xref: /linux/kernel/trace/bpf_trace.c (revision 920c293af8d01942caa10300ad97eabf778e8598)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_perf_event.h>
10 #include <linux/btf.h>
11 #include <linux/filter.h>
12 #include <linux/uaccess.h>
13 #include <linux/ctype.h>
14 #include <linux/kprobes.h>
15 #include <linux/spinlock.h>
16 #include <linux/syscalls.h>
17 #include <linux/error-injection.h>
18 #include <linux/btf_ids.h>
19 #include <linux/bpf_lsm.h>
20 
21 #include <net/bpf_sk_storage.h>
22 
23 #include <uapi/linux/bpf.h>
24 #include <uapi/linux/btf.h>
25 
26 #include <asm/tlb.h>
27 
28 #include "trace_probe.h"
29 #include "trace.h"
30 
31 #define CREATE_TRACE_POINTS
32 #include "bpf_trace.h"
33 
34 #define bpf_event_rcu_dereference(p)					\
35 	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
36 
37 #ifdef CONFIG_MODULES
38 struct bpf_trace_module {
39 	struct module *module;
40 	struct list_head list;
41 };
42 
43 static LIST_HEAD(bpf_trace_modules);
44 static DEFINE_MUTEX(bpf_module_mutex);
45 
46 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
47 {
48 	struct bpf_raw_event_map *btp, *ret = NULL;
49 	struct bpf_trace_module *btm;
50 	unsigned int i;
51 
52 	mutex_lock(&bpf_module_mutex);
53 	list_for_each_entry(btm, &bpf_trace_modules, list) {
54 		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
55 			btp = &btm->module->bpf_raw_events[i];
56 			if (!strcmp(btp->tp->name, name)) {
57 				if (try_module_get(btm->module))
58 					ret = btp;
59 				goto out;
60 			}
61 		}
62 	}
63 out:
64 	mutex_unlock(&bpf_module_mutex);
65 	return ret;
66 }
67 #else
68 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
69 {
70 	return NULL;
71 }
72 #endif /* CONFIG_MODULES */
73 
74 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
75 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
76 
77 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
78 				  u64 flags, const struct btf **btf,
79 				  s32 *btf_id);
80 
81 /**
82  * trace_call_bpf - invoke BPF program
83  * @call: tracepoint event
84  * @ctx: opaque context pointer
85  *
86  * kprobe handlers execute BPF programs via this helper.
87  * Can be used from static tracepoints in the future.
88  *
89  * Return: BPF programs always return an integer which is interpreted by
90  * kprobe handler as:
91  * 0 - return from kprobe (event is filtered out)
92  * 1 - store kprobe event into ring buffer
93  * Other values are reserved and currently alias to 1
94  */
95 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
96 {
97 	unsigned int ret;
98 
99 	cant_sleep();
100 
101 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
102 		/*
103 		 * since some bpf program is already running on this cpu,
104 		 * don't call into another bpf program (same or different)
105 		 * and don't send kprobe event into ring-buffer,
106 		 * so return zero here
107 		 */
108 		ret = 0;
109 		goto out;
110 	}
111 
112 	/*
113 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
114 	 * to all call sites, we did a bpf_prog_array_valid() there to check
115 	 * whether call->prog_array is empty or not, which is
116 	 * a heuristic to speed up execution.
117 	 *
118 	 * If bpf_prog_array_valid() fetched prog_array was
119 	 * non-NULL, we go into trace_call_bpf() and do the actual
120 	 * proper rcu_dereference() under RCU lock.
121 	 * If it turns out that prog_array is NULL then, we bail out.
122 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
123 	 * was NULL, you'll skip the prog_array with the risk of missing
124 	 * out of events when it was updated in between this and the
125 	 * rcu_dereference() which is accepted risk.
126 	 */
127 	ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
128 
129  out:
130 	__this_cpu_dec(bpf_prog_active);
131 
132 	return ret;
133 }
134 
135 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
136 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
137 {
138 	regs_set_return_value(regs, rc);
139 	override_function_with_return(regs);
140 	return 0;
141 }
142 
143 static const struct bpf_func_proto bpf_override_return_proto = {
144 	.func		= bpf_override_return,
145 	.gpl_only	= true,
146 	.ret_type	= RET_INTEGER,
147 	.arg1_type	= ARG_PTR_TO_CTX,
148 	.arg2_type	= ARG_ANYTHING,
149 };
150 #endif
151 
152 static __always_inline int
153 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
154 {
155 	int ret;
156 
157 	ret = copy_from_user_nofault(dst, unsafe_ptr, size);
158 	if (unlikely(ret < 0))
159 		memset(dst, 0, size);
160 	return ret;
161 }
162 
163 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
164 	   const void __user *, unsafe_ptr)
165 {
166 	return bpf_probe_read_user_common(dst, size, unsafe_ptr);
167 }
168 
169 const struct bpf_func_proto bpf_probe_read_user_proto = {
170 	.func		= bpf_probe_read_user,
171 	.gpl_only	= true,
172 	.ret_type	= RET_INTEGER,
173 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
174 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
175 	.arg3_type	= ARG_ANYTHING,
176 };
177 
178 static __always_inline int
179 bpf_probe_read_user_str_common(void *dst, u32 size,
180 			       const void __user *unsafe_ptr)
181 {
182 	int ret;
183 
184 	/*
185 	 * NB: We rely on strncpy_from_user() not copying junk past the NUL
186 	 * terminator into `dst`.
187 	 *
188 	 * strncpy_from_user() does long-sized strides in the fast path. If the
189 	 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
190 	 * then there could be junk after the NUL in `dst`. If user takes `dst`
191 	 * and keys a hash map with it, then semantically identical strings can
192 	 * occupy multiple entries in the map.
193 	 */
194 	ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
195 	if (unlikely(ret < 0))
196 		memset(dst, 0, size);
197 	return ret;
198 }
199 
200 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
201 	   const void __user *, unsafe_ptr)
202 {
203 	return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
204 }
205 
206 const struct bpf_func_proto bpf_probe_read_user_str_proto = {
207 	.func		= bpf_probe_read_user_str,
208 	.gpl_only	= true,
209 	.ret_type	= RET_INTEGER,
210 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
211 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
212 	.arg3_type	= ARG_ANYTHING,
213 };
214 
215 static __always_inline int
216 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
217 {
218 	int ret;
219 
220 	ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
221 	if (unlikely(ret < 0))
222 		memset(dst, 0, size);
223 	return ret;
224 }
225 
226 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
227 	   const void *, unsafe_ptr)
228 {
229 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
230 }
231 
232 const struct bpf_func_proto bpf_probe_read_kernel_proto = {
233 	.func		= bpf_probe_read_kernel,
234 	.gpl_only	= true,
235 	.ret_type	= RET_INTEGER,
236 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
237 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
238 	.arg3_type	= ARG_ANYTHING,
239 };
240 
241 static __always_inline int
242 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
243 {
244 	int ret;
245 
246 	/*
247 	 * The strncpy_from_kernel_nofault() call will likely not fill the
248 	 * entire buffer, but that's okay in this circumstance as we're probing
249 	 * arbitrary memory anyway similar to bpf_probe_read_*() and might
250 	 * as well probe the stack. Thus, memory is explicitly cleared
251 	 * only in error case, so that improper users ignoring return
252 	 * code altogether don't copy garbage; otherwise length of string
253 	 * is returned that can be used for bpf_perf_event_output() et al.
254 	 */
255 	ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
256 	if (unlikely(ret < 0))
257 		memset(dst, 0, size);
258 	return ret;
259 }
260 
261 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
262 	   const void *, unsafe_ptr)
263 {
264 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
265 }
266 
267 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
268 	.func		= bpf_probe_read_kernel_str,
269 	.gpl_only	= true,
270 	.ret_type	= RET_INTEGER,
271 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
272 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
273 	.arg3_type	= ARG_ANYTHING,
274 };
275 
276 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
277 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
278 	   const void *, unsafe_ptr)
279 {
280 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
281 		return bpf_probe_read_user_common(dst, size,
282 				(__force void __user *)unsafe_ptr);
283 	}
284 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
285 }
286 
287 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
288 	.func		= bpf_probe_read_compat,
289 	.gpl_only	= true,
290 	.ret_type	= RET_INTEGER,
291 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
292 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
293 	.arg3_type	= ARG_ANYTHING,
294 };
295 
296 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
297 	   const void *, unsafe_ptr)
298 {
299 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
300 		return bpf_probe_read_user_str_common(dst, size,
301 				(__force void __user *)unsafe_ptr);
302 	}
303 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
304 }
305 
306 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
307 	.func		= bpf_probe_read_compat_str,
308 	.gpl_only	= true,
309 	.ret_type	= RET_INTEGER,
310 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
311 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
312 	.arg3_type	= ARG_ANYTHING,
313 };
314 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
315 
316 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
317 	   u32, size)
318 {
319 	/*
320 	 * Ensure we're in user context which is safe for the helper to
321 	 * run. This helper has no business in a kthread.
322 	 *
323 	 * access_ok() should prevent writing to non-user memory, but in
324 	 * some situations (nommu, temporary switch, etc) access_ok() does
325 	 * not provide enough validation, hence the check on KERNEL_DS.
326 	 *
327 	 * nmi_uaccess_okay() ensures the probe is not run in an interim
328 	 * state, when the task or mm are switched. This is specifically
329 	 * required to prevent the use of temporary mm.
330 	 */
331 
332 	if (unlikely(in_interrupt() ||
333 		     current->flags & (PF_KTHREAD | PF_EXITING)))
334 		return -EPERM;
335 	if (unlikely(uaccess_kernel()))
336 		return -EPERM;
337 	if (unlikely(!nmi_uaccess_okay()))
338 		return -EPERM;
339 
340 	return copy_to_user_nofault(unsafe_ptr, src, size);
341 }
342 
343 static const struct bpf_func_proto bpf_probe_write_user_proto = {
344 	.func		= bpf_probe_write_user,
345 	.gpl_only	= true,
346 	.ret_type	= RET_INTEGER,
347 	.arg1_type	= ARG_ANYTHING,
348 	.arg2_type	= ARG_PTR_TO_MEM,
349 	.arg3_type	= ARG_CONST_SIZE,
350 };
351 
352 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
353 {
354 	if (!capable(CAP_SYS_ADMIN))
355 		return NULL;
356 
357 	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
358 			    current->comm, task_pid_nr(current));
359 
360 	return &bpf_probe_write_user_proto;
361 }
362 
363 static DEFINE_RAW_SPINLOCK(trace_printk_lock);
364 
365 #define MAX_TRACE_PRINTK_VARARGS	3
366 #define BPF_TRACE_PRINTK_SIZE		1024
367 
368 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
369 	   u64, arg2, u64, arg3)
370 {
371 	u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 };
372 	u32 *bin_args;
373 	static char buf[BPF_TRACE_PRINTK_SIZE];
374 	unsigned long flags;
375 	int ret;
376 
377 	ret = bpf_bprintf_prepare(fmt, fmt_size, args, &bin_args,
378 				  MAX_TRACE_PRINTK_VARARGS);
379 	if (ret < 0)
380 		return ret;
381 
382 	raw_spin_lock_irqsave(&trace_printk_lock, flags);
383 	ret = bstr_printf(buf, sizeof(buf), fmt, bin_args);
384 
385 	trace_bpf_trace_printk(buf);
386 	raw_spin_unlock_irqrestore(&trace_printk_lock, flags);
387 
388 	bpf_bprintf_cleanup();
389 
390 	return ret;
391 }
392 
393 static const struct bpf_func_proto bpf_trace_printk_proto = {
394 	.func		= bpf_trace_printk,
395 	.gpl_only	= true,
396 	.ret_type	= RET_INTEGER,
397 	.arg1_type	= ARG_PTR_TO_MEM,
398 	.arg2_type	= ARG_CONST_SIZE,
399 };
400 
401 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
402 {
403 	/*
404 	 * This program might be calling bpf_trace_printk,
405 	 * so enable the associated bpf_trace/bpf_trace_printk event.
406 	 * Repeat this each time as it is possible a user has
407 	 * disabled bpf_trace_printk events.  By loading a program
408 	 * calling bpf_trace_printk() however the user has expressed
409 	 * the intent to see such events.
410 	 */
411 	if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
412 		pr_warn_ratelimited("could not enable bpf_trace_printk events");
413 
414 	return &bpf_trace_printk_proto;
415 }
416 
417 #define MAX_SEQ_PRINTF_VARARGS		12
418 
419 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
420 	   const void *, data, u32, data_len)
421 {
422 	int err, num_args;
423 	u32 *bin_args;
424 
425 	if (data_len & 7 || data_len > MAX_SEQ_PRINTF_VARARGS * 8 ||
426 	    (data_len && !data))
427 		return -EINVAL;
428 	num_args = data_len / 8;
429 
430 	err = bpf_bprintf_prepare(fmt, fmt_size, data, &bin_args, num_args);
431 	if (err < 0)
432 		return err;
433 
434 	seq_bprintf(m, fmt, bin_args);
435 
436 	bpf_bprintf_cleanup();
437 
438 	return seq_has_overflowed(m) ? -EOVERFLOW : 0;
439 }
440 
441 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
442 
443 static const struct bpf_func_proto bpf_seq_printf_proto = {
444 	.func		= bpf_seq_printf,
445 	.gpl_only	= true,
446 	.ret_type	= RET_INTEGER,
447 	.arg1_type	= ARG_PTR_TO_BTF_ID,
448 	.arg1_btf_id	= &btf_seq_file_ids[0],
449 	.arg2_type	= ARG_PTR_TO_MEM,
450 	.arg3_type	= ARG_CONST_SIZE,
451 	.arg4_type      = ARG_PTR_TO_MEM_OR_NULL,
452 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
453 };
454 
455 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
456 {
457 	return seq_write(m, data, len) ? -EOVERFLOW : 0;
458 }
459 
460 static const struct bpf_func_proto bpf_seq_write_proto = {
461 	.func		= bpf_seq_write,
462 	.gpl_only	= true,
463 	.ret_type	= RET_INTEGER,
464 	.arg1_type	= ARG_PTR_TO_BTF_ID,
465 	.arg1_btf_id	= &btf_seq_file_ids[0],
466 	.arg2_type	= ARG_PTR_TO_MEM,
467 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
468 };
469 
470 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
471 	   u32, btf_ptr_size, u64, flags)
472 {
473 	const struct btf *btf;
474 	s32 btf_id;
475 	int ret;
476 
477 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
478 	if (ret)
479 		return ret;
480 
481 	return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
482 }
483 
484 static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
485 	.func		= bpf_seq_printf_btf,
486 	.gpl_only	= true,
487 	.ret_type	= RET_INTEGER,
488 	.arg1_type	= ARG_PTR_TO_BTF_ID,
489 	.arg1_btf_id	= &btf_seq_file_ids[0],
490 	.arg2_type	= ARG_PTR_TO_MEM,
491 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
492 	.arg4_type	= ARG_ANYTHING,
493 };
494 
495 static __always_inline int
496 get_map_perf_counter(struct bpf_map *map, u64 flags,
497 		     u64 *value, u64 *enabled, u64 *running)
498 {
499 	struct bpf_array *array = container_of(map, struct bpf_array, map);
500 	unsigned int cpu = smp_processor_id();
501 	u64 index = flags & BPF_F_INDEX_MASK;
502 	struct bpf_event_entry *ee;
503 
504 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
505 		return -EINVAL;
506 	if (index == BPF_F_CURRENT_CPU)
507 		index = cpu;
508 	if (unlikely(index >= array->map.max_entries))
509 		return -E2BIG;
510 
511 	ee = READ_ONCE(array->ptrs[index]);
512 	if (!ee)
513 		return -ENOENT;
514 
515 	return perf_event_read_local(ee->event, value, enabled, running);
516 }
517 
518 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
519 {
520 	u64 value = 0;
521 	int err;
522 
523 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
524 	/*
525 	 * this api is ugly since we miss [-22..-2] range of valid
526 	 * counter values, but that's uapi
527 	 */
528 	if (err)
529 		return err;
530 	return value;
531 }
532 
533 static const struct bpf_func_proto bpf_perf_event_read_proto = {
534 	.func		= bpf_perf_event_read,
535 	.gpl_only	= true,
536 	.ret_type	= RET_INTEGER,
537 	.arg1_type	= ARG_CONST_MAP_PTR,
538 	.arg2_type	= ARG_ANYTHING,
539 };
540 
541 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
542 	   struct bpf_perf_event_value *, buf, u32, size)
543 {
544 	int err = -EINVAL;
545 
546 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
547 		goto clear;
548 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
549 				   &buf->running);
550 	if (unlikely(err))
551 		goto clear;
552 	return 0;
553 clear:
554 	memset(buf, 0, size);
555 	return err;
556 }
557 
558 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
559 	.func		= bpf_perf_event_read_value,
560 	.gpl_only	= true,
561 	.ret_type	= RET_INTEGER,
562 	.arg1_type	= ARG_CONST_MAP_PTR,
563 	.arg2_type	= ARG_ANYTHING,
564 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
565 	.arg4_type	= ARG_CONST_SIZE,
566 };
567 
568 static __always_inline u64
569 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
570 			u64 flags, struct perf_sample_data *sd)
571 {
572 	struct bpf_array *array = container_of(map, struct bpf_array, map);
573 	unsigned int cpu = smp_processor_id();
574 	u64 index = flags & BPF_F_INDEX_MASK;
575 	struct bpf_event_entry *ee;
576 	struct perf_event *event;
577 
578 	if (index == BPF_F_CURRENT_CPU)
579 		index = cpu;
580 	if (unlikely(index >= array->map.max_entries))
581 		return -E2BIG;
582 
583 	ee = READ_ONCE(array->ptrs[index]);
584 	if (!ee)
585 		return -ENOENT;
586 
587 	event = ee->event;
588 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
589 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
590 		return -EINVAL;
591 
592 	if (unlikely(event->oncpu != cpu))
593 		return -EOPNOTSUPP;
594 
595 	return perf_event_output(event, sd, regs);
596 }
597 
598 /*
599  * Support executing tracepoints in normal, irq, and nmi context that each call
600  * bpf_perf_event_output
601  */
602 struct bpf_trace_sample_data {
603 	struct perf_sample_data sds[3];
604 };
605 
606 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
607 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
608 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
609 	   u64, flags, void *, data, u64, size)
610 {
611 	struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
612 	int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
613 	struct perf_raw_record raw = {
614 		.frag = {
615 			.size = size,
616 			.data = data,
617 		},
618 	};
619 	struct perf_sample_data *sd;
620 	int err;
621 
622 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
623 		err = -EBUSY;
624 		goto out;
625 	}
626 
627 	sd = &sds->sds[nest_level - 1];
628 
629 	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
630 		err = -EINVAL;
631 		goto out;
632 	}
633 
634 	perf_sample_data_init(sd, 0, 0);
635 	sd->raw = &raw;
636 
637 	err = __bpf_perf_event_output(regs, map, flags, sd);
638 
639 out:
640 	this_cpu_dec(bpf_trace_nest_level);
641 	return err;
642 }
643 
644 static const struct bpf_func_proto bpf_perf_event_output_proto = {
645 	.func		= bpf_perf_event_output,
646 	.gpl_only	= true,
647 	.ret_type	= RET_INTEGER,
648 	.arg1_type	= ARG_PTR_TO_CTX,
649 	.arg2_type	= ARG_CONST_MAP_PTR,
650 	.arg3_type	= ARG_ANYTHING,
651 	.arg4_type	= ARG_PTR_TO_MEM,
652 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
653 };
654 
655 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
656 struct bpf_nested_pt_regs {
657 	struct pt_regs regs[3];
658 };
659 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
660 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
661 
662 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
663 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
664 {
665 	int nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
666 	struct perf_raw_frag frag = {
667 		.copy		= ctx_copy,
668 		.size		= ctx_size,
669 		.data		= ctx,
670 	};
671 	struct perf_raw_record raw = {
672 		.frag = {
673 			{
674 				.next	= ctx_size ? &frag : NULL,
675 			},
676 			.size	= meta_size,
677 			.data	= meta,
678 		},
679 	};
680 	struct perf_sample_data *sd;
681 	struct pt_regs *regs;
682 	u64 ret;
683 
684 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
685 		ret = -EBUSY;
686 		goto out;
687 	}
688 	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
689 	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
690 
691 	perf_fetch_caller_regs(regs);
692 	perf_sample_data_init(sd, 0, 0);
693 	sd->raw = &raw;
694 
695 	ret = __bpf_perf_event_output(regs, map, flags, sd);
696 out:
697 	this_cpu_dec(bpf_event_output_nest_level);
698 	return ret;
699 }
700 
701 BPF_CALL_0(bpf_get_current_task)
702 {
703 	return (long) current;
704 }
705 
706 const struct bpf_func_proto bpf_get_current_task_proto = {
707 	.func		= bpf_get_current_task,
708 	.gpl_only	= true,
709 	.ret_type	= RET_INTEGER,
710 };
711 
712 BPF_CALL_0(bpf_get_current_task_btf)
713 {
714 	return (unsigned long) current;
715 }
716 
717 BTF_ID_LIST_SINGLE(bpf_get_current_btf_ids, struct, task_struct)
718 
719 static const struct bpf_func_proto bpf_get_current_task_btf_proto = {
720 	.func		= bpf_get_current_task_btf,
721 	.gpl_only	= true,
722 	.ret_type	= RET_PTR_TO_BTF_ID,
723 	.ret_btf_id	= &bpf_get_current_btf_ids[0],
724 };
725 
726 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
727 {
728 	struct bpf_array *array = container_of(map, struct bpf_array, map);
729 	struct cgroup *cgrp;
730 
731 	if (unlikely(idx >= array->map.max_entries))
732 		return -E2BIG;
733 
734 	cgrp = READ_ONCE(array->ptrs[idx]);
735 	if (unlikely(!cgrp))
736 		return -EAGAIN;
737 
738 	return task_under_cgroup_hierarchy(current, cgrp);
739 }
740 
741 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
742 	.func           = bpf_current_task_under_cgroup,
743 	.gpl_only       = false,
744 	.ret_type       = RET_INTEGER,
745 	.arg1_type      = ARG_CONST_MAP_PTR,
746 	.arg2_type      = ARG_ANYTHING,
747 };
748 
749 struct send_signal_irq_work {
750 	struct irq_work irq_work;
751 	struct task_struct *task;
752 	u32 sig;
753 	enum pid_type type;
754 };
755 
756 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
757 
758 static void do_bpf_send_signal(struct irq_work *entry)
759 {
760 	struct send_signal_irq_work *work;
761 
762 	work = container_of(entry, struct send_signal_irq_work, irq_work);
763 	group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
764 }
765 
766 static int bpf_send_signal_common(u32 sig, enum pid_type type)
767 {
768 	struct send_signal_irq_work *work = NULL;
769 
770 	/* Similar to bpf_probe_write_user, task needs to be
771 	 * in a sound condition and kernel memory access be
772 	 * permitted in order to send signal to the current
773 	 * task.
774 	 */
775 	if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
776 		return -EPERM;
777 	if (unlikely(uaccess_kernel()))
778 		return -EPERM;
779 	if (unlikely(!nmi_uaccess_okay()))
780 		return -EPERM;
781 
782 	if (irqs_disabled()) {
783 		/* Do an early check on signal validity. Otherwise,
784 		 * the error is lost in deferred irq_work.
785 		 */
786 		if (unlikely(!valid_signal(sig)))
787 			return -EINVAL;
788 
789 		work = this_cpu_ptr(&send_signal_work);
790 		if (irq_work_is_busy(&work->irq_work))
791 			return -EBUSY;
792 
793 		/* Add the current task, which is the target of sending signal,
794 		 * to the irq_work. The current task may change when queued
795 		 * irq works get executed.
796 		 */
797 		work->task = current;
798 		work->sig = sig;
799 		work->type = type;
800 		irq_work_queue(&work->irq_work);
801 		return 0;
802 	}
803 
804 	return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
805 }
806 
807 BPF_CALL_1(bpf_send_signal, u32, sig)
808 {
809 	return bpf_send_signal_common(sig, PIDTYPE_TGID);
810 }
811 
812 static const struct bpf_func_proto bpf_send_signal_proto = {
813 	.func		= bpf_send_signal,
814 	.gpl_only	= false,
815 	.ret_type	= RET_INTEGER,
816 	.arg1_type	= ARG_ANYTHING,
817 };
818 
819 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
820 {
821 	return bpf_send_signal_common(sig, PIDTYPE_PID);
822 }
823 
824 static const struct bpf_func_proto bpf_send_signal_thread_proto = {
825 	.func		= bpf_send_signal_thread,
826 	.gpl_only	= false,
827 	.ret_type	= RET_INTEGER,
828 	.arg1_type	= ARG_ANYTHING,
829 };
830 
831 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
832 {
833 	long len;
834 	char *p;
835 
836 	if (!sz)
837 		return 0;
838 
839 	p = d_path(path, buf, sz);
840 	if (IS_ERR(p)) {
841 		len = PTR_ERR(p);
842 	} else {
843 		len = buf + sz - p;
844 		memmove(buf, p, len);
845 	}
846 
847 	return len;
848 }
849 
850 BTF_SET_START(btf_allowlist_d_path)
851 #ifdef CONFIG_SECURITY
852 BTF_ID(func, security_file_permission)
853 BTF_ID(func, security_inode_getattr)
854 BTF_ID(func, security_file_open)
855 #endif
856 #ifdef CONFIG_SECURITY_PATH
857 BTF_ID(func, security_path_truncate)
858 #endif
859 BTF_ID(func, vfs_truncate)
860 BTF_ID(func, vfs_fallocate)
861 BTF_ID(func, dentry_open)
862 BTF_ID(func, vfs_getattr)
863 BTF_ID(func, filp_close)
864 BTF_SET_END(btf_allowlist_d_path)
865 
866 static bool bpf_d_path_allowed(const struct bpf_prog *prog)
867 {
868 	if (prog->type == BPF_PROG_TYPE_TRACING &&
869 	    prog->expected_attach_type == BPF_TRACE_ITER)
870 		return true;
871 
872 	if (prog->type == BPF_PROG_TYPE_LSM)
873 		return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id);
874 
875 	return btf_id_set_contains(&btf_allowlist_d_path,
876 				   prog->aux->attach_btf_id);
877 }
878 
879 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
880 
881 static const struct bpf_func_proto bpf_d_path_proto = {
882 	.func		= bpf_d_path,
883 	.gpl_only	= false,
884 	.ret_type	= RET_INTEGER,
885 	.arg1_type	= ARG_PTR_TO_BTF_ID,
886 	.arg1_btf_id	= &bpf_d_path_btf_ids[0],
887 	.arg2_type	= ARG_PTR_TO_MEM,
888 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
889 	.allowed	= bpf_d_path_allowed,
890 };
891 
892 #define BTF_F_ALL	(BTF_F_COMPACT  | BTF_F_NONAME | \
893 			 BTF_F_PTR_RAW | BTF_F_ZERO)
894 
895 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
896 				  u64 flags, const struct btf **btf,
897 				  s32 *btf_id)
898 {
899 	const struct btf_type *t;
900 
901 	if (unlikely(flags & ~(BTF_F_ALL)))
902 		return -EINVAL;
903 
904 	if (btf_ptr_size != sizeof(struct btf_ptr))
905 		return -EINVAL;
906 
907 	*btf = bpf_get_btf_vmlinux();
908 
909 	if (IS_ERR_OR_NULL(*btf))
910 		return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
911 
912 	if (ptr->type_id > 0)
913 		*btf_id = ptr->type_id;
914 	else
915 		return -EINVAL;
916 
917 	if (*btf_id > 0)
918 		t = btf_type_by_id(*btf, *btf_id);
919 	if (*btf_id <= 0 || !t)
920 		return -ENOENT;
921 
922 	return 0;
923 }
924 
925 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
926 	   u32, btf_ptr_size, u64, flags)
927 {
928 	const struct btf *btf;
929 	s32 btf_id;
930 	int ret;
931 
932 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
933 	if (ret)
934 		return ret;
935 
936 	return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
937 				      flags);
938 }
939 
940 const struct bpf_func_proto bpf_snprintf_btf_proto = {
941 	.func		= bpf_snprintf_btf,
942 	.gpl_only	= false,
943 	.ret_type	= RET_INTEGER,
944 	.arg1_type	= ARG_PTR_TO_MEM,
945 	.arg2_type	= ARG_CONST_SIZE,
946 	.arg3_type	= ARG_PTR_TO_MEM,
947 	.arg4_type	= ARG_CONST_SIZE,
948 	.arg5_type	= ARG_ANYTHING,
949 };
950 
951 BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx)
952 {
953 	/* This helper call is inlined by verifier. */
954 	return ((u64 *)ctx)[-1];
955 }
956 
957 static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = {
958 	.func		= bpf_get_func_ip_tracing,
959 	.gpl_only	= true,
960 	.ret_type	= RET_INTEGER,
961 	.arg1_type	= ARG_PTR_TO_CTX,
962 };
963 
964 BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs)
965 {
966 	struct kprobe *kp = kprobe_running();
967 
968 	return kp ? (uintptr_t)kp->addr : 0;
969 }
970 
971 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = {
972 	.func		= bpf_get_func_ip_kprobe,
973 	.gpl_only	= true,
974 	.ret_type	= RET_INTEGER,
975 	.arg1_type	= ARG_PTR_TO_CTX,
976 };
977 
978 const struct bpf_func_proto *
979 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
980 {
981 	switch (func_id) {
982 	case BPF_FUNC_map_lookup_elem:
983 		return &bpf_map_lookup_elem_proto;
984 	case BPF_FUNC_map_update_elem:
985 		return &bpf_map_update_elem_proto;
986 	case BPF_FUNC_map_delete_elem:
987 		return &bpf_map_delete_elem_proto;
988 	case BPF_FUNC_map_push_elem:
989 		return &bpf_map_push_elem_proto;
990 	case BPF_FUNC_map_pop_elem:
991 		return &bpf_map_pop_elem_proto;
992 	case BPF_FUNC_map_peek_elem:
993 		return &bpf_map_peek_elem_proto;
994 	case BPF_FUNC_ktime_get_ns:
995 		return &bpf_ktime_get_ns_proto;
996 	case BPF_FUNC_ktime_get_boot_ns:
997 		return &bpf_ktime_get_boot_ns_proto;
998 	case BPF_FUNC_ktime_get_coarse_ns:
999 		return &bpf_ktime_get_coarse_ns_proto;
1000 	case BPF_FUNC_tail_call:
1001 		return &bpf_tail_call_proto;
1002 	case BPF_FUNC_get_current_pid_tgid:
1003 		return &bpf_get_current_pid_tgid_proto;
1004 	case BPF_FUNC_get_current_task:
1005 		return &bpf_get_current_task_proto;
1006 	case BPF_FUNC_get_current_task_btf:
1007 		return &bpf_get_current_task_btf_proto;
1008 	case BPF_FUNC_get_current_uid_gid:
1009 		return &bpf_get_current_uid_gid_proto;
1010 	case BPF_FUNC_get_current_comm:
1011 		return &bpf_get_current_comm_proto;
1012 	case BPF_FUNC_trace_printk:
1013 		return bpf_get_trace_printk_proto();
1014 	case BPF_FUNC_get_smp_processor_id:
1015 		return &bpf_get_smp_processor_id_proto;
1016 	case BPF_FUNC_get_numa_node_id:
1017 		return &bpf_get_numa_node_id_proto;
1018 	case BPF_FUNC_perf_event_read:
1019 		return &bpf_perf_event_read_proto;
1020 	case BPF_FUNC_current_task_under_cgroup:
1021 		return &bpf_current_task_under_cgroup_proto;
1022 	case BPF_FUNC_get_prandom_u32:
1023 		return &bpf_get_prandom_u32_proto;
1024 	case BPF_FUNC_probe_write_user:
1025 		return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ?
1026 		       NULL : bpf_get_probe_write_proto();
1027 	case BPF_FUNC_probe_read_user:
1028 		return &bpf_probe_read_user_proto;
1029 	case BPF_FUNC_probe_read_kernel:
1030 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1031 		       NULL : &bpf_probe_read_kernel_proto;
1032 	case BPF_FUNC_probe_read_user_str:
1033 		return &bpf_probe_read_user_str_proto;
1034 	case BPF_FUNC_probe_read_kernel_str:
1035 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1036 		       NULL : &bpf_probe_read_kernel_str_proto;
1037 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1038 	case BPF_FUNC_probe_read:
1039 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1040 		       NULL : &bpf_probe_read_compat_proto;
1041 	case BPF_FUNC_probe_read_str:
1042 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1043 		       NULL : &bpf_probe_read_compat_str_proto;
1044 #endif
1045 #ifdef CONFIG_CGROUPS
1046 	case BPF_FUNC_get_current_cgroup_id:
1047 		return &bpf_get_current_cgroup_id_proto;
1048 	case BPF_FUNC_get_current_ancestor_cgroup_id:
1049 		return &bpf_get_current_ancestor_cgroup_id_proto;
1050 #endif
1051 	case BPF_FUNC_send_signal:
1052 		return &bpf_send_signal_proto;
1053 	case BPF_FUNC_send_signal_thread:
1054 		return &bpf_send_signal_thread_proto;
1055 	case BPF_FUNC_perf_event_read_value:
1056 		return &bpf_perf_event_read_value_proto;
1057 	case BPF_FUNC_get_ns_current_pid_tgid:
1058 		return &bpf_get_ns_current_pid_tgid_proto;
1059 	case BPF_FUNC_ringbuf_output:
1060 		return &bpf_ringbuf_output_proto;
1061 	case BPF_FUNC_ringbuf_reserve:
1062 		return &bpf_ringbuf_reserve_proto;
1063 	case BPF_FUNC_ringbuf_submit:
1064 		return &bpf_ringbuf_submit_proto;
1065 	case BPF_FUNC_ringbuf_discard:
1066 		return &bpf_ringbuf_discard_proto;
1067 	case BPF_FUNC_ringbuf_query:
1068 		return &bpf_ringbuf_query_proto;
1069 	case BPF_FUNC_jiffies64:
1070 		return &bpf_jiffies64_proto;
1071 	case BPF_FUNC_get_task_stack:
1072 		return &bpf_get_task_stack_proto;
1073 	case BPF_FUNC_copy_from_user:
1074 		return prog->aux->sleepable ? &bpf_copy_from_user_proto : NULL;
1075 	case BPF_FUNC_snprintf_btf:
1076 		return &bpf_snprintf_btf_proto;
1077 	case BPF_FUNC_per_cpu_ptr:
1078 		return &bpf_per_cpu_ptr_proto;
1079 	case BPF_FUNC_this_cpu_ptr:
1080 		return &bpf_this_cpu_ptr_proto;
1081 	case BPF_FUNC_task_storage_get:
1082 		return &bpf_task_storage_get_proto;
1083 	case BPF_FUNC_task_storage_delete:
1084 		return &bpf_task_storage_delete_proto;
1085 	case BPF_FUNC_for_each_map_elem:
1086 		return &bpf_for_each_map_elem_proto;
1087 	case BPF_FUNC_snprintf:
1088 		return &bpf_snprintf_proto;
1089 	case BPF_FUNC_get_func_ip:
1090 		return &bpf_get_func_ip_proto_tracing;
1091 	default:
1092 		return bpf_base_func_proto(func_id);
1093 	}
1094 }
1095 
1096 static const struct bpf_func_proto *
1097 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1098 {
1099 	switch (func_id) {
1100 	case BPF_FUNC_perf_event_output:
1101 		return &bpf_perf_event_output_proto;
1102 	case BPF_FUNC_get_stackid:
1103 		return &bpf_get_stackid_proto;
1104 	case BPF_FUNC_get_stack:
1105 		return &bpf_get_stack_proto;
1106 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
1107 	case BPF_FUNC_override_return:
1108 		return &bpf_override_return_proto;
1109 #endif
1110 	case BPF_FUNC_get_func_ip:
1111 		return &bpf_get_func_ip_proto_kprobe;
1112 	default:
1113 		return bpf_tracing_func_proto(func_id, prog);
1114 	}
1115 }
1116 
1117 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
1118 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1119 					const struct bpf_prog *prog,
1120 					struct bpf_insn_access_aux *info)
1121 {
1122 	if (off < 0 || off >= sizeof(struct pt_regs))
1123 		return false;
1124 	if (type != BPF_READ)
1125 		return false;
1126 	if (off % size != 0)
1127 		return false;
1128 	/*
1129 	 * Assertion for 32 bit to make sure last 8 byte access
1130 	 * (BPF_DW) to the last 4 byte member is disallowed.
1131 	 */
1132 	if (off + size > sizeof(struct pt_regs))
1133 		return false;
1134 
1135 	return true;
1136 }
1137 
1138 const struct bpf_verifier_ops kprobe_verifier_ops = {
1139 	.get_func_proto  = kprobe_prog_func_proto,
1140 	.is_valid_access = kprobe_prog_is_valid_access,
1141 };
1142 
1143 const struct bpf_prog_ops kprobe_prog_ops = {
1144 };
1145 
1146 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1147 	   u64, flags, void *, data, u64, size)
1148 {
1149 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1150 
1151 	/*
1152 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1153 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1154 	 * from there and call the same bpf_perf_event_output() helper inline.
1155 	 */
1156 	return ____bpf_perf_event_output(regs, map, flags, data, size);
1157 }
1158 
1159 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1160 	.func		= bpf_perf_event_output_tp,
1161 	.gpl_only	= true,
1162 	.ret_type	= RET_INTEGER,
1163 	.arg1_type	= ARG_PTR_TO_CTX,
1164 	.arg2_type	= ARG_CONST_MAP_PTR,
1165 	.arg3_type	= ARG_ANYTHING,
1166 	.arg4_type	= ARG_PTR_TO_MEM,
1167 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1168 };
1169 
1170 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1171 	   u64, flags)
1172 {
1173 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1174 
1175 	/*
1176 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
1177 	 * the other helper's function body cannot be inlined due to being
1178 	 * external, thus we need to call raw helper function.
1179 	 */
1180 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1181 			       flags, 0, 0);
1182 }
1183 
1184 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1185 	.func		= bpf_get_stackid_tp,
1186 	.gpl_only	= true,
1187 	.ret_type	= RET_INTEGER,
1188 	.arg1_type	= ARG_PTR_TO_CTX,
1189 	.arg2_type	= ARG_CONST_MAP_PTR,
1190 	.arg3_type	= ARG_ANYTHING,
1191 };
1192 
1193 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1194 	   u64, flags)
1195 {
1196 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1197 
1198 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1199 			     (unsigned long) size, flags, 0);
1200 }
1201 
1202 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1203 	.func		= bpf_get_stack_tp,
1204 	.gpl_only	= true,
1205 	.ret_type	= RET_INTEGER,
1206 	.arg1_type	= ARG_PTR_TO_CTX,
1207 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1208 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1209 	.arg4_type	= ARG_ANYTHING,
1210 };
1211 
1212 static const struct bpf_func_proto *
1213 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1214 {
1215 	switch (func_id) {
1216 	case BPF_FUNC_perf_event_output:
1217 		return &bpf_perf_event_output_proto_tp;
1218 	case BPF_FUNC_get_stackid:
1219 		return &bpf_get_stackid_proto_tp;
1220 	case BPF_FUNC_get_stack:
1221 		return &bpf_get_stack_proto_tp;
1222 	default:
1223 		return bpf_tracing_func_proto(func_id, prog);
1224 	}
1225 }
1226 
1227 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1228 				    const struct bpf_prog *prog,
1229 				    struct bpf_insn_access_aux *info)
1230 {
1231 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1232 		return false;
1233 	if (type != BPF_READ)
1234 		return false;
1235 	if (off % size != 0)
1236 		return false;
1237 
1238 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1239 	return true;
1240 }
1241 
1242 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1243 	.get_func_proto  = tp_prog_func_proto,
1244 	.is_valid_access = tp_prog_is_valid_access,
1245 };
1246 
1247 const struct bpf_prog_ops tracepoint_prog_ops = {
1248 };
1249 
1250 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1251 	   struct bpf_perf_event_value *, buf, u32, size)
1252 {
1253 	int err = -EINVAL;
1254 
1255 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1256 		goto clear;
1257 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1258 				    &buf->running);
1259 	if (unlikely(err))
1260 		goto clear;
1261 	return 0;
1262 clear:
1263 	memset(buf, 0, size);
1264 	return err;
1265 }
1266 
1267 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1268          .func           = bpf_perf_prog_read_value,
1269          .gpl_only       = true,
1270          .ret_type       = RET_INTEGER,
1271          .arg1_type      = ARG_PTR_TO_CTX,
1272          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1273          .arg3_type      = ARG_CONST_SIZE,
1274 };
1275 
1276 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1277 	   void *, buf, u32, size, u64, flags)
1278 {
1279 #ifndef CONFIG_X86
1280 	return -ENOENT;
1281 #else
1282 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1283 	struct perf_branch_stack *br_stack = ctx->data->br_stack;
1284 	u32 to_copy;
1285 
1286 	if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1287 		return -EINVAL;
1288 
1289 	if (unlikely(!br_stack))
1290 		return -EINVAL;
1291 
1292 	if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1293 		return br_stack->nr * br_entry_size;
1294 
1295 	if (!buf || (size % br_entry_size != 0))
1296 		return -EINVAL;
1297 
1298 	to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1299 	memcpy(buf, br_stack->entries, to_copy);
1300 
1301 	return to_copy;
1302 #endif
1303 }
1304 
1305 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1306 	.func           = bpf_read_branch_records,
1307 	.gpl_only       = true,
1308 	.ret_type       = RET_INTEGER,
1309 	.arg1_type      = ARG_PTR_TO_CTX,
1310 	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
1311 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1312 	.arg4_type      = ARG_ANYTHING,
1313 };
1314 
1315 static const struct bpf_func_proto *
1316 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1317 {
1318 	switch (func_id) {
1319 	case BPF_FUNC_perf_event_output:
1320 		return &bpf_perf_event_output_proto_tp;
1321 	case BPF_FUNC_get_stackid:
1322 		return &bpf_get_stackid_proto_pe;
1323 	case BPF_FUNC_get_stack:
1324 		return &bpf_get_stack_proto_pe;
1325 	case BPF_FUNC_perf_prog_read_value:
1326 		return &bpf_perf_prog_read_value_proto;
1327 	case BPF_FUNC_read_branch_records:
1328 		return &bpf_read_branch_records_proto;
1329 	default:
1330 		return bpf_tracing_func_proto(func_id, prog);
1331 	}
1332 }
1333 
1334 /*
1335  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1336  * to avoid potential recursive reuse issue when/if tracepoints are added
1337  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1338  *
1339  * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1340  * in normal, irq, and nmi context.
1341  */
1342 struct bpf_raw_tp_regs {
1343 	struct pt_regs regs[3];
1344 };
1345 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1346 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1347 static struct pt_regs *get_bpf_raw_tp_regs(void)
1348 {
1349 	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1350 	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1351 
1352 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1353 		this_cpu_dec(bpf_raw_tp_nest_level);
1354 		return ERR_PTR(-EBUSY);
1355 	}
1356 
1357 	return &tp_regs->regs[nest_level - 1];
1358 }
1359 
1360 static void put_bpf_raw_tp_regs(void)
1361 {
1362 	this_cpu_dec(bpf_raw_tp_nest_level);
1363 }
1364 
1365 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1366 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
1367 {
1368 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1369 	int ret;
1370 
1371 	if (IS_ERR(regs))
1372 		return PTR_ERR(regs);
1373 
1374 	perf_fetch_caller_regs(regs);
1375 	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1376 
1377 	put_bpf_raw_tp_regs();
1378 	return ret;
1379 }
1380 
1381 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1382 	.func		= bpf_perf_event_output_raw_tp,
1383 	.gpl_only	= true,
1384 	.ret_type	= RET_INTEGER,
1385 	.arg1_type	= ARG_PTR_TO_CTX,
1386 	.arg2_type	= ARG_CONST_MAP_PTR,
1387 	.arg3_type	= ARG_ANYTHING,
1388 	.arg4_type	= ARG_PTR_TO_MEM,
1389 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1390 };
1391 
1392 extern const struct bpf_func_proto bpf_skb_output_proto;
1393 extern const struct bpf_func_proto bpf_xdp_output_proto;
1394 
1395 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1396 	   struct bpf_map *, map, u64, flags)
1397 {
1398 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1399 	int ret;
1400 
1401 	if (IS_ERR(regs))
1402 		return PTR_ERR(regs);
1403 
1404 	perf_fetch_caller_regs(regs);
1405 	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1406 	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1407 			      flags, 0, 0);
1408 	put_bpf_raw_tp_regs();
1409 	return ret;
1410 }
1411 
1412 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1413 	.func		= bpf_get_stackid_raw_tp,
1414 	.gpl_only	= true,
1415 	.ret_type	= RET_INTEGER,
1416 	.arg1_type	= ARG_PTR_TO_CTX,
1417 	.arg2_type	= ARG_CONST_MAP_PTR,
1418 	.arg3_type	= ARG_ANYTHING,
1419 };
1420 
1421 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1422 	   void *, buf, u32, size, u64, flags)
1423 {
1424 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1425 	int ret;
1426 
1427 	if (IS_ERR(regs))
1428 		return PTR_ERR(regs);
1429 
1430 	perf_fetch_caller_regs(regs);
1431 	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1432 			    (unsigned long) size, flags, 0);
1433 	put_bpf_raw_tp_regs();
1434 	return ret;
1435 }
1436 
1437 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1438 	.func		= bpf_get_stack_raw_tp,
1439 	.gpl_only	= true,
1440 	.ret_type	= RET_INTEGER,
1441 	.arg1_type	= ARG_PTR_TO_CTX,
1442 	.arg2_type	= ARG_PTR_TO_MEM,
1443 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1444 	.arg4_type	= ARG_ANYTHING,
1445 };
1446 
1447 static const struct bpf_func_proto *
1448 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1449 {
1450 	switch (func_id) {
1451 	case BPF_FUNC_perf_event_output:
1452 		return &bpf_perf_event_output_proto_raw_tp;
1453 	case BPF_FUNC_get_stackid:
1454 		return &bpf_get_stackid_proto_raw_tp;
1455 	case BPF_FUNC_get_stack:
1456 		return &bpf_get_stack_proto_raw_tp;
1457 	default:
1458 		return bpf_tracing_func_proto(func_id, prog);
1459 	}
1460 }
1461 
1462 const struct bpf_func_proto *
1463 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1464 {
1465 	const struct bpf_func_proto *fn;
1466 
1467 	switch (func_id) {
1468 #ifdef CONFIG_NET
1469 	case BPF_FUNC_skb_output:
1470 		return &bpf_skb_output_proto;
1471 	case BPF_FUNC_xdp_output:
1472 		return &bpf_xdp_output_proto;
1473 	case BPF_FUNC_skc_to_tcp6_sock:
1474 		return &bpf_skc_to_tcp6_sock_proto;
1475 	case BPF_FUNC_skc_to_tcp_sock:
1476 		return &bpf_skc_to_tcp_sock_proto;
1477 	case BPF_FUNC_skc_to_tcp_timewait_sock:
1478 		return &bpf_skc_to_tcp_timewait_sock_proto;
1479 	case BPF_FUNC_skc_to_tcp_request_sock:
1480 		return &bpf_skc_to_tcp_request_sock_proto;
1481 	case BPF_FUNC_skc_to_udp6_sock:
1482 		return &bpf_skc_to_udp6_sock_proto;
1483 	case BPF_FUNC_sk_storage_get:
1484 		return &bpf_sk_storage_get_tracing_proto;
1485 	case BPF_FUNC_sk_storage_delete:
1486 		return &bpf_sk_storage_delete_tracing_proto;
1487 	case BPF_FUNC_sock_from_file:
1488 		return &bpf_sock_from_file_proto;
1489 	case BPF_FUNC_get_socket_cookie:
1490 		return &bpf_get_socket_ptr_cookie_proto;
1491 #endif
1492 	case BPF_FUNC_seq_printf:
1493 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1494 		       &bpf_seq_printf_proto :
1495 		       NULL;
1496 	case BPF_FUNC_seq_write:
1497 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1498 		       &bpf_seq_write_proto :
1499 		       NULL;
1500 	case BPF_FUNC_seq_printf_btf:
1501 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1502 		       &bpf_seq_printf_btf_proto :
1503 		       NULL;
1504 	case BPF_FUNC_d_path:
1505 		return &bpf_d_path_proto;
1506 	default:
1507 		fn = raw_tp_prog_func_proto(func_id, prog);
1508 		if (!fn && prog->expected_attach_type == BPF_TRACE_ITER)
1509 			fn = bpf_iter_get_func_proto(func_id, prog);
1510 		return fn;
1511 	}
1512 }
1513 
1514 static bool raw_tp_prog_is_valid_access(int off, int size,
1515 					enum bpf_access_type type,
1516 					const struct bpf_prog *prog,
1517 					struct bpf_insn_access_aux *info)
1518 {
1519 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1520 		return false;
1521 	if (type != BPF_READ)
1522 		return false;
1523 	if (off % size != 0)
1524 		return false;
1525 	return true;
1526 }
1527 
1528 static bool tracing_prog_is_valid_access(int off, int size,
1529 					 enum bpf_access_type type,
1530 					 const struct bpf_prog *prog,
1531 					 struct bpf_insn_access_aux *info)
1532 {
1533 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1534 		return false;
1535 	if (type != BPF_READ)
1536 		return false;
1537 	if (off % size != 0)
1538 		return false;
1539 	return btf_ctx_access(off, size, type, prog, info);
1540 }
1541 
1542 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1543 				     const union bpf_attr *kattr,
1544 				     union bpf_attr __user *uattr)
1545 {
1546 	return -ENOTSUPP;
1547 }
1548 
1549 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1550 	.get_func_proto  = raw_tp_prog_func_proto,
1551 	.is_valid_access = raw_tp_prog_is_valid_access,
1552 };
1553 
1554 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1555 #ifdef CONFIG_NET
1556 	.test_run = bpf_prog_test_run_raw_tp,
1557 #endif
1558 };
1559 
1560 const struct bpf_verifier_ops tracing_verifier_ops = {
1561 	.get_func_proto  = tracing_prog_func_proto,
1562 	.is_valid_access = tracing_prog_is_valid_access,
1563 };
1564 
1565 const struct bpf_prog_ops tracing_prog_ops = {
1566 	.test_run = bpf_prog_test_run_tracing,
1567 };
1568 
1569 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1570 						 enum bpf_access_type type,
1571 						 const struct bpf_prog *prog,
1572 						 struct bpf_insn_access_aux *info)
1573 {
1574 	if (off == 0) {
1575 		if (size != sizeof(u64) || type != BPF_READ)
1576 			return false;
1577 		info->reg_type = PTR_TO_TP_BUFFER;
1578 	}
1579 	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1580 }
1581 
1582 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1583 	.get_func_proto  = raw_tp_prog_func_proto,
1584 	.is_valid_access = raw_tp_writable_prog_is_valid_access,
1585 };
1586 
1587 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1588 };
1589 
1590 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1591 				    const struct bpf_prog *prog,
1592 				    struct bpf_insn_access_aux *info)
1593 {
1594 	const int size_u64 = sizeof(u64);
1595 
1596 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1597 		return false;
1598 	if (type != BPF_READ)
1599 		return false;
1600 	if (off % size != 0) {
1601 		if (sizeof(unsigned long) != 4)
1602 			return false;
1603 		if (size != 8)
1604 			return false;
1605 		if (off % size != 4)
1606 			return false;
1607 	}
1608 
1609 	switch (off) {
1610 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1611 		bpf_ctx_record_field_size(info, size_u64);
1612 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1613 			return false;
1614 		break;
1615 	case bpf_ctx_range(struct bpf_perf_event_data, addr):
1616 		bpf_ctx_record_field_size(info, size_u64);
1617 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1618 			return false;
1619 		break;
1620 	default:
1621 		if (size != sizeof(long))
1622 			return false;
1623 	}
1624 
1625 	return true;
1626 }
1627 
1628 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1629 				      const struct bpf_insn *si,
1630 				      struct bpf_insn *insn_buf,
1631 				      struct bpf_prog *prog, u32 *target_size)
1632 {
1633 	struct bpf_insn *insn = insn_buf;
1634 
1635 	switch (si->off) {
1636 	case offsetof(struct bpf_perf_event_data, sample_period):
1637 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1638 						       data), si->dst_reg, si->src_reg,
1639 				      offsetof(struct bpf_perf_event_data_kern, data));
1640 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1641 				      bpf_target_off(struct perf_sample_data, period, 8,
1642 						     target_size));
1643 		break;
1644 	case offsetof(struct bpf_perf_event_data, addr):
1645 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1646 						       data), si->dst_reg, si->src_reg,
1647 				      offsetof(struct bpf_perf_event_data_kern, data));
1648 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1649 				      bpf_target_off(struct perf_sample_data, addr, 8,
1650 						     target_size));
1651 		break;
1652 	default:
1653 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1654 						       regs), si->dst_reg, si->src_reg,
1655 				      offsetof(struct bpf_perf_event_data_kern, regs));
1656 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1657 				      si->off);
1658 		break;
1659 	}
1660 
1661 	return insn - insn_buf;
1662 }
1663 
1664 const struct bpf_verifier_ops perf_event_verifier_ops = {
1665 	.get_func_proto		= pe_prog_func_proto,
1666 	.is_valid_access	= pe_prog_is_valid_access,
1667 	.convert_ctx_access	= pe_prog_convert_ctx_access,
1668 };
1669 
1670 const struct bpf_prog_ops perf_event_prog_ops = {
1671 };
1672 
1673 static DEFINE_MUTEX(bpf_event_mutex);
1674 
1675 #define BPF_TRACE_MAX_PROGS 64
1676 
1677 int perf_event_attach_bpf_prog(struct perf_event *event,
1678 			       struct bpf_prog *prog)
1679 {
1680 	struct bpf_prog_array *old_array;
1681 	struct bpf_prog_array *new_array;
1682 	int ret = -EEXIST;
1683 
1684 	/*
1685 	 * Kprobe override only works if they are on the function entry,
1686 	 * and only if they are on the opt-in list.
1687 	 */
1688 	if (prog->kprobe_override &&
1689 	    (!trace_kprobe_on_func_entry(event->tp_event) ||
1690 	     !trace_kprobe_error_injectable(event->tp_event)))
1691 		return -EINVAL;
1692 
1693 	mutex_lock(&bpf_event_mutex);
1694 
1695 	if (event->prog)
1696 		goto unlock;
1697 
1698 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1699 	if (old_array &&
1700 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1701 		ret = -E2BIG;
1702 		goto unlock;
1703 	}
1704 
1705 	ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
1706 	if (ret < 0)
1707 		goto unlock;
1708 
1709 	/* set the new array to event->tp_event and set event->prog */
1710 	event->prog = prog;
1711 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
1712 	bpf_prog_array_free(old_array);
1713 
1714 unlock:
1715 	mutex_unlock(&bpf_event_mutex);
1716 	return ret;
1717 }
1718 
1719 void perf_event_detach_bpf_prog(struct perf_event *event)
1720 {
1721 	struct bpf_prog_array *old_array;
1722 	struct bpf_prog_array *new_array;
1723 	int ret;
1724 
1725 	mutex_lock(&bpf_event_mutex);
1726 
1727 	if (!event->prog)
1728 		goto unlock;
1729 
1730 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1731 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
1732 	if (ret == -ENOENT)
1733 		goto unlock;
1734 	if (ret < 0) {
1735 		bpf_prog_array_delete_safe(old_array, event->prog);
1736 	} else {
1737 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
1738 		bpf_prog_array_free(old_array);
1739 	}
1740 
1741 	bpf_prog_put(event->prog);
1742 	event->prog = NULL;
1743 
1744 unlock:
1745 	mutex_unlock(&bpf_event_mutex);
1746 }
1747 
1748 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1749 {
1750 	struct perf_event_query_bpf __user *uquery = info;
1751 	struct perf_event_query_bpf query = {};
1752 	struct bpf_prog_array *progs;
1753 	u32 *ids, prog_cnt, ids_len;
1754 	int ret;
1755 
1756 	if (!perfmon_capable())
1757 		return -EPERM;
1758 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
1759 		return -EINVAL;
1760 	if (copy_from_user(&query, uquery, sizeof(query)))
1761 		return -EFAULT;
1762 
1763 	ids_len = query.ids_len;
1764 	if (ids_len > BPF_TRACE_MAX_PROGS)
1765 		return -E2BIG;
1766 	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1767 	if (!ids)
1768 		return -ENOMEM;
1769 	/*
1770 	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1771 	 * is required when user only wants to check for uquery->prog_cnt.
1772 	 * There is no need to check for it since the case is handled
1773 	 * gracefully in bpf_prog_array_copy_info.
1774 	 */
1775 
1776 	mutex_lock(&bpf_event_mutex);
1777 	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
1778 	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
1779 	mutex_unlock(&bpf_event_mutex);
1780 
1781 	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
1782 	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
1783 		ret = -EFAULT;
1784 
1785 	kfree(ids);
1786 	return ret;
1787 }
1788 
1789 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
1790 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
1791 
1792 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
1793 {
1794 	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
1795 
1796 	for (; btp < __stop__bpf_raw_tp; btp++) {
1797 		if (!strcmp(btp->tp->name, name))
1798 			return btp;
1799 	}
1800 
1801 	return bpf_get_raw_tracepoint_module(name);
1802 }
1803 
1804 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
1805 {
1806 	struct module *mod;
1807 
1808 	preempt_disable();
1809 	mod = __module_address((unsigned long)btp);
1810 	module_put(mod);
1811 	preempt_enable();
1812 }
1813 
1814 static __always_inline
1815 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
1816 {
1817 	cant_sleep();
1818 	rcu_read_lock();
1819 	(void) BPF_PROG_RUN(prog, args);
1820 	rcu_read_unlock();
1821 }
1822 
1823 #define UNPACK(...)			__VA_ARGS__
1824 #define REPEAT_1(FN, DL, X, ...)	FN(X)
1825 #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
1826 #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
1827 #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
1828 #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
1829 #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
1830 #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
1831 #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
1832 #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
1833 #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
1834 #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
1835 #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
1836 #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
1837 
1838 #define SARG(X)		u64 arg##X
1839 #define COPY(X)		args[X] = arg##X
1840 
1841 #define __DL_COM	(,)
1842 #define __DL_SEM	(;)
1843 
1844 #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
1845 
1846 #define BPF_TRACE_DEFN_x(x)						\
1847 	void bpf_trace_run##x(struct bpf_prog *prog,			\
1848 			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
1849 	{								\
1850 		u64 args[x];						\
1851 		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
1852 		__bpf_trace_run(prog, args);				\
1853 	}								\
1854 	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
1855 BPF_TRACE_DEFN_x(1);
1856 BPF_TRACE_DEFN_x(2);
1857 BPF_TRACE_DEFN_x(3);
1858 BPF_TRACE_DEFN_x(4);
1859 BPF_TRACE_DEFN_x(5);
1860 BPF_TRACE_DEFN_x(6);
1861 BPF_TRACE_DEFN_x(7);
1862 BPF_TRACE_DEFN_x(8);
1863 BPF_TRACE_DEFN_x(9);
1864 BPF_TRACE_DEFN_x(10);
1865 BPF_TRACE_DEFN_x(11);
1866 BPF_TRACE_DEFN_x(12);
1867 
1868 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1869 {
1870 	struct tracepoint *tp = btp->tp;
1871 
1872 	/*
1873 	 * check that program doesn't access arguments beyond what's
1874 	 * available in this tracepoint
1875 	 */
1876 	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
1877 		return -EINVAL;
1878 
1879 	if (prog->aux->max_tp_access > btp->writable_size)
1880 		return -EINVAL;
1881 
1882 	return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func,
1883 						   prog);
1884 }
1885 
1886 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1887 {
1888 	return __bpf_probe_register(btp, prog);
1889 }
1890 
1891 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1892 {
1893 	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
1894 }
1895 
1896 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
1897 			    u32 *fd_type, const char **buf,
1898 			    u64 *probe_offset, u64 *probe_addr)
1899 {
1900 	bool is_tracepoint, is_syscall_tp;
1901 	struct bpf_prog *prog;
1902 	int flags, err = 0;
1903 
1904 	prog = event->prog;
1905 	if (!prog)
1906 		return -ENOENT;
1907 
1908 	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
1909 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
1910 		return -EOPNOTSUPP;
1911 
1912 	*prog_id = prog->aux->id;
1913 	flags = event->tp_event->flags;
1914 	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
1915 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
1916 
1917 	if (is_tracepoint || is_syscall_tp) {
1918 		*buf = is_tracepoint ? event->tp_event->tp->name
1919 				     : event->tp_event->name;
1920 		*fd_type = BPF_FD_TYPE_TRACEPOINT;
1921 		*probe_offset = 0x0;
1922 		*probe_addr = 0x0;
1923 	} else {
1924 		/* kprobe/uprobe */
1925 		err = -EOPNOTSUPP;
1926 #ifdef CONFIG_KPROBE_EVENTS
1927 		if (flags & TRACE_EVENT_FL_KPROBE)
1928 			err = bpf_get_kprobe_info(event, fd_type, buf,
1929 						  probe_offset, probe_addr,
1930 						  event->attr.type == PERF_TYPE_TRACEPOINT);
1931 #endif
1932 #ifdef CONFIG_UPROBE_EVENTS
1933 		if (flags & TRACE_EVENT_FL_UPROBE)
1934 			err = bpf_get_uprobe_info(event, fd_type, buf,
1935 						  probe_offset,
1936 						  event->attr.type == PERF_TYPE_TRACEPOINT);
1937 #endif
1938 	}
1939 
1940 	return err;
1941 }
1942 
1943 static int __init send_signal_irq_work_init(void)
1944 {
1945 	int cpu;
1946 	struct send_signal_irq_work *work;
1947 
1948 	for_each_possible_cpu(cpu) {
1949 		work = per_cpu_ptr(&send_signal_work, cpu);
1950 		init_irq_work(&work->irq_work, do_bpf_send_signal);
1951 	}
1952 	return 0;
1953 }
1954 
1955 subsys_initcall(send_signal_irq_work_init);
1956 
1957 #ifdef CONFIG_MODULES
1958 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
1959 			    void *module)
1960 {
1961 	struct bpf_trace_module *btm, *tmp;
1962 	struct module *mod = module;
1963 	int ret = 0;
1964 
1965 	if (mod->num_bpf_raw_events == 0 ||
1966 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
1967 		goto out;
1968 
1969 	mutex_lock(&bpf_module_mutex);
1970 
1971 	switch (op) {
1972 	case MODULE_STATE_COMING:
1973 		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
1974 		if (btm) {
1975 			btm->module = module;
1976 			list_add(&btm->list, &bpf_trace_modules);
1977 		} else {
1978 			ret = -ENOMEM;
1979 		}
1980 		break;
1981 	case MODULE_STATE_GOING:
1982 		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
1983 			if (btm->module == module) {
1984 				list_del(&btm->list);
1985 				kfree(btm);
1986 				break;
1987 			}
1988 		}
1989 		break;
1990 	}
1991 
1992 	mutex_unlock(&bpf_module_mutex);
1993 
1994 out:
1995 	return notifier_from_errno(ret);
1996 }
1997 
1998 static struct notifier_block bpf_module_nb = {
1999 	.notifier_call = bpf_event_notify,
2000 };
2001 
2002 static int __init bpf_event_init(void)
2003 {
2004 	register_module_notifier(&bpf_module_nb);
2005 	return 0;
2006 }
2007 
2008 fs_initcall(bpf_event_init);
2009 #endif /* CONFIG_MODULES */
2010