xref: /linux/kernel/trace/bpf_trace.c (revision e3610441d1fb47b1f00e4c38bdf333176e824729)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_verifier.h>
10 #include <linux/bpf_perf_event.h>
11 #include <linux/btf.h>
12 #include <linux/filter.h>
13 #include <linux/uaccess.h>
14 #include <linux/ctype.h>
15 #include <linux/kprobes.h>
16 #include <linux/spinlock.h>
17 #include <linux/syscalls.h>
18 #include <linux/error-injection.h>
19 #include <linux/btf_ids.h>
20 #include <linux/bpf_lsm.h>
21 #include <linux/fprobe.h>
22 #include <linux/bsearch.h>
23 #include <linux/sort.h>
24 #include <linux/key.h>
25 #include <linux/verification.h>
26 #include <linux/namei.h>
27 
28 #include <net/bpf_sk_storage.h>
29 
30 #include <uapi/linux/bpf.h>
31 #include <uapi/linux/btf.h>
32 
33 #include <asm/tlb.h>
34 
35 #include "trace_probe.h"
36 #include "trace.h"
37 
38 #define CREATE_TRACE_POINTS
39 #include "bpf_trace.h"
40 
41 #define bpf_event_rcu_dereference(p)					\
42 	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
43 
44 #define MAX_UPROBE_MULTI_CNT (1U << 20)
45 #define MAX_KPROBE_MULTI_CNT (1U << 20)
46 
47 #ifdef CONFIG_MODULES
48 struct bpf_trace_module {
49 	struct module *module;
50 	struct list_head list;
51 };
52 
53 static LIST_HEAD(bpf_trace_modules);
54 static DEFINE_MUTEX(bpf_module_mutex);
55 
56 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
57 {
58 	struct bpf_raw_event_map *btp, *ret = NULL;
59 	struct bpf_trace_module *btm;
60 	unsigned int i;
61 
62 	mutex_lock(&bpf_module_mutex);
63 	list_for_each_entry(btm, &bpf_trace_modules, list) {
64 		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
65 			btp = &btm->module->bpf_raw_events[i];
66 			if (!strcmp(btp->tp->name, name)) {
67 				if (try_module_get(btm->module))
68 					ret = btp;
69 				goto out;
70 			}
71 		}
72 	}
73 out:
74 	mutex_unlock(&bpf_module_mutex);
75 	return ret;
76 }
77 #else
78 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
79 {
80 	return NULL;
81 }
82 #endif /* CONFIG_MODULES */
83 
84 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
85 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
86 
87 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
88 				  u64 flags, const struct btf **btf,
89 				  s32 *btf_id);
90 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx);
91 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
92 
93 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx);
94 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
95 
96 /**
97  * trace_call_bpf - invoke BPF program
98  * @call: tracepoint event
99  * @ctx: opaque context pointer
100  *
101  * kprobe handlers execute BPF programs via this helper.
102  * Can be used from static tracepoints in the future.
103  *
104  * Return: BPF programs always return an integer which is interpreted by
105  * kprobe handler as:
106  * 0 - return from kprobe (event is filtered out)
107  * 1 - store kprobe event into ring buffer
108  * Other values are reserved and currently alias to 1
109  */
110 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
111 {
112 	unsigned int ret;
113 
114 	cant_sleep();
115 
116 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
117 		/*
118 		 * since some bpf program is already running on this cpu,
119 		 * don't call into another bpf program (same or different)
120 		 * and don't send kprobe event into ring-buffer,
121 		 * so return zero here
122 		 */
123 		rcu_read_lock();
124 		bpf_prog_inc_misses_counters(rcu_dereference(call->prog_array));
125 		rcu_read_unlock();
126 		ret = 0;
127 		goto out;
128 	}
129 
130 	/*
131 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
132 	 * to all call sites, we did a bpf_prog_array_valid() there to check
133 	 * whether call->prog_array is empty or not, which is
134 	 * a heuristic to speed up execution.
135 	 *
136 	 * If bpf_prog_array_valid() fetched prog_array was
137 	 * non-NULL, we go into trace_call_bpf() and do the actual
138 	 * proper rcu_dereference() under RCU lock.
139 	 * If it turns out that prog_array is NULL then, we bail out.
140 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
141 	 * was NULL, you'll skip the prog_array with the risk of missing
142 	 * out of events when it was updated in between this and the
143 	 * rcu_dereference() which is accepted risk.
144 	 */
145 	rcu_read_lock();
146 	ret = bpf_prog_run_array(rcu_dereference(call->prog_array),
147 				 ctx, bpf_prog_run);
148 	rcu_read_unlock();
149 
150  out:
151 	__this_cpu_dec(bpf_prog_active);
152 
153 	return ret;
154 }
155 
156 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
157 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
158 {
159 	regs_set_return_value(regs, rc);
160 	override_function_with_return(regs);
161 	return 0;
162 }
163 
164 static const struct bpf_func_proto bpf_override_return_proto = {
165 	.func		= bpf_override_return,
166 	.gpl_only	= true,
167 	.ret_type	= RET_INTEGER,
168 	.arg1_type	= ARG_PTR_TO_CTX,
169 	.arg2_type	= ARG_ANYTHING,
170 };
171 #endif
172 
173 static __always_inline int
174 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
175 {
176 	int ret;
177 
178 	ret = copy_from_user_nofault(dst, unsafe_ptr, size);
179 	if (unlikely(ret < 0))
180 		memset(dst, 0, size);
181 	return ret;
182 }
183 
184 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
185 	   const void __user *, unsafe_ptr)
186 {
187 	return bpf_probe_read_user_common(dst, size, unsafe_ptr);
188 }
189 
190 const struct bpf_func_proto bpf_probe_read_user_proto = {
191 	.func		= bpf_probe_read_user,
192 	.gpl_only	= true,
193 	.ret_type	= RET_INTEGER,
194 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
195 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
196 	.arg3_type	= ARG_ANYTHING,
197 };
198 
199 static __always_inline int
200 bpf_probe_read_user_str_common(void *dst, u32 size,
201 			       const void __user *unsafe_ptr)
202 {
203 	int ret;
204 
205 	/*
206 	 * NB: We rely on strncpy_from_user() not copying junk past the NUL
207 	 * terminator into `dst`.
208 	 *
209 	 * strncpy_from_user() does long-sized strides in the fast path. If the
210 	 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
211 	 * then there could be junk after the NUL in `dst`. If user takes `dst`
212 	 * and keys a hash map with it, then semantically identical strings can
213 	 * occupy multiple entries in the map.
214 	 */
215 	ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
216 	if (unlikely(ret < 0))
217 		memset(dst, 0, size);
218 	return ret;
219 }
220 
221 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
222 	   const void __user *, unsafe_ptr)
223 {
224 	return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
225 }
226 
227 const struct bpf_func_proto bpf_probe_read_user_str_proto = {
228 	.func		= bpf_probe_read_user_str,
229 	.gpl_only	= true,
230 	.ret_type	= RET_INTEGER,
231 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
232 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
233 	.arg3_type	= ARG_ANYTHING,
234 };
235 
236 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
237 	   const void *, unsafe_ptr)
238 {
239 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
240 }
241 
242 const struct bpf_func_proto bpf_probe_read_kernel_proto = {
243 	.func		= bpf_probe_read_kernel,
244 	.gpl_only	= true,
245 	.ret_type	= RET_INTEGER,
246 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
247 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
248 	.arg3_type	= ARG_ANYTHING,
249 };
250 
251 static __always_inline int
252 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
253 {
254 	int ret;
255 
256 	/*
257 	 * The strncpy_from_kernel_nofault() call will likely not fill the
258 	 * entire buffer, but that's okay in this circumstance as we're probing
259 	 * arbitrary memory anyway similar to bpf_probe_read_*() and might
260 	 * as well probe the stack. Thus, memory is explicitly cleared
261 	 * only in error case, so that improper users ignoring return
262 	 * code altogether don't copy garbage; otherwise length of string
263 	 * is returned that can be used for bpf_perf_event_output() et al.
264 	 */
265 	ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
266 	if (unlikely(ret < 0))
267 		memset(dst, 0, size);
268 	return ret;
269 }
270 
271 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
272 	   const void *, unsafe_ptr)
273 {
274 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
275 }
276 
277 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
278 	.func		= bpf_probe_read_kernel_str,
279 	.gpl_only	= true,
280 	.ret_type	= RET_INTEGER,
281 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
282 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
283 	.arg3_type	= ARG_ANYTHING,
284 };
285 
286 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
287 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
288 	   const void *, unsafe_ptr)
289 {
290 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
291 		return bpf_probe_read_user_common(dst, size,
292 				(__force void __user *)unsafe_ptr);
293 	}
294 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
295 }
296 
297 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
298 	.func		= bpf_probe_read_compat,
299 	.gpl_only	= true,
300 	.ret_type	= RET_INTEGER,
301 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
302 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
303 	.arg3_type	= ARG_ANYTHING,
304 };
305 
306 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
307 	   const void *, unsafe_ptr)
308 {
309 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
310 		return bpf_probe_read_user_str_common(dst, size,
311 				(__force void __user *)unsafe_ptr);
312 	}
313 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
314 }
315 
316 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
317 	.func		= bpf_probe_read_compat_str,
318 	.gpl_only	= true,
319 	.ret_type	= RET_INTEGER,
320 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
321 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
322 	.arg3_type	= ARG_ANYTHING,
323 };
324 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
325 
326 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
327 	   u32, size)
328 {
329 	/*
330 	 * Ensure we're in user context which is safe for the helper to
331 	 * run. This helper has no business in a kthread.
332 	 *
333 	 * access_ok() should prevent writing to non-user memory, but in
334 	 * some situations (nommu, temporary switch, etc) access_ok() does
335 	 * not provide enough validation, hence the check on KERNEL_DS.
336 	 *
337 	 * nmi_uaccess_okay() ensures the probe is not run in an interim
338 	 * state, when the task or mm are switched. This is specifically
339 	 * required to prevent the use of temporary mm.
340 	 */
341 
342 	if (unlikely(in_interrupt() ||
343 		     current->flags & (PF_KTHREAD | PF_EXITING)))
344 		return -EPERM;
345 	if (unlikely(!nmi_uaccess_okay()))
346 		return -EPERM;
347 
348 	return copy_to_user_nofault(unsafe_ptr, src, size);
349 }
350 
351 static const struct bpf_func_proto bpf_probe_write_user_proto = {
352 	.func		= bpf_probe_write_user,
353 	.gpl_only	= true,
354 	.ret_type	= RET_INTEGER,
355 	.arg1_type	= ARG_ANYTHING,
356 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
357 	.arg3_type	= ARG_CONST_SIZE,
358 };
359 
360 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
361 {
362 	if (!capable(CAP_SYS_ADMIN))
363 		return NULL;
364 
365 	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
366 			    current->comm, task_pid_nr(current));
367 
368 	return &bpf_probe_write_user_proto;
369 }
370 
371 #define MAX_TRACE_PRINTK_VARARGS	3
372 #define BPF_TRACE_PRINTK_SIZE		1024
373 
374 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
375 	   u64, arg2, u64, arg3)
376 {
377 	u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 };
378 	struct bpf_bprintf_data data = {
379 		.get_bin_args	= true,
380 		.get_buf	= true,
381 	};
382 	int ret;
383 
384 	ret = bpf_bprintf_prepare(fmt, fmt_size, args,
385 				  MAX_TRACE_PRINTK_VARARGS, &data);
386 	if (ret < 0)
387 		return ret;
388 
389 	ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
390 
391 	trace_bpf_trace_printk(data.buf);
392 
393 	bpf_bprintf_cleanup(&data);
394 
395 	return ret;
396 }
397 
398 static const struct bpf_func_proto bpf_trace_printk_proto = {
399 	.func		= bpf_trace_printk,
400 	.gpl_only	= true,
401 	.ret_type	= RET_INTEGER,
402 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
403 	.arg2_type	= ARG_CONST_SIZE,
404 };
405 
406 static void __set_printk_clr_event(void)
407 {
408 	/*
409 	 * This program might be calling bpf_trace_printk,
410 	 * so enable the associated bpf_trace/bpf_trace_printk event.
411 	 * Repeat this each time as it is possible a user has
412 	 * disabled bpf_trace_printk events.  By loading a program
413 	 * calling bpf_trace_printk() however the user has expressed
414 	 * the intent to see such events.
415 	 */
416 	if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
417 		pr_warn_ratelimited("could not enable bpf_trace_printk events");
418 }
419 
420 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
421 {
422 	__set_printk_clr_event();
423 	return &bpf_trace_printk_proto;
424 }
425 
426 BPF_CALL_4(bpf_trace_vprintk, char *, fmt, u32, fmt_size, const void *, args,
427 	   u32, data_len)
428 {
429 	struct bpf_bprintf_data data = {
430 		.get_bin_args	= true,
431 		.get_buf	= true,
432 	};
433 	int ret, num_args;
434 
435 	if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
436 	    (data_len && !args))
437 		return -EINVAL;
438 	num_args = data_len / 8;
439 
440 	ret = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
441 	if (ret < 0)
442 		return ret;
443 
444 	ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
445 
446 	trace_bpf_trace_printk(data.buf);
447 
448 	bpf_bprintf_cleanup(&data);
449 
450 	return ret;
451 }
452 
453 static const struct bpf_func_proto bpf_trace_vprintk_proto = {
454 	.func		= bpf_trace_vprintk,
455 	.gpl_only	= true,
456 	.ret_type	= RET_INTEGER,
457 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
458 	.arg2_type	= ARG_CONST_SIZE,
459 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
460 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
461 };
462 
463 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void)
464 {
465 	__set_printk_clr_event();
466 	return &bpf_trace_vprintk_proto;
467 }
468 
469 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
470 	   const void *, args, u32, data_len)
471 {
472 	struct bpf_bprintf_data data = {
473 		.get_bin_args	= true,
474 	};
475 	int err, num_args;
476 
477 	if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
478 	    (data_len && !args))
479 		return -EINVAL;
480 	num_args = data_len / 8;
481 
482 	err = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
483 	if (err < 0)
484 		return err;
485 
486 	seq_bprintf(m, fmt, data.bin_args);
487 
488 	bpf_bprintf_cleanup(&data);
489 
490 	return seq_has_overflowed(m) ? -EOVERFLOW : 0;
491 }
492 
493 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
494 
495 static const struct bpf_func_proto bpf_seq_printf_proto = {
496 	.func		= bpf_seq_printf,
497 	.gpl_only	= true,
498 	.ret_type	= RET_INTEGER,
499 	.arg1_type	= ARG_PTR_TO_BTF_ID,
500 	.arg1_btf_id	= &btf_seq_file_ids[0],
501 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
502 	.arg3_type	= ARG_CONST_SIZE,
503 	.arg4_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
504 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
505 };
506 
507 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
508 {
509 	return seq_write(m, data, len) ? -EOVERFLOW : 0;
510 }
511 
512 static const struct bpf_func_proto bpf_seq_write_proto = {
513 	.func		= bpf_seq_write,
514 	.gpl_only	= true,
515 	.ret_type	= RET_INTEGER,
516 	.arg1_type	= ARG_PTR_TO_BTF_ID,
517 	.arg1_btf_id	= &btf_seq_file_ids[0],
518 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
519 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
520 };
521 
522 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
523 	   u32, btf_ptr_size, u64, flags)
524 {
525 	const struct btf *btf;
526 	s32 btf_id;
527 	int ret;
528 
529 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
530 	if (ret)
531 		return ret;
532 
533 	return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
534 }
535 
536 static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
537 	.func		= bpf_seq_printf_btf,
538 	.gpl_only	= true,
539 	.ret_type	= RET_INTEGER,
540 	.arg1_type	= ARG_PTR_TO_BTF_ID,
541 	.arg1_btf_id	= &btf_seq_file_ids[0],
542 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
543 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
544 	.arg4_type	= ARG_ANYTHING,
545 };
546 
547 static __always_inline int
548 get_map_perf_counter(struct bpf_map *map, u64 flags,
549 		     u64 *value, u64 *enabled, u64 *running)
550 {
551 	struct bpf_array *array = container_of(map, struct bpf_array, map);
552 	unsigned int cpu = smp_processor_id();
553 	u64 index = flags & BPF_F_INDEX_MASK;
554 	struct bpf_event_entry *ee;
555 
556 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
557 		return -EINVAL;
558 	if (index == BPF_F_CURRENT_CPU)
559 		index = cpu;
560 	if (unlikely(index >= array->map.max_entries))
561 		return -E2BIG;
562 
563 	ee = READ_ONCE(array->ptrs[index]);
564 	if (!ee)
565 		return -ENOENT;
566 
567 	return perf_event_read_local(ee->event, value, enabled, running);
568 }
569 
570 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
571 {
572 	u64 value = 0;
573 	int err;
574 
575 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
576 	/*
577 	 * this api is ugly since we miss [-22..-2] range of valid
578 	 * counter values, but that's uapi
579 	 */
580 	if (err)
581 		return err;
582 	return value;
583 }
584 
585 static const struct bpf_func_proto bpf_perf_event_read_proto = {
586 	.func		= bpf_perf_event_read,
587 	.gpl_only	= true,
588 	.ret_type	= RET_INTEGER,
589 	.arg1_type	= ARG_CONST_MAP_PTR,
590 	.arg2_type	= ARG_ANYTHING,
591 };
592 
593 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
594 	   struct bpf_perf_event_value *, buf, u32, size)
595 {
596 	int err = -EINVAL;
597 
598 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
599 		goto clear;
600 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
601 				   &buf->running);
602 	if (unlikely(err))
603 		goto clear;
604 	return 0;
605 clear:
606 	memset(buf, 0, size);
607 	return err;
608 }
609 
610 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
611 	.func		= bpf_perf_event_read_value,
612 	.gpl_only	= true,
613 	.ret_type	= RET_INTEGER,
614 	.arg1_type	= ARG_CONST_MAP_PTR,
615 	.arg2_type	= ARG_ANYTHING,
616 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
617 	.arg4_type	= ARG_CONST_SIZE,
618 };
619 
620 static __always_inline u64
621 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
622 			u64 flags, struct perf_raw_record *raw,
623 			struct perf_sample_data *sd)
624 {
625 	struct bpf_array *array = container_of(map, struct bpf_array, map);
626 	unsigned int cpu = smp_processor_id();
627 	u64 index = flags & BPF_F_INDEX_MASK;
628 	struct bpf_event_entry *ee;
629 	struct perf_event *event;
630 
631 	if (index == BPF_F_CURRENT_CPU)
632 		index = cpu;
633 	if (unlikely(index >= array->map.max_entries))
634 		return -E2BIG;
635 
636 	ee = READ_ONCE(array->ptrs[index]);
637 	if (!ee)
638 		return -ENOENT;
639 
640 	event = ee->event;
641 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
642 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
643 		return -EINVAL;
644 
645 	if (unlikely(event->oncpu != cpu))
646 		return -EOPNOTSUPP;
647 
648 	perf_sample_save_raw_data(sd, event, raw);
649 
650 	return perf_event_output(event, sd, regs);
651 }
652 
653 /*
654  * Support executing tracepoints in normal, irq, and nmi context that each call
655  * bpf_perf_event_output
656  */
657 struct bpf_trace_sample_data {
658 	struct perf_sample_data sds[3];
659 };
660 
661 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
662 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
663 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
664 	   u64, flags, void *, data, u64, size)
665 {
666 	struct bpf_trace_sample_data *sds;
667 	struct perf_raw_record raw = {
668 		.frag = {
669 			.size = size,
670 			.data = data,
671 		},
672 	};
673 	struct perf_sample_data *sd;
674 	int nest_level, err;
675 
676 	preempt_disable();
677 	sds = this_cpu_ptr(&bpf_trace_sds);
678 	nest_level = this_cpu_inc_return(bpf_trace_nest_level);
679 
680 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
681 		err = -EBUSY;
682 		goto out;
683 	}
684 
685 	sd = &sds->sds[nest_level - 1];
686 
687 	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
688 		err = -EINVAL;
689 		goto out;
690 	}
691 
692 	perf_sample_data_init(sd, 0, 0);
693 
694 	err = __bpf_perf_event_output(regs, map, flags, &raw, sd);
695 out:
696 	this_cpu_dec(bpf_trace_nest_level);
697 	preempt_enable();
698 	return err;
699 }
700 
701 static const struct bpf_func_proto bpf_perf_event_output_proto = {
702 	.func		= bpf_perf_event_output,
703 	.gpl_only	= true,
704 	.ret_type	= RET_INTEGER,
705 	.arg1_type	= ARG_PTR_TO_CTX,
706 	.arg2_type	= ARG_CONST_MAP_PTR,
707 	.arg3_type	= ARG_ANYTHING,
708 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
709 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
710 };
711 
712 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
713 struct bpf_nested_pt_regs {
714 	struct pt_regs regs[3];
715 };
716 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
717 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
718 
719 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
720 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
721 {
722 	struct perf_raw_frag frag = {
723 		.copy		= ctx_copy,
724 		.size		= ctx_size,
725 		.data		= ctx,
726 	};
727 	struct perf_raw_record raw = {
728 		.frag = {
729 			{
730 				.next	= ctx_size ? &frag : NULL,
731 			},
732 			.size	= meta_size,
733 			.data	= meta,
734 		},
735 	};
736 	struct perf_sample_data *sd;
737 	struct pt_regs *regs;
738 	int nest_level;
739 	u64 ret;
740 
741 	preempt_disable();
742 	nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
743 
744 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
745 		ret = -EBUSY;
746 		goto out;
747 	}
748 	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
749 	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
750 
751 	perf_fetch_caller_regs(regs);
752 	perf_sample_data_init(sd, 0, 0);
753 
754 	ret = __bpf_perf_event_output(regs, map, flags, &raw, sd);
755 out:
756 	this_cpu_dec(bpf_event_output_nest_level);
757 	preempt_enable();
758 	return ret;
759 }
760 
761 BPF_CALL_0(bpf_get_current_task)
762 {
763 	return (long) current;
764 }
765 
766 const struct bpf_func_proto bpf_get_current_task_proto = {
767 	.func		= bpf_get_current_task,
768 	.gpl_only	= true,
769 	.ret_type	= RET_INTEGER,
770 };
771 
772 BPF_CALL_0(bpf_get_current_task_btf)
773 {
774 	return (unsigned long) current;
775 }
776 
777 const struct bpf_func_proto bpf_get_current_task_btf_proto = {
778 	.func		= bpf_get_current_task_btf,
779 	.gpl_only	= true,
780 	.ret_type	= RET_PTR_TO_BTF_ID_TRUSTED,
781 	.ret_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
782 };
783 
784 BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task)
785 {
786 	return (unsigned long) task_pt_regs(task);
787 }
788 
789 BTF_ID_LIST(bpf_task_pt_regs_ids)
790 BTF_ID(struct, pt_regs)
791 
792 const struct bpf_func_proto bpf_task_pt_regs_proto = {
793 	.func		= bpf_task_pt_regs,
794 	.gpl_only	= true,
795 	.arg1_type	= ARG_PTR_TO_BTF_ID,
796 	.arg1_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
797 	.ret_type	= RET_PTR_TO_BTF_ID,
798 	.ret_btf_id	= &bpf_task_pt_regs_ids[0],
799 };
800 
801 struct send_signal_irq_work {
802 	struct irq_work irq_work;
803 	struct task_struct *task;
804 	u32 sig;
805 	enum pid_type type;
806 	bool has_siginfo;
807 	struct kernel_siginfo info;
808 };
809 
810 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
811 
812 static void do_bpf_send_signal(struct irq_work *entry)
813 {
814 	struct send_signal_irq_work *work;
815 	struct kernel_siginfo *siginfo;
816 
817 	work = container_of(entry, struct send_signal_irq_work, irq_work);
818 	siginfo = work->has_siginfo ? &work->info : SEND_SIG_PRIV;
819 
820 	group_send_sig_info(work->sig, siginfo, work->task, work->type);
821 	put_task_struct(work->task);
822 }
823 
824 static int bpf_send_signal_common(u32 sig, enum pid_type type, struct task_struct *task, u64 value)
825 {
826 	struct send_signal_irq_work *work = NULL;
827 	struct kernel_siginfo info;
828 	struct kernel_siginfo *siginfo;
829 
830 	if (!task) {
831 		task = current;
832 		siginfo = SEND_SIG_PRIV;
833 	} else {
834 		clear_siginfo(&info);
835 		info.si_signo = sig;
836 		info.si_errno = 0;
837 		info.si_code = SI_KERNEL;
838 		info.si_pid = 0;
839 		info.si_uid = 0;
840 		info.si_value.sival_ptr = (void *)(unsigned long)value;
841 		siginfo = &info;
842 	}
843 
844 	/* Similar to bpf_probe_write_user, task needs to be
845 	 * in a sound condition and kernel memory access be
846 	 * permitted in order to send signal to the current
847 	 * task.
848 	 */
849 	if (unlikely(task->flags & (PF_KTHREAD | PF_EXITING)))
850 		return -EPERM;
851 	if (unlikely(!nmi_uaccess_okay()))
852 		return -EPERM;
853 	/* Task should not be pid=1 to avoid kernel panic. */
854 	if (unlikely(is_global_init(task)))
855 		return -EPERM;
856 
857 	if (irqs_disabled()) {
858 		/* Do an early check on signal validity. Otherwise,
859 		 * the error is lost in deferred irq_work.
860 		 */
861 		if (unlikely(!valid_signal(sig)))
862 			return -EINVAL;
863 
864 		work = this_cpu_ptr(&send_signal_work);
865 		if (irq_work_is_busy(&work->irq_work))
866 			return -EBUSY;
867 
868 		/* Add the current task, which is the target of sending signal,
869 		 * to the irq_work. The current task may change when queued
870 		 * irq works get executed.
871 		 */
872 		work->task = get_task_struct(task);
873 		work->has_siginfo = siginfo == &info;
874 		if (work->has_siginfo)
875 			copy_siginfo(&work->info, &info);
876 		work->sig = sig;
877 		work->type = type;
878 		irq_work_queue(&work->irq_work);
879 		return 0;
880 	}
881 
882 	return group_send_sig_info(sig, siginfo, task, type);
883 }
884 
885 BPF_CALL_1(bpf_send_signal, u32, sig)
886 {
887 	return bpf_send_signal_common(sig, PIDTYPE_TGID, NULL, 0);
888 }
889 
890 static const struct bpf_func_proto bpf_send_signal_proto = {
891 	.func		= bpf_send_signal,
892 	.gpl_only	= false,
893 	.ret_type	= RET_INTEGER,
894 	.arg1_type	= ARG_ANYTHING,
895 };
896 
897 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
898 {
899 	return bpf_send_signal_common(sig, PIDTYPE_PID, NULL, 0);
900 }
901 
902 static const struct bpf_func_proto bpf_send_signal_thread_proto = {
903 	.func		= bpf_send_signal_thread,
904 	.gpl_only	= false,
905 	.ret_type	= RET_INTEGER,
906 	.arg1_type	= ARG_ANYTHING,
907 };
908 
909 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
910 {
911 	struct path copy;
912 	long len;
913 	char *p;
914 
915 	if (!sz)
916 		return 0;
917 
918 	/*
919 	 * The path pointer is verified as trusted and safe to use,
920 	 * but let's double check it's valid anyway to workaround
921 	 * potentially broken verifier.
922 	 */
923 	len = copy_from_kernel_nofault(&copy, path, sizeof(*path));
924 	if (len < 0)
925 		return len;
926 
927 	p = d_path(&copy, buf, sz);
928 	if (IS_ERR(p)) {
929 		len = PTR_ERR(p);
930 	} else {
931 		len = buf + sz - p;
932 		memmove(buf, p, len);
933 	}
934 
935 	return len;
936 }
937 
938 BTF_SET_START(btf_allowlist_d_path)
939 #ifdef CONFIG_SECURITY
940 BTF_ID(func, security_file_permission)
941 BTF_ID(func, security_inode_getattr)
942 BTF_ID(func, security_file_open)
943 #endif
944 #ifdef CONFIG_SECURITY_PATH
945 BTF_ID(func, security_path_truncate)
946 #endif
947 BTF_ID(func, vfs_truncate)
948 BTF_ID(func, vfs_fallocate)
949 BTF_ID(func, dentry_open)
950 BTF_ID(func, vfs_getattr)
951 BTF_ID(func, filp_close)
952 BTF_SET_END(btf_allowlist_d_path)
953 
954 static bool bpf_d_path_allowed(const struct bpf_prog *prog)
955 {
956 	if (prog->type == BPF_PROG_TYPE_TRACING &&
957 	    prog->expected_attach_type == BPF_TRACE_ITER)
958 		return true;
959 
960 	if (prog->type == BPF_PROG_TYPE_LSM)
961 		return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id);
962 
963 	return btf_id_set_contains(&btf_allowlist_d_path,
964 				   prog->aux->attach_btf_id);
965 }
966 
967 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
968 
969 static const struct bpf_func_proto bpf_d_path_proto = {
970 	.func		= bpf_d_path,
971 	.gpl_only	= false,
972 	.ret_type	= RET_INTEGER,
973 	.arg1_type	= ARG_PTR_TO_BTF_ID,
974 	.arg1_btf_id	= &bpf_d_path_btf_ids[0],
975 	.arg2_type	= ARG_PTR_TO_MEM,
976 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
977 	.allowed	= bpf_d_path_allowed,
978 };
979 
980 #define BTF_F_ALL	(BTF_F_COMPACT  | BTF_F_NONAME | \
981 			 BTF_F_PTR_RAW | BTF_F_ZERO)
982 
983 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
984 				  u64 flags, const struct btf **btf,
985 				  s32 *btf_id)
986 {
987 	const struct btf_type *t;
988 
989 	if (unlikely(flags & ~(BTF_F_ALL)))
990 		return -EINVAL;
991 
992 	if (btf_ptr_size != sizeof(struct btf_ptr))
993 		return -EINVAL;
994 
995 	*btf = bpf_get_btf_vmlinux();
996 
997 	if (IS_ERR_OR_NULL(*btf))
998 		return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
999 
1000 	if (ptr->type_id > 0)
1001 		*btf_id = ptr->type_id;
1002 	else
1003 		return -EINVAL;
1004 
1005 	if (*btf_id > 0)
1006 		t = btf_type_by_id(*btf, *btf_id);
1007 	if (*btf_id <= 0 || !t)
1008 		return -ENOENT;
1009 
1010 	return 0;
1011 }
1012 
1013 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
1014 	   u32, btf_ptr_size, u64, flags)
1015 {
1016 	const struct btf *btf;
1017 	s32 btf_id;
1018 	int ret;
1019 
1020 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
1021 	if (ret)
1022 		return ret;
1023 
1024 	return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
1025 				      flags);
1026 }
1027 
1028 const struct bpf_func_proto bpf_snprintf_btf_proto = {
1029 	.func		= bpf_snprintf_btf,
1030 	.gpl_only	= false,
1031 	.ret_type	= RET_INTEGER,
1032 	.arg1_type	= ARG_PTR_TO_MEM,
1033 	.arg2_type	= ARG_CONST_SIZE,
1034 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1035 	.arg4_type	= ARG_CONST_SIZE,
1036 	.arg5_type	= ARG_ANYTHING,
1037 };
1038 
1039 BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx)
1040 {
1041 	/* This helper call is inlined by verifier. */
1042 	return ((u64 *)ctx)[-2];
1043 }
1044 
1045 static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = {
1046 	.func		= bpf_get_func_ip_tracing,
1047 	.gpl_only	= true,
1048 	.ret_type	= RET_INTEGER,
1049 	.arg1_type	= ARG_PTR_TO_CTX,
1050 };
1051 
1052 #ifdef CONFIG_X86_KERNEL_IBT
1053 static unsigned long get_entry_ip(unsigned long fentry_ip)
1054 {
1055 	u32 instr;
1056 
1057 	/* We want to be extra safe in case entry ip is on the page edge,
1058 	 * but otherwise we need to avoid get_kernel_nofault()'s overhead.
1059 	 */
1060 	if ((fentry_ip & ~PAGE_MASK) < ENDBR_INSN_SIZE) {
1061 		if (get_kernel_nofault(instr, (u32 *)(fentry_ip - ENDBR_INSN_SIZE)))
1062 			return fentry_ip;
1063 	} else {
1064 		instr = *(u32 *)(fentry_ip - ENDBR_INSN_SIZE);
1065 	}
1066 	if (is_endbr(instr))
1067 		fentry_ip -= ENDBR_INSN_SIZE;
1068 	return fentry_ip;
1069 }
1070 #else
1071 #define get_entry_ip(fentry_ip) fentry_ip
1072 #endif
1073 
1074 BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs)
1075 {
1076 	struct bpf_trace_run_ctx *run_ctx __maybe_unused;
1077 	struct kprobe *kp;
1078 
1079 #ifdef CONFIG_UPROBES
1080 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1081 	if (run_ctx->is_uprobe)
1082 		return ((struct uprobe_dispatch_data *)current->utask->vaddr)->bp_addr;
1083 #endif
1084 
1085 	kp = kprobe_running();
1086 
1087 	if (!kp || !(kp->flags & KPROBE_FLAG_ON_FUNC_ENTRY))
1088 		return 0;
1089 
1090 	return get_entry_ip((uintptr_t)kp->addr);
1091 }
1092 
1093 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = {
1094 	.func		= bpf_get_func_ip_kprobe,
1095 	.gpl_only	= true,
1096 	.ret_type	= RET_INTEGER,
1097 	.arg1_type	= ARG_PTR_TO_CTX,
1098 };
1099 
1100 BPF_CALL_1(bpf_get_func_ip_kprobe_multi, struct pt_regs *, regs)
1101 {
1102 	return bpf_kprobe_multi_entry_ip(current->bpf_ctx);
1103 }
1104 
1105 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe_multi = {
1106 	.func		= bpf_get_func_ip_kprobe_multi,
1107 	.gpl_only	= false,
1108 	.ret_type	= RET_INTEGER,
1109 	.arg1_type	= ARG_PTR_TO_CTX,
1110 };
1111 
1112 BPF_CALL_1(bpf_get_attach_cookie_kprobe_multi, struct pt_regs *, regs)
1113 {
1114 	return bpf_kprobe_multi_cookie(current->bpf_ctx);
1115 }
1116 
1117 static const struct bpf_func_proto bpf_get_attach_cookie_proto_kmulti = {
1118 	.func		= bpf_get_attach_cookie_kprobe_multi,
1119 	.gpl_only	= false,
1120 	.ret_type	= RET_INTEGER,
1121 	.arg1_type	= ARG_PTR_TO_CTX,
1122 };
1123 
1124 BPF_CALL_1(bpf_get_func_ip_uprobe_multi, struct pt_regs *, regs)
1125 {
1126 	return bpf_uprobe_multi_entry_ip(current->bpf_ctx);
1127 }
1128 
1129 static const struct bpf_func_proto bpf_get_func_ip_proto_uprobe_multi = {
1130 	.func		= bpf_get_func_ip_uprobe_multi,
1131 	.gpl_only	= false,
1132 	.ret_type	= RET_INTEGER,
1133 	.arg1_type	= ARG_PTR_TO_CTX,
1134 };
1135 
1136 BPF_CALL_1(bpf_get_attach_cookie_uprobe_multi, struct pt_regs *, regs)
1137 {
1138 	return bpf_uprobe_multi_cookie(current->bpf_ctx);
1139 }
1140 
1141 static const struct bpf_func_proto bpf_get_attach_cookie_proto_umulti = {
1142 	.func		= bpf_get_attach_cookie_uprobe_multi,
1143 	.gpl_only	= false,
1144 	.ret_type	= RET_INTEGER,
1145 	.arg1_type	= ARG_PTR_TO_CTX,
1146 };
1147 
1148 BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx)
1149 {
1150 	struct bpf_trace_run_ctx *run_ctx;
1151 
1152 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1153 	return run_ctx->bpf_cookie;
1154 }
1155 
1156 static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = {
1157 	.func		= bpf_get_attach_cookie_trace,
1158 	.gpl_only	= false,
1159 	.ret_type	= RET_INTEGER,
1160 	.arg1_type	= ARG_PTR_TO_CTX,
1161 };
1162 
1163 BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx)
1164 {
1165 	return ctx->event->bpf_cookie;
1166 }
1167 
1168 static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = {
1169 	.func		= bpf_get_attach_cookie_pe,
1170 	.gpl_only	= false,
1171 	.ret_type	= RET_INTEGER,
1172 	.arg1_type	= ARG_PTR_TO_CTX,
1173 };
1174 
1175 BPF_CALL_1(bpf_get_attach_cookie_tracing, void *, ctx)
1176 {
1177 	struct bpf_trace_run_ctx *run_ctx;
1178 
1179 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1180 	return run_ctx->bpf_cookie;
1181 }
1182 
1183 static const struct bpf_func_proto bpf_get_attach_cookie_proto_tracing = {
1184 	.func		= bpf_get_attach_cookie_tracing,
1185 	.gpl_only	= false,
1186 	.ret_type	= RET_INTEGER,
1187 	.arg1_type	= ARG_PTR_TO_CTX,
1188 };
1189 
1190 BPF_CALL_3(bpf_get_branch_snapshot, void *, buf, u32, size, u64, flags)
1191 {
1192 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1193 	u32 entry_cnt = size / br_entry_size;
1194 
1195 	entry_cnt = static_call(perf_snapshot_branch_stack)(buf, entry_cnt);
1196 
1197 	if (unlikely(flags))
1198 		return -EINVAL;
1199 
1200 	if (!entry_cnt)
1201 		return -ENOENT;
1202 
1203 	return entry_cnt * br_entry_size;
1204 }
1205 
1206 static const struct bpf_func_proto bpf_get_branch_snapshot_proto = {
1207 	.func		= bpf_get_branch_snapshot,
1208 	.gpl_only	= true,
1209 	.ret_type	= RET_INTEGER,
1210 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1211 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1212 };
1213 
1214 BPF_CALL_3(get_func_arg, void *, ctx, u32, n, u64 *, value)
1215 {
1216 	/* This helper call is inlined by verifier. */
1217 	u64 nr_args = ((u64 *)ctx)[-1];
1218 
1219 	if ((u64) n >= nr_args)
1220 		return -EINVAL;
1221 	*value = ((u64 *)ctx)[n];
1222 	return 0;
1223 }
1224 
1225 static const struct bpf_func_proto bpf_get_func_arg_proto = {
1226 	.func		= get_func_arg,
1227 	.ret_type	= RET_INTEGER,
1228 	.arg1_type	= ARG_PTR_TO_CTX,
1229 	.arg2_type	= ARG_ANYTHING,
1230 	.arg3_type	= ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
1231 	.arg3_size	= sizeof(u64),
1232 };
1233 
1234 BPF_CALL_2(get_func_ret, void *, ctx, u64 *, value)
1235 {
1236 	/* This helper call is inlined by verifier. */
1237 	u64 nr_args = ((u64 *)ctx)[-1];
1238 
1239 	*value = ((u64 *)ctx)[nr_args];
1240 	return 0;
1241 }
1242 
1243 static const struct bpf_func_proto bpf_get_func_ret_proto = {
1244 	.func		= get_func_ret,
1245 	.ret_type	= RET_INTEGER,
1246 	.arg1_type	= ARG_PTR_TO_CTX,
1247 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
1248 	.arg2_size	= sizeof(u64),
1249 };
1250 
1251 BPF_CALL_1(get_func_arg_cnt, void *, ctx)
1252 {
1253 	/* This helper call is inlined by verifier. */
1254 	return ((u64 *)ctx)[-1];
1255 }
1256 
1257 static const struct bpf_func_proto bpf_get_func_arg_cnt_proto = {
1258 	.func		= get_func_arg_cnt,
1259 	.ret_type	= RET_INTEGER,
1260 	.arg1_type	= ARG_PTR_TO_CTX,
1261 };
1262 
1263 #ifdef CONFIG_KEYS
1264 __bpf_kfunc_start_defs();
1265 
1266 /**
1267  * bpf_lookup_user_key - lookup a key by its serial
1268  * @serial: key handle serial number
1269  * @flags: lookup-specific flags
1270  *
1271  * Search a key with a given *serial* and the provided *flags*.
1272  * If found, increment the reference count of the key by one, and
1273  * return it in the bpf_key structure.
1274  *
1275  * The bpf_key structure must be passed to bpf_key_put() when done
1276  * with it, so that the key reference count is decremented and the
1277  * bpf_key structure is freed.
1278  *
1279  * Permission checks are deferred to the time the key is used by
1280  * one of the available key-specific kfuncs.
1281  *
1282  * Set *flags* with KEY_LOOKUP_CREATE, to attempt creating a requested
1283  * special keyring (e.g. session keyring), if it doesn't yet exist.
1284  * Set *flags* with KEY_LOOKUP_PARTIAL, to lookup a key without waiting
1285  * for the key construction, and to retrieve uninstantiated keys (keys
1286  * without data attached to them).
1287  *
1288  * Return: a bpf_key pointer with a valid key pointer if the key is found, a
1289  *         NULL pointer otherwise.
1290  */
1291 __bpf_kfunc struct bpf_key *bpf_lookup_user_key(u32 serial, u64 flags)
1292 {
1293 	key_ref_t key_ref;
1294 	struct bpf_key *bkey;
1295 
1296 	if (flags & ~KEY_LOOKUP_ALL)
1297 		return NULL;
1298 
1299 	/*
1300 	 * Permission check is deferred until the key is used, as the
1301 	 * intent of the caller is unknown here.
1302 	 */
1303 	key_ref = lookup_user_key(serial, flags, KEY_DEFER_PERM_CHECK);
1304 	if (IS_ERR(key_ref))
1305 		return NULL;
1306 
1307 	bkey = kmalloc(sizeof(*bkey), GFP_KERNEL);
1308 	if (!bkey) {
1309 		key_put(key_ref_to_ptr(key_ref));
1310 		return NULL;
1311 	}
1312 
1313 	bkey->key = key_ref_to_ptr(key_ref);
1314 	bkey->has_ref = true;
1315 
1316 	return bkey;
1317 }
1318 
1319 /**
1320  * bpf_lookup_system_key - lookup a key by a system-defined ID
1321  * @id: key ID
1322  *
1323  * Obtain a bpf_key structure with a key pointer set to the passed key ID.
1324  * The key pointer is marked as invalid, to prevent bpf_key_put() from
1325  * attempting to decrement the key reference count on that pointer. The key
1326  * pointer set in such way is currently understood only by
1327  * verify_pkcs7_signature().
1328  *
1329  * Set *id* to one of the values defined in include/linux/verification.h:
1330  * 0 for the primary keyring (immutable keyring of system keys);
1331  * VERIFY_USE_SECONDARY_KEYRING for both the primary and secondary keyring
1332  * (where keys can be added only if they are vouched for by existing keys
1333  * in those keyrings); VERIFY_USE_PLATFORM_KEYRING for the platform
1334  * keyring (primarily used by the integrity subsystem to verify a kexec'ed
1335  * kerned image and, possibly, the initramfs signature).
1336  *
1337  * Return: a bpf_key pointer with an invalid key pointer set from the
1338  *         pre-determined ID on success, a NULL pointer otherwise
1339  */
1340 __bpf_kfunc struct bpf_key *bpf_lookup_system_key(u64 id)
1341 {
1342 	struct bpf_key *bkey;
1343 
1344 	if (system_keyring_id_check(id) < 0)
1345 		return NULL;
1346 
1347 	bkey = kmalloc(sizeof(*bkey), GFP_ATOMIC);
1348 	if (!bkey)
1349 		return NULL;
1350 
1351 	bkey->key = (struct key *)(unsigned long)id;
1352 	bkey->has_ref = false;
1353 
1354 	return bkey;
1355 }
1356 
1357 /**
1358  * bpf_key_put - decrement key reference count if key is valid and free bpf_key
1359  * @bkey: bpf_key structure
1360  *
1361  * Decrement the reference count of the key inside *bkey*, if the pointer
1362  * is valid, and free *bkey*.
1363  */
1364 __bpf_kfunc void bpf_key_put(struct bpf_key *bkey)
1365 {
1366 	if (bkey->has_ref)
1367 		key_put(bkey->key);
1368 
1369 	kfree(bkey);
1370 }
1371 
1372 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
1373 /**
1374  * bpf_verify_pkcs7_signature - verify a PKCS#7 signature
1375  * @data_p: data to verify
1376  * @sig_p: signature of the data
1377  * @trusted_keyring: keyring with keys trusted for signature verification
1378  *
1379  * Verify the PKCS#7 signature *sig_ptr* against the supplied *data_ptr*
1380  * with keys in a keyring referenced by *trusted_keyring*.
1381  *
1382  * Return: 0 on success, a negative value on error.
1383  */
1384 __bpf_kfunc int bpf_verify_pkcs7_signature(struct bpf_dynptr *data_p,
1385 			       struct bpf_dynptr *sig_p,
1386 			       struct bpf_key *trusted_keyring)
1387 {
1388 	struct bpf_dynptr_kern *data_ptr = (struct bpf_dynptr_kern *)data_p;
1389 	struct bpf_dynptr_kern *sig_ptr = (struct bpf_dynptr_kern *)sig_p;
1390 	const void *data, *sig;
1391 	u32 data_len, sig_len;
1392 	int ret;
1393 
1394 	if (trusted_keyring->has_ref) {
1395 		/*
1396 		 * Do the permission check deferred in bpf_lookup_user_key().
1397 		 * See bpf_lookup_user_key() for more details.
1398 		 *
1399 		 * A call to key_task_permission() here would be redundant, as
1400 		 * it is already done by keyring_search() called by
1401 		 * find_asymmetric_key().
1402 		 */
1403 		ret = key_validate(trusted_keyring->key);
1404 		if (ret < 0)
1405 			return ret;
1406 	}
1407 
1408 	data_len = __bpf_dynptr_size(data_ptr);
1409 	data = __bpf_dynptr_data(data_ptr, data_len);
1410 	sig_len = __bpf_dynptr_size(sig_ptr);
1411 	sig = __bpf_dynptr_data(sig_ptr, sig_len);
1412 
1413 	return verify_pkcs7_signature(data, data_len, sig, sig_len,
1414 				      trusted_keyring->key,
1415 				      VERIFYING_UNSPECIFIED_SIGNATURE, NULL,
1416 				      NULL);
1417 }
1418 #endif /* CONFIG_SYSTEM_DATA_VERIFICATION */
1419 
1420 __bpf_kfunc_end_defs();
1421 
1422 BTF_KFUNCS_START(key_sig_kfunc_set)
1423 BTF_ID_FLAGS(func, bpf_lookup_user_key, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE)
1424 BTF_ID_FLAGS(func, bpf_lookup_system_key, KF_ACQUIRE | KF_RET_NULL)
1425 BTF_ID_FLAGS(func, bpf_key_put, KF_RELEASE)
1426 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
1427 BTF_ID_FLAGS(func, bpf_verify_pkcs7_signature, KF_SLEEPABLE)
1428 #endif
1429 BTF_KFUNCS_END(key_sig_kfunc_set)
1430 
1431 static const struct btf_kfunc_id_set bpf_key_sig_kfunc_set = {
1432 	.owner = THIS_MODULE,
1433 	.set = &key_sig_kfunc_set,
1434 };
1435 
1436 static int __init bpf_key_sig_kfuncs_init(void)
1437 {
1438 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
1439 					 &bpf_key_sig_kfunc_set);
1440 }
1441 
1442 late_initcall(bpf_key_sig_kfuncs_init);
1443 #endif /* CONFIG_KEYS */
1444 
1445 static const struct bpf_func_proto *
1446 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1447 {
1448 	switch (func_id) {
1449 	case BPF_FUNC_map_lookup_elem:
1450 		return &bpf_map_lookup_elem_proto;
1451 	case BPF_FUNC_map_update_elem:
1452 		return &bpf_map_update_elem_proto;
1453 	case BPF_FUNC_map_delete_elem:
1454 		return &bpf_map_delete_elem_proto;
1455 	case BPF_FUNC_map_push_elem:
1456 		return &bpf_map_push_elem_proto;
1457 	case BPF_FUNC_map_pop_elem:
1458 		return &bpf_map_pop_elem_proto;
1459 	case BPF_FUNC_map_peek_elem:
1460 		return &bpf_map_peek_elem_proto;
1461 	case BPF_FUNC_map_lookup_percpu_elem:
1462 		return &bpf_map_lookup_percpu_elem_proto;
1463 	case BPF_FUNC_ktime_get_ns:
1464 		return &bpf_ktime_get_ns_proto;
1465 	case BPF_FUNC_ktime_get_boot_ns:
1466 		return &bpf_ktime_get_boot_ns_proto;
1467 	case BPF_FUNC_tail_call:
1468 		return &bpf_tail_call_proto;
1469 	case BPF_FUNC_get_current_task:
1470 		return &bpf_get_current_task_proto;
1471 	case BPF_FUNC_get_current_task_btf:
1472 		return &bpf_get_current_task_btf_proto;
1473 	case BPF_FUNC_task_pt_regs:
1474 		return &bpf_task_pt_regs_proto;
1475 	case BPF_FUNC_get_current_uid_gid:
1476 		return &bpf_get_current_uid_gid_proto;
1477 	case BPF_FUNC_get_current_comm:
1478 		return &bpf_get_current_comm_proto;
1479 	case BPF_FUNC_trace_printk:
1480 		return bpf_get_trace_printk_proto();
1481 	case BPF_FUNC_get_smp_processor_id:
1482 		return &bpf_get_smp_processor_id_proto;
1483 	case BPF_FUNC_get_numa_node_id:
1484 		return &bpf_get_numa_node_id_proto;
1485 	case BPF_FUNC_perf_event_read:
1486 		return &bpf_perf_event_read_proto;
1487 	case BPF_FUNC_get_prandom_u32:
1488 		return &bpf_get_prandom_u32_proto;
1489 	case BPF_FUNC_probe_write_user:
1490 		return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ?
1491 		       NULL : bpf_get_probe_write_proto();
1492 	case BPF_FUNC_probe_read_user:
1493 		return &bpf_probe_read_user_proto;
1494 	case BPF_FUNC_probe_read_kernel:
1495 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1496 		       NULL : &bpf_probe_read_kernel_proto;
1497 	case BPF_FUNC_probe_read_user_str:
1498 		return &bpf_probe_read_user_str_proto;
1499 	case BPF_FUNC_probe_read_kernel_str:
1500 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1501 		       NULL : &bpf_probe_read_kernel_str_proto;
1502 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1503 	case BPF_FUNC_probe_read:
1504 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1505 		       NULL : &bpf_probe_read_compat_proto;
1506 	case BPF_FUNC_probe_read_str:
1507 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1508 		       NULL : &bpf_probe_read_compat_str_proto;
1509 #endif
1510 #ifdef CONFIG_CGROUPS
1511 	case BPF_FUNC_cgrp_storage_get:
1512 		return &bpf_cgrp_storage_get_proto;
1513 	case BPF_FUNC_cgrp_storage_delete:
1514 		return &bpf_cgrp_storage_delete_proto;
1515 	case BPF_FUNC_current_task_under_cgroup:
1516 		return &bpf_current_task_under_cgroup_proto;
1517 #endif
1518 	case BPF_FUNC_send_signal:
1519 		return &bpf_send_signal_proto;
1520 	case BPF_FUNC_send_signal_thread:
1521 		return &bpf_send_signal_thread_proto;
1522 	case BPF_FUNC_perf_event_read_value:
1523 		return &bpf_perf_event_read_value_proto;
1524 	case BPF_FUNC_ringbuf_output:
1525 		return &bpf_ringbuf_output_proto;
1526 	case BPF_FUNC_ringbuf_reserve:
1527 		return &bpf_ringbuf_reserve_proto;
1528 	case BPF_FUNC_ringbuf_submit:
1529 		return &bpf_ringbuf_submit_proto;
1530 	case BPF_FUNC_ringbuf_discard:
1531 		return &bpf_ringbuf_discard_proto;
1532 	case BPF_FUNC_ringbuf_query:
1533 		return &bpf_ringbuf_query_proto;
1534 	case BPF_FUNC_jiffies64:
1535 		return &bpf_jiffies64_proto;
1536 	case BPF_FUNC_get_task_stack:
1537 		return prog->sleepable ? &bpf_get_task_stack_sleepable_proto
1538 				       : &bpf_get_task_stack_proto;
1539 	case BPF_FUNC_copy_from_user:
1540 		return &bpf_copy_from_user_proto;
1541 	case BPF_FUNC_copy_from_user_task:
1542 		return &bpf_copy_from_user_task_proto;
1543 	case BPF_FUNC_snprintf_btf:
1544 		return &bpf_snprintf_btf_proto;
1545 	case BPF_FUNC_per_cpu_ptr:
1546 		return &bpf_per_cpu_ptr_proto;
1547 	case BPF_FUNC_this_cpu_ptr:
1548 		return &bpf_this_cpu_ptr_proto;
1549 	case BPF_FUNC_task_storage_get:
1550 		if (bpf_prog_check_recur(prog))
1551 			return &bpf_task_storage_get_recur_proto;
1552 		return &bpf_task_storage_get_proto;
1553 	case BPF_FUNC_task_storage_delete:
1554 		if (bpf_prog_check_recur(prog))
1555 			return &bpf_task_storage_delete_recur_proto;
1556 		return &bpf_task_storage_delete_proto;
1557 	case BPF_FUNC_for_each_map_elem:
1558 		return &bpf_for_each_map_elem_proto;
1559 	case BPF_FUNC_snprintf:
1560 		return &bpf_snprintf_proto;
1561 	case BPF_FUNC_get_func_ip:
1562 		return &bpf_get_func_ip_proto_tracing;
1563 	case BPF_FUNC_get_branch_snapshot:
1564 		return &bpf_get_branch_snapshot_proto;
1565 	case BPF_FUNC_find_vma:
1566 		return &bpf_find_vma_proto;
1567 	case BPF_FUNC_trace_vprintk:
1568 		return bpf_get_trace_vprintk_proto();
1569 	default:
1570 		return bpf_base_func_proto(func_id, prog);
1571 	}
1572 }
1573 
1574 static bool is_kprobe_multi(const struct bpf_prog *prog)
1575 {
1576 	return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI ||
1577 	       prog->expected_attach_type == BPF_TRACE_KPROBE_SESSION;
1578 }
1579 
1580 static inline bool is_kprobe_session(const struct bpf_prog *prog)
1581 {
1582 	return prog->expected_attach_type == BPF_TRACE_KPROBE_SESSION;
1583 }
1584 
1585 static inline bool is_uprobe_multi(const struct bpf_prog *prog)
1586 {
1587 	return prog->expected_attach_type == BPF_TRACE_UPROBE_MULTI ||
1588 	       prog->expected_attach_type == BPF_TRACE_UPROBE_SESSION;
1589 }
1590 
1591 static inline bool is_uprobe_session(const struct bpf_prog *prog)
1592 {
1593 	return prog->expected_attach_type == BPF_TRACE_UPROBE_SESSION;
1594 }
1595 
1596 static const struct bpf_func_proto *
1597 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1598 {
1599 	switch (func_id) {
1600 	case BPF_FUNC_perf_event_output:
1601 		return &bpf_perf_event_output_proto;
1602 	case BPF_FUNC_get_stackid:
1603 		return &bpf_get_stackid_proto;
1604 	case BPF_FUNC_get_stack:
1605 		return prog->sleepable ? &bpf_get_stack_sleepable_proto : &bpf_get_stack_proto;
1606 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
1607 	case BPF_FUNC_override_return:
1608 		return &bpf_override_return_proto;
1609 #endif
1610 	case BPF_FUNC_get_func_ip:
1611 		if (is_kprobe_multi(prog))
1612 			return &bpf_get_func_ip_proto_kprobe_multi;
1613 		if (is_uprobe_multi(prog))
1614 			return &bpf_get_func_ip_proto_uprobe_multi;
1615 		return &bpf_get_func_ip_proto_kprobe;
1616 	case BPF_FUNC_get_attach_cookie:
1617 		if (is_kprobe_multi(prog))
1618 			return &bpf_get_attach_cookie_proto_kmulti;
1619 		if (is_uprobe_multi(prog))
1620 			return &bpf_get_attach_cookie_proto_umulti;
1621 		return &bpf_get_attach_cookie_proto_trace;
1622 	default:
1623 		return bpf_tracing_func_proto(func_id, prog);
1624 	}
1625 }
1626 
1627 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
1628 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1629 					const struct bpf_prog *prog,
1630 					struct bpf_insn_access_aux *info)
1631 {
1632 	if (off < 0 || off >= sizeof(struct pt_regs))
1633 		return false;
1634 	if (type != BPF_READ)
1635 		return false;
1636 	if (off % size != 0)
1637 		return false;
1638 	/*
1639 	 * Assertion for 32 bit to make sure last 8 byte access
1640 	 * (BPF_DW) to the last 4 byte member is disallowed.
1641 	 */
1642 	if (off + size > sizeof(struct pt_regs))
1643 		return false;
1644 
1645 	return true;
1646 }
1647 
1648 const struct bpf_verifier_ops kprobe_verifier_ops = {
1649 	.get_func_proto  = kprobe_prog_func_proto,
1650 	.is_valid_access = kprobe_prog_is_valid_access,
1651 };
1652 
1653 const struct bpf_prog_ops kprobe_prog_ops = {
1654 };
1655 
1656 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1657 	   u64, flags, void *, data, u64, size)
1658 {
1659 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1660 
1661 	/*
1662 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1663 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1664 	 * from there and call the same bpf_perf_event_output() helper inline.
1665 	 */
1666 	return ____bpf_perf_event_output(regs, map, flags, data, size);
1667 }
1668 
1669 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1670 	.func		= bpf_perf_event_output_tp,
1671 	.gpl_only	= true,
1672 	.ret_type	= RET_INTEGER,
1673 	.arg1_type	= ARG_PTR_TO_CTX,
1674 	.arg2_type	= ARG_CONST_MAP_PTR,
1675 	.arg3_type	= ARG_ANYTHING,
1676 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1677 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1678 };
1679 
1680 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1681 	   u64, flags)
1682 {
1683 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1684 
1685 	/*
1686 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
1687 	 * the other helper's function body cannot be inlined due to being
1688 	 * external, thus we need to call raw helper function.
1689 	 */
1690 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1691 			       flags, 0, 0);
1692 }
1693 
1694 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1695 	.func		= bpf_get_stackid_tp,
1696 	.gpl_only	= true,
1697 	.ret_type	= RET_INTEGER,
1698 	.arg1_type	= ARG_PTR_TO_CTX,
1699 	.arg2_type	= ARG_CONST_MAP_PTR,
1700 	.arg3_type	= ARG_ANYTHING,
1701 };
1702 
1703 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1704 	   u64, flags)
1705 {
1706 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1707 
1708 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1709 			     (unsigned long) size, flags, 0);
1710 }
1711 
1712 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1713 	.func		= bpf_get_stack_tp,
1714 	.gpl_only	= true,
1715 	.ret_type	= RET_INTEGER,
1716 	.arg1_type	= ARG_PTR_TO_CTX,
1717 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1718 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1719 	.arg4_type	= ARG_ANYTHING,
1720 };
1721 
1722 static const struct bpf_func_proto *
1723 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1724 {
1725 	switch (func_id) {
1726 	case BPF_FUNC_perf_event_output:
1727 		return &bpf_perf_event_output_proto_tp;
1728 	case BPF_FUNC_get_stackid:
1729 		return &bpf_get_stackid_proto_tp;
1730 	case BPF_FUNC_get_stack:
1731 		return &bpf_get_stack_proto_tp;
1732 	case BPF_FUNC_get_attach_cookie:
1733 		return &bpf_get_attach_cookie_proto_trace;
1734 	default:
1735 		return bpf_tracing_func_proto(func_id, prog);
1736 	}
1737 }
1738 
1739 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1740 				    const struct bpf_prog *prog,
1741 				    struct bpf_insn_access_aux *info)
1742 {
1743 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1744 		return false;
1745 	if (type != BPF_READ)
1746 		return false;
1747 	if (off % size != 0)
1748 		return false;
1749 
1750 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1751 	return true;
1752 }
1753 
1754 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1755 	.get_func_proto  = tp_prog_func_proto,
1756 	.is_valid_access = tp_prog_is_valid_access,
1757 };
1758 
1759 const struct bpf_prog_ops tracepoint_prog_ops = {
1760 };
1761 
1762 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1763 	   struct bpf_perf_event_value *, buf, u32, size)
1764 {
1765 	int err = -EINVAL;
1766 
1767 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1768 		goto clear;
1769 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1770 				    &buf->running);
1771 	if (unlikely(err))
1772 		goto clear;
1773 	return 0;
1774 clear:
1775 	memset(buf, 0, size);
1776 	return err;
1777 }
1778 
1779 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1780          .func           = bpf_perf_prog_read_value,
1781          .gpl_only       = true,
1782          .ret_type       = RET_INTEGER,
1783          .arg1_type      = ARG_PTR_TO_CTX,
1784          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1785          .arg3_type      = ARG_CONST_SIZE,
1786 };
1787 
1788 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1789 	   void *, buf, u32, size, u64, flags)
1790 {
1791 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1792 	struct perf_branch_stack *br_stack = ctx->data->br_stack;
1793 	u32 to_copy;
1794 
1795 	if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1796 		return -EINVAL;
1797 
1798 	if (unlikely(!(ctx->data->sample_flags & PERF_SAMPLE_BRANCH_STACK)))
1799 		return -ENOENT;
1800 
1801 	if (unlikely(!br_stack))
1802 		return -ENOENT;
1803 
1804 	if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1805 		return br_stack->nr * br_entry_size;
1806 
1807 	if (!buf || (size % br_entry_size != 0))
1808 		return -EINVAL;
1809 
1810 	to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1811 	memcpy(buf, br_stack->entries, to_copy);
1812 
1813 	return to_copy;
1814 }
1815 
1816 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1817 	.func           = bpf_read_branch_records,
1818 	.gpl_only       = true,
1819 	.ret_type       = RET_INTEGER,
1820 	.arg1_type      = ARG_PTR_TO_CTX,
1821 	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
1822 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1823 	.arg4_type      = ARG_ANYTHING,
1824 };
1825 
1826 static const struct bpf_func_proto *
1827 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1828 {
1829 	switch (func_id) {
1830 	case BPF_FUNC_perf_event_output:
1831 		return &bpf_perf_event_output_proto_tp;
1832 	case BPF_FUNC_get_stackid:
1833 		return &bpf_get_stackid_proto_pe;
1834 	case BPF_FUNC_get_stack:
1835 		return &bpf_get_stack_proto_pe;
1836 	case BPF_FUNC_perf_prog_read_value:
1837 		return &bpf_perf_prog_read_value_proto;
1838 	case BPF_FUNC_read_branch_records:
1839 		return &bpf_read_branch_records_proto;
1840 	case BPF_FUNC_get_attach_cookie:
1841 		return &bpf_get_attach_cookie_proto_pe;
1842 	default:
1843 		return bpf_tracing_func_proto(func_id, prog);
1844 	}
1845 }
1846 
1847 /*
1848  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1849  * to avoid potential recursive reuse issue when/if tracepoints are added
1850  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1851  *
1852  * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1853  * in normal, irq, and nmi context.
1854  */
1855 struct bpf_raw_tp_regs {
1856 	struct pt_regs regs[3];
1857 };
1858 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1859 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1860 static struct pt_regs *get_bpf_raw_tp_regs(void)
1861 {
1862 	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1863 	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1864 
1865 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1866 		this_cpu_dec(bpf_raw_tp_nest_level);
1867 		return ERR_PTR(-EBUSY);
1868 	}
1869 
1870 	return &tp_regs->regs[nest_level - 1];
1871 }
1872 
1873 static void put_bpf_raw_tp_regs(void)
1874 {
1875 	this_cpu_dec(bpf_raw_tp_nest_level);
1876 }
1877 
1878 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1879 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
1880 {
1881 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1882 	int ret;
1883 
1884 	if (IS_ERR(regs))
1885 		return PTR_ERR(regs);
1886 
1887 	perf_fetch_caller_regs(regs);
1888 	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1889 
1890 	put_bpf_raw_tp_regs();
1891 	return ret;
1892 }
1893 
1894 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1895 	.func		= bpf_perf_event_output_raw_tp,
1896 	.gpl_only	= true,
1897 	.ret_type	= RET_INTEGER,
1898 	.arg1_type	= ARG_PTR_TO_CTX,
1899 	.arg2_type	= ARG_CONST_MAP_PTR,
1900 	.arg3_type	= ARG_ANYTHING,
1901 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1902 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1903 };
1904 
1905 extern const struct bpf_func_proto bpf_skb_output_proto;
1906 extern const struct bpf_func_proto bpf_xdp_output_proto;
1907 extern const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto;
1908 
1909 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1910 	   struct bpf_map *, map, u64, flags)
1911 {
1912 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1913 	int ret;
1914 
1915 	if (IS_ERR(regs))
1916 		return PTR_ERR(regs);
1917 
1918 	perf_fetch_caller_regs(regs);
1919 	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1920 	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1921 			      flags, 0, 0);
1922 	put_bpf_raw_tp_regs();
1923 	return ret;
1924 }
1925 
1926 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1927 	.func		= bpf_get_stackid_raw_tp,
1928 	.gpl_only	= true,
1929 	.ret_type	= RET_INTEGER,
1930 	.arg1_type	= ARG_PTR_TO_CTX,
1931 	.arg2_type	= ARG_CONST_MAP_PTR,
1932 	.arg3_type	= ARG_ANYTHING,
1933 };
1934 
1935 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1936 	   void *, buf, u32, size, u64, flags)
1937 {
1938 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1939 	int ret;
1940 
1941 	if (IS_ERR(regs))
1942 		return PTR_ERR(regs);
1943 
1944 	perf_fetch_caller_regs(regs);
1945 	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1946 			    (unsigned long) size, flags, 0);
1947 	put_bpf_raw_tp_regs();
1948 	return ret;
1949 }
1950 
1951 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1952 	.func		= bpf_get_stack_raw_tp,
1953 	.gpl_only	= true,
1954 	.ret_type	= RET_INTEGER,
1955 	.arg1_type	= ARG_PTR_TO_CTX,
1956 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1957 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1958 	.arg4_type	= ARG_ANYTHING,
1959 };
1960 
1961 static const struct bpf_func_proto *
1962 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1963 {
1964 	switch (func_id) {
1965 	case BPF_FUNC_perf_event_output:
1966 		return &bpf_perf_event_output_proto_raw_tp;
1967 	case BPF_FUNC_get_stackid:
1968 		return &bpf_get_stackid_proto_raw_tp;
1969 	case BPF_FUNC_get_stack:
1970 		return &bpf_get_stack_proto_raw_tp;
1971 	case BPF_FUNC_get_attach_cookie:
1972 		return &bpf_get_attach_cookie_proto_tracing;
1973 	default:
1974 		return bpf_tracing_func_proto(func_id, prog);
1975 	}
1976 }
1977 
1978 const struct bpf_func_proto *
1979 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1980 {
1981 	const struct bpf_func_proto *fn;
1982 
1983 	switch (func_id) {
1984 #ifdef CONFIG_NET
1985 	case BPF_FUNC_skb_output:
1986 		return &bpf_skb_output_proto;
1987 	case BPF_FUNC_xdp_output:
1988 		return &bpf_xdp_output_proto;
1989 	case BPF_FUNC_skc_to_tcp6_sock:
1990 		return &bpf_skc_to_tcp6_sock_proto;
1991 	case BPF_FUNC_skc_to_tcp_sock:
1992 		return &bpf_skc_to_tcp_sock_proto;
1993 	case BPF_FUNC_skc_to_tcp_timewait_sock:
1994 		return &bpf_skc_to_tcp_timewait_sock_proto;
1995 	case BPF_FUNC_skc_to_tcp_request_sock:
1996 		return &bpf_skc_to_tcp_request_sock_proto;
1997 	case BPF_FUNC_skc_to_udp6_sock:
1998 		return &bpf_skc_to_udp6_sock_proto;
1999 	case BPF_FUNC_skc_to_unix_sock:
2000 		return &bpf_skc_to_unix_sock_proto;
2001 	case BPF_FUNC_skc_to_mptcp_sock:
2002 		return &bpf_skc_to_mptcp_sock_proto;
2003 	case BPF_FUNC_sk_storage_get:
2004 		return &bpf_sk_storage_get_tracing_proto;
2005 	case BPF_FUNC_sk_storage_delete:
2006 		return &bpf_sk_storage_delete_tracing_proto;
2007 	case BPF_FUNC_sock_from_file:
2008 		return &bpf_sock_from_file_proto;
2009 	case BPF_FUNC_get_socket_cookie:
2010 		return &bpf_get_socket_ptr_cookie_proto;
2011 	case BPF_FUNC_xdp_get_buff_len:
2012 		return &bpf_xdp_get_buff_len_trace_proto;
2013 #endif
2014 	case BPF_FUNC_seq_printf:
2015 		return prog->expected_attach_type == BPF_TRACE_ITER ?
2016 		       &bpf_seq_printf_proto :
2017 		       NULL;
2018 	case BPF_FUNC_seq_write:
2019 		return prog->expected_attach_type == BPF_TRACE_ITER ?
2020 		       &bpf_seq_write_proto :
2021 		       NULL;
2022 	case BPF_FUNC_seq_printf_btf:
2023 		return prog->expected_attach_type == BPF_TRACE_ITER ?
2024 		       &bpf_seq_printf_btf_proto :
2025 		       NULL;
2026 	case BPF_FUNC_d_path:
2027 		return &bpf_d_path_proto;
2028 	case BPF_FUNC_get_func_arg:
2029 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_proto : NULL;
2030 	case BPF_FUNC_get_func_ret:
2031 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_ret_proto : NULL;
2032 	case BPF_FUNC_get_func_arg_cnt:
2033 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_cnt_proto : NULL;
2034 	case BPF_FUNC_get_attach_cookie:
2035 		if (prog->type == BPF_PROG_TYPE_TRACING &&
2036 		    prog->expected_attach_type == BPF_TRACE_RAW_TP)
2037 			return &bpf_get_attach_cookie_proto_tracing;
2038 		return bpf_prog_has_trampoline(prog) ? &bpf_get_attach_cookie_proto_tracing : NULL;
2039 	default:
2040 		fn = raw_tp_prog_func_proto(func_id, prog);
2041 		if (!fn && prog->expected_attach_type == BPF_TRACE_ITER)
2042 			fn = bpf_iter_get_func_proto(func_id, prog);
2043 		return fn;
2044 	}
2045 }
2046 
2047 static bool raw_tp_prog_is_valid_access(int off, int size,
2048 					enum bpf_access_type type,
2049 					const struct bpf_prog *prog,
2050 					struct bpf_insn_access_aux *info)
2051 {
2052 	return bpf_tracing_ctx_access(off, size, type);
2053 }
2054 
2055 static bool tracing_prog_is_valid_access(int off, int size,
2056 					 enum bpf_access_type type,
2057 					 const struct bpf_prog *prog,
2058 					 struct bpf_insn_access_aux *info)
2059 {
2060 	return bpf_tracing_btf_ctx_access(off, size, type, prog, info);
2061 }
2062 
2063 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
2064 				     const union bpf_attr *kattr,
2065 				     union bpf_attr __user *uattr)
2066 {
2067 	return -ENOTSUPP;
2068 }
2069 
2070 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
2071 	.get_func_proto  = raw_tp_prog_func_proto,
2072 	.is_valid_access = raw_tp_prog_is_valid_access,
2073 };
2074 
2075 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
2076 #ifdef CONFIG_NET
2077 	.test_run = bpf_prog_test_run_raw_tp,
2078 #endif
2079 };
2080 
2081 const struct bpf_verifier_ops tracing_verifier_ops = {
2082 	.get_func_proto  = tracing_prog_func_proto,
2083 	.is_valid_access = tracing_prog_is_valid_access,
2084 };
2085 
2086 const struct bpf_prog_ops tracing_prog_ops = {
2087 	.test_run = bpf_prog_test_run_tracing,
2088 };
2089 
2090 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
2091 						 enum bpf_access_type type,
2092 						 const struct bpf_prog *prog,
2093 						 struct bpf_insn_access_aux *info)
2094 {
2095 	if (off == 0) {
2096 		if (size != sizeof(u64) || type != BPF_READ)
2097 			return false;
2098 		info->reg_type = PTR_TO_TP_BUFFER;
2099 	}
2100 	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
2101 }
2102 
2103 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
2104 	.get_func_proto  = raw_tp_prog_func_proto,
2105 	.is_valid_access = raw_tp_writable_prog_is_valid_access,
2106 };
2107 
2108 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
2109 };
2110 
2111 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
2112 				    const struct bpf_prog *prog,
2113 				    struct bpf_insn_access_aux *info)
2114 {
2115 	const int size_u64 = sizeof(u64);
2116 
2117 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
2118 		return false;
2119 	if (type != BPF_READ)
2120 		return false;
2121 	if (off % size != 0) {
2122 		if (sizeof(unsigned long) != 4)
2123 			return false;
2124 		if (size != 8)
2125 			return false;
2126 		if (off % size != 4)
2127 			return false;
2128 	}
2129 
2130 	switch (off) {
2131 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
2132 		bpf_ctx_record_field_size(info, size_u64);
2133 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
2134 			return false;
2135 		break;
2136 	case bpf_ctx_range(struct bpf_perf_event_data, addr):
2137 		bpf_ctx_record_field_size(info, size_u64);
2138 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
2139 			return false;
2140 		break;
2141 	default:
2142 		if (size != sizeof(long))
2143 			return false;
2144 	}
2145 
2146 	return true;
2147 }
2148 
2149 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
2150 				      const struct bpf_insn *si,
2151 				      struct bpf_insn *insn_buf,
2152 				      struct bpf_prog *prog, u32 *target_size)
2153 {
2154 	struct bpf_insn *insn = insn_buf;
2155 
2156 	switch (si->off) {
2157 	case offsetof(struct bpf_perf_event_data, sample_period):
2158 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2159 						       data), si->dst_reg, si->src_reg,
2160 				      offsetof(struct bpf_perf_event_data_kern, data));
2161 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
2162 				      bpf_target_off(struct perf_sample_data, period, 8,
2163 						     target_size));
2164 		break;
2165 	case offsetof(struct bpf_perf_event_data, addr):
2166 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2167 						       data), si->dst_reg, si->src_reg,
2168 				      offsetof(struct bpf_perf_event_data_kern, data));
2169 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
2170 				      bpf_target_off(struct perf_sample_data, addr, 8,
2171 						     target_size));
2172 		break;
2173 	default:
2174 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2175 						       regs), si->dst_reg, si->src_reg,
2176 				      offsetof(struct bpf_perf_event_data_kern, regs));
2177 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
2178 				      si->off);
2179 		break;
2180 	}
2181 
2182 	return insn - insn_buf;
2183 }
2184 
2185 const struct bpf_verifier_ops perf_event_verifier_ops = {
2186 	.get_func_proto		= pe_prog_func_proto,
2187 	.is_valid_access	= pe_prog_is_valid_access,
2188 	.convert_ctx_access	= pe_prog_convert_ctx_access,
2189 };
2190 
2191 const struct bpf_prog_ops perf_event_prog_ops = {
2192 };
2193 
2194 static DEFINE_MUTEX(bpf_event_mutex);
2195 
2196 #define BPF_TRACE_MAX_PROGS 64
2197 
2198 int perf_event_attach_bpf_prog(struct perf_event *event,
2199 			       struct bpf_prog *prog,
2200 			       u64 bpf_cookie)
2201 {
2202 	struct bpf_prog_array *old_array;
2203 	struct bpf_prog_array *new_array;
2204 	int ret = -EEXIST;
2205 
2206 	/*
2207 	 * Kprobe override only works if they are on the function entry,
2208 	 * and only if they are on the opt-in list.
2209 	 */
2210 	if (prog->kprobe_override &&
2211 	    (!trace_kprobe_on_func_entry(event->tp_event) ||
2212 	     !trace_kprobe_error_injectable(event->tp_event)))
2213 		return -EINVAL;
2214 
2215 	mutex_lock(&bpf_event_mutex);
2216 
2217 	if (event->prog)
2218 		goto unlock;
2219 
2220 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
2221 	if (old_array &&
2222 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
2223 		ret = -E2BIG;
2224 		goto unlock;
2225 	}
2226 
2227 	ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array);
2228 	if (ret < 0)
2229 		goto unlock;
2230 
2231 	/* set the new array to event->tp_event and set event->prog */
2232 	event->prog = prog;
2233 	event->bpf_cookie = bpf_cookie;
2234 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
2235 	bpf_prog_array_free_sleepable(old_array);
2236 
2237 unlock:
2238 	mutex_unlock(&bpf_event_mutex);
2239 	return ret;
2240 }
2241 
2242 void perf_event_detach_bpf_prog(struct perf_event *event)
2243 {
2244 	struct bpf_prog_array *old_array;
2245 	struct bpf_prog_array *new_array;
2246 	int ret;
2247 
2248 	mutex_lock(&bpf_event_mutex);
2249 
2250 	if (!event->prog)
2251 		goto unlock;
2252 
2253 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
2254 	if (!old_array)
2255 		goto put;
2256 
2257 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array);
2258 	if (ret < 0) {
2259 		bpf_prog_array_delete_safe(old_array, event->prog);
2260 	} else {
2261 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
2262 		bpf_prog_array_free_sleepable(old_array);
2263 	}
2264 
2265 put:
2266 	/*
2267 	 * It could be that the bpf_prog is not sleepable (and will be freed
2268 	 * via normal RCU), but is called from a point that supports sleepable
2269 	 * programs and uses tasks-trace-RCU.
2270 	 */
2271 	synchronize_rcu_tasks_trace();
2272 
2273 	bpf_prog_put(event->prog);
2274 	event->prog = NULL;
2275 
2276 unlock:
2277 	mutex_unlock(&bpf_event_mutex);
2278 }
2279 
2280 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
2281 {
2282 	struct perf_event_query_bpf __user *uquery = info;
2283 	struct perf_event_query_bpf query = {};
2284 	struct bpf_prog_array *progs;
2285 	u32 *ids, prog_cnt, ids_len;
2286 	int ret;
2287 
2288 	if (!perfmon_capable())
2289 		return -EPERM;
2290 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
2291 		return -EINVAL;
2292 	if (copy_from_user(&query, uquery, sizeof(query)))
2293 		return -EFAULT;
2294 
2295 	ids_len = query.ids_len;
2296 	if (ids_len > BPF_TRACE_MAX_PROGS)
2297 		return -E2BIG;
2298 	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
2299 	if (!ids)
2300 		return -ENOMEM;
2301 	/*
2302 	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
2303 	 * is required when user only wants to check for uquery->prog_cnt.
2304 	 * There is no need to check for it since the case is handled
2305 	 * gracefully in bpf_prog_array_copy_info.
2306 	 */
2307 
2308 	mutex_lock(&bpf_event_mutex);
2309 	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
2310 	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
2311 	mutex_unlock(&bpf_event_mutex);
2312 
2313 	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
2314 	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
2315 		ret = -EFAULT;
2316 
2317 	kfree(ids);
2318 	return ret;
2319 }
2320 
2321 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
2322 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
2323 
2324 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
2325 {
2326 	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
2327 
2328 	for (; btp < __stop__bpf_raw_tp; btp++) {
2329 		if (!strcmp(btp->tp->name, name))
2330 			return btp;
2331 	}
2332 
2333 	return bpf_get_raw_tracepoint_module(name);
2334 }
2335 
2336 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
2337 {
2338 	struct module *mod;
2339 
2340 	preempt_disable();
2341 	mod = __module_address((unsigned long)btp);
2342 	module_put(mod);
2343 	preempt_enable();
2344 }
2345 
2346 static __always_inline
2347 void __bpf_trace_run(struct bpf_raw_tp_link *link, u64 *args)
2348 {
2349 	struct bpf_prog *prog = link->link.prog;
2350 	struct bpf_run_ctx *old_run_ctx;
2351 	struct bpf_trace_run_ctx run_ctx;
2352 
2353 	cant_sleep();
2354 	if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) {
2355 		bpf_prog_inc_misses_counter(prog);
2356 		goto out;
2357 	}
2358 
2359 	run_ctx.bpf_cookie = link->cookie;
2360 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2361 
2362 	rcu_read_lock();
2363 	(void) bpf_prog_run(prog, args);
2364 	rcu_read_unlock();
2365 
2366 	bpf_reset_run_ctx(old_run_ctx);
2367 out:
2368 	this_cpu_dec(*(prog->active));
2369 }
2370 
2371 #define UNPACK(...)			__VA_ARGS__
2372 #define REPEAT_1(FN, DL, X, ...)	FN(X)
2373 #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
2374 #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
2375 #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
2376 #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
2377 #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
2378 #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
2379 #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
2380 #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
2381 #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
2382 #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
2383 #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
2384 #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
2385 
2386 #define SARG(X)		u64 arg##X
2387 #define COPY(X)		args[X] = arg##X
2388 
2389 #define __DL_COM	(,)
2390 #define __DL_SEM	(;)
2391 
2392 #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
2393 
2394 #define BPF_TRACE_DEFN_x(x)						\
2395 	void bpf_trace_run##x(struct bpf_raw_tp_link *link,		\
2396 			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
2397 	{								\
2398 		u64 args[x];						\
2399 		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
2400 		__bpf_trace_run(link, args);				\
2401 	}								\
2402 	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
2403 BPF_TRACE_DEFN_x(1);
2404 BPF_TRACE_DEFN_x(2);
2405 BPF_TRACE_DEFN_x(3);
2406 BPF_TRACE_DEFN_x(4);
2407 BPF_TRACE_DEFN_x(5);
2408 BPF_TRACE_DEFN_x(6);
2409 BPF_TRACE_DEFN_x(7);
2410 BPF_TRACE_DEFN_x(8);
2411 BPF_TRACE_DEFN_x(9);
2412 BPF_TRACE_DEFN_x(10);
2413 BPF_TRACE_DEFN_x(11);
2414 BPF_TRACE_DEFN_x(12);
2415 
2416 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_raw_tp_link *link)
2417 {
2418 	struct tracepoint *tp = btp->tp;
2419 	struct bpf_prog *prog = link->link.prog;
2420 
2421 	/*
2422 	 * check that program doesn't access arguments beyond what's
2423 	 * available in this tracepoint
2424 	 */
2425 	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
2426 		return -EINVAL;
2427 
2428 	if (prog->aux->max_tp_access > btp->writable_size)
2429 		return -EINVAL;
2430 
2431 	return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func, link);
2432 }
2433 
2434 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_raw_tp_link *link)
2435 {
2436 	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, link);
2437 }
2438 
2439 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
2440 			    u32 *fd_type, const char **buf,
2441 			    u64 *probe_offset, u64 *probe_addr,
2442 			    unsigned long *missed)
2443 {
2444 	bool is_tracepoint, is_syscall_tp;
2445 	struct bpf_prog *prog;
2446 	int flags, err = 0;
2447 
2448 	prog = event->prog;
2449 	if (!prog)
2450 		return -ENOENT;
2451 
2452 	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
2453 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
2454 		return -EOPNOTSUPP;
2455 
2456 	*prog_id = prog->aux->id;
2457 	flags = event->tp_event->flags;
2458 	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
2459 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
2460 
2461 	if (is_tracepoint || is_syscall_tp) {
2462 		*buf = is_tracepoint ? event->tp_event->tp->name
2463 				     : event->tp_event->name;
2464 		/* We allow NULL pointer for tracepoint */
2465 		if (fd_type)
2466 			*fd_type = BPF_FD_TYPE_TRACEPOINT;
2467 		if (probe_offset)
2468 			*probe_offset = 0x0;
2469 		if (probe_addr)
2470 			*probe_addr = 0x0;
2471 	} else {
2472 		/* kprobe/uprobe */
2473 		err = -EOPNOTSUPP;
2474 #ifdef CONFIG_KPROBE_EVENTS
2475 		if (flags & TRACE_EVENT_FL_KPROBE)
2476 			err = bpf_get_kprobe_info(event, fd_type, buf,
2477 						  probe_offset, probe_addr, missed,
2478 						  event->attr.type == PERF_TYPE_TRACEPOINT);
2479 #endif
2480 #ifdef CONFIG_UPROBE_EVENTS
2481 		if (flags & TRACE_EVENT_FL_UPROBE)
2482 			err = bpf_get_uprobe_info(event, fd_type, buf,
2483 						  probe_offset, probe_addr,
2484 						  event->attr.type == PERF_TYPE_TRACEPOINT);
2485 #endif
2486 	}
2487 
2488 	return err;
2489 }
2490 
2491 static int __init send_signal_irq_work_init(void)
2492 {
2493 	int cpu;
2494 	struct send_signal_irq_work *work;
2495 
2496 	for_each_possible_cpu(cpu) {
2497 		work = per_cpu_ptr(&send_signal_work, cpu);
2498 		init_irq_work(&work->irq_work, do_bpf_send_signal);
2499 	}
2500 	return 0;
2501 }
2502 
2503 subsys_initcall(send_signal_irq_work_init);
2504 
2505 #ifdef CONFIG_MODULES
2506 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
2507 			    void *module)
2508 {
2509 	struct bpf_trace_module *btm, *tmp;
2510 	struct module *mod = module;
2511 	int ret = 0;
2512 
2513 	if (mod->num_bpf_raw_events == 0 ||
2514 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
2515 		goto out;
2516 
2517 	mutex_lock(&bpf_module_mutex);
2518 
2519 	switch (op) {
2520 	case MODULE_STATE_COMING:
2521 		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
2522 		if (btm) {
2523 			btm->module = module;
2524 			list_add(&btm->list, &bpf_trace_modules);
2525 		} else {
2526 			ret = -ENOMEM;
2527 		}
2528 		break;
2529 	case MODULE_STATE_GOING:
2530 		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
2531 			if (btm->module == module) {
2532 				list_del(&btm->list);
2533 				kfree(btm);
2534 				break;
2535 			}
2536 		}
2537 		break;
2538 	}
2539 
2540 	mutex_unlock(&bpf_module_mutex);
2541 
2542 out:
2543 	return notifier_from_errno(ret);
2544 }
2545 
2546 static struct notifier_block bpf_module_nb = {
2547 	.notifier_call = bpf_event_notify,
2548 };
2549 
2550 static int __init bpf_event_init(void)
2551 {
2552 	register_module_notifier(&bpf_module_nb);
2553 	return 0;
2554 }
2555 
2556 fs_initcall(bpf_event_init);
2557 #endif /* CONFIG_MODULES */
2558 
2559 struct bpf_session_run_ctx {
2560 	struct bpf_run_ctx run_ctx;
2561 	bool is_return;
2562 	void *data;
2563 };
2564 
2565 #ifdef CONFIG_FPROBE
2566 struct bpf_kprobe_multi_link {
2567 	struct bpf_link link;
2568 	struct fprobe fp;
2569 	unsigned long *addrs;
2570 	u64 *cookies;
2571 	u32 cnt;
2572 	u32 mods_cnt;
2573 	struct module **mods;
2574 	u32 flags;
2575 };
2576 
2577 struct bpf_kprobe_multi_run_ctx {
2578 	struct bpf_session_run_ctx session_ctx;
2579 	struct bpf_kprobe_multi_link *link;
2580 	unsigned long entry_ip;
2581 };
2582 
2583 struct user_syms {
2584 	const char **syms;
2585 	char *buf;
2586 };
2587 
2588 #ifndef CONFIG_HAVE_FTRACE_REGS_HAVING_PT_REGS
2589 static DEFINE_PER_CPU(struct pt_regs, bpf_kprobe_multi_pt_regs);
2590 #define bpf_kprobe_multi_pt_regs_ptr()	this_cpu_ptr(&bpf_kprobe_multi_pt_regs)
2591 #else
2592 #define bpf_kprobe_multi_pt_regs_ptr()	(NULL)
2593 #endif
2594 
2595 static unsigned long ftrace_get_entry_ip(unsigned long fentry_ip)
2596 {
2597 	unsigned long ip = ftrace_get_symaddr(fentry_ip);
2598 
2599 	return ip ? : fentry_ip;
2600 }
2601 
2602 static int copy_user_syms(struct user_syms *us, unsigned long __user *usyms, u32 cnt)
2603 {
2604 	unsigned long __user usymbol;
2605 	const char **syms = NULL;
2606 	char *buf = NULL, *p;
2607 	int err = -ENOMEM;
2608 	unsigned int i;
2609 
2610 	syms = kvmalloc_array(cnt, sizeof(*syms), GFP_KERNEL);
2611 	if (!syms)
2612 		goto error;
2613 
2614 	buf = kvmalloc_array(cnt, KSYM_NAME_LEN, GFP_KERNEL);
2615 	if (!buf)
2616 		goto error;
2617 
2618 	for (p = buf, i = 0; i < cnt; i++) {
2619 		if (__get_user(usymbol, usyms + i)) {
2620 			err = -EFAULT;
2621 			goto error;
2622 		}
2623 		err = strncpy_from_user(p, (const char __user *) usymbol, KSYM_NAME_LEN);
2624 		if (err == KSYM_NAME_LEN)
2625 			err = -E2BIG;
2626 		if (err < 0)
2627 			goto error;
2628 		syms[i] = p;
2629 		p += err + 1;
2630 	}
2631 
2632 	us->syms = syms;
2633 	us->buf = buf;
2634 	return 0;
2635 
2636 error:
2637 	if (err) {
2638 		kvfree(syms);
2639 		kvfree(buf);
2640 	}
2641 	return err;
2642 }
2643 
2644 static void kprobe_multi_put_modules(struct module **mods, u32 cnt)
2645 {
2646 	u32 i;
2647 
2648 	for (i = 0; i < cnt; i++)
2649 		module_put(mods[i]);
2650 }
2651 
2652 static void free_user_syms(struct user_syms *us)
2653 {
2654 	kvfree(us->syms);
2655 	kvfree(us->buf);
2656 }
2657 
2658 static void bpf_kprobe_multi_link_release(struct bpf_link *link)
2659 {
2660 	struct bpf_kprobe_multi_link *kmulti_link;
2661 
2662 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2663 	unregister_fprobe(&kmulti_link->fp);
2664 	kprobe_multi_put_modules(kmulti_link->mods, kmulti_link->mods_cnt);
2665 }
2666 
2667 static void bpf_kprobe_multi_link_dealloc(struct bpf_link *link)
2668 {
2669 	struct bpf_kprobe_multi_link *kmulti_link;
2670 
2671 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2672 	kvfree(kmulti_link->addrs);
2673 	kvfree(kmulti_link->cookies);
2674 	kfree(kmulti_link->mods);
2675 	kfree(kmulti_link);
2676 }
2677 
2678 static int bpf_kprobe_multi_link_fill_link_info(const struct bpf_link *link,
2679 						struct bpf_link_info *info)
2680 {
2681 	u64 __user *ucookies = u64_to_user_ptr(info->kprobe_multi.cookies);
2682 	u64 __user *uaddrs = u64_to_user_ptr(info->kprobe_multi.addrs);
2683 	struct bpf_kprobe_multi_link *kmulti_link;
2684 	u32 ucount = info->kprobe_multi.count;
2685 	int err = 0, i;
2686 
2687 	if (!uaddrs ^ !ucount)
2688 		return -EINVAL;
2689 	if (ucookies && !ucount)
2690 		return -EINVAL;
2691 
2692 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2693 	info->kprobe_multi.count = kmulti_link->cnt;
2694 	info->kprobe_multi.flags = kmulti_link->flags;
2695 	info->kprobe_multi.missed = kmulti_link->fp.nmissed;
2696 
2697 	if (!uaddrs)
2698 		return 0;
2699 	if (ucount < kmulti_link->cnt)
2700 		err = -ENOSPC;
2701 	else
2702 		ucount = kmulti_link->cnt;
2703 
2704 	if (ucookies) {
2705 		if (kmulti_link->cookies) {
2706 			if (copy_to_user(ucookies, kmulti_link->cookies, ucount * sizeof(u64)))
2707 				return -EFAULT;
2708 		} else {
2709 			for (i = 0; i < ucount; i++) {
2710 				if (put_user(0, ucookies + i))
2711 					return -EFAULT;
2712 			}
2713 		}
2714 	}
2715 
2716 	if (kallsyms_show_value(current_cred())) {
2717 		if (copy_to_user(uaddrs, kmulti_link->addrs, ucount * sizeof(u64)))
2718 			return -EFAULT;
2719 	} else {
2720 		for (i = 0; i < ucount; i++) {
2721 			if (put_user(0, uaddrs + i))
2722 				return -EFAULT;
2723 		}
2724 	}
2725 	return err;
2726 }
2727 
2728 static const struct bpf_link_ops bpf_kprobe_multi_link_lops = {
2729 	.release = bpf_kprobe_multi_link_release,
2730 	.dealloc_deferred = bpf_kprobe_multi_link_dealloc,
2731 	.fill_link_info = bpf_kprobe_multi_link_fill_link_info,
2732 };
2733 
2734 static void bpf_kprobe_multi_cookie_swap(void *a, void *b, int size, const void *priv)
2735 {
2736 	const struct bpf_kprobe_multi_link *link = priv;
2737 	unsigned long *addr_a = a, *addr_b = b;
2738 	u64 *cookie_a, *cookie_b;
2739 
2740 	cookie_a = link->cookies + (addr_a - link->addrs);
2741 	cookie_b = link->cookies + (addr_b - link->addrs);
2742 
2743 	/* swap addr_a/addr_b and cookie_a/cookie_b values */
2744 	swap(*addr_a, *addr_b);
2745 	swap(*cookie_a, *cookie_b);
2746 }
2747 
2748 static int bpf_kprobe_multi_addrs_cmp(const void *a, const void *b)
2749 {
2750 	const unsigned long *addr_a = a, *addr_b = b;
2751 
2752 	if (*addr_a == *addr_b)
2753 		return 0;
2754 	return *addr_a < *addr_b ? -1 : 1;
2755 }
2756 
2757 static int bpf_kprobe_multi_cookie_cmp(const void *a, const void *b, const void *priv)
2758 {
2759 	return bpf_kprobe_multi_addrs_cmp(a, b);
2760 }
2761 
2762 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
2763 {
2764 	struct bpf_kprobe_multi_run_ctx *run_ctx;
2765 	struct bpf_kprobe_multi_link *link;
2766 	u64 *cookie, entry_ip;
2767 	unsigned long *addr;
2768 
2769 	if (WARN_ON_ONCE(!ctx))
2770 		return 0;
2771 	run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx,
2772 			       session_ctx.run_ctx);
2773 	link = run_ctx->link;
2774 	if (!link->cookies)
2775 		return 0;
2776 	entry_ip = run_ctx->entry_ip;
2777 	addr = bsearch(&entry_ip, link->addrs, link->cnt, sizeof(entry_ip),
2778 		       bpf_kprobe_multi_addrs_cmp);
2779 	if (!addr)
2780 		return 0;
2781 	cookie = link->cookies + (addr - link->addrs);
2782 	return *cookie;
2783 }
2784 
2785 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
2786 {
2787 	struct bpf_kprobe_multi_run_ctx *run_ctx;
2788 
2789 	run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx,
2790 			       session_ctx.run_ctx);
2791 	return run_ctx->entry_ip;
2792 }
2793 
2794 static int
2795 kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link *link,
2796 			   unsigned long entry_ip, struct ftrace_regs *fregs,
2797 			   bool is_return, void *data)
2798 {
2799 	struct bpf_kprobe_multi_run_ctx run_ctx = {
2800 		.session_ctx = {
2801 			.is_return = is_return,
2802 			.data = data,
2803 		},
2804 		.link = link,
2805 		.entry_ip = entry_ip,
2806 	};
2807 	struct bpf_run_ctx *old_run_ctx;
2808 	struct pt_regs *regs;
2809 	int err;
2810 
2811 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
2812 		bpf_prog_inc_misses_counter(link->link.prog);
2813 		err = 0;
2814 		goto out;
2815 	}
2816 
2817 	migrate_disable();
2818 	rcu_read_lock();
2819 	regs = ftrace_partial_regs(fregs, bpf_kprobe_multi_pt_regs_ptr());
2820 	old_run_ctx = bpf_set_run_ctx(&run_ctx.session_ctx.run_ctx);
2821 	err = bpf_prog_run(link->link.prog, regs);
2822 	bpf_reset_run_ctx(old_run_ctx);
2823 	rcu_read_unlock();
2824 	migrate_enable();
2825 
2826  out:
2827 	__this_cpu_dec(bpf_prog_active);
2828 	return err;
2829 }
2830 
2831 static int
2832 kprobe_multi_link_handler(struct fprobe *fp, unsigned long fentry_ip,
2833 			  unsigned long ret_ip, struct ftrace_regs *fregs,
2834 			  void *data)
2835 {
2836 	struct bpf_kprobe_multi_link *link;
2837 	int err;
2838 
2839 	link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2840 	err = kprobe_multi_link_prog_run(link, ftrace_get_entry_ip(fentry_ip),
2841 					 fregs, false, data);
2842 	return is_kprobe_session(link->link.prog) ? err : 0;
2843 }
2844 
2845 static void
2846 kprobe_multi_link_exit_handler(struct fprobe *fp, unsigned long fentry_ip,
2847 			       unsigned long ret_ip, struct ftrace_regs *fregs,
2848 			       void *data)
2849 {
2850 	struct bpf_kprobe_multi_link *link;
2851 
2852 	link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2853 	kprobe_multi_link_prog_run(link, ftrace_get_entry_ip(fentry_ip),
2854 				   fregs, true, data);
2855 }
2856 
2857 static int symbols_cmp_r(const void *a, const void *b, const void *priv)
2858 {
2859 	const char **str_a = (const char **) a;
2860 	const char **str_b = (const char **) b;
2861 
2862 	return strcmp(*str_a, *str_b);
2863 }
2864 
2865 struct multi_symbols_sort {
2866 	const char **funcs;
2867 	u64 *cookies;
2868 };
2869 
2870 static void symbols_swap_r(void *a, void *b, int size, const void *priv)
2871 {
2872 	const struct multi_symbols_sort *data = priv;
2873 	const char **name_a = a, **name_b = b;
2874 
2875 	swap(*name_a, *name_b);
2876 
2877 	/* If defined, swap also related cookies. */
2878 	if (data->cookies) {
2879 		u64 *cookie_a, *cookie_b;
2880 
2881 		cookie_a = data->cookies + (name_a - data->funcs);
2882 		cookie_b = data->cookies + (name_b - data->funcs);
2883 		swap(*cookie_a, *cookie_b);
2884 	}
2885 }
2886 
2887 struct modules_array {
2888 	struct module **mods;
2889 	int mods_cnt;
2890 	int mods_cap;
2891 };
2892 
2893 static int add_module(struct modules_array *arr, struct module *mod)
2894 {
2895 	struct module **mods;
2896 
2897 	if (arr->mods_cnt == arr->mods_cap) {
2898 		arr->mods_cap = max(16, arr->mods_cap * 3 / 2);
2899 		mods = krealloc_array(arr->mods, arr->mods_cap, sizeof(*mods), GFP_KERNEL);
2900 		if (!mods)
2901 			return -ENOMEM;
2902 		arr->mods = mods;
2903 	}
2904 
2905 	arr->mods[arr->mods_cnt] = mod;
2906 	arr->mods_cnt++;
2907 	return 0;
2908 }
2909 
2910 static bool has_module(struct modules_array *arr, struct module *mod)
2911 {
2912 	int i;
2913 
2914 	for (i = arr->mods_cnt - 1; i >= 0; i--) {
2915 		if (arr->mods[i] == mod)
2916 			return true;
2917 	}
2918 	return false;
2919 }
2920 
2921 static int get_modules_for_addrs(struct module ***mods, unsigned long *addrs, u32 addrs_cnt)
2922 {
2923 	struct modules_array arr = {};
2924 	u32 i, err = 0;
2925 
2926 	for (i = 0; i < addrs_cnt; i++) {
2927 		struct module *mod;
2928 
2929 		preempt_disable();
2930 		mod = __module_address(addrs[i]);
2931 		/* Either no module or we it's already stored  */
2932 		if (!mod || has_module(&arr, mod)) {
2933 			preempt_enable();
2934 			continue;
2935 		}
2936 		if (!try_module_get(mod))
2937 			err = -EINVAL;
2938 		preempt_enable();
2939 		if (err)
2940 			break;
2941 		err = add_module(&arr, mod);
2942 		if (err) {
2943 			module_put(mod);
2944 			break;
2945 		}
2946 	}
2947 
2948 	/* We return either err < 0 in case of error, ... */
2949 	if (err) {
2950 		kprobe_multi_put_modules(arr.mods, arr.mods_cnt);
2951 		kfree(arr.mods);
2952 		return err;
2953 	}
2954 
2955 	/* or number of modules found if everything is ok. */
2956 	*mods = arr.mods;
2957 	return arr.mods_cnt;
2958 }
2959 
2960 static int addrs_check_error_injection_list(unsigned long *addrs, u32 cnt)
2961 {
2962 	u32 i;
2963 
2964 	for (i = 0; i < cnt; i++) {
2965 		if (!within_error_injection_list(addrs[i]))
2966 			return -EINVAL;
2967 	}
2968 	return 0;
2969 }
2970 
2971 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
2972 {
2973 	struct bpf_kprobe_multi_link *link = NULL;
2974 	struct bpf_link_primer link_primer;
2975 	void __user *ucookies;
2976 	unsigned long *addrs;
2977 	u32 flags, cnt, size;
2978 	void __user *uaddrs;
2979 	u64 *cookies = NULL;
2980 	void __user *usyms;
2981 	int err;
2982 
2983 	/* no support for 32bit archs yet */
2984 	if (sizeof(u64) != sizeof(void *))
2985 		return -EOPNOTSUPP;
2986 
2987 	if (!is_kprobe_multi(prog))
2988 		return -EINVAL;
2989 
2990 	flags = attr->link_create.kprobe_multi.flags;
2991 	if (flags & ~BPF_F_KPROBE_MULTI_RETURN)
2992 		return -EINVAL;
2993 
2994 	uaddrs = u64_to_user_ptr(attr->link_create.kprobe_multi.addrs);
2995 	usyms = u64_to_user_ptr(attr->link_create.kprobe_multi.syms);
2996 	if (!!uaddrs == !!usyms)
2997 		return -EINVAL;
2998 
2999 	cnt = attr->link_create.kprobe_multi.cnt;
3000 	if (!cnt)
3001 		return -EINVAL;
3002 	if (cnt > MAX_KPROBE_MULTI_CNT)
3003 		return -E2BIG;
3004 
3005 	size = cnt * sizeof(*addrs);
3006 	addrs = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
3007 	if (!addrs)
3008 		return -ENOMEM;
3009 
3010 	ucookies = u64_to_user_ptr(attr->link_create.kprobe_multi.cookies);
3011 	if (ucookies) {
3012 		cookies = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
3013 		if (!cookies) {
3014 			err = -ENOMEM;
3015 			goto error;
3016 		}
3017 		if (copy_from_user(cookies, ucookies, size)) {
3018 			err = -EFAULT;
3019 			goto error;
3020 		}
3021 	}
3022 
3023 	if (uaddrs) {
3024 		if (copy_from_user(addrs, uaddrs, size)) {
3025 			err = -EFAULT;
3026 			goto error;
3027 		}
3028 	} else {
3029 		struct multi_symbols_sort data = {
3030 			.cookies = cookies,
3031 		};
3032 		struct user_syms us;
3033 
3034 		err = copy_user_syms(&us, usyms, cnt);
3035 		if (err)
3036 			goto error;
3037 
3038 		if (cookies)
3039 			data.funcs = us.syms;
3040 
3041 		sort_r(us.syms, cnt, sizeof(*us.syms), symbols_cmp_r,
3042 		       symbols_swap_r, &data);
3043 
3044 		err = ftrace_lookup_symbols(us.syms, cnt, addrs);
3045 		free_user_syms(&us);
3046 		if (err)
3047 			goto error;
3048 	}
3049 
3050 	if (prog->kprobe_override && addrs_check_error_injection_list(addrs, cnt)) {
3051 		err = -EINVAL;
3052 		goto error;
3053 	}
3054 
3055 	link = kzalloc(sizeof(*link), GFP_KERNEL);
3056 	if (!link) {
3057 		err = -ENOMEM;
3058 		goto error;
3059 	}
3060 
3061 	bpf_link_init(&link->link, BPF_LINK_TYPE_KPROBE_MULTI,
3062 		      &bpf_kprobe_multi_link_lops, prog);
3063 
3064 	err = bpf_link_prime(&link->link, &link_primer);
3065 	if (err)
3066 		goto error;
3067 
3068 	if (!(flags & BPF_F_KPROBE_MULTI_RETURN))
3069 		link->fp.entry_handler = kprobe_multi_link_handler;
3070 	if ((flags & BPF_F_KPROBE_MULTI_RETURN) || is_kprobe_session(prog))
3071 		link->fp.exit_handler = kprobe_multi_link_exit_handler;
3072 	if (is_kprobe_session(prog))
3073 		link->fp.entry_data_size = sizeof(u64);
3074 
3075 	link->addrs = addrs;
3076 	link->cookies = cookies;
3077 	link->cnt = cnt;
3078 	link->flags = flags;
3079 
3080 	if (cookies) {
3081 		/*
3082 		 * Sorting addresses will trigger sorting cookies as well
3083 		 * (check bpf_kprobe_multi_cookie_swap). This way we can
3084 		 * find cookie based on the address in bpf_get_attach_cookie
3085 		 * helper.
3086 		 */
3087 		sort_r(addrs, cnt, sizeof(*addrs),
3088 		       bpf_kprobe_multi_cookie_cmp,
3089 		       bpf_kprobe_multi_cookie_swap,
3090 		       link);
3091 	}
3092 
3093 	err = get_modules_for_addrs(&link->mods, addrs, cnt);
3094 	if (err < 0) {
3095 		bpf_link_cleanup(&link_primer);
3096 		return err;
3097 	}
3098 	link->mods_cnt = err;
3099 
3100 	err = register_fprobe_ips(&link->fp, addrs, cnt);
3101 	if (err) {
3102 		kprobe_multi_put_modules(link->mods, link->mods_cnt);
3103 		bpf_link_cleanup(&link_primer);
3104 		return err;
3105 	}
3106 
3107 	return bpf_link_settle(&link_primer);
3108 
3109 error:
3110 	kfree(link);
3111 	kvfree(addrs);
3112 	kvfree(cookies);
3113 	return err;
3114 }
3115 #else /* !CONFIG_FPROBE */
3116 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3117 {
3118 	return -EOPNOTSUPP;
3119 }
3120 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
3121 {
3122 	return 0;
3123 }
3124 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3125 {
3126 	return 0;
3127 }
3128 #endif
3129 
3130 #ifdef CONFIG_UPROBES
3131 struct bpf_uprobe_multi_link;
3132 
3133 struct bpf_uprobe {
3134 	struct bpf_uprobe_multi_link *link;
3135 	loff_t offset;
3136 	unsigned long ref_ctr_offset;
3137 	u64 cookie;
3138 	struct uprobe *uprobe;
3139 	struct uprobe_consumer consumer;
3140 	bool session;
3141 };
3142 
3143 struct bpf_uprobe_multi_link {
3144 	struct path path;
3145 	struct bpf_link link;
3146 	u32 cnt;
3147 	u32 flags;
3148 	struct bpf_uprobe *uprobes;
3149 	struct task_struct *task;
3150 };
3151 
3152 struct bpf_uprobe_multi_run_ctx {
3153 	struct bpf_session_run_ctx session_ctx;
3154 	unsigned long entry_ip;
3155 	struct bpf_uprobe *uprobe;
3156 };
3157 
3158 static void bpf_uprobe_unregister(struct bpf_uprobe *uprobes, u32 cnt)
3159 {
3160 	u32 i;
3161 
3162 	for (i = 0; i < cnt; i++)
3163 		uprobe_unregister_nosync(uprobes[i].uprobe, &uprobes[i].consumer);
3164 
3165 	if (cnt)
3166 		uprobe_unregister_sync();
3167 }
3168 
3169 static void bpf_uprobe_multi_link_release(struct bpf_link *link)
3170 {
3171 	struct bpf_uprobe_multi_link *umulti_link;
3172 
3173 	umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
3174 	bpf_uprobe_unregister(umulti_link->uprobes, umulti_link->cnt);
3175 	if (umulti_link->task)
3176 		put_task_struct(umulti_link->task);
3177 	path_put(&umulti_link->path);
3178 }
3179 
3180 static void bpf_uprobe_multi_link_dealloc(struct bpf_link *link)
3181 {
3182 	struct bpf_uprobe_multi_link *umulti_link;
3183 
3184 	umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
3185 	kvfree(umulti_link->uprobes);
3186 	kfree(umulti_link);
3187 }
3188 
3189 static int bpf_uprobe_multi_link_fill_link_info(const struct bpf_link *link,
3190 						struct bpf_link_info *info)
3191 {
3192 	u64 __user *uref_ctr_offsets = u64_to_user_ptr(info->uprobe_multi.ref_ctr_offsets);
3193 	u64 __user *ucookies = u64_to_user_ptr(info->uprobe_multi.cookies);
3194 	u64 __user *uoffsets = u64_to_user_ptr(info->uprobe_multi.offsets);
3195 	u64 __user *upath = u64_to_user_ptr(info->uprobe_multi.path);
3196 	u32 upath_size = info->uprobe_multi.path_size;
3197 	struct bpf_uprobe_multi_link *umulti_link;
3198 	u32 ucount = info->uprobe_multi.count;
3199 	int err = 0, i;
3200 	char *p, *buf;
3201 	long left = 0;
3202 
3203 	if (!upath ^ !upath_size)
3204 		return -EINVAL;
3205 
3206 	if ((uoffsets || uref_ctr_offsets || ucookies) && !ucount)
3207 		return -EINVAL;
3208 
3209 	umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
3210 	info->uprobe_multi.count = umulti_link->cnt;
3211 	info->uprobe_multi.flags = umulti_link->flags;
3212 	info->uprobe_multi.pid = umulti_link->task ?
3213 				 task_pid_nr_ns(umulti_link->task, task_active_pid_ns(current)) : 0;
3214 
3215 	upath_size = upath_size ? min_t(u32, upath_size, PATH_MAX) : PATH_MAX;
3216 	buf = kmalloc(upath_size, GFP_KERNEL);
3217 	if (!buf)
3218 		return -ENOMEM;
3219 	p = d_path(&umulti_link->path, buf, upath_size);
3220 	if (IS_ERR(p)) {
3221 		kfree(buf);
3222 		return PTR_ERR(p);
3223 	}
3224 	upath_size = buf + upath_size - p;
3225 
3226 	if (upath)
3227 		left = copy_to_user(upath, p, upath_size);
3228 	kfree(buf);
3229 	if (left)
3230 		return -EFAULT;
3231 	info->uprobe_multi.path_size = upath_size;
3232 
3233 	if (!uoffsets && !ucookies && !uref_ctr_offsets)
3234 		return 0;
3235 
3236 	if (ucount < umulti_link->cnt)
3237 		err = -ENOSPC;
3238 	else
3239 		ucount = umulti_link->cnt;
3240 
3241 	for (i = 0; i < ucount; i++) {
3242 		if (uoffsets &&
3243 		    put_user(umulti_link->uprobes[i].offset, uoffsets + i))
3244 			return -EFAULT;
3245 		if (uref_ctr_offsets &&
3246 		    put_user(umulti_link->uprobes[i].ref_ctr_offset, uref_ctr_offsets + i))
3247 			return -EFAULT;
3248 		if (ucookies &&
3249 		    put_user(umulti_link->uprobes[i].cookie, ucookies + i))
3250 			return -EFAULT;
3251 	}
3252 
3253 	return err;
3254 }
3255 
3256 static const struct bpf_link_ops bpf_uprobe_multi_link_lops = {
3257 	.release = bpf_uprobe_multi_link_release,
3258 	.dealloc_deferred = bpf_uprobe_multi_link_dealloc,
3259 	.fill_link_info = bpf_uprobe_multi_link_fill_link_info,
3260 };
3261 
3262 static int uprobe_prog_run(struct bpf_uprobe *uprobe,
3263 			   unsigned long entry_ip,
3264 			   struct pt_regs *regs,
3265 			   bool is_return, void *data)
3266 {
3267 	struct bpf_uprobe_multi_link *link = uprobe->link;
3268 	struct bpf_uprobe_multi_run_ctx run_ctx = {
3269 		.session_ctx = {
3270 			.is_return = is_return,
3271 			.data = data,
3272 		},
3273 		.entry_ip = entry_ip,
3274 		.uprobe = uprobe,
3275 	};
3276 	struct bpf_prog *prog = link->link.prog;
3277 	bool sleepable = prog->sleepable;
3278 	struct bpf_run_ctx *old_run_ctx;
3279 	int err;
3280 
3281 	if (link->task && !same_thread_group(current, link->task))
3282 		return 0;
3283 
3284 	if (sleepable)
3285 		rcu_read_lock_trace();
3286 	else
3287 		rcu_read_lock();
3288 
3289 	migrate_disable();
3290 
3291 	old_run_ctx = bpf_set_run_ctx(&run_ctx.session_ctx.run_ctx);
3292 	err = bpf_prog_run(link->link.prog, regs);
3293 	bpf_reset_run_ctx(old_run_ctx);
3294 
3295 	migrate_enable();
3296 
3297 	if (sleepable)
3298 		rcu_read_unlock_trace();
3299 	else
3300 		rcu_read_unlock();
3301 	return err;
3302 }
3303 
3304 static bool
3305 uprobe_multi_link_filter(struct uprobe_consumer *con, struct mm_struct *mm)
3306 {
3307 	struct bpf_uprobe *uprobe;
3308 
3309 	uprobe = container_of(con, struct bpf_uprobe, consumer);
3310 	return uprobe->link->task->mm == mm;
3311 }
3312 
3313 static int
3314 uprobe_multi_link_handler(struct uprobe_consumer *con, struct pt_regs *regs,
3315 			  __u64 *data)
3316 {
3317 	struct bpf_uprobe *uprobe;
3318 	int ret;
3319 
3320 	uprobe = container_of(con, struct bpf_uprobe, consumer);
3321 	ret = uprobe_prog_run(uprobe, instruction_pointer(regs), regs, false, data);
3322 	if (uprobe->session)
3323 		return ret ? UPROBE_HANDLER_IGNORE : 0;
3324 	return 0;
3325 }
3326 
3327 static int
3328 uprobe_multi_link_ret_handler(struct uprobe_consumer *con, unsigned long func, struct pt_regs *regs,
3329 			      __u64 *data)
3330 {
3331 	struct bpf_uprobe *uprobe;
3332 
3333 	uprobe = container_of(con, struct bpf_uprobe, consumer);
3334 	uprobe_prog_run(uprobe, func, regs, true, data);
3335 	return 0;
3336 }
3337 
3338 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3339 {
3340 	struct bpf_uprobe_multi_run_ctx *run_ctx;
3341 
3342 	run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx,
3343 			       session_ctx.run_ctx);
3344 	return run_ctx->entry_ip;
3345 }
3346 
3347 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx)
3348 {
3349 	struct bpf_uprobe_multi_run_ctx *run_ctx;
3350 
3351 	run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx,
3352 			       session_ctx.run_ctx);
3353 	return run_ctx->uprobe->cookie;
3354 }
3355 
3356 int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3357 {
3358 	struct bpf_uprobe_multi_link *link = NULL;
3359 	unsigned long __user *uref_ctr_offsets;
3360 	struct bpf_link_primer link_primer;
3361 	struct bpf_uprobe *uprobes = NULL;
3362 	struct task_struct *task = NULL;
3363 	unsigned long __user *uoffsets;
3364 	u64 __user *ucookies;
3365 	void __user *upath;
3366 	u32 flags, cnt, i;
3367 	struct path path;
3368 	char *name;
3369 	pid_t pid;
3370 	int err;
3371 
3372 	/* no support for 32bit archs yet */
3373 	if (sizeof(u64) != sizeof(void *))
3374 		return -EOPNOTSUPP;
3375 
3376 	if (!is_uprobe_multi(prog))
3377 		return -EINVAL;
3378 
3379 	flags = attr->link_create.uprobe_multi.flags;
3380 	if (flags & ~BPF_F_UPROBE_MULTI_RETURN)
3381 		return -EINVAL;
3382 
3383 	/*
3384 	 * path, offsets and cnt are mandatory,
3385 	 * ref_ctr_offsets and cookies are optional
3386 	 */
3387 	upath = u64_to_user_ptr(attr->link_create.uprobe_multi.path);
3388 	uoffsets = u64_to_user_ptr(attr->link_create.uprobe_multi.offsets);
3389 	cnt = attr->link_create.uprobe_multi.cnt;
3390 	pid = attr->link_create.uprobe_multi.pid;
3391 
3392 	if (!upath || !uoffsets || !cnt || pid < 0)
3393 		return -EINVAL;
3394 	if (cnt > MAX_UPROBE_MULTI_CNT)
3395 		return -E2BIG;
3396 
3397 	uref_ctr_offsets = u64_to_user_ptr(attr->link_create.uprobe_multi.ref_ctr_offsets);
3398 	ucookies = u64_to_user_ptr(attr->link_create.uprobe_multi.cookies);
3399 
3400 	name = strndup_user(upath, PATH_MAX);
3401 	if (IS_ERR(name)) {
3402 		err = PTR_ERR(name);
3403 		return err;
3404 	}
3405 
3406 	err = kern_path(name, LOOKUP_FOLLOW, &path);
3407 	kfree(name);
3408 	if (err)
3409 		return err;
3410 
3411 	if (!d_is_reg(path.dentry)) {
3412 		err = -EBADF;
3413 		goto error_path_put;
3414 	}
3415 
3416 	if (pid) {
3417 		task = get_pid_task(find_vpid(pid), PIDTYPE_TGID);
3418 		if (!task) {
3419 			err = -ESRCH;
3420 			goto error_path_put;
3421 		}
3422 	}
3423 
3424 	err = -ENOMEM;
3425 
3426 	link = kzalloc(sizeof(*link), GFP_KERNEL);
3427 	uprobes = kvcalloc(cnt, sizeof(*uprobes), GFP_KERNEL);
3428 
3429 	if (!uprobes || !link)
3430 		goto error_free;
3431 
3432 	for (i = 0; i < cnt; i++) {
3433 		if (__get_user(uprobes[i].offset, uoffsets + i)) {
3434 			err = -EFAULT;
3435 			goto error_free;
3436 		}
3437 		if (uprobes[i].offset < 0) {
3438 			err = -EINVAL;
3439 			goto error_free;
3440 		}
3441 		if (uref_ctr_offsets && __get_user(uprobes[i].ref_ctr_offset, uref_ctr_offsets + i)) {
3442 			err = -EFAULT;
3443 			goto error_free;
3444 		}
3445 		if (ucookies && __get_user(uprobes[i].cookie, ucookies + i)) {
3446 			err = -EFAULT;
3447 			goto error_free;
3448 		}
3449 
3450 		uprobes[i].link = link;
3451 
3452 		if (!(flags & BPF_F_UPROBE_MULTI_RETURN))
3453 			uprobes[i].consumer.handler = uprobe_multi_link_handler;
3454 		if (flags & BPF_F_UPROBE_MULTI_RETURN || is_uprobe_session(prog))
3455 			uprobes[i].consumer.ret_handler = uprobe_multi_link_ret_handler;
3456 		if (is_uprobe_session(prog))
3457 			uprobes[i].session = true;
3458 		if (pid)
3459 			uprobes[i].consumer.filter = uprobe_multi_link_filter;
3460 	}
3461 
3462 	link->cnt = cnt;
3463 	link->uprobes = uprobes;
3464 	link->path = path;
3465 	link->task = task;
3466 	link->flags = flags;
3467 
3468 	bpf_link_init(&link->link, BPF_LINK_TYPE_UPROBE_MULTI,
3469 		      &bpf_uprobe_multi_link_lops, prog);
3470 
3471 	for (i = 0; i < cnt; i++) {
3472 		uprobes[i].uprobe = uprobe_register(d_real_inode(link->path.dentry),
3473 						    uprobes[i].offset,
3474 						    uprobes[i].ref_ctr_offset,
3475 						    &uprobes[i].consumer);
3476 		if (IS_ERR(uprobes[i].uprobe)) {
3477 			err = PTR_ERR(uprobes[i].uprobe);
3478 			link->cnt = i;
3479 			goto error_unregister;
3480 		}
3481 	}
3482 
3483 	err = bpf_link_prime(&link->link, &link_primer);
3484 	if (err)
3485 		goto error_unregister;
3486 
3487 	return bpf_link_settle(&link_primer);
3488 
3489 error_unregister:
3490 	bpf_uprobe_unregister(uprobes, link->cnt);
3491 
3492 error_free:
3493 	kvfree(uprobes);
3494 	kfree(link);
3495 	if (task)
3496 		put_task_struct(task);
3497 error_path_put:
3498 	path_put(&path);
3499 	return err;
3500 }
3501 #else /* !CONFIG_UPROBES */
3502 int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3503 {
3504 	return -EOPNOTSUPP;
3505 }
3506 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx)
3507 {
3508 	return 0;
3509 }
3510 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3511 {
3512 	return 0;
3513 }
3514 #endif /* CONFIG_UPROBES */
3515 
3516 __bpf_kfunc_start_defs();
3517 
3518 __bpf_kfunc bool bpf_session_is_return(void)
3519 {
3520 	struct bpf_session_run_ctx *session_ctx;
3521 
3522 	session_ctx = container_of(current->bpf_ctx, struct bpf_session_run_ctx, run_ctx);
3523 	return session_ctx->is_return;
3524 }
3525 
3526 __bpf_kfunc __u64 *bpf_session_cookie(void)
3527 {
3528 	struct bpf_session_run_ctx *session_ctx;
3529 
3530 	session_ctx = container_of(current->bpf_ctx, struct bpf_session_run_ctx, run_ctx);
3531 	return session_ctx->data;
3532 }
3533 
3534 __bpf_kfunc_end_defs();
3535 
3536 BTF_KFUNCS_START(kprobe_multi_kfunc_set_ids)
3537 BTF_ID_FLAGS(func, bpf_session_is_return)
3538 BTF_ID_FLAGS(func, bpf_session_cookie)
3539 BTF_KFUNCS_END(kprobe_multi_kfunc_set_ids)
3540 
3541 static int bpf_kprobe_multi_filter(const struct bpf_prog *prog, u32 kfunc_id)
3542 {
3543 	if (!btf_id_set8_contains(&kprobe_multi_kfunc_set_ids, kfunc_id))
3544 		return 0;
3545 
3546 	if (!is_kprobe_session(prog) && !is_uprobe_session(prog))
3547 		return -EACCES;
3548 
3549 	return 0;
3550 }
3551 
3552 static const struct btf_kfunc_id_set bpf_kprobe_multi_kfunc_set = {
3553 	.owner = THIS_MODULE,
3554 	.set = &kprobe_multi_kfunc_set_ids,
3555 	.filter = bpf_kprobe_multi_filter,
3556 };
3557 
3558 static int __init bpf_kprobe_multi_kfuncs_init(void)
3559 {
3560 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_KPROBE, &bpf_kprobe_multi_kfunc_set);
3561 }
3562 
3563 late_initcall(bpf_kprobe_multi_kfuncs_init);
3564 
3565 __bpf_kfunc_start_defs();
3566 
3567 __bpf_kfunc int bpf_send_signal_task(struct task_struct *task, int sig, enum pid_type type,
3568 				     u64 value)
3569 {
3570 	if (type != PIDTYPE_PID && type != PIDTYPE_TGID)
3571 		return -EINVAL;
3572 
3573 	return bpf_send_signal_common(sig, type, task, value);
3574 }
3575 
3576 __bpf_kfunc_end_defs();
3577