1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/kernel.h> 6 #include <linux/types.h> 7 #include <linux/slab.h> 8 #include <linux/bpf.h> 9 #include <linux/bpf_verifier.h> 10 #include <linux/bpf_perf_event.h> 11 #include <linux/btf.h> 12 #include <linux/filter.h> 13 #include <linux/uaccess.h> 14 #include <linux/ctype.h> 15 #include <linux/kprobes.h> 16 #include <linux/spinlock.h> 17 #include <linux/syscalls.h> 18 #include <linux/error-injection.h> 19 #include <linux/btf_ids.h> 20 #include <linux/bpf_lsm.h> 21 #include <linux/fprobe.h> 22 #include <linux/bsearch.h> 23 #include <linux/sort.h> 24 #include <linux/key.h> 25 #include <linux/verification.h> 26 #include <linux/namei.h> 27 28 #include <net/bpf_sk_storage.h> 29 30 #include <uapi/linux/bpf.h> 31 #include <uapi/linux/btf.h> 32 33 #include <asm/tlb.h> 34 35 #include "trace_probe.h" 36 #include "trace.h" 37 38 #define CREATE_TRACE_POINTS 39 #include "bpf_trace.h" 40 41 #define bpf_event_rcu_dereference(p) \ 42 rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex)) 43 44 #define MAX_UPROBE_MULTI_CNT (1U << 20) 45 #define MAX_KPROBE_MULTI_CNT (1U << 20) 46 47 #ifdef CONFIG_MODULES 48 struct bpf_trace_module { 49 struct module *module; 50 struct list_head list; 51 }; 52 53 static LIST_HEAD(bpf_trace_modules); 54 static DEFINE_MUTEX(bpf_module_mutex); 55 56 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 57 { 58 struct bpf_raw_event_map *btp, *ret = NULL; 59 struct bpf_trace_module *btm; 60 unsigned int i; 61 62 mutex_lock(&bpf_module_mutex); 63 list_for_each_entry(btm, &bpf_trace_modules, list) { 64 for (i = 0; i < btm->module->num_bpf_raw_events; ++i) { 65 btp = &btm->module->bpf_raw_events[i]; 66 if (!strcmp(btp->tp->name, name)) { 67 if (try_module_get(btm->module)) 68 ret = btp; 69 goto out; 70 } 71 } 72 } 73 out: 74 mutex_unlock(&bpf_module_mutex); 75 return ret; 76 } 77 #else 78 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 79 { 80 return NULL; 81 } 82 #endif /* CONFIG_MODULES */ 83 84 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 85 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 86 87 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size, 88 u64 flags, const struct btf **btf, 89 s32 *btf_id); 90 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx); 91 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx); 92 93 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx); 94 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx); 95 96 /** 97 * trace_call_bpf - invoke BPF program 98 * @call: tracepoint event 99 * @ctx: opaque context pointer 100 * 101 * kprobe handlers execute BPF programs via this helper. 102 * Can be used from static tracepoints in the future. 103 * 104 * Return: BPF programs always return an integer which is interpreted by 105 * kprobe handler as: 106 * 0 - return from kprobe (event is filtered out) 107 * 1 - store kprobe event into ring buffer 108 * Other values are reserved and currently alias to 1 109 */ 110 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx) 111 { 112 unsigned int ret; 113 114 cant_sleep(); 115 116 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) { 117 /* 118 * since some bpf program is already running on this cpu, 119 * don't call into another bpf program (same or different) 120 * and don't send kprobe event into ring-buffer, 121 * so return zero here 122 */ 123 rcu_read_lock(); 124 bpf_prog_inc_misses_counters(rcu_dereference(call->prog_array)); 125 rcu_read_unlock(); 126 ret = 0; 127 goto out; 128 } 129 130 /* 131 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock 132 * to all call sites, we did a bpf_prog_array_valid() there to check 133 * whether call->prog_array is empty or not, which is 134 * a heuristic to speed up execution. 135 * 136 * If bpf_prog_array_valid() fetched prog_array was 137 * non-NULL, we go into trace_call_bpf() and do the actual 138 * proper rcu_dereference() under RCU lock. 139 * If it turns out that prog_array is NULL then, we bail out. 140 * For the opposite, if the bpf_prog_array_valid() fetched pointer 141 * was NULL, you'll skip the prog_array with the risk of missing 142 * out of events when it was updated in between this and the 143 * rcu_dereference() which is accepted risk. 144 */ 145 rcu_read_lock(); 146 ret = bpf_prog_run_array(rcu_dereference(call->prog_array), 147 ctx, bpf_prog_run); 148 rcu_read_unlock(); 149 150 out: 151 __this_cpu_dec(bpf_prog_active); 152 153 return ret; 154 } 155 156 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 157 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc) 158 { 159 regs_set_return_value(regs, rc); 160 override_function_with_return(regs); 161 return 0; 162 } 163 164 static const struct bpf_func_proto bpf_override_return_proto = { 165 .func = bpf_override_return, 166 .gpl_only = true, 167 .ret_type = RET_INTEGER, 168 .arg1_type = ARG_PTR_TO_CTX, 169 .arg2_type = ARG_ANYTHING, 170 }; 171 #endif 172 173 static __always_inline int 174 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr) 175 { 176 int ret; 177 178 ret = copy_from_user_nofault(dst, unsafe_ptr, size); 179 if (unlikely(ret < 0)) 180 memset(dst, 0, size); 181 return ret; 182 } 183 184 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size, 185 const void __user *, unsafe_ptr) 186 { 187 return bpf_probe_read_user_common(dst, size, unsafe_ptr); 188 } 189 190 const struct bpf_func_proto bpf_probe_read_user_proto = { 191 .func = bpf_probe_read_user, 192 .gpl_only = true, 193 .ret_type = RET_INTEGER, 194 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 195 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 196 .arg3_type = ARG_ANYTHING, 197 }; 198 199 static __always_inline int 200 bpf_probe_read_user_str_common(void *dst, u32 size, 201 const void __user *unsafe_ptr) 202 { 203 int ret; 204 205 /* 206 * NB: We rely on strncpy_from_user() not copying junk past the NUL 207 * terminator into `dst`. 208 * 209 * strncpy_from_user() does long-sized strides in the fast path. If the 210 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`, 211 * then there could be junk after the NUL in `dst`. If user takes `dst` 212 * and keys a hash map with it, then semantically identical strings can 213 * occupy multiple entries in the map. 214 */ 215 ret = strncpy_from_user_nofault(dst, unsafe_ptr, size); 216 if (unlikely(ret < 0)) 217 memset(dst, 0, size); 218 return ret; 219 } 220 221 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size, 222 const void __user *, unsafe_ptr) 223 { 224 return bpf_probe_read_user_str_common(dst, size, unsafe_ptr); 225 } 226 227 const struct bpf_func_proto bpf_probe_read_user_str_proto = { 228 .func = bpf_probe_read_user_str, 229 .gpl_only = true, 230 .ret_type = RET_INTEGER, 231 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 232 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 233 .arg3_type = ARG_ANYTHING, 234 }; 235 236 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size, 237 const void *, unsafe_ptr) 238 { 239 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr); 240 } 241 242 const struct bpf_func_proto bpf_probe_read_kernel_proto = { 243 .func = bpf_probe_read_kernel, 244 .gpl_only = true, 245 .ret_type = RET_INTEGER, 246 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 247 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 248 .arg3_type = ARG_ANYTHING, 249 }; 250 251 static __always_inline int 252 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr) 253 { 254 int ret; 255 256 /* 257 * The strncpy_from_kernel_nofault() call will likely not fill the 258 * entire buffer, but that's okay in this circumstance as we're probing 259 * arbitrary memory anyway similar to bpf_probe_read_*() and might 260 * as well probe the stack. Thus, memory is explicitly cleared 261 * only in error case, so that improper users ignoring return 262 * code altogether don't copy garbage; otherwise length of string 263 * is returned that can be used for bpf_perf_event_output() et al. 264 */ 265 ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size); 266 if (unlikely(ret < 0)) 267 memset(dst, 0, size); 268 return ret; 269 } 270 271 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size, 272 const void *, unsafe_ptr) 273 { 274 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr); 275 } 276 277 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = { 278 .func = bpf_probe_read_kernel_str, 279 .gpl_only = true, 280 .ret_type = RET_INTEGER, 281 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 282 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 283 .arg3_type = ARG_ANYTHING, 284 }; 285 286 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 287 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size, 288 const void *, unsafe_ptr) 289 { 290 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 291 return bpf_probe_read_user_common(dst, size, 292 (__force void __user *)unsafe_ptr); 293 } 294 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr); 295 } 296 297 static const struct bpf_func_proto bpf_probe_read_compat_proto = { 298 .func = bpf_probe_read_compat, 299 .gpl_only = true, 300 .ret_type = RET_INTEGER, 301 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 302 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 303 .arg3_type = ARG_ANYTHING, 304 }; 305 306 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size, 307 const void *, unsafe_ptr) 308 { 309 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 310 return bpf_probe_read_user_str_common(dst, size, 311 (__force void __user *)unsafe_ptr); 312 } 313 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr); 314 } 315 316 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = { 317 .func = bpf_probe_read_compat_str, 318 .gpl_only = true, 319 .ret_type = RET_INTEGER, 320 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 321 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 322 .arg3_type = ARG_ANYTHING, 323 }; 324 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */ 325 326 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src, 327 u32, size) 328 { 329 /* 330 * Ensure we're in user context which is safe for the helper to 331 * run. This helper has no business in a kthread. 332 * 333 * access_ok() should prevent writing to non-user memory, but in 334 * some situations (nommu, temporary switch, etc) access_ok() does 335 * not provide enough validation, hence the check on KERNEL_DS. 336 * 337 * nmi_uaccess_okay() ensures the probe is not run in an interim 338 * state, when the task or mm are switched. This is specifically 339 * required to prevent the use of temporary mm. 340 */ 341 342 if (unlikely(in_interrupt() || 343 current->flags & (PF_KTHREAD | PF_EXITING))) 344 return -EPERM; 345 if (unlikely(!nmi_uaccess_okay())) 346 return -EPERM; 347 348 return copy_to_user_nofault(unsafe_ptr, src, size); 349 } 350 351 static const struct bpf_func_proto bpf_probe_write_user_proto = { 352 .func = bpf_probe_write_user, 353 .gpl_only = true, 354 .ret_type = RET_INTEGER, 355 .arg1_type = ARG_ANYTHING, 356 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 357 .arg3_type = ARG_CONST_SIZE, 358 }; 359 360 static const struct bpf_func_proto *bpf_get_probe_write_proto(void) 361 { 362 if (!capable(CAP_SYS_ADMIN)) 363 return NULL; 364 365 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!", 366 current->comm, task_pid_nr(current)); 367 368 return &bpf_probe_write_user_proto; 369 } 370 371 #define MAX_TRACE_PRINTK_VARARGS 3 372 #define BPF_TRACE_PRINTK_SIZE 1024 373 374 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1, 375 u64, arg2, u64, arg3) 376 { 377 u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 }; 378 struct bpf_bprintf_data data = { 379 .get_bin_args = true, 380 .get_buf = true, 381 }; 382 int ret; 383 384 ret = bpf_bprintf_prepare(fmt, fmt_size, args, 385 MAX_TRACE_PRINTK_VARARGS, &data); 386 if (ret < 0) 387 return ret; 388 389 ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args); 390 391 trace_bpf_trace_printk(data.buf); 392 393 bpf_bprintf_cleanup(&data); 394 395 return ret; 396 } 397 398 static const struct bpf_func_proto bpf_trace_printk_proto = { 399 .func = bpf_trace_printk, 400 .gpl_only = true, 401 .ret_type = RET_INTEGER, 402 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 403 .arg2_type = ARG_CONST_SIZE, 404 }; 405 406 static void __set_printk_clr_event(void) 407 { 408 /* 409 * This program might be calling bpf_trace_printk, 410 * so enable the associated bpf_trace/bpf_trace_printk event. 411 * Repeat this each time as it is possible a user has 412 * disabled bpf_trace_printk events. By loading a program 413 * calling bpf_trace_printk() however the user has expressed 414 * the intent to see such events. 415 */ 416 if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1)) 417 pr_warn_ratelimited("could not enable bpf_trace_printk events"); 418 } 419 420 const struct bpf_func_proto *bpf_get_trace_printk_proto(void) 421 { 422 __set_printk_clr_event(); 423 return &bpf_trace_printk_proto; 424 } 425 426 BPF_CALL_4(bpf_trace_vprintk, char *, fmt, u32, fmt_size, const void *, args, 427 u32, data_len) 428 { 429 struct bpf_bprintf_data data = { 430 .get_bin_args = true, 431 .get_buf = true, 432 }; 433 int ret, num_args; 434 435 if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 || 436 (data_len && !args)) 437 return -EINVAL; 438 num_args = data_len / 8; 439 440 ret = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data); 441 if (ret < 0) 442 return ret; 443 444 ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args); 445 446 trace_bpf_trace_printk(data.buf); 447 448 bpf_bprintf_cleanup(&data); 449 450 return ret; 451 } 452 453 static const struct bpf_func_proto bpf_trace_vprintk_proto = { 454 .func = bpf_trace_vprintk, 455 .gpl_only = true, 456 .ret_type = RET_INTEGER, 457 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 458 .arg2_type = ARG_CONST_SIZE, 459 .arg3_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 460 .arg4_type = ARG_CONST_SIZE_OR_ZERO, 461 }; 462 463 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void) 464 { 465 __set_printk_clr_event(); 466 return &bpf_trace_vprintk_proto; 467 } 468 469 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size, 470 const void *, args, u32, data_len) 471 { 472 struct bpf_bprintf_data data = { 473 .get_bin_args = true, 474 }; 475 int err, num_args; 476 477 if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 || 478 (data_len && !args)) 479 return -EINVAL; 480 num_args = data_len / 8; 481 482 err = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data); 483 if (err < 0) 484 return err; 485 486 seq_bprintf(m, fmt, data.bin_args); 487 488 bpf_bprintf_cleanup(&data); 489 490 return seq_has_overflowed(m) ? -EOVERFLOW : 0; 491 } 492 493 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file) 494 495 static const struct bpf_func_proto bpf_seq_printf_proto = { 496 .func = bpf_seq_printf, 497 .gpl_only = true, 498 .ret_type = RET_INTEGER, 499 .arg1_type = ARG_PTR_TO_BTF_ID, 500 .arg1_btf_id = &btf_seq_file_ids[0], 501 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 502 .arg3_type = ARG_CONST_SIZE, 503 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 504 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 505 }; 506 507 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len) 508 { 509 return seq_write(m, data, len) ? -EOVERFLOW : 0; 510 } 511 512 static const struct bpf_func_proto bpf_seq_write_proto = { 513 .func = bpf_seq_write, 514 .gpl_only = true, 515 .ret_type = RET_INTEGER, 516 .arg1_type = ARG_PTR_TO_BTF_ID, 517 .arg1_btf_id = &btf_seq_file_ids[0], 518 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 519 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 520 }; 521 522 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr, 523 u32, btf_ptr_size, u64, flags) 524 { 525 const struct btf *btf; 526 s32 btf_id; 527 int ret; 528 529 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id); 530 if (ret) 531 return ret; 532 533 return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags); 534 } 535 536 static const struct bpf_func_proto bpf_seq_printf_btf_proto = { 537 .func = bpf_seq_printf_btf, 538 .gpl_only = true, 539 .ret_type = RET_INTEGER, 540 .arg1_type = ARG_PTR_TO_BTF_ID, 541 .arg1_btf_id = &btf_seq_file_ids[0], 542 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 543 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 544 .arg4_type = ARG_ANYTHING, 545 }; 546 547 static __always_inline int 548 get_map_perf_counter(struct bpf_map *map, u64 flags, 549 u64 *value, u64 *enabled, u64 *running) 550 { 551 struct bpf_array *array = container_of(map, struct bpf_array, map); 552 unsigned int cpu = smp_processor_id(); 553 u64 index = flags & BPF_F_INDEX_MASK; 554 struct bpf_event_entry *ee; 555 556 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 557 return -EINVAL; 558 if (index == BPF_F_CURRENT_CPU) 559 index = cpu; 560 if (unlikely(index >= array->map.max_entries)) 561 return -E2BIG; 562 563 ee = READ_ONCE(array->ptrs[index]); 564 if (!ee) 565 return -ENOENT; 566 567 return perf_event_read_local(ee->event, value, enabled, running); 568 } 569 570 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags) 571 { 572 u64 value = 0; 573 int err; 574 575 err = get_map_perf_counter(map, flags, &value, NULL, NULL); 576 /* 577 * this api is ugly since we miss [-22..-2] range of valid 578 * counter values, but that's uapi 579 */ 580 if (err) 581 return err; 582 return value; 583 } 584 585 static const struct bpf_func_proto bpf_perf_event_read_proto = { 586 .func = bpf_perf_event_read, 587 .gpl_only = true, 588 .ret_type = RET_INTEGER, 589 .arg1_type = ARG_CONST_MAP_PTR, 590 .arg2_type = ARG_ANYTHING, 591 }; 592 593 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags, 594 struct bpf_perf_event_value *, buf, u32, size) 595 { 596 int err = -EINVAL; 597 598 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 599 goto clear; 600 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled, 601 &buf->running); 602 if (unlikely(err)) 603 goto clear; 604 return 0; 605 clear: 606 memset(buf, 0, size); 607 return err; 608 } 609 610 static const struct bpf_func_proto bpf_perf_event_read_value_proto = { 611 .func = bpf_perf_event_read_value, 612 .gpl_only = true, 613 .ret_type = RET_INTEGER, 614 .arg1_type = ARG_CONST_MAP_PTR, 615 .arg2_type = ARG_ANYTHING, 616 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 617 .arg4_type = ARG_CONST_SIZE, 618 }; 619 620 static __always_inline u64 621 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map, 622 u64 flags, struct perf_sample_data *sd) 623 { 624 struct bpf_array *array = container_of(map, struct bpf_array, map); 625 unsigned int cpu = smp_processor_id(); 626 u64 index = flags & BPF_F_INDEX_MASK; 627 struct bpf_event_entry *ee; 628 struct perf_event *event; 629 630 if (index == BPF_F_CURRENT_CPU) 631 index = cpu; 632 if (unlikely(index >= array->map.max_entries)) 633 return -E2BIG; 634 635 ee = READ_ONCE(array->ptrs[index]); 636 if (!ee) 637 return -ENOENT; 638 639 event = ee->event; 640 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE || 641 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT)) 642 return -EINVAL; 643 644 if (unlikely(event->oncpu != cpu)) 645 return -EOPNOTSUPP; 646 647 return perf_event_output(event, sd, regs); 648 } 649 650 /* 651 * Support executing tracepoints in normal, irq, and nmi context that each call 652 * bpf_perf_event_output 653 */ 654 struct bpf_trace_sample_data { 655 struct perf_sample_data sds[3]; 656 }; 657 658 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds); 659 static DEFINE_PER_CPU(int, bpf_trace_nest_level); 660 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map, 661 u64, flags, void *, data, u64, size) 662 { 663 struct bpf_trace_sample_data *sds; 664 struct perf_raw_record raw = { 665 .frag = { 666 .size = size, 667 .data = data, 668 }, 669 }; 670 struct perf_sample_data *sd; 671 int nest_level, err; 672 673 preempt_disable(); 674 sds = this_cpu_ptr(&bpf_trace_sds); 675 nest_level = this_cpu_inc_return(bpf_trace_nest_level); 676 677 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) { 678 err = -EBUSY; 679 goto out; 680 } 681 682 sd = &sds->sds[nest_level - 1]; 683 684 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) { 685 err = -EINVAL; 686 goto out; 687 } 688 689 perf_sample_data_init(sd, 0, 0); 690 perf_sample_save_raw_data(sd, &raw); 691 692 err = __bpf_perf_event_output(regs, map, flags, sd); 693 out: 694 this_cpu_dec(bpf_trace_nest_level); 695 preempt_enable(); 696 return err; 697 } 698 699 static const struct bpf_func_proto bpf_perf_event_output_proto = { 700 .func = bpf_perf_event_output, 701 .gpl_only = true, 702 .ret_type = RET_INTEGER, 703 .arg1_type = ARG_PTR_TO_CTX, 704 .arg2_type = ARG_CONST_MAP_PTR, 705 .arg3_type = ARG_ANYTHING, 706 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 707 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 708 }; 709 710 static DEFINE_PER_CPU(int, bpf_event_output_nest_level); 711 struct bpf_nested_pt_regs { 712 struct pt_regs regs[3]; 713 }; 714 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs); 715 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds); 716 717 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 718 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) 719 { 720 struct perf_raw_frag frag = { 721 .copy = ctx_copy, 722 .size = ctx_size, 723 .data = ctx, 724 }; 725 struct perf_raw_record raw = { 726 .frag = { 727 { 728 .next = ctx_size ? &frag : NULL, 729 }, 730 .size = meta_size, 731 .data = meta, 732 }, 733 }; 734 struct perf_sample_data *sd; 735 struct pt_regs *regs; 736 int nest_level; 737 u64 ret; 738 739 preempt_disable(); 740 nest_level = this_cpu_inc_return(bpf_event_output_nest_level); 741 742 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) { 743 ret = -EBUSY; 744 goto out; 745 } 746 sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]); 747 regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]); 748 749 perf_fetch_caller_regs(regs); 750 perf_sample_data_init(sd, 0, 0); 751 perf_sample_save_raw_data(sd, &raw); 752 753 ret = __bpf_perf_event_output(regs, map, flags, sd); 754 out: 755 this_cpu_dec(bpf_event_output_nest_level); 756 preempt_enable(); 757 return ret; 758 } 759 760 BPF_CALL_0(bpf_get_current_task) 761 { 762 return (long) current; 763 } 764 765 const struct bpf_func_proto bpf_get_current_task_proto = { 766 .func = bpf_get_current_task, 767 .gpl_only = true, 768 .ret_type = RET_INTEGER, 769 }; 770 771 BPF_CALL_0(bpf_get_current_task_btf) 772 { 773 return (unsigned long) current; 774 } 775 776 const struct bpf_func_proto bpf_get_current_task_btf_proto = { 777 .func = bpf_get_current_task_btf, 778 .gpl_only = true, 779 .ret_type = RET_PTR_TO_BTF_ID_TRUSTED, 780 .ret_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], 781 }; 782 783 BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task) 784 { 785 return (unsigned long) task_pt_regs(task); 786 } 787 788 BTF_ID_LIST(bpf_task_pt_regs_ids) 789 BTF_ID(struct, pt_regs) 790 791 const struct bpf_func_proto bpf_task_pt_regs_proto = { 792 .func = bpf_task_pt_regs, 793 .gpl_only = true, 794 .arg1_type = ARG_PTR_TO_BTF_ID, 795 .arg1_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], 796 .ret_type = RET_PTR_TO_BTF_ID, 797 .ret_btf_id = &bpf_task_pt_regs_ids[0], 798 }; 799 800 struct send_signal_irq_work { 801 struct irq_work irq_work; 802 struct task_struct *task; 803 u32 sig; 804 enum pid_type type; 805 }; 806 807 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work); 808 809 static void do_bpf_send_signal(struct irq_work *entry) 810 { 811 struct send_signal_irq_work *work; 812 813 work = container_of(entry, struct send_signal_irq_work, irq_work); 814 group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type); 815 put_task_struct(work->task); 816 } 817 818 static int bpf_send_signal_common(u32 sig, enum pid_type type) 819 { 820 struct send_signal_irq_work *work = NULL; 821 822 /* Similar to bpf_probe_write_user, task needs to be 823 * in a sound condition and kernel memory access be 824 * permitted in order to send signal to the current 825 * task. 826 */ 827 if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING))) 828 return -EPERM; 829 if (unlikely(!nmi_uaccess_okay())) 830 return -EPERM; 831 /* Task should not be pid=1 to avoid kernel panic. */ 832 if (unlikely(is_global_init(current))) 833 return -EPERM; 834 835 if (irqs_disabled()) { 836 /* Do an early check on signal validity. Otherwise, 837 * the error is lost in deferred irq_work. 838 */ 839 if (unlikely(!valid_signal(sig))) 840 return -EINVAL; 841 842 work = this_cpu_ptr(&send_signal_work); 843 if (irq_work_is_busy(&work->irq_work)) 844 return -EBUSY; 845 846 /* Add the current task, which is the target of sending signal, 847 * to the irq_work. The current task may change when queued 848 * irq works get executed. 849 */ 850 work->task = get_task_struct(current); 851 work->sig = sig; 852 work->type = type; 853 irq_work_queue(&work->irq_work); 854 return 0; 855 } 856 857 return group_send_sig_info(sig, SEND_SIG_PRIV, current, type); 858 } 859 860 BPF_CALL_1(bpf_send_signal, u32, sig) 861 { 862 return bpf_send_signal_common(sig, PIDTYPE_TGID); 863 } 864 865 static const struct bpf_func_proto bpf_send_signal_proto = { 866 .func = bpf_send_signal, 867 .gpl_only = false, 868 .ret_type = RET_INTEGER, 869 .arg1_type = ARG_ANYTHING, 870 }; 871 872 BPF_CALL_1(bpf_send_signal_thread, u32, sig) 873 { 874 return bpf_send_signal_common(sig, PIDTYPE_PID); 875 } 876 877 static const struct bpf_func_proto bpf_send_signal_thread_proto = { 878 .func = bpf_send_signal_thread, 879 .gpl_only = false, 880 .ret_type = RET_INTEGER, 881 .arg1_type = ARG_ANYTHING, 882 }; 883 884 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz) 885 { 886 struct path copy; 887 long len; 888 char *p; 889 890 if (!sz) 891 return 0; 892 893 /* 894 * The path pointer is verified as trusted and safe to use, 895 * but let's double check it's valid anyway to workaround 896 * potentially broken verifier. 897 */ 898 len = copy_from_kernel_nofault(©, path, sizeof(*path)); 899 if (len < 0) 900 return len; 901 902 p = d_path(©, buf, sz); 903 if (IS_ERR(p)) { 904 len = PTR_ERR(p); 905 } else { 906 len = buf + sz - p; 907 memmove(buf, p, len); 908 } 909 910 return len; 911 } 912 913 BTF_SET_START(btf_allowlist_d_path) 914 #ifdef CONFIG_SECURITY 915 BTF_ID(func, security_file_permission) 916 BTF_ID(func, security_inode_getattr) 917 BTF_ID(func, security_file_open) 918 #endif 919 #ifdef CONFIG_SECURITY_PATH 920 BTF_ID(func, security_path_truncate) 921 #endif 922 BTF_ID(func, vfs_truncate) 923 BTF_ID(func, vfs_fallocate) 924 BTF_ID(func, dentry_open) 925 BTF_ID(func, vfs_getattr) 926 BTF_ID(func, filp_close) 927 BTF_SET_END(btf_allowlist_d_path) 928 929 static bool bpf_d_path_allowed(const struct bpf_prog *prog) 930 { 931 if (prog->type == BPF_PROG_TYPE_TRACING && 932 prog->expected_attach_type == BPF_TRACE_ITER) 933 return true; 934 935 if (prog->type == BPF_PROG_TYPE_LSM) 936 return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id); 937 938 return btf_id_set_contains(&btf_allowlist_d_path, 939 prog->aux->attach_btf_id); 940 } 941 942 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path) 943 944 static const struct bpf_func_proto bpf_d_path_proto = { 945 .func = bpf_d_path, 946 .gpl_only = false, 947 .ret_type = RET_INTEGER, 948 .arg1_type = ARG_PTR_TO_BTF_ID, 949 .arg1_btf_id = &bpf_d_path_btf_ids[0], 950 .arg2_type = ARG_PTR_TO_MEM, 951 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 952 .allowed = bpf_d_path_allowed, 953 }; 954 955 #define BTF_F_ALL (BTF_F_COMPACT | BTF_F_NONAME | \ 956 BTF_F_PTR_RAW | BTF_F_ZERO) 957 958 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size, 959 u64 flags, const struct btf **btf, 960 s32 *btf_id) 961 { 962 const struct btf_type *t; 963 964 if (unlikely(flags & ~(BTF_F_ALL))) 965 return -EINVAL; 966 967 if (btf_ptr_size != sizeof(struct btf_ptr)) 968 return -EINVAL; 969 970 *btf = bpf_get_btf_vmlinux(); 971 972 if (IS_ERR_OR_NULL(*btf)) 973 return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL; 974 975 if (ptr->type_id > 0) 976 *btf_id = ptr->type_id; 977 else 978 return -EINVAL; 979 980 if (*btf_id > 0) 981 t = btf_type_by_id(*btf, *btf_id); 982 if (*btf_id <= 0 || !t) 983 return -ENOENT; 984 985 return 0; 986 } 987 988 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr, 989 u32, btf_ptr_size, u64, flags) 990 { 991 const struct btf *btf; 992 s32 btf_id; 993 int ret; 994 995 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id); 996 if (ret) 997 return ret; 998 999 return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size, 1000 flags); 1001 } 1002 1003 const struct bpf_func_proto bpf_snprintf_btf_proto = { 1004 .func = bpf_snprintf_btf, 1005 .gpl_only = false, 1006 .ret_type = RET_INTEGER, 1007 .arg1_type = ARG_PTR_TO_MEM, 1008 .arg2_type = ARG_CONST_SIZE, 1009 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1010 .arg4_type = ARG_CONST_SIZE, 1011 .arg5_type = ARG_ANYTHING, 1012 }; 1013 1014 BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx) 1015 { 1016 /* This helper call is inlined by verifier. */ 1017 return ((u64 *)ctx)[-2]; 1018 } 1019 1020 static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = { 1021 .func = bpf_get_func_ip_tracing, 1022 .gpl_only = true, 1023 .ret_type = RET_INTEGER, 1024 .arg1_type = ARG_PTR_TO_CTX, 1025 }; 1026 1027 #ifdef CONFIG_X86_KERNEL_IBT 1028 static unsigned long get_entry_ip(unsigned long fentry_ip) 1029 { 1030 u32 instr; 1031 1032 /* We want to be extra safe in case entry ip is on the page edge, 1033 * but otherwise we need to avoid get_kernel_nofault()'s overhead. 1034 */ 1035 if ((fentry_ip & ~PAGE_MASK) < ENDBR_INSN_SIZE) { 1036 if (get_kernel_nofault(instr, (u32 *)(fentry_ip - ENDBR_INSN_SIZE))) 1037 return fentry_ip; 1038 } else { 1039 instr = *(u32 *)(fentry_ip - ENDBR_INSN_SIZE); 1040 } 1041 if (is_endbr(instr)) 1042 fentry_ip -= ENDBR_INSN_SIZE; 1043 return fentry_ip; 1044 } 1045 #else 1046 #define get_entry_ip(fentry_ip) fentry_ip 1047 #endif 1048 1049 BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs) 1050 { 1051 struct bpf_trace_run_ctx *run_ctx __maybe_unused; 1052 struct kprobe *kp; 1053 1054 #ifdef CONFIG_UPROBES 1055 run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx); 1056 if (run_ctx->is_uprobe) 1057 return ((struct uprobe_dispatch_data *)current->utask->vaddr)->bp_addr; 1058 #endif 1059 1060 kp = kprobe_running(); 1061 1062 if (!kp || !(kp->flags & KPROBE_FLAG_ON_FUNC_ENTRY)) 1063 return 0; 1064 1065 return get_entry_ip((uintptr_t)kp->addr); 1066 } 1067 1068 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = { 1069 .func = bpf_get_func_ip_kprobe, 1070 .gpl_only = true, 1071 .ret_type = RET_INTEGER, 1072 .arg1_type = ARG_PTR_TO_CTX, 1073 }; 1074 1075 BPF_CALL_1(bpf_get_func_ip_kprobe_multi, struct pt_regs *, regs) 1076 { 1077 return bpf_kprobe_multi_entry_ip(current->bpf_ctx); 1078 } 1079 1080 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe_multi = { 1081 .func = bpf_get_func_ip_kprobe_multi, 1082 .gpl_only = false, 1083 .ret_type = RET_INTEGER, 1084 .arg1_type = ARG_PTR_TO_CTX, 1085 }; 1086 1087 BPF_CALL_1(bpf_get_attach_cookie_kprobe_multi, struct pt_regs *, regs) 1088 { 1089 return bpf_kprobe_multi_cookie(current->bpf_ctx); 1090 } 1091 1092 static const struct bpf_func_proto bpf_get_attach_cookie_proto_kmulti = { 1093 .func = bpf_get_attach_cookie_kprobe_multi, 1094 .gpl_only = false, 1095 .ret_type = RET_INTEGER, 1096 .arg1_type = ARG_PTR_TO_CTX, 1097 }; 1098 1099 BPF_CALL_1(bpf_get_func_ip_uprobe_multi, struct pt_regs *, regs) 1100 { 1101 return bpf_uprobe_multi_entry_ip(current->bpf_ctx); 1102 } 1103 1104 static const struct bpf_func_proto bpf_get_func_ip_proto_uprobe_multi = { 1105 .func = bpf_get_func_ip_uprobe_multi, 1106 .gpl_only = false, 1107 .ret_type = RET_INTEGER, 1108 .arg1_type = ARG_PTR_TO_CTX, 1109 }; 1110 1111 BPF_CALL_1(bpf_get_attach_cookie_uprobe_multi, struct pt_regs *, regs) 1112 { 1113 return bpf_uprobe_multi_cookie(current->bpf_ctx); 1114 } 1115 1116 static const struct bpf_func_proto bpf_get_attach_cookie_proto_umulti = { 1117 .func = bpf_get_attach_cookie_uprobe_multi, 1118 .gpl_only = false, 1119 .ret_type = RET_INTEGER, 1120 .arg1_type = ARG_PTR_TO_CTX, 1121 }; 1122 1123 BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx) 1124 { 1125 struct bpf_trace_run_ctx *run_ctx; 1126 1127 run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx); 1128 return run_ctx->bpf_cookie; 1129 } 1130 1131 static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = { 1132 .func = bpf_get_attach_cookie_trace, 1133 .gpl_only = false, 1134 .ret_type = RET_INTEGER, 1135 .arg1_type = ARG_PTR_TO_CTX, 1136 }; 1137 1138 BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx) 1139 { 1140 return ctx->event->bpf_cookie; 1141 } 1142 1143 static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = { 1144 .func = bpf_get_attach_cookie_pe, 1145 .gpl_only = false, 1146 .ret_type = RET_INTEGER, 1147 .arg1_type = ARG_PTR_TO_CTX, 1148 }; 1149 1150 BPF_CALL_1(bpf_get_attach_cookie_tracing, void *, ctx) 1151 { 1152 struct bpf_trace_run_ctx *run_ctx; 1153 1154 run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx); 1155 return run_ctx->bpf_cookie; 1156 } 1157 1158 static const struct bpf_func_proto bpf_get_attach_cookie_proto_tracing = { 1159 .func = bpf_get_attach_cookie_tracing, 1160 .gpl_only = false, 1161 .ret_type = RET_INTEGER, 1162 .arg1_type = ARG_PTR_TO_CTX, 1163 }; 1164 1165 BPF_CALL_3(bpf_get_branch_snapshot, void *, buf, u32, size, u64, flags) 1166 { 1167 static const u32 br_entry_size = sizeof(struct perf_branch_entry); 1168 u32 entry_cnt = size / br_entry_size; 1169 1170 entry_cnt = static_call(perf_snapshot_branch_stack)(buf, entry_cnt); 1171 1172 if (unlikely(flags)) 1173 return -EINVAL; 1174 1175 if (!entry_cnt) 1176 return -ENOENT; 1177 1178 return entry_cnt * br_entry_size; 1179 } 1180 1181 static const struct bpf_func_proto bpf_get_branch_snapshot_proto = { 1182 .func = bpf_get_branch_snapshot, 1183 .gpl_only = true, 1184 .ret_type = RET_INTEGER, 1185 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1186 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1187 }; 1188 1189 BPF_CALL_3(get_func_arg, void *, ctx, u32, n, u64 *, value) 1190 { 1191 /* This helper call is inlined by verifier. */ 1192 u64 nr_args = ((u64 *)ctx)[-1]; 1193 1194 if ((u64) n >= nr_args) 1195 return -EINVAL; 1196 *value = ((u64 *)ctx)[n]; 1197 return 0; 1198 } 1199 1200 static const struct bpf_func_proto bpf_get_func_arg_proto = { 1201 .func = get_func_arg, 1202 .ret_type = RET_INTEGER, 1203 .arg1_type = ARG_PTR_TO_CTX, 1204 .arg2_type = ARG_ANYTHING, 1205 .arg3_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_ALIGNED, 1206 .arg3_size = sizeof(u64), 1207 }; 1208 1209 BPF_CALL_2(get_func_ret, void *, ctx, u64 *, value) 1210 { 1211 /* This helper call is inlined by verifier. */ 1212 u64 nr_args = ((u64 *)ctx)[-1]; 1213 1214 *value = ((u64 *)ctx)[nr_args]; 1215 return 0; 1216 } 1217 1218 static const struct bpf_func_proto bpf_get_func_ret_proto = { 1219 .func = get_func_ret, 1220 .ret_type = RET_INTEGER, 1221 .arg1_type = ARG_PTR_TO_CTX, 1222 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_ALIGNED, 1223 .arg2_size = sizeof(u64), 1224 }; 1225 1226 BPF_CALL_1(get_func_arg_cnt, void *, ctx) 1227 { 1228 /* This helper call is inlined by verifier. */ 1229 return ((u64 *)ctx)[-1]; 1230 } 1231 1232 static const struct bpf_func_proto bpf_get_func_arg_cnt_proto = { 1233 .func = get_func_arg_cnt, 1234 .ret_type = RET_INTEGER, 1235 .arg1_type = ARG_PTR_TO_CTX, 1236 }; 1237 1238 #ifdef CONFIG_KEYS 1239 __bpf_kfunc_start_defs(); 1240 1241 /** 1242 * bpf_lookup_user_key - lookup a key by its serial 1243 * @serial: key handle serial number 1244 * @flags: lookup-specific flags 1245 * 1246 * Search a key with a given *serial* and the provided *flags*. 1247 * If found, increment the reference count of the key by one, and 1248 * return it in the bpf_key structure. 1249 * 1250 * The bpf_key structure must be passed to bpf_key_put() when done 1251 * with it, so that the key reference count is decremented and the 1252 * bpf_key structure is freed. 1253 * 1254 * Permission checks are deferred to the time the key is used by 1255 * one of the available key-specific kfuncs. 1256 * 1257 * Set *flags* with KEY_LOOKUP_CREATE, to attempt creating a requested 1258 * special keyring (e.g. session keyring), if it doesn't yet exist. 1259 * Set *flags* with KEY_LOOKUP_PARTIAL, to lookup a key without waiting 1260 * for the key construction, and to retrieve uninstantiated keys (keys 1261 * without data attached to them). 1262 * 1263 * Return: a bpf_key pointer with a valid key pointer if the key is found, a 1264 * NULL pointer otherwise. 1265 */ 1266 __bpf_kfunc struct bpf_key *bpf_lookup_user_key(u32 serial, u64 flags) 1267 { 1268 key_ref_t key_ref; 1269 struct bpf_key *bkey; 1270 1271 if (flags & ~KEY_LOOKUP_ALL) 1272 return NULL; 1273 1274 /* 1275 * Permission check is deferred until the key is used, as the 1276 * intent of the caller is unknown here. 1277 */ 1278 key_ref = lookup_user_key(serial, flags, KEY_DEFER_PERM_CHECK); 1279 if (IS_ERR(key_ref)) 1280 return NULL; 1281 1282 bkey = kmalloc(sizeof(*bkey), GFP_KERNEL); 1283 if (!bkey) { 1284 key_put(key_ref_to_ptr(key_ref)); 1285 return NULL; 1286 } 1287 1288 bkey->key = key_ref_to_ptr(key_ref); 1289 bkey->has_ref = true; 1290 1291 return bkey; 1292 } 1293 1294 /** 1295 * bpf_lookup_system_key - lookup a key by a system-defined ID 1296 * @id: key ID 1297 * 1298 * Obtain a bpf_key structure with a key pointer set to the passed key ID. 1299 * The key pointer is marked as invalid, to prevent bpf_key_put() from 1300 * attempting to decrement the key reference count on that pointer. The key 1301 * pointer set in such way is currently understood only by 1302 * verify_pkcs7_signature(). 1303 * 1304 * Set *id* to one of the values defined in include/linux/verification.h: 1305 * 0 for the primary keyring (immutable keyring of system keys); 1306 * VERIFY_USE_SECONDARY_KEYRING for both the primary and secondary keyring 1307 * (where keys can be added only if they are vouched for by existing keys 1308 * in those keyrings); VERIFY_USE_PLATFORM_KEYRING for the platform 1309 * keyring (primarily used by the integrity subsystem to verify a kexec'ed 1310 * kerned image and, possibly, the initramfs signature). 1311 * 1312 * Return: a bpf_key pointer with an invalid key pointer set from the 1313 * pre-determined ID on success, a NULL pointer otherwise 1314 */ 1315 __bpf_kfunc struct bpf_key *bpf_lookup_system_key(u64 id) 1316 { 1317 struct bpf_key *bkey; 1318 1319 if (system_keyring_id_check(id) < 0) 1320 return NULL; 1321 1322 bkey = kmalloc(sizeof(*bkey), GFP_ATOMIC); 1323 if (!bkey) 1324 return NULL; 1325 1326 bkey->key = (struct key *)(unsigned long)id; 1327 bkey->has_ref = false; 1328 1329 return bkey; 1330 } 1331 1332 /** 1333 * bpf_key_put - decrement key reference count if key is valid and free bpf_key 1334 * @bkey: bpf_key structure 1335 * 1336 * Decrement the reference count of the key inside *bkey*, if the pointer 1337 * is valid, and free *bkey*. 1338 */ 1339 __bpf_kfunc void bpf_key_put(struct bpf_key *bkey) 1340 { 1341 if (bkey->has_ref) 1342 key_put(bkey->key); 1343 1344 kfree(bkey); 1345 } 1346 1347 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION 1348 /** 1349 * bpf_verify_pkcs7_signature - verify a PKCS#7 signature 1350 * @data_p: data to verify 1351 * @sig_p: signature of the data 1352 * @trusted_keyring: keyring with keys trusted for signature verification 1353 * 1354 * Verify the PKCS#7 signature *sig_ptr* against the supplied *data_ptr* 1355 * with keys in a keyring referenced by *trusted_keyring*. 1356 * 1357 * Return: 0 on success, a negative value on error. 1358 */ 1359 __bpf_kfunc int bpf_verify_pkcs7_signature(struct bpf_dynptr *data_p, 1360 struct bpf_dynptr *sig_p, 1361 struct bpf_key *trusted_keyring) 1362 { 1363 struct bpf_dynptr_kern *data_ptr = (struct bpf_dynptr_kern *)data_p; 1364 struct bpf_dynptr_kern *sig_ptr = (struct bpf_dynptr_kern *)sig_p; 1365 const void *data, *sig; 1366 u32 data_len, sig_len; 1367 int ret; 1368 1369 if (trusted_keyring->has_ref) { 1370 /* 1371 * Do the permission check deferred in bpf_lookup_user_key(). 1372 * See bpf_lookup_user_key() for more details. 1373 * 1374 * A call to key_task_permission() here would be redundant, as 1375 * it is already done by keyring_search() called by 1376 * find_asymmetric_key(). 1377 */ 1378 ret = key_validate(trusted_keyring->key); 1379 if (ret < 0) 1380 return ret; 1381 } 1382 1383 data_len = __bpf_dynptr_size(data_ptr); 1384 data = __bpf_dynptr_data(data_ptr, data_len); 1385 sig_len = __bpf_dynptr_size(sig_ptr); 1386 sig = __bpf_dynptr_data(sig_ptr, sig_len); 1387 1388 return verify_pkcs7_signature(data, data_len, sig, sig_len, 1389 trusted_keyring->key, 1390 VERIFYING_UNSPECIFIED_SIGNATURE, NULL, 1391 NULL); 1392 } 1393 #endif /* CONFIG_SYSTEM_DATA_VERIFICATION */ 1394 1395 __bpf_kfunc_end_defs(); 1396 1397 BTF_KFUNCS_START(key_sig_kfunc_set) 1398 BTF_ID_FLAGS(func, bpf_lookup_user_key, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE) 1399 BTF_ID_FLAGS(func, bpf_lookup_system_key, KF_ACQUIRE | KF_RET_NULL) 1400 BTF_ID_FLAGS(func, bpf_key_put, KF_RELEASE) 1401 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION 1402 BTF_ID_FLAGS(func, bpf_verify_pkcs7_signature, KF_SLEEPABLE) 1403 #endif 1404 BTF_KFUNCS_END(key_sig_kfunc_set) 1405 1406 static const struct btf_kfunc_id_set bpf_key_sig_kfunc_set = { 1407 .owner = THIS_MODULE, 1408 .set = &key_sig_kfunc_set, 1409 }; 1410 1411 static int __init bpf_key_sig_kfuncs_init(void) 1412 { 1413 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 1414 &bpf_key_sig_kfunc_set); 1415 } 1416 1417 late_initcall(bpf_key_sig_kfuncs_init); 1418 #endif /* CONFIG_KEYS */ 1419 1420 static const struct bpf_func_proto * 1421 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1422 { 1423 switch (func_id) { 1424 case BPF_FUNC_map_lookup_elem: 1425 return &bpf_map_lookup_elem_proto; 1426 case BPF_FUNC_map_update_elem: 1427 return &bpf_map_update_elem_proto; 1428 case BPF_FUNC_map_delete_elem: 1429 return &bpf_map_delete_elem_proto; 1430 case BPF_FUNC_map_push_elem: 1431 return &bpf_map_push_elem_proto; 1432 case BPF_FUNC_map_pop_elem: 1433 return &bpf_map_pop_elem_proto; 1434 case BPF_FUNC_map_peek_elem: 1435 return &bpf_map_peek_elem_proto; 1436 case BPF_FUNC_map_lookup_percpu_elem: 1437 return &bpf_map_lookup_percpu_elem_proto; 1438 case BPF_FUNC_ktime_get_ns: 1439 return &bpf_ktime_get_ns_proto; 1440 case BPF_FUNC_ktime_get_boot_ns: 1441 return &bpf_ktime_get_boot_ns_proto; 1442 case BPF_FUNC_tail_call: 1443 return &bpf_tail_call_proto; 1444 case BPF_FUNC_get_current_task: 1445 return &bpf_get_current_task_proto; 1446 case BPF_FUNC_get_current_task_btf: 1447 return &bpf_get_current_task_btf_proto; 1448 case BPF_FUNC_task_pt_regs: 1449 return &bpf_task_pt_regs_proto; 1450 case BPF_FUNC_get_current_uid_gid: 1451 return &bpf_get_current_uid_gid_proto; 1452 case BPF_FUNC_get_current_comm: 1453 return &bpf_get_current_comm_proto; 1454 case BPF_FUNC_trace_printk: 1455 return bpf_get_trace_printk_proto(); 1456 case BPF_FUNC_get_smp_processor_id: 1457 return &bpf_get_smp_processor_id_proto; 1458 case BPF_FUNC_get_numa_node_id: 1459 return &bpf_get_numa_node_id_proto; 1460 case BPF_FUNC_perf_event_read: 1461 return &bpf_perf_event_read_proto; 1462 case BPF_FUNC_get_prandom_u32: 1463 return &bpf_get_prandom_u32_proto; 1464 case BPF_FUNC_probe_write_user: 1465 return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ? 1466 NULL : bpf_get_probe_write_proto(); 1467 case BPF_FUNC_probe_read_user: 1468 return &bpf_probe_read_user_proto; 1469 case BPF_FUNC_probe_read_kernel: 1470 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1471 NULL : &bpf_probe_read_kernel_proto; 1472 case BPF_FUNC_probe_read_user_str: 1473 return &bpf_probe_read_user_str_proto; 1474 case BPF_FUNC_probe_read_kernel_str: 1475 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1476 NULL : &bpf_probe_read_kernel_str_proto; 1477 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 1478 case BPF_FUNC_probe_read: 1479 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1480 NULL : &bpf_probe_read_compat_proto; 1481 case BPF_FUNC_probe_read_str: 1482 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1483 NULL : &bpf_probe_read_compat_str_proto; 1484 #endif 1485 #ifdef CONFIG_CGROUPS 1486 case BPF_FUNC_cgrp_storage_get: 1487 return &bpf_cgrp_storage_get_proto; 1488 case BPF_FUNC_cgrp_storage_delete: 1489 return &bpf_cgrp_storage_delete_proto; 1490 case BPF_FUNC_current_task_under_cgroup: 1491 return &bpf_current_task_under_cgroup_proto; 1492 #endif 1493 case BPF_FUNC_send_signal: 1494 return &bpf_send_signal_proto; 1495 case BPF_FUNC_send_signal_thread: 1496 return &bpf_send_signal_thread_proto; 1497 case BPF_FUNC_perf_event_read_value: 1498 return &bpf_perf_event_read_value_proto; 1499 case BPF_FUNC_ringbuf_output: 1500 return &bpf_ringbuf_output_proto; 1501 case BPF_FUNC_ringbuf_reserve: 1502 return &bpf_ringbuf_reserve_proto; 1503 case BPF_FUNC_ringbuf_submit: 1504 return &bpf_ringbuf_submit_proto; 1505 case BPF_FUNC_ringbuf_discard: 1506 return &bpf_ringbuf_discard_proto; 1507 case BPF_FUNC_ringbuf_query: 1508 return &bpf_ringbuf_query_proto; 1509 case BPF_FUNC_jiffies64: 1510 return &bpf_jiffies64_proto; 1511 case BPF_FUNC_get_task_stack: 1512 return prog->sleepable ? &bpf_get_task_stack_sleepable_proto 1513 : &bpf_get_task_stack_proto; 1514 case BPF_FUNC_copy_from_user: 1515 return &bpf_copy_from_user_proto; 1516 case BPF_FUNC_copy_from_user_task: 1517 return &bpf_copy_from_user_task_proto; 1518 case BPF_FUNC_snprintf_btf: 1519 return &bpf_snprintf_btf_proto; 1520 case BPF_FUNC_per_cpu_ptr: 1521 return &bpf_per_cpu_ptr_proto; 1522 case BPF_FUNC_this_cpu_ptr: 1523 return &bpf_this_cpu_ptr_proto; 1524 case BPF_FUNC_task_storage_get: 1525 if (bpf_prog_check_recur(prog)) 1526 return &bpf_task_storage_get_recur_proto; 1527 return &bpf_task_storage_get_proto; 1528 case BPF_FUNC_task_storage_delete: 1529 if (bpf_prog_check_recur(prog)) 1530 return &bpf_task_storage_delete_recur_proto; 1531 return &bpf_task_storage_delete_proto; 1532 case BPF_FUNC_for_each_map_elem: 1533 return &bpf_for_each_map_elem_proto; 1534 case BPF_FUNC_snprintf: 1535 return &bpf_snprintf_proto; 1536 case BPF_FUNC_get_func_ip: 1537 return &bpf_get_func_ip_proto_tracing; 1538 case BPF_FUNC_get_branch_snapshot: 1539 return &bpf_get_branch_snapshot_proto; 1540 case BPF_FUNC_find_vma: 1541 return &bpf_find_vma_proto; 1542 case BPF_FUNC_trace_vprintk: 1543 return bpf_get_trace_vprintk_proto(); 1544 default: 1545 return bpf_base_func_proto(func_id, prog); 1546 } 1547 } 1548 1549 static bool is_kprobe_multi(const struct bpf_prog *prog) 1550 { 1551 return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI || 1552 prog->expected_attach_type == BPF_TRACE_KPROBE_SESSION; 1553 } 1554 1555 static inline bool is_kprobe_session(const struct bpf_prog *prog) 1556 { 1557 return prog->expected_attach_type == BPF_TRACE_KPROBE_SESSION; 1558 } 1559 1560 static const struct bpf_func_proto * 1561 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1562 { 1563 switch (func_id) { 1564 case BPF_FUNC_perf_event_output: 1565 return &bpf_perf_event_output_proto; 1566 case BPF_FUNC_get_stackid: 1567 return &bpf_get_stackid_proto; 1568 case BPF_FUNC_get_stack: 1569 return prog->sleepable ? &bpf_get_stack_sleepable_proto : &bpf_get_stack_proto; 1570 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 1571 case BPF_FUNC_override_return: 1572 return &bpf_override_return_proto; 1573 #endif 1574 case BPF_FUNC_get_func_ip: 1575 if (is_kprobe_multi(prog)) 1576 return &bpf_get_func_ip_proto_kprobe_multi; 1577 if (prog->expected_attach_type == BPF_TRACE_UPROBE_MULTI) 1578 return &bpf_get_func_ip_proto_uprobe_multi; 1579 return &bpf_get_func_ip_proto_kprobe; 1580 case BPF_FUNC_get_attach_cookie: 1581 if (is_kprobe_multi(prog)) 1582 return &bpf_get_attach_cookie_proto_kmulti; 1583 if (prog->expected_attach_type == BPF_TRACE_UPROBE_MULTI) 1584 return &bpf_get_attach_cookie_proto_umulti; 1585 return &bpf_get_attach_cookie_proto_trace; 1586 default: 1587 return bpf_tracing_func_proto(func_id, prog); 1588 } 1589 } 1590 1591 /* bpf+kprobe programs can access fields of 'struct pt_regs' */ 1592 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1593 const struct bpf_prog *prog, 1594 struct bpf_insn_access_aux *info) 1595 { 1596 if (off < 0 || off >= sizeof(struct pt_regs)) 1597 return false; 1598 if (type != BPF_READ) 1599 return false; 1600 if (off % size != 0) 1601 return false; 1602 /* 1603 * Assertion for 32 bit to make sure last 8 byte access 1604 * (BPF_DW) to the last 4 byte member is disallowed. 1605 */ 1606 if (off + size > sizeof(struct pt_regs)) 1607 return false; 1608 1609 return true; 1610 } 1611 1612 const struct bpf_verifier_ops kprobe_verifier_ops = { 1613 .get_func_proto = kprobe_prog_func_proto, 1614 .is_valid_access = kprobe_prog_is_valid_access, 1615 }; 1616 1617 const struct bpf_prog_ops kprobe_prog_ops = { 1618 }; 1619 1620 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map, 1621 u64, flags, void *, data, u64, size) 1622 { 1623 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1624 1625 /* 1626 * r1 points to perf tracepoint buffer where first 8 bytes are hidden 1627 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it 1628 * from there and call the same bpf_perf_event_output() helper inline. 1629 */ 1630 return ____bpf_perf_event_output(regs, map, flags, data, size); 1631 } 1632 1633 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = { 1634 .func = bpf_perf_event_output_tp, 1635 .gpl_only = true, 1636 .ret_type = RET_INTEGER, 1637 .arg1_type = ARG_PTR_TO_CTX, 1638 .arg2_type = ARG_CONST_MAP_PTR, 1639 .arg3_type = ARG_ANYTHING, 1640 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1641 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1642 }; 1643 1644 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map, 1645 u64, flags) 1646 { 1647 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1648 1649 /* 1650 * Same comment as in bpf_perf_event_output_tp(), only that this time 1651 * the other helper's function body cannot be inlined due to being 1652 * external, thus we need to call raw helper function. 1653 */ 1654 return bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1655 flags, 0, 0); 1656 } 1657 1658 static const struct bpf_func_proto bpf_get_stackid_proto_tp = { 1659 .func = bpf_get_stackid_tp, 1660 .gpl_only = true, 1661 .ret_type = RET_INTEGER, 1662 .arg1_type = ARG_PTR_TO_CTX, 1663 .arg2_type = ARG_CONST_MAP_PTR, 1664 .arg3_type = ARG_ANYTHING, 1665 }; 1666 1667 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size, 1668 u64, flags) 1669 { 1670 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1671 1672 return bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1673 (unsigned long) size, flags, 0); 1674 } 1675 1676 static const struct bpf_func_proto bpf_get_stack_proto_tp = { 1677 .func = bpf_get_stack_tp, 1678 .gpl_only = true, 1679 .ret_type = RET_INTEGER, 1680 .arg1_type = ARG_PTR_TO_CTX, 1681 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1682 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1683 .arg4_type = ARG_ANYTHING, 1684 }; 1685 1686 static const struct bpf_func_proto * 1687 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1688 { 1689 switch (func_id) { 1690 case BPF_FUNC_perf_event_output: 1691 return &bpf_perf_event_output_proto_tp; 1692 case BPF_FUNC_get_stackid: 1693 return &bpf_get_stackid_proto_tp; 1694 case BPF_FUNC_get_stack: 1695 return &bpf_get_stack_proto_tp; 1696 case BPF_FUNC_get_attach_cookie: 1697 return &bpf_get_attach_cookie_proto_trace; 1698 default: 1699 return bpf_tracing_func_proto(func_id, prog); 1700 } 1701 } 1702 1703 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1704 const struct bpf_prog *prog, 1705 struct bpf_insn_access_aux *info) 1706 { 1707 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE) 1708 return false; 1709 if (type != BPF_READ) 1710 return false; 1711 if (off % size != 0) 1712 return false; 1713 1714 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64)); 1715 return true; 1716 } 1717 1718 const struct bpf_verifier_ops tracepoint_verifier_ops = { 1719 .get_func_proto = tp_prog_func_proto, 1720 .is_valid_access = tp_prog_is_valid_access, 1721 }; 1722 1723 const struct bpf_prog_ops tracepoint_prog_ops = { 1724 }; 1725 1726 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx, 1727 struct bpf_perf_event_value *, buf, u32, size) 1728 { 1729 int err = -EINVAL; 1730 1731 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 1732 goto clear; 1733 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled, 1734 &buf->running); 1735 if (unlikely(err)) 1736 goto clear; 1737 return 0; 1738 clear: 1739 memset(buf, 0, size); 1740 return err; 1741 } 1742 1743 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = { 1744 .func = bpf_perf_prog_read_value, 1745 .gpl_only = true, 1746 .ret_type = RET_INTEGER, 1747 .arg1_type = ARG_PTR_TO_CTX, 1748 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1749 .arg3_type = ARG_CONST_SIZE, 1750 }; 1751 1752 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx, 1753 void *, buf, u32, size, u64, flags) 1754 { 1755 static const u32 br_entry_size = sizeof(struct perf_branch_entry); 1756 struct perf_branch_stack *br_stack = ctx->data->br_stack; 1757 u32 to_copy; 1758 1759 if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE)) 1760 return -EINVAL; 1761 1762 if (unlikely(!(ctx->data->sample_flags & PERF_SAMPLE_BRANCH_STACK))) 1763 return -ENOENT; 1764 1765 if (unlikely(!br_stack)) 1766 return -ENOENT; 1767 1768 if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE) 1769 return br_stack->nr * br_entry_size; 1770 1771 if (!buf || (size % br_entry_size != 0)) 1772 return -EINVAL; 1773 1774 to_copy = min_t(u32, br_stack->nr * br_entry_size, size); 1775 memcpy(buf, br_stack->entries, to_copy); 1776 1777 return to_copy; 1778 } 1779 1780 static const struct bpf_func_proto bpf_read_branch_records_proto = { 1781 .func = bpf_read_branch_records, 1782 .gpl_only = true, 1783 .ret_type = RET_INTEGER, 1784 .arg1_type = ARG_PTR_TO_CTX, 1785 .arg2_type = ARG_PTR_TO_MEM_OR_NULL, 1786 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1787 .arg4_type = ARG_ANYTHING, 1788 }; 1789 1790 static const struct bpf_func_proto * 1791 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1792 { 1793 switch (func_id) { 1794 case BPF_FUNC_perf_event_output: 1795 return &bpf_perf_event_output_proto_tp; 1796 case BPF_FUNC_get_stackid: 1797 return &bpf_get_stackid_proto_pe; 1798 case BPF_FUNC_get_stack: 1799 return &bpf_get_stack_proto_pe; 1800 case BPF_FUNC_perf_prog_read_value: 1801 return &bpf_perf_prog_read_value_proto; 1802 case BPF_FUNC_read_branch_records: 1803 return &bpf_read_branch_records_proto; 1804 case BPF_FUNC_get_attach_cookie: 1805 return &bpf_get_attach_cookie_proto_pe; 1806 default: 1807 return bpf_tracing_func_proto(func_id, prog); 1808 } 1809 } 1810 1811 /* 1812 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp 1813 * to avoid potential recursive reuse issue when/if tracepoints are added 1814 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack. 1815 * 1816 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage 1817 * in normal, irq, and nmi context. 1818 */ 1819 struct bpf_raw_tp_regs { 1820 struct pt_regs regs[3]; 1821 }; 1822 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs); 1823 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level); 1824 static struct pt_regs *get_bpf_raw_tp_regs(void) 1825 { 1826 struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs); 1827 int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level); 1828 1829 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) { 1830 this_cpu_dec(bpf_raw_tp_nest_level); 1831 return ERR_PTR(-EBUSY); 1832 } 1833 1834 return &tp_regs->regs[nest_level - 1]; 1835 } 1836 1837 static void put_bpf_raw_tp_regs(void) 1838 { 1839 this_cpu_dec(bpf_raw_tp_nest_level); 1840 } 1841 1842 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args, 1843 struct bpf_map *, map, u64, flags, void *, data, u64, size) 1844 { 1845 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1846 int ret; 1847 1848 if (IS_ERR(regs)) 1849 return PTR_ERR(regs); 1850 1851 perf_fetch_caller_regs(regs); 1852 ret = ____bpf_perf_event_output(regs, map, flags, data, size); 1853 1854 put_bpf_raw_tp_regs(); 1855 return ret; 1856 } 1857 1858 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = { 1859 .func = bpf_perf_event_output_raw_tp, 1860 .gpl_only = true, 1861 .ret_type = RET_INTEGER, 1862 .arg1_type = ARG_PTR_TO_CTX, 1863 .arg2_type = ARG_CONST_MAP_PTR, 1864 .arg3_type = ARG_ANYTHING, 1865 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1866 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1867 }; 1868 1869 extern const struct bpf_func_proto bpf_skb_output_proto; 1870 extern const struct bpf_func_proto bpf_xdp_output_proto; 1871 extern const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto; 1872 1873 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args, 1874 struct bpf_map *, map, u64, flags) 1875 { 1876 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1877 int ret; 1878 1879 if (IS_ERR(regs)) 1880 return PTR_ERR(regs); 1881 1882 perf_fetch_caller_regs(regs); 1883 /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */ 1884 ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1885 flags, 0, 0); 1886 put_bpf_raw_tp_regs(); 1887 return ret; 1888 } 1889 1890 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = { 1891 .func = bpf_get_stackid_raw_tp, 1892 .gpl_only = true, 1893 .ret_type = RET_INTEGER, 1894 .arg1_type = ARG_PTR_TO_CTX, 1895 .arg2_type = ARG_CONST_MAP_PTR, 1896 .arg3_type = ARG_ANYTHING, 1897 }; 1898 1899 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args, 1900 void *, buf, u32, size, u64, flags) 1901 { 1902 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1903 int ret; 1904 1905 if (IS_ERR(regs)) 1906 return PTR_ERR(regs); 1907 1908 perf_fetch_caller_regs(regs); 1909 ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1910 (unsigned long) size, flags, 0); 1911 put_bpf_raw_tp_regs(); 1912 return ret; 1913 } 1914 1915 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = { 1916 .func = bpf_get_stack_raw_tp, 1917 .gpl_only = true, 1918 .ret_type = RET_INTEGER, 1919 .arg1_type = ARG_PTR_TO_CTX, 1920 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1921 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1922 .arg4_type = ARG_ANYTHING, 1923 }; 1924 1925 static const struct bpf_func_proto * 1926 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1927 { 1928 switch (func_id) { 1929 case BPF_FUNC_perf_event_output: 1930 return &bpf_perf_event_output_proto_raw_tp; 1931 case BPF_FUNC_get_stackid: 1932 return &bpf_get_stackid_proto_raw_tp; 1933 case BPF_FUNC_get_stack: 1934 return &bpf_get_stack_proto_raw_tp; 1935 case BPF_FUNC_get_attach_cookie: 1936 return &bpf_get_attach_cookie_proto_tracing; 1937 default: 1938 return bpf_tracing_func_proto(func_id, prog); 1939 } 1940 } 1941 1942 const struct bpf_func_proto * 1943 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1944 { 1945 const struct bpf_func_proto *fn; 1946 1947 switch (func_id) { 1948 #ifdef CONFIG_NET 1949 case BPF_FUNC_skb_output: 1950 return &bpf_skb_output_proto; 1951 case BPF_FUNC_xdp_output: 1952 return &bpf_xdp_output_proto; 1953 case BPF_FUNC_skc_to_tcp6_sock: 1954 return &bpf_skc_to_tcp6_sock_proto; 1955 case BPF_FUNC_skc_to_tcp_sock: 1956 return &bpf_skc_to_tcp_sock_proto; 1957 case BPF_FUNC_skc_to_tcp_timewait_sock: 1958 return &bpf_skc_to_tcp_timewait_sock_proto; 1959 case BPF_FUNC_skc_to_tcp_request_sock: 1960 return &bpf_skc_to_tcp_request_sock_proto; 1961 case BPF_FUNC_skc_to_udp6_sock: 1962 return &bpf_skc_to_udp6_sock_proto; 1963 case BPF_FUNC_skc_to_unix_sock: 1964 return &bpf_skc_to_unix_sock_proto; 1965 case BPF_FUNC_skc_to_mptcp_sock: 1966 return &bpf_skc_to_mptcp_sock_proto; 1967 case BPF_FUNC_sk_storage_get: 1968 return &bpf_sk_storage_get_tracing_proto; 1969 case BPF_FUNC_sk_storage_delete: 1970 return &bpf_sk_storage_delete_tracing_proto; 1971 case BPF_FUNC_sock_from_file: 1972 return &bpf_sock_from_file_proto; 1973 case BPF_FUNC_get_socket_cookie: 1974 return &bpf_get_socket_ptr_cookie_proto; 1975 case BPF_FUNC_xdp_get_buff_len: 1976 return &bpf_xdp_get_buff_len_trace_proto; 1977 #endif 1978 case BPF_FUNC_seq_printf: 1979 return prog->expected_attach_type == BPF_TRACE_ITER ? 1980 &bpf_seq_printf_proto : 1981 NULL; 1982 case BPF_FUNC_seq_write: 1983 return prog->expected_attach_type == BPF_TRACE_ITER ? 1984 &bpf_seq_write_proto : 1985 NULL; 1986 case BPF_FUNC_seq_printf_btf: 1987 return prog->expected_attach_type == BPF_TRACE_ITER ? 1988 &bpf_seq_printf_btf_proto : 1989 NULL; 1990 case BPF_FUNC_d_path: 1991 return &bpf_d_path_proto; 1992 case BPF_FUNC_get_func_arg: 1993 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_proto : NULL; 1994 case BPF_FUNC_get_func_ret: 1995 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_ret_proto : NULL; 1996 case BPF_FUNC_get_func_arg_cnt: 1997 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_cnt_proto : NULL; 1998 case BPF_FUNC_get_attach_cookie: 1999 if (prog->type == BPF_PROG_TYPE_TRACING && 2000 prog->expected_attach_type == BPF_TRACE_RAW_TP) 2001 return &bpf_get_attach_cookie_proto_tracing; 2002 return bpf_prog_has_trampoline(prog) ? &bpf_get_attach_cookie_proto_tracing : NULL; 2003 default: 2004 fn = raw_tp_prog_func_proto(func_id, prog); 2005 if (!fn && prog->expected_attach_type == BPF_TRACE_ITER) 2006 fn = bpf_iter_get_func_proto(func_id, prog); 2007 return fn; 2008 } 2009 } 2010 2011 static bool raw_tp_prog_is_valid_access(int off, int size, 2012 enum bpf_access_type type, 2013 const struct bpf_prog *prog, 2014 struct bpf_insn_access_aux *info) 2015 { 2016 return bpf_tracing_ctx_access(off, size, type); 2017 } 2018 2019 static bool tracing_prog_is_valid_access(int off, int size, 2020 enum bpf_access_type type, 2021 const struct bpf_prog *prog, 2022 struct bpf_insn_access_aux *info) 2023 { 2024 return bpf_tracing_btf_ctx_access(off, size, type, prog, info); 2025 } 2026 2027 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog, 2028 const union bpf_attr *kattr, 2029 union bpf_attr __user *uattr) 2030 { 2031 return -ENOTSUPP; 2032 } 2033 2034 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = { 2035 .get_func_proto = raw_tp_prog_func_proto, 2036 .is_valid_access = raw_tp_prog_is_valid_access, 2037 }; 2038 2039 const struct bpf_prog_ops raw_tracepoint_prog_ops = { 2040 #ifdef CONFIG_NET 2041 .test_run = bpf_prog_test_run_raw_tp, 2042 #endif 2043 }; 2044 2045 const struct bpf_verifier_ops tracing_verifier_ops = { 2046 .get_func_proto = tracing_prog_func_proto, 2047 .is_valid_access = tracing_prog_is_valid_access, 2048 }; 2049 2050 const struct bpf_prog_ops tracing_prog_ops = { 2051 .test_run = bpf_prog_test_run_tracing, 2052 }; 2053 2054 static bool raw_tp_writable_prog_is_valid_access(int off, int size, 2055 enum bpf_access_type type, 2056 const struct bpf_prog *prog, 2057 struct bpf_insn_access_aux *info) 2058 { 2059 if (off == 0) { 2060 if (size != sizeof(u64) || type != BPF_READ) 2061 return false; 2062 info->reg_type = PTR_TO_TP_BUFFER; 2063 } 2064 return raw_tp_prog_is_valid_access(off, size, type, prog, info); 2065 } 2066 2067 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = { 2068 .get_func_proto = raw_tp_prog_func_proto, 2069 .is_valid_access = raw_tp_writable_prog_is_valid_access, 2070 }; 2071 2072 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = { 2073 }; 2074 2075 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 2076 const struct bpf_prog *prog, 2077 struct bpf_insn_access_aux *info) 2078 { 2079 const int size_u64 = sizeof(u64); 2080 2081 if (off < 0 || off >= sizeof(struct bpf_perf_event_data)) 2082 return false; 2083 if (type != BPF_READ) 2084 return false; 2085 if (off % size != 0) { 2086 if (sizeof(unsigned long) != 4) 2087 return false; 2088 if (size != 8) 2089 return false; 2090 if (off % size != 4) 2091 return false; 2092 } 2093 2094 switch (off) { 2095 case bpf_ctx_range(struct bpf_perf_event_data, sample_period): 2096 bpf_ctx_record_field_size(info, size_u64); 2097 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 2098 return false; 2099 break; 2100 case bpf_ctx_range(struct bpf_perf_event_data, addr): 2101 bpf_ctx_record_field_size(info, size_u64); 2102 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 2103 return false; 2104 break; 2105 default: 2106 if (size != sizeof(long)) 2107 return false; 2108 } 2109 2110 return true; 2111 } 2112 2113 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type, 2114 const struct bpf_insn *si, 2115 struct bpf_insn *insn_buf, 2116 struct bpf_prog *prog, u32 *target_size) 2117 { 2118 struct bpf_insn *insn = insn_buf; 2119 2120 switch (si->off) { 2121 case offsetof(struct bpf_perf_event_data, sample_period): 2122 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 2123 data), si->dst_reg, si->src_reg, 2124 offsetof(struct bpf_perf_event_data_kern, data)); 2125 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 2126 bpf_target_off(struct perf_sample_data, period, 8, 2127 target_size)); 2128 break; 2129 case offsetof(struct bpf_perf_event_data, addr): 2130 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 2131 data), si->dst_reg, si->src_reg, 2132 offsetof(struct bpf_perf_event_data_kern, data)); 2133 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 2134 bpf_target_off(struct perf_sample_data, addr, 8, 2135 target_size)); 2136 break; 2137 default: 2138 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 2139 regs), si->dst_reg, si->src_reg, 2140 offsetof(struct bpf_perf_event_data_kern, regs)); 2141 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg, 2142 si->off); 2143 break; 2144 } 2145 2146 return insn - insn_buf; 2147 } 2148 2149 const struct bpf_verifier_ops perf_event_verifier_ops = { 2150 .get_func_proto = pe_prog_func_proto, 2151 .is_valid_access = pe_prog_is_valid_access, 2152 .convert_ctx_access = pe_prog_convert_ctx_access, 2153 }; 2154 2155 const struct bpf_prog_ops perf_event_prog_ops = { 2156 }; 2157 2158 static DEFINE_MUTEX(bpf_event_mutex); 2159 2160 #define BPF_TRACE_MAX_PROGS 64 2161 2162 int perf_event_attach_bpf_prog(struct perf_event *event, 2163 struct bpf_prog *prog, 2164 u64 bpf_cookie) 2165 { 2166 struct bpf_prog_array *old_array; 2167 struct bpf_prog_array *new_array; 2168 int ret = -EEXIST; 2169 2170 /* 2171 * Kprobe override only works if they are on the function entry, 2172 * and only if they are on the opt-in list. 2173 */ 2174 if (prog->kprobe_override && 2175 (!trace_kprobe_on_func_entry(event->tp_event) || 2176 !trace_kprobe_error_injectable(event->tp_event))) 2177 return -EINVAL; 2178 2179 mutex_lock(&bpf_event_mutex); 2180 2181 if (event->prog) 2182 goto unlock; 2183 2184 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 2185 if (old_array && 2186 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) { 2187 ret = -E2BIG; 2188 goto unlock; 2189 } 2190 2191 ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array); 2192 if (ret < 0) 2193 goto unlock; 2194 2195 /* set the new array to event->tp_event and set event->prog */ 2196 event->prog = prog; 2197 event->bpf_cookie = bpf_cookie; 2198 rcu_assign_pointer(event->tp_event->prog_array, new_array); 2199 bpf_prog_array_free_sleepable(old_array); 2200 2201 unlock: 2202 mutex_unlock(&bpf_event_mutex); 2203 return ret; 2204 } 2205 2206 void perf_event_detach_bpf_prog(struct perf_event *event) 2207 { 2208 struct bpf_prog_array *old_array; 2209 struct bpf_prog_array *new_array; 2210 int ret; 2211 2212 mutex_lock(&bpf_event_mutex); 2213 2214 if (!event->prog) 2215 goto unlock; 2216 2217 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 2218 ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array); 2219 if (ret == -ENOENT) 2220 goto unlock; 2221 if (ret < 0) { 2222 bpf_prog_array_delete_safe(old_array, event->prog); 2223 } else { 2224 rcu_assign_pointer(event->tp_event->prog_array, new_array); 2225 bpf_prog_array_free_sleepable(old_array); 2226 } 2227 2228 bpf_prog_put(event->prog); 2229 event->prog = NULL; 2230 2231 unlock: 2232 mutex_unlock(&bpf_event_mutex); 2233 } 2234 2235 int perf_event_query_prog_array(struct perf_event *event, void __user *info) 2236 { 2237 struct perf_event_query_bpf __user *uquery = info; 2238 struct perf_event_query_bpf query = {}; 2239 struct bpf_prog_array *progs; 2240 u32 *ids, prog_cnt, ids_len; 2241 int ret; 2242 2243 if (!perfmon_capable()) 2244 return -EPERM; 2245 if (event->attr.type != PERF_TYPE_TRACEPOINT) 2246 return -EINVAL; 2247 if (copy_from_user(&query, uquery, sizeof(query))) 2248 return -EFAULT; 2249 2250 ids_len = query.ids_len; 2251 if (ids_len > BPF_TRACE_MAX_PROGS) 2252 return -E2BIG; 2253 ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN); 2254 if (!ids) 2255 return -ENOMEM; 2256 /* 2257 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which 2258 * is required when user only wants to check for uquery->prog_cnt. 2259 * There is no need to check for it since the case is handled 2260 * gracefully in bpf_prog_array_copy_info. 2261 */ 2262 2263 mutex_lock(&bpf_event_mutex); 2264 progs = bpf_event_rcu_dereference(event->tp_event->prog_array); 2265 ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt); 2266 mutex_unlock(&bpf_event_mutex); 2267 2268 if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) || 2269 copy_to_user(uquery->ids, ids, ids_len * sizeof(u32))) 2270 ret = -EFAULT; 2271 2272 kfree(ids); 2273 return ret; 2274 } 2275 2276 extern struct bpf_raw_event_map __start__bpf_raw_tp[]; 2277 extern struct bpf_raw_event_map __stop__bpf_raw_tp[]; 2278 2279 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name) 2280 { 2281 struct bpf_raw_event_map *btp = __start__bpf_raw_tp; 2282 2283 for (; btp < __stop__bpf_raw_tp; btp++) { 2284 if (!strcmp(btp->tp->name, name)) 2285 return btp; 2286 } 2287 2288 return bpf_get_raw_tracepoint_module(name); 2289 } 2290 2291 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp) 2292 { 2293 struct module *mod; 2294 2295 preempt_disable(); 2296 mod = __module_address((unsigned long)btp); 2297 module_put(mod); 2298 preempt_enable(); 2299 } 2300 2301 static __always_inline 2302 void __bpf_trace_run(struct bpf_raw_tp_link *link, u64 *args) 2303 { 2304 struct bpf_prog *prog = link->link.prog; 2305 struct bpf_run_ctx *old_run_ctx; 2306 struct bpf_trace_run_ctx run_ctx; 2307 2308 cant_sleep(); 2309 if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) { 2310 bpf_prog_inc_misses_counter(prog); 2311 goto out; 2312 } 2313 2314 run_ctx.bpf_cookie = link->cookie; 2315 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2316 2317 rcu_read_lock(); 2318 (void) bpf_prog_run(prog, args); 2319 rcu_read_unlock(); 2320 2321 bpf_reset_run_ctx(old_run_ctx); 2322 out: 2323 this_cpu_dec(*(prog->active)); 2324 } 2325 2326 #define UNPACK(...) __VA_ARGS__ 2327 #define REPEAT_1(FN, DL, X, ...) FN(X) 2328 #define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__) 2329 #define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__) 2330 #define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__) 2331 #define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__) 2332 #define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__) 2333 #define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__) 2334 #define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__) 2335 #define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__) 2336 #define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__) 2337 #define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__) 2338 #define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__) 2339 #define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__) 2340 2341 #define SARG(X) u64 arg##X 2342 #define COPY(X) args[X] = arg##X 2343 2344 #define __DL_COM (,) 2345 #define __DL_SEM (;) 2346 2347 #define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 2348 2349 #define BPF_TRACE_DEFN_x(x) \ 2350 void bpf_trace_run##x(struct bpf_raw_tp_link *link, \ 2351 REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \ 2352 { \ 2353 u64 args[x]; \ 2354 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \ 2355 __bpf_trace_run(link, args); \ 2356 } \ 2357 EXPORT_SYMBOL_GPL(bpf_trace_run##x) 2358 BPF_TRACE_DEFN_x(1); 2359 BPF_TRACE_DEFN_x(2); 2360 BPF_TRACE_DEFN_x(3); 2361 BPF_TRACE_DEFN_x(4); 2362 BPF_TRACE_DEFN_x(5); 2363 BPF_TRACE_DEFN_x(6); 2364 BPF_TRACE_DEFN_x(7); 2365 BPF_TRACE_DEFN_x(8); 2366 BPF_TRACE_DEFN_x(9); 2367 BPF_TRACE_DEFN_x(10); 2368 BPF_TRACE_DEFN_x(11); 2369 BPF_TRACE_DEFN_x(12); 2370 2371 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_raw_tp_link *link) 2372 { 2373 struct tracepoint *tp = btp->tp; 2374 struct bpf_prog *prog = link->link.prog; 2375 2376 /* 2377 * check that program doesn't access arguments beyond what's 2378 * available in this tracepoint 2379 */ 2380 if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64)) 2381 return -EINVAL; 2382 2383 if (prog->aux->max_tp_access > btp->writable_size) 2384 return -EINVAL; 2385 2386 return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func, link); 2387 } 2388 2389 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_raw_tp_link *link) 2390 { 2391 return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, link); 2392 } 2393 2394 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id, 2395 u32 *fd_type, const char **buf, 2396 u64 *probe_offset, u64 *probe_addr, 2397 unsigned long *missed) 2398 { 2399 bool is_tracepoint, is_syscall_tp; 2400 struct bpf_prog *prog; 2401 int flags, err = 0; 2402 2403 prog = event->prog; 2404 if (!prog) 2405 return -ENOENT; 2406 2407 /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */ 2408 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) 2409 return -EOPNOTSUPP; 2410 2411 *prog_id = prog->aux->id; 2412 flags = event->tp_event->flags; 2413 is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT; 2414 is_syscall_tp = is_syscall_trace_event(event->tp_event); 2415 2416 if (is_tracepoint || is_syscall_tp) { 2417 *buf = is_tracepoint ? event->tp_event->tp->name 2418 : event->tp_event->name; 2419 /* We allow NULL pointer for tracepoint */ 2420 if (fd_type) 2421 *fd_type = BPF_FD_TYPE_TRACEPOINT; 2422 if (probe_offset) 2423 *probe_offset = 0x0; 2424 if (probe_addr) 2425 *probe_addr = 0x0; 2426 } else { 2427 /* kprobe/uprobe */ 2428 err = -EOPNOTSUPP; 2429 #ifdef CONFIG_KPROBE_EVENTS 2430 if (flags & TRACE_EVENT_FL_KPROBE) 2431 err = bpf_get_kprobe_info(event, fd_type, buf, 2432 probe_offset, probe_addr, missed, 2433 event->attr.type == PERF_TYPE_TRACEPOINT); 2434 #endif 2435 #ifdef CONFIG_UPROBE_EVENTS 2436 if (flags & TRACE_EVENT_FL_UPROBE) 2437 err = bpf_get_uprobe_info(event, fd_type, buf, 2438 probe_offset, probe_addr, 2439 event->attr.type == PERF_TYPE_TRACEPOINT); 2440 #endif 2441 } 2442 2443 return err; 2444 } 2445 2446 static int __init send_signal_irq_work_init(void) 2447 { 2448 int cpu; 2449 struct send_signal_irq_work *work; 2450 2451 for_each_possible_cpu(cpu) { 2452 work = per_cpu_ptr(&send_signal_work, cpu); 2453 init_irq_work(&work->irq_work, do_bpf_send_signal); 2454 } 2455 return 0; 2456 } 2457 2458 subsys_initcall(send_signal_irq_work_init); 2459 2460 #ifdef CONFIG_MODULES 2461 static int bpf_event_notify(struct notifier_block *nb, unsigned long op, 2462 void *module) 2463 { 2464 struct bpf_trace_module *btm, *tmp; 2465 struct module *mod = module; 2466 int ret = 0; 2467 2468 if (mod->num_bpf_raw_events == 0 || 2469 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING)) 2470 goto out; 2471 2472 mutex_lock(&bpf_module_mutex); 2473 2474 switch (op) { 2475 case MODULE_STATE_COMING: 2476 btm = kzalloc(sizeof(*btm), GFP_KERNEL); 2477 if (btm) { 2478 btm->module = module; 2479 list_add(&btm->list, &bpf_trace_modules); 2480 } else { 2481 ret = -ENOMEM; 2482 } 2483 break; 2484 case MODULE_STATE_GOING: 2485 list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) { 2486 if (btm->module == module) { 2487 list_del(&btm->list); 2488 kfree(btm); 2489 break; 2490 } 2491 } 2492 break; 2493 } 2494 2495 mutex_unlock(&bpf_module_mutex); 2496 2497 out: 2498 return notifier_from_errno(ret); 2499 } 2500 2501 static struct notifier_block bpf_module_nb = { 2502 .notifier_call = bpf_event_notify, 2503 }; 2504 2505 static int __init bpf_event_init(void) 2506 { 2507 register_module_notifier(&bpf_module_nb); 2508 return 0; 2509 } 2510 2511 fs_initcall(bpf_event_init); 2512 #endif /* CONFIG_MODULES */ 2513 2514 struct bpf_session_run_ctx { 2515 struct bpf_run_ctx run_ctx; 2516 bool is_return; 2517 void *data; 2518 }; 2519 2520 #ifdef CONFIG_FPROBE 2521 struct bpf_kprobe_multi_link { 2522 struct bpf_link link; 2523 struct fprobe fp; 2524 unsigned long *addrs; 2525 u64 *cookies; 2526 u32 cnt; 2527 u32 mods_cnt; 2528 struct module **mods; 2529 u32 flags; 2530 }; 2531 2532 struct bpf_kprobe_multi_run_ctx { 2533 struct bpf_session_run_ctx session_ctx; 2534 struct bpf_kprobe_multi_link *link; 2535 unsigned long entry_ip; 2536 }; 2537 2538 struct user_syms { 2539 const char **syms; 2540 char *buf; 2541 }; 2542 2543 static int copy_user_syms(struct user_syms *us, unsigned long __user *usyms, u32 cnt) 2544 { 2545 unsigned long __user usymbol; 2546 const char **syms = NULL; 2547 char *buf = NULL, *p; 2548 int err = -ENOMEM; 2549 unsigned int i; 2550 2551 syms = kvmalloc_array(cnt, sizeof(*syms), GFP_KERNEL); 2552 if (!syms) 2553 goto error; 2554 2555 buf = kvmalloc_array(cnt, KSYM_NAME_LEN, GFP_KERNEL); 2556 if (!buf) 2557 goto error; 2558 2559 for (p = buf, i = 0; i < cnt; i++) { 2560 if (__get_user(usymbol, usyms + i)) { 2561 err = -EFAULT; 2562 goto error; 2563 } 2564 err = strncpy_from_user(p, (const char __user *) usymbol, KSYM_NAME_LEN); 2565 if (err == KSYM_NAME_LEN) 2566 err = -E2BIG; 2567 if (err < 0) 2568 goto error; 2569 syms[i] = p; 2570 p += err + 1; 2571 } 2572 2573 us->syms = syms; 2574 us->buf = buf; 2575 return 0; 2576 2577 error: 2578 if (err) { 2579 kvfree(syms); 2580 kvfree(buf); 2581 } 2582 return err; 2583 } 2584 2585 static void kprobe_multi_put_modules(struct module **mods, u32 cnt) 2586 { 2587 u32 i; 2588 2589 for (i = 0; i < cnt; i++) 2590 module_put(mods[i]); 2591 } 2592 2593 static void free_user_syms(struct user_syms *us) 2594 { 2595 kvfree(us->syms); 2596 kvfree(us->buf); 2597 } 2598 2599 static void bpf_kprobe_multi_link_release(struct bpf_link *link) 2600 { 2601 struct bpf_kprobe_multi_link *kmulti_link; 2602 2603 kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link); 2604 unregister_fprobe(&kmulti_link->fp); 2605 kprobe_multi_put_modules(kmulti_link->mods, kmulti_link->mods_cnt); 2606 } 2607 2608 static void bpf_kprobe_multi_link_dealloc(struct bpf_link *link) 2609 { 2610 struct bpf_kprobe_multi_link *kmulti_link; 2611 2612 kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link); 2613 kvfree(kmulti_link->addrs); 2614 kvfree(kmulti_link->cookies); 2615 kfree(kmulti_link->mods); 2616 kfree(kmulti_link); 2617 } 2618 2619 static int bpf_kprobe_multi_link_fill_link_info(const struct bpf_link *link, 2620 struct bpf_link_info *info) 2621 { 2622 u64 __user *ucookies = u64_to_user_ptr(info->kprobe_multi.cookies); 2623 u64 __user *uaddrs = u64_to_user_ptr(info->kprobe_multi.addrs); 2624 struct bpf_kprobe_multi_link *kmulti_link; 2625 u32 ucount = info->kprobe_multi.count; 2626 int err = 0, i; 2627 2628 if (!uaddrs ^ !ucount) 2629 return -EINVAL; 2630 if (ucookies && !ucount) 2631 return -EINVAL; 2632 2633 kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link); 2634 info->kprobe_multi.count = kmulti_link->cnt; 2635 info->kprobe_multi.flags = kmulti_link->flags; 2636 info->kprobe_multi.missed = kmulti_link->fp.nmissed; 2637 2638 if (!uaddrs) 2639 return 0; 2640 if (ucount < kmulti_link->cnt) 2641 err = -ENOSPC; 2642 else 2643 ucount = kmulti_link->cnt; 2644 2645 if (ucookies) { 2646 if (kmulti_link->cookies) { 2647 if (copy_to_user(ucookies, kmulti_link->cookies, ucount * sizeof(u64))) 2648 return -EFAULT; 2649 } else { 2650 for (i = 0; i < ucount; i++) { 2651 if (put_user(0, ucookies + i)) 2652 return -EFAULT; 2653 } 2654 } 2655 } 2656 2657 if (kallsyms_show_value(current_cred())) { 2658 if (copy_to_user(uaddrs, kmulti_link->addrs, ucount * sizeof(u64))) 2659 return -EFAULT; 2660 } else { 2661 for (i = 0; i < ucount; i++) { 2662 if (put_user(0, uaddrs + i)) 2663 return -EFAULT; 2664 } 2665 } 2666 return err; 2667 } 2668 2669 static const struct bpf_link_ops bpf_kprobe_multi_link_lops = { 2670 .release = bpf_kprobe_multi_link_release, 2671 .dealloc_deferred = bpf_kprobe_multi_link_dealloc, 2672 .fill_link_info = bpf_kprobe_multi_link_fill_link_info, 2673 }; 2674 2675 static void bpf_kprobe_multi_cookie_swap(void *a, void *b, int size, const void *priv) 2676 { 2677 const struct bpf_kprobe_multi_link *link = priv; 2678 unsigned long *addr_a = a, *addr_b = b; 2679 u64 *cookie_a, *cookie_b; 2680 2681 cookie_a = link->cookies + (addr_a - link->addrs); 2682 cookie_b = link->cookies + (addr_b - link->addrs); 2683 2684 /* swap addr_a/addr_b and cookie_a/cookie_b values */ 2685 swap(*addr_a, *addr_b); 2686 swap(*cookie_a, *cookie_b); 2687 } 2688 2689 static int bpf_kprobe_multi_addrs_cmp(const void *a, const void *b) 2690 { 2691 const unsigned long *addr_a = a, *addr_b = b; 2692 2693 if (*addr_a == *addr_b) 2694 return 0; 2695 return *addr_a < *addr_b ? -1 : 1; 2696 } 2697 2698 static int bpf_kprobe_multi_cookie_cmp(const void *a, const void *b, const void *priv) 2699 { 2700 return bpf_kprobe_multi_addrs_cmp(a, b); 2701 } 2702 2703 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx) 2704 { 2705 struct bpf_kprobe_multi_run_ctx *run_ctx; 2706 struct bpf_kprobe_multi_link *link; 2707 u64 *cookie, entry_ip; 2708 unsigned long *addr; 2709 2710 if (WARN_ON_ONCE(!ctx)) 2711 return 0; 2712 run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, 2713 session_ctx.run_ctx); 2714 link = run_ctx->link; 2715 if (!link->cookies) 2716 return 0; 2717 entry_ip = run_ctx->entry_ip; 2718 addr = bsearch(&entry_ip, link->addrs, link->cnt, sizeof(entry_ip), 2719 bpf_kprobe_multi_addrs_cmp); 2720 if (!addr) 2721 return 0; 2722 cookie = link->cookies + (addr - link->addrs); 2723 return *cookie; 2724 } 2725 2726 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx) 2727 { 2728 struct bpf_kprobe_multi_run_ctx *run_ctx; 2729 2730 run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, 2731 session_ctx.run_ctx); 2732 return run_ctx->entry_ip; 2733 } 2734 2735 static int 2736 kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link *link, 2737 unsigned long entry_ip, struct pt_regs *regs, 2738 bool is_return, void *data) 2739 { 2740 struct bpf_kprobe_multi_run_ctx run_ctx = { 2741 .session_ctx = { 2742 .is_return = is_return, 2743 .data = data, 2744 }, 2745 .link = link, 2746 .entry_ip = entry_ip, 2747 }; 2748 struct bpf_run_ctx *old_run_ctx; 2749 int err; 2750 2751 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) { 2752 bpf_prog_inc_misses_counter(link->link.prog); 2753 err = 0; 2754 goto out; 2755 } 2756 2757 migrate_disable(); 2758 rcu_read_lock(); 2759 old_run_ctx = bpf_set_run_ctx(&run_ctx.session_ctx.run_ctx); 2760 err = bpf_prog_run(link->link.prog, regs); 2761 bpf_reset_run_ctx(old_run_ctx); 2762 rcu_read_unlock(); 2763 migrate_enable(); 2764 2765 out: 2766 __this_cpu_dec(bpf_prog_active); 2767 return err; 2768 } 2769 2770 static int 2771 kprobe_multi_link_handler(struct fprobe *fp, unsigned long fentry_ip, 2772 unsigned long ret_ip, struct pt_regs *regs, 2773 void *data) 2774 { 2775 struct bpf_kprobe_multi_link *link; 2776 int err; 2777 2778 link = container_of(fp, struct bpf_kprobe_multi_link, fp); 2779 err = kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs, false, data); 2780 return is_kprobe_session(link->link.prog) ? err : 0; 2781 } 2782 2783 static void 2784 kprobe_multi_link_exit_handler(struct fprobe *fp, unsigned long fentry_ip, 2785 unsigned long ret_ip, struct pt_regs *regs, 2786 void *data) 2787 { 2788 struct bpf_kprobe_multi_link *link; 2789 2790 link = container_of(fp, struct bpf_kprobe_multi_link, fp); 2791 kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs, true, data); 2792 } 2793 2794 static int symbols_cmp_r(const void *a, const void *b, const void *priv) 2795 { 2796 const char **str_a = (const char **) a; 2797 const char **str_b = (const char **) b; 2798 2799 return strcmp(*str_a, *str_b); 2800 } 2801 2802 struct multi_symbols_sort { 2803 const char **funcs; 2804 u64 *cookies; 2805 }; 2806 2807 static void symbols_swap_r(void *a, void *b, int size, const void *priv) 2808 { 2809 const struct multi_symbols_sort *data = priv; 2810 const char **name_a = a, **name_b = b; 2811 2812 swap(*name_a, *name_b); 2813 2814 /* If defined, swap also related cookies. */ 2815 if (data->cookies) { 2816 u64 *cookie_a, *cookie_b; 2817 2818 cookie_a = data->cookies + (name_a - data->funcs); 2819 cookie_b = data->cookies + (name_b - data->funcs); 2820 swap(*cookie_a, *cookie_b); 2821 } 2822 } 2823 2824 struct modules_array { 2825 struct module **mods; 2826 int mods_cnt; 2827 int mods_cap; 2828 }; 2829 2830 static int add_module(struct modules_array *arr, struct module *mod) 2831 { 2832 struct module **mods; 2833 2834 if (arr->mods_cnt == arr->mods_cap) { 2835 arr->mods_cap = max(16, arr->mods_cap * 3 / 2); 2836 mods = krealloc_array(arr->mods, arr->mods_cap, sizeof(*mods), GFP_KERNEL); 2837 if (!mods) 2838 return -ENOMEM; 2839 arr->mods = mods; 2840 } 2841 2842 arr->mods[arr->mods_cnt] = mod; 2843 arr->mods_cnt++; 2844 return 0; 2845 } 2846 2847 static bool has_module(struct modules_array *arr, struct module *mod) 2848 { 2849 int i; 2850 2851 for (i = arr->mods_cnt - 1; i >= 0; i--) { 2852 if (arr->mods[i] == mod) 2853 return true; 2854 } 2855 return false; 2856 } 2857 2858 static int get_modules_for_addrs(struct module ***mods, unsigned long *addrs, u32 addrs_cnt) 2859 { 2860 struct modules_array arr = {}; 2861 u32 i, err = 0; 2862 2863 for (i = 0; i < addrs_cnt; i++) { 2864 struct module *mod; 2865 2866 preempt_disable(); 2867 mod = __module_address(addrs[i]); 2868 /* Either no module or we it's already stored */ 2869 if (!mod || has_module(&arr, mod)) { 2870 preempt_enable(); 2871 continue; 2872 } 2873 if (!try_module_get(mod)) 2874 err = -EINVAL; 2875 preempt_enable(); 2876 if (err) 2877 break; 2878 err = add_module(&arr, mod); 2879 if (err) { 2880 module_put(mod); 2881 break; 2882 } 2883 } 2884 2885 /* We return either err < 0 in case of error, ... */ 2886 if (err) { 2887 kprobe_multi_put_modules(arr.mods, arr.mods_cnt); 2888 kfree(arr.mods); 2889 return err; 2890 } 2891 2892 /* or number of modules found if everything is ok. */ 2893 *mods = arr.mods; 2894 return arr.mods_cnt; 2895 } 2896 2897 static int addrs_check_error_injection_list(unsigned long *addrs, u32 cnt) 2898 { 2899 u32 i; 2900 2901 for (i = 0; i < cnt; i++) { 2902 if (!within_error_injection_list(addrs[i])) 2903 return -EINVAL; 2904 } 2905 return 0; 2906 } 2907 2908 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 2909 { 2910 struct bpf_kprobe_multi_link *link = NULL; 2911 struct bpf_link_primer link_primer; 2912 void __user *ucookies; 2913 unsigned long *addrs; 2914 u32 flags, cnt, size; 2915 void __user *uaddrs; 2916 u64 *cookies = NULL; 2917 void __user *usyms; 2918 int err; 2919 2920 /* no support for 32bit archs yet */ 2921 if (sizeof(u64) != sizeof(void *)) 2922 return -EOPNOTSUPP; 2923 2924 if (!is_kprobe_multi(prog)) 2925 return -EINVAL; 2926 2927 flags = attr->link_create.kprobe_multi.flags; 2928 if (flags & ~BPF_F_KPROBE_MULTI_RETURN) 2929 return -EINVAL; 2930 2931 uaddrs = u64_to_user_ptr(attr->link_create.kprobe_multi.addrs); 2932 usyms = u64_to_user_ptr(attr->link_create.kprobe_multi.syms); 2933 if (!!uaddrs == !!usyms) 2934 return -EINVAL; 2935 2936 cnt = attr->link_create.kprobe_multi.cnt; 2937 if (!cnt) 2938 return -EINVAL; 2939 if (cnt > MAX_KPROBE_MULTI_CNT) 2940 return -E2BIG; 2941 2942 size = cnt * sizeof(*addrs); 2943 addrs = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL); 2944 if (!addrs) 2945 return -ENOMEM; 2946 2947 ucookies = u64_to_user_ptr(attr->link_create.kprobe_multi.cookies); 2948 if (ucookies) { 2949 cookies = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL); 2950 if (!cookies) { 2951 err = -ENOMEM; 2952 goto error; 2953 } 2954 if (copy_from_user(cookies, ucookies, size)) { 2955 err = -EFAULT; 2956 goto error; 2957 } 2958 } 2959 2960 if (uaddrs) { 2961 if (copy_from_user(addrs, uaddrs, size)) { 2962 err = -EFAULT; 2963 goto error; 2964 } 2965 } else { 2966 struct multi_symbols_sort data = { 2967 .cookies = cookies, 2968 }; 2969 struct user_syms us; 2970 2971 err = copy_user_syms(&us, usyms, cnt); 2972 if (err) 2973 goto error; 2974 2975 if (cookies) 2976 data.funcs = us.syms; 2977 2978 sort_r(us.syms, cnt, sizeof(*us.syms), symbols_cmp_r, 2979 symbols_swap_r, &data); 2980 2981 err = ftrace_lookup_symbols(us.syms, cnt, addrs); 2982 free_user_syms(&us); 2983 if (err) 2984 goto error; 2985 } 2986 2987 if (prog->kprobe_override && addrs_check_error_injection_list(addrs, cnt)) { 2988 err = -EINVAL; 2989 goto error; 2990 } 2991 2992 link = kzalloc(sizeof(*link), GFP_KERNEL); 2993 if (!link) { 2994 err = -ENOMEM; 2995 goto error; 2996 } 2997 2998 bpf_link_init(&link->link, BPF_LINK_TYPE_KPROBE_MULTI, 2999 &bpf_kprobe_multi_link_lops, prog); 3000 3001 err = bpf_link_prime(&link->link, &link_primer); 3002 if (err) 3003 goto error; 3004 3005 if (!(flags & BPF_F_KPROBE_MULTI_RETURN)) 3006 link->fp.entry_handler = kprobe_multi_link_handler; 3007 if ((flags & BPF_F_KPROBE_MULTI_RETURN) || is_kprobe_session(prog)) 3008 link->fp.exit_handler = kprobe_multi_link_exit_handler; 3009 if (is_kprobe_session(prog)) 3010 link->fp.entry_data_size = sizeof(u64); 3011 3012 link->addrs = addrs; 3013 link->cookies = cookies; 3014 link->cnt = cnt; 3015 link->flags = flags; 3016 3017 if (cookies) { 3018 /* 3019 * Sorting addresses will trigger sorting cookies as well 3020 * (check bpf_kprobe_multi_cookie_swap). This way we can 3021 * find cookie based on the address in bpf_get_attach_cookie 3022 * helper. 3023 */ 3024 sort_r(addrs, cnt, sizeof(*addrs), 3025 bpf_kprobe_multi_cookie_cmp, 3026 bpf_kprobe_multi_cookie_swap, 3027 link); 3028 } 3029 3030 err = get_modules_for_addrs(&link->mods, addrs, cnt); 3031 if (err < 0) { 3032 bpf_link_cleanup(&link_primer); 3033 return err; 3034 } 3035 link->mods_cnt = err; 3036 3037 err = register_fprobe_ips(&link->fp, addrs, cnt); 3038 if (err) { 3039 kprobe_multi_put_modules(link->mods, link->mods_cnt); 3040 bpf_link_cleanup(&link_primer); 3041 return err; 3042 } 3043 3044 return bpf_link_settle(&link_primer); 3045 3046 error: 3047 kfree(link); 3048 kvfree(addrs); 3049 kvfree(cookies); 3050 return err; 3051 } 3052 #else /* !CONFIG_FPROBE */ 3053 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 3054 { 3055 return -EOPNOTSUPP; 3056 } 3057 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx) 3058 { 3059 return 0; 3060 } 3061 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx) 3062 { 3063 return 0; 3064 } 3065 #endif 3066 3067 #ifdef CONFIG_UPROBES 3068 struct bpf_uprobe_multi_link; 3069 3070 struct bpf_uprobe { 3071 struct bpf_uprobe_multi_link *link; 3072 loff_t offset; 3073 unsigned long ref_ctr_offset; 3074 u64 cookie; 3075 struct uprobe *uprobe; 3076 struct uprobe_consumer consumer; 3077 }; 3078 3079 struct bpf_uprobe_multi_link { 3080 struct path path; 3081 struct bpf_link link; 3082 u32 cnt; 3083 u32 flags; 3084 struct bpf_uprobe *uprobes; 3085 struct task_struct *task; 3086 }; 3087 3088 struct bpf_uprobe_multi_run_ctx { 3089 struct bpf_run_ctx run_ctx; 3090 unsigned long entry_ip; 3091 struct bpf_uprobe *uprobe; 3092 }; 3093 3094 static void bpf_uprobe_unregister(struct bpf_uprobe *uprobes, u32 cnt) 3095 { 3096 u32 i; 3097 3098 for (i = 0; i < cnt; i++) 3099 uprobe_unregister_nosync(uprobes[i].uprobe, &uprobes[i].consumer); 3100 3101 if (cnt) 3102 uprobe_unregister_sync(); 3103 } 3104 3105 static void bpf_uprobe_multi_link_release(struct bpf_link *link) 3106 { 3107 struct bpf_uprobe_multi_link *umulti_link; 3108 3109 umulti_link = container_of(link, struct bpf_uprobe_multi_link, link); 3110 bpf_uprobe_unregister(umulti_link->uprobes, umulti_link->cnt); 3111 if (umulti_link->task) 3112 put_task_struct(umulti_link->task); 3113 path_put(&umulti_link->path); 3114 } 3115 3116 static void bpf_uprobe_multi_link_dealloc(struct bpf_link *link) 3117 { 3118 struct bpf_uprobe_multi_link *umulti_link; 3119 3120 umulti_link = container_of(link, struct bpf_uprobe_multi_link, link); 3121 kvfree(umulti_link->uprobes); 3122 kfree(umulti_link); 3123 } 3124 3125 static int bpf_uprobe_multi_link_fill_link_info(const struct bpf_link *link, 3126 struct bpf_link_info *info) 3127 { 3128 u64 __user *uref_ctr_offsets = u64_to_user_ptr(info->uprobe_multi.ref_ctr_offsets); 3129 u64 __user *ucookies = u64_to_user_ptr(info->uprobe_multi.cookies); 3130 u64 __user *uoffsets = u64_to_user_ptr(info->uprobe_multi.offsets); 3131 u64 __user *upath = u64_to_user_ptr(info->uprobe_multi.path); 3132 u32 upath_size = info->uprobe_multi.path_size; 3133 struct bpf_uprobe_multi_link *umulti_link; 3134 u32 ucount = info->uprobe_multi.count; 3135 int err = 0, i; 3136 char *p, *buf; 3137 long left = 0; 3138 3139 if (!upath ^ !upath_size) 3140 return -EINVAL; 3141 3142 if ((uoffsets || uref_ctr_offsets || ucookies) && !ucount) 3143 return -EINVAL; 3144 3145 umulti_link = container_of(link, struct bpf_uprobe_multi_link, link); 3146 info->uprobe_multi.count = umulti_link->cnt; 3147 info->uprobe_multi.flags = umulti_link->flags; 3148 info->uprobe_multi.pid = umulti_link->task ? 3149 task_pid_nr_ns(umulti_link->task, task_active_pid_ns(current)) : 0; 3150 3151 upath_size = upath_size ? min_t(u32, upath_size, PATH_MAX) : PATH_MAX; 3152 buf = kmalloc(upath_size, GFP_KERNEL); 3153 if (!buf) 3154 return -ENOMEM; 3155 p = d_path(&umulti_link->path, buf, upath_size); 3156 if (IS_ERR(p)) { 3157 kfree(buf); 3158 return PTR_ERR(p); 3159 } 3160 upath_size = buf + upath_size - p; 3161 3162 if (upath) 3163 left = copy_to_user(upath, p, upath_size); 3164 kfree(buf); 3165 if (left) 3166 return -EFAULT; 3167 info->uprobe_multi.path_size = upath_size; 3168 3169 if (!uoffsets && !ucookies && !uref_ctr_offsets) 3170 return 0; 3171 3172 if (ucount < umulti_link->cnt) 3173 err = -ENOSPC; 3174 else 3175 ucount = umulti_link->cnt; 3176 3177 for (i = 0; i < ucount; i++) { 3178 if (uoffsets && 3179 put_user(umulti_link->uprobes[i].offset, uoffsets + i)) 3180 return -EFAULT; 3181 if (uref_ctr_offsets && 3182 put_user(umulti_link->uprobes[i].ref_ctr_offset, uref_ctr_offsets + i)) 3183 return -EFAULT; 3184 if (ucookies && 3185 put_user(umulti_link->uprobes[i].cookie, ucookies + i)) 3186 return -EFAULT; 3187 } 3188 3189 return err; 3190 } 3191 3192 static const struct bpf_link_ops bpf_uprobe_multi_link_lops = { 3193 .release = bpf_uprobe_multi_link_release, 3194 .dealloc_deferred = bpf_uprobe_multi_link_dealloc, 3195 .fill_link_info = bpf_uprobe_multi_link_fill_link_info, 3196 }; 3197 3198 static int uprobe_prog_run(struct bpf_uprobe *uprobe, 3199 unsigned long entry_ip, 3200 struct pt_regs *regs) 3201 { 3202 struct bpf_uprobe_multi_link *link = uprobe->link; 3203 struct bpf_uprobe_multi_run_ctx run_ctx = { 3204 .entry_ip = entry_ip, 3205 .uprobe = uprobe, 3206 }; 3207 struct bpf_prog *prog = link->link.prog; 3208 bool sleepable = prog->sleepable; 3209 struct bpf_run_ctx *old_run_ctx; 3210 int err = 0; 3211 3212 if (link->task && !same_thread_group(current, link->task)) 3213 return 0; 3214 3215 if (sleepable) 3216 rcu_read_lock_trace(); 3217 else 3218 rcu_read_lock(); 3219 3220 migrate_disable(); 3221 3222 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 3223 err = bpf_prog_run(link->link.prog, regs); 3224 bpf_reset_run_ctx(old_run_ctx); 3225 3226 migrate_enable(); 3227 3228 if (sleepable) 3229 rcu_read_unlock_trace(); 3230 else 3231 rcu_read_unlock(); 3232 return err; 3233 } 3234 3235 static bool 3236 uprobe_multi_link_filter(struct uprobe_consumer *con, struct mm_struct *mm) 3237 { 3238 struct bpf_uprobe *uprobe; 3239 3240 uprobe = container_of(con, struct bpf_uprobe, consumer); 3241 return uprobe->link->task->mm == mm; 3242 } 3243 3244 static int 3245 uprobe_multi_link_handler(struct uprobe_consumer *con, struct pt_regs *regs) 3246 { 3247 struct bpf_uprobe *uprobe; 3248 3249 uprobe = container_of(con, struct bpf_uprobe, consumer); 3250 return uprobe_prog_run(uprobe, instruction_pointer(regs), regs); 3251 } 3252 3253 static int 3254 uprobe_multi_link_ret_handler(struct uprobe_consumer *con, unsigned long func, struct pt_regs *regs) 3255 { 3256 struct bpf_uprobe *uprobe; 3257 3258 uprobe = container_of(con, struct bpf_uprobe, consumer); 3259 return uprobe_prog_run(uprobe, func, regs); 3260 } 3261 3262 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx) 3263 { 3264 struct bpf_uprobe_multi_run_ctx *run_ctx; 3265 3266 run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx, run_ctx); 3267 return run_ctx->entry_ip; 3268 } 3269 3270 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx) 3271 { 3272 struct bpf_uprobe_multi_run_ctx *run_ctx; 3273 3274 run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx, run_ctx); 3275 return run_ctx->uprobe->cookie; 3276 } 3277 3278 int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 3279 { 3280 struct bpf_uprobe_multi_link *link = NULL; 3281 unsigned long __user *uref_ctr_offsets; 3282 struct bpf_link_primer link_primer; 3283 struct bpf_uprobe *uprobes = NULL; 3284 struct task_struct *task = NULL; 3285 unsigned long __user *uoffsets; 3286 u64 __user *ucookies; 3287 void __user *upath; 3288 u32 flags, cnt, i; 3289 struct path path; 3290 char *name; 3291 pid_t pid; 3292 int err; 3293 3294 /* no support for 32bit archs yet */ 3295 if (sizeof(u64) != sizeof(void *)) 3296 return -EOPNOTSUPP; 3297 3298 if (prog->expected_attach_type != BPF_TRACE_UPROBE_MULTI) 3299 return -EINVAL; 3300 3301 flags = attr->link_create.uprobe_multi.flags; 3302 if (flags & ~BPF_F_UPROBE_MULTI_RETURN) 3303 return -EINVAL; 3304 3305 /* 3306 * path, offsets and cnt are mandatory, 3307 * ref_ctr_offsets and cookies are optional 3308 */ 3309 upath = u64_to_user_ptr(attr->link_create.uprobe_multi.path); 3310 uoffsets = u64_to_user_ptr(attr->link_create.uprobe_multi.offsets); 3311 cnt = attr->link_create.uprobe_multi.cnt; 3312 pid = attr->link_create.uprobe_multi.pid; 3313 3314 if (!upath || !uoffsets || !cnt || pid < 0) 3315 return -EINVAL; 3316 if (cnt > MAX_UPROBE_MULTI_CNT) 3317 return -E2BIG; 3318 3319 uref_ctr_offsets = u64_to_user_ptr(attr->link_create.uprobe_multi.ref_ctr_offsets); 3320 ucookies = u64_to_user_ptr(attr->link_create.uprobe_multi.cookies); 3321 3322 name = strndup_user(upath, PATH_MAX); 3323 if (IS_ERR(name)) { 3324 err = PTR_ERR(name); 3325 return err; 3326 } 3327 3328 err = kern_path(name, LOOKUP_FOLLOW, &path); 3329 kfree(name); 3330 if (err) 3331 return err; 3332 3333 if (!d_is_reg(path.dentry)) { 3334 err = -EBADF; 3335 goto error_path_put; 3336 } 3337 3338 if (pid) { 3339 task = get_pid_task(find_vpid(pid), PIDTYPE_TGID); 3340 if (!task) { 3341 err = -ESRCH; 3342 goto error_path_put; 3343 } 3344 } 3345 3346 err = -ENOMEM; 3347 3348 link = kzalloc(sizeof(*link), GFP_KERNEL); 3349 uprobes = kvcalloc(cnt, sizeof(*uprobes), GFP_KERNEL); 3350 3351 if (!uprobes || !link) 3352 goto error_free; 3353 3354 for (i = 0; i < cnt; i++) { 3355 if (__get_user(uprobes[i].offset, uoffsets + i)) { 3356 err = -EFAULT; 3357 goto error_free; 3358 } 3359 if (uprobes[i].offset < 0) { 3360 err = -EINVAL; 3361 goto error_free; 3362 } 3363 if (uref_ctr_offsets && __get_user(uprobes[i].ref_ctr_offset, uref_ctr_offsets + i)) { 3364 err = -EFAULT; 3365 goto error_free; 3366 } 3367 if (ucookies && __get_user(uprobes[i].cookie, ucookies + i)) { 3368 err = -EFAULT; 3369 goto error_free; 3370 } 3371 3372 uprobes[i].link = link; 3373 3374 if (flags & BPF_F_UPROBE_MULTI_RETURN) 3375 uprobes[i].consumer.ret_handler = uprobe_multi_link_ret_handler; 3376 else 3377 uprobes[i].consumer.handler = uprobe_multi_link_handler; 3378 3379 if (pid) 3380 uprobes[i].consumer.filter = uprobe_multi_link_filter; 3381 } 3382 3383 link->cnt = cnt; 3384 link->uprobes = uprobes; 3385 link->path = path; 3386 link->task = task; 3387 link->flags = flags; 3388 3389 bpf_link_init(&link->link, BPF_LINK_TYPE_UPROBE_MULTI, 3390 &bpf_uprobe_multi_link_lops, prog); 3391 3392 for (i = 0; i < cnt; i++) { 3393 uprobes[i].uprobe = uprobe_register(d_real_inode(link->path.dentry), 3394 uprobes[i].offset, 3395 uprobes[i].ref_ctr_offset, 3396 &uprobes[i].consumer); 3397 if (IS_ERR(uprobes[i].uprobe)) { 3398 err = PTR_ERR(uprobes[i].uprobe); 3399 link->cnt = i; 3400 goto error_unregister; 3401 } 3402 } 3403 3404 err = bpf_link_prime(&link->link, &link_primer); 3405 if (err) 3406 goto error_unregister; 3407 3408 return bpf_link_settle(&link_primer); 3409 3410 error_unregister: 3411 bpf_uprobe_unregister(uprobes, link->cnt); 3412 3413 error_free: 3414 kvfree(uprobes); 3415 kfree(link); 3416 if (task) 3417 put_task_struct(task); 3418 error_path_put: 3419 path_put(&path); 3420 return err; 3421 } 3422 #else /* !CONFIG_UPROBES */ 3423 int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 3424 { 3425 return -EOPNOTSUPP; 3426 } 3427 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx) 3428 { 3429 return 0; 3430 } 3431 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx) 3432 { 3433 return 0; 3434 } 3435 #endif /* CONFIG_UPROBES */ 3436 3437 __bpf_kfunc_start_defs(); 3438 3439 __bpf_kfunc bool bpf_session_is_return(void) 3440 { 3441 struct bpf_session_run_ctx *session_ctx; 3442 3443 session_ctx = container_of(current->bpf_ctx, struct bpf_session_run_ctx, run_ctx); 3444 return session_ctx->is_return; 3445 } 3446 3447 __bpf_kfunc __u64 *bpf_session_cookie(void) 3448 { 3449 struct bpf_session_run_ctx *session_ctx; 3450 3451 session_ctx = container_of(current->bpf_ctx, struct bpf_session_run_ctx, run_ctx); 3452 return session_ctx->data; 3453 } 3454 3455 __bpf_kfunc_end_defs(); 3456 3457 BTF_KFUNCS_START(kprobe_multi_kfunc_set_ids) 3458 BTF_ID_FLAGS(func, bpf_session_is_return) 3459 BTF_ID_FLAGS(func, bpf_session_cookie) 3460 BTF_KFUNCS_END(kprobe_multi_kfunc_set_ids) 3461 3462 static int bpf_kprobe_multi_filter(const struct bpf_prog *prog, u32 kfunc_id) 3463 { 3464 if (!btf_id_set8_contains(&kprobe_multi_kfunc_set_ids, kfunc_id)) 3465 return 0; 3466 3467 if (!is_kprobe_session(prog)) 3468 return -EACCES; 3469 3470 return 0; 3471 } 3472 3473 static const struct btf_kfunc_id_set bpf_kprobe_multi_kfunc_set = { 3474 .owner = THIS_MODULE, 3475 .set = &kprobe_multi_kfunc_set_ids, 3476 .filter = bpf_kprobe_multi_filter, 3477 }; 3478 3479 static int __init bpf_kprobe_multi_kfuncs_init(void) 3480 { 3481 return register_btf_kfunc_id_set(BPF_PROG_TYPE_KPROBE, &bpf_kprobe_multi_kfunc_set); 3482 } 3483 3484 late_initcall(bpf_kprobe_multi_kfuncs_init); 3485