_tasks();
5078 			kfree(direct);
5079 			if (free_hash)
5080 				free_ftrace_hash(free_hash);
5081 			free_hash = NULL;
5082 			ftrace_direct_func_count--;
5083 		}
5084 	} else {
5085 		direct->count++;
5086 	}
5087  out_unlock:
5088 	mutex_unlock(&direct_mutex);
5089 
5090 	if (free_hash) {
5091 		synchronize_rcu_tasks();
5092 		free_ftrace_hash(free_hash);
5093 	}
5094 
5095 	return ret;
5096 }
5097 EXPORT_SYMBOL_GPL(register_ftrace_direct);
5098 
5099 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip,
5100 						   struct dyn_ftrace **recp)
5101 {
5102 	struct ftrace_func_entry *entry;
5103 	struct dyn_ftrace *rec;
5104 
5105 	rec = lookup_rec(*ip, *ip);
5106 	if (!rec)
5107 		return NULL;
5108 
5109 	entry = __ftrace_lookup_ip(direct_functions, rec->ip);
5110 	if (!entry) {
5111 		WARN_ON(rec->flags & FTRACE_FL_DIRECT);
5112 		return NULL;
5113 	}
5114 
5115 	WARN_ON(!(rec->flags & FTRACE_FL_DIRECT));
5116 
5117 	/* Passed in ip just needs to be on the call site */
5118 	*ip = rec->ip;
5119 
5120 	if (recp)
5121 		*recp = rec;
5122 
5123 	return entry;
5124 }
5125 
5126 int unregister_ftrace_direct(unsigned long ip, unsigned long addr)
5127 {
5128 	struct ftrace_direct_func *direct;
5129 	struct ftrace_func_entry *entry;
5130 	int ret = -ENODEV;
5131 
5132 	mutex_lock(&direct_mutex);
5133 
5134 	entry = find_direct_entry(&ip, NULL);
5135 	if (!entry)
5136 		goto out_unlock;
5137 
5138 	if (direct_functions->count == 1)
5139 		unregister_ftrace_function(&direct_ops);
5140 
5141 	ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
5142 
5143 	WARN_ON(ret);
5144 
5145 	remove_hash_entry(direct_functions, entry);
5146 
5147 	direct = ftrace_find_direct_func(addr);
5148 	if (!WARN_ON(!direct)) {
5149 		/* This is the good path (see the ! before WARN) */
5150 		direct->count--;
5151 		WARN_ON(direct->count < 0);
5152 		if (!direct->count) {
5153 			list_del_rcu(&direct->next);
5154 			synchronize_rcu_tasks();
5155 			kfree(direct);
5156 			ftrace_direct_func_count--;
5157 		}
5158 	}
5159  out_unlock:
5160 	mutex_unlock(&direct_mutex);
5161 
5162 	return ret;
5163 }
5164 EXPORT_SYMBOL_GPL(unregister_ftrace_direct);
5165 
5166 static struct ftrace_ops stub_ops = {
5167 	.func		= ftrace_stub,
5168 };
5169 
5170 /**
5171  * ftrace_modify_direct_caller - modify ftrace nop directly
5172  * @entry: The ftrace hash entry of the direct helper for @rec
5173  * @rec: The record representing the function site to patch
5174  * @old_addr: The location that the site at @rec->ip currently calls
5175  * @new_addr: The location that the site at @rec->ip should call
5176  *
5177  * An architecture may overwrite this function to optimize the
5178  * changing of the direct callback on an ftrace nop location.
5179  * This is called with the ftrace_lock mutex held, and no other
5180  * ftrace callbacks are on the associated record (@rec). Thus,
5181  * it is safe to modify the ftrace record, where it should be
5182  * currently calling @old_addr directly, to call @new_addr.
5183  *
5184  * Safety checks should be made to make sure that the code at
5185  * @rec->ip is currently calling @old_addr. And this must
5186  * also update entry->direct to @new_addr.
5187  */
5188 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry,
5189 				       struct dyn_ftrace *rec,
5190 				       unsigned long old_addr,
5191 				       unsigned long new_addr)
5192 {
5193 	unsigned long ip = rec->ip;
5194 	int ret;
5195 
5196 	/*
5197 	 * The ftrace_lock was used to determine if the record
5198 	 * had more than one registered user to it. If it did,
5199 	 * we needed to prevent that from changing to do the quick
5200 	 * switch. But if it did not (only a direct caller was attached)
5201 	 * then this function is called. But this function can deal
5202 	 * with attached callers to the rec that we care about, and
5203 	 * since this function uses standard ftrace calls that take
5204 	 * the ftrace_lock mutex, we need to release it.
5205 	 */
5206 	mutex_unlock(&ftrace_lock);
5207 
5208 	/*
5209 	 * By setting a stub function at the same address, we force
5210 	 * the code to call the iterator and the direct_ops helper.
5211 	 * This means that @ip does not call the direct call, and
5212 	 * we can simply modify it.
5213 	 */
5214 	ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0);
5215 	if (ret)
5216 		goto out_lock;
5217 
5218 	ret = register_ftrace_function(&stub_ops);
5219 	if (ret) {
5220 		ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
5221 		goto out_lock;
5222 	}
5223 
5224 	entry->direct = new_addr;
5225 
5226 	/*
5227 	 * By removing the stub, we put back the direct call, calling
5228 	 * the @new_addr.
5229 	 */
5230 	unregister_ftrace_function(&stub_ops);
5231 	ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
5232 
5233  out_lock:
5234 	mutex_lock(&ftrace_lock);
5235 
5236 	return ret;
5237 }
5238 
5239 /**
5240  * modify_ftrace_direct - Modify an existing direct call to call something else
5241  * @ip: The instruction pointer to modify
5242  * @old_addr: The address that the current @ip calls directly
5243  * @new_addr: The address that the @ip should call
5244  *
5245  * This modifies a ftrace direct caller at an instruction pointer without
5246  * having to disable it first. The direct call will switch over to the
5247  * @new_addr without missing anything.
5248  *
5249  * Returns: zero on success. Non zero on error, which includes:
5250  *  -ENODEV : the @ip given has no direct caller attached
5251  *  -EINVAL : the @old_addr does not match the current direct caller
5252  */
5253 int modify_ftrace_direct(unsigned long ip,
5254 			 unsigned long old_addr, unsigned long new_addr)
5255 {
5256 	struct ftrace_func_entry *entry;
5257 	struct dyn_ftrace *rec;
5258 	int ret = -ENODEV;
5259 
5260 	mutex_lock(&direct_mutex);
5261 
5262 	mutex_lock(&ftrace_lock);
5263 	entry = find_direct_entry(&ip, &rec);
5264 	if (!entry)
5265 		goto out_unlock;
5266 
5267 	ret = -EINVAL;
5268 	if (entry->direct != old_addr)
5269 		goto out_unlock;
5270 
5271 	/*
5272 	 * If there's no other ftrace callback on the rec->ip location,
5273 	 * then it can be changed directly by the architecture.
5274 	 * If there is another caller, then we just need to change the
5275 	 * direct caller helper to point to @new_addr.
5276 	 */
5277 	if (ftrace_rec_count(rec) == 1) {
5278 		ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr);
5279 	} else {
5280 		entry->direct = new_addr;
5281 		ret = 0;
5282 	}
5283 
5284  out_unlock:
5285 	mutex_unlock(&ftrace_lock);
5286 	mutex_unlock(&direct_mutex);
5287 	return ret;
5288 }
5289 EXPORT_SYMBOL_GPL(modify_ftrace_direct);
5290 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
5291 
5292 /**
5293  * ftrace_set_filter_ip - set a function to filter on in ftrace by address
5294  * @ops - the ops to set the filter with
5295  * @ip - the address to add to or remove from the filter.
5296  * @remove - non zero to remove the ip from the filter
5297  * @reset - non zero to reset all filters before applying this filter.
5298  *
5299  * Filters denote which functions should be enabled when tracing is enabled
5300  * If @ip is NULL, it failes to update filter.
5301  */
5302 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip,
5303 			 int remove, int reset)
5304 {
5305 	ftrace_ops_init(ops);
5306 	return ftrace_set_addr(ops, ip, remove, reset, 1);
5307 }
5308 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip);
5309 
5310 /**
5311  * ftrace_ops_set_global_filter - setup ops to use global filters
5312  * @ops - the ops which will use the global filters
5313  *
5314  * ftrace users who need global function trace filtering should call this.
5315  * It can set the global filter only if ops were not initialized before.
5316  */
5317 void ftrace_ops_set_global_filter(struct ftrace_ops *ops)
5318 {
5319 	if (ops->flags & FTRACE_OPS_FL_INITIALIZED)
5320 		return;
5321 
5322 	ftrace_ops_init(ops);
5323 	ops->func_hash = &global_ops.local_hash;
5324 }
5325 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter);
5326 
5327 static int
5328 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
5329 		 int reset, int enable)
5330 {
5331 	return ftrace_set_hash(ops, buf, len, 0, 0, reset, enable);
5332 }
5333 
5334 /**
5335  * ftrace_set_filter - set a function to filter on in ftrace
5336  * @ops - the ops to set the filter with
5337  * @buf - the string that holds the function filter text.
5338  * @len - the length of the string.
5339  * @reset - non zero to reset all filters before applying this filter.
5340  *
5341  * Filters denote which functions should be enabled when tracing is enabled.
5342  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
5343  */
5344 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf,
5345 		       int len, int reset)
5346 {
5347 	ftrace_ops_init(ops);
5348 	return ftrace_set_regex(ops, buf, len, reset, 1);
5349 }
5350 EXPORT_SYMBOL_GPL(ftrace_set_filter);
5351 
5352 /**
5353  * ftrace_set_notrace - set a function to not trace in ftrace
5354  * @ops - the ops to set the notrace filter with
5355  * @buf - the string that holds the function notrace text.
5356  * @len - the length of the string.
5357  * @reset - non zero to reset all filters before applying this filter.
5358  *
5359  * Notrace Filters denote which functions should not be enabled when tracing
5360  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
5361  * for tracing.
5362  */
5363 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf,
5364 			int len, int reset)
5365 {
5366 	ftrace_ops_init(ops);
5367 	return ftrace_set_regex(ops, buf, len, reset, 0);
5368 }
5369 EXPORT_SYMBOL_GPL(ftrace_set_notrace);
5370 /**
5371  * ftrace_set_global_filter - set a function to filter on with global tracers
5372  * @buf - the string that holds the function filter text.
5373  * @len - the length of the string.
5374  * @reset - non zero to reset all filters before applying this filter.
5375  *
5376  * Filters denote which functions should be enabled when tracing is enabled.
5377  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
5378  */
5379 void ftrace_set_global_filter(unsigned char *buf, int len, int reset)
5380 {
5381 	ftrace_set_regex(&global_ops, buf, len, reset, 1);
5382 }
5383 EXPORT_SYMBOL_GPL(ftrace_set_global_filter);
5384 
5385 /**
5386  * ftrace_set_global_notrace - set a function to not trace with global tracers
5387  * @buf - the string that holds the function notrace text.
5388  * @len - the length of the string.
5389  * @reset - non zero to reset all filters before applying this filter.
5390  *
5391  * Notrace Filters denote which functions should not be enabled when tracing
5392  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
5393  * for tracing.
5394  */
5395 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset)
5396 {
5397 	ftrace_set_regex(&global_ops, buf, len, reset, 0);
5398 }
5399 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace);
5400 
5401 /*
5402  * command line interface to allow users to set filters on boot up.
5403  */
5404 #define FTRACE_FILTER_SIZE		COMMAND_LINE_SIZE
5405 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
5406 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata;
5407 
5408 /* Used by function selftest to not test if filter is set */
5409 bool ftrace_filter_param __initdata;
5410 
5411 static int __init set_ftrace_notrace(char *str)
5412 {
5413 	ftrace_filter_param = true;
5414 	strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE);
5415 	return 1;
5416 }
5417 __setup("ftrace_notrace=", set_ftrace_notrace);
5418 
5419 static int __init set_ftrace_filter(char *str)
5420 {
5421 	ftrace_filter_param = true;
5422 	strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE);
5423 	return 1;
5424 }
5425 __setup("ftrace_filter=", set_ftrace_filter);
5426 
5427 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5428 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata;
5429 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
5430 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer);
5431 
5432 static int __init set_graph_function(char *str)
5433 {
5434 	strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE);
5435 	return 1;
5436 }
5437 __setup("ftrace_graph_filter=", set_graph_function);
5438 
5439 static int __init set_graph_notrace_function(char *str)
5440 {
5441 	strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE);
5442 	return 1;
5443 }
5444 __setup("ftrace_graph_notrace=", set_graph_notrace_function);
5445 
5446 static int __init set_graph_max_depth_function(char *str)
5447 {
5448 	if (!str)
5449 		return 0;
5450 	fgraph_max_depth = simple_strtoul(str, NULL, 0);
5451 	return 1;
5452 }
5453 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function);
5454 
5455 static void __init set_ftrace_early_graph(char *buf, int enable)
5456 {
5457 	int ret;
5458 	char *func;
5459 	struct ftrace_hash *hash;
5460 
5461 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
5462 	if (MEM_FAIL(!hash, "Failed to allocate hash\n"))
5463 		return;
5464 
5465 	while (buf) {
5466 		func = strsep(&buf, ",");
5467 		/* we allow only one expression at a time */
5468 		ret = ftrace_graph_set_hash(hash, func);
5469 		if (ret)
5470 			printk(KERN_DEBUG "ftrace: function %s not "
5471 					  "traceable\n", func);
5472 	}
5473 
5474 	if (enable)
5475 		ftrace_graph_hash = hash;
5476 	else
5477 		ftrace_graph_notrace_hash = hash;
5478 }
5479 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
5480 
5481 void __init
5482 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable)
5483 {
5484 	char *func;
5485 
5486 	ftrace_ops_init(ops);
5487 
5488 	while (buf) {
5489 		func = strsep(&buf, ",");
5490 		ftrace_set_regex(ops, func, strlen(func), 0, enable);
5491 	}
5492 }
5493 
5494 static void __init set_ftrace_early_filters(void)
5495 {
5496 	if (ftrace_filter_buf[0])
5497 		ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1);
5498 	if (ftrace_notrace_buf[0])
5499 		ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0);
5500 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5501 	if (ftrace_graph_buf[0])
5502 		set_ftrace_early_graph(ftrace_graph_buf, 1);
5503 	if (ftrace_graph_notrace_buf[0])
5504 		set_ftrace_early_graph(ftrace_graph_notrace_buf, 0);
5505 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
5506 }
5507 
5508 int ftrace_regex_release(struct inode *inode, struct file *file)
5509 {
5510 	struct seq_file *m = (struct seq_file *)file->private_data;
5511 	struct ftrace_iterator *iter;
5512 	struct ftrace_hash **orig_hash;
5513 	struct trace_parser *parser;
5514 	int filter_hash;
5515 	int ret;
5516 
5517 	if (file->f_mode & FMODE_READ) {
5518 		iter = m->private;
5519 		seq_release(inode, file);
5520 	} else
5521 		iter = file->private_data;
5522 
5523 	parser = &iter->parser;
5524 	if (trace_parser_loaded(parser)) {
5525 		ftrace_match_records(iter->hash, parser->buffer, parser->idx);
5526 	}
5527 
5528 	trace_parser_put(parser);
5529 
5530 	mutex_lock(&iter->ops->func_hash->regex_lock);
5531 
5532 	if (file->f_mode & FMODE_WRITE) {
5533 		filter_hash = !!(iter->flags & FTRACE_ITER_FILTER);
5534 
5535 		if (filter_hash) {
5536 			orig_hash = &iter->ops->func_hash->filter_hash;
5537 			if (iter->tr && !list_empty(&iter->tr->mod_trace))
5538 				iter->hash->flags |= FTRACE_HASH_FL_MOD;
5539 		} else
5540 			orig_hash = &iter->ops->func_hash->notrace_hash;
5541 
5542 		mutex_lock(&ftrace_lock);
5543 		ret = ftrace_hash_move_and_update_ops(iter->ops, orig_hash,
5544 						      iter->hash, filter_hash);
5545 		mutex_unlock(&ftrace_lock);
5546 	} else {
5547 		/* For read only, the hash is the ops hash */
5548 		iter->hash = NULL;
5549 	}
5550 
5551 	mutex_unlock(&iter->ops->func_hash->regex_lock);
5552 	free_ftrace_hash(iter->hash);
5553 	if (iter->tr)
5554 		trace_array_put(iter->tr);
5555 	kfree(iter);
5556 
5557 	return 0;
5558 }
5559 
5560 static const struct file_operations ftrace_avail_fops = {
5561 	.open = ftrace_avail_open,
5562 	.read = seq_read,
5563 	.llseek = seq_lseek,
5564 	.release = seq_release_private,
5565 };
5566 
5567 static const struct file_operations ftrace_enabled_fops = {
5568 	.open = ftrace_enabled_open,
5569 	.read = seq_read,
5570 	.llseek = seq_lseek,
5571 	.release = seq_release_private,
5572 };
5573 
5574 static const struct file_operations ftrace_filter_fops = {
5575 	.open = ftrace_filter_open,
5576 	.read = seq_read,
5577 	.write = ftrace_filter_write,
5578 	.llseek = tracing_lseek,
5579 	.release = ftrace_regex_release,
5580 };
5581 
5582 static const struct file_operations ftrace_notrace_fops = {
5583 	.open = ftrace_notrace_open,
5584 	.read = seq_read,
5585 	.write = ftrace_notrace_write,
5586 	.llseek = tracing_lseek,
5587 	.release = ftrace_regex_release,
5588 };
5589 
5590 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5591 
5592 static DEFINE_MUTEX(graph_lock);
5593 
5594 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH;
5595 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH;
5596 
5597 enum graph_filter_type {
5598 	GRAPH_FILTER_NOTRACE	= 0,
5599 	GRAPH_FILTER_FUNCTION,
5600 };
5601 
5602 #define FTRACE_GRAPH_EMPTY	((void *)1)
5603 
5604 struct ftrace_graph_data {
5605 	struct ftrace_hash		*hash;
5606 	struct ftrace_func_entry	*entry;
5607 	int				idx;   /* for hash table iteration */
5608 	enum graph_filter_type		type;
5609 	struct ftrace_hash		*new_hash;
5610 	const struct seq_operations	*seq_ops;
5611 	struct trace_parser		parser;
5612 };
5613 
5614 static void *
5615 __g_next(struct seq_file *m, loff_t *pos)
5616 {
5617 	struct ftrace_graph_data *fgd = m->private;
5618 	struct ftrace_func_entry *entry = fgd->entry;
5619 	struct hlist_head *head;
5620 	int i, idx = fgd->idx;
5621 
5622 	if (*pos >= fgd->hash->count)
5623 		return NULL;
5624 
5625 	if (entry) {
5626 		hlist_for_each_entry_continue(entry, hlist) {
5627 			fgd->entry = entry;
5628 			return entry;
5629 		}
5630 
5631 		idx++;
5632 	}
5633 
5634 	for (i = idx; i < 1 << fgd->hash->size_bits; i++) {
5635 		head = &fgd->hash->buckets[i];
5636 		hlist_for_each_entry(entry, head, hlist) {
5637 			fgd->entry = entry;
5638 			fgd->idx = i;
5639 			return entry;
5640 		}
5641 	}
5642 	return NULL;
5643 }
5644 
5645 static void *
5646 g_next(struct seq_file *m, void *v, loff_t *pos)
5647 {
5648 	(*pos)++;
5649 	return __g_next(m, pos);
5650 }
5651 
5652 static void *g_start(struct seq_file *m, loff_t *pos)
5653 {
5654 	struct ftrace_graph_data *fgd = m->private;
5655 
5656 	mutex_lock(&graph_lock);
5657 
5658 	if (fgd->type == GRAPH_FILTER_FUNCTION)
5659 		fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
5660 					lockdep_is_held(&graph_lock));
5661 	else
5662 		fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
5663 					lockdep_is_held(&graph_lock));
5664 
5665 	/* Nothing, tell g_show to print all functions are enabled */
5666 	if (ftrace_hash_empty(fgd->hash) && !*pos)
5667 		return FTRACE_GRAPH_EMPTY;
5668 
5669 	fgd->idx = 0;
5670 	fgd->entry = NULL;
5671 	return __g_next(m, pos);
5672 }
5673 
5674 static void g_stop(struct seq_file *m, void *p)
5675 {
5676 	mutex_unlock(&graph_lock);
5677 }
5678 
5679 static int g_show(struct seq_file *m, void *v)
5680 {
5681 	struct ftrace_func_entry *entry = v;
5682 
5683 	if (!entry)
5684 		return 0;
5685 
5686 	if (entry == FTRACE_GRAPH_EMPTY) {
5687 		struct ftrace_graph_data *fgd = m->private;
5688 
5689 		if (fgd->type == GRAPH_FILTER_FUNCTION)
5690 			seq_puts(m, "#### all functions enabled ####\n");
5691 		else
5692 			seq_puts(m, "#### no functions disabled ####\n");
5693 		return 0;
5694 	}
5695 
5696 	seq_printf(m, "%ps\n", (void *)entry->ip);
5697 
5698 	return 0;
5699 }
5700 
5701 static const struct seq_operations ftrace_graph_seq_ops = {
5702 	.start = g_start,
5703 	.next = g_next,
5704 	.stop = g_stop,
5705 	.show = g_show,
5706 };
5707 
5708 static int
5709 __ftrace_graph_open(struct inode *inode, struct file *file,
5710 		    struct ftrace_graph_data *fgd)
5711 {
5712 	int ret;
5713 	struct ftrace_hash *new_hash = NULL;
5714 
5715 	ret = security_locked_down(LOCKDOWN_TRACEFS);
5716 	if (ret)
5717 		return ret;
5718 
5719 	if (file->f_mode & FMODE_WRITE) {
5720 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
5721 
5722 		if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX))
5723 			return -ENOMEM;
5724 
5725 		if (file->f_flags & O_TRUNC)
5726 			new_hash = alloc_ftrace_hash(size_bits);
5727 		else
5728 			new_hash = alloc_and_copy_ftrace_hash(size_bits,
5729 							      fgd->hash);
5730 		if (!new_hash) {
5731 			ret = -ENOMEM;
5732 			goto out;
5733 		}
5734 	}
5735 
5736 	if (file->f_mode & FMODE_READ) {
5737 		ret = seq_open(file, &ftrace_graph_seq_ops);
5738 		if (!ret) {
5739 			struct seq_file *m = file->private_data;
5740 			m->private = fgd;
5741 		} else {
5742 			/* Failed */
5743 			free_ftrace_hash(new_hash);
5744 			new_hash = NULL;
5745 		}
5746 	} else
5747 		file->private_data = fgd;
5748 
5749 out:
5750 	if (ret < 0 && file->f_mode & FMODE_WRITE)
5751 		trace_parser_put(&fgd->parser);
5752 
5753 	fgd->new_hash = new_hash;
5754 
5755 	/*
5756 	 * All uses of fgd->hash must be taken with the graph_lock
5757 	 * held. The graph_lock is going to be released, so force
5758 	 * fgd->hash to be reinitialized when it is taken again.
5759 	 */
5760 	fgd->hash = NULL;
5761 
5762 	return ret;
5763 }
5764 
5765 static int
5766 ftrace_graph_open(struct inode *inode, struct file *file)
5767 {
5768 	struct ftrace_graph_data *fgd;
5769 	int ret;
5770 
5771 	if (unlikely(ftrace_disabled))
5772 		return -ENODEV;
5773 
5774 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
5775 	if (fgd == NULL)
5776 		return -ENOMEM;
5777 
5778 	mutex_lock(&graph_lock);
5779 
5780 	fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
5781 					lockdep_is_held(&graph_lock));
5782 	fgd->type = GRAPH_FILTER_FUNCTION;
5783 	fgd->seq_ops = &ftrace_graph_seq_ops;
5784 
5785 	ret = __ftrace_graph_open(inode, file, fgd);
5786 	if (ret < 0)
5787 		kfree(fgd);
5788 
5789 	mutex_unlock(&graph_lock);
5790 	return ret;
5791 }
5792 
5793 static int
5794 ftrace_graph_notrace_open(struct inode *inode, struct file *file)
5795 {
5796 	struct ftrace_graph_data *fgd;
5797 	int ret;
5798 
5799 	if (unlikely(ftrace_disabled))
5800 		return -ENODEV;
5801 
5802 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
5803 	if (fgd == NULL)
5804 		return -ENOMEM;
5805 
5806 	mutex_lock(&graph_lock);
5807 
5808 	fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
5809 					lockdep_is_held(&graph_lock));
5810 	fgd->type = GRAPH_FILTER_NOTRACE;
5811 	fgd->seq_ops = &ftrace_graph_seq_ops;
5812 
5813 	ret = __ftrace_graph_open(inode, file, fgd);
5814 	if (ret < 0)
5815 		kfree(fgd);
5816 
5817 	mutex_unlock(&graph_lock);
5818 	return ret;
5819 }
5820 
5821 static int
5822 ftrace_graph_release(struct inode *inode, struct file *file)
5823 {
5824 	struct ftrace_graph_data *fgd;
5825 	struct ftrace_hash *old_hash, *new_hash;
5826 	struct trace_parser *parser;
5827 	int ret = 0;
5828 
5829 	if (file->f_mode & FMODE_READ) {
5830 		struct seq_file *m = file->private_data;
5831 
5832 		fgd = m->private;
5833 		seq_release(inode, file);
5834 	} else {
5835 		fgd = file->private_data;
5836 	}
5837 
5838 
5839 	if (file->f_mode & FMODE_WRITE) {
5840 
5841 		parser = &fgd->parser;
5842 
5843 		if (trace_parser_loaded((parser))) {
5844 			ret = ftrace_graph_set_hash(fgd->new_hash,
5845 						    parser->buffer);
5846 		}
5847 
5848 		trace_parser_put(parser);
5849 
5850 		new_hash = __ftrace_hash_move(fgd->new_hash);
5851 		if (!new_hash) {
5852 			ret = -ENOMEM;
5853 			goto out;
5854 		}
5855 
5856 		mutex_lock(&graph_lock);
5857 
5858 		if (fgd->type == GRAPH_FILTER_FUNCTION) {
5859 			old_hash = rcu_dereference_protected(ftrace_graph_hash,
5860 					lockdep_is_held(&graph_lock));
5861 			rcu_assign_pointer(ftrace_graph_hash, new_hash);
5862 		} else {
5863 			old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
5864 					lockdep_is_held(&graph_lock));
5865 			rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash);
5866 		}
5867 
5868 		mutex_unlock(&graph_lock);
5869 
5870 		/*
5871 		 * We need to do a hard force of sched synchronization.
5872 		 * This is because we use preempt_disable() to do RCU, but
5873 		 * the function tracers can be called where RCU is not watching
5874 		 * (like before user_exit()). We can not rely on the RCU
5875 		 * infrastructure to do the synchronization, thus we must do it
5876 		 * ourselves.
5877 		 */
5878 		schedule_on_each_cpu(ftrace_sync);
5879 
5880 		free_ftrace_hash(old_hash);
5881 	}
5882 
5883  out:
5884 	free_ftrace_hash(fgd->new_hash);
5885 	kfree(fgd);
5886 
5887 	return ret;
5888 }
5889 
5890 static int
5891 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer)
5892 {
5893 	struct ftrace_glob func_g;
5894 	struct dyn_ftrace *rec;
5895 	struct ftrace_page *pg;
5896 	struct ftrace_func_entry *entry;
5897 	int fail = 1;
5898 	int not;
5899 
5900 	/* decode regex */
5901 	func_g.type = filter_parse_regex(buffer, strlen(buffer),
5902 					 &func_g.search, &not);
5903 
5904 	func_g.len = strlen(func_g.search);
5905 
5906 	mutex_lock(&ftrace_lock);
5907 
5908 	if (unlikely(ftrace_disabled)) {
5909 		mutex_unlock(&ftrace_lock);
5910 		return -ENODEV;
5911 	}
5912 
5913 	do_for_each_ftrace_rec(pg, rec) {
5914 
5915 		if (rec->flags & FTRACE_FL_DISABLED)
5916 			continue;
5917 
5918 		if (ftrace_match_record(rec, &func_g, NULL, 0)) {
5919 			entry = ftrace_lookup_ip(hash, rec->ip);
5920 
5921 			if (!not) {
5922 				fail = 0;
5923 
5924 				if (entry)
5925 					continue;
5926 				if (add_hash_entry(hash, rec->ip) < 0)
5927 					goto out;
5928 			} else {
5929 				if (entry) {
5930 					free_hash_entry(hash, entry);
5931 					fail = 0;
5932 				}
5933 			}
5934 		}
5935 	} while_for_each_ftrace_rec();
5936 out:
5937 	mutex_unlock(&ftrace_lock);
5938 
5939 	if (fail)
5940 		return -EINVAL;
5941 
5942 	return 0;
5943 }
5944 
5945 static ssize_t
5946 ftrace_graph_write(struct file *file, const char __user *ubuf,
5947 		   size_t cnt, loff_t *ppos)
5948 {
5949 	ssize_t read, ret = 0;
5950 	struct ftrace_graph_data *fgd = file->private_data;
5951 	struct trace_parser *parser;
5952 
5953 	if (!cnt)
5954 		return 0;
5955 
5956 	/* Read mode uses seq functions */
5957 	if (file->f_mode & FMODE_READ) {
5958 		struct seq_file *m = file->private_data;
5959 		fgd = m->private;
5960 	}
5961 
5962 	parser = &fgd->parser;
5963 
5964 	read = trace_get_user(parser, ubuf, cnt, ppos);
5965 
5966 	if (read >= 0 && trace_parser_loaded(parser) &&
5967 	    !trace_parser_cont(parser)) {
5968 
5969 		ret = ftrace_graph_set_hash(fgd->new_hash,
5970 					    parser->buffer);
5971 		trace_parser_clear(parser);
5972 	}
5973 
5974 	if (!ret)
5975 		ret = read;
5976 
5977 	return ret;
5978 }
5979 
5980 static const struct file_operations ftrace_graph_fops = {
5981 	.open		= ftrace_graph_open,
5982 	.read		= seq_read,
5983 	.write		= ftrace_graph_write,
5984 	.llseek		= tracing_lseek,
5985 	.release	= ftrace_graph_release,
5986 };
5987 
5988 static const struct file_operations ftrace_graph_notrace_fops = {
5989 	.open		= ftrace_graph_notrace_open,
5990 	.read		= seq_read,
5991 	.write		= ftrace_graph_write,
5992 	.llseek		= tracing_lseek,
5993 	.release	= ftrace_graph_release,
5994 };
5995 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
5996 
5997 void ftrace_create_filter_files(struct ftrace_ops *ops,
5998 				struct dentry *parent)
5999 {
6000 
6001 	trace_create_file("set_ftrace_filter", 0644, parent,
6002 			  ops, &ftrace_filter_fops);
6003 
6004 	trace_create_file("set_ftrace_notrace", 0644, parent,
6005 			  ops, &ftrace_notrace_fops);
6006 }
6007 
6008 /*
6009  * The name "destroy_filter_files" is really a misnomer. Although
6010  * in the future, it may actually delete the files, but this is
6011  * really intended to make sure the ops passed in are disabled
6012  * and that when this function returns, the caller is free to
6013  * free the ops.
6014  *
6015  * The "destroy" name is only to match the "create" name that this
6016  * should be paired with.
6017  */
6018 void ftrace_destroy_filter_files(struct ftrace_ops *ops)
6019 {
6020 	mutex_lock(&ftrace_lock);
6021 	if (ops->flags & FTRACE_OPS_FL_ENABLED)
6022 		ftrace_shutdown(ops, 0);
6023 	ops->flags |= FTRACE_OPS_FL_DELETED;
6024 	ftrace_free_filter(ops);
6025 	mutex_unlock(&ftrace_lock);
6026 }
6027 
6028 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer)
6029 {
6030 
6031 	trace_create_file("available_filter_functions", 0444,
6032 			d_tracer, NULL, &ftrace_avail_fops);
6033 
6034 	trace_create_file("enabled_functions", 0444,
6035 			d_tracer, NULL, &ftrace_enabled_fops);
6036 
6037 	ftrace_create_filter_files(&global_ops, d_tracer);
6038 
6039 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6040 	trace_create_file("set_graph_function", 0644, d_tracer,
6041 				    NULL,
6042 				    &ftrace_graph_fops);
6043 	trace_create_file("set_graph_notrace", 0644, d_tracer,
6044 				    NULL,
6045 				    &ftrace_graph_notrace_fops);
6046 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6047 
6048 	return 0;
6049 }
6050 
6051 static int ftrace_cmp_ips(const void *a, const void *b)
6052 {
6053 	const unsigned long *ipa = a;
6054 	const unsigned long *ipb = b;
6055 
6056 	if (*ipa > *ipb)
6057 		return 1;
6058 	if (*ipa < *ipb)
6059 		return -1;
6060 	return 0;
6061 }
6062 
6063 static int ftrace_process_locs(struct module *mod,
6064 			       unsigned long *start,
6065 			       unsigned long *end)
6066 {
6067 	struct ftrace_page *start_pg;
6068 	struct ftrace_page *pg;
6069 	struct dyn_ftrace *rec;
6070 	unsigned long count;
6071 	unsigned long *p;
6072 	unsigned long addr;
6073 	unsigned long flags = 0; /* Shut up gcc */
6074 	int ret = -ENOMEM;
6075 
6076 	count = end - start;
6077 
6078 	if (!count)
6079 		return 0;
6080 
6081 	sort(start, count, sizeof(*start),
6082 	     ftrace_cmp_ips, NULL);
6083 
6084 	start_pg = ftrace_allocate_pages(count);
6085 	if (!start_pg)
6086 		return -ENOMEM;
6087 
6088 	mutex_lock(&ftrace_lock);
6089 
6090 	/*
6091 	 * Core and each module needs their own pages, as
6092 	 * modules will free them when they are removed.
6093 	 * Force a new page to be allocated for modules.
6094 	 */
6095 	if (!mod) {
6096 		WARN_ON(ftrace_pages || ftrace_pages_start);
6097 		/* First initialization */
6098 		ftrace_pages = ftrace_pages_start = start_pg;
6099 	} else {
6100 		if (!ftrace_pages)
6101 			goto out;
6102 
6103 		if (WARN_ON(ftrace_pages->next)) {
6104 			/* Hmm, we have free pages? */
6105 			while (ftrace_pages->next)
6106 				ftrace_pages = ftrace_pages->next;
6107 		}
6108 
6109 		ftrace_pages->next = start_pg;
6110 	}
6111 
6112 	p = start;
6113 	pg = start_pg;
6114 	while (p < end) {
6115 		addr = ftrace_call_adjust(*p++);
6116 		/*
6117 		 * Some architecture linkers will pad between
6118 		 * the different mcount_loc sections of different
6119 		 * object files to satisfy alignments.
6120 		 * Skip any NULL pointers.
6121 		 */
6122 		if (!addr)
6123 			continue;
6124 
6125 		if (pg->index == pg->size) {
6126 			/* We should have allocated enough */
6127 			if (WARN_ON(!pg->next))
6128 				break;
6129 			pg = pg->next;
6130 		}
6131 
6132 		rec = &pg->records[pg->index++];
6133 		rec->ip = addr;
6134 	}
6135 
6136 	/* We should have used all pages */
6137 	WARN_ON(pg->next);
6138 
6139 	/* Assign the last page to ftrace_pages */
6140 	ftrace_pages = pg;
6141 
6142 	/*
6143 	 * We only need to disable interrupts on start up
6144 	 * because we are modifying code that an interrupt
6145 	 * may execute, and the modification is not atomic.
6146 	 * But for modules, nothing runs the code we modify
6147 	 * until we are finished with it, and there's no
6148 	 * reason to cause large interrupt latencies while we do it.
6149 	 */
6150 	if (!mod)
6151 		local_irq_save(flags);
6152 	ftrace_update_code(mod, start_pg);
6153 	if (!mod)
6154 		local_irq_restore(flags);
6155 	ret = 0;
6156  out:
6157 	mutex_unlock(&ftrace_lock);
6158 
6159 	return ret;
6160 }
6161 
6162 struct ftrace_mod_func {
6163 	struct list_head	list;
6164 	char			*name;
6165 	unsigned long		ip;
6166 	unsigned int		size;
6167 };
6168 
6169 struct ftrace_mod_map {
6170 	struct rcu_head		rcu;
6171 	struct list_head	list;
6172 	struct module		*mod;
6173 	unsigned long		start_addr;
6174 	unsigned long		end_addr;
6175 	struct list_head	funcs;
6176 	unsigned int		num_funcs;
6177 };
6178 
6179 #ifdef CONFIG_MODULES
6180 
6181 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next)
6182 
6183 static LIST_HEAD(ftrace_mod_maps);
6184 
6185 static int referenced_filters(struct dyn_ftrace *rec)
6186 {
6187 	struct ftrace_ops *ops;
6188 	int cnt = 0;
6189 
6190 	for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) {
6191 		if (ops_references_rec(ops, rec))
6192 		    cnt++;
6193 	}
6194 
6195 	return cnt;
6196 }
6197 
6198 static void
6199 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash)
6200 {
6201 	struct ftrace_func_entry *entry;
6202 	struct dyn_ftrace *rec;
6203 	int i;
6204 
6205 	if (ftrace_hash_empty(hash))
6206 		return;
6207 
6208 	for (i = 0; i < pg->index; i++) {
6209 		rec = &pg->records[i];
6210 		entry = __ftrace_lookup_ip(hash, rec->ip);
6211 		/*
6212 		 * Do not allow this rec to match again.
6213 		 * Yeah, it may waste some memory, but will be removed
6214 		 * if/when the hash is modified again.
6215 		 */
6216 		if (entry)
6217 			entry->ip = 0;
6218 	}
6219 }
6220 
6221 /* Clear any records from hashs */
6222 static void clear_mod_from_hashes(struct ftrace_page *pg)
6223 {
6224 	struct trace_array *tr;
6225 
6226 	mutex_lock(&trace_types_lock);
6227 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
6228 		if (!tr->ops || !tr->ops->func_hash)
6229 			continue;
6230 		mutex_lock(&tr->ops->func_hash->regex_lock);
6231 		clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash);
6232 		clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash);
6233 		mutex_unlock(&tr->ops->func_hash->regex_lock);
6234 	}
6235 	mutex_unlock(&trace_types_lock);
6236 }
6237 
6238 static void ftrace_free_mod_map(struct rcu_head *rcu)
6239 {
6240 	struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu);
6241 	struct ftrace_mod_func *mod_func;
6242 	struct ftrace_mod_func *n;
6243 
6244 	/* All the contents of mod_map are now not visible to readers */
6245 	list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) {
6246 		kfree(mod_func->name);
6247 		list_del(&mod_func->list);
6248 		kfree(mod_func);
6249 	}
6250 
6251 	kfree(mod_map);
6252 }
6253 
6254 void ftrace_release_mod(struct module *mod)
6255 {
6256 	struct ftrace_mod_map *mod_map;
6257 	struct ftrace_mod_map *n;
6258 	struct dyn_ftrace *rec;
6259 	struct ftrace_page **last_pg;
6260 	struct ftrace_page *tmp_page = NULL;
6261 	struct ftrace_page *pg;
6262 	int order;
6263 
6264 	mutex_lock(&ftrace_lock);
6265 
6266 	if (ftrace_disabled)
6267 		goto out_unlock;
6268 
6269 	list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) {
6270 		if (mod_map->mod == mod) {
6271 			list_del_rcu(&mod_map->list);
6272 			call_rcu(&mod_map->rcu, ftrace_free_mod_map);
6273 			break;
6274 		}
6275 	}
6276 
6277 	/*
6278 	 * Each module has its own ftrace_pages, remove
6279 	 * them from the list.
6280 	 */
6281 	last_pg = &ftrace_pages_start;
6282 	for (pg = ftrace_pages_start; pg; pg = *last_pg) {
6283 		rec = &pg->records[0];
6284 		if (within_module_core(rec->ip, mod) ||
6285 		    within_module_init(rec->ip, mod)) {
6286 			/*
6287 			 * As core pages are first, the first
6288 			 * page should never be a module page.
6289 			 */
6290 			if (WARN_ON(pg == ftrace_pages_start))
6291 				goto out_unlock;
6292 
6293 			/* Check if we are deleting the last page */
6294 			if (pg == ftrace_pages)
6295 				ftrace_pages = next_to_ftrace_page(last_pg);
6296 
6297 			ftrace_update_tot_cnt -= pg->index;
6298 			*last_pg = pg->next;
6299 
6300 			pg->next = tmp_page;
6301 			tmp_page = pg;
6302 		} else
6303 			last_pg = &pg->next;
6304 	}
6305  out_unlock:
6306 	mutex_unlock(&ftrace_lock);
6307 
6308 	for (pg = tmp_page; pg; pg = tmp_page) {
6309 
6310 		/* Needs to be called outside of ftrace_lock */
6311 		clear_mod_from_hashes(pg);
6312 
6313 		order = get_count_order(pg->size / ENTRIES_PER_PAGE);
6314 		free_pages((unsigned long)pg->records, order);
6315 		tmp_page = pg->next;
6316 		kfree(pg);
6317 		ftrace_number_of_pages -= 1 << order;
6318 		ftrace_number_of_groups--;
6319 	}
6320 }
6321 
6322 void ftrace_module_enable(struct module *mod)
6323 {
6324 	struct dyn_ftrace *rec;
6325 	struct ftrace_page *pg;
6326 
6327 	mutex_lock(&ftrace_lock);
6328 
6329 	if (ftrace_disabled)
6330 		goto out_unlock;
6331 
6332 	/*
6333 	 * If the tracing is enabled, go ahead and enable the record.
6334 	 *
6335 	 * The reason not to enable the record immediately is the
6336 	 * inherent check of ftrace_make_nop/ftrace_make_call for
6337 	 * correct previous instructions.  Making first the NOP
6338 	 * conversion puts the module to the correct state, thus
6339 	 * passing the ftrace_make_call check.
6340 	 *
6341 	 * We also delay this to after the module code already set the
6342 	 * text to read-only, as we now need to set it back to read-write
6343 	 * so that we can modify the text.
6344 	 */
6345 	if (ftrace_start_up)
6346 		ftrace_arch_code_modify_prepare();
6347 
6348 	do_for_each_ftrace_rec(pg, rec) {
6349 		int cnt;
6350 		/*
6351 		 * do_for_each_ftrace_rec() is a double loop.
6352 		 * module text shares the pg. If a record is
6353 		 * not part of this module, then skip this pg,
6354 		 * which the "break" will do.
6355 		 */
6356 		if (!within_module_core(rec->ip, mod) &&
6357 		    !within_module_init(rec->ip, mod))
6358 			break;
6359 
6360 		cnt = 0;
6361 
6362 		/*
6363 		 * When adding a module, we need to check if tracers are
6364 		 * currently enabled and if they are, and can trace this record,
6365 		 * we need to enable the module functions as well as update the
6366 		 * reference counts for those function records.
6367 		 */
6368 		if (ftrace_start_up)
6369 			cnt += referenced_filters(rec);
6370 
6371 		/* This clears FTRACE_FL_DISABLED */
6372 		rec->flags = cnt;
6373 
6374 		if (ftrace_start_up && cnt) {
6375 			int failed = __ftrace_replace_code(rec, 1);
6376 			if (failed) {
6377 				ftrace_bug(failed, rec);
6378 				goto out_loop;
6379 			}
6380 		}
6381 
6382 	} while_for_each_ftrace_rec();
6383 
6384  out_loop:
6385 	if (ftrace_start_up)
6386 		ftrace_arch_code_modify_post_process();
6387 
6388  out_unlock:
6389 	mutex_unlock(&ftrace_lock);
6390 
6391 	process_cached_mods(mod->name);
6392 }
6393 
6394 void ftrace_module_init(struct module *mod)
6395 {
6396 	if (ftrace_disabled || !mod->num_ftrace_callsites)
6397 		return;
6398 
6399 	ftrace_process_locs(mod, mod->ftrace_callsites,
6400 			    mod->ftrace_callsites + mod->num_ftrace_callsites);
6401 }
6402 
6403 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
6404 				struct dyn_ftrace *rec)
6405 {
6406 	struct ftrace_mod_func *mod_func;
6407 	unsigned long symsize;
6408 	unsigned long offset;
6409 	char str[KSYM_SYMBOL_LEN];
6410 	char *modname;
6411 	const char *ret;
6412 
6413 	ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str);
6414 	if (!ret)
6415 		return;
6416 
6417 	mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL);
6418 	if (!mod_func)
6419 		return;
6420 
6421 	mod_func->name = kstrdup(str, GFP_KERNEL);
6422 	if (!mod_func->name) {
6423 		kfree(mod_func);
6424 		return;
6425 	}
6426 
6427 	mod_func->ip = rec->ip - offset;
6428 	mod_func->size = symsize;
6429 
6430 	mod_map->num_funcs++;
6431 
6432 	list_add_rcu(&mod_func->list, &mod_map->funcs);
6433 }
6434 
6435 static struct ftrace_mod_map *
6436 allocate_ftrace_mod_map(struct module *mod,
6437 			unsigned long start, unsigned long end)
6438 {
6439 	struct ftrace_mod_map *mod_map;
6440 
6441 	mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL);
6442 	if (!mod_map)
6443 		return NULL;
6444 
6445 	mod_map->mod = mod;
6446 	mod_map->start_addr = start;
6447 	mod_map->end_addr = end;
6448 	mod_map->num_funcs = 0;
6449 
6450 	INIT_LIST_HEAD_RCU(&mod_map->funcs);
6451 
6452 	list_add_rcu(&mod_map->list, &ftrace_mod_maps);
6453 
6454 	return mod_map;
6455 }
6456 
6457 static const char *
6458 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map,
6459 			   unsigned long addr, unsigned long *size,
6460 			   unsigned long *off, char *sym)
6461 {
6462 	struct ftrace_mod_func *found_func =  NULL;
6463 	struct ftrace_mod_func *mod_func;
6464 
6465 	list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
6466 		if (addr >= mod_func->ip &&
6467 		    addr < mod_func->ip + mod_func->size) {
6468 			found_func = mod_func;
6469 			break;
6470 		}
6471 	}
6472 
6473 	if (found_func) {
6474 		if (size)
6475 			*size = found_func->size;
6476 		if (off)
6477 			*off = addr - found_func->ip;
6478 		if (sym)
6479 			strlcpy(sym, found_func->name, KSYM_NAME_LEN);
6480 
6481 		return found_func->name;
6482 	}
6483 
6484 	return NULL;
6485 }
6486 
6487 const char *
6488 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size,
6489 		   unsigned long *off, char **modname, char *sym)
6490 {
6491 	struct ftrace_mod_map *mod_map;
6492 	const char *ret = NULL;
6493 
6494 	/* mod_map is freed via call_rcu() */
6495 	preempt_disable();
6496 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
6497 		ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym);
6498 		if (ret) {
6499 			if (modname)
6500 				*modname = mod_map->mod->name;
6501 			break;
6502 		}
6503 	}
6504 	preempt_enable();
6505 
6506 	return ret;
6507 }
6508 
6509 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
6510 			   char *type, char *name,
6511 			   char *module_name, int *exported)
6512 {
6513 	struct ftrace_mod_map *mod_map;
6514 	struct ftrace_mod_func *mod_func;
6515 
6516 	preempt_disable();
6517 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
6518 
6519 		if (symnum >= mod_map->num_funcs) {
6520 			symnum -= mod_map->num_funcs;
6521 			continue;
6522 		}
6523 
6524 		list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
6525 			if (symnum > 1) {
6526 				symnum--;
6527 				continue;
6528 			}
6529 
6530 			*value = mod_func->ip;
6531 			*type = 'T';
6532 			strlcpy(name, mod_func->name, KSYM_NAME_LEN);
6533 			strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN);
6534 			*exported = 1;
6535 			preempt_enable();
6536 			return 0;
6537 		}
6538 		WARN_ON(1);
6539 		break;
6540 	}
6541 	preempt_enable();
6542 	return -ERANGE;
6543 }
6544 
6545 #else
6546 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
6547 				struct dyn_ftrace *rec) { }
6548 static inline struct ftrace_mod_map *
6549 allocate_ftrace_mod_map(struct module *mod,
6550 			unsigned long start, unsigned long end)
6551 {
6552 	return NULL;
6553 }
6554 #endif /* CONFIG_MODULES */
6555 
6556 struct ftrace_init_func {
6557 	struct list_head list;
6558 	unsigned long ip;
6559 };
6560 
6561 /* Clear any init ips from hashes */
6562 static void
6563 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash)
6564 {
6565 	struct ftrace_func_entry *entry;
6566 
6567 	entry = ftrace_lookup_ip(hash, func->ip);
6568 	/*
6569 	 * Do not allow this rec to match again.
6570 	 * Yeah, it may waste some memory, but will be removed
6571 	 * if/when the hash is modified again.
6572 	 */
6573 	if (entry)
6574 		entry->ip = 0;
6575 }
6576 
6577 static void
6578 clear_func_from_hashes(struct ftrace_init_func *func)
6579 {
6580 	struct trace_array *tr;
6581 
6582 	mutex_lock(&trace_types_lock);
6583 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
6584 		if (!tr->ops || !tr->ops->func_hash)
6585 			continue;
6586 		mutex_lock(&tr->ops->func_hash->regex_lock);
6587 		clear_func_from_hash(func, tr->ops->func_hash->filter_hash);
6588 		clear_func_from_hash(func, tr->ops->func_hash->notrace_hash);
6589 		mutex_unlock(&tr->ops->func_hash->regex_lock);
6590 	}
6591 	mutex_unlock(&trace_types_lock);
6592 }
6593 
6594 static void add_to_clear_hash_list(struct list_head *clear_list,
6595 				   struct dyn_ftrace *rec)
6596 {
6597 	struct ftrace_init_func *func;
6598 
6599 	func = kmalloc(sizeof(*func), GFP_KERNEL);
6600 	if (!func) {
6601 		MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n");
6602 		return;
6603 	}
6604 
6605 	func->ip = rec->ip;
6606 	list_add(&func->list, clear_list);
6607 }
6608 
6609 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr)
6610 {
6611 	unsigned long start = (unsigned long)(start_ptr);
6612 	unsigned long end = (unsigned long)(end_ptr);
6613 	struct ftrace_page **last_pg = &ftrace_pages_start;
6614 	struct ftrace_page *pg;
6615 	struct dyn_ftrace *rec;
6616 	struct dyn_ftrace key;
6617 	struct ftrace_mod_map *mod_map = NULL;
6618 	struct ftrace_init_func *func, *func_next;
6619 	struct list_head clear_hash;
6620 	int order;
6621 
6622 	INIT_LIST_HEAD(&clear_hash);
6623 
6624 	key.ip = start;
6625 	key.flags = end;	/* overload flags, as it is unsigned long */
6626 
6627 	mutex_lock(&ftrace_lock);
6628 
6629 	/*
6630 	 * If we are freeing module init memory, then check if
6631 	 * any tracer is active. If so, we need to save a mapping of
6632 	 * the module functions being freed with the address.
6633 	 */
6634 	if (mod && ftrace_ops_list != &ftrace_list_end)
6635 		mod_map = allocate_ftrace_mod_map(mod, start, end);
6636 
6637 	for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) {
6638 		if (end < pg->records[0].ip ||
6639 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
6640 			continue;
6641  again:
6642 		rec = bsearch(&key, pg->records, pg->index,
6643 			      sizeof(struct dyn_ftrace),
6644 			      ftrace_cmp_recs);
6645 		if (!rec)
6646 			continue;
6647 
6648 		/* rec will be cleared from hashes after ftrace_lock unlock */
6649 		add_to_clear_hash_list(&clear_hash, rec);
6650 
6651 		if (mod_map)
6652 			save_ftrace_mod_rec(mod_map, rec);
6653 
6654 		pg->index--;
6655 		ftrace_update_tot_cnt--;
6656 		if (!pg->index) {
6657 			*last_pg = pg->next;
6658 			order = get_count_order(pg->size / ENTRIES_PER_PAGE);
6659 			free_pages((unsigned long)pg->records, order);
6660 			ftrace_number_of_pages -= 1 << order;
6661 			ftrace_number_of_groups--;
6662 			kfree(pg);
6663 			pg = container_of(last_pg, struct ftrace_page, next);
6664 			if (!(*last_pg))
6665 				ftrace_pages = pg;
6666 			continue;
6667 		}
6668 		memmove(rec, rec + 1,
6669 			(pg->index - (rec - pg->records)) * sizeof(*rec));
6670 		/* More than one function may be in this block */
6671 		goto again;
6672 	}
6673 	mutex_unlock(&ftrace_lock);
6674 
6675 	list_for_each_entry_safe(func, func_next, &clear_hash, list) {
6676 		clear_func_from_hashes(func);
6677 		kfree(func);
6678 	}
6679 }
6680 
6681 void __init ftrace_free_init_mem(void)
6682 {
6683 	void *start = (void *)(&__init_begin);
6684 	void *end = (void *)(&__init_end);
6685 
6686 	ftrace_free_mem(NULL, start, end);
6687 }
6688 
6689 void __init ftrace_init(void)
6690 {
6691 	extern unsigned long __start_mcount_loc[];
6692 	extern unsigned long __stop_mcount_loc[];
6693 	unsigned long count, flags;
6694 	int ret;
6695 
6696 	local_irq_save(flags);
6697 	ret = ftrace_dyn_arch_init();
6698 	local_irq_restore(flags);
6699 	if (ret)
6700 		goto failed;
6701 
6702 	count = __stop_mcount_loc - __start_mcount_loc;
6703 	if (!count) {
6704 		pr_info("ftrace: No functions to be traced?\n");
6705 		goto failed;
6706 	}
6707 
6708 	pr_info("ftrace: allocating %ld entries in %ld pages\n",
6709 		count, count / ENTRIES_PER_PAGE + 1);
6710 
6711 	last_ftrace_enabled = ftrace_enabled = 1;
6712 
6713 	ret = ftrace_process_locs(NULL,
6714 				  __start_mcount_loc,
6715 				  __stop_mcount_loc);
6716 
6717 	pr_info("ftrace: allocated %ld pages with %ld groups\n",
6718 		ftrace_number_of_pages, ftrace_number_of_groups);
6719 
6720 	set_ftrace_early_filters();
6721 
6722 	return;
6723  failed:
6724 	ftrace_disabled = 1;
6725 }
6726 
6727 /* Do nothing if arch does not support this */
6728 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops)
6729 {
6730 }
6731 
6732 static void ftrace_update_trampoline(struct ftrace_ops *ops)
6733 {
6734 	arch_ftrace_update_trampoline(ops);
6735 }
6736 
6737 void ftrace_init_trace_array(struct trace_array *tr)
6738 {
6739 	INIT_LIST_HEAD(&tr->func_probes);
6740 	INIT_LIST_HEAD(&tr->mod_trace);
6741 	INIT_LIST_HEAD(&tr->mod_notrace);
6742 }
6743 #else
6744 
6745 struct ftrace_ops global_ops = {
6746 	.func			= ftrace_stub,
6747 	.flags			= FTRACE_OPS_FL_RECURSION_SAFE |
6748 				  FTRACE_OPS_FL_INITIALIZED |
6749 				  FTRACE_OPS_FL_PID,
6750 };
6751 
6752 static int __init ftrace_nodyn_init(void)
6753 {
6754 	ftrace_enabled = 1;
6755 	return 0;
6756 }
6757 core_initcall(ftrace_nodyn_init);
6758 
6759 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; }
6760 static inline void ftrace_startup_enable(int command) { }
6761 static inline void ftrace_startup_all(int command) { }
6762 
6763 # define ftrace_startup_sysctl()	do { } while (0)
6764 # define ftrace_shutdown_sysctl()	do { } while (0)
6765 
6766 static void ftrace_update_trampoline(struct ftrace_ops *ops)
6767 {
6768 }
6769 
6770 #endif /* CONFIG_DYNAMIC_FTRACE */
6771 
6772 __init void ftrace_init_global_array_ops(struct trace_array *tr)
6773 {
6774 	tr->ops = &global_ops;
6775 	tr->ops->private = tr;
6776 	ftrace_init_trace_array(tr);
6777 }
6778 
6779 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func)
6780 {
6781 	/* If we filter on pids, update to use the pid function */
6782 	if (tr->flags & TRACE_ARRAY_FL_GLOBAL) {
6783 		if (WARN_ON(tr->ops->func != ftrace_stub))
6784 			printk("ftrace ops had %pS for function\n",
6785 			       tr->ops->func);
6786 	}
6787 	tr->ops->func = func;
6788 	tr->ops->private = tr;
6789 }
6790 
6791 void ftrace_reset_array_ops(struct trace_array *tr)
6792 {
6793 	tr->ops->func = ftrace_stub;
6794 }
6795 
6796 static nokprobe_inline void
6797 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
6798 		       struct ftrace_ops *ignored, struct pt_regs *regs)
6799 {
6800 	struct ftrace_ops *op;
6801 	int bit;
6802 
6803 	bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX);
6804 	if (bit < 0)
6805 		return;
6806 
6807 	/*
6808 	 * Some of the ops may be dynamically allocated,
6809 	 * they must be freed after a synchronize_rcu().
6810 	 */
6811 	preempt_disable_notrace();
6812 
6813 	do_for_each_ftrace_op(op, ftrace_ops_list) {
6814 		/* Stub functions don't need to be called nor tested */
6815 		if (op->flags & FTRACE_OPS_FL_STUB)
6816 			continue;
6817 		/*
6818 		 * Check the following for each ops before calling their func:
6819 		 *  if RCU flag is set, then rcu_is_watching() must be true
6820 		 *  if PER_CPU is set, then ftrace_function_local_disable()
6821 		 *                          must be false
6822 		 *  Otherwise test if the ip matches the ops filter
6823 		 *
6824 		 * If any of the above fails then the op->func() is not executed.
6825 		 */
6826 		if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) &&
6827 		    ftrace_ops_test(op, ip, regs)) {
6828 			if (FTRACE_WARN_ON(!op->func)) {
6829 				pr_warn("op=%p %pS\n", op, op);
6830 				goto out;
6831 			}
6832 			op->func(ip, parent_ip, op, regs);
6833 		}
6834 	} while_for_each_ftrace_op(op);
6835 out:
6836 	preempt_enable_notrace();
6837 	trace_clear_recursion(bit);
6838 }
6839 
6840 /*
6841  * Some archs only support passing ip and parent_ip. Even though
6842  * the list function ignores the op parameter, we do not want any
6843  * C side effects, where a function is called without the caller
6844  * sending a third parameter.
6845  * Archs are to support both the regs and ftrace_ops at the same time.
6846  * If they support ftrace_ops, it is assumed they support regs.
6847  * If call backs want to use regs, they must either check for regs
6848  * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS.
6849  * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved.
6850  * An architecture can pass partial regs with ftrace_ops and still
6851  * set the ARCH_SUPPORTS_FTRACE_OPS.
6852  */
6853 #if ARCH_SUPPORTS_FTRACE_OPS
6854 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
6855 				 struct ftrace_ops *op, struct pt_regs *regs)
6856 {
6857 	__ftrace_ops_list_func(ip, parent_ip, NULL, regs);
6858 }
6859 NOKPROBE_SYMBOL(ftrace_ops_list_func);
6860 #else
6861 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip)
6862 {
6863 	__ftrace_ops_list_func(ip, parent_ip, NULL, NULL);
6864 }
6865 NOKPROBE_SYMBOL(ftrace_ops_no_ops);
6866 #endif
6867 
6868 /*
6869  * If there's only one function registered but it does not support
6870  * recursion, needs RCU protection and/or requires per cpu handling, then
6871  * this function will be called by the mcount trampoline.
6872  */
6873 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip,
6874 				   struct ftrace_ops *op, struct pt_regs *regs)
6875 {
6876 	int bit;
6877 
6878 	if ((op->flags & FTRACE_OPS_FL_RCU) && !rcu_is_watching())
6879 		return;
6880 
6881 	bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX);
6882 	if (bit < 0)
6883 		return;
6884 
6885 	preempt_disable_notrace();
6886 
6887 	op->func(ip, parent_ip, op, regs);
6888 
6889 	preempt_enable_notrace();
6890 	trace_clear_recursion(bit);
6891 }
6892 NOKPROBE_SYMBOL(ftrace_ops_assist_func);
6893 
6894 /**
6895  * ftrace_ops_get_func - get the function a trampoline should call
6896  * @ops: the ops to get the function for
6897  *
6898  * Normally the mcount trampoline will call the ops->func, but there
6899  * are times that it should not. For example, if the ops does not
6900  * have its own recursion protection, then it should call the
6901  * ftrace_ops_assist_func() instead.
6902  *
6903  * Returns the function that the trampoline should call for @ops.
6904  */
6905 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops)
6906 {
6907 	/*
6908 	 * If the function does not handle recursion, needs to be RCU safe,
6909 	 * or does per cpu logic, then we need to call the assist handler.
6910 	 */
6911 	if (!(ops->flags & FTRACE_OPS_FL_RECURSION_SAFE) ||
6912 	    ops->flags & FTRACE_OPS_FL_RCU)
6913 		return ftrace_ops_assist_func;
6914 
6915 	return ops->func;
6916 }
6917 
6918 static void
6919 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt,
6920 		    struct task_struct *prev, struct task_struct *next)
6921 {
6922 	struct trace_array *tr = data;
6923 	struct trace_pid_list *pid_list;
6924 
6925 	pid_list = rcu_dereference_sched(tr->function_pids);
6926 
6927 	this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
6928 		       trace_ignore_this_task(pid_list, next));
6929 }
6930 
6931 static void
6932 ftrace_pid_follow_sched_process_fork(void *data,
6933 				     struct task_struct *self,
6934 				     struct task_struct *task)
6935 {
6936 	struct trace_pid_list *pid_list;
6937 	struct trace_array *tr = data;
6938 
6939 	pid_list = rcu_dereference_sched(tr->function_pids);
6940 	trace_filter_add_remove_task(pid_list, self, task);
6941 }
6942 
6943 static void
6944 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task)
6945 {
6946 	struct trace_pid_list *pid_list;
6947 	struct trace_array *tr = data;
6948 
6949 	pid_list = rcu_dereference_sched(tr->function_pids);
6950 	trace_filter_add_remove_task(pid_list, NULL, task);
6951 }
6952 
6953 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable)
6954 {
6955 	if (enable) {
6956 		register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
6957 						  tr);
6958 		register_trace_sched_process_exit(ftrace_pid_follow_sched_process_exit,
6959 						  tr);
6960 	} else {
6961 		unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
6962 						    tr);
6963 		unregister_trace_sched_process_exit(ftrace_pid_follow_sched_process_exit,
6964 						    tr);
6965 	}
6966 }
6967 
6968 static void clear_ftrace_pids(struct trace_array *tr)
6969 {
6970 	struct trace_pid_list *pid_list;
6971 	int cpu;
6972 
6973 	pid_list = rcu_dereference_protected(tr->function_pids,
6974 					     lockdep_is_held(&ftrace_lock));
6975 	if (!pid_list)
6976 		return;
6977 
6978 	unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
6979 
6980 	for_each_possible_cpu(cpu)
6981 		per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = false;
6982 
6983 	rcu_assign_pointer(tr->function_pids, NULL);
6984 
6985 	/* Wait till all users are no longer using pid filtering */
6986 	synchronize_rcu();
6987 
6988 	trace_free_pid_list(pid_list);
6989 }
6990 
6991 void ftrace_clear_pids(struct trace_array *tr)
6992 {
6993 	mutex_lock(&ftrace_lock);
6994 
6995 	clear_ftrace_pids(tr);
6996 
6997 	mutex_unlock(&ftrace_lock);
6998 }
6999 
7000 static void ftrace_pid_reset(struct trace_array *tr)
7001 {
7002 	mutex_lock(&ftrace_lock);
7003 	clear_ftrace_pids(tr);
7004 
7005 	ftrace_update_pid_func();
7006 	ftrace_startup_all(0);
7007 
7008 	mutex_unlock(&ftrace_lock);
7009 }
7010 
7011 /* Greater than any max PID */
7012 #define FTRACE_NO_PIDS		(void *)(PID_MAX_LIMIT + 1)
7013 
7014 static void *fpid_start(struct seq_file *m, loff_t *pos)
7015 	__acquires(RCU)
7016 {
7017 	struct trace_pid_list *pid_list;
7018 	struct trace_array *tr = m->private;
7019 
7020 	mutex_lock(&ftrace_lock);
7021 	rcu_read_lock_sched();
7022 
7023 	pid_list = rcu_dereference_sched(tr->function_pids);
7024 
7025 	if (!pid_list)
7026 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
7027 
7028 	return trace_pid_start(pid_list, pos);
7029 }
7030 
7031 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos)
7032 {
7033 	struct trace_array *tr = m->private;
7034 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids);
7035 
7036 	if (v == FTRACE_NO_PIDS) {
7037 		(*pos)++;
7038 		return NULL;
7039 	}
7040 	return trace_pid_next(pid_list, v, pos);
7041 }
7042 
7043 static void fpid_stop(struct seq_file *m, void *p)
7044 	__releases(RCU)
7045 {
7046 	rcu_read_unlock_sched();
7047 	mutex_unlock(&ftrace_lock);
7048 }
7049 
7050 static int fpid_show(struct seq_file *m, void *v)
7051 {
7052 	if (v == FTRACE_NO_PIDS) {
7053 		seq_puts(m, "no pid\n");
7054 		return 0;
7055 	}
7056 
7057 	return trace_pid_show(m, v);
7058 }
7059 
7060 static const struct seq_operations ftrace_pid_sops = {
7061 	.start = fpid_start,
7062 	.next = fpid_next,
7063 	.stop = fpid_stop,
7064 	.show = fpid_show,
7065 };
7066 
7067 static int
7068 ftrace_pid_open(struct inode *inode, struct file *file)
7069 {
7070 	struct trace_array *tr = inode->i_private;
7071 	struct seq_file *m;
7072 	int ret = 0;
7073 
7074 	ret = tracing_check_open_get_tr(tr);
7075 	if (ret)
7076 		return ret;
7077 
7078 	if ((file->f_mode & FMODE_WRITE) &&
7079 	    (file->f_flags & O_TRUNC))
7080 		ftrace_pid_reset(tr);
7081 
7082 	ret = seq_open(file, &ftrace_pid_sops);
7083 	if (ret < 0) {
7084 		trace_array_put(tr);
7085 	} else {
7086 		m = file->private_data;
7087 		/* copy tr over to seq ops */
7088 		m->private = tr;
7089 	}
7090 
7091 	return ret;
7092 }
7093 
7094 static void ignore_task_cpu(void *data)
7095 {
7096 	struct trace_array *tr = data;
7097 	struct trace_pid_list *pid_list;
7098 
7099 	/*
7100 	 * This function is called by on_each_cpu() while the
7101 	 * event_mutex is held.
7102 	 */
7103 	pid_list = rcu_dereference_protected(tr->function_pids,
7104 					     mutex_is_locked(&ftrace_lock));
7105 
7106 	this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7107 		       trace_ignore_this_task(pid_list, current));
7108 }
7109 
7110 static ssize_t
7111 ftrace_pid_write(struct file *filp, const char __user *ubuf,
7112 		   size_t cnt, loff_t *ppos)
7113 {
7114 	struct seq_file *m = filp->private_data;
7115 	struct trace_array *tr = m->private;
7116 	struct trace_pid_list *filtered_pids = NULL;
7117 	struct trace_pid_list *pid_list;
7118 	ssize_t ret;
7119 
7120 	if (!cnt)
7121 		return 0;
7122 
7123 	mutex_lock(&ftrace_lock);
7124 
7125 	filtered_pids = rcu_dereference_protected(tr->function_pids,
7126 					     lockdep_is_held(&ftrace_lock));
7127 
7128 	ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt);
7129 	if (ret < 0)
7130 		goto out;
7131 
7132 	rcu_assign_pointer(tr->function_pids, pid_list);
7133 
7134 	if (filtered_pids) {
7135 		synchronize_rcu();
7136 		trace_free_pid_list(filtered_pids);
7137 	} else if (pid_list) {
7138 		/* Register a probe to set whether to ignore the tracing of a task */
7139 		register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
7140 	}
7141 
7142 	/*
7143 	 * Ignoring of pids is done at task switch. But we have to
7144 	 * check for those tasks that are currently running.
7145 	 * Always do this in case a pid was appended or removed.
7146 	 */
7147 	on_each_cpu(ignore_task_cpu, tr, 1);
7148 
7149 	ftrace_update_pid_func();
7150 	ftrace_startup_all(0);
7151  out:
7152 	mutex_unlock(&ftrace_lock);
7153 
7154 	if (ret > 0)
7155 		*ppos += ret;
7156 
7157 	return ret;
7158 }
7159 
7160 static int
7161 ftrace_pid_release(struct inode *inode, struct file *file)
7162 {
7163 	struct trace_array *tr = inode->i_private;
7164 
7165 	trace_array_put(tr);
7166 
7167 	return seq_release(inode, file);
7168 }
7169 
7170 static const struct file_operations ftrace_pid_fops = {
7171 	.open		= ftrace_pid_open,
7172 	.write		= ftrace_pid_write,
7173 	.read		= seq_read,
7174 	.llseek		= tracing_lseek,
7175 	.release	= ftrace_pid_release,
7176 };
7177 
7178 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer)
7179 {
7180 	trace_create_file("set_ftrace_pid", 0644, d_tracer,
7181 			    tr, &ftrace_pid_fops);
7182 }
7183 
7184 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr,
7185 					 struct dentry *d_tracer)
7186 {
7187 	/* Only the top level directory has the dyn_tracefs and profile */
7188 	WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL));
7189 
7190 	ftrace_init_dyn_tracefs(d_tracer);
7191 	ftrace_profile_tracefs(d_tracer);
7192 }
7193 
7194 /**
7195  * ftrace_kill - kill ftrace
7196  *
7197  * This function should be used by panic code. It stops ftrace
7198  * but in a not so nice way. If you need to simply kill ftrace
7199  * from a non-atomic section, use ftrace_kill.
7200  */
7201 void ftrace_kill(void)
7202 {
7203 	ftrace_disabled = 1;
7204 	ftrace_enabled = 0;
7205 	ftrace_trace_function = ftrace_stub;
7206 }
7207 
7208 /**
7209  * Test if ftrace is dead or not.
7210  */
7211 int ftrace_is_dead(void)
7212 {
7213 	return ftrace_disabled;
7214 }
7215 
7216 /**
7217  * register_ftrace_function - register a function for profiling
7218  * @ops - ops structure that holds the function for profiling.
7219  *
7220  * Register a function to be called by all functions in the
7221  * kernel.
7222  *
7223  * Note: @ops->func and all the functions it calls must be labeled
7224  *       with "notrace", otherwise it will go into a
7225  *       recursive loop.
7226  */
7227 int register_ftrace_function(struct ftrace_ops *ops)
7228 {
7229 	int ret = -1;
7230 
7231 	ftrace_ops_init(ops);
7232 
7233 	mutex_lock(&ftrace_lock);
7234 
7235 	ret = ftrace_startup(ops, 0);
7236 
7237 	mutex_unlock(&ftrace_lock);
7238 
7239 	return ret;
7240 }
7241 EXPORT_SYMBOL_GPL(register_ftrace_function);
7242 
7243 /**
7244  * unregister_ftrace_function - unregister a function for profiling.
7245  * @ops - ops structure that holds the function to unregister
7246  *
7247  * Unregister a function that was added to be called by ftrace profiling.
7248  */
7249 int unregister_ftrace_function(struct ftrace_ops *ops)
7250 {
7251 	int ret;
7252 
7253 	mutex_lock(&ftrace_lock);
7254 	ret = ftrace_shutdown(ops, 0);
7255 	mutex_unlock(&ftrace_lock);
7256 
7257 	return ret;
7258 }
7259 EXPORT_SYMBOL_GPL(unregister_ftrace_function);
7260 
7261 static bool is_permanent_ops_registered(void)
7262 {
7263 	struct ftrace_ops *op;
7264 
7265 	do_for_each_ftrace_op(op, ftrace_ops_list) {
7266 		if (op->flags & FTRACE_OPS_FL_PERMANENT)
7267 			return true;
7268 	} while_for_each_ftrace_op(op);
7269 
7270 	return false;
7271 }
7272 
7273 int
7274 ftrace_enable_sysctl(struct ctl_table *table, int write,
7275 		     void __user *buffer, size_t *lenp,
7276 		     loff_t *ppos)
7277 {
7278 	int ret = -ENODEV;
7279 
7280 	mutex_lock(&ftrace_lock);
7281 
7282 	if (unlikely(ftrace_disabled))
7283 		goto out;
7284 
7285 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7286 
7287 	if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled))
7288 		goto out;
7289 
7290 	if (ftrace_enabled) {
7291 
7292 		/* we are starting ftrace again */
7293 		if (rcu_dereference_protected(ftrace_ops_list,
7294 			lockdep_is_held(&ftrace_lock)) != &ftrace_list_end)
7295 			update_ftrace_function();
7296 
7297 		ftrace_startup_sysctl();
7298 
7299 	} else {
7300 		if (is_permanent_ops_registered()) {
7301 			ftrace_enabled = true;
7302 			ret = -EBUSY;
7303 			goto out;
7304 		}
7305 
7306 		/* stopping ftrace calls (just send to ftrace_stub) */
7307 		ftrace_trace_function = ftrace_stub;
7308 
7309 		ftrace_shutdown_sysctl();
7310 	}
7311 
7312 	last_ftrace_enabled = !!ftrace_enabled;
7313  out:
7314 	mutex_unlock(&ftrace_lock);
7315 	return ret;
7316 }
7317