xref: /linux/kernel/trace/bpf_trace.c (revision 88a8e278ff0b6b461bf39d4ace17384e976a3f3f)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_perf_event.h>
10 #include <linux/filter.h>
11 #include <linux/uaccess.h>
12 #include <linux/ctype.h>
13 #include <linux/kprobes.h>
14 #include <linux/syscalls.h>
15 #include <linux/error-injection.h>
16 
17 #include <asm/tlb.h>
18 
19 #include "trace_probe.h"
20 #include "trace.h"
21 
22 #define bpf_event_rcu_dereference(p)					\
23 	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
24 
25 #ifdef CONFIG_MODULES
26 struct bpf_trace_module {
27 	struct module *module;
28 	struct list_head list;
29 };
30 
31 static LIST_HEAD(bpf_trace_modules);
32 static DEFINE_MUTEX(bpf_module_mutex);
33 
34 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
35 {
36 	struct bpf_raw_event_map *btp, *ret = NULL;
37 	struct bpf_trace_module *btm;
38 	unsigned int i;
39 
40 	mutex_lock(&bpf_module_mutex);
41 	list_for_each_entry(btm, &bpf_trace_modules, list) {
42 		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
43 			btp = &btm->module->bpf_raw_events[i];
44 			if (!strcmp(btp->tp->name, name)) {
45 				if (try_module_get(btm->module))
46 					ret = btp;
47 				goto out;
48 			}
49 		}
50 	}
51 out:
52 	mutex_unlock(&bpf_module_mutex);
53 	return ret;
54 }
55 #else
56 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
57 {
58 	return NULL;
59 }
60 #endif /* CONFIG_MODULES */
61 
62 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
63 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
64 
65 /**
66  * trace_call_bpf - invoke BPF program
67  * @call: tracepoint event
68  * @ctx: opaque context pointer
69  *
70  * kprobe handlers execute BPF programs via this helper.
71  * Can be used from static tracepoints in the future.
72  *
73  * Return: BPF programs always return an integer which is interpreted by
74  * kprobe handler as:
75  * 0 - return from kprobe (event is filtered out)
76  * 1 - store kprobe event into ring buffer
77  * Other values are reserved and currently alias to 1
78  */
79 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
80 {
81 	unsigned int ret;
82 
83 	if (in_nmi()) /* not supported yet */
84 		return 1;
85 
86 	cant_sleep();
87 
88 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
89 		/*
90 		 * since some bpf program is already running on this cpu,
91 		 * don't call into another bpf program (same or different)
92 		 * and don't send kprobe event into ring-buffer,
93 		 * so return zero here
94 		 */
95 		ret = 0;
96 		goto out;
97 	}
98 
99 	/*
100 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
101 	 * to all call sites, we did a bpf_prog_array_valid() there to check
102 	 * whether call->prog_array is empty or not, which is
103 	 * a heurisitc to speed up execution.
104 	 *
105 	 * If bpf_prog_array_valid() fetched prog_array was
106 	 * non-NULL, we go into trace_call_bpf() and do the actual
107 	 * proper rcu_dereference() under RCU lock.
108 	 * If it turns out that prog_array is NULL then, we bail out.
109 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
110 	 * was NULL, you'll skip the prog_array with the risk of missing
111 	 * out of events when it was updated in between this and the
112 	 * rcu_dereference() which is accepted risk.
113 	 */
114 	ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
115 
116  out:
117 	__this_cpu_dec(bpf_prog_active);
118 
119 	return ret;
120 }
121 
122 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
123 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
124 {
125 	regs_set_return_value(regs, rc);
126 	override_function_with_return(regs);
127 	return 0;
128 }
129 
130 static const struct bpf_func_proto bpf_override_return_proto = {
131 	.func		= bpf_override_return,
132 	.gpl_only	= true,
133 	.ret_type	= RET_INTEGER,
134 	.arg1_type	= ARG_PTR_TO_CTX,
135 	.arg2_type	= ARG_ANYTHING,
136 };
137 #endif
138 
139 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
140 	   const void __user *, unsafe_ptr)
141 {
142 	int ret = probe_user_read(dst, unsafe_ptr, size);
143 
144 	if (unlikely(ret < 0))
145 		memset(dst, 0, size);
146 
147 	return ret;
148 }
149 
150 static const struct bpf_func_proto bpf_probe_read_user_proto = {
151 	.func		= bpf_probe_read_user,
152 	.gpl_only	= true,
153 	.ret_type	= RET_INTEGER,
154 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
155 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
156 	.arg3_type	= ARG_ANYTHING,
157 };
158 
159 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
160 	   const void __user *, unsafe_ptr)
161 {
162 	int ret = strncpy_from_unsafe_user(dst, unsafe_ptr, size);
163 
164 	if (unlikely(ret < 0))
165 		memset(dst, 0, size);
166 
167 	return ret;
168 }
169 
170 static const struct bpf_func_proto bpf_probe_read_user_str_proto = {
171 	.func		= bpf_probe_read_user_str,
172 	.gpl_only	= true,
173 	.ret_type	= RET_INTEGER,
174 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
175 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
176 	.arg3_type	= ARG_ANYTHING,
177 };
178 
179 static __always_inline int
180 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr,
181 			     const bool compat)
182 {
183 	int ret = security_locked_down(LOCKDOWN_BPF_READ);
184 
185 	if (unlikely(ret < 0))
186 		goto out;
187 	ret = compat ? probe_kernel_read(dst, unsafe_ptr, size) :
188 	      probe_kernel_read_strict(dst, unsafe_ptr, size);
189 	if (unlikely(ret < 0))
190 out:
191 		memset(dst, 0, size);
192 	return ret;
193 }
194 
195 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
196 	   const void *, unsafe_ptr)
197 {
198 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr, false);
199 }
200 
201 static const struct bpf_func_proto bpf_probe_read_kernel_proto = {
202 	.func		= bpf_probe_read_kernel,
203 	.gpl_only	= true,
204 	.ret_type	= RET_INTEGER,
205 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
206 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
207 	.arg3_type	= ARG_ANYTHING,
208 };
209 
210 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
211 	   const void *, unsafe_ptr)
212 {
213 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr, true);
214 }
215 
216 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
217 	.func		= bpf_probe_read_compat,
218 	.gpl_only	= true,
219 	.ret_type	= RET_INTEGER,
220 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
221 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
222 	.arg3_type	= ARG_ANYTHING,
223 };
224 
225 static __always_inline int
226 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr,
227 				 const bool compat)
228 {
229 	int ret = security_locked_down(LOCKDOWN_BPF_READ);
230 
231 	if (unlikely(ret < 0))
232 		goto out;
233 	/*
234 	 * The strncpy_from_unsafe_*() call will likely not fill the entire
235 	 * buffer, but that's okay in this circumstance as we're probing
236 	 * arbitrary memory anyway similar to bpf_probe_read_*() and might
237 	 * as well probe the stack. Thus, memory is explicitly cleared
238 	 * only in error case, so that improper users ignoring return
239 	 * code altogether don't copy garbage; otherwise length of string
240 	 * is returned that can be used for bpf_perf_event_output() et al.
241 	 */
242 	ret = compat ? strncpy_from_unsafe(dst, unsafe_ptr, size) :
243 	      strncpy_from_unsafe_strict(dst, unsafe_ptr, size);
244 	if (unlikely(ret < 0))
245 out:
246 		memset(dst, 0, size);
247 	return ret;
248 }
249 
250 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
251 	   const void *, unsafe_ptr)
252 {
253 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr, false);
254 }
255 
256 static const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
257 	.func		= bpf_probe_read_kernel_str,
258 	.gpl_only	= true,
259 	.ret_type	= RET_INTEGER,
260 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
261 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
262 	.arg3_type	= ARG_ANYTHING,
263 };
264 
265 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
266 	   const void *, unsafe_ptr)
267 {
268 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr, true);
269 }
270 
271 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
272 	.func		= bpf_probe_read_compat_str,
273 	.gpl_only	= true,
274 	.ret_type	= RET_INTEGER,
275 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
276 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
277 	.arg3_type	= ARG_ANYTHING,
278 };
279 
280 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
281 	   u32, size)
282 {
283 	/*
284 	 * Ensure we're in user context which is safe for the helper to
285 	 * run. This helper has no business in a kthread.
286 	 *
287 	 * access_ok() should prevent writing to non-user memory, but in
288 	 * some situations (nommu, temporary switch, etc) access_ok() does
289 	 * not provide enough validation, hence the check on KERNEL_DS.
290 	 *
291 	 * nmi_uaccess_okay() ensures the probe is not run in an interim
292 	 * state, when the task or mm are switched. This is specifically
293 	 * required to prevent the use of temporary mm.
294 	 */
295 
296 	if (unlikely(in_interrupt() ||
297 		     current->flags & (PF_KTHREAD | PF_EXITING)))
298 		return -EPERM;
299 	if (unlikely(uaccess_kernel()))
300 		return -EPERM;
301 	if (unlikely(!nmi_uaccess_okay()))
302 		return -EPERM;
303 
304 	return probe_user_write(unsafe_ptr, src, size);
305 }
306 
307 static const struct bpf_func_proto bpf_probe_write_user_proto = {
308 	.func		= bpf_probe_write_user,
309 	.gpl_only	= true,
310 	.ret_type	= RET_INTEGER,
311 	.arg1_type	= ARG_ANYTHING,
312 	.arg2_type	= ARG_PTR_TO_MEM,
313 	.arg3_type	= ARG_CONST_SIZE,
314 };
315 
316 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
317 {
318 	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
319 			    current->comm, task_pid_nr(current));
320 
321 	return &bpf_probe_write_user_proto;
322 }
323 
324 /*
325  * Only limited trace_printk() conversion specifiers allowed:
326  * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %s
327  */
328 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
329 	   u64, arg2, u64, arg3)
330 {
331 	bool str_seen = false;
332 	int mod[3] = {};
333 	int fmt_cnt = 0;
334 	u64 unsafe_addr;
335 	char buf[64];
336 	int i;
337 
338 	/*
339 	 * bpf_check()->check_func_arg()->check_stack_boundary()
340 	 * guarantees that fmt points to bpf program stack,
341 	 * fmt_size bytes of it were initialized and fmt_size > 0
342 	 */
343 	if (fmt[--fmt_size] != 0)
344 		return -EINVAL;
345 
346 	/* check format string for allowed specifiers */
347 	for (i = 0; i < fmt_size; i++) {
348 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
349 			return -EINVAL;
350 
351 		if (fmt[i] != '%')
352 			continue;
353 
354 		if (fmt_cnt >= 3)
355 			return -EINVAL;
356 
357 		/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
358 		i++;
359 		if (fmt[i] == 'l') {
360 			mod[fmt_cnt]++;
361 			i++;
362 		} else if (fmt[i] == 'p' || fmt[i] == 's') {
363 			mod[fmt_cnt]++;
364 			/* disallow any further format extensions */
365 			if (fmt[i + 1] != 0 &&
366 			    !isspace(fmt[i + 1]) &&
367 			    !ispunct(fmt[i + 1]))
368 				return -EINVAL;
369 			fmt_cnt++;
370 			if (fmt[i] == 's') {
371 				if (str_seen)
372 					/* allow only one '%s' per fmt string */
373 					return -EINVAL;
374 				str_seen = true;
375 
376 				switch (fmt_cnt) {
377 				case 1:
378 					unsafe_addr = arg1;
379 					arg1 = (long) buf;
380 					break;
381 				case 2:
382 					unsafe_addr = arg2;
383 					arg2 = (long) buf;
384 					break;
385 				case 3:
386 					unsafe_addr = arg3;
387 					arg3 = (long) buf;
388 					break;
389 				}
390 				buf[0] = 0;
391 				strncpy_from_unsafe(buf,
392 						    (void *) (long) unsafe_addr,
393 						    sizeof(buf));
394 			}
395 			continue;
396 		}
397 
398 		if (fmt[i] == 'l') {
399 			mod[fmt_cnt]++;
400 			i++;
401 		}
402 
403 		if (fmt[i] != 'i' && fmt[i] != 'd' &&
404 		    fmt[i] != 'u' && fmt[i] != 'x')
405 			return -EINVAL;
406 		fmt_cnt++;
407 	}
408 
409 /* Horrid workaround for getting va_list handling working with different
410  * argument type combinations generically for 32 and 64 bit archs.
411  */
412 #define __BPF_TP_EMIT()	__BPF_ARG3_TP()
413 #define __BPF_TP(...)							\
414 	__trace_printk(0 /* Fake ip */,					\
415 		       fmt, ##__VA_ARGS__)
416 
417 #define __BPF_ARG1_TP(...)						\
418 	((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64))	\
419 	  ? __BPF_TP(arg1, ##__VA_ARGS__)				\
420 	  : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32))	\
421 	      ? __BPF_TP((long)arg1, ##__VA_ARGS__)			\
422 	      : __BPF_TP((u32)arg1, ##__VA_ARGS__)))
423 
424 #define __BPF_ARG2_TP(...)						\
425 	((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64))	\
426 	  ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__)				\
427 	  : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32))	\
428 	      ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__)		\
429 	      : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
430 
431 #define __BPF_ARG3_TP(...)						\
432 	((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64))	\
433 	  ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__)				\
434 	  : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32))	\
435 	      ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__)		\
436 	      : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
437 
438 	return __BPF_TP_EMIT();
439 }
440 
441 static const struct bpf_func_proto bpf_trace_printk_proto = {
442 	.func		= bpf_trace_printk,
443 	.gpl_only	= true,
444 	.ret_type	= RET_INTEGER,
445 	.arg1_type	= ARG_PTR_TO_MEM,
446 	.arg2_type	= ARG_CONST_SIZE,
447 };
448 
449 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
450 {
451 	/*
452 	 * this program might be calling bpf_trace_printk,
453 	 * so allocate per-cpu printk buffers
454 	 */
455 	trace_printk_init_buffers();
456 
457 	return &bpf_trace_printk_proto;
458 }
459 
460 static __always_inline int
461 get_map_perf_counter(struct bpf_map *map, u64 flags,
462 		     u64 *value, u64 *enabled, u64 *running)
463 {
464 	struct bpf_array *array = container_of(map, struct bpf_array, map);
465 	unsigned int cpu = smp_processor_id();
466 	u64 index = flags & BPF_F_INDEX_MASK;
467 	struct bpf_event_entry *ee;
468 
469 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
470 		return -EINVAL;
471 	if (index == BPF_F_CURRENT_CPU)
472 		index = cpu;
473 	if (unlikely(index >= array->map.max_entries))
474 		return -E2BIG;
475 
476 	ee = READ_ONCE(array->ptrs[index]);
477 	if (!ee)
478 		return -ENOENT;
479 
480 	return perf_event_read_local(ee->event, value, enabled, running);
481 }
482 
483 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
484 {
485 	u64 value = 0;
486 	int err;
487 
488 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
489 	/*
490 	 * this api is ugly since we miss [-22..-2] range of valid
491 	 * counter values, but that's uapi
492 	 */
493 	if (err)
494 		return err;
495 	return value;
496 }
497 
498 static const struct bpf_func_proto bpf_perf_event_read_proto = {
499 	.func		= bpf_perf_event_read,
500 	.gpl_only	= true,
501 	.ret_type	= RET_INTEGER,
502 	.arg1_type	= ARG_CONST_MAP_PTR,
503 	.arg2_type	= ARG_ANYTHING,
504 };
505 
506 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
507 	   struct bpf_perf_event_value *, buf, u32, size)
508 {
509 	int err = -EINVAL;
510 
511 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
512 		goto clear;
513 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
514 				   &buf->running);
515 	if (unlikely(err))
516 		goto clear;
517 	return 0;
518 clear:
519 	memset(buf, 0, size);
520 	return err;
521 }
522 
523 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
524 	.func		= bpf_perf_event_read_value,
525 	.gpl_only	= true,
526 	.ret_type	= RET_INTEGER,
527 	.arg1_type	= ARG_CONST_MAP_PTR,
528 	.arg2_type	= ARG_ANYTHING,
529 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
530 	.arg4_type	= ARG_CONST_SIZE,
531 };
532 
533 static __always_inline u64
534 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
535 			u64 flags, struct perf_sample_data *sd)
536 {
537 	struct bpf_array *array = container_of(map, struct bpf_array, map);
538 	unsigned int cpu = smp_processor_id();
539 	u64 index = flags & BPF_F_INDEX_MASK;
540 	struct bpf_event_entry *ee;
541 	struct perf_event *event;
542 
543 	if (index == BPF_F_CURRENT_CPU)
544 		index = cpu;
545 	if (unlikely(index >= array->map.max_entries))
546 		return -E2BIG;
547 
548 	ee = READ_ONCE(array->ptrs[index]);
549 	if (!ee)
550 		return -ENOENT;
551 
552 	event = ee->event;
553 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
554 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
555 		return -EINVAL;
556 
557 	if (unlikely(event->oncpu != cpu))
558 		return -EOPNOTSUPP;
559 
560 	return perf_event_output(event, sd, regs);
561 }
562 
563 /*
564  * Support executing tracepoints in normal, irq, and nmi context that each call
565  * bpf_perf_event_output
566  */
567 struct bpf_trace_sample_data {
568 	struct perf_sample_data sds[3];
569 };
570 
571 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
572 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
573 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
574 	   u64, flags, void *, data, u64, size)
575 {
576 	struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
577 	int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
578 	struct perf_raw_record raw = {
579 		.frag = {
580 			.size = size,
581 			.data = data,
582 		},
583 	};
584 	struct perf_sample_data *sd;
585 	int err;
586 
587 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
588 		err = -EBUSY;
589 		goto out;
590 	}
591 
592 	sd = &sds->sds[nest_level - 1];
593 
594 	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
595 		err = -EINVAL;
596 		goto out;
597 	}
598 
599 	perf_sample_data_init(sd, 0, 0);
600 	sd->raw = &raw;
601 
602 	err = __bpf_perf_event_output(regs, map, flags, sd);
603 
604 out:
605 	this_cpu_dec(bpf_trace_nest_level);
606 	return err;
607 }
608 
609 static const struct bpf_func_proto bpf_perf_event_output_proto = {
610 	.func		= bpf_perf_event_output,
611 	.gpl_only	= true,
612 	.ret_type	= RET_INTEGER,
613 	.arg1_type	= ARG_PTR_TO_CTX,
614 	.arg2_type	= ARG_CONST_MAP_PTR,
615 	.arg3_type	= ARG_ANYTHING,
616 	.arg4_type	= ARG_PTR_TO_MEM,
617 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
618 };
619 
620 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
621 struct bpf_nested_pt_regs {
622 	struct pt_regs regs[3];
623 };
624 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
625 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
626 
627 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
628 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
629 {
630 	int nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
631 	struct perf_raw_frag frag = {
632 		.copy		= ctx_copy,
633 		.size		= ctx_size,
634 		.data		= ctx,
635 	};
636 	struct perf_raw_record raw = {
637 		.frag = {
638 			{
639 				.next	= ctx_size ? &frag : NULL,
640 			},
641 			.size	= meta_size,
642 			.data	= meta,
643 		},
644 	};
645 	struct perf_sample_data *sd;
646 	struct pt_regs *regs;
647 	u64 ret;
648 
649 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
650 		ret = -EBUSY;
651 		goto out;
652 	}
653 	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
654 	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
655 
656 	perf_fetch_caller_regs(regs);
657 	perf_sample_data_init(sd, 0, 0);
658 	sd->raw = &raw;
659 
660 	ret = __bpf_perf_event_output(regs, map, flags, sd);
661 out:
662 	this_cpu_dec(bpf_event_output_nest_level);
663 	return ret;
664 }
665 
666 BPF_CALL_0(bpf_get_current_task)
667 {
668 	return (long) current;
669 }
670 
671 static const struct bpf_func_proto bpf_get_current_task_proto = {
672 	.func		= bpf_get_current_task,
673 	.gpl_only	= true,
674 	.ret_type	= RET_INTEGER,
675 };
676 
677 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
678 {
679 	struct bpf_array *array = container_of(map, struct bpf_array, map);
680 	struct cgroup *cgrp;
681 
682 	if (unlikely(idx >= array->map.max_entries))
683 		return -E2BIG;
684 
685 	cgrp = READ_ONCE(array->ptrs[idx]);
686 	if (unlikely(!cgrp))
687 		return -EAGAIN;
688 
689 	return task_under_cgroup_hierarchy(current, cgrp);
690 }
691 
692 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
693 	.func           = bpf_current_task_under_cgroup,
694 	.gpl_only       = false,
695 	.ret_type       = RET_INTEGER,
696 	.arg1_type      = ARG_CONST_MAP_PTR,
697 	.arg2_type      = ARG_ANYTHING,
698 };
699 
700 struct send_signal_irq_work {
701 	struct irq_work irq_work;
702 	struct task_struct *task;
703 	u32 sig;
704 	enum pid_type type;
705 };
706 
707 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
708 
709 static void do_bpf_send_signal(struct irq_work *entry)
710 {
711 	struct send_signal_irq_work *work;
712 
713 	work = container_of(entry, struct send_signal_irq_work, irq_work);
714 	group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
715 }
716 
717 static int bpf_send_signal_common(u32 sig, enum pid_type type)
718 {
719 	struct send_signal_irq_work *work = NULL;
720 
721 	/* Similar to bpf_probe_write_user, task needs to be
722 	 * in a sound condition and kernel memory access be
723 	 * permitted in order to send signal to the current
724 	 * task.
725 	 */
726 	if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
727 		return -EPERM;
728 	if (unlikely(uaccess_kernel()))
729 		return -EPERM;
730 	if (unlikely(!nmi_uaccess_okay()))
731 		return -EPERM;
732 
733 	if (irqs_disabled()) {
734 		/* Do an early check on signal validity. Otherwise,
735 		 * the error is lost in deferred irq_work.
736 		 */
737 		if (unlikely(!valid_signal(sig)))
738 			return -EINVAL;
739 
740 		work = this_cpu_ptr(&send_signal_work);
741 		if (atomic_read(&work->irq_work.flags) & IRQ_WORK_BUSY)
742 			return -EBUSY;
743 
744 		/* Add the current task, which is the target of sending signal,
745 		 * to the irq_work. The current task may change when queued
746 		 * irq works get executed.
747 		 */
748 		work->task = current;
749 		work->sig = sig;
750 		work->type = type;
751 		irq_work_queue(&work->irq_work);
752 		return 0;
753 	}
754 
755 	return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
756 }
757 
758 BPF_CALL_1(bpf_send_signal, u32, sig)
759 {
760 	return bpf_send_signal_common(sig, PIDTYPE_TGID);
761 }
762 
763 static const struct bpf_func_proto bpf_send_signal_proto = {
764 	.func		= bpf_send_signal,
765 	.gpl_only	= false,
766 	.ret_type	= RET_INTEGER,
767 	.arg1_type	= ARG_ANYTHING,
768 };
769 
770 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
771 {
772 	return bpf_send_signal_common(sig, PIDTYPE_PID);
773 }
774 
775 static const struct bpf_func_proto bpf_send_signal_thread_proto = {
776 	.func		= bpf_send_signal_thread,
777 	.gpl_only	= false,
778 	.ret_type	= RET_INTEGER,
779 	.arg1_type	= ARG_ANYTHING,
780 };
781 
782 const struct bpf_func_proto *
783 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
784 {
785 	switch (func_id) {
786 	case BPF_FUNC_map_lookup_elem:
787 		return &bpf_map_lookup_elem_proto;
788 	case BPF_FUNC_map_update_elem:
789 		return &bpf_map_update_elem_proto;
790 	case BPF_FUNC_map_delete_elem:
791 		return &bpf_map_delete_elem_proto;
792 	case BPF_FUNC_map_push_elem:
793 		return &bpf_map_push_elem_proto;
794 	case BPF_FUNC_map_pop_elem:
795 		return &bpf_map_pop_elem_proto;
796 	case BPF_FUNC_map_peek_elem:
797 		return &bpf_map_peek_elem_proto;
798 	case BPF_FUNC_ktime_get_ns:
799 		return &bpf_ktime_get_ns_proto;
800 	case BPF_FUNC_tail_call:
801 		return &bpf_tail_call_proto;
802 	case BPF_FUNC_get_current_pid_tgid:
803 		return &bpf_get_current_pid_tgid_proto;
804 	case BPF_FUNC_get_current_task:
805 		return &bpf_get_current_task_proto;
806 	case BPF_FUNC_get_current_uid_gid:
807 		return &bpf_get_current_uid_gid_proto;
808 	case BPF_FUNC_get_current_comm:
809 		return &bpf_get_current_comm_proto;
810 	case BPF_FUNC_trace_printk:
811 		return bpf_get_trace_printk_proto();
812 	case BPF_FUNC_get_smp_processor_id:
813 		return &bpf_get_smp_processor_id_proto;
814 	case BPF_FUNC_get_numa_node_id:
815 		return &bpf_get_numa_node_id_proto;
816 	case BPF_FUNC_perf_event_read:
817 		return &bpf_perf_event_read_proto;
818 	case BPF_FUNC_probe_write_user:
819 		return bpf_get_probe_write_proto();
820 	case BPF_FUNC_current_task_under_cgroup:
821 		return &bpf_current_task_under_cgroup_proto;
822 	case BPF_FUNC_get_prandom_u32:
823 		return &bpf_get_prandom_u32_proto;
824 	case BPF_FUNC_probe_read_user:
825 		return &bpf_probe_read_user_proto;
826 	case BPF_FUNC_probe_read_kernel:
827 		return &bpf_probe_read_kernel_proto;
828 	case BPF_FUNC_probe_read:
829 		return &bpf_probe_read_compat_proto;
830 	case BPF_FUNC_probe_read_user_str:
831 		return &bpf_probe_read_user_str_proto;
832 	case BPF_FUNC_probe_read_kernel_str:
833 		return &bpf_probe_read_kernel_str_proto;
834 	case BPF_FUNC_probe_read_str:
835 		return &bpf_probe_read_compat_str_proto;
836 #ifdef CONFIG_CGROUPS
837 	case BPF_FUNC_get_current_cgroup_id:
838 		return &bpf_get_current_cgroup_id_proto;
839 #endif
840 	case BPF_FUNC_send_signal:
841 		return &bpf_send_signal_proto;
842 	case BPF_FUNC_send_signal_thread:
843 		return &bpf_send_signal_thread_proto;
844 	case BPF_FUNC_perf_event_read_value:
845 		return &bpf_perf_event_read_value_proto;
846 	case BPF_FUNC_get_ns_current_pid_tgid:
847 		return &bpf_get_ns_current_pid_tgid_proto;
848 	default:
849 		return NULL;
850 	}
851 }
852 
853 static const struct bpf_func_proto *
854 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
855 {
856 	switch (func_id) {
857 	case BPF_FUNC_perf_event_output:
858 		return &bpf_perf_event_output_proto;
859 	case BPF_FUNC_get_stackid:
860 		return &bpf_get_stackid_proto;
861 	case BPF_FUNC_get_stack:
862 		return &bpf_get_stack_proto;
863 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
864 	case BPF_FUNC_override_return:
865 		return &bpf_override_return_proto;
866 #endif
867 	default:
868 		return bpf_tracing_func_proto(func_id, prog);
869 	}
870 }
871 
872 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
873 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
874 					const struct bpf_prog *prog,
875 					struct bpf_insn_access_aux *info)
876 {
877 	if (off < 0 || off >= sizeof(struct pt_regs))
878 		return false;
879 	if (type != BPF_READ)
880 		return false;
881 	if (off % size != 0)
882 		return false;
883 	/*
884 	 * Assertion for 32 bit to make sure last 8 byte access
885 	 * (BPF_DW) to the last 4 byte member is disallowed.
886 	 */
887 	if (off + size > sizeof(struct pt_regs))
888 		return false;
889 
890 	return true;
891 }
892 
893 const struct bpf_verifier_ops kprobe_verifier_ops = {
894 	.get_func_proto  = kprobe_prog_func_proto,
895 	.is_valid_access = kprobe_prog_is_valid_access,
896 };
897 
898 const struct bpf_prog_ops kprobe_prog_ops = {
899 };
900 
901 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
902 	   u64, flags, void *, data, u64, size)
903 {
904 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
905 
906 	/*
907 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
908 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
909 	 * from there and call the same bpf_perf_event_output() helper inline.
910 	 */
911 	return ____bpf_perf_event_output(regs, map, flags, data, size);
912 }
913 
914 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
915 	.func		= bpf_perf_event_output_tp,
916 	.gpl_only	= true,
917 	.ret_type	= RET_INTEGER,
918 	.arg1_type	= ARG_PTR_TO_CTX,
919 	.arg2_type	= ARG_CONST_MAP_PTR,
920 	.arg3_type	= ARG_ANYTHING,
921 	.arg4_type	= ARG_PTR_TO_MEM,
922 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
923 };
924 
925 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
926 	   u64, flags)
927 {
928 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
929 
930 	/*
931 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
932 	 * the other helper's function body cannot be inlined due to being
933 	 * external, thus we need to call raw helper function.
934 	 */
935 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
936 			       flags, 0, 0);
937 }
938 
939 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
940 	.func		= bpf_get_stackid_tp,
941 	.gpl_only	= true,
942 	.ret_type	= RET_INTEGER,
943 	.arg1_type	= ARG_PTR_TO_CTX,
944 	.arg2_type	= ARG_CONST_MAP_PTR,
945 	.arg3_type	= ARG_ANYTHING,
946 };
947 
948 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
949 	   u64, flags)
950 {
951 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
952 
953 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
954 			     (unsigned long) size, flags, 0);
955 }
956 
957 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
958 	.func		= bpf_get_stack_tp,
959 	.gpl_only	= true,
960 	.ret_type	= RET_INTEGER,
961 	.arg1_type	= ARG_PTR_TO_CTX,
962 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
963 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
964 	.arg4_type	= ARG_ANYTHING,
965 };
966 
967 static const struct bpf_func_proto *
968 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
969 {
970 	switch (func_id) {
971 	case BPF_FUNC_perf_event_output:
972 		return &bpf_perf_event_output_proto_tp;
973 	case BPF_FUNC_get_stackid:
974 		return &bpf_get_stackid_proto_tp;
975 	case BPF_FUNC_get_stack:
976 		return &bpf_get_stack_proto_tp;
977 	default:
978 		return bpf_tracing_func_proto(func_id, prog);
979 	}
980 }
981 
982 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
983 				    const struct bpf_prog *prog,
984 				    struct bpf_insn_access_aux *info)
985 {
986 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
987 		return false;
988 	if (type != BPF_READ)
989 		return false;
990 	if (off % size != 0)
991 		return false;
992 
993 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
994 	return true;
995 }
996 
997 const struct bpf_verifier_ops tracepoint_verifier_ops = {
998 	.get_func_proto  = tp_prog_func_proto,
999 	.is_valid_access = tp_prog_is_valid_access,
1000 };
1001 
1002 const struct bpf_prog_ops tracepoint_prog_ops = {
1003 };
1004 
1005 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1006 	   struct bpf_perf_event_value *, buf, u32, size)
1007 {
1008 	int err = -EINVAL;
1009 
1010 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1011 		goto clear;
1012 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1013 				    &buf->running);
1014 	if (unlikely(err))
1015 		goto clear;
1016 	return 0;
1017 clear:
1018 	memset(buf, 0, size);
1019 	return err;
1020 }
1021 
1022 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1023          .func           = bpf_perf_prog_read_value,
1024          .gpl_only       = true,
1025          .ret_type       = RET_INTEGER,
1026          .arg1_type      = ARG_PTR_TO_CTX,
1027          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1028          .arg3_type      = ARG_CONST_SIZE,
1029 };
1030 
1031 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1032 	   void *, buf, u32, size, u64, flags)
1033 {
1034 #ifndef CONFIG_X86
1035 	return -ENOENT;
1036 #else
1037 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1038 	struct perf_branch_stack *br_stack = ctx->data->br_stack;
1039 	u32 to_copy;
1040 
1041 	if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1042 		return -EINVAL;
1043 
1044 	if (unlikely(!br_stack))
1045 		return -EINVAL;
1046 
1047 	if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1048 		return br_stack->nr * br_entry_size;
1049 
1050 	if (!buf || (size % br_entry_size != 0))
1051 		return -EINVAL;
1052 
1053 	to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1054 	memcpy(buf, br_stack->entries, to_copy);
1055 
1056 	return to_copy;
1057 #endif
1058 }
1059 
1060 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1061 	.func           = bpf_read_branch_records,
1062 	.gpl_only       = true,
1063 	.ret_type       = RET_INTEGER,
1064 	.arg1_type      = ARG_PTR_TO_CTX,
1065 	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
1066 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1067 	.arg4_type      = ARG_ANYTHING,
1068 };
1069 
1070 static const struct bpf_func_proto *
1071 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1072 {
1073 	switch (func_id) {
1074 	case BPF_FUNC_perf_event_output:
1075 		return &bpf_perf_event_output_proto_tp;
1076 	case BPF_FUNC_get_stackid:
1077 		return &bpf_get_stackid_proto_tp;
1078 	case BPF_FUNC_get_stack:
1079 		return &bpf_get_stack_proto_tp;
1080 	case BPF_FUNC_perf_prog_read_value:
1081 		return &bpf_perf_prog_read_value_proto;
1082 	case BPF_FUNC_read_branch_records:
1083 		return &bpf_read_branch_records_proto;
1084 	default:
1085 		return bpf_tracing_func_proto(func_id, prog);
1086 	}
1087 }
1088 
1089 /*
1090  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1091  * to avoid potential recursive reuse issue when/if tracepoints are added
1092  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1093  *
1094  * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1095  * in normal, irq, and nmi context.
1096  */
1097 struct bpf_raw_tp_regs {
1098 	struct pt_regs regs[3];
1099 };
1100 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1101 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1102 static struct pt_regs *get_bpf_raw_tp_regs(void)
1103 {
1104 	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1105 	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1106 
1107 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1108 		this_cpu_dec(bpf_raw_tp_nest_level);
1109 		return ERR_PTR(-EBUSY);
1110 	}
1111 
1112 	return &tp_regs->regs[nest_level - 1];
1113 }
1114 
1115 static void put_bpf_raw_tp_regs(void)
1116 {
1117 	this_cpu_dec(bpf_raw_tp_nest_level);
1118 }
1119 
1120 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1121 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
1122 {
1123 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1124 	int ret;
1125 
1126 	if (IS_ERR(regs))
1127 		return PTR_ERR(regs);
1128 
1129 	perf_fetch_caller_regs(regs);
1130 	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1131 
1132 	put_bpf_raw_tp_regs();
1133 	return ret;
1134 }
1135 
1136 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1137 	.func		= bpf_perf_event_output_raw_tp,
1138 	.gpl_only	= true,
1139 	.ret_type	= RET_INTEGER,
1140 	.arg1_type	= ARG_PTR_TO_CTX,
1141 	.arg2_type	= ARG_CONST_MAP_PTR,
1142 	.arg3_type	= ARG_ANYTHING,
1143 	.arg4_type	= ARG_PTR_TO_MEM,
1144 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1145 };
1146 
1147 extern const struct bpf_func_proto bpf_skb_output_proto;
1148 extern const struct bpf_func_proto bpf_xdp_output_proto;
1149 
1150 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1151 	   struct bpf_map *, map, u64, flags)
1152 {
1153 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1154 	int ret;
1155 
1156 	if (IS_ERR(regs))
1157 		return PTR_ERR(regs);
1158 
1159 	perf_fetch_caller_regs(regs);
1160 	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1161 	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1162 			      flags, 0, 0);
1163 	put_bpf_raw_tp_regs();
1164 	return ret;
1165 }
1166 
1167 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1168 	.func		= bpf_get_stackid_raw_tp,
1169 	.gpl_only	= true,
1170 	.ret_type	= RET_INTEGER,
1171 	.arg1_type	= ARG_PTR_TO_CTX,
1172 	.arg2_type	= ARG_CONST_MAP_PTR,
1173 	.arg3_type	= ARG_ANYTHING,
1174 };
1175 
1176 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1177 	   void *, buf, u32, size, u64, flags)
1178 {
1179 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1180 	int ret;
1181 
1182 	if (IS_ERR(regs))
1183 		return PTR_ERR(regs);
1184 
1185 	perf_fetch_caller_regs(regs);
1186 	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1187 			    (unsigned long) size, flags, 0);
1188 	put_bpf_raw_tp_regs();
1189 	return ret;
1190 }
1191 
1192 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1193 	.func		= bpf_get_stack_raw_tp,
1194 	.gpl_only	= true,
1195 	.ret_type	= RET_INTEGER,
1196 	.arg1_type	= ARG_PTR_TO_CTX,
1197 	.arg2_type	= ARG_PTR_TO_MEM,
1198 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1199 	.arg4_type	= ARG_ANYTHING,
1200 };
1201 
1202 static const struct bpf_func_proto *
1203 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1204 {
1205 	switch (func_id) {
1206 	case BPF_FUNC_perf_event_output:
1207 		return &bpf_perf_event_output_proto_raw_tp;
1208 	case BPF_FUNC_get_stackid:
1209 		return &bpf_get_stackid_proto_raw_tp;
1210 	case BPF_FUNC_get_stack:
1211 		return &bpf_get_stack_proto_raw_tp;
1212 	default:
1213 		return bpf_tracing_func_proto(func_id, prog);
1214 	}
1215 }
1216 
1217 static const struct bpf_func_proto *
1218 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1219 {
1220 	switch (func_id) {
1221 #ifdef CONFIG_NET
1222 	case BPF_FUNC_skb_output:
1223 		return &bpf_skb_output_proto;
1224 	case BPF_FUNC_xdp_output:
1225 		return &bpf_xdp_output_proto;
1226 #endif
1227 	default:
1228 		return raw_tp_prog_func_proto(func_id, prog);
1229 	}
1230 }
1231 
1232 static bool raw_tp_prog_is_valid_access(int off, int size,
1233 					enum bpf_access_type type,
1234 					const struct bpf_prog *prog,
1235 					struct bpf_insn_access_aux *info)
1236 {
1237 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1238 		return false;
1239 	if (type != BPF_READ)
1240 		return false;
1241 	if (off % size != 0)
1242 		return false;
1243 	return true;
1244 }
1245 
1246 static bool tracing_prog_is_valid_access(int off, int size,
1247 					 enum bpf_access_type type,
1248 					 const struct bpf_prog *prog,
1249 					 struct bpf_insn_access_aux *info)
1250 {
1251 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1252 		return false;
1253 	if (type != BPF_READ)
1254 		return false;
1255 	if (off % size != 0)
1256 		return false;
1257 	return btf_ctx_access(off, size, type, prog, info);
1258 }
1259 
1260 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1261 				     const union bpf_attr *kattr,
1262 				     union bpf_attr __user *uattr)
1263 {
1264 	return -ENOTSUPP;
1265 }
1266 
1267 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1268 	.get_func_proto  = raw_tp_prog_func_proto,
1269 	.is_valid_access = raw_tp_prog_is_valid_access,
1270 };
1271 
1272 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1273 };
1274 
1275 const struct bpf_verifier_ops tracing_verifier_ops = {
1276 	.get_func_proto  = tracing_prog_func_proto,
1277 	.is_valid_access = tracing_prog_is_valid_access,
1278 };
1279 
1280 const struct bpf_prog_ops tracing_prog_ops = {
1281 	.test_run = bpf_prog_test_run_tracing,
1282 };
1283 
1284 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1285 						 enum bpf_access_type type,
1286 						 const struct bpf_prog *prog,
1287 						 struct bpf_insn_access_aux *info)
1288 {
1289 	if (off == 0) {
1290 		if (size != sizeof(u64) || type != BPF_READ)
1291 			return false;
1292 		info->reg_type = PTR_TO_TP_BUFFER;
1293 	}
1294 	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1295 }
1296 
1297 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1298 	.get_func_proto  = raw_tp_prog_func_proto,
1299 	.is_valid_access = raw_tp_writable_prog_is_valid_access,
1300 };
1301 
1302 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1303 };
1304 
1305 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1306 				    const struct bpf_prog *prog,
1307 				    struct bpf_insn_access_aux *info)
1308 {
1309 	const int size_u64 = sizeof(u64);
1310 
1311 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1312 		return false;
1313 	if (type != BPF_READ)
1314 		return false;
1315 	if (off % size != 0) {
1316 		if (sizeof(unsigned long) != 4)
1317 			return false;
1318 		if (size != 8)
1319 			return false;
1320 		if (off % size != 4)
1321 			return false;
1322 	}
1323 
1324 	switch (off) {
1325 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1326 		bpf_ctx_record_field_size(info, size_u64);
1327 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1328 			return false;
1329 		break;
1330 	case bpf_ctx_range(struct bpf_perf_event_data, addr):
1331 		bpf_ctx_record_field_size(info, size_u64);
1332 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1333 			return false;
1334 		break;
1335 	default:
1336 		if (size != sizeof(long))
1337 			return false;
1338 	}
1339 
1340 	return true;
1341 }
1342 
1343 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1344 				      const struct bpf_insn *si,
1345 				      struct bpf_insn *insn_buf,
1346 				      struct bpf_prog *prog, u32 *target_size)
1347 {
1348 	struct bpf_insn *insn = insn_buf;
1349 
1350 	switch (si->off) {
1351 	case offsetof(struct bpf_perf_event_data, sample_period):
1352 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1353 						       data), si->dst_reg, si->src_reg,
1354 				      offsetof(struct bpf_perf_event_data_kern, data));
1355 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1356 				      bpf_target_off(struct perf_sample_data, period, 8,
1357 						     target_size));
1358 		break;
1359 	case offsetof(struct bpf_perf_event_data, addr):
1360 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1361 						       data), si->dst_reg, si->src_reg,
1362 				      offsetof(struct bpf_perf_event_data_kern, data));
1363 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1364 				      bpf_target_off(struct perf_sample_data, addr, 8,
1365 						     target_size));
1366 		break;
1367 	default:
1368 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1369 						       regs), si->dst_reg, si->src_reg,
1370 				      offsetof(struct bpf_perf_event_data_kern, regs));
1371 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1372 				      si->off);
1373 		break;
1374 	}
1375 
1376 	return insn - insn_buf;
1377 }
1378 
1379 const struct bpf_verifier_ops perf_event_verifier_ops = {
1380 	.get_func_proto		= pe_prog_func_proto,
1381 	.is_valid_access	= pe_prog_is_valid_access,
1382 	.convert_ctx_access	= pe_prog_convert_ctx_access,
1383 };
1384 
1385 const struct bpf_prog_ops perf_event_prog_ops = {
1386 };
1387 
1388 static DEFINE_MUTEX(bpf_event_mutex);
1389 
1390 #define BPF_TRACE_MAX_PROGS 64
1391 
1392 int perf_event_attach_bpf_prog(struct perf_event *event,
1393 			       struct bpf_prog *prog)
1394 {
1395 	struct bpf_prog_array *old_array;
1396 	struct bpf_prog_array *new_array;
1397 	int ret = -EEXIST;
1398 
1399 	/*
1400 	 * Kprobe override only works if they are on the function entry,
1401 	 * and only if they are on the opt-in list.
1402 	 */
1403 	if (prog->kprobe_override &&
1404 	    (!trace_kprobe_on_func_entry(event->tp_event) ||
1405 	     !trace_kprobe_error_injectable(event->tp_event)))
1406 		return -EINVAL;
1407 
1408 	mutex_lock(&bpf_event_mutex);
1409 
1410 	if (event->prog)
1411 		goto unlock;
1412 
1413 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1414 	if (old_array &&
1415 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1416 		ret = -E2BIG;
1417 		goto unlock;
1418 	}
1419 
1420 	ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
1421 	if (ret < 0)
1422 		goto unlock;
1423 
1424 	/* set the new array to event->tp_event and set event->prog */
1425 	event->prog = prog;
1426 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
1427 	bpf_prog_array_free(old_array);
1428 
1429 unlock:
1430 	mutex_unlock(&bpf_event_mutex);
1431 	return ret;
1432 }
1433 
1434 void perf_event_detach_bpf_prog(struct perf_event *event)
1435 {
1436 	struct bpf_prog_array *old_array;
1437 	struct bpf_prog_array *new_array;
1438 	int ret;
1439 
1440 	mutex_lock(&bpf_event_mutex);
1441 
1442 	if (!event->prog)
1443 		goto unlock;
1444 
1445 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1446 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
1447 	if (ret == -ENOENT)
1448 		goto unlock;
1449 	if (ret < 0) {
1450 		bpf_prog_array_delete_safe(old_array, event->prog);
1451 	} else {
1452 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
1453 		bpf_prog_array_free(old_array);
1454 	}
1455 
1456 	bpf_prog_put(event->prog);
1457 	event->prog = NULL;
1458 
1459 unlock:
1460 	mutex_unlock(&bpf_event_mutex);
1461 }
1462 
1463 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1464 {
1465 	struct perf_event_query_bpf __user *uquery = info;
1466 	struct perf_event_query_bpf query = {};
1467 	struct bpf_prog_array *progs;
1468 	u32 *ids, prog_cnt, ids_len;
1469 	int ret;
1470 
1471 	if (!capable(CAP_SYS_ADMIN))
1472 		return -EPERM;
1473 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
1474 		return -EINVAL;
1475 	if (copy_from_user(&query, uquery, sizeof(query)))
1476 		return -EFAULT;
1477 
1478 	ids_len = query.ids_len;
1479 	if (ids_len > BPF_TRACE_MAX_PROGS)
1480 		return -E2BIG;
1481 	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1482 	if (!ids)
1483 		return -ENOMEM;
1484 	/*
1485 	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1486 	 * is required when user only wants to check for uquery->prog_cnt.
1487 	 * There is no need to check for it since the case is handled
1488 	 * gracefully in bpf_prog_array_copy_info.
1489 	 */
1490 
1491 	mutex_lock(&bpf_event_mutex);
1492 	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
1493 	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
1494 	mutex_unlock(&bpf_event_mutex);
1495 
1496 	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
1497 	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
1498 		ret = -EFAULT;
1499 
1500 	kfree(ids);
1501 	return ret;
1502 }
1503 
1504 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
1505 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
1506 
1507 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
1508 {
1509 	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
1510 
1511 	for (; btp < __stop__bpf_raw_tp; btp++) {
1512 		if (!strcmp(btp->tp->name, name))
1513 			return btp;
1514 	}
1515 
1516 	return bpf_get_raw_tracepoint_module(name);
1517 }
1518 
1519 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
1520 {
1521 	struct module *mod = __module_address((unsigned long)btp);
1522 
1523 	if (mod)
1524 		module_put(mod);
1525 }
1526 
1527 static __always_inline
1528 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
1529 {
1530 	cant_sleep();
1531 	rcu_read_lock();
1532 	(void) BPF_PROG_RUN(prog, args);
1533 	rcu_read_unlock();
1534 }
1535 
1536 #define UNPACK(...)			__VA_ARGS__
1537 #define REPEAT_1(FN, DL, X, ...)	FN(X)
1538 #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
1539 #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
1540 #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
1541 #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
1542 #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
1543 #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
1544 #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
1545 #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
1546 #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
1547 #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
1548 #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
1549 #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
1550 
1551 #define SARG(X)		u64 arg##X
1552 #define COPY(X)		args[X] = arg##X
1553 
1554 #define __DL_COM	(,)
1555 #define __DL_SEM	(;)
1556 
1557 #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
1558 
1559 #define BPF_TRACE_DEFN_x(x)						\
1560 	void bpf_trace_run##x(struct bpf_prog *prog,			\
1561 			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
1562 	{								\
1563 		u64 args[x];						\
1564 		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
1565 		__bpf_trace_run(prog, args);				\
1566 	}								\
1567 	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
1568 BPF_TRACE_DEFN_x(1);
1569 BPF_TRACE_DEFN_x(2);
1570 BPF_TRACE_DEFN_x(3);
1571 BPF_TRACE_DEFN_x(4);
1572 BPF_TRACE_DEFN_x(5);
1573 BPF_TRACE_DEFN_x(6);
1574 BPF_TRACE_DEFN_x(7);
1575 BPF_TRACE_DEFN_x(8);
1576 BPF_TRACE_DEFN_x(9);
1577 BPF_TRACE_DEFN_x(10);
1578 BPF_TRACE_DEFN_x(11);
1579 BPF_TRACE_DEFN_x(12);
1580 
1581 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1582 {
1583 	struct tracepoint *tp = btp->tp;
1584 
1585 	/*
1586 	 * check that program doesn't access arguments beyond what's
1587 	 * available in this tracepoint
1588 	 */
1589 	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
1590 		return -EINVAL;
1591 
1592 	if (prog->aux->max_tp_access > btp->writable_size)
1593 		return -EINVAL;
1594 
1595 	return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog);
1596 }
1597 
1598 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1599 {
1600 	return __bpf_probe_register(btp, prog);
1601 }
1602 
1603 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1604 {
1605 	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
1606 }
1607 
1608 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
1609 			    u32 *fd_type, const char **buf,
1610 			    u64 *probe_offset, u64 *probe_addr)
1611 {
1612 	bool is_tracepoint, is_syscall_tp;
1613 	struct bpf_prog *prog;
1614 	int flags, err = 0;
1615 
1616 	prog = event->prog;
1617 	if (!prog)
1618 		return -ENOENT;
1619 
1620 	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
1621 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
1622 		return -EOPNOTSUPP;
1623 
1624 	*prog_id = prog->aux->id;
1625 	flags = event->tp_event->flags;
1626 	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
1627 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
1628 
1629 	if (is_tracepoint || is_syscall_tp) {
1630 		*buf = is_tracepoint ? event->tp_event->tp->name
1631 				     : event->tp_event->name;
1632 		*fd_type = BPF_FD_TYPE_TRACEPOINT;
1633 		*probe_offset = 0x0;
1634 		*probe_addr = 0x0;
1635 	} else {
1636 		/* kprobe/uprobe */
1637 		err = -EOPNOTSUPP;
1638 #ifdef CONFIG_KPROBE_EVENTS
1639 		if (flags & TRACE_EVENT_FL_KPROBE)
1640 			err = bpf_get_kprobe_info(event, fd_type, buf,
1641 						  probe_offset, probe_addr,
1642 						  event->attr.type == PERF_TYPE_TRACEPOINT);
1643 #endif
1644 #ifdef CONFIG_UPROBE_EVENTS
1645 		if (flags & TRACE_EVENT_FL_UPROBE)
1646 			err = bpf_get_uprobe_info(event, fd_type, buf,
1647 						  probe_offset,
1648 						  event->attr.type == PERF_TYPE_TRACEPOINT);
1649 #endif
1650 	}
1651 
1652 	return err;
1653 }
1654 
1655 static int __init send_signal_irq_work_init(void)
1656 {
1657 	int cpu;
1658 	struct send_signal_irq_work *work;
1659 
1660 	for_each_possible_cpu(cpu) {
1661 		work = per_cpu_ptr(&send_signal_work, cpu);
1662 		init_irq_work(&work->irq_work, do_bpf_send_signal);
1663 	}
1664 	return 0;
1665 }
1666 
1667 subsys_initcall(send_signal_irq_work_init);
1668 
1669 #ifdef CONFIG_MODULES
1670 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
1671 			    void *module)
1672 {
1673 	struct bpf_trace_module *btm, *tmp;
1674 	struct module *mod = module;
1675 
1676 	if (mod->num_bpf_raw_events == 0 ||
1677 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
1678 		return 0;
1679 
1680 	mutex_lock(&bpf_module_mutex);
1681 
1682 	switch (op) {
1683 	case MODULE_STATE_COMING:
1684 		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
1685 		if (btm) {
1686 			btm->module = module;
1687 			list_add(&btm->list, &bpf_trace_modules);
1688 		}
1689 		break;
1690 	case MODULE_STATE_GOING:
1691 		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
1692 			if (btm->module == module) {
1693 				list_del(&btm->list);
1694 				kfree(btm);
1695 				break;
1696 			}
1697 		}
1698 		break;
1699 	}
1700 
1701 	mutex_unlock(&bpf_module_mutex);
1702 
1703 	return 0;
1704 }
1705 
1706 static struct notifier_block bpf_module_nb = {
1707 	.notifier_call = bpf_event_notify,
1708 };
1709 
1710 static int __init bpf_event_init(void)
1711 {
1712 	register_module_notifier(&bpf_module_nb);
1713 	return 0;
1714 }
1715 
1716 fs_initcall(bpf_event_init);
1717 #endif /* CONFIG_MODULES */
1718