1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/kernel.h> 6 #include <linux/types.h> 7 #include <linux/slab.h> 8 #include <linux/bpf.h> 9 #include <linux/bpf_perf_event.h> 10 #include <linux/btf.h> 11 #include <linux/filter.h> 12 #include <linux/uaccess.h> 13 #include <linux/ctype.h> 14 #include <linux/kprobes.h> 15 #include <linux/spinlock.h> 16 #include <linux/syscalls.h> 17 #include <linux/error-injection.h> 18 #include <linux/btf_ids.h> 19 #include <linux/bpf_lsm.h> 20 21 #include <net/bpf_sk_storage.h> 22 23 #include <uapi/linux/bpf.h> 24 #include <uapi/linux/btf.h> 25 26 #include <asm/tlb.h> 27 28 #include "trace_probe.h" 29 #include "trace.h" 30 31 #define CREATE_TRACE_POINTS 32 #include "bpf_trace.h" 33 34 #define bpf_event_rcu_dereference(p) \ 35 rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex)) 36 37 #ifdef CONFIG_MODULES 38 struct bpf_trace_module { 39 struct module *module; 40 struct list_head list; 41 }; 42 43 static LIST_HEAD(bpf_trace_modules); 44 static DEFINE_MUTEX(bpf_module_mutex); 45 46 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 47 { 48 struct bpf_raw_event_map *btp, *ret = NULL; 49 struct bpf_trace_module *btm; 50 unsigned int i; 51 52 mutex_lock(&bpf_module_mutex); 53 list_for_each_entry(btm, &bpf_trace_modules, list) { 54 for (i = 0; i < btm->module->num_bpf_raw_events; ++i) { 55 btp = &btm->module->bpf_raw_events[i]; 56 if (!strcmp(btp->tp->name, name)) { 57 if (try_module_get(btm->module)) 58 ret = btp; 59 goto out; 60 } 61 } 62 } 63 out: 64 mutex_unlock(&bpf_module_mutex); 65 return ret; 66 } 67 #else 68 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 69 { 70 return NULL; 71 } 72 #endif /* CONFIG_MODULES */ 73 74 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 75 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 76 77 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size, 78 u64 flags, const struct btf **btf, 79 s32 *btf_id); 80 81 /** 82 * trace_call_bpf - invoke BPF program 83 * @call: tracepoint event 84 * @ctx: opaque context pointer 85 * 86 * kprobe handlers execute BPF programs via this helper. 87 * Can be used from static tracepoints in the future. 88 * 89 * Return: BPF programs always return an integer which is interpreted by 90 * kprobe handler as: 91 * 0 - return from kprobe (event is filtered out) 92 * 1 - store kprobe event into ring buffer 93 * Other values are reserved and currently alias to 1 94 */ 95 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx) 96 { 97 unsigned int ret; 98 99 cant_sleep(); 100 101 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) { 102 /* 103 * since some bpf program is already running on this cpu, 104 * don't call into another bpf program (same or different) 105 * and don't send kprobe event into ring-buffer, 106 * so return zero here 107 */ 108 ret = 0; 109 goto out; 110 } 111 112 /* 113 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock 114 * to all call sites, we did a bpf_prog_array_valid() there to check 115 * whether call->prog_array is empty or not, which is 116 * a heuristic to speed up execution. 117 * 118 * If bpf_prog_array_valid() fetched prog_array was 119 * non-NULL, we go into trace_call_bpf() and do the actual 120 * proper rcu_dereference() under RCU lock. 121 * If it turns out that prog_array is NULL then, we bail out. 122 * For the opposite, if the bpf_prog_array_valid() fetched pointer 123 * was NULL, you'll skip the prog_array with the risk of missing 124 * out of events when it was updated in between this and the 125 * rcu_dereference() which is accepted risk. 126 */ 127 ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN); 128 129 out: 130 __this_cpu_dec(bpf_prog_active); 131 132 return ret; 133 } 134 135 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 136 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc) 137 { 138 regs_set_return_value(regs, rc); 139 override_function_with_return(regs); 140 return 0; 141 } 142 143 static const struct bpf_func_proto bpf_override_return_proto = { 144 .func = bpf_override_return, 145 .gpl_only = true, 146 .ret_type = RET_INTEGER, 147 .arg1_type = ARG_PTR_TO_CTX, 148 .arg2_type = ARG_ANYTHING, 149 }; 150 #endif 151 152 static __always_inline int 153 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr) 154 { 155 int ret; 156 157 ret = copy_from_user_nofault(dst, unsafe_ptr, size); 158 if (unlikely(ret < 0)) 159 memset(dst, 0, size); 160 return ret; 161 } 162 163 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size, 164 const void __user *, unsafe_ptr) 165 { 166 return bpf_probe_read_user_common(dst, size, unsafe_ptr); 167 } 168 169 const struct bpf_func_proto bpf_probe_read_user_proto = { 170 .func = bpf_probe_read_user, 171 .gpl_only = true, 172 .ret_type = RET_INTEGER, 173 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 174 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 175 .arg3_type = ARG_ANYTHING, 176 }; 177 178 static __always_inline int 179 bpf_probe_read_user_str_common(void *dst, u32 size, 180 const void __user *unsafe_ptr) 181 { 182 int ret; 183 184 /* 185 * NB: We rely on strncpy_from_user() not copying junk past the NUL 186 * terminator into `dst`. 187 * 188 * strncpy_from_user() does long-sized strides in the fast path. If the 189 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`, 190 * then there could be junk after the NUL in `dst`. If user takes `dst` 191 * and keys a hash map with it, then semantically identical strings can 192 * occupy multiple entries in the map. 193 */ 194 ret = strncpy_from_user_nofault(dst, unsafe_ptr, size); 195 if (unlikely(ret < 0)) 196 memset(dst, 0, size); 197 return ret; 198 } 199 200 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size, 201 const void __user *, unsafe_ptr) 202 { 203 return bpf_probe_read_user_str_common(dst, size, unsafe_ptr); 204 } 205 206 const struct bpf_func_proto bpf_probe_read_user_str_proto = { 207 .func = bpf_probe_read_user_str, 208 .gpl_only = true, 209 .ret_type = RET_INTEGER, 210 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 211 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 212 .arg3_type = ARG_ANYTHING, 213 }; 214 215 static __always_inline int 216 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr) 217 { 218 int ret; 219 220 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size); 221 if (unlikely(ret < 0)) 222 memset(dst, 0, size); 223 return ret; 224 } 225 226 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size, 227 const void *, unsafe_ptr) 228 { 229 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr); 230 } 231 232 const struct bpf_func_proto bpf_probe_read_kernel_proto = { 233 .func = bpf_probe_read_kernel, 234 .gpl_only = true, 235 .ret_type = RET_INTEGER, 236 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 237 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 238 .arg3_type = ARG_ANYTHING, 239 }; 240 241 static __always_inline int 242 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr) 243 { 244 int ret; 245 246 /* 247 * The strncpy_from_kernel_nofault() call will likely not fill the 248 * entire buffer, but that's okay in this circumstance as we're probing 249 * arbitrary memory anyway similar to bpf_probe_read_*() and might 250 * as well probe the stack. Thus, memory is explicitly cleared 251 * only in error case, so that improper users ignoring return 252 * code altogether don't copy garbage; otherwise length of string 253 * is returned that can be used for bpf_perf_event_output() et al. 254 */ 255 ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size); 256 if (unlikely(ret < 0)) 257 memset(dst, 0, size); 258 return ret; 259 } 260 261 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size, 262 const void *, unsafe_ptr) 263 { 264 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr); 265 } 266 267 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = { 268 .func = bpf_probe_read_kernel_str, 269 .gpl_only = true, 270 .ret_type = RET_INTEGER, 271 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 272 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 273 .arg3_type = ARG_ANYTHING, 274 }; 275 276 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 277 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size, 278 const void *, unsafe_ptr) 279 { 280 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 281 return bpf_probe_read_user_common(dst, size, 282 (__force void __user *)unsafe_ptr); 283 } 284 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr); 285 } 286 287 static const struct bpf_func_proto bpf_probe_read_compat_proto = { 288 .func = bpf_probe_read_compat, 289 .gpl_only = true, 290 .ret_type = RET_INTEGER, 291 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 292 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 293 .arg3_type = ARG_ANYTHING, 294 }; 295 296 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size, 297 const void *, unsafe_ptr) 298 { 299 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 300 return bpf_probe_read_user_str_common(dst, size, 301 (__force void __user *)unsafe_ptr); 302 } 303 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr); 304 } 305 306 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = { 307 .func = bpf_probe_read_compat_str, 308 .gpl_only = true, 309 .ret_type = RET_INTEGER, 310 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 311 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 312 .arg3_type = ARG_ANYTHING, 313 }; 314 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */ 315 316 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src, 317 u32, size) 318 { 319 /* 320 * Ensure we're in user context which is safe for the helper to 321 * run. This helper has no business in a kthread. 322 * 323 * access_ok() should prevent writing to non-user memory, but in 324 * some situations (nommu, temporary switch, etc) access_ok() does 325 * not provide enough validation, hence the check on KERNEL_DS. 326 * 327 * nmi_uaccess_okay() ensures the probe is not run in an interim 328 * state, when the task or mm are switched. This is specifically 329 * required to prevent the use of temporary mm. 330 */ 331 332 if (unlikely(in_interrupt() || 333 current->flags & (PF_KTHREAD | PF_EXITING))) 334 return -EPERM; 335 if (unlikely(uaccess_kernel())) 336 return -EPERM; 337 if (unlikely(!nmi_uaccess_okay())) 338 return -EPERM; 339 340 return copy_to_user_nofault(unsafe_ptr, src, size); 341 } 342 343 static const struct bpf_func_proto bpf_probe_write_user_proto = { 344 .func = bpf_probe_write_user, 345 .gpl_only = true, 346 .ret_type = RET_INTEGER, 347 .arg1_type = ARG_ANYTHING, 348 .arg2_type = ARG_PTR_TO_MEM, 349 .arg3_type = ARG_CONST_SIZE, 350 }; 351 352 static const struct bpf_func_proto *bpf_get_probe_write_proto(void) 353 { 354 if (!capable(CAP_SYS_ADMIN)) 355 return NULL; 356 357 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!", 358 current->comm, task_pid_nr(current)); 359 360 return &bpf_probe_write_user_proto; 361 } 362 363 static DEFINE_RAW_SPINLOCK(trace_printk_lock); 364 365 #define MAX_TRACE_PRINTK_VARARGS 3 366 #define BPF_TRACE_PRINTK_SIZE 1024 367 368 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1, 369 u64, arg2, u64, arg3) 370 { 371 u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 }; 372 u32 *bin_args; 373 static char buf[BPF_TRACE_PRINTK_SIZE]; 374 unsigned long flags; 375 int ret; 376 377 ret = bpf_bprintf_prepare(fmt, fmt_size, args, &bin_args, 378 MAX_TRACE_PRINTK_VARARGS); 379 if (ret < 0) 380 return ret; 381 382 raw_spin_lock_irqsave(&trace_printk_lock, flags); 383 ret = bstr_printf(buf, sizeof(buf), fmt, bin_args); 384 385 trace_bpf_trace_printk(buf); 386 raw_spin_unlock_irqrestore(&trace_printk_lock, flags); 387 388 bpf_bprintf_cleanup(); 389 390 return ret; 391 } 392 393 static const struct bpf_func_proto bpf_trace_printk_proto = { 394 .func = bpf_trace_printk, 395 .gpl_only = true, 396 .ret_type = RET_INTEGER, 397 .arg1_type = ARG_PTR_TO_MEM, 398 .arg2_type = ARG_CONST_SIZE, 399 }; 400 401 const struct bpf_func_proto *bpf_get_trace_printk_proto(void) 402 { 403 /* 404 * This program might be calling bpf_trace_printk, 405 * so enable the associated bpf_trace/bpf_trace_printk event. 406 * Repeat this each time as it is possible a user has 407 * disabled bpf_trace_printk events. By loading a program 408 * calling bpf_trace_printk() however the user has expressed 409 * the intent to see such events. 410 */ 411 if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1)) 412 pr_warn_ratelimited("could not enable bpf_trace_printk events"); 413 414 return &bpf_trace_printk_proto; 415 } 416 417 #define MAX_SEQ_PRINTF_VARARGS 12 418 419 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size, 420 const void *, data, u32, data_len) 421 { 422 int err, num_args; 423 u32 *bin_args; 424 425 if (data_len & 7 || data_len > MAX_SEQ_PRINTF_VARARGS * 8 || 426 (data_len && !data)) 427 return -EINVAL; 428 num_args = data_len / 8; 429 430 err = bpf_bprintf_prepare(fmt, fmt_size, data, &bin_args, num_args); 431 if (err < 0) 432 return err; 433 434 seq_bprintf(m, fmt, bin_args); 435 436 bpf_bprintf_cleanup(); 437 438 return seq_has_overflowed(m) ? -EOVERFLOW : 0; 439 } 440 441 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file) 442 443 static const struct bpf_func_proto bpf_seq_printf_proto = { 444 .func = bpf_seq_printf, 445 .gpl_only = true, 446 .ret_type = RET_INTEGER, 447 .arg1_type = ARG_PTR_TO_BTF_ID, 448 .arg1_btf_id = &btf_seq_file_ids[0], 449 .arg2_type = ARG_PTR_TO_MEM, 450 .arg3_type = ARG_CONST_SIZE, 451 .arg4_type = ARG_PTR_TO_MEM_OR_NULL, 452 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 453 }; 454 455 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len) 456 { 457 return seq_write(m, data, len) ? -EOVERFLOW : 0; 458 } 459 460 static const struct bpf_func_proto bpf_seq_write_proto = { 461 .func = bpf_seq_write, 462 .gpl_only = true, 463 .ret_type = RET_INTEGER, 464 .arg1_type = ARG_PTR_TO_BTF_ID, 465 .arg1_btf_id = &btf_seq_file_ids[0], 466 .arg2_type = ARG_PTR_TO_MEM, 467 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 468 }; 469 470 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr, 471 u32, btf_ptr_size, u64, flags) 472 { 473 const struct btf *btf; 474 s32 btf_id; 475 int ret; 476 477 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id); 478 if (ret) 479 return ret; 480 481 return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags); 482 } 483 484 static const struct bpf_func_proto bpf_seq_printf_btf_proto = { 485 .func = bpf_seq_printf_btf, 486 .gpl_only = true, 487 .ret_type = RET_INTEGER, 488 .arg1_type = ARG_PTR_TO_BTF_ID, 489 .arg1_btf_id = &btf_seq_file_ids[0], 490 .arg2_type = ARG_PTR_TO_MEM, 491 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 492 .arg4_type = ARG_ANYTHING, 493 }; 494 495 static __always_inline int 496 get_map_perf_counter(struct bpf_map *map, u64 flags, 497 u64 *value, u64 *enabled, u64 *running) 498 { 499 struct bpf_array *array = container_of(map, struct bpf_array, map); 500 unsigned int cpu = smp_processor_id(); 501 u64 index = flags & BPF_F_INDEX_MASK; 502 struct bpf_event_entry *ee; 503 504 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 505 return -EINVAL; 506 if (index == BPF_F_CURRENT_CPU) 507 index = cpu; 508 if (unlikely(index >= array->map.max_entries)) 509 return -E2BIG; 510 511 ee = READ_ONCE(array->ptrs[index]); 512 if (!ee) 513 return -ENOENT; 514 515 return perf_event_read_local(ee->event, value, enabled, running); 516 } 517 518 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags) 519 { 520 u64 value = 0; 521 int err; 522 523 err = get_map_perf_counter(map, flags, &value, NULL, NULL); 524 /* 525 * this api is ugly since we miss [-22..-2] range of valid 526 * counter values, but that's uapi 527 */ 528 if (err) 529 return err; 530 return value; 531 } 532 533 static const struct bpf_func_proto bpf_perf_event_read_proto = { 534 .func = bpf_perf_event_read, 535 .gpl_only = true, 536 .ret_type = RET_INTEGER, 537 .arg1_type = ARG_CONST_MAP_PTR, 538 .arg2_type = ARG_ANYTHING, 539 }; 540 541 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags, 542 struct bpf_perf_event_value *, buf, u32, size) 543 { 544 int err = -EINVAL; 545 546 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 547 goto clear; 548 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled, 549 &buf->running); 550 if (unlikely(err)) 551 goto clear; 552 return 0; 553 clear: 554 memset(buf, 0, size); 555 return err; 556 } 557 558 static const struct bpf_func_proto bpf_perf_event_read_value_proto = { 559 .func = bpf_perf_event_read_value, 560 .gpl_only = true, 561 .ret_type = RET_INTEGER, 562 .arg1_type = ARG_CONST_MAP_PTR, 563 .arg2_type = ARG_ANYTHING, 564 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 565 .arg4_type = ARG_CONST_SIZE, 566 }; 567 568 static __always_inline u64 569 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map, 570 u64 flags, struct perf_sample_data *sd) 571 { 572 struct bpf_array *array = container_of(map, struct bpf_array, map); 573 unsigned int cpu = smp_processor_id(); 574 u64 index = flags & BPF_F_INDEX_MASK; 575 struct bpf_event_entry *ee; 576 struct perf_event *event; 577 578 if (index == BPF_F_CURRENT_CPU) 579 index = cpu; 580 if (unlikely(index >= array->map.max_entries)) 581 return -E2BIG; 582 583 ee = READ_ONCE(array->ptrs[index]); 584 if (!ee) 585 return -ENOENT; 586 587 event = ee->event; 588 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE || 589 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT)) 590 return -EINVAL; 591 592 if (unlikely(event->oncpu != cpu)) 593 return -EOPNOTSUPP; 594 595 return perf_event_output(event, sd, regs); 596 } 597 598 /* 599 * Support executing tracepoints in normal, irq, and nmi context that each call 600 * bpf_perf_event_output 601 */ 602 struct bpf_trace_sample_data { 603 struct perf_sample_data sds[3]; 604 }; 605 606 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds); 607 static DEFINE_PER_CPU(int, bpf_trace_nest_level); 608 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map, 609 u64, flags, void *, data, u64, size) 610 { 611 struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds); 612 int nest_level = this_cpu_inc_return(bpf_trace_nest_level); 613 struct perf_raw_record raw = { 614 .frag = { 615 .size = size, 616 .data = data, 617 }, 618 }; 619 struct perf_sample_data *sd; 620 int err; 621 622 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) { 623 err = -EBUSY; 624 goto out; 625 } 626 627 sd = &sds->sds[nest_level - 1]; 628 629 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) { 630 err = -EINVAL; 631 goto out; 632 } 633 634 perf_sample_data_init(sd, 0, 0); 635 sd->raw = &raw; 636 637 err = __bpf_perf_event_output(regs, map, flags, sd); 638 639 out: 640 this_cpu_dec(bpf_trace_nest_level); 641 return err; 642 } 643 644 static const struct bpf_func_proto bpf_perf_event_output_proto = { 645 .func = bpf_perf_event_output, 646 .gpl_only = true, 647 .ret_type = RET_INTEGER, 648 .arg1_type = ARG_PTR_TO_CTX, 649 .arg2_type = ARG_CONST_MAP_PTR, 650 .arg3_type = ARG_ANYTHING, 651 .arg4_type = ARG_PTR_TO_MEM, 652 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 653 }; 654 655 static DEFINE_PER_CPU(int, bpf_event_output_nest_level); 656 struct bpf_nested_pt_regs { 657 struct pt_regs regs[3]; 658 }; 659 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs); 660 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds); 661 662 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 663 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) 664 { 665 int nest_level = this_cpu_inc_return(bpf_event_output_nest_level); 666 struct perf_raw_frag frag = { 667 .copy = ctx_copy, 668 .size = ctx_size, 669 .data = ctx, 670 }; 671 struct perf_raw_record raw = { 672 .frag = { 673 { 674 .next = ctx_size ? &frag : NULL, 675 }, 676 .size = meta_size, 677 .data = meta, 678 }, 679 }; 680 struct perf_sample_data *sd; 681 struct pt_regs *regs; 682 u64 ret; 683 684 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) { 685 ret = -EBUSY; 686 goto out; 687 } 688 sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]); 689 regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]); 690 691 perf_fetch_caller_regs(regs); 692 perf_sample_data_init(sd, 0, 0); 693 sd->raw = &raw; 694 695 ret = __bpf_perf_event_output(regs, map, flags, sd); 696 out: 697 this_cpu_dec(bpf_event_output_nest_level); 698 return ret; 699 } 700 701 BPF_CALL_0(bpf_get_current_task) 702 { 703 return (long) current; 704 } 705 706 const struct bpf_func_proto bpf_get_current_task_proto = { 707 .func = bpf_get_current_task, 708 .gpl_only = true, 709 .ret_type = RET_INTEGER, 710 }; 711 712 BPF_CALL_0(bpf_get_current_task_btf) 713 { 714 return (unsigned long) current; 715 } 716 717 BTF_ID_LIST_SINGLE(bpf_get_current_btf_ids, struct, task_struct) 718 719 static const struct bpf_func_proto bpf_get_current_task_btf_proto = { 720 .func = bpf_get_current_task_btf, 721 .gpl_only = true, 722 .ret_type = RET_PTR_TO_BTF_ID, 723 .ret_btf_id = &bpf_get_current_btf_ids[0], 724 }; 725 726 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx) 727 { 728 struct bpf_array *array = container_of(map, struct bpf_array, map); 729 struct cgroup *cgrp; 730 731 if (unlikely(idx >= array->map.max_entries)) 732 return -E2BIG; 733 734 cgrp = READ_ONCE(array->ptrs[idx]); 735 if (unlikely(!cgrp)) 736 return -EAGAIN; 737 738 return task_under_cgroup_hierarchy(current, cgrp); 739 } 740 741 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = { 742 .func = bpf_current_task_under_cgroup, 743 .gpl_only = false, 744 .ret_type = RET_INTEGER, 745 .arg1_type = ARG_CONST_MAP_PTR, 746 .arg2_type = ARG_ANYTHING, 747 }; 748 749 struct send_signal_irq_work { 750 struct irq_work irq_work; 751 struct task_struct *task; 752 u32 sig; 753 enum pid_type type; 754 }; 755 756 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work); 757 758 static void do_bpf_send_signal(struct irq_work *entry) 759 { 760 struct send_signal_irq_work *work; 761 762 work = container_of(entry, struct send_signal_irq_work, irq_work); 763 group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type); 764 } 765 766 static int bpf_send_signal_common(u32 sig, enum pid_type type) 767 { 768 struct send_signal_irq_work *work = NULL; 769 770 /* Similar to bpf_probe_write_user, task needs to be 771 * in a sound condition and kernel memory access be 772 * permitted in order to send signal to the current 773 * task. 774 */ 775 if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING))) 776 return -EPERM; 777 if (unlikely(uaccess_kernel())) 778 return -EPERM; 779 if (unlikely(!nmi_uaccess_okay())) 780 return -EPERM; 781 782 if (irqs_disabled()) { 783 /* Do an early check on signal validity. Otherwise, 784 * the error is lost in deferred irq_work. 785 */ 786 if (unlikely(!valid_signal(sig))) 787 return -EINVAL; 788 789 work = this_cpu_ptr(&send_signal_work); 790 if (irq_work_is_busy(&work->irq_work)) 791 return -EBUSY; 792 793 /* Add the current task, which is the target of sending signal, 794 * to the irq_work. The current task may change when queued 795 * irq works get executed. 796 */ 797 work->task = current; 798 work->sig = sig; 799 work->type = type; 800 irq_work_queue(&work->irq_work); 801 return 0; 802 } 803 804 return group_send_sig_info(sig, SEND_SIG_PRIV, current, type); 805 } 806 807 BPF_CALL_1(bpf_send_signal, u32, sig) 808 { 809 return bpf_send_signal_common(sig, PIDTYPE_TGID); 810 } 811 812 static const struct bpf_func_proto bpf_send_signal_proto = { 813 .func = bpf_send_signal, 814 .gpl_only = false, 815 .ret_type = RET_INTEGER, 816 .arg1_type = ARG_ANYTHING, 817 }; 818 819 BPF_CALL_1(bpf_send_signal_thread, u32, sig) 820 { 821 return bpf_send_signal_common(sig, PIDTYPE_PID); 822 } 823 824 static const struct bpf_func_proto bpf_send_signal_thread_proto = { 825 .func = bpf_send_signal_thread, 826 .gpl_only = false, 827 .ret_type = RET_INTEGER, 828 .arg1_type = ARG_ANYTHING, 829 }; 830 831 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz) 832 { 833 long len; 834 char *p; 835 836 if (!sz) 837 return 0; 838 839 p = d_path(path, buf, sz); 840 if (IS_ERR(p)) { 841 len = PTR_ERR(p); 842 } else { 843 len = buf + sz - p; 844 memmove(buf, p, len); 845 } 846 847 return len; 848 } 849 850 BTF_SET_START(btf_allowlist_d_path) 851 #ifdef CONFIG_SECURITY 852 BTF_ID(func, security_file_permission) 853 BTF_ID(func, security_inode_getattr) 854 BTF_ID(func, security_file_open) 855 #endif 856 #ifdef CONFIG_SECURITY_PATH 857 BTF_ID(func, security_path_truncate) 858 #endif 859 BTF_ID(func, vfs_truncate) 860 BTF_ID(func, vfs_fallocate) 861 BTF_ID(func, dentry_open) 862 BTF_ID(func, vfs_getattr) 863 BTF_ID(func, filp_close) 864 BTF_SET_END(btf_allowlist_d_path) 865 866 static bool bpf_d_path_allowed(const struct bpf_prog *prog) 867 { 868 if (prog->type == BPF_PROG_TYPE_TRACING && 869 prog->expected_attach_type == BPF_TRACE_ITER) 870 return true; 871 872 if (prog->type == BPF_PROG_TYPE_LSM) 873 return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id); 874 875 return btf_id_set_contains(&btf_allowlist_d_path, 876 prog->aux->attach_btf_id); 877 } 878 879 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path) 880 881 static const struct bpf_func_proto bpf_d_path_proto = { 882 .func = bpf_d_path, 883 .gpl_only = false, 884 .ret_type = RET_INTEGER, 885 .arg1_type = ARG_PTR_TO_BTF_ID, 886 .arg1_btf_id = &bpf_d_path_btf_ids[0], 887 .arg2_type = ARG_PTR_TO_MEM, 888 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 889 .allowed = bpf_d_path_allowed, 890 }; 891 892 #define BTF_F_ALL (BTF_F_COMPACT | BTF_F_NONAME | \ 893 BTF_F_PTR_RAW | BTF_F_ZERO) 894 895 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size, 896 u64 flags, const struct btf **btf, 897 s32 *btf_id) 898 { 899 const struct btf_type *t; 900 901 if (unlikely(flags & ~(BTF_F_ALL))) 902 return -EINVAL; 903 904 if (btf_ptr_size != sizeof(struct btf_ptr)) 905 return -EINVAL; 906 907 *btf = bpf_get_btf_vmlinux(); 908 909 if (IS_ERR_OR_NULL(*btf)) 910 return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL; 911 912 if (ptr->type_id > 0) 913 *btf_id = ptr->type_id; 914 else 915 return -EINVAL; 916 917 if (*btf_id > 0) 918 t = btf_type_by_id(*btf, *btf_id); 919 if (*btf_id <= 0 || !t) 920 return -ENOENT; 921 922 return 0; 923 } 924 925 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr, 926 u32, btf_ptr_size, u64, flags) 927 { 928 const struct btf *btf; 929 s32 btf_id; 930 int ret; 931 932 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id); 933 if (ret) 934 return ret; 935 936 return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size, 937 flags); 938 } 939 940 const struct bpf_func_proto bpf_snprintf_btf_proto = { 941 .func = bpf_snprintf_btf, 942 .gpl_only = false, 943 .ret_type = RET_INTEGER, 944 .arg1_type = ARG_PTR_TO_MEM, 945 .arg2_type = ARG_CONST_SIZE, 946 .arg3_type = ARG_PTR_TO_MEM, 947 .arg4_type = ARG_CONST_SIZE, 948 .arg5_type = ARG_ANYTHING, 949 }; 950 951 BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx) 952 { 953 /* This helper call is inlined by verifier. */ 954 return ((u64 *)ctx)[-1]; 955 } 956 957 static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = { 958 .func = bpf_get_func_ip_tracing, 959 .gpl_only = true, 960 .ret_type = RET_INTEGER, 961 .arg1_type = ARG_PTR_TO_CTX, 962 }; 963 964 BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs) 965 { 966 struct kprobe *kp = kprobe_running(); 967 968 return kp ? (uintptr_t)kp->addr : 0; 969 } 970 971 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = { 972 .func = bpf_get_func_ip_kprobe, 973 .gpl_only = true, 974 .ret_type = RET_INTEGER, 975 .arg1_type = ARG_PTR_TO_CTX, 976 }; 977 978 const struct bpf_func_proto * 979 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 980 { 981 switch (func_id) { 982 case BPF_FUNC_map_lookup_elem: 983 return &bpf_map_lookup_elem_proto; 984 case BPF_FUNC_map_update_elem: 985 return &bpf_map_update_elem_proto; 986 case BPF_FUNC_map_delete_elem: 987 return &bpf_map_delete_elem_proto; 988 case BPF_FUNC_map_push_elem: 989 return &bpf_map_push_elem_proto; 990 case BPF_FUNC_map_pop_elem: 991 return &bpf_map_pop_elem_proto; 992 case BPF_FUNC_map_peek_elem: 993 return &bpf_map_peek_elem_proto; 994 case BPF_FUNC_ktime_get_ns: 995 return &bpf_ktime_get_ns_proto; 996 case BPF_FUNC_ktime_get_boot_ns: 997 return &bpf_ktime_get_boot_ns_proto; 998 case BPF_FUNC_ktime_get_coarse_ns: 999 return &bpf_ktime_get_coarse_ns_proto; 1000 case BPF_FUNC_tail_call: 1001 return &bpf_tail_call_proto; 1002 case BPF_FUNC_get_current_pid_tgid: 1003 return &bpf_get_current_pid_tgid_proto; 1004 case BPF_FUNC_get_current_task: 1005 return &bpf_get_current_task_proto; 1006 case BPF_FUNC_get_current_task_btf: 1007 return &bpf_get_current_task_btf_proto; 1008 case BPF_FUNC_get_current_uid_gid: 1009 return &bpf_get_current_uid_gid_proto; 1010 case BPF_FUNC_get_current_comm: 1011 return &bpf_get_current_comm_proto; 1012 case BPF_FUNC_trace_printk: 1013 return bpf_get_trace_printk_proto(); 1014 case BPF_FUNC_get_smp_processor_id: 1015 return &bpf_get_smp_processor_id_proto; 1016 case BPF_FUNC_get_numa_node_id: 1017 return &bpf_get_numa_node_id_proto; 1018 case BPF_FUNC_perf_event_read: 1019 return &bpf_perf_event_read_proto; 1020 case BPF_FUNC_current_task_under_cgroup: 1021 return &bpf_current_task_under_cgroup_proto; 1022 case BPF_FUNC_get_prandom_u32: 1023 return &bpf_get_prandom_u32_proto; 1024 case BPF_FUNC_probe_write_user: 1025 return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ? 1026 NULL : bpf_get_probe_write_proto(); 1027 case BPF_FUNC_probe_read_user: 1028 return &bpf_probe_read_user_proto; 1029 case BPF_FUNC_probe_read_kernel: 1030 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1031 NULL : &bpf_probe_read_kernel_proto; 1032 case BPF_FUNC_probe_read_user_str: 1033 return &bpf_probe_read_user_str_proto; 1034 case BPF_FUNC_probe_read_kernel_str: 1035 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1036 NULL : &bpf_probe_read_kernel_str_proto; 1037 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 1038 case BPF_FUNC_probe_read: 1039 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1040 NULL : &bpf_probe_read_compat_proto; 1041 case BPF_FUNC_probe_read_str: 1042 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1043 NULL : &bpf_probe_read_compat_str_proto; 1044 #endif 1045 #ifdef CONFIG_CGROUPS 1046 case BPF_FUNC_get_current_cgroup_id: 1047 return &bpf_get_current_cgroup_id_proto; 1048 case BPF_FUNC_get_current_ancestor_cgroup_id: 1049 return &bpf_get_current_ancestor_cgroup_id_proto; 1050 #endif 1051 case BPF_FUNC_send_signal: 1052 return &bpf_send_signal_proto; 1053 case BPF_FUNC_send_signal_thread: 1054 return &bpf_send_signal_thread_proto; 1055 case BPF_FUNC_perf_event_read_value: 1056 return &bpf_perf_event_read_value_proto; 1057 case BPF_FUNC_get_ns_current_pid_tgid: 1058 return &bpf_get_ns_current_pid_tgid_proto; 1059 case BPF_FUNC_ringbuf_output: 1060 return &bpf_ringbuf_output_proto; 1061 case BPF_FUNC_ringbuf_reserve: 1062 return &bpf_ringbuf_reserve_proto; 1063 case BPF_FUNC_ringbuf_submit: 1064 return &bpf_ringbuf_submit_proto; 1065 case BPF_FUNC_ringbuf_discard: 1066 return &bpf_ringbuf_discard_proto; 1067 case BPF_FUNC_ringbuf_query: 1068 return &bpf_ringbuf_query_proto; 1069 case BPF_FUNC_jiffies64: 1070 return &bpf_jiffies64_proto; 1071 case BPF_FUNC_get_task_stack: 1072 return &bpf_get_task_stack_proto; 1073 case BPF_FUNC_copy_from_user: 1074 return prog->aux->sleepable ? &bpf_copy_from_user_proto : NULL; 1075 case BPF_FUNC_snprintf_btf: 1076 return &bpf_snprintf_btf_proto; 1077 case BPF_FUNC_per_cpu_ptr: 1078 return &bpf_per_cpu_ptr_proto; 1079 case BPF_FUNC_this_cpu_ptr: 1080 return &bpf_this_cpu_ptr_proto; 1081 case BPF_FUNC_task_storage_get: 1082 return &bpf_task_storage_get_proto; 1083 case BPF_FUNC_task_storage_delete: 1084 return &bpf_task_storage_delete_proto; 1085 case BPF_FUNC_for_each_map_elem: 1086 return &bpf_for_each_map_elem_proto; 1087 case BPF_FUNC_snprintf: 1088 return &bpf_snprintf_proto; 1089 case BPF_FUNC_get_func_ip: 1090 return &bpf_get_func_ip_proto_tracing; 1091 default: 1092 return bpf_base_func_proto(func_id); 1093 } 1094 } 1095 1096 static const struct bpf_func_proto * 1097 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1098 { 1099 switch (func_id) { 1100 case BPF_FUNC_perf_event_output: 1101 return &bpf_perf_event_output_proto; 1102 case BPF_FUNC_get_stackid: 1103 return &bpf_get_stackid_proto; 1104 case BPF_FUNC_get_stack: 1105 return &bpf_get_stack_proto; 1106 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 1107 case BPF_FUNC_override_return: 1108 return &bpf_override_return_proto; 1109 #endif 1110 case BPF_FUNC_get_func_ip: 1111 return &bpf_get_func_ip_proto_kprobe; 1112 default: 1113 return bpf_tracing_func_proto(func_id, prog); 1114 } 1115 } 1116 1117 /* bpf+kprobe programs can access fields of 'struct pt_regs' */ 1118 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1119 const struct bpf_prog *prog, 1120 struct bpf_insn_access_aux *info) 1121 { 1122 if (off < 0 || off >= sizeof(struct pt_regs)) 1123 return false; 1124 if (type != BPF_READ) 1125 return false; 1126 if (off % size != 0) 1127 return false; 1128 /* 1129 * Assertion for 32 bit to make sure last 8 byte access 1130 * (BPF_DW) to the last 4 byte member is disallowed. 1131 */ 1132 if (off + size > sizeof(struct pt_regs)) 1133 return false; 1134 1135 return true; 1136 } 1137 1138 const struct bpf_verifier_ops kprobe_verifier_ops = { 1139 .get_func_proto = kprobe_prog_func_proto, 1140 .is_valid_access = kprobe_prog_is_valid_access, 1141 }; 1142 1143 const struct bpf_prog_ops kprobe_prog_ops = { 1144 }; 1145 1146 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map, 1147 u64, flags, void *, data, u64, size) 1148 { 1149 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1150 1151 /* 1152 * r1 points to perf tracepoint buffer where first 8 bytes are hidden 1153 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it 1154 * from there and call the same bpf_perf_event_output() helper inline. 1155 */ 1156 return ____bpf_perf_event_output(regs, map, flags, data, size); 1157 } 1158 1159 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = { 1160 .func = bpf_perf_event_output_tp, 1161 .gpl_only = true, 1162 .ret_type = RET_INTEGER, 1163 .arg1_type = ARG_PTR_TO_CTX, 1164 .arg2_type = ARG_CONST_MAP_PTR, 1165 .arg3_type = ARG_ANYTHING, 1166 .arg4_type = ARG_PTR_TO_MEM, 1167 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1168 }; 1169 1170 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map, 1171 u64, flags) 1172 { 1173 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1174 1175 /* 1176 * Same comment as in bpf_perf_event_output_tp(), only that this time 1177 * the other helper's function body cannot be inlined due to being 1178 * external, thus we need to call raw helper function. 1179 */ 1180 return bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1181 flags, 0, 0); 1182 } 1183 1184 static const struct bpf_func_proto bpf_get_stackid_proto_tp = { 1185 .func = bpf_get_stackid_tp, 1186 .gpl_only = true, 1187 .ret_type = RET_INTEGER, 1188 .arg1_type = ARG_PTR_TO_CTX, 1189 .arg2_type = ARG_CONST_MAP_PTR, 1190 .arg3_type = ARG_ANYTHING, 1191 }; 1192 1193 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size, 1194 u64, flags) 1195 { 1196 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1197 1198 return bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1199 (unsigned long) size, flags, 0); 1200 } 1201 1202 static const struct bpf_func_proto bpf_get_stack_proto_tp = { 1203 .func = bpf_get_stack_tp, 1204 .gpl_only = true, 1205 .ret_type = RET_INTEGER, 1206 .arg1_type = ARG_PTR_TO_CTX, 1207 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1208 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1209 .arg4_type = ARG_ANYTHING, 1210 }; 1211 1212 static const struct bpf_func_proto * 1213 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1214 { 1215 switch (func_id) { 1216 case BPF_FUNC_perf_event_output: 1217 return &bpf_perf_event_output_proto_tp; 1218 case BPF_FUNC_get_stackid: 1219 return &bpf_get_stackid_proto_tp; 1220 case BPF_FUNC_get_stack: 1221 return &bpf_get_stack_proto_tp; 1222 default: 1223 return bpf_tracing_func_proto(func_id, prog); 1224 } 1225 } 1226 1227 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1228 const struct bpf_prog *prog, 1229 struct bpf_insn_access_aux *info) 1230 { 1231 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE) 1232 return false; 1233 if (type != BPF_READ) 1234 return false; 1235 if (off % size != 0) 1236 return false; 1237 1238 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64)); 1239 return true; 1240 } 1241 1242 const struct bpf_verifier_ops tracepoint_verifier_ops = { 1243 .get_func_proto = tp_prog_func_proto, 1244 .is_valid_access = tp_prog_is_valid_access, 1245 }; 1246 1247 const struct bpf_prog_ops tracepoint_prog_ops = { 1248 }; 1249 1250 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx, 1251 struct bpf_perf_event_value *, buf, u32, size) 1252 { 1253 int err = -EINVAL; 1254 1255 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 1256 goto clear; 1257 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled, 1258 &buf->running); 1259 if (unlikely(err)) 1260 goto clear; 1261 return 0; 1262 clear: 1263 memset(buf, 0, size); 1264 return err; 1265 } 1266 1267 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = { 1268 .func = bpf_perf_prog_read_value, 1269 .gpl_only = true, 1270 .ret_type = RET_INTEGER, 1271 .arg1_type = ARG_PTR_TO_CTX, 1272 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1273 .arg3_type = ARG_CONST_SIZE, 1274 }; 1275 1276 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx, 1277 void *, buf, u32, size, u64, flags) 1278 { 1279 #ifndef CONFIG_X86 1280 return -ENOENT; 1281 #else 1282 static const u32 br_entry_size = sizeof(struct perf_branch_entry); 1283 struct perf_branch_stack *br_stack = ctx->data->br_stack; 1284 u32 to_copy; 1285 1286 if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE)) 1287 return -EINVAL; 1288 1289 if (unlikely(!br_stack)) 1290 return -EINVAL; 1291 1292 if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE) 1293 return br_stack->nr * br_entry_size; 1294 1295 if (!buf || (size % br_entry_size != 0)) 1296 return -EINVAL; 1297 1298 to_copy = min_t(u32, br_stack->nr * br_entry_size, size); 1299 memcpy(buf, br_stack->entries, to_copy); 1300 1301 return to_copy; 1302 #endif 1303 } 1304 1305 static const struct bpf_func_proto bpf_read_branch_records_proto = { 1306 .func = bpf_read_branch_records, 1307 .gpl_only = true, 1308 .ret_type = RET_INTEGER, 1309 .arg1_type = ARG_PTR_TO_CTX, 1310 .arg2_type = ARG_PTR_TO_MEM_OR_NULL, 1311 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1312 .arg4_type = ARG_ANYTHING, 1313 }; 1314 1315 static const struct bpf_func_proto * 1316 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1317 { 1318 switch (func_id) { 1319 case BPF_FUNC_perf_event_output: 1320 return &bpf_perf_event_output_proto_tp; 1321 case BPF_FUNC_get_stackid: 1322 return &bpf_get_stackid_proto_pe; 1323 case BPF_FUNC_get_stack: 1324 return &bpf_get_stack_proto_pe; 1325 case BPF_FUNC_perf_prog_read_value: 1326 return &bpf_perf_prog_read_value_proto; 1327 case BPF_FUNC_read_branch_records: 1328 return &bpf_read_branch_records_proto; 1329 default: 1330 return bpf_tracing_func_proto(func_id, prog); 1331 } 1332 } 1333 1334 /* 1335 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp 1336 * to avoid potential recursive reuse issue when/if tracepoints are added 1337 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack. 1338 * 1339 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage 1340 * in normal, irq, and nmi context. 1341 */ 1342 struct bpf_raw_tp_regs { 1343 struct pt_regs regs[3]; 1344 }; 1345 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs); 1346 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level); 1347 static struct pt_regs *get_bpf_raw_tp_regs(void) 1348 { 1349 struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs); 1350 int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level); 1351 1352 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) { 1353 this_cpu_dec(bpf_raw_tp_nest_level); 1354 return ERR_PTR(-EBUSY); 1355 } 1356 1357 return &tp_regs->regs[nest_level - 1]; 1358 } 1359 1360 static void put_bpf_raw_tp_regs(void) 1361 { 1362 this_cpu_dec(bpf_raw_tp_nest_level); 1363 } 1364 1365 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args, 1366 struct bpf_map *, map, u64, flags, void *, data, u64, size) 1367 { 1368 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1369 int ret; 1370 1371 if (IS_ERR(regs)) 1372 return PTR_ERR(regs); 1373 1374 perf_fetch_caller_regs(regs); 1375 ret = ____bpf_perf_event_output(regs, map, flags, data, size); 1376 1377 put_bpf_raw_tp_regs(); 1378 return ret; 1379 } 1380 1381 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = { 1382 .func = bpf_perf_event_output_raw_tp, 1383 .gpl_only = true, 1384 .ret_type = RET_INTEGER, 1385 .arg1_type = ARG_PTR_TO_CTX, 1386 .arg2_type = ARG_CONST_MAP_PTR, 1387 .arg3_type = ARG_ANYTHING, 1388 .arg4_type = ARG_PTR_TO_MEM, 1389 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1390 }; 1391 1392 extern const struct bpf_func_proto bpf_skb_output_proto; 1393 extern const struct bpf_func_proto bpf_xdp_output_proto; 1394 1395 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args, 1396 struct bpf_map *, map, u64, flags) 1397 { 1398 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1399 int ret; 1400 1401 if (IS_ERR(regs)) 1402 return PTR_ERR(regs); 1403 1404 perf_fetch_caller_regs(regs); 1405 /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */ 1406 ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1407 flags, 0, 0); 1408 put_bpf_raw_tp_regs(); 1409 return ret; 1410 } 1411 1412 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = { 1413 .func = bpf_get_stackid_raw_tp, 1414 .gpl_only = true, 1415 .ret_type = RET_INTEGER, 1416 .arg1_type = ARG_PTR_TO_CTX, 1417 .arg2_type = ARG_CONST_MAP_PTR, 1418 .arg3_type = ARG_ANYTHING, 1419 }; 1420 1421 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args, 1422 void *, buf, u32, size, u64, flags) 1423 { 1424 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1425 int ret; 1426 1427 if (IS_ERR(regs)) 1428 return PTR_ERR(regs); 1429 1430 perf_fetch_caller_regs(regs); 1431 ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1432 (unsigned long) size, flags, 0); 1433 put_bpf_raw_tp_regs(); 1434 return ret; 1435 } 1436 1437 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = { 1438 .func = bpf_get_stack_raw_tp, 1439 .gpl_only = true, 1440 .ret_type = RET_INTEGER, 1441 .arg1_type = ARG_PTR_TO_CTX, 1442 .arg2_type = ARG_PTR_TO_MEM, 1443 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1444 .arg4_type = ARG_ANYTHING, 1445 }; 1446 1447 static const struct bpf_func_proto * 1448 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1449 { 1450 switch (func_id) { 1451 case BPF_FUNC_perf_event_output: 1452 return &bpf_perf_event_output_proto_raw_tp; 1453 case BPF_FUNC_get_stackid: 1454 return &bpf_get_stackid_proto_raw_tp; 1455 case BPF_FUNC_get_stack: 1456 return &bpf_get_stack_proto_raw_tp; 1457 default: 1458 return bpf_tracing_func_proto(func_id, prog); 1459 } 1460 } 1461 1462 const struct bpf_func_proto * 1463 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1464 { 1465 const struct bpf_func_proto *fn; 1466 1467 switch (func_id) { 1468 #ifdef CONFIG_NET 1469 case BPF_FUNC_skb_output: 1470 return &bpf_skb_output_proto; 1471 case BPF_FUNC_xdp_output: 1472 return &bpf_xdp_output_proto; 1473 case BPF_FUNC_skc_to_tcp6_sock: 1474 return &bpf_skc_to_tcp6_sock_proto; 1475 case BPF_FUNC_skc_to_tcp_sock: 1476 return &bpf_skc_to_tcp_sock_proto; 1477 case BPF_FUNC_skc_to_tcp_timewait_sock: 1478 return &bpf_skc_to_tcp_timewait_sock_proto; 1479 case BPF_FUNC_skc_to_tcp_request_sock: 1480 return &bpf_skc_to_tcp_request_sock_proto; 1481 case BPF_FUNC_skc_to_udp6_sock: 1482 return &bpf_skc_to_udp6_sock_proto; 1483 case BPF_FUNC_sk_storage_get: 1484 return &bpf_sk_storage_get_tracing_proto; 1485 case BPF_FUNC_sk_storage_delete: 1486 return &bpf_sk_storage_delete_tracing_proto; 1487 case BPF_FUNC_sock_from_file: 1488 return &bpf_sock_from_file_proto; 1489 case BPF_FUNC_get_socket_cookie: 1490 return &bpf_get_socket_ptr_cookie_proto; 1491 #endif 1492 case BPF_FUNC_seq_printf: 1493 return prog->expected_attach_type == BPF_TRACE_ITER ? 1494 &bpf_seq_printf_proto : 1495 NULL; 1496 case BPF_FUNC_seq_write: 1497 return prog->expected_attach_type == BPF_TRACE_ITER ? 1498 &bpf_seq_write_proto : 1499 NULL; 1500 case BPF_FUNC_seq_printf_btf: 1501 return prog->expected_attach_type == BPF_TRACE_ITER ? 1502 &bpf_seq_printf_btf_proto : 1503 NULL; 1504 case BPF_FUNC_d_path: 1505 return &bpf_d_path_proto; 1506 default: 1507 fn = raw_tp_prog_func_proto(func_id, prog); 1508 if (!fn && prog->expected_attach_type == BPF_TRACE_ITER) 1509 fn = bpf_iter_get_func_proto(func_id, prog); 1510 return fn; 1511 } 1512 } 1513 1514 static bool raw_tp_prog_is_valid_access(int off, int size, 1515 enum bpf_access_type type, 1516 const struct bpf_prog *prog, 1517 struct bpf_insn_access_aux *info) 1518 { 1519 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 1520 return false; 1521 if (type != BPF_READ) 1522 return false; 1523 if (off % size != 0) 1524 return false; 1525 return true; 1526 } 1527 1528 static bool tracing_prog_is_valid_access(int off, int size, 1529 enum bpf_access_type type, 1530 const struct bpf_prog *prog, 1531 struct bpf_insn_access_aux *info) 1532 { 1533 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 1534 return false; 1535 if (type != BPF_READ) 1536 return false; 1537 if (off % size != 0) 1538 return false; 1539 return btf_ctx_access(off, size, type, prog, info); 1540 } 1541 1542 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog, 1543 const union bpf_attr *kattr, 1544 union bpf_attr __user *uattr) 1545 { 1546 return -ENOTSUPP; 1547 } 1548 1549 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = { 1550 .get_func_proto = raw_tp_prog_func_proto, 1551 .is_valid_access = raw_tp_prog_is_valid_access, 1552 }; 1553 1554 const struct bpf_prog_ops raw_tracepoint_prog_ops = { 1555 #ifdef CONFIG_NET 1556 .test_run = bpf_prog_test_run_raw_tp, 1557 #endif 1558 }; 1559 1560 const struct bpf_verifier_ops tracing_verifier_ops = { 1561 .get_func_proto = tracing_prog_func_proto, 1562 .is_valid_access = tracing_prog_is_valid_access, 1563 }; 1564 1565 const struct bpf_prog_ops tracing_prog_ops = { 1566 .test_run = bpf_prog_test_run_tracing, 1567 }; 1568 1569 static bool raw_tp_writable_prog_is_valid_access(int off, int size, 1570 enum bpf_access_type type, 1571 const struct bpf_prog *prog, 1572 struct bpf_insn_access_aux *info) 1573 { 1574 if (off == 0) { 1575 if (size != sizeof(u64) || type != BPF_READ) 1576 return false; 1577 info->reg_type = PTR_TO_TP_BUFFER; 1578 } 1579 return raw_tp_prog_is_valid_access(off, size, type, prog, info); 1580 } 1581 1582 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = { 1583 .get_func_proto = raw_tp_prog_func_proto, 1584 .is_valid_access = raw_tp_writable_prog_is_valid_access, 1585 }; 1586 1587 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = { 1588 }; 1589 1590 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1591 const struct bpf_prog *prog, 1592 struct bpf_insn_access_aux *info) 1593 { 1594 const int size_u64 = sizeof(u64); 1595 1596 if (off < 0 || off >= sizeof(struct bpf_perf_event_data)) 1597 return false; 1598 if (type != BPF_READ) 1599 return false; 1600 if (off % size != 0) { 1601 if (sizeof(unsigned long) != 4) 1602 return false; 1603 if (size != 8) 1604 return false; 1605 if (off % size != 4) 1606 return false; 1607 } 1608 1609 switch (off) { 1610 case bpf_ctx_range(struct bpf_perf_event_data, sample_period): 1611 bpf_ctx_record_field_size(info, size_u64); 1612 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 1613 return false; 1614 break; 1615 case bpf_ctx_range(struct bpf_perf_event_data, addr): 1616 bpf_ctx_record_field_size(info, size_u64); 1617 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 1618 return false; 1619 break; 1620 default: 1621 if (size != sizeof(long)) 1622 return false; 1623 } 1624 1625 return true; 1626 } 1627 1628 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type, 1629 const struct bpf_insn *si, 1630 struct bpf_insn *insn_buf, 1631 struct bpf_prog *prog, u32 *target_size) 1632 { 1633 struct bpf_insn *insn = insn_buf; 1634 1635 switch (si->off) { 1636 case offsetof(struct bpf_perf_event_data, sample_period): 1637 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1638 data), si->dst_reg, si->src_reg, 1639 offsetof(struct bpf_perf_event_data_kern, data)); 1640 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 1641 bpf_target_off(struct perf_sample_data, period, 8, 1642 target_size)); 1643 break; 1644 case offsetof(struct bpf_perf_event_data, addr): 1645 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1646 data), si->dst_reg, si->src_reg, 1647 offsetof(struct bpf_perf_event_data_kern, data)); 1648 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 1649 bpf_target_off(struct perf_sample_data, addr, 8, 1650 target_size)); 1651 break; 1652 default: 1653 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1654 regs), si->dst_reg, si->src_reg, 1655 offsetof(struct bpf_perf_event_data_kern, regs)); 1656 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg, 1657 si->off); 1658 break; 1659 } 1660 1661 return insn - insn_buf; 1662 } 1663 1664 const struct bpf_verifier_ops perf_event_verifier_ops = { 1665 .get_func_proto = pe_prog_func_proto, 1666 .is_valid_access = pe_prog_is_valid_access, 1667 .convert_ctx_access = pe_prog_convert_ctx_access, 1668 }; 1669 1670 const struct bpf_prog_ops perf_event_prog_ops = { 1671 }; 1672 1673 static DEFINE_MUTEX(bpf_event_mutex); 1674 1675 #define BPF_TRACE_MAX_PROGS 64 1676 1677 int perf_event_attach_bpf_prog(struct perf_event *event, 1678 struct bpf_prog *prog) 1679 { 1680 struct bpf_prog_array *old_array; 1681 struct bpf_prog_array *new_array; 1682 int ret = -EEXIST; 1683 1684 /* 1685 * Kprobe override only works if they are on the function entry, 1686 * and only if they are on the opt-in list. 1687 */ 1688 if (prog->kprobe_override && 1689 (!trace_kprobe_on_func_entry(event->tp_event) || 1690 !trace_kprobe_error_injectable(event->tp_event))) 1691 return -EINVAL; 1692 1693 mutex_lock(&bpf_event_mutex); 1694 1695 if (event->prog) 1696 goto unlock; 1697 1698 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 1699 if (old_array && 1700 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) { 1701 ret = -E2BIG; 1702 goto unlock; 1703 } 1704 1705 ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array); 1706 if (ret < 0) 1707 goto unlock; 1708 1709 /* set the new array to event->tp_event and set event->prog */ 1710 event->prog = prog; 1711 rcu_assign_pointer(event->tp_event->prog_array, new_array); 1712 bpf_prog_array_free(old_array); 1713 1714 unlock: 1715 mutex_unlock(&bpf_event_mutex); 1716 return ret; 1717 } 1718 1719 void perf_event_detach_bpf_prog(struct perf_event *event) 1720 { 1721 struct bpf_prog_array *old_array; 1722 struct bpf_prog_array *new_array; 1723 int ret; 1724 1725 mutex_lock(&bpf_event_mutex); 1726 1727 if (!event->prog) 1728 goto unlock; 1729 1730 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 1731 ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array); 1732 if (ret == -ENOENT) 1733 goto unlock; 1734 if (ret < 0) { 1735 bpf_prog_array_delete_safe(old_array, event->prog); 1736 } else { 1737 rcu_assign_pointer(event->tp_event->prog_array, new_array); 1738 bpf_prog_array_free(old_array); 1739 } 1740 1741 bpf_prog_put(event->prog); 1742 event->prog = NULL; 1743 1744 unlock: 1745 mutex_unlock(&bpf_event_mutex); 1746 } 1747 1748 int perf_event_query_prog_array(struct perf_event *event, void __user *info) 1749 { 1750 struct perf_event_query_bpf __user *uquery = info; 1751 struct perf_event_query_bpf query = {}; 1752 struct bpf_prog_array *progs; 1753 u32 *ids, prog_cnt, ids_len; 1754 int ret; 1755 1756 if (!perfmon_capable()) 1757 return -EPERM; 1758 if (event->attr.type != PERF_TYPE_TRACEPOINT) 1759 return -EINVAL; 1760 if (copy_from_user(&query, uquery, sizeof(query))) 1761 return -EFAULT; 1762 1763 ids_len = query.ids_len; 1764 if (ids_len > BPF_TRACE_MAX_PROGS) 1765 return -E2BIG; 1766 ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN); 1767 if (!ids) 1768 return -ENOMEM; 1769 /* 1770 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which 1771 * is required when user only wants to check for uquery->prog_cnt. 1772 * There is no need to check for it since the case is handled 1773 * gracefully in bpf_prog_array_copy_info. 1774 */ 1775 1776 mutex_lock(&bpf_event_mutex); 1777 progs = bpf_event_rcu_dereference(event->tp_event->prog_array); 1778 ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt); 1779 mutex_unlock(&bpf_event_mutex); 1780 1781 if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) || 1782 copy_to_user(uquery->ids, ids, ids_len * sizeof(u32))) 1783 ret = -EFAULT; 1784 1785 kfree(ids); 1786 return ret; 1787 } 1788 1789 extern struct bpf_raw_event_map __start__bpf_raw_tp[]; 1790 extern struct bpf_raw_event_map __stop__bpf_raw_tp[]; 1791 1792 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name) 1793 { 1794 struct bpf_raw_event_map *btp = __start__bpf_raw_tp; 1795 1796 for (; btp < __stop__bpf_raw_tp; btp++) { 1797 if (!strcmp(btp->tp->name, name)) 1798 return btp; 1799 } 1800 1801 return bpf_get_raw_tracepoint_module(name); 1802 } 1803 1804 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp) 1805 { 1806 struct module *mod; 1807 1808 preempt_disable(); 1809 mod = __module_address((unsigned long)btp); 1810 module_put(mod); 1811 preempt_enable(); 1812 } 1813 1814 static __always_inline 1815 void __bpf_trace_run(struct bpf_prog *prog, u64 *args) 1816 { 1817 cant_sleep(); 1818 rcu_read_lock(); 1819 (void) BPF_PROG_RUN(prog, args); 1820 rcu_read_unlock(); 1821 } 1822 1823 #define UNPACK(...) __VA_ARGS__ 1824 #define REPEAT_1(FN, DL, X, ...) FN(X) 1825 #define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__) 1826 #define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__) 1827 #define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__) 1828 #define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__) 1829 #define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__) 1830 #define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__) 1831 #define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__) 1832 #define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__) 1833 #define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__) 1834 #define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__) 1835 #define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__) 1836 #define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__) 1837 1838 #define SARG(X) u64 arg##X 1839 #define COPY(X) args[X] = arg##X 1840 1841 #define __DL_COM (,) 1842 #define __DL_SEM (;) 1843 1844 #define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 1845 1846 #define BPF_TRACE_DEFN_x(x) \ 1847 void bpf_trace_run##x(struct bpf_prog *prog, \ 1848 REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \ 1849 { \ 1850 u64 args[x]; \ 1851 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \ 1852 __bpf_trace_run(prog, args); \ 1853 } \ 1854 EXPORT_SYMBOL_GPL(bpf_trace_run##x) 1855 BPF_TRACE_DEFN_x(1); 1856 BPF_TRACE_DEFN_x(2); 1857 BPF_TRACE_DEFN_x(3); 1858 BPF_TRACE_DEFN_x(4); 1859 BPF_TRACE_DEFN_x(5); 1860 BPF_TRACE_DEFN_x(6); 1861 BPF_TRACE_DEFN_x(7); 1862 BPF_TRACE_DEFN_x(8); 1863 BPF_TRACE_DEFN_x(9); 1864 BPF_TRACE_DEFN_x(10); 1865 BPF_TRACE_DEFN_x(11); 1866 BPF_TRACE_DEFN_x(12); 1867 1868 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1869 { 1870 struct tracepoint *tp = btp->tp; 1871 1872 /* 1873 * check that program doesn't access arguments beyond what's 1874 * available in this tracepoint 1875 */ 1876 if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64)) 1877 return -EINVAL; 1878 1879 if (prog->aux->max_tp_access > btp->writable_size) 1880 return -EINVAL; 1881 1882 return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func, 1883 prog); 1884 } 1885 1886 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1887 { 1888 return __bpf_probe_register(btp, prog); 1889 } 1890 1891 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1892 { 1893 return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog); 1894 } 1895 1896 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id, 1897 u32 *fd_type, const char **buf, 1898 u64 *probe_offset, u64 *probe_addr) 1899 { 1900 bool is_tracepoint, is_syscall_tp; 1901 struct bpf_prog *prog; 1902 int flags, err = 0; 1903 1904 prog = event->prog; 1905 if (!prog) 1906 return -ENOENT; 1907 1908 /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */ 1909 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) 1910 return -EOPNOTSUPP; 1911 1912 *prog_id = prog->aux->id; 1913 flags = event->tp_event->flags; 1914 is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT; 1915 is_syscall_tp = is_syscall_trace_event(event->tp_event); 1916 1917 if (is_tracepoint || is_syscall_tp) { 1918 *buf = is_tracepoint ? event->tp_event->tp->name 1919 : event->tp_event->name; 1920 *fd_type = BPF_FD_TYPE_TRACEPOINT; 1921 *probe_offset = 0x0; 1922 *probe_addr = 0x0; 1923 } else { 1924 /* kprobe/uprobe */ 1925 err = -EOPNOTSUPP; 1926 #ifdef CONFIG_KPROBE_EVENTS 1927 if (flags & TRACE_EVENT_FL_KPROBE) 1928 err = bpf_get_kprobe_info(event, fd_type, buf, 1929 probe_offset, probe_addr, 1930 event->attr.type == PERF_TYPE_TRACEPOINT); 1931 #endif 1932 #ifdef CONFIG_UPROBE_EVENTS 1933 if (flags & TRACE_EVENT_FL_UPROBE) 1934 err = bpf_get_uprobe_info(event, fd_type, buf, 1935 probe_offset, 1936 event->attr.type == PERF_TYPE_TRACEPOINT); 1937 #endif 1938 } 1939 1940 return err; 1941 } 1942 1943 static int __init send_signal_irq_work_init(void) 1944 { 1945 int cpu; 1946 struct send_signal_irq_work *work; 1947 1948 for_each_possible_cpu(cpu) { 1949 work = per_cpu_ptr(&send_signal_work, cpu); 1950 init_irq_work(&work->irq_work, do_bpf_send_signal); 1951 } 1952 return 0; 1953 } 1954 1955 subsys_initcall(send_signal_irq_work_init); 1956 1957 #ifdef CONFIG_MODULES 1958 static int bpf_event_notify(struct notifier_block *nb, unsigned long op, 1959 void *module) 1960 { 1961 struct bpf_trace_module *btm, *tmp; 1962 struct module *mod = module; 1963 int ret = 0; 1964 1965 if (mod->num_bpf_raw_events == 0 || 1966 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING)) 1967 goto out; 1968 1969 mutex_lock(&bpf_module_mutex); 1970 1971 switch (op) { 1972 case MODULE_STATE_COMING: 1973 btm = kzalloc(sizeof(*btm), GFP_KERNEL); 1974 if (btm) { 1975 btm->module = module; 1976 list_add(&btm->list, &bpf_trace_modules); 1977 } else { 1978 ret = -ENOMEM; 1979 } 1980 break; 1981 case MODULE_STATE_GOING: 1982 list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) { 1983 if (btm->module == module) { 1984 list_del(&btm->list); 1985 kfree(btm); 1986 break; 1987 } 1988 } 1989 break; 1990 } 1991 1992 mutex_unlock(&bpf_module_mutex); 1993 1994 out: 1995 return notifier_from_errno(ret); 1996 } 1997 1998 static struct notifier_block bpf_module_nb = { 1999 .notifier_call = bpf_event_notify, 2000 }; 2001 2002 static int __init bpf_event_init(void) 2003 { 2004 register_module_notifier(&bpf_module_nb); 2005 return 0; 2006 } 2007 2008 fs_initcall(bpf_event_init); 2009 #endif /* CONFIG_MODULES */ 2010