xref: /linux/kernel/trace/bpf_trace.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_verifier.h>
10 #include <linux/bpf_perf_event.h>
11 #include <linux/btf.h>
12 #include <linux/filter.h>
13 #include <linux/uaccess.h>
14 #include <linux/ctype.h>
15 #include <linux/kprobes.h>
16 #include <linux/spinlock.h>
17 #include <linux/syscalls.h>
18 #include <linux/error-injection.h>
19 #include <linux/btf_ids.h>
20 #include <linux/bpf_lsm.h>
21 #include <linux/fprobe.h>
22 #include <linux/bsearch.h>
23 #include <linux/sort.h>
24 #include <linux/key.h>
25 #include <linux/verification.h>
26 #include <linux/namei.h>
27 
28 #include <net/bpf_sk_storage.h>
29 
30 #include <uapi/linux/bpf.h>
31 #include <uapi/linux/btf.h>
32 
33 #include <asm/tlb.h>
34 
35 #include "trace_probe.h"
36 #include "trace.h"
37 
38 #define CREATE_TRACE_POINTS
39 #include "bpf_trace.h"
40 
41 #define bpf_event_rcu_dereference(p)					\
42 	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
43 
44 #define MAX_UPROBE_MULTI_CNT (1U << 20)
45 #define MAX_KPROBE_MULTI_CNT (1U << 20)
46 
47 #ifdef CONFIG_MODULES
48 struct bpf_trace_module {
49 	struct module *module;
50 	struct list_head list;
51 };
52 
53 static LIST_HEAD(bpf_trace_modules);
54 static DEFINE_MUTEX(bpf_module_mutex);
55 
56 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
57 {
58 	struct bpf_raw_event_map *btp, *ret = NULL;
59 	struct bpf_trace_module *btm;
60 	unsigned int i;
61 
62 	mutex_lock(&bpf_module_mutex);
63 	list_for_each_entry(btm, &bpf_trace_modules, list) {
64 		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
65 			btp = &btm->module->bpf_raw_events[i];
66 			if (!strcmp(btp->tp->name, name)) {
67 				if (try_module_get(btm->module))
68 					ret = btp;
69 				goto out;
70 			}
71 		}
72 	}
73 out:
74 	mutex_unlock(&bpf_module_mutex);
75 	return ret;
76 }
77 #else
78 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
79 {
80 	return NULL;
81 }
82 #endif /* CONFIG_MODULES */
83 
84 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
85 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
86 
87 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
88 				  u64 flags, const struct btf **btf,
89 				  s32 *btf_id);
90 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx);
91 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
92 
93 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx);
94 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
95 
96 /**
97  * trace_call_bpf - invoke BPF program
98  * @call: tracepoint event
99  * @ctx: opaque context pointer
100  *
101  * kprobe handlers execute BPF programs via this helper.
102  * Can be used from static tracepoints in the future.
103  *
104  * Return: BPF programs always return an integer which is interpreted by
105  * kprobe handler as:
106  * 0 - return from kprobe (event is filtered out)
107  * 1 - store kprobe event into ring buffer
108  * Other values are reserved and currently alias to 1
109  */
110 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
111 {
112 	unsigned int ret;
113 
114 	cant_sleep();
115 
116 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
117 		/*
118 		 * since some bpf program is already running on this cpu,
119 		 * don't call into another bpf program (same or different)
120 		 * and don't send kprobe event into ring-buffer,
121 		 * so return zero here
122 		 */
123 		rcu_read_lock();
124 		bpf_prog_inc_misses_counters(rcu_dereference(call->prog_array));
125 		rcu_read_unlock();
126 		ret = 0;
127 		goto out;
128 	}
129 
130 	/*
131 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
132 	 * to all call sites, we did a bpf_prog_array_valid() there to check
133 	 * whether call->prog_array is empty or not, which is
134 	 * a heuristic to speed up execution.
135 	 *
136 	 * If bpf_prog_array_valid() fetched prog_array was
137 	 * non-NULL, we go into trace_call_bpf() and do the actual
138 	 * proper rcu_dereference() under RCU lock.
139 	 * If it turns out that prog_array is NULL then, we bail out.
140 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
141 	 * was NULL, you'll skip the prog_array with the risk of missing
142 	 * out of events when it was updated in between this and the
143 	 * rcu_dereference() which is accepted risk.
144 	 */
145 	rcu_read_lock();
146 	ret = bpf_prog_run_array(rcu_dereference(call->prog_array),
147 				 ctx, bpf_prog_run);
148 	rcu_read_unlock();
149 
150  out:
151 	__this_cpu_dec(bpf_prog_active);
152 
153 	return ret;
154 }
155 
156 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
157 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
158 {
159 	regs_set_return_value(regs, rc);
160 	override_function_with_return(regs);
161 	return 0;
162 }
163 
164 static const struct bpf_func_proto bpf_override_return_proto = {
165 	.func		= bpf_override_return,
166 	.gpl_only	= true,
167 	.ret_type	= RET_INTEGER,
168 	.arg1_type	= ARG_PTR_TO_CTX,
169 	.arg2_type	= ARG_ANYTHING,
170 };
171 #endif
172 
173 static __always_inline int
174 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
175 {
176 	int ret;
177 
178 	ret = copy_from_user_nofault(dst, unsafe_ptr, size);
179 	if (unlikely(ret < 0))
180 		memset(dst, 0, size);
181 	return ret;
182 }
183 
184 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
185 	   const void __user *, unsafe_ptr)
186 {
187 	return bpf_probe_read_user_common(dst, size, unsafe_ptr);
188 }
189 
190 const struct bpf_func_proto bpf_probe_read_user_proto = {
191 	.func		= bpf_probe_read_user,
192 	.gpl_only	= true,
193 	.ret_type	= RET_INTEGER,
194 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
195 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
196 	.arg3_type	= ARG_ANYTHING,
197 };
198 
199 static __always_inline int
200 bpf_probe_read_user_str_common(void *dst, u32 size,
201 			       const void __user *unsafe_ptr)
202 {
203 	int ret;
204 
205 	/*
206 	 * NB: We rely on strncpy_from_user() not copying junk past the NUL
207 	 * terminator into `dst`.
208 	 *
209 	 * strncpy_from_user() does long-sized strides in the fast path. If the
210 	 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
211 	 * then there could be junk after the NUL in `dst`. If user takes `dst`
212 	 * and keys a hash map with it, then semantically identical strings can
213 	 * occupy multiple entries in the map.
214 	 */
215 	ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
216 	if (unlikely(ret < 0))
217 		memset(dst, 0, size);
218 	return ret;
219 }
220 
221 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
222 	   const void __user *, unsafe_ptr)
223 {
224 	return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
225 }
226 
227 const struct bpf_func_proto bpf_probe_read_user_str_proto = {
228 	.func		= bpf_probe_read_user_str,
229 	.gpl_only	= true,
230 	.ret_type	= RET_INTEGER,
231 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
232 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
233 	.arg3_type	= ARG_ANYTHING,
234 };
235 
236 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
237 	   const void *, unsafe_ptr)
238 {
239 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
240 }
241 
242 const struct bpf_func_proto bpf_probe_read_kernel_proto = {
243 	.func		= bpf_probe_read_kernel,
244 	.gpl_only	= true,
245 	.ret_type	= RET_INTEGER,
246 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
247 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
248 	.arg3_type	= ARG_ANYTHING,
249 };
250 
251 static __always_inline int
252 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
253 {
254 	int ret;
255 
256 	/*
257 	 * The strncpy_from_kernel_nofault() call will likely not fill the
258 	 * entire buffer, but that's okay in this circumstance as we're probing
259 	 * arbitrary memory anyway similar to bpf_probe_read_*() and might
260 	 * as well probe the stack. Thus, memory is explicitly cleared
261 	 * only in error case, so that improper users ignoring return
262 	 * code altogether don't copy garbage; otherwise length of string
263 	 * is returned that can be used for bpf_perf_event_output() et al.
264 	 */
265 	ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
266 	if (unlikely(ret < 0))
267 		memset(dst, 0, size);
268 	return ret;
269 }
270 
271 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
272 	   const void *, unsafe_ptr)
273 {
274 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
275 }
276 
277 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
278 	.func		= bpf_probe_read_kernel_str,
279 	.gpl_only	= true,
280 	.ret_type	= RET_INTEGER,
281 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
282 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
283 	.arg3_type	= ARG_ANYTHING,
284 };
285 
286 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
287 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
288 	   const void *, unsafe_ptr)
289 {
290 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
291 		return bpf_probe_read_user_common(dst, size,
292 				(__force void __user *)unsafe_ptr);
293 	}
294 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
295 }
296 
297 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
298 	.func		= bpf_probe_read_compat,
299 	.gpl_only	= true,
300 	.ret_type	= RET_INTEGER,
301 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
302 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
303 	.arg3_type	= ARG_ANYTHING,
304 };
305 
306 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
307 	   const void *, unsafe_ptr)
308 {
309 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
310 		return bpf_probe_read_user_str_common(dst, size,
311 				(__force void __user *)unsafe_ptr);
312 	}
313 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
314 }
315 
316 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
317 	.func		= bpf_probe_read_compat_str,
318 	.gpl_only	= true,
319 	.ret_type	= RET_INTEGER,
320 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
321 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
322 	.arg3_type	= ARG_ANYTHING,
323 };
324 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
325 
326 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
327 	   u32, size)
328 {
329 	/*
330 	 * Ensure we're in user context which is safe for the helper to
331 	 * run. This helper has no business in a kthread.
332 	 *
333 	 * access_ok() should prevent writing to non-user memory, but in
334 	 * some situations (nommu, temporary switch, etc) access_ok() does
335 	 * not provide enough validation, hence the check on KERNEL_DS.
336 	 *
337 	 * nmi_uaccess_okay() ensures the probe is not run in an interim
338 	 * state, when the task or mm are switched. This is specifically
339 	 * required to prevent the use of temporary mm.
340 	 */
341 
342 	if (unlikely(in_interrupt() ||
343 		     current->flags & (PF_KTHREAD | PF_EXITING)))
344 		return -EPERM;
345 	if (unlikely(!nmi_uaccess_okay()))
346 		return -EPERM;
347 
348 	return copy_to_user_nofault(unsafe_ptr, src, size);
349 }
350 
351 static const struct bpf_func_proto bpf_probe_write_user_proto = {
352 	.func		= bpf_probe_write_user,
353 	.gpl_only	= true,
354 	.ret_type	= RET_INTEGER,
355 	.arg1_type	= ARG_ANYTHING,
356 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
357 	.arg3_type	= ARG_CONST_SIZE,
358 };
359 
360 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
361 {
362 	if (!capable(CAP_SYS_ADMIN))
363 		return NULL;
364 
365 	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
366 			    current->comm, task_pid_nr(current));
367 
368 	return &bpf_probe_write_user_proto;
369 }
370 
371 #define MAX_TRACE_PRINTK_VARARGS	3
372 #define BPF_TRACE_PRINTK_SIZE		1024
373 
374 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
375 	   u64, arg2, u64, arg3)
376 {
377 	u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 };
378 	struct bpf_bprintf_data data = {
379 		.get_bin_args	= true,
380 		.get_buf	= true,
381 	};
382 	int ret;
383 
384 	ret = bpf_bprintf_prepare(fmt, fmt_size, args,
385 				  MAX_TRACE_PRINTK_VARARGS, &data);
386 	if (ret < 0)
387 		return ret;
388 
389 	ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
390 
391 	trace_bpf_trace_printk(data.buf);
392 
393 	bpf_bprintf_cleanup(&data);
394 
395 	return ret;
396 }
397 
398 static const struct bpf_func_proto bpf_trace_printk_proto = {
399 	.func		= bpf_trace_printk,
400 	.gpl_only	= true,
401 	.ret_type	= RET_INTEGER,
402 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
403 	.arg2_type	= ARG_CONST_SIZE,
404 };
405 
406 static void __set_printk_clr_event(void)
407 {
408 	/*
409 	 * This program might be calling bpf_trace_printk,
410 	 * so enable the associated bpf_trace/bpf_trace_printk event.
411 	 * Repeat this each time as it is possible a user has
412 	 * disabled bpf_trace_printk events.  By loading a program
413 	 * calling bpf_trace_printk() however the user has expressed
414 	 * the intent to see such events.
415 	 */
416 	if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
417 		pr_warn_ratelimited("could not enable bpf_trace_printk events");
418 }
419 
420 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
421 {
422 	__set_printk_clr_event();
423 	return &bpf_trace_printk_proto;
424 }
425 
426 BPF_CALL_4(bpf_trace_vprintk, char *, fmt, u32, fmt_size, const void *, args,
427 	   u32, data_len)
428 {
429 	struct bpf_bprintf_data data = {
430 		.get_bin_args	= true,
431 		.get_buf	= true,
432 	};
433 	int ret, num_args;
434 
435 	if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
436 	    (data_len && !args))
437 		return -EINVAL;
438 	num_args = data_len / 8;
439 
440 	ret = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
441 	if (ret < 0)
442 		return ret;
443 
444 	ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
445 
446 	trace_bpf_trace_printk(data.buf);
447 
448 	bpf_bprintf_cleanup(&data);
449 
450 	return ret;
451 }
452 
453 static const struct bpf_func_proto bpf_trace_vprintk_proto = {
454 	.func		= bpf_trace_vprintk,
455 	.gpl_only	= true,
456 	.ret_type	= RET_INTEGER,
457 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
458 	.arg2_type	= ARG_CONST_SIZE,
459 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
460 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
461 };
462 
463 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void)
464 {
465 	__set_printk_clr_event();
466 	return &bpf_trace_vprintk_proto;
467 }
468 
469 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
470 	   const void *, args, u32, data_len)
471 {
472 	struct bpf_bprintf_data data = {
473 		.get_bin_args	= true,
474 	};
475 	int err, num_args;
476 
477 	if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
478 	    (data_len && !args))
479 		return -EINVAL;
480 	num_args = data_len / 8;
481 
482 	err = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
483 	if (err < 0)
484 		return err;
485 
486 	seq_bprintf(m, fmt, data.bin_args);
487 
488 	bpf_bprintf_cleanup(&data);
489 
490 	return seq_has_overflowed(m) ? -EOVERFLOW : 0;
491 }
492 
493 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
494 
495 static const struct bpf_func_proto bpf_seq_printf_proto = {
496 	.func		= bpf_seq_printf,
497 	.gpl_only	= true,
498 	.ret_type	= RET_INTEGER,
499 	.arg1_type	= ARG_PTR_TO_BTF_ID,
500 	.arg1_btf_id	= &btf_seq_file_ids[0],
501 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
502 	.arg3_type	= ARG_CONST_SIZE,
503 	.arg4_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
504 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
505 };
506 
507 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
508 {
509 	return seq_write(m, data, len) ? -EOVERFLOW : 0;
510 }
511 
512 static const struct bpf_func_proto bpf_seq_write_proto = {
513 	.func		= bpf_seq_write,
514 	.gpl_only	= true,
515 	.ret_type	= RET_INTEGER,
516 	.arg1_type	= ARG_PTR_TO_BTF_ID,
517 	.arg1_btf_id	= &btf_seq_file_ids[0],
518 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
519 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
520 };
521 
522 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
523 	   u32, btf_ptr_size, u64, flags)
524 {
525 	const struct btf *btf;
526 	s32 btf_id;
527 	int ret;
528 
529 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
530 	if (ret)
531 		return ret;
532 
533 	return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
534 }
535 
536 static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
537 	.func		= bpf_seq_printf_btf,
538 	.gpl_only	= true,
539 	.ret_type	= RET_INTEGER,
540 	.arg1_type	= ARG_PTR_TO_BTF_ID,
541 	.arg1_btf_id	= &btf_seq_file_ids[0],
542 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
543 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
544 	.arg4_type	= ARG_ANYTHING,
545 };
546 
547 static __always_inline int
548 get_map_perf_counter(struct bpf_map *map, u64 flags,
549 		     u64 *value, u64 *enabled, u64 *running)
550 {
551 	struct bpf_array *array = container_of(map, struct bpf_array, map);
552 	unsigned int cpu = smp_processor_id();
553 	u64 index = flags & BPF_F_INDEX_MASK;
554 	struct bpf_event_entry *ee;
555 
556 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
557 		return -EINVAL;
558 	if (index == BPF_F_CURRENT_CPU)
559 		index = cpu;
560 	if (unlikely(index >= array->map.max_entries))
561 		return -E2BIG;
562 
563 	ee = READ_ONCE(array->ptrs[index]);
564 	if (!ee)
565 		return -ENOENT;
566 
567 	return perf_event_read_local(ee->event, value, enabled, running);
568 }
569 
570 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
571 {
572 	u64 value = 0;
573 	int err;
574 
575 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
576 	/*
577 	 * this api is ugly since we miss [-22..-2] range of valid
578 	 * counter values, but that's uapi
579 	 */
580 	if (err)
581 		return err;
582 	return value;
583 }
584 
585 static const struct bpf_func_proto bpf_perf_event_read_proto = {
586 	.func		= bpf_perf_event_read,
587 	.gpl_only	= true,
588 	.ret_type	= RET_INTEGER,
589 	.arg1_type	= ARG_CONST_MAP_PTR,
590 	.arg2_type	= ARG_ANYTHING,
591 };
592 
593 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
594 	   struct bpf_perf_event_value *, buf, u32, size)
595 {
596 	int err = -EINVAL;
597 
598 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
599 		goto clear;
600 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
601 				   &buf->running);
602 	if (unlikely(err))
603 		goto clear;
604 	return 0;
605 clear:
606 	memset(buf, 0, size);
607 	return err;
608 }
609 
610 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
611 	.func		= bpf_perf_event_read_value,
612 	.gpl_only	= true,
613 	.ret_type	= RET_INTEGER,
614 	.arg1_type	= ARG_CONST_MAP_PTR,
615 	.arg2_type	= ARG_ANYTHING,
616 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
617 	.arg4_type	= ARG_CONST_SIZE,
618 };
619 
620 static __always_inline u64
621 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
622 			u64 flags, struct perf_sample_data *sd)
623 {
624 	struct bpf_array *array = container_of(map, struct bpf_array, map);
625 	unsigned int cpu = smp_processor_id();
626 	u64 index = flags & BPF_F_INDEX_MASK;
627 	struct bpf_event_entry *ee;
628 	struct perf_event *event;
629 
630 	if (index == BPF_F_CURRENT_CPU)
631 		index = cpu;
632 	if (unlikely(index >= array->map.max_entries))
633 		return -E2BIG;
634 
635 	ee = READ_ONCE(array->ptrs[index]);
636 	if (!ee)
637 		return -ENOENT;
638 
639 	event = ee->event;
640 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
641 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
642 		return -EINVAL;
643 
644 	if (unlikely(event->oncpu != cpu))
645 		return -EOPNOTSUPP;
646 
647 	return perf_event_output(event, sd, regs);
648 }
649 
650 /*
651  * Support executing tracepoints in normal, irq, and nmi context that each call
652  * bpf_perf_event_output
653  */
654 struct bpf_trace_sample_data {
655 	struct perf_sample_data sds[3];
656 };
657 
658 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
659 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
660 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
661 	   u64, flags, void *, data, u64, size)
662 {
663 	struct bpf_trace_sample_data *sds;
664 	struct perf_raw_record raw = {
665 		.frag = {
666 			.size = size,
667 			.data = data,
668 		},
669 	};
670 	struct perf_sample_data *sd;
671 	int nest_level, err;
672 
673 	preempt_disable();
674 	sds = this_cpu_ptr(&bpf_trace_sds);
675 	nest_level = this_cpu_inc_return(bpf_trace_nest_level);
676 
677 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
678 		err = -EBUSY;
679 		goto out;
680 	}
681 
682 	sd = &sds->sds[nest_level - 1];
683 
684 	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
685 		err = -EINVAL;
686 		goto out;
687 	}
688 
689 	perf_sample_data_init(sd, 0, 0);
690 	perf_sample_save_raw_data(sd, &raw);
691 
692 	err = __bpf_perf_event_output(regs, map, flags, sd);
693 out:
694 	this_cpu_dec(bpf_trace_nest_level);
695 	preempt_enable();
696 	return err;
697 }
698 
699 static const struct bpf_func_proto bpf_perf_event_output_proto = {
700 	.func		= bpf_perf_event_output,
701 	.gpl_only	= true,
702 	.ret_type	= RET_INTEGER,
703 	.arg1_type	= ARG_PTR_TO_CTX,
704 	.arg2_type	= ARG_CONST_MAP_PTR,
705 	.arg3_type	= ARG_ANYTHING,
706 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
707 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
708 };
709 
710 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
711 struct bpf_nested_pt_regs {
712 	struct pt_regs regs[3];
713 };
714 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
715 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
716 
717 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
718 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
719 {
720 	struct perf_raw_frag frag = {
721 		.copy		= ctx_copy,
722 		.size		= ctx_size,
723 		.data		= ctx,
724 	};
725 	struct perf_raw_record raw = {
726 		.frag = {
727 			{
728 				.next	= ctx_size ? &frag : NULL,
729 			},
730 			.size	= meta_size,
731 			.data	= meta,
732 		},
733 	};
734 	struct perf_sample_data *sd;
735 	struct pt_regs *regs;
736 	int nest_level;
737 	u64 ret;
738 
739 	preempt_disable();
740 	nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
741 
742 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
743 		ret = -EBUSY;
744 		goto out;
745 	}
746 	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
747 	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
748 
749 	perf_fetch_caller_regs(regs);
750 	perf_sample_data_init(sd, 0, 0);
751 	perf_sample_save_raw_data(sd, &raw);
752 
753 	ret = __bpf_perf_event_output(regs, map, flags, sd);
754 out:
755 	this_cpu_dec(bpf_event_output_nest_level);
756 	preempt_enable();
757 	return ret;
758 }
759 
760 BPF_CALL_0(bpf_get_current_task)
761 {
762 	return (long) current;
763 }
764 
765 const struct bpf_func_proto bpf_get_current_task_proto = {
766 	.func		= bpf_get_current_task,
767 	.gpl_only	= true,
768 	.ret_type	= RET_INTEGER,
769 };
770 
771 BPF_CALL_0(bpf_get_current_task_btf)
772 {
773 	return (unsigned long) current;
774 }
775 
776 const struct bpf_func_proto bpf_get_current_task_btf_proto = {
777 	.func		= bpf_get_current_task_btf,
778 	.gpl_only	= true,
779 	.ret_type	= RET_PTR_TO_BTF_ID_TRUSTED,
780 	.ret_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
781 };
782 
783 BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task)
784 {
785 	return (unsigned long) task_pt_regs(task);
786 }
787 
788 BTF_ID_LIST(bpf_task_pt_regs_ids)
789 BTF_ID(struct, pt_regs)
790 
791 const struct bpf_func_proto bpf_task_pt_regs_proto = {
792 	.func		= bpf_task_pt_regs,
793 	.gpl_only	= true,
794 	.arg1_type	= ARG_PTR_TO_BTF_ID,
795 	.arg1_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
796 	.ret_type	= RET_PTR_TO_BTF_ID,
797 	.ret_btf_id	= &bpf_task_pt_regs_ids[0],
798 };
799 
800 struct send_signal_irq_work {
801 	struct irq_work irq_work;
802 	struct task_struct *task;
803 	u32 sig;
804 	enum pid_type type;
805 	bool has_siginfo;
806 	struct kernel_siginfo info;
807 };
808 
809 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
810 
811 static void do_bpf_send_signal(struct irq_work *entry)
812 {
813 	struct send_signal_irq_work *work;
814 	struct kernel_siginfo *siginfo;
815 
816 	work = container_of(entry, struct send_signal_irq_work, irq_work);
817 	siginfo = work->has_siginfo ? &work->info : SEND_SIG_PRIV;
818 
819 	group_send_sig_info(work->sig, siginfo, work->task, work->type);
820 	put_task_struct(work->task);
821 }
822 
823 static int bpf_send_signal_common(u32 sig, enum pid_type type, struct task_struct *task, u64 value)
824 {
825 	struct send_signal_irq_work *work = NULL;
826 	struct kernel_siginfo info;
827 	struct kernel_siginfo *siginfo;
828 
829 	if (!task) {
830 		task = current;
831 		siginfo = SEND_SIG_PRIV;
832 	} else {
833 		clear_siginfo(&info);
834 		info.si_signo = sig;
835 		info.si_errno = 0;
836 		info.si_code = SI_KERNEL;
837 		info.si_pid = 0;
838 		info.si_uid = 0;
839 		info.si_value.sival_ptr = (void *)(unsigned long)value;
840 		siginfo = &info;
841 	}
842 
843 	/* Similar to bpf_probe_write_user, task needs to be
844 	 * in a sound condition and kernel memory access be
845 	 * permitted in order to send signal to the current
846 	 * task.
847 	 */
848 	if (unlikely(task->flags & (PF_KTHREAD | PF_EXITING)))
849 		return -EPERM;
850 	if (unlikely(!nmi_uaccess_okay()))
851 		return -EPERM;
852 	/* Task should not be pid=1 to avoid kernel panic. */
853 	if (unlikely(is_global_init(task)))
854 		return -EPERM;
855 
856 	if (irqs_disabled()) {
857 		/* Do an early check on signal validity. Otherwise,
858 		 * the error is lost in deferred irq_work.
859 		 */
860 		if (unlikely(!valid_signal(sig)))
861 			return -EINVAL;
862 
863 		work = this_cpu_ptr(&send_signal_work);
864 		if (irq_work_is_busy(&work->irq_work))
865 			return -EBUSY;
866 
867 		/* Add the current task, which is the target of sending signal,
868 		 * to the irq_work. The current task may change when queued
869 		 * irq works get executed.
870 		 */
871 		work->task = get_task_struct(task);
872 		work->has_siginfo = siginfo == &info;
873 		if (work->has_siginfo)
874 			copy_siginfo(&work->info, &info);
875 		work->sig = sig;
876 		work->type = type;
877 		irq_work_queue(&work->irq_work);
878 		return 0;
879 	}
880 
881 	return group_send_sig_info(sig, siginfo, task, type);
882 }
883 
884 BPF_CALL_1(bpf_send_signal, u32, sig)
885 {
886 	return bpf_send_signal_common(sig, PIDTYPE_TGID, NULL, 0);
887 }
888 
889 static const struct bpf_func_proto bpf_send_signal_proto = {
890 	.func		= bpf_send_signal,
891 	.gpl_only	= false,
892 	.ret_type	= RET_INTEGER,
893 	.arg1_type	= ARG_ANYTHING,
894 };
895 
896 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
897 {
898 	return bpf_send_signal_common(sig, PIDTYPE_PID, NULL, 0);
899 }
900 
901 static const struct bpf_func_proto bpf_send_signal_thread_proto = {
902 	.func		= bpf_send_signal_thread,
903 	.gpl_only	= false,
904 	.ret_type	= RET_INTEGER,
905 	.arg1_type	= ARG_ANYTHING,
906 };
907 
908 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
909 {
910 	struct path copy;
911 	long len;
912 	char *p;
913 
914 	if (!sz)
915 		return 0;
916 
917 	/*
918 	 * The path pointer is verified as trusted and safe to use,
919 	 * but let's double check it's valid anyway to workaround
920 	 * potentially broken verifier.
921 	 */
922 	len = copy_from_kernel_nofault(&copy, path, sizeof(*path));
923 	if (len < 0)
924 		return len;
925 
926 	p = d_path(&copy, buf, sz);
927 	if (IS_ERR(p)) {
928 		len = PTR_ERR(p);
929 	} else {
930 		len = buf + sz - p;
931 		memmove(buf, p, len);
932 	}
933 
934 	return len;
935 }
936 
937 BTF_SET_START(btf_allowlist_d_path)
938 #ifdef CONFIG_SECURITY
939 BTF_ID(func, security_file_permission)
940 BTF_ID(func, security_inode_getattr)
941 BTF_ID(func, security_file_open)
942 #endif
943 #ifdef CONFIG_SECURITY_PATH
944 BTF_ID(func, security_path_truncate)
945 #endif
946 BTF_ID(func, vfs_truncate)
947 BTF_ID(func, vfs_fallocate)
948 BTF_ID(func, dentry_open)
949 BTF_ID(func, vfs_getattr)
950 BTF_ID(func, filp_close)
951 BTF_SET_END(btf_allowlist_d_path)
952 
953 static bool bpf_d_path_allowed(const struct bpf_prog *prog)
954 {
955 	if (prog->type == BPF_PROG_TYPE_TRACING &&
956 	    prog->expected_attach_type == BPF_TRACE_ITER)
957 		return true;
958 
959 	if (prog->type == BPF_PROG_TYPE_LSM)
960 		return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id);
961 
962 	return btf_id_set_contains(&btf_allowlist_d_path,
963 				   prog->aux->attach_btf_id);
964 }
965 
966 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
967 
968 static const struct bpf_func_proto bpf_d_path_proto = {
969 	.func		= bpf_d_path,
970 	.gpl_only	= false,
971 	.ret_type	= RET_INTEGER,
972 	.arg1_type	= ARG_PTR_TO_BTF_ID,
973 	.arg1_btf_id	= &bpf_d_path_btf_ids[0],
974 	.arg2_type	= ARG_PTR_TO_MEM,
975 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
976 	.allowed	= bpf_d_path_allowed,
977 };
978 
979 #define BTF_F_ALL	(BTF_F_COMPACT  | BTF_F_NONAME | \
980 			 BTF_F_PTR_RAW | BTF_F_ZERO)
981 
982 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
983 				  u64 flags, const struct btf **btf,
984 				  s32 *btf_id)
985 {
986 	const struct btf_type *t;
987 
988 	if (unlikely(flags & ~(BTF_F_ALL)))
989 		return -EINVAL;
990 
991 	if (btf_ptr_size != sizeof(struct btf_ptr))
992 		return -EINVAL;
993 
994 	*btf = bpf_get_btf_vmlinux();
995 
996 	if (IS_ERR_OR_NULL(*btf))
997 		return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
998 
999 	if (ptr->type_id > 0)
1000 		*btf_id = ptr->type_id;
1001 	else
1002 		return -EINVAL;
1003 
1004 	if (*btf_id > 0)
1005 		t = btf_type_by_id(*btf, *btf_id);
1006 	if (*btf_id <= 0 || !t)
1007 		return -ENOENT;
1008 
1009 	return 0;
1010 }
1011 
1012 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
1013 	   u32, btf_ptr_size, u64, flags)
1014 {
1015 	const struct btf *btf;
1016 	s32 btf_id;
1017 	int ret;
1018 
1019 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
1020 	if (ret)
1021 		return ret;
1022 
1023 	return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
1024 				      flags);
1025 }
1026 
1027 const struct bpf_func_proto bpf_snprintf_btf_proto = {
1028 	.func		= bpf_snprintf_btf,
1029 	.gpl_only	= false,
1030 	.ret_type	= RET_INTEGER,
1031 	.arg1_type	= ARG_PTR_TO_MEM,
1032 	.arg2_type	= ARG_CONST_SIZE,
1033 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1034 	.arg4_type	= ARG_CONST_SIZE,
1035 	.arg5_type	= ARG_ANYTHING,
1036 };
1037 
1038 BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx)
1039 {
1040 	/* This helper call is inlined by verifier. */
1041 	return ((u64 *)ctx)[-2];
1042 }
1043 
1044 static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = {
1045 	.func		= bpf_get_func_ip_tracing,
1046 	.gpl_only	= true,
1047 	.ret_type	= RET_INTEGER,
1048 	.arg1_type	= ARG_PTR_TO_CTX,
1049 };
1050 
1051 #ifdef CONFIG_X86_KERNEL_IBT
1052 static unsigned long get_entry_ip(unsigned long fentry_ip)
1053 {
1054 	u32 instr;
1055 
1056 	/* We want to be extra safe in case entry ip is on the page edge,
1057 	 * but otherwise we need to avoid get_kernel_nofault()'s overhead.
1058 	 */
1059 	if ((fentry_ip & ~PAGE_MASK) < ENDBR_INSN_SIZE) {
1060 		if (get_kernel_nofault(instr, (u32 *)(fentry_ip - ENDBR_INSN_SIZE)))
1061 			return fentry_ip;
1062 	} else {
1063 		instr = *(u32 *)(fentry_ip - ENDBR_INSN_SIZE);
1064 	}
1065 	if (is_endbr(instr))
1066 		fentry_ip -= ENDBR_INSN_SIZE;
1067 	return fentry_ip;
1068 }
1069 #else
1070 #define get_entry_ip(fentry_ip) fentry_ip
1071 #endif
1072 
1073 BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs)
1074 {
1075 	struct bpf_trace_run_ctx *run_ctx __maybe_unused;
1076 	struct kprobe *kp;
1077 
1078 #ifdef CONFIG_UPROBES
1079 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1080 	if (run_ctx->is_uprobe)
1081 		return ((struct uprobe_dispatch_data *)current->utask->vaddr)->bp_addr;
1082 #endif
1083 
1084 	kp = kprobe_running();
1085 
1086 	if (!kp || !(kp->flags & KPROBE_FLAG_ON_FUNC_ENTRY))
1087 		return 0;
1088 
1089 	return get_entry_ip((uintptr_t)kp->addr);
1090 }
1091 
1092 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = {
1093 	.func		= bpf_get_func_ip_kprobe,
1094 	.gpl_only	= true,
1095 	.ret_type	= RET_INTEGER,
1096 	.arg1_type	= ARG_PTR_TO_CTX,
1097 };
1098 
1099 BPF_CALL_1(bpf_get_func_ip_kprobe_multi, struct pt_regs *, regs)
1100 {
1101 	return bpf_kprobe_multi_entry_ip(current->bpf_ctx);
1102 }
1103 
1104 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe_multi = {
1105 	.func		= bpf_get_func_ip_kprobe_multi,
1106 	.gpl_only	= false,
1107 	.ret_type	= RET_INTEGER,
1108 	.arg1_type	= ARG_PTR_TO_CTX,
1109 };
1110 
1111 BPF_CALL_1(bpf_get_attach_cookie_kprobe_multi, struct pt_regs *, regs)
1112 {
1113 	return bpf_kprobe_multi_cookie(current->bpf_ctx);
1114 }
1115 
1116 static const struct bpf_func_proto bpf_get_attach_cookie_proto_kmulti = {
1117 	.func		= bpf_get_attach_cookie_kprobe_multi,
1118 	.gpl_only	= false,
1119 	.ret_type	= RET_INTEGER,
1120 	.arg1_type	= ARG_PTR_TO_CTX,
1121 };
1122 
1123 BPF_CALL_1(bpf_get_func_ip_uprobe_multi, struct pt_regs *, regs)
1124 {
1125 	return bpf_uprobe_multi_entry_ip(current->bpf_ctx);
1126 }
1127 
1128 static const struct bpf_func_proto bpf_get_func_ip_proto_uprobe_multi = {
1129 	.func		= bpf_get_func_ip_uprobe_multi,
1130 	.gpl_only	= false,
1131 	.ret_type	= RET_INTEGER,
1132 	.arg1_type	= ARG_PTR_TO_CTX,
1133 };
1134 
1135 BPF_CALL_1(bpf_get_attach_cookie_uprobe_multi, struct pt_regs *, regs)
1136 {
1137 	return bpf_uprobe_multi_cookie(current->bpf_ctx);
1138 }
1139 
1140 static const struct bpf_func_proto bpf_get_attach_cookie_proto_umulti = {
1141 	.func		= bpf_get_attach_cookie_uprobe_multi,
1142 	.gpl_only	= false,
1143 	.ret_type	= RET_INTEGER,
1144 	.arg1_type	= ARG_PTR_TO_CTX,
1145 };
1146 
1147 BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx)
1148 {
1149 	struct bpf_trace_run_ctx *run_ctx;
1150 
1151 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1152 	return run_ctx->bpf_cookie;
1153 }
1154 
1155 static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = {
1156 	.func		= bpf_get_attach_cookie_trace,
1157 	.gpl_only	= false,
1158 	.ret_type	= RET_INTEGER,
1159 	.arg1_type	= ARG_PTR_TO_CTX,
1160 };
1161 
1162 BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx)
1163 {
1164 	return ctx->event->bpf_cookie;
1165 }
1166 
1167 static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = {
1168 	.func		= bpf_get_attach_cookie_pe,
1169 	.gpl_only	= false,
1170 	.ret_type	= RET_INTEGER,
1171 	.arg1_type	= ARG_PTR_TO_CTX,
1172 };
1173 
1174 BPF_CALL_1(bpf_get_attach_cookie_tracing, void *, ctx)
1175 {
1176 	struct bpf_trace_run_ctx *run_ctx;
1177 
1178 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1179 	return run_ctx->bpf_cookie;
1180 }
1181 
1182 static const struct bpf_func_proto bpf_get_attach_cookie_proto_tracing = {
1183 	.func		= bpf_get_attach_cookie_tracing,
1184 	.gpl_only	= false,
1185 	.ret_type	= RET_INTEGER,
1186 	.arg1_type	= ARG_PTR_TO_CTX,
1187 };
1188 
1189 BPF_CALL_3(bpf_get_branch_snapshot, void *, buf, u32, size, u64, flags)
1190 {
1191 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1192 	u32 entry_cnt = size / br_entry_size;
1193 
1194 	entry_cnt = static_call(perf_snapshot_branch_stack)(buf, entry_cnt);
1195 
1196 	if (unlikely(flags))
1197 		return -EINVAL;
1198 
1199 	if (!entry_cnt)
1200 		return -ENOENT;
1201 
1202 	return entry_cnt * br_entry_size;
1203 }
1204 
1205 static const struct bpf_func_proto bpf_get_branch_snapshot_proto = {
1206 	.func		= bpf_get_branch_snapshot,
1207 	.gpl_only	= true,
1208 	.ret_type	= RET_INTEGER,
1209 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1210 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1211 };
1212 
1213 BPF_CALL_3(get_func_arg, void *, ctx, u32, n, u64 *, value)
1214 {
1215 	/* This helper call is inlined by verifier. */
1216 	u64 nr_args = ((u64 *)ctx)[-1];
1217 
1218 	if ((u64) n >= nr_args)
1219 		return -EINVAL;
1220 	*value = ((u64 *)ctx)[n];
1221 	return 0;
1222 }
1223 
1224 static const struct bpf_func_proto bpf_get_func_arg_proto = {
1225 	.func		= get_func_arg,
1226 	.ret_type	= RET_INTEGER,
1227 	.arg1_type	= ARG_PTR_TO_CTX,
1228 	.arg2_type	= ARG_ANYTHING,
1229 	.arg3_type	= ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
1230 	.arg3_size	= sizeof(u64),
1231 };
1232 
1233 BPF_CALL_2(get_func_ret, void *, ctx, u64 *, value)
1234 {
1235 	/* This helper call is inlined by verifier. */
1236 	u64 nr_args = ((u64 *)ctx)[-1];
1237 
1238 	*value = ((u64 *)ctx)[nr_args];
1239 	return 0;
1240 }
1241 
1242 static const struct bpf_func_proto bpf_get_func_ret_proto = {
1243 	.func		= get_func_ret,
1244 	.ret_type	= RET_INTEGER,
1245 	.arg1_type	= ARG_PTR_TO_CTX,
1246 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
1247 	.arg2_size	= sizeof(u64),
1248 };
1249 
1250 BPF_CALL_1(get_func_arg_cnt, void *, ctx)
1251 {
1252 	/* This helper call is inlined by verifier. */
1253 	return ((u64 *)ctx)[-1];
1254 }
1255 
1256 static const struct bpf_func_proto bpf_get_func_arg_cnt_proto = {
1257 	.func		= get_func_arg_cnt,
1258 	.ret_type	= RET_INTEGER,
1259 	.arg1_type	= ARG_PTR_TO_CTX,
1260 };
1261 
1262 #ifdef CONFIG_KEYS
1263 __bpf_kfunc_start_defs();
1264 
1265 /**
1266  * bpf_lookup_user_key - lookup a key by its serial
1267  * @serial: key handle serial number
1268  * @flags: lookup-specific flags
1269  *
1270  * Search a key with a given *serial* and the provided *flags*.
1271  * If found, increment the reference count of the key by one, and
1272  * return it in the bpf_key structure.
1273  *
1274  * The bpf_key structure must be passed to bpf_key_put() when done
1275  * with it, so that the key reference count is decremented and the
1276  * bpf_key structure is freed.
1277  *
1278  * Permission checks are deferred to the time the key is used by
1279  * one of the available key-specific kfuncs.
1280  *
1281  * Set *flags* with KEY_LOOKUP_CREATE, to attempt creating a requested
1282  * special keyring (e.g. session keyring), if it doesn't yet exist.
1283  * Set *flags* with KEY_LOOKUP_PARTIAL, to lookup a key without waiting
1284  * for the key construction, and to retrieve uninstantiated keys (keys
1285  * without data attached to them).
1286  *
1287  * Return: a bpf_key pointer with a valid key pointer if the key is found, a
1288  *         NULL pointer otherwise.
1289  */
1290 __bpf_kfunc struct bpf_key *bpf_lookup_user_key(u32 serial, u64 flags)
1291 {
1292 	key_ref_t key_ref;
1293 	struct bpf_key *bkey;
1294 
1295 	if (flags & ~KEY_LOOKUP_ALL)
1296 		return NULL;
1297 
1298 	/*
1299 	 * Permission check is deferred until the key is used, as the
1300 	 * intent of the caller is unknown here.
1301 	 */
1302 	key_ref = lookup_user_key(serial, flags, KEY_DEFER_PERM_CHECK);
1303 	if (IS_ERR(key_ref))
1304 		return NULL;
1305 
1306 	bkey = kmalloc(sizeof(*bkey), GFP_KERNEL);
1307 	if (!bkey) {
1308 		key_put(key_ref_to_ptr(key_ref));
1309 		return NULL;
1310 	}
1311 
1312 	bkey->key = key_ref_to_ptr(key_ref);
1313 	bkey->has_ref = true;
1314 
1315 	return bkey;
1316 }
1317 
1318 /**
1319  * bpf_lookup_system_key - lookup a key by a system-defined ID
1320  * @id: key ID
1321  *
1322  * Obtain a bpf_key structure with a key pointer set to the passed key ID.
1323  * The key pointer is marked as invalid, to prevent bpf_key_put() from
1324  * attempting to decrement the key reference count on that pointer. The key
1325  * pointer set in such way is currently understood only by
1326  * verify_pkcs7_signature().
1327  *
1328  * Set *id* to one of the values defined in include/linux/verification.h:
1329  * 0 for the primary keyring (immutable keyring of system keys);
1330  * VERIFY_USE_SECONDARY_KEYRING for both the primary and secondary keyring
1331  * (where keys can be added only if they are vouched for by existing keys
1332  * in those keyrings); VERIFY_USE_PLATFORM_KEYRING for the platform
1333  * keyring (primarily used by the integrity subsystem to verify a kexec'ed
1334  * kerned image and, possibly, the initramfs signature).
1335  *
1336  * Return: a bpf_key pointer with an invalid key pointer set from the
1337  *         pre-determined ID on success, a NULL pointer otherwise
1338  */
1339 __bpf_kfunc struct bpf_key *bpf_lookup_system_key(u64 id)
1340 {
1341 	struct bpf_key *bkey;
1342 
1343 	if (system_keyring_id_check(id) < 0)
1344 		return NULL;
1345 
1346 	bkey = kmalloc(sizeof(*bkey), GFP_ATOMIC);
1347 	if (!bkey)
1348 		return NULL;
1349 
1350 	bkey->key = (struct key *)(unsigned long)id;
1351 	bkey->has_ref = false;
1352 
1353 	return bkey;
1354 }
1355 
1356 /**
1357  * bpf_key_put - decrement key reference count if key is valid and free bpf_key
1358  * @bkey: bpf_key structure
1359  *
1360  * Decrement the reference count of the key inside *bkey*, if the pointer
1361  * is valid, and free *bkey*.
1362  */
1363 __bpf_kfunc void bpf_key_put(struct bpf_key *bkey)
1364 {
1365 	if (bkey->has_ref)
1366 		key_put(bkey->key);
1367 
1368 	kfree(bkey);
1369 }
1370 
1371 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
1372 /**
1373  * bpf_verify_pkcs7_signature - verify a PKCS#7 signature
1374  * @data_p: data to verify
1375  * @sig_p: signature of the data
1376  * @trusted_keyring: keyring with keys trusted for signature verification
1377  *
1378  * Verify the PKCS#7 signature *sig_ptr* against the supplied *data_ptr*
1379  * with keys in a keyring referenced by *trusted_keyring*.
1380  *
1381  * Return: 0 on success, a negative value on error.
1382  */
1383 __bpf_kfunc int bpf_verify_pkcs7_signature(struct bpf_dynptr *data_p,
1384 			       struct bpf_dynptr *sig_p,
1385 			       struct bpf_key *trusted_keyring)
1386 {
1387 	struct bpf_dynptr_kern *data_ptr = (struct bpf_dynptr_kern *)data_p;
1388 	struct bpf_dynptr_kern *sig_ptr = (struct bpf_dynptr_kern *)sig_p;
1389 	const void *data, *sig;
1390 	u32 data_len, sig_len;
1391 	int ret;
1392 
1393 	if (trusted_keyring->has_ref) {
1394 		/*
1395 		 * Do the permission check deferred in bpf_lookup_user_key().
1396 		 * See bpf_lookup_user_key() for more details.
1397 		 *
1398 		 * A call to key_task_permission() here would be redundant, as
1399 		 * it is already done by keyring_search() called by
1400 		 * find_asymmetric_key().
1401 		 */
1402 		ret = key_validate(trusted_keyring->key);
1403 		if (ret < 0)
1404 			return ret;
1405 	}
1406 
1407 	data_len = __bpf_dynptr_size(data_ptr);
1408 	data = __bpf_dynptr_data(data_ptr, data_len);
1409 	sig_len = __bpf_dynptr_size(sig_ptr);
1410 	sig = __bpf_dynptr_data(sig_ptr, sig_len);
1411 
1412 	return verify_pkcs7_signature(data, data_len, sig, sig_len,
1413 				      trusted_keyring->key,
1414 				      VERIFYING_UNSPECIFIED_SIGNATURE, NULL,
1415 				      NULL);
1416 }
1417 #endif /* CONFIG_SYSTEM_DATA_VERIFICATION */
1418 
1419 __bpf_kfunc_end_defs();
1420 
1421 BTF_KFUNCS_START(key_sig_kfunc_set)
1422 BTF_ID_FLAGS(func, bpf_lookup_user_key, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE)
1423 BTF_ID_FLAGS(func, bpf_lookup_system_key, KF_ACQUIRE | KF_RET_NULL)
1424 BTF_ID_FLAGS(func, bpf_key_put, KF_RELEASE)
1425 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
1426 BTF_ID_FLAGS(func, bpf_verify_pkcs7_signature, KF_SLEEPABLE)
1427 #endif
1428 BTF_KFUNCS_END(key_sig_kfunc_set)
1429 
1430 static const struct btf_kfunc_id_set bpf_key_sig_kfunc_set = {
1431 	.owner = THIS_MODULE,
1432 	.set = &key_sig_kfunc_set,
1433 };
1434 
1435 static int __init bpf_key_sig_kfuncs_init(void)
1436 {
1437 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
1438 					 &bpf_key_sig_kfunc_set);
1439 }
1440 
1441 late_initcall(bpf_key_sig_kfuncs_init);
1442 #endif /* CONFIG_KEYS */
1443 
1444 static const struct bpf_func_proto *
1445 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1446 {
1447 	switch (func_id) {
1448 	case BPF_FUNC_map_lookup_elem:
1449 		return &bpf_map_lookup_elem_proto;
1450 	case BPF_FUNC_map_update_elem:
1451 		return &bpf_map_update_elem_proto;
1452 	case BPF_FUNC_map_delete_elem:
1453 		return &bpf_map_delete_elem_proto;
1454 	case BPF_FUNC_map_push_elem:
1455 		return &bpf_map_push_elem_proto;
1456 	case BPF_FUNC_map_pop_elem:
1457 		return &bpf_map_pop_elem_proto;
1458 	case BPF_FUNC_map_peek_elem:
1459 		return &bpf_map_peek_elem_proto;
1460 	case BPF_FUNC_map_lookup_percpu_elem:
1461 		return &bpf_map_lookup_percpu_elem_proto;
1462 	case BPF_FUNC_ktime_get_ns:
1463 		return &bpf_ktime_get_ns_proto;
1464 	case BPF_FUNC_ktime_get_boot_ns:
1465 		return &bpf_ktime_get_boot_ns_proto;
1466 	case BPF_FUNC_tail_call:
1467 		return &bpf_tail_call_proto;
1468 	case BPF_FUNC_get_current_task:
1469 		return &bpf_get_current_task_proto;
1470 	case BPF_FUNC_get_current_task_btf:
1471 		return &bpf_get_current_task_btf_proto;
1472 	case BPF_FUNC_task_pt_regs:
1473 		return &bpf_task_pt_regs_proto;
1474 	case BPF_FUNC_get_current_uid_gid:
1475 		return &bpf_get_current_uid_gid_proto;
1476 	case BPF_FUNC_get_current_comm:
1477 		return &bpf_get_current_comm_proto;
1478 	case BPF_FUNC_trace_printk:
1479 		return bpf_get_trace_printk_proto();
1480 	case BPF_FUNC_get_smp_processor_id:
1481 		return &bpf_get_smp_processor_id_proto;
1482 	case BPF_FUNC_get_numa_node_id:
1483 		return &bpf_get_numa_node_id_proto;
1484 	case BPF_FUNC_perf_event_read:
1485 		return &bpf_perf_event_read_proto;
1486 	case BPF_FUNC_get_prandom_u32:
1487 		return &bpf_get_prandom_u32_proto;
1488 	case BPF_FUNC_probe_write_user:
1489 		return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ?
1490 		       NULL : bpf_get_probe_write_proto();
1491 	case BPF_FUNC_probe_read_user:
1492 		return &bpf_probe_read_user_proto;
1493 	case BPF_FUNC_probe_read_kernel:
1494 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1495 		       NULL : &bpf_probe_read_kernel_proto;
1496 	case BPF_FUNC_probe_read_user_str:
1497 		return &bpf_probe_read_user_str_proto;
1498 	case BPF_FUNC_probe_read_kernel_str:
1499 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1500 		       NULL : &bpf_probe_read_kernel_str_proto;
1501 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1502 	case BPF_FUNC_probe_read:
1503 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1504 		       NULL : &bpf_probe_read_compat_proto;
1505 	case BPF_FUNC_probe_read_str:
1506 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1507 		       NULL : &bpf_probe_read_compat_str_proto;
1508 #endif
1509 #ifdef CONFIG_CGROUPS
1510 	case BPF_FUNC_cgrp_storage_get:
1511 		return &bpf_cgrp_storage_get_proto;
1512 	case BPF_FUNC_cgrp_storage_delete:
1513 		return &bpf_cgrp_storage_delete_proto;
1514 	case BPF_FUNC_current_task_under_cgroup:
1515 		return &bpf_current_task_under_cgroup_proto;
1516 #endif
1517 	case BPF_FUNC_send_signal:
1518 		return &bpf_send_signal_proto;
1519 	case BPF_FUNC_send_signal_thread:
1520 		return &bpf_send_signal_thread_proto;
1521 	case BPF_FUNC_perf_event_read_value:
1522 		return &bpf_perf_event_read_value_proto;
1523 	case BPF_FUNC_ringbuf_output:
1524 		return &bpf_ringbuf_output_proto;
1525 	case BPF_FUNC_ringbuf_reserve:
1526 		return &bpf_ringbuf_reserve_proto;
1527 	case BPF_FUNC_ringbuf_submit:
1528 		return &bpf_ringbuf_submit_proto;
1529 	case BPF_FUNC_ringbuf_discard:
1530 		return &bpf_ringbuf_discard_proto;
1531 	case BPF_FUNC_ringbuf_query:
1532 		return &bpf_ringbuf_query_proto;
1533 	case BPF_FUNC_jiffies64:
1534 		return &bpf_jiffies64_proto;
1535 	case BPF_FUNC_get_task_stack:
1536 		return prog->sleepable ? &bpf_get_task_stack_sleepable_proto
1537 				       : &bpf_get_task_stack_proto;
1538 	case BPF_FUNC_copy_from_user:
1539 		return &bpf_copy_from_user_proto;
1540 	case BPF_FUNC_copy_from_user_task:
1541 		return &bpf_copy_from_user_task_proto;
1542 	case BPF_FUNC_snprintf_btf:
1543 		return &bpf_snprintf_btf_proto;
1544 	case BPF_FUNC_per_cpu_ptr:
1545 		return &bpf_per_cpu_ptr_proto;
1546 	case BPF_FUNC_this_cpu_ptr:
1547 		return &bpf_this_cpu_ptr_proto;
1548 	case BPF_FUNC_task_storage_get:
1549 		if (bpf_prog_check_recur(prog))
1550 			return &bpf_task_storage_get_recur_proto;
1551 		return &bpf_task_storage_get_proto;
1552 	case BPF_FUNC_task_storage_delete:
1553 		if (bpf_prog_check_recur(prog))
1554 			return &bpf_task_storage_delete_recur_proto;
1555 		return &bpf_task_storage_delete_proto;
1556 	case BPF_FUNC_for_each_map_elem:
1557 		return &bpf_for_each_map_elem_proto;
1558 	case BPF_FUNC_snprintf:
1559 		return &bpf_snprintf_proto;
1560 	case BPF_FUNC_get_func_ip:
1561 		return &bpf_get_func_ip_proto_tracing;
1562 	case BPF_FUNC_get_branch_snapshot:
1563 		return &bpf_get_branch_snapshot_proto;
1564 	case BPF_FUNC_find_vma:
1565 		return &bpf_find_vma_proto;
1566 	case BPF_FUNC_trace_vprintk:
1567 		return bpf_get_trace_vprintk_proto();
1568 	default:
1569 		return bpf_base_func_proto(func_id, prog);
1570 	}
1571 }
1572 
1573 static bool is_kprobe_multi(const struct bpf_prog *prog)
1574 {
1575 	return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI ||
1576 	       prog->expected_attach_type == BPF_TRACE_KPROBE_SESSION;
1577 }
1578 
1579 static inline bool is_kprobe_session(const struct bpf_prog *prog)
1580 {
1581 	return prog->expected_attach_type == BPF_TRACE_KPROBE_SESSION;
1582 }
1583 
1584 static inline bool is_uprobe_multi(const struct bpf_prog *prog)
1585 {
1586 	return prog->expected_attach_type == BPF_TRACE_UPROBE_MULTI ||
1587 	       prog->expected_attach_type == BPF_TRACE_UPROBE_SESSION;
1588 }
1589 
1590 static inline bool is_uprobe_session(const struct bpf_prog *prog)
1591 {
1592 	return prog->expected_attach_type == BPF_TRACE_UPROBE_SESSION;
1593 }
1594 
1595 static const struct bpf_func_proto *
1596 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1597 {
1598 	switch (func_id) {
1599 	case BPF_FUNC_perf_event_output:
1600 		return &bpf_perf_event_output_proto;
1601 	case BPF_FUNC_get_stackid:
1602 		return &bpf_get_stackid_proto;
1603 	case BPF_FUNC_get_stack:
1604 		return prog->sleepable ? &bpf_get_stack_sleepable_proto : &bpf_get_stack_proto;
1605 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
1606 	case BPF_FUNC_override_return:
1607 		return &bpf_override_return_proto;
1608 #endif
1609 	case BPF_FUNC_get_func_ip:
1610 		if (is_kprobe_multi(prog))
1611 			return &bpf_get_func_ip_proto_kprobe_multi;
1612 		if (is_uprobe_multi(prog))
1613 			return &bpf_get_func_ip_proto_uprobe_multi;
1614 		return &bpf_get_func_ip_proto_kprobe;
1615 	case BPF_FUNC_get_attach_cookie:
1616 		if (is_kprobe_multi(prog))
1617 			return &bpf_get_attach_cookie_proto_kmulti;
1618 		if (is_uprobe_multi(prog))
1619 			return &bpf_get_attach_cookie_proto_umulti;
1620 		return &bpf_get_attach_cookie_proto_trace;
1621 	default:
1622 		return bpf_tracing_func_proto(func_id, prog);
1623 	}
1624 }
1625 
1626 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
1627 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1628 					const struct bpf_prog *prog,
1629 					struct bpf_insn_access_aux *info)
1630 {
1631 	if (off < 0 || off >= sizeof(struct pt_regs))
1632 		return false;
1633 	if (type != BPF_READ)
1634 		return false;
1635 	if (off % size != 0)
1636 		return false;
1637 	/*
1638 	 * Assertion for 32 bit to make sure last 8 byte access
1639 	 * (BPF_DW) to the last 4 byte member is disallowed.
1640 	 */
1641 	if (off + size > sizeof(struct pt_regs))
1642 		return false;
1643 
1644 	return true;
1645 }
1646 
1647 const struct bpf_verifier_ops kprobe_verifier_ops = {
1648 	.get_func_proto  = kprobe_prog_func_proto,
1649 	.is_valid_access = kprobe_prog_is_valid_access,
1650 };
1651 
1652 const struct bpf_prog_ops kprobe_prog_ops = {
1653 };
1654 
1655 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1656 	   u64, flags, void *, data, u64, size)
1657 {
1658 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1659 
1660 	/*
1661 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1662 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1663 	 * from there and call the same bpf_perf_event_output() helper inline.
1664 	 */
1665 	return ____bpf_perf_event_output(regs, map, flags, data, size);
1666 }
1667 
1668 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1669 	.func		= bpf_perf_event_output_tp,
1670 	.gpl_only	= true,
1671 	.ret_type	= RET_INTEGER,
1672 	.arg1_type	= ARG_PTR_TO_CTX,
1673 	.arg2_type	= ARG_CONST_MAP_PTR,
1674 	.arg3_type	= ARG_ANYTHING,
1675 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1676 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1677 };
1678 
1679 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1680 	   u64, flags)
1681 {
1682 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1683 
1684 	/*
1685 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
1686 	 * the other helper's function body cannot be inlined due to being
1687 	 * external, thus we need to call raw helper function.
1688 	 */
1689 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1690 			       flags, 0, 0);
1691 }
1692 
1693 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1694 	.func		= bpf_get_stackid_tp,
1695 	.gpl_only	= true,
1696 	.ret_type	= RET_INTEGER,
1697 	.arg1_type	= ARG_PTR_TO_CTX,
1698 	.arg2_type	= ARG_CONST_MAP_PTR,
1699 	.arg3_type	= ARG_ANYTHING,
1700 };
1701 
1702 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1703 	   u64, flags)
1704 {
1705 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1706 
1707 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1708 			     (unsigned long) size, flags, 0);
1709 }
1710 
1711 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1712 	.func		= bpf_get_stack_tp,
1713 	.gpl_only	= true,
1714 	.ret_type	= RET_INTEGER,
1715 	.arg1_type	= ARG_PTR_TO_CTX,
1716 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1717 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1718 	.arg4_type	= ARG_ANYTHING,
1719 };
1720 
1721 static const struct bpf_func_proto *
1722 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1723 {
1724 	switch (func_id) {
1725 	case BPF_FUNC_perf_event_output:
1726 		return &bpf_perf_event_output_proto_tp;
1727 	case BPF_FUNC_get_stackid:
1728 		return &bpf_get_stackid_proto_tp;
1729 	case BPF_FUNC_get_stack:
1730 		return &bpf_get_stack_proto_tp;
1731 	case BPF_FUNC_get_attach_cookie:
1732 		return &bpf_get_attach_cookie_proto_trace;
1733 	default:
1734 		return bpf_tracing_func_proto(func_id, prog);
1735 	}
1736 }
1737 
1738 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1739 				    const struct bpf_prog *prog,
1740 				    struct bpf_insn_access_aux *info)
1741 {
1742 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1743 		return false;
1744 	if (type != BPF_READ)
1745 		return false;
1746 	if (off % size != 0)
1747 		return false;
1748 
1749 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1750 	return true;
1751 }
1752 
1753 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1754 	.get_func_proto  = tp_prog_func_proto,
1755 	.is_valid_access = tp_prog_is_valid_access,
1756 };
1757 
1758 const struct bpf_prog_ops tracepoint_prog_ops = {
1759 };
1760 
1761 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1762 	   struct bpf_perf_event_value *, buf, u32, size)
1763 {
1764 	int err = -EINVAL;
1765 
1766 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1767 		goto clear;
1768 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1769 				    &buf->running);
1770 	if (unlikely(err))
1771 		goto clear;
1772 	return 0;
1773 clear:
1774 	memset(buf, 0, size);
1775 	return err;
1776 }
1777 
1778 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1779          .func           = bpf_perf_prog_read_value,
1780          .gpl_only       = true,
1781          .ret_type       = RET_INTEGER,
1782          .arg1_type      = ARG_PTR_TO_CTX,
1783          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1784          .arg3_type      = ARG_CONST_SIZE,
1785 };
1786 
1787 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1788 	   void *, buf, u32, size, u64, flags)
1789 {
1790 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1791 	struct perf_branch_stack *br_stack = ctx->data->br_stack;
1792 	u32 to_copy;
1793 
1794 	if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1795 		return -EINVAL;
1796 
1797 	if (unlikely(!(ctx->data->sample_flags & PERF_SAMPLE_BRANCH_STACK)))
1798 		return -ENOENT;
1799 
1800 	if (unlikely(!br_stack))
1801 		return -ENOENT;
1802 
1803 	if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1804 		return br_stack->nr * br_entry_size;
1805 
1806 	if (!buf || (size % br_entry_size != 0))
1807 		return -EINVAL;
1808 
1809 	to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1810 	memcpy(buf, br_stack->entries, to_copy);
1811 
1812 	return to_copy;
1813 }
1814 
1815 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1816 	.func           = bpf_read_branch_records,
1817 	.gpl_only       = true,
1818 	.ret_type       = RET_INTEGER,
1819 	.arg1_type      = ARG_PTR_TO_CTX,
1820 	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
1821 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1822 	.arg4_type      = ARG_ANYTHING,
1823 };
1824 
1825 static const struct bpf_func_proto *
1826 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1827 {
1828 	switch (func_id) {
1829 	case BPF_FUNC_perf_event_output:
1830 		return &bpf_perf_event_output_proto_tp;
1831 	case BPF_FUNC_get_stackid:
1832 		return &bpf_get_stackid_proto_pe;
1833 	case BPF_FUNC_get_stack:
1834 		return &bpf_get_stack_proto_pe;
1835 	case BPF_FUNC_perf_prog_read_value:
1836 		return &bpf_perf_prog_read_value_proto;
1837 	case BPF_FUNC_read_branch_records:
1838 		return &bpf_read_branch_records_proto;
1839 	case BPF_FUNC_get_attach_cookie:
1840 		return &bpf_get_attach_cookie_proto_pe;
1841 	default:
1842 		return bpf_tracing_func_proto(func_id, prog);
1843 	}
1844 }
1845 
1846 /*
1847  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1848  * to avoid potential recursive reuse issue when/if tracepoints are added
1849  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1850  *
1851  * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1852  * in normal, irq, and nmi context.
1853  */
1854 struct bpf_raw_tp_regs {
1855 	struct pt_regs regs[3];
1856 };
1857 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1858 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1859 static struct pt_regs *get_bpf_raw_tp_regs(void)
1860 {
1861 	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1862 	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1863 
1864 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1865 		this_cpu_dec(bpf_raw_tp_nest_level);
1866 		return ERR_PTR(-EBUSY);
1867 	}
1868 
1869 	return &tp_regs->regs[nest_level - 1];
1870 }
1871 
1872 static void put_bpf_raw_tp_regs(void)
1873 {
1874 	this_cpu_dec(bpf_raw_tp_nest_level);
1875 }
1876 
1877 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1878 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
1879 {
1880 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1881 	int ret;
1882 
1883 	if (IS_ERR(regs))
1884 		return PTR_ERR(regs);
1885 
1886 	perf_fetch_caller_regs(regs);
1887 	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1888 
1889 	put_bpf_raw_tp_regs();
1890 	return ret;
1891 }
1892 
1893 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1894 	.func		= bpf_perf_event_output_raw_tp,
1895 	.gpl_only	= true,
1896 	.ret_type	= RET_INTEGER,
1897 	.arg1_type	= ARG_PTR_TO_CTX,
1898 	.arg2_type	= ARG_CONST_MAP_PTR,
1899 	.arg3_type	= ARG_ANYTHING,
1900 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1901 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1902 };
1903 
1904 extern const struct bpf_func_proto bpf_skb_output_proto;
1905 extern const struct bpf_func_proto bpf_xdp_output_proto;
1906 extern const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto;
1907 
1908 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1909 	   struct bpf_map *, map, u64, flags)
1910 {
1911 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1912 	int ret;
1913 
1914 	if (IS_ERR(regs))
1915 		return PTR_ERR(regs);
1916 
1917 	perf_fetch_caller_regs(regs);
1918 	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1919 	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1920 			      flags, 0, 0);
1921 	put_bpf_raw_tp_regs();
1922 	return ret;
1923 }
1924 
1925 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1926 	.func		= bpf_get_stackid_raw_tp,
1927 	.gpl_only	= true,
1928 	.ret_type	= RET_INTEGER,
1929 	.arg1_type	= ARG_PTR_TO_CTX,
1930 	.arg2_type	= ARG_CONST_MAP_PTR,
1931 	.arg3_type	= ARG_ANYTHING,
1932 };
1933 
1934 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1935 	   void *, buf, u32, size, u64, flags)
1936 {
1937 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1938 	int ret;
1939 
1940 	if (IS_ERR(regs))
1941 		return PTR_ERR(regs);
1942 
1943 	perf_fetch_caller_regs(regs);
1944 	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1945 			    (unsigned long) size, flags, 0);
1946 	put_bpf_raw_tp_regs();
1947 	return ret;
1948 }
1949 
1950 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1951 	.func		= bpf_get_stack_raw_tp,
1952 	.gpl_only	= true,
1953 	.ret_type	= RET_INTEGER,
1954 	.arg1_type	= ARG_PTR_TO_CTX,
1955 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1956 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1957 	.arg4_type	= ARG_ANYTHING,
1958 };
1959 
1960 static const struct bpf_func_proto *
1961 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1962 {
1963 	switch (func_id) {
1964 	case BPF_FUNC_perf_event_output:
1965 		return &bpf_perf_event_output_proto_raw_tp;
1966 	case BPF_FUNC_get_stackid:
1967 		return &bpf_get_stackid_proto_raw_tp;
1968 	case BPF_FUNC_get_stack:
1969 		return &bpf_get_stack_proto_raw_tp;
1970 	case BPF_FUNC_get_attach_cookie:
1971 		return &bpf_get_attach_cookie_proto_tracing;
1972 	default:
1973 		return bpf_tracing_func_proto(func_id, prog);
1974 	}
1975 }
1976 
1977 const struct bpf_func_proto *
1978 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1979 {
1980 	const struct bpf_func_proto *fn;
1981 
1982 	switch (func_id) {
1983 #ifdef CONFIG_NET
1984 	case BPF_FUNC_skb_output:
1985 		return &bpf_skb_output_proto;
1986 	case BPF_FUNC_xdp_output:
1987 		return &bpf_xdp_output_proto;
1988 	case BPF_FUNC_skc_to_tcp6_sock:
1989 		return &bpf_skc_to_tcp6_sock_proto;
1990 	case BPF_FUNC_skc_to_tcp_sock:
1991 		return &bpf_skc_to_tcp_sock_proto;
1992 	case BPF_FUNC_skc_to_tcp_timewait_sock:
1993 		return &bpf_skc_to_tcp_timewait_sock_proto;
1994 	case BPF_FUNC_skc_to_tcp_request_sock:
1995 		return &bpf_skc_to_tcp_request_sock_proto;
1996 	case BPF_FUNC_skc_to_udp6_sock:
1997 		return &bpf_skc_to_udp6_sock_proto;
1998 	case BPF_FUNC_skc_to_unix_sock:
1999 		return &bpf_skc_to_unix_sock_proto;
2000 	case BPF_FUNC_skc_to_mptcp_sock:
2001 		return &bpf_skc_to_mptcp_sock_proto;
2002 	case BPF_FUNC_sk_storage_get:
2003 		return &bpf_sk_storage_get_tracing_proto;
2004 	case BPF_FUNC_sk_storage_delete:
2005 		return &bpf_sk_storage_delete_tracing_proto;
2006 	case BPF_FUNC_sock_from_file:
2007 		return &bpf_sock_from_file_proto;
2008 	case BPF_FUNC_get_socket_cookie:
2009 		return &bpf_get_socket_ptr_cookie_proto;
2010 	case BPF_FUNC_xdp_get_buff_len:
2011 		return &bpf_xdp_get_buff_len_trace_proto;
2012 #endif
2013 	case BPF_FUNC_seq_printf:
2014 		return prog->expected_attach_type == BPF_TRACE_ITER ?
2015 		       &bpf_seq_printf_proto :
2016 		       NULL;
2017 	case BPF_FUNC_seq_write:
2018 		return prog->expected_attach_type == BPF_TRACE_ITER ?
2019 		       &bpf_seq_write_proto :
2020 		       NULL;
2021 	case BPF_FUNC_seq_printf_btf:
2022 		return prog->expected_attach_type == BPF_TRACE_ITER ?
2023 		       &bpf_seq_printf_btf_proto :
2024 		       NULL;
2025 	case BPF_FUNC_d_path:
2026 		return &bpf_d_path_proto;
2027 	case BPF_FUNC_get_func_arg:
2028 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_proto : NULL;
2029 	case BPF_FUNC_get_func_ret:
2030 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_ret_proto : NULL;
2031 	case BPF_FUNC_get_func_arg_cnt:
2032 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_cnt_proto : NULL;
2033 	case BPF_FUNC_get_attach_cookie:
2034 		if (prog->type == BPF_PROG_TYPE_TRACING &&
2035 		    prog->expected_attach_type == BPF_TRACE_RAW_TP)
2036 			return &bpf_get_attach_cookie_proto_tracing;
2037 		return bpf_prog_has_trampoline(prog) ? &bpf_get_attach_cookie_proto_tracing : NULL;
2038 	default:
2039 		fn = raw_tp_prog_func_proto(func_id, prog);
2040 		if (!fn && prog->expected_attach_type == BPF_TRACE_ITER)
2041 			fn = bpf_iter_get_func_proto(func_id, prog);
2042 		return fn;
2043 	}
2044 }
2045 
2046 static bool raw_tp_prog_is_valid_access(int off, int size,
2047 					enum bpf_access_type type,
2048 					const struct bpf_prog *prog,
2049 					struct bpf_insn_access_aux *info)
2050 {
2051 	return bpf_tracing_ctx_access(off, size, type);
2052 }
2053 
2054 static bool tracing_prog_is_valid_access(int off, int size,
2055 					 enum bpf_access_type type,
2056 					 const struct bpf_prog *prog,
2057 					 struct bpf_insn_access_aux *info)
2058 {
2059 	return bpf_tracing_btf_ctx_access(off, size, type, prog, info);
2060 }
2061 
2062 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
2063 				     const union bpf_attr *kattr,
2064 				     union bpf_attr __user *uattr)
2065 {
2066 	return -ENOTSUPP;
2067 }
2068 
2069 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
2070 	.get_func_proto  = raw_tp_prog_func_proto,
2071 	.is_valid_access = raw_tp_prog_is_valid_access,
2072 };
2073 
2074 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
2075 #ifdef CONFIG_NET
2076 	.test_run = bpf_prog_test_run_raw_tp,
2077 #endif
2078 };
2079 
2080 const struct bpf_verifier_ops tracing_verifier_ops = {
2081 	.get_func_proto  = tracing_prog_func_proto,
2082 	.is_valid_access = tracing_prog_is_valid_access,
2083 };
2084 
2085 const struct bpf_prog_ops tracing_prog_ops = {
2086 	.test_run = bpf_prog_test_run_tracing,
2087 };
2088 
2089 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
2090 						 enum bpf_access_type type,
2091 						 const struct bpf_prog *prog,
2092 						 struct bpf_insn_access_aux *info)
2093 {
2094 	if (off == 0) {
2095 		if (size != sizeof(u64) || type != BPF_READ)
2096 			return false;
2097 		info->reg_type = PTR_TO_TP_BUFFER;
2098 	}
2099 	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
2100 }
2101 
2102 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
2103 	.get_func_proto  = raw_tp_prog_func_proto,
2104 	.is_valid_access = raw_tp_writable_prog_is_valid_access,
2105 };
2106 
2107 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
2108 };
2109 
2110 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
2111 				    const struct bpf_prog *prog,
2112 				    struct bpf_insn_access_aux *info)
2113 {
2114 	const int size_u64 = sizeof(u64);
2115 
2116 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
2117 		return false;
2118 	if (type != BPF_READ)
2119 		return false;
2120 	if (off % size != 0) {
2121 		if (sizeof(unsigned long) != 4)
2122 			return false;
2123 		if (size != 8)
2124 			return false;
2125 		if (off % size != 4)
2126 			return false;
2127 	}
2128 
2129 	switch (off) {
2130 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
2131 		bpf_ctx_record_field_size(info, size_u64);
2132 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
2133 			return false;
2134 		break;
2135 	case bpf_ctx_range(struct bpf_perf_event_data, addr):
2136 		bpf_ctx_record_field_size(info, size_u64);
2137 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
2138 			return false;
2139 		break;
2140 	default:
2141 		if (size != sizeof(long))
2142 			return false;
2143 	}
2144 
2145 	return true;
2146 }
2147 
2148 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
2149 				      const struct bpf_insn *si,
2150 				      struct bpf_insn *insn_buf,
2151 				      struct bpf_prog *prog, u32 *target_size)
2152 {
2153 	struct bpf_insn *insn = insn_buf;
2154 
2155 	switch (si->off) {
2156 	case offsetof(struct bpf_perf_event_data, sample_period):
2157 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2158 						       data), si->dst_reg, si->src_reg,
2159 				      offsetof(struct bpf_perf_event_data_kern, data));
2160 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
2161 				      bpf_target_off(struct perf_sample_data, period, 8,
2162 						     target_size));
2163 		break;
2164 	case offsetof(struct bpf_perf_event_data, addr):
2165 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2166 						       data), si->dst_reg, si->src_reg,
2167 				      offsetof(struct bpf_perf_event_data_kern, data));
2168 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
2169 				      bpf_target_off(struct perf_sample_data, addr, 8,
2170 						     target_size));
2171 		break;
2172 	default:
2173 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2174 						       regs), si->dst_reg, si->src_reg,
2175 				      offsetof(struct bpf_perf_event_data_kern, regs));
2176 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
2177 				      si->off);
2178 		break;
2179 	}
2180 
2181 	return insn - insn_buf;
2182 }
2183 
2184 const struct bpf_verifier_ops perf_event_verifier_ops = {
2185 	.get_func_proto		= pe_prog_func_proto,
2186 	.is_valid_access	= pe_prog_is_valid_access,
2187 	.convert_ctx_access	= pe_prog_convert_ctx_access,
2188 };
2189 
2190 const struct bpf_prog_ops perf_event_prog_ops = {
2191 };
2192 
2193 static DEFINE_MUTEX(bpf_event_mutex);
2194 
2195 #define BPF_TRACE_MAX_PROGS 64
2196 
2197 int perf_event_attach_bpf_prog(struct perf_event *event,
2198 			       struct bpf_prog *prog,
2199 			       u64 bpf_cookie)
2200 {
2201 	struct bpf_prog_array *old_array;
2202 	struct bpf_prog_array *new_array;
2203 	int ret = -EEXIST;
2204 
2205 	/*
2206 	 * Kprobe override only works if they are on the function entry,
2207 	 * and only if they are on the opt-in list.
2208 	 */
2209 	if (prog->kprobe_override &&
2210 	    (!trace_kprobe_on_func_entry(event->tp_event) ||
2211 	     !trace_kprobe_error_injectable(event->tp_event)))
2212 		return -EINVAL;
2213 
2214 	mutex_lock(&bpf_event_mutex);
2215 
2216 	if (event->prog)
2217 		goto unlock;
2218 
2219 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
2220 	if (old_array &&
2221 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
2222 		ret = -E2BIG;
2223 		goto unlock;
2224 	}
2225 
2226 	ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array);
2227 	if (ret < 0)
2228 		goto unlock;
2229 
2230 	/* set the new array to event->tp_event and set event->prog */
2231 	event->prog = prog;
2232 	event->bpf_cookie = bpf_cookie;
2233 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
2234 	bpf_prog_array_free_sleepable(old_array);
2235 
2236 unlock:
2237 	mutex_unlock(&bpf_event_mutex);
2238 	return ret;
2239 }
2240 
2241 void perf_event_detach_bpf_prog(struct perf_event *event)
2242 {
2243 	struct bpf_prog_array *old_array;
2244 	struct bpf_prog_array *new_array;
2245 	int ret;
2246 
2247 	mutex_lock(&bpf_event_mutex);
2248 
2249 	if (!event->prog)
2250 		goto unlock;
2251 
2252 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
2253 	if (!old_array)
2254 		goto put;
2255 
2256 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array);
2257 	if (ret < 0) {
2258 		bpf_prog_array_delete_safe(old_array, event->prog);
2259 	} else {
2260 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
2261 		bpf_prog_array_free_sleepable(old_array);
2262 	}
2263 
2264 put:
2265 	/*
2266 	 * It could be that the bpf_prog is not sleepable (and will be freed
2267 	 * via normal RCU), but is called from a point that supports sleepable
2268 	 * programs and uses tasks-trace-RCU.
2269 	 */
2270 	synchronize_rcu_tasks_trace();
2271 
2272 	bpf_prog_put(event->prog);
2273 	event->prog = NULL;
2274 
2275 unlock:
2276 	mutex_unlock(&bpf_event_mutex);
2277 }
2278 
2279 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
2280 {
2281 	struct perf_event_query_bpf __user *uquery = info;
2282 	struct perf_event_query_bpf query = {};
2283 	struct bpf_prog_array *progs;
2284 	u32 *ids, prog_cnt, ids_len;
2285 	int ret;
2286 
2287 	if (!perfmon_capable())
2288 		return -EPERM;
2289 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
2290 		return -EINVAL;
2291 	if (copy_from_user(&query, uquery, sizeof(query)))
2292 		return -EFAULT;
2293 
2294 	ids_len = query.ids_len;
2295 	if (ids_len > BPF_TRACE_MAX_PROGS)
2296 		return -E2BIG;
2297 	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
2298 	if (!ids)
2299 		return -ENOMEM;
2300 	/*
2301 	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
2302 	 * is required when user only wants to check for uquery->prog_cnt.
2303 	 * There is no need to check for it since the case is handled
2304 	 * gracefully in bpf_prog_array_copy_info.
2305 	 */
2306 
2307 	mutex_lock(&bpf_event_mutex);
2308 	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
2309 	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
2310 	mutex_unlock(&bpf_event_mutex);
2311 
2312 	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
2313 	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
2314 		ret = -EFAULT;
2315 
2316 	kfree(ids);
2317 	return ret;
2318 }
2319 
2320 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
2321 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
2322 
2323 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
2324 {
2325 	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
2326 
2327 	for (; btp < __stop__bpf_raw_tp; btp++) {
2328 		if (!strcmp(btp->tp->name, name))
2329 			return btp;
2330 	}
2331 
2332 	return bpf_get_raw_tracepoint_module(name);
2333 }
2334 
2335 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
2336 {
2337 	struct module *mod;
2338 
2339 	preempt_disable();
2340 	mod = __module_address((unsigned long)btp);
2341 	module_put(mod);
2342 	preempt_enable();
2343 }
2344 
2345 static __always_inline
2346 void __bpf_trace_run(struct bpf_raw_tp_link *link, u64 *args)
2347 {
2348 	struct bpf_prog *prog = link->link.prog;
2349 	struct bpf_run_ctx *old_run_ctx;
2350 	struct bpf_trace_run_ctx run_ctx;
2351 
2352 	cant_sleep();
2353 	if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) {
2354 		bpf_prog_inc_misses_counter(prog);
2355 		goto out;
2356 	}
2357 
2358 	run_ctx.bpf_cookie = link->cookie;
2359 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2360 
2361 	rcu_read_lock();
2362 	(void) bpf_prog_run(prog, args);
2363 	rcu_read_unlock();
2364 
2365 	bpf_reset_run_ctx(old_run_ctx);
2366 out:
2367 	this_cpu_dec(*(prog->active));
2368 }
2369 
2370 #define UNPACK(...)			__VA_ARGS__
2371 #define REPEAT_1(FN, DL, X, ...)	FN(X)
2372 #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
2373 #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
2374 #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
2375 #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
2376 #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
2377 #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
2378 #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
2379 #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
2380 #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
2381 #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
2382 #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
2383 #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
2384 
2385 #define SARG(X)		u64 arg##X
2386 #define COPY(X)		args[X] = arg##X
2387 
2388 #define __DL_COM	(,)
2389 #define __DL_SEM	(;)
2390 
2391 #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
2392 
2393 #define BPF_TRACE_DEFN_x(x)						\
2394 	void bpf_trace_run##x(struct bpf_raw_tp_link *link,		\
2395 			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
2396 	{								\
2397 		u64 args[x];						\
2398 		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
2399 		__bpf_trace_run(link, args);				\
2400 	}								\
2401 	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
2402 BPF_TRACE_DEFN_x(1);
2403 BPF_TRACE_DEFN_x(2);
2404 BPF_TRACE_DEFN_x(3);
2405 BPF_TRACE_DEFN_x(4);
2406 BPF_TRACE_DEFN_x(5);
2407 BPF_TRACE_DEFN_x(6);
2408 BPF_TRACE_DEFN_x(7);
2409 BPF_TRACE_DEFN_x(8);
2410 BPF_TRACE_DEFN_x(9);
2411 BPF_TRACE_DEFN_x(10);
2412 BPF_TRACE_DEFN_x(11);
2413 BPF_TRACE_DEFN_x(12);
2414 
2415 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_raw_tp_link *link)
2416 {
2417 	struct tracepoint *tp = btp->tp;
2418 	struct bpf_prog *prog = link->link.prog;
2419 
2420 	/*
2421 	 * check that program doesn't access arguments beyond what's
2422 	 * available in this tracepoint
2423 	 */
2424 	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
2425 		return -EINVAL;
2426 
2427 	if (prog->aux->max_tp_access > btp->writable_size)
2428 		return -EINVAL;
2429 
2430 	return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func, link);
2431 }
2432 
2433 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_raw_tp_link *link)
2434 {
2435 	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, link);
2436 }
2437 
2438 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
2439 			    u32 *fd_type, const char **buf,
2440 			    u64 *probe_offset, u64 *probe_addr,
2441 			    unsigned long *missed)
2442 {
2443 	bool is_tracepoint, is_syscall_tp;
2444 	struct bpf_prog *prog;
2445 	int flags, err = 0;
2446 
2447 	prog = event->prog;
2448 	if (!prog)
2449 		return -ENOENT;
2450 
2451 	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
2452 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
2453 		return -EOPNOTSUPP;
2454 
2455 	*prog_id = prog->aux->id;
2456 	flags = event->tp_event->flags;
2457 	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
2458 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
2459 
2460 	if (is_tracepoint || is_syscall_tp) {
2461 		*buf = is_tracepoint ? event->tp_event->tp->name
2462 				     : event->tp_event->name;
2463 		/* We allow NULL pointer for tracepoint */
2464 		if (fd_type)
2465 			*fd_type = BPF_FD_TYPE_TRACEPOINT;
2466 		if (probe_offset)
2467 			*probe_offset = 0x0;
2468 		if (probe_addr)
2469 			*probe_addr = 0x0;
2470 	} else {
2471 		/* kprobe/uprobe */
2472 		err = -EOPNOTSUPP;
2473 #ifdef CONFIG_KPROBE_EVENTS
2474 		if (flags & TRACE_EVENT_FL_KPROBE)
2475 			err = bpf_get_kprobe_info(event, fd_type, buf,
2476 						  probe_offset, probe_addr, missed,
2477 						  event->attr.type == PERF_TYPE_TRACEPOINT);
2478 #endif
2479 #ifdef CONFIG_UPROBE_EVENTS
2480 		if (flags & TRACE_EVENT_FL_UPROBE)
2481 			err = bpf_get_uprobe_info(event, fd_type, buf,
2482 						  probe_offset, probe_addr,
2483 						  event->attr.type == PERF_TYPE_TRACEPOINT);
2484 #endif
2485 	}
2486 
2487 	return err;
2488 }
2489 
2490 static int __init send_signal_irq_work_init(void)
2491 {
2492 	int cpu;
2493 	struct send_signal_irq_work *work;
2494 
2495 	for_each_possible_cpu(cpu) {
2496 		work = per_cpu_ptr(&send_signal_work, cpu);
2497 		init_irq_work(&work->irq_work, do_bpf_send_signal);
2498 	}
2499 	return 0;
2500 }
2501 
2502 subsys_initcall(send_signal_irq_work_init);
2503 
2504 #ifdef CONFIG_MODULES
2505 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
2506 			    void *module)
2507 {
2508 	struct bpf_trace_module *btm, *tmp;
2509 	struct module *mod = module;
2510 	int ret = 0;
2511 
2512 	if (mod->num_bpf_raw_events == 0 ||
2513 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
2514 		goto out;
2515 
2516 	mutex_lock(&bpf_module_mutex);
2517 
2518 	switch (op) {
2519 	case MODULE_STATE_COMING:
2520 		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
2521 		if (btm) {
2522 			btm->module = module;
2523 			list_add(&btm->list, &bpf_trace_modules);
2524 		} else {
2525 			ret = -ENOMEM;
2526 		}
2527 		break;
2528 	case MODULE_STATE_GOING:
2529 		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
2530 			if (btm->module == module) {
2531 				list_del(&btm->list);
2532 				kfree(btm);
2533 				break;
2534 			}
2535 		}
2536 		break;
2537 	}
2538 
2539 	mutex_unlock(&bpf_module_mutex);
2540 
2541 out:
2542 	return notifier_from_errno(ret);
2543 }
2544 
2545 static struct notifier_block bpf_module_nb = {
2546 	.notifier_call = bpf_event_notify,
2547 };
2548 
2549 static int __init bpf_event_init(void)
2550 {
2551 	register_module_notifier(&bpf_module_nb);
2552 	return 0;
2553 }
2554 
2555 fs_initcall(bpf_event_init);
2556 #endif /* CONFIG_MODULES */
2557 
2558 struct bpf_session_run_ctx {
2559 	struct bpf_run_ctx run_ctx;
2560 	bool is_return;
2561 	void *data;
2562 };
2563 
2564 #ifdef CONFIG_FPROBE
2565 struct bpf_kprobe_multi_link {
2566 	struct bpf_link link;
2567 	struct fprobe fp;
2568 	unsigned long *addrs;
2569 	u64 *cookies;
2570 	u32 cnt;
2571 	u32 mods_cnt;
2572 	struct module **mods;
2573 	u32 flags;
2574 };
2575 
2576 struct bpf_kprobe_multi_run_ctx {
2577 	struct bpf_session_run_ctx session_ctx;
2578 	struct bpf_kprobe_multi_link *link;
2579 	unsigned long entry_ip;
2580 };
2581 
2582 struct user_syms {
2583 	const char **syms;
2584 	char *buf;
2585 };
2586 
2587 static int copy_user_syms(struct user_syms *us, unsigned long __user *usyms, u32 cnt)
2588 {
2589 	unsigned long __user usymbol;
2590 	const char **syms = NULL;
2591 	char *buf = NULL, *p;
2592 	int err = -ENOMEM;
2593 	unsigned int i;
2594 
2595 	syms = kvmalloc_array(cnt, sizeof(*syms), GFP_KERNEL);
2596 	if (!syms)
2597 		goto error;
2598 
2599 	buf = kvmalloc_array(cnt, KSYM_NAME_LEN, GFP_KERNEL);
2600 	if (!buf)
2601 		goto error;
2602 
2603 	for (p = buf, i = 0; i < cnt; i++) {
2604 		if (__get_user(usymbol, usyms + i)) {
2605 			err = -EFAULT;
2606 			goto error;
2607 		}
2608 		err = strncpy_from_user(p, (const char __user *) usymbol, KSYM_NAME_LEN);
2609 		if (err == KSYM_NAME_LEN)
2610 			err = -E2BIG;
2611 		if (err < 0)
2612 			goto error;
2613 		syms[i] = p;
2614 		p += err + 1;
2615 	}
2616 
2617 	us->syms = syms;
2618 	us->buf = buf;
2619 	return 0;
2620 
2621 error:
2622 	if (err) {
2623 		kvfree(syms);
2624 		kvfree(buf);
2625 	}
2626 	return err;
2627 }
2628 
2629 static void kprobe_multi_put_modules(struct module **mods, u32 cnt)
2630 {
2631 	u32 i;
2632 
2633 	for (i = 0; i < cnt; i++)
2634 		module_put(mods[i]);
2635 }
2636 
2637 static void free_user_syms(struct user_syms *us)
2638 {
2639 	kvfree(us->syms);
2640 	kvfree(us->buf);
2641 }
2642 
2643 static void bpf_kprobe_multi_link_release(struct bpf_link *link)
2644 {
2645 	struct bpf_kprobe_multi_link *kmulti_link;
2646 
2647 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2648 	unregister_fprobe(&kmulti_link->fp);
2649 	kprobe_multi_put_modules(kmulti_link->mods, kmulti_link->mods_cnt);
2650 }
2651 
2652 static void bpf_kprobe_multi_link_dealloc(struct bpf_link *link)
2653 {
2654 	struct bpf_kprobe_multi_link *kmulti_link;
2655 
2656 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2657 	kvfree(kmulti_link->addrs);
2658 	kvfree(kmulti_link->cookies);
2659 	kfree(kmulti_link->mods);
2660 	kfree(kmulti_link);
2661 }
2662 
2663 static int bpf_kprobe_multi_link_fill_link_info(const struct bpf_link *link,
2664 						struct bpf_link_info *info)
2665 {
2666 	u64 __user *ucookies = u64_to_user_ptr(info->kprobe_multi.cookies);
2667 	u64 __user *uaddrs = u64_to_user_ptr(info->kprobe_multi.addrs);
2668 	struct bpf_kprobe_multi_link *kmulti_link;
2669 	u32 ucount = info->kprobe_multi.count;
2670 	int err = 0, i;
2671 
2672 	if (!uaddrs ^ !ucount)
2673 		return -EINVAL;
2674 	if (ucookies && !ucount)
2675 		return -EINVAL;
2676 
2677 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2678 	info->kprobe_multi.count = kmulti_link->cnt;
2679 	info->kprobe_multi.flags = kmulti_link->flags;
2680 	info->kprobe_multi.missed = kmulti_link->fp.nmissed;
2681 
2682 	if (!uaddrs)
2683 		return 0;
2684 	if (ucount < kmulti_link->cnt)
2685 		err = -ENOSPC;
2686 	else
2687 		ucount = kmulti_link->cnt;
2688 
2689 	if (ucookies) {
2690 		if (kmulti_link->cookies) {
2691 			if (copy_to_user(ucookies, kmulti_link->cookies, ucount * sizeof(u64)))
2692 				return -EFAULT;
2693 		} else {
2694 			for (i = 0; i < ucount; i++) {
2695 				if (put_user(0, ucookies + i))
2696 					return -EFAULT;
2697 			}
2698 		}
2699 	}
2700 
2701 	if (kallsyms_show_value(current_cred())) {
2702 		if (copy_to_user(uaddrs, kmulti_link->addrs, ucount * sizeof(u64)))
2703 			return -EFAULT;
2704 	} else {
2705 		for (i = 0; i < ucount; i++) {
2706 			if (put_user(0, uaddrs + i))
2707 				return -EFAULT;
2708 		}
2709 	}
2710 	return err;
2711 }
2712 
2713 static const struct bpf_link_ops bpf_kprobe_multi_link_lops = {
2714 	.release = bpf_kprobe_multi_link_release,
2715 	.dealloc_deferred = bpf_kprobe_multi_link_dealloc,
2716 	.fill_link_info = bpf_kprobe_multi_link_fill_link_info,
2717 };
2718 
2719 static void bpf_kprobe_multi_cookie_swap(void *a, void *b, int size, const void *priv)
2720 {
2721 	const struct bpf_kprobe_multi_link *link = priv;
2722 	unsigned long *addr_a = a, *addr_b = b;
2723 	u64 *cookie_a, *cookie_b;
2724 
2725 	cookie_a = link->cookies + (addr_a - link->addrs);
2726 	cookie_b = link->cookies + (addr_b - link->addrs);
2727 
2728 	/* swap addr_a/addr_b and cookie_a/cookie_b values */
2729 	swap(*addr_a, *addr_b);
2730 	swap(*cookie_a, *cookie_b);
2731 }
2732 
2733 static int bpf_kprobe_multi_addrs_cmp(const void *a, const void *b)
2734 {
2735 	const unsigned long *addr_a = a, *addr_b = b;
2736 
2737 	if (*addr_a == *addr_b)
2738 		return 0;
2739 	return *addr_a < *addr_b ? -1 : 1;
2740 }
2741 
2742 static int bpf_kprobe_multi_cookie_cmp(const void *a, const void *b, const void *priv)
2743 {
2744 	return bpf_kprobe_multi_addrs_cmp(a, b);
2745 }
2746 
2747 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
2748 {
2749 	struct bpf_kprobe_multi_run_ctx *run_ctx;
2750 	struct bpf_kprobe_multi_link *link;
2751 	u64 *cookie, entry_ip;
2752 	unsigned long *addr;
2753 
2754 	if (WARN_ON_ONCE(!ctx))
2755 		return 0;
2756 	run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx,
2757 			       session_ctx.run_ctx);
2758 	link = run_ctx->link;
2759 	if (!link->cookies)
2760 		return 0;
2761 	entry_ip = run_ctx->entry_ip;
2762 	addr = bsearch(&entry_ip, link->addrs, link->cnt, sizeof(entry_ip),
2763 		       bpf_kprobe_multi_addrs_cmp);
2764 	if (!addr)
2765 		return 0;
2766 	cookie = link->cookies + (addr - link->addrs);
2767 	return *cookie;
2768 }
2769 
2770 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
2771 {
2772 	struct bpf_kprobe_multi_run_ctx *run_ctx;
2773 
2774 	run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx,
2775 			       session_ctx.run_ctx);
2776 	return run_ctx->entry_ip;
2777 }
2778 
2779 static int
2780 kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link *link,
2781 			   unsigned long entry_ip, struct pt_regs *regs,
2782 			   bool is_return, void *data)
2783 {
2784 	struct bpf_kprobe_multi_run_ctx run_ctx = {
2785 		.session_ctx = {
2786 			.is_return = is_return,
2787 			.data = data,
2788 		},
2789 		.link = link,
2790 		.entry_ip = entry_ip,
2791 	};
2792 	struct bpf_run_ctx *old_run_ctx;
2793 	int err;
2794 
2795 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
2796 		bpf_prog_inc_misses_counter(link->link.prog);
2797 		err = 0;
2798 		goto out;
2799 	}
2800 
2801 	migrate_disable();
2802 	rcu_read_lock();
2803 	old_run_ctx = bpf_set_run_ctx(&run_ctx.session_ctx.run_ctx);
2804 	err = bpf_prog_run(link->link.prog, regs);
2805 	bpf_reset_run_ctx(old_run_ctx);
2806 	rcu_read_unlock();
2807 	migrate_enable();
2808 
2809  out:
2810 	__this_cpu_dec(bpf_prog_active);
2811 	return err;
2812 }
2813 
2814 static int
2815 kprobe_multi_link_handler(struct fprobe *fp, unsigned long fentry_ip,
2816 			  unsigned long ret_ip, struct pt_regs *regs,
2817 			  void *data)
2818 {
2819 	struct bpf_kprobe_multi_link *link;
2820 	int err;
2821 
2822 	link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2823 	err = kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs, false, data);
2824 	return is_kprobe_session(link->link.prog) ? err : 0;
2825 }
2826 
2827 static void
2828 kprobe_multi_link_exit_handler(struct fprobe *fp, unsigned long fentry_ip,
2829 			       unsigned long ret_ip, struct pt_regs *regs,
2830 			       void *data)
2831 {
2832 	struct bpf_kprobe_multi_link *link;
2833 
2834 	link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2835 	kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs, true, data);
2836 }
2837 
2838 static int symbols_cmp_r(const void *a, const void *b, const void *priv)
2839 {
2840 	const char **str_a = (const char **) a;
2841 	const char **str_b = (const char **) b;
2842 
2843 	return strcmp(*str_a, *str_b);
2844 }
2845 
2846 struct multi_symbols_sort {
2847 	const char **funcs;
2848 	u64 *cookies;
2849 };
2850 
2851 static void symbols_swap_r(void *a, void *b, int size, const void *priv)
2852 {
2853 	const struct multi_symbols_sort *data = priv;
2854 	const char **name_a = a, **name_b = b;
2855 
2856 	swap(*name_a, *name_b);
2857 
2858 	/* If defined, swap also related cookies. */
2859 	if (data->cookies) {
2860 		u64 *cookie_a, *cookie_b;
2861 
2862 		cookie_a = data->cookies + (name_a - data->funcs);
2863 		cookie_b = data->cookies + (name_b - data->funcs);
2864 		swap(*cookie_a, *cookie_b);
2865 	}
2866 }
2867 
2868 struct modules_array {
2869 	struct module **mods;
2870 	int mods_cnt;
2871 	int mods_cap;
2872 };
2873 
2874 static int add_module(struct modules_array *arr, struct module *mod)
2875 {
2876 	struct module **mods;
2877 
2878 	if (arr->mods_cnt == arr->mods_cap) {
2879 		arr->mods_cap = max(16, arr->mods_cap * 3 / 2);
2880 		mods = krealloc_array(arr->mods, arr->mods_cap, sizeof(*mods), GFP_KERNEL);
2881 		if (!mods)
2882 			return -ENOMEM;
2883 		arr->mods = mods;
2884 	}
2885 
2886 	arr->mods[arr->mods_cnt] = mod;
2887 	arr->mods_cnt++;
2888 	return 0;
2889 }
2890 
2891 static bool has_module(struct modules_array *arr, struct module *mod)
2892 {
2893 	int i;
2894 
2895 	for (i = arr->mods_cnt - 1; i >= 0; i--) {
2896 		if (arr->mods[i] == mod)
2897 			return true;
2898 	}
2899 	return false;
2900 }
2901 
2902 static int get_modules_for_addrs(struct module ***mods, unsigned long *addrs, u32 addrs_cnt)
2903 {
2904 	struct modules_array arr = {};
2905 	u32 i, err = 0;
2906 
2907 	for (i = 0; i < addrs_cnt; i++) {
2908 		struct module *mod;
2909 
2910 		preempt_disable();
2911 		mod = __module_address(addrs[i]);
2912 		/* Either no module or we it's already stored  */
2913 		if (!mod || has_module(&arr, mod)) {
2914 			preempt_enable();
2915 			continue;
2916 		}
2917 		if (!try_module_get(mod))
2918 			err = -EINVAL;
2919 		preempt_enable();
2920 		if (err)
2921 			break;
2922 		err = add_module(&arr, mod);
2923 		if (err) {
2924 			module_put(mod);
2925 			break;
2926 		}
2927 	}
2928 
2929 	/* We return either err < 0 in case of error, ... */
2930 	if (err) {
2931 		kprobe_multi_put_modules(arr.mods, arr.mods_cnt);
2932 		kfree(arr.mods);
2933 		return err;
2934 	}
2935 
2936 	/* or number of modules found if everything is ok. */
2937 	*mods = arr.mods;
2938 	return arr.mods_cnt;
2939 }
2940 
2941 static int addrs_check_error_injection_list(unsigned long *addrs, u32 cnt)
2942 {
2943 	u32 i;
2944 
2945 	for (i = 0; i < cnt; i++) {
2946 		if (!within_error_injection_list(addrs[i]))
2947 			return -EINVAL;
2948 	}
2949 	return 0;
2950 }
2951 
2952 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
2953 {
2954 	struct bpf_kprobe_multi_link *link = NULL;
2955 	struct bpf_link_primer link_primer;
2956 	void __user *ucookies;
2957 	unsigned long *addrs;
2958 	u32 flags, cnt, size;
2959 	void __user *uaddrs;
2960 	u64 *cookies = NULL;
2961 	void __user *usyms;
2962 	int err;
2963 
2964 	/* no support for 32bit archs yet */
2965 	if (sizeof(u64) != sizeof(void *))
2966 		return -EOPNOTSUPP;
2967 
2968 	if (!is_kprobe_multi(prog))
2969 		return -EINVAL;
2970 
2971 	flags = attr->link_create.kprobe_multi.flags;
2972 	if (flags & ~BPF_F_KPROBE_MULTI_RETURN)
2973 		return -EINVAL;
2974 
2975 	uaddrs = u64_to_user_ptr(attr->link_create.kprobe_multi.addrs);
2976 	usyms = u64_to_user_ptr(attr->link_create.kprobe_multi.syms);
2977 	if (!!uaddrs == !!usyms)
2978 		return -EINVAL;
2979 
2980 	cnt = attr->link_create.kprobe_multi.cnt;
2981 	if (!cnt)
2982 		return -EINVAL;
2983 	if (cnt > MAX_KPROBE_MULTI_CNT)
2984 		return -E2BIG;
2985 
2986 	size = cnt * sizeof(*addrs);
2987 	addrs = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2988 	if (!addrs)
2989 		return -ENOMEM;
2990 
2991 	ucookies = u64_to_user_ptr(attr->link_create.kprobe_multi.cookies);
2992 	if (ucookies) {
2993 		cookies = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2994 		if (!cookies) {
2995 			err = -ENOMEM;
2996 			goto error;
2997 		}
2998 		if (copy_from_user(cookies, ucookies, size)) {
2999 			err = -EFAULT;
3000 			goto error;
3001 		}
3002 	}
3003 
3004 	if (uaddrs) {
3005 		if (copy_from_user(addrs, uaddrs, size)) {
3006 			err = -EFAULT;
3007 			goto error;
3008 		}
3009 	} else {
3010 		struct multi_symbols_sort data = {
3011 			.cookies = cookies,
3012 		};
3013 		struct user_syms us;
3014 
3015 		err = copy_user_syms(&us, usyms, cnt);
3016 		if (err)
3017 			goto error;
3018 
3019 		if (cookies)
3020 			data.funcs = us.syms;
3021 
3022 		sort_r(us.syms, cnt, sizeof(*us.syms), symbols_cmp_r,
3023 		       symbols_swap_r, &data);
3024 
3025 		err = ftrace_lookup_symbols(us.syms, cnt, addrs);
3026 		free_user_syms(&us);
3027 		if (err)
3028 			goto error;
3029 	}
3030 
3031 	if (prog->kprobe_override && addrs_check_error_injection_list(addrs, cnt)) {
3032 		err = -EINVAL;
3033 		goto error;
3034 	}
3035 
3036 	link = kzalloc(sizeof(*link), GFP_KERNEL);
3037 	if (!link) {
3038 		err = -ENOMEM;
3039 		goto error;
3040 	}
3041 
3042 	bpf_link_init(&link->link, BPF_LINK_TYPE_KPROBE_MULTI,
3043 		      &bpf_kprobe_multi_link_lops, prog);
3044 
3045 	err = bpf_link_prime(&link->link, &link_primer);
3046 	if (err)
3047 		goto error;
3048 
3049 	if (!(flags & BPF_F_KPROBE_MULTI_RETURN))
3050 		link->fp.entry_handler = kprobe_multi_link_handler;
3051 	if ((flags & BPF_F_KPROBE_MULTI_RETURN) || is_kprobe_session(prog))
3052 		link->fp.exit_handler = kprobe_multi_link_exit_handler;
3053 	if (is_kprobe_session(prog))
3054 		link->fp.entry_data_size = sizeof(u64);
3055 
3056 	link->addrs = addrs;
3057 	link->cookies = cookies;
3058 	link->cnt = cnt;
3059 	link->flags = flags;
3060 
3061 	if (cookies) {
3062 		/*
3063 		 * Sorting addresses will trigger sorting cookies as well
3064 		 * (check bpf_kprobe_multi_cookie_swap). This way we can
3065 		 * find cookie based on the address in bpf_get_attach_cookie
3066 		 * helper.
3067 		 */
3068 		sort_r(addrs, cnt, sizeof(*addrs),
3069 		       bpf_kprobe_multi_cookie_cmp,
3070 		       bpf_kprobe_multi_cookie_swap,
3071 		       link);
3072 	}
3073 
3074 	err = get_modules_for_addrs(&link->mods, addrs, cnt);
3075 	if (err < 0) {
3076 		bpf_link_cleanup(&link_primer);
3077 		return err;
3078 	}
3079 	link->mods_cnt = err;
3080 
3081 	err = register_fprobe_ips(&link->fp, addrs, cnt);
3082 	if (err) {
3083 		kprobe_multi_put_modules(link->mods, link->mods_cnt);
3084 		bpf_link_cleanup(&link_primer);
3085 		return err;
3086 	}
3087 
3088 	return bpf_link_settle(&link_primer);
3089 
3090 error:
3091 	kfree(link);
3092 	kvfree(addrs);
3093 	kvfree(cookies);
3094 	return err;
3095 }
3096 #else /* !CONFIG_FPROBE */
3097 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3098 {
3099 	return -EOPNOTSUPP;
3100 }
3101 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
3102 {
3103 	return 0;
3104 }
3105 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3106 {
3107 	return 0;
3108 }
3109 #endif
3110 
3111 #ifdef CONFIG_UPROBES
3112 struct bpf_uprobe_multi_link;
3113 
3114 struct bpf_uprobe {
3115 	struct bpf_uprobe_multi_link *link;
3116 	loff_t offset;
3117 	unsigned long ref_ctr_offset;
3118 	u64 cookie;
3119 	struct uprobe *uprobe;
3120 	struct uprobe_consumer consumer;
3121 	bool session;
3122 };
3123 
3124 struct bpf_uprobe_multi_link {
3125 	struct path path;
3126 	struct bpf_link link;
3127 	u32 cnt;
3128 	u32 flags;
3129 	struct bpf_uprobe *uprobes;
3130 	struct task_struct *task;
3131 };
3132 
3133 struct bpf_uprobe_multi_run_ctx {
3134 	struct bpf_session_run_ctx session_ctx;
3135 	unsigned long entry_ip;
3136 	struct bpf_uprobe *uprobe;
3137 };
3138 
3139 static void bpf_uprobe_unregister(struct bpf_uprobe *uprobes, u32 cnt)
3140 {
3141 	u32 i;
3142 
3143 	for (i = 0; i < cnt; i++)
3144 		uprobe_unregister_nosync(uprobes[i].uprobe, &uprobes[i].consumer);
3145 
3146 	if (cnt)
3147 		uprobe_unregister_sync();
3148 }
3149 
3150 static void bpf_uprobe_multi_link_release(struct bpf_link *link)
3151 {
3152 	struct bpf_uprobe_multi_link *umulti_link;
3153 
3154 	umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
3155 	bpf_uprobe_unregister(umulti_link->uprobes, umulti_link->cnt);
3156 	if (umulti_link->task)
3157 		put_task_struct(umulti_link->task);
3158 	path_put(&umulti_link->path);
3159 }
3160 
3161 static void bpf_uprobe_multi_link_dealloc(struct bpf_link *link)
3162 {
3163 	struct bpf_uprobe_multi_link *umulti_link;
3164 
3165 	umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
3166 	kvfree(umulti_link->uprobes);
3167 	kfree(umulti_link);
3168 }
3169 
3170 static int bpf_uprobe_multi_link_fill_link_info(const struct bpf_link *link,
3171 						struct bpf_link_info *info)
3172 {
3173 	u64 __user *uref_ctr_offsets = u64_to_user_ptr(info->uprobe_multi.ref_ctr_offsets);
3174 	u64 __user *ucookies = u64_to_user_ptr(info->uprobe_multi.cookies);
3175 	u64 __user *uoffsets = u64_to_user_ptr(info->uprobe_multi.offsets);
3176 	u64 __user *upath = u64_to_user_ptr(info->uprobe_multi.path);
3177 	u32 upath_size = info->uprobe_multi.path_size;
3178 	struct bpf_uprobe_multi_link *umulti_link;
3179 	u32 ucount = info->uprobe_multi.count;
3180 	int err = 0, i;
3181 	char *p, *buf;
3182 	long left = 0;
3183 
3184 	if (!upath ^ !upath_size)
3185 		return -EINVAL;
3186 
3187 	if ((uoffsets || uref_ctr_offsets || ucookies) && !ucount)
3188 		return -EINVAL;
3189 
3190 	umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
3191 	info->uprobe_multi.count = umulti_link->cnt;
3192 	info->uprobe_multi.flags = umulti_link->flags;
3193 	info->uprobe_multi.pid = umulti_link->task ?
3194 				 task_pid_nr_ns(umulti_link->task, task_active_pid_ns(current)) : 0;
3195 
3196 	upath_size = upath_size ? min_t(u32, upath_size, PATH_MAX) : PATH_MAX;
3197 	buf = kmalloc(upath_size, GFP_KERNEL);
3198 	if (!buf)
3199 		return -ENOMEM;
3200 	p = d_path(&umulti_link->path, buf, upath_size);
3201 	if (IS_ERR(p)) {
3202 		kfree(buf);
3203 		return PTR_ERR(p);
3204 	}
3205 	upath_size = buf + upath_size - p;
3206 
3207 	if (upath)
3208 		left = copy_to_user(upath, p, upath_size);
3209 	kfree(buf);
3210 	if (left)
3211 		return -EFAULT;
3212 	info->uprobe_multi.path_size = upath_size;
3213 
3214 	if (!uoffsets && !ucookies && !uref_ctr_offsets)
3215 		return 0;
3216 
3217 	if (ucount < umulti_link->cnt)
3218 		err = -ENOSPC;
3219 	else
3220 		ucount = umulti_link->cnt;
3221 
3222 	for (i = 0; i < ucount; i++) {
3223 		if (uoffsets &&
3224 		    put_user(umulti_link->uprobes[i].offset, uoffsets + i))
3225 			return -EFAULT;
3226 		if (uref_ctr_offsets &&
3227 		    put_user(umulti_link->uprobes[i].ref_ctr_offset, uref_ctr_offsets + i))
3228 			return -EFAULT;
3229 		if (ucookies &&
3230 		    put_user(umulti_link->uprobes[i].cookie, ucookies + i))
3231 			return -EFAULT;
3232 	}
3233 
3234 	return err;
3235 }
3236 
3237 static const struct bpf_link_ops bpf_uprobe_multi_link_lops = {
3238 	.release = bpf_uprobe_multi_link_release,
3239 	.dealloc_deferred = bpf_uprobe_multi_link_dealloc,
3240 	.fill_link_info = bpf_uprobe_multi_link_fill_link_info,
3241 };
3242 
3243 static int uprobe_prog_run(struct bpf_uprobe *uprobe,
3244 			   unsigned long entry_ip,
3245 			   struct pt_regs *regs,
3246 			   bool is_return, void *data)
3247 {
3248 	struct bpf_uprobe_multi_link *link = uprobe->link;
3249 	struct bpf_uprobe_multi_run_ctx run_ctx = {
3250 		.session_ctx = {
3251 			.is_return = is_return,
3252 			.data = data,
3253 		},
3254 		.entry_ip = entry_ip,
3255 		.uprobe = uprobe,
3256 	};
3257 	struct bpf_prog *prog = link->link.prog;
3258 	bool sleepable = prog->sleepable;
3259 	struct bpf_run_ctx *old_run_ctx;
3260 	int err;
3261 
3262 	if (link->task && !same_thread_group(current, link->task))
3263 		return 0;
3264 
3265 	if (sleepable)
3266 		rcu_read_lock_trace();
3267 	else
3268 		rcu_read_lock();
3269 
3270 	migrate_disable();
3271 
3272 	old_run_ctx = bpf_set_run_ctx(&run_ctx.session_ctx.run_ctx);
3273 	err = bpf_prog_run(link->link.prog, regs);
3274 	bpf_reset_run_ctx(old_run_ctx);
3275 
3276 	migrate_enable();
3277 
3278 	if (sleepable)
3279 		rcu_read_unlock_trace();
3280 	else
3281 		rcu_read_unlock();
3282 	return err;
3283 }
3284 
3285 static bool
3286 uprobe_multi_link_filter(struct uprobe_consumer *con, struct mm_struct *mm)
3287 {
3288 	struct bpf_uprobe *uprobe;
3289 
3290 	uprobe = container_of(con, struct bpf_uprobe, consumer);
3291 	return uprobe->link->task->mm == mm;
3292 }
3293 
3294 static int
3295 uprobe_multi_link_handler(struct uprobe_consumer *con, struct pt_regs *regs,
3296 			  __u64 *data)
3297 {
3298 	struct bpf_uprobe *uprobe;
3299 	int ret;
3300 
3301 	uprobe = container_of(con, struct bpf_uprobe, consumer);
3302 	ret = uprobe_prog_run(uprobe, instruction_pointer(regs), regs, false, data);
3303 	if (uprobe->session)
3304 		return ret ? UPROBE_HANDLER_IGNORE : 0;
3305 	return 0;
3306 }
3307 
3308 static int
3309 uprobe_multi_link_ret_handler(struct uprobe_consumer *con, unsigned long func, struct pt_regs *regs,
3310 			      __u64 *data)
3311 {
3312 	struct bpf_uprobe *uprobe;
3313 
3314 	uprobe = container_of(con, struct bpf_uprobe, consumer);
3315 	uprobe_prog_run(uprobe, func, regs, true, data);
3316 	return 0;
3317 }
3318 
3319 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3320 {
3321 	struct bpf_uprobe_multi_run_ctx *run_ctx;
3322 
3323 	run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx,
3324 			       session_ctx.run_ctx);
3325 	return run_ctx->entry_ip;
3326 }
3327 
3328 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx)
3329 {
3330 	struct bpf_uprobe_multi_run_ctx *run_ctx;
3331 
3332 	run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx,
3333 			       session_ctx.run_ctx);
3334 	return run_ctx->uprobe->cookie;
3335 }
3336 
3337 int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3338 {
3339 	struct bpf_uprobe_multi_link *link = NULL;
3340 	unsigned long __user *uref_ctr_offsets;
3341 	struct bpf_link_primer link_primer;
3342 	struct bpf_uprobe *uprobes = NULL;
3343 	struct task_struct *task = NULL;
3344 	unsigned long __user *uoffsets;
3345 	u64 __user *ucookies;
3346 	void __user *upath;
3347 	u32 flags, cnt, i;
3348 	struct path path;
3349 	char *name;
3350 	pid_t pid;
3351 	int err;
3352 
3353 	/* no support for 32bit archs yet */
3354 	if (sizeof(u64) != sizeof(void *))
3355 		return -EOPNOTSUPP;
3356 
3357 	if (!is_uprobe_multi(prog))
3358 		return -EINVAL;
3359 
3360 	flags = attr->link_create.uprobe_multi.flags;
3361 	if (flags & ~BPF_F_UPROBE_MULTI_RETURN)
3362 		return -EINVAL;
3363 
3364 	/*
3365 	 * path, offsets and cnt are mandatory,
3366 	 * ref_ctr_offsets and cookies are optional
3367 	 */
3368 	upath = u64_to_user_ptr(attr->link_create.uprobe_multi.path);
3369 	uoffsets = u64_to_user_ptr(attr->link_create.uprobe_multi.offsets);
3370 	cnt = attr->link_create.uprobe_multi.cnt;
3371 	pid = attr->link_create.uprobe_multi.pid;
3372 
3373 	if (!upath || !uoffsets || !cnt || pid < 0)
3374 		return -EINVAL;
3375 	if (cnt > MAX_UPROBE_MULTI_CNT)
3376 		return -E2BIG;
3377 
3378 	uref_ctr_offsets = u64_to_user_ptr(attr->link_create.uprobe_multi.ref_ctr_offsets);
3379 	ucookies = u64_to_user_ptr(attr->link_create.uprobe_multi.cookies);
3380 
3381 	name = strndup_user(upath, PATH_MAX);
3382 	if (IS_ERR(name)) {
3383 		err = PTR_ERR(name);
3384 		return err;
3385 	}
3386 
3387 	err = kern_path(name, LOOKUP_FOLLOW, &path);
3388 	kfree(name);
3389 	if (err)
3390 		return err;
3391 
3392 	if (!d_is_reg(path.dentry)) {
3393 		err = -EBADF;
3394 		goto error_path_put;
3395 	}
3396 
3397 	if (pid) {
3398 		task = get_pid_task(find_vpid(pid), PIDTYPE_TGID);
3399 		if (!task) {
3400 			err = -ESRCH;
3401 			goto error_path_put;
3402 		}
3403 	}
3404 
3405 	err = -ENOMEM;
3406 
3407 	link = kzalloc(sizeof(*link), GFP_KERNEL);
3408 	uprobes = kvcalloc(cnt, sizeof(*uprobes), GFP_KERNEL);
3409 
3410 	if (!uprobes || !link)
3411 		goto error_free;
3412 
3413 	for (i = 0; i < cnt; i++) {
3414 		if (__get_user(uprobes[i].offset, uoffsets + i)) {
3415 			err = -EFAULT;
3416 			goto error_free;
3417 		}
3418 		if (uprobes[i].offset < 0) {
3419 			err = -EINVAL;
3420 			goto error_free;
3421 		}
3422 		if (uref_ctr_offsets && __get_user(uprobes[i].ref_ctr_offset, uref_ctr_offsets + i)) {
3423 			err = -EFAULT;
3424 			goto error_free;
3425 		}
3426 		if (ucookies && __get_user(uprobes[i].cookie, ucookies + i)) {
3427 			err = -EFAULT;
3428 			goto error_free;
3429 		}
3430 
3431 		uprobes[i].link = link;
3432 
3433 		if (!(flags & BPF_F_UPROBE_MULTI_RETURN))
3434 			uprobes[i].consumer.handler = uprobe_multi_link_handler;
3435 		if (flags & BPF_F_UPROBE_MULTI_RETURN || is_uprobe_session(prog))
3436 			uprobes[i].consumer.ret_handler = uprobe_multi_link_ret_handler;
3437 		if (is_uprobe_session(prog))
3438 			uprobes[i].session = true;
3439 		if (pid)
3440 			uprobes[i].consumer.filter = uprobe_multi_link_filter;
3441 	}
3442 
3443 	link->cnt = cnt;
3444 	link->uprobes = uprobes;
3445 	link->path = path;
3446 	link->task = task;
3447 	link->flags = flags;
3448 
3449 	bpf_link_init(&link->link, BPF_LINK_TYPE_UPROBE_MULTI,
3450 		      &bpf_uprobe_multi_link_lops, prog);
3451 
3452 	for (i = 0; i < cnt; i++) {
3453 		uprobes[i].uprobe = uprobe_register(d_real_inode(link->path.dentry),
3454 						    uprobes[i].offset,
3455 						    uprobes[i].ref_ctr_offset,
3456 						    &uprobes[i].consumer);
3457 		if (IS_ERR(uprobes[i].uprobe)) {
3458 			err = PTR_ERR(uprobes[i].uprobe);
3459 			link->cnt = i;
3460 			goto error_unregister;
3461 		}
3462 	}
3463 
3464 	err = bpf_link_prime(&link->link, &link_primer);
3465 	if (err)
3466 		goto error_unregister;
3467 
3468 	return bpf_link_settle(&link_primer);
3469 
3470 error_unregister:
3471 	bpf_uprobe_unregister(uprobes, link->cnt);
3472 
3473 error_free:
3474 	kvfree(uprobes);
3475 	kfree(link);
3476 	if (task)
3477 		put_task_struct(task);
3478 error_path_put:
3479 	path_put(&path);
3480 	return err;
3481 }
3482 #else /* !CONFIG_UPROBES */
3483 int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3484 {
3485 	return -EOPNOTSUPP;
3486 }
3487 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx)
3488 {
3489 	return 0;
3490 }
3491 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3492 {
3493 	return 0;
3494 }
3495 #endif /* CONFIG_UPROBES */
3496 
3497 __bpf_kfunc_start_defs();
3498 
3499 __bpf_kfunc bool bpf_session_is_return(void)
3500 {
3501 	struct bpf_session_run_ctx *session_ctx;
3502 
3503 	session_ctx = container_of(current->bpf_ctx, struct bpf_session_run_ctx, run_ctx);
3504 	return session_ctx->is_return;
3505 }
3506 
3507 __bpf_kfunc __u64 *bpf_session_cookie(void)
3508 {
3509 	struct bpf_session_run_ctx *session_ctx;
3510 
3511 	session_ctx = container_of(current->bpf_ctx, struct bpf_session_run_ctx, run_ctx);
3512 	return session_ctx->data;
3513 }
3514 
3515 __bpf_kfunc_end_defs();
3516 
3517 BTF_KFUNCS_START(kprobe_multi_kfunc_set_ids)
3518 BTF_ID_FLAGS(func, bpf_session_is_return)
3519 BTF_ID_FLAGS(func, bpf_session_cookie)
3520 BTF_KFUNCS_END(kprobe_multi_kfunc_set_ids)
3521 
3522 static int bpf_kprobe_multi_filter(const struct bpf_prog *prog, u32 kfunc_id)
3523 {
3524 	if (!btf_id_set8_contains(&kprobe_multi_kfunc_set_ids, kfunc_id))
3525 		return 0;
3526 
3527 	if (!is_kprobe_session(prog) && !is_uprobe_session(prog))
3528 		return -EACCES;
3529 
3530 	return 0;
3531 }
3532 
3533 static const struct btf_kfunc_id_set bpf_kprobe_multi_kfunc_set = {
3534 	.owner = THIS_MODULE,
3535 	.set = &kprobe_multi_kfunc_set_ids,
3536 	.filter = bpf_kprobe_multi_filter,
3537 };
3538 
3539 static int __init bpf_kprobe_multi_kfuncs_init(void)
3540 {
3541 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_KPROBE, &bpf_kprobe_multi_kfunc_set);
3542 }
3543 
3544 late_initcall(bpf_kprobe_multi_kfuncs_init);
3545 
3546 __bpf_kfunc_start_defs();
3547 
3548 __bpf_kfunc int bpf_send_signal_task(struct task_struct *task, int sig, enum pid_type type,
3549 				     u64 value)
3550 {
3551 	if (type != PIDTYPE_PID && type != PIDTYPE_TGID)
3552 		return -EINVAL;
3553 
3554 	return bpf_send_signal_common(sig, type, task, value);
3555 }
3556 
3557 __bpf_kfunc_end_defs();
3558