1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Infrastructure for profiling code inserted by 'gcc -pg'. 4 * 5 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com> 6 * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com> 7 * 8 * Originally ported from the -rt patch by: 9 * Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com> 10 * 11 * Based on code in the latency_tracer, that is: 12 * 13 * Copyright (C) 2004-2006 Ingo Molnar 14 * Copyright (C) 2004 Nadia Yvette Chambers 15 */ 16 17 #include <linux/stop_machine.h> 18 #include <linux/clocksource.h> 19 #include <linux/sched/task.h> 20 #include <linux/kallsyms.h> 21 #include <linux/security.h> 22 #include <linux/seq_file.h> 23 #include <linux/tracefs.h> 24 #include <linux/hardirq.h> 25 #include <linux/kthread.h> 26 #include <linux/uaccess.h> 27 #include <linux/bsearch.h> 28 #include <linux/module.h> 29 #include <linux/ftrace.h> 30 #include <linux/sysctl.h> 31 #include <linux/slab.h> 32 #include <linux/ctype.h> 33 #include <linux/sort.h> 34 #include <linux/list.h> 35 #include <linux/hash.h> 36 #include <linux/rcupdate.h> 37 #include <linux/kprobes.h> 38 39 #include <trace/events/sched.h> 40 41 #include <asm/sections.h> 42 #include <asm/setup.h> 43 44 #include "ftrace_internal.h" 45 #include "trace_output.h" 46 #include "trace_stat.h" 47 48 /* Flags that do not get reset */ 49 #define FTRACE_NOCLEAR_FLAGS (FTRACE_FL_DISABLED | FTRACE_FL_TOUCHED | \ 50 FTRACE_FL_MODIFIED) 51 52 #define FTRACE_INVALID_FUNCTION "__ftrace_invalid_address__" 53 54 #define FTRACE_WARN_ON(cond) \ 55 ({ \ 56 int ___r = cond; \ 57 if (WARN_ON(___r)) \ 58 ftrace_kill(); \ 59 ___r; \ 60 }) 61 62 #define FTRACE_WARN_ON_ONCE(cond) \ 63 ({ \ 64 int ___r = cond; \ 65 if (WARN_ON_ONCE(___r)) \ 66 ftrace_kill(); \ 67 ___r; \ 68 }) 69 70 /* hash bits for specific function selection */ 71 #define FTRACE_HASH_DEFAULT_BITS 10 72 #define FTRACE_HASH_MAX_BITS 12 73 74 #ifdef CONFIG_DYNAMIC_FTRACE 75 #define INIT_OPS_HASH(opsname) \ 76 .func_hash = &opsname.local_hash, \ 77 .local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock), \ 78 .subop_list = LIST_HEAD_INIT(opsname.subop_list), 79 #else 80 #define INIT_OPS_HASH(opsname) 81 #endif 82 83 enum { 84 FTRACE_MODIFY_ENABLE_FL = (1 << 0), 85 FTRACE_MODIFY_MAY_SLEEP_FL = (1 << 1), 86 }; 87 88 struct ftrace_ops ftrace_list_end __read_mostly = { 89 .func = ftrace_stub, 90 .flags = FTRACE_OPS_FL_STUB, 91 INIT_OPS_HASH(ftrace_list_end) 92 }; 93 94 /* ftrace_enabled is a method to turn ftrace on or off */ 95 int ftrace_enabled __read_mostly; 96 static int __maybe_unused last_ftrace_enabled; 97 98 /* Current function tracing op */ 99 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end; 100 /* What to set function_trace_op to */ 101 static struct ftrace_ops *set_function_trace_op; 102 103 bool ftrace_pids_enabled(struct ftrace_ops *ops) 104 { 105 struct trace_array *tr; 106 107 if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private) 108 return false; 109 110 tr = ops->private; 111 112 return tr->function_pids != NULL || tr->function_no_pids != NULL; 113 } 114 115 static void ftrace_update_trampoline(struct ftrace_ops *ops); 116 117 /* 118 * ftrace_disabled is set when an anomaly is discovered. 119 * ftrace_disabled is much stronger than ftrace_enabled. 120 */ 121 static int ftrace_disabled __read_mostly; 122 123 DEFINE_MUTEX(ftrace_lock); 124 125 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = (struct ftrace_ops __rcu *)&ftrace_list_end; 126 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub; 127 struct ftrace_ops global_ops; 128 129 /* Defined by vmlinux.lds.h see the comment above arch_ftrace_ops_list_func for details */ 130 void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 131 struct ftrace_ops *op, struct ftrace_regs *fregs); 132 133 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_CALL_OPS 134 /* 135 * Stub used to invoke the list ops without requiring a separate trampoline. 136 */ 137 const struct ftrace_ops ftrace_list_ops = { 138 .func = ftrace_ops_list_func, 139 .flags = FTRACE_OPS_FL_STUB, 140 }; 141 142 static void ftrace_ops_nop_func(unsigned long ip, unsigned long parent_ip, 143 struct ftrace_ops *op, 144 struct ftrace_regs *fregs) 145 { 146 /* do nothing */ 147 } 148 149 /* 150 * Stub used when a call site is disabled. May be called transiently by threads 151 * which have made it into ftrace_caller but haven't yet recovered the ops at 152 * the point the call site is disabled. 153 */ 154 const struct ftrace_ops ftrace_nop_ops = { 155 .func = ftrace_ops_nop_func, 156 .flags = FTRACE_OPS_FL_STUB, 157 }; 158 #endif 159 160 static inline void ftrace_ops_init(struct ftrace_ops *ops) 161 { 162 #ifdef CONFIG_DYNAMIC_FTRACE 163 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) { 164 mutex_init(&ops->local_hash.regex_lock); 165 INIT_LIST_HEAD(&ops->subop_list); 166 ops->func_hash = &ops->local_hash; 167 ops->flags |= FTRACE_OPS_FL_INITIALIZED; 168 } 169 #endif 170 } 171 172 /* Call this function for when a callback filters on set_ftrace_pid */ 173 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip, 174 struct ftrace_ops *op, struct ftrace_regs *fregs) 175 { 176 struct trace_array *tr = op->private; 177 int pid; 178 179 if (tr) { 180 pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid); 181 if (pid == FTRACE_PID_IGNORE) 182 return; 183 if (pid != FTRACE_PID_TRACE && 184 pid != current->pid) 185 return; 186 } 187 188 op->saved_func(ip, parent_ip, op, fregs); 189 } 190 191 static void ftrace_sync_ipi(void *data) 192 { 193 /* Probably not needed, but do it anyway */ 194 smp_rmb(); 195 } 196 197 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops) 198 { 199 /* 200 * If this is a dynamic or RCU ops, or we force list func, 201 * then it needs to call the list anyway. 202 */ 203 if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) || 204 FTRACE_FORCE_LIST_FUNC) 205 return ftrace_ops_list_func; 206 207 return ftrace_ops_get_func(ops); 208 } 209 210 static void update_ftrace_function(void) 211 { 212 ftrace_func_t func; 213 214 /* 215 * Prepare the ftrace_ops that the arch callback will use. 216 * If there's only one ftrace_ops registered, the ftrace_ops_list 217 * will point to the ops we want. 218 */ 219 set_function_trace_op = rcu_dereference_protected(ftrace_ops_list, 220 lockdep_is_held(&ftrace_lock)); 221 222 /* If there's no ftrace_ops registered, just call the stub function */ 223 if (set_function_trace_op == &ftrace_list_end) { 224 func = ftrace_stub; 225 226 /* 227 * If we are at the end of the list and this ops is 228 * recursion safe and not dynamic and the arch supports passing ops, 229 * then have the mcount trampoline call the function directly. 230 */ 231 } else if (rcu_dereference_protected(ftrace_ops_list->next, 232 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 233 func = ftrace_ops_get_list_func(ftrace_ops_list); 234 235 } else { 236 /* Just use the default ftrace_ops */ 237 set_function_trace_op = &ftrace_list_end; 238 func = ftrace_ops_list_func; 239 } 240 241 /* If there's no change, then do nothing more here */ 242 if (ftrace_trace_function == func) 243 return; 244 245 /* 246 * If we are using the list function, it doesn't care 247 * about the function_trace_ops. 248 */ 249 if (func == ftrace_ops_list_func) { 250 ftrace_trace_function = func; 251 /* 252 * Don't even bother setting function_trace_ops, 253 * it would be racy to do so anyway. 254 */ 255 return; 256 } 257 258 #ifndef CONFIG_DYNAMIC_FTRACE 259 /* 260 * For static tracing, we need to be a bit more careful. 261 * The function change takes affect immediately. Thus, 262 * we need to coordinate the setting of the function_trace_ops 263 * with the setting of the ftrace_trace_function. 264 * 265 * Set the function to the list ops, which will call the 266 * function we want, albeit indirectly, but it handles the 267 * ftrace_ops and doesn't depend on function_trace_op. 268 */ 269 ftrace_trace_function = ftrace_ops_list_func; 270 /* 271 * Make sure all CPUs see this. Yes this is slow, but static 272 * tracing is slow and nasty to have enabled. 273 */ 274 synchronize_rcu_tasks_rude(); 275 /* Now all cpus are using the list ops. */ 276 function_trace_op = set_function_trace_op; 277 /* Make sure the function_trace_op is visible on all CPUs */ 278 smp_wmb(); 279 /* Nasty way to force a rmb on all cpus */ 280 smp_call_function(ftrace_sync_ipi, NULL, 1); 281 /* OK, we are all set to update the ftrace_trace_function now! */ 282 #endif /* !CONFIG_DYNAMIC_FTRACE */ 283 284 ftrace_trace_function = func; 285 } 286 287 static void add_ftrace_ops(struct ftrace_ops __rcu **list, 288 struct ftrace_ops *ops) 289 { 290 rcu_assign_pointer(ops->next, *list); 291 292 /* 293 * We are entering ops into the list but another 294 * CPU might be walking that list. We need to make sure 295 * the ops->next pointer is valid before another CPU sees 296 * the ops pointer included into the list. 297 */ 298 rcu_assign_pointer(*list, ops); 299 } 300 301 static int remove_ftrace_ops(struct ftrace_ops __rcu **list, 302 struct ftrace_ops *ops) 303 { 304 struct ftrace_ops **p; 305 306 /* 307 * If we are removing the last function, then simply point 308 * to the ftrace_stub. 309 */ 310 if (rcu_dereference_protected(*list, 311 lockdep_is_held(&ftrace_lock)) == ops && 312 rcu_dereference_protected(ops->next, 313 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 314 rcu_assign_pointer(*list, &ftrace_list_end); 315 return 0; 316 } 317 318 for (p = list; *p != &ftrace_list_end; p = &(*p)->next) 319 if (*p == ops) 320 break; 321 322 if (*p != ops) 323 return -1; 324 325 *p = (*p)->next; 326 return 0; 327 } 328 329 static void ftrace_update_trampoline(struct ftrace_ops *ops); 330 331 int __register_ftrace_function(struct ftrace_ops *ops) 332 { 333 if (ops->flags & FTRACE_OPS_FL_DELETED) 334 return -EINVAL; 335 336 if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED)) 337 return -EBUSY; 338 339 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS 340 /* 341 * If the ftrace_ops specifies SAVE_REGS, then it only can be used 342 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set. 343 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant. 344 */ 345 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS && 346 !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)) 347 return -EINVAL; 348 349 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED) 350 ops->flags |= FTRACE_OPS_FL_SAVE_REGS; 351 #endif 352 if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT)) 353 return -EBUSY; 354 355 if (!is_kernel_core_data((unsigned long)ops)) 356 ops->flags |= FTRACE_OPS_FL_DYNAMIC; 357 358 add_ftrace_ops(&ftrace_ops_list, ops); 359 360 /* Always save the function, and reset at unregistering */ 361 ops->saved_func = ops->func; 362 363 if (ftrace_pids_enabled(ops)) 364 ops->func = ftrace_pid_func; 365 366 ftrace_update_trampoline(ops); 367 368 if (ftrace_enabled) 369 update_ftrace_function(); 370 371 return 0; 372 } 373 374 int __unregister_ftrace_function(struct ftrace_ops *ops) 375 { 376 int ret; 377 378 if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED))) 379 return -EBUSY; 380 381 ret = remove_ftrace_ops(&ftrace_ops_list, ops); 382 383 if (ret < 0) 384 return ret; 385 386 if (ftrace_enabled) 387 update_ftrace_function(); 388 389 ops->func = ops->saved_func; 390 391 return 0; 392 } 393 394 static void ftrace_update_pid_func(void) 395 { 396 struct ftrace_ops *op; 397 398 /* Only do something if we are tracing something */ 399 if (ftrace_trace_function == ftrace_stub) 400 return; 401 402 do_for_each_ftrace_op(op, ftrace_ops_list) { 403 if (op->flags & FTRACE_OPS_FL_PID) { 404 op->func = ftrace_pids_enabled(op) ? 405 ftrace_pid_func : op->saved_func; 406 ftrace_update_trampoline(op); 407 } 408 } while_for_each_ftrace_op(op); 409 410 fgraph_update_pid_func(); 411 412 update_ftrace_function(); 413 } 414 415 #ifdef CONFIG_FUNCTION_PROFILER 416 struct ftrace_profile { 417 struct hlist_node node; 418 unsigned long ip; 419 unsigned long counter; 420 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 421 unsigned long long time; 422 unsigned long long time_squared; 423 #endif 424 }; 425 426 struct ftrace_profile_page { 427 struct ftrace_profile_page *next; 428 unsigned long index; 429 struct ftrace_profile records[]; 430 }; 431 432 struct ftrace_profile_stat { 433 atomic_t disabled; 434 struct hlist_head *hash; 435 struct ftrace_profile_page *pages; 436 struct ftrace_profile_page *start; 437 struct tracer_stat stat; 438 }; 439 440 #define PROFILE_RECORDS_SIZE \ 441 (PAGE_SIZE - offsetof(struct ftrace_profile_page, records)) 442 443 #define PROFILES_PER_PAGE \ 444 (PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile)) 445 446 static int ftrace_profile_enabled __read_mostly; 447 448 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */ 449 static DEFINE_MUTEX(ftrace_profile_lock); 450 451 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats); 452 453 #define FTRACE_PROFILE_HASH_BITS 10 454 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS) 455 456 static void * 457 function_stat_next(void *v, int idx) 458 { 459 struct ftrace_profile *rec = v; 460 struct ftrace_profile_page *pg; 461 462 pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK); 463 464 again: 465 if (idx != 0) 466 rec++; 467 468 if ((void *)rec >= (void *)&pg->records[pg->index]) { 469 pg = pg->next; 470 if (!pg) 471 return NULL; 472 rec = &pg->records[0]; 473 if (!rec->counter) 474 goto again; 475 } 476 477 return rec; 478 } 479 480 static void *function_stat_start(struct tracer_stat *trace) 481 { 482 struct ftrace_profile_stat *stat = 483 container_of(trace, struct ftrace_profile_stat, stat); 484 485 if (!stat || !stat->start) 486 return NULL; 487 488 return function_stat_next(&stat->start->records[0], 0); 489 } 490 491 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 492 /* function graph compares on total time */ 493 static int function_stat_cmp(const void *p1, const void *p2) 494 { 495 const struct ftrace_profile *a = p1; 496 const struct ftrace_profile *b = p2; 497 498 if (a->time < b->time) 499 return -1; 500 if (a->time > b->time) 501 return 1; 502 else 503 return 0; 504 } 505 #else 506 /* not function graph compares against hits */ 507 static int function_stat_cmp(const void *p1, const void *p2) 508 { 509 const struct ftrace_profile *a = p1; 510 const struct ftrace_profile *b = p2; 511 512 if (a->counter < b->counter) 513 return -1; 514 if (a->counter > b->counter) 515 return 1; 516 else 517 return 0; 518 } 519 #endif 520 521 static int function_stat_headers(struct seq_file *m) 522 { 523 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 524 seq_puts(m, " Function " 525 "Hit Time Avg s^2\n" 526 " -------- " 527 "--- ---- --- ---\n"); 528 #else 529 seq_puts(m, " Function Hit\n" 530 " -------- ---\n"); 531 #endif 532 return 0; 533 } 534 535 static int function_stat_show(struct seq_file *m, void *v) 536 { 537 struct ftrace_profile *rec = v; 538 char str[KSYM_SYMBOL_LEN]; 539 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 540 static struct trace_seq s; 541 unsigned long long avg; 542 unsigned long long stddev; 543 unsigned long long stddev_denom; 544 #endif 545 guard(mutex)(&ftrace_profile_lock); 546 547 /* we raced with function_profile_reset() */ 548 if (unlikely(rec->counter == 0)) 549 return -EBUSY; 550 551 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 552 avg = div64_ul(rec->time, rec->counter); 553 if (tracing_thresh && (avg < tracing_thresh)) 554 return 0; 555 #endif 556 557 kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); 558 seq_printf(m, " %-30.30s %10lu", str, rec->counter); 559 560 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 561 seq_puts(m, " "); 562 563 /* 564 * Variance formula: 565 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2) 566 * Maybe Welford's method is better here? 567 * Divide only by 1000 for ns^2 -> us^2 conversion. 568 * trace_print_graph_duration will divide by 1000 again. 569 */ 570 stddev = 0; 571 stddev_denom = rec->counter * (rec->counter - 1) * 1000; 572 if (stddev_denom) { 573 stddev = rec->counter * rec->time_squared - 574 rec->time * rec->time; 575 stddev = div64_ul(stddev, stddev_denom); 576 } 577 578 trace_seq_init(&s); 579 trace_print_graph_duration(rec->time, &s); 580 trace_seq_puts(&s, " "); 581 trace_print_graph_duration(avg, &s); 582 trace_seq_puts(&s, " "); 583 trace_print_graph_duration(stddev, &s); 584 trace_print_seq(m, &s); 585 #endif 586 seq_putc(m, '\n'); 587 588 return 0; 589 } 590 591 static void ftrace_profile_reset(struct ftrace_profile_stat *stat) 592 { 593 struct ftrace_profile_page *pg; 594 595 pg = stat->pages = stat->start; 596 597 while (pg) { 598 memset(pg->records, 0, PROFILE_RECORDS_SIZE); 599 pg->index = 0; 600 pg = pg->next; 601 } 602 603 memset(stat->hash, 0, 604 FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head)); 605 } 606 607 static int ftrace_profile_pages_init(struct ftrace_profile_stat *stat) 608 { 609 struct ftrace_profile_page *pg; 610 int functions; 611 int pages; 612 int i; 613 614 /* If we already allocated, do nothing */ 615 if (stat->pages) 616 return 0; 617 618 stat->pages = (void *)get_zeroed_page(GFP_KERNEL); 619 if (!stat->pages) 620 return -ENOMEM; 621 622 #ifdef CONFIG_DYNAMIC_FTRACE 623 functions = ftrace_update_tot_cnt; 624 #else 625 /* 626 * We do not know the number of functions that exist because 627 * dynamic tracing is what counts them. With past experience 628 * we have around 20K functions. That should be more than enough. 629 * It is highly unlikely we will execute every function in 630 * the kernel. 631 */ 632 functions = 20000; 633 #endif 634 635 pg = stat->start = stat->pages; 636 637 pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE); 638 639 for (i = 1; i < pages; i++) { 640 pg->next = (void *)get_zeroed_page(GFP_KERNEL); 641 if (!pg->next) 642 goto out_free; 643 pg = pg->next; 644 } 645 646 return 0; 647 648 out_free: 649 pg = stat->start; 650 while (pg) { 651 unsigned long tmp = (unsigned long)pg; 652 653 pg = pg->next; 654 free_page(tmp); 655 } 656 657 stat->pages = NULL; 658 stat->start = NULL; 659 660 return -ENOMEM; 661 } 662 663 static int ftrace_profile_init_cpu(int cpu) 664 { 665 struct ftrace_profile_stat *stat; 666 int size; 667 668 stat = &per_cpu(ftrace_profile_stats, cpu); 669 670 if (stat->hash) { 671 /* If the profile is already created, simply reset it */ 672 ftrace_profile_reset(stat); 673 return 0; 674 } 675 676 /* 677 * We are profiling all functions, but usually only a few thousand 678 * functions are hit. We'll make a hash of 1024 items. 679 */ 680 size = FTRACE_PROFILE_HASH_SIZE; 681 682 stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL); 683 684 if (!stat->hash) 685 return -ENOMEM; 686 687 /* Preallocate the function profiling pages */ 688 if (ftrace_profile_pages_init(stat) < 0) { 689 kfree(stat->hash); 690 stat->hash = NULL; 691 return -ENOMEM; 692 } 693 694 return 0; 695 } 696 697 static int ftrace_profile_init(void) 698 { 699 int cpu; 700 int ret = 0; 701 702 for_each_possible_cpu(cpu) { 703 ret = ftrace_profile_init_cpu(cpu); 704 if (ret) 705 break; 706 } 707 708 return ret; 709 } 710 711 /* interrupts must be disabled */ 712 static struct ftrace_profile * 713 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip) 714 { 715 struct ftrace_profile *rec; 716 struct hlist_head *hhd; 717 unsigned long key; 718 719 key = hash_long(ip, FTRACE_PROFILE_HASH_BITS); 720 hhd = &stat->hash[key]; 721 722 if (hlist_empty(hhd)) 723 return NULL; 724 725 hlist_for_each_entry_rcu_notrace(rec, hhd, node) { 726 if (rec->ip == ip) 727 return rec; 728 } 729 730 return NULL; 731 } 732 733 static void ftrace_add_profile(struct ftrace_profile_stat *stat, 734 struct ftrace_profile *rec) 735 { 736 unsigned long key; 737 738 key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS); 739 hlist_add_head_rcu(&rec->node, &stat->hash[key]); 740 } 741 742 /* 743 * The memory is already allocated, this simply finds a new record to use. 744 */ 745 static struct ftrace_profile * 746 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip) 747 { 748 struct ftrace_profile *rec = NULL; 749 750 /* prevent recursion (from NMIs) */ 751 if (atomic_inc_return(&stat->disabled) != 1) 752 goto out; 753 754 /* 755 * Try to find the function again since an NMI 756 * could have added it 757 */ 758 rec = ftrace_find_profiled_func(stat, ip); 759 if (rec) 760 goto out; 761 762 if (stat->pages->index == PROFILES_PER_PAGE) { 763 if (!stat->pages->next) 764 goto out; 765 stat->pages = stat->pages->next; 766 } 767 768 rec = &stat->pages->records[stat->pages->index++]; 769 rec->ip = ip; 770 ftrace_add_profile(stat, rec); 771 772 out: 773 atomic_dec(&stat->disabled); 774 775 return rec; 776 } 777 778 static void 779 function_profile_call(unsigned long ip, unsigned long parent_ip, 780 struct ftrace_ops *ops, struct ftrace_regs *fregs) 781 { 782 struct ftrace_profile_stat *stat; 783 struct ftrace_profile *rec; 784 785 if (!ftrace_profile_enabled) 786 return; 787 788 guard(preempt_notrace)(); 789 790 stat = this_cpu_ptr(&ftrace_profile_stats); 791 if (!stat->hash || !ftrace_profile_enabled) 792 return; 793 794 rec = ftrace_find_profiled_func(stat, ip); 795 if (!rec) { 796 rec = ftrace_profile_alloc(stat, ip); 797 if (!rec) 798 return; 799 } 800 801 rec->counter++; 802 } 803 804 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 805 static bool fgraph_graph_time = true; 806 807 void ftrace_graph_graph_time_control(bool enable) 808 { 809 fgraph_graph_time = enable; 810 } 811 812 struct profile_fgraph_data { 813 unsigned long long calltime; 814 unsigned long long subtime; 815 unsigned long long sleeptime; 816 }; 817 818 static int profile_graph_entry(struct ftrace_graph_ent *trace, 819 struct fgraph_ops *gops, 820 struct ftrace_regs *fregs) 821 { 822 struct profile_fgraph_data *profile_data; 823 824 function_profile_call(trace->func, 0, NULL, NULL); 825 826 /* If function graph is shutting down, ret_stack can be NULL */ 827 if (!current->ret_stack) 828 return 0; 829 830 profile_data = fgraph_reserve_data(gops->idx, sizeof(*profile_data)); 831 if (!profile_data) 832 return 0; 833 834 profile_data->subtime = 0; 835 profile_data->sleeptime = current->ftrace_sleeptime; 836 profile_data->calltime = trace_clock_local(); 837 838 return 1; 839 } 840 841 static void profile_graph_return(struct ftrace_graph_ret *trace, 842 struct fgraph_ops *gops, 843 struct ftrace_regs *fregs) 844 { 845 struct profile_fgraph_data *profile_data; 846 struct ftrace_profile_stat *stat; 847 unsigned long long calltime; 848 unsigned long long rettime = trace_clock_local(); 849 struct ftrace_profile *rec; 850 int size; 851 852 guard(preempt_notrace)(); 853 854 stat = this_cpu_ptr(&ftrace_profile_stats); 855 if (!stat->hash || !ftrace_profile_enabled) 856 return; 857 858 profile_data = fgraph_retrieve_data(gops->idx, &size); 859 860 /* If the calltime was zero'd ignore it */ 861 if (!profile_data || !profile_data->calltime) 862 return; 863 864 calltime = rettime - profile_data->calltime; 865 866 if (!fgraph_sleep_time) { 867 if (current->ftrace_sleeptime) 868 calltime -= current->ftrace_sleeptime - profile_data->sleeptime; 869 } 870 871 if (!fgraph_graph_time) { 872 struct profile_fgraph_data *parent_data; 873 874 /* Append this call time to the parent time to subtract */ 875 parent_data = fgraph_retrieve_parent_data(gops->idx, &size, 1); 876 if (parent_data) 877 parent_data->subtime += calltime; 878 879 if (profile_data->subtime && profile_data->subtime < calltime) 880 calltime -= profile_data->subtime; 881 else 882 calltime = 0; 883 } 884 885 rec = ftrace_find_profiled_func(stat, trace->func); 886 if (rec) { 887 rec->time += calltime; 888 rec->time_squared += calltime * calltime; 889 } 890 } 891 892 static struct fgraph_ops fprofiler_ops = { 893 .entryfunc = &profile_graph_entry, 894 .retfunc = &profile_graph_return, 895 }; 896 897 static int register_ftrace_profiler(void) 898 { 899 ftrace_ops_set_global_filter(&fprofiler_ops.ops); 900 return register_ftrace_graph(&fprofiler_ops); 901 } 902 903 static void unregister_ftrace_profiler(void) 904 { 905 unregister_ftrace_graph(&fprofiler_ops); 906 } 907 #else 908 static struct ftrace_ops ftrace_profile_ops __read_mostly = { 909 .func = function_profile_call, 910 }; 911 912 static int register_ftrace_profiler(void) 913 { 914 ftrace_ops_set_global_filter(&ftrace_profile_ops); 915 return register_ftrace_function(&ftrace_profile_ops); 916 } 917 918 static void unregister_ftrace_profiler(void) 919 { 920 unregister_ftrace_function(&ftrace_profile_ops); 921 } 922 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 923 924 static ssize_t 925 ftrace_profile_write(struct file *filp, const char __user *ubuf, 926 size_t cnt, loff_t *ppos) 927 { 928 unsigned long val; 929 int ret; 930 931 ret = kstrtoul_from_user(ubuf, cnt, 10, &val); 932 if (ret) 933 return ret; 934 935 val = !!val; 936 937 guard(mutex)(&ftrace_profile_lock); 938 if (ftrace_profile_enabled ^ val) { 939 if (val) { 940 ret = ftrace_profile_init(); 941 if (ret < 0) 942 return ret; 943 944 ret = register_ftrace_profiler(); 945 if (ret < 0) 946 return ret; 947 ftrace_profile_enabled = 1; 948 } else { 949 ftrace_profile_enabled = 0; 950 /* 951 * unregister_ftrace_profiler calls stop_machine 952 * so this acts like an synchronize_rcu. 953 */ 954 unregister_ftrace_profiler(); 955 } 956 } 957 958 *ppos += cnt; 959 960 return cnt; 961 } 962 963 static ssize_t 964 ftrace_profile_read(struct file *filp, char __user *ubuf, 965 size_t cnt, loff_t *ppos) 966 { 967 char buf[64]; /* big enough to hold a number */ 968 int r; 969 970 r = sprintf(buf, "%u\n", ftrace_profile_enabled); 971 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 972 } 973 974 static const struct file_operations ftrace_profile_fops = { 975 .open = tracing_open_generic, 976 .read = ftrace_profile_read, 977 .write = ftrace_profile_write, 978 .llseek = default_llseek, 979 }; 980 981 /* used to initialize the real stat files */ 982 static struct tracer_stat function_stats __initdata = { 983 .name = "functions", 984 .stat_start = function_stat_start, 985 .stat_next = function_stat_next, 986 .stat_cmp = function_stat_cmp, 987 .stat_headers = function_stat_headers, 988 .stat_show = function_stat_show 989 }; 990 991 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 992 { 993 struct ftrace_profile_stat *stat; 994 char *name; 995 int ret; 996 int cpu; 997 998 for_each_possible_cpu(cpu) { 999 stat = &per_cpu(ftrace_profile_stats, cpu); 1000 1001 name = kasprintf(GFP_KERNEL, "function%d", cpu); 1002 if (!name) { 1003 /* 1004 * The files created are permanent, if something happens 1005 * we still do not free memory. 1006 */ 1007 WARN(1, 1008 "Could not allocate stat file for cpu %d\n", 1009 cpu); 1010 return; 1011 } 1012 stat->stat = function_stats; 1013 stat->stat.name = name; 1014 ret = register_stat_tracer(&stat->stat); 1015 if (ret) { 1016 WARN(1, 1017 "Could not register function stat for cpu %d\n", 1018 cpu); 1019 kfree(name); 1020 return; 1021 } 1022 } 1023 1024 trace_create_file("function_profile_enabled", 1025 TRACE_MODE_WRITE, d_tracer, NULL, 1026 &ftrace_profile_fops); 1027 } 1028 1029 #else /* CONFIG_FUNCTION_PROFILER */ 1030 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 1031 { 1032 } 1033 #endif /* CONFIG_FUNCTION_PROFILER */ 1034 1035 #ifdef CONFIG_DYNAMIC_FTRACE 1036 1037 static struct ftrace_ops *removed_ops; 1038 1039 /* 1040 * Set when doing a global update, like enabling all recs or disabling them. 1041 * It is not set when just updating a single ftrace_ops. 1042 */ 1043 static bool update_all_ops; 1044 1045 #ifndef CONFIG_FTRACE_MCOUNT_RECORD 1046 # error Dynamic ftrace depends on MCOUNT_RECORD 1047 #endif 1048 1049 struct ftrace_func_probe { 1050 struct ftrace_probe_ops *probe_ops; 1051 struct ftrace_ops ops; 1052 struct trace_array *tr; 1053 struct list_head list; 1054 void *data; 1055 int ref; 1056 }; 1057 1058 /* 1059 * We make these constant because no one should touch them, 1060 * but they are used as the default "empty hash", to avoid allocating 1061 * it all the time. These are in a read only section such that if 1062 * anyone does try to modify it, it will cause an exception. 1063 */ 1064 static const struct hlist_head empty_buckets[1]; 1065 static const struct ftrace_hash empty_hash = { 1066 .buckets = (struct hlist_head *)empty_buckets, 1067 }; 1068 #define EMPTY_HASH ((struct ftrace_hash *)&empty_hash) 1069 1070 struct ftrace_ops global_ops = { 1071 .func = ftrace_stub, 1072 .local_hash.notrace_hash = EMPTY_HASH, 1073 .local_hash.filter_hash = EMPTY_HASH, 1074 INIT_OPS_HASH(global_ops) 1075 .flags = FTRACE_OPS_FL_INITIALIZED | 1076 FTRACE_OPS_FL_PID, 1077 }; 1078 1079 /* 1080 * Used by the stack unwinder to know about dynamic ftrace trampolines. 1081 */ 1082 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr) 1083 { 1084 struct ftrace_ops *op = NULL; 1085 1086 /* 1087 * Some of the ops may be dynamically allocated, 1088 * they are freed after a synchronize_rcu(). 1089 */ 1090 preempt_disable_notrace(); 1091 1092 do_for_each_ftrace_op(op, ftrace_ops_list) { 1093 /* 1094 * This is to check for dynamically allocated trampolines. 1095 * Trampolines that are in kernel text will have 1096 * core_kernel_text() return true. 1097 */ 1098 if (op->trampoline && op->trampoline_size) 1099 if (addr >= op->trampoline && 1100 addr < op->trampoline + op->trampoline_size) { 1101 preempt_enable_notrace(); 1102 return op; 1103 } 1104 } while_for_each_ftrace_op(op); 1105 preempt_enable_notrace(); 1106 1107 return NULL; 1108 } 1109 1110 /* 1111 * This is used by __kernel_text_address() to return true if the 1112 * address is on a dynamically allocated trampoline that would 1113 * not return true for either core_kernel_text() or 1114 * is_module_text_address(). 1115 */ 1116 bool is_ftrace_trampoline(unsigned long addr) 1117 { 1118 return ftrace_ops_trampoline(addr) != NULL; 1119 } 1120 1121 struct ftrace_page { 1122 struct ftrace_page *next; 1123 struct dyn_ftrace *records; 1124 int index; 1125 int order; 1126 }; 1127 1128 #define ENTRY_SIZE sizeof(struct dyn_ftrace) 1129 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE) 1130 1131 static struct ftrace_page *ftrace_pages_start; 1132 static struct ftrace_page *ftrace_pages; 1133 1134 static __always_inline unsigned long 1135 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip) 1136 { 1137 if (hash->size_bits > 0) 1138 return hash_long(ip, hash->size_bits); 1139 1140 return 0; 1141 } 1142 1143 /* Only use this function if ftrace_hash_empty() has already been tested */ 1144 static __always_inline struct ftrace_func_entry * 1145 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1146 { 1147 unsigned long key; 1148 struct ftrace_func_entry *entry; 1149 struct hlist_head *hhd; 1150 1151 key = ftrace_hash_key(hash, ip); 1152 hhd = &hash->buckets[key]; 1153 1154 hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) { 1155 if (entry->ip == ip) 1156 return entry; 1157 } 1158 return NULL; 1159 } 1160 1161 /** 1162 * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash 1163 * @hash: The hash to look at 1164 * @ip: The instruction pointer to test 1165 * 1166 * Search a given @hash to see if a given instruction pointer (@ip) 1167 * exists in it. 1168 * 1169 * Returns: the entry that holds the @ip if found. NULL otherwise. 1170 */ 1171 struct ftrace_func_entry * 1172 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1173 { 1174 if (ftrace_hash_empty(hash)) 1175 return NULL; 1176 1177 return __ftrace_lookup_ip(hash, ip); 1178 } 1179 1180 static void __add_hash_entry(struct ftrace_hash *hash, 1181 struct ftrace_func_entry *entry) 1182 { 1183 struct hlist_head *hhd; 1184 unsigned long key; 1185 1186 key = ftrace_hash_key(hash, entry->ip); 1187 hhd = &hash->buckets[key]; 1188 hlist_add_head(&entry->hlist, hhd); 1189 hash->count++; 1190 } 1191 1192 static struct ftrace_func_entry * 1193 add_hash_entry(struct ftrace_hash *hash, unsigned long ip) 1194 { 1195 struct ftrace_func_entry *entry; 1196 1197 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 1198 if (!entry) 1199 return NULL; 1200 1201 entry->ip = ip; 1202 __add_hash_entry(hash, entry); 1203 1204 return entry; 1205 } 1206 1207 static void 1208 free_hash_entry(struct ftrace_hash *hash, 1209 struct ftrace_func_entry *entry) 1210 { 1211 hlist_del(&entry->hlist); 1212 kfree(entry); 1213 hash->count--; 1214 } 1215 1216 static void 1217 remove_hash_entry(struct ftrace_hash *hash, 1218 struct ftrace_func_entry *entry) 1219 { 1220 hlist_del_rcu(&entry->hlist); 1221 hash->count--; 1222 } 1223 1224 static void ftrace_hash_clear(struct ftrace_hash *hash) 1225 { 1226 struct hlist_head *hhd; 1227 struct hlist_node *tn; 1228 struct ftrace_func_entry *entry; 1229 int size = 1 << hash->size_bits; 1230 int i; 1231 1232 if (!hash->count) 1233 return; 1234 1235 for (i = 0; i < size; i++) { 1236 hhd = &hash->buckets[i]; 1237 hlist_for_each_entry_safe(entry, tn, hhd, hlist) 1238 free_hash_entry(hash, entry); 1239 } 1240 FTRACE_WARN_ON(hash->count); 1241 } 1242 1243 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod) 1244 { 1245 list_del(&ftrace_mod->list); 1246 kfree(ftrace_mod->module); 1247 kfree(ftrace_mod->func); 1248 kfree(ftrace_mod); 1249 } 1250 1251 static void clear_ftrace_mod_list(struct list_head *head) 1252 { 1253 struct ftrace_mod_load *p, *n; 1254 1255 /* stack tracer isn't supported yet */ 1256 if (!head) 1257 return; 1258 1259 mutex_lock(&ftrace_lock); 1260 list_for_each_entry_safe(p, n, head, list) 1261 free_ftrace_mod(p); 1262 mutex_unlock(&ftrace_lock); 1263 } 1264 1265 static void free_ftrace_hash(struct ftrace_hash *hash) 1266 { 1267 if (!hash || hash == EMPTY_HASH) 1268 return; 1269 ftrace_hash_clear(hash); 1270 kfree(hash->buckets); 1271 kfree(hash); 1272 } 1273 1274 static void __free_ftrace_hash_rcu(struct rcu_head *rcu) 1275 { 1276 struct ftrace_hash *hash; 1277 1278 hash = container_of(rcu, struct ftrace_hash, rcu); 1279 free_ftrace_hash(hash); 1280 } 1281 1282 static void free_ftrace_hash_rcu(struct ftrace_hash *hash) 1283 { 1284 if (!hash || hash == EMPTY_HASH) 1285 return; 1286 call_rcu(&hash->rcu, __free_ftrace_hash_rcu); 1287 } 1288 1289 /** 1290 * ftrace_free_filter - remove all filters for an ftrace_ops 1291 * @ops: the ops to remove the filters from 1292 */ 1293 void ftrace_free_filter(struct ftrace_ops *ops) 1294 { 1295 ftrace_ops_init(ops); 1296 if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED)) 1297 return; 1298 free_ftrace_hash(ops->func_hash->filter_hash); 1299 free_ftrace_hash(ops->func_hash->notrace_hash); 1300 } 1301 EXPORT_SYMBOL_GPL(ftrace_free_filter); 1302 1303 static struct ftrace_hash *alloc_ftrace_hash(int size_bits) 1304 { 1305 struct ftrace_hash *hash; 1306 int size; 1307 1308 hash = kzalloc(sizeof(*hash), GFP_KERNEL); 1309 if (!hash) 1310 return NULL; 1311 1312 size = 1 << size_bits; 1313 hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL); 1314 1315 if (!hash->buckets) { 1316 kfree(hash); 1317 return NULL; 1318 } 1319 1320 hash->size_bits = size_bits; 1321 1322 return hash; 1323 } 1324 1325 /* Used to save filters on functions for modules not loaded yet */ 1326 static int ftrace_add_mod(struct trace_array *tr, 1327 const char *func, const char *module, 1328 int enable) 1329 { 1330 struct ftrace_mod_load *ftrace_mod; 1331 struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace; 1332 1333 ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL); 1334 if (!ftrace_mod) 1335 return -ENOMEM; 1336 1337 INIT_LIST_HEAD(&ftrace_mod->list); 1338 ftrace_mod->func = kstrdup(func, GFP_KERNEL); 1339 ftrace_mod->module = kstrdup(module, GFP_KERNEL); 1340 ftrace_mod->enable = enable; 1341 1342 if (!ftrace_mod->func || !ftrace_mod->module) 1343 goto out_free; 1344 1345 list_add(&ftrace_mod->list, mod_head); 1346 1347 return 0; 1348 1349 out_free: 1350 free_ftrace_mod(ftrace_mod); 1351 1352 return -ENOMEM; 1353 } 1354 1355 static struct ftrace_hash * 1356 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash) 1357 { 1358 struct ftrace_func_entry *entry; 1359 struct ftrace_hash *new_hash; 1360 int size; 1361 int i; 1362 1363 new_hash = alloc_ftrace_hash(size_bits); 1364 if (!new_hash) 1365 return NULL; 1366 1367 if (hash) 1368 new_hash->flags = hash->flags; 1369 1370 /* Empty hash? */ 1371 if (ftrace_hash_empty(hash)) 1372 return new_hash; 1373 1374 size = 1 << hash->size_bits; 1375 for (i = 0; i < size; i++) { 1376 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 1377 if (add_hash_entry(new_hash, entry->ip) == NULL) 1378 goto free_hash; 1379 } 1380 } 1381 1382 FTRACE_WARN_ON(new_hash->count != hash->count); 1383 1384 return new_hash; 1385 1386 free_hash: 1387 free_ftrace_hash(new_hash); 1388 return NULL; 1389 } 1390 1391 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops); 1392 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops); 1393 1394 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1395 struct ftrace_hash *new_hash); 1396 1397 /* 1398 * Allocate a new hash and remove entries from @src and move them to the new hash. 1399 * On success, the @src hash will be empty and should be freed. 1400 */ 1401 static struct ftrace_hash *__move_hash(struct ftrace_hash *src, int size) 1402 { 1403 struct ftrace_func_entry *entry; 1404 struct ftrace_hash *new_hash; 1405 struct hlist_head *hhd; 1406 struct hlist_node *tn; 1407 int bits = 0; 1408 int i; 1409 1410 /* 1411 * Use around half the size (max bit of it), but 1412 * a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits). 1413 */ 1414 bits = fls(size / 2); 1415 1416 /* Don't allocate too much */ 1417 if (bits > FTRACE_HASH_MAX_BITS) 1418 bits = FTRACE_HASH_MAX_BITS; 1419 1420 new_hash = alloc_ftrace_hash(bits); 1421 if (!new_hash) 1422 return NULL; 1423 1424 new_hash->flags = src->flags; 1425 1426 size = 1 << src->size_bits; 1427 for (i = 0; i < size; i++) { 1428 hhd = &src->buckets[i]; 1429 hlist_for_each_entry_safe(entry, tn, hhd, hlist) { 1430 remove_hash_entry(src, entry); 1431 __add_hash_entry(new_hash, entry); 1432 } 1433 } 1434 return new_hash; 1435 } 1436 1437 /* Move the @src entries to a newly allocated hash */ 1438 static struct ftrace_hash * 1439 __ftrace_hash_move(struct ftrace_hash *src) 1440 { 1441 int size = src->count; 1442 1443 /* 1444 * If the new source is empty, just return the empty_hash. 1445 */ 1446 if (ftrace_hash_empty(src)) 1447 return EMPTY_HASH; 1448 1449 return __move_hash(src, size); 1450 } 1451 1452 /** 1453 * ftrace_hash_move - move a new hash to a filter and do updates 1454 * @ops: The ops with the hash that @dst points to 1455 * @enable: True if for the filter hash, false for the notrace hash 1456 * @dst: Points to the @ops hash that should be updated 1457 * @src: The hash to update @dst with 1458 * 1459 * This is called when an ftrace_ops hash is being updated and the 1460 * the kernel needs to reflect this. Note, this only updates the kernel 1461 * function callbacks if the @ops is enabled (not to be confused with 1462 * @enable above). If the @ops is enabled, its hash determines what 1463 * callbacks get called. This function gets called when the @ops hash 1464 * is updated and it requires new callbacks. 1465 * 1466 * On success the elements of @src is moved to @dst, and @dst is updated 1467 * properly, as well as the functions determined by the @ops hashes 1468 * are now calling the @ops callback function. 1469 * 1470 * Regardless of return type, @src should be freed with free_ftrace_hash(). 1471 */ 1472 static int 1473 ftrace_hash_move(struct ftrace_ops *ops, int enable, 1474 struct ftrace_hash **dst, struct ftrace_hash *src) 1475 { 1476 struct ftrace_hash *new_hash; 1477 int ret; 1478 1479 /* Reject setting notrace hash on IPMODIFY ftrace_ops */ 1480 if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable) 1481 return -EINVAL; 1482 1483 new_hash = __ftrace_hash_move(src); 1484 if (!new_hash) 1485 return -ENOMEM; 1486 1487 /* Make sure this can be applied if it is IPMODIFY ftrace_ops */ 1488 if (enable) { 1489 /* IPMODIFY should be updated only when filter_hash updating */ 1490 ret = ftrace_hash_ipmodify_update(ops, new_hash); 1491 if (ret < 0) { 1492 free_ftrace_hash(new_hash); 1493 return ret; 1494 } 1495 } 1496 1497 /* 1498 * Remove the current set, update the hash and add 1499 * them back. 1500 */ 1501 ftrace_hash_rec_disable_modify(ops); 1502 1503 rcu_assign_pointer(*dst, new_hash); 1504 1505 ftrace_hash_rec_enable_modify(ops); 1506 1507 return 0; 1508 } 1509 1510 static bool hash_contains_ip(unsigned long ip, 1511 struct ftrace_ops_hash *hash) 1512 { 1513 /* 1514 * The function record is a match if it exists in the filter 1515 * hash and not in the notrace hash. Note, an empty hash is 1516 * considered a match for the filter hash, but an empty 1517 * notrace hash is considered not in the notrace hash. 1518 */ 1519 return (ftrace_hash_empty(hash->filter_hash) || 1520 __ftrace_lookup_ip(hash->filter_hash, ip)) && 1521 (ftrace_hash_empty(hash->notrace_hash) || 1522 !__ftrace_lookup_ip(hash->notrace_hash, ip)); 1523 } 1524 1525 /* 1526 * Test the hashes for this ops to see if we want to call 1527 * the ops->func or not. 1528 * 1529 * It's a match if the ip is in the ops->filter_hash or 1530 * the filter_hash does not exist or is empty, 1531 * AND 1532 * the ip is not in the ops->notrace_hash. 1533 * 1534 * This needs to be called with preemption disabled as 1535 * the hashes are freed with call_rcu(). 1536 */ 1537 int 1538 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs) 1539 { 1540 struct ftrace_ops_hash hash; 1541 int ret; 1542 1543 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS 1544 /* 1545 * There's a small race when adding ops that the ftrace handler 1546 * that wants regs, may be called without them. We can not 1547 * allow that handler to be called if regs is NULL. 1548 */ 1549 if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS)) 1550 return 0; 1551 #endif 1552 1553 rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash); 1554 rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash); 1555 1556 if (hash_contains_ip(ip, &hash)) 1557 ret = 1; 1558 else 1559 ret = 0; 1560 1561 return ret; 1562 } 1563 1564 /* 1565 * This is a double for. Do not use 'break' to break out of the loop, 1566 * you must use a goto. 1567 */ 1568 #define do_for_each_ftrace_rec(pg, rec) \ 1569 for (pg = ftrace_pages_start; pg; pg = pg->next) { \ 1570 int _____i; \ 1571 for (_____i = 0; _____i < pg->index; _____i++) { \ 1572 rec = &pg->records[_____i]; 1573 1574 #define while_for_each_ftrace_rec() \ 1575 } \ 1576 } 1577 1578 1579 static int ftrace_cmp_recs(const void *a, const void *b) 1580 { 1581 const struct dyn_ftrace *key = a; 1582 const struct dyn_ftrace *rec = b; 1583 1584 if (key->flags < rec->ip) 1585 return -1; 1586 if (key->ip >= rec->ip + MCOUNT_INSN_SIZE) 1587 return 1; 1588 return 0; 1589 } 1590 1591 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end) 1592 { 1593 struct ftrace_page *pg; 1594 struct dyn_ftrace *rec = NULL; 1595 struct dyn_ftrace key; 1596 1597 key.ip = start; 1598 key.flags = end; /* overload flags, as it is unsigned long */ 1599 1600 for (pg = ftrace_pages_start; pg; pg = pg->next) { 1601 if (pg->index == 0 || 1602 end < pg->records[0].ip || 1603 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 1604 continue; 1605 rec = bsearch(&key, pg->records, pg->index, 1606 sizeof(struct dyn_ftrace), 1607 ftrace_cmp_recs); 1608 if (rec) 1609 break; 1610 } 1611 return rec; 1612 } 1613 1614 /** 1615 * ftrace_location_range - return the first address of a traced location 1616 * if it touches the given ip range 1617 * @start: start of range to search. 1618 * @end: end of range to search (inclusive). @end points to the last byte 1619 * to check. 1620 * 1621 * Returns: rec->ip if the related ftrace location is a least partly within 1622 * the given address range. That is, the first address of the instruction 1623 * that is either a NOP or call to the function tracer. It checks the ftrace 1624 * internal tables to determine if the address belongs or not. 1625 */ 1626 unsigned long ftrace_location_range(unsigned long start, unsigned long end) 1627 { 1628 struct dyn_ftrace *rec; 1629 unsigned long ip = 0; 1630 1631 rcu_read_lock(); 1632 rec = lookup_rec(start, end); 1633 if (rec) 1634 ip = rec->ip; 1635 rcu_read_unlock(); 1636 1637 return ip; 1638 } 1639 1640 /** 1641 * ftrace_location - return the ftrace location 1642 * @ip: the instruction pointer to check 1643 * 1644 * Returns: 1645 * * If @ip matches the ftrace location, return @ip. 1646 * * If @ip matches sym+0, return sym's ftrace location. 1647 * * Otherwise, return 0. 1648 */ 1649 unsigned long ftrace_location(unsigned long ip) 1650 { 1651 unsigned long loc; 1652 unsigned long offset; 1653 unsigned long size; 1654 1655 loc = ftrace_location_range(ip, ip); 1656 if (!loc) { 1657 if (!kallsyms_lookup_size_offset(ip, &size, &offset)) 1658 return 0; 1659 1660 /* map sym+0 to __fentry__ */ 1661 if (!offset) 1662 loc = ftrace_location_range(ip, ip + size - 1); 1663 } 1664 return loc; 1665 } 1666 1667 /** 1668 * ftrace_text_reserved - return true if range contains an ftrace location 1669 * @start: start of range to search 1670 * @end: end of range to search (inclusive). @end points to the last byte to check. 1671 * 1672 * Returns: 1 if @start and @end contains a ftrace location. 1673 * That is, the instruction that is either a NOP or call to 1674 * the function tracer. It checks the ftrace internal tables to 1675 * determine if the address belongs or not. 1676 */ 1677 int ftrace_text_reserved(const void *start, const void *end) 1678 { 1679 unsigned long ret; 1680 1681 ret = ftrace_location_range((unsigned long)start, 1682 (unsigned long)end); 1683 1684 return (int)!!ret; 1685 } 1686 1687 /* Test if ops registered to this rec needs regs */ 1688 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec) 1689 { 1690 struct ftrace_ops *ops; 1691 bool keep_regs = false; 1692 1693 for (ops = ftrace_ops_list; 1694 ops != &ftrace_list_end; ops = ops->next) { 1695 /* pass rec in as regs to have non-NULL val */ 1696 if (ftrace_ops_test(ops, rec->ip, rec)) { 1697 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1698 keep_regs = true; 1699 break; 1700 } 1701 } 1702 } 1703 1704 return keep_regs; 1705 } 1706 1707 static struct ftrace_ops * 1708 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec); 1709 static struct ftrace_ops * 1710 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude); 1711 static struct ftrace_ops * 1712 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops); 1713 1714 static bool skip_record(struct dyn_ftrace *rec) 1715 { 1716 /* 1717 * At boot up, weak functions are set to disable. Function tracing 1718 * can be enabled before they are, and they still need to be disabled now. 1719 * If the record is disabled, still continue if it is marked as already 1720 * enabled (this is needed to keep the accounting working). 1721 */ 1722 return rec->flags & FTRACE_FL_DISABLED && 1723 !(rec->flags & FTRACE_FL_ENABLED); 1724 } 1725 1726 /* 1727 * This is the main engine to the ftrace updates to the dyn_ftrace records. 1728 * 1729 * It will iterate through all the available ftrace functions 1730 * (the ones that ftrace can have callbacks to) and set the flags 1731 * in the associated dyn_ftrace records. 1732 * 1733 * @inc: If true, the functions associated to @ops are added to 1734 * the dyn_ftrace records, otherwise they are removed. 1735 */ 1736 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops, 1737 bool inc) 1738 { 1739 struct ftrace_hash *hash; 1740 struct ftrace_hash *notrace_hash; 1741 struct ftrace_page *pg; 1742 struct dyn_ftrace *rec; 1743 bool update = false; 1744 int count = 0; 1745 int all = false; 1746 1747 /* Only update if the ops has been registered */ 1748 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1749 return false; 1750 1751 /* 1752 * If the count is zero, we update all records. 1753 * Otherwise we just update the items in the hash. 1754 */ 1755 hash = ops->func_hash->filter_hash; 1756 notrace_hash = ops->func_hash->notrace_hash; 1757 if (ftrace_hash_empty(hash)) 1758 all = true; 1759 1760 do_for_each_ftrace_rec(pg, rec) { 1761 int in_notrace_hash = 0; 1762 int in_hash = 0; 1763 int match = 0; 1764 1765 if (skip_record(rec)) 1766 continue; 1767 1768 if (all) { 1769 /* 1770 * Only the filter_hash affects all records. 1771 * Update if the record is not in the notrace hash. 1772 */ 1773 if (!notrace_hash || !ftrace_lookup_ip(notrace_hash, rec->ip)) 1774 match = 1; 1775 } else { 1776 in_hash = !!ftrace_lookup_ip(hash, rec->ip); 1777 in_notrace_hash = !!ftrace_lookup_ip(notrace_hash, rec->ip); 1778 1779 /* 1780 * We want to match all functions that are in the hash but 1781 * not in the other hash. 1782 */ 1783 if (in_hash && !in_notrace_hash) 1784 match = 1; 1785 } 1786 if (!match) 1787 continue; 1788 1789 if (inc) { 1790 rec->flags++; 1791 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX)) 1792 return false; 1793 1794 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1795 rec->flags |= FTRACE_FL_DIRECT; 1796 1797 /* 1798 * If there's only a single callback registered to a 1799 * function, and the ops has a trampoline registered 1800 * for it, then we can call it directly. 1801 */ 1802 if (ftrace_rec_count(rec) == 1 && ops->trampoline) 1803 rec->flags |= FTRACE_FL_TRAMP; 1804 else 1805 /* 1806 * If we are adding another function callback 1807 * to this function, and the previous had a 1808 * custom trampoline in use, then we need to go 1809 * back to the default trampoline. 1810 */ 1811 rec->flags &= ~FTRACE_FL_TRAMP; 1812 1813 /* 1814 * If any ops wants regs saved for this function 1815 * then all ops will get saved regs. 1816 */ 1817 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 1818 rec->flags |= FTRACE_FL_REGS; 1819 } else { 1820 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0)) 1821 return false; 1822 rec->flags--; 1823 1824 /* 1825 * Only the internal direct_ops should have the 1826 * DIRECT flag set. Thus, if it is removing a 1827 * function, then that function should no longer 1828 * be direct. 1829 */ 1830 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1831 rec->flags &= ~FTRACE_FL_DIRECT; 1832 1833 /* 1834 * If the rec had REGS enabled and the ops that is 1835 * being removed had REGS set, then see if there is 1836 * still any ops for this record that wants regs. 1837 * If not, we can stop recording them. 1838 */ 1839 if (ftrace_rec_count(rec) > 0 && 1840 rec->flags & FTRACE_FL_REGS && 1841 ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1842 if (!test_rec_ops_needs_regs(rec)) 1843 rec->flags &= ~FTRACE_FL_REGS; 1844 } 1845 1846 /* 1847 * The TRAMP needs to be set only if rec count 1848 * is decremented to one, and the ops that is 1849 * left has a trampoline. As TRAMP can only be 1850 * enabled if there is only a single ops attached 1851 * to it. 1852 */ 1853 if (ftrace_rec_count(rec) == 1 && 1854 ftrace_find_tramp_ops_any_other(rec, ops)) 1855 rec->flags |= FTRACE_FL_TRAMP; 1856 else 1857 rec->flags &= ~FTRACE_FL_TRAMP; 1858 1859 /* 1860 * flags will be cleared in ftrace_check_record() 1861 * if rec count is zero. 1862 */ 1863 } 1864 1865 /* 1866 * If the rec has a single associated ops, and ops->func can be 1867 * called directly, allow the call site to call via the ops. 1868 */ 1869 if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE_WITH_CALL_OPS) && 1870 ftrace_rec_count(rec) == 1 && 1871 ftrace_ops_get_func(ops) == ops->func) 1872 rec->flags |= FTRACE_FL_CALL_OPS; 1873 else 1874 rec->flags &= ~FTRACE_FL_CALL_OPS; 1875 1876 count++; 1877 1878 /* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */ 1879 update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE; 1880 1881 /* Shortcut, if we handled all records, we are done. */ 1882 if (!all && count == hash->count) 1883 return update; 1884 } while_for_each_ftrace_rec(); 1885 1886 return update; 1887 } 1888 1889 /* 1890 * This is called when an ops is removed from tracing. It will decrement 1891 * the counters of the dyn_ftrace records for all the functions that 1892 * the @ops attached to. 1893 */ 1894 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops) 1895 { 1896 return __ftrace_hash_rec_update(ops, false); 1897 } 1898 1899 /* 1900 * This is called when an ops is added to tracing. It will increment 1901 * the counters of the dyn_ftrace records for all the functions that 1902 * the @ops attached to. 1903 */ 1904 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops) 1905 { 1906 return __ftrace_hash_rec_update(ops, true); 1907 } 1908 1909 /* 1910 * This function will update what functions @ops traces when its filter 1911 * changes. 1912 * 1913 * The @inc states if the @ops callbacks are going to be added or removed. 1914 * When one of the @ops hashes are updated to a "new_hash" the dyn_ftrace 1915 * records are update via: 1916 * 1917 * ftrace_hash_rec_disable_modify(ops); 1918 * ops->hash = new_hash 1919 * ftrace_hash_rec_enable_modify(ops); 1920 * 1921 * Where the @ops is removed from all the records it is tracing using 1922 * its old hash. The @ops hash is updated to the new hash, and then 1923 * the @ops is added back to the records so that it is tracing all 1924 * the new functions. 1925 */ 1926 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops, bool inc) 1927 { 1928 struct ftrace_ops *op; 1929 1930 __ftrace_hash_rec_update(ops, inc); 1931 1932 if (ops->func_hash != &global_ops.local_hash) 1933 return; 1934 1935 /* 1936 * If the ops shares the global_ops hash, then we need to update 1937 * all ops that are enabled and use this hash. 1938 */ 1939 do_for_each_ftrace_op(op, ftrace_ops_list) { 1940 /* Already done */ 1941 if (op == ops) 1942 continue; 1943 if (op->func_hash == &global_ops.local_hash) 1944 __ftrace_hash_rec_update(op, inc); 1945 } while_for_each_ftrace_op(op); 1946 } 1947 1948 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops) 1949 { 1950 ftrace_hash_rec_update_modify(ops, false); 1951 } 1952 1953 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops) 1954 { 1955 ftrace_hash_rec_update_modify(ops, true); 1956 } 1957 1958 /* 1959 * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK 1960 * or no-needed to update, -EBUSY if it detects a conflict of the flag 1961 * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs. 1962 * Note that old_hash and new_hash has below meanings 1963 * - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected) 1964 * - If the hash is EMPTY_HASH, it hits nothing 1965 * - Anything else hits the recs which match the hash entries. 1966 * 1967 * DIRECT ops does not have IPMODIFY flag, but we still need to check it 1968 * against functions with FTRACE_FL_IPMODIFY. If there is any overlap, call 1969 * ops_func(SHARE_IPMODIFY_SELF) to make sure current ops can share with 1970 * IPMODIFY. If ops_func(SHARE_IPMODIFY_SELF) returns non-zero, propagate 1971 * the return value to the caller and eventually to the owner of the DIRECT 1972 * ops. 1973 */ 1974 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops, 1975 struct ftrace_hash *old_hash, 1976 struct ftrace_hash *new_hash) 1977 { 1978 struct ftrace_page *pg; 1979 struct dyn_ftrace *rec, *end = NULL; 1980 int in_old, in_new; 1981 bool is_ipmodify, is_direct; 1982 1983 /* Only update if the ops has been registered */ 1984 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1985 return 0; 1986 1987 is_ipmodify = ops->flags & FTRACE_OPS_FL_IPMODIFY; 1988 is_direct = ops->flags & FTRACE_OPS_FL_DIRECT; 1989 1990 /* neither IPMODIFY nor DIRECT, skip */ 1991 if (!is_ipmodify && !is_direct) 1992 return 0; 1993 1994 if (WARN_ON_ONCE(is_ipmodify && is_direct)) 1995 return 0; 1996 1997 /* 1998 * Since the IPMODIFY and DIRECT are very address sensitive 1999 * actions, we do not allow ftrace_ops to set all functions to new 2000 * hash. 2001 */ 2002 if (!new_hash || !old_hash) 2003 return -EINVAL; 2004 2005 /* Update rec->flags */ 2006 do_for_each_ftrace_rec(pg, rec) { 2007 2008 if (rec->flags & FTRACE_FL_DISABLED) 2009 continue; 2010 2011 /* We need to update only differences of filter_hash */ 2012 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 2013 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 2014 if (in_old == in_new) 2015 continue; 2016 2017 if (in_new) { 2018 if (rec->flags & FTRACE_FL_IPMODIFY) { 2019 int ret; 2020 2021 /* Cannot have two ipmodify on same rec */ 2022 if (is_ipmodify) 2023 goto rollback; 2024 2025 FTRACE_WARN_ON(rec->flags & FTRACE_FL_DIRECT); 2026 2027 /* 2028 * Another ops with IPMODIFY is already 2029 * attached. We are now attaching a direct 2030 * ops. Run SHARE_IPMODIFY_SELF, to check 2031 * whether sharing is supported. 2032 */ 2033 if (!ops->ops_func) 2034 return -EBUSY; 2035 ret = ops->ops_func(ops, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_SELF); 2036 if (ret) 2037 return ret; 2038 } else if (is_ipmodify) { 2039 rec->flags |= FTRACE_FL_IPMODIFY; 2040 } 2041 } else if (is_ipmodify) { 2042 rec->flags &= ~FTRACE_FL_IPMODIFY; 2043 } 2044 } while_for_each_ftrace_rec(); 2045 2046 return 0; 2047 2048 rollback: 2049 end = rec; 2050 2051 /* Roll back what we did above */ 2052 do_for_each_ftrace_rec(pg, rec) { 2053 2054 if (rec->flags & FTRACE_FL_DISABLED) 2055 continue; 2056 2057 if (rec == end) 2058 return -EBUSY; 2059 2060 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 2061 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 2062 if (in_old == in_new) 2063 continue; 2064 2065 if (in_new) 2066 rec->flags &= ~FTRACE_FL_IPMODIFY; 2067 else 2068 rec->flags |= FTRACE_FL_IPMODIFY; 2069 } while_for_each_ftrace_rec(); 2070 2071 return -EBUSY; 2072 } 2073 2074 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops) 2075 { 2076 struct ftrace_hash *hash = ops->func_hash->filter_hash; 2077 2078 if (ftrace_hash_empty(hash)) 2079 hash = NULL; 2080 2081 return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash); 2082 } 2083 2084 /* Disabling always succeeds */ 2085 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops) 2086 { 2087 struct ftrace_hash *hash = ops->func_hash->filter_hash; 2088 2089 if (ftrace_hash_empty(hash)) 2090 hash = NULL; 2091 2092 __ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH); 2093 } 2094 2095 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 2096 struct ftrace_hash *new_hash) 2097 { 2098 struct ftrace_hash *old_hash = ops->func_hash->filter_hash; 2099 2100 if (ftrace_hash_empty(old_hash)) 2101 old_hash = NULL; 2102 2103 if (ftrace_hash_empty(new_hash)) 2104 new_hash = NULL; 2105 2106 return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash); 2107 } 2108 2109 static void print_ip_ins(const char *fmt, const unsigned char *p) 2110 { 2111 char ins[MCOUNT_INSN_SIZE]; 2112 2113 if (copy_from_kernel_nofault(ins, p, MCOUNT_INSN_SIZE)) { 2114 printk(KERN_CONT "%s[FAULT] %px\n", fmt, p); 2115 return; 2116 } 2117 2118 printk(KERN_CONT "%s", fmt); 2119 pr_cont("%*phC", MCOUNT_INSN_SIZE, ins); 2120 } 2121 2122 enum ftrace_bug_type ftrace_bug_type; 2123 const void *ftrace_expected; 2124 2125 static void print_bug_type(void) 2126 { 2127 switch (ftrace_bug_type) { 2128 case FTRACE_BUG_UNKNOWN: 2129 break; 2130 case FTRACE_BUG_INIT: 2131 pr_info("Initializing ftrace call sites\n"); 2132 break; 2133 case FTRACE_BUG_NOP: 2134 pr_info("Setting ftrace call site to NOP\n"); 2135 break; 2136 case FTRACE_BUG_CALL: 2137 pr_info("Setting ftrace call site to call ftrace function\n"); 2138 break; 2139 case FTRACE_BUG_UPDATE: 2140 pr_info("Updating ftrace call site to call a different ftrace function\n"); 2141 break; 2142 } 2143 } 2144 2145 /** 2146 * ftrace_bug - report and shutdown function tracer 2147 * @failed: The failed type (EFAULT, EINVAL, EPERM) 2148 * @rec: The record that failed 2149 * 2150 * The arch code that enables or disables the function tracing 2151 * can call ftrace_bug() when it has detected a problem in 2152 * modifying the code. @failed should be one of either: 2153 * EFAULT - if the problem happens on reading the @ip address 2154 * EINVAL - if what is read at @ip is not what was expected 2155 * EPERM - if the problem happens on writing to the @ip address 2156 */ 2157 void ftrace_bug(int failed, struct dyn_ftrace *rec) 2158 { 2159 unsigned long ip = rec ? rec->ip : 0; 2160 2161 pr_info("------------[ ftrace bug ]------------\n"); 2162 2163 switch (failed) { 2164 case -EFAULT: 2165 pr_info("ftrace faulted on modifying "); 2166 print_ip_sym(KERN_INFO, ip); 2167 break; 2168 case -EINVAL: 2169 pr_info("ftrace failed to modify "); 2170 print_ip_sym(KERN_INFO, ip); 2171 print_ip_ins(" actual: ", (unsigned char *)ip); 2172 pr_cont("\n"); 2173 if (ftrace_expected) { 2174 print_ip_ins(" expected: ", ftrace_expected); 2175 pr_cont("\n"); 2176 } 2177 break; 2178 case -EPERM: 2179 pr_info("ftrace faulted on writing "); 2180 print_ip_sym(KERN_INFO, ip); 2181 break; 2182 default: 2183 pr_info("ftrace faulted on unknown error "); 2184 print_ip_sym(KERN_INFO, ip); 2185 } 2186 print_bug_type(); 2187 if (rec) { 2188 struct ftrace_ops *ops = NULL; 2189 2190 pr_info("ftrace record flags: %lx\n", rec->flags); 2191 pr_cont(" (%ld)%s%s", ftrace_rec_count(rec), 2192 rec->flags & FTRACE_FL_REGS ? " R" : " ", 2193 rec->flags & FTRACE_FL_CALL_OPS ? " O" : " "); 2194 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2195 ops = ftrace_find_tramp_ops_any(rec); 2196 if (ops) { 2197 do { 2198 pr_cont("\ttramp: %pS (%pS)", 2199 (void *)ops->trampoline, 2200 (void *)ops->func); 2201 ops = ftrace_find_tramp_ops_next(rec, ops); 2202 } while (ops); 2203 } else 2204 pr_cont("\ttramp: ERROR!"); 2205 2206 } 2207 ip = ftrace_get_addr_curr(rec); 2208 pr_cont("\n expected tramp: %lx\n", ip); 2209 } 2210 2211 FTRACE_WARN_ON_ONCE(1); 2212 } 2213 2214 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update) 2215 { 2216 unsigned long flag = 0UL; 2217 2218 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2219 2220 if (skip_record(rec)) 2221 return FTRACE_UPDATE_IGNORE; 2222 2223 /* 2224 * If we are updating calls: 2225 * 2226 * If the record has a ref count, then we need to enable it 2227 * because someone is using it. 2228 * 2229 * Otherwise we make sure its disabled. 2230 * 2231 * If we are disabling calls, then disable all records that 2232 * are enabled. 2233 */ 2234 if (enable && ftrace_rec_count(rec)) 2235 flag = FTRACE_FL_ENABLED; 2236 2237 /* 2238 * If enabling and the REGS flag does not match the REGS_EN, or 2239 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore 2240 * this record. Set flags to fail the compare against ENABLED. 2241 * Same for direct calls. 2242 */ 2243 if (flag) { 2244 if (!(rec->flags & FTRACE_FL_REGS) != 2245 !(rec->flags & FTRACE_FL_REGS_EN)) 2246 flag |= FTRACE_FL_REGS; 2247 2248 if (!(rec->flags & FTRACE_FL_TRAMP) != 2249 !(rec->flags & FTRACE_FL_TRAMP_EN)) 2250 flag |= FTRACE_FL_TRAMP; 2251 2252 /* 2253 * Direct calls are special, as count matters. 2254 * We must test the record for direct, if the 2255 * DIRECT and DIRECT_EN do not match, but only 2256 * if the count is 1. That's because, if the 2257 * count is something other than one, we do not 2258 * want the direct enabled (it will be done via the 2259 * direct helper). But if DIRECT_EN is set, and 2260 * the count is not one, we need to clear it. 2261 * 2262 */ 2263 if (ftrace_rec_count(rec) == 1) { 2264 if (!(rec->flags & FTRACE_FL_DIRECT) != 2265 !(rec->flags & FTRACE_FL_DIRECT_EN)) 2266 flag |= FTRACE_FL_DIRECT; 2267 } else if (rec->flags & FTRACE_FL_DIRECT_EN) { 2268 flag |= FTRACE_FL_DIRECT; 2269 } 2270 2271 /* 2272 * Ops calls are special, as count matters. 2273 * As with direct calls, they must only be enabled when count 2274 * is one, otherwise they'll be handled via the list ops. 2275 */ 2276 if (ftrace_rec_count(rec) == 1) { 2277 if (!(rec->flags & FTRACE_FL_CALL_OPS) != 2278 !(rec->flags & FTRACE_FL_CALL_OPS_EN)) 2279 flag |= FTRACE_FL_CALL_OPS; 2280 } else if (rec->flags & FTRACE_FL_CALL_OPS_EN) { 2281 flag |= FTRACE_FL_CALL_OPS; 2282 } 2283 } 2284 2285 /* If the state of this record hasn't changed, then do nothing */ 2286 if ((rec->flags & FTRACE_FL_ENABLED) == flag) 2287 return FTRACE_UPDATE_IGNORE; 2288 2289 if (flag) { 2290 /* Save off if rec is being enabled (for return value) */ 2291 flag ^= rec->flags & FTRACE_FL_ENABLED; 2292 2293 if (update) { 2294 rec->flags |= FTRACE_FL_ENABLED | FTRACE_FL_TOUCHED; 2295 if (flag & FTRACE_FL_REGS) { 2296 if (rec->flags & FTRACE_FL_REGS) 2297 rec->flags |= FTRACE_FL_REGS_EN; 2298 else 2299 rec->flags &= ~FTRACE_FL_REGS_EN; 2300 } 2301 if (flag & FTRACE_FL_TRAMP) { 2302 if (rec->flags & FTRACE_FL_TRAMP) 2303 rec->flags |= FTRACE_FL_TRAMP_EN; 2304 else 2305 rec->flags &= ~FTRACE_FL_TRAMP_EN; 2306 } 2307 2308 /* Keep track of anything that modifies the function */ 2309 if (rec->flags & (FTRACE_FL_DIRECT | FTRACE_FL_IPMODIFY)) 2310 rec->flags |= FTRACE_FL_MODIFIED; 2311 2312 if (flag & FTRACE_FL_DIRECT) { 2313 /* 2314 * If there's only one user (direct_ops helper) 2315 * then we can call the direct function 2316 * directly (no ftrace trampoline). 2317 */ 2318 if (ftrace_rec_count(rec) == 1) { 2319 if (rec->flags & FTRACE_FL_DIRECT) 2320 rec->flags |= FTRACE_FL_DIRECT_EN; 2321 else 2322 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2323 } else { 2324 /* 2325 * Can only call directly if there's 2326 * only one callback to the function. 2327 */ 2328 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2329 } 2330 } 2331 2332 if (flag & FTRACE_FL_CALL_OPS) { 2333 if (ftrace_rec_count(rec) == 1) { 2334 if (rec->flags & FTRACE_FL_CALL_OPS) 2335 rec->flags |= FTRACE_FL_CALL_OPS_EN; 2336 else 2337 rec->flags &= ~FTRACE_FL_CALL_OPS_EN; 2338 } else { 2339 /* 2340 * Can only call directly if there's 2341 * only one set of associated ops. 2342 */ 2343 rec->flags &= ~FTRACE_FL_CALL_OPS_EN; 2344 } 2345 } 2346 } 2347 2348 /* 2349 * If this record is being updated from a nop, then 2350 * return UPDATE_MAKE_CALL. 2351 * Otherwise, 2352 * return UPDATE_MODIFY_CALL to tell the caller to convert 2353 * from the save regs, to a non-save regs function or 2354 * vice versa, or from a trampoline call. 2355 */ 2356 if (flag & FTRACE_FL_ENABLED) { 2357 ftrace_bug_type = FTRACE_BUG_CALL; 2358 return FTRACE_UPDATE_MAKE_CALL; 2359 } 2360 2361 ftrace_bug_type = FTRACE_BUG_UPDATE; 2362 return FTRACE_UPDATE_MODIFY_CALL; 2363 } 2364 2365 if (update) { 2366 /* If there's no more users, clear all flags */ 2367 if (!ftrace_rec_count(rec)) 2368 rec->flags &= FTRACE_NOCLEAR_FLAGS; 2369 else 2370 /* 2371 * Just disable the record, but keep the ops TRAMP 2372 * and REGS states. The _EN flags must be disabled though. 2373 */ 2374 rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN | 2375 FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN | 2376 FTRACE_FL_CALL_OPS_EN); 2377 } 2378 2379 ftrace_bug_type = FTRACE_BUG_NOP; 2380 return FTRACE_UPDATE_MAKE_NOP; 2381 } 2382 2383 /** 2384 * ftrace_update_record - set a record that now is tracing or not 2385 * @rec: the record to update 2386 * @enable: set to true if the record is tracing, false to force disable 2387 * 2388 * The records that represent all functions that can be traced need 2389 * to be updated when tracing has been enabled. 2390 */ 2391 int ftrace_update_record(struct dyn_ftrace *rec, bool enable) 2392 { 2393 return ftrace_check_record(rec, enable, true); 2394 } 2395 2396 /** 2397 * ftrace_test_record - check if the record has been enabled or not 2398 * @rec: the record to test 2399 * @enable: set to true to check if enabled, false if it is disabled 2400 * 2401 * The arch code may need to test if a record is already set to 2402 * tracing to determine how to modify the function code that it 2403 * represents. 2404 */ 2405 int ftrace_test_record(struct dyn_ftrace *rec, bool enable) 2406 { 2407 return ftrace_check_record(rec, enable, false); 2408 } 2409 2410 static struct ftrace_ops * 2411 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec) 2412 { 2413 struct ftrace_ops *op; 2414 unsigned long ip = rec->ip; 2415 2416 do_for_each_ftrace_op(op, ftrace_ops_list) { 2417 2418 if (!op->trampoline) 2419 continue; 2420 2421 if (hash_contains_ip(ip, op->func_hash)) 2422 return op; 2423 } while_for_each_ftrace_op(op); 2424 2425 return NULL; 2426 } 2427 2428 static struct ftrace_ops * 2429 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude) 2430 { 2431 struct ftrace_ops *op; 2432 unsigned long ip = rec->ip; 2433 2434 do_for_each_ftrace_op(op, ftrace_ops_list) { 2435 2436 if (op == op_exclude || !op->trampoline) 2437 continue; 2438 2439 if (hash_contains_ip(ip, op->func_hash)) 2440 return op; 2441 } while_for_each_ftrace_op(op); 2442 2443 return NULL; 2444 } 2445 2446 static struct ftrace_ops * 2447 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, 2448 struct ftrace_ops *op) 2449 { 2450 unsigned long ip = rec->ip; 2451 2452 while_for_each_ftrace_op(op) { 2453 2454 if (!op->trampoline) 2455 continue; 2456 2457 if (hash_contains_ip(ip, op->func_hash)) 2458 return op; 2459 } 2460 2461 return NULL; 2462 } 2463 2464 static struct ftrace_ops * 2465 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec) 2466 { 2467 struct ftrace_ops *op; 2468 unsigned long ip = rec->ip; 2469 2470 /* 2471 * Need to check removed ops first. 2472 * If they are being removed, and this rec has a tramp, 2473 * and this rec is in the ops list, then it would be the 2474 * one with the tramp. 2475 */ 2476 if (removed_ops) { 2477 if (hash_contains_ip(ip, &removed_ops->old_hash)) 2478 return removed_ops; 2479 } 2480 2481 /* 2482 * Need to find the current trampoline for a rec. 2483 * Now, a trampoline is only attached to a rec if there 2484 * was a single 'ops' attached to it. But this can be called 2485 * when we are adding another op to the rec or removing the 2486 * current one. Thus, if the op is being added, we can 2487 * ignore it because it hasn't attached itself to the rec 2488 * yet. 2489 * 2490 * If an ops is being modified (hooking to different functions) 2491 * then we don't care about the new functions that are being 2492 * added, just the old ones (that are probably being removed). 2493 * 2494 * If we are adding an ops to a function that already is using 2495 * a trampoline, it needs to be removed (trampolines are only 2496 * for single ops connected), then an ops that is not being 2497 * modified also needs to be checked. 2498 */ 2499 do_for_each_ftrace_op(op, ftrace_ops_list) { 2500 2501 if (!op->trampoline) 2502 continue; 2503 2504 /* 2505 * If the ops is being added, it hasn't gotten to 2506 * the point to be removed from this tree yet. 2507 */ 2508 if (op->flags & FTRACE_OPS_FL_ADDING) 2509 continue; 2510 2511 2512 /* 2513 * If the ops is being modified and is in the old 2514 * hash, then it is probably being removed from this 2515 * function. 2516 */ 2517 if ((op->flags & FTRACE_OPS_FL_MODIFYING) && 2518 hash_contains_ip(ip, &op->old_hash)) 2519 return op; 2520 /* 2521 * If the ops is not being added or modified, and it's 2522 * in its normal filter hash, then this must be the one 2523 * we want! 2524 */ 2525 if (!(op->flags & FTRACE_OPS_FL_MODIFYING) && 2526 hash_contains_ip(ip, op->func_hash)) 2527 return op; 2528 2529 } while_for_each_ftrace_op(op); 2530 2531 return NULL; 2532 } 2533 2534 static struct ftrace_ops * 2535 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec) 2536 { 2537 struct ftrace_ops *op; 2538 unsigned long ip = rec->ip; 2539 2540 do_for_each_ftrace_op(op, ftrace_ops_list) { 2541 /* pass rec in as regs to have non-NULL val */ 2542 if (hash_contains_ip(ip, op->func_hash)) 2543 return op; 2544 } while_for_each_ftrace_op(op); 2545 2546 return NULL; 2547 } 2548 2549 struct ftrace_ops * 2550 ftrace_find_unique_ops(struct dyn_ftrace *rec) 2551 { 2552 struct ftrace_ops *op, *found = NULL; 2553 unsigned long ip = rec->ip; 2554 2555 do_for_each_ftrace_op(op, ftrace_ops_list) { 2556 2557 if (hash_contains_ip(ip, op->func_hash)) { 2558 if (found) 2559 return NULL; 2560 found = op; 2561 } 2562 2563 } while_for_each_ftrace_op(op); 2564 2565 return found; 2566 } 2567 2568 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 2569 /* Protected by rcu_tasks for reading, and direct_mutex for writing */ 2570 static struct ftrace_hash __rcu *direct_functions = EMPTY_HASH; 2571 static DEFINE_MUTEX(direct_mutex); 2572 2573 /* 2574 * Search the direct_functions hash to see if the given instruction pointer 2575 * has a direct caller attached to it. 2576 */ 2577 unsigned long ftrace_find_rec_direct(unsigned long ip) 2578 { 2579 struct ftrace_func_entry *entry; 2580 2581 entry = __ftrace_lookup_ip(direct_functions, ip); 2582 if (!entry) 2583 return 0; 2584 2585 return entry->direct; 2586 } 2587 2588 static void call_direct_funcs(unsigned long ip, unsigned long pip, 2589 struct ftrace_ops *ops, struct ftrace_regs *fregs) 2590 { 2591 unsigned long addr = READ_ONCE(ops->direct_call); 2592 2593 if (!addr) 2594 return; 2595 2596 arch_ftrace_set_direct_caller(fregs, addr); 2597 } 2598 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 2599 2600 /** 2601 * ftrace_get_addr_new - Get the call address to set to 2602 * @rec: The ftrace record descriptor 2603 * 2604 * If the record has the FTRACE_FL_REGS set, that means that it 2605 * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS 2606 * is not set, then it wants to convert to the normal callback. 2607 * 2608 * Returns: the address of the trampoline to set to 2609 */ 2610 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec) 2611 { 2612 struct ftrace_ops *ops; 2613 unsigned long addr; 2614 2615 if ((rec->flags & FTRACE_FL_DIRECT) && 2616 (ftrace_rec_count(rec) == 1)) { 2617 addr = ftrace_find_rec_direct(rec->ip); 2618 if (addr) 2619 return addr; 2620 WARN_ON_ONCE(1); 2621 } 2622 2623 /* Trampolines take precedence over regs */ 2624 if (rec->flags & FTRACE_FL_TRAMP) { 2625 ops = ftrace_find_tramp_ops_new(rec); 2626 if (FTRACE_WARN_ON(!ops || !ops->trampoline)) { 2627 pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n", 2628 (void *)rec->ip, (void *)rec->ip, rec->flags); 2629 /* Ftrace is shutting down, return anything */ 2630 return (unsigned long)FTRACE_ADDR; 2631 } 2632 return ops->trampoline; 2633 } 2634 2635 if (rec->flags & FTRACE_FL_REGS) 2636 return (unsigned long)FTRACE_REGS_ADDR; 2637 else 2638 return (unsigned long)FTRACE_ADDR; 2639 } 2640 2641 /** 2642 * ftrace_get_addr_curr - Get the call address that is already there 2643 * @rec: The ftrace record descriptor 2644 * 2645 * The FTRACE_FL_REGS_EN is set when the record already points to 2646 * a function that saves all the regs. Basically the '_EN' version 2647 * represents the current state of the function. 2648 * 2649 * Returns: the address of the trampoline that is currently being called 2650 */ 2651 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec) 2652 { 2653 struct ftrace_ops *ops; 2654 unsigned long addr; 2655 2656 /* Direct calls take precedence over trampolines */ 2657 if (rec->flags & FTRACE_FL_DIRECT_EN) { 2658 addr = ftrace_find_rec_direct(rec->ip); 2659 if (addr) 2660 return addr; 2661 WARN_ON_ONCE(1); 2662 } 2663 2664 /* Trampolines take precedence over regs */ 2665 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2666 ops = ftrace_find_tramp_ops_curr(rec); 2667 if (FTRACE_WARN_ON(!ops)) { 2668 pr_warn("Bad trampoline accounting at: %p (%pS)\n", 2669 (void *)rec->ip, (void *)rec->ip); 2670 /* Ftrace is shutting down, return anything */ 2671 return (unsigned long)FTRACE_ADDR; 2672 } 2673 return ops->trampoline; 2674 } 2675 2676 if (rec->flags & FTRACE_FL_REGS_EN) 2677 return (unsigned long)FTRACE_REGS_ADDR; 2678 else 2679 return (unsigned long)FTRACE_ADDR; 2680 } 2681 2682 static int 2683 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable) 2684 { 2685 unsigned long ftrace_old_addr; 2686 unsigned long ftrace_addr; 2687 int ret; 2688 2689 ftrace_addr = ftrace_get_addr_new(rec); 2690 2691 /* This needs to be done before we call ftrace_update_record */ 2692 ftrace_old_addr = ftrace_get_addr_curr(rec); 2693 2694 ret = ftrace_update_record(rec, enable); 2695 2696 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2697 2698 switch (ret) { 2699 case FTRACE_UPDATE_IGNORE: 2700 return 0; 2701 2702 case FTRACE_UPDATE_MAKE_CALL: 2703 ftrace_bug_type = FTRACE_BUG_CALL; 2704 return ftrace_make_call(rec, ftrace_addr); 2705 2706 case FTRACE_UPDATE_MAKE_NOP: 2707 ftrace_bug_type = FTRACE_BUG_NOP; 2708 return ftrace_make_nop(NULL, rec, ftrace_old_addr); 2709 2710 case FTRACE_UPDATE_MODIFY_CALL: 2711 ftrace_bug_type = FTRACE_BUG_UPDATE; 2712 return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr); 2713 } 2714 2715 return -1; /* unknown ftrace bug */ 2716 } 2717 2718 void __weak ftrace_replace_code(int mod_flags) 2719 { 2720 struct dyn_ftrace *rec; 2721 struct ftrace_page *pg; 2722 bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL; 2723 int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL; 2724 int failed; 2725 2726 if (unlikely(ftrace_disabled)) 2727 return; 2728 2729 do_for_each_ftrace_rec(pg, rec) { 2730 2731 if (skip_record(rec)) 2732 continue; 2733 2734 failed = __ftrace_replace_code(rec, enable); 2735 if (failed) { 2736 ftrace_bug(failed, rec); 2737 /* Stop processing */ 2738 return; 2739 } 2740 if (schedulable) 2741 cond_resched(); 2742 } while_for_each_ftrace_rec(); 2743 } 2744 2745 struct ftrace_rec_iter { 2746 struct ftrace_page *pg; 2747 int index; 2748 }; 2749 2750 /** 2751 * ftrace_rec_iter_start - start up iterating over traced functions 2752 * 2753 * Returns: an iterator handle that is used to iterate over all 2754 * the records that represent address locations where functions 2755 * are traced. 2756 * 2757 * May return NULL if no records are available. 2758 */ 2759 struct ftrace_rec_iter *ftrace_rec_iter_start(void) 2760 { 2761 /* 2762 * We only use a single iterator. 2763 * Protected by the ftrace_lock mutex. 2764 */ 2765 static struct ftrace_rec_iter ftrace_rec_iter; 2766 struct ftrace_rec_iter *iter = &ftrace_rec_iter; 2767 2768 iter->pg = ftrace_pages_start; 2769 iter->index = 0; 2770 2771 /* Could have empty pages */ 2772 while (iter->pg && !iter->pg->index) 2773 iter->pg = iter->pg->next; 2774 2775 if (!iter->pg) 2776 return NULL; 2777 2778 return iter; 2779 } 2780 2781 /** 2782 * ftrace_rec_iter_next - get the next record to process. 2783 * @iter: The handle to the iterator. 2784 * 2785 * Returns: the next iterator after the given iterator @iter. 2786 */ 2787 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter) 2788 { 2789 iter->index++; 2790 2791 if (iter->index >= iter->pg->index) { 2792 iter->pg = iter->pg->next; 2793 iter->index = 0; 2794 2795 /* Could have empty pages */ 2796 while (iter->pg && !iter->pg->index) 2797 iter->pg = iter->pg->next; 2798 } 2799 2800 if (!iter->pg) 2801 return NULL; 2802 2803 return iter; 2804 } 2805 2806 /** 2807 * ftrace_rec_iter_record - get the record at the iterator location 2808 * @iter: The current iterator location 2809 * 2810 * Returns: the record that the current @iter is at. 2811 */ 2812 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter) 2813 { 2814 return &iter->pg->records[iter->index]; 2815 } 2816 2817 static int 2818 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec) 2819 { 2820 int ret; 2821 2822 if (unlikely(ftrace_disabled)) 2823 return 0; 2824 2825 ret = ftrace_init_nop(mod, rec); 2826 if (ret) { 2827 ftrace_bug_type = FTRACE_BUG_INIT; 2828 ftrace_bug(ret, rec); 2829 return 0; 2830 } 2831 return 1; 2832 } 2833 2834 /* 2835 * archs can override this function if they must do something 2836 * before the modifying code is performed. 2837 */ 2838 void __weak ftrace_arch_code_modify_prepare(void) 2839 { 2840 } 2841 2842 /* 2843 * archs can override this function if they must do something 2844 * after the modifying code is performed. 2845 */ 2846 void __weak ftrace_arch_code_modify_post_process(void) 2847 { 2848 } 2849 2850 static int update_ftrace_func(ftrace_func_t func) 2851 { 2852 static ftrace_func_t save_func; 2853 2854 /* Avoid updating if it hasn't changed */ 2855 if (func == save_func) 2856 return 0; 2857 2858 save_func = func; 2859 2860 return ftrace_update_ftrace_func(func); 2861 } 2862 2863 void ftrace_modify_all_code(int command) 2864 { 2865 int update = command & FTRACE_UPDATE_TRACE_FUNC; 2866 int mod_flags = 0; 2867 int err = 0; 2868 2869 if (command & FTRACE_MAY_SLEEP) 2870 mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL; 2871 2872 /* 2873 * If the ftrace_caller calls a ftrace_ops func directly, 2874 * we need to make sure that it only traces functions it 2875 * expects to trace. When doing the switch of functions, 2876 * we need to update to the ftrace_ops_list_func first 2877 * before the transition between old and new calls are set, 2878 * as the ftrace_ops_list_func will check the ops hashes 2879 * to make sure the ops are having the right functions 2880 * traced. 2881 */ 2882 if (update) { 2883 err = update_ftrace_func(ftrace_ops_list_func); 2884 if (FTRACE_WARN_ON(err)) 2885 return; 2886 } 2887 2888 if (command & FTRACE_UPDATE_CALLS) 2889 ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL); 2890 else if (command & FTRACE_DISABLE_CALLS) 2891 ftrace_replace_code(mod_flags); 2892 2893 if (update && ftrace_trace_function != ftrace_ops_list_func) { 2894 function_trace_op = set_function_trace_op; 2895 smp_wmb(); 2896 /* If irqs are disabled, we are in stop machine */ 2897 if (!irqs_disabled()) 2898 smp_call_function(ftrace_sync_ipi, NULL, 1); 2899 err = update_ftrace_func(ftrace_trace_function); 2900 if (FTRACE_WARN_ON(err)) 2901 return; 2902 } 2903 2904 if (command & FTRACE_START_FUNC_RET) 2905 err = ftrace_enable_ftrace_graph_caller(); 2906 else if (command & FTRACE_STOP_FUNC_RET) 2907 err = ftrace_disable_ftrace_graph_caller(); 2908 FTRACE_WARN_ON(err); 2909 } 2910 2911 static int __ftrace_modify_code(void *data) 2912 { 2913 int *command = data; 2914 2915 ftrace_modify_all_code(*command); 2916 2917 return 0; 2918 } 2919 2920 /** 2921 * ftrace_run_stop_machine - go back to the stop machine method 2922 * @command: The command to tell ftrace what to do 2923 * 2924 * If an arch needs to fall back to the stop machine method, the 2925 * it can call this function. 2926 */ 2927 void ftrace_run_stop_machine(int command) 2928 { 2929 stop_machine(__ftrace_modify_code, &command, NULL); 2930 } 2931 2932 /** 2933 * arch_ftrace_update_code - modify the code to trace or not trace 2934 * @command: The command that needs to be done 2935 * 2936 * Archs can override this function if it does not need to 2937 * run stop_machine() to modify code. 2938 */ 2939 void __weak arch_ftrace_update_code(int command) 2940 { 2941 ftrace_run_stop_machine(command); 2942 } 2943 2944 static void ftrace_run_update_code(int command) 2945 { 2946 ftrace_arch_code_modify_prepare(); 2947 2948 /* 2949 * By default we use stop_machine() to modify the code. 2950 * But archs can do what ever they want as long as it 2951 * is safe. The stop_machine() is the safest, but also 2952 * produces the most overhead. 2953 */ 2954 arch_ftrace_update_code(command); 2955 2956 ftrace_arch_code_modify_post_process(); 2957 } 2958 2959 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command, 2960 struct ftrace_ops_hash *old_hash) 2961 { 2962 ops->flags |= FTRACE_OPS_FL_MODIFYING; 2963 ops->old_hash.filter_hash = old_hash->filter_hash; 2964 ops->old_hash.notrace_hash = old_hash->notrace_hash; 2965 ftrace_run_update_code(command); 2966 ops->old_hash.filter_hash = NULL; 2967 ops->old_hash.notrace_hash = NULL; 2968 ops->flags &= ~FTRACE_OPS_FL_MODIFYING; 2969 } 2970 2971 static ftrace_func_t saved_ftrace_func; 2972 static int ftrace_start_up; 2973 2974 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops) 2975 { 2976 } 2977 2978 /* List of trace_ops that have allocated trampolines */ 2979 static LIST_HEAD(ftrace_ops_trampoline_list); 2980 2981 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops) 2982 { 2983 lockdep_assert_held(&ftrace_lock); 2984 list_add_rcu(&ops->list, &ftrace_ops_trampoline_list); 2985 } 2986 2987 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops) 2988 { 2989 lockdep_assert_held(&ftrace_lock); 2990 list_del_rcu(&ops->list); 2991 synchronize_rcu(); 2992 } 2993 2994 /* 2995 * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols 2996 * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is 2997 * not a module. 2998 */ 2999 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace" 3000 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline" 3001 3002 static void ftrace_trampoline_free(struct ftrace_ops *ops) 3003 { 3004 if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) && 3005 ops->trampoline) { 3006 /* 3007 * Record the text poke event before the ksymbol unregister 3008 * event. 3009 */ 3010 perf_event_text_poke((void *)ops->trampoline, 3011 (void *)ops->trampoline, 3012 ops->trampoline_size, NULL, 0); 3013 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 3014 ops->trampoline, ops->trampoline_size, 3015 true, FTRACE_TRAMPOLINE_SYM); 3016 /* Remove from kallsyms after the perf events */ 3017 ftrace_remove_trampoline_from_kallsyms(ops); 3018 } 3019 3020 arch_ftrace_trampoline_free(ops); 3021 } 3022 3023 static void ftrace_startup_enable(int command) 3024 { 3025 if (saved_ftrace_func != ftrace_trace_function) { 3026 saved_ftrace_func = ftrace_trace_function; 3027 command |= FTRACE_UPDATE_TRACE_FUNC; 3028 } 3029 3030 if (!command || !ftrace_enabled) 3031 return; 3032 3033 ftrace_run_update_code(command); 3034 } 3035 3036 static void ftrace_startup_all(int command) 3037 { 3038 update_all_ops = true; 3039 ftrace_startup_enable(command); 3040 update_all_ops = false; 3041 } 3042 3043 int ftrace_startup(struct ftrace_ops *ops, int command) 3044 { 3045 int ret; 3046 3047 if (unlikely(ftrace_disabled)) 3048 return -ENODEV; 3049 3050 ret = __register_ftrace_function(ops); 3051 if (ret) 3052 return ret; 3053 3054 ftrace_start_up++; 3055 3056 /* 3057 * Note that ftrace probes uses this to start up 3058 * and modify functions it will probe. But we still 3059 * set the ADDING flag for modification, as probes 3060 * do not have trampolines. If they add them in the 3061 * future, then the probes will need to distinguish 3062 * between adding and updating probes. 3063 */ 3064 ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING; 3065 3066 ret = ftrace_hash_ipmodify_enable(ops); 3067 if (ret < 0) { 3068 /* Rollback registration process */ 3069 __unregister_ftrace_function(ops); 3070 ftrace_start_up--; 3071 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 3072 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 3073 ftrace_trampoline_free(ops); 3074 return ret; 3075 } 3076 3077 if (ftrace_hash_rec_enable(ops)) 3078 command |= FTRACE_UPDATE_CALLS; 3079 3080 ftrace_startup_enable(command); 3081 3082 /* 3083 * If ftrace is in an undefined state, we just remove ops from list 3084 * to prevent the NULL pointer, instead of totally rolling it back and 3085 * free trampoline, because those actions could cause further damage. 3086 */ 3087 if (unlikely(ftrace_disabled)) { 3088 __unregister_ftrace_function(ops); 3089 return -ENODEV; 3090 } 3091 3092 ops->flags &= ~FTRACE_OPS_FL_ADDING; 3093 3094 return 0; 3095 } 3096 3097 int ftrace_shutdown(struct ftrace_ops *ops, int command) 3098 { 3099 int ret; 3100 3101 if (unlikely(ftrace_disabled)) 3102 return -ENODEV; 3103 3104 ret = __unregister_ftrace_function(ops); 3105 if (ret) 3106 return ret; 3107 3108 ftrace_start_up--; 3109 /* 3110 * Just warn in case of unbalance, no need to kill ftrace, it's not 3111 * critical but the ftrace_call callers may be never nopped again after 3112 * further ftrace uses. 3113 */ 3114 WARN_ON_ONCE(ftrace_start_up < 0); 3115 3116 /* Disabling ipmodify never fails */ 3117 ftrace_hash_ipmodify_disable(ops); 3118 3119 if (ftrace_hash_rec_disable(ops)) 3120 command |= FTRACE_UPDATE_CALLS; 3121 3122 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 3123 3124 if (saved_ftrace_func != ftrace_trace_function) { 3125 saved_ftrace_func = ftrace_trace_function; 3126 command |= FTRACE_UPDATE_TRACE_FUNC; 3127 } 3128 3129 if (!command || !ftrace_enabled) 3130 goto out; 3131 3132 /* 3133 * If the ops uses a trampoline, then it needs to be 3134 * tested first on update. 3135 */ 3136 ops->flags |= FTRACE_OPS_FL_REMOVING; 3137 removed_ops = ops; 3138 3139 /* The trampoline logic checks the old hashes */ 3140 ops->old_hash.filter_hash = ops->func_hash->filter_hash; 3141 ops->old_hash.notrace_hash = ops->func_hash->notrace_hash; 3142 3143 ftrace_run_update_code(command); 3144 3145 /* 3146 * If there's no more ops registered with ftrace, run a 3147 * sanity check to make sure all rec flags are cleared. 3148 */ 3149 if (rcu_dereference_protected(ftrace_ops_list, 3150 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 3151 struct ftrace_page *pg; 3152 struct dyn_ftrace *rec; 3153 3154 do_for_each_ftrace_rec(pg, rec) { 3155 if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_NOCLEAR_FLAGS)) 3156 pr_warn(" %pS flags:%lx\n", 3157 (void *)rec->ip, rec->flags); 3158 } while_for_each_ftrace_rec(); 3159 } 3160 3161 ops->old_hash.filter_hash = NULL; 3162 ops->old_hash.notrace_hash = NULL; 3163 3164 removed_ops = NULL; 3165 ops->flags &= ~FTRACE_OPS_FL_REMOVING; 3166 3167 out: 3168 /* 3169 * Dynamic ops may be freed, we must make sure that all 3170 * callers are done before leaving this function. 3171 */ 3172 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) { 3173 /* 3174 * We need to do a hard force of sched synchronization. 3175 * This is because we use preempt_disable() to do RCU, but 3176 * the function tracers can be called where RCU is not watching 3177 * (like before user_exit()). We can not rely on the RCU 3178 * infrastructure to do the synchronization, thus we must do it 3179 * ourselves. 3180 */ 3181 synchronize_rcu_tasks_rude(); 3182 3183 /* 3184 * When the kernel is preemptive, tasks can be preempted 3185 * while on a ftrace trampoline. Just scheduling a task on 3186 * a CPU is not good enough to flush them. Calling 3187 * synchronize_rcu_tasks() will wait for those tasks to 3188 * execute and either schedule voluntarily or enter user space. 3189 */ 3190 synchronize_rcu_tasks(); 3191 3192 ftrace_trampoline_free(ops); 3193 } 3194 3195 return 0; 3196 } 3197 3198 /* Simply make a copy of @src and return it */ 3199 static struct ftrace_hash *copy_hash(struct ftrace_hash *src) 3200 { 3201 if (ftrace_hash_empty(src)) 3202 return EMPTY_HASH; 3203 3204 return alloc_and_copy_ftrace_hash(src->size_bits, src); 3205 } 3206 3207 /* 3208 * Append @new_hash entries to @hash: 3209 * 3210 * If @hash is the EMPTY_HASH then it traces all functions and nothing 3211 * needs to be done. 3212 * 3213 * If @new_hash is the EMPTY_HASH, then make *hash the EMPTY_HASH so 3214 * that it traces everything. 3215 * 3216 * Otherwise, go through all of @new_hash and add anything that @hash 3217 * doesn't already have, to @hash. 3218 * 3219 * The filter_hash updates uses just the append_hash() function 3220 * and the notrace_hash does not. 3221 */ 3222 static int append_hash(struct ftrace_hash **hash, struct ftrace_hash *new_hash, 3223 int size_bits) 3224 { 3225 struct ftrace_func_entry *entry; 3226 int size; 3227 int i; 3228 3229 if (*hash) { 3230 /* An empty hash does everything */ 3231 if (ftrace_hash_empty(*hash)) 3232 return 0; 3233 } else { 3234 *hash = alloc_ftrace_hash(size_bits); 3235 if (!*hash) 3236 return -ENOMEM; 3237 } 3238 3239 /* If new_hash has everything make hash have everything */ 3240 if (ftrace_hash_empty(new_hash)) { 3241 free_ftrace_hash(*hash); 3242 *hash = EMPTY_HASH; 3243 return 0; 3244 } 3245 3246 size = 1 << new_hash->size_bits; 3247 for (i = 0; i < size; i++) { 3248 hlist_for_each_entry(entry, &new_hash->buckets[i], hlist) { 3249 /* Only add if not already in hash */ 3250 if (!__ftrace_lookup_ip(*hash, entry->ip) && 3251 add_hash_entry(*hash, entry->ip) == NULL) 3252 return -ENOMEM; 3253 } 3254 } 3255 return 0; 3256 } 3257 3258 /* 3259 * Add to @hash only those that are in both @new_hash1 and @new_hash2 3260 * 3261 * The notrace_hash updates uses just the intersect_hash() function 3262 * and the filter_hash does not. 3263 */ 3264 static int intersect_hash(struct ftrace_hash **hash, struct ftrace_hash *new_hash1, 3265 struct ftrace_hash *new_hash2) 3266 { 3267 struct ftrace_func_entry *entry; 3268 int size; 3269 int i; 3270 3271 /* 3272 * If new_hash1 or new_hash2 is the EMPTY_HASH then make the hash 3273 * empty as well as empty for notrace means none are notraced. 3274 */ 3275 if (ftrace_hash_empty(new_hash1) || ftrace_hash_empty(new_hash2)) { 3276 free_ftrace_hash(*hash); 3277 *hash = EMPTY_HASH; 3278 return 0; 3279 } 3280 3281 size = 1 << new_hash1->size_bits; 3282 for (i = 0; i < size; i++) { 3283 hlist_for_each_entry(entry, &new_hash1->buckets[i], hlist) { 3284 /* Only add if in both @new_hash1 and @new_hash2 */ 3285 if (__ftrace_lookup_ip(new_hash2, entry->ip) && 3286 add_hash_entry(*hash, entry->ip) == NULL) 3287 return -ENOMEM; 3288 } 3289 } 3290 /* If nothing intersects, make it the empty set */ 3291 if (ftrace_hash_empty(*hash)) { 3292 free_ftrace_hash(*hash); 3293 *hash = EMPTY_HASH; 3294 } 3295 return 0; 3296 } 3297 3298 /* Return a new hash that has a union of all @ops->filter_hash entries */ 3299 static struct ftrace_hash *append_hashes(struct ftrace_ops *ops) 3300 { 3301 struct ftrace_hash *new_hash = NULL; 3302 struct ftrace_ops *subops; 3303 int size_bits; 3304 int ret; 3305 3306 if (ops->func_hash->filter_hash) 3307 size_bits = ops->func_hash->filter_hash->size_bits; 3308 else 3309 size_bits = FTRACE_HASH_DEFAULT_BITS; 3310 3311 list_for_each_entry(subops, &ops->subop_list, list) { 3312 ret = append_hash(&new_hash, subops->func_hash->filter_hash, size_bits); 3313 if (ret < 0) { 3314 free_ftrace_hash(new_hash); 3315 return NULL; 3316 } 3317 /* Nothing more to do if new_hash is empty */ 3318 if (ftrace_hash_empty(new_hash)) 3319 break; 3320 } 3321 /* Can't return NULL as that means this failed */ 3322 return new_hash ? : EMPTY_HASH; 3323 } 3324 3325 /* Make @ops trace evenything except what all its subops do not trace */ 3326 static struct ftrace_hash *intersect_hashes(struct ftrace_ops *ops) 3327 { 3328 struct ftrace_hash *new_hash = NULL; 3329 struct ftrace_ops *subops; 3330 int size_bits; 3331 int ret; 3332 3333 list_for_each_entry(subops, &ops->subop_list, list) { 3334 struct ftrace_hash *next_hash; 3335 3336 if (!new_hash) { 3337 size_bits = subops->func_hash->notrace_hash->size_bits; 3338 new_hash = alloc_and_copy_ftrace_hash(size_bits, ops->func_hash->notrace_hash); 3339 if (!new_hash) 3340 return NULL; 3341 continue; 3342 } 3343 size_bits = new_hash->size_bits; 3344 next_hash = new_hash; 3345 new_hash = alloc_ftrace_hash(size_bits); 3346 ret = intersect_hash(&new_hash, next_hash, subops->func_hash->notrace_hash); 3347 free_ftrace_hash(next_hash); 3348 if (ret < 0) { 3349 free_ftrace_hash(new_hash); 3350 return NULL; 3351 } 3352 /* Nothing more to do if new_hash is empty */ 3353 if (ftrace_hash_empty(new_hash)) 3354 break; 3355 } 3356 return new_hash; 3357 } 3358 3359 static bool ops_equal(struct ftrace_hash *A, struct ftrace_hash *B) 3360 { 3361 struct ftrace_func_entry *entry; 3362 int size; 3363 int i; 3364 3365 if (ftrace_hash_empty(A)) 3366 return ftrace_hash_empty(B); 3367 3368 if (ftrace_hash_empty(B)) 3369 return ftrace_hash_empty(A); 3370 3371 if (A->count != B->count) 3372 return false; 3373 3374 size = 1 << A->size_bits; 3375 for (i = 0; i < size; i++) { 3376 hlist_for_each_entry(entry, &A->buckets[i], hlist) { 3377 if (!__ftrace_lookup_ip(B, entry->ip)) 3378 return false; 3379 } 3380 } 3381 3382 return true; 3383 } 3384 3385 static void ftrace_ops_update_code(struct ftrace_ops *ops, 3386 struct ftrace_ops_hash *old_hash); 3387 3388 static int __ftrace_hash_move_and_update_ops(struct ftrace_ops *ops, 3389 struct ftrace_hash **orig_hash, 3390 struct ftrace_hash *hash, 3391 int enable) 3392 { 3393 struct ftrace_ops_hash old_hash_ops; 3394 struct ftrace_hash *old_hash; 3395 int ret; 3396 3397 old_hash = *orig_hash; 3398 old_hash_ops.filter_hash = ops->func_hash->filter_hash; 3399 old_hash_ops.notrace_hash = ops->func_hash->notrace_hash; 3400 ret = ftrace_hash_move(ops, enable, orig_hash, hash); 3401 if (!ret) { 3402 ftrace_ops_update_code(ops, &old_hash_ops); 3403 free_ftrace_hash_rcu(old_hash); 3404 } 3405 return ret; 3406 } 3407 3408 static int ftrace_update_ops(struct ftrace_ops *ops, struct ftrace_hash *filter_hash, 3409 struct ftrace_hash *notrace_hash) 3410 { 3411 int ret; 3412 3413 if (!ops_equal(filter_hash, ops->func_hash->filter_hash)) { 3414 ret = __ftrace_hash_move_and_update_ops(ops, &ops->func_hash->filter_hash, 3415 filter_hash, 1); 3416 if (ret < 0) 3417 return ret; 3418 } 3419 3420 if (!ops_equal(notrace_hash, ops->func_hash->notrace_hash)) { 3421 ret = __ftrace_hash_move_and_update_ops(ops, &ops->func_hash->notrace_hash, 3422 notrace_hash, 0); 3423 if (ret < 0) 3424 return ret; 3425 } 3426 3427 return 0; 3428 } 3429 3430 /** 3431 * ftrace_startup_subops - enable tracing for subops of an ops 3432 * @ops: Manager ops (used to pick all the functions of its subops) 3433 * @subops: A new ops to add to @ops 3434 * @command: Extra commands to use to enable tracing 3435 * 3436 * The @ops is a manager @ops that has the filter that includes all the functions 3437 * that its list of subops are tracing. Adding a new @subops will add the 3438 * functions of @subops to @ops. 3439 */ 3440 int ftrace_startup_subops(struct ftrace_ops *ops, struct ftrace_ops *subops, int command) 3441 { 3442 struct ftrace_hash *filter_hash; 3443 struct ftrace_hash *notrace_hash; 3444 struct ftrace_hash *save_filter_hash; 3445 struct ftrace_hash *save_notrace_hash; 3446 int size_bits; 3447 int ret; 3448 3449 if (unlikely(ftrace_disabled)) 3450 return -ENODEV; 3451 3452 ftrace_ops_init(ops); 3453 ftrace_ops_init(subops); 3454 3455 if (WARN_ON_ONCE(subops->flags & FTRACE_OPS_FL_ENABLED)) 3456 return -EBUSY; 3457 3458 /* Make everything canonical (Just in case!) */ 3459 if (!ops->func_hash->filter_hash) 3460 ops->func_hash->filter_hash = EMPTY_HASH; 3461 if (!ops->func_hash->notrace_hash) 3462 ops->func_hash->notrace_hash = EMPTY_HASH; 3463 if (!subops->func_hash->filter_hash) 3464 subops->func_hash->filter_hash = EMPTY_HASH; 3465 if (!subops->func_hash->notrace_hash) 3466 subops->func_hash->notrace_hash = EMPTY_HASH; 3467 3468 /* For the first subops to ops just enable it normally */ 3469 if (list_empty(&ops->subop_list)) { 3470 /* Just use the subops hashes */ 3471 filter_hash = copy_hash(subops->func_hash->filter_hash); 3472 notrace_hash = copy_hash(subops->func_hash->notrace_hash); 3473 if (!filter_hash || !notrace_hash) { 3474 free_ftrace_hash(filter_hash); 3475 free_ftrace_hash(notrace_hash); 3476 return -ENOMEM; 3477 } 3478 3479 save_filter_hash = ops->func_hash->filter_hash; 3480 save_notrace_hash = ops->func_hash->notrace_hash; 3481 3482 ops->func_hash->filter_hash = filter_hash; 3483 ops->func_hash->notrace_hash = notrace_hash; 3484 list_add(&subops->list, &ops->subop_list); 3485 ret = ftrace_startup(ops, command); 3486 if (ret < 0) { 3487 list_del(&subops->list); 3488 ops->func_hash->filter_hash = save_filter_hash; 3489 ops->func_hash->notrace_hash = save_notrace_hash; 3490 free_ftrace_hash(filter_hash); 3491 free_ftrace_hash(notrace_hash); 3492 } else { 3493 free_ftrace_hash(save_filter_hash); 3494 free_ftrace_hash(save_notrace_hash); 3495 subops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP; 3496 subops->managed = ops; 3497 } 3498 return ret; 3499 } 3500 3501 /* 3502 * Here there's already something attached. Here are the rules: 3503 * o If either filter_hash is empty then the final stays empty 3504 * o Otherwise, the final is a superset of both hashes 3505 * o If either notrace_hash is empty then the final stays empty 3506 * o Otherwise, the final is an intersection between the hashes 3507 */ 3508 if (ftrace_hash_empty(ops->func_hash->filter_hash) || 3509 ftrace_hash_empty(subops->func_hash->filter_hash)) { 3510 filter_hash = EMPTY_HASH; 3511 } else { 3512 size_bits = max(ops->func_hash->filter_hash->size_bits, 3513 subops->func_hash->filter_hash->size_bits); 3514 filter_hash = alloc_and_copy_ftrace_hash(size_bits, ops->func_hash->filter_hash); 3515 if (!filter_hash) 3516 return -ENOMEM; 3517 ret = append_hash(&filter_hash, subops->func_hash->filter_hash, 3518 size_bits); 3519 if (ret < 0) { 3520 free_ftrace_hash(filter_hash); 3521 return ret; 3522 } 3523 } 3524 3525 if (ftrace_hash_empty(ops->func_hash->notrace_hash) || 3526 ftrace_hash_empty(subops->func_hash->notrace_hash)) { 3527 notrace_hash = EMPTY_HASH; 3528 } else { 3529 size_bits = max(ops->func_hash->filter_hash->size_bits, 3530 subops->func_hash->filter_hash->size_bits); 3531 notrace_hash = alloc_ftrace_hash(size_bits); 3532 if (!notrace_hash) { 3533 free_ftrace_hash(filter_hash); 3534 return -ENOMEM; 3535 } 3536 3537 ret = intersect_hash(¬race_hash, ops->func_hash->filter_hash, 3538 subops->func_hash->filter_hash); 3539 if (ret < 0) { 3540 free_ftrace_hash(filter_hash); 3541 free_ftrace_hash(notrace_hash); 3542 return ret; 3543 } 3544 } 3545 3546 list_add(&subops->list, &ops->subop_list); 3547 3548 ret = ftrace_update_ops(ops, filter_hash, notrace_hash); 3549 free_ftrace_hash(filter_hash); 3550 free_ftrace_hash(notrace_hash); 3551 if (ret < 0) { 3552 list_del(&subops->list); 3553 } else { 3554 subops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP; 3555 subops->managed = ops; 3556 } 3557 return ret; 3558 } 3559 3560 /** 3561 * ftrace_shutdown_subops - Remove a subops from a manager ops 3562 * @ops: A manager ops to remove @subops from 3563 * @subops: The subops to remove from @ops 3564 * @command: Any extra command flags to add to modifying the text 3565 * 3566 * Removes the functions being traced by the @subops from @ops. Note, it 3567 * will not affect functions that are being traced by other subops that 3568 * still exist in @ops. 3569 * 3570 * If the last subops is removed from @ops, then @ops is shutdown normally. 3571 */ 3572 int ftrace_shutdown_subops(struct ftrace_ops *ops, struct ftrace_ops *subops, int command) 3573 { 3574 struct ftrace_hash *filter_hash; 3575 struct ftrace_hash *notrace_hash; 3576 int ret; 3577 3578 if (unlikely(ftrace_disabled)) 3579 return -ENODEV; 3580 3581 if (WARN_ON_ONCE(!(subops->flags & FTRACE_OPS_FL_ENABLED))) 3582 return -EINVAL; 3583 3584 list_del(&subops->list); 3585 3586 if (list_empty(&ops->subop_list)) { 3587 /* Last one, just disable the current ops */ 3588 3589 ret = ftrace_shutdown(ops, command); 3590 if (ret < 0) { 3591 list_add(&subops->list, &ops->subop_list); 3592 return ret; 3593 } 3594 3595 subops->flags &= ~FTRACE_OPS_FL_ENABLED; 3596 3597 free_ftrace_hash(ops->func_hash->filter_hash); 3598 free_ftrace_hash(ops->func_hash->notrace_hash); 3599 ops->func_hash->filter_hash = EMPTY_HASH; 3600 ops->func_hash->notrace_hash = EMPTY_HASH; 3601 subops->flags &= ~(FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP); 3602 subops->managed = NULL; 3603 3604 return 0; 3605 } 3606 3607 /* Rebuild the hashes without subops */ 3608 filter_hash = append_hashes(ops); 3609 notrace_hash = intersect_hashes(ops); 3610 if (!filter_hash || !notrace_hash) { 3611 free_ftrace_hash(filter_hash); 3612 free_ftrace_hash(notrace_hash); 3613 list_add(&subops->list, &ops->subop_list); 3614 return -ENOMEM; 3615 } 3616 3617 ret = ftrace_update_ops(ops, filter_hash, notrace_hash); 3618 if (ret < 0) { 3619 list_add(&subops->list, &ops->subop_list); 3620 } else { 3621 subops->flags &= ~(FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP); 3622 subops->managed = NULL; 3623 } 3624 free_ftrace_hash(filter_hash); 3625 free_ftrace_hash(notrace_hash); 3626 return ret; 3627 } 3628 3629 static int ftrace_hash_move_and_update_subops(struct ftrace_ops *subops, 3630 struct ftrace_hash **orig_subhash, 3631 struct ftrace_hash *hash, 3632 int enable) 3633 { 3634 struct ftrace_ops *ops = subops->managed; 3635 struct ftrace_hash **orig_hash; 3636 struct ftrace_hash *save_hash; 3637 struct ftrace_hash *new_hash; 3638 int ret; 3639 3640 /* Manager ops can not be subops (yet) */ 3641 if (WARN_ON_ONCE(!ops || ops->flags & FTRACE_OPS_FL_SUBOP)) 3642 return -EINVAL; 3643 3644 /* Move the new hash over to the subops hash */ 3645 save_hash = *orig_subhash; 3646 *orig_subhash = __ftrace_hash_move(hash); 3647 if (!*orig_subhash) { 3648 *orig_subhash = save_hash; 3649 return -ENOMEM; 3650 } 3651 3652 /* Create a new_hash to hold the ops new functions */ 3653 if (enable) { 3654 orig_hash = &ops->func_hash->filter_hash; 3655 new_hash = append_hashes(ops); 3656 } else { 3657 orig_hash = &ops->func_hash->notrace_hash; 3658 new_hash = intersect_hashes(ops); 3659 } 3660 3661 /* Move the hash over to the new hash */ 3662 ret = __ftrace_hash_move_and_update_ops(ops, orig_hash, new_hash, enable); 3663 3664 free_ftrace_hash(new_hash); 3665 3666 if (ret) { 3667 /* Put back the original hash */ 3668 free_ftrace_hash_rcu(*orig_subhash); 3669 *orig_subhash = save_hash; 3670 } else { 3671 free_ftrace_hash_rcu(save_hash); 3672 } 3673 return ret; 3674 } 3675 3676 3677 u64 ftrace_update_time; 3678 u64 ftrace_total_mod_time; 3679 unsigned long ftrace_update_tot_cnt; 3680 unsigned long ftrace_number_of_pages; 3681 unsigned long ftrace_number_of_groups; 3682 3683 static inline int ops_traces_mod(struct ftrace_ops *ops) 3684 { 3685 /* 3686 * Filter_hash being empty will default to trace module. 3687 * But notrace hash requires a test of individual module functions. 3688 */ 3689 return ftrace_hash_empty(ops->func_hash->filter_hash) && 3690 ftrace_hash_empty(ops->func_hash->notrace_hash); 3691 } 3692 3693 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs) 3694 { 3695 bool init_nop = ftrace_need_init_nop(); 3696 struct ftrace_page *pg; 3697 struct dyn_ftrace *p; 3698 u64 start, stop, update_time; 3699 unsigned long update_cnt = 0; 3700 unsigned long rec_flags = 0; 3701 int i; 3702 3703 start = ftrace_now(raw_smp_processor_id()); 3704 3705 /* 3706 * When a module is loaded, this function is called to convert 3707 * the calls to mcount in its text to nops, and also to create 3708 * an entry in the ftrace data. Now, if ftrace is activated 3709 * after this call, but before the module sets its text to 3710 * read-only, the modification of enabling ftrace can fail if 3711 * the read-only is done while ftrace is converting the calls. 3712 * To prevent this, the module's records are set as disabled 3713 * and will be enabled after the call to set the module's text 3714 * to read-only. 3715 */ 3716 if (mod) 3717 rec_flags |= FTRACE_FL_DISABLED; 3718 3719 for (pg = new_pgs; pg; pg = pg->next) { 3720 3721 for (i = 0; i < pg->index; i++) { 3722 3723 /* If something went wrong, bail without enabling anything */ 3724 if (unlikely(ftrace_disabled)) 3725 return -1; 3726 3727 p = &pg->records[i]; 3728 p->flags = rec_flags; 3729 3730 /* 3731 * Do the initial record conversion from mcount jump 3732 * to the NOP instructions. 3733 */ 3734 if (init_nop && !ftrace_nop_initialize(mod, p)) 3735 break; 3736 3737 update_cnt++; 3738 } 3739 } 3740 3741 stop = ftrace_now(raw_smp_processor_id()); 3742 update_time = stop - start; 3743 if (mod) 3744 ftrace_total_mod_time += update_time; 3745 else 3746 ftrace_update_time = update_time; 3747 ftrace_update_tot_cnt += update_cnt; 3748 3749 return 0; 3750 } 3751 3752 static int ftrace_allocate_records(struct ftrace_page *pg, int count) 3753 { 3754 int order; 3755 int pages; 3756 int cnt; 3757 3758 if (WARN_ON(!count)) 3759 return -EINVAL; 3760 3761 /* We want to fill as much as possible, with no empty pages */ 3762 pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE); 3763 order = fls(pages) - 1; 3764 3765 again: 3766 pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 3767 3768 if (!pg->records) { 3769 /* if we can't allocate this size, try something smaller */ 3770 if (!order) 3771 return -ENOMEM; 3772 order--; 3773 goto again; 3774 } 3775 3776 ftrace_number_of_pages += 1 << order; 3777 ftrace_number_of_groups++; 3778 3779 cnt = (PAGE_SIZE << order) / ENTRY_SIZE; 3780 pg->order = order; 3781 3782 if (cnt > count) 3783 cnt = count; 3784 3785 return cnt; 3786 } 3787 3788 static void ftrace_free_pages(struct ftrace_page *pages) 3789 { 3790 struct ftrace_page *pg = pages; 3791 3792 while (pg) { 3793 if (pg->records) { 3794 free_pages((unsigned long)pg->records, pg->order); 3795 ftrace_number_of_pages -= 1 << pg->order; 3796 } 3797 pages = pg->next; 3798 kfree(pg); 3799 pg = pages; 3800 ftrace_number_of_groups--; 3801 } 3802 } 3803 3804 static struct ftrace_page * 3805 ftrace_allocate_pages(unsigned long num_to_init) 3806 { 3807 struct ftrace_page *start_pg; 3808 struct ftrace_page *pg; 3809 int cnt; 3810 3811 if (!num_to_init) 3812 return NULL; 3813 3814 start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL); 3815 if (!pg) 3816 return NULL; 3817 3818 /* 3819 * Try to allocate as much as possible in one continues 3820 * location that fills in all of the space. We want to 3821 * waste as little space as possible. 3822 */ 3823 for (;;) { 3824 cnt = ftrace_allocate_records(pg, num_to_init); 3825 if (cnt < 0) 3826 goto free_pages; 3827 3828 num_to_init -= cnt; 3829 if (!num_to_init) 3830 break; 3831 3832 pg->next = kzalloc(sizeof(*pg), GFP_KERNEL); 3833 if (!pg->next) 3834 goto free_pages; 3835 3836 pg = pg->next; 3837 } 3838 3839 return start_pg; 3840 3841 free_pages: 3842 ftrace_free_pages(start_pg); 3843 pr_info("ftrace: FAILED to allocate memory for functions\n"); 3844 return NULL; 3845 } 3846 3847 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */ 3848 3849 struct ftrace_iterator { 3850 loff_t pos; 3851 loff_t func_pos; 3852 loff_t mod_pos; 3853 struct ftrace_page *pg; 3854 struct dyn_ftrace *func; 3855 struct ftrace_func_probe *probe; 3856 struct ftrace_func_entry *probe_entry; 3857 struct trace_parser parser; 3858 struct ftrace_hash *hash; 3859 struct ftrace_ops *ops; 3860 struct trace_array *tr; 3861 struct list_head *mod_list; 3862 int pidx; 3863 int idx; 3864 unsigned flags; 3865 }; 3866 3867 static void * 3868 t_probe_next(struct seq_file *m, loff_t *pos) 3869 { 3870 struct ftrace_iterator *iter = m->private; 3871 struct trace_array *tr = iter->ops->private; 3872 struct list_head *func_probes; 3873 struct ftrace_hash *hash; 3874 struct list_head *next; 3875 struct hlist_node *hnd = NULL; 3876 struct hlist_head *hhd; 3877 int size; 3878 3879 (*pos)++; 3880 iter->pos = *pos; 3881 3882 if (!tr) 3883 return NULL; 3884 3885 func_probes = &tr->func_probes; 3886 if (list_empty(func_probes)) 3887 return NULL; 3888 3889 if (!iter->probe) { 3890 next = func_probes->next; 3891 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3892 } 3893 3894 if (iter->probe_entry) 3895 hnd = &iter->probe_entry->hlist; 3896 3897 hash = iter->probe->ops.func_hash->filter_hash; 3898 3899 /* 3900 * A probe being registered may temporarily have an empty hash 3901 * and it's at the end of the func_probes list. 3902 */ 3903 if (!hash || hash == EMPTY_HASH) 3904 return NULL; 3905 3906 size = 1 << hash->size_bits; 3907 3908 retry: 3909 if (iter->pidx >= size) { 3910 if (iter->probe->list.next == func_probes) 3911 return NULL; 3912 next = iter->probe->list.next; 3913 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3914 hash = iter->probe->ops.func_hash->filter_hash; 3915 size = 1 << hash->size_bits; 3916 iter->pidx = 0; 3917 } 3918 3919 hhd = &hash->buckets[iter->pidx]; 3920 3921 if (hlist_empty(hhd)) { 3922 iter->pidx++; 3923 hnd = NULL; 3924 goto retry; 3925 } 3926 3927 if (!hnd) 3928 hnd = hhd->first; 3929 else { 3930 hnd = hnd->next; 3931 if (!hnd) { 3932 iter->pidx++; 3933 goto retry; 3934 } 3935 } 3936 3937 if (WARN_ON_ONCE(!hnd)) 3938 return NULL; 3939 3940 iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist); 3941 3942 return iter; 3943 } 3944 3945 static void *t_probe_start(struct seq_file *m, loff_t *pos) 3946 { 3947 struct ftrace_iterator *iter = m->private; 3948 void *p = NULL; 3949 loff_t l; 3950 3951 if (!(iter->flags & FTRACE_ITER_DO_PROBES)) 3952 return NULL; 3953 3954 if (iter->mod_pos > *pos) 3955 return NULL; 3956 3957 iter->probe = NULL; 3958 iter->probe_entry = NULL; 3959 iter->pidx = 0; 3960 for (l = 0; l <= (*pos - iter->mod_pos); ) { 3961 p = t_probe_next(m, &l); 3962 if (!p) 3963 break; 3964 } 3965 if (!p) 3966 return NULL; 3967 3968 /* Only set this if we have an item */ 3969 iter->flags |= FTRACE_ITER_PROBE; 3970 3971 return iter; 3972 } 3973 3974 static int 3975 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter) 3976 { 3977 struct ftrace_func_entry *probe_entry; 3978 struct ftrace_probe_ops *probe_ops; 3979 struct ftrace_func_probe *probe; 3980 3981 probe = iter->probe; 3982 probe_entry = iter->probe_entry; 3983 3984 if (WARN_ON_ONCE(!probe || !probe_entry)) 3985 return -EIO; 3986 3987 probe_ops = probe->probe_ops; 3988 3989 if (probe_ops->print) 3990 return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data); 3991 3992 seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip, 3993 (void *)probe_ops->func); 3994 3995 return 0; 3996 } 3997 3998 static void * 3999 t_mod_next(struct seq_file *m, loff_t *pos) 4000 { 4001 struct ftrace_iterator *iter = m->private; 4002 struct trace_array *tr = iter->tr; 4003 4004 (*pos)++; 4005 iter->pos = *pos; 4006 4007 iter->mod_list = iter->mod_list->next; 4008 4009 if (iter->mod_list == &tr->mod_trace || 4010 iter->mod_list == &tr->mod_notrace) { 4011 iter->flags &= ~FTRACE_ITER_MOD; 4012 return NULL; 4013 } 4014 4015 iter->mod_pos = *pos; 4016 4017 return iter; 4018 } 4019 4020 static void *t_mod_start(struct seq_file *m, loff_t *pos) 4021 { 4022 struct ftrace_iterator *iter = m->private; 4023 void *p = NULL; 4024 loff_t l; 4025 4026 if (iter->func_pos > *pos) 4027 return NULL; 4028 4029 iter->mod_pos = iter->func_pos; 4030 4031 /* probes are only available if tr is set */ 4032 if (!iter->tr) 4033 return NULL; 4034 4035 for (l = 0; l <= (*pos - iter->func_pos); ) { 4036 p = t_mod_next(m, &l); 4037 if (!p) 4038 break; 4039 } 4040 if (!p) { 4041 iter->flags &= ~FTRACE_ITER_MOD; 4042 return t_probe_start(m, pos); 4043 } 4044 4045 /* Only set this if we have an item */ 4046 iter->flags |= FTRACE_ITER_MOD; 4047 4048 return iter; 4049 } 4050 4051 static int 4052 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter) 4053 { 4054 struct ftrace_mod_load *ftrace_mod; 4055 struct trace_array *tr = iter->tr; 4056 4057 if (WARN_ON_ONCE(!iter->mod_list) || 4058 iter->mod_list == &tr->mod_trace || 4059 iter->mod_list == &tr->mod_notrace) 4060 return -EIO; 4061 4062 ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list); 4063 4064 if (ftrace_mod->func) 4065 seq_printf(m, "%s", ftrace_mod->func); 4066 else 4067 seq_putc(m, '*'); 4068 4069 seq_printf(m, ":mod:%s\n", ftrace_mod->module); 4070 4071 return 0; 4072 } 4073 4074 static void * 4075 t_func_next(struct seq_file *m, loff_t *pos) 4076 { 4077 struct ftrace_iterator *iter = m->private; 4078 struct dyn_ftrace *rec = NULL; 4079 4080 (*pos)++; 4081 4082 retry: 4083 if (iter->idx >= iter->pg->index) { 4084 if (iter->pg->next) { 4085 iter->pg = iter->pg->next; 4086 iter->idx = 0; 4087 goto retry; 4088 } 4089 } else { 4090 rec = &iter->pg->records[iter->idx++]; 4091 if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 4092 !ftrace_lookup_ip(iter->hash, rec->ip)) || 4093 4094 ((iter->flags & FTRACE_ITER_ENABLED) && 4095 !(rec->flags & FTRACE_FL_ENABLED)) || 4096 4097 ((iter->flags & FTRACE_ITER_TOUCHED) && 4098 !(rec->flags & FTRACE_FL_TOUCHED))) { 4099 4100 rec = NULL; 4101 goto retry; 4102 } 4103 } 4104 4105 if (!rec) 4106 return NULL; 4107 4108 iter->pos = iter->func_pos = *pos; 4109 iter->func = rec; 4110 4111 return iter; 4112 } 4113 4114 static void * 4115 t_next(struct seq_file *m, void *v, loff_t *pos) 4116 { 4117 struct ftrace_iterator *iter = m->private; 4118 loff_t l = *pos; /* t_probe_start() must use original pos */ 4119 void *ret; 4120 4121 if (unlikely(ftrace_disabled)) 4122 return NULL; 4123 4124 if (iter->flags & FTRACE_ITER_PROBE) 4125 return t_probe_next(m, pos); 4126 4127 if (iter->flags & FTRACE_ITER_MOD) 4128 return t_mod_next(m, pos); 4129 4130 if (iter->flags & FTRACE_ITER_PRINTALL) { 4131 /* next must increment pos, and t_probe_start does not */ 4132 (*pos)++; 4133 return t_mod_start(m, &l); 4134 } 4135 4136 ret = t_func_next(m, pos); 4137 4138 if (!ret) 4139 return t_mod_start(m, &l); 4140 4141 return ret; 4142 } 4143 4144 static void reset_iter_read(struct ftrace_iterator *iter) 4145 { 4146 iter->pos = 0; 4147 iter->func_pos = 0; 4148 iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD); 4149 } 4150 4151 static void *t_start(struct seq_file *m, loff_t *pos) 4152 { 4153 struct ftrace_iterator *iter = m->private; 4154 void *p = NULL; 4155 loff_t l; 4156 4157 mutex_lock(&ftrace_lock); 4158 4159 if (unlikely(ftrace_disabled)) 4160 return NULL; 4161 4162 /* 4163 * If an lseek was done, then reset and start from beginning. 4164 */ 4165 if (*pos < iter->pos) 4166 reset_iter_read(iter); 4167 4168 /* 4169 * For set_ftrace_filter reading, if we have the filter 4170 * off, we can short cut and just print out that all 4171 * functions are enabled. 4172 */ 4173 if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 4174 ftrace_hash_empty(iter->hash)) { 4175 iter->func_pos = 1; /* Account for the message */ 4176 if (*pos > 0) 4177 return t_mod_start(m, pos); 4178 iter->flags |= FTRACE_ITER_PRINTALL; 4179 /* reset in case of seek/pread */ 4180 iter->flags &= ~FTRACE_ITER_PROBE; 4181 return iter; 4182 } 4183 4184 if (iter->flags & FTRACE_ITER_MOD) 4185 return t_mod_start(m, pos); 4186 4187 /* 4188 * Unfortunately, we need to restart at ftrace_pages_start 4189 * every time we let go of the ftrace_mutex. This is because 4190 * those pointers can change without the lock. 4191 */ 4192 iter->pg = ftrace_pages_start; 4193 iter->idx = 0; 4194 for (l = 0; l <= *pos; ) { 4195 p = t_func_next(m, &l); 4196 if (!p) 4197 break; 4198 } 4199 4200 if (!p) 4201 return t_mod_start(m, pos); 4202 4203 return iter; 4204 } 4205 4206 static void t_stop(struct seq_file *m, void *p) 4207 { 4208 mutex_unlock(&ftrace_lock); 4209 } 4210 4211 void * __weak 4212 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec) 4213 { 4214 return NULL; 4215 } 4216 4217 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops, 4218 struct dyn_ftrace *rec) 4219 { 4220 void *ptr; 4221 4222 ptr = arch_ftrace_trampoline_func(ops, rec); 4223 if (ptr) 4224 seq_printf(m, " ->%pS", ptr); 4225 } 4226 4227 #ifdef FTRACE_MCOUNT_MAX_OFFSET 4228 /* 4229 * Weak functions can still have an mcount/fentry that is saved in 4230 * the __mcount_loc section. These can be detected by having a 4231 * symbol offset of greater than FTRACE_MCOUNT_MAX_OFFSET, as the 4232 * symbol found by kallsyms is not the function that the mcount/fentry 4233 * is part of. The offset is much greater in these cases. 4234 * 4235 * Test the record to make sure that the ip points to a valid kallsyms 4236 * and if not, mark it disabled. 4237 */ 4238 static int test_for_valid_rec(struct dyn_ftrace *rec) 4239 { 4240 char str[KSYM_SYMBOL_LEN]; 4241 unsigned long offset; 4242 const char *ret; 4243 4244 ret = kallsyms_lookup(rec->ip, NULL, &offset, NULL, str); 4245 4246 /* Weak functions can cause invalid addresses */ 4247 if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) { 4248 rec->flags |= FTRACE_FL_DISABLED; 4249 return 0; 4250 } 4251 return 1; 4252 } 4253 4254 static struct workqueue_struct *ftrace_check_wq __initdata; 4255 static struct work_struct ftrace_check_work __initdata; 4256 4257 /* 4258 * Scan all the mcount/fentry entries to make sure they are valid. 4259 */ 4260 static __init void ftrace_check_work_func(struct work_struct *work) 4261 { 4262 struct ftrace_page *pg; 4263 struct dyn_ftrace *rec; 4264 4265 mutex_lock(&ftrace_lock); 4266 do_for_each_ftrace_rec(pg, rec) { 4267 test_for_valid_rec(rec); 4268 } while_for_each_ftrace_rec(); 4269 mutex_unlock(&ftrace_lock); 4270 } 4271 4272 static int __init ftrace_check_for_weak_functions(void) 4273 { 4274 INIT_WORK(&ftrace_check_work, ftrace_check_work_func); 4275 4276 ftrace_check_wq = alloc_workqueue("ftrace_check_wq", WQ_UNBOUND, 0); 4277 4278 queue_work(ftrace_check_wq, &ftrace_check_work); 4279 return 0; 4280 } 4281 4282 static int __init ftrace_check_sync(void) 4283 { 4284 /* Make sure the ftrace_check updates are finished */ 4285 if (ftrace_check_wq) 4286 destroy_workqueue(ftrace_check_wq); 4287 return 0; 4288 } 4289 4290 late_initcall_sync(ftrace_check_sync); 4291 subsys_initcall(ftrace_check_for_weak_functions); 4292 4293 static int print_rec(struct seq_file *m, unsigned long ip) 4294 { 4295 unsigned long offset; 4296 char str[KSYM_SYMBOL_LEN]; 4297 char *modname; 4298 const char *ret; 4299 4300 ret = kallsyms_lookup(ip, NULL, &offset, &modname, str); 4301 /* Weak functions can cause invalid addresses */ 4302 if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) { 4303 snprintf(str, KSYM_SYMBOL_LEN, "%s_%ld", 4304 FTRACE_INVALID_FUNCTION, offset); 4305 ret = NULL; 4306 } 4307 4308 seq_puts(m, str); 4309 if (modname) 4310 seq_printf(m, " [%s]", modname); 4311 return ret == NULL ? -1 : 0; 4312 } 4313 #else 4314 static inline int test_for_valid_rec(struct dyn_ftrace *rec) 4315 { 4316 return 1; 4317 } 4318 4319 static inline int print_rec(struct seq_file *m, unsigned long ip) 4320 { 4321 seq_printf(m, "%ps", (void *)ip); 4322 return 0; 4323 } 4324 #endif 4325 4326 static int t_show(struct seq_file *m, void *v) 4327 { 4328 struct ftrace_iterator *iter = m->private; 4329 struct dyn_ftrace *rec; 4330 4331 if (iter->flags & FTRACE_ITER_PROBE) 4332 return t_probe_show(m, iter); 4333 4334 if (iter->flags & FTRACE_ITER_MOD) 4335 return t_mod_show(m, iter); 4336 4337 if (iter->flags & FTRACE_ITER_PRINTALL) { 4338 if (iter->flags & FTRACE_ITER_NOTRACE) 4339 seq_puts(m, "#### no functions disabled ####\n"); 4340 else 4341 seq_puts(m, "#### all functions enabled ####\n"); 4342 return 0; 4343 } 4344 4345 rec = iter->func; 4346 4347 if (!rec) 4348 return 0; 4349 4350 if (iter->flags & FTRACE_ITER_ADDRS) 4351 seq_printf(m, "%lx ", rec->ip); 4352 4353 if (print_rec(m, rec->ip)) { 4354 /* This should only happen when a rec is disabled */ 4355 WARN_ON_ONCE(!(rec->flags & FTRACE_FL_DISABLED)); 4356 seq_putc(m, '\n'); 4357 return 0; 4358 } 4359 4360 if (iter->flags & (FTRACE_ITER_ENABLED | FTRACE_ITER_TOUCHED)) { 4361 struct ftrace_ops *ops; 4362 4363 seq_printf(m, " (%ld)%s%s%s%s%s", 4364 ftrace_rec_count(rec), 4365 rec->flags & FTRACE_FL_REGS ? " R" : " ", 4366 rec->flags & FTRACE_FL_IPMODIFY ? " I" : " ", 4367 rec->flags & FTRACE_FL_DIRECT ? " D" : " ", 4368 rec->flags & FTRACE_FL_CALL_OPS ? " O" : " ", 4369 rec->flags & FTRACE_FL_MODIFIED ? " M " : " "); 4370 if (rec->flags & FTRACE_FL_TRAMP_EN) { 4371 ops = ftrace_find_tramp_ops_any(rec); 4372 if (ops) { 4373 do { 4374 seq_printf(m, "\ttramp: %pS (%pS)", 4375 (void *)ops->trampoline, 4376 (void *)ops->func); 4377 add_trampoline_func(m, ops, rec); 4378 ops = ftrace_find_tramp_ops_next(rec, ops); 4379 } while (ops); 4380 } else 4381 seq_puts(m, "\ttramp: ERROR!"); 4382 } else { 4383 add_trampoline_func(m, NULL, rec); 4384 } 4385 if (rec->flags & FTRACE_FL_CALL_OPS_EN) { 4386 ops = ftrace_find_unique_ops(rec); 4387 if (ops) { 4388 seq_printf(m, "\tops: %pS (%pS)", 4389 ops, ops->func); 4390 } else { 4391 seq_puts(m, "\tops: ERROR!"); 4392 } 4393 } 4394 if (rec->flags & FTRACE_FL_DIRECT) { 4395 unsigned long direct; 4396 4397 direct = ftrace_find_rec_direct(rec->ip); 4398 if (direct) 4399 seq_printf(m, "\n\tdirect-->%pS", (void *)direct); 4400 } 4401 } 4402 4403 seq_putc(m, '\n'); 4404 4405 return 0; 4406 } 4407 4408 static const struct seq_operations show_ftrace_seq_ops = { 4409 .start = t_start, 4410 .next = t_next, 4411 .stop = t_stop, 4412 .show = t_show, 4413 }; 4414 4415 static int 4416 ftrace_avail_open(struct inode *inode, struct file *file) 4417 { 4418 struct ftrace_iterator *iter; 4419 int ret; 4420 4421 ret = security_locked_down(LOCKDOWN_TRACEFS); 4422 if (ret) 4423 return ret; 4424 4425 if (unlikely(ftrace_disabled)) 4426 return -ENODEV; 4427 4428 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 4429 if (!iter) 4430 return -ENOMEM; 4431 4432 iter->pg = ftrace_pages_start; 4433 iter->ops = &global_ops; 4434 4435 return 0; 4436 } 4437 4438 static int 4439 ftrace_enabled_open(struct inode *inode, struct file *file) 4440 { 4441 struct ftrace_iterator *iter; 4442 4443 /* 4444 * This shows us what functions are currently being 4445 * traced and by what. Not sure if we want lockdown 4446 * to hide such critical information for an admin. 4447 * Although, perhaps it can show information we don't 4448 * want people to see, but if something is tracing 4449 * something, we probably want to know about it. 4450 */ 4451 4452 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 4453 if (!iter) 4454 return -ENOMEM; 4455 4456 iter->pg = ftrace_pages_start; 4457 iter->flags = FTRACE_ITER_ENABLED; 4458 iter->ops = &global_ops; 4459 4460 return 0; 4461 } 4462 4463 static int 4464 ftrace_touched_open(struct inode *inode, struct file *file) 4465 { 4466 struct ftrace_iterator *iter; 4467 4468 /* 4469 * This shows us what functions have ever been enabled 4470 * (traced, direct, patched, etc). Not sure if we want lockdown 4471 * to hide such critical information for an admin. 4472 * Although, perhaps it can show information we don't 4473 * want people to see, but if something had traced 4474 * something, we probably want to know about it. 4475 */ 4476 4477 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 4478 if (!iter) 4479 return -ENOMEM; 4480 4481 iter->pg = ftrace_pages_start; 4482 iter->flags = FTRACE_ITER_TOUCHED; 4483 iter->ops = &global_ops; 4484 4485 return 0; 4486 } 4487 4488 static int 4489 ftrace_avail_addrs_open(struct inode *inode, struct file *file) 4490 { 4491 struct ftrace_iterator *iter; 4492 int ret; 4493 4494 ret = security_locked_down(LOCKDOWN_TRACEFS); 4495 if (ret) 4496 return ret; 4497 4498 if (unlikely(ftrace_disabled)) 4499 return -ENODEV; 4500 4501 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 4502 if (!iter) 4503 return -ENOMEM; 4504 4505 iter->pg = ftrace_pages_start; 4506 iter->flags = FTRACE_ITER_ADDRS; 4507 iter->ops = &global_ops; 4508 4509 return 0; 4510 } 4511 4512 /** 4513 * ftrace_regex_open - initialize function tracer filter files 4514 * @ops: The ftrace_ops that hold the hash filters 4515 * @flag: The type of filter to process 4516 * @inode: The inode, usually passed in to your open routine 4517 * @file: The file, usually passed in to your open routine 4518 * 4519 * ftrace_regex_open() initializes the filter files for the 4520 * @ops. Depending on @flag it may process the filter hash or 4521 * the notrace hash of @ops. With this called from the open 4522 * routine, you can use ftrace_filter_write() for the write 4523 * routine if @flag has FTRACE_ITER_FILTER set, or 4524 * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set. 4525 * tracing_lseek() should be used as the lseek routine, and 4526 * release must call ftrace_regex_release(). 4527 * 4528 * Returns: 0 on success or a negative errno value on failure 4529 */ 4530 int 4531 ftrace_regex_open(struct ftrace_ops *ops, int flag, 4532 struct inode *inode, struct file *file) 4533 { 4534 struct ftrace_iterator *iter; 4535 struct ftrace_hash *hash; 4536 struct list_head *mod_head; 4537 struct trace_array *tr = ops->private; 4538 int ret = -ENOMEM; 4539 4540 ftrace_ops_init(ops); 4541 4542 if (unlikely(ftrace_disabled)) 4543 return -ENODEV; 4544 4545 if (tracing_check_open_get_tr(tr)) 4546 return -ENODEV; 4547 4548 iter = kzalloc(sizeof(*iter), GFP_KERNEL); 4549 if (!iter) 4550 goto out; 4551 4552 if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) 4553 goto out; 4554 4555 iter->ops = ops; 4556 iter->flags = flag; 4557 iter->tr = tr; 4558 4559 mutex_lock(&ops->func_hash->regex_lock); 4560 4561 if (flag & FTRACE_ITER_NOTRACE) { 4562 hash = ops->func_hash->notrace_hash; 4563 mod_head = tr ? &tr->mod_notrace : NULL; 4564 } else { 4565 hash = ops->func_hash->filter_hash; 4566 mod_head = tr ? &tr->mod_trace : NULL; 4567 } 4568 4569 iter->mod_list = mod_head; 4570 4571 if (file->f_mode & FMODE_WRITE) { 4572 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 4573 4574 if (file->f_flags & O_TRUNC) { 4575 iter->hash = alloc_ftrace_hash(size_bits); 4576 clear_ftrace_mod_list(mod_head); 4577 } else { 4578 iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash); 4579 } 4580 4581 if (!iter->hash) { 4582 trace_parser_put(&iter->parser); 4583 goto out_unlock; 4584 } 4585 } else 4586 iter->hash = hash; 4587 4588 ret = 0; 4589 4590 if (file->f_mode & FMODE_READ) { 4591 iter->pg = ftrace_pages_start; 4592 4593 ret = seq_open(file, &show_ftrace_seq_ops); 4594 if (!ret) { 4595 struct seq_file *m = file->private_data; 4596 m->private = iter; 4597 } else { 4598 /* Failed */ 4599 free_ftrace_hash(iter->hash); 4600 trace_parser_put(&iter->parser); 4601 } 4602 } else 4603 file->private_data = iter; 4604 4605 out_unlock: 4606 mutex_unlock(&ops->func_hash->regex_lock); 4607 4608 out: 4609 if (ret) { 4610 kfree(iter); 4611 if (tr) 4612 trace_array_put(tr); 4613 } 4614 4615 return ret; 4616 } 4617 4618 static int 4619 ftrace_filter_open(struct inode *inode, struct file *file) 4620 { 4621 struct ftrace_ops *ops = inode->i_private; 4622 4623 /* Checks for tracefs lockdown */ 4624 return ftrace_regex_open(ops, 4625 FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES, 4626 inode, file); 4627 } 4628 4629 static int 4630 ftrace_notrace_open(struct inode *inode, struct file *file) 4631 { 4632 struct ftrace_ops *ops = inode->i_private; 4633 4634 /* Checks for tracefs lockdown */ 4635 return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE, 4636 inode, file); 4637 } 4638 4639 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */ 4640 struct ftrace_glob { 4641 char *search; 4642 unsigned len; 4643 int type; 4644 }; 4645 4646 /* 4647 * If symbols in an architecture don't correspond exactly to the user-visible 4648 * name of what they represent, it is possible to define this function to 4649 * perform the necessary adjustments. 4650 */ 4651 char * __weak arch_ftrace_match_adjust(char *str, const char *search) 4652 { 4653 return str; 4654 } 4655 4656 static int ftrace_match(char *str, struct ftrace_glob *g) 4657 { 4658 int matched = 0; 4659 int slen; 4660 4661 str = arch_ftrace_match_adjust(str, g->search); 4662 4663 switch (g->type) { 4664 case MATCH_FULL: 4665 if (strcmp(str, g->search) == 0) 4666 matched = 1; 4667 break; 4668 case MATCH_FRONT_ONLY: 4669 if (strncmp(str, g->search, g->len) == 0) 4670 matched = 1; 4671 break; 4672 case MATCH_MIDDLE_ONLY: 4673 if (strstr(str, g->search)) 4674 matched = 1; 4675 break; 4676 case MATCH_END_ONLY: 4677 slen = strlen(str); 4678 if (slen >= g->len && 4679 memcmp(str + slen - g->len, g->search, g->len) == 0) 4680 matched = 1; 4681 break; 4682 case MATCH_GLOB: 4683 if (glob_match(g->search, str)) 4684 matched = 1; 4685 break; 4686 } 4687 4688 return matched; 4689 } 4690 4691 static int 4692 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter) 4693 { 4694 struct ftrace_func_entry *entry; 4695 int ret = 0; 4696 4697 entry = ftrace_lookup_ip(hash, rec->ip); 4698 if (clear_filter) { 4699 /* Do nothing if it doesn't exist */ 4700 if (!entry) 4701 return 0; 4702 4703 free_hash_entry(hash, entry); 4704 } else { 4705 /* Do nothing if it exists */ 4706 if (entry) 4707 return 0; 4708 if (add_hash_entry(hash, rec->ip) == NULL) 4709 ret = -ENOMEM; 4710 } 4711 return ret; 4712 } 4713 4714 static int 4715 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g, 4716 int clear_filter) 4717 { 4718 long index; 4719 struct ftrace_page *pg; 4720 struct dyn_ftrace *rec; 4721 4722 /* The index starts at 1 */ 4723 if (kstrtoul(func_g->search, 0, &index) || --index < 0) 4724 return 0; 4725 4726 do_for_each_ftrace_rec(pg, rec) { 4727 if (pg->index <= index) { 4728 index -= pg->index; 4729 /* this is a double loop, break goes to the next page */ 4730 break; 4731 } 4732 rec = &pg->records[index]; 4733 enter_record(hash, rec, clear_filter); 4734 return 1; 4735 } while_for_each_ftrace_rec(); 4736 return 0; 4737 } 4738 4739 #ifdef FTRACE_MCOUNT_MAX_OFFSET 4740 static int lookup_ip(unsigned long ip, char **modname, char *str) 4741 { 4742 unsigned long offset; 4743 4744 kallsyms_lookup(ip, NULL, &offset, modname, str); 4745 if (offset > FTRACE_MCOUNT_MAX_OFFSET) 4746 return -1; 4747 return 0; 4748 } 4749 #else 4750 static int lookup_ip(unsigned long ip, char **modname, char *str) 4751 { 4752 kallsyms_lookup(ip, NULL, NULL, modname, str); 4753 return 0; 4754 } 4755 #endif 4756 4757 static int 4758 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g, 4759 struct ftrace_glob *mod_g, int exclude_mod) 4760 { 4761 char str[KSYM_SYMBOL_LEN]; 4762 char *modname; 4763 4764 if (lookup_ip(rec->ip, &modname, str)) { 4765 /* This should only happen when a rec is disabled */ 4766 WARN_ON_ONCE(system_state == SYSTEM_RUNNING && 4767 !(rec->flags & FTRACE_FL_DISABLED)); 4768 return 0; 4769 } 4770 4771 if (mod_g) { 4772 int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0; 4773 4774 /* blank module name to match all modules */ 4775 if (!mod_g->len) { 4776 /* blank module globbing: modname xor exclude_mod */ 4777 if (!exclude_mod != !modname) 4778 goto func_match; 4779 return 0; 4780 } 4781 4782 /* 4783 * exclude_mod is set to trace everything but the given 4784 * module. If it is set and the module matches, then 4785 * return 0. If it is not set, and the module doesn't match 4786 * also return 0. Otherwise, check the function to see if 4787 * that matches. 4788 */ 4789 if (!mod_matches == !exclude_mod) 4790 return 0; 4791 func_match: 4792 /* blank search means to match all funcs in the mod */ 4793 if (!func_g->len) 4794 return 1; 4795 } 4796 4797 return ftrace_match(str, func_g); 4798 } 4799 4800 static int 4801 match_records(struct ftrace_hash *hash, char *func, int len, char *mod) 4802 { 4803 struct ftrace_page *pg; 4804 struct dyn_ftrace *rec; 4805 struct ftrace_glob func_g = { .type = MATCH_FULL }; 4806 struct ftrace_glob mod_g = { .type = MATCH_FULL }; 4807 struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL; 4808 int exclude_mod = 0; 4809 int found = 0; 4810 int ret; 4811 int clear_filter = 0; 4812 4813 if (func) { 4814 func_g.type = filter_parse_regex(func, len, &func_g.search, 4815 &clear_filter); 4816 func_g.len = strlen(func_g.search); 4817 } 4818 4819 if (mod) { 4820 mod_g.type = filter_parse_regex(mod, strlen(mod), 4821 &mod_g.search, &exclude_mod); 4822 mod_g.len = strlen(mod_g.search); 4823 } 4824 4825 guard(mutex)(&ftrace_lock); 4826 4827 if (unlikely(ftrace_disabled)) 4828 return 0; 4829 4830 if (func_g.type == MATCH_INDEX) 4831 return add_rec_by_index(hash, &func_g, clear_filter); 4832 4833 do_for_each_ftrace_rec(pg, rec) { 4834 4835 if (rec->flags & FTRACE_FL_DISABLED) 4836 continue; 4837 4838 if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) { 4839 ret = enter_record(hash, rec, clear_filter); 4840 if (ret < 0) 4841 return ret; 4842 found = 1; 4843 } 4844 cond_resched(); 4845 } while_for_each_ftrace_rec(); 4846 4847 return found; 4848 } 4849 4850 static int 4851 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len) 4852 { 4853 return match_records(hash, buff, len, NULL); 4854 } 4855 4856 static void ftrace_ops_update_code(struct ftrace_ops *ops, 4857 struct ftrace_ops_hash *old_hash) 4858 { 4859 struct ftrace_ops *op; 4860 4861 if (!ftrace_enabled) 4862 return; 4863 4864 if (ops->flags & FTRACE_OPS_FL_ENABLED) { 4865 ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash); 4866 return; 4867 } 4868 4869 /* 4870 * If this is the shared global_ops filter, then we need to 4871 * check if there is another ops that shares it, is enabled. 4872 * If so, we still need to run the modify code. 4873 */ 4874 if (ops->func_hash != &global_ops.local_hash) 4875 return; 4876 4877 do_for_each_ftrace_op(op, ftrace_ops_list) { 4878 if (op->func_hash == &global_ops.local_hash && 4879 op->flags & FTRACE_OPS_FL_ENABLED) { 4880 ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash); 4881 /* Only need to do this once */ 4882 return; 4883 } 4884 } while_for_each_ftrace_op(op); 4885 } 4886 4887 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops, 4888 struct ftrace_hash **orig_hash, 4889 struct ftrace_hash *hash, 4890 int enable) 4891 { 4892 if (ops->flags & FTRACE_OPS_FL_SUBOP) 4893 return ftrace_hash_move_and_update_subops(ops, orig_hash, hash, enable); 4894 4895 /* 4896 * If this ops is not enabled, it could be sharing its filters 4897 * with a subop. If that's the case, update the subop instead of 4898 * this ops. Shared filters are only allowed to have one ops set 4899 * at a time, and if we update the ops that is not enabled, 4900 * it will not affect subops that share it. 4901 */ 4902 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) { 4903 struct ftrace_ops *op; 4904 4905 /* Check if any other manager subops maps to this hash */ 4906 do_for_each_ftrace_op(op, ftrace_ops_list) { 4907 struct ftrace_ops *subops; 4908 4909 list_for_each_entry(subops, &op->subop_list, list) { 4910 if ((subops->flags & FTRACE_OPS_FL_ENABLED) && 4911 subops->func_hash == ops->func_hash) { 4912 return ftrace_hash_move_and_update_subops(subops, orig_hash, hash, enable); 4913 } 4914 } 4915 } while_for_each_ftrace_op(op); 4916 } 4917 4918 return __ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable); 4919 } 4920 4921 static int cache_mod(struct trace_array *tr, 4922 const char *func, char *module, int enable) 4923 { 4924 struct ftrace_mod_load *ftrace_mod, *n; 4925 struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace; 4926 4927 guard(mutex)(&ftrace_lock); 4928 4929 /* We do not cache inverse filters */ 4930 if (func[0] == '!') { 4931 int ret = -EINVAL; 4932 4933 func++; 4934 4935 /* Look to remove this hash */ 4936 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4937 if (strcmp(ftrace_mod->module, module) != 0) 4938 continue; 4939 4940 /* no func matches all */ 4941 if (strcmp(func, "*") == 0 || 4942 (ftrace_mod->func && 4943 strcmp(ftrace_mod->func, func) == 0)) { 4944 ret = 0; 4945 free_ftrace_mod(ftrace_mod); 4946 continue; 4947 } 4948 } 4949 return ret; 4950 } 4951 4952 /* We only care about modules that have not been loaded yet */ 4953 if (module_exists(module)) 4954 return -EINVAL; 4955 4956 /* Save this string off, and execute it when the module is loaded */ 4957 return ftrace_add_mod(tr, func, module, enable); 4958 } 4959 4960 #ifdef CONFIG_MODULES 4961 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops, 4962 char *mod, bool enable) 4963 { 4964 struct ftrace_mod_load *ftrace_mod, *n; 4965 struct ftrace_hash **orig_hash, *new_hash; 4966 LIST_HEAD(process_mods); 4967 char *func; 4968 4969 mutex_lock(&ops->func_hash->regex_lock); 4970 4971 if (enable) 4972 orig_hash = &ops->func_hash->filter_hash; 4973 else 4974 orig_hash = &ops->func_hash->notrace_hash; 4975 4976 new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, 4977 *orig_hash); 4978 if (!new_hash) 4979 goto out; /* warn? */ 4980 4981 mutex_lock(&ftrace_lock); 4982 4983 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4984 4985 if (strcmp(ftrace_mod->module, mod) != 0) 4986 continue; 4987 4988 if (ftrace_mod->func) 4989 func = kstrdup(ftrace_mod->func, GFP_KERNEL); 4990 else 4991 func = kstrdup("*", GFP_KERNEL); 4992 4993 if (!func) /* warn? */ 4994 continue; 4995 4996 list_move(&ftrace_mod->list, &process_mods); 4997 4998 /* Use the newly allocated func, as it may be "*" */ 4999 kfree(ftrace_mod->func); 5000 ftrace_mod->func = func; 5001 } 5002 5003 mutex_unlock(&ftrace_lock); 5004 5005 list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) { 5006 5007 func = ftrace_mod->func; 5008 5009 /* Grabs ftrace_lock, which is why we have this extra step */ 5010 match_records(new_hash, func, strlen(func), mod); 5011 free_ftrace_mod(ftrace_mod); 5012 } 5013 5014 if (enable && list_empty(head)) 5015 new_hash->flags &= ~FTRACE_HASH_FL_MOD; 5016 5017 mutex_lock(&ftrace_lock); 5018 5019 ftrace_hash_move_and_update_ops(ops, orig_hash, 5020 new_hash, enable); 5021 mutex_unlock(&ftrace_lock); 5022 5023 out: 5024 mutex_unlock(&ops->func_hash->regex_lock); 5025 5026 free_ftrace_hash(new_hash); 5027 } 5028 5029 static void process_cached_mods(const char *mod_name) 5030 { 5031 struct trace_array *tr; 5032 char *mod; 5033 5034 mod = kstrdup(mod_name, GFP_KERNEL); 5035 if (!mod) 5036 return; 5037 5038 mutex_lock(&trace_types_lock); 5039 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 5040 if (!list_empty(&tr->mod_trace)) 5041 process_mod_list(&tr->mod_trace, tr->ops, mod, true); 5042 if (!list_empty(&tr->mod_notrace)) 5043 process_mod_list(&tr->mod_notrace, tr->ops, mod, false); 5044 } 5045 mutex_unlock(&trace_types_lock); 5046 5047 kfree(mod); 5048 } 5049 #endif 5050 5051 /* 5052 * We register the module command as a template to show others how 5053 * to register the a command as well. 5054 */ 5055 5056 static int 5057 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash, 5058 char *func_orig, char *cmd, char *module, int enable) 5059 { 5060 char *func; 5061 int ret; 5062 5063 if (!tr) 5064 return -ENODEV; 5065 5066 /* match_records() modifies func, and we need the original */ 5067 func = kstrdup(func_orig, GFP_KERNEL); 5068 if (!func) 5069 return -ENOMEM; 5070 5071 /* 5072 * cmd == 'mod' because we only registered this func 5073 * for the 'mod' ftrace_func_command. 5074 * But if you register one func with multiple commands, 5075 * you can tell which command was used by the cmd 5076 * parameter. 5077 */ 5078 ret = match_records(hash, func, strlen(func), module); 5079 kfree(func); 5080 5081 if (!ret) 5082 return cache_mod(tr, func_orig, module, enable); 5083 if (ret < 0) 5084 return ret; 5085 return 0; 5086 } 5087 5088 static struct ftrace_func_command ftrace_mod_cmd = { 5089 .name = "mod", 5090 .func = ftrace_mod_callback, 5091 }; 5092 5093 static int __init ftrace_mod_cmd_init(void) 5094 { 5095 return register_ftrace_command(&ftrace_mod_cmd); 5096 } 5097 core_initcall(ftrace_mod_cmd_init); 5098 5099 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip, 5100 struct ftrace_ops *op, struct ftrace_regs *fregs) 5101 { 5102 struct ftrace_probe_ops *probe_ops; 5103 struct ftrace_func_probe *probe; 5104 5105 probe = container_of(op, struct ftrace_func_probe, ops); 5106 probe_ops = probe->probe_ops; 5107 5108 /* 5109 * Disable preemption for these calls to prevent a RCU grace 5110 * period. This syncs the hash iteration and freeing of items 5111 * on the hash. rcu_read_lock is too dangerous here. 5112 */ 5113 preempt_disable_notrace(); 5114 probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data); 5115 preempt_enable_notrace(); 5116 } 5117 5118 struct ftrace_func_map { 5119 struct ftrace_func_entry entry; 5120 void *data; 5121 }; 5122 5123 struct ftrace_func_mapper { 5124 struct ftrace_hash hash; 5125 }; 5126 5127 /** 5128 * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper 5129 * 5130 * Returns: a ftrace_func_mapper descriptor that can be used to map ips to data. 5131 */ 5132 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void) 5133 { 5134 struct ftrace_hash *hash; 5135 5136 /* 5137 * The mapper is simply a ftrace_hash, but since the entries 5138 * in the hash are not ftrace_func_entry type, we define it 5139 * as a separate structure. 5140 */ 5141 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 5142 return (struct ftrace_func_mapper *)hash; 5143 } 5144 5145 /** 5146 * ftrace_func_mapper_find_ip - Find some data mapped to an ip 5147 * @mapper: The mapper that has the ip maps 5148 * @ip: the instruction pointer to find the data for 5149 * 5150 * Returns: the data mapped to @ip if found otherwise NULL. The return 5151 * is actually the address of the mapper data pointer. The address is 5152 * returned for use cases where the data is no bigger than a long, and 5153 * the user can use the data pointer as its data instead of having to 5154 * allocate more memory for the reference. 5155 */ 5156 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper, 5157 unsigned long ip) 5158 { 5159 struct ftrace_func_entry *entry; 5160 struct ftrace_func_map *map; 5161 5162 entry = ftrace_lookup_ip(&mapper->hash, ip); 5163 if (!entry) 5164 return NULL; 5165 5166 map = (struct ftrace_func_map *)entry; 5167 return &map->data; 5168 } 5169 5170 /** 5171 * ftrace_func_mapper_add_ip - Map some data to an ip 5172 * @mapper: The mapper that has the ip maps 5173 * @ip: The instruction pointer address to map @data to 5174 * @data: The data to map to @ip 5175 * 5176 * Returns: 0 on success otherwise an error. 5177 */ 5178 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper, 5179 unsigned long ip, void *data) 5180 { 5181 struct ftrace_func_entry *entry; 5182 struct ftrace_func_map *map; 5183 5184 entry = ftrace_lookup_ip(&mapper->hash, ip); 5185 if (entry) 5186 return -EBUSY; 5187 5188 map = kmalloc(sizeof(*map), GFP_KERNEL); 5189 if (!map) 5190 return -ENOMEM; 5191 5192 map->entry.ip = ip; 5193 map->data = data; 5194 5195 __add_hash_entry(&mapper->hash, &map->entry); 5196 5197 return 0; 5198 } 5199 5200 /** 5201 * ftrace_func_mapper_remove_ip - Remove an ip from the mapping 5202 * @mapper: The mapper that has the ip maps 5203 * @ip: The instruction pointer address to remove the data from 5204 * 5205 * Returns: the data if it is found, otherwise NULL. 5206 * Note, if the data pointer is used as the data itself, (see 5207 * ftrace_func_mapper_find_ip(), then the return value may be meaningless, 5208 * if the data pointer was set to zero. 5209 */ 5210 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper, 5211 unsigned long ip) 5212 { 5213 struct ftrace_func_entry *entry; 5214 struct ftrace_func_map *map; 5215 void *data; 5216 5217 entry = ftrace_lookup_ip(&mapper->hash, ip); 5218 if (!entry) 5219 return NULL; 5220 5221 map = (struct ftrace_func_map *)entry; 5222 data = map->data; 5223 5224 remove_hash_entry(&mapper->hash, entry); 5225 kfree(entry); 5226 5227 return data; 5228 } 5229 5230 /** 5231 * free_ftrace_func_mapper - free a mapping of ips and data 5232 * @mapper: The mapper that has the ip maps 5233 * @free_func: A function to be called on each data item. 5234 * 5235 * This is used to free the function mapper. The @free_func is optional 5236 * and can be used if the data needs to be freed as well. 5237 */ 5238 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper, 5239 ftrace_mapper_func free_func) 5240 { 5241 struct ftrace_func_entry *entry; 5242 struct ftrace_func_map *map; 5243 struct hlist_head *hhd; 5244 int size, i; 5245 5246 if (!mapper) 5247 return; 5248 5249 if (free_func && mapper->hash.count) { 5250 size = 1 << mapper->hash.size_bits; 5251 for (i = 0; i < size; i++) { 5252 hhd = &mapper->hash.buckets[i]; 5253 hlist_for_each_entry(entry, hhd, hlist) { 5254 map = (struct ftrace_func_map *)entry; 5255 free_func(map); 5256 } 5257 } 5258 } 5259 free_ftrace_hash(&mapper->hash); 5260 } 5261 5262 static void release_probe(struct ftrace_func_probe *probe) 5263 { 5264 struct ftrace_probe_ops *probe_ops; 5265 5266 guard(mutex)(&ftrace_lock); 5267 5268 WARN_ON(probe->ref <= 0); 5269 5270 /* Subtract the ref that was used to protect this instance */ 5271 probe->ref--; 5272 5273 if (!probe->ref) { 5274 probe_ops = probe->probe_ops; 5275 /* 5276 * Sending zero as ip tells probe_ops to free 5277 * the probe->data itself 5278 */ 5279 if (probe_ops->free) 5280 probe_ops->free(probe_ops, probe->tr, 0, probe->data); 5281 list_del(&probe->list); 5282 kfree(probe); 5283 } 5284 } 5285 5286 static void acquire_probe_locked(struct ftrace_func_probe *probe) 5287 { 5288 /* 5289 * Add one ref to keep it from being freed when releasing the 5290 * ftrace_lock mutex. 5291 */ 5292 probe->ref++; 5293 } 5294 5295 int 5296 register_ftrace_function_probe(char *glob, struct trace_array *tr, 5297 struct ftrace_probe_ops *probe_ops, 5298 void *data) 5299 { 5300 struct ftrace_func_probe *probe = NULL, *iter; 5301 struct ftrace_func_entry *entry; 5302 struct ftrace_hash **orig_hash; 5303 struct ftrace_hash *old_hash; 5304 struct ftrace_hash *hash; 5305 int count = 0; 5306 int size; 5307 int ret; 5308 int i; 5309 5310 if (WARN_ON(!tr)) 5311 return -EINVAL; 5312 5313 /* We do not support '!' for function probes */ 5314 if (WARN_ON(glob[0] == '!')) 5315 return -EINVAL; 5316 5317 5318 mutex_lock(&ftrace_lock); 5319 /* Check if the probe_ops is already registered */ 5320 list_for_each_entry(iter, &tr->func_probes, list) { 5321 if (iter->probe_ops == probe_ops) { 5322 probe = iter; 5323 break; 5324 } 5325 } 5326 if (!probe) { 5327 probe = kzalloc(sizeof(*probe), GFP_KERNEL); 5328 if (!probe) { 5329 mutex_unlock(&ftrace_lock); 5330 return -ENOMEM; 5331 } 5332 probe->probe_ops = probe_ops; 5333 probe->ops.func = function_trace_probe_call; 5334 probe->tr = tr; 5335 ftrace_ops_init(&probe->ops); 5336 list_add(&probe->list, &tr->func_probes); 5337 } 5338 5339 acquire_probe_locked(probe); 5340 5341 mutex_unlock(&ftrace_lock); 5342 5343 /* 5344 * Note, there's a small window here that the func_hash->filter_hash 5345 * may be NULL or empty. Need to be careful when reading the loop. 5346 */ 5347 mutex_lock(&probe->ops.func_hash->regex_lock); 5348 5349 orig_hash = &probe->ops.func_hash->filter_hash; 5350 old_hash = *orig_hash; 5351 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 5352 5353 if (!hash) { 5354 ret = -ENOMEM; 5355 goto out; 5356 } 5357 5358 ret = ftrace_match_records(hash, glob, strlen(glob)); 5359 5360 /* Nothing found? */ 5361 if (!ret) 5362 ret = -EINVAL; 5363 5364 if (ret < 0) 5365 goto out; 5366 5367 size = 1 << hash->size_bits; 5368 for (i = 0; i < size; i++) { 5369 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5370 if (ftrace_lookup_ip(old_hash, entry->ip)) 5371 continue; 5372 /* 5373 * The caller might want to do something special 5374 * for each function we find. We call the callback 5375 * to give the caller an opportunity to do so. 5376 */ 5377 if (probe_ops->init) { 5378 ret = probe_ops->init(probe_ops, tr, 5379 entry->ip, data, 5380 &probe->data); 5381 if (ret < 0) { 5382 if (probe_ops->free && count) 5383 probe_ops->free(probe_ops, tr, 5384 0, probe->data); 5385 probe->data = NULL; 5386 goto out; 5387 } 5388 } 5389 count++; 5390 } 5391 } 5392 5393 mutex_lock(&ftrace_lock); 5394 5395 if (!count) { 5396 /* Nothing was added? */ 5397 ret = -EINVAL; 5398 goto out_unlock; 5399 } 5400 5401 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 5402 hash, 1); 5403 if (ret < 0) 5404 goto err_unlock; 5405 5406 /* One ref for each new function traced */ 5407 probe->ref += count; 5408 5409 if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED)) 5410 ret = ftrace_startup(&probe->ops, 0); 5411 5412 out_unlock: 5413 mutex_unlock(&ftrace_lock); 5414 5415 if (!ret) 5416 ret = count; 5417 out: 5418 mutex_unlock(&probe->ops.func_hash->regex_lock); 5419 free_ftrace_hash(hash); 5420 5421 release_probe(probe); 5422 5423 return ret; 5424 5425 err_unlock: 5426 if (!probe_ops->free || !count) 5427 goto out_unlock; 5428 5429 /* Failed to do the move, need to call the free functions */ 5430 for (i = 0; i < size; i++) { 5431 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5432 if (ftrace_lookup_ip(old_hash, entry->ip)) 5433 continue; 5434 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 5435 } 5436 } 5437 goto out_unlock; 5438 } 5439 5440 int 5441 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr, 5442 struct ftrace_probe_ops *probe_ops) 5443 { 5444 struct ftrace_func_probe *probe = NULL, *iter; 5445 struct ftrace_ops_hash old_hash_ops; 5446 struct ftrace_func_entry *entry; 5447 struct ftrace_glob func_g; 5448 struct ftrace_hash **orig_hash; 5449 struct ftrace_hash *old_hash; 5450 struct ftrace_hash *hash = NULL; 5451 struct hlist_node *tmp; 5452 struct hlist_head hhd; 5453 char str[KSYM_SYMBOL_LEN]; 5454 int count = 0; 5455 int i, ret = -ENODEV; 5456 int size; 5457 5458 if (!glob || !strlen(glob) || !strcmp(glob, "*")) 5459 func_g.search = NULL; 5460 else { 5461 int not; 5462 5463 func_g.type = filter_parse_regex(glob, strlen(glob), 5464 &func_g.search, ¬); 5465 func_g.len = strlen(func_g.search); 5466 5467 /* we do not support '!' for function probes */ 5468 if (WARN_ON(not)) 5469 return -EINVAL; 5470 } 5471 5472 mutex_lock(&ftrace_lock); 5473 /* Check if the probe_ops is already registered */ 5474 list_for_each_entry(iter, &tr->func_probes, list) { 5475 if (iter->probe_ops == probe_ops) { 5476 probe = iter; 5477 break; 5478 } 5479 } 5480 if (!probe) 5481 goto err_unlock_ftrace; 5482 5483 ret = -EINVAL; 5484 if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED)) 5485 goto err_unlock_ftrace; 5486 5487 acquire_probe_locked(probe); 5488 5489 mutex_unlock(&ftrace_lock); 5490 5491 mutex_lock(&probe->ops.func_hash->regex_lock); 5492 5493 orig_hash = &probe->ops.func_hash->filter_hash; 5494 old_hash = *orig_hash; 5495 5496 if (ftrace_hash_empty(old_hash)) 5497 goto out_unlock; 5498 5499 old_hash_ops.filter_hash = old_hash; 5500 /* Probes only have filters */ 5501 old_hash_ops.notrace_hash = NULL; 5502 5503 ret = -ENOMEM; 5504 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 5505 if (!hash) 5506 goto out_unlock; 5507 5508 INIT_HLIST_HEAD(&hhd); 5509 5510 size = 1 << hash->size_bits; 5511 for (i = 0; i < size; i++) { 5512 hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) { 5513 5514 if (func_g.search) { 5515 kallsyms_lookup(entry->ip, NULL, NULL, 5516 NULL, str); 5517 if (!ftrace_match(str, &func_g)) 5518 continue; 5519 } 5520 count++; 5521 remove_hash_entry(hash, entry); 5522 hlist_add_head(&entry->hlist, &hhd); 5523 } 5524 } 5525 5526 /* Nothing found? */ 5527 if (!count) { 5528 ret = -EINVAL; 5529 goto out_unlock; 5530 } 5531 5532 mutex_lock(&ftrace_lock); 5533 5534 WARN_ON(probe->ref < count); 5535 5536 probe->ref -= count; 5537 5538 if (ftrace_hash_empty(hash)) 5539 ftrace_shutdown(&probe->ops, 0); 5540 5541 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 5542 hash, 1); 5543 5544 /* still need to update the function call sites */ 5545 if (ftrace_enabled && !ftrace_hash_empty(hash)) 5546 ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS, 5547 &old_hash_ops); 5548 synchronize_rcu(); 5549 5550 hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) { 5551 hlist_del(&entry->hlist); 5552 if (probe_ops->free) 5553 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 5554 kfree(entry); 5555 } 5556 mutex_unlock(&ftrace_lock); 5557 5558 out_unlock: 5559 mutex_unlock(&probe->ops.func_hash->regex_lock); 5560 free_ftrace_hash(hash); 5561 5562 release_probe(probe); 5563 5564 return ret; 5565 5566 err_unlock_ftrace: 5567 mutex_unlock(&ftrace_lock); 5568 return ret; 5569 } 5570 5571 void clear_ftrace_function_probes(struct trace_array *tr) 5572 { 5573 struct ftrace_func_probe *probe, *n; 5574 5575 list_for_each_entry_safe(probe, n, &tr->func_probes, list) 5576 unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops); 5577 } 5578 5579 static LIST_HEAD(ftrace_commands); 5580 static DEFINE_MUTEX(ftrace_cmd_mutex); 5581 5582 /* 5583 * Currently we only register ftrace commands from __init, so mark this 5584 * __init too. 5585 */ 5586 __init int register_ftrace_command(struct ftrace_func_command *cmd) 5587 { 5588 struct ftrace_func_command *p; 5589 5590 guard(mutex)(&ftrace_cmd_mutex); 5591 list_for_each_entry(p, &ftrace_commands, list) { 5592 if (strcmp(cmd->name, p->name) == 0) 5593 return -EBUSY; 5594 } 5595 list_add(&cmd->list, &ftrace_commands); 5596 5597 return 0; 5598 } 5599 5600 /* 5601 * Currently we only unregister ftrace commands from __init, so mark 5602 * this __init too. 5603 */ 5604 __init int unregister_ftrace_command(struct ftrace_func_command *cmd) 5605 { 5606 struct ftrace_func_command *p, *n; 5607 5608 guard(mutex)(&ftrace_cmd_mutex); 5609 5610 list_for_each_entry_safe(p, n, &ftrace_commands, list) { 5611 if (strcmp(cmd->name, p->name) == 0) { 5612 list_del_init(&p->list); 5613 return 0; 5614 } 5615 } 5616 5617 return -ENODEV; 5618 } 5619 5620 static int ftrace_process_regex(struct ftrace_iterator *iter, 5621 char *buff, int len, int enable) 5622 { 5623 struct ftrace_hash *hash = iter->hash; 5624 struct trace_array *tr = iter->ops->private; 5625 char *func, *command, *next = buff; 5626 struct ftrace_func_command *p; 5627 int ret; 5628 5629 func = strsep(&next, ":"); 5630 5631 if (!next) { 5632 ret = ftrace_match_records(hash, func, len); 5633 if (!ret) 5634 ret = -EINVAL; 5635 if (ret < 0) 5636 return ret; 5637 return 0; 5638 } 5639 5640 /* command found */ 5641 5642 command = strsep(&next, ":"); 5643 5644 guard(mutex)(&ftrace_cmd_mutex); 5645 5646 list_for_each_entry(p, &ftrace_commands, list) { 5647 if (strcmp(p->name, command) == 0) 5648 return p->func(tr, hash, func, command, next, enable); 5649 } 5650 5651 return -EINVAL; 5652 } 5653 5654 static ssize_t 5655 ftrace_regex_write(struct file *file, const char __user *ubuf, 5656 size_t cnt, loff_t *ppos, int enable) 5657 { 5658 struct ftrace_iterator *iter; 5659 struct trace_parser *parser; 5660 ssize_t ret, read; 5661 5662 if (!cnt) 5663 return 0; 5664 5665 if (file->f_mode & FMODE_READ) { 5666 struct seq_file *m = file->private_data; 5667 iter = m->private; 5668 } else 5669 iter = file->private_data; 5670 5671 if (unlikely(ftrace_disabled)) 5672 return -ENODEV; 5673 5674 /* iter->hash is a local copy, so we don't need regex_lock */ 5675 5676 parser = &iter->parser; 5677 read = trace_get_user(parser, ubuf, cnt, ppos); 5678 5679 if (read >= 0 && trace_parser_loaded(parser) && 5680 !trace_parser_cont(parser)) { 5681 ret = ftrace_process_regex(iter, parser->buffer, 5682 parser->idx, enable); 5683 trace_parser_clear(parser); 5684 if (ret < 0) 5685 return ret; 5686 } 5687 5688 return read; 5689 } 5690 5691 ssize_t 5692 ftrace_filter_write(struct file *file, const char __user *ubuf, 5693 size_t cnt, loff_t *ppos) 5694 { 5695 return ftrace_regex_write(file, ubuf, cnt, ppos, 1); 5696 } 5697 5698 ssize_t 5699 ftrace_notrace_write(struct file *file, const char __user *ubuf, 5700 size_t cnt, loff_t *ppos) 5701 { 5702 return ftrace_regex_write(file, ubuf, cnt, ppos, 0); 5703 } 5704 5705 static int 5706 __ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove) 5707 { 5708 struct ftrace_func_entry *entry; 5709 5710 ip = ftrace_location(ip); 5711 if (!ip) 5712 return -EINVAL; 5713 5714 if (remove) { 5715 entry = ftrace_lookup_ip(hash, ip); 5716 if (!entry) 5717 return -ENOENT; 5718 free_hash_entry(hash, entry); 5719 return 0; 5720 } else if (__ftrace_lookup_ip(hash, ip) != NULL) { 5721 /* Already exists */ 5722 return 0; 5723 } 5724 5725 entry = add_hash_entry(hash, ip); 5726 return entry ? 0 : -ENOMEM; 5727 } 5728 5729 static int 5730 ftrace_match_addr(struct ftrace_hash *hash, unsigned long *ips, 5731 unsigned int cnt, int remove) 5732 { 5733 unsigned int i; 5734 int err; 5735 5736 for (i = 0; i < cnt; i++) { 5737 err = __ftrace_match_addr(hash, ips[i], remove); 5738 if (err) { 5739 /* 5740 * This expects the @hash is a temporary hash and if this 5741 * fails the caller must free the @hash. 5742 */ 5743 return err; 5744 } 5745 } 5746 return 0; 5747 } 5748 5749 static int 5750 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len, 5751 unsigned long *ips, unsigned int cnt, 5752 int remove, int reset, int enable, char *mod) 5753 { 5754 struct ftrace_hash **orig_hash; 5755 struct ftrace_hash *hash; 5756 int ret; 5757 5758 if (unlikely(ftrace_disabled)) 5759 return -ENODEV; 5760 5761 mutex_lock(&ops->func_hash->regex_lock); 5762 5763 if (enable) 5764 orig_hash = &ops->func_hash->filter_hash; 5765 else 5766 orig_hash = &ops->func_hash->notrace_hash; 5767 5768 if (reset) 5769 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 5770 else 5771 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash); 5772 5773 if (!hash) { 5774 ret = -ENOMEM; 5775 goto out_regex_unlock; 5776 } 5777 5778 if (buf && !match_records(hash, buf, len, mod)) { 5779 /* If this was for a module and nothing was enabled, flag it */ 5780 if (mod) 5781 (*orig_hash)->flags |= FTRACE_HASH_FL_MOD; 5782 5783 /* 5784 * Even if it is a mod, return error to let caller know 5785 * nothing was added 5786 */ 5787 ret = -EINVAL; 5788 goto out_regex_unlock; 5789 } 5790 if (ips) { 5791 ret = ftrace_match_addr(hash, ips, cnt, remove); 5792 if (ret < 0) 5793 goto out_regex_unlock; 5794 } 5795 5796 mutex_lock(&ftrace_lock); 5797 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable); 5798 mutex_unlock(&ftrace_lock); 5799 5800 out_regex_unlock: 5801 mutex_unlock(&ops->func_hash->regex_lock); 5802 5803 free_ftrace_hash(hash); 5804 return ret; 5805 } 5806 5807 static int 5808 ftrace_set_addr(struct ftrace_ops *ops, unsigned long *ips, unsigned int cnt, 5809 int remove, int reset, int enable) 5810 { 5811 return ftrace_set_hash(ops, NULL, 0, ips, cnt, remove, reset, enable, NULL); 5812 } 5813 5814 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 5815 5816 static int register_ftrace_function_nolock(struct ftrace_ops *ops); 5817 5818 /* 5819 * If there are multiple ftrace_ops, use SAVE_REGS by default, so that direct 5820 * call will be jumped from ftrace_regs_caller. Only if the architecture does 5821 * not support ftrace_regs_caller but direct_call, use SAVE_ARGS so that it 5822 * jumps from ftrace_caller for multiple ftrace_ops. 5823 */ 5824 #ifndef CONFIG_HAVE_DYNAMIC_FTRACE_WITH_REGS 5825 #define MULTI_FLAGS (FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_ARGS) 5826 #else 5827 #define MULTI_FLAGS (FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS) 5828 #endif 5829 5830 static int check_direct_multi(struct ftrace_ops *ops) 5831 { 5832 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) 5833 return -EINVAL; 5834 if ((ops->flags & MULTI_FLAGS) != MULTI_FLAGS) 5835 return -EINVAL; 5836 return 0; 5837 } 5838 5839 static void remove_direct_functions_hash(struct ftrace_hash *hash, unsigned long addr) 5840 { 5841 struct ftrace_func_entry *entry, *del; 5842 int size, i; 5843 5844 size = 1 << hash->size_bits; 5845 for (i = 0; i < size; i++) { 5846 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5847 del = __ftrace_lookup_ip(direct_functions, entry->ip); 5848 if (del && del->direct == addr) { 5849 remove_hash_entry(direct_functions, del); 5850 kfree(del); 5851 } 5852 } 5853 } 5854 } 5855 5856 static void register_ftrace_direct_cb(struct rcu_head *rhp) 5857 { 5858 struct ftrace_hash *fhp = container_of(rhp, struct ftrace_hash, rcu); 5859 5860 free_ftrace_hash(fhp); 5861 } 5862 5863 /** 5864 * register_ftrace_direct - Call a custom trampoline directly 5865 * for multiple functions registered in @ops 5866 * @ops: The address of the struct ftrace_ops object 5867 * @addr: The address of the trampoline to call at @ops functions 5868 * 5869 * This is used to connect a direct calls to @addr from the nop locations 5870 * of the functions registered in @ops (with by ftrace_set_filter_ip 5871 * function). 5872 * 5873 * The location that it calls (@addr) must be able to handle a direct call, 5874 * and save the parameters of the function being traced, and restore them 5875 * (or inject new ones if needed), before returning. 5876 * 5877 * Returns: 5878 * 0 on success 5879 * -EINVAL - The @ops object was already registered with this call or 5880 * when there are no functions in @ops object. 5881 * -EBUSY - Another direct function is already attached (there can be only one) 5882 * -ENODEV - @ip does not point to a ftrace nop location (or not supported) 5883 * -ENOMEM - There was an allocation failure. 5884 */ 5885 int register_ftrace_direct(struct ftrace_ops *ops, unsigned long addr) 5886 { 5887 struct ftrace_hash *hash, *new_hash = NULL, *free_hash = NULL; 5888 struct ftrace_func_entry *entry, *new; 5889 int err = -EBUSY, size, i; 5890 5891 if (ops->func || ops->trampoline) 5892 return -EINVAL; 5893 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) 5894 return -EINVAL; 5895 if (ops->flags & FTRACE_OPS_FL_ENABLED) 5896 return -EINVAL; 5897 5898 hash = ops->func_hash->filter_hash; 5899 if (ftrace_hash_empty(hash)) 5900 return -EINVAL; 5901 5902 mutex_lock(&direct_mutex); 5903 5904 /* Make sure requested entries are not already registered.. */ 5905 size = 1 << hash->size_bits; 5906 for (i = 0; i < size; i++) { 5907 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5908 if (ftrace_find_rec_direct(entry->ip)) 5909 goto out_unlock; 5910 } 5911 } 5912 5913 err = -ENOMEM; 5914 5915 /* Make a copy hash to place the new and the old entries in */ 5916 size = hash->count + direct_functions->count; 5917 if (size > 32) 5918 size = 32; 5919 new_hash = alloc_ftrace_hash(fls(size)); 5920 if (!new_hash) 5921 goto out_unlock; 5922 5923 /* Now copy over the existing direct entries */ 5924 size = 1 << direct_functions->size_bits; 5925 for (i = 0; i < size; i++) { 5926 hlist_for_each_entry(entry, &direct_functions->buckets[i], hlist) { 5927 new = add_hash_entry(new_hash, entry->ip); 5928 if (!new) 5929 goto out_unlock; 5930 new->direct = entry->direct; 5931 } 5932 } 5933 5934 /* ... and add the new entries */ 5935 size = 1 << hash->size_bits; 5936 for (i = 0; i < size; i++) { 5937 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5938 new = add_hash_entry(new_hash, entry->ip); 5939 if (!new) 5940 goto out_unlock; 5941 /* Update both the copy and the hash entry */ 5942 new->direct = addr; 5943 entry->direct = addr; 5944 } 5945 } 5946 5947 free_hash = direct_functions; 5948 rcu_assign_pointer(direct_functions, new_hash); 5949 new_hash = NULL; 5950 5951 ops->func = call_direct_funcs; 5952 ops->flags = MULTI_FLAGS; 5953 ops->trampoline = FTRACE_REGS_ADDR; 5954 ops->direct_call = addr; 5955 5956 err = register_ftrace_function_nolock(ops); 5957 5958 out_unlock: 5959 mutex_unlock(&direct_mutex); 5960 5961 if (free_hash && free_hash != EMPTY_HASH) 5962 call_rcu_tasks(&free_hash->rcu, register_ftrace_direct_cb); 5963 5964 if (new_hash) 5965 free_ftrace_hash(new_hash); 5966 5967 return err; 5968 } 5969 EXPORT_SYMBOL_GPL(register_ftrace_direct); 5970 5971 /** 5972 * unregister_ftrace_direct - Remove calls to custom trampoline 5973 * previously registered by register_ftrace_direct for @ops object. 5974 * @ops: The address of the struct ftrace_ops object 5975 * @addr: The address of the direct function that is called by the @ops functions 5976 * @free_filters: Set to true to remove all filters for the ftrace_ops, false otherwise 5977 * 5978 * This is used to remove a direct calls to @addr from the nop locations 5979 * of the functions registered in @ops (with by ftrace_set_filter_ip 5980 * function). 5981 * 5982 * Returns: 5983 * 0 on success 5984 * -EINVAL - The @ops object was not properly registered. 5985 */ 5986 int unregister_ftrace_direct(struct ftrace_ops *ops, unsigned long addr, 5987 bool free_filters) 5988 { 5989 struct ftrace_hash *hash = ops->func_hash->filter_hash; 5990 int err; 5991 5992 if (check_direct_multi(ops)) 5993 return -EINVAL; 5994 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 5995 return -EINVAL; 5996 5997 mutex_lock(&direct_mutex); 5998 err = unregister_ftrace_function(ops); 5999 remove_direct_functions_hash(hash, addr); 6000 mutex_unlock(&direct_mutex); 6001 6002 /* cleanup for possible another register call */ 6003 ops->func = NULL; 6004 ops->trampoline = 0; 6005 6006 if (free_filters) 6007 ftrace_free_filter(ops); 6008 return err; 6009 } 6010 EXPORT_SYMBOL_GPL(unregister_ftrace_direct); 6011 6012 static int 6013 __modify_ftrace_direct(struct ftrace_ops *ops, unsigned long addr) 6014 { 6015 struct ftrace_hash *hash; 6016 struct ftrace_func_entry *entry, *iter; 6017 static struct ftrace_ops tmp_ops = { 6018 .func = ftrace_stub, 6019 .flags = FTRACE_OPS_FL_STUB, 6020 }; 6021 int i, size; 6022 int err; 6023 6024 lockdep_assert_held_once(&direct_mutex); 6025 6026 /* Enable the tmp_ops to have the same functions as the direct ops */ 6027 ftrace_ops_init(&tmp_ops); 6028 tmp_ops.func_hash = ops->func_hash; 6029 tmp_ops.direct_call = addr; 6030 6031 err = register_ftrace_function_nolock(&tmp_ops); 6032 if (err) 6033 return err; 6034 6035 /* 6036 * Now the ftrace_ops_list_func() is called to do the direct callers. 6037 * We can safely change the direct functions attached to each entry. 6038 */ 6039 mutex_lock(&ftrace_lock); 6040 6041 hash = ops->func_hash->filter_hash; 6042 size = 1 << hash->size_bits; 6043 for (i = 0; i < size; i++) { 6044 hlist_for_each_entry(iter, &hash->buckets[i], hlist) { 6045 entry = __ftrace_lookup_ip(direct_functions, iter->ip); 6046 if (!entry) 6047 continue; 6048 entry->direct = addr; 6049 } 6050 } 6051 /* Prevent store tearing if a trampoline concurrently accesses the value */ 6052 WRITE_ONCE(ops->direct_call, addr); 6053 6054 mutex_unlock(&ftrace_lock); 6055 6056 /* Removing the tmp_ops will add the updated direct callers to the functions */ 6057 unregister_ftrace_function(&tmp_ops); 6058 6059 return err; 6060 } 6061 6062 /** 6063 * modify_ftrace_direct_nolock - Modify an existing direct 'multi' call 6064 * to call something else 6065 * @ops: The address of the struct ftrace_ops object 6066 * @addr: The address of the new trampoline to call at @ops functions 6067 * 6068 * This is used to unregister currently registered direct caller and 6069 * register new one @addr on functions registered in @ops object. 6070 * 6071 * Note there's window between ftrace_shutdown and ftrace_startup calls 6072 * where there will be no callbacks called. 6073 * 6074 * Caller should already have direct_mutex locked, so we don't lock 6075 * direct_mutex here. 6076 * 6077 * Returns: zero on success. Non zero on error, which includes: 6078 * -EINVAL - The @ops object was not properly registered. 6079 */ 6080 int modify_ftrace_direct_nolock(struct ftrace_ops *ops, unsigned long addr) 6081 { 6082 if (check_direct_multi(ops)) 6083 return -EINVAL; 6084 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 6085 return -EINVAL; 6086 6087 return __modify_ftrace_direct(ops, addr); 6088 } 6089 EXPORT_SYMBOL_GPL(modify_ftrace_direct_nolock); 6090 6091 /** 6092 * modify_ftrace_direct - Modify an existing direct 'multi' call 6093 * to call something else 6094 * @ops: The address of the struct ftrace_ops object 6095 * @addr: The address of the new trampoline to call at @ops functions 6096 * 6097 * This is used to unregister currently registered direct caller and 6098 * register new one @addr on functions registered in @ops object. 6099 * 6100 * Note there's window between ftrace_shutdown and ftrace_startup calls 6101 * where there will be no callbacks called. 6102 * 6103 * Returns: zero on success. Non zero on error, which includes: 6104 * -EINVAL - The @ops object was not properly registered. 6105 */ 6106 int modify_ftrace_direct(struct ftrace_ops *ops, unsigned long addr) 6107 { 6108 int err; 6109 6110 if (check_direct_multi(ops)) 6111 return -EINVAL; 6112 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 6113 return -EINVAL; 6114 6115 mutex_lock(&direct_mutex); 6116 err = __modify_ftrace_direct(ops, addr); 6117 mutex_unlock(&direct_mutex); 6118 return err; 6119 } 6120 EXPORT_SYMBOL_GPL(modify_ftrace_direct); 6121 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 6122 6123 /** 6124 * ftrace_set_filter_ip - set a function to filter on in ftrace by address 6125 * @ops: the ops to set the filter with 6126 * @ip: the address to add to or remove from the filter. 6127 * @remove: non zero to remove the ip from the filter 6128 * @reset: non zero to reset all filters before applying this filter. 6129 * 6130 * Filters denote which functions should be enabled when tracing is enabled 6131 * If @ip is NULL, it fails to update filter. 6132 * 6133 * This can allocate memory which must be freed before @ops can be freed, 6134 * either by removing each filtered addr or by using 6135 * ftrace_free_filter(@ops). 6136 */ 6137 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip, 6138 int remove, int reset) 6139 { 6140 ftrace_ops_init(ops); 6141 return ftrace_set_addr(ops, &ip, 1, remove, reset, 1); 6142 } 6143 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip); 6144 6145 /** 6146 * ftrace_set_filter_ips - set functions to filter on in ftrace by addresses 6147 * @ops: the ops to set the filter with 6148 * @ips: the array of addresses to add to or remove from the filter. 6149 * @cnt: the number of addresses in @ips 6150 * @remove: non zero to remove ips from the filter 6151 * @reset: non zero to reset all filters before applying this filter. 6152 * 6153 * Filters denote which functions should be enabled when tracing is enabled 6154 * If @ips array or any ip specified within is NULL , it fails to update filter. 6155 * 6156 * This can allocate memory which must be freed before @ops can be freed, 6157 * either by removing each filtered addr or by using 6158 * ftrace_free_filter(@ops). 6159 */ 6160 int ftrace_set_filter_ips(struct ftrace_ops *ops, unsigned long *ips, 6161 unsigned int cnt, int remove, int reset) 6162 { 6163 ftrace_ops_init(ops); 6164 return ftrace_set_addr(ops, ips, cnt, remove, reset, 1); 6165 } 6166 EXPORT_SYMBOL_GPL(ftrace_set_filter_ips); 6167 6168 /** 6169 * ftrace_ops_set_global_filter - setup ops to use global filters 6170 * @ops: the ops which will use the global filters 6171 * 6172 * ftrace users who need global function trace filtering should call this. 6173 * It can set the global filter only if ops were not initialized before. 6174 */ 6175 void ftrace_ops_set_global_filter(struct ftrace_ops *ops) 6176 { 6177 if (ops->flags & FTRACE_OPS_FL_INITIALIZED) 6178 return; 6179 6180 ftrace_ops_init(ops); 6181 ops->func_hash = &global_ops.local_hash; 6182 } 6183 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter); 6184 6185 static int 6186 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 6187 int reset, int enable) 6188 { 6189 char *mod = NULL, *func, *command, *next = buf; 6190 char *tmp __free(kfree) = NULL; 6191 struct trace_array *tr = ops->private; 6192 int ret; 6193 6194 func = strsep(&next, ":"); 6195 6196 /* This can also handle :mod: parsing */ 6197 if (next) { 6198 if (!tr) 6199 return -EINVAL; 6200 6201 command = strsep(&next, ":"); 6202 if (strcmp(command, "mod") != 0) 6203 return -EINVAL; 6204 6205 mod = next; 6206 len = command - func; 6207 /* Save the original func as ftrace_set_hash() can modify it */ 6208 tmp = kstrdup(func, GFP_KERNEL); 6209 } 6210 6211 ret = ftrace_set_hash(ops, func, len, NULL, 0, 0, reset, enable, mod); 6212 6213 if (tr && mod && ret < 0) { 6214 /* Did tmp fail to allocate? */ 6215 if (!tmp) 6216 return -ENOMEM; 6217 ret = cache_mod(tr, tmp, mod, enable); 6218 } 6219 6220 return ret; 6221 } 6222 6223 /** 6224 * ftrace_set_filter - set a function to filter on in ftrace 6225 * @ops: the ops to set the filter with 6226 * @buf: the string that holds the function filter text. 6227 * @len: the length of the string. 6228 * @reset: non-zero to reset all filters before applying this filter. 6229 * 6230 * Filters denote which functions should be enabled when tracing is enabled. 6231 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 6232 * 6233 * This can allocate memory which must be freed before @ops can be freed, 6234 * either by removing each filtered addr or by using 6235 * ftrace_free_filter(@ops). 6236 */ 6237 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf, 6238 int len, int reset) 6239 { 6240 ftrace_ops_init(ops); 6241 return ftrace_set_regex(ops, buf, len, reset, 1); 6242 } 6243 EXPORT_SYMBOL_GPL(ftrace_set_filter); 6244 6245 /** 6246 * ftrace_set_notrace - set a function to not trace in ftrace 6247 * @ops: the ops to set the notrace filter with 6248 * @buf: the string that holds the function notrace text. 6249 * @len: the length of the string. 6250 * @reset: non-zero to reset all filters before applying this filter. 6251 * 6252 * Notrace Filters denote which functions should not be enabled when tracing 6253 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 6254 * for tracing. 6255 * 6256 * This can allocate memory which must be freed before @ops can be freed, 6257 * either by removing each filtered addr or by using 6258 * ftrace_free_filter(@ops). 6259 */ 6260 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf, 6261 int len, int reset) 6262 { 6263 ftrace_ops_init(ops); 6264 return ftrace_set_regex(ops, buf, len, reset, 0); 6265 } 6266 EXPORT_SYMBOL_GPL(ftrace_set_notrace); 6267 /** 6268 * ftrace_set_global_filter - set a function to filter on with global tracers 6269 * @buf: the string that holds the function filter text. 6270 * @len: the length of the string. 6271 * @reset: non-zero to reset all filters before applying this filter. 6272 * 6273 * Filters denote which functions should be enabled when tracing is enabled. 6274 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 6275 */ 6276 void ftrace_set_global_filter(unsigned char *buf, int len, int reset) 6277 { 6278 ftrace_set_regex(&global_ops, buf, len, reset, 1); 6279 } 6280 EXPORT_SYMBOL_GPL(ftrace_set_global_filter); 6281 6282 /** 6283 * ftrace_set_global_notrace - set a function to not trace with global tracers 6284 * @buf: the string that holds the function notrace text. 6285 * @len: the length of the string. 6286 * @reset: non-zero to reset all filters before applying this filter. 6287 * 6288 * Notrace Filters denote which functions should not be enabled when tracing 6289 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 6290 * for tracing. 6291 */ 6292 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset) 6293 { 6294 ftrace_set_regex(&global_ops, buf, len, reset, 0); 6295 } 6296 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace); 6297 6298 /* 6299 * command line interface to allow users to set filters on boot up. 6300 */ 6301 #define FTRACE_FILTER_SIZE COMMAND_LINE_SIZE 6302 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 6303 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata; 6304 6305 /* Used by function selftest to not test if filter is set */ 6306 bool ftrace_filter_param __initdata; 6307 6308 static int __init set_ftrace_notrace(char *str) 6309 { 6310 ftrace_filter_param = true; 6311 strscpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE); 6312 return 1; 6313 } 6314 __setup("ftrace_notrace=", set_ftrace_notrace); 6315 6316 static int __init set_ftrace_filter(char *str) 6317 { 6318 ftrace_filter_param = true; 6319 strscpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE); 6320 return 1; 6321 } 6322 __setup("ftrace_filter=", set_ftrace_filter); 6323 6324 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6325 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata; 6326 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 6327 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer); 6328 6329 static int __init set_graph_function(char *str) 6330 { 6331 strscpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE); 6332 return 1; 6333 } 6334 __setup("ftrace_graph_filter=", set_graph_function); 6335 6336 static int __init set_graph_notrace_function(char *str) 6337 { 6338 strscpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE); 6339 return 1; 6340 } 6341 __setup("ftrace_graph_notrace=", set_graph_notrace_function); 6342 6343 static int __init set_graph_max_depth_function(char *str) 6344 { 6345 if (!str || kstrtouint(str, 0, &fgraph_max_depth)) 6346 return 0; 6347 return 1; 6348 } 6349 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function); 6350 6351 static void __init set_ftrace_early_graph(char *buf, int enable) 6352 { 6353 int ret; 6354 char *func; 6355 struct ftrace_hash *hash; 6356 6357 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 6358 if (MEM_FAIL(!hash, "Failed to allocate hash\n")) 6359 return; 6360 6361 while (buf) { 6362 func = strsep(&buf, ","); 6363 /* we allow only one expression at a time */ 6364 ret = ftrace_graph_set_hash(hash, func); 6365 if (ret) 6366 printk(KERN_DEBUG "ftrace: function %s not " 6367 "traceable\n", func); 6368 } 6369 6370 if (enable) 6371 ftrace_graph_hash = hash; 6372 else 6373 ftrace_graph_notrace_hash = hash; 6374 } 6375 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6376 6377 void __init 6378 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable) 6379 { 6380 char *func; 6381 6382 ftrace_ops_init(ops); 6383 6384 /* The trace_array is needed for caching module function filters */ 6385 if (!ops->private) { 6386 struct trace_array *tr = trace_get_global_array(); 6387 6388 ops->private = tr; 6389 ftrace_init_trace_array(tr); 6390 } 6391 6392 while (buf) { 6393 func = strsep(&buf, ","); 6394 ftrace_set_regex(ops, func, strlen(func), 0, enable); 6395 } 6396 } 6397 6398 static void __init set_ftrace_early_filters(void) 6399 { 6400 if (ftrace_filter_buf[0]) 6401 ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1); 6402 if (ftrace_notrace_buf[0]) 6403 ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0); 6404 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6405 if (ftrace_graph_buf[0]) 6406 set_ftrace_early_graph(ftrace_graph_buf, 1); 6407 if (ftrace_graph_notrace_buf[0]) 6408 set_ftrace_early_graph(ftrace_graph_notrace_buf, 0); 6409 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6410 } 6411 6412 int ftrace_regex_release(struct inode *inode, struct file *file) 6413 { 6414 struct seq_file *m = (struct seq_file *)file->private_data; 6415 struct ftrace_iterator *iter; 6416 struct ftrace_hash **orig_hash; 6417 struct trace_parser *parser; 6418 int filter_hash; 6419 6420 if (file->f_mode & FMODE_READ) { 6421 iter = m->private; 6422 seq_release(inode, file); 6423 } else 6424 iter = file->private_data; 6425 6426 parser = &iter->parser; 6427 if (trace_parser_loaded(parser)) { 6428 int enable = !(iter->flags & FTRACE_ITER_NOTRACE); 6429 6430 ftrace_process_regex(iter, parser->buffer, 6431 parser->idx, enable); 6432 } 6433 6434 trace_parser_put(parser); 6435 6436 mutex_lock(&iter->ops->func_hash->regex_lock); 6437 6438 if (file->f_mode & FMODE_WRITE) { 6439 filter_hash = !!(iter->flags & FTRACE_ITER_FILTER); 6440 6441 if (filter_hash) { 6442 orig_hash = &iter->ops->func_hash->filter_hash; 6443 if (iter->tr) { 6444 if (list_empty(&iter->tr->mod_trace)) 6445 iter->hash->flags &= ~FTRACE_HASH_FL_MOD; 6446 else 6447 iter->hash->flags |= FTRACE_HASH_FL_MOD; 6448 } 6449 } else 6450 orig_hash = &iter->ops->func_hash->notrace_hash; 6451 6452 mutex_lock(&ftrace_lock); 6453 ftrace_hash_move_and_update_ops(iter->ops, orig_hash, 6454 iter->hash, filter_hash); 6455 mutex_unlock(&ftrace_lock); 6456 } else { 6457 /* For read only, the hash is the ops hash */ 6458 iter->hash = NULL; 6459 } 6460 6461 mutex_unlock(&iter->ops->func_hash->regex_lock); 6462 free_ftrace_hash(iter->hash); 6463 if (iter->tr) 6464 trace_array_put(iter->tr); 6465 kfree(iter); 6466 6467 return 0; 6468 } 6469 6470 static const struct file_operations ftrace_avail_fops = { 6471 .open = ftrace_avail_open, 6472 .read = seq_read, 6473 .llseek = seq_lseek, 6474 .release = seq_release_private, 6475 }; 6476 6477 static const struct file_operations ftrace_enabled_fops = { 6478 .open = ftrace_enabled_open, 6479 .read = seq_read, 6480 .llseek = seq_lseek, 6481 .release = seq_release_private, 6482 }; 6483 6484 static const struct file_operations ftrace_touched_fops = { 6485 .open = ftrace_touched_open, 6486 .read = seq_read, 6487 .llseek = seq_lseek, 6488 .release = seq_release_private, 6489 }; 6490 6491 static const struct file_operations ftrace_avail_addrs_fops = { 6492 .open = ftrace_avail_addrs_open, 6493 .read = seq_read, 6494 .llseek = seq_lseek, 6495 .release = seq_release_private, 6496 }; 6497 6498 static const struct file_operations ftrace_filter_fops = { 6499 .open = ftrace_filter_open, 6500 .read = seq_read, 6501 .write = ftrace_filter_write, 6502 .llseek = tracing_lseek, 6503 .release = ftrace_regex_release, 6504 }; 6505 6506 static const struct file_operations ftrace_notrace_fops = { 6507 .open = ftrace_notrace_open, 6508 .read = seq_read, 6509 .write = ftrace_notrace_write, 6510 .llseek = tracing_lseek, 6511 .release = ftrace_regex_release, 6512 }; 6513 6514 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6515 6516 static DEFINE_MUTEX(graph_lock); 6517 6518 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH; 6519 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH; 6520 6521 enum graph_filter_type { 6522 GRAPH_FILTER_NOTRACE = 0, 6523 GRAPH_FILTER_FUNCTION, 6524 }; 6525 6526 #define FTRACE_GRAPH_EMPTY ((void *)1) 6527 6528 struct ftrace_graph_data { 6529 struct ftrace_hash *hash; 6530 struct ftrace_func_entry *entry; 6531 int idx; /* for hash table iteration */ 6532 enum graph_filter_type type; 6533 struct ftrace_hash *new_hash; 6534 const struct seq_operations *seq_ops; 6535 struct trace_parser parser; 6536 }; 6537 6538 static void * 6539 __g_next(struct seq_file *m, loff_t *pos) 6540 { 6541 struct ftrace_graph_data *fgd = m->private; 6542 struct ftrace_func_entry *entry = fgd->entry; 6543 struct hlist_head *head; 6544 int i, idx = fgd->idx; 6545 6546 if (*pos >= fgd->hash->count) 6547 return NULL; 6548 6549 if (entry) { 6550 hlist_for_each_entry_continue(entry, hlist) { 6551 fgd->entry = entry; 6552 return entry; 6553 } 6554 6555 idx++; 6556 } 6557 6558 for (i = idx; i < 1 << fgd->hash->size_bits; i++) { 6559 head = &fgd->hash->buckets[i]; 6560 hlist_for_each_entry(entry, head, hlist) { 6561 fgd->entry = entry; 6562 fgd->idx = i; 6563 return entry; 6564 } 6565 } 6566 return NULL; 6567 } 6568 6569 static void * 6570 g_next(struct seq_file *m, void *v, loff_t *pos) 6571 { 6572 (*pos)++; 6573 return __g_next(m, pos); 6574 } 6575 6576 static void *g_start(struct seq_file *m, loff_t *pos) 6577 { 6578 struct ftrace_graph_data *fgd = m->private; 6579 6580 mutex_lock(&graph_lock); 6581 6582 if (fgd->type == GRAPH_FILTER_FUNCTION) 6583 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 6584 lockdep_is_held(&graph_lock)); 6585 else 6586 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6587 lockdep_is_held(&graph_lock)); 6588 6589 /* Nothing, tell g_show to print all functions are enabled */ 6590 if (ftrace_hash_empty(fgd->hash) && !*pos) 6591 return FTRACE_GRAPH_EMPTY; 6592 6593 fgd->idx = 0; 6594 fgd->entry = NULL; 6595 return __g_next(m, pos); 6596 } 6597 6598 static void g_stop(struct seq_file *m, void *p) 6599 { 6600 mutex_unlock(&graph_lock); 6601 } 6602 6603 static int g_show(struct seq_file *m, void *v) 6604 { 6605 struct ftrace_func_entry *entry = v; 6606 6607 if (!entry) 6608 return 0; 6609 6610 if (entry == FTRACE_GRAPH_EMPTY) { 6611 struct ftrace_graph_data *fgd = m->private; 6612 6613 if (fgd->type == GRAPH_FILTER_FUNCTION) 6614 seq_puts(m, "#### all functions enabled ####\n"); 6615 else 6616 seq_puts(m, "#### no functions disabled ####\n"); 6617 return 0; 6618 } 6619 6620 seq_printf(m, "%ps\n", (void *)entry->ip); 6621 6622 return 0; 6623 } 6624 6625 static const struct seq_operations ftrace_graph_seq_ops = { 6626 .start = g_start, 6627 .next = g_next, 6628 .stop = g_stop, 6629 .show = g_show, 6630 }; 6631 6632 static int 6633 __ftrace_graph_open(struct inode *inode, struct file *file, 6634 struct ftrace_graph_data *fgd) 6635 { 6636 int ret; 6637 struct ftrace_hash *new_hash = NULL; 6638 6639 ret = security_locked_down(LOCKDOWN_TRACEFS); 6640 if (ret) 6641 return ret; 6642 6643 if (file->f_mode & FMODE_WRITE) { 6644 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 6645 6646 if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX)) 6647 return -ENOMEM; 6648 6649 if (file->f_flags & O_TRUNC) 6650 new_hash = alloc_ftrace_hash(size_bits); 6651 else 6652 new_hash = alloc_and_copy_ftrace_hash(size_bits, 6653 fgd->hash); 6654 if (!new_hash) { 6655 ret = -ENOMEM; 6656 goto out; 6657 } 6658 } 6659 6660 if (file->f_mode & FMODE_READ) { 6661 ret = seq_open(file, &ftrace_graph_seq_ops); 6662 if (!ret) { 6663 struct seq_file *m = file->private_data; 6664 m->private = fgd; 6665 } else { 6666 /* Failed */ 6667 free_ftrace_hash(new_hash); 6668 new_hash = NULL; 6669 } 6670 } else 6671 file->private_data = fgd; 6672 6673 out: 6674 if (ret < 0 && file->f_mode & FMODE_WRITE) 6675 trace_parser_put(&fgd->parser); 6676 6677 fgd->new_hash = new_hash; 6678 6679 /* 6680 * All uses of fgd->hash must be taken with the graph_lock 6681 * held. The graph_lock is going to be released, so force 6682 * fgd->hash to be reinitialized when it is taken again. 6683 */ 6684 fgd->hash = NULL; 6685 6686 return ret; 6687 } 6688 6689 static int 6690 ftrace_graph_open(struct inode *inode, struct file *file) 6691 { 6692 struct ftrace_graph_data *fgd; 6693 int ret; 6694 6695 if (unlikely(ftrace_disabled)) 6696 return -ENODEV; 6697 6698 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 6699 if (fgd == NULL) 6700 return -ENOMEM; 6701 6702 mutex_lock(&graph_lock); 6703 6704 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 6705 lockdep_is_held(&graph_lock)); 6706 fgd->type = GRAPH_FILTER_FUNCTION; 6707 fgd->seq_ops = &ftrace_graph_seq_ops; 6708 6709 ret = __ftrace_graph_open(inode, file, fgd); 6710 if (ret < 0) 6711 kfree(fgd); 6712 6713 mutex_unlock(&graph_lock); 6714 return ret; 6715 } 6716 6717 static int 6718 ftrace_graph_notrace_open(struct inode *inode, struct file *file) 6719 { 6720 struct ftrace_graph_data *fgd; 6721 int ret; 6722 6723 if (unlikely(ftrace_disabled)) 6724 return -ENODEV; 6725 6726 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 6727 if (fgd == NULL) 6728 return -ENOMEM; 6729 6730 mutex_lock(&graph_lock); 6731 6732 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6733 lockdep_is_held(&graph_lock)); 6734 fgd->type = GRAPH_FILTER_NOTRACE; 6735 fgd->seq_ops = &ftrace_graph_seq_ops; 6736 6737 ret = __ftrace_graph_open(inode, file, fgd); 6738 if (ret < 0) 6739 kfree(fgd); 6740 6741 mutex_unlock(&graph_lock); 6742 return ret; 6743 } 6744 6745 static int 6746 ftrace_graph_release(struct inode *inode, struct file *file) 6747 { 6748 struct ftrace_graph_data *fgd; 6749 struct ftrace_hash *old_hash, *new_hash; 6750 struct trace_parser *parser; 6751 int ret = 0; 6752 6753 if (file->f_mode & FMODE_READ) { 6754 struct seq_file *m = file->private_data; 6755 6756 fgd = m->private; 6757 seq_release(inode, file); 6758 } else { 6759 fgd = file->private_data; 6760 } 6761 6762 6763 if (file->f_mode & FMODE_WRITE) { 6764 6765 parser = &fgd->parser; 6766 6767 if (trace_parser_loaded((parser))) { 6768 ret = ftrace_graph_set_hash(fgd->new_hash, 6769 parser->buffer); 6770 } 6771 6772 trace_parser_put(parser); 6773 6774 new_hash = __ftrace_hash_move(fgd->new_hash); 6775 if (!new_hash) { 6776 ret = -ENOMEM; 6777 goto out; 6778 } 6779 6780 mutex_lock(&graph_lock); 6781 6782 if (fgd->type == GRAPH_FILTER_FUNCTION) { 6783 old_hash = rcu_dereference_protected(ftrace_graph_hash, 6784 lockdep_is_held(&graph_lock)); 6785 rcu_assign_pointer(ftrace_graph_hash, new_hash); 6786 } else { 6787 old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6788 lockdep_is_held(&graph_lock)); 6789 rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash); 6790 } 6791 6792 mutex_unlock(&graph_lock); 6793 6794 /* 6795 * We need to do a hard force of sched synchronization. 6796 * This is because we use preempt_disable() to do RCU, but 6797 * the function tracers can be called where RCU is not watching 6798 * (like before user_exit()). We can not rely on the RCU 6799 * infrastructure to do the synchronization, thus we must do it 6800 * ourselves. 6801 */ 6802 if (old_hash != EMPTY_HASH) 6803 synchronize_rcu_tasks_rude(); 6804 6805 free_ftrace_hash(old_hash); 6806 } 6807 6808 out: 6809 free_ftrace_hash(fgd->new_hash); 6810 kfree(fgd); 6811 6812 return ret; 6813 } 6814 6815 static int 6816 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer) 6817 { 6818 struct ftrace_glob func_g; 6819 struct dyn_ftrace *rec; 6820 struct ftrace_page *pg; 6821 struct ftrace_func_entry *entry; 6822 int fail = 1; 6823 int not; 6824 6825 /* decode regex */ 6826 func_g.type = filter_parse_regex(buffer, strlen(buffer), 6827 &func_g.search, ¬); 6828 6829 func_g.len = strlen(func_g.search); 6830 6831 guard(mutex)(&ftrace_lock); 6832 6833 if (unlikely(ftrace_disabled)) 6834 return -ENODEV; 6835 6836 do_for_each_ftrace_rec(pg, rec) { 6837 6838 if (rec->flags & FTRACE_FL_DISABLED) 6839 continue; 6840 6841 if (ftrace_match_record(rec, &func_g, NULL, 0)) { 6842 entry = ftrace_lookup_ip(hash, rec->ip); 6843 6844 if (!not) { 6845 fail = 0; 6846 6847 if (entry) 6848 continue; 6849 if (add_hash_entry(hash, rec->ip) == NULL) 6850 return 0; 6851 } else { 6852 if (entry) { 6853 free_hash_entry(hash, entry); 6854 fail = 0; 6855 } 6856 } 6857 } 6858 } while_for_each_ftrace_rec(); 6859 6860 return fail ? -EINVAL : 0; 6861 } 6862 6863 static ssize_t 6864 ftrace_graph_write(struct file *file, const char __user *ubuf, 6865 size_t cnt, loff_t *ppos) 6866 { 6867 ssize_t read, ret = 0; 6868 struct ftrace_graph_data *fgd = file->private_data; 6869 struct trace_parser *parser; 6870 6871 if (!cnt) 6872 return 0; 6873 6874 /* Read mode uses seq functions */ 6875 if (file->f_mode & FMODE_READ) { 6876 struct seq_file *m = file->private_data; 6877 fgd = m->private; 6878 } 6879 6880 parser = &fgd->parser; 6881 6882 read = trace_get_user(parser, ubuf, cnt, ppos); 6883 6884 if (read >= 0 && trace_parser_loaded(parser) && 6885 !trace_parser_cont(parser)) { 6886 6887 ret = ftrace_graph_set_hash(fgd->new_hash, 6888 parser->buffer); 6889 trace_parser_clear(parser); 6890 } 6891 6892 if (!ret) 6893 ret = read; 6894 6895 return ret; 6896 } 6897 6898 static const struct file_operations ftrace_graph_fops = { 6899 .open = ftrace_graph_open, 6900 .read = seq_read, 6901 .write = ftrace_graph_write, 6902 .llseek = tracing_lseek, 6903 .release = ftrace_graph_release, 6904 }; 6905 6906 static const struct file_operations ftrace_graph_notrace_fops = { 6907 .open = ftrace_graph_notrace_open, 6908 .read = seq_read, 6909 .write = ftrace_graph_write, 6910 .llseek = tracing_lseek, 6911 .release = ftrace_graph_release, 6912 }; 6913 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6914 6915 void ftrace_create_filter_files(struct ftrace_ops *ops, 6916 struct dentry *parent) 6917 { 6918 6919 trace_create_file("set_ftrace_filter", TRACE_MODE_WRITE, parent, 6920 ops, &ftrace_filter_fops); 6921 6922 trace_create_file("set_ftrace_notrace", TRACE_MODE_WRITE, parent, 6923 ops, &ftrace_notrace_fops); 6924 } 6925 6926 /* 6927 * The name "destroy_filter_files" is really a misnomer. Although 6928 * in the future, it may actually delete the files, but this is 6929 * really intended to make sure the ops passed in are disabled 6930 * and that when this function returns, the caller is free to 6931 * free the ops. 6932 * 6933 * The "destroy" name is only to match the "create" name that this 6934 * should be paired with. 6935 */ 6936 void ftrace_destroy_filter_files(struct ftrace_ops *ops) 6937 { 6938 mutex_lock(&ftrace_lock); 6939 if (ops->flags & FTRACE_OPS_FL_ENABLED) 6940 ftrace_shutdown(ops, 0); 6941 ops->flags |= FTRACE_OPS_FL_DELETED; 6942 ftrace_free_filter(ops); 6943 mutex_unlock(&ftrace_lock); 6944 } 6945 6946 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer) 6947 { 6948 6949 trace_create_file("available_filter_functions", TRACE_MODE_READ, 6950 d_tracer, NULL, &ftrace_avail_fops); 6951 6952 trace_create_file("available_filter_functions_addrs", TRACE_MODE_READ, 6953 d_tracer, NULL, &ftrace_avail_addrs_fops); 6954 6955 trace_create_file("enabled_functions", TRACE_MODE_READ, 6956 d_tracer, NULL, &ftrace_enabled_fops); 6957 6958 trace_create_file("touched_functions", TRACE_MODE_READ, 6959 d_tracer, NULL, &ftrace_touched_fops); 6960 6961 ftrace_create_filter_files(&global_ops, d_tracer); 6962 6963 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6964 trace_create_file("set_graph_function", TRACE_MODE_WRITE, d_tracer, 6965 NULL, 6966 &ftrace_graph_fops); 6967 trace_create_file("set_graph_notrace", TRACE_MODE_WRITE, d_tracer, 6968 NULL, 6969 &ftrace_graph_notrace_fops); 6970 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6971 6972 return 0; 6973 } 6974 6975 static int ftrace_cmp_ips(const void *a, const void *b) 6976 { 6977 const unsigned long *ipa = a; 6978 const unsigned long *ipb = b; 6979 6980 if (*ipa > *ipb) 6981 return 1; 6982 if (*ipa < *ipb) 6983 return -1; 6984 return 0; 6985 } 6986 6987 #ifdef CONFIG_FTRACE_SORT_STARTUP_TEST 6988 static void test_is_sorted(unsigned long *start, unsigned long count) 6989 { 6990 int i; 6991 6992 for (i = 1; i < count; i++) { 6993 if (WARN(start[i - 1] > start[i], 6994 "[%d] %pS at %lx is not sorted with %pS at %lx\n", i, 6995 (void *)start[i - 1], start[i - 1], 6996 (void *)start[i], start[i])) 6997 break; 6998 } 6999 if (i == count) 7000 pr_info("ftrace section at %px sorted properly\n", start); 7001 } 7002 #else 7003 static void test_is_sorted(unsigned long *start, unsigned long count) 7004 { 7005 } 7006 #endif 7007 7008 static int ftrace_process_locs(struct module *mod, 7009 unsigned long *start, 7010 unsigned long *end) 7011 { 7012 struct ftrace_page *pg_unuse = NULL; 7013 struct ftrace_page *start_pg; 7014 struct ftrace_page *pg; 7015 struct dyn_ftrace *rec; 7016 unsigned long skipped = 0; 7017 unsigned long count; 7018 unsigned long *p; 7019 unsigned long addr; 7020 unsigned long flags = 0; /* Shut up gcc */ 7021 unsigned long pages; 7022 int ret = -ENOMEM; 7023 7024 count = end - start; 7025 7026 if (!count) 7027 return 0; 7028 7029 pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE); 7030 7031 /* 7032 * Sorting mcount in vmlinux at build time depend on 7033 * CONFIG_BUILDTIME_MCOUNT_SORT, while mcount loc in 7034 * modules can not be sorted at build time. 7035 */ 7036 if (!IS_ENABLED(CONFIG_BUILDTIME_MCOUNT_SORT) || mod) { 7037 sort(start, count, sizeof(*start), 7038 ftrace_cmp_ips, NULL); 7039 } else { 7040 test_is_sorted(start, count); 7041 } 7042 7043 start_pg = ftrace_allocate_pages(count); 7044 if (!start_pg) 7045 return -ENOMEM; 7046 7047 mutex_lock(&ftrace_lock); 7048 7049 /* 7050 * Core and each module needs their own pages, as 7051 * modules will free them when they are removed. 7052 * Force a new page to be allocated for modules. 7053 */ 7054 if (!mod) { 7055 WARN_ON(ftrace_pages || ftrace_pages_start); 7056 /* First initialization */ 7057 ftrace_pages = ftrace_pages_start = start_pg; 7058 } else { 7059 if (!ftrace_pages) 7060 goto out; 7061 7062 if (WARN_ON(ftrace_pages->next)) { 7063 /* Hmm, we have free pages? */ 7064 while (ftrace_pages->next) 7065 ftrace_pages = ftrace_pages->next; 7066 } 7067 7068 ftrace_pages->next = start_pg; 7069 } 7070 7071 p = start; 7072 pg = start_pg; 7073 while (p < end) { 7074 unsigned long end_offset; 7075 7076 addr = *p++; 7077 7078 /* 7079 * Some architecture linkers will pad between 7080 * the different mcount_loc sections of different 7081 * object files to satisfy alignments. 7082 * Skip any NULL pointers. 7083 */ 7084 if (!addr) { 7085 skipped++; 7086 continue; 7087 } 7088 7089 /* 7090 * If this is core kernel, make sure the address is in core 7091 * or inittext, as weak functions get zeroed and KASLR can 7092 * move them to something other than zero. It just will not 7093 * move it to an area where kernel text is. 7094 */ 7095 if (!mod && !(is_kernel_text(addr) || is_kernel_inittext(addr))) { 7096 skipped++; 7097 continue; 7098 } 7099 7100 addr = ftrace_call_adjust(addr); 7101 7102 end_offset = (pg->index+1) * sizeof(pg->records[0]); 7103 if (end_offset > PAGE_SIZE << pg->order) { 7104 /* We should have allocated enough */ 7105 if (WARN_ON(!pg->next)) 7106 break; 7107 pg = pg->next; 7108 } 7109 7110 rec = &pg->records[pg->index++]; 7111 rec->ip = addr; 7112 } 7113 7114 if (pg->next) { 7115 pg_unuse = pg->next; 7116 pg->next = NULL; 7117 } 7118 7119 /* Assign the last page to ftrace_pages */ 7120 ftrace_pages = pg; 7121 7122 /* 7123 * We only need to disable interrupts on start up 7124 * because we are modifying code that an interrupt 7125 * may execute, and the modification is not atomic. 7126 * But for modules, nothing runs the code we modify 7127 * until we are finished with it, and there's no 7128 * reason to cause large interrupt latencies while we do it. 7129 */ 7130 if (!mod) 7131 local_irq_save(flags); 7132 ftrace_update_code(mod, start_pg); 7133 if (!mod) 7134 local_irq_restore(flags); 7135 ret = 0; 7136 out: 7137 mutex_unlock(&ftrace_lock); 7138 7139 /* We should have used all pages unless we skipped some */ 7140 if (pg_unuse) { 7141 unsigned long pg_remaining, remaining = 0; 7142 unsigned long skip; 7143 7144 /* Count the number of entries unused and compare it to skipped. */ 7145 pg_remaining = (ENTRIES_PER_PAGE << pg->order) - pg->index; 7146 7147 if (!WARN(skipped < pg_remaining, "Extra allocated pages for ftrace")) { 7148 7149 skip = skipped - pg_remaining; 7150 7151 for (pg = pg_unuse; pg; pg = pg->next) 7152 remaining += 1 << pg->order; 7153 7154 pages -= remaining; 7155 7156 skip = DIV_ROUND_UP(skip, ENTRIES_PER_PAGE); 7157 7158 /* 7159 * Check to see if the number of pages remaining would 7160 * just fit the number of entries skipped. 7161 */ 7162 WARN(skip != remaining, "Extra allocated pages for ftrace: %lu with %lu skipped", 7163 remaining, skipped); 7164 } 7165 /* Need to synchronize with ftrace_location_range() */ 7166 synchronize_rcu(); 7167 ftrace_free_pages(pg_unuse); 7168 } 7169 7170 if (!mod) { 7171 count -= skipped; 7172 pr_info("ftrace: allocating %ld entries in %ld pages\n", 7173 count, pages); 7174 } 7175 7176 return ret; 7177 } 7178 7179 struct ftrace_mod_func { 7180 struct list_head list; 7181 char *name; 7182 unsigned long ip; 7183 unsigned int size; 7184 }; 7185 7186 struct ftrace_mod_map { 7187 struct rcu_head rcu; 7188 struct list_head list; 7189 struct module *mod; 7190 unsigned long start_addr; 7191 unsigned long end_addr; 7192 struct list_head funcs; 7193 unsigned int num_funcs; 7194 }; 7195 7196 static int ftrace_get_trampoline_kallsym(unsigned int symnum, 7197 unsigned long *value, char *type, 7198 char *name, char *module_name, 7199 int *exported) 7200 { 7201 struct ftrace_ops *op; 7202 7203 list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) { 7204 if (!op->trampoline || symnum--) 7205 continue; 7206 *value = op->trampoline; 7207 *type = 't'; 7208 strscpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN); 7209 strscpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN); 7210 *exported = 0; 7211 return 0; 7212 } 7213 7214 return -ERANGE; 7215 } 7216 7217 #if defined(CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS) || defined(CONFIG_MODULES) 7218 /* 7219 * Check if the current ops references the given ip. 7220 * 7221 * If the ops traces all functions, then it was already accounted for. 7222 * If the ops does not trace the current record function, skip it. 7223 * If the ops ignores the function via notrace filter, skip it. 7224 */ 7225 static bool 7226 ops_references_ip(struct ftrace_ops *ops, unsigned long ip) 7227 { 7228 /* If ops isn't enabled, ignore it */ 7229 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 7230 return false; 7231 7232 /* If ops traces all then it includes this function */ 7233 if (ops_traces_mod(ops)) 7234 return true; 7235 7236 /* The function must be in the filter */ 7237 if (!ftrace_hash_empty(ops->func_hash->filter_hash) && 7238 !__ftrace_lookup_ip(ops->func_hash->filter_hash, ip)) 7239 return false; 7240 7241 /* If in notrace hash, we ignore it too */ 7242 if (ftrace_lookup_ip(ops->func_hash->notrace_hash, ip)) 7243 return false; 7244 7245 return true; 7246 } 7247 #endif 7248 7249 #ifdef CONFIG_MODULES 7250 7251 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next) 7252 7253 static LIST_HEAD(ftrace_mod_maps); 7254 7255 static int referenced_filters(struct dyn_ftrace *rec) 7256 { 7257 struct ftrace_ops *ops; 7258 int cnt = 0; 7259 7260 for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) { 7261 if (ops_references_ip(ops, rec->ip)) { 7262 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT)) 7263 continue; 7264 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 7265 continue; 7266 cnt++; 7267 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 7268 rec->flags |= FTRACE_FL_REGS; 7269 if (cnt == 1 && ops->trampoline) 7270 rec->flags |= FTRACE_FL_TRAMP; 7271 else 7272 rec->flags &= ~FTRACE_FL_TRAMP; 7273 } 7274 } 7275 7276 return cnt; 7277 } 7278 7279 static void 7280 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash) 7281 { 7282 struct ftrace_func_entry *entry; 7283 struct dyn_ftrace *rec; 7284 int i; 7285 7286 if (ftrace_hash_empty(hash)) 7287 return; 7288 7289 for (i = 0; i < pg->index; i++) { 7290 rec = &pg->records[i]; 7291 entry = __ftrace_lookup_ip(hash, rec->ip); 7292 /* 7293 * Do not allow this rec to match again. 7294 * Yeah, it may waste some memory, but will be removed 7295 * if/when the hash is modified again. 7296 */ 7297 if (entry) 7298 entry->ip = 0; 7299 } 7300 } 7301 7302 /* Clear any records from hashes */ 7303 static void clear_mod_from_hashes(struct ftrace_page *pg) 7304 { 7305 struct trace_array *tr; 7306 7307 mutex_lock(&trace_types_lock); 7308 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 7309 if (!tr->ops || !tr->ops->func_hash) 7310 continue; 7311 mutex_lock(&tr->ops->func_hash->regex_lock); 7312 clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash); 7313 clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash); 7314 mutex_unlock(&tr->ops->func_hash->regex_lock); 7315 } 7316 mutex_unlock(&trace_types_lock); 7317 } 7318 7319 static void ftrace_free_mod_map(struct rcu_head *rcu) 7320 { 7321 struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu); 7322 struct ftrace_mod_func *mod_func; 7323 struct ftrace_mod_func *n; 7324 7325 /* All the contents of mod_map are now not visible to readers */ 7326 list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) { 7327 kfree(mod_func->name); 7328 list_del(&mod_func->list); 7329 kfree(mod_func); 7330 } 7331 7332 kfree(mod_map); 7333 } 7334 7335 void ftrace_release_mod(struct module *mod) 7336 { 7337 struct ftrace_mod_map *mod_map; 7338 struct ftrace_mod_map *n; 7339 struct dyn_ftrace *rec; 7340 struct ftrace_page **last_pg; 7341 struct ftrace_page *tmp_page = NULL; 7342 struct ftrace_page *pg; 7343 7344 mutex_lock(&ftrace_lock); 7345 7346 if (ftrace_disabled) 7347 goto out_unlock; 7348 7349 list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) { 7350 if (mod_map->mod == mod) { 7351 list_del_rcu(&mod_map->list); 7352 call_rcu(&mod_map->rcu, ftrace_free_mod_map); 7353 break; 7354 } 7355 } 7356 7357 /* 7358 * Each module has its own ftrace_pages, remove 7359 * them from the list. 7360 */ 7361 last_pg = &ftrace_pages_start; 7362 for (pg = ftrace_pages_start; pg; pg = *last_pg) { 7363 rec = &pg->records[0]; 7364 if (within_module(rec->ip, mod)) { 7365 /* 7366 * As core pages are first, the first 7367 * page should never be a module page. 7368 */ 7369 if (WARN_ON(pg == ftrace_pages_start)) 7370 goto out_unlock; 7371 7372 /* Check if we are deleting the last page */ 7373 if (pg == ftrace_pages) 7374 ftrace_pages = next_to_ftrace_page(last_pg); 7375 7376 ftrace_update_tot_cnt -= pg->index; 7377 *last_pg = pg->next; 7378 7379 pg->next = tmp_page; 7380 tmp_page = pg; 7381 } else 7382 last_pg = &pg->next; 7383 } 7384 out_unlock: 7385 mutex_unlock(&ftrace_lock); 7386 7387 /* Need to synchronize with ftrace_location_range() */ 7388 if (tmp_page) 7389 synchronize_rcu(); 7390 for (pg = tmp_page; pg; pg = tmp_page) { 7391 7392 /* Needs to be called outside of ftrace_lock */ 7393 clear_mod_from_hashes(pg); 7394 7395 if (pg->records) { 7396 free_pages((unsigned long)pg->records, pg->order); 7397 ftrace_number_of_pages -= 1 << pg->order; 7398 } 7399 tmp_page = pg->next; 7400 kfree(pg); 7401 ftrace_number_of_groups--; 7402 } 7403 } 7404 7405 void ftrace_module_enable(struct module *mod) 7406 { 7407 struct dyn_ftrace *rec; 7408 struct ftrace_page *pg; 7409 7410 mutex_lock(&ftrace_lock); 7411 7412 if (ftrace_disabled) 7413 goto out_unlock; 7414 7415 /* 7416 * If the tracing is enabled, go ahead and enable the record. 7417 * 7418 * The reason not to enable the record immediately is the 7419 * inherent check of ftrace_make_nop/ftrace_make_call for 7420 * correct previous instructions. Making first the NOP 7421 * conversion puts the module to the correct state, thus 7422 * passing the ftrace_make_call check. 7423 * 7424 * We also delay this to after the module code already set the 7425 * text to read-only, as we now need to set it back to read-write 7426 * so that we can modify the text. 7427 */ 7428 if (ftrace_start_up) 7429 ftrace_arch_code_modify_prepare(); 7430 7431 do_for_each_ftrace_rec(pg, rec) { 7432 int cnt; 7433 /* 7434 * do_for_each_ftrace_rec() is a double loop. 7435 * module text shares the pg. If a record is 7436 * not part of this module, then skip this pg, 7437 * which the "break" will do. 7438 */ 7439 if (!within_module(rec->ip, mod)) 7440 break; 7441 7442 /* Weak functions should still be ignored */ 7443 if (!test_for_valid_rec(rec)) { 7444 /* Clear all other flags. Should not be enabled anyway */ 7445 rec->flags = FTRACE_FL_DISABLED; 7446 continue; 7447 } 7448 7449 cnt = 0; 7450 7451 /* 7452 * When adding a module, we need to check if tracers are 7453 * currently enabled and if they are, and can trace this record, 7454 * we need to enable the module functions as well as update the 7455 * reference counts for those function records. 7456 */ 7457 if (ftrace_start_up) 7458 cnt += referenced_filters(rec); 7459 7460 rec->flags &= ~FTRACE_FL_DISABLED; 7461 rec->flags += cnt; 7462 7463 if (ftrace_start_up && cnt) { 7464 int failed = __ftrace_replace_code(rec, 1); 7465 if (failed) { 7466 ftrace_bug(failed, rec); 7467 goto out_loop; 7468 } 7469 } 7470 7471 } while_for_each_ftrace_rec(); 7472 7473 out_loop: 7474 if (ftrace_start_up) 7475 ftrace_arch_code_modify_post_process(); 7476 7477 out_unlock: 7478 mutex_unlock(&ftrace_lock); 7479 7480 process_cached_mods(mod->name); 7481 } 7482 7483 void ftrace_module_init(struct module *mod) 7484 { 7485 int ret; 7486 7487 if (ftrace_disabled || !mod->num_ftrace_callsites) 7488 return; 7489 7490 ret = ftrace_process_locs(mod, mod->ftrace_callsites, 7491 mod->ftrace_callsites + mod->num_ftrace_callsites); 7492 if (ret) 7493 pr_warn("ftrace: failed to allocate entries for module '%s' functions\n", 7494 mod->name); 7495 } 7496 7497 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 7498 struct dyn_ftrace *rec) 7499 { 7500 struct ftrace_mod_func *mod_func; 7501 unsigned long symsize; 7502 unsigned long offset; 7503 char str[KSYM_SYMBOL_LEN]; 7504 char *modname; 7505 const char *ret; 7506 7507 ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str); 7508 if (!ret) 7509 return; 7510 7511 mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL); 7512 if (!mod_func) 7513 return; 7514 7515 mod_func->name = kstrdup(str, GFP_KERNEL); 7516 if (!mod_func->name) { 7517 kfree(mod_func); 7518 return; 7519 } 7520 7521 mod_func->ip = rec->ip - offset; 7522 mod_func->size = symsize; 7523 7524 mod_map->num_funcs++; 7525 7526 list_add_rcu(&mod_func->list, &mod_map->funcs); 7527 } 7528 7529 static struct ftrace_mod_map * 7530 allocate_ftrace_mod_map(struct module *mod, 7531 unsigned long start, unsigned long end) 7532 { 7533 struct ftrace_mod_map *mod_map; 7534 7535 mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL); 7536 if (!mod_map) 7537 return NULL; 7538 7539 mod_map->mod = mod; 7540 mod_map->start_addr = start; 7541 mod_map->end_addr = end; 7542 mod_map->num_funcs = 0; 7543 7544 INIT_LIST_HEAD_RCU(&mod_map->funcs); 7545 7546 list_add_rcu(&mod_map->list, &ftrace_mod_maps); 7547 7548 return mod_map; 7549 } 7550 7551 static int 7552 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map, 7553 unsigned long addr, unsigned long *size, 7554 unsigned long *off, char *sym) 7555 { 7556 struct ftrace_mod_func *found_func = NULL; 7557 struct ftrace_mod_func *mod_func; 7558 7559 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 7560 if (addr >= mod_func->ip && 7561 addr < mod_func->ip + mod_func->size) { 7562 found_func = mod_func; 7563 break; 7564 } 7565 } 7566 7567 if (found_func) { 7568 if (size) 7569 *size = found_func->size; 7570 if (off) 7571 *off = addr - found_func->ip; 7572 return strscpy(sym, found_func->name, KSYM_NAME_LEN); 7573 } 7574 7575 return 0; 7576 } 7577 7578 int 7579 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size, 7580 unsigned long *off, char **modname, char *sym) 7581 { 7582 struct ftrace_mod_map *mod_map; 7583 int ret = 0; 7584 7585 /* mod_map is freed via call_rcu() */ 7586 preempt_disable(); 7587 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 7588 ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym); 7589 if (ret) { 7590 if (modname) 7591 *modname = mod_map->mod->name; 7592 break; 7593 } 7594 } 7595 preempt_enable(); 7596 7597 return ret; 7598 } 7599 7600 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 7601 char *type, char *name, 7602 char *module_name, int *exported) 7603 { 7604 struct ftrace_mod_map *mod_map; 7605 struct ftrace_mod_func *mod_func; 7606 int ret; 7607 7608 preempt_disable(); 7609 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 7610 7611 if (symnum >= mod_map->num_funcs) { 7612 symnum -= mod_map->num_funcs; 7613 continue; 7614 } 7615 7616 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 7617 if (symnum > 1) { 7618 symnum--; 7619 continue; 7620 } 7621 7622 *value = mod_func->ip; 7623 *type = 'T'; 7624 strscpy(name, mod_func->name, KSYM_NAME_LEN); 7625 strscpy(module_name, mod_map->mod->name, MODULE_NAME_LEN); 7626 *exported = 1; 7627 preempt_enable(); 7628 return 0; 7629 } 7630 WARN_ON(1); 7631 break; 7632 } 7633 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 7634 module_name, exported); 7635 preempt_enable(); 7636 return ret; 7637 } 7638 7639 #else 7640 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 7641 struct dyn_ftrace *rec) { } 7642 static inline struct ftrace_mod_map * 7643 allocate_ftrace_mod_map(struct module *mod, 7644 unsigned long start, unsigned long end) 7645 { 7646 return NULL; 7647 } 7648 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 7649 char *type, char *name, char *module_name, 7650 int *exported) 7651 { 7652 int ret; 7653 7654 preempt_disable(); 7655 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 7656 module_name, exported); 7657 preempt_enable(); 7658 return ret; 7659 } 7660 #endif /* CONFIG_MODULES */ 7661 7662 struct ftrace_init_func { 7663 struct list_head list; 7664 unsigned long ip; 7665 }; 7666 7667 /* Clear any init ips from hashes */ 7668 static void 7669 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash) 7670 { 7671 struct ftrace_func_entry *entry; 7672 7673 entry = ftrace_lookup_ip(hash, func->ip); 7674 /* 7675 * Do not allow this rec to match again. 7676 * Yeah, it may waste some memory, but will be removed 7677 * if/when the hash is modified again. 7678 */ 7679 if (entry) 7680 entry->ip = 0; 7681 } 7682 7683 static void 7684 clear_func_from_hashes(struct ftrace_init_func *func) 7685 { 7686 struct trace_array *tr; 7687 7688 mutex_lock(&trace_types_lock); 7689 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 7690 if (!tr->ops || !tr->ops->func_hash) 7691 continue; 7692 mutex_lock(&tr->ops->func_hash->regex_lock); 7693 clear_func_from_hash(func, tr->ops->func_hash->filter_hash); 7694 clear_func_from_hash(func, tr->ops->func_hash->notrace_hash); 7695 mutex_unlock(&tr->ops->func_hash->regex_lock); 7696 } 7697 mutex_unlock(&trace_types_lock); 7698 } 7699 7700 static void add_to_clear_hash_list(struct list_head *clear_list, 7701 struct dyn_ftrace *rec) 7702 { 7703 struct ftrace_init_func *func; 7704 7705 func = kmalloc(sizeof(*func), GFP_KERNEL); 7706 if (!func) { 7707 MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n"); 7708 return; 7709 } 7710 7711 func->ip = rec->ip; 7712 list_add(&func->list, clear_list); 7713 } 7714 7715 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr) 7716 { 7717 unsigned long start = (unsigned long)(start_ptr); 7718 unsigned long end = (unsigned long)(end_ptr); 7719 struct ftrace_page **last_pg = &ftrace_pages_start; 7720 struct ftrace_page *tmp_page = NULL; 7721 struct ftrace_page *pg; 7722 struct dyn_ftrace *rec; 7723 struct dyn_ftrace key; 7724 struct ftrace_mod_map *mod_map = NULL; 7725 struct ftrace_init_func *func, *func_next; 7726 LIST_HEAD(clear_hash); 7727 7728 key.ip = start; 7729 key.flags = end; /* overload flags, as it is unsigned long */ 7730 7731 mutex_lock(&ftrace_lock); 7732 7733 /* 7734 * If we are freeing module init memory, then check if 7735 * any tracer is active. If so, we need to save a mapping of 7736 * the module functions being freed with the address. 7737 */ 7738 if (mod && ftrace_ops_list != &ftrace_list_end) 7739 mod_map = allocate_ftrace_mod_map(mod, start, end); 7740 7741 for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) { 7742 if (end < pg->records[0].ip || 7743 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 7744 continue; 7745 again: 7746 rec = bsearch(&key, pg->records, pg->index, 7747 sizeof(struct dyn_ftrace), 7748 ftrace_cmp_recs); 7749 if (!rec) 7750 continue; 7751 7752 /* rec will be cleared from hashes after ftrace_lock unlock */ 7753 add_to_clear_hash_list(&clear_hash, rec); 7754 7755 if (mod_map) 7756 save_ftrace_mod_rec(mod_map, rec); 7757 7758 pg->index--; 7759 ftrace_update_tot_cnt--; 7760 if (!pg->index) { 7761 *last_pg = pg->next; 7762 pg->next = tmp_page; 7763 tmp_page = pg; 7764 pg = container_of(last_pg, struct ftrace_page, next); 7765 if (!(*last_pg)) 7766 ftrace_pages = pg; 7767 continue; 7768 } 7769 memmove(rec, rec + 1, 7770 (pg->index - (rec - pg->records)) * sizeof(*rec)); 7771 /* More than one function may be in this block */ 7772 goto again; 7773 } 7774 mutex_unlock(&ftrace_lock); 7775 7776 list_for_each_entry_safe(func, func_next, &clear_hash, list) { 7777 clear_func_from_hashes(func); 7778 kfree(func); 7779 } 7780 /* Need to synchronize with ftrace_location_range() */ 7781 if (tmp_page) { 7782 synchronize_rcu(); 7783 ftrace_free_pages(tmp_page); 7784 } 7785 } 7786 7787 void __init ftrace_free_init_mem(void) 7788 { 7789 void *start = (void *)(&__init_begin); 7790 void *end = (void *)(&__init_end); 7791 7792 ftrace_boot_snapshot(); 7793 7794 ftrace_free_mem(NULL, start, end); 7795 } 7796 7797 int __init __weak ftrace_dyn_arch_init(void) 7798 { 7799 return 0; 7800 } 7801 7802 void __init ftrace_init(void) 7803 { 7804 extern unsigned long __start_mcount_loc[]; 7805 extern unsigned long __stop_mcount_loc[]; 7806 unsigned long count, flags; 7807 int ret; 7808 7809 local_irq_save(flags); 7810 ret = ftrace_dyn_arch_init(); 7811 local_irq_restore(flags); 7812 if (ret) 7813 goto failed; 7814 7815 count = __stop_mcount_loc - __start_mcount_loc; 7816 if (!count) { 7817 pr_info("ftrace: No functions to be traced?\n"); 7818 goto failed; 7819 } 7820 7821 ret = ftrace_process_locs(NULL, 7822 __start_mcount_loc, 7823 __stop_mcount_loc); 7824 if (ret) { 7825 pr_warn("ftrace: failed to allocate entries for functions\n"); 7826 goto failed; 7827 } 7828 7829 pr_info("ftrace: allocated %ld pages with %ld groups\n", 7830 ftrace_number_of_pages, ftrace_number_of_groups); 7831 7832 last_ftrace_enabled = ftrace_enabled = 1; 7833 7834 set_ftrace_early_filters(); 7835 7836 return; 7837 failed: 7838 ftrace_disabled = 1; 7839 } 7840 7841 /* Do nothing if arch does not support this */ 7842 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops) 7843 { 7844 } 7845 7846 static void ftrace_update_trampoline(struct ftrace_ops *ops) 7847 { 7848 unsigned long trampoline = ops->trampoline; 7849 7850 arch_ftrace_update_trampoline(ops); 7851 if (ops->trampoline && ops->trampoline != trampoline && 7852 (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) { 7853 /* Add to kallsyms before the perf events */ 7854 ftrace_add_trampoline_to_kallsyms(ops); 7855 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 7856 ops->trampoline, ops->trampoline_size, false, 7857 FTRACE_TRAMPOLINE_SYM); 7858 /* 7859 * Record the perf text poke event after the ksymbol register 7860 * event. 7861 */ 7862 perf_event_text_poke((void *)ops->trampoline, NULL, 0, 7863 (void *)ops->trampoline, 7864 ops->trampoline_size); 7865 } 7866 } 7867 7868 void ftrace_init_trace_array(struct trace_array *tr) 7869 { 7870 if (tr->flags & TRACE_ARRAY_FL_MOD_INIT) 7871 return; 7872 7873 INIT_LIST_HEAD(&tr->func_probes); 7874 INIT_LIST_HEAD(&tr->mod_trace); 7875 INIT_LIST_HEAD(&tr->mod_notrace); 7876 7877 tr->flags |= TRACE_ARRAY_FL_MOD_INIT; 7878 } 7879 #else 7880 7881 struct ftrace_ops global_ops = { 7882 .func = ftrace_stub, 7883 .flags = FTRACE_OPS_FL_INITIALIZED | 7884 FTRACE_OPS_FL_PID, 7885 }; 7886 7887 static int __init ftrace_nodyn_init(void) 7888 { 7889 ftrace_enabled = 1; 7890 return 0; 7891 } 7892 core_initcall(ftrace_nodyn_init); 7893 7894 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; } 7895 static inline void ftrace_startup_all(int command) { } 7896 7897 static void ftrace_update_trampoline(struct ftrace_ops *ops) 7898 { 7899 } 7900 7901 #endif /* CONFIG_DYNAMIC_FTRACE */ 7902 7903 __init void ftrace_init_global_array_ops(struct trace_array *tr) 7904 { 7905 tr->ops = &global_ops; 7906 if (!global_ops.private) 7907 global_ops.private = tr; 7908 ftrace_init_trace_array(tr); 7909 init_array_fgraph_ops(tr, tr->ops); 7910 } 7911 7912 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func) 7913 { 7914 /* If we filter on pids, update to use the pid function */ 7915 if (tr->flags & TRACE_ARRAY_FL_GLOBAL) { 7916 if (WARN_ON(tr->ops->func != ftrace_stub)) 7917 printk("ftrace ops had %pS for function\n", 7918 tr->ops->func); 7919 } 7920 tr->ops->func = func; 7921 tr->ops->private = tr; 7922 } 7923 7924 void ftrace_reset_array_ops(struct trace_array *tr) 7925 { 7926 tr->ops->func = ftrace_stub; 7927 } 7928 7929 static nokprobe_inline void 7930 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 7931 struct ftrace_ops *ignored, struct ftrace_regs *fregs) 7932 { 7933 struct pt_regs *regs = ftrace_get_regs(fregs); 7934 struct ftrace_ops *op; 7935 int bit; 7936 7937 /* 7938 * The ftrace_test_and_set_recursion() will disable preemption, 7939 * which is required since some of the ops may be dynamically 7940 * allocated, they must be freed after a synchronize_rcu(). 7941 */ 7942 bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START); 7943 if (bit < 0) 7944 return; 7945 7946 do_for_each_ftrace_op(op, ftrace_ops_list) { 7947 /* Stub functions don't need to be called nor tested */ 7948 if (op->flags & FTRACE_OPS_FL_STUB) 7949 continue; 7950 /* 7951 * Check the following for each ops before calling their func: 7952 * if RCU flag is set, then rcu_is_watching() must be true 7953 * Otherwise test if the ip matches the ops filter 7954 * 7955 * If any of the above fails then the op->func() is not executed. 7956 */ 7957 if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) && 7958 ftrace_ops_test(op, ip, regs)) { 7959 if (FTRACE_WARN_ON(!op->func)) { 7960 pr_warn("op=%p %pS\n", op, op); 7961 goto out; 7962 } 7963 op->func(ip, parent_ip, op, fregs); 7964 } 7965 } while_for_each_ftrace_op(op); 7966 out: 7967 trace_clear_recursion(bit); 7968 } 7969 7970 /* 7971 * Some archs only support passing ip and parent_ip. Even though 7972 * the list function ignores the op parameter, we do not want any 7973 * C side effects, where a function is called without the caller 7974 * sending a third parameter. 7975 * Archs are to support both the regs and ftrace_ops at the same time. 7976 * If they support ftrace_ops, it is assumed they support regs. 7977 * If call backs want to use regs, they must either check for regs 7978 * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS. 7979 * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved. 7980 * An architecture can pass partial regs with ftrace_ops and still 7981 * set the ARCH_SUPPORTS_FTRACE_OPS. 7982 * 7983 * In vmlinux.lds.h, ftrace_ops_list_func() is defined to be 7984 * arch_ftrace_ops_list_func. 7985 */ 7986 #if ARCH_SUPPORTS_FTRACE_OPS 7987 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 7988 struct ftrace_ops *op, struct ftrace_regs *fregs) 7989 { 7990 kmsan_unpoison_memory(fregs, ftrace_regs_size()); 7991 __ftrace_ops_list_func(ip, parent_ip, NULL, fregs); 7992 } 7993 #else 7994 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip) 7995 { 7996 __ftrace_ops_list_func(ip, parent_ip, NULL, NULL); 7997 } 7998 #endif 7999 NOKPROBE_SYMBOL(arch_ftrace_ops_list_func); 8000 8001 /* 8002 * If there's only one function registered but it does not support 8003 * recursion, needs RCU protection, then this function will be called 8004 * by the mcount trampoline. 8005 */ 8006 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip, 8007 struct ftrace_ops *op, struct ftrace_regs *fregs) 8008 { 8009 int bit; 8010 8011 bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START); 8012 if (bit < 0) 8013 return; 8014 8015 if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) 8016 op->func(ip, parent_ip, op, fregs); 8017 8018 trace_clear_recursion(bit); 8019 } 8020 NOKPROBE_SYMBOL(ftrace_ops_assist_func); 8021 8022 /** 8023 * ftrace_ops_get_func - get the function a trampoline should call 8024 * @ops: the ops to get the function for 8025 * 8026 * Normally the mcount trampoline will call the ops->func, but there 8027 * are times that it should not. For example, if the ops does not 8028 * have its own recursion protection, then it should call the 8029 * ftrace_ops_assist_func() instead. 8030 * 8031 * Returns: the function that the trampoline should call for @ops. 8032 */ 8033 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops) 8034 { 8035 /* 8036 * If the function does not handle recursion or needs to be RCU safe, 8037 * then we need to call the assist handler. 8038 */ 8039 if (ops->flags & (FTRACE_OPS_FL_RECURSION | 8040 FTRACE_OPS_FL_RCU)) 8041 return ftrace_ops_assist_func; 8042 8043 return ops->func; 8044 } 8045 8046 static void 8047 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt, 8048 struct task_struct *prev, 8049 struct task_struct *next, 8050 unsigned int prev_state) 8051 { 8052 struct trace_array *tr = data; 8053 struct trace_pid_list *pid_list; 8054 struct trace_pid_list *no_pid_list; 8055 8056 pid_list = rcu_dereference_sched(tr->function_pids); 8057 no_pid_list = rcu_dereference_sched(tr->function_no_pids); 8058 8059 if (trace_ignore_this_task(pid_list, no_pid_list, next)) 8060 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 8061 FTRACE_PID_IGNORE); 8062 else 8063 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 8064 next->pid); 8065 } 8066 8067 static void 8068 ftrace_pid_follow_sched_process_fork(void *data, 8069 struct task_struct *self, 8070 struct task_struct *task) 8071 { 8072 struct trace_pid_list *pid_list; 8073 struct trace_array *tr = data; 8074 8075 pid_list = rcu_dereference_sched(tr->function_pids); 8076 trace_filter_add_remove_task(pid_list, self, task); 8077 8078 pid_list = rcu_dereference_sched(tr->function_no_pids); 8079 trace_filter_add_remove_task(pid_list, self, task); 8080 } 8081 8082 static void 8083 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task) 8084 { 8085 struct trace_pid_list *pid_list; 8086 struct trace_array *tr = data; 8087 8088 pid_list = rcu_dereference_sched(tr->function_pids); 8089 trace_filter_add_remove_task(pid_list, NULL, task); 8090 8091 pid_list = rcu_dereference_sched(tr->function_no_pids); 8092 trace_filter_add_remove_task(pid_list, NULL, task); 8093 } 8094 8095 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable) 8096 { 8097 if (enable) { 8098 register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 8099 tr); 8100 register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 8101 tr); 8102 } else { 8103 unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 8104 tr); 8105 unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 8106 tr); 8107 } 8108 } 8109 8110 static void clear_ftrace_pids(struct trace_array *tr, int type) 8111 { 8112 struct trace_pid_list *pid_list; 8113 struct trace_pid_list *no_pid_list; 8114 int cpu; 8115 8116 pid_list = rcu_dereference_protected(tr->function_pids, 8117 lockdep_is_held(&ftrace_lock)); 8118 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 8119 lockdep_is_held(&ftrace_lock)); 8120 8121 /* Make sure there's something to do */ 8122 if (!pid_type_enabled(type, pid_list, no_pid_list)) 8123 return; 8124 8125 /* See if the pids still need to be checked after this */ 8126 if (!still_need_pid_events(type, pid_list, no_pid_list)) { 8127 unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 8128 for_each_possible_cpu(cpu) 8129 per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE; 8130 } 8131 8132 if (type & TRACE_PIDS) 8133 rcu_assign_pointer(tr->function_pids, NULL); 8134 8135 if (type & TRACE_NO_PIDS) 8136 rcu_assign_pointer(tr->function_no_pids, NULL); 8137 8138 /* Wait till all users are no longer using pid filtering */ 8139 synchronize_rcu(); 8140 8141 if ((type & TRACE_PIDS) && pid_list) 8142 trace_pid_list_free(pid_list); 8143 8144 if ((type & TRACE_NO_PIDS) && no_pid_list) 8145 trace_pid_list_free(no_pid_list); 8146 } 8147 8148 void ftrace_clear_pids(struct trace_array *tr) 8149 { 8150 mutex_lock(&ftrace_lock); 8151 8152 clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS); 8153 8154 mutex_unlock(&ftrace_lock); 8155 } 8156 8157 static void ftrace_pid_reset(struct trace_array *tr, int type) 8158 { 8159 mutex_lock(&ftrace_lock); 8160 clear_ftrace_pids(tr, type); 8161 8162 ftrace_update_pid_func(); 8163 ftrace_startup_all(0); 8164 8165 mutex_unlock(&ftrace_lock); 8166 } 8167 8168 /* Greater than any max PID */ 8169 #define FTRACE_NO_PIDS (void *)(PID_MAX_LIMIT + 1) 8170 8171 static void *fpid_start(struct seq_file *m, loff_t *pos) 8172 __acquires(RCU) 8173 { 8174 struct trace_pid_list *pid_list; 8175 struct trace_array *tr = m->private; 8176 8177 mutex_lock(&ftrace_lock); 8178 rcu_read_lock_sched(); 8179 8180 pid_list = rcu_dereference_sched(tr->function_pids); 8181 8182 if (!pid_list) 8183 return !(*pos) ? FTRACE_NO_PIDS : NULL; 8184 8185 return trace_pid_start(pid_list, pos); 8186 } 8187 8188 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos) 8189 { 8190 struct trace_array *tr = m->private; 8191 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids); 8192 8193 if (v == FTRACE_NO_PIDS) { 8194 (*pos)++; 8195 return NULL; 8196 } 8197 return trace_pid_next(pid_list, v, pos); 8198 } 8199 8200 static void fpid_stop(struct seq_file *m, void *p) 8201 __releases(RCU) 8202 { 8203 rcu_read_unlock_sched(); 8204 mutex_unlock(&ftrace_lock); 8205 } 8206 8207 static int fpid_show(struct seq_file *m, void *v) 8208 { 8209 if (v == FTRACE_NO_PIDS) { 8210 seq_puts(m, "no pid\n"); 8211 return 0; 8212 } 8213 8214 return trace_pid_show(m, v); 8215 } 8216 8217 static const struct seq_operations ftrace_pid_sops = { 8218 .start = fpid_start, 8219 .next = fpid_next, 8220 .stop = fpid_stop, 8221 .show = fpid_show, 8222 }; 8223 8224 static void *fnpid_start(struct seq_file *m, loff_t *pos) 8225 __acquires(RCU) 8226 { 8227 struct trace_pid_list *pid_list; 8228 struct trace_array *tr = m->private; 8229 8230 mutex_lock(&ftrace_lock); 8231 rcu_read_lock_sched(); 8232 8233 pid_list = rcu_dereference_sched(tr->function_no_pids); 8234 8235 if (!pid_list) 8236 return !(*pos) ? FTRACE_NO_PIDS : NULL; 8237 8238 return trace_pid_start(pid_list, pos); 8239 } 8240 8241 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos) 8242 { 8243 struct trace_array *tr = m->private; 8244 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids); 8245 8246 if (v == FTRACE_NO_PIDS) { 8247 (*pos)++; 8248 return NULL; 8249 } 8250 return trace_pid_next(pid_list, v, pos); 8251 } 8252 8253 static const struct seq_operations ftrace_no_pid_sops = { 8254 .start = fnpid_start, 8255 .next = fnpid_next, 8256 .stop = fpid_stop, 8257 .show = fpid_show, 8258 }; 8259 8260 static int pid_open(struct inode *inode, struct file *file, int type) 8261 { 8262 const struct seq_operations *seq_ops; 8263 struct trace_array *tr = inode->i_private; 8264 struct seq_file *m; 8265 int ret = 0; 8266 8267 ret = tracing_check_open_get_tr(tr); 8268 if (ret) 8269 return ret; 8270 8271 if ((file->f_mode & FMODE_WRITE) && 8272 (file->f_flags & O_TRUNC)) 8273 ftrace_pid_reset(tr, type); 8274 8275 switch (type) { 8276 case TRACE_PIDS: 8277 seq_ops = &ftrace_pid_sops; 8278 break; 8279 case TRACE_NO_PIDS: 8280 seq_ops = &ftrace_no_pid_sops; 8281 break; 8282 default: 8283 trace_array_put(tr); 8284 WARN_ON_ONCE(1); 8285 return -EINVAL; 8286 } 8287 8288 ret = seq_open(file, seq_ops); 8289 if (ret < 0) { 8290 trace_array_put(tr); 8291 } else { 8292 m = file->private_data; 8293 /* copy tr over to seq ops */ 8294 m->private = tr; 8295 } 8296 8297 return ret; 8298 } 8299 8300 static int 8301 ftrace_pid_open(struct inode *inode, struct file *file) 8302 { 8303 return pid_open(inode, file, TRACE_PIDS); 8304 } 8305 8306 static int 8307 ftrace_no_pid_open(struct inode *inode, struct file *file) 8308 { 8309 return pid_open(inode, file, TRACE_NO_PIDS); 8310 } 8311 8312 static void ignore_task_cpu(void *data) 8313 { 8314 struct trace_array *tr = data; 8315 struct trace_pid_list *pid_list; 8316 struct trace_pid_list *no_pid_list; 8317 8318 /* 8319 * This function is called by on_each_cpu() while the 8320 * event_mutex is held. 8321 */ 8322 pid_list = rcu_dereference_protected(tr->function_pids, 8323 mutex_is_locked(&ftrace_lock)); 8324 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 8325 mutex_is_locked(&ftrace_lock)); 8326 8327 if (trace_ignore_this_task(pid_list, no_pid_list, current)) 8328 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 8329 FTRACE_PID_IGNORE); 8330 else 8331 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 8332 current->pid); 8333 } 8334 8335 static ssize_t 8336 pid_write(struct file *filp, const char __user *ubuf, 8337 size_t cnt, loff_t *ppos, int type) 8338 { 8339 struct seq_file *m = filp->private_data; 8340 struct trace_array *tr = m->private; 8341 struct trace_pid_list *filtered_pids; 8342 struct trace_pid_list *other_pids; 8343 struct trace_pid_list *pid_list; 8344 ssize_t ret; 8345 8346 if (!cnt) 8347 return 0; 8348 8349 guard(mutex)(&ftrace_lock); 8350 8351 switch (type) { 8352 case TRACE_PIDS: 8353 filtered_pids = rcu_dereference_protected(tr->function_pids, 8354 lockdep_is_held(&ftrace_lock)); 8355 other_pids = rcu_dereference_protected(tr->function_no_pids, 8356 lockdep_is_held(&ftrace_lock)); 8357 break; 8358 case TRACE_NO_PIDS: 8359 filtered_pids = rcu_dereference_protected(tr->function_no_pids, 8360 lockdep_is_held(&ftrace_lock)); 8361 other_pids = rcu_dereference_protected(tr->function_pids, 8362 lockdep_is_held(&ftrace_lock)); 8363 break; 8364 default: 8365 WARN_ON_ONCE(1); 8366 return -EINVAL; 8367 } 8368 8369 ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt); 8370 if (ret < 0) 8371 return ret; 8372 8373 switch (type) { 8374 case TRACE_PIDS: 8375 rcu_assign_pointer(tr->function_pids, pid_list); 8376 break; 8377 case TRACE_NO_PIDS: 8378 rcu_assign_pointer(tr->function_no_pids, pid_list); 8379 break; 8380 } 8381 8382 8383 if (filtered_pids) { 8384 synchronize_rcu(); 8385 trace_pid_list_free(filtered_pids); 8386 } else if (pid_list && !other_pids) { 8387 /* Register a probe to set whether to ignore the tracing of a task */ 8388 register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 8389 } 8390 8391 /* 8392 * Ignoring of pids is done at task switch. But we have to 8393 * check for those tasks that are currently running. 8394 * Always do this in case a pid was appended or removed. 8395 */ 8396 on_each_cpu(ignore_task_cpu, tr, 1); 8397 8398 ftrace_update_pid_func(); 8399 ftrace_startup_all(0); 8400 8401 *ppos += ret; 8402 8403 return ret; 8404 } 8405 8406 static ssize_t 8407 ftrace_pid_write(struct file *filp, const char __user *ubuf, 8408 size_t cnt, loff_t *ppos) 8409 { 8410 return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS); 8411 } 8412 8413 static ssize_t 8414 ftrace_no_pid_write(struct file *filp, const char __user *ubuf, 8415 size_t cnt, loff_t *ppos) 8416 { 8417 return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS); 8418 } 8419 8420 static int 8421 ftrace_pid_release(struct inode *inode, struct file *file) 8422 { 8423 struct trace_array *tr = inode->i_private; 8424 8425 trace_array_put(tr); 8426 8427 return seq_release(inode, file); 8428 } 8429 8430 static const struct file_operations ftrace_pid_fops = { 8431 .open = ftrace_pid_open, 8432 .write = ftrace_pid_write, 8433 .read = seq_read, 8434 .llseek = tracing_lseek, 8435 .release = ftrace_pid_release, 8436 }; 8437 8438 static const struct file_operations ftrace_no_pid_fops = { 8439 .open = ftrace_no_pid_open, 8440 .write = ftrace_no_pid_write, 8441 .read = seq_read, 8442 .llseek = tracing_lseek, 8443 .release = ftrace_pid_release, 8444 }; 8445 8446 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer) 8447 { 8448 trace_create_file("set_ftrace_pid", TRACE_MODE_WRITE, d_tracer, 8449 tr, &ftrace_pid_fops); 8450 trace_create_file("set_ftrace_notrace_pid", TRACE_MODE_WRITE, 8451 d_tracer, tr, &ftrace_no_pid_fops); 8452 } 8453 8454 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr, 8455 struct dentry *d_tracer) 8456 { 8457 /* Only the top level directory has the dyn_tracefs and profile */ 8458 WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL)); 8459 8460 ftrace_init_dyn_tracefs(d_tracer); 8461 ftrace_profile_tracefs(d_tracer); 8462 } 8463 8464 /** 8465 * ftrace_kill - kill ftrace 8466 * 8467 * This function should be used by panic code. It stops ftrace 8468 * but in a not so nice way. If you need to simply kill ftrace 8469 * from a non-atomic section, use ftrace_kill. 8470 */ 8471 void ftrace_kill(void) 8472 { 8473 ftrace_disabled = 1; 8474 ftrace_enabled = 0; 8475 ftrace_trace_function = ftrace_stub; 8476 kprobe_ftrace_kill(); 8477 } 8478 8479 /** 8480 * ftrace_is_dead - Test if ftrace is dead or not. 8481 * 8482 * Returns: 1 if ftrace is "dead", zero otherwise. 8483 */ 8484 int ftrace_is_dead(void) 8485 { 8486 return ftrace_disabled; 8487 } 8488 8489 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 8490 /* 8491 * When registering ftrace_ops with IPMODIFY, it is necessary to make sure 8492 * it doesn't conflict with any direct ftrace_ops. If there is existing 8493 * direct ftrace_ops on a kernel function being patched, call 8494 * FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER on it to enable sharing. 8495 * 8496 * @ops: ftrace_ops being registered. 8497 * 8498 * Returns: 8499 * 0 on success; 8500 * Negative on failure. 8501 */ 8502 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops) 8503 { 8504 struct ftrace_func_entry *entry; 8505 struct ftrace_hash *hash; 8506 struct ftrace_ops *op; 8507 int size, i, ret; 8508 8509 lockdep_assert_held_once(&direct_mutex); 8510 8511 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 8512 return 0; 8513 8514 hash = ops->func_hash->filter_hash; 8515 size = 1 << hash->size_bits; 8516 for (i = 0; i < size; i++) { 8517 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 8518 unsigned long ip = entry->ip; 8519 bool found_op = false; 8520 8521 mutex_lock(&ftrace_lock); 8522 do_for_each_ftrace_op(op, ftrace_ops_list) { 8523 if (!(op->flags & FTRACE_OPS_FL_DIRECT)) 8524 continue; 8525 if (ops_references_ip(op, ip)) { 8526 found_op = true; 8527 break; 8528 } 8529 } while_for_each_ftrace_op(op); 8530 mutex_unlock(&ftrace_lock); 8531 8532 if (found_op) { 8533 if (!op->ops_func) 8534 return -EBUSY; 8535 8536 ret = op->ops_func(op, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER); 8537 if (ret) 8538 return ret; 8539 } 8540 } 8541 } 8542 8543 return 0; 8544 } 8545 8546 /* 8547 * Similar to prepare_direct_functions_for_ipmodify, clean up after ops 8548 * with IPMODIFY is unregistered. The cleanup is optional for most DIRECT 8549 * ops. 8550 */ 8551 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops) 8552 { 8553 struct ftrace_func_entry *entry; 8554 struct ftrace_hash *hash; 8555 struct ftrace_ops *op; 8556 int size, i; 8557 8558 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 8559 return; 8560 8561 mutex_lock(&direct_mutex); 8562 8563 hash = ops->func_hash->filter_hash; 8564 size = 1 << hash->size_bits; 8565 for (i = 0; i < size; i++) { 8566 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 8567 unsigned long ip = entry->ip; 8568 bool found_op = false; 8569 8570 mutex_lock(&ftrace_lock); 8571 do_for_each_ftrace_op(op, ftrace_ops_list) { 8572 if (!(op->flags & FTRACE_OPS_FL_DIRECT)) 8573 continue; 8574 if (ops_references_ip(op, ip)) { 8575 found_op = true; 8576 break; 8577 } 8578 } while_for_each_ftrace_op(op); 8579 mutex_unlock(&ftrace_lock); 8580 8581 /* The cleanup is optional, ignore any errors */ 8582 if (found_op && op->ops_func) 8583 op->ops_func(op, FTRACE_OPS_CMD_DISABLE_SHARE_IPMODIFY_PEER); 8584 } 8585 } 8586 mutex_unlock(&direct_mutex); 8587 } 8588 8589 #define lock_direct_mutex() mutex_lock(&direct_mutex) 8590 #define unlock_direct_mutex() mutex_unlock(&direct_mutex) 8591 8592 #else /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 8593 8594 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops) 8595 { 8596 return 0; 8597 } 8598 8599 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops) 8600 { 8601 } 8602 8603 #define lock_direct_mutex() do { } while (0) 8604 #define unlock_direct_mutex() do { } while (0) 8605 8606 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 8607 8608 /* 8609 * Similar to register_ftrace_function, except we don't lock direct_mutex. 8610 */ 8611 static int register_ftrace_function_nolock(struct ftrace_ops *ops) 8612 { 8613 int ret; 8614 8615 ftrace_ops_init(ops); 8616 8617 mutex_lock(&ftrace_lock); 8618 8619 ret = ftrace_startup(ops, 0); 8620 8621 mutex_unlock(&ftrace_lock); 8622 8623 return ret; 8624 } 8625 8626 /** 8627 * register_ftrace_function - register a function for profiling 8628 * @ops: ops structure that holds the function for profiling. 8629 * 8630 * Register a function to be called by all functions in the 8631 * kernel. 8632 * 8633 * Note: @ops->func and all the functions it calls must be labeled 8634 * with "notrace", otherwise it will go into a 8635 * recursive loop. 8636 */ 8637 int register_ftrace_function(struct ftrace_ops *ops) 8638 { 8639 int ret; 8640 8641 lock_direct_mutex(); 8642 ret = prepare_direct_functions_for_ipmodify(ops); 8643 if (ret < 0) 8644 goto out_unlock; 8645 8646 ret = register_ftrace_function_nolock(ops); 8647 8648 out_unlock: 8649 unlock_direct_mutex(); 8650 return ret; 8651 } 8652 EXPORT_SYMBOL_GPL(register_ftrace_function); 8653 8654 /** 8655 * unregister_ftrace_function - unregister a function for profiling. 8656 * @ops: ops structure that holds the function to unregister 8657 * 8658 * Unregister a function that was added to be called by ftrace profiling. 8659 */ 8660 int unregister_ftrace_function(struct ftrace_ops *ops) 8661 { 8662 int ret; 8663 8664 mutex_lock(&ftrace_lock); 8665 ret = ftrace_shutdown(ops, 0); 8666 mutex_unlock(&ftrace_lock); 8667 8668 cleanup_direct_functions_after_ipmodify(ops); 8669 return ret; 8670 } 8671 EXPORT_SYMBOL_GPL(unregister_ftrace_function); 8672 8673 static int symbols_cmp(const void *a, const void *b) 8674 { 8675 const char **str_a = (const char **) a; 8676 const char **str_b = (const char **) b; 8677 8678 return strcmp(*str_a, *str_b); 8679 } 8680 8681 struct kallsyms_data { 8682 unsigned long *addrs; 8683 const char **syms; 8684 size_t cnt; 8685 size_t found; 8686 }; 8687 8688 /* This function gets called for all kernel and module symbols 8689 * and returns 1 in case we resolved all the requested symbols, 8690 * 0 otherwise. 8691 */ 8692 static int kallsyms_callback(void *data, const char *name, unsigned long addr) 8693 { 8694 struct kallsyms_data *args = data; 8695 const char **sym; 8696 int idx; 8697 8698 sym = bsearch(&name, args->syms, args->cnt, sizeof(*args->syms), symbols_cmp); 8699 if (!sym) 8700 return 0; 8701 8702 idx = sym - args->syms; 8703 if (args->addrs[idx]) 8704 return 0; 8705 8706 if (!ftrace_location(addr)) 8707 return 0; 8708 8709 args->addrs[idx] = addr; 8710 args->found++; 8711 return args->found == args->cnt ? 1 : 0; 8712 } 8713 8714 /** 8715 * ftrace_lookup_symbols - Lookup addresses for array of symbols 8716 * 8717 * @sorted_syms: array of symbols pointers symbols to resolve, 8718 * must be alphabetically sorted 8719 * @cnt: number of symbols/addresses in @syms/@addrs arrays 8720 * @addrs: array for storing resulting addresses 8721 * 8722 * This function looks up addresses for array of symbols provided in 8723 * @syms array (must be alphabetically sorted) and stores them in 8724 * @addrs array, which needs to be big enough to store at least @cnt 8725 * addresses. 8726 * 8727 * Returns: 0 if all provided symbols are found, -ESRCH otherwise. 8728 */ 8729 int ftrace_lookup_symbols(const char **sorted_syms, size_t cnt, unsigned long *addrs) 8730 { 8731 struct kallsyms_data args; 8732 int found_all; 8733 8734 memset(addrs, 0, sizeof(*addrs) * cnt); 8735 args.addrs = addrs; 8736 args.syms = sorted_syms; 8737 args.cnt = cnt; 8738 args.found = 0; 8739 8740 found_all = kallsyms_on_each_symbol(kallsyms_callback, &args); 8741 if (found_all) 8742 return 0; 8743 found_all = module_kallsyms_on_each_symbol(NULL, kallsyms_callback, &args); 8744 return found_all ? 0 : -ESRCH; 8745 } 8746 8747 #ifdef CONFIG_SYSCTL 8748 8749 #ifdef CONFIG_DYNAMIC_FTRACE 8750 static void ftrace_startup_sysctl(void) 8751 { 8752 int command; 8753 8754 if (unlikely(ftrace_disabled)) 8755 return; 8756 8757 /* Force update next time */ 8758 saved_ftrace_func = NULL; 8759 /* ftrace_start_up is true if we want ftrace running */ 8760 if (ftrace_start_up) { 8761 command = FTRACE_UPDATE_CALLS; 8762 if (ftrace_graph_active) 8763 command |= FTRACE_START_FUNC_RET; 8764 ftrace_startup_enable(command); 8765 } 8766 } 8767 8768 static void ftrace_shutdown_sysctl(void) 8769 { 8770 int command; 8771 8772 if (unlikely(ftrace_disabled)) 8773 return; 8774 8775 /* ftrace_start_up is true if ftrace is running */ 8776 if (ftrace_start_up) { 8777 command = FTRACE_DISABLE_CALLS; 8778 if (ftrace_graph_active) 8779 command |= FTRACE_STOP_FUNC_RET; 8780 ftrace_run_update_code(command); 8781 } 8782 } 8783 #else 8784 # define ftrace_startup_sysctl() do { } while (0) 8785 # define ftrace_shutdown_sysctl() do { } while (0) 8786 #endif /* CONFIG_DYNAMIC_FTRACE */ 8787 8788 static bool is_permanent_ops_registered(void) 8789 { 8790 struct ftrace_ops *op; 8791 8792 do_for_each_ftrace_op(op, ftrace_ops_list) { 8793 if (op->flags & FTRACE_OPS_FL_PERMANENT) 8794 return true; 8795 } while_for_each_ftrace_op(op); 8796 8797 return false; 8798 } 8799 8800 static int 8801 ftrace_enable_sysctl(const struct ctl_table *table, int write, 8802 void *buffer, size_t *lenp, loff_t *ppos) 8803 { 8804 int ret; 8805 8806 guard(mutex)(&ftrace_lock); 8807 8808 if (unlikely(ftrace_disabled)) 8809 return -ENODEV; 8810 8811 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8812 8813 if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) 8814 return ret; 8815 8816 if (ftrace_enabled) { 8817 8818 /* we are starting ftrace again */ 8819 if (rcu_dereference_protected(ftrace_ops_list, 8820 lockdep_is_held(&ftrace_lock)) != &ftrace_list_end) 8821 update_ftrace_function(); 8822 8823 ftrace_startup_sysctl(); 8824 8825 } else { 8826 if (is_permanent_ops_registered()) { 8827 ftrace_enabled = true; 8828 return -EBUSY; 8829 } 8830 8831 /* stopping ftrace calls (just send to ftrace_stub) */ 8832 ftrace_trace_function = ftrace_stub; 8833 8834 ftrace_shutdown_sysctl(); 8835 } 8836 8837 last_ftrace_enabled = !!ftrace_enabled; 8838 return 0; 8839 } 8840 8841 static const struct ctl_table ftrace_sysctls[] = { 8842 { 8843 .procname = "ftrace_enabled", 8844 .data = &ftrace_enabled, 8845 .maxlen = sizeof(int), 8846 .mode = 0644, 8847 .proc_handler = ftrace_enable_sysctl, 8848 }, 8849 }; 8850 8851 static int __init ftrace_sysctl_init(void) 8852 { 8853 register_sysctl_init("kernel", ftrace_sysctls); 8854 return 0; 8855 } 8856 late_initcall(ftrace_sysctl_init); 8857 #endif 8858