xref: /linux/kernel/trace/bpf_trace.c (revision 775bc8ada89b376b4bbbce31aba47f4117fe1d9c)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_perf_event.h>
10 #include <linux/filter.h>
11 #include <linux/uaccess.h>
12 #include <linux/ctype.h>
13 #include <linux/kprobes.h>
14 #include <linux/syscalls.h>
15 #include <linux/error-injection.h>
16 
17 #include <asm/tlb.h>
18 
19 #include "trace_probe.h"
20 #include "trace.h"
21 
22 #ifdef CONFIG_MODULES
23 struct bpf_trace_module {
24 	struct module *module;
25 	struct list_head list;
26 };
27 
28 static LIST_HEAD(bpf_trace_modules);
29 static DEFINE_MUTEX(bpf_module_mutex);
30 
31 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
32 {
33 	struct bpf_raw_event_map *btp, *ret = NULL;
34 	struct bpf_trace_module *btm;
35 	unsigned int i;
36 
37 	mutex_lock(&bpf_module_mutex);
38 	list_for_each_entry(btm, &bpf_trace_modules, list) {
39 		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
40 			btp = &btm->module->bpf_raw_events[i];
41 			if (!strcmp(btp->tp->name, name)) {
42 				if (try_module_get(btm->module))
43 					ret = btp;
44 				goto out;
45 			}
46 		}
47 	}
48 out:
49 	mutex_unlock(&bpf_module_mutex);
50 	return ret;
51 }
52 #else
53 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
54 {
55 	return NULL;
56 }
57 #endif /* CONFIG_MODULES */
58 
59 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
60 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
61 
62 /**
63  * trace_call_bpf - invoke BPF program
64  * @call: tracepoint event
65  * @ctx: opaque context pointer
66  *
67  * kprobe handlers execute BPF programs via this helper.
68  * Can be used from static tracepoints in the future.
69  *
70  * Return: BPF programs always return an integer which is interpreted by
71  * kprobe handler as:
72  * 0 - return from kprobe (event is filtered out)
73  * 1 - store kprobe event into ring buffer
74  * Other values are reserved and currently alias to 1
75  */
76 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
77 {
78 	unsigned int ret;
79 
80 	if (in_nmi()) /* not supported yet */
81 		return 1;
82 
83 	preempt_disable();
84 
85 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
86 		/*
87 		 * since some bpf program is already running on this cpu,
88 		 * don't call into another bpf program (same or different)
89 		 * and don't send kprobe event into ring-buffer,
90 		 * so return zero here
91 		 */
92 		ret = 0;
93 		goto out;
94 	}
95 
96 	/*
97 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
98 	 * to all call sites, we did a bpf_prog_array_valid() there to check
99 	 * whether call->prog_array is empty or not, which is
100 	 * a heurisitc to speed up execution.
101 	 *
102 	 * If bpf_prog_array_valid() fetched prog_array was
103 	 * non-NULL, we go into trace_call_bpf() and do the actual
104 	 * proper rcu_dereference() under RCU lock.
105 	 * If it turns out that prog_array is NULL then, we bail out.
106 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
107 	 * was NULL, you'll skip the prog_array with the risk of missing
108 	 * out of events when it was updated in between this and the
109 	 * rcu_dereference() which is accepted risk.
110 	 */
111 	ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
112 
113  out:
114 	__this_cpu_dec(bpf_prog_active);
115 	preempt_enable();
116 
117 	return ret;
118 }
119 EXPORT_SYMBOL_GPL(trace_call_bpf);
120 
121 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
122 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
123 {
124 	regs_set_return_value(regs, rc);
125 	override_function_with_return(regs);
126 	return 0;
127 }
128 
129 static const struct bpf_func_proto bpf_override_return_proto = {
130 	.func		= bpf_override_return,
131 	.gpl_only	= true,
132 	.ret_type	= RET_INTEGER,
133 	.arg1_type	= ARG_PTR_TO_CTX,
134 	.arg2_type	= ARG_ANYTHING,
135 };
136 #endif
137 
138 BPF_CALL_3(bpf_probe_read, void *, dst, u32, size, const void *, unsafe_ptr)
139 {
140 	int ret;
141 
142 	ret = probe_kernel_read(dst, unsafe_ptr, size);
143 	if (unlikely(ret < 0))
144 		memset(dst, 0, size);
145 
146 	return ret;
147 }
148 
149 static const struct bpf_func_proto bpf_probe_read_proto = {
150 	.func		= bpf_probe_read,
151 	.gpl_only	= true,
152 	.ret_type	= RET_INTEGER,
153 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
154 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
155 	.arg3_type	= ARG_ANYTHING,
156 };
157 
158 BPF_CALL_3(bpf_probe_write_user, void *, unsafe_ptr, const void *, src,
159 	   u32, size)
160 {
161 	/*
162 	 * Ensure we're in user context which is safe for the helper to
163 	 * run. This helper has no business in a kthread.
164 	 *
165 	 * access_ok() should prevent writing to non-user memory, but in
166 	 * some situations (nommu, temporary switch, etc) access_ok() does
167 	 * not provide enough validation, hence the check on KERNEL_DS.
168 	 *
169 	 * nmi_uaccess_okay() ensures the probe is not run in an interim
170 	 * state, when the task or mm are switched. This is specifically
171 	 * required to prevent the use of temporary mm.
172 	 */
173 
174 	if (unlikely(in_interrupt() ||
175 		     current->flags & (PF_KTHREAD | PF_EXITING)))
176 		return -EPERM;
177 	if (unlikely(uaccess_kernel()))
178 		return -EPERM;
179 	if (unlikely(!nmi_uaccess_okay()))
180 		return -EPERM;
181 	if (!access_ok(unsafe_ptr, size))
182 		return -EPERM;
183 
184 	return probe_kernel_write(unsafe_ptr, src, size);
185 }
186 
187 static const struct bpf_func_proto bpf_probe_write_user_proto = {
188 	.func		= bpf_probe_write_user,
189 	.gpl_only	= true,
190 	.ret_type	= RET_INTEGER,
191 	.arg1_type	= ARG_ANYTHING,
192 	.arg2_type	= ARG_PTR_TO_MEM,
193 	.arg3_type	= ARG_CONST_SIZE,
194 };
195 
196 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
197 {
198 	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
199 			    current->comm, task_pid_nr(current));
200 
201 	return &bpf_probe_write_user_proto;
202 }
203 
204 /*
205  * Only limited trace_printk() conversion specifiers allowed:
206  * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %s
207  */
208 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
209 	   u64, arg2, u64, arg3)
210 {
211 	bool str_seen = false;
212 	int mod[3] = {};
213 	int fmt_cnt = 0;
214 	u64 unsafe_addr;
215 	char buf[64];
216 	int i;
217 
218 	/*
219 	 * bpf_check()->check_func_arg()->check_stack_boundary()
220 	 * guarantees that fmt points to bpf program stack,
221 	 * fmt_size bytes of it were initialized and fmt_size > 0
222 	 */
223 	if (fmt[--fmt_size] != 0)
224 		return -EINVAL;
225 
226 	/* check format string for allowed specifiers */
227 	for (i = 0; i < fmt_size; i++) {
228 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
229 			return -EINVAL;
230 
231 		if (fmt[i] != '%')
232 			continue;
233 
234 		if (fmt_cnt >= 3)
235 			return -EINVAL;
236 
237 		/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
238 		i++;
239 		if (fmt[i] == 'l') {
240 			mod[fmt_cnt]++;
241 			i++;
242 		} else if (fmt[i] == 'p' || fmt[i] == 's') {
243 			mod[fmt_cnt]++;
244 			/* disallow any further format extensions */
245 			if (fmt[i + 1] != 0 &&
246 			    !isspace(fmt[i + 1]) &&
247 			    !ispunct(fmt[i + 1]))
248 				return -EINVAL;
249 			fmt_cnt++;
250 			if (fmt[i] == 's') {
251 				if (str_seen)
252 					/* allow only one '%s' per fmt string */
253 					return -EINVAL;
254 				str_seen = true;
255 
256 				switch (fmt_cnt) {
257 				case 1:
258 					unsafe_addr = arg1;
259 					arg1 = (long) buf;
260 					break;
261 				case 2:
262 					unsafe_addr = arg2;
263 					arg2 = (long) buf;
264 					break;
265 				case 3:
266 					unsafe_addr = arg3;
267 					arg3 = (long) buf;
268 					break;
269 				}
270 				buf[0] = 0;
271 				strncpy_from_unsafe(buf,
272 						    (void *) (long) unsafe_addr,
273 						    sizeof(buf));
274 			}
275 			continue;
276 		}
277 
278 		if (fmt[i] == 'l') {
279 			mod[fmt_cnt]++;
280 			i++;
281 		}
282 
283 		if (fmt[i] != 'i' && fmt[i] != 'd' &&
284 		    fmt[i] != 'u' && fmt[i] != 'x')
285 			return -EINVAL;
286 		fmt_cnt++;
287 	}
288 
289 /* Horrid workaround for getting va_list handling working with different
290  * argument type combinations generically for 32 and 64 bit archs.
291  */
292 #define __BPF_TP_EMIT()	__BPF_ARG3_TP()
293 #define __BPF_TP(...)							\
294 	__trace_printk(0 /* Fake ip */,					\
295 		       fmt, ##__VA_ARGS__)
296 
297 #define __BPF_ARG1_TP(...)						\
298 	((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64))	\
299 	  ? __BPF_TP(arg1, ##__VA_ARGS__)				\
300 	  : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32))	\
301 	      ? __BPF_TP((long)arg1, ##__VA_ARGS__)			\
302 	      : __BPF_TP((u32)arg1, ##__VA_ARGS__)))
303 
304 #define __BPF_ARG2_TP(...)						\
305 	((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64))	\
306 	  ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__)				\
307 	  : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32))	\
308 	      ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__)		\
309 	      : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
310 
311 #define __BPF_ARG3_TP(...)						\
312 	((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64))	\
313 	  ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__)				\
314 	  : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32))	\
315 	      ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__)		\
316 	      : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
317 
318 	return __BPF_TP_EMIT();
319 }
320 
321 static const struct bpf_func_proto bpf_trace_printk_proto = {
322 	.func		= bpf_trace_printk,
323 	.gpl_only	= true,
324 	.ret_type	= RET_INTEGER,
325 	.arg1_type	= ARG_PTR_TO_MEM,
326 	.arg2_type	= ARG_CONST_SIZE,
327 };
328 
329 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
330 {
331 	/*
332 	 * this program might be calling bpf_trace_printk,
333 	 * so allocate per-cpu printk buffers
334 	 */
335 	trace_printk_init_buffers();
336 
337 	return &bpf_trace_printk_proto;
338 }
339 
340 static __always_inline int
341 get_map_perf_counter(struct bpf_map *map, u64 flags,
342 		     u64 *value, u64 *enabled, u64 *running)
343 {
344 	struct bpf_array *array = container_of(map, struct bpf_array, map);
345 	unsigned int cpu = smp_processor_id();
346 	u64 index = flags & BPF_F_INDEX_MASK;
347 	struct bpf_event_entry *ee;
348 
349 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
350 		return -EINVAL;
351 	if (index == BPF_F_CURRENT_CPU)
352 		index = cpu;
353 	if (unlikely(index >= array->map.max_entries))
354 		return -E2BIG;
355 
356 	ee = READ_ONCE(array->ptrs[index]);
357 	if (!ee)
358 		return -ENOENT;
359 
360 	return perf_event_read_local(ee->event, value, enabled, running);
361 }
362 
363 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
364 {
365 	u64 value = 0;
366 	int err;
367 
368 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
369 	/*
370 	 * this api is ugly since we miss [-22..-2] range of valid
371 	 * counter values, but that's uapi
372 	 */
373 	if (err)
374 		return err;
375 	return value;
376 }
377 
378 static const struct bpf_func_proto bpf_perf_event_read_proto = {
379 	.func		= bpf_perf_event_read,
380 	.gpl_only	= true,
381 	.ret_type	= RET_INTEGER,
382 	.arg1_type	= ARG_CONST_MAP_PTR,
383 	.arg2_type	= ARG_ANYTHING,
384 };
385 
386 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
387 	   struct bpf_perf_event_value *, buf, u32, size)
388 {
389 	int err = -EINVAL;
390 
391 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
392 		goto clear;
393 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
394 				   &buf->running);
395 	if (unlikely(err))
396 		goto clear;
397 	return 0;
398 clear:
399 	memset(buf, 0, size);
400 	return err;
401 }
402 
403 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
404 	.func		= bpf_perf_event_read_value,
405 	.gpl_only	= true,
406 	.ret_type	= RET_INTEGER,
407 	.arg1_type	= ARG_CONST_MAP_PTR,
408 	.arg2_type	= ARG_ANYTHING,
409 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
410 	.arg4_type	= ARG_CONST_SIZE,
411 };
412 
413 static DEFINE_PER_CPU(struct perf_sample_data, bpf_trace_sd);
414 
415 static __always_inline u64
416 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
417 			u64 flags, struct perf_sample_data *sd)
418 {
419 	struct bpf_array *array = container_of(map, struct bpf_array, map);
420 	unsigned int cpu = smp_processor_id();
421 	u64 index = flags & BPF_F_INDEX_MASK;
422 	struct bpf_event_entry *ee;
423 	struct perf_event *event;
424 
425 	if (index == BPF_F_CURRENT_CPU)
426 		index = cpu;
427 	if (unlikely(index >= array->map.max_entries))
428 		return -E2BIG;
429 
430 	ee = READ_ONCE(array->ptrs[index]);
431 	if (!ee)
432 		return -ENOENT;
433 
434 	event = ee->event;
435 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
436 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
437 		return -EINVAL;
438 
439 	if (unlikely(event->oncpu != cpu))
440 		return -EOPNOTSUPP;
441 
442 	return perf_event_output(event, sd, regs);
443 }
444 
445 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
446 	   u64, flags, void *, data, u64, size)
447 {
448 	struct perf_sample_data *sd = this_cpu_ptr(&bpf_trace_sd);
449 	struct perf_raw_record raw = {
450 		.frag = {
451 			.size = size,
452 			.data = data,
453 		},
454 	};
455 
456 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
457 		return -EINVAL;
458 
459 	perf_sample_data_init(sd, 0, 0);
460 	sd->raw = &raw;
461 
462 	return __bpf_perf_event_output(regs, map, flags, sd);
463 }
464 
465 static const struct bpf_func_proto bpf_perf_event_output_proto = {
466 	.func		= bpf_perf_event_output,
467 	.gpl_only	= true,
468 	.ret_type	= RET_INTEGER,
469 	.arg1_type	= ARG_PTR_TO_CTX,
470 	.arg2_type	= ARG_CONST_MAP_PTR,
471 	.arg3_type	= ARG_ANYTHING,
472 	.arg4_type	= ARG_PTR_TO_MEM,
473 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
474 };
475 
476 static DEFINE_PER_CPU(struct pt_regs, bpf_pt_regs);
477 static DEFINE_PER_CPU(struct perf_sample_data, bpf_misc_sd);
478 
479 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
480 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
481 {
482 	struct perf_sample_data *sd = this_cpu_ptr(&bpf_misc_sd);
483 	struct pt_regs *regs = this_cpu_ptr(&bpf_pt_regs);
484 	struct perf_raw_frag frag = {
485 		.copy		= ctx_copy,
486 		.size		= ctx_size,
487 		.data		= ctx,
488 	};
489 	struct perf_raw_record raw = {
490 		.frag = {
491 			{
492 				.next	= ctx_size ? &frag : NULL,
493 			},
494 			.size	= meta_size,
495 			.data	= meta,
496 		},
497 	};
498 
499 	perf_fetch_caller_regs(regs);
500 	perf_sample_data_init(sd, 0, 0);
501 	sd->raw = &raw;
502 
503 	return __bpf_perf_event_output(regs, map, flags, sd);
504 }
505 
506 BPF_CALL_0(bpf_get_current_task)
507 {
508 	return (long) current;
509 }
510 
511 static const struct bpf_func_proto bpf_get_current_task_proto = {
512 	.func		= bpf_get_current_task,
513 	.gpl_only	= true,
514 	.ret_type	= RET_INTEGER,
515 };
516 
517 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
518 {
519 	struct bpf_array *array = container_of(map, struct bpf_array, map);
520 	struct cgroup *cgrp;
521 
522 	if (unlikely(idx >= array->map.max_entries))
523 		return -E2BIG;
524 
525 	cgrp = READ_ONCE(array->ptrs[idx]);
526 	if (unlikely(!cgrp))
527 		return -EAGAIN;
528 
529 	return task_under_cgroup_hierarchy(current, cgrp);
530 }
531 
532 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
533 	.func           = bpf_current_task_under_cgroup,
534 	.gpl_only       = false,
535 	.ret_type       = RET_INTEGER,
536 	.arg1_type      = ARG_CONST_MAP_PTR,
537 	.arg2_type      = ARG_ANYTHING,
538 };
539 
540 BPF_CALL_3(bpf_probe_read_str, void *, dst, u32, size,
541 	   const void *, unsafe_ptr)
542 {
543 	int ret;
544 
545 	/*
546 	 * The strncpy_from_unsafe() call will likely not fill the entire
547 	 * buffer, but that's okay in this circumstance as we're probing
548 	 * arbitrary memory anyway similar to bpf_probe_read() and might
549 	 * as well probe the stack. Thus, memory is explicitly cleared
550 	 * only in error case, so that improper users ignoring return
551 	 * code altogether don't copy garbage; otherwise length of string
552 	 * is returned that can be used for bpf_perf_event_output() et al.
553 	 */
554 	ret = strncpy_from_unsafe(dst, unsafe_ptr, size);
555 	if (unlikely(ret < 0))
556 		memset(dst, 0, size);
557 
558 	return ret;
559 }
560 
561 static const struct bpf_func_proto bpf_probe_read_str_proto = {
562 	.func		= bpf_probe_read_str,
563 	.gpl_only	= true,
564 	.ret_type	= RET_INTEGER,
565 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
566 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
567 	.arg3_type	= ARG_ANYTHING,
568 };
569 
570 struct send_signal_irq_work {
571 	struct irq_work irq_work;
572 	struct task_struct *task;
573 	u32 sig;
574 };
575 
576 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
577 
578 static void do_bpf_send_signal(struct irq_work *entry)
579 {
580 	struct send_signal_irq_work *work;
581 
582 	work = container_of(entry, struct send_signal_irq_work, irq_work);
583 	group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, PIDTYPE_TGID);
584 }
585 
586 BPF_CALL_1(bpf_send_signal, u32, sig)
587 {
588 	struct send_signal_irq_work *work = NULL;
589 
590 	/* Similar to bpf_probe_write_user, task needs to be
591 	 * in a sound condition and kernel memory access be
592 	 * permitted in order to send signal to the current
593 	 * task.
594 	 */
595 	if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
596 		return -EPERM;
597 	if (unlikely(uaccess_kernel()))
598 		return -EPERM;
599 	if (unlikely(!nmi_uaccess_okay()))
600 		return -EPERM;
601 
602 	if (in_nmi()) {
603 		/* Do an early check on signal validity. Otherwise,
604 		 * the error is lost in deferred irq_work.
605 		 */
606 		if (unlikely(!valid_signal(sig)))
607 			return -EINVAL;
608 
609 		work = this_cpu_ptr(&send_signal_work);
610 		if (work->irq_work.flags & IRQ_WORK_BUSY)
611 			return -EBUSY;
612 
613 		/* Add the current task, which is the target of sending signal,
614 		 * to the irq_work. The current task may change when queued
615 		 * irq works get executed.
616 		 */
617 		work->task = current;
618 		work->sig = sig;
619 		irq_work_queue(&work->irq_work);
620 		return 0;
621 	}
622 
623 	return group_send_sig_info(sig, SEND_SIG_PRIV, current, PIDTYPE_TGID);
624 }
625 
626 static const struct bpf_func_proto bpf_send_signal_proto = {
627 	.func		= bpf_send_signal,
628 	.gpl_only	= false,
629 	.ret_type	= RET_INTEGER,
630 	.arg1_type	= ARG_ANYTHING,
631 };
632 
633 static const struct bpf_func_proto *
634 tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
635 {
636 	switch (func_id) {
637 	case BPF_FUNC_map_lookup_elem:
638 		return &bpf_map_lookup_elem_proto;
639 	case BPF_FUNC_map_update_elem:
640 		return &bpf_map_update_elem_proto;
641 	case BPF_FUNC_map_delete_elem:
642 		return &bpf_map_delete_elem_proto;
643 	case BPF_FUNC_map_push_elem:
644 		return &bpf_map_push_elem_proto;
645 	case BPF_FUNC_map_pop_elem:
646 		return &bpf_map_pop_elem_proto;
647 	case BPF_FUNC_map_peek_elem:
648 		return &bpf_map_peek_elem_proto;
649 	case BPF_FUNC_probe_read:
650 		return &bpf_probe_read_proto;
651 	case BPF_FUNC_ktime_get_ns:
652 		return &bpf_ktime_get_ns_proto;
653 	case BPF_FUNC_tail_call:
654 		return &bpf_tail_call_proto;
655 	case BPF_FUNC_get_current_pid_tgid:
656 		return &bpf_get_current_pid_tgid_proto;
657 	case BPF_FUNC_get_current_task:
658 		return &bpf_get_current_task_proto;
659 	case BPF_FUNC_get_current_uid_gid:
660 		return &bpf_get_current_uid_gid_proto;
661 	case BPF_FUNC_get_current_comm:
662 		return &bpf_get_current_comm_proto;
663 	case BPF_FUNC_trace_printk:
664 		return bpf_get_trace_printk_proto();
665 	case BPF_FUNC_get_smp_processor_id:
666 		return &bpf_get_smp_processor_id_proto;
667 	case BPF_FUNC_get_numa_node_id:
668 		return &bpf_get_numa_node_id_proto;
669 	case BPF_FUNC_perf_event_read:
670 		return &bpf_perf_event_read_proto;
671 	case BPF_FUNC_probe_write_user:
672 		return bpf_get_probe_write_proto();
673 	case BPF_FUNC_current_task_under_cgroup:
674 		return &bpf_current_task_under_cgroup_proto;
675 	case BPF_FUNC_get_prandom_u32:
676 		return &bpf_get_prandom_u32_proto;
677 	case BPF_FUNC_probe_read_str:
678 		return &bpf_probe_read_str_proto;
679 #ifdef CONFIG_CGROUPS
680 	case BPF_FUNC_get_current_cgroup_id:
681 		return &bpf_get_current_cgroup_id_proto;
682 #endif
683 	case BPF_FUNC_send_signal:
684 		return &bpf_send_signal_proto;
685 	default:
686 		return NULL;
687 	}
688 }
689 
690 static const struct bpf_func_proto *
691 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
692 {
693 	switch (func_id) {
694 	case BPF_FUNC_perf_event_output:
695 		return &bpf_perf_event_output_proto;
696 	case BPF_FUNC_get_stackid:
697 		return &bpf_get_stackid_proto;
698 	case BPF_FUNC_get_stack:
699 		return &bpf_get_stack_proto;
700 	case BPF_FUNC_perf_event_read_value:
701 		return &bpf_perf_event_read_value_proto;
702 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
703 	case BPF_FUNC_override_return:
704 		return &bpf_override_return_proto;
705 #endif
706 	default:
707 		return tracing_func_proto(func_id, prog);
708 	}
709 }
710 
711 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
712 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
713 					const struct bpf_prog *prog,
714 					struct bpf_insn_access_aux *info)
715 {
716 	if (off < 0 || off >= sizeof(struct pt_regs))
717 		return false;
718 	if (type != BPF_READ)
719 		return false;
720 	if (off % size != 0)
721 		return false;
722 	/*
723 	 * Assertion for 32 bit to make sure last 8 byte access
724 	 * (BPF_DW) to the last 4 byte member is disallowed.
725 	 */
726 	if (off + size > sizeof(struct pt_regs))
727 		return false;
728 
729 	return true;
730 }
731 
732 const struct bpf_verifier_ops kprobe_verifier_ops = {
733 	.get_func_proto  = kprobe_prog_func_proto,
734 	.is_valid_access = kprobe_prog_is_valid_access,
735 };
736 
737 const struct bpf_prog_ops kprobe_prog_ops = {
738 };
739 
740 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
741 	   u64, flags, void *, data, u64, size)
742 {
743 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
744 
745 	/*
746 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
747 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
748 	 * from there and call the same bpf_perf_event_output() helper inline.
749 	 */
750 	return ____bpf_perf_event_output(regs, map, flags, data, size);
751 }
752 
753 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
754 	.func		= bpf_perf_event_output_tp,
755 	.gpl_only	= true,
756 	.ret_type	= RET_INTEGER,
757 	.arg1_type	= ARG_PTR_TO_CTX,
758 	.arg2_type	= ARG_CONST_MAP_PTR,
759 	.arg3_type	= ARG_ANYTHING,
760 	.arg4_type	= ARG_PTR_TO_MEM,
761 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
762 };
763 
764 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
765 	   u64, flags)
766 {
767 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
768 
769 	/*
770 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
771 	 * the other helper's function body cannot be inlined due to being
772 	 * external, thus we need to call raw helper function.
773 	 */
774 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
775 			       flags, 0, 0);
776 }
777 
778 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
779 	.func		= bpf_get_stackid_tp,
780 	.gpl_only	= true,
781 	.ret_type	= RET_INTEGER,
782 	.arg1_type	= ARG_PTR_TO_CTX,
783 	.arg2_type	= ARG_CONST_MAP_PTR,
784 	.arg3_type	= ARG_ANYTHING,
785 };
786 
787 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
788 	   u64, flags)
789 {
790 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
791 
792 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
793 			     (unsigned long) size, flags, 0);
794 }
795 
796 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
797 	.func		= bpf_get_stack_tp,
798 	.gpl_only	= true,
799 	.ret_type	= RET_INTEGER,
800 	.arg1_type	= ARG_PTR_TO_CTX,
801 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
802 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
803 	.arg4_type	= ARG_ANYTHING,
804 };
805 
806 static const struct bpf_func_proto *
807 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
808 {
809 	switch (func_id) {
810 	case BPF_FUNC_perf_event_output:
811 		return &bpf_perf_event_output_proto_tp;
812 	case BPF_FUNC_get_stackid:
813 		return &bpf_get_stackid_proto_tp;
814 	case BPF_FUNC_get_stack:
815 		return &bpf_get_stack_proto_tp;
816 	default:
817 		return tracing_func_proto(func_id, prog);
818 	}
819 }
820 
821 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
822 				    const struct bpf_prog *prog,
823 				    struct bpf_insn_access_aux *info)
824 {
825 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
826 		return false;
827 	if (type != BPF_READ)
828 		return false;
829 	if (off % size != 0)
830 		return false;
831 
832 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
833 	return true;
834 }
835 
836 const struct bpf_verifier_ops tracepoint_verifier_ops = {
837 	.get_func_proto  = tp_prog_func_proto,
838 	.is_valid_access = tp_prog_is_valid_access,
839 };
840 
841 const struct bpf_prog_ops tracepoint_prog_ops = {
842 };
843 
844 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
845 	   struct bpf_perf_event_value *, buf, u32, size)
846 {
847 	int err = -EINVAL;
848 
849 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
850 		goto clear;
851 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
852 				    &buf->running);
853 	if (unlikely(err))
854 		goto clear;
855 	return 0;
856 clear:
857 	memset(buf, 0, size);
858 	return err;
859 }
860 
861 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
862          .func           = bpf_perf_prog_read_value,
863          .gpl_only       = true,
864          .ret_type       = RET_INTEGER,
865          .arg1_type      = ARG_PTR_TO_CTX,
866          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
867          .arg3_type      = ARG_CONST_SIZE,
868 };
869 
870 static const struct bpf_func_proto *
871 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
872 {
873 	switch (func_id) {
874 	case BPF_FUNC_perf_event_output:
875 		return &bpf_perf_event_output_proto_tp;
876 	case BPF_FUNC_get_stackid:
877 		return &bpf_get_stackid_proto_tp;
878 	case BPF_FUNC_get_stack:
879 		return &bpf_get_stack_proto_tp;
880 	case BPF_FUNC_perf_prog_read_value:
881 		return &bpf_perf_prog_read_value_proto;
882 	default:
883 		return tracing_func_proto(func_id, prog);
884 	}
885 }
886 
887 /*
888  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
889  * to avoid potential recursive reuse issue when/if tracepoints are added
890  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack
891  */
892 static DEFINE_PER_CPU(struct pt_regs, bpf_raw_tp_regs);
893 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
894 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
895 {
896 	struct pt_regs *regs = this_cpu_ptr(&bpf_raw_tp_regs);
897 
898 	perf_fetch_caller_regs(regs);
899 	return ____bpf_perf_event_output(regs, map, flags, data, size);
900 }
901 
902 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
903 	.func		= bpf_perf_event_output_raw_tp,
904 	.gpl_only	= true,
905 	.ret_type	= RET_INTEGER,
906 	.arg1_type	= ARG_PTR_TO_CTX,
907 	.arg2_type	= ARG_CONST_MAP_PTR,
908 	.arg3_type	= ARG_ANYTHING,
909 	.arg4_type	= ARG_PTR_TO_MEM,
910 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
911 };
912 
913 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
914 	   struct bpf_map *, map, u64, flags)
915 {
916 	struct pt_regs *regs = this_cpu_ptr(&bpf_raw_tp_regs);
917 
918 	perf_fetch_caller_regs(regs);
919 	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
920 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
921 			       flags, 0, 0);
922 }
923 
924 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
925 	.func		= bpf_get_stackid_raw_tp,
926 	.gpl_only	= true,
927 	.ret_type	= RET_INTEGER,
928 	.arg1_type	= ARG_PTR_TO_CTX,
929 	.arg2_type	= ARG_CONST_MAP_PTR,
930 	.arg3_type	= ARG_ANYTHING,
931 };
932 
933 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
934 	   void *, buf, u32, size, u64, flags)
935 {
936 	struct pt_regs *regs = this_cpu_ptr(&bpf_raw_tp_regs);
937 
938 	perf_fetch_caller_regs(regs);
939 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
940 			     (unsigned long) size, flags, 0);
941 }
942 
943 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
944 	.func		= bpf_get_stack_raw_tp,
945 	.gpl_only	= true,
946 	.ret_type	= RET_INTEGER,
947 	.arg1_type	= ARG_PTR_TO_CTX,
948 	.arg2_type	= ARG_PTR_TO_MEM,
949 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
950 	.arg4_type	= ARG_ANYTHING,
951 };
952 
953 static const struct bpf_func_proto *
954 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
955 {
956 	switch (func_id) {
957 	case BPF_FUNC_perf_event_output:
958 		return &bpf_perf_event_output_proto_raw_tp;
959 	case BPF_FUNC_get_stackid:
960 		return &bpf_get_stackid_proto_raw_tp;
961 	case BPF_FUNC_get_stack:
962 		return &bpf_get_stack_proto_raw_tp;
963 	default:
964 		return tracing_func_proto(func_id, prog);
965 	}
966 }
967 
968 static bool raw_tp_prog_is_valid_access(int off, int size,
969 					enum bpf_access_type type,
970 					const struct bpf_prog *prog,
971 					struct bpf_insn_access_aux *info)
972 {
973 	/* largest tracepoint in the kernel has 12 args */
974 	if (off < 0 || off >= sizeof(__u64) * 12)
975 		return false;
976 	if (type != BPF_READ)
977 		return false;
978 	if (off % size != 0)
979 		return false;
980 	return true;
981 }
982 
983 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
984 	.get_func_proto  = raw_tp_prog_func_proto,
985 	.is_valid_access = raw_tp_prog_is_valid_access,
986 };
987 
988 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
989 };
990 
991 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
992 						 enum bpf_access_type type,
993 						 const struct bpf_prog *prog,
994 						 struct bpf_insn_access_aux *info)
995 {
996 	if (off == 0) {
997 		if (size != sizeof(u64) || type != BPF_READ)
998 			return false;
999 		info->reg_type = PTR_TO_TP_BUFFER;
1000 	}
1001 	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1002 }
1003 
1004 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1005 	.get_func_proto  = raw_tp_prog_func_proto,
1006 	.is_valid_access = raw_tp_writable_prog_is_valid_access,
1007 };
1008 
1009 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1010 };
1011 
1012 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1013 				    const struct bpf_prog *prog,
1014 				    struct bpf_insn_access_aux *info)
1015 {
1016 	const int size_u64 = sizeof(u64);
1017 
1018 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1019 		return false;
1020 	if (type != BPF_READ)
1021 		return false;
1022 	if (off % size != 0) {
1023 		if (sizeof(unsigned long) != 4)
1024 			return false;
1025 		if (size != 8)
1026 			return false;
1027 		if (off % size != 4)
1028 			return false;
1029 	}
1030 
1031 	switch (off) {
1032 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1033 		bpf_ctx_record_field_size(info, size_u64);
1034 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1035 			return false;
1036 		break;
1037 	case bpf_ctx_range(struct bpf_perf_event_data, addr):
1038 		bpf_ctx_record_field_size(info, size_u64);
1039 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1040 			return false;
1041 		break;
1042 	default:
1043 		if (size != sizeof(long))
1044 			return false;
1045 	}
1046 
1047 	return true;
1048 }
1049 
1050 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1051 				      const struct bpf_insn *si,
1052 				      struct bpf_insn *insn_buf,
1053 				      struct bpf_prog *prog, u32 *target_size)
1054 {
1055 	struct bpf_insn *insn = insn_buf;
1056 
1057 	switch (si->off) {
1058 	case offsetof(struct bpf_perf_event_data, sample_period):
1059 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1060 						       data), si->dst_reg, si->src_reg,
1061 				      offsetof(struct bpf_perf_event_data_kern, data));
1062 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1063 				      bpf_target_off(struct perf_sample_data, period, 8,
1064 						     target_size));
1065 		break;
1066 	case offsetof(struct bpf_perf_event_data, addr):
1067 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1068 						       data), si->dst_reg, si->src_reg,
1069 				      offsetof(struct bpf_perf_event_data_kern, data));
1070 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1071 				      bpf_target_off(struct perf_sample_data, addr, 8,
1072 						     target_size));
1073 		break;
1074 	default:
1075 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1076 						       regs), si->dst_reg, si->src_reg,
1077 				      offsetof(struct bpf_perf_event_data_kern, regs));
1078 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1079 				      si->off);
1080 		break;
1081 	}
1082 
1083 	return insn - insn_buf;
1084 }
1085 
1086 const struct bpf_verifier_ops perf_event_verifier_ops = {
1087 	.get_func_proto		= pe_prog_func_proto,
1088 	.is_valid_access	= pe_prog_is_valid_access,
1089 	.convert_ctx_access	= pe_prog_convert_ctx_access,
1090 };
1091 
1092 const struct bpf_prog_ops perf_event_prog_ops = {
1093 };
1094 
1095 static DEFINE_MUTEX(bpf_event_mutex);
1096 
1097 #define BPF_TRACE_MAX_PROGS 64
1098 
1099 int perf_event_attach_bpf_prog(struct perf_event *event,
1100 			       struct bpf_prog *prog)
1101 {
1102 	struct bpf_prog_array __rcu *old_array;
1103 	struct bpf_prog_array *new_array;
1104 	int ret = -EEXIST;
1105 
1106 	/*
1107 	 * Kprobe override only works if they are on the function entry,
1108 	 * and only if they are on the opt-in list.
1109 	 */
1110 	if (prog->kprobe_override &&
1111 	    (!trace_kprobe_on_func_entry(event->tp_event) ||
1112 	     !trace_kprobe_error_injectable(event->tp_event)))
1113 		return -EINVAL;
1114 
1115 	mutex_lock(&bpf_event_mutex);
1116 
1117 	if (event->prog)
1118 		goto unlock;
1119 
1120 	old_array = event->tp_event->prog_array;
1121 	if (old_array &&
1122 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1123 		ret = -E2BIG;
1124 		goto unlock;
1125 	}
1126 
1127 	ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
1128 	if (ret < 0)
1129 		goto unlock;
1130 
1131 	/* set the new array to event->tp_event and set event->prog */
1132 	event->prog = prog;
1133 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
1134 	bpf_prog_array_free(old_array);
1135 
1136 unlock:
1137 	mutex_unlock(&bpf_event_mutex);
1138 	return ret;
1139 }
1140 
1141 void perf_event_detach_bpf_prog(struct perf_event *event)
1142 {
1143 	struct bpf_prog_array __rcu *old_array;
1144 	struct bpf_prog_array *new_array;
1145 	int ret;
1146 
1147 	mutex_lock(&bpf_event_mutex);
1148 
1149 	if (!event->prog)
1150 		goto unlock;
1151 
1152 	old_array = event->tp_event->prog_array;
1153 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
1154 	if (ret == -ENOENT)
1155 		goto unlock;
1156 	if (ret < 0) {
1157 		bpf_prog_array_delete_safe(old_array, event->prog);
1158 	} else {
1159 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
1160 		bpf_prog_array_free(old_array);
1161 	}
1162 
1163 	bpf_prog_put(event->prog);
1164 	event->prog = NULL;
1165 
1166 unlock:
1167 	mutex_unlock(&bpf_event_mutex);
1168 }
1169 
1170 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1171 {
1172 	struct perf_event_query_bpf __user *uquery = info;
1173 	struct perf_event_query_bpf query = {};
1174 	u32 *ids, prog_cnt, ids_len;
1175 	int ret;
1176 
1177 	if (!capable(CAP_SYS_ADMIN))
1178 		return -EPERM;
1179 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
1180 		return -EINVAL;
1181 	if (copy_from_user(&query, uquery, sizeof(query)))
1182 		return -EFAULT;
1183 
1184 	ids_len = query.ids_len;
1185 	if (ids_len > BPF_TRACE_MAX_PROGS)
1186 		return -E2BIG;
1187 	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1188 	if (!ids)
1189 		return -ENOMEM;
1190 	/*
1191 	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1192 	 * is required when user only wants to check for uquery->prog_cnt.
1193 	 * There is no need to check for it since the case is handled
1194 	 * gracefully in bpf_prog_array_copy_info.
1195 	 */
1196 
1197 	mutex_lock(&bpf_event_mutex);
1198 	ret = bpf_prog_array_copy_info(event->tp_event->prog_array,
1199 				       ids,
1200 				       ids_len,
1201 				       &prog_cnt);
1202 	mutex_unlock(&bpf_event_mutex);
1203 
1204 	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
1205 	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
1206 		ret = -EFAULT;
1207 
1208 	kfree(ids);
1209 	return ret;
1210 }
1211 
1212 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
1213 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
1214 
1215 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
1216 {
1217 	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
1218 
1219 	for (; btp < __stop__bpf_raw_tp; btp++) {
1220 		if (!strcmp(btp->tp->name, name))
1221 			return btp;
1222 	}
1223 
1224 	return bpf_get_raw_tracepoint_module(name);
1225 }
1226 
1227 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
1228 {
1229 	struct module *mod = __module_address((unsigned long)btp);
1230 
1231 	if (mod)
1232 		module_put(mod);
1233 }
1234 
1235 static __always_inline
1236 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
1237 {
1238 	rcu_read_lock();
1239 	preempt_disable();
1240 	(void) BPF_PROG_RUN(prog, args);
1241 	preempt_enable();
1242 	rcu_read_unlock();
1243 }
1244 
1245 #define UNPACK(...)			__VA_ARGS__
1246 #define REPEAT_1(FN, DL, X, ...)	FN(X)
1247 #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
1248 #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
1249 #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
1250 #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
1251 #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
1252 #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
1253 #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
1254 #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
1255 #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
1256 #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
1257 #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
1258 #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
1259 
1260 #define SARG(X)		u64 arg##X
1261 #define COPY(X)		args[X] = arg##X
1262 
1263 #define __DL_COM	(,)
1264 #define __DL_SEM	(;)
1265 
1266 #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
1267 
1268 #define BPF_TRACE_DEFN_x(x)						\
1269 	void bpf_trace_run##x(struct bpf_prog *prog,			\
1270 			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
1271 	{								\
1272 		u64 args[x];						\
1273 		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
1274 		__bpf_trace_run(prog, args);				\
1275 	}								\
1276 	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
1277 BPF_TRACE_DEFN_x(1);
1278 BPF_TRACE_DEFN_x(2);
1279 BPF_TRACE_DEFN_x(3);
1280 BPF_TRACE_DEFN_x(4);
1281 BPF_TRACE_DEFN_x(5);
1282 BPF_TRACE_DEFN_x(6);
1283 BPF_TRACE_DEFN_x(7);
1284 BPF_TRACE_DEFN_x(8);
1285 BPF_TRACE_DEFN_x(9);
1286 BPF_TRACE_DEFN_x(10);
1287 BPF_TRACE_DEFN_x(11);
1288 BPF_TRACE_DEFN_x(12);
1289 
1290 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1291 {
1292 	struct tracepoint *tp = btp->tp;
1293 
1294 	/*
1295 	 * check that program doesn't access arguments beyond what's
1296 	 * available in this tracepoint
1297 	 */
1298 	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
1299 		return -EINVAL;
1300 
1301 	if (prog->aux->max_tp_access > btp->writable_size)
1302 		return -EINVAL;
1303 
1304 	return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog);
1305 }
1306 
1307 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1308 {
1309 	return __bpf_probe_register(btp, prog);
1310 }
1311 
1312 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1313 {
1314 	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
1315 }
1316 
1317 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
1318 			    u32 *fd_type, const char **buf,
1319 			    u64 *probe_offset, u64 *probe_addr)
1320 {
1321 	bool is_tracepoint, is_syscall_tp;
1322 	struct bpf_prog *prog;
1323 	int flags, err = 0;
1324 
1325 	prog = event->prog;
1326 	if (!prog)
1327 		return -ENOENT;
1328 
1329 	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
1330 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
1331 		return -EOPNOTSUPP;
1332 
1333 	*prog_id = prog->aux->id;
1334 	flags = event->tp_event->flags;
1335 	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
1336 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
1337 
1338 	if (is_tracepoint || is_syscall_tp) {
1339 		*buf = is_tracepoint ? event->tp_event->tp->name
1340 				     : event->tp_event->name;
1341 		*fd_type = BPF_FD_TYPE_TRACEPOINT;
1342 		*probe_offset = 0x0;
1343 		*probe_addr = 0x0;
1344 	} else {
1345 		/* kprobe/uprobe */
1346 		err = -EOPNOTSUPP;
1347 #ifdef CONFIG_KPROBE_EVENTS
1348 		if (flags & TRACE_EVENT_FL_KPROBE)
1349 			err = bpf_get_kprobe_info(event, fd_type, buf,
1350 						  probe_offset, probe_addr,
1351 						  event->attr.type == PERF_TYPE_TRACEPOINT);
1352 #endif
1353 #ifdef CONFIG_UPROBE_EVENTS
1354 		if (flags & TRACE_EVENT_FL_UPROBE)
1355 			err = bpf_get_uprobe_info(event, fd_type, buf,
1356 						  probe_offset,
1357 						  event->attr.type == PERF_TYPE_TRACEPOINT);
1358 #endif
1359 	}
1360 
1361 	return err;
1362 }
1363 
1364 #ifdef CONFIG_MODULES
1365 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
1366 			    void *module)
1367 {
1368 	struct bpf_trace_module *btm, *tmp;
1369 	struct module *mod = module;
1370 
1371 	if (mod->num_bpf_raw_events == 0 ||
1372 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
1373 		return 0;
1374 
1375 	mutex_lock(&bpf_module_mutex);
1376 
1377 	switch (op) {
1378 	case MODULE_STATE_COMING:
1379 		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
1380 		if (btm) {
1381 			btm->module = module;
1382 			list_add(&btm->list, &bpf_trace_modules);
1383 		}
1384 		break;
1385 	case MODULE_STATE_GOING:
1386 		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
1387 			if (btm->module == module) {
1388 				list_del(&btm->list);
1389 				kfree(btm);
1390 				break;
1391 			}
1392 		}
1393 		break;
1394 	}
1395 
1396 	mutex_unlock(&bpf_module_mutex);
1397 
1398 	return 0;
1399 }
1400 
1401 static struct notifier_block bpf_module_nb = {
1402 	.notifier_call = bpf_event_notify,
1403 };
1404 
1405 static int __init bpf_event_init(void)
1406 {
1407 	register_module_notifier(&bpf_module_nb);
1408 	return 0;
1409 }
1410 
1411 static int __init send_signal_irq_work_init(void)
1412 {
1413 	int cpu;
1414 	struct send_signal_irq_work *work;
1415 
1416 	for_each_possible_cpu(cpu) {
1417 		work = per_cpu_ptr(&send_signal_work, cpu);
1418 		init_irq_work(&work->irq_work, do_bpf_send_signal);
1419 	}
1420 	return 0;
1421 }
1422 
1423 fs_initcall(bpf_event_init);
1424 subsys_initcall(send_signal_irq_work_init);
1425 #endif /* CONFIG_MODULES */
1426