1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/kernel.h> 6 #include <linux/types.h> 7 #include <linux/slab.h> 8 #include <linux/bpf.h> 9 #include <linux/bpf_perf_event.h> 10 #include <linux/btf.h> 11 #include <linux/filter.h> 12 #include <linux/uaccess.h> 13 #include <linux/ctype.h> 14 #include <linux/kprobes.h> 15 #include <linux/spinlock.h> 16 #include <linux/syscalls.h> 17 #include <linux/error-injection.h> 18 #include <linux/btf_ids.h> 19 #include <linux/bpf_lsm.h> 20 21 #include <net/bpf_sk_storage.h> 22 23 #include <uapi/linux/bpf.h> 24 #include <uapi/linux/btf.h> 25 26 #include <asm/tlb.h> 27 28 #include "trace_probe.h" 29 #include "trace.h" 30 31 #define CREATE_TRACE_POINTS 32 #include "bpf_trace.h" 33 34 #define bpf_event_rcu_dereference(p) \ 35 rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex)) 36 37 #ifdef CONFIG_MODULES 38 struct bpf_trace_module { 39 struct module *module; 40 struct list_head list; 41 }; 42 43 static LIST_HEAD(bpf_trace_modules); 44 static DEFINE_MUTEX(bpf_module_mutex); 45 46 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 47 { 48 struct bpf_raw_event_map *btp, *ret = NULL; 49 struct bpf_trace_module *btm; 50 unsigned int i; 51 52 mutex_lock(&bpf_module_mutex); 53 list_for_each_entry(btm, &bpf_trace_modules, list) { 54 for (i = 0; i < btm->module->num_bpf_raw_events; ++i) { 55 btp = &btm->module->bpf_raw_events[i]; 56 if (!strcmp(btp->tp->name, name)) { 57 if (try_module_get(btm->module)) 58 ret = btp; 59 goto out; 60 } 61 } 62 } 63 out: 64 mutex_unlock(&bpf_module_mutex); 65 return ret; 66 } 67 #else 68 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 69 { 70 return NULL; 71 } 72 #endif /* CONFIG_MODULES */ 73 74 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 75 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 76 77 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size, 78 u64 flags, const struct btf **btf, 79 s32 *btf_id); 80 81 /** 82 * trace_call_bpf - invoke BPF program 83 * @call: tracepoint event 84 * @ctx: opaque context pointer 85 * 86 * kprobe handlers execute BPF programs via this helper. 87 * Can be used from static tracepoints in the future. 88 * 89 * Return: BPF programs always return an integer which is interpreted by 90 * kprobe handler as: 91 * 0 - return from kprobe (event is filtered out) 92 * 1 - store kprobe event into ring buffer 93 * Other values are reserved and currently alias to 1 94 */ 95 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx) 96 { 97 unsigned int ret; 98 99 cant_sleep(); 100 101 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) { 102 /* 103 * since some bpf program is already running on this cpu, 104 * don't call into another bpf program (same or different) 105 * and don't send kprobe event into ring-buffer, 106 * so return zero here 107 */ 108 ret = 0; 109 goto out; 110 } 111 112 /* 113 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock 114 * to all call sites, we did a bpf_prog_array_valid() there to check 115 * whether call->prog_array is empty or not, which is 116 * a heuristic to speed up execution. 117 * 118 * If bpf_prog_array_valid() fetched prog_array was 119 * non-NULL, we go into trace_call_bpf() and do the actual 120 * proper rcu_dereference() under RCU lock. 121 * If it turns out that prog_array is NULL then, we bail out. 122 * For the opposite, if the bpf_prog_array_valid() fetched pointer 123 * was NULL, you'll skip the prog_array with the risk of missing 124 * out of events when it was updated in between this and the 125 * rcu_dereference() which is accepted risk. 126 */ 127 ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN); 128 129 out: 130 __this_cpu_dec(bpf_prog_active); 131 132 return ret; 133 } 134 135 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 136 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc) 137 { 138 regs_set_return_value(regs, rc); 139 override_function_with_return(regs); 140 return 0; 141 } 142 143 static const struct bpf_func_proto bpf_override_return_proto = { 144 .func = bpf_override_return, 145 .gpl_only = true, 146 .ret_type = RET_INTEGER, 147 .arg1_type = ARG_PTR_TO_CTX, 148 .arg2_type = ARG_ANYTHING, 149 }; 150 #endif 151 152 static __always_inline int 153 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr) 154 { 155 int ret; 156 157 ret = copy_from_user_nofault(dst, unsafe_ptr, size); 158 if (unlikely(ret < 0)) 159 memset(dst, 0, size); 160 return ret; 161 } 162 163 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size, 164 const void __user *, unsafe_ptr) 165 { 166 return bpf_probe_read_user_common(dst, size, unsafe_ptr); 167 } 168 169 const struct bpf_func_proto bpf_probe_read_user_proto = { 170 .func = bpf_probe_read_user, 171 .gpl_only = true, 172 .ret_type = RET_INTEGER, 173 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 174 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 175 .arg3_type = ARG_ANYTHING, 176 }; 177 178 static __always_inline int 179 bpf_probe_read_user_str_common(void *dst, u32 size, 180 const void __user *unsafe_ptr) 181 { 182 int ret; 183 184 /* 185 * NB: We rely on strncpy_from_user() not copying junk past the NUL 186 * terminator into `dst`. 187 * 188 * strncpy_from_user() does long-sized strides in the fast path. If the 189 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`, 190 * then there could be junk after the NUL in `dst`. If user takes `dst` 191 * and keys a hash map with it, then semantically identical strings can 192 * occupy multiple entries in the map. 193 */ 194 ret = strncpy_from_user_nofault(dst, unsafe_ptr, size); 195 if (unlikely(ret < 0)) 196 memset(dst, 0, size); 197 return ret; 198 } 199 200 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size, 201 const void __user *, unsafe_ptr) 202 { 203 return bpf_probe_read_user_str_common(dst, size, unsafe_ptr); 204 } 205 206 const struct bpf_func_proto bpf_probe_read_user_str_proto = { 207 .func = bpf_probe_read_user_str, 208 .gpl_only = true, 209 .ret_type = RET_INTEGER, 210 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 211 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 212 .arg3_type = ARG_ANYTHING, 213 }; 214 215 static __always_inline int 216 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr) 217 { 218 int ret = security_locked_down(LOCKDOWN_BPF_READ); 219 220 if (unlikely(ret < 0)) 221 goto fail; 222 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size); 223 if (unlikely(ret < 0)) 224 goto fail; 225 return ret; 226 fail: 227 memset(dst, 0, size); 228 return ret; 229 } 230 231 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size, 232 const void *, unsafe_ptr) 233 { 234 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr); 235 } 236 237 const struct bpf_func_proto bpf_probe_read_kernel_proto = { 238 .func = bpf_probe_read_kernel, 239 .gpl_only = true, 240 .ret_type = RET_INTEGER, 241 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 242 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 243 .arg3_type = ARG_ANYTHING, 244 }; 245 246 static __always_inline int 247 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr) 248 { 249 int ret = security_locked_down(LOCKDOWN_BPF_READ); 250 251 if (unlikely(ret < 0)) 252 goto fail; 253 254 /* 255 * The strncpy_from_kernel_nofault() call will likely not fill the 256 * entire buffer, but that's okay in this circumstance as we're probing 257 * arbitrary memory anyway similar to bpf_probe_read_*() and might 258 * as well probe the stack. Thus, memory is explicitly cleared 259 * only in error case, so that improper users ignoring return 260 * code altogether don't copy garbage; otherwise length of string 261 * is returned that can be used for bpf_perf_event_output() et al. 262 */ 263 ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size); 264 if (unlikely(ret < 0)) 265 goto fail; 266 267 return ret; 268 fail: 269 memset(dst, 0, size); 270 return ret; 271 } 272 273 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size, 274 const void *, unsafe_ptr) 275 { 276 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr); 277 } 278 279 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = { 280 .func = bpf_probe_read_kernel_str, 281 .gpl_only = true, 282 .ret_type = RET_INTEGER, 283 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 284 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 285 .arg3_type = ARG_ANYTHING, 286 }; 287 288 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 289 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size, 290 const void *, unsafe_ptr) 291 { 292 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 293 return bpf_probe_read_user_common(dst, size, 294 (__force void __user *)unsafe_ptr); 295 } 296 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr); 297 } 298 299 static const struct bpf_func_proto bpf_probe_read_compat_proto = { 300 .func = bpf_probe_read_compat, 301 .gpl_only = true, 302 .ret_type = RET_INTEGER, 303 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 304 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 305 .arg3_type = ARG_ANYTHING, 306 }; 307 308 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size, 309 const void *, unsafe_ptr) 310 { 311 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 312 return bpf_probe_read_user_str_common(dst, size, 313 (__force void __user *)unsafe_ptr); 314 } 315 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr); 316 } 317 318 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = { 319 .func = bpf_probe_read_compat_str, 320 .gpl_only = true, 321 .ret_type = RET_INTEGER, 322 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 323 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 324 .arg3_type = ARG_ANYTHING, 325 }; 326 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */ 327 328 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src, 329 u32, size) 330 { 331 /* 332 * Ensure we're in user context which is safe for the helper to 333 * run. This helper has no business in a kthread. 334 * 335 * access_ok() should prevent writing to non-user memory, but in 336 * some situations (nommu, temporary switch, etc) access_ok() does 337 * not provide enough validation, hence the check on KERNEL_DS. 338 * 339 * nmi_uaccess_okay() ensures the probe is not run in an interim 340 * state, when the task or mm are switched. This is specifically 341 * required to prevent the use of temporary mm. 342 */ 343 344 if (unlikely(in_interrupt() || 345 current->flags & (PF_KTHREAD | PF_EXITING))) 346 return -EPERM; 347 if (unlikely(uaccess_kernel())) 348 return -EPERM; 349 if (unlikely(!nmi_uaccess_okay())) 350 return -EPERM; 351 352 return copy_to_user_nofault(unsafe_ptr, src, size); 353 } 354 355 static const struct bpf_func_proto bpf_probe_write_user_proto = { 356 .func = bpf_probe_write_user, 357 .gpl_only = true, 358 .ret_type = RET_INTEGER, 359 .arg1_type = ARG_ANYTHING, 360 .arg2_type = ARG_PTR_TO_MEM, 361 .arg3_type = ARG_CONST_SIZE, 362 }; 363 364 static const struct bpf_func_proto *bpf_get_probe_write_proto(void) 365 { 366 if (!capable(CAP_SYS_ADMIN)) 367 return NULL; 368 369 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!", 370 current->comm, task_pid_nr(current)); 371 372 return &bpf_probe_write_user_proto; 373 } 374 375 static DEFINE_RAW_SPINLOCK(trace_printk_lock); 376 377 #define MAX_TRACE_PRINTK_VARARGS 3 378 #define BPF_TRACE_PRINTK_SIZE 1024 379 380 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1, 381 u64, arg2, u64, arg3) 382 { 383 u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 }; 384 u32 *bin_args; 385 static char buf[BPF_TRACE_PRINTK_SIZE]; 386 unsigned long flags; 387 int ret; 388 389 ret = bpf_bprintf_prepare(fmt, fmt_size, args, &bin_args, 390 MAX_TRACE_PRINTK_VARARGS); 391 if (ret < 0) 392 return ret; 393 394 raw_spin_lock_irqsave(&trace_printk_lock, flags); 395 ret = bstr_printf(buf, sizeof(buf), fmt, bin_args); 396 397 trace_bpf_trace_printk(buf); 398 raw_spin_unlock_irqrestore(&trace_printk_lock, flags); 399 400 bpf_bprintf_cleanup(); 401 402 return ret; 403 } 404 405 static const struct bpf_func_proto bpf_trace_printk_proto = { 406 .func = bpf_trace_printk, 407 .gpl_only = true, 408 .ret_type = RET_INTEGER, 409 .arg1_type = ARG_PTR_TO_MEM, 410 .arg2_type = ARG_CONST_SIZE, 411 }; 412 413 const struct bpf_func_proto *bpf_get_trace_printk_proto(void) 414 { 415 /* 416 * This program might be calling bpf_trace_printk, 417 * so enable the associated bpf_trace/bpf_trace_printk event. 418 * Repeat this each time as it is possible a user has 419 * disabled bpf_trace_printk events. By loading a program 420 * calling bpf_trace_printk() however the user has expressed 421 * the intent to see such events. 422 */ 423 if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1)) 424 pr_warn_ratelimited("could not enable bpf_trace_printk events"); 425 426 return &bpf_trace_printk_proto; 427 } 428 429 #define MAX_SEQ_PRINTF_VARARGS 12 430 431 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size, 432 const void *, data, u32, data_len) 433 { 434 int err, num_args; 435 u32 *bin_args; 436 437 if (data_len & 7 || data_len > MAX_SEQ_PRINTF_VARARGS * 8 || 438 (data_len && !data)) 439 return -EINVAL; 440 num_args = data_len / 8; 441 442 err = bpf_bprintf_prepare(fmt, fmt_size, data, &bin_args, num_args); 443 if (err < 0) 444 return err; 445 446 seq_bprintf(m, fmt, bin_args); 447 448 bpf_bprintf_cleanup(); 449 450 return seq_has_overflowed(m) ? -EOVERFLOW : 0; 451 } 452 453 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file) 454 455 static const struct bpf_func_proto bpf_seq_printf_proto = { 456 .func = bpf_seq_printf, 457 .gpl_only = true, 458 .ret_type = RET_INTEGER, 459 .arg1_type = ARG_PTR_TO_BTF_ID, 460 .arg1_btf_id = &btf_seq_file_ids[0], 461 .arg2_type = ARG_PTR_TO_MEM, 462 .arg3_type = ARG_CONST_SIZE, 463 .arg4_type = ARG_PTR_TO_MEM_OR_NULL, 464 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 465 }; 466 467 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len) 468 { 469 return seq_write(m, data, len) ? -EOVERFLOW : 0; 470 } 471 472 static const struct bpf_func_proto bpf_seq_write_proto = { 473 .func = bpf_seq_write, 474 .gpl_only = true, 475 .ret_type = RET_INTEGER, 476 .arg1_type = ARG_PTR_TO_BTF_ID, 477 .arg1_btf_id = &btf_seq_file_ids[0], 478 .arg2_type = ARG_PTR_TO_MEM, 479 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 480 }; 481 482 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr, 483 u32, btf_ptr_size, u64, flags) 484 { 485 const struct btf *btf; 486 s32 btf_id; 487 int ret; 488 489 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id); 490 if (ret) 491 return ret; 492 493 return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags); 494 } 495 496 static const struct bpf_func_proto bpf_seq_printf_btf_proto = { 497 .func = bpf_seq_printf_btf, 498 .gpl_only = true, 499 .ret_type = RET_INTEGER, 500 .arg1_type = ARG_PTR_TO_BTF_ID, 501 .arg1_btf_id = &btf_seq_file_ids[0], 502 .arg2_type = ARG_PTR_TO_MEM, 503 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 504 .arg4_type = ARG_ANYTHING, 505 }; 506 507 static __always_inline int 508 get_map_perf_counter(struct bpf_map *map, u64 flags, 509 u64 *value, u64 *enabled, u64 *running) 510 { 511 struct bpf_array *array = container_of(map, struct bpf_array, map); 512 unsigned int cpu = smp_processor_id(); 513 u64 index = flags & BPF_F_INDEX_MASK; 514 struct bpf_event_entry *ee; 515 516 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 517 return -EINVAL; 518 if (index == BPF_F_CURRENT_CPU) 519 index = cpu; 520 if (unlikely(index >= array->map.max_entries)) 521 return -E2BIG; 522 523 ee = READ_ONCE(array->ptrs[index]); 524 if (!ee) 525 return -ENOENT; 526 527 return perf_event_read_local(ee->event, value, enabled, running); 528 } 529 530 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags) 531 { 532 u64 value = 0; 533 int err; 534 535 err = get_map_perf_counter(map, flags, &value, NULL, NULL); 536 /* 537 * this api is ugly since we miss [-22..-2] range of valid 538 * counter values, but that's uapi 539 */ 540 if (err) 541 return err; 542 return value; 543 } 544 545 static const struct bpf_func_proto bpf_perf_event_read_proto = { 546 .func = bpf_perf_event_read, 547 .gpl_only = true, 548 .ret_type = RET_INTEGER, 549 .arg1_type = ARG_CONST_MAP_PTR, 550 .arg2_type = ARG_ANYTHING, 551 }; 552 553 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags, 554 struct bpf_perf_event_value *, buf, u32, size) 555 { 556 int err = -EINVAL; 557 558 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 559 goto clear; 560 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled, 561 &buf->running); 562 if (unlikely(err)) 563 goto clear; 564 return 0; 565 clear: 566 memset(buf, 0, size); 567 return err; 568 } 569 570 static const struct bpf_func_proto bpf_perf_event_read_value_proto = { 571 .func = bpf_perf_event_read_value, 572 .gpl_only = true, 573 .ret_type = RET_INTEGER, 574 .arg1_type = ARG_CONST_MAP_PTR, 575 .arg2_type = ARG_ANYTHING, 576 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 577 .arg4_type = ARG_CONST_SIZE, 578 }; 579 580 static __always_inline u64 581 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map, 582 u64 flags, struct perf_sample_data *sd) 583 { 584 struct bpf_array *array = container_of(map, struct bpf_array, map); 585 unsigned int cpu = smp_processor_id(); 586 u64 index = flags & BPF_F_INDEX_MASK; 587 struct bpf_event_entry *ee; 588 struct perf_event *event; 589 590 if (index == BPF_F_CURRENT_CPU) 591 index = cpu; 592 if (unlikely(index >= array->map.max_entries)) 593 return -E2BIG; 594 595 ee = READ_ONCE(array->ptrs[index]); 596 if (!ee) 597 return -ENOENT; 598 599 event = ee->event; 600 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE || 601 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT)) 602 return -EINVAL; 603 604 if (unlikely(event->oncpu != cpu)) 605 return -EOPNOTSUPP; 606 607 return perf_event_output(event, sd, regs); 608 } 609 610 /* 611 * Support executing tracepoints in normal, irq, and nmi context that each call 612 * bpf_perf_event_output 613 */ 614 struct bpf_trace_sample_data { 615 struct perf_sample_data sds[3]; 616 }; 617 618 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds); 619 static DEFINE_PER_CPU(int, bpf_trace_nest_level); 620 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map, 621 u64, flags, void *, data, u64, size) 622 { 623 struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds); 624 int nest_level = this_cpu_inc_return(bpf_trace_nest_level); 625 struct perf_raw_record raw = { 626 .frag = { 627 .size = size, 628 .data = data, 629 }, 630 }; 631 struct perf_sample_data *sd; 632 int err; 633 634 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) { 635 err = -EBUSY; 636 goto out; 637 } 638 639 sd = &sds->sds[nest_level - 1]; 640 641 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) { 642 err = -EINVAL; 643 goto out; 644 } 645 646 perf_sample_data_init(sd, 0, 0); 647 sd->raw = &raw; 648 649 err = __bpf_perf_event_output(regs, map, flags, sd); 650 651 out: 652 this_cpu_dec(bpf_trace_nest_level); 653 return err; 654 } 655 656 static const struct bpf_func_proto bpf_perf_event_output_proto = { 657 .func = bpf_perf_event_output, 658 .gpl_only = true, 659 .ret_type = RET_INTEGER, 660 .arg1_type = ARG_PTR_TO_CTX, 661 .arg2_type = ARG_CONST_MAP_PTR, 662 .arg3_type = ARG_ANYTHING, 663 .arg4_type = ARG_PTR_TO_MEM, 664 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 665 }; 666 667 static DEFINE_PER_CPU(int, bpf_event_output_nest_level); 668 struct bpf_nested_pt_regs { 669 struct pt_regs regs[3]; 670 }; 671 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs); 672 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds); 673 674 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 675 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) 676 { 677 int nest_level = this_cpu_inc_return(bpf_event_output_nest_level); 678 struct perf_raw_frag frag = { 679 .copy = ctx_copy, 680 .size = ctx_size, 681 .data = ctx, 682 }; 683 struct perf_raw_record raw = { 684 .frag = { 685 { 686 .next = ctx_size ? &frag : NULL, 687 }, 688 .size = meta_size, 689 .data = meta, 690 }, 691 }; 692 struct perf_sample_data *sd; 693 struct pt_regs *regs; 694 u64 ret; 695 696 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) { 697 ret = -EBUSY; 698 goto out; 699 } 700 sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]); 701 regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]); 702 703 perf_fetch_caller_regs(regs); 704 perf_sample_data_init(sd, 0, 0); 705 sd->raw = &raw; 706 707 ret = __bpf_perf_event_output(regs, map, flags, sd); 708 out: 709 this_cpu_dec(bpf_event_output_nest_level); 710 return ret; 711 } 712 713 BPF_CALL_0(bpf_get_current_task) 714 { 715 return (long) current; 716 } 717 718 const struct bpf_func_proto bpf_get_current_task_proto = { 719 .func = bpf_get_current_task, 720 .gpl_only = true, 721 .ret_type = RET_INTEGER, 722 }; 723 724 BPF_CALL_0(bpf_get_current_task_btf) 725 { 726 return (unsigned long) current; 727 } 728 729 BTF_ID_LIST_SINGLE(bpf_get_current_btf_ids, struct, task_struct) 730 731 static const struct bpf_func_proto bpf_get_current_task_btf_proto = { 732 .func = bpf_get_current_task_btf, 733 .gpl_only = true, 734 .ret_type = RET_PTR_TO_BTF_ID, 735 .ret_btf_id = &bpf_get_current_btf_ids[0], 736 }; 737 738 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx) 739 { 740 struct bpf_array *array = container_of(map, struct bpf_array, map); 741 struct cgroup *cgrp; 742 743 if (unlikely(idx >= array->map.max_entries)) 744 return -E2BIG; 745 746 cgrp = READ_ONCE(array->ptrs[idx]); 747 if (unlikely(!cgrp)) 748 return -EAGAIN; 749 750 return task_under_cgroup_hierarchy(current, cgrp); 751 } 752 753 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = { 754 .func = bpf_current_task_under_cgroup, 755 .gpl_only = false, 756 .ret_type = RET_INTEGER, 757 .arg1_type = ARG_CONST_MAP_PTR, 758 .arg2_type = ARG_ANYTHING, 759 }; 760 761 struct send_signal_irq_work { 762 struct irq_work irq_work; 763 struct task_struct *task; 764 u32 sig; 765 enum pid_type type; 766 }; 767 768 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work); 769 770 static void do_bpf_send_signal(struct irq_work *entry) 771 { 772 struct send_signal_irq_work *work; 773 774 work = container_of(entry, struct send_signal_irq_work, irq_work); 775 group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type); 776 } 777 778 static int bpf_send_signal_common(u32 sig, enum pid_type type) 779 { 780 struct send_signal_irq_work *work = NULL; 781 782 /* Similar to bpf_probe_write_user, task needs to be 783 * in a sound condition and kernel memory access be 784 * permitted in order to send signal to the current 785 * task. 786 */ 787 if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING))) 788 return -EPERM; 789 if (unlikely(uaccess_kernel())) 790 return -EPERM; 791 if (unlikely(!nmi_uaccess_okay())) 792 return -EPERM; 793 794 if (irqs_disabled()) { 795 /* Do an early check on signal validity. Otherwise, 796 * the error is lost in deferred irq_work. 797 */ 798 if (unlikely(!valid_signal(sig))) 799 return -EINVAL; 800 801 work = this_cpu_ptr(&send_signal_work); 802 if (irq_work_is_busy(&work->irq_work)) 803 return -EBUSY; 804 805 /* Add the current task, which is the target of sending signal, 806 * to the irq_work. The current task may change when queued 807 * irq works get executed. 808 */ 809 work->task = current; 810 work->sig = sig; 811 work->type = type; 812 irq_work_queue(&work->irq_work); 813 return 0; 814 } 815 816 return group_send_sig_info(sig, SEND_SIG_PRIV, current, type); 817 } 818 819 BPF_CALL_1(bpf_send_signal, u32, sig) 820 { 821 return bpf_send_signal_common(sig, PIDTYPE_TGID); 822 } 823 824 static const struct bpf_func_proto bpf_send_signal_proto = { 825 .func = bpf_send_signal, 826 .gpl_only = false, 827 .ret_type = RET_INTEGER, 828 .arg1_type = ARG_ANYTHING, 829 }; 830 831 BPF_CALL_1(bpf_send_signal_thread, u32, sig) 832 { 833 return bpf_send_signal_common(sig, PIDTYPE_PID); 834 } 835 836 static const struct bpf_func_proto bpf_send_signal_thread_proto = { 837 .func = bpf_send_signal_thread, 838 .gpl_only = false, 839 .ret_type = RET_INTEGER, 840 .arg1_type = ARG_ANYTHING, 841 }; 842 843 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz) 844 { 845 long len; 846 char *p; 847 848 if (!sz) 849 return 0; 850 851 p = d_path(path, buf, sz); 852 if (IS_ERR(p)) { 853 len = PTR_ERR(p); 854 } else { 855 len = buf + sz - p; 856 memmove(buf, p, len); 857 } 858 859 return len; 860 } 861 862 BTF_SET_START(btf_allowlist_d_path) 863 #ifdef CONFIG_SECURITY 864 BTF_ID(func, security_file_permission) 865 BTF_ID(func, security_inode_getattr) 866 BTF_ID(func, security_file_open) 867 #endif 868 #ifdef CONFIG_SECURITY_PATH 869 BTF_ID(func, security_path_truncate) 870 #endif 871 BTF_ID(func, vfs_truncate) 872 BTF_ID(func, vfs_fallocate) 873 BTF_ID(func, dentry_open) 874 BTF_ID(func, vfs_getattr) 875 BTF_ID(func, filp_close) 876 BTF_SET_END(btf_allowlist_d_path) 877 878 static bool bpf_d_path_allowed(const struct bpf_prog *prog) 879 { 880 if (prog->type == BPF_PROG_TYPE_TRACING && 881 prog->expected_attach_type == BPF_TRACE_ITER) 882 return true; 883 884 if (prog->type == BPF_PROG_TYPE_LSM) 885 return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id); 886 887 return btf_id_set_contains(&btf_allowlist_d_path, 888 prog->aux->attach_btf_id); 889 } 890 891 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path) 892 893 static const struct bpf_func_proto bpf_d_path_proto = { 894 .func = bpf_d_path, 895 .gpl_only = false, 896 .ret_type = RET_INTEGER, 897 .arg1_type = ARG_PTR_TO_BTF_ID, 898 .arg1_btf_id = &bpf_d_path_btf_ids[0], 899 .arg2_type = ARG_PTR_TO_MEM, 900 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 901 .allowed = bpf_d_path_allowed, 902 }; 903 904 #define BTF_F_ALL (BTF_F_COMPACT | BTF_F_NONAME | \ 905 BTF_F_PTR_RAW | BTF_F_ZERO) 906 907 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size, 908 u64 flags, const struct btf **btf, 909 s32 *btf_id) 910 { 911 const struct btf_type *t; 912 913 if (unlikely(flags & ~(BTF_F_ALL))) 914 return -EINVAL; 915 916 if (btf_ptr_size != sizeof(struct btf_ptr)) 917 return -EINVAL; 918 919 *btf = bpf_get_btf_vmlinux(); 920 921 if (IS_ERR_OR_NULL(*btf)) 922 return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL; 923 924 if (ptr->type_id > 0) 925 *btf_id = ptr->type_id; 926 else 927 return -EINVAL; 928 929 if (*btf_id > 0) 930 t = btf_type_by_id(*btf, *btf_id); 931 if (*btf_id <= 0 || !t) 932 return -ENOENT; 933 934 return 0; 935 } 936 937 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr, 938 u32, btf_ptr_size, u64, flags) 939 { 940 const struct btf *btf; 941 s32 btf_id; 942 int ret; 943 944 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id); 945 if (ret) 946 return ret; 947 948 return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size, 949 flags); 950 } 951 952 const struct bpf_func_proto bpf_snprintf_btf_proto = { 953 .func = bpf_snprintf_btf, 954 .gpl_only = false, 955 .ret_type = RET_INTEGER, 956 .arg1_type = ARG_PTR_TO_MEM, 957 .arg2_type = ARG_CONST_SIZE, 958 .arg3_type = ARG_PTR_TO_MEM, 959 .arg4_type = ARG_CONST_SIZE, 960 .arg5_type = ARG_ANYTHING, 961 }; 962 963 const struct bpf_func_proto * 964 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 965 { 966 switch (func_id) { 967 case BPF_FUNC_map_lookup_elem: 968 return &bpf_map_lookup_elem_proto; 969 case BPF_FUNC_map_update_elem: 970 return &bpf_map_update_elem_proto; 971 case BPF_FUNC_map_delete_elem: 972 return &bpf_map_delete_elem_proto; 973 case BPF_FUNC_map_push_elem: 974 return &bpf_map_push_elem_proto; 975 case BPF_FUNC_map_pop_elem: 976 return &bpf_map_pop_elem_proto; 977 case BPF_FUNC_map_peek_elem: 978 return &bpf_map_peek_elem_proto; 979 case BPF_FUNC_ktime_get_ns: 980 return &bpf_ktime_get_ns_proto; 981 case BPF_FUNC_ktime_get_boot_ns: 982 return &bpf_ktime_get_boot_ns_proto; 983 case BPF_FUNC_ktime_get_coarse_ns: 984 return &bpf_ktime_get_coarse_ns_proto; 985 case BPF_FUNC_tail_call: 986 return &bpf_tail_call_proto; 987 case BPF_FUNC_get_current_pid_tgid: 988 return &bpf_get_current_pid_tgid_proto; 989 case BPF_FUNC_get_current_task: 990 return &bpf_get_current_task_proto; 991 case BPF_FUNC_get_current_task_btf: 992 return &bpf_get_current_task_btf_proto; 993 case BPF_FUNC_get_current_uid_gid: 994 return &bpf_get_current_uid_gid_proto; 995 case BPF_FUNC_get_current_comm: 996 return &bpf_get_current_comm_proto; 997 case BPF_FUNC_trace_printk: 998 return bpf_get_trace_printk_proto(); 999 case BPF_FUNC_get_smp_processor_id: 1000 return &bpf_get_smp_processor_id_proto; 1001 case BPF_FUNC_get_numa_node_id: 1002 return &bpf_get_numa_node_id_proto; 1003 case BPF_FUNC_perf_event_read: 1004 return &bpf_perf_event_read_proto; 1005 case BPF_FUNC_probe_write_user: 1006 return bpf_get_probe_write_proto(); 1007 case BPF_FUNC_current_task_under_cgroup: 1008 return &bpf_current_task_under_cgroup_proto; 1009 case BPF_FUNC_get_prandom_u32: 1010 return &bpf_get_prandom_u32_proto; 1011 case BPF_FUNC_probe_read_user: 1012 return &bpf_probe_read_user_proto; 1013 case BPF_FUNC_probe_read_kernel: 1014 return &bpf_probe_read_kernel_proto; 1015 case BPF_FUNC_probe_read_user_str: 1016 return &bpf_probe_read_user_str_proto; 1017 case BPF_FUNC_probe_read_kernel_str: 1018 return &bpf_probe_read_kernel_str_proto; 1019 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 1020 case BPF_FUNC_probe_read: 1021 return &bpf_probe_read_compat_proto; 1022 case BPF_FUNC_probe_read_str: 1023 return &bpf_probe_read_compat_str_proto; 1024 #endif 1025 #ifdef CONFIG_CGROUPS 1026 case BPF_FUNC_get_current_cgroup_id: 1027 return &bpf_get_current_cgroup_id_proto; 1028 #endif 1029 case BPF_FUNC_send_signal: 1030 return &bpf_send_signal_proto; 1031 case BPF_FUNC_send_signal_thread: 1032 return &bpf_send_signal_thread_proto; 1033 case BPF_FUNC_perf_event_read_value: 1034 return &bpf_perf_event_read_value_proto; 1035 case BPF_FUNC_get_ns_current_pid_tgid: 1036 return &bpf_get_ns_current_pid_tgid_proto; 1037 case BPF_FUNC_ringbuf_output: 1038 return &bpf_ringbuf_output_proto; 1039 case BPF_FUNC_ringbuf_reserve: 1040 return &bpf_ringbuf_reserve_proto; 1041 case BPF_FUNC_ringbuf_submit: 1042 return &bpf_ringbuf_submit_proto; 1043 case BPF_FUNC_ringbuf_discard: 1044 return &bpf_ringbuf_discard_proto; 1045 case BPF_FUNC_ringbuf_query: 1046 return &bpf_ringbuf_query_proto; 1047 case BPF_FUNC_jiffies64: 1048 return &bpf_jiffies64_proto; 1049 case BPF_FUNC_get_task_stack: 1050 return &bpf_get_task_stack_proto; 1051 case BPF_FUNC_copy_from_user: 1052 return prog->aux->sleepable ? &bpf_copy_from_user_proto : NULL; 1053 case BPF_FUNC_snprintf_btf: 1054 return &bpf_snprintf_btf_proto; 1055 case BPF_FUNC_per_cpu_ptr: 1056 return &bpf_per_cpu_ptr_proto; 1057 case BPF_FUNC_this_cpu_ptr: 1058 return &bpf_this_cpu_ptr_proto; 1059 case BPF_FUNC_task_storage_get: 1060 return &bpf_task_storage_get_proto; 1061 case BPF_FUNC_task_storage_delete: 1062 return &bpf_task_storage_delete_proto; 1063 case BPF_FUNC_for_each_map_elem: 1064 return &bpf_for_each_map_elem_proto; 1065 case BPF_FUNC_snprintf: 1066 return &bpf_snprintf_proto; 1067 default: 1068 return NULL; 1069 } 1070 } 1071 1072 static const struct bpf_func_proto * 1073 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1074 { 1075 switch (func_id) { 1076 case BPF_FUNC_perf_event_output: 1077 return &bpf_perf_event_output_proto; 1078 case BPF_FUNC_get_stackid: 1079 return &bpf_get_stackid_proto; 1080 case BPF_FUNC_get_stack: 1081 return &bpf_get_stack_proto; 1082 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 1083 case BPF_FUNC_override_return: 1084 return &bpf_override_return_proto; 1085 #endif 1086 default: 1087 return bpf_tracing_func_proto(func_id, prog); 1088 } 1089 } 1090 1091 /* bpf+kprobe programs can access fields of 'struct pt_regs' */ 1092 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1093 const struct bpf_prog *prog, 1094 struct bpf_insn_access_aux *info) 1095 { 1096 if (off < 0 || off >= sizeof(struct pt_regs)) 1097 return false; 1098 if (type != BPF_READ) 1099 return false; 1100 if (off % size != 0) 1101 return false; 1102 /* 1103 * Assertion for 32 bit to make sure last 8 byte access 1104 * (BPF_DW) to the last 4 byte member is disallowed. 1105 */ 1106 if (off + size > sizeof(struct pt_regs)) 1107 return false; 1108 1109 return true; 1110 } 1111 1112 const struct bpf_verifier_ops kprobe_verifier_ops = { 1113 .get_func_proto = kprobe_prog_func_proto, 1114 .is_valid_access = kprobe_prog_is_valid_access, 1115 }; 1116 1117 const struct bpf_prog_ops kprobe_prog_ops = { 1118 }; 1119 1120 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map, 1121 u64, flags, void *, data, u64, size) 1122 { 1123 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1124 1125 /* 1126 * r1 points to perf tracepoint buffer where first 8 bytes are hidden 1127 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it 1128 * from there and call the same bpf_perf_event_output() helper inline. 1129 */ 1130 return ____bpf_perf_event_output(regs, map, flags, data, size); 1131 } 1132 1133 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = { 1134 .func = bpf_perf_event_output_tp, 1135 .gpl_only = true, 1136 .ret_type = RET_INTEGER, 1137 .arg1_type = ARG_PTR_TO_CTX, 1138 .arg2_type = ARG_CONST_MAP_PTR, 1139 .arg3_type = ARG_ANYTHING, 1140 .arg4_type = ARG_PTR_TO_MEM, 1141 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1142 }; 1143 1144 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map, 1145 u64, flags) 1146 { 1147 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1148 1149 /* 1150 * Same comment as in bpf_perf_event_output_tp(), only that this time 1151 * the other helper's function body cannot be inlined due to being 1152 * external, thus we need to call raw helper function. 1153 */ 1154 return bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1155 flags, 0, 0); 1156 } 1157 1158 static const struct bpf_func_proto bpf_get_stackid_proto_tp = { 1159 .func = bpf_get_stackid_tp, 1160 .gpl_only = true, 1161 .ret_type = RET_INTEGER, 1162 .arg1_type = ARG_PTR_TO_CTX, 1163 .arg2_type = ARG_CONST_MAP_PTR, 1164 .arg3_type = ARG_ANYTHING, 1165 }; 1166 1167 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size, 1168 u64, flags) 1169 { 1170 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1171 1172 return bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1173 (unsigned long) size, flags, 0); 1174 } 1175 1176 static const struct bpf_func_proto bpf_get_stack_proto_tp = { 1177 .func = bpf_get_stack_tp, 1178 .gpl_only = true, 1179 .ret_type = RET_INTEGER, 1180 .arg1_type = ARG_PTR_TO_CTX, 1181 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1182 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1183 .arg4_type = ARG_ANYTHING, 1184 }; 1185 1186 static const struct bpf_func_proto * 1187 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1188 { 1189 switch (func_id) { 1190 case BPF_FUNC_perf_event_output: 1191 return &bpf_perf_event_output_proto_tp; 1192 case BPF_FUNC_get_stackid: 1193 return &bpf_get_stackid_proto_tp; 1194 case BPF_FUNC_get_stack: 1195 return &bpf_get_stack_proto_tp; 1196 default: 1197 return bpf_tracing_func_proto(func_id, prog); 1198 } 1199 } 1200 1201 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1202 const struct bpf_prog *prog, 1203 struct bpf_insn_access_aux *info) 1204 { 1205 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE) 1206 return false; 1207 if (type != BPF_READ) 1208 return false; 1209 if (off % size != 0) 1210 return false; 1211 1212 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64)); 1213 return true; 1214 } 1215 1216 const struct bpf_verifier_ops tracepoint_verifier_ops = { 1217 .get_func_proto = tp_prog_func_proto, 1218 .is_valid_access = tp_prog_is_valid_access, 1219 }; 1220 1221 const struct bpf_prog_ops tracepoint_prog_ops = { 1222 }; 1223 1224 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx, 1225 struct bpf_perf_event_value *, buf, u32, size) 1226 { 1227 int err = -EINVAL; 1228 1229 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 1230 goto clear; 1231 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled, 1232 &buf->running); 1233 if (unlikely(err)) 1234 goto clear; 1235 return 0; 1236 clear: 1237 memset(buf, 0, size); 1238 return err; 1239 } 1240 1241 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = { 1242 .func = bpf_perf_prog_read_value, 1243 .gpl_only = true, 1244 .ret_type = RET_INTEGER, 1245 .arg1_type = ARG_PTR_TO_CTX, 1246 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1247 .arg3_type = ARG_CONST_SIZE, 1248 }; 1249 1250 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx, 1251 void *, buf, u32, size, u64, flags) 1252 { 1253 #ifndef CONFIG_X86 1254 return -ENOENT; 1255 #else 1256 static const u32 br_entry_size = sizeof(struct perf_branch_entry); 1257 struct perf_branch_stack *br_stack = ctx->data->br_stack; 1258 u32 to_copy; 1259 1260 if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE)) 1261 return -EINVAL; 1262 1263 if (unlikely(!br_stack)) 1264 return -EINVAL; 1265 1266 if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE) 1267 return br_stack->nr * br_entry_size; 1268 1269 if (!buf || (size % br_entry_size != 0)) 1270 return -EINVAL; 1271 1272 to_copy = min_t(u32, br_stack->nr * br_entry_size, size); 1273 memcpy(buf, br_stack->entries, to_copy); 1274 1275 return to_copy; 1276 #endif 1277 } 1278 1279 static const struct bpf_func_proto bpf_read_branch_records_proto = { 1280 .func = bpf_read_branch_records, 1281 .gpl_only = true, 1282 .ret_type = RET_INTEGER, 1283 .arg1_type = ARG_PTR_TO_CTX, 1284 .arg2_type = ARG_PTR_TO_MEM_OR_NULL, 1285 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1286 .arg4_type = ARG_ANYTHING, 1287 }; 1288 1289 static const struct bpf_func_proto * 1290 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1291 { 1292 switch (func_id) { 1293 case BPF_FUNC_perf_event_output: 1294 return &bpf_perf_event_output_proto_tp; 1295 case BPF_FUNC_get_stackid: 1296 return &bpf_get_stackid_proto_pe; 1297 case BPF_FUNC_get_stack: 1298 return &bpf_get_stack_proto_pe; 1299 case BPF_FUNC_perf_prog_read_value: 1300 return &bpf_perf_prog_read_value_proto; 1301 case BPF_FUNC_read_branch_records: 1302 return &bpf_read_branch_records_proto; 1303 default: 1304 return bpf_tracing_func_proto(func_id, prog); 1305 } 1306 } 1307 1308 /* 1309 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp 1310 * to avoid potential recursive reuse issue when/if tracepoints are added 1311 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack. 1312 * 1313 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage 1314 * in normal, irq, and nmi context. 1315 */ 1316 struct bpf_raw_tp_regs { 1317 struct pt_regs regs[3]; 1318 }; 1319 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs); 1320 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level); 1321 static struct pt_regs *get_bpf_raw_tp_regs(void) 1322 { 1323 struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs); 1324 int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level); 1325 1326 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) { 1327 this_cpu_dec(bpf_raw_tp_nest_level); 1328 return ERR_PTR(-EBUSY); 1329 } 1330 1331 return &tp_regs->regs[nest_level - 1]; 1332 } 1333 1334 static void put_bpf_raw_tp_regs(void) 1335 { 1336 this_cpu_dec(bpf_raw_tp_nest_level); 1337 } 1338 1339 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args, 1340 struct bpf_map *, map, u64, flags, void *, data, u64, size) 1341 { 1342 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1343 int ret; 1344 1345 if (IS_ERR(regs)) 1346 return PTR_ERR(regs); 1347 1348 perf_fetch_caller_regs(regs); 1349 ret = ____bpf_perf_event_output(regs, map, flags, data, size); 1350 1351 put_bpf_raw_tp_regs(); 1352 return ret; 1353 } 1354 1355 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = { 1356 .func = bpf_perf_event_output_raw_tp, 1357 .gpl_only = true, 1358 .ret_type = RET_INTEGER, 1359 .arg1_type = ARG_PTR_TO_CTX, 1360 .arg2_type = ARG_CONST_MAP_PTR, 1361 .arg3_type = ARG_ANYTHING, 1362 .arg4_type = ARG_PTR_TO_MEM, 1363 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1364 }; 1365 1366 extern const struct bpf_func_proto bpf_skb_output_proto; 1367 extern const struct bpf_func_proto bpf_xdp_output_proto; 1368 1369 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args, 1370 struct bpf_map *, map, u64, flags) 1371 { 1372 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1373 int ret; 1374 1375 if (IS_ERR(regs)) 1376 return PTR_ERR(regs); 1377 1378 perf_fetch_caller_regs(regs); 1379 /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */ 1380 ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1381 flags, 0, 0); 1382 put_bpf_raw_tp_regs(); 1383 return ret; 1384 } 1385 1386 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = { 1387 .func = bpf_get_stackid_raw_tp, 1388 .gpl_only = true, 1389 .ret_type = RET_INTEGER, 1390 .arg1_type = ARG_PTR_TO_CTX, 1391 .arg2_type = ARG_CONST_MAP_PTR, 1392 .arg3_type = ARG_ANYTHING, 1393 }; 1394 1395 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args, 1396 void *, buf, u32, size, u64, flags) 1397 { 1398 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1399 int ret; 1400 1401 if (IS_ERR(regs)) 1402 return PTR_ERR(regs); 1403 1404 perf_fetch_caller_regs(regs); 1405 ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1406 (unsigned long) size, flags, 0); 1407 put_bpf_raw_tp_regs(); 1408 return ret; 1409 } 1410 1411 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = { 1412 .func = bpf_get_stack_raw_tp, 1413 .gpl_only = true, 1414 .ret_type = RET_INTEGER, 1415 .arg1_type = ARG_PTR_TO_CTX, 1416 .arg2_type = ARG_PTR_TO_MEM, 1417 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1418 .arg4_type = ARG_ANYTHING, 1419 }; 1420 1421 static const struct bpf_func_proto * 1422 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1423 { 1424 switch (func_id) { 1425 case BPF_FUNC_perf_event_output: 1426 return &bpf_perf_event_output_proto_raw_tp; 1427 case BPF_FUNC_get_stackid: 1428 return &bpf_get_stackid_proto_raw_tp; 1429 case BPF_FUNC_get_stack: 1430 return &bpf_get_stack_proto_raw_tp; 1431 default: 1432 return bpf_tracing_func_proto(func_id, prog); 1433 } 1434 } 1435 1436 const struct bpf_func_proto * 1437 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1438 { 1439 switch (func_id) { 1440 #ifdef CONFIG_NET 1441 case BPF_FUNC_skb_output: 1442 return &bpf_skb_output_proto; 1443 case BPF_FUNC_xdp_output: 1444 return &bpf_xdp_output_proto; 1445 case BPF_FUNC_skc_to_tcp6_sock: 1446 return &bpf_skc_to_tcp6_sock_proto; 1447 case BPF_FUNC_skc_to_tcp_sock: 1448 return &bpf_skc_to_tcp_sock_proto; 1449 case BPF_FUNC_skc_to_tcp_timewait_sock: 1450 return &bpf_skc_to_tcp_timewait_sock_proto; 1451 case BPF_FUNC_skc_to_tcp_request_sock: 1452 return &bpf_skc_to_tcp_request_sock_proto; 1453 case BPF_FUNC_skc_to_udp6_sock: 1454 return &bpf_skc_to_udp6_sock_proto; 1455 case BPF_FUNC_sk_storage_get: 1456 return &bpf_sk_storage_get_tracing_proto; 1457 case BPF_FUNC_sk_storage_delete: 1458 return &bpf_sk_storage_delete_tracing_proto; 1459 case BPF_FUNC_sock_from_file: 1460 return &bpf_sock_from_file_proto; 1461 case BPF_FUNC_get_socket_cookie: 1462 return &bpf_get_socket_ptr_cookie_proto; 1463 #endif 1464 case BPF_FUNC_seq_printf: 1465 return prog->expected_attach_type == BPF_TRACE_ITER ? 1466 &bpf_seq_printf_proto : 1467 NULL; 1468 case BPF_FUNC_seq_write: 1469 return prog->expected_attach_type == BPF_TRACE_ITER ? 1470 &bpf_seq_write_proto : 1471 NULL; 1472 case BPF_FUNC_seq_printf_btf: 1473 return prog->expected_attach_type == BPF_TRACE_ITER ? 1474 &bpf_seq_printf_btf_proto : 1475 NULL; 1476 case BPF_FUNC_d_path: 1477 return &bpf_d_path_proto; 1478 default: 1479 return raw_tp_prog_func_proto(func_id, prog); 1480 } 1481 } 1482 1483 static bool raw_tp_prog_is_valid_access(int off, int size, 1484 enum bpf_access_type type, 1485 const struct bpf_prog *prog, 1486 struct bpf_insn_access_aux *info) 1487 { 1488 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 1489 return false; 1490 if (type != BPF_READ) 1491 return false; 1492 if (off % size != 0) 1493 return false; 1494 return true; 1495 } 1496 1497 static bool tracing_prog_is_valid_access(int off, int size, 1498 enum bpf_access_type type, 1499 const struct bpf_prog *prog, 1500 struct bpf_insn_access_aux *info) 1501 { 1502 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 1503 return false; 1504 if (type != BPF_READ) 1505 return false; 1506 if (off % size != 0) 1507 return false; 1508 return btf_ctx_access(off, size, type, prog, info); 1509 } 1510 1511 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog, 1512 const union bpf_attr *kattr, 1513 union bpf_attr __user *uattr) 1514 { 1515 return -ENOTSUPP; 1516 } 1517 1518 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = { 1519 .get_func_proto = raw_tp_prog_func_proto, 1520 .is_valid_access = raw_tp_prog_is_valid_access, 1521 }; 1522 1523 const struct bpf_prog_ops raw_tracepoint_prog_ops = { 1524 #ifdef CONFIG_NET 1525 .test_run = bpf_prog_test_run_raw_tp, 1526 #endif 1527 }; 1528 1529 const struct bpf_verifier_ops tracing_verifier_ops = { 1530 .get_func_proto = tracing_prog_func_proto, 1531 .is_valid_access = tracing_prog_is_valid_access, 1532 }; 1533 1534 const struct bpf_prog_ops tracing_prog_ops = { 1535 .test_run = bpf_prog_test_run_tracing, 1536 }; 1537 1538 static bool raw_tp_writable_prog_is_valid_access(int off, int size, 1539 enum bpf_access_type type, 1540 const struct bpf_prog *prog, 1541 struct bpf_insn_access_aux *info) 1542 { 1543 if (off == 0) { 1544 if (size != sizeof(u64) || type != BPF_READ) 1545 return false; 1546 info->reg_type = PTR_TO_TP_BUFFER; 1547 } 1548 return raw_tp_prog_is_valid_access(off, size, type, prog, info); 1549 } 1550 1551 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = { 1552 .get_func_proto = raw_tp_prog_func_proto, 1553 .is_valid_access = raw_tp_writable_prog_is_valid_access, 1554 }; 1555 1556 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = { 1557 }; 1558 1559 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1560 const struct bpf_prog *prog, 1561 struct bpf_insn_access_aux *info) 1562 { 1563 const int size_u64 = sizeof(u64); 1564 1565 if (off < 0 || off >= sizeof(struct bpf_perf_event_data)) 1566 return false; 1567 if (type != BPF_READ) 1568 return false; 1569 if (off % size != 0) { 1570 if (sizeof(unsigned long) != 4) 1571 return false; 1572 if (size != 8) 1573 return false; 1574 if (off % size != 4) 1575 return false; 1576 } 1577 1578 switch (off) { 1579 case bpf_ctx_range(struct bpf_perf_event_data, sample_period): 1580 bpf_ctx_record_field_size(info, size_u64); 1581 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 1582 return false; 1583 break; 1584 case bpf_ctx_range(struct bpf_perf_event_data, addr): 1585 bpf_ctx_record_field_size(info, size_u64); 1586 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 1587 return false; 1588 break; 1589 default: 1590 if (size != sizeof(long)) 1591 return false; 1592 } 1593 1594 return true; 1595 } 1596 1597 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type, 1598 const struct bpf_insn *si, 1599 struct bpf_insn *insn_buf, 1600 struct bpf_prog *prog, u32 *target_size) 1601 { 1602 struct bpf_insn *insn = insn_buf; 1603 1604 switch (si->off) { 1605 case offsetof(struct bpf_perf_event_data, sample_period): 1606 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1607 data), si->dst_reg, si->src_reg, 1608 offsetof(struct bpf_perf_event_data_kern, data)); 1609 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 1610 bpf_target_off(struct perf_sample_data, period, 8, 1611 target_size)); 1612 break; 1613 case offsetof(struct bpf_perf_event_data, addr): 1614 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1615 data), si->dst_reg, si->src_reg, 1616 offsetof(struct bpf_perf_event_data_kern, data)); 1617 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 1618 bpf_target_off(struct perf_sample_data, addr, 8, 1619 target_size)); 1620 break; 1621 default: 1622 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1623 regs), si->dst_reg, si->src_reg, 1624 offsetof(struct bpf_perf_event_data_kern, regs)); 1625 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg, 1626 si->off); 1627 break; 1628 } 1629 1630 return insn - insn_buf; 1631 } 1632 1633 const struct bpf_verifier_ops perf_event_verifier_ops = { 1634 .get_func_proto = pe_prog_func_proto, 1635 .is_valid_access = pe_prog_is_valid_access, 1636 .convert_ctx_access = pe_prog_convert_ctx_access, 1637 }; 1638 1639 const struct bpf_prog_ops perf_event_prog_ops = { 1640 }; 1641 1642 static DEFINE_MUTEX(bpf_event_mutex); 1643 1644 #define BPF_TRACE_MAX_PROGS 64 1645 1646 int perf_event_attach_bpf_prog(struct perf_event *event, 1647 struct bpf_prog *prog) 1648 { 1649 struct bpf_prog_array *old_array; 1650 struct bpf_prog_array *new_array; 1651 int ret = -EEXIST; 1652 1653 /* 1654 * Kprobe override only works if they are on the function entry, 1655 * and only if they are on the opt-in list. 1656 */ 1657 if (prog->kprobe_override && 1658 (!trace_kprobe_on_func_entry(event->tp_event) || 1659 !trace_kprobe_error_injectable(event->tp_event))) 1660 return -EINVAL; 1661 1662 mutex_lock(&bpf_event_mutex); 1663 1664 if (event->prog) 1665 goto unlock; 1666 1667 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 1668 if (old_array && 1669 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) { 1670 ret = -E2BIG; 1671 goto unlock; 1672 } 1673 1674 ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array); 1675 if (ret < 0) 1676 goto unlock; 1677 1678 /* set the new array to event->tp_event and set event->prog */ 1679 event->prog = prog; 1680 rcu_assign_pointer(event->tp_event->prog_array, new_array); 1681 bpf_prog_array_free(old_array); 1682 1683 unlock: 1684 mutex_unlock(&bpf_event_mutex); 1685 return ret; 1686 } 1687 1688 void perf_event_detach_bpf_prog(struct perf_event *event) 1689 { 1690 struct bpf_prog_array *old_array; 1691 struct bpf_prog_array *new_array; 1692 int ret; 1693 1694 mutex_lock(&bpf_event_mutex); 1695 1696 if (!event->prog) 1697 goto unlock; 1698 1699 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 1700 ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array); 1701 if (ret == -ENOENT) 1702 goto unlock; 1703 if (ret < 0) { 1704 bpf_prog_array_delete_safe(old_array, event->prog); 1705 } else { 1706 rcu_assign_pointer(event->tp_event->prog_array, new_array); 1707 bpf_prog_array_free(old_array); 1708 } 1709 1710 bpf_prog_put(event->prog); 1711 event->prog = NULL; 1712 1713 unlock: 1714 mutex_unlock(&bpf_event_mutex); 1715 } 1716 1717 int perf_event_query_prog_array(struct perf_event *event, void __user *info) 1718 { 1719 struct perf_event_query_bpf __user *uquery = info; 1720 struct perf_event_query_bpf query = {}; 1721 struct bpf_prog_array *progs; 1722 u32 *ids, prog_cnt, ids_len; 1723 int ret; 1724 1725 if (!perfmon_capable()) 1726 return -EPERM; 1727 if (event->attr.type != PERF_TYPE_TRACEPOINT) 1728 return -EINVAL; 1729 if (copy_from_user(&query, uquery, sizeof(query))) 1730 return -EFAULT; 1731 1732 ids_len = query.ids_len; 1733 if (ids_len > BPF_TRACE_MAX_PROGS) 1734 return -E2BIG; 1735 ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN); 1736 if (!ids) 1737 return -ENOMEM; 1738 /* 1739 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which 1740 * is required when user only wants to check for uquery->prog_cnt. 1741 * There is no need to check for it since the case is handled 1742 * gracefully in bpf_prog_array_copy_info. 1743 */ 1744 1745 mutex_lock(&bpf_event_mutex); 1746 progs = bpf_event_rcu_dereference(event->tp_event->prog_array); 1747 ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt); 1748 mutex_unlock(&bpf_event_mutex); 1749 1750 if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) || 1751 copy_to_user(uquery->ids, ids, ids_len * sizeof(u32))) 1752 ret = -EFAULT; 1753 1754 kfree(ids); 1755 return ret; 1756 } 1757 1758 extern struct bpf_raw_event_map __start__bpf_raw_tp[]; 1759 extern struct bpf_raw_event_map __stop__bpf_raw_tp[]; 1760 1761 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name) 1762 { 1763 struct bpf_raw_event_map *btp = __start__bpf_raw_tp; 1764 1765 for (; btp < __stop__bpf_raw_tp; btp++) { 1766 if (!strcmp(btp->tp->name, name)) 1767 return btp; 1768 } 1769 1770 return bpf_get_raw_tracepoint_module(name); 1771 } 1772 1773 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp) 1774 { 1775 struct module *mod; 1776 1777 preempt_disable(); 1778 mod = __module_address((unsigned long)btp); 1779 module_put(mod); 1780 preempt_enable(); 1781 } 1782 1783 static __always_inline 1784 void __bpf_trace_run(struct bpf_prog *prog, u64 *args) 1785 { 1786 cant_sleep(); 1787 rcu_read_lock(); 1788 (void) BPF_PROG_RUN(prog, args); 1789 rcu_read_unlock(); 1790 } 1791 1792 #define UNPACK(...) __VA_ARGS__ 1793 #define REPEAT_1(FN, DL, X, ...) FN(X) 1794 #define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__) 1795 #define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__) 1796 #define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__) 1797 #define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__) 1798 #define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__) 1799 #define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__) 1800 #define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__) 1801 #define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__) 1802 #define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__) 1803 #define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__) 1804 #define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__) 1805 #define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__) 1806 1807 #define SARG(X) u64 arg##X 1808 #define COPY(X) args[X] = arg##X 1809 1810 #define __DL_COM (,) 1811 #define __DL_SEM (;) 1812 1813 #define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 1814 1815 #define BPF_TRACE_DEFN_x(x) \ 1816 void bpf_trace_run##x(struct bpf_prog *prog, \ 1817 REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \ 1818 { \ 1819 u64 args[x]; \ 1820 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \ 1821 __bpf_trace_run(prog, args); \ 1822 } \ 1823 EXPORT_SYMBOL_GPL(bpf_trace_run##x) 1824 BPF_TRACE_DEFN_x(1); 1825 BPF_TRACE_DEFN_x(2); 1826 BPF_TRACE_DEFN_x(3); 1827 BPF_TRACE_DEFN_x(4); 1828 BPF_TRACE_DEFN_x(5); 1829 BPF_TRACE_DEFN_x(6); 1830 BPF_TRACE_DEFN_x(7); 1831 BPF_TRACE_DEFN_x(8); 1832 BPF_TRACE_DEFN_x(9); 1833 BPF_TRACE_DEFN_x(10); 1834 BPF_TRACE_DEFN_x(11); 1835 BPF_TRACE_DEFN_x(12); 1836 1837 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1838 { 1839 struct tracepoint *tp = btp->tp; 1840 1841 /* 1842 * check that program doesn't access arguments beyond what's 1843 * available in this tracepoint 1844 */ 1845 if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64)) 1846 return -EINVAL; 1847 1848 if (prog->aux->max_tp_access > btp->writable_size) 1849 return -EINVAL; 1850 1851 return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog); 1852 } 1853 1854 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1855 { 1856 return __bpf_probe_register(btp, prog); 1857 } 1858 1859 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1860 { 1861 return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog); 1862 } 1863 1864 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id, 1865 u32 *fd_type, const char **buf, 1866 u64 *probe_offset, u64 *probe_addr) 1867 { 1868 bool is_tracepoint, is_syscall_tp; 1869 struct bpf_prog *prog; 1870 int flags, err = 0; 1871 1872 prog = event->prog; 1873 if (!prog) 1874 return -ENOENT; 1875 1876 /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */ 1877 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) 1878 return -EOPNOTSUPP; 1879 1880 *prog_id = prog->aux->id; 1881 flags = event->tp_event->flags; 1882 is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT; 1883 is_syscall_tp = is_syscall_trace_event(event->tp_event); 1884 1885 if (is_tracepoint || is_syscall_tp) { 1886 *buf = is_tracepoint ? event->tp_event->tp->name 1887 : event->tp_event->name; 1888 *fd_type = BPF_FD_TYPE_TRACEPOINT; 1889 *probe_offset = 0x0; 1890 *probe_addr = 0x0; 1891 } else { 1892 /* kprobe/uprobe */ 1893 err = -EOPNOTSUPP; 1894 #ifdef CONFIG_KPROBE_EVENTS 1895 if (flags & TRACE_EVENT_FL_KPROBE) 1896 err = bpf_get_kprobe_info(event, fd_type, buf, 1897 probe_offset, probe_addr, 1898 event->attr.type == PERF_TYPE_TRACEPOINT); 1899 #endif 1900 #ifdef CONFIG_UPROBE_EVENTS 1901 if (flags & TRACE_EVENT_FL_UPROBE) 1902 err = bpf_get_uprobe_info(event, fd_type, buf, 1903 probe_offset, 1904 event->attr.type == PERF_TYPE_TRACEPOINT); 1905 #endif 1906 } 1907 1908 return err; 1909 } 1910 1911 static int __init send_signal_irq_work_init(void) 1912 { 1913 int cpu; 1914 struct send_signal_irq_work *work; 1915 1916 for_each_possible_cpu(cpu) { 1917 work = per_cpu_ptr(&send_signal_work, cpu); 1918 init_irq_work(&work->irq_work, do_bpf_send_signal); 1919 } 1920 return 0; 1921 } 1922 1923 subsys_initcall(send_signal_irq_work_init); 1924 1925 #ifdef CONFIG_MODULES 1926 static int bpf_event_notify(struct notifier_block *nb, unsigned long op, 1927 void *module) 1928 { 1929 struct bpf_trace_module *btm, *tmp; 1930 struct module *mod = module; 1931 int ret = 0; 1932 1933 if (mod->num_bpf_raw_events == 0 || 1934 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING)) 1935 goto out; 1936 1937 mutex_lock(&bpf_module_mutex); 1938 1939 switch (op) { 1940 case MODULE_STATE_COMING: 1941 btm = kzalloc(sizeof(*btm), GFP_KERNEL); 1942 if (btm) { 1943 btm->module = module; 1944 list_add(&btm->list, &bpf_trace_modules); 1945 } else { 1946 ret = -ENOMEM; 1947 } 1948 break; 1949 case MODULE_STATE_GOING: 1950 list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) { 1951 if (btm->module == module) { 1952 list_del(&btm->list); 1953 kfree(btm); 1954 break; 1955 } 1956 } 1957 break; 1958 } 1959 1960 mutex_unlock(&bpf_module_mutex); 1961 1962 out: 1963 return notifier_from_errno(ret); 1964 } 1965 1966 static struct notifier_block bpf_module_nb = { 1967 .notifier_call = bpf_event_notify, 1968 }; 1969 1970 static int __init bpf_event_init(void) 1971 { 1972 register_module_notifier(&bpf_module_nb); 1973 return 0; 1974 } 1975 1976 fs_initcall(bpf_event_init); 1977 #endif /* CONFIG_MODULES */ 1978