xref: /linux/kernel/trace/bpf_trace.c (revision 7681a4f58fb9c338d6dfe1181607f84c793d77de)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_verifier.h>
10 #include <linux/bpf_perf_event.h>
11 #include <linux/btf.h>
12 #include <linux/filter.h>
13 #include <linux/uaccess.h>
14 #include <linux/ctype.h>
15 #include <linux/kprobes.h>
16 #include <linux/spinlock.h>
17 #include <linux/syscalls.h>
18 #include <linux/error-injection.h>
19 #include <linux/btf_ids.h>
20 #include <linux/bpf_lsm.h>
21 #include <linux/fprobe.h>
22 #include <linux/bsearch.h>
23 #include <linux/sort.h>
24 #include <linux/key.h>
25 #include <linux/verification.h>
26 
27 #include <net/bpf_sk_storage.h>
28 
29 #include <uapi/linux/bpf.h>
30 #include <uapi/linux/btf.h>
31 
32 #include <asm/tlb.h>
33 
34 #include "trace_probe.h"
35 #include "trace.h"
36 
37 #define CREATE_TRACE_POINTS
38 #include "bpf_trace.h"
39 
40 #define bpf_event_rcu_dereference(p)					\
41 	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
42 
43 #ifdef CONFIG_MODULES
44 struct bpf_trace_module {
45 	struct module *module;
46 	struct list_head list;
47 };
48 
49 static LIST_HEAD(bpf_trace_modules);
50 static DEFINE_MUTEX(bpf_module_mutex);
51 
52 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
53 {
54 	struct bpf_raw_event_map *btp, *ret = NULL;
55 	struct bpf_trace_module *btm;
56 	unsigned int i;
57 
58 	mutex_lock(&bpf_module_mutex);
59 	list_for_each_entry(btm, &bpf_trace_modules, list) {
60 		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
61 			btp = &btm->module->bpf_raw_events[i];
62 			if (!strcmp(btp->tp->name, name)) {
63 				if (try_module_get(btm->module))
64 					ret = btp;
65 				goto out;
66 			}
67 		}
68 	}
69 out:
70 	mutex_unlock(&bpf_module_mutex);
71 	return ret;
72 }
73 #else
74 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
75 {
76 	return NULL;
77 }
78 #endif /* CONFIG_MODULES */
79 
80 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
81 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
82 
83 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
84 				  u64 flags, const struct btf **btf,
85 				  s32 *btf_id);
86 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx);
87 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
88 
89 /**
90  * trace_call_bpf - invoke BPF program
91  * @call: tracepoint event
92  * @ctx: opaque context pointer
93  *
94  * kprobe handlers execute BPF programs via this helper.
95  * Can be used from static tracepoints in the future.
96  *
97  * Return: BPF programs always return an integer which is interpreted by
98  * kprobe handler as:
99  * 0 - return from kprobe (event is filtered out)
100  * 1 - store kprobe event into ring buffer
101  * Other values are reserved and currently alias to 1
102  */
103 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
104 {
105 	unsigned int ret;
106 
107 	cant_sleep();
108 
109 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
110 		/*
111 		 * since some bpf program is already running on this cpu,
112 		 * don't call into another bpf program (same or different)
113 		 * and don't send kprobe event into ring-buffer,
114 		 * so return zero here
115 		 */
116 		ret = 0;
117 		goto out;
118 	}
119 
120 	/*
121 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
122 	 * to all call sites, we did a bpf_prog_array_valid() there to check
123 	 * whether call->prog_array is empty or not, which is
124 	 * a heuristic to speed up execution.
125 	 *
126 	 * If bpf_prog_array_valid() fetched prog_array was
127 	 * non-NULL, we go into trace_call_bpf() and do the actual
128 	 * proper rcu_dereference() under RCU lock.
129 	 * If it turns out that prog_array is NULL then, we bail out.
130 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
131 	 * was NULL, you'll skip the prog_array with the risk of missing
132 	 * out of events when it was updated in between this and the
133 	 * rcu_dereference() which is accepted risk.
134 	 */
135 	rcu_read_lock();
136 	ret = bpf_prog_run_array(rcu_dereference(call->prog_array),
137 				 ctx, bpf_prog_run);
138 	rcu_read_unlock();
139 
140  out:
141 	__this_cpu_dec(bpf_prog_active);
142 
143 	return ret;
144 }
145 
146 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
147 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
148 {
149 	regs_set_return_value(regs, rc);
150 	override_function_with_return(regs);
151 	return 0;
152 }
153 
154 static const struct bpf_func_proto bpf_override_return_proto = {
155 	.func		= bpf_override_return,
156 	.gpl_only	= true,
157 	.ret_type	= RET_INTEGER,
158 	.arg1_type	= ARG_PTR_TO_CTX,
159 	.arg2_type	= ARG_ANYTHING,
160 };
161 #endif
162 
163 static __always_inline int
164 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
165 {
166 	int ret;
167 
168 	ret = copy_from_user_nofault(dst, unsafe_ptr, size);
169 	if (unlikely(ret < 0))
170 		memset(dst, 0, size);
171 	return ret;
172 }
173 
174 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
175 	   const void __user *, unsafe_ptr)
176 {
177 	return bpf_probe_read_user_common(dst, size, unsafe_ptr);
178 }
179 
180 const struct bpf_func_proto bpf_probe_read_user_proto = {
181 	.func		= bpf_probe_read_user,
182 	.gpl_only	= true,
183 	.ret_type	= RET_INTEGER,
184 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
185 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
186 	.arg3_type	= ARG_ANYTHING,
187 };
188 
189 static __always_inline int
190 bpf_probe_read_user_str_common(void *dst, u32 size,
191 			       const void __user *unsafe_ptr)
192 {
193 	int ret;
194 
195 	/*
196 	 * NB: We rely on strncpy_from_user() not copying junk past the NUL
197 	 * terminator into `dst`.
198 	 *
199 	 * strncpy_from_user() does long-sized strides in the fast path. If the
200 	 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
201 	 * then there could be junk after the NUL in `dst`. If user takes `dst`
202 	 * and keys a hash map with it, then semantically identical strings can
203 	 * occupy multiple entries in the map.
204 	 */
205 	ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
206 	if (unlikely(ret < 0))
207 		memset(dst, 0, size);
208 	return ret;
209 }
210 
211 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
212 	   const void __user *, unsafe_ptr)
213 {
214 	return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
215 }
216 
217 const struct bpf_func_proto bpf_probe_read_user_str_proto = {
218 	.func		= bpf_probe_read_user_str,
219 	.gpl_only	= true,
220 	.ret_type	= RET_INTEGER,
221 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
222 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
223 	.arg3_type	= ARG_ANYTHING,
224 };
225 
226 static __always_inline int
227 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
228 {
229 	int ret;
230 
231 	ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
232 	if (unlikely(ret < 0))
233 		memset(dst, 0, size);
234 	return ret;
235 }
236 
237 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
238 	   const void *, unsafe_ptr)
239 {
240 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
241 }
242 
243 const struct bpf_func_proto bpf_probe_read_kernel_proto = {
244 	.func		= bpf_probe_read_kernel,
245 	.gpl_only	= true,
246 	.ret_type	= RET_INTEGER,
247 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
248 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
249 	.arg3_type	= ARG_ANYTHING,
250 };
251 
252 static __always_inline int
253 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
254 {
255 	int ret;
256 
257 	/*
258 	 * The strncpy_from_kernel_nofault() call will likely not fill the
259 	 * entire buffer, but that's okay in this circumstance as we're probing
260 	 * arbitrary memory anyway similar to bpf_probe_read_*() and might
261 	 * as well probe the stack. Thus, memory is explicitly cleared
262 	 * only in error case, so that improper users ignoring return
263 	 * code altogether don't copy garbage; otherwise length of string
264 	 * is returned that can be used for bpf_perf_event_output() et al.
265 	 */
266 	ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
267 	if (unlikely(ret < 0))
268 		memset(dst, 0, size);
269 	return ret;
270 }
271 
272 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
273 	   const void *, unsafe_ptr)
274 {
275 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
276 }
277 
278 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
279 	.func		= bpf_probe_read_kernel_str,
280 	.gpl_only	= true,
281 	.ret_type	= RET_INTEGER,
282 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
283 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
284 	.arg3_type	= ARG_ANYTHING,
285 };
286 
287 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
288 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
289 	   const void *, unsafe_ptr)
290 {
291 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
292 		return bpf_probe_read_user_common(dst, size,
293 				(__force void __user *)unsafe_ptr);
294 	}
295 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
296 }
297 
298 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
299 	.func		= bpf_probe_read_compat,
300 	.gpl_only	= true,
301 	.ret_type	= RET_INTEGER,
302 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
303 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
304 	.arg3_type	= ARG_ANYTHING,
305 };
306 
307 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
308 	   const void *, unsafe_ptr)
309 {
310 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
311 		return bpf_probe_read_user_str_common(dst, size,
312 				(__force void __user *)unsafe_ptr);
313 	}
314 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
315 }
316 
317 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
318 	.func		= bpf_probe_read_compat_str,
319 	.gpl_only	= true,
320 	.ret_type	= RET_INTEGER,
321 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
322 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
323 	.arg3_type	= ARG_ANYTHING,
324 };
325 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
326 
327 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
328 	   u32, size)
329 {
330 	/*
331 	 * Ensure we're in user context which is safe for the helper to
332 	 * run. This helper has no business in a kthread.
333 	 *
334 	 * access_ok() should prevent writing to non-user memory, but in
335 	 * some situations (nommu, temporary switch, etc) access_ok() does
336 	 * not provide enough validation, hence the check on KERNEL_DS.
337 	 *
338 	 * nmi_uaccess_okay() ensures the probe is not run in an interim
339 	 * state, when the task or mm are switched. This is specifically
340 	 * required to prevent the use of temporary mm.
341 	 */
342 
343 	if (unlikely(in_interrupt() ||
344 		     current->flags & (PF_KTHREAD | PF_EXITING)))
345 		return -EPERM;
346 	if (unlikely(!nmi_uaccess_okay()))
347 		return -EPERM;
348 
349 	return copy_to_user_nofault(unsafe_ptr, src, size);
350 }
351 
352 static const struct bpf_func_proto bpf_probe_write_user_proto = {
353 	.func		= bpf_probe_write_user,
354 	.gpl_only	= true,
355 	.ret_type	= RET_INTEGER,
356 	.arg1_type	= ARG_ANYTHING,
357 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
358 	.arg3_type	= ARG_CONST_SIZE,
359 };
360 
361 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
362 {
363 	if (!capable(CAP_SYS_ADMIN))
364 		return NULL;
365 
366 	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
367 			    current->comm, task_pid_nr(current));
368 
369 	return &bpf_probe_write_user_proto;
370 }
371 
372 #define MAX_TRACE_PRINTK_VARARGS	3
373 #define BPF_TRACE_PRINTK_SIZE		1024
374 
375 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
376 	   u64, arg2, u64, arg3)
377 {
378 	u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 };
379 	struct bpf_bprintf_data data = {
380 		.get_bin_args	= true,
381 		.get_buf	= true,
382 	};
383 	int ret;
384 
385 	ret = bpf_bprintf_prepare(fmt, fmt_size, args,
386 				  MAX_TRACE_PRINTK_VARARGS, &data);
387 	if (ret < 0)
388 		return ret;
389 
390 	ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
391 
392 	trace_bpf_trace_printk(data.buf);
393 
394 	bpf_bprintf_cleanup(&data);
395 
396 	return ret;
397 }
398 
399 static const struct bpf_func_proto bpf_trace_printk_proto = {
400 	.func		= bpf_trace_printk,
401 	.gpl_only	= true,
402 	.ret_type	= RET_INTEGER,
403 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
404 	.arg2_type	= ARG_CONST_SIZE,
405 };
406 
407 static void __set_printk_clr_event(void)
408 {
409 	/*
410 	 * This program might be calling bpf_trace_printk,
411 	 * so enable the associated bpf_trace/bpf_trace_printk event.
412 	 * Repeat this each time as it is possible a user has
413 	 * disabled bpf_trace_printk events.  By loading a program
414 	 * calling bpf_trace_printk() however the user has expressed
415 	 * the intent to see such events.
416 	 */
417 	if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
418 		pr_warn_ratelimited("could not enable bpf_trace_printk events");
419 }
420 
421 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
422 {
423 	__set_printk_clr_event();
424 	return &bpf_trace_printk_proto;
425 }
426 
427 BPF_CALL_4(bpf_trace_vprintk, char *, fmt, u32, fmt_size, const void *, args,
428 	   u32, data_len)
429 {
430 	struct bpf_bprintf_data data = {
431 		.get_bin_args	= true,
432 		.get_buf	= true,
433 	};
434 	int ret, num_args;
435 
436 	if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
437 	    (data_len && !args))
438 		return -EINVAL;
439 	num_args = data_len / 8;
440 
441 	ret = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
442 	if (ret < 0)
443 		return ret;
444 
445 	ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
446 
447 	trace_bpf_trace_printk(data.buf);
448 
449 	bpf_bprintf_cleanup(&data);
450 
451 	return ret;
452 }
453 
454 static const struct bpf_func_proto bpf_trace_vprintk_proto = {
455 	.func		= bpf_trace_vprintk,
456 	.gpl_only	= true,
457 	.ret_type	= RET_INTEGER,
458 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
459 	.arg2_type	= ARG_CONST_SIZE,
460 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
461 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
462 };
463 
464 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void)
465 {
466 	__set_printk_clr_event();
467 	return &bpf_trace_vprintk_proto;
468 }
469 
470 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
471 	   const void *, args, u32, data_len)
472 {
473 	struct bpf_bprintf_data data = {
474 		.get_bin_args	= true,
475 	};
476 	int err, num_args;
477 
478 	if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
479 	    (data_len && !args))
480 		return -EINVAL;
481 	num_args = data_len / 8;
482 
483 	err = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
484 	if (err < 0)
485 		return err;
486 
487 	seq_bprintf(m, fmt, data.bin_args);
488 
489 	bpf_bprintf_cleanup(&data);
490 
491 	return seq_has_overflowed(m) ? -EOVERFLOW : 0;
492 }
493 
494 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
495 
496 static const struct bpf_func_proto bpf_seq_printf_proto = {
497 	.func		= bpf_seq_printf,
498 	.gpl_only	= true,
499 	.ret_type	= RET_INTEGER,
500 	.arg1_type	= ARG_PTR_TO_BTF_ID,
501 	.arg1_btf_id	= &btf_seq_file_ids[0],
502 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
503 	.arg3_type	= ARG_CONST_SIZE,
504 	.arg4_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
505 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
506 };
507 
508 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
509 {
510 	return seq_write(m, data, len) ? -EOVERFLOW : 0;
511 }
512 
513 static const struct bpf_func_proto bpf_seq_write_proto = {
514 	.func		= bpf_seq_write,
515 	.gpl_only	= true,
516 	.ret_type	= RET_INTEGER,
517 	.arg1_type	= ARG_PTR_TO_BTF_ID,
518 	.arg1_btf_id	= &btf_seq_file_ids[0],
519 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
520 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
521 };
522 
523 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
524 	   u32, btf_ptr_size, u64, flags)
525 {
526 	const struct btf *btf;
527 	s32 btf_id;
528 	int ret;
529 
530 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
531 	if (ret)
532 		return ret;
533 
534 	return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
535 }
536 
537 static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
538 	.func		= bpf_seq_printf_btf,
539 	.gpl_only	= true,
540 	.ret_type	= RET_INTEGER,
541 	.arg1_type	= ARG_PTR_TO_BTF_ID,
542 	.arg1_btf_id	= &btf_seq_file_ids[0],
543 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
544 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
545 	.arg4_type	= ARG_ANYTHING,
546 };
547 
548 static __always_inline int
549 get_map_perf_counter(struct bpf_map *map, u64 flags,
550 		     u64 *value, u64 *enabled, u64 *running)
551 {
552 	struct bpf_array *array = container_of(map, struct bpf_array, map);
553 	unsigned int cpu = smp_processor_id();
554 	u64 index = flags & BPF_F_INDEX_MASK;
555 	struct bpf_event_entry *ee;
556 
557 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
558 		return -EINVAL;
559 	if (index == BPF_F_CURRENT_CPU)
560 		index = cpu;
561 	if (unlikely(index >= array->map.max_entries))
562 		return -E2BIG;
563 
564 	ee = READ_ONCE(array->ptrs[index]);
565 	if (!ee)
566 		return -ENOENT;
567 
568 	return perf_event_read_local(ee->event, value, enabled, running);
569 }
570 
571 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
572 {
573 	u64 value = 0;
574 	int err;
575 
576 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
577 	/*
578 	 * this api is ugly since we miss [-22..-2] range of valid
579 	 * counter values, but that's uapi
580 	 */
581 	if (err)
582 		return err;
583 	return value;
584 }
585 
586 static const struct bpf_func_proto bpf_perf_event_read_proto = {
587 	.func		= bpf_perf_event_read,
588 	.gpl_only	= true,
589 	.ret_type	= RET_INTEGER,
590 	.arg1_type	= ARG_CONST_MAP_PTR,
591 	.arg2_type	= ARG_ANYTHING,
592 };
593 
594 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
595 	   struct bpf_perf_event_value *, buf, u32, size)
596 {
597 	int err = -EINVAL;
598 
599 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
600 		goto clear;
601 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
602 				   &buf->running);
603 	if (unlikely(err))
604 		goto clear;
605 	return 0;
606 clear:
607 	memset(buf, 0, size);
608 	return err;
609 }
610 
611 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
612 	.func		= bpf_perf_event_read_value,
613 	.gpl_only	= true,
614 	.ret_type	= RET_INTEGER,
615 	.arg1_type	= ARG_CONST_MAP_PTR,
616 	.arg2_type	= ARG_ANYTHING,
617 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
618 	.arg4_type	= ARG_CONST_SIZE,
619 };
620 
621 static __always_inline u64
622 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
623 			u64 flags, struct perf_sample_data *sd)
624 {
625 	struct bpf_array *array = container_of(map, struct bpf_array, map);
626 	unsigned int cpu = smp_processor_id();
627 	u64 index = flags & BPF_F_INDEX_MASK;
628 	struct bpf_event_entry *ee;
629 	struct perf_event *event;
630 
631 	if (index == BPF_F_CURRENT_CPU)
632 		index = cpu;
633 	if (unlikely(index >= array->map.max_entries))
634 		return -E2BIG;
635 
636 	ee = READ_ONCE(array->ptrs[index]);
637 	if (!ee)
638 		return -ENOENT;
639 
640 	event = ee->event;
641 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
642 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
643 		return -EINVAL;
644 
645 	if (unlikely(event->oncpu != cpu))
646 		return -EOPNOTSUPP;
647 
648 	return perf_event_output(event, sd, regs);
649 }
650 
651 /*
652  * Support executing tracepoints in normal, irq, and nmi context that each call
653  * bpf_perf_event_output
654  */
655 struct bpf_trace_sample_data {
656 	struct perf_sample_data sds[3];
657 };
658 
659 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
660 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
661 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
662 	   u64, flags, void *, data, u64, size)
663 {
664 	struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
665 	int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
666 	struct perf_raw_record raw = {
667 		.frag = {
668 			.size = size,
669 			.data = data,
670 		},
671 	};
672 	struct perf_sample_data *sd;
673 	int err;
674 
675 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
676 		err = -EBUSY;
677 		goto out;
678 	}
679 
680 	sd = &sds->sds[nest_level - 1];
681 
682 	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
683 		err = -EINVAL;
684 		goto out;
685 	}
686 
687 	perf_sample_data_init(sd, 0, 0);
688 	sd->raw = &raw;
689 	sd->sample_flags |= PERF_SAMPLE_RAW;
690 
691 	err = __bpf_perf_event_output(regs, map, flags, sd);
692 
693 out:
694 	this_cpu_dec(bpf_trace_nest_level);
695 	return err;
696 }
697 
698 static const struct bpf_func_proto bpf_perf_event_output_proto = {
699 	.func		= bpf_perf_event_output,
700 	.gpl_only	= true,
701 	.ret_type	= RET_INTEGER,
702 	.arg1_type	= ARG_PTR_TO_CTX,
703 	.arg2_type	= ARG_CONST_MAP_PTR,
704 	.arg3_type	= ARG_ANYTHING,
705 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
706 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
707 };
708 
709 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
710 struct bpf_nested_pt_regs {
711 	struct pt_regs regs[3];
712 };
713 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
714 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
715 
716 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
717 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
718 {
719 	int nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
720 	struct perf_raw_frag frag = {
721 		.copy		= ctx_copy,
722 		.size		= ctx_size,
723 		.data		= ctx,
724 	};
725 	struct perf_raw_record raw = {
726 		.frag = {
727 			{
728 				.next	= ctx_size ? &frag : NULL,
729 			},
730 			.size	= meta_size,
731 			.data	= meta,
732 		},
733 	};
734 	struct perf_sample_data *sd;
735 	struct pt_regs *regs;
736 	u64 ret;
737 
738 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
739 		ret = -EBUSY;
740 		goto out;
741 	}
742 	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
743 	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
744 
745 	perf_fetch_caller_regs(regs);
746 	perf_sample_data_init(sd, 0, 0);
747 	sd->raw = &raw;
748 	sd->sample_flags |= PERF_SAMPLE_RAW;
749 
750 	ret = __bpf_perf_event_output(regs, map, flags, sd);
751 out:
752 	this_cpu_dec(bpf_event_output_nest_level);
753 	return ret;
754 }
755 
756 BPF_CALL_0(bpf_get_current_task)
757 {
758 	return (long) current;
759 }
760 
761 const struct bpf_func_proto bpf_get_current_task_proto = {
762 	.func		= bpf_get_current_task,
763 	.gpl_only	= true,
764 	.ret_type	= RET_INTEGER,
765 };
766 
767 BPF_CALL_0(bpf_get_current_task_btf)
768 {
769 	return (unsigned long) current;
770 }
771 
772 const struct bpf_func_proto bpf_get_current_task_btf_proto = {
773 	.func		= bpf_get_current_task_btf,
774 	.gpl_only	= true,
775 	.ret_type	= RET_PTR_TO_BTF_ID_TRUSTED,
776 	.ret_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
777 };
778 
779 BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task)
780 {
781 	return (unsigned long) task_pt_regs(task);
782 }
783 
784 BTF_ID_LIST(bpf_task_pt_regs_ids)
785 BTF_ID(struct, pt_regs)
786 
787 const struct bpf_func_proto bpf_task_pt_regs_proto = {
788 	.func		= bpf_task_pt_regs,
789 	.gpl_only	= true,
790 	.arg1_type	= ARG_PTR_TO_BTF_ID,
791 	.arg1_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
792 	.ret_type	= RET_PTR_TO_BTF_ID,
793 	.ret_btf_id	= &bpf_task_pt_regs_ids[0],
794 };
795 
796 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
797 {
798 	struct bpf_array *array = container_of(map, struct bpf_array, map);
799 	struct cgroup *cgrp;
800 
801 	if (unlikely(idx >= array->map.max_entries))
802 		return -E2BIG;
803 
804 	cgrp = READ_ONCE(array->ptrs[idx]);
805 	if (unlikely(!cgrp))
806 		return -EAGAIN;
807 
808 	return task_under_cgroup_hierarchy(current, cgrp);
809 }
810 
811 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
812 	.func           = bpf_current_task_under_cgroup,
813 	.gpl_only       = false,
814 	.ret_type       = RET_INTEGER,
815 	.arg1_type      = ARG_CONST_MAP_PTR,
816 	.arg2_type      = ARG_ANYTHING,
817 };
818 
819 struct send_signal_irq_work {
820 	struct irq_work irq_work;
821 	struct task_struct *task;
822 	u32 sig;
823 	enum pid_type type;
824 };
825 
826 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
827 
828 static void do_bpf_send_signal(struct irq_work *entry)
829 {
830 	struct send_signal_irq_work *work;
831 
832 	work = container_of(entry, struct send_signal_irq_work, irq_work);
833 	group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
834 }
835 
836 static int bpf_send_signal_common(u32 sig, enum pid_type type)
837 {
838 	struct send_signal_irq_work *work = NULL;
839 
840 	/* Similar to bpf_probe_write_user, task needs to be
841 	 * in a sound condition and kernel memory access be
842 	 * permitted in order to send signal to the current
843 	 * task.
844 	 */
845 	if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
846 		return -EPERM;
847 	if (unlikely(!nmi_uaccess_okay()))
848 		return -EPERM;
849 	/* Task should not be pid=1 to avoid kernel panic. */
850 	if (unlikely(is_global_init(current)))
851 		return -EPERM;
852 
853 	if (irqs_disabled()) {
854 		/* Do an early check on signal validity. Otherwise,
855 		 * the error is lost in deferred irq_work.
856 		 */
857 		if (unlikely(!valid_signal(sig)))
858 			return -EINVAL;
859 
860 		work = this_cpu_ptr(&send_signal_work);
861 		if (irq_work_is_busy(&work->irq_work))
862 			return -EBUSY;
863 
864 		/* Add the current task, which is the target of sending signal,
865 		 * to the irq_work. The current task may change when queued
866 		 * irq works get executed.
867 		 */
868 		work->task = current;
869 		work->sig = sig;
870 		work->type = type;
871 		irq_work_queue(&work->irq_work);
872 		return 0;
873 	}
874 
875 	return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
876 }
877 
878 BPF_CALL_1(bpf_send_signal, u32, sig)
879 {
880 	return bpf_send_signal_common(sig, PIDTYPE_TGID);
881 }
882 
883 static const struct bpf_func_proto bpf_send_signal_proto = {
884 	.func		= bpf_send_signal,
885 	.gpl_only	= false,
886 	.ret_type	= RET_INTEGER,
887 	.arg1_type	= ARG_ANYTHING,
888 };
889 
890 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
891 {
892 	return bpf_send_signal_common(sig, PIDTYPE_PID);
893 }
894 
895 static const struct bpf_func_proto bpf_send_signal_thread_proto = {
896 	.func		= bpf_send_signal_thread,
897 	.gpl_only	= false,
898 	.ret_type	= RET_INTEGER,
899 	.arg1_type	= ARG_ANYTHING,
900 };
901 
902 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
903 {
904 	long len;
905 	char *p;
906 
907 	if (!sz)
908 		return 0;
909 
910 	p = d_path(path, buf, sz);
911 	if (IS_ERR(p)) {
912 		len = PTR_ERR(p);
913 	} else {
914 		len = buf + sz - p;
915 		memmove(buf, p, len);
916 	}
917 
918 	return len;
919 }
920 
921 BTF_SET_START(btf_allowlist_d_path)
922 #ifdef CONFIG_SECURITY
923 BTF_ID(func, security_file_permission)
924 BTF_ID(func, security_inode_getattr)
925 BTF_ID(func, security_file_open)
926 #endif
927 #ifdef CONFIG_SECURITY_PATH
928 BTF_ID(func, security_path_truncate)
929 #endif
930 BTF_ID(func, vfs_truncate)
931 BTF_ID(func, vfs_fallocate)
932 BTF_ID(func, dentry_open)
933 BTF_ID(func, vfs_getattr)
934 BTF_ID(func, filp_close)
935 BTF_SET_END(btf_allowlist_d_path)
936 
937 static bool bpf_d_path_allowed(const struct bpf_prog *prog)
938 {
939 	if (prog->type == BPF_PROG_TYPE_TRACING &&
940 	    prog->expected_attach_type == BPF_TRACE_ITER)
941 		return true;
942 
943 	if (prog->type == BPF_PROG_TYPE_LSM)
944 		return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id);
945 
946 	return btf_id_set_contains(&btf_allowlist_d_path,
947 				   prog->aux->attach_btf_id);
948 }
949 
950 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
951 
952 static const struct bpf_func_proto bpf_d_path_proto = {
953 	.func		= bpf_d_path,
954 	.gpl_only	= false,
955 	.ret_type	= RET_INTEGER,
956 	.arg1_type	= ARG_PTR_TO_BTF_ID,
957 	.arg1_btf_id	= &bpf_d_path_btf_ids[0],
958 	.arg2_type	= ARG_PTR_TO_MEM,
959 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
960 	.allowed	= bpf_d_path_allowed,
961 };
962 
963 #define BTF_F_ALL	(BTF_F_COMPACT  | BTF_F_NONAME | \
964 			 BTF_F_PTR_RAW | BTF_F_ZERO)
965 
966 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
967 				  u64 flags, const struct btf **btf,
968 				  s32 *btf_id)
969 {
970 	const struct btf_type *t;
971 
972 	if (unlikely(flags & ~(BTF_F_ALL)))
973 		return -EINVAL;
974 
975 	if (btf_ptr_size != sizeof(struct btf_ptr))
976 		return -EINVAL;
977 
978 	*btf = bpf_get_btf_vmlinux();
979 
980 	if (IS_ERR_OR_NULL(*btf))
981 		return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
982 
983 	if (ptr->type_id > 0)
984 		*btf_id = ptr->type_id;
985 	else
986 		return -EINVAL;
987 
988 	if (*btf_id > 0)
989 		t = btf_type_by_id(*btf, *btf_id);
990 	if (*btf_id <= 0 || !t)
991 		return -ENOENT;
992 
993 	return 0;
994 }
995 
996 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
997 	   u32, btf_ptr_size, u64, flags)
998 {
999 	const struct btf *btf;
1000 	s32 btf_id;
1001 	int ret;
1002 
1003 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
1004 	if (ret)
1005 		return ret;
1006 
1007 	return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
1008 				      flags);
1009 }
1010 
1011 const struct bpf_func_proto bpf_snprintf_btf_proto = {
1012 	.func		= bpf_snprintf_btf,
1013 	.gpl_only	= false,
1014 	.ret_type	= RET_INTEGER,
1015 	.arg1_type	= ARG_PTR_TO_MEM,
1016 	.arg2_type	= ARG_CONST_SIZE,
1017 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1018 	.arg4_type	= ARG_CONST_SIZE,
1019 	.arg5_type	= ARG_ANYTHING,
1020 };
1021 
1022 BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx)
1023 {
1024 	/* This helper call is inlined by verifier. */
1025 	return ((u64 *)ctx)[-2];
1026 }
1027 
1028 static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = {
1029 	.func		= bpf_get_func_ip_tracing,
1030 	.gpl_only	= true,
1031 	.ret_type	= RET_INTEGER,
1032 	.arg1_type	= ARG_PTR_TO_CTX,
1033 };
1034 
1035 #ifdef CONFIG_X86_KERNEL_IBT
1036 static unsigned long get_entry_ip(unsigned long fentry_ip)
1037 {
1038 	u32 instr;
1039 
1040 	/* Being extra safe in here in case entry ip is on the page-edge. */
1041 	if (get_kernel_nofault(instr, (u32 *) fentry_ip - 1))
1042 		return fentry_ip;
1043 	if (is_endbr(instr))
1044 		fentry_ip -= ENDBR_INSN_SIZE;
1045 	return fentry_ip;
1046 }
1047 #else
1048 #define get_entry_ip(fentry_ip) fentry_ip
1049 #endif
1050 
1051 BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs)
1052 {
1053 	struct kprobe *kp = kprobe_running();
1054 
1055 	if (!kp || !(kp->flags & KPROBE_FLAG_ON_FUNC_ENTRY))
1056 		return 0;
1057 
1058 	return get_entry_ip((uintptr_t)kp->addr);
1059 }
1060 
1061 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = {
1062 	.func		= bpf_get_func_ip_kprobe,
1063 	.gpl_only	= true,
1064 	.ret_type	= RET_INTEGER,
1065 	.arg1_type	= ARG_PTR_TO_CTX,
1066 };
1067 
1068 BPF_CALL_1(bpf_get_func_ip_kprobe_multi, struct pt_regs *, regs)
1069 {
1070 	return bpf_kprobe_multi_entry_ip(current->bpf_ctx);
1071 }
1072 
1073 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe_multi = {
1074 	.func		= bpf_get_func_ip_kprobe_multi,
1075 	.gpl_only	= false,
1076 	.ret_type	= RET_INTEGER,
1077 	.arg1_type	= ARG_PTR_TO_CTX,
1078 };
1079 
1080 BPF_CALL_1(bpf_get_attach_cookie_kprobe_multi, struct pt_regs *, regs)
1081 {
1082 	return bpf_kprobe_multi_cookie(current->bpf_ctx);
1083 }
1084 
1085 static const struct bpf_func_proto bpf_get_attach_cookie_proto_kmulti = {
1086 	.func		= bpf_get_attach_cookie_kprobe_multi,
1087 	.gpl_only	= false,
1088 	.ret_type	= RET_INTEGER,
1089 	.arg1_type	= ARG_PTR_TO_CTX,
1090 };
1091 
1092 BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx)
1093 {
1094 	struct bpf_trace_run_ctx *run_ctx;
1095 
1096 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1097 	return run_ctx->bpf_cookie;
1098 }
1099 
1100 static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = {
1101 	.func		= bpf_get_attach_cookie_trace,
1102 	.gpl_only	= false,
1103 	.ret_type	= RET_INTEGER,
1104 	.arg1_type	= ARG_PTR_TO_CTX,
1105 };
1106 
1107 BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx)
1108 {
1109 	return ctx->event->bpf_cookie;
1110 }
1111 
1112 static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = {
1113 	.func		= bpf_get_attach_cookie_pe,
1114 	.gpl_only	= false,
1115 	.ret_type	= RET_INTEGER,
1116 	.arg1_type	= ARG_PTR_TO_CTX,
1117 };
1118 
1119 BPF_CALL_1(bpf_get_attach_cookie_tracing, void *, ctx)
1120 {
1121 	struct bpf_trace_run_ctx *run_ctx;
1122 
1123 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1124 	return run_ctx->bpf_cookie;
1125 }
1126 
1127 static const struct bpf_func_proto bpf_get_attach_cookie_proto_tracing = {
1128 	.func		= bpf_get_attach_cookie_tracing,
1129 	.gpl_only	= false,
1130 	.ret_type	= RET_INTEGER,
1131 	.arg1_type	= ARG_PTR_TO_CTX,
1132 };
1133 
1134 BPF_CALL_3(bpf_get_branch_snapshot, void *, buf, u32, size, u64, flags)
1135 {
1136 #ifndef CONFIG_X86
1137 	return -ENOENT;
1138 #else
1139 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1140 	u32 entry_cnt = size / br_entry_size;
1141 
1142 	entry_cnt = static_call(perf_snapshot_branch_stack)(buf, entry_cnt);
1143 
1144 	if (unlikely(flags))
1145 		return -EINVAL;
1146 
1147 	if (!entry_cnt)
1148 		return -ENOENT;
1149 
1150 	return entry_cnt * br_entry_size;
1151 #endif
1152 }
1153 
1154 static const struct bpf_func_proto bpf_get_branch_snapshot_proto = {
1155 	.func		= bpf_get_branch_snapshot,
1156 	.gpl_only	= true,
1157 	.ret_type	= RET_INTEGER,
1158 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1159 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1160 };
1161 
1162 BPF_CALL_3(get_func_arg, void *, ctx, u32, n, u64 *, value)
1163 {
1164 	/* This helper call is inlined by verifier. */
1165 	u64 nr_args = ((u64 *)ctx)[-1];
1166 
1167 	if ((u64) n >= nr_args)
1168 		return -EINVAL;
1169 	*value = ((u64 *)ctx)[n];
1170 	return 0;
1171 }
1172 
1173 static const struct bpf_func_proto bpf_get_func_arg_proto = {
1174 	.func		= get_func_arg,
1175 	.ret_type	= RET_INTEGER,
1176 	.arg1_type	= ARG_PTR_TO_CTX,
1177 	.arg2_type	= ARG_ANYTHING,
1178 	.arg3_type	= ARG_PTR_TO_LONG,
1179 };
1180 
1181 BPF_CALL_2(get_func_ret, void *, ctx, u64 *, value)
1182 {
1183 	/* This helper call is inlined by verifier. */
1184 	u64 nr_args = ((u64 *)ctx)[-1];
1185 
1186 	*value = ((u64 *)ctx)[nr_args];
1187 	return 0;
1188 }
1189 
1190 static const struct bpf_func_proto bpf_get_func_ret_proto = {
1191 	.func		= get_func_ret,
1192 	.ret_type	= RET_INTEGER,
1193 	.arg1_type	= ARG_PTR_TO_CTX,
1194 	.arg2_type	= ARG_PTR_TO_LONG,
1195 };
1196 
1197 BPF_CALL_1(get_func_arg_cnt, void *, ctx)
1198 {
1199 	/* This helper call is inlined by verifier. */
1200 	return ((u64 *)ctx)[-1];
1201 }
1202 
1203 static const struct bpf_func_proto bpf_get_func_arg_cnt_proto = {
1204 	.func		= get_func_arg_cnt,
1205 	.ret_type	= RET_INTEGER,
1206 	.arg1_type	= ARG_PTR_TO_CTX,
1207 };
1208 
1209 #ifdef CONFIG_KEYS
1210 __diag_push();
1211 __diag_ignore_all("-Wmissing-prototypes",
1212 		  "kfuncs which will be used in BPF programs");
1213 
1214 /**
1215  * bpf_lookup_user_key - lookup a key by its serial
1216  * @serial: key handle serial number
1217  * @flags: lookup-specific flags
1218  *
1219  * Search a key with a given *serial* and the provided *flags*.
1220  * If found, increment the reference count of the key by one, and
1221  * return it in the bpf_key structure.
1222  *
1223  * The bpf_key structure must be passed to bpf_key_put() when done
1224  * with it, so that the key reference count is decremented and the
1225  * bpf_key structure is freed.
1226  *
1227  * Permission checks are deferred to the time the key is used by
1228  * one of the available key-specific kfuncs.
1229  *
1230  * Set *flags* with KEY_LOOKUP_CREATE, to attempt creating a requested
1231  * special keyring (e.g. session keyring), if it doesn't yet exist.
1232  * Set *flags* with KEY_LOOKUP_PARTIAL, to lookup a key without waiting
1233  * for the key construction, and to retrieve uninstantiated keys (keys
1234  * without data attached to them).
1235  *
1236  * Return: a bpf_key pointer with a valid key pointer if the key is found, a
1237  *         NULL pointer otherwise.
1238  */
1239 struct bpf_key *bpf_lookup_user_key(u32 serial, u64 flags)
1240 {
1241 	key_ref_t key_ref;
1242 	struct bpf_key *bkey;
1243 
1244 	if (flags & ~KEY_LOOKUP_ALL)
1245 		return NULL;
1246 
1247 	/*
1248 	 * Permission check is deferred until the key is used, as the
1249 	 * intent of the caller is unknown here.
1250 	 */
1251 	key_ref = lookup_user_key(serial, flags, KEY_DEFER_PERM_CHECK);
1252 	if (IS_ERR(key_ref))
1253 		return NULL;
1254 
1255 	bkey = kmalloc(sizeof(*bkey), GFP_KERNEL);
1256 	if (!bkey) {
1257 		key_put(key_ref_to_ptr(key_ref));
1258 		return NULL;
1259 	}
1260 
1261 	bkey->key = key_ref_to_ptr(key_ref);
1262 	bkey->has_ref = true;
1263 
1264 	return bkey;
1265 }
1266 
1267 /**
1268  * bpf_lookup_system_key - lookup a key by a system-defined ID
1269  * @id: key ID
1270  *
1271  * Obtain a bpf_key structure with a key pointer set to the passed key ID.
1272  * The key pointer is marked as invalid, to prevent bpf_key_put() from
1273  * attempting to decrement the key reference count on that pointer. The key
1274  * pointer set in such way is currently understood only by
1275  * verify_pkcs7_signature().
1276  *
1277  * Set *id* to one of the values defined in include/linux/verification.h:
1278  * 0 for the primary keyring (immutable keyring of system keys);
1279  * VERIFY_USE_SECONDARY_KEYRING for both the primary and secondary keyring
1280  * (where keys can be added only if they are vouched for by existing keys
1281  * in those keyrings); VERIFY_USE_PLATFORM_KEYRING for the platform
1282  * keyring (primarily used by the integrity subsystem to verify a kexec'ed
1283  * kerned image and, possibly, the initramfs signature).
1284  *
1285  * Return: a bpf_key pointer with an invalid key pointer set from the
1286  *         pre-determined ID on success, a NULL pointer otherwise
1287  */
1288 struct bpf_key *bpf_lookup_system_key(u64 id)
1289 {
1290 	struct bpf_key *bkey;
1291 
1292 	if (system_keyring_id_check(id) < 0)
1293 		return NULL;
1294 
1295 	bkey = kmalloc(sizeof(*bkey), GFP_ATOMIC);
1296 	if (!bkey)
1297 		return NULL;
1298 
1299 	bkey->key = (struct key *)(unsigned long)id;
1300 	bkey->has_ref = false;
1301 
1302 	return bkey;
1303 }
1304 
1305 /**
1306  * bpf_key_put - decrement key reference count if key is valid and free bpf_key
1307  * @bkey: bpf_key structure
1308  *
1309  * Decrement the reference count of the key inside *bkey*, if the pointer
1310  * is valid, and free *bkey*.
1311  */
1312 void bpf_key_put(struct bpf_key *bkey)
1313 {
1314 	if (bkey->has_ref)
1315 		key_put(bkey->key);
1316 
1317 	kfree(bkey);
1318 }
1319 
1320 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
1321 /**
1322  * bpf_verify_pkcs7_signature - verify a PKCS#7 signature
1323  * @data_ptr: data to verify
1324  * @sig_ptr: signature of the data
1325  * @trusted_keyring: keyring with keys trusted for signature verification
1326  *
1327  * Verify the PKCS#7 signature *sig_ptr* against the supplied *data_ptr*
1328  * with keys in a keyring referenced by *trusted_keyring*.
1329  *
1330  * Return: 0 on success, a negative value on error.
1331  */
1332 int bpf_verify_pkcs7_signature(struct bpf_dynptr_kern *data_ptr,
1333 			       struct bpf_dynptr_kern *sig_ptr,
1334 			       struct bpf_key *trusted_keyring)
1335 {
1336 	int ret;
1337 
1338 	if (trusted_keyring->has_ref) {
1339 		/*
1340 		 * Do the permission check deferred in bpf_lookup_user_key().
1341 		 * See bpf_lookup_user_key() for more details.
1342 		 *
1343 		 * A call to key_task_permission() here would be redundant, as
1344 		 * it is already done by keyring_search() called by
1345 		 * find_asymmetric_key().
1346 		 */
1347 		ret = key_validate(trusted_keyring->key);
1348 		if (ret < 0)
1349 			return ret;
1350 	}
1351 
1352 	return verify_pkcs7_signature(data_ptr->data,
1353 				      bpf_dynptr_get_size(data_ptr),
1354 				      sig_ptr->data,
1355 				      bpf_dynptr_get_size(sig_ptr),
1356 				      trusted_keyring->key,
1357 				      VERIFYING_UNSPECIFIED_SIGNATURE, NULL,
1358 				      NULL);
1359 }
1360 #endif /* CONFIG_SYSTEM_DATA_VERIFICATION */
1361 
1362 __diag_pop();
1363 
1364 BTF_SET8_START(key_sig_kfunc_set)
1365 BTF_ID_FLAGS(func, bpf_lookup_user_key, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE)
1366 BTF_ID_FLAGS(func, bpf_lookup_system_key, KF_ACQUIRE | KF_RET_NULL)
1367 BTF_ID_FLAGS(func, bpf_key_put, KF_RELEASE)
1368 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
1369 BTF_ID_FLAGS(func, bpf_verify_pkcs7_signature, KF_SLEEPABLE)
1370 #endif
1371 BTF_SET8_END(key_sig_kfunc_set)
1372 
1373 static const struct btf_kfunc_id_set bpf_key_sig_kfunc_set = {
1374 	.owner = THIS_MODULE,
1375 	.set = &key_sig_kfunc_set,
1376 };
1377 
1378 static int __init bpf_key_sig_kfuncs_init(void)
1379 {
1380 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
1381 					 &bpf_key_sig_kfunc_set);
1382 }
1383 
1384 late_initcall(bpf_key_sig_kfuncs_init);
1385 #endif /* CONFIG_KEYS */
1386 
1387 static const struct bpf_func_proto *
1388 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1389 {
1390 	switch (func_id) {
1391 	case BPF_FUNC_map_lookup_elem:
1392 		return &bpf_map_lookup_elem_proto;
1393 	case BPF_FUNC_map_update_elem:
1394 		return &bpf_map_update_elem_proto;
1395 	case BPF_FUNC_map_delete_elem:
1396 		return &bpf_map_delete_elem_proto;
1397 	case BPF_FUNC_map_push_elem:
1398 		return &bpf_map_push_elem_proto;
1399 	case BPF_FUNC_map_pop_elem:
1400 		return &bpf_map_pop_elem_proto;
1401 	case BPF_FUNC_map_peek_elem:
1402 		return &bpf_map_peek_elem_proto;
1403 	case BPF_FUNC_map_lookup_percpu_elem:
1404 		return &bpf_map_lookup_percpu_elem_proto;
1405 	case BPF_FUNC_ktime_get_ns:
1406 		return &bpf_ktime_get_ns_proto;
1407 	case BPF_FUNC_ktime_get_boot_ns:
1408 		return &bpf_ktime_get_boot_ns_proto;
1409 	case BPF_FUNC_tail_call:
1410 		return &bpf_tail_call_proto;
1411 	case BPF_FUNC_get_current_pid_tgid:
1412 		return &bpf_get_current_pid_tgid_proto;
1413 	case BPF_FUNC_get_current_task:
1414 		return &bpf_get_current_task_proto;
1415 	case BPF_FUNC_get_current_task_btf:
1416 		return &bpf_get_current_task_btf_proto;
1417 	case BPF_FUNC_task_pt_regs:
1418 		return &bpf_task_pt_regs_proto;
1419 	case BPF_FUNC_get_current_uid_gid:
1420 		return &bpf_get_current_uid_gid_proto;
1421 	case BPF_FUNC_get_current_comm:
1422 		return &bpf_get_current_comm_proto;
1423 	case BPF_FUNC_trace_printk:
1424 		return bpf_get_trace_printk_proto();
1425 	case BPF_FUNC_get_smp_processor_id:
1426 		return &bpf_get_smp_processor_id_proto;
1427 	case BPF_FUNC_get_numa_node_id:
1428 		return &bpf_get_numa_node_id_proto;
1429 	case BPF_FUNC_perf_event_read:
1430 		return &bpf_perf_event_read_proto;
1431 	case BPF_FUNC_current_task_under_cgroup:
1432 		return &bpf_current_task_under_cgroup_proto;
1433 	case BPF_FUNC_get_prandom_u32:
1434 		return &bpf_get_prandom_u32_proto;
1435 	case BPF_FUNC_probe_write_user:
1436 		return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ?
1437 		       NULL : bpf_get_probe_write_proto();
1438 	case BPF_FUNC_probe_read_user:
1439 		return &bpf_probe_read_user_proto;
1440 	case BPF_FUNC_probe_read_kernel:
1441 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1442 		       NULL : &bpf_probe_read_kernel_proto;
1443 	case BPF_FUNC_probe_read_user_str:
1444 		return &bpf_probe_read_user_str_proto;
1445 	case BPF_FUNC_probe_read_kernel_str:
1446 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1447 		       NULL : &bpf_probe_read_kernel_str_proto;
1448 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1449 	case BPF_FUNC_probe_read:
1450 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1451 		       NULL : &bpf_probe_read_compat_proto;
1452 	case BPF_FUNC_probe_read_str:
1453 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1454 		       NULL : &bpf_probe_read_compat_str_proto;
1455 #endif
1456 #ifdef CONFIG_CGROUPS
1457 	case BPF_FUNC_get_current_cgroup_id:
1458 		return &bpf_get_current_cgroup_id_proto;
1459 	case BPF_FUNC_get_current_ancestor_cgroup_id:
1460 		return &bpf_get_current_ancestor_cgroup_id_proto;
1461 	case BPF_FUNC_cgrp_storage_get:
1462 		return &bpf_cgrp_storage_get_proto;
1463 	case BPF_FUNC_cgrp_storage_delete:
1464 		return &bpf_cgrp_storage_delete_proto;
1465 #endif
1466 	case BPF_FUNC_send_signal:
1467 		return &bpf_send_signal_proto;
1468 	case BPF_FUNC_send_signal_thread:
1469 		return &bpf_send_signal_thread_proto;
1470 	case BPF_FUNC_perf_event_read_value:
1471 		return &bpf_perf_event_read_value_proto;
1472 	case BPF_FUNC_get_ns_current_pid_tgid:
1473 		return &bpf_get_ns_current_pid_tgid_proto;
1474 	case BPF_FUNC_ringbuf_output:
1475 		return &bpf_ringbuf_output_proto;
1476 	case BPF_FUNC_ringbuf_reserve:
1477 		return &bpf_ringbuf_reserve_proto;
1478 	case BPF_FUNC_ringbuf_submit:
1479 		return &bpf_ringbuf_submit_proto;
1480 	case BPF_FUNC_ringbuf_discard:
1481 		return &bpf_ringbuf_discard_proto;
1482 	case BPF_FUNC_ringbuf_query:
1483 		return &bpf_ringbuf_query_proto;
1484 	case BPF_FUNC_jiffies64:
1485 		return &bpf_jiffies64_proto;
1486 	case BPF_FUNC_get_task_stack:
1487 		return &bpf_get_task_stack_proto;
1488 	case BPF_FUNC_copy_from_user:
1489 		return &bpf_copy_from_user_proto;
1490 	case BPF_FUNC_copy_from_user_task:
1491 		return &bpf_copy_from_user_task_proto;
1492 	case BPF_FUNC_snprintf_btf:
1493 		return &bpf_snprintf_btf_proto;
1494 	case BPF_FUNC_per_cpu_ptr:
1495 		return &bpf_per_cpu_ptr_proto;
1496 	case BPF_FUNC_this_cpu_ptr:
1497 		return &bpf_this_cpu_ptr_proto;
1498 	case BPF_FUNC_task_storage_get:
1499 		if (bpf_prog_check_recur(prog))
1500 			return &bpf_task_storage_get_recur_proto;
1501 		return &bpf_task_storage_get_proto;
1502 	case BPF_FUNC_task_storage_delete:
1503 		if (bpf_prog_check_recur(prog))
1504 			return &bpf_task_storage_delete_recur_proto;
1505 		return &bpf_task_storage_delete_proto;
1506 	case BPF_FUNC_for_each_map_elem:
1507 		return &bpf_for_each_map_elem_proto;
1508 	case BPF_FUNC_snprintf:
1509 		return &bpf_snprintf_proto;
1510 	case BPF_FUNC_get_func_ip:
1511 		return &bpf_get_func_ip_proto_tracing;
1512 	case BPF_FUNC_get_branch_snapshot:
1513 		return &bpf_get_branch_snapshot_proto;
1514 	case BPF_FUNC_find_vma:
1515 		return &bpf_find_vma_proto;
1516 	case BPF_FUNC_trace_vprintk:
1517 		return bpf_get_trace_vprintk_proto();
1518 	default:
1519 		return bpf_base_func_proto(func_id);
1520 	}
1521 }
1522 
1523 static const struct bpf_func_proto *
1524 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1525 {
1526 	switch (func_id) {
1527 	case BPF_FUNC_perf_event_output:
1528 		return &bpf_perf_event_output_proto;
1529 	case BPF_FUNC_get_stackid:
1530 		return &bpf_get_stackid_proto;
1531 	case BPF_FUNC_get_stack:
1532 		return &bpf_get_stack_proto;
1533 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
1534 	case BPF_FUNC_override_return:
1535 		return &bpf_override_return_proto;
1536 #endif
1537 	case BPF_FUNC_get_func_ip:
1538 		return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI ?
1539 			&bpf_get_func_ip_proto_kprobe_multi :
1540 			&bpf_get_func_ip_proto_kprobe;
1541 	case BPF_FUNC_get_attach_cookie:
1542 		return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI ?
1543 			&bpf_get_attach_cookie_proto_kmulti :
1544 			&bpf_get_attach_cookie_proto_trace;
1545 	default:
1546 		return bpf_tracing_func_proto(func_id, prog);
1547 	}
1548 }
1549 
1550 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
1551 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1552 					const struct bpf_prog *prog,
1553 					struct bpf_insn_access_aux *info)
1554 {
1555 	if (off < 0 || off >= sizeof(struct pt_regs))
1556 		return false;
1557 	if (type != BPF_READ)
1558 		return false;
1559 	if (off % size != 0)
1560 		return false;
1561 	/*
1562 	 * Assertion for 32 bit to make sure last 8 byte access
1563 	 * (BPF_DW) to the last 4 byte member is disallowed.
1564 	 */
1565 	if (off + size > sizeof(struct pt_regs))
1566 		return false;
1567 
1568 	return true;
1569 }
1570 
1571 const struct bpf_verifier_ops kprobe_verifier_ops = {
1572 	.get_func_proto  = kprobe_prog_func_proto,
1573 	.is_valid_access = kprobe_prog_is_valid_access,
1574 };
1575 
1576 const struct bpf_prog_ops kprobe_prog_ops = {
1577 };
1578 
1579 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1580 	   u64, flags, void *, data, u64, size)
1581 {
1582 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1583 
1584 	/*
1585 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1586 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1587 	 * from there and call the same bpf_perf_event_output() helper inline.
1588 	 */
1589 	return ____bpf_perf_event_output(regs, map, flags, data, size);
1590 }
1591 
1592 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1593 	.func		= bpf_perf_event_output_tp,
1594 	.gpl_only	= true,
1595 	.ret_type	= RET_INTEGER,
1596 	.arg1_type	= ARG_PTR_TO_CTX,
1597 	.arg2_type	= ARG_CONST_MAP_PTR,
1598 	.arg3_type	= ARG_ANYTHING,
1599 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1600 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1601 };
1602 
1603 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1604 	   u64, flags)
1605 {
1606 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1607 
1608 	/*
1609 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
1610 	 * the other helper's function body cannot be inlined due to being
1611 	 * external, thus we need to call raw helper function.
1612 	 */
1613 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1614 			       flags, 0, 0);
1615 }
1616 
1617 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1618 	.func		= bpf_get_stackid_tp,
1619 	.gpl_only	= true,
1620 	.ret_type	= RET_INTEGER,
1621 	.arg1_type	= ARG_PTR_TO_CTX,
1622 	.arg2_type	= ARG_CONST_MAP_PTR,
1623 	.arg3_type	= ARG_ANYTHING,
1624 };
1625 
1626 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1627 	   u64, flags)
1628 {
1629 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1630 
1631 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1632 			     (unsigned long) size, flags, 0);
1633 }
1634 
1635 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1636 	.func		= bpf_get_stack_tp,
1637 	.gpl_only	= true,
1638 	.ret_type	= RET_INTEGER,
1639 	.arg1_type	= ARG_PTR_TO_CTX,
1640 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1641 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1642 	.arg4_type	= ARG_ANYTHING,
1643 };
1644 
1645 static const struct bpf_func_proto *
1646 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1647 {
1648 	switch (func_id) {
1649 	case BPF_FUNC_perf_event_output:
1650 		return &bpf_perf_event_output_proto_tp;
1651 	case BPF_FUNC_get_stackid:
1652 		return &bpf_get_stackid_proto_tp;
1653 	case BPF_FUNC_get_stack:
1654 		return &bpf_get_stack_proto_tp;
1655 	case BPF_FUNC_get_attach_cookie:
1656 		return &bpf_get_attach_cookie_proto_trace;
1657 	default:
1658 		return bpf_tracing_func_proto(func_id, prog);
1659 	}
1660 }
1661 
1662 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1663 				    const struct bpf_prog *prog,
1664 				    struct bpf_insn_access_aux *info)
1665 {
1666 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1667 		return false;
1668 	if (type != BPF_READ)
1669 		return false;
1670 	if (off % size != 0)
1671 		return false;
1672 
1673 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1674 	return true;
1675 }
1676 
1677 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1678 	.get_func_proto  = tp_prog_func_proto,
1679 	.is_valid_access = tp_prog_is_valid_access,
1680 };
1681 
1682 const struct bpf_prog_ops tracepoint_prog_ops = {
1683 };
1684 
1685 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1686 	   struct bpf_perf_event_value *, buf, u32, size)
1687 {
1688 	int err = -EINVAL;
1689 
1690 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1691 		goto clear;
1692 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1693 				    &buf->running);
1694 	if (unlikely(err))
1695 		goto clear;
1696 	return 0;
1697 clear:
1698 	memset(buf, 0, size);
1699 	return err;
1700 }
1701 
1702 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1703          .func           = bpf_perf_prog_read_value,
1704          .gpl_only       = true,
1705          .ret_type       = RET_INTEGER,
1706          .arg1_type      = ARG_PTR_TO_CTX,
1707          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1708          .arg3_type      = ARG_CONST_SIZE,
1709 };
1710 
1711 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1712 	   void *, buf, u32, size, u64, flags)
1713 {
1714 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1715 	struct perf_branch_stack *br_stack = ctx->data->br_stack;
1716 	u32 to_copy;
1717 
1718 	if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1719 		return -EINVAL;
1720 
1721 	if (unlikely(!(ctx->data->sample_flags & PERF_SAMPLE_BRANCH_STACK)))
1722 		return -ENOENT;
1723 
1724 	if (unlikely(!br_stack))
1725 		return -ENOENT;
1726 
1727 	if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1728 		return br_stack->nr * br_entry_size;
1729 
1730 	if (!buf || (size % br_entry_size != 0))
1731 		return -EINVAL;
1732 
1733 	to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1734 	memcpy(buf, br_stack->entries, to_copy);
1735 
1736 	return to_copy;
1737 }
1738 
1739 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1740 	.func           = bpf_read_branch_records,
1741 	.gpl_only       = true,
1742 	.ret_type       = RET_INTEGER,
1743 	.arg1_type      = ARG_PTR_TO_CTX,
1744 	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
1745 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1746 	.arg4_type      = ARG_ANYTHING,
1747 };
1748 
1749 static const struct bpf_func_proto *
1750 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1751 {
1752 	switch (func_id) {
1753 	case BPF_FUNC_perf_event_output:
1754 		return &bpf_perf_event_output_proto_tp;
1755 	case BPF_FUNC_get_stackid:
1756 		return &bpf_get_stackid_proto_pe;
1757 	case BPF_FUNC_get_stack:
1758 		return &bpf_get_stack_proto_pe;
1759 	case BPF_FUNC_perf_prog_read_value:
1760 		return &bpf_perf_prog_read_value_proto;
1761 	case BPF_FUNC_read_branch_records:
1762 		return &bpf_read_branch_records_proto;
1763 	case BPF_FUNC_get_attach_cookie:
1764 		return &bpf_get_attach_cookie_proto_pe;
1765 	default:
1766 		return bpf_tracing_func_proto(func_id, prog);
1767 	}
1768 }
1769 
1770 /*
1771  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1772  * to avoid potential recursive reuse issue when/if tracepoints are added
1773  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1774  *
1775  * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1776  * in normal, irq, and nmi context.
1777  */
1778 struct bpf_raw_tp_regs {
1779 	struct pt_regs regs[3];
1780 };
1781 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1782 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1783 static struct pt_regs *get_bpf_raw_tp_regs(void)
1784 {
1785 	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1786 	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1787 
1788 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1789 		this_cpu_dec(bpf_raw_tp_nest_level);
1790 		return ERR_PTR(-EBUSY);
1791 	}
1792 
1793 	return &tp_regs->regs[nest_level - 1];
1794 }
1795 
1796 static void put_bpf_raw_tp_regs(void)
1797 {
1798 	this_cpu_dec(bpf_raw_tp_nest_level);
1799 }
1800 
1801 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1802 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
1803 {
1804 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1805 	int ret;
1806 
1807 	if (IS_ERR(regs))
1808 		return PTR_ERR(regs);
1809 
1810 	perf_fetch_caller_regs(regs);
1811 	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1812 
1813 	put_bpf_raw_tp_regs();
1814 	return ret;
1815 }
1816 
1817 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1818 	.func		= bpf_perf_event_output_raw_tp,
1819 	.gpl_only	= true,
1820 	.ret_type	= RET_INTEGER,
1821 	.arg1_type	= ARG_PTR_TO_CTX,
1822 	.arg2_type	= ARG_CONST_MAP_PTR,
1823 	.arg3_type	= ARG_ANYTHING,
1824 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1825 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1826 };
1827 
1828 extern const struct bpf_func_proto bpf_skb_output_proto;
1829 extern const struct bpf_func_proto bpf_xdp_output_proto;
1830 extern const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto;
1831 
1832 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1833 	   struct bpf_map *, map, u64, flags)
1834 {
1835 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1836 	int ret;
1837 
1838 	if (IS_ERR(regs))
1839 		return PTR_ERR(regs);
1840 
1841 	perf_fetch_caller_regs(regs);
1842 	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1843 	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1844 			      flags, 0, 0);
1845 	put_bpf_raw_tp_regs();
1846 	return ret;
1847 }
1848 
1849 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1850 	.func		= bpf_get_stackid_raw_tp,
1851 	.gpl_only	= true,
1852 	.ret_type	= RET_INTEGER,
1853 	.arg1_type	= ARG_PTR_TO_CTX,
1854 	.arg2_type	= ARG_CONST_MAP_PTR,
1855 	.arg3_type	= ARG_ANYTHING,
1856 };
1857 
1858 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1859 	   void *, buf, u32, size, u64, flags)
1860 {
1861 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1862 	int ret;
1863 
1864 	if (IS_ERR(regs))
1865 		return PTR_ERR(regs);
1866 
1867 	perf_fetch_caller_regs(regs);
1868 	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1869 			    (unsigned long) size, flags, 0);
1870 	put_bpf_raw_tp_regs();
1871 	return ret;
1872 }
1873 
1874 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1875 	.func		= bpf_get_stack_raw_tp,
1876 	.gpl_only	= true,
1877 	.ret_type	= RET_INTEGER,
1878 	.arg1_type	= ARG_PTR_TO_CTX,
1879 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1880 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1881 	.arg4_type	= ARG_ANYTHING,
1882 };
1883 
1884 static const struct bpf_func_proto *
1885 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1886 {
1887 	switch (func_id) {
1888 	case BPF_FUNC_perf_event_output:
1889 		return &bpf_perf_event_output_proto_raw_tp;
1890 	case BPF_FUNC_get_stackid:
1891 		return &bpf_get_stackid_proto_raw_tp;
1892 	case BPF_FUNC_get_stack:
1893 		return &bpf_get_stack_proto_raw_tp;
1894 	default:
1895 		return bpf_tracing_func_proto(func_id, prog);
1896 	}
1897 }
1898 
1899 const struct bpf_func_proto *
1900 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1901 {
1902 	const struct bpf_func_proto *fn;
1903 
1904 	switch (func_id) {
1905 #ifdef CONFIG_NET
1906 	case BPF_FUNC_skb_output:
1907 		return &bpf_skb_output_proto;
1908 	case BPF_FUNC_xdp_output:
1909 		return &bpf_xdp_output_proto;
1910 	case BPF_FUNC_skc_to_tcp6_sock:
1911 		return &bpf_skc_to_tcp6_sock_proto;
1912 	case BPF_FUNC_skc_to_tcp_sock:
1913 		return &bpf_skc_to_tcp_sock_proto;
1914 	case BPF_FUNC_skc_to_tcp_timewait_sock:
1915 		return &bpf_skc_to_tcp_timewait_sock_proto;
1916 	case BPF_FUNC_skc_to_tcp_request_sock:
1917 		return &bpf_skc_to_tcp_request_sock_proto;
1918 	case BPF_FUNC_skc_to_udp6_sock:
1919 		return &bpf_skc_to_udp6_sock_proto;
1920 	case BPF_FUNC_skc_to_unix_sock:
1921 		return &bpf_skc_to_unix_sock_proto;
1922 	case BPF_FUNC_skc_to_mptcp_sock:
1923 		return &bpf_skc_to_mptcp_sock_proto;
1924 	case BPF_FUNC_sk_storage_get:
1925 		return &bpf_sk_storage_get_tracing_proto;
1926 	case BPF_FUNC_sk_storage_delete:
1927 		return &bpf_sk_storage_delete_tracing_proto;
1928 	case BPF_FUNC_sock_from_file:
1929 		return &bpf_sock_from_file_proto;
1930 	case BPF_FUNC_get_socket_cookie:
1931 		return &bpf_get_socket_ptr_cookie_proto;
1932 	case BPF_FUNC_xdp_get_buff_len:
1933 		return &bpf_xdp_get_buff_len_trace_proto;
1934 #endif
1935 	case BPF_FUNC_seq_printf:
1936 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1937 		       &bpf_seq_printf_proto :
1938 		       NULL;
1939 	case BPF_FUNC_seq_write:
1940 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1941 		       &bpf_seq_write_proto :
1942 		       NULL;
1943 	case BPF_FUNC_seq_printf_btf:
1944 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1945 		       &bpf_seq_printf_btf_proto :
1946 		       NULL;
1947 	case BPF_FUNC_d_path:
1948 		return &bpf_d_path_proto;
1949 	case BPF_FUNC_get_func_arg:
1950 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_proto : NULL;
1951 	case BPF_FUNC_get_func_ret:
1952 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_ret_proto : NULL;
1953 	case BPF_FUNC_get_func_arg_cnt:
1954 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_cnt_proto : NULL;
1955 	case BPF_FUNC_get_attach_cookie:
1956 		return bpf_prog_has_trampoline(prog) ? &bpf_get_attach_cookie_proto_tracing : NULL;
1957 	default:
1958 		fn = raw_tp_prog_func_proto(func_id, prog);
1959 		if (!fn && prog->expected_attach_type == BPF_TRACE_ITER)
1960 			fn = bpf_iter_get_func_proto(func_id, prog);
1961 		return fn;
1962 	}
1963 }
1964 
1965 static bool raw_tp_prog_is_valid_access(int off, int size,
1966 					enum bpf_access_type type,
1967 					const struct bpf_prog *prog,
1968 					struct bpf_insn_access_aux *info)
1969 {
1970 	return bpf_tracing_ctx_access(off, size, type);
1971 }
1972 
1973 static bool tracing_prog_is_valid_access(int off, int size,
1974 					 enum bpf_access_type type,
1975 					 const struct bpf_prog *prog,
1976 					 struct bpf_insn_access_aux *info)
1977 {
1978 	return bpf_tracing_btf_ctx_access(off, size, type, prog, info);
1979 }
1980 
1981 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1982 				     const union bpf_attr *kattr,
1983 				     union bpf_attr __user *uattr)
1984 {
1985 	return -ENOTSUPP;
1986 }
1987 
1988 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1989 	.get_func_proto  = raw_tp_prog_func_proto,
1990 	.is_valid_access = raw_tp_prog_is_valid_access,
1991 };
1992 
1993 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1994 #ifdef CONFIG_NET
1995 	.test_run = bpf_prog_test_run_raw_tp,
1996 #endif
1997 };
1998 
1999 const struct bpf_verifier_ops tracing_verifier_ops = {
2000 	.get_func_proto  = tracing_prog_func_proto,
2001 	.is_valid_access = tracing_prog_is_valid_access,
2002 };
2003 
2004 const struct bpf_prog_ops tracing_prog_ops = {
2005 	.test_run = bpf_prog_test_run_tracing,
2006 };
2007 
2008 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
2009 						 enum bpf_access_type type,
2010 						 const struct bpf_prog *prog,
2011 						 struct bpf_insn_access_aux *info)
2012 {
2013 	if (off == 0) {
2014 		if (size != sizeof(u64) || type != BPF_READ)
2015 			return false;
2016 		info->reg_type = PTR_TO_TP_BUFFER;
2017 	}
2018 	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
2019 }
2020 
2021 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
2022 	.get_func_proto  = raw_tp_prog_func_proto,
2023 	.is_valid_access = raw_tp_writable_prog_is_valid_access,
2024 };
2025 
2026 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
2027 };
2028 
2029 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
2030 				    const struct bpf_prog *prog,
2031 				    struct bpf_insn_access_aux *info)
2032 {
2033 	const int size_u64 = sizeof(u64);
2034 
2035 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
2036 		return false;
2037 	if (type != BPF_READ)
2038 		return false;
2039 	if (off % size != 0) {
2040 		if (sizeof(unsigned long) != 4)
2041 			return false;
2042 		if (size != 8)
2043 			return false;
2044 		if (off % size != 4)
2045 			return false;
2046 	}
2047 
2048 	switch (off) {
2049 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
2050 		bpf_ctx_record_field_size(info, size_u64);
2051 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
2052 			return false;
2053 		break;
2054 	case bpf_ctx_range(struct bpf_perf_event_data, addr):
2055 		bpf_ctx_record_field_size(info, size_u64);
2056 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
2057 			return false;
2058 		break;
2059 	default:
2060 		if (size != sizeof(long))
2061 			return false;
2062 	}
2063 
2064 	return true;
2065 }
2066 
2067 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
2068 				      const struct bpf_insn *si,
2069 				      struct bpf_insn *insn_buf,
2070 				      struct bpf_prog *prog, u32 *target_size)
2071 {
2072 	struct bpf_insn *insn = insn_buf;
2073 
2074 	switch (si->off) {
2075 	case offsetof(struct bpf_perf_event_data, sample_period):
2076 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2077 						       data), si->dst_reg, si->src_reg,
2078 				      offsetof(struct bpf_perf_event_data_kern, data));
2079 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
2080 				      bpf_target_off(struct perf_sample_data, period, 8,
2081 						     target_size));
2082 		break;
2083 	case offsetof(struct bpf_perf_event_data, addr):
2084 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2085 						       data), si->dst_reg, si->src_reg,
2086 				      offsetof(struct bpf_perf_event_data_kern, data));
2087 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
2088 				      bpf_target_off(struct perf_sample_data, addr, 8,
2089 						     target_size));
2090 		break;
2091 	default:
2092 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2093 						       regs), si->dst_reg, si->src_reg,
2094 				      offsetof(struct bpf_perf_event_data_kern, regs));
2095 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
2096 				      si->off);
2097 		break;
2098 	}
2099 
2100 	return insn - insn_buf;
2101 }
2102 
2103 const struct bpf_verifier_ops perf_event_verifier_ops = {
2104 	.get_func_proto		= pe_prog_func_proto,
2105 	.is_valid_access	= pe_prog_is_valid_access,
2106 	.convert_ctx_access	= pe_prog_convert_ctx_access,
2107 };
2108 
2109 const struct bpf_prog_ops perf_event_prog_ops = {
2110 };
2111 
2112 static DEFINE_MUTEX(bpf_event_mutex);
2113 
2114 #define BPF_TRACE_MAX_PROGS 64
2115 
2116 int perf_event_attach_bpf_prog(struct perf_event *event,
2117 			       struct bpf_prog *prog,
2118 			       u64 bpf_cookie)
2119 {
2120 	struct bpf_prog_array *old_array;
2121 	struct bpf_prog_array *new_array;
2122 	int ret = -EEXIST;
2123 
2124 	/*
2125 	 * Kprobe override only works if they are on the function entry,
2126 	 * and only if they are on the opt-in list.
2127 	 */
2128 	if (prog->kprobe_override &&
2129 	    (!trace_kprobe_on_func_entry(event->tp_event) ||
2130 	     !trace_kprobe_error_injectable(event->tp_event)))
2131 		return -EINVAL;
2132 
2133 	mutex_lock(&bpf_event_mutex);
2134 
2135 	if (event->prog)
2136 		goto unlock;
2137 
2138 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
2139 	if (old_array &&
2140 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
2141 		ret = -E2BIG;
2142 		goto unlock;
2143 	}
2144 
2145 	ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array);
2146 	if (ret < 0)
2147 		goto unlock;
2148 
2149 	/* set the new array to event->tp_event and set event->prog */
2150 	event->prog = prog;
2151 	event->bpf_cookie = bpf_cookie;
2152 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
2153 	bpf_prog_array_free_sleepable(old_array);
2154 
2155 unlock:
2156 	mutex_unlock(&bpf_event_mutex);
2157 	return ret;
2158 }
2159 
2160 void perf_event_detach_bpf_prog(struct perf_event *event)
2161 {
2162 	struct bpf_prog_array *old_array;
2163 	struct bpf_prog_array *new_array;
2164 	int ret;
2165 
2166 	mutex_lock(&bpf_event_mutex);
2167 
2168 	if (!event->prog)
2169 		goto unlock;
2170 
2171 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
2172 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array);
2173 	if (ret == -ENOENT)
2174 		goto unlock;
2175 	if (ret < 0) {
2176 		bpf_prog_array_delete_safe(old_array, event->prog);
2177 	} else {
2178 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
2179 		bpf_prog_array_free_sleepable(old_array);
2180 	}
2181 
2182 	bpf_prog_put(event->prog);
2183 	event->prog = NULL;
2184 
2185 unlock:
2186 	mutex_unlock(&bpf_event_mutex);
2187 }
2188 
2189 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
2190 {
2191 	struct perf_event_query_bpf __user *uquery = info;
2192 	struct perf_event_query_bpf query = {};
2193 	struct bpf_prog_array *progs;
2194 	u32 *ids, prog_cnt, ids_len;
2195 	int ret;
2196 
2197 	if (!perfmon_capable())
2198 		return -EPERM;
2199 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
2200 		return -EINVAL;
2201 	if (copy_from_user(&query, uquery, sizeof(query)))
2202 		return -EFAULT;
2203 
2204 	ids_len = query.ids_len;
2205 	if (ids_len > BPF_TRACE_MAX_PROGS)
2206 		return -E2BIG;
2207 	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
2208 	if (!ids)
2209 		return -ENOMEM;
2210 	/*
2211 	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
2212 	 * is required when user only wants to check for uquery->prog_cnt.
2213 	 * There is no need to check for it since the case is handled
2214 	 * gracefully in bpf_prog_array_copy_info.
2215 	 */
2216 
2217 	mutex_lock(&bpf_event_mutex);
2218 	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
2219 	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
2220 	mutex_unlock(&bpf_event_mutex);
2221 
2222 	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
2223 	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
2224 		ret = -EFAULT;
2225 
2226 	kfree(ids);
2227 	return ret;
2228 }
2229 
2230 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
2231 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
2232 
2233 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
2234 {
2235 	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
2236 
2237 	for (; btp < __stop__bpf_raw_tp; btp++) {
2238 		if (!strcmp(btp->tp->name, name))
2239 			return btp;
2240 	}
2241 
2242 	return bpf_get_raw_tracepoint_module(name);
2243 }
2244 
2245 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
2246 {
2247 	struct module *mod;
2248 
2249 	preempt_disable();
2250 	mod = __module_address((unsigned long)btp);
2251 	module_put(mod);
2252 	preempt_enable();
2253 }
2254 
2255 static __always_inline
2256 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
2257 {
2258 	cant_sleep();
2259 	if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) {
2260 		bpf_prog_inc_misses_counter(prog);
2261 		goto out;
2262 	}
2263 	rcu_read_lock();
2264 	(void) bpf_prog_run(prog, args);
2265 	rcu_read_unlock();
2266 out:
2267 	this_cpu_dec(*(prog->active));
2268 }
2269 
2270 #define UNPACK(...)			__VA_ARGS__
2271 #define REPEAT_1(FN, DL, X, ...)	FN(X)
2272 #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
2273 #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
2274 #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
2275 #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
2276 #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
2277 #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
2278 #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
2279 #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
2280 #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
2281 #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
2282 #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
2283 #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
2284 
2285 #define SARG(X)		u64 arg##X
2286 #define COPY(X)		args[X] = arg##X
2287 
2288 #define __DL_COM	(,)
2289 #define __DL_SEM	(;)
2290 
2291 #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
2292 
2293 #define BPF_TRACE_DEFN_x(x)						\
2294 	void bpf_trace_run##x(struct bpf_prog *prog,			\
2295 			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
2296 	{								\
2297 		u64 args[x];						\
2298 		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
2299 		__bpf_trace_run(prog, args);				\
2300 	}								\
2301 	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
2302 BPF_TRACE_DEFN_x(1);
2303 BPF_TRACE_DEFN_x(2);
2304 BPF_TRACE_DEFN_x(3);
2305 BPF_TRACE_DEFN_x(4);
2306 BPF_TRACE_DEFN_x(5);
2307 BPF_TRACE_DEFN_x(6);
2308 BPF_TRACE_DEFN_x(7);
2309 BPF_TRACE_DEFN_x(8);
2310 BPF_TRACE_DEFN_x(9);
2311 BPF_TRACE_DEFN_x(10);
2312 BPF_TRACE_DEFN_x(11);
2313 BPF_TRACE_DEFN_x(12);
2314 
2315 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2316 {
2317 	struct tracepoint *tp = btp->tp;
2318 
2319 	/*
2320 	 * check that program doesn't access arguments beyond what's
2321 	 * available in this tracepoint
2322 	 */
2323 	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
2324 		return -EINVAL;
2325 
2326 	if (prog->aux->max_tp_access > btp->writable_size)
2327 		return -EINVAL;
2328 
2329 	return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func,
2330 						   prog);
2331 }
2332 
2333 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2334 {
2335 	return __bpf_probe_register(btp, prog);
2336 }
2337 
2338 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2339 {
2340 	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
2341 }
2342 
2343 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
2344 			    u32 *fd_type, const char **buf,
2345 			    u64 *probe_offset, u64 *probe_addr)
2346 {
2347 	bool is_tracepoint, is_syscall_tp;
2348 	struct bpf_prog *prog;
2349 	int flags, err = 0;
2350 
2351 	prog = event->prog;
2352 	if (!prog)
2353 		return -ENOENT;
2354 
2355 	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
2356 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
2357 		return -EOPNOTSUPP;
2358 
2359 	*prog_id = prog->aux->id;
2360 	flags = event->tp_event->flags;
2361 	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
2362 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
2363 
2364 	if (is_tracepoint || is_syscall_tp) {
2365 		*buf = is_tracepoint ? event->tp_event->tp->name
2366 				     : event->tp_event->name;
2367 		*fd_type = BPF_FD_TYPE_TRACEPOINT;
2368 		*probe_offset = 0x0;
2369 		*probe_addr = 0x0;
2370 	} else {
2371 		/* kprobe/uprobe */
2372 		err = -EOPNOTSUPP;
2373 #ifdef CONFIG_KPROBE_EVENTS
2374 		if (flags & TRACE_EVENT_FL_KPROBE)
2375 			err = bpf_get_kprobe_info(event, fd_type, buf,
2376 						  probe_offset, probe_addr,
2377 						  event->attr.type == PERF_TYPE_TRACEPOINT);
2378 #endif
2379 #ifdef CONFIG_UPROBE_EVENTS
2380 		if (flags & TRACE_EVENT_FL_UPROBE)
2381 			err = bpf_get_uprobe_info(event, fd_type, buf,
2382 						  probe_offset,
2383 						  event->attr.type == PERF_TYPE_TRACEPOINT);
2384 #endif
2385 	}
2386 
2387 	return err;
2388 }
2389 
2390 static int __init send_signal_irq_work_init(void)
2391 {
2392 	int cpu;
2393 	struct send_signal_irq_work *work;
2394 
2395 	for_each_possible_cpu(cpu) {
2396 		work = per_cpu_ptr(&send_signal_work, cpu);
2397 		init_irq_work(&work->irq_work, do_bpf_send_signal);
2398 	}
2399 	return 0;
2400 }
2401 
2402 subsys_initcall(send_signal_irq_work_init);
2403 
2404 #ifdef CONFIG_MODULES
2405 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
2406 			    void *module)
2407 {
2408 	struct bpf_trace_module *btm, *tmp;
2409 	struct module *mod = module;
2410 	int ret = 0;
2411 
2412 	if (mod->num_bpf_raw_events == 0 ||
2413 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
2414 		goto out;
2415 
2416 	mutex_lock(&bpf_module_mutex);
2417 
2418 	switch (op) {
2419 	case MODULE_STATE_COMING:
2420 		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
2421 		if (btm) {
2422 			btm->module = module;
2423 			list_add(&btm->list, &bpf_trace_modules);
2424 		} else {
2425 			ret = -ENOMEM;
2426 		}
2427 		break;
2428 	case MODULE_STATE_GOING:
2429 		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
2430 			if (btm->module == module) {
2431 				list_del(&btm->list);
2432 				kfree(btm);
2433 				break;
2434 			}
2435 		}
2436 		break;
2437 	}
2438 
2439 	mutex_unlock(&bpf_module_mutex);
2440 
2441 out:
2442 	return notifier_from_errno(ret);
2443 }
2444 
2445 static struct notifier_block bpf_module_nb = {
2446 	.notifier_call = bpf_event_notify,
2447 };
2448 
2449 static int __init bpf_event_init(void)
2450 {
2451 	register_module_notifier(&bpf_module_nb);
2452 	return 0;
2453 }
2454 
2455 fs_initcall(bpf_event_init);
2456 #endif /* CONFIG_MODULES */
2457 
2458 #ifdef CONFIG_FPROBE
2459 struct bpf_kprobe_multi_link {
2460 	struct bpf_link link;
2461 	struct fprobe fp;
2462 	unsigned long *addrs;
2463 	u64 *cookies;
2464 	u32 cnt;
2465 	u32 mods_cnt;
2466 	struct module **mods;
2467 };
2468 
2469 struct bpf_kprobe_multi_run_ctx {
2470 	struct bpf_run_ctx run_ctx;
2471 	struct bpf_kprobe_multi_link *link;
2472 	unsigned long entry_ip;
2473 };
2474 
2475 struct user_syms {
2476 	const char **syms;
2477 	char *buf;
2478 };
2479 
2480 static int copy_user_syms(struct user_syms *us, unsigned long __user *usyms, u32 cnt)
2481 {
2482 	unsigned long __user usymbol;
2483 	const char **syms = NULL;
2484 	char *buf = NULL, *p;
2485 	int err = -ENOMEM;
2486 	unsigned int i;
2487 
2488 	syms = kvmalloc_array(cnt, sizeof(*syms), GFP_KERNEL);
2489 	if (!syms)
2490 		goto error;
2491 
2492 	buf = kvmalloc_array(cnt, KSYM_NAME_LEN, GFP_KERNEL);
2493 	if (!buf)
2494 		goto error;
2495 
2496 	for (p = buf, i = 0; i < cnt; i++) {
2497 		if (__get_user(usymbol, usyms + i)) {
2498 			err = -EFAULT;
2499 			goto error;
2500 		}
2501 		err = strncpy_from_user(p, (const char __user *) usymbol, KSYM_NAME_LEN);
2502 		if (err == KSYM_NAME_LEN)
2503 			err = -E2BIG;
2504 		if (err < 0)
2505 			goto error;
2506 		syms[i] = p;
2507 		p += err + 1;
2508 	}
2509 
2510 	us->syms = syms;
2511 	us->buf = buf;
2512 	return 0;
2513 
2514 error:
2515 	if (err) {
2516 		kvfree(syms);
2517 		kvfree(buf);
2518 	}
2519 	return err;
2520 }
2521 
2522 static void kprobe_multi_put_modules(struct module **mods, u32 cnt)
2523 {
2524 	u32 i;
2525 
2526 	for (i = 0; i < cnt; i++)
2527 		module_put(mods[i]);
2528 }
2529 
2530 static void free_user_syms(struct user_syms *us)
2531 {
2532 	kvfree(us->syms);
2533 	kvfree(us->buf);
2534 }
2535 
2536 static void bpf_kprobe_multi_link_release(struct bpf_link *link)
2537 {
2538 	struct bpf_kprobe_multi_link *kmulti_link;
2539 
2540 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2541 	unregister_fprobe(&kmulti_link->fp);
2542 	kprobe_multi_put_modules(kmulti_link->mods, kmulti_link->mods_cnt);
2543 }
2544 
2545 static void bpf_kprobe_multi_link_dealloc(struct bpf_link *link)
2546 {
2547 	struct bpf_kprobe_multi_link *kmulti_link;
2548 
2549 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2550 	kvfree(kmulti_link->addrs);
2551 	kvfree(kmulti_link->cookies);
2552 	kfree(kmulti_link->mods);
2553 	kfree(kmulti_link);
2554 }
2555 
2556 static const struct bpf_link_ops bpf_kprobe_multi_link_lops = {
2557 	.release = bpf_kprobe_multi_link_release,
2558 	.dealloc = bpf_kprobe_multi_link_dealloc,
2559 };
2560 
2561 static void bpf_kprobe_multi_cookie_swap(void *a, void *b, int size, const void *priv)
2562 {
2563 	const struct bpf_kprobe_multi_link *link = priv;
2564 	unsigned long *addr_a = a, *addr_b = b;
2565 	u64 *cookie_a, *cookie_b;
2566 
2567 	cookie_a = link->cookies + (addr_a - link->addrs);
2568 	cookie_b = link->cookies + (addr_b - link->addrs);
2569 
2570 	/* swap addr_a/addr_b and cookie_a/cookie_b values */
2571 	swap(*addr_a, *addr_b);
2572 	swap(*cookie_a, *cookie_b);
2573 }
2574 
2575 static int bpf_kprobe_multi_addrs_cmp(const void *a, const void *b)
2576 {
2577 	const unsigned long *addr_a = a, *addr_b = b;
2578 
2579 	if (*addr_a == *addr_b)
2580 		return 0;
2581 	return *addr_a < *addr_b ? -1 : 1;
2582 }
2583 
2584 static int bpf_kprobe_multi_cookie_cmp(const void *a, const void *b, const void *priv)
2585 {
2586 	return bpf_kprobe_multi_addrs_cmp(a, b);
2587 }
2588 
2589 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
2590 {
2591 	struct bpf_kprobe_multi_run_ctx *run_ctx;
2592 	struct bpf_kprobe_multi_link *link;
2593 	u64 *cookie, entry_ip;
2594 	unsigned long *addr;
2595 
2596 	if (WARN_ON_ONCE(!ctx))
2597 		return 0;
2598 	run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, run_ctx);
2599 	link = run_ctx->link;
2600 	if (!link->cookies)
2601 		return 0;
2602 	entry_ip = run_ctx->entry_ip;
2603 	addr = bsearch(&entry_ip, link->addrs, link->cnt, sizeof(entry_ip),
2604 		       bpf_kprobe_multi_addrs_cmp);
2605 	if (!addr)
2606 		return 0;
2607 	cookie = link->cookies + (addr - link->addrs);
2608 	return *cookie;
2609 }
2610 
2611 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
2612 {
2613 	struct bpf_kprobe_multi_run_ctx *run_ctx;
2614 
2615 	run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, run_ctx);
2616 	return run_ctx->entry_ip;
2617 }
2618 
2619 static int
2620 kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link *link,
2621 			   unsigned long entry_ip, struct pt_regs *regs)
2622 {
2623 	struct bpf_kprobe_multi_run_ctx run_ctx = {
2624 		.link = link,
2625 		.entry_ip = entry_ip,
2626 	};
2627 	struct bpf_run_ctx *old_run_ctx;
2628 	int err;
2629 
2630 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
2631 		err = 0;
2632 		goto out;
2633 	}
2634 
2635 	migrate_disable();
2636 	rcu_read_lock();
2637 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2638 	err = bpf_prog_run(link->link.prog, regs);
2639 	bpf_reset_run_ctx(old_run_ctx);
2640 	rcu_read_unlock();
2641 	migrate_enable();
2642 
2643  out:
2644 	__this_cpu_dec(bpf_prog_active);
2645 	return err;
2646 }
2647 
2648 static void
2649 kprobe_multi_link_handler(struct fprobe *fp, unsigned long fentry_ip,
2650 			  struct pt_regs *regs)
2651 {
2652 	struct bpf_kprobe_multi_link *link;
2653 
2654 	link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2655 	kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs);
2656 }
2657 
2658 static int symbols_cmp_r(const void *a, const void *b, const void *priv)
2659 {
2660 	const char **str_a = (const char **) a;
2661 	const char **str_b = (const char **) b;
2662 
2663 	return strcmp(*str_a, *str_b);
2664 }
2665 
2666 struct multi_symbols_sort {
2667 	const char **funcs;
2668 	u64 *cookies;
2669 };
2670 
2671 static void symbols_swap_r(void *a, void *b, int size, const void *priv)
2672 {
2673 	const struct multi_symbols_sort *data = priv;
2674 	const char **name_a = a, **name_b = b;
2675 
2676 	swap(*name_a, *name_b);
2677 
2678 	/* If defined, swap also related cookies. */
2679 	if (data->cookies) {
2680 		u64 *cookie_a, *cookie_b;
2681 
2682 		cookie_a = data->cookies + (name_a - data->funcs);
2683 		cookie_b = data->cookies + (name_b - data->funcs);
2684 		swap(*cookie_a, *cookie_b);
2685 	}
2686 }
2687 
2688 struct module_addr_args {
2689 	unsigned long *addrs;
2690 	u32 addrs_cnt;
2691 	struct module **mods;
2692 	int mods_cnt;
2693 	int mods_cap;
2694 };
2695 
2696 static int module_callback(void *data, const char *name,
2697 			   struct module *mod, unsigned long addr)
2698 {
2699 	struct module_addr_args *args = data;
2700 	struct module **mods;
2701 
2702 	/* We iterate all modules symbols and for each we:
2703 	 * - search for it in provided addresses array
2704 	 * - if found we check if we already have the module pointer stored
2705 	 *   (we iterate modules sequentially, so we can check just the last
2706 	 *   module pointer)
2707 	 * - take module reference and store it
2708 	 */
2709 	if (!bsearch(&addr, args->addrs, args->addrs_cnt, sizeof(addr),
2710 		       bpf_kprobe_multi_addrs_cmp))
2711 		return 0;
2712 
2713 	if (args->mods && args->mods[args->mods_cnt - 1] == mod)
2714 		return 0;
2715 
2716 	if (args->mods_cnt == args->mods_cap) {
2717 		args->mods_cap = max(16, args->mods_cap * 3 / 2);
2718 		mods = krealloc_array(args->mods, args->mods_cap, sizeof(*mods), GFP_KERNEL);
2719 		if (!mods)
2720 			return -ENOMEM;
2721 		args->mods = mods;
2722 	}
2723 
2724 	if (!try_module_get(mod))
2725 		return -EINVAL;
2726 
2727 	args->mods[args->mods_cnt] = mod;
2728 	args->mods_cnt++;
2729 	return 0;
2730 }
2731 
2732 static int get_modules_for_addrs(struct module ***mods, unsigned long *addrs, u32 addrs_cnt)
2733 {
2734 	struct module_addr_args args = {
2735 		.addrs     = addrs,
2736 		.addrs_cnt = addrs_cnt,
2737 	};
2738 	int err;
2739 
2740 	/* We return either err < 0 in case of error, ... */
2741 	err = module_kallsyms_on_each_symbol(module_callback, &args);
2742 	if (err) {
2743 		kprobe_multi_put_modules(args.mods, args.mods_cnt);
2744 		kfree(args.mods);
2745 		return err;
2746 	}
2747 
2748 	/* or number of modules found if everything is ok. */
2749 	*mods = args.mods;
2750 	return args.mods_cnt;
2751 }
2752 
2753 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
2754 {
2755 	struct bpf_kprobe_multi_link *link = NULL;
2756 	struct bpf_link_primer link_primer;
2757 	void __user *ucookies;
2758 	unsigned long *addrs;
2759 	u32 flags, cnt, size;
2760 	void __user *uaddrs;
2761 	u64 *cookies = NULL;
2762 	void __user *usyms;
2763 	int err;
2764 
2765 	/* no support for 32bit archs yet */
2766 	if (sizeof(u64) != sizeof(void *))
2767 		return -EOPNOTSUPP;
2768 
2769 	if (prog->expected_attach_type != BPF_TRACE_KPROBE_MULTI)
2770 		return -EINVAL;
2771 
2772 	flags = attr->link_create.kprobe_multi.flags;
2773 	if (flags & ~BPF_F_KPROBE_MULTI_RETURN)
2774 		return -EINVAL;
2775 
2776 	uaddrs = u64_to_user_ptr(attr->link_create.kprobe_multi.addrs);
2777 	usyms = u64_to_user_ptr(attr->link_create.kprobe_multi.syms);
2778 	if (!!uaddrs == !!usyms)
2779 		return -EINVAL;
2780 
2781 	cnt = attr->link_create.kprobe_multi.cnt;
2782 	if (!cnt)
2783 		return -EINVAL;
2784 
2785 	size = cnt * sizeof(*addrs);
2786 	addrs = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2787 	if (!addrs)
2788 		return -ENOMEM;
2789 
2790 	ucookies = u64_to_user_ptr(attr->link_create.kprobe_multi.cookies);
2791 	if (ucookies) {
2792 		cookies = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2793 		if (!cookies) {
2794 			err = -ENOMEM;
2795 			goto error;
2796 		}
2797 		if (copy_from_user(cookies, ucookies, size)) {
2798 			err = -EFAULT;
2799 			goto error;
2800 		}
2801 	}
2802 
2803 	if (uaddrs) {
2804 		if (copy_from_user(addrs, uaddrs, size)) {
2805 			err = -EFAULT;
2806 			goto error;
2807 		}
2808 	} else {
2809 		struct multi_symbols_sort data = {
2810 			.cookies = cookies,
2811 		};
2812 		struct user_syms us;
2813 
2814 		err = copy_user_syms(&us, usyms, cnt);
2815 		if (err)
2816 			goto error;
2817 
2818 		if (cookies)
2819 			data.funcs = us.syms;
2820 
2821 		sort_r(us.syms, cnt, sizeof(*us.syms), symbols_cmp_r,
2822 		       symbols_swap_r, &data);
2823 
2824 		err = ftrace_lookup_symbols(us.syms, cnt, addrs);
2825 		free_user_syms(&us);
2826 		if (err)
2827 			goto error;
2828 	}
2829 
2830 	link = kzalloc(sizeof(*link), GFP_KERNEL);
2831 	if (!link) {
2832 		err = -ENOMEM;
2833 		goto error;
2834 	}
2835 
2836 	bpf_link_init(&link->link, BPF_LINK_TYPE_KPROBE_MULTI,
2837 		      &bpf_kprobe_multi_link_lops, prog);
2838 
2839 	err = bpf_link_prime(&link->link, &link_primer);
2840 	if (err)
2841 		goto error;
2842 
2843 	if (flags & BPF_F_KPROBE_MULTI_RETURN)
2844 		link->fp.exit_handler = kprobe_multi_link_handler;
2845 	else
2846 		link->fp.entry_handler = kprobe_multi_link_handler;
2847 
2848 	link->addrs = addrs;
2849 	link->cookies = cookies;
2850 	link->cnt = cnt;
2851 
2852 	if (cookies) {
2853 		/*
2854 		 * Sorting addresses will trigger sorting cookies as well
2855 		 * (check bpf_kprobe_multi_cookie_swap). This way we can
2856 		 * find cookie based on the address in bpf_get_attach_cookie
2857 		 * helper.
2858 		 */
2859 		sort_r(addrs, cnt, sizeof(*addrs),
2860 		       bpf_kprobe_multi_cookie_cmp,
2861 		       bpf_kprobe_multi_cookie_swap,
2862 		       link);
2863 	} else {
2864 		/*
2865 		 * We need to sort addrs array even if there are no cookies
2866 		 * provided, to allow bsearch in get_modules_for_addrs.
2867 		 */
2868 		sort(addrs, cnt, sizeof(*addrs),
2869 		       bpf_kprobe_multi_addrs_cmp, NULL);
2870 	}
2871 
2872 	err = get_modules_for_addrs(&link->mods, addrs, cnt);
2873 	if (err < 0) {
2874 		bpf_link_cleanup(&link_primer);
2875 		return err;
2876 	}
2877 	link->mods_cnt = err;
2878 
2879 	err = register_fprobe_ips(&link->fp, addrs, cnt);
2880 	if (err) {
2881 		kprobe_multi_put_modules(link->mods, link->mods_cnt);
2882 		bpf_link_cleanup(&link_primer);
2883 		return err;
2884 	}
2885 
2886 	return bpf_link_settle(&link_primer);
2887 
2888 error:
2889 	kfree(link);
2890 	kvfree(addrs);
2891 	kvfree(cookies);
2892 	return err;
2893 }
2894 #else /* !CONFIG_FPROBE */
2895 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
2896 {
2897 	return -EOPNOTSUPP;
2898 }
2899 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
2900 {
2901 	return 0;
2902 }
2903 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
2904 {
2905 	return 0;
2906 }
2907 #endif
2908