xref: /linux/kernel/trace/bpf_trace.c (revision d1f56f318d234fc5db230af2f3e0088f689ab3c0)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_perf_event.h>
10 #include <linux/filter.h>
11 #include <linux/uaccess.h>
12 #include <linux/ctype.h>
13 #include <linux/kprobes.h>
14 #include <linux/syscalls.h>
15 #include <linux/error-injection.h>
16 
17 #include <asm/tlb.h>
18 
19 #include "trace_probe.h"
20 #include "trace.h"
21 
22 #define bpf_event_rcu_dereference(p)					\
23 	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
24 
25 #ifdef CONFIG_MODULES
26 struct bpf_trace_module {
27 	struct module *module;
28 	struct list_head list;
29 };
30 
31 static LIST_HEAD(bpf_trace_modules);
32 static DEFINE_MUTEX(bpf_module_mutex);
33 
34 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
35 {
36 	struct bpf_raw_event_map *btp, *ret = NULL;
37 	struct bpf_trace_module *btm;
38 	unsigned int i;
39 
40 	mutex_lock(&bpf_module_mutex);
41 	list_for_each_entry(btm, &bpf_trace_modules, list) {
42 		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
43 			btp = &btm->module->bpf_raw_events[i];
44 			if (!strcmp(btp->tp->name, name)) {
45 				if (try_module_get(btm->module))
46 					ret = btp;
47 				goto out;
48 			}
49 		}
50 	}
51 out:
52 	mutex_unlock(&bpf_module_mutex);
53 	return ret;
54 }
55 #else
56 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
57 {
58 	return NULL;
59 }
60 #endif /* CONFIG_MODULES */
61 
62 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
63 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
64 
65 /**
66  * trace_call_bpf - invoke BPF program
67  * @call: tracepoint event
68  * @ctx: opaque context pointer
69  *
70  * kprobe handlers execute BPF programs via this helper.
71  * Can be used from static tracepoints in the future.
72  *
73  * Return: BPF programs always return an integer which is interpreted by
74  * kprobe handler as:
75  * 0 - return from kprobe (event is filtered out)
76  * 1 - store kprobe event into ring buffer
77  * Other values are reserved and currently alias to 1
78  */
79 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
80 {
81 	unsigned int ret;
82 
83 	if (in_nmi()) /* not supported yet */
84 		return 1;
85 
86 	cant_sleep();
87 
88 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
89 		/*
90 		 * since some bpf program is already running on this cpu,
91 		 * don't call into another bpf program (same or different)
92 		 * and don't send kprobe event into ring-buffer,
93 		 * so return zero here
94 		 */
95 		ret = 0;
96 		goto out;
97 	}
98 
99 	/*
100 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
101 	 * to all call sites, we did a bpf_prog_array_valid() there to check
102 	 * whether call->prog_array is empty or not, which is
103 	 * a heurisitc to speed up execution.
104 	 *
105 	 * If bpf_prog_array_valid() fetched prog_array was
106 	 * non-NULL, we go into trace_call_bpf() and do the actual
107 	 * proper rcu_dereference() under RCU lock.
108 	 * If it turns out that prog_array is NULL then, we bail out.
109 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
110 	 * was NULL, you'll skip the prog_array with the risk of missing
111 	 * out of events when it was updated in between this and the
112 	 * rcu_dereference() which is accepted risk.
113 	 */
114 	ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
115 
116  out:
117 	__this_cpu_dec(bpf_prog_active);
118 
119 	return ret;
120 }
121 
122 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
123 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
124 {
125 	regs_set_return_value(regs, rc);
126 	override_function_with_return(regs);
127 	return 0;
128 }
129 
130 static const struct bpf_func_proto bpf_override_return_proto = {
131 	.func		= bpf_override_return,
132 	.gpl_only	= true,
133 	.ret_type	= RET_INTEGER,
134 	.arg1_type	= ARG_PTR_TO_CTX,
135 	.arg2_type	= ARG_ANYTHING,
136 };
137 #endif
138 
139 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
140 	   const void __user *, unsafe_ptr)
141 {
142 	int ret = probe_user_read(dst, unsafe_ptr, size);
143 
144 	if (unlikely(ret < 0))
145 		memset(dst, 0, size);
146 
147 	return ret;
148 }
149 
150 static const struct bpf_func_proto bpf_probe_read_user_proto = {
151 	.func		= bpf_probe_read_user,
152 	.gpl_only	= true,
153 	.ret_type	= RET_INTEGER,
154 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
155 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
156 	.arg3_type	= ARG_ANYTHING,
157 };
158 
159 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
160 	   const void __user *, unsafe_ptr)
161 {
162 	int ret = strncpy_from_unsafe_user(dst, unsafe_ptr, size);
163 
164 	if (unlikely(ret < 0))
165 		memset(dst, 0, size);
166 
167 	return ret;
168 }
169 
170 static const struct bpf_func_proto bpf_probe_read_user_str_proto = {
171 	.func		= bpf_probe_read_user_str,
172 	.gpl_only	= true,
173 	.ret_type	= RET_INTEGER,
174 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
175 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
176 	.arg3_type	= ARG_ANYTHING,
177 };
178 
179 static __always_inline int
180 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr,
181 			     const bool compat)
182 {
183 	int ret = security_locked_down(LOCKDOWN_BPF_READ);
184 
185 	if (unlikely(ret < 0))
186 		goto out;
187 	ret = compat ? probe_kernel_read(dst, unsafe_ptr, size) :
188 	      probe_kernel_read_strict(dst, unsafe_ptr, size);
189 	if (unlikely(ret < 0))
190 out:
191 		memset(dst, 0, size);
192 	return ret;
193 }
194 
195 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
196 	   const void *, unsafe_ptr)
197 {
198 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr, false);
199 }
200 
201 static const struct bpf_func_proto bpf_probe_read_kernel_proto = {
202 	.func		= bpf_probe_read_kernel,
203 	.gpl_only	= true,
204 	.ret_type	= RET_INTEGER,
205 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
206 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
207 	.arg3_type	= ARG_ANYTHING,
208 };
209 
210 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
211 	   const void *, unsafe_ptr)
212 {
213 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr, true);
214 }
215 
216 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
217 	.func		= bpf_probe_read_compat,
218 	.gpl_only	= true,
219 	.ret_type	= RET_INTEGER,
220 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
221 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
222 	.arg3_type	= ARG_ANYTHING,
223 };
224 
225 static __always_inline int
226 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr,
227 				 const bool compat)
228 {
229 	int ret = security_locked_down(LOCKDOWN_BPF_READ);
230 
231 	if (unlikely(ret < 0))
232 		goto out;
233 	/*
234 	 * The strncpy_from_unsafe_*() call will likely not fill the entire
235 	 * buffer, but that's okay in this circumstance as we're probing
236 	 * arbitrary memory anyway similar to bpf_probe_read_*() and might
237 	 * as well probe the stack. Thus, memory is explicitly cleared
238 	 * only in error case, so that improper users ignoring return
239 	 * code altogether don't copy garbage; otherwise length of string
240 	 * is returned that can be used for bpf_perf_event_output() et al.
241 	 */
242 	ret = compat ? strncpy_from_unsafe(dst, unsafe_ptr, size) :
243 	      strncpy_from_unsafe_strict(dst, unsafe_ptr, size);
244 	if (unlikely(ret < 0))
245 out:
246 		memset(dst, 0, size);
247 	return ret;
248 }
249 
250 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
251 	   const void *, unsafe_ptr)
252 {
253 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr, false);
254 }
255 
256 static const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
257 	.func		= bpf_probe_read_kernel_str,
258 	.gpl_only	= true,
259 	.ret_type	= RET_INTEGER,
260 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
261 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
262 	.arg3_type	= ARG_ANYTHING,
263 };
264 
265 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
266 	   const void *, unsafe_ptr)
267 {
268 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr, true);
269 }
270 
271 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
272 	.func		= bpf_probe_read_compat_str,
273 	.gpl_only	= true,
274 	.ret_type	= RET_INTEGER,
275 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
276 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
277 	.arg3_type	= ARG_ANYTHING,
278 };
279 
280 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
281 	   u32, size)
282 {
283 	/*
284 	 * Ensure we're in user context which is safe for the helper to
285 	 * run. This helper has no business in a kthread.
286 	 *
287 	 * access_ok() should prevent writing to non-user memory, but in
288 	 * some situations (nommu, temporary switch, etc) access_ok() does
289 	 * not provide enough validation, hence the check on KERNEL_DS.
290 	 *
291 	 * nmi_uaccess_okay() ensures the probe is not run in an interim
292 	 * state, when the task or mm are switched. This is specifically
293 	 * required to prevent the use of temporary mm.
294 	 */
295 
296 	if (unlikely(in_interrupt() ||
297 		     current->flags & (PF_KTHREAD | PF_EXITING)))
298 		return -EPERM;
299 	if (unlikely(uaccess_kernel()))
300 		return -EPERM;
301 	if (unlikely(!nmi_uaccess_okay()))
302 		return -EPERM;
303 
304 	return probe_user_write(unsafe_ptr, src, size);
305 }
306 
307 static const struct bpf_func_proto bpf_probe_write_user_proto = {
308 	.func		= bpf_probe_write_user,
309 	.gpl_only	= true,
310 	.ret_type	= RET_INTEGER,
311 	.arg1_type	= ARG_ANYTHING,
312 	.arg2_type	= ARG_PTR_TO_MEM,
313 	.arg3_type	= ARG_CONST_SIZE,
314 };
315 
316 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
317 {
318 	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
319 			    current->comm, task_pid_nr(current));
320 
321 	return &bpf_probe_write_user_proto;
322 }
323 
324 /*
325  * Only limited trace_printk() conversion specifiers allowed:
326  * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %pks %pus %s
327  */
328 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
329 	   u64, arg2, u64, arg3)
330 {
331 	int i, mod[3] = {}, fmt_cnt = 0;
332 	char buf[64], fmt_ptype;
333 	void *unsafe_ptr = NULL;
334 	bool str_seen = false;
335 
336 	/*
337 	 * bpf_check()->check_func_arg()->check_stack_boundary()
338 	 * guarantees that fmt points to bpf program stack,
339 	 * fmt_size bytes of it were initialized and fmt_size > 0
340 	 */
341 	if (fmt[--fmt_size] != 0)
342 		return -EINVAL;
343 
344 	/* check format string for allowed specifiers */
345 	for (i = 0; i < fmt_size; i++) {
346 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
347 			return -EINVAL;
348 
349 		if (fmt[i] != '%')
350 			continue;
351 
352 		if (fmt_cnt >= 3)
353 			return -EINVAL;
354 
355 		/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
356 		i++;
357 		if (fmt[i] == 'l') {
358 			mod[fmt_cnt]++;
359 			i++;
360 		} else if (fmt[i] == 'p') {
361 			mod[fmt_cnt]++;
362 			if ((fmt[i + 1] == 'k' ||
363 			     fmt[i + 1] == 'u') &&
364 			    fmt[i + 2] == 's') {
365 				fmt_ptype = fmt[i + 1];
366 				i += 2;
367 				goto fmt_str;
368 			}
369 
370 			/* disallow any further format extensions */
371 			if (fmt[i + 1] != 0 &&
372 			    !isspace(fmt[i + 1]) &&
373 			    !ispunct(fmt[i + 1]))
374 				return -EINVAL;
375 
376 			goto fmt_next;
377 		} else if (fmt[i] == 's') {
378 			mod[fmt_cnt]++;
379 			fmt_ptype = fmt[i];
380 fmt_str:
381 			if (str_seen)
382 				/* allow only one '%s' per fmt string */
383 				return -EINVAL;
384 			str_seen = true;
385 
386 			if (fmt[i + 1] != 0 &&
387 			    !isspace(fmt[i + 1]) &&
388 			    !ispunct(fmt[i + 1]))
389 				return -EINVAL;
390 
391 			switch (fmt_cnt) {
392 			case 0:
393 				unsafe_ptr = (void *)(long)arg1;
394 				arg1 = (long)buf;
395 				break;
396 			case 1:
397 				unsafe_ptr = (void *)(long)arg2;
398 				arg2 = (long)buf;
399 				break;
400 			case 2:
401 				unsafe_ptr = (void *)(long)arg3;
402 				arg3 = (long)buf;
403 				break;
404 			}
405 
406 			buf[0] = 0;
407 			switch (fmt_ptype) {
408 			case 's':
409 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
410 				strncpy_from_unsafe(buf, unsafe_ptr,
411 						    sizeof(buf));
412 				break;
413 #endif
414 			case 'k':
415 				strncpy_from_unsafe_strict(buf, unsafe_ptr,
416 							   sizeof(buf));
417 				break;
418 			case 'u':
419 				strncpy_from_unsafe_user(buf,
420 					(__force void __user *)unsafe_ptr,
421 							 sizeof(buf));
422 				break;
423 			}
424 			goto fmt_next;
425 		}
426 
427 		if (fmt[i] == 'l') {
428 			mod[fmt_cnt]++;
429 			i++;
430 		}
431 
432 		if (fmt[i] != 'i' && fmt[i] != 'd' &&
433 		    fmt[i] != 'u' && fmt[i] != 'x')
434 			return -EINVAL;
435 fmt_next:
436 		fmt_cnt++;
437 	}
438 
439 /* Horrid workaround for getting va_list handling working with different
440  * argument type combinations generically for 32 and 64 bit archs.
441  */
442 #define __BPF_TP_EMIT()	__BPF_ARG3_TP()
443 #define __BPF_TP(...)							\
444 	__trace_printk(0 /* Fake ip */,					\
445 		       fmt, ##__VA_ARGS__)
446 
447 #define __BPF_ARG1_TP(...)						\
448 	((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64))	\
449 	  ? __BPF_TP(arg1, ##__VA_ARGS__)				\
450 	  : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32))	\
451 	      ? __BPF_TP((long)arg1, ##__VA_ARGS__)			\
452 	      : __BPF_TP((u32)arg1, ##__VA_ARGS__)))
453 
454 #define __BPF_ARG2_TP(...)						\
455 	((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64))	\
456 	  ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__)				\
457 	  : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32))	\
458 	      ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__)		\
459 	      : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
460 
461 #define __BPF_ARG3_TP(...)						\
462 	((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64))	\
463 	  ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__)				\
464 	  : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32))	\
465 	      ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__)		\
466 	      : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
467 
468 	return __BPF_TP_EMIT();
469 }
470 
471 static const struct bpf_func_proto bpf_trace_printk_proto = {
472 	.func		= bpf_trace_printk,
473 	.gpl_only	= true,
474 	.ret_type	= RET_INTEGER,
475 	.arg1_type	= ARG_PTR_TO_MEM,
476 	.arg2_type	= ARG_CONST_SIZE,
477 };
478 
479 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
480 {
481 	/*
482 	 * this program might be calling bpf_trace_printk,
483 	 * so allocate per-cpu printk buffers
484 	 */
485 	trace_printk_init_buffers();
486 
487 	return &bpf_trace_printk_proto;
488 }
489 
490 static __always_inline int
491 get_map_perf_counter(struct bpf_map *map, u64 flags,
492 		     u64 *value, u64 *enabled, u64 *running)
493 {
494 	struct bpf_array *array = container_of(map, struct bpf_array, map);
495 	unsigned int cpu = smp_processor_id();
496 	u64 index = flags & BPF_F_INDEX_MASK;
497 	struct bpf_event_entry *ee;
498 
499 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
500 		return -EINVAL;
501 	if (index == BPF_F_CURRENT_CPU)
502 		index = cpu;
503 	if (unlikely(index >= array->map.max_entries))
504 		return -E2BIG;
505 
506 	ee = READ_ONCE(array->ptrs[index]);
507 	if (!ee)
508 		return -ENOENT;
509 
510 	return perf_event_read_local(ee->event, value, enabled, running);
511 }
512 
513 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
514 {
515 	u64 value = 0;
516 	int err;
517 
518 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
519 	/*
520 	 * this api is ugly since we miss [-22..-2] range of valid
521 	 * counter values, but that's uapi
522 	 */
523 	if (err)
524 		return err;
525 	return value;
526 }
527 
528 static const struct bpf_func_proto bpf_perf_event_read_proto = {
529 	.func		= bpf_perf_event_read,
530 	.gpl_only	= true,
531 	.ret_type	= RET_INTEGER,
532 	.arg1_type	= ARG_CONST_MAP_PTR,
533 	.arg2_type	= ARG_ANYTHING,
534 };
535 
536 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
537 	   struct bpf_perf_event_value *, buf, u32, size)
538 {
539 	int err = -EINVAL;
540 
541 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
542 		goto clear;
543 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
544 				   &buf->running);
545 	if (unlikely(err))
546 		goto clear;
547 	return 0;
548 clear:
549 	memset(buf, 0, size);
550 	return err;
551 }
552 
553 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
554 	.func		= bpf_perf_event_read_value,
555 	.gpl_only	= true,
556 	.ret_type	= RET_INTEGER,
557 	.arg1_type	= ARG_CONST_MAP_PTR,
558 	.arg2_type	= ARG_ANYTHING,
559 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
560 	.arg4_type	= ARG_CONST_SIZE,
561 };
562 
563 static __always_inline u64
564 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
565 			u64 flags, struct perf_sample_data *sd)
566 {
567 	struct bpf_array *array = container_of(map, struct bpf_array, map);
568 	unsigned int cpu = smp_processor_id();
569 	u64 index = flags & BPF_F_INDEX_MASK;
570 	struct bpf_event_entry *ee;
571 	struct perf_event *event;
572 
573 	if (index == BPF_F_CURRENT_CPU)
574 		index = cpu;
575 	if (unlikely(index >= array->map.max_entries))
576 		return -E2BIG;
577 
578 	ee = READ_ONCE(array->ptrs[index]);
579 	if (!ee)
580 		return -ENOENT;
581 
582 	event = ee->event;
583 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
584 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
585 		return -EINVAL;
586 
587 	if (unlikely(event->oncpu != cpu))
588 		return -EOPNOTSUPP;
589 
590 	return perf_event_output(event, sd, regs);
591 }
592 
593 /*
594  * Support executing tracepoints in normal, irq, and nmi context that each call
595  * bpf_perf_event_output
596  */
597 struct bpf_trace_sample_data {
598 	struct perf_sample_data sds[3];
599 };
600 
601 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
602 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
603 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
604 	   u64, flags, void *, data, u64, size)
605 {
606 	struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
607 	int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
608 	struct perf_raw_record raw = {
609 		.frag = {
610 			.size = size,
611 			.data = data,
612 		},
613 	};
614 	struct perf_sample_data *sd;
615 	int err;
616 
617 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
618 		err = -EBUSY;
619 		goto out;
620 	}
621 
622 	sd = &sds->sds[nest_level - 1];
623 
624 	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
625 		err = -EINVAL;
626 		goto out;
627 	}
628 
629 	perf_sample_data_init(sd, 0, 0);
630 	sd->raw = &raw;
631 
632 	err = __bpf_perf_event_output(regs, map, flags, sd);
633 
634 out:
635 	this_cpu_dec(bpf_trace_nest_level);
636 	return err;
637 }
638 
639 static const struct bpf_func_proto bpf_perf_event_output_proto = {
640 	.func		= bpf_perf_event_output,
641 	.gpl_only	= true,
642 	.ret_type	= RET_INTEGER,
643 	.arg1_type	= ARG_PTR_TO_CTX,
644 	.arg2_type	= ARG_CONST_MAP_PTR,
645 	.arg3_type	= ARG_ANYTHING,
646 	.arg4_type	= ARG_PTR_TO_MEM,
647 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
648 };
649 
650 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
651 struct bpf_nested_pt_regs {
652 	struct pt_regs regs[3];
653 };
654 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
655 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
656 
657 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
658 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
659 {
660 	int nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
661 	struct perf_raw_frag frag = {
662 		.copy		= ctx_copy,
663 		.size		= ctx_size,
664 		.data		= ctx,
665 	};
666 	struct perf_raw_record raw = {
667 		.frag = {
668 			{
669 				.next	= ctx_size ? &frag : NULL,
670 			},
671 			.size	= meta_size,
672 			.data	= meta,
673 		},
674 	};
675 	struct perf_sample_data *sd;
676 	struct pt_regs *regs;
677 	u64 ret;
678 
679 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
680 		ret = -EBUSY;
681 		goto out;
682 	}
683 	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
684 	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
685 
686 	perf_fetch_caller_regs(regs);
687 	perf_sample_data_init(sd, 0, 0);
688 	sd->raw = &raw;
689 
690 	ret = __bpf_perf_event_output(regs, map, flags, sd);
691 out:
692 	this_cpu_dec(bpf_event_output_nest_level);
693 	return ret;
694 }
695 
696 BPF_CALL_0(bpf_get_current_task)
697 {
698 	return (long) current;
699 }
700 
701 static const struct bpf_func_proto bpf_get_current_task_proto = {
702 	.func		= bpf_get_current_task,
703 	.gpl_only	= true,
704 	.ret_type	= RET_INTEGER,
705 };
706 
707 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
708 {
709 	struct bpf_array *array = container_of(map, struct bpf_array, map);
710 	struct cgroup *cgrp;
711 
712 	if (unlikely(idx >= array->map.max_entries))
713 		return -E2BIG;
714 
715 	cgrp = READ_ONCE(array->ptrs[idx]);
716 	if (unlikely(!cgrp))
717 		return -EAGAIN;
718 
719 	return task_under_cgroup_hierarchy(current, cgrp);
720 }
721 
722 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
723 	.func           = bpf_current_task_under_cgroup,
724 	.gpl_only       = false,
725 	.ret_type       = RET_INTEGER,
726 	.arg1_type      = ARG_CONST_MAP_PTR,
727 	.arg2_type      = ARG_ANYTHING,
728 };
729 
730 struct send_signal_irq_work {
731 	struct irq_work irq_work;
732 	struct task_struct *task;
733 	u32 sig;
734 	enum pid_type type;
735 };
736 
737 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
738 
739 static void do_bpf_send_signal(struct irq_work *entry)
740 {
741 	struct send_signal_irq_work *work;
742 
743 	work = container_of(entry, struct send_signal_irq_work, irq_work);
744 	group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
745 }
746 
747 static int bpf_send_signal_common(u32 sig, enum pid_type type)
748 {
749 	struct send_signal_irq_work *work = NULL;
750 
751 	/* Similar to bpf_probe_write_user, task needs to be
752 	 * in a sound condition and kernel memory access be
753 	 * permitted in order to send signal to the current
754 	 * task.
755 	 */
756 	if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
757 		return -EPERM;
758 	if (unlikely(uaccess_kernel()))
759 		return -EPERM;
760 	if (unlikely(!nmi_uaccess_okay()))
761 		return -EPERM;
762 
763 	if (irqs_disabled()) {
764 		/* Do an early check on signal validity. Otherwise,
765 		 * the error is lost in deferred irq_work.
766 		 */
767 		if (unlikely(!valid_signal(sig)))
768 			return -EINVAL;
769 
770 		work = this_cpu_ptr(&send_signal_work);
771 		if (atomic_read(&work->irq_work.flags) & IRQ_WORK_BUSY)
772 			return -EBUSY;
773 
774 		/* Add the current task, which is the target of sending signal,
775 		 * to the irq_work. The current task may change when queued
776 		 * irq works get executed.
777 		 */
778 		work->task = current;
779 		work->sig = sig;
780 		work->type = type;
781 		irq_work_queue(&work->irq_work);
782 		return 0;
783 	}
784 
785 	return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
786 }
787 
788 BPF_CALL_1(bpf_send_signal, u32, sig)
789 {
790 	return bpf_send_signal_common(sig, PIDTYPE_TGID);
791 }
792 
793 static const struct bpf_func_proto bpf_send_signal_proto = {
794 	.func		= bpf_send_signal,
795 	.gpl_only	= false,
796 	.ret_type	= RET_INTEGER,
797 	.arg1_type	= ARG_ANYTHING,
798 };
799 
800 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
801 {
802 	return bpf_send_signal_common(sig, PIDTYPE_PID);
803 }
804 
805 static const struct bpf_func_proto bpf_send_signal_thread_proto = {
806 	.func		= bpf_send_signal_thread,
807 	.gpl_only	= false,
808 	.ret_type	= RET_INTEGER,
809 	.arg1_type	= ARG_ANYTHING,
810 };
811 
812 const struct bpf_func_proto *
813 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
814 {
815 	switch (func_id) {
816 	case BPF_FUNC_map_lookup_elem:
817 		return &bpf_map_lookup_elem_proto;
818 	case BPF_FUNC_map_update_elem:
819 		return &bpf_map_update_elem_proto;
820 	case BPF_FUNC_map_delete_elem:
821 		return &bpf_map_delete_elem_proto;
822 	case BPF_FUNC_map_push_elem:
823 		return &bpf_map_push_elem_proto;
824 	case BPF_FUNC_map_pop_elem:
825 		return &bpf_map_pop_elem_proto;
826 	case BPF_FUNC_map_peek_elem:
827 		return &bpf_map_peek_elem_proto;
828 	case BPF_FUNC_ktime_get_ns:
829 		return &bpf_ktime_get_ns_proto;
830 	case BPF_FUNC_tail_call:
831 		return &bpf_tail_call_proto;
832 	case BPF_FUNC_get_current_pid_tgid:
833 		return &bpf_get_current_pid_tgid_proto;
834 	case BPF_FUNC_get_current_task:
835 		return &bpf_get_current_task_proto;
836 	case BPF_FUNC_get_current_uid_gid:
837 		return &bpf_get_current_uid_gid_proto;
838 	case BPF_FUNC_get_current_comm:
839 		return &bpf_get_current_comm_proto;
840 	case BPF_FUNC_trace_printk:
841 		return bpf_get_trace_printk_proto();
842 	case BPF_FUNC_get_smp_processor_id:
843 		return &bpf_get_smp_processor_id_proto;
844 	case BPF_FUNC_get_numa_node_id:
845 		return &bpf_get_numa_node_id_proto;
846 	case BPF_FUNC_perf_event_read:
847 		return &bpf_perf_event_read_proto;
848 	case BPF_FUNC_probe_write_user:
849 		return bpf_get_probe_write_proto();
850 	case BPF_FUNC_current_task_under_cgroup:
851 		return &bpf_current_task_under_cgroup_proto;
852 	case BPF_FUNC_get_prandom_u32:
853 		return &bpf_get_prandom_u32_proto;
854 	case BPF_FUNC_probe_read_user:
855 		return &bpf_probe_read_user_proto;
856 	case BPF_FUNC_probe_read_kernel:
857 		return &bpf_probe_read_kernel_proto;
858 	case BPF_FUNC_probe_read_user_str:
859 		return &bpf_probe_read_user_str_proto;
860 	case BPF_FUNC_probe_read_kernel_str:
861 		return &bpf_probe_read_kernel_str_proto;
862 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
863 	case BPF_FUNC_probe_read:
864 		return &bpf_probe_read_compat_proto;
865 	case BPF_FUNC_probe_read_str:
866 		return &bpf_probe_read_compat_str_proto;
867 #endif
868 #ifdef CONFIG_CGROUPS
869 	case BPF_FUNC_get_current_cgroup_id:
870 		return &bpf_get_current_cgroup_id_proto;
871 #endif
872 	case BPF_FUNC_send_signal:
873 		return &bpf_send_signal_proto;
874 	case BPF_FUNC_send_signal_thread:
875 		return &bpf_send_signal_thread_proto;
876 	case BPF_FUNC_perf_event_read_value:
877 		return &bpf_perf_event_read_value_proto;
878 	case BPF_FUNC_get_ns_current_pid_tgid:
879 		return &bpf_get_ns_current_pid_tgid_proto;
880 	default:
881 		return NULL;
882 	}
883 }
884 
885 static const struct bpf_func_proto *
886 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
887 {
888 	switch (func_id) {
889 	case BPF_FUNC_perf_event_output:
890 		return &bpf_perf_event_output_proto;
891 	case BPF_FUNC_get_stackid:
892 		return &bpf_get_stackid_proto;
893 	case BPF_FUNC_get_stack:
894 		return &bpf_get_stack_proto;
895 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
896 	case BPF_FUNC_override_return:
897 		return &bpf_override_return_proto;
898 #endif
899 	default:
900 		return bpf_tracing_func_proto(func_id, prog);
901 	}
902 }
903 
904 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
905 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
906 					const struct bpf_prog *prog,
907 					struct bpf_insn_access_aux *info)
908 {
909 	if (off < 0 || off >= sizeof(struct pt_regs))
910 		return false;
911 	if (type != BPF_READ)
912 		return false;
913 	if (off % size != 0)
914 		return false;
915 	/*
916 	 * Assertion for 32 bit to make sure last 8 byte access
917 	 * (BPF_DW) to the last 4 byte member is disallowed.
918 	 */
919 	if (off + size > sizeof(struct pt_regs))
920 		return false;
921 
922 	return true;
923 }
924 
925 const struct bpf_verifier_ops kprobe_verifier_ops = {
926 	.get_func_proto  = kprobe_prog_func_proto,
927 	.is_valid_access = kprobe_prog_is_valid_access,
928 };
929 
930 const struct bpf_prog_ops kprobe_prog_ops = {
931 };
932 
933 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
934 	   u64, flags, void *, data, u64, size)
935 {
936 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
937 
938 	/*
939 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
940 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
941 	 * from there and call the same bpf_perf_event_output() helper inline.
942 	 */
943 	return ____bpf_perf_event_output(regs, map, flags, data, size);
944 }
945 
946 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
947 	.func		= bpf_perf_event_output_tp,
948 	.gpl_only	= true,
949 	.ret_type	= RET_INTEGER,
950 	.arg1_type	= ARG_PTR_TO_CTX,
951 	.arg2_type	= ARG_CONST_MAP_PTR,
952 	.arg3_type	= ARG_ANYTHING,
953 	.arg4_type	= ARG_PTR_TO_MEM,
954 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
955 };
956 
957 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
958 	   u64, flags)
959 {
960 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
961 
962 	/*
963 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
964 	 * the other helper's function body cannot be inlined due to being
965 	 * external, thus we need to call raw helper function.
966 	 */
967 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
968 			       flags, 0, 0);
969 }
970 
971 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
972 	.func		= bpf_get_stackid_tp,
973 	.gpl_only	= true,
974 	.ret_type	= RET_INTEGER,
975 	.arg1_type	= ARG_PTR_TO_CTX,
976 	.arg2_type	= ARG_CONST_MAP_PTR,
977 	.arg3_type	= ARG_ANYTHING,
978 };
979 
980 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
981 	   u64, flags)
982 {
983 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
984 
985 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
986 			     (unsigned long) size, flags, 0);
987 }
988 
989 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
990 	.func		= bpf_get_stack_tp,
991 	.gpl_only	= true,
992 	.ret_type	= RET_INTEGER,
993 	.arg1_type	= ARG_PTR_TO_CTX,
994 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
995 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
996 	.arg4_type	= ARG_ANYTHING,
997 };
998 
999 static const struct bpf_func_proto *
1000 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1001 {
1002 	switch (func_id) {
1003 	case BPF_FUNC_perf_event_output:
1004 		return &bpf_perf_event_output_proto_tp;
1005 	case BPF_FUNC_get_stackid:
1006 		return &bpf_get_stackid_proto_tp;
1007 	case BPF_FUNC_get_stack:
1008 		return &bpf_get_stack_proto_tp;
1009 	default:
1010 		return bpf_tracing_func_proto(func_id, prog);
1011 	}
1012 }
1013 
1014 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1015 				    const struct bpf_prog *prog,
1016 				    struct bpf_insn_access_aux *info)
1017 {
1018 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1019 		return false;
1020 	if (type != BPF_READ)
1021 		return false;
1022 	if (off % size != 0)
1023 		return false;
1024 
1025 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1026 	return true;
1027 }
1028 
1029 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1030 	.get_func_proto  = tp_prog_func_proto,
1031 	.is_valid_access = tp_prog_is_valid_access,
1032 };
1033 
1034 const struct bpf_prog_ops tracepoint_prog_ops = {
1035 };
1036 
1037 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1038 	   struct bpf_perf_event_value *, buf, u32, size)
1039 {
1040 	int err = -EINVAL;
1041 
1042 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1043 		goto clear;
1044 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1045 				    &buf->running);
1046 	if (unlikely(err))
1047 		goto clear;
1048 	return 0;
1049 clear:
1050 	memset(buf, 0, size);
1051 	return err;
1052 }
1053 
1054 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1055          .func           = bpf_perf_prog_read_value,
1056          .gpl_only       = true,
1057          .ret_type       = RET_INTEGER,
1058          .arg1_type      = ARG_PTR_TO_CTX,
1059          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1060          .arg3_type      = ARG_CONST_SIZE,
1061 };
1062 
1063 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1064 	   void *, buf, u32, size, u64, flags)
1065 {
1066 #ifndef CONFIG_X86
1067 	return -ENOENT;
1068 #else
1069 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1070 	struct perf_branch_stack *br_stack = ctx->data->br_stack;
1071 	u32 to_copy;
1072 
1073 	if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1074 		return -EINVAL;
1075 
1076 	if (unlikely(!br_stack))
1077 		return -EINVAL;
1078 
1079 	if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1080 		return br_stack->nr * br_entry_size;
1081 
1082 	if (!buf || (size % br_entry_size != 0))
1083 		return -EINVAL;
1084 
1085 	to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1086 	memcpy(buf, br_stack->entries, to_copy);
1087 
1088 	return to_copy;
1089 #endif
1090 }
1091 
1092 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1093 	.func           = bpf_read_branch_records,
1094 	.gpl_only       = true,
1095 	.ret_type       = RET_INTEGER,
1096 	.arg1_type      = ARG_PTR_TO_CTX,
1097 	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
1098 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1099 	.arg4_type      = ARG_ANYTHING,
1100 };
1101 
1102 static const struct bpf_func_proto *
1103 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1104 {
1105 	switch (func_id) {
1106 	case BPF_FUNC_perf_event_output:
1107 		return &bpf_perf_event_output_proto_tp;
1108 	case BPF_FUNC_get_stackid:
1109 		return &bpf_get_stackid_proto_tp;
1110 	case BPF_FUNC_get_stack:
1111 		return &bpf_get_stack_proto_tp;
1112 	case BPF_FUNC_perf_prog_read_value:
1113 		return &bpf_perf_prog_read_value_proto;
1114 	case BPF_FUNC_read_branch_records:
1115 		return &bpf_read_branch_records_proto;
1116 	default:
1117 		return bpf_tracing_func_proto(func_id, prog);
1118 	}
1119 }
1120 
1121 /*
1122  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1123  * to avoid potential recursive reuse issue when/if tracepoints are added
1124  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1125  *
1126  * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1127  * in normal, irq, and nmi context.
1128  */
1129 struct bpf_raw_tp_regs {
1130 	struct pt_regs regs[3];
1131 };
1132 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1133 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1134 static struct pt_regs *get_bpf_raw_tp_regs(void)
1135 {
1136 	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1137 	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1138 
1139 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1140 		this_cpu_dec(bpf_raw_tp_nest_level);
1141 		return ERR_PTR(-EBUSY);
1142 	}
1143 
1144 	return &tp_regs->regs[nest_level - 1];
1145 }
1146 
1147 static void put_bpf_raw_tp_regs(void)
1148 {
1149 	this_cpu_dec(bpf_raw_tp_nest_level);
1150 }
1151 
1152 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1153 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
1154 {
1155 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1156 	int ret;
1157 
1158 	if (IS_ERR(regs))
1159 		return PTR_ERR(regs);
1160 
1161 	perf_fetch_caller_regs(regs);
1162 	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1163 
1164 	put_bpf_raw_tp_regs();
1165 	return ret;
1166 }
1167 
1168 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1169 	.func		= bpf_perf_event_output_raw_tp,
1170 	.gpl_only	= true,
1171 	.ret_type	= RET_INTEGER,
1172 	.arg1_type	= ARG_PTR_TO_CTX,
1173 	.arg2_type	= ARG_CONST_MAP_PTR,
1174 	.arg3_type	= ARG_ANYTHING,
1175 	.arg4_type	= ARG_PTR_TO_MEM,
1176 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1177 };
1178 
1179 extern const struct bpf_func_proto bpf_skb_output_proto;
1180 extern const struct bpf_func_proto bpf_xdp_output_proto;
1181 
1182 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1183 	   struct bpf_map *, map, u64, flags)
1184 {
1185 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1186 	int ret;
1187 
1188 	if (IS_ERR(regs))
1189 		return PTR_ERR(regs);
1190 
1191 	perf_fetch_caller_regs(regs);
1192 	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1193 	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1194 			      flags, 0, 0);
1195 	put_bpf_raw_tp_regs();
1196 	return ret;
1197 }
1198 
1199 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1200 	.func		= bpf_get_stackid_raw_tp,
1201 	.gpl_only	= true,
1202 	.ret_type	= RET_INTEGER,
1203 	.arg1_type	= ARG_PTR_TO_CTX,
1204 	.arg2_type	= ARG_CONST_MAP_PTR,
1205 	.arg3_type	= ARG_ANYTHING,
1206 };
1207 
1208 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1209 	   void *, buf, u32, size, u64, flags)
1210 {
1211 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1212 	int ret;
1213 
1214 	if (IS_ERR(regs))
1215 		return PTR_ERR(regs);
1216 
1217 	perf_fetch_caller_regs(regs);
1218 	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1219 			    (unsigned long) size, flags, 0);
1220 	put_bpf_raw_tp_regs();
1221 	return ret;
1222 }
1223 
1224 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1225 	.func		= bpf_get_stack_raw_tp,
1226 	.gpl_only	= true,
1227 	.ret_type	= RET_INTEGER,
1228 	.arg1_type	= ARG_PTR_TO_CTX,
1229 	.arg2_type	= ARG_PTR_TO_MEM,
1230 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1231 	.arg4_type	= ARG_ANYTHING,
1232 };
1233 
1234 static const struct bpf_func_proto *
1235 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1236 {
1237 	switch (func_id) {
1238 	case BPF_FUNC_perf_event_output:
1239 		return &bpf_perf_event_output_proto_raw_tp;
1240 	case BPF_FUNC_get_stackid:
1241 		return &bpf_get_stackid_proto_raw_tp;
1242 	case BPF_FUNC_get_stack:
1243 		return &bpf_get_stack_proto_raw_tp;
1244 	default:
1245 		return bpf_tracing_func_proto(func_id, prog);
1246 	}
1247 }
1248 
1249 static const struct bpf_func_proto *
1250 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1251 {
1252 	switch (func_id) {
1253 #ifdef CONFIG_NET
1254 	case BPF_FUNC_skb_output:
1255 		return &bpf_skb_output_proto;
1256 	case BPF_FUNC_xdp_output:
1257 		return &bpf_xdp_output_proto;
1258 #endif
1259 	default:
1260 		return raw_tp_prog_func_proto(func_id, prog);
1261 	}
1262 }
1263 
1264 static bool raw_tp_prog_is_valid_access(int off, int size,
1265 					enum bpf_access_type type,
1266 					const struct bpf_prog *prog,
1267 					struct bpf_insn_access_aux *info)
1268 {
1269 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1270 		return false;
1271 	if (type != BPF_READ)
1272 		return false;
1273 	if (off % size != 0)
1274 		return false;
1275 	return true;
1276 }
1277 
1278 static bool tracing_prog_is_valid_access(int off, int size,
1279 					 enum bpf_access_type type,
1280 					 const struct bpf_prog *prog,
1281 					 struct bpf_insn_access_aux *info)
1282 {
1283 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1284 		return false;
1285 	if (type != BPF_READ)
1286 		return false;
1287 	if (off % size != 0)
1288 		return false;
1289 	return btf_ctx_access(off, size, type, prog, info);
1290 }
1291 
1292 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1293 				     const union bpf_attr *kattr,
1294 				     union bpf_attr __user *uattr)
1295 {
1296 	return -ENOTSUPP;
1297 }
1298 
1299 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1300 	.get_func_proto  = raw_tp_prog_func_proto,
1301 	.is_valid_access = raw_tp_prog_is_valid_access,
1302 };
1303 
1304 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1305 };
1306 
1307 const struct bpf_verifier_ops tracing_verifier_ops = {
1308 	.get_func_proto  = tracing_prog_func_proto,
1309 	.is_valid_access = tracing_prog_is_valid_access,
1310 };
1311 
1312 const struct bpf_prog_ops tracing_prog_ops = {
1313 	.test_run = bpf_prog_test_run_tracing,
1314 };
1315 
1316 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1317 						 enum bpf_access_type type,
1318 						 const struct bpf_prog *prog,
1319 						 struct bpf_insn_access_aux *info)
1320 {
1321 	if (off == 0) {
1322 		if (size != sizeof(u64) || type != BPF_READ)
1323 			return false;
1324 		info->reg_type = PTR_TO_TP_BUFFER;
1325 	}
1326 	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1327 }
1328 
1329 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1330 	.get_func_proto  = raw_tp_prog_func_proto,
1331 	.is_valid_access = raw_tp_writable_prog_is_valid_access,
1332 };
1333 
1334 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1335 };
1336 
1337 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1338 				    const struct bpf_prog *prog,
1339 				    struct bpf_insn_access_aux *info)
1340 {
1341 	const int size_u64 = sizeof(u64);
1342 
1343 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1344 		return false;
1345 	if (type != BPF_READ)
1346 		return false;
1347 	if (off % size != 0) {
1348 		if (sizeof(unsigned long) != 4)
1349 			return false;
1350 		if (size != 8)
1351 			return false;
1352 		if (off % size != 4)
1353 			return false;
1354 	}
1355 
1356 	switch (off) {
1357 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1358 		bpf_ctx_record_field_size(info, size_u64);
1359 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1360 			return false;
1361 		break;
1362 	case bpf_ctx_range(struct bpf_perf_event_data, addr):
1363 		bpf_ctx_record_field_size(info, size_u64);
1364 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1365 			return false;
1366 		break;
1367 	default:
1368 		if (size != sizeof(long))
1369 			return false;
1370 	}
1371 
1372 	return true;
1373 }
1374 
1375 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1376 				      const struct bpf_insn *si,
1377 				      struct bpf_insn *insn_buf,
1378 				      struct bpf_prog *prog, u32 *target_size)
1379 {
1380 	struct bpf_insn *insn = insn_buf;
1381 
1382 	switch (si->off) {
1383 	case offsetof(struct bpf_perf_event_data, sample_period):
1384 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1385 						       data), si->dst_reg, si->src_reg,
1386 				      offsetof(struct bpf_perf_event_data_kern, data));
1387 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1388 				      bpf_target_off(struct perf_sample_data, period, 8,
1389 						     target_size));
1390 		break;
1391 	case offsetof(struct bpf_perf_event_data, addr):
1392 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1393 						       data), si->dst_reg, si->src_reg,
1394 				      offsetof(struct bpf_perf_event_data_kern, data));
1395 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1396 				      bpf_target_off(struct perf_sample_data, addr, 8,
1397 						     target_size));
1398 		break;
1399 	default:
1400 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1401 						       regs), si->dst_reg, si->src_reg,
1402 				      offsetof(struct bpf_perf_event_data_kern, regs));
1403 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1404 				      si->off);
1405 		break;
1406 	}
1407 
1408 	return insn - insn_buf;
1409 }
1410 
1411 const struct bpf_verifier_ops perf_event_verifier_ops = {
1412 	.get_func_proto		= pe_prog_func_proto,
1413 	.is_valid_access	= pe_prog_is_valid_access,
1414 	.convert_ctx_access	= pe_prog_convert_ctx_access,
1415 };
1416 
1417 const struct bpf_prog_ops perf_event_prog_ops = {
1418 };
1419 
1420 static DEFINE_MUTEX(bpf_event_mutex);
1421 
1422 #define BPF_TRACE_MAX_PROGS 64
1423 
1424 int perf_event_attach_bpf_prog(struct perf_event *event,
1425 			       struct bpf_prog *prog)
1426 {
1427 	struct bpf_prog_array *old_array;
1428 	struct bpf_prog_array *new_array;
1429 	int ret = -EEXIST;
1430 
1431 	/*
1432 	 * Kprobe override only works if they are on the function entry,
1433 	 * and only if they are on the opt-in list.
1434 	 */
1435 	if (prog->kprobe_override &&
1436 	    (!trace_kprobe_on_func_entry(event->tp_event) ||
1437 	     !trace_kprobe_error_injectable(event->tp_event)))
1438 		return -EINVAL;
1439 
1440 	mutex_lock(&bpf_event_mutex);
1441 
1442 	if (event->prog)
1443 		goto unlock;
1444 
1445 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1446 	if (old_array &&
1447 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1448 		ret = -E2BIG;
1449 		goto unlock;
1450 	}
1451 
1452 	ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
1453 	if (ret < 0)
1454 		goto unlock;
1455 
1456 	/* set the new array to event->tp_event and set event->prog */
1457 	event->prog = prog;
1458 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
1459 	bpf_prog_array_free(old_array);
1460 
1461 unlock:
1462 	mutex_unlock(&bpf_event_mutex);
1463 	return ret;
1464 }
1465 
1466 void perf_event_detach_bpf_prog(struct perf_event *event)
1467 {
1468 	struct bpf_prog_array *old_array;
1469 	struct bpf_prog_array *new_array;
1470 	int ret;
1471 
1472 	mutex_lock(&bpf_event_mutex);
1473 
1474 	if (!event->prog)
1475 		goto unlock;
1476 
1477 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1478 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
1479 	if (ret == -ENOENT)
1480 		goto unlock;
1481 	if (ret < 0) {
1482 		bpf_prog_array_delete_safe(old_array, event->prog);
1483 	} else {
1484 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
1485 		bpf_prog_array_free(old_array);
1486 	}
1487 
1488 	bpf_prog_put(event->prog);
1489 	event->prog = NULL;
1490 
1491 unlock:
1492 	mutex_unlock(&bpf_event_mutex);
1493 }
1494 
1495 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1496 {
1497 	struct perf_event_query_bpf __user *uquery = info;
1498 	struct perf_event_query_bpf query = {};
1499 	struct bpf_prog_array *progs;
1500 	u32 *ids, prog_cnt, ids_len;
1501 	int ret;
1502 
1503 	if (!capable(CAP_SYS_ADMIN))
1504 		return -EPERM;
1505 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
1506 		return -EINVAL;
1507 	if (copy_from_user(&query, uquery, sizeof(query)))
1508 		return -EFAULT;
1509 
1510 	ids_len = query.ids_len;
1511 	if (ids_len > BPF_TRACE_MAX_PROGS)
1512 		return -E2BIG;
1513 	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1514 	if (!ids)
1515 		return -ENOMEM;
1516 	/*
1517 	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1518 	 * is required when user only wants to check for uquery->prog_cnt.
1519 	 * There is no need to check for it since the case is handled
1520 	 * gracefully in bpf_prog_array_copy_info.
1521 	 */
1522 
1523 	mutex_lock(&bpf_event_mutex);
1524 	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
1525 	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
1526 	mutex_unlock(&bpf_event_mutex);
1527 
1528 	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
1529 	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
1530 		ret = -EFAULT;
1531 
1532 	kfree(ids);
1533 	return ret;
1534 }
1535 
1536 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
1537 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
1538 
1539 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
1540 {
1541 	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
1542 
1543 	for (; btp < __stop__bpf_raw_tp; btp++) {
1544 		if (!strcmp(btp->tp->name, name))
1545 			return btp;
1546 	}
1547 
1548 	return bpf_get_raw_tracepoint_module(name);
1549 }
1550 
1551 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
1552 {
1553 	struct module *mod = __module_address((unsigned long)btp);
1554 
1555 	if (mod)
1556 		module_put(mod);
1557 }
1558 
1559 static __always_inline
1560 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
1561 {
1562 	cant_sleep();
1563 	rcu_read_lock();
1564 	(void) BPF_PROG_RUN(prog, args);
1565 	rcu_read_unlock();
1566 }
1567 
1568 #define UNPACK(...)			__VA_ARGS__
1569 #define REPEAT_1(FN, DL, X, ...)	FN(X)
1570 #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
1571 #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
1572 #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
1573 #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
1574 #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
1575 #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
1576 #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
1577 #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
1578 #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
1579 #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
1580 #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
1581 #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
1582 
1583 #define SARG(X)		u64 arg##X
1584 #define COPY(X)		args[X] = arg##X
1585 
1586 #define __DL_COM	(,)
1587 #define __DL_SEM	(;)
1588 
1589 #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
1590 
1591 #define BPF_TRACE_DEFN_x(x)						\
1592 	void bpf_trace_run##x(struct bpf_prog *prog,			\
1593 			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
1594 	{								\
1595 		u64 args[x];						\
1596 		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
1597 		__bpf_trace_run(prog, args);				\
1598 	}								\
1599 	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
1600 BPF_TRACE_DEFN_x(1);
1601 BPF_TRACE_DEFN_x(2);
1602 BPF_TRACE_DEFN_x(3);
1603 BPF_TRACE_DEFN_x(4);
1604 BPF_TRACE_DEFN_x(5);
1605 BPF_TRACE_DEFN_x(6);
1606 BPF_TRACE_DEFN_x(7);
1607 BPF_TRACE_DEFN_x(8);
1608 BPF_TRACE_DEFN_x(9);
1609 BPF_TRACE_DEFN_x(10);
1610 BPF_TRACE_DEFN_x(11);
1611 BPF_TRACE_DEFN_x(12);
1612 
1613 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1614 {
1615 	struct tracepoint *tp = btp->tp;
1616 
1617 	/*
1618 	 * check that program doesn't access arguments beyond what's
1619 	 * available in this tracepoint
1620 	 */
1621 	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
1622 		return -EINVAL;
1623 
1624 	if (prog->aux->max_tp_access > btp->writable_size)
1625 		return -EINVAL;
1626 
1627 	return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog);
1628 }
1629 
1630 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1631 {
1632 	return __bpf_probe_register(btp, prog);
1633 }
1634 
1635 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1636 {
1637 	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
1638 }
1639 
1640 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
1641 			    u32 *fd_type, const char **buf,
1642 			    u64 *probe_offset, u64 *probe_addr)
1643 {
1644 	bool is_tracepoint, is_syscall_tp;
1645 	struct bpf_prog *prog;
1646 	int flags, err = 0;
1647 
1648 	prog = event->prog;
1649 	if (!prog)
1650 		return -ENOENT;
1651 
1652 	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
1653 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
1654 		return -EOPNOTSUPP;
1655 
1656 	*prog_id = prog->aux->id;
1657 	flags = event->tp_event->flags;
1658 	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
1659 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
1660 
1661 	if (is_tracepoint || is_syscall_tp) {
1662 		*buf = is_tracepoint ? event->tp_event->tp->name
1663 				     : event->tp_event->name;
1664 		*fd_type = BPF_FD_TYPE_TRACEPOINT;
1665 		*probe_offset = 0x0;
1666 		*probe_addr = 0x0;
1667 	} else {
1668 		/* kprobe/uprobe */
1669 		err = -EOPNOTSUPP;
1670 #ifdef CONFIG_KPROBE_EVENTS
1671 		if (flags & TRACE_EVENT_FL_KPROBE)
1672 			err = bpf_get_kprobe_info(event, fd_type, buf,
1673 						  probe_offset, probe_addr,
1674 						  event->attr.type == PERF_TYPE_TRACEPOINT);
1675 #endif
1676 #ifdef CONFIG_UPROBE_EVENTS
1677 		if (flags & TRACE_EVENT_FL_UPROBE)
1678 			err = bpf_get_uprobe_info(event, fd_type, buf,
1679 						  probe_offset,
1680 						  event->attr.type == PERF_TYPE_TRACEPOINT);
1681 #endif
1682 	}
1683 
1684 	return err;
1685 }
1686 
1687 static int __init send_signal_irq_work_init(void)
1688 {
1689 	int cpu;
1690 	struct send_signal_irq_work *work;
1691 
1692 	for_each_possible_cpu(cpu) {
1693 		work = per_cpu_ptr(&send_signal_work, cpu);
1694 		init_irq_work(&work->irq_work, do_bpf_send_signal);
1695 	}
1696 	return 0;
1697 }
1698 
1699 subsys_initcall(send_signal_irq_work_init);
1700 
1701 #ifdef CONFIG_MODULES
1702 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
1703 			    void *module)
1704 {
1705 	struct bpf_trace_module *btm, *tmp;
1706 	struct module *mod = module;
1707 
1708 	if (mod->num_bpf_raw_events == 0 ||
1709 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
1710 		return 0;
1711 
1712 	mutex_lock(&bpf_module_mutex);
1713 
1714 	switch (op) {
1715 	case MODULE_STATE_COMING:
1716 		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
1717 		if (btm) {
1718 			btm->module = module;
1719 			list_add(&btm->list, &bpf_trace_modules);
1720 		}
1721 		break;
1722 	case MODULE_STATE_GOING:
1723 		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
1724 			if (btm->module == module) {
1725 				list_del(&btm->list);
1726 				kfree(btm);
1727 				break;
1728 			}
1729 		}
1730 		break;
1731 	}
1732 
1733 	mutex_unlock(&bpf_module_mutex);
1734 
1735 	return 0;
1736 }
1737 
1738 static struct notifier_block bpf_module_nb = {
1739 	.notifier_call = bpf_event_notify,
1740 };
1741 
1742 static int __init bpf_event_init(void)
1743 {
1744 	register_module_notifier(&bpf_module_nb);
1745 	return 0;
1746 }
1747 
1748 fs_initcall(bpf_event_init);
1749 #endif /* CONFIG_MODULES */
1750