1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/kernel.h> 6 #include <linux/types.h> 7 #include <linux/slab.h> 8 #include <linux/bpf.h> 9 #include <linux/bpf_perf_event.h> 10 #include <linux/filter.h> 11 #include <linux/uaccess.h> 12 #include <linux/ctype.h> 13 #include <linux/kprobes.h> 14 #include <linux/syscalls.h> 15 #include <linux/error-injection.h> 16 17 #include <asm/tlb.h> 18 19 #include "trace_probe.h" 20 #include "trace.h" 21 22 #define bpf_event_rcu_dereference(p) \ 23 rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex)) 24 25 #ifdef CONFIG_MODULES 26 struct bpf_trace_module { 27 struct module *module; 28 struct list_head list; 29 }; 30 31 static LIST_HEAD(bpf_trace_modules); 32 static DEFINE_MUTEX(bpf_module_mutex); 33 34 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 35 { 36 struct bpf_raw_event_map *btp, *ret = NULL; 37 struct bpf_trace_module *btm; 38 unsigned int i; 39 40 mutex_lock(&bpf_module_mutex); 41 list_for_each_entry(btm, &bpf_trace_modules, list) { 42 for (i = 0; i < btm->module->num_bpf_raw_events; ++i) { 43 btp = &btm->module->bpf_raw_events[i]; 44 if (!strcmp(btp->tp->name, name)) { 45 if (try_module_get(btm->module)) 46 ret = btp; 47 goto out; 48 } 49 } 50 } 51 out: 52 mutex_unlock(&bpf_module_mutex); 53 return ret; 54 } 55 #else 56 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 57 { 58 return NULL; 59 } 60 #endif /* CONFIG_MODULES */ 61 62 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 63 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 64 65 /** 66 * trace_call_bpf - invoke BPF program 67 * @call: tracepoint event 68 * @ctx: opaque context pointer 69 * 70 * kprobe handlers execute BPF programs via this helper. 71 * Can be used from static tracepoints in the future. 72 * 73 * Return: BPF programs always return an integer which is interpreted by 74 * kprobe handler as: 75 * 0 - return from kprobe (event is filtered out) 76 * 1 - store kprobe event into ring buffer 77 * Other values are reserved and currently alias to 1 78 */ 79 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx) 80 { 81 unsigned int ret; 82 83 if (in_nmi()) /* not supported yet */ 84 return 1; 85 86 cant_sleep(); 87 88 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) { 89 /* 90 * since some bpf program is already running on this cpu, 91 * don't call into another bpf program (same or different) 92 * and don't send kprobe event into ring-buffer, 93 * so return zero here 94 */ 95 ret = 0; 96 goto out; 97 } 98 99 /* 100 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock 101 * to all call sites, we did a bpf_prog_array_valid() there to check 102 * whether call->prog_array is empty or not, which is 103 * a heurisitc to speed up execution. 104 * 105 * If bpf_prog_array_valid() fetched prog_array was 106 * non-NULL, we go into trace_call_bpf() and do the actual 107 * proper rcu_dereference() under RCU lock. 108 * If it turns out that prog_array is NULL then, we bail out. 109 * For the opposite, if the bpf_prog_array_valid() fetched pointer 110 * was NULL, you'll skip the prog_array with the risk of missing 111 * out of events when it was updated in between this and the 112 * rcu_dereference() which is accepted risk. 113 */ 114 ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN); 115 116 out: 117 __this_cpu_dec(bpf_prog_active); 118 119 return ret; 120 } 121 122 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 123 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc) 124 { 125 regs_set_return_value(regs, rc); 126 override_function_with_return(regs); 127 return 0; 128 } 129 130 static const struct bpf_func_proto bpf_override_return_proto = { 131 .func = bpf_override_return, 132 .gpl_only = true, 133 .ret_type = RET_INTEGER, 134 .arg1_type = ARG_PTR_TO_CTX, 135 .arg2_type = ARG_ANYTHING, 136 }; 137 #endif 138 139 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size, 140 const void __user *, unsafe_ptr) 141 { 142 int ret = probe_user_read(dst, unsafe_ptr, size); 143 144 if (unlikely(ret < 0)) 145 memset(dst, 0, size); 146 147 return ret; 148 } 149 150 static const struct bpf_func_proto bpf_probe_read_user_proto = { 151 .func = bpf_probe_read_user, 152 .gpl_only = true, 153 .ret_type = RET_INTEGER, 154 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 155 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 156 .arg3_type = ARG_ANYTHING, 157 }; 158 159 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size, 160 const void __user *, unsafe_ptr) 161 { 162 int ret = strncpy_from_unsafe_user(dst, unsafe_ptr, size); 163 164 if (unlikely(ret < 0)) 165 memset(dst, 0, size); 166 167 return ret; 168 } 169 170 static const struct bpf_func_proto bpf_probe_read_user_str_proto = { 171 .func = bpf_probe_read_user_str, 172 .gpl_only = true, 173 .ret_type = RET_INTEGER, 174 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 175 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 176 .arg3_type = ARG_ANYTHING, 177 }; 178 179 static __always_inline int 180 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr, 181 const bool compat) 182 { 183 int ret = security_locked_down(LOCKDOWN_BPF_READ); 184 185 if (unlikely(ret < 0)) 186 goto out; 187 ret = compat ? probe_kernel_read(dst, unsafe_ptr, size) : 188 probe_kernel_read_strict(dst, unsafe_ptr, size); 189 if (unlikely(ret < 0)) 190 out: 191 memset(dst, 0, size); 192 return ret; 193 } 194 195 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size, 196 const void *, unsafe_ptr) 197 { 198 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr, false); 199 } 200 201 static const struct bpf_func_proto bpf_probe_read_kernel_proto = { 202 .func = bpf_probe_read_kernel, 203 .gpl_only = true, 204 .ret_type = RET_INTEGER, 205 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 206 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 207 .arg3_type = ARG_ANYTHING, 208 }; 209 210 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size, 211 const void *, unsafe_ptr) 212 { 213 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr, true); 214 } 215 216 static const struct bpf_func_proto bpf_probe_read_compat_proto = { 217 .func = bpf_probe_read_compat, 218 .gpl_only = true, 219 .ret_type = RET_INTEGER, 220 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 221 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 222 .arg3_type = ARG_ANYTHING, 223 }; 224 225 static __always_inline int 226 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr, 227 const bool compat) 228 { 229 int ret = security_locked_down(LOCKDOWN_BPF_READ); 230 231 if (unlikely(ret < 0)) 232 goto out; 233 /* 234 * The strncpy_from_unsafe_*() call will likely not fill the entire 235 * buffer, but that's okay in this circumstance as we're probing 236 * arbitrary memory anyway similar to bpf_probe_read_*() and might 237 * as well probe the stack. Thus, memory is explicitly cleared 238 * only in error case, so that improper users ignoring return 239 * code altogether don't copy garbage; otherwise length of string 240 * is returned that can be used for bpf_perf_event_output() et al. 241 */ 242 ret = compat ? strncpy_from_unsafe(dst, unsafe_ptr, size) : 243 strncpy_from_unsafe_strict(dst, unsafe_ptr, size); 244 if (unlikely(ret < 0)) 245 out: 246 memset(dst, 0, size); 247 return ret; 248 } 249 250 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size, 251 const void *, unsafe_ptr) 252 { 253 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr, false); 254 } 255 256 static const struct bpf_func_proto bpf_probe_read_kernel_str_proto = { 257 .func = bpf_probe_read_kernel_str, 258 .gpl_only = true, 259 .ret_type = RET_INTEGER, 260 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 261 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 262 .arg3_type = ARG_ANYTHING, 263 }; 264 265 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size, 266 const void *, unsafe_ptr) 267 { 268 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr, true); 269 } 270 271 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = { 272 .func = bpf_probe_read_compat_str, 273 .gpl_only = true, 274 .ret_type = RET_INTEGER, 275 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 276 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 277 .arg3_type = ARG_ANYTHING, 278 }; 279 280 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src, 281 u32, size) 282 { 283 /* 284 * Ensure we're in user context which is safe for the helper to 285 * run. This helper has no business in a kthread. 286 * 287 * access_ok() should prevent writing to non-user memory, but in 288 * some situations (nommu, temporary switch, etc) access_ok() does 289 * not provide enough validation, hence the check on KERNEL_DS. 290 * 291 * nmi_uaccess_okay() ensures the probe is not run in an interim 292 * state, when the task or mm are switched. This is specifically 293 * required to prevent the use of temporary mm. 294 */ 295 296 if (unlikely(in_interrupt() || 297 current->flags & (PF_KTHREAD | PF_EXITING))) 298 return -EPERM; 299 if (unlikely(uaccess_kernel())) 300 return -EPERM; 301 if (unlikely(!nmi_uaccess_okay())) 302 return -EPERM; 303 304 return probe_user_write(unsafe_ptr, src, size); 305 } 306 307 static const struct bpf_func_proto bpf_probe_write_user_proto = { 308 .func = bpf_probe_write_user, 309 .gpl_only = true, 310 .ret_type = RET_INTEGER, 311 .arg1_type = ARG_ANYTHING, 312 .arg2_type = ARG_PTR_TO_MEM, 313 .arg3_type = ARG_CONST_SIZE, 314 }; 315 316 static const struct bpf_func_proto *bpf_get_probe_write_proto(void) 317 { 318 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!", 319 current->comm, task_pid_nr(current)); 320 321 return &bpf_probe_write_user_proto; 322 } 323 324 /* 325 * Only limited trace_printk() conversion specifiers allowed: 326 * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %s 327 */ 328 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1, 329 u64, arg2, u64, arg3) 330 { 331 bool str_seen = false; 332 int mod[3] = {}; 333 int fmt_cnt = 0; 334 u64 unsafe_addr; 335 char buf[64]; 336 int i; 337 338 /* 339 * bpf_check()->check_func_arg()->check_stack_boundary() 340 * guarantees that fmt points to bpf program stack, 341 * fmt_size bytes of it were initialized and fmt_size > 0 342 */ 343 if (fmt[--fmt_size] != 0) 344 return -EINVAL; 345 346 /* check format string for allowed specifiers */ 347 for (i = 0; i < fmt_size; i++) { 348 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) 349 return -EINVAL; 350 351 if (fmt[i] != '%') 352 continue; 353 354 if (fmt_cnt >= 3) 355 return -EINVAL; 356 357 /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */ 358 i++; 359 if (fmt[i] == 'l') { 360 mod[fmt_cnt]++; 361 i++; 362 } else if (fmt[i] == 'p' || fmt[i] == 's') { 363 mod[fmt_cnt]++; 364 /* disallow any further format extensions */ 365 if (fmt[i + 1] != 0 && 366 !isspace(fmt[i + 1]) && 367 !ispunct(fmt[i + 1])) 368 return -EINVAL; 369 fmt_cnt++; 370 if (fmt[i] == 's') { 371 if (str_seen) 372 /* allow only one '%s' per fmt string */ 373 return -EINVAL; 374 str_seen = true; 375 376 switch (fmt_cnt) { 377 case 1: 378 unsafe_addr = arg1; 379 arg1 = (long) buf; 380 break; 381 case 2: 382 unsafe_addr = arg2; 383 arg2 = (long) buf; 384 break; 385 case 3: 386 unsafe_addr = arg3; 387 arg3 = (long) buf; 388 break; 389 } 390 buf[0] = 0; 391 strncpy_from_unsafe(buf, 392 (void *) (long) unsafe_addr, 393 sizeof(buf)); 394 } 395 continue; 396 } 397 398 if (fmt[i] == 'l') { 399 mod[fmt_cnt]++; 400 i++; 401 } 402 403 if (fmt[i] != 'i' && fmt[i] != 'd' && 404 fmt[i] != 'u' && fmt[i] != 'x') 405 return -EINVAL; 406 fmt_cnt++; 407 } 408 409 /* Horrid workaround for getting va_list handling working with different 410 * argument type combinations generically for 32 and 64 bit archs. 411 */ 412 #define __BPF_TP_EMIT() __BPF_ARG3_TP() 413 #define __BPF_TP(...) \ 414 __trace_printk(0 /* Fake ip */, \ 415 fmt, ##__VA_ARGS__) 416 417 #define __BPF_ARG1_TP(...) \ 418 ((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64)) \ 419 ? __BPF_TP(arg1, ##__VA_ARGS__) \ 420 : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32)) \ 421 ? __BPF_TP((long)arg1, ##__VA_ARGS__) \ 422 : __BPF_TP((u32)arg1, ##__VA_ARGS__))) 423 424 #define __BPF_ARG2_TP(...) \ 425 ((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64)) \ 426 ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__) \ 427 : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32)) \ 428 ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__) \ 429 : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__))) 430 431 #define __BPF_ARG3_TP(...) \ 432 ((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64)) \ 433 ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__) \ 434 : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32)) \ 435 ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__) \ 436 : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__))) 437 438 return __BPF_TP_EMIT(); 439 } 440 441 static const struct bpf_func_proto bpf_trace_printk_proto = { 442 .func = bpf_trace_printk, 443 .gpl_only = true, 444 .ret_type = RET_INTEGER, 445 .arg1_type = ARG_PTR_TO_MEM, 446 .arg2_type = ARG_CONST_SIZE, 447 }; 448 449 const struct bpf_func_proto *bpf_get_trace_printk_proto(void) 450 { 451 /* 452 * this program might be calling bpf_trace_printk, 453 * so allocate per-cpu printk buffers 454 */ 455 trace_printk_init_buffers(); 456 457 return &bpf_trace_printk_proto; 458 } 459 460 #define MAX_SEQ_PRINTF_VARARGS 12 461 #define MAX_SEQ_PRINTF_MAX_MEMCPY 6 462 #define MAX_SEQ_PRINTF_STR_LEN 128 463 464 struct bpf_seq_printf_buf { 465 char buf[MAX_SEQ_PRINTF_MAX_MEMCPY][MAX_SEQ_PRINTF_STR_LEN]; 466 }; 467 static DEFINE_PER_CPU(struct bpf_seq_printf_buf, bpf_seq_printf_buf); 468 static DEFINE_PER_CPU(int, bpf_seq_printf_buf_used); 469 470 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size, 471 const void *, data, u32, data_len) 472 { 473 int err = -EINVAL, fmt_cnt = 0, memcpy_cnt = 0; 474 int i, buf_used, copy_size, num_args; 475 u64 params[MAX_SEQ_PRINTF_VARARGS]; 476 struct bpf_seq_printf_buf *bufs; 477 const u64 *args = data; 478 479 buf_used = this_cpu_inc_return(bpf_seq_printf_buf_used); 480 if (WARN_ON_ONCE(buf_used > 1)) { 481 err = -EBUSY; 482 goto out; 483 } 484 485 bufs = this_cpu_ptr(&bpf_seq_printf_buf); 486 487 /* 488 * bpf_check()->check_func_arg()->check_stack_boundary() 489 * guarantees that fmt points to bpf program stack, 490 * fmt_size bytes of it were initialized and fmt_size > 0 491 */ 492 if (fmt[--fmt_size] != 0) 493 goto out; 494 495 if (data_len & 7) 496 goto out; 497 498 for (i = 0; i < fmt_size; i++) { 499 if (fmt[i] == '%') { 500 if (fmt[i + 1] == '%') 501 i++; 502 else if (!data || !data_len) 503 goto out; 504 } 505 } 506 507 num_args = data_len / 8; 508 509 /* check format string for allowed specifiers */ 510 for (i = 0; i < fmt_size; i++) { 511 /* only printable ascii for now. */ 512 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { 513 err = -EINVAL; 514 goto out; 515 } 516 517 if (fmt[i] != '%') 518 continue; 519 520 if (fmt[i + 1] == '%') { 521 i++; 522 continue; 523 } 524 525 if (fmt_cnt >= MAX_SEQ_PRINTF_VARARGS) { 526 err = -E2BIG; 527 goto out; 528 } 529 530 if (fmt_cnt >= num_args) { 531 err = -EINVAL; 532 goto out; 533 } 534 535 /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */ 536 i++; 537 538 /* skip optional "[0 +-][num]" width formating field */ 539 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' || 540 fmt[i] == ' ') 541 i++; 542 if (fmt[i] >= '1' && fmt[i] <= '9') { 543 i++; 544 while (fmt[i] >= '0' && fmt[i] <= '9') 545 i++; 546 } 547 548 if (fmt[i] == 's') { 549 /* try our best to copy */ 550 if (memcpy_cnt >= MAX_SEQ_PRINTF_MAX_MEMCPY) { 551 err = -E2BIG; 552 goto out; 553 } 554 555 err = strncpy_from_unsafe(bufs->buf[memcpy_cnt], 556 (void *) (long) args[fmt_cnt], 557 MAX_SEQ_PRINTF_STR_LEN); 558 if (err < 0) 559 bufs->buf[memcpy_cnt][0] = '\0'; 560 params[fmt_cnt] = (u64)(long)bufs->buf[memcpy_cnt]; 561 562 fmt_cnt++; 563 memcpy_cnt++; 564 continue; 565 } 566 567 if (fmt[i] == 'p') { 568 if (fmt[i + 1] == 0 || 569 fmt[i + 1] == 'K' || 570 fmt[i + 1] == 'x') { 571 /* just kernel pointers */ 572 params[fmt_cnt] = args[fmt_cnt]; 573 fmt_cnt++; 574 continue; 575 } 576 577 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ 578 if (fmt[i + 1] != 'i' && fmt[i + 1] != 'I') { 579 err = -EINVAL; 580 goto out; 581 } 582 if (fmt[i + 2] != '4' && fmt[i + 2] != '6') { 583 err = -EINVAL; 584 goto out; 585 } 586 587 if (memcpy_cnt >= MAX_SEQ_PRINTF_MAX_MEMCPY) { 588 err = -E2BIG; 589 goto out; 590 } 591 592 593 copy_size = (fmt[i + 2] == '4') ? 4 : 16; 594 595 err = probe_kernel_read(bufs->buf[memcpy_cnt], 596 (void *) (long) args[fmt_cnt], 597 copy_size); 598 if (err < 0) 599 memset(bufs->buf[memcpy_cnt], 0, copy_size); 600 params[fmt_cnt] = (u64)(long)bufs->buf[memcpy_cnt]; 601 602 i += 2; 603 fmt_cnt++; 604 memcpy_cnt++; 605 continue; 606 } 607 608 if (fmt[i] == 'l') { 609 i++; 610 if (fmt[i] == 'l') 611 i++; 612 } 613 614 if (fmt[i] != 'i' && fmt[i] != 'd' && 615 fmt[i] != 'u' && fmt[i] != 'x') { 616 err = -EINVAL; 617 goto out; 618 } 619 620 params[fmt_cnt] = args[fmt_cnt]; 621 fmt_cnt++; 622 } 623 624 /* Maximumly we can have MAX_SEQ_PRINTF_VARARGS parameter, just give 625 * all of them to seq_printf(). 626 */ 627 seq_printf(m, fmt, params[0], params[1], params[2], params[3], 628 params[4], params[5], params[6], params[7], params[8], 629 params[9], params[10], params[11]); 630 631 err = seq_has_overflowed(m) ? -EOVERFLOW : 0; 632 out: 633 this_cpu_dec(bpf_seq_printf_buf_used); 634 return err; 635 } 636 637 static int bpf_seq_printf_btf_ids[5]; 638 static const struct bpf_func_proto bpf_seq_printf_proto = { 639 .func = bpf_seq_printf, 640 .gpl_only = true, 641 .ret_type = RET_INTEGER, 642 .arg1_type = ARG_PTR_TO_BTF_ID, 643 .arg2_type = ARG_PTR_TO_MEM, 644 .arg3_type = ARG_CONST_SIZE, 645 .arg4_type = ARG_PTR_TO_MEM_OR_NULL, 646 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 647 .btf_id = bpf_seq_printf_btf_ids, 648 }; 649 650 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len) 651 { 652 return seq_write(m, data, len) ? -EOVERFLOW : 0; 653 } 654 655 static int bpf_seq_write_btf_ids[5]; 656 static const struct bpf_func_proto bpf_seq_write_proto = { 657 .func = bpf_seq_write, 658 .gpl_only = true, 659 .ret_type = RET_INTEGER, 660 .arg1_type = ARG_PTR_TO_BTF_ID, 661 .arg2_type = ARG_PTR_TO_MEM, 662 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 663 .btf_id = bpf_seq_write_btf_ids, 664 }; 665 666 static __always_inline int 667 get_map_perf_counter(struct bpf_map *map, u64 flags, 668 u64 *value, u64 *enabled, u64 *running) 669 { 670 struct bpf_array *array = container_of(map, struct bpf_array, map); 671 unsigned int cpu = smp_processor_id(); 672 u64 index = flags & BPF_F_INDEX_MASK; 673 struct bpf_event_entry *ee; 674 675 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 676 return -EINVAL; 677 if (index == BPF_F_CURRENT_CPU) 678 index = cpu; 679 if (unlikely(index >= array->map.max_entries)) 680 return -E2BIG; 681 682 ee = READ_ONCE(array->ptrs[index]); 683 if (!ee) 684 return -ENOENT; 685 686 return perf_event_read_local(ee->event, value, enabled, running); 687 } 688 689 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags) 690 { 691 u64 value = 0; 692 int err; 693 694 err = get_map_perf_counter(map, flags, &value, NULL, NULL); 695 /* 696 * this api is ugly since we miss [-22..-2] range of valid 697 * counter values, but that's uapi 698 */ 699 if (err) 700 return err; 701 return value; 702 } 703 704 static const struct bpf_func_proto bpf_perf_event_read_proto = { 705 .func = bpf_perf_event_read, 706 .gpl_only = true, 707 .ret_type = RET_INTEGER, 708 .arg1_type = ARG_CONST_MAP_PTR, 709 .arg2_type = ARG_ANYTHING, 710 }; 711 712 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags, 713 struct bpf_perf_event_value *, buf, u32, size) 714 { 715 int err = -EINVAL; 716 717 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 718 goto clear; 719 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled, 720 &buf->running); 721 if (unlikely(err)) 722 goto clear; 723 return 0; 724 clear: 725 memset(buf, 0, size); 726 return err; 727 } 728 729 static const struct bpf_func_proto bpf_perf_event_read_value_proto = { 730 .func = bpf_perf_event_read_value, 731 .gpl_only = true, 732 .ret_type = RET_INTEGER, 733 .arg1_type = ARG_CONST_MAP_PTR, 734 .arg2_type = ARG_ANYTHING, 735 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 736 .arg4_type = ARG_CONST_SIZE, 737 }; 738 739 static __always_inline u64 740 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map, 741 u64 flags, struct perf_sample_data *sd) 742 { 743 struct bpf_array *array = container_of(map, struct bpf_array, map); 744 unsigned int cpu = smp_processor_id(); 745 u64 index = flags & BPF_F_INDEX_MASK; 746 struct bpf_event_entry *ee; 747 struct perf_event *event; 748 749 if (index == BPF_F_CURRENT_CPU) 750 index = cpu; 751 if (unlikely(index >= array->map.max_entries)) 752 return -E2BIG; 753 754 ee = READ_ONCE(array->ptrs[index]); 755 if (!ee) 756 return -ENOENT; 757 758 event = ee->event; 759 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE || 760 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT)) 761 return -EINVAL; 762 763 if (unlikely(event->oncpu != cpu)) 764 return -EOPNOTSUPP; 765 766 return perf_event_output(event, sd, regs); 767 } 768 769 /* 770 * Support executing tracepoints in normal, irq, and nmi context that each call 771 * bpf_perf_event_output 772 */ 773 struct bpf_trace_sample_data { 774 struct perf_sample_data sds[3]; 775 }; 776 777 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds); 778 static DEFINE_PER_CPU(int, bpf_trace_nest_level); 779 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map, 780 u64, flags, void *, data, u64, size) 781 { 782 struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds); 783 int nest_level = this_cpu_inc_return(bpf_trace_nest_level); 784 struct perf_raw_record raw = { 785 .frag = { 786 .size = size, 787 .data = data, 788 }, 789 }; 790 struct perf_sample_data *sd; 791 int err; 792 793 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) { 794 err = -EBUSY; 795 goto out; 796 } 797 798 sd = &sds->sds[nest_level - 1]; 799 800 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) { 801 err = -EINVAL; 802 goto out; 803 } 804 805 perf_sample_data_init(sd, 0, 0); 806 sd->raw = &raw; 807 808 err = __bpf_perf_event_output(regs, map, flags, sd); 809 810 out: 811 this_cpu_dec(bpf_trace_nest_level); 812 return err; 813 } 814 815 static const struct bpf_func_proto bpf_perf_event_output_proto = { 816 .func = bpf_perf_event_output, 817 .gpl_only = true, 818 .ret_type = RET_INTEGER, 819 .arg1_type = ARG_PTR_TO_CTX, 820 .arg2_type = ARG_CONST_MAP_PTR, 821 .arg3_type = ARG_ANYTHING, 822 .arg4_type = ARG_PTR_TO_MEM, 823 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 824 }; 825 826 static DEFINE_PER_CPU(int, bpf_event_output_nest_level); 827 struct bpf_nested_pt_regs { 828 struct pt_regs regs[3]; 829 }; 830 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs); 831 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds); 832 833 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 834 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) 835 { 836 int nest_level = this_cpu_inc_return(bpf_event_output_nest_level); 837 struct perf_raw_frag frag = { 838 .copy = ctx_copy, 839 .size = ctx_size, 840 .data = ctx, 841 }; 842 struct perf_raw_record raw = { 843 .frag = { 844 { 845 .next = ctx_size ? &frag : NULL, 846 }, 847 .size = meta_size, 848 .data = meta, 849 }, 850 }; 851 struct perf_sample_data *sd; 852 struct pt_regs *regs; 853 u64 ret; 854 855 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) { 856 ret = -EBUSY; 857 goto out; 858 } 859 sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]); 860 regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]); 861 862 perf_fetch_caller_regs(regs); 863 perf_sample_data_init(sd, 0, 0); 864 sd->raw = &raw; 865 866 ret = __bpf_perf_event_output(regs, map, flags, sd); 867 out: 868 this_cpu_dec(bpf_event_output_nest_level); 869 return ret; 870 } 871 872 BPF_CALL_0(bpf_get_current_task) 873 { 874 return (long) current; 875 } 876 877 static const struct bpf_func_proto bpf_get_current_task_proto = { 878 .func = bpf_get_current_task, 879 .gpl_only = true, 880 .ret_type = RET_INTEGER, 881 }; 882 883 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx) 884 { 885 struct bpf_array *array = container_of(map, struct bpf_array, map); 886 struct cgroup *cgrp; 887 888 if (unlikely(idx >= array->map.max_entries)) 889 return -E2BIG; 890 891 cgrp = READ_ONCE(array->ptrs[idx]); 892 if (unlikely(!cgrp)) 893 return -EAGAIN; 894 895 return task_under_cgroup_hierarchy(current, cgrp); 896 } 897 898 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = { 899 .func = bpf_current_task_under_cgroup, 900 .gpl_only = false, 901 .ret_type = RET_INTEGER, 902 .arg1_type = ARG_CONST_MAP_PTR, 903 .arg2_type = ARG_ANYTHING, 904 }; 905 906 struct send_signal_irq_work { 907 struct irq_work irq_work; 908 struct task_struct *task; 909 u32 sig; 910 enum pid_type type; 911 }; 912 913 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work); 914 915 static void do_bpf_send_signal(struct irq_work *entry) 916 { 917 struct send_signal_irq_work *work; 918 919 work = container_of(entry, struct send_signal_irq_work, irq_work); 920 group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type); 921 } 922 923 static int bpf_send_signal_common(u32 sig, enum pid_type type) 924 { 925 struct send_signal_irq_work *work = NULL; 926 927 /* Similar to bpf_probe_write_user, task needs to be 928 * in a sound condition and kernel memory access be 929 * permitted in order to send signal to the current 930 * task. 931 */ 932 if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING))) 933 return -EPERM; 934 if (unlikely(uaccess_kernel())) 935 return -EPERM; 936 if (unlikely(!nmi_uaccess_okay())) 937 return -EPERM; 938 939 if (irqs_disabled()) { 940 /* Do an early check on signal validity. Otherwise, 941 * the error is lost in deferred irq_work. 942 */ 943 if (unlikely(!valid_signal(sig))) 944 return -EINVAL; 945 946 work = this_cpu_ptr(&send_signal_work); 947 if (atomic_read(&work->irq_work.flags) & IRQ_WORK_BUSY) 948 return -EBUSY; 949 950 /* Add the current task, which is the target of sending signal, 951 * to the irq_work. The current task may change when queued 952 * irq works get executed. 953 */ 954 work->task = current; 955 work->sig = sig; 956 work->type = type; 957 irq_work_queue(&work->irq_work); 958 return 0; 959 } 960 961 return group_send_sig_info(sig, SEND_SIG_PRIV, current, type); 962 } 963 964 BPF_CALL_1(bpf_send_signal, u32, sig) 965 { 966 return bpf_send_signal_common(sig, PIDTYPE_TGID); 967 } 968 969 static const struct bpf_func_proto bpf_send_signal_proto = { 970 .func = bpf_send_signal, 971 .gpl_only = false, 972 .ret_type = RET_INTEGER, 973 .arg1_type = ARG_ANYTHING, 974 }; 975 976 BPF_CALL_1(bpf_send_signal_thread, u32, sig) 977 { 978 return bpf_send_signal_common(sig, PIDTYPE_PID); 979 } 980 981 static const struct bpf_func_proto bpf_send_signal_thread_proto = { 982 .func = bpf_send_signal_thread, 983 .gpl_only = false, 984 .ret_type = RET_INTEGER, 985 .arg1_type = ARG_ANYTHING, 986 }; 987 988 const struct bpf_func_proto * 989 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 990 { 991 switch (func_id) { 992 case BPF_FUNC_map_lookup_elem: 993 return &bpf_map_lookup_elem_proto; 994 case BPF_FUNC_map_update_elem: 995 return &bpf_map_update_elem_proto; 996 case BPF_FUNC_map_delete_elem: 997 return &bpf_map_delete_elem_proto; 998 case BPF_FUNC_map_push_elem: 999 return &bpf_map_push_elem_proto; 1000 case BPF_FUNC_map_pop_elem: 1001 return &bpf_map_pop_elem_proto; 1002 case BPF_FUNC_map_peek_elem: 1003 return &bpf_map_peek_elem_proto; 1004 case BPF_FUNC_ktime_get_ns: 1005 return &bpf_ktime_get_ns_proto; 1006 case BPF_FUNC_ktime_get_boot_ns: 1007 return &bpf_ktime_get_boot_ns_proto; 1008 case BPF_FUNC_tail_call: 1009 return &bpf_tail_call_proto; 1010 case BPF_FUNC_get_current_pid_tgid: 1011 return &bpf_get_current_pid_tgid_proto; 1012 case BPF_FUNC_get_current_task: 1013 return &bpf_get_current_task_proto; 1014 case BPF_FUNC_get_current_uid_gid: 1015 return &bpf_get_current_uid_gid_proto; 1016 case BPF_FUNC_get_current_comm: 1017 return &bpf_get_current_comm_proto; 1018 case BPF_FUNC_trace_printk: 1019 return bpf_get_trace_printk_proto(); 1020 case BPF_FUNC_get_smp_processor_id: 1021 return &bpf_get_smp_processor_id_proto; 1022 case BPF_FUNC_get_numa_node_id: 1023 return &bpf_get_numa_node_id_proto; 1024 case BPF_FUNC_perf_event_read: 1025 return &bpf_perf_event_read_proto; 1026 case BPF_FUNC_probe_write_user: 1027 return bpf_get_probe_write_proto(); 1028 case BPF_FUNC_current_task_under_cgroup: 1029 return &bpf_current_task_under_cgroup_proto; 1030 case BPF_FUNC_get_prandom_u32: 1031 return &bpf_get_prandom_u32_proto; 1032 case BPF_FUNC_probe_read_user: 1033 return &bpf_probe_read_user_proto; 1034 case BPF_FUNC_probe_read_kernel: 1035 return &bpf_probe_read_kernel_proto; 1036 case BPF_FUNC_probe_read: 1037 return &bpf_probe_read_compat_proto; 1038 case BPF_FUNC_probe_read_user_str: 1039 return &bpf_probe_read_user_str_proto; 1040 case BPF_FUNC_probe_read_kernel_str: 1041 return &bpf_probe_read_kernel_str_proto; 1042 case BPF_FUNC_probe_read_str: 1043 return &bpf_probe_read_compat_str_proto; 1044 #ifdef CONFIG_CGROUPS 1045 case BPF_FUNC_get_current_cgroup_id: 1046 return &bpf_get_current_cgroup_id_proto; 1047 #endif 1048 case BPF_FUNC_send_signal: 1049 return &bpf_send_signal_proto; 1050 case BPF_FUNC_send_signal_thread: 1051 return &bpf_send_signal_thread_proto; 1052 case BPF_FUNC_perf_event_read_value: 1053 return &bpf_perf_event_read_value_proto; 1054 case BPF_FUNC_get_ns_current_pid_tgid: 1055 return &bpf_get_ns_current_pid_tgid_proto; 1056 default: 1057 return NULL; 1058 } 1059 } 1060 1061 static const struct bpf_func_proto * 1062 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1063 { 1064 switch (func_id) { 1065 case BPF_FUNC_perf_event_output: 1066 return &bpf_perf_event_output_proto; 1067 case BPF_FUNC_get_stackid: 1068 return &bpf_get_stackid_proto; 1069 case BPF_FUNC_get_stack: 1070 return &bpf_get_stack_proto; 1071 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 1072 case BPF_FUNC_override_return: 1073 return &bpf_override_return_proto; 1074 #endif 1075 default: 1076 return bpf_tracing_func_proto(func_id, prog); 1077 } 1078 } 1079 1080 /* bpf+kprobe programs can access fields of 'struct pt_regs' */ 1081 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1082 const struct bpf_prog *prog, 1083 struct bpf_insn_access_aux *info) 1084 { 1085 if (off < 0 || off >= sizeof(struct pt_regs)) 1086 return false; 1087 if (type != BPF_READ) 1088 return false; 1089 if (off % size != 0) 1090 return false; 1091 /* 1092 * Assertion for 32 bit to make sure last 8 byte access 1093 * (BPF_DW) to the last 4 byte member is disallowed. 1094 */ 1095 if (off + size > sizeof(struct pt_regs)) 1096 return false; 1097 1098 return true; 1099 } 1100 1101 const struct bpf_verifier_ops kprobe_verifier_ops = { 1102 .get_func_proto = kprobe_prog_func_proto, 1103 .is_valid_access = kprobe_prog_is_valid_access, 1104 }; 1105 1106 const struct bpf_prog_ops kprobe_prog_ops = { 1107 }; 1108 1109 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map, 1110 u64, flags, void *, data, u64, size) 1111 { 1112 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1113 1114 /* 1115 * r1 points to perf tracepoint buffer where first 8 bytes are hidden 1116 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it 1117 * from there and call the same bpf_perf_event_output() helper inline. 1118 */ 1119 return ____bpf_perf_event_output(regs, map, flags, data, size); 1120 } 1121 1122 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = { 1123 .func = bpf_perf_event_output_tp, 1124 .gpl_only = true, 1125 .ret_type = RET_INTEGER, 1126 .arg1_type = ARG_PTR_TO_CTX, 1127 .arg2_type = ARG_CONST_MAP_PTR, 1128 .arg3_type = ARG_ANYTHING, 1129 .arg4_type = ARG_PTR_TO_MEM, 1130 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1131 }; 1132 1133 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map, 1134 u64, flags) 1135 { 1136 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1137 1138 /* 1139 * Same comment as in bpf_perf_event_output_tp(), only that this time 1140 * the other helper's function body cannot be inlined due to being 1141 * external, thus we need to call raw helper function. 1142 */ 1143 return bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1144 flags, 0, 0); 1145 } 1146 1147 static const struct bpf_func_proto bpf_get_stackid_proto_tp = { 1148 .func = bpf_get_stackid_tp, 1149 .gpl_only = true, 1150 .ret_type = RET_INTEGER, 1151 .arg1_type = ARG_PTR_TO_CTX, 1152 .arg2_type = ARG_CONST_MAP_PTR, 1153 .arg3_type = ARG_ANYTHING, 1154 }; 1155 1156 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size, 1157 u64, flags) 1158 { 1159 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1160 1161 return bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1162 (unsigned long) size, flags, 0); 1163 } 1164 1165 static const struct bpf_func_proto bpf_get_stack_proto_tp = { 1166 .func = bpf_get_stack_tp, 1167 .gpl_only = true, 1168 .ret_type = RET_INTEGER, 1169 .arg1_type = ARG_PTR_TO_CTX, 1170 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1171 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1172 .arg4_type = ARG_ANYTHING, 1173 }; 1174 1175 static const struct bpf_func_proto * 1176 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1177 { 1178 switch (func_id) { 1179 case BPF_FUNC_perf_event_output: 1180 return &bpf_perf_event_output_proto_tp; 1181 case BPF_FUNC_get_stackid: 1182 return &bpf_get_stackid_proto_tp; 1183 case BPF_FUNC_get_stack: 1184 return &bpf_get_stack_proto_tp; 1185 default: 1186 return bpf_tracing_func_proto(func_id, prog); 1187 } 1188 } 1189 1190 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1191 const struct bpf_prog *prog, 1192 struct bpf_insn_access_aux *info) 1193 { 1194 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE) 1195 return false; 1196 if (type != BPF_READ) 1197 return false; 1198 if (off % size != 0) 1199 return false; 1200 1201 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64)); 1202 return true; 1203 } 1204 1205 const struct bpf_verifier_ops tracepoint_verifier_ops = { 1206 .get_func_proto = tp_prog_func_proto, 1207 .is_valid_access = tp_prog_is_valid_access, 1208 }; 1209 1210 const struct bpf_prog_ops tracepoint_prog_ops = { 1211 }; 1212 1213 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx, 1214 struct bpf_perf_event_value *, buf, u32, size) 1215 { 1216 int err = -EINVAL; 1217 1218 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 1219 goto clear; 1220 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled, 1221 &buf->running); 1222 if (unlikely(err)) 1223 goto clear; 1224 return 0; 1225 clear: 1226 memset(buf, 0, size); 1227 return err; 1228 } 1229 1230 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = { 1231 .func = bpf_perf_prog_read_value, 1232 .gpl_only = true, 1233 .ret_type = RET_INTEGER, 1234 .arg1_type = ARG_PTR_TO_CTX, 1235 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1236 .arg3_type = ARG_CONST_SIZE, 1237 }; 1238 1239 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx, 1240 void *, buf, u32, size, u64, flags) 1241 { 1242 #ifndef CONFIG_X86 1243 return -ENOENT; 1244 #else 1245 static const u32 br_entry_size = sizeof(struct perf_branch_entry); 1246 struct perf_branch_stack *br_stack = ctx->data->br_stack; 1247 u32 to_copy; 1248 1249 if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE)) 1250 return -EINVAL; 1251 1252 if (unlikely(!br_stack)) 1253 return -EINVAL; 1254 1255 if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE) 1256 return br_stack->nr * br_entry_size; 1257 1258 if (!buf || (size % br_entry_size != 0)) 1259 return -EINVAL; 1260 1261 to_copy = min_t(u32, br_stack->nr * br_entry_size, size); 1262 memcpy(buf, br_stack->entries, to_copy); 1263 1264 return to_copy; 1265 #endif 1266 } 1267 1268 static const struct bpf_func_proto bpf_read_branch_records_proto = { 1269 .func = bpf_read_branch_records, 1270 .gpl_only = true, 1271 .ret_type = RET_INTEGER, 1272 .arg1_type = ARG_PTR_TO_CTX, 1273 .arg2_type = ARG_PTR_TO_MEM_OR_NULL, 1274 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1275 .arg4_type = ARG_ANYTHING, 1276 }; 1277 1278 static const struct bpf_func_proto * 1279 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1280 { 1281 switch (func_id) { 1282 case BPF_FUNC_perf_event_output: 1283 return &bpf_perf_event_output_proto_tp; 1284 case BPF_FUNC_get_stackid: 1285 return &bpf_get_stackid_proto_tp; 1286 case BPF_FUNC_get_stack: 1287 return &bpf_get_stack_proto_tp; 1288 case BPF_FUNC_perf_prog_read_value: 1289 return &bpf_perf_prog_read_value_proto; 1290 case BPF_FUNC_read_branch_records: 1291 return &bpf_read_branch_records_proto; 1292 default: 1293 return bpf_tracing_func_proto(func_id, prog); 1294 } 1295 } 1296 1297 /* 1298 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp 1299 * to avoid potential recursive reuse issue when/if tracepoints are added 1300 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack. 1301 * 1302 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage 1303 * in normal, irq, and nmi context. 1304 */ 1305 struct bpf_raw_tp_regs { 1306 struct pt_regs regs[3]; 1307 }; 1308 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs); 1309 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level); 1310 static struct pt_regs *get_bpf_raw_tp_regs(void) 1311 { 1312 struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs); 1313 int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level); 1314 1315 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) { 1316 this_cpu_dec(bpf_raw_tp_nest_level); 1317 return ERR_PTR(-EBUSY); 1318 } 1319 1320 return &tp_regs->regs[nest_level - 1]; 1321 } 1322 1323 static void put_bpf_raw_tp_regs(void) 1324 { 1325 this_cpu_dec(bpf_raw_tp_nest_level); 1326 } 1327 1328 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args, 1329 struct bpf_map *, map, u64, flags, void *, data, u64, size) 1330 { 1331 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1332 int ret; 1333 1334 if (IS_ERR(regs)) 1335 return PTR_ERR(regs); 1336 1337 perf_fetch_caller_regs(regs); 1338 ret = ____bpf_perf_event_output(regs, map, flags, data, size); 1339 1340 put_bpf_raw_tp_regs(); 1341 return ret; 1342 } 1343 1344 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = { 1345 .func = bpf_perf_event_output_raw_tp, 1346 .gpl_only = true, 1347 .ret_type = RET_INTEGER, 1348 .arg1_type = ARG_PTR_TO_CTX, 1349 .arg2_type = ARG_CONST_MAP_PTR, 1350 .arg3_type = ARG_ANYTHING, 1351 .arg4_type = ARG_PTR_TO_MEM, 1352 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1353 }; 1354 1355 extern const struct bpf_func_proto bpf_skb_output_proto; 1356 extern const struct bpf_func_proto bpf_xdp_output_proto; 1357 1358 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args, 1359 struct bpf_map *, map, u64, flags) 1360 { 1361 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1362 int ret; 1363 1364 if (IS_ERR(regs)) 1365 return PTR_ERR(regs); 1366 1367 perf_fetch_caller_regs(regs); 1368 /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */ 1369 ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1370 flags, 0, 0); 1371 put_bpf_raw_tp_regs(); 1372 return ret; 1373 } 1374 1375 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = { 1376 .func = bpf_get_stackid_raw_tp, 1377 .gpl_only = true, 1378 .ret_type = RET_INTEGER, 1379 .arg1_type = ARG_PTR_TO_CTX, 1380 .arg2_type = ARG_CONST_MAP_PTR, 1381 .arg3_type = ARG_ANYTHING, 1382 }; 1383 1384 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args, 1385 void *, buf, u32, size, u64, flags) 1386 { 1387 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1388 int ret; 1389 1390 if (IS_ERR(regs)) 1391 return PTR_ERR(regs); 1392 1393 perf_fetch_caller_regs(regs); 1394 ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1395 (unsigned long) size, flags, 0); 1396 put_bpf_raw_tp_regs(); 1397 return ret; 1398 } 1399 1400 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = { 1401 .func = bpf_get_stack_raw_tp, 1402 .gpl_only = true, 1403 .ret_type = RET_INTEGER, 1404 .arg1_type = ARG_PTR_TO_CTX, 1405 .arg2_type = ARG_PTR_TO_MEM, 1406 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1407 .arg4_type = ARG_ANYTHING, 1408 }; 1409 1410 static const struct bpf_func_proto * 1411 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1412 { 1413 switch (func_id) { 1414 case BPF_FUNC_perf_event_output: 1415 return &bpf_perf_event_output_proto_raw_tp; 1416 case BPF_FUNC_get_stackid: 1417 return &bpf_get_stackid_proto_raw_tp; 1418 case BPF_FUNC_get_stack: 1419 return &bpf_get_stack_proto_raw_tp; 1420 default: 1421 return bpf_tracing_func_proto(func_id, prog); 1422 } 1423 } 1424 1425 static const struct bpf_func_proto * 1426 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1427 { 1428 switch (func_id) { 1429 #ifdef CONFIG_NET 1430 case BPF_FUNC_skb_output: 1431 return &bpf_skb_output_proto; 1432 case BPF_FUNC_xdp_output: 1433 return &bpf_xdp_output_proto; 1434 #endif 1435 case BPF_FUNC_seq_printf: 1436 return prog->expected_attach_type == BPF_TRACE_ITER ? 1437 &bpf_seq_printf_proto : 1438 NULL; 1439 case BPF_FUNC_seq_write: 1440 return prog->expected_attach_type == BPF_TRACE_ITER ? 1441 &bpf_seq_write_proto : 1442 NULL; 1443 default: 1444 return raw_tp_prog_func_proto(func_id, prog); 1445 } 1446 } 1447 1448 static bool raw_tp_prog_is_valid_access(int off, int size, 1449 enum bpf_access_type type, 1450 const struct bpf_prog *prog, 1451 struct bpf_insn_access_aux *info) 1452 { 1453 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 1454 return false; 1455 if (type != BPF_READ) 1456 return false; 1457 if (off % size != 0) 1458 return false; 1459 return true; 1460 } 1461 1462 static bool tracing_prog_is_valid_access(int off, int size, 1463 enum bpf_access_type type, 1464 const struct bpf_prog *prog, 1465 struct bpf_insn_access_aux *info) 1466 { 1467 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 1468 return false; 1469 if (type != BPF_READ) 1470 return false; 1471 if (off % size != 0) 1472 return false; 1473 return btf_ctx_access(off, size, type, prog, info); 1474 } 1475 1476 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog, 1477 const union bpf_attr *kattr, 1478 union bpf_attr __user *uattr) 1479 { 1480 return -ENOTSUPP; 1481 } 1482 1483 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = { 1484 .get_func_proto = raw_tp_prog_func_proto, 1485 .is_valid_access = raw_tp_prog_is_valid_access, 1486 }; 1487 1488 const struct bpf_prog_ops raw_tracepoint_prog_ops = { 1489 }; 1490 1491 const struct bpf_verifier_ops tracing_verifier_ops = { 1492 .get_func_proto = tracing_prog_func_proto, 1493 .is_valid_access = tracing_prog_is_valid_access, 1494 }; 1495 1496 const struct bpf_prog_ops tracing_prog_ops = { 1497 .test_run = bpf_prog_test_run_tracing, 1498 }; 1499 1500 static bool raw_tp_writable_prog_is_valid_access(int off, int size, 1501 enum bpf_access_type type, 1502 const struct bpf_prog *prog, 1503 struct bpf_insn_access_aux *info) 1504 { 1505 if (off == 0) { 1506 if (size != sizeof(u64) || type != BPF_READ) 1507 return false; 1508 info->reg_type = PTR_TO_TP_BUFFER; 1509 } 1510 return raw_tp_prog_is_valid_access(off, size, type, prog, info); 1511 } 1512 1513 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = { 1514 .get_func_proto = raw_tp_prog_func_proto, 1515 .is_valid_access = raw_tp_writable_prog_is_valid_access, 1516 }; 1517 1518 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = { 1519 }; 1520 1521 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1522 const struct bpf_prog *prog, 1523 struct bpf_insn_access_aux *info) 1524 { 1525 const int size_u64 = sizeof(u64); 1526 1527 if (off < 0 || off >= sizeof(struct bpf_perf_event_data)) 1528 return false; 1529 if (type != BPF_READ) 1530 return false; 1531 if (off % size != 0) { 1532 if (sizeof(unsigned long) != 4) 1533 return false; 1534 if (size != 8) 1535 return false; 1536 if (off % size != 4) 1537 return false; 1538 } 1539 1540 switch (off) { 1541 case bpf_ctx_range(struct bpf_perf_event_data, sample_period): 1542 bpf_ctx_record_field_size(info, size_u64); 1543 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 1544 return false; 1545 break; 1546 case bpf_ctx_range(struct bpf_perf_event_data, addr): 1547 bpf_ctx_record_field_size(info, size_u64); 1548 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 1549 return false; 1550 break; 1551 default: 1552 if (size != sizeof(long)) 1553 return false; 1554 } 1555 1556 return true; 1557 } 1558 1559 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type, 1560 const struct bpf_insn *si, 1561 struct bpf_insn *insn_buf, 1562 struct bpf_prog *prog, u32 *target_size) 1563 { 1564 struct bpf_insn *insn = insn_buf; 1565 1566 switch (si->off) { 1567 case offsetof(struct bpf_perf_event_data, sample_period): 1568 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1569 data), si->dst_reg, si->src_reg, 1570 offsetof(struct bpf_perf_event_data_kern, data)); 1571 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 1572 bpf_target_off(struct perf_sample_data, period, 8, 1573 target_size)); 1574 break; 1575 case offsetof(struct bpf_perf_event_data, addr): 1576 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1577 data), si->dst_reg, si->src_reg, 1578 offsetof(struct bpf_perf_event_data_kern, data)); 1579 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 1580 bpf_target_off(struct perf_sample_data, addr, 8, 1581 target_size)); 1582 break; 1583 default: 1584 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1585 regs), si->dst_reg, si->src_reg, 1586 offsetof(struct bpf_perf_event_data_kern, regs)); 1587 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg, 1588 si->off); 1589 break; 1590 } 1591 1592 return insn - insn_buf; 1593 } 1594 1595 const struct bpf_verifier_ops perf_event_verifier_ops = { 1596 .get_func_proto = pe_prog_func_proto, 1597 .is_valid_access = pe_prog_is_valid_access, 1598 .convert_ctx_access = pe_prog_convert_ctx_access, 1599 }; 1600 1601 const struct bpf_prog_ops perf_event_prog_ops = { 1602 }; 1603 1604 static DEFINE_MUTEX(bpf_event_mutex); 1605 1606 #define BPF_TRACE_MAX_PROGS 64 1607 1608 int perf_event_attach_bpf_prog(struct perf_event *event, 1609 struct bpf_prog *prog) 1610 { 1611 struct bpf_prog_array *old_array; 1612 struct bpf_prog_array *new_array; 1613 int ret = -EEXIST; 1614 1615 /* 1616 * Kprobe override only works if they are on the function entry, 1617 * and only if they are on the opt-in list. 1618 */ 1619 if (prog->kprobe_override && 1620 (!trace_kprobe_on_func_entry(event->tp_event) || 1621 !trace_kprobe_error_injectable(event->tp_event))) 1622 return -EINVAL; 1623 1624 mutex_lock(&bpf_event_mutex); 1625 1626 if (event->prog) 1627 goto unlock; 1628 1629 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 1630 if (old_array && 1631 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) { 1632 ret = -E2BIG; 1633 goto unlock; 1634 } 1635 1636 ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array); 1637 if (ret < 0) 1638 goto unlock; 1639 1640 /* set the new array to event->tp_event and set event->prog */ 1641 event->prog = prog; 1642 rcu_assign_pointer(event->tp_event->prog_array, new_array); 1643 bpf_prog_array_free(old_array); 1644 1645 unlock: 1646 mutex_unlock(&bpf_event_mutex); 1647 return ret; 1648 } 1649 1650 void perf_event_detach_bpf_prog(struct perf_event *event) 1651 { 1652 struct bpf_prog_array *old_array; 1653 struct bpf_prog_array *new_array; 1654 int ret; 1655 1656 mutex_lock(&bpf_event_mutex); 1657 1658 if (!event->prog) 1659 goto unlock; 1660 1661 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 1662 ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array); 1663 if (ret == -ENOENT) 1664 goto unlock; 1665 if (ret < 0) { 1666 bpf_prog_array_delete_safe(old_array, event->prog); 1667 } else { 1668 rcu_assign_pointer(event->tp_event->prog_array, new_array); 1669 bpf_prog_array_free(old_array); 1670 } 1671 1672 bpf_prog_put(event->prog); 1673 event->prog = NULL; 1674 1675 unlock: 1676 mutex_unlock(&bpf_event_mutex); 1677 } 1678 1679 int perf_event_query_prog_array(struct perf_event *event, void __user *info) 1680 { 1681 struct perf_event_query_bpf __user *uquery = info; 1682 struct perf_event_query_bpf query = {}; 1683 struct bpf_prog_array *progs; 1684 u32 *ids, prog_cnt, ids_len; 1685 int ret; 1686 1687 if (!capable(CAP_SYS_ADMIN)) 1688 return -EPERM; 1689 if (event->attr.type != PERF_TYPE_TRACEPOINT) 1690 return -EINVAL; 1691 if (copy_from_user(&query, uquery, sizeof(query))) 1692 return -EFAULT; 1693 1694 ids_len = query.ids_len; 1695 if (ids_len > BPF_TRACE_MAX_PROGS) 1696 return -E2BIG; 1697 ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN); 1698 if (!ids) 1699 return -ENOMEM; 1700 /* 1701 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which 1702 * is required when user only wants to check for uquery->prog_cnt. 1703 * There is no need to check for it since the case is handled 1704 * gracefully in bpf_prog_array_copy_info. 1705 */ 1706 1707 mutex_lock(&bpf_event_mutex); 1708 progs = bpf_event_rcu_dereference(event->tp_event->prog_array); 1709 ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt); 1710 mutex_unlock(&bpf_event_mutex); 1711 1712 if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) || 1713 copy_to_user(uquery->ids, ids, ids_len * sizeof(u32))) 1714 ret = -EFAULT; 1715 1716 kfree(ids); 1717 return ret; 1718 } 1719 1720 extern struct bpf_raw_event_map __start__bpf_raw_tp[]; 1721 extern struct bpf_raw_event_map __stop__bpf_raw_tp[]; 1722 1723 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name) 1724 { 1725 struct bpf_raw_event_map *btp = __start__bpf_raw_tp; 1726 1727 for (; btp < __stop__bpf_raw_tp; btp++) { 1728 if (!strcmp(btp->tp->name, name)) 1729 return btp; 1730 } 1731 1732 return bpf_get_raw_tracepoint_module(name); 1733 } 1734 1735 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp) 1736 { 1737 struct module *mod = __module_address((unsigned long)btp); 1738 1739 if (mod) 1740 module_put(mod); 1741 } 1742 1743 static __always_inline 1744 void __bpf_trace_run(struct bpf_prog *prog, u64 *args) 1745 { 1746 cant_sleep(); 1747 rcu_read_lock(); 1748 (void) BPF_PROG_RUN(prog, args); 1749 rcu_read_unlock(); 1750 } 1751 1752 #define UNPACK(...) __VA_ARGS__ 1753 #define REPEAT_1(FN, DL, X, ...) FN(X) 1754 #define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__) 1755 #define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__) 1756 #define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__) 1757 #define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__) 1758 #define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__) 1759 #define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__) 1760 #define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__) 1761 #define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__) 1762 #define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__) 1763 #define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__) 1764 #define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__) 1765 #define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__) 1766 1767 #define SARG(X) u64 arg##X 1768 #define COPY(X) args[X] = arg##X 1769 1770 #define __DL_COM (,) 1771 #define __DL_SEM (;) 1772 1773 #define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 1774 1775 #define BPF_TRACE_DEFN_x(x) \ 1776 void bpf_trace_run##x(struct bpf_prog *prog, \ 1777 REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \ 1778 { \ 1779 u64 args[x]; \ 1780 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \ 1781 __bpf_trace_run(prog, args); \ 1782 } \ 1783 EXPORT_SYMBOL_GPL(bpf_trace_run##x) 1784 BPF_TRACE_DEFN_x(1); 1785 BPF_TRACE_DEFN_x(2); 1786 BPF_TRACE_DEFN_x(3); 1787 BPF_TRACE_DEFN_x(4); 1788 BPF_TRACE_DEFN_x(5); 1789 BPF_TRACE_DEFN_x(6); 1790 BPF_TRACE_DEFN_x(7); 1791 BPF_TRACE_DEFN_x(8); 1792 BPF_TRACE_DEFN_x(9); 1793 BPF_TRACE_DEFN_x(10); 1794 BPF_TRACE_DEFN_x(11); 1795 BPF_TRACE_DEFN_x(12); 1796 1797 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1798 { 1799 struct tracepoint *tp = btp->tp; 1800 1801 /* 1802 * check that program doesn't access arguments beyond what's 1803 * available in this tracepoint 1804 */ 1805 if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64)) 1806 return -EINVAL; 1807 1808 if (prog->aux->max_tp_access > btp->writable_size) 1809 return -EINVAL; 1810 1811 return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog); 1812 } 1813 1814 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1815 { 1816 return __bpf_probe_register(btp, prog); 1817 } 1818 1819 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1820 { 1821 return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog); 1822 } 1823 1824 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id, 1825 u32 *fd_type, const char **buf, 1826 u64 *probe_offset, u64 *probe_addr) 1827 { 1828 bool is_tracepoint, is_syscall_tp; 1829 struct bpf_prog *prog; 1830 int flags, err = 0; 1831 1832 prog = event->prog; 1833 if (!prog) 1834 return -ENOENT; 1835 1836 /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */ 1837 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) 1838 return -EOPNOTSUPP; 1839 1840 *prog_id = prog->aux->id; 1841 flags = event->tp_event->flags; 1842 is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT; 1843 is_syscall_tp = is_syscall_trace_event(event->tp_event); 1844 1845 if (is_tracepoint || is_syscall_tp) { 1846 *buf = is_tracepoint ? event->tp_event->tp->name 1847 : event->tp_event->name; 1848 *fd_type = BPF_FD_TYPE_TRACEPOINT; 1849 *probe_offset = 0x0; 1850 *probe_addr = 0x0; 1851 } else { 1852 /* kprobe/uprobe */ 1853 err = -EOPNOTSUPP; 1854 #ifdef CONFIG_KPROBE_EVENTS 1855 if (flags & TRACE_EVENT_FL_KPROBE) 1856 err = bpf_get_kprobe_info(event, fd_type, buf, 1857 probe_offset, probe_addr, 1858 event->attr.type == PERF_TYPE_TRACEPOINT); 1859 #endif 1860 #ifdef CONFIG_UPROBE_EVENTS 1861 if (flags & TRACE_EVENT_FL_UPROBE) 1862 err = bpf_get_uprobe_info(event, fd_type, buf, 1863 probe_offset, 1864 event->attr.type == PERF_TYPE_TRACEPOINT); 1865 #endif 1866 } 1867 1868 return err; 1869 } 1870 1871 static int __init send_signal_irq_work_init(void) 1872 { 1873 int cpu; 1874 struct send_signal_irq_work *work; 1875 1876 for_each_possible_cpu(cpu) { 1877 work = per_cpu_ptr(&send_signal_work, cpu); 1878 init_irq_work(&work->irq_work, do_bpf_send_signal); 1879 } 1880 return 0; 1881 } 1882 1883 subsys_initcall(send_signal_irq_work_init); 1884 1885 #ifdef CONFIG_MODULES 1886 static int bpf_event_notify(struct notifier_block *nb, unsigned long op, 1887 void *module) 1888 { 1889 struct bpf_trace_module *btm, *tmp; 1890 struct module *mod = module; 1891 1892 if (mod->num_bpf_raw_events == 0 || 1893 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING)) 1894 return 0; 1895 1896 mutex_lock(&bpf_module_mutex); 1897 1898 switch (op) { 1899 case MODULE_STATE_COMING: 1900 btm = kzalloc(sizeof(*btm), GFP_KERNEL); 1901 if (btm) { 1902 btm->module = module; 1903 list_add(&btm->list, &bpf_trace_modules); 1904 } 1905 break; 1906 case MODULE_STATE_GOING: 1907 list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) { 1908 if (btm->module == module) { 1909 list_del(&btm->list); 1910 kfree(btm); 1911 break; 1912 } 1913 } 1914 break; 1915 } 1916 1917 mutex_unlock(&bpf_module_mutex); 1918 1919 return 0; 1920 } 1921 1922 static struct notifier_block bpf_module_nb = { 1923 .notifier_call = bpf_event_notify, 1924 }; 1925 1926 static int __init bpf_event_init(void) 1927 { 1928 register_module_notifier(&bpf_module_nb); 1929 return 0; 1930 } 1931 1932 fs_initcall(bpf_event_init); 1933 #endif /* CONFIG_MODULES */ 1934