1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/kernel.h> 6 #include <linux/types.h> 7 #include <linux/slab.h> 8 #include <linux/bpf.h> 9 #include <linux/bpf_verifier.h> 10 #include <linux/bpf_perf_event.h> 11 #include <linux/btf.h> 12 #include <linux/filter.h> 13 #include <linux/uaccess.h> 14 #include <linux/ctype.h> 15 #include <linux/kprobes.h> 16 #include <linux/spinlock.h> 17 #include <linux/syscalls.h> 18 #include <linux/error-injection.h> 19 #include <linux/btf_ids.h> 20 #include <linux/bpf_lsm.h> 21 #include <linux/fprobe.h> 22 #include <linux/bsearch.h> 23 #include <linux/sort.h> 24 #include <linux/key.h> 25 #include <linux/verification.h> 26 27 #include <net/bpf_sk_storage.h> 28 29 #include <uapi/linux/bpf.h> 30 #include <uapi/linux/btf.h> 31 32 #include <asm/tlb.h> 33 34 #include "trace_probe.h" 35 #include "trace.h" 36 37 #define CREATE_TRACE_POINTS 38 #include "bpf_trace.h" 39 40 #define bpf_event_rcu_dereference(p) \ 41 rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex)) 42 43 #ifdef CONFIG_MODULES 44 struct bpf_trace_module { 45 struct module *module; 46 struct list_head list; 47 }; 48 49 static LIST_HEAD(bpf_trace_modules); 50 static DEFINE_MUTEX(bpf_module_mutex); 51 52 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 53 { 54 struct bpf_raw_event_map *btp, *ret = NULL; 55 struct bpf_trace_module *btm; 56 unsigned int i; 57 58 mutex_lock(&bpf_module_mutex); 59 list_for_each_entry(btm, &bpf_trace_modules, list) { 60 for (i = 0; i < btm->module->num_bpf_raw_events; ++i) { 61 btp = &btm->module->bpf_raw_events[i]; 62 if (!strcmp(btp->tp->name, name)) { 63 if (try_module_get(btm->module)) 64 ret = btp; 65 goto out; 66 } 67 } 68 } 69 out: 70 mutex_unlock(&bpf_module_mutex); 71 return ret; 72 } 73 #else 74 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 75 { 76 return NULL; 77 } 78 #endif /* CONFIG_MODULES */ 79 80 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 81 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 82 83 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size, 84 u64 flags, const struct btf **btf, 85 s32 *btf_id); 86 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx); 87 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx); 88 89 /** 90 * trace_call_bpf - invoke BPF program 91 * @call: tracepoint event 92 * @ctx: opaque context pointer 93 * 94 * kprobe handlers execute BPF programs via this helper. 95 * Can be used from static tracepoints in the future. 96 * 97 * Return: BPF programs always return an integer which is interpreted by 98 * kprobe handler as: 99 * 0 - return from kprobe (event is filtered out) 100 * 1 - store kprobe event into ring buffer 101 * Other values are reserved and currently alias to 1 102 */ 103 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx) 104 { 105 unsigned int ret; 106 107 cant_sleep(); 108 109 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) { 110 /* 111 * since some bpf program is already running on this cpu, 112 * don't call into another bpf program (same or different) 113 * and don't send kprobe event into ring-buffer, 114 * so return zero here 115 */ 116 ret = 0; 117 goto out; 118 } 119 120 /* 121 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock 122 * to all call sites, we did a bpf_prog_array_valid() there to check 123 * whether call->prog_array is empty or not, which is 124 * a heuristic to speed up execution. 125 * 126 * If bpf_prog_array_valid() fetched prog_array was 127 * non-NULL, we go into trace_call_bpf() and do the actual 128 * proper rcu_dereference() under RCU lock. 129 * If it turns out that prog_array is NULL then, we bail out. 130 * For the opposite, if the bpf_prog_array_valid() fetched pointer 131 * was NULL, you'll skip the prog_array with the risk of missing 132 * out of events when it was updated in between this and the 133 * rcu_dereference() which is accepted risk. 134 */ 135 rcu_read_lock(); 136 ret = bpf_prog_run_array(rcu_dereference(call->prog_array), 137 ctx, bpf_prog_run); 138 rcu_read_unlock(); 139 140 out: 141 __this_cpu_dec(bpf_prog_active); 142 143 return ret; 144 } 145 146 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 147 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc) 148 { 149 regs_set_return_value(regs, rc); 150 override_function_with_return(regs); 151 return 0; 152 } 153 154 static const struct bpf_func_proto bpf_override_return_proto = { 155 .func = bpf_override_return, 156 .gpl_only = true, 157 .ret_type = RET_INTEGER, 158 .arg1_type = ARG_PTR_TO_CTX, 159 .arg2_type = ARG_ANYTHING, 160 }; 161 #endif 162 163 static __always_inline int 164 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr) 165 { 166 int ret; 167 168 ret = copy_from_user_nofault(dst, unsafe_ptr, size); 169 if (unlikely(ret < 0)) 170 memset(dst, 0, size); 171 return ret; 172 } 173 174 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size, 175 const void __user *, unsafe_ptr) 176 { 177 return bpf_probe_read_user_common(dst, size, unsafe_ptr); 178 } 179 180 const struct bpf_func_proto bpf_probe_read_user_proto = { 181 .func = bpf_probe_read_user, 182 .gpl_only = true, 183 .ret_type = RET_INTEGER, 184 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 185 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 186 .arg3_type = ARG_ANYTHING, 187 }; 188 189 static __always_inline int 190 bpf_probe_read_user_str_common(void *dst, u32 size, 191 const void __user *unsafe_ptr) 192 { 193 int ret; 194 195 /* 196 * NB: We rely on strncpy_from_user() not copying junk past the NUL 197 * terminator into `dst`. 198 * 199 * strncpy_from_user() does long-sized strides in the fast path. If the 200 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`, 201 * then there could be junk after the NUL in `dst`. If user takes `dst` 202 * and keys a hash map with it, then semantically identical strings can 203 * occupy multiple entries in the map. 204 */ 205 ret = strncpy_from_user_nofault(dst, unsafe_ptr, size); 206 if (unlikely(ret < 0)) 207 memset(dst, 0, size); 208 return ret; 209 } 210 211 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size, 212 const void __user *, unsafe_ptr) 213 { 214 return bpf_probe_read_user_str_common(dst, size, unsafe_ptr); 215 } 216 217 const struct bpf_func_proto bpf_probe_read_user_str_proto = { 218 .func = bpf_probe_read_user_str, 219 .gpl_only = true, 220 .ret_type = RET_INTEGER, 221 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 222 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 223 .arg3_type = ARG_ANYTHING, 224 }; 225 226 static __always_inline int 227 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr) 228 { 229 int ret; 230 231 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size); 232 if (unlikely(ret < 0)) 233 memset(dst, 0, size); 234 return ret; 235 } 236 237 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size, 238 const void *, unsafe_ptr) 239 { 240 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr); 241 } 242 243 const struct bpf_func_proto bpf_probe_read_kernel_proto = { 244 .func = bpf_probe_read_kernel, 245 .gpl_only = true, 246 .ret_type = RET_INTEGER, 247 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 248 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 249 .arg3_type = ARG_ANYTHING, 250 }; 251 252 static __always_inline int 253 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr) 254 { 255 int ret; 256 257 /* 258 * The strncpy_from_kernel_nofault() call will likely not fill the 259 * entire buffer, but that's okay in this circumstance as we're probing 260 * arbitrary memory anyway similar to bpf_probe_read_*() and might 261 * as well probe the stack. Thus, memory is explicitly cleared 262 * only in error case, so that improper users ignoring return 263 * code altogether don't copy garbage; otherwise length of string 264 * is returned that can be used for bpf_perf_event_output() et al. 265 */ 266 ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size); 267 if (unlikely(ret < 0)) 268 memset(dst, 0, size); 269 return ret; 270 } 271 272 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size, 273 const void *, unsafe_ptr) 274 { 275 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr); 276 } 277 278 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = { 279 .func = bpf_probe_read_kernel_str, 280 .gpl_only = true, 281 .ret_type = RET_INTEGER, 282 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 283 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 284 .arg3_type = ARG_ANYTHING, 285 }; 286 287 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 288 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size, 289 const void *, unsafe_ptr) 290 { 291 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 292 return bpf_probe_read_user_common(dst, size, 293 (__force void __user *)unsafe_ptr); 294 } 295 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr); 296 } 297 298 static const struct bpf_func_proto bpf_probe_read_compat_proto = { 299 .func = bpf_probe_read_compat, 300 .gpl_only = true, 301 .ret_type = RET_INTEGER, 302 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 303 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 304 .arg3_type = ARG_ANYTHING, 305 }; 306 307 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size, 308 const void *, unsafe_ptr) 309 { 310 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 311 return bpf_probe_read_user_str_common(dst, size, 312 (__force void __user *)unsafe_ptr); 313 } 314 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr); 315 } 316 317 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = { 318 .func = bpf_probe_read_compat_str, 319 .gpl_only = true, 320 .ret_type = RET_INTEGER, 321 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 322 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 323 .arg3_type = ARG_ANYTHING, 324 }; 325 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */ 326 327 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src, 328 u32, size) 329 { 330 /* 331 * Ensure we're in user context which is safe for the helper to 332 * run. This helper has no business in a kthread. 333 * 334 * access_ok() should prevent writing to non-user memory, but in 335 * some situations (nommu, temporary switch, etc) access_ok() does 336 * not provide enough validation, hence the check on KERNEL_DS. 337 * 338 * nmi_uaccess_okay() ensures the probe is not run in an interim 339 * state, when the task or mm are switched. This is specifically 340 * required to prevent the use of temporary mm. 341 */ 342 343 if (unlikely(in_interrupt() || 344 current->flags & (PF_KTHREAD | PF_EXITING))) 345 return -EPERM; 346 if (unlikely(!nmi_uaccess_okay())) 347 return -EPERM; 348 349 return copy_to_user_nofault(unsafe_ptr, src, size); 350 } 351 352 static const struct bpf_func_proto bpf_probe_write_user_proto = { 353 .func = bpf_probe_write_user, 354 .gpl_only = true, 355 .ret_type = RET_INTEGER, 356 .arg1_type = ARG_ANYTHING, 357 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 358 .arg3_type = ARG_CONST_SIZE, 359 }; 360 361 static const struct bpf_func_proto *bpf_get_probe_write_proto(void) 362 { 363 if (!capable(CAP_SYS_ADMIN)) 364 return NULL; 365 366 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!", 367 current->comm, task_pid_nr(current)); 368 369 return &bpf_probe_write_user_proto; 370 } 371 372 #define MAX_TRACE_PRINTK_VARARGS 3 373 #define BPF_TRACE_PRINTK_SIZE 1024 374 375 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1, 376 u64, arg2, u64, arg3) 377 { 378 u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 }; 379 struct bpf_bprintf_data data = { 380 .get_bin_args = true, 381 .get_buf = true, 382 }; 383 int ret; 384 385 ret = bpf_bprintf_prepare(fmt, fmt_size, args, 386 MAX_TRACE_PRINTK_VARARGS, &data); 387 if (ret < 0) 388 return ret; 389 390 ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args); 391 392 trace_bpf_trace_printk(data.buf); 393 394 bpf_bprintf_cleanup(&data); 395 396 return ret; 397 } 398 399 static const struct bpf_func_proto bpf_trace_printk_proto = { 400 .func = bpf_trace_printk, 401 .gpl_only = true, 402 .ret_type = RET_INTEGER, 403 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 404 .arg2_type = ARG_CONST_SIZE, 405 }; 406 407 static void __set_printk_clr_event(void) 408 { 409 /* 410 * This program might be calling bpf_trace_printk, 411 * so enable the associated bpf_trace/bpf_trace_printk event. 412 * Repeat this each time as it is possible a user has 413 * disabled bpf_trace_printk events. By loading a program 414 * calling bpf_trace_printk() however the user has expressed 415 * the intent to see such events. 416 */ 417 if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1)) 418 pr_warn_ratelimited("could not enable bpf_trace_printk events"); 419 } 420 421 const struct bpf_func_proto *bpf_get_trace_printk_proto(void) 422 { 423 __set_printk_clr_event(); 424 return &bpf_trace_printk_proto; 425 } 426 427 BPF_CALL_4(bpf_trace_vprintk, char *, fmt, u32, fmt_size, const void *, args, 428 u32, data_len) 429 { 430 struct bpf_bprintf_data data = { 431 .get_bin_args = true, 432 .get_buf = true, 433 }; 434 int ret, num_args; 435 436 if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 || 437 (data_len && !args)) 438 return -EINVAL; 439 num_args = data_len / 8; 440 441 ret = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data); 442 if (ret < 0) 443 return ret; 444 445 ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args); 446 447 trace_bpf_trace_printk(data.buf); 448 449 bpf_bprintf_cleanup(&data); 450 451 return ret; 452 } 453 454 static const struct bpf_func_proto bpf_trace_vprintk_proto = { 455 .func = bpf_trace_vprintk, 456 .gpl_only = true, 457 .ret_type = RET_INTEGER, 458 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 459 .arg2_type = ARG_CONST_SIZE, 460 .arg3_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 461 .arg4_type = ARG_CONST_SIZE_OR_ZERO, 462 }; 463 464 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void) 465 { 466 __set_printk_clr_event(); 467 return &bpf_trace_vprintk_proto; 468 } 469 470 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size, 471 const void *, args, u32, data_len) 472 { 473 struct bpf_bprintf_data data = { 474 .get_bin_args = true, 475 }; 476 int err, num_args; 477 478 if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 || 479 (data_len && !args)) 480 return -EINVAL; 481 num_args = data_len / 8; 482 483 err = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data); 484 if (err < 0) 485 return err; 486 487 seq_bprintf(m, fmt, data.bin_args); 488 489 bpf_bprintf_cleanup(&data); 490 491 return seq_has_overflowed(m) ? -EOVERFLOW : 0; 492 } 493 494 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file) 495 496 static const struct bpf_func_proto bpf_seq_printf_proto = { 497 .func = bpf_seq_printf, 498 .gpl_only = true, 499 .ret_type = RET_INTEGER, 500 .arg1_type = ARG_PTR_TO_BTF_ID, 501 .arg1_btf_id = &btf_seq_file_ids[0], 502 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 503 .arg3_type = ARG_CONST_SIZE, 504 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 505 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 506 }; 507 508 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len) 509 { 510 return seq_write(m, data, len) ? -EOVERFLOW : 0; 511 } 512 513 static const struct bpf_func_proto bpf_seq_write_proto = { 514 .func = bpf_seq_write, 515 .gpl_only = true, 516 .ret_type = RET_INTEGER, 517 .arg1_type = ARG_PTR_TO_BTF_ID, 518 .arg1_btf_id = &btf_seq_file_ids[0], 519 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 520 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 521 }; 522 523 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr, 524 u32, btf_ptr_size, u64, flags) 525 { 526 const struct btf *btf; 527 s32 btf_id; 528 int ret; 529 530 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id); 531 if (ret) 532 return ret; 533 534 return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags); 535 } 536 537 static const struct bpf_func_proto bpf_seq_printf_btf_proto = { 538 .func = bpf_seq_printf_btf, 539 .gpl_only = true, 540 .ret_type = RET_INTEGER, 541 .arg1_type = ARG_PTR_TO_BTF_ID, 542 .arg1_btf_id = &btf_seq_file_ids[0], 543 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 544 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 545 .arg4_type = ARG_ANYTHING, 546 }; 547 548 static __always_inline int 549 get_map_perf_counter(struct bpf_map *map, u64 flags, 550 u64 *value, u64 *enabled, u64 *running) 551 { 552 struct bpf_array *array = container_of(map, struct bpf_array, map); 553 unsigned int cpu = smp_processor_id(); 554 u64 index = flags & BPF_F_INDEX_MASK; 555 struct bpf_event_entry *ee; 556 557 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 558 return -EINVAL; 559 if (index == BPF_F_CURRENT_CPU) 560 index = cpu; 561 if (unlikely(index >= array->map.max_entries)) 562 return -E2BIG; 563 564 ee = READ_ONCE(array->ptrs[index]); 565 if (!ee) 566 return -ENOENT; 567 568 return perf_event_read_local(ee->event, value, enabled, running); 569 } 570 571 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags) 572 { 573 u64 value = 0; 574 int err; 575 576 err = get_map_perf_counter(map, flags, &value, NULL, NULL); 577 /* 578 * this api is ugly since we miss [-22..-2] range of valid 579 * counter values, but that's uapi 580 */ 581 if (err) 582 return err; 583 return value; 584 } 585 586 static const struct bpf_func_proto bpf_perf_event_read_proto = { 587 .func = bpf_perf_event_read, 588 .gpl_only = true, 589 .ret_type = RET_INTEGER, 590 .arg1_type = ARG_CONST_MAP_PTR, 591 .arg2_type = ARG_ANYTHING, 592 }; 593 594 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags, 595 struct bpf_perf_event_value *, buf, u32, size) 596 { 597 int err = -EINVAL; 598 599 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 600 goto clear; 601 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled, 602 &buf->running); 603 if (unlikely(err)) 604 goto clear; 605 return 0; 606 clear: 607 memset(buf, 0, size); 608 return err; 609 } 610 611 static const struct bpf_func_proto bpf_perf_event_read_value_proto = { 612 .func = bpf_perf_event_read_value, 613 .gpl_only = true, 614 .ret_type = RET_INTEGER, 615 .arg1_type = ARG_CONST_MAP_PTR, 616 .arg2_type = ARG_ANYTHING, 617 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 618 .arg4_type = ARG_CONST_SIZE, 619 }; 620 621 static __always_inline u64 622 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map, 623 u64 flags, struct perf_sample_data *sd) 624 { 625 struct bpf_array *array = container_of(map, struct bpf_array, map); 626 unsigned int cpu = smp_processor_id(); 627 u64 index = flags & BPF_F_INDEX_MASK; 628 struct bpf_event_entry *ee; 629 struct perf_event *event; 630 631 if (index == BPF_F_CURRENT_CPU) 632 index = cpu; 633 if (unlikely(index >= array->map.max_entries)) 634 return -E2BIG; 635 636 ee = READ_ONCE(array->ptrs[index]); 637 if (!ee) 638 return -ENOENT; 639 640 event = ee->event; 641 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE || 642 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT)) 643 return -EINVAL; 644 645 if (unlikely(event->oncpu != cpu)) 646 return -EOPNOTSUPP; 647 648 return perf_event_output(event, sd, regs); 649 } 650 651 /* 652 * Support executing tracepoints in normal, irq, and nmi context that each call 653 * bpf_perf_event_output 654 */ 655 struct bpf_trace_sample_data { 656 struct perf_sample_data sds[3]; 657 }; 658 659 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds); 660 static DEFINE_PER_CPU(int, bpf_trace_nest_level); 661 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map, 662 u64, flags, void *, data, u64, size) 663 { 664 struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds); 665 int nest_level = this_cpu_inc_return(bpf_trace_nest_level); 666 struct perf_raw_record raw = { 667 .frag = { 668 .size = size, 669 .data = data, 670 }, 671 }; 672 struct perf_sample_data *sd; 673 int err; 674 675 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) { 676 err = -EBUSY; 677 goto out; 678 } 679 680 sd = &sds->sds[nest_level - 1]; 681 682 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) { 683 err = -EINVAL; 684 goto out; 685 } 686 687 perf_sample_data_init(sd, 0, 0); 688 sd->raw = &raw; 689 sd->sample_flags |= PERF_SAMPLE_RAW; 690 691 err = __bpf_perf_event_output(regs, map, flags, sd); 692 693 out: 694 this_cpu_dec(bpf_trace_nest_level); 695 return err; 696 } 697 698 static const struct bpf_func_proto bpf_perf_event_output_proto = { 699 .func = bpf_perf_event_output, 700 .gpl_only = true, 701 .ret_type = RET_INTEGER, 702 .arg1_type = ARG_PTR_TO_CTX, 703 .arg2_type = ARG_CONST_MAP_PTR, 704 .arg3_type = ARG_ANYTHING, 705 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 706 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 707 }; 708 709 static DEFINE_PER_CPU(int, bpf_event_output_nest_level); 710 struct bpf_nested_pt_regs { 711 struct pt_regs regs[3]; 712 }; 713 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs); 714 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds); 715 716 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 717 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) 718 { 719 int nest_level = this_cpu_inc_return(bpf_event_output_nest_level); 720 struct perf_raw_frag frag = { 721 .copy = ctx_copy, 722 .size = ctx_size, 723 .data = ctx, 724 }; 725 struct perf_raw_record raw = { 726 .frag = { 727 { 728 .next = ctx_size ? &frag : NULL, 729 }, 730 .size = meta_size, 731 .data = meta, 732 }, 733 }; 734 struct perf_sample_data *sd; 735 struct pt_regs *regs; 736 u64 ret; 737 738 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) { 739 ret = -EBUSY; 740 goto out; 741 } 742 sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]); 743 regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]); 744 745 perf_fetch_caller_regs(regs); 746 perf_sample_data_init(sd, 0, 0); 747 sd->raw = &raw; 748 sd->sample_flags |= PERF_SAMPLE_RAW; 749 750 ret = __bpf_perf_event_output(regs, map, flags, sd); 751 out: 752 this_cpu_dec(bpf_event_output_nest_level); 753 return ret; 754 } 755 756 BPF_CALL_0(bpf_get_current_task) 757 { 758 return (long) current; 759 } 760 761 const struct bpf_func_proto bpf_get_current_task_proto = { 762 .func = bpf_get_current_task, 763 .gpl_only = true, 764 .ret_type = RET_INTEGER, 765 }; 766 767 BPF_CALL_0(bpf_get_current_task_btf) 768 { 769 return (unsigned long) current; 770 } 771 772 const struct bpf_func_proto bpf_get_current_task_btf_proto = { 773 .func = bpf_get_current_task_btf, 774 .gpl_only = true, 775 .ret_type = RET_PTR_TO_BTF_ID_TRUSTED, 776 .ret_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], 777 }; 778 779 BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task) 780 { 781 return (unsigned long) task_pt_regs(task); 782 } 783 784 BTF_ID_LIST(bpf_task_pt_regs_ids) 785 BTF_ID(struct, pt_regs) 786 787 const struct bpf_func_proto bpf_task_pt_regs_proto = { 788 .func = bpf_task_pt_regs, 789 .gpl_only = true, 790 .arg1_type = ARG_PTR_TO_BTF_ID, 791 .arg1_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], 792 .ret_type = RET_PTR_TO_BTF_ID, 793 .ret_btf_id = &bpf_task_pt_regs_ids[0], 794 }; 795 796 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx) 797 { 798 struct bpf_array *array = container_of(map, struct bpf_array, map); 799 struct cgroup *cgrp; 800 801 if (unlikely(idx >= array->map.max_entries)) 802 return -E2BIG; 803 804 cgrp = READ_ONCE(array->ptrs[idx]); 805 if (unlikely(!cgrp)) 806 return -EAGAIN; 807 808 return task_under_cgroup_hierarchy(current, cgrp); 809 } 810 811 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = { 812 .func = bpf_current_task_under_cgroup, 813 .gpl_only = false, 814 .ret_type = RET_INTEGER, 815 .arg1_type = ARG_CONST_MAP_PTR, 816 .arg2_type = ARG_ANYTHING, 817 }; 818 819 struct send_signal_irq_work { 820 struct irq_work irq_work; 821 struct task_struct *task; 822 u32 sig; 823 enum pid_type type; 824 }; 825 826 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work); 827 828 static void do_bpf_send_signal(struct irq_work *entry) 829 { 830 struct send_signal_irq_work *work; 831 832 work = container_of(entry, struct send_signal_irq_work, irq_work); 833 group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type); 834 } 835 836 static int bpf_send_signal_common(u32 sig, enum pid_type type) 837 { 838 struct send_signal_irq_work *work = NULL; 839 840 /* Similar to bpf_probe_write_user, task needs to be 841 * in a sound condition and kernel memory access be 842 * permitted in order to send signal to the current 843 * task. 844 */ 845 if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING))) 846 return -EPERM; 847 if (unlikely(!nmi_uaccess_okay())) 848 return -EPERM; 849 /* Task should not be pid=1 to avoid kernel panic. */ 850 if (unlikely(is_global_init(current))) 851 return -EPERM; 852 853 if (irqs_disabled()) { 854 /* Do an early check on signal validity. Otherwise, 855 * the error is lost in deferred irq_work. 856 */ 857 if (unlikely(!valid_signal(sig))) 858 return -EINVAL; 859 860 work = this_cpu_ptr(&send_signal_work); 861 if (irq_work_is_busy(&work->irq_work)) 862 return -EBUSY; 863 864 /* Add the current task, which is the target of sending signal, 865 * to the irq_work. The current task may change when queued 866 * irq works get executed. 867 */ 868 work->task = current; 869 work->sig = sig; 870 work->type = type; 871 irq_work_queue(&work->irq_work); 872 return 0; 873 } 874 875 return group_send_sig_info(sig, SEND_SIG_PRIV, current, type); 876 } 877 878 BPF_CALL_1(bpf_send_signal, u32, sig) 879 { 880 return bpf_send_signal_common(sig, PIDTYPE_TGID); 881 } 882 883 static const struct bpf_func_proto bpf_send_signal_proto = { 884 .func = bpf_send_signal, 885 .gpl_only = false, 886 .ret_type = RET_INTEGER, 887 .arg1_type = ARG_ANYTHING, 888 }; 889 890 BPF_CALL_1(bpf_send_signal_thread, u32, sig) 891 { 892 return bpf_send_signal_common(sig, PIDTYPE_PID); 893 } 894 895 static const struct bpf_func_proto bpf_send_signal_thread_proto = { 896 .func = bpf_send_signal_thread, 897 .gpl_only = false, 898 .ret_type = RET_INTEGER, 899 .arg1_type = ARG_ANYTHING, 900 }; 901 902 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz) 903 { 904 long len; 905 char *p; 906 907 if (!sz) 908 return 0; 909 910 p = d_path(path, buf, sz); 911 if (IS_ERR(p)) { 912 len = PTR_ERR(p); 913 } else { 914 len = buf + sz - p; 915 memmove(buf, p, len); 916 } 917 918 return len; 919 } 920 921 BTF_SET_START(btf_allowlist_d_path) 922 #ifdef CONFIG_SECURITY 923 BTF_ID(func, security_file_permission) 924 BTF_ID(func, security_inode_getattr) 925 BTF_ID(func, security_file_open) 926 #endif 927 #ifdef CONFIG_SECURITY_PATH 928 BTF_ID(func, security_path_truncate) 929 #endif 930 BTF_ID(func, vfs_truncate) 931 BTF_ID(func, vfs_fallocate) 932 BTF_ID(func, dentry_open) 933 BTF_ID(func, vfs_getattr) 934 BTF_ID(func, filp_close) 935 BTF_SET_END(btf_allowlist_d_path) 936 937 static bool bpf_d_path_allowed(const struct bpf_prog *prog) 938 { 939 if (prog->type == BPF_PROG_TYPE_TRACING && 940 prog->expected_attach_type == BPF_TRACE_ITER) 941 return true; 942 943 if (prog->type == BPF_PROG_TYPE_LSM) 944 return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id); 945 946 return btf_id_set_contains(&btf_allowlist_d_path, 947 prog->aux->attach_btf_id); 948 } 949 950 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path) 951 952 static const struct bpf_func_proto bpf_d_path_proto = { 953 .func = bpf_d_path, 954 .gpl_only = false, 955 .ret_type = RET_INTEGER, 956 .arg1_type = ARG_PTR_TO_BTF_ID, 957 .arg1_btf_id = &bpf_d_path_btf_ids[0], 958 .arg2_type = ARG_PTR_TO_MEM, 959 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 960 .allowed = bpf_d_path_allowed, 961 }; 962 963 #define BTF_F_ALL (BTF_F_COMPACT | BTF_F_NONAME | \ 964 BTF_F_PTR_RAW | BTF_F_ZERO) 965 966 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size, 967 u64 flags, const struct btf **btf, 968 s32 *btf_id) 969 { 970 const struct btf_type *t; 971 972 if (unlikely(flags & ~(BTF_F_ALL))) 973 return -EINVAL; 974 975 if (btf_ptr_size != sizeof(struct btf_ptr)) 976 return -EINVAL; 977 978 *btf = bpf_get_btf_vmlinux(); 979 980 if (IS_ERR_OR_NULL(*btf)) 981 return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL; 982 983 if (ptr->type_id > 0) 984 *btf_id = ptr->type_id; 985 else 986 return -EINVAL; 987 988 if (*btf_id > 0) 989 t = btf_type_by_id(*btf, *btf_id); 990 if (*btf_id <= 0 || !t) 991 return -ENOENT; 992 993 return 0; 994 } 995 996 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr, 997 u32, btf_ptr_size, u64, flags) 998 { 999 const struct btf *btf; 1000 s32 btf_id; 1001 int ret; 1002 1003 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id); 1004 if (ret) 1005 return ret; 1006 1007 return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size, 1008 flags); 1009 } 1010 1011 const struct bpf_func_proto bpf_snprintf_btf_proto = { 1012 .func = bpf_snprintf_btf, 1013 .gpl_only = false, 1014 .ret_type = RET_INTEGER, 1015 .arg1_type = ARG_PTR_TO_MEM, 1016 .arg2_type = ARG_CONST_SIZE, 1017 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1018 .arg4_type = ARG_CONST_SIZE, 1019 .arg5_type = ARG_ANYTHING, 1020 }; 1021 1022 BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx) 1023 { 1024 /* This helper call is inlined by verifier. */ 1025 return ((u64 *)ctx)[-2]; 1026 } 1027 1028 static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = { 1029 .func = bpf_get_func_ip_tracing, 1030 .gpl_only = true, 1031 .ret_type = RET_INTEGER, 1032 .arg1_type = ARG_PTR_TO_CTX, 1033 }; 1034 1035 #ifdef CONFIG_X86_KERNEL_IBT 1036 static unsigned long get_entry_ip(unsigned long fentry_ip) 1037 { 1038 u32 instr; 1039 1040 /* Being extra safe in here in case entry ip is on the page-edge. */ 1041 if (get_kernel_nofault(instr, (u32 *) fentry_ip - 1)) 1042 return fentry_ip; 1043 if (is_endbr(instr)) 1044 fentry_ip -= ENDBR_INSN_SIZE; 1045 return fentry_ip; 1046 } 1047 #else 1048 #define get_entry_ip(fentry_ip) fentry_ip 1049 #endif 1050 1051 BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs) 1052 { 1053 struct kprobe *kp = kprobe_running(); 1054 1055 if (!kp || !(kp->flags & KPROBE_FLAG_ON_FUNC_ENTRY)) 1056 return 0; 1057 1058 return get_entry_ip((uintptr_t)kp->addr); 1059 } 1060 1061 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = { 1062 .func = bpf_get_func_ip_kprobe, 1063 .gpl_only = true, 1064 .ret_type = RET_INTEGER, 1065 .arg1_type = ARG_PTR_TO_CTX, 1066 }; 1067 1068 BPF_CALL_1(bpf_get_func_ip_kprobe_multi, struct pt_regs *, regs) 1069 { 1070 return bpf_kprobe_multi_entry_ip(current->bpf_ctx); 1071 } 1072 1073 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe_multi = { 1074 .func = bpf_get_func_ip_kprobe_multi, 1075 .gpl_only = false, 1076 .ret_type = RET_INTEGER, 1077 .arg1_type = ARG_PTR_TO_CTX, 1078 }; 1079 1080 BPF_CALL_1(bpf_get_attach_cookie_kprobe_multi, struct pt_regs *, regs) 1081 { 1082 return bpf_kprobe_multi_cookie(current->bpf_ctx); 1083 } 1084 1085 static const struct bpf_func_proto bpf_get_attach_cookie_proto_kmulti = { 1086 .func = bpf_get_attach_cookie_kprobe_multi, 1087 .gpl_only = false, 1088 .ret_type = RET_INTEGER, 1089 .arg1_type = ARG_PTR_TO_CTX, 1090 }; 1091 1092 BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx) 1093 { 1094 struct bpf_trace_run_ctx *run_ctx; 1095 1096 run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx); 1097 return run_ctx->bpf_cookie; 1098 } 1099 1100 static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = { 1101 .func = bpf_get_attach_cookie_trace, 1102 .gpl_only = false, 1103 .ret_type = RET_INTEGER, 1104 .arg1_type = ARG_PTR_TO_CTX, 1105 }; 1106 1107 BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx) 1108 { 1109 return ctx->event->bpf_cookie; 1110 } 1111 1112 static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = { 1113 .func = bpf_get_attach_cookie_pe, 1114 .gpl_only = false, 1115 .ret_type = RET_INTEGER, 1116 .arg1_type = ARG_PTR_TO_CTX, 1117 }; 1118 1119 BPF_CALL_1(bpf_get_attach_cookie_tracing, void *, ctx) 1120 { 1121 struct bpf_trace_run_ctx *run_ctx; 1122 1123 run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx); 1124 return run_ctx->bpf_cookie; 1125 } 1126 1127 static const struct bpf_func_proto bpf_get_attach_cookie_proto_tracing = { 1128 .func = bpf_get_attach_cookie_tracing, 1129 .gpl_only = false, 1130 .ret_type = RET_INTEGER, 1131 .arg1_type = ARG_PTR_TO_CTX, 1132 }; 1133 1134 BPF_CALL_3(bpf_get_branch_snapshot, void *, buf, u32, size, u64, flags) 1135 { 1136 #ifndef CONFIG_X86 1137 return -ENOENT; 1138 #else 1139 static const u32 br_entry_size = sizeof(struct perf_branch_entry); 1140 u32 entry_cnt = size / br_entry_size; 1141 1142 entry_cnt = static_call(perf_snapshot_branch_stack)(buf, entry_cnt); 1143 1144 if (unlikely(flags)) 1145 return -EINVAL; 1146 1147 if (!entry_cnt) 1148 return -ENOENT; 1149 1150 return entry_cnt * br_entry_size; 1151 #endif 1152 } 1153 1154 static const struct bpf_func_proto bpf_get_branch_snapshot_proto = { 1155 .func = bpf_get_branch_snapshot, 1156 .gpl_only = true, 1157 .ret_type = RET_INTEGER, 1158 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1159 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1160 }; 1161 1162 BPF_CALL_3(get_func_arg, void *, ctx, u32, n, u64 *, value) 1163 { 1164 /* This helper call is inlined by verifier. */ 1165 u64 nr_args = ((u64 *)ctx)[-1]; 1166 1167 if ((u64) n >= nr_args) 1168 return -EINVAL; 1169 *value = ((u64 *)ctx)[n]; 1170 return 0; 1171 } 1172 1173 static const struct bpf_func_proto bpf_get_func_arg_proto = { 1174 .func = get_func_arg, 1175 .ret_type = RET_INTEGER, 1176 .arg1_type = ARG_PTR_TO_CTX, 1177 .arg2_type = ARG_ANYTHING, 1178 .arg3_type = ARG_PTR_TO_LONG, 1179 }; 1180 1181 BPF_CALL_2(get_func_ret, void *, ctx, u64 *, value) 1182 { 1183 /* This helper call is inlined by verifier. */ 1184 u64 nr_args = ((u64 *)ctx)[-1]; 1185 1186 *value = ((u64 *)ctx)[nr_args]; 1187 return 0; 1188 } 1189 1190 static const struct bpf_func_proto bpf_get_func_ret_proto = { 1191 .func = get_func_ret, 1192 .ret_type = RET_INTEGER, 1193 .arg1_type = ARG_PTR_TO_CTX, 1194 .arg2_type = ARG_PTR_TO_LONG, 1195 }; 1196 1197 BPF_CALL_1(get_func_arg_cnt, void *, ctx) 1198 { 1199 /* This helper call is inlined by verifier. */ 1200 return ((u64 *)ctx)[-1]; 1201 } 1202 1203 static const struct bpf_func_proto bpf_get_func_arg_cnt_proto = { 1204 .func = get_func_arg_cnt, 1205 .ret_type = RET_INTEGER, 1206 .arg1_type = ARG_PTR_TO_CTX, 1207 }; 1208 1209 #ifdef CONFIG_KEYS 1210 __diag_push(); 1211 __diag_ignore_all("-Wmissing-prototypes", 1212 "kfuncs which will be used in BPF programs"); 1213 1214 /** 1215 * bpf_lookup_user_key - lookup a key by its serial 1216 * @serial: key handle serial number 1217 * @flags: lookup-specific flags 1218 * 1219 * Search a key with a given *serial* and the provided *flags*. 1220 * If found, increment the reference count of the key by one, and 1221 * return it in the bpf_key structure. 1222 * 1223 * The bpf_key structure must be passed to bpf_key_put() when done 1224 * with it, so that the key reference count is decremented and the 1225 * bpf_key structure is freed. 1226 * 1227 * Permission checks are deferred to the time the key is used by 1228 * one of the available key-specific kfuncs. 1229 * 1230 * Set *flags* with KEY_LOOKUP_CREATE, to attempt creating a requested 1231 * special keyring (e.g. session keyring), if it doesn't yet exist. 1232 * Set *flags* with KEY_LOOKUP_PARTIAL, to lookup a key without waiting 1233 * for the key construction, and to retrieve uninstantiated keys (keys 1234 * without data attached to them). 1235 * 1236 * Return: a bpf_key pointer with a valid key pointer if the key is found, a 1237 * NULL pointer otherwise. 1238 */ 1239 struct bpf_key *bpf_lookup_user_key(u32 serial, u64 flags) 1240 { 1241 key_ref_t key_ref; 1242 struct bpf_key *bkey; 1243 1244 if (flags & ~KEY_LOOKUP_ALL) 1245 return NULL; 1246 1247 /* 1248 * Permission check is deferred until the key is used, as the 1249 * intent of the caller is unknown here. 1250 */ 1251 key_ref = lookup_user_key(serial, flags, KEY_DEFER_PERM_CHECK); 1252 if (IS_ERR(key_ref)) 1253 return NULL; 1254 1255 bkey = kmalloc(sizeof(*bkey), GFP_KERNEL); 1256 if (!bkey) { 1257 key_put(key_ref_to_ptr(key_ref)); 1258 return NULL; 1259 } 1260 1261 bkey->key = key_ref_to_ptr(key_ref); 1262 bkey->has_ref = true; 1263 1264 return bkey; 1265 } 1266 1267 /** 1268 * bpf_lookup_system_key - lookup a key by a system-defined ID 1269 * @id: key ID 1270 * 1271 * Obtain a bpf_key structure with a key pointer set to the passed key ID. 1272 * The key pointer is marked as invalid, to prevent bpf_key_put() from 1273 * attempting to decrement the key reference count on that pointer. The key 1274 * pointer set in such way is currently understood only by 1275 * verify_pkcs7_signature(). 1276 * 1277 * Set *id* to one of the values defined in include/linux/verification.h: 1278 * 0 for the primary keyring (immutable keyring of system keys); 1279 * VERIFY_USE_SECONDARY_KEYRING for both the primary and secondary keyring 1280 * (where keys can be added only if they are vouched for by existing keys 1281 * in those keyrings); VERIFY_USE_PLATFORM_KEYRING for the platform 1282 * keyring (primarily used by the integrity subsystem to verify a kexec'ed 1283 * kerned image and, possibly, the initramfs signature). 1284 * 1285 * Return: a bpf_key pointer with an invalid key pointer set from the 1286 * pre-determined ID on success, a NULL pointer otherwise 1287 */ 1288 struct bpf_key *bpf_lookup_system_key(u64 id) 1289 { 1290 struct bpf_key *bkey; 1291 1292 if (system_keyring_id_check(id) < 0) 1293 return NULL; 1294 1295 bkey = kmalloc(sizeof(*bkey), GFP_ATOMIC); 1296 if (!bkey) 1297 return NULL; 1298 1299 bkey->key = (struct key *)(unsigned long)id; 1300 bkey->has_ref = false; 1301 1302 return bkey; 1303 } 1304 1305 /** 1306 * bpf_key_put - decrement key reference count if key is valid and free bpf_key 1307 * @bkey: bpf_key structure 1308 * 1309 * Decrement the reference count of the key inside *bkey*, if the pointer 1310 * is valid, and free *bkey*. 1311 */ 1312 void bpf_key_put(struct bpf_key *bkey) 1313 { 1314 if (bkey->has_ref) 1315 key_put(bkey->key); 1316 1317 kfree(bkey); 1318 } 1319 1320 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION 1321 /** 1322 * bpf_verify_pkcs7_signature - verify a PKCS#7 signature 1323 * @data_ptr: data to verify 1324 * @sig_ptr: signature of the data 1325 * @trusted_keyring: keyring with keys trusted for signature verification 1326 * 1327 * Verify the PKCS#7 signature *sig_ptr* against the supplied *data_ptr* 1328 * with keys in a keyring referenced by *trusted_keyring*. 1329 * 1330 * Return: 0 on success, a negative value on error. 1331 */ 1332 int bpf_verify_pkcs7_signature(struct bpf_dynptr_kern *data_ptr, 1333 struct bpf_dynptr_kern *sig_ptr, 1334 struct bpf_key *trusted_keyring) 1335 { 1336 int ret; 1337 1338 if (trusted_keyring->has_ref) { 1339 /* 1340 * Do the permission check deferred in bpf_lookup_user_key(). 1341 * See bpf_lookup_user_key() for more details. 1342 * 1343 * A call to key_task_permission() here would be redundant, as 1344 * it is already done by keyring_search() called by 1345 * find_asymmetric_key(). 1346 */ 1347 ret = key_validate(trusted_keyring->key); 1348 if (ret < 0) 1349 return ret; 1350 } 1351 1352 return verify_pkcs7_signature(data_ptr->data, 1353 bpf_dynptr_get_size(data_ptr), 1354 sig_ptr->data, 1355 bpf_dynptr_get_size(sig_ptr), 1356 trusted_keyring->key, 1357 VERIFYING_UNSPECIFIED_SIGNATURE, NULL, 1358 NULL); 1359 } 1360 #endif /* CONFIG_SYSTEM_DATA_VERIFICATION */ 1361 1362 __diag_pop(); 1363 1364 BTF_SET8_START(key_sig_kfunc_set) 1365 BTF_ID_FLAGS(func, bpf_lookup_user_key, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE) 1366 BTF_ID_FLAGS(func, bpf_lookup_system_key, KF_ACQUIRE | KF_RET_NULL) 1367 BTF_ID_FLAGS(func, bpf_key_put, KF_RELEASE) 1368 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION 1369 BTF_ID_FLAGS(func, bpf_verify_pkcs7_signature, KF_SLEEPABLE) 1370 #endif 1371 BTF_SET8_END(key_sig_kfunc_set) 1372 1373 static const struct btf_kfunc_id_set bpf_key_sig_kfunc_set = { 1374 .owner = THIS_MODULE, 1375 .set = &key_sig_kfunc_set, 1376 }; 1377 1378 static int __init bpf_key_sig_kfuncs_init(void) 1379 { 1380 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 1381 &bpf_key_sig_kfunc_set); 1382 } 1383 1384 late_initcall(bpf_key_sig_kfuncs_init); 1385 #endif /* CONFIG_KEYS */ 1386 1387 static const struct bpf_func_proto * 1388 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1389 { 1390 switch (func_id) { 1391 case BPF_FUNC_map_lookup_elem: 1392 return &bpf_map_lookup_elem_proto; 1393 case BPF_FUNC_map_update_elem: 1394 return &bpf_map_update_elem_proto; 1395 case BPF_FUNC_map_delete_elem: 1396 return &bpf_map_delete_elem_proto; 1397 case BPF_FUNC_map_push_elem: 1398 return &bpf_map_push_elem_proto; 1399 case BPF_FUNC_map_pop_elem: 1400 return &bpf_map_pop_elem_proto; 1401 case BPF_FUNC_map_peek_elem: 1402 return &bpf_map_peek_elem_proto; 1403 case BPF_FUNC_map_lookup_percpu_elem: 1404 return &bpf_map_lookup_percpu_elem_proto; 1405 case BPF_FUNC_ktime_get_ns: 1406 return &bpf_ktime_get_ns_proto; 1407 case BPF_FUNC_ktime_get_boot_ns: 1408 return &bpf_ktime_get_boot_ns_proto; 1409 case BPF_FUNC_tail_call: 1410 return &bpf_tail_call_proto; 1411 case BPF_FUNC_get_current_pid_tgid: 1412 return &bpf_get_current_pid_tgid_proto; 1413 case BPF_FUNC_get_current_task: 1414 return &bpf_get_current_task_proto; 1415 case BPF_FUNC_get_current_task_btf: 1416 return &bpf_get_current_task_btf_proto; 1417 case BPF_FUNC_task_pt_regs: 1418 return &bpf_task_pt_regs_proto; 1419 case BPF_FUNC_get_current_uid_gid: 1420 return &bpf_get_current_uid_gid_proto; 1421 case BPF_FUNC_get_current_comm: 1422 return &bpf_get_current_comm_proto; 1423 case BPF_FUNC_trace_printk: 1424 return bpf_get_trace_printk_proto(); 1425 case BPF_FUNC_get_smp_processor_id: 1426 return &bpf_get_smp_processor_id_proto; 1427 case BPF_FUNC_get_numa_node_id: 1428 return &bpf_get_numa_node_id_proto; 1429 case BPF_FUNC_perf_event_read: 1430 return &bpf_perf_event_read_proto; 1431 case BPF_FUNC_current_task_under_cgroup: 1432 return &bpf_current_task_under_cgroup_proto; 1433 case BPF_FUNC_get_prandom_u32: 1434 return &bpf_get_prandom_u32_proto; 1435 case BPF_FUNC_probe_write_user: 1436 return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ? 1437 NULL : bpf_get_probe_write_proto(); 1438 case BPF_FUNC_probe_read_user: 1439 return &bpf_probe_read_user_proto; 1440 case BPF_FUNC_probe_read_kernel: 1441 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1442 NULL : &bpf_probe_read_kernel_proto; 1443 case BPF_FUNC_probe_read_user_str: 1444 return &bpf_probe_read_user_str_proto; 1445 case BPF_FUNC_probe_read_kernel_str: 1446 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1447 NULL : &bpf_probe_read_kernel_str_proto; 1448 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 1449 case BPF_FUNC_probe_read: 1450 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1451 NULL : &bpf_probe_read_compat_proto; 1452 case BPF_FUNC_probe_read_str: 1453 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1454 NULL : &bpf_probe_read_compat_str_proto; 1455 #endif 1456 #ifdef CONFIG_CGROUPS 1457 case BPF_FUNC_get_current_cgroup_id: 1458 return &bpf_get_current_cgroup_id_proto; 1459 case BPF_FUNC_get_current_ancestor_cgroup_id: 1460 return &bpf_get_current_ancestor_cgroup_id_proto; 1461 case BPF_FUNC_cgrp_storage_get: 1462 return &bpf_cgrp_storage_get_proto; 1463 case BPF_FUNC_cgrp_storage_delete: 1464 return &bpf_cgrp_storage_delete_proto; 1465 #endif 1466 case BPF_FUNC_send_signal: 1467 return &bpf_send_signal_proto; 1468 case BPF_FUNC_send_signal_thread: 1469 return &bpf_send_signal_thread_proto; 1470 case BPF_FUNC_perf_event_read_value: 1471 return &bpf_perf_event_read_value_proto; 1472 case BPF_FUNC_get_ns_current_pid_tgid: 1473 return &bpf_get_ns_current_pid_tgid_proto; 1474 case BPF_FUNC_ringbuf_output: 1475 return &bpf_ringbuf_output_proto; 1476 case BPF_FUNC_ringbuf_reserve: 1477 return &bpf_ringbuf_reserve_proto; 1478 case BPF_FUNC_ringbuf_submit: 1479 return &bpf_ringbuf_submit_proto; 1480 case BPF_FUNC_ringbuf_discard: 1481 return &bpf_ringbuf_discard_proto; 1482 case BPF_FUNC_ringbuf_query: 1483 return &bpf_ringbuf_query_proto; 1484 case BPF_FUNC_jiffies64: 1485 return &bpf_jiffies64_proto; 1486 case BPF_FUNC_get_task_stack: 1487 return &bpf_get_task_stack_proto; 1488 case BPF_FUNC_copy_from_user: 1489 return &bpf_copy_from_user_proto; 1490 case BPF_FUNC_copy_from_user_task: 1491 return &bpf_copy_from_user_task_proto; 1492 case BPF_FUNC_snprintf_btf: 1493 return &bpf_snprintf_btf_proto; 1494 case BPF_FUNC_per_cpu_ptr: 1495 return &bpf_per_cpu_ptr_proto; 1496 case BPF_FUNC_this_cpu_ptr: 1497 return &bpf_this_cpu_ptr_proto; 1498 case BPF_FUNC_task_storage_get: 1499 if (bpf_prog_check_recur(prog)) 1500 return &bpf_task_storage_get_recur_proto; 1501 return &bpf_task_storage_get_proto; 1502 case BPF_FUNC_task_storage_delete: 1503 if (bpf_prog_check_recur(prog)) 1504 return &bpf_task_storage_delete_recur_proto; 1505 return &bpf_task_storage_delete_proto; 1506 case BPF_FUNC_for_each_map_elem: 1507 return &bpf_for_each_map_elem_proto; 1508 case BPF_FUNC_snprintf: 1509 return &bpf_snprintf_proto; 1510 case BPF_FUNC_get_func_ip: 1511 return &bpf_get_func_ip_proto_tracing; 1512 case BPF_FUNC_get_branch_snapshot: 1513 return &bpf_get_branch_snapshot_proto; 1514 case BPF_FUNC_find_vma: 1515 return &bpf_find_vma_proto; 1516 case BPF_FUNC_trace_vprintk: 1517 return bpf_get_trace_vprintk_proto(); 1518 default: 1519 return bpf_base_func_proto(func_id); 1520 } 1521 } 1522 1523 static const struct bpf_func_proto * 1524 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1525 { 1526 switch (func_id) { 1527 case BPF_FUNC_perf_event_output: 1528 return &bpf_perf_event_output_proto; 1529 case BPF_FUNC_get_stackid: 1530 return &bpf_get_stackid_proto; 1531 case BPF_FUNC_get_stack: 1532 return &bpf_get_stack_proto; 1533 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 1534 case BPF_FUNC_override_return: 1535 return &bpf_override_return_proto; 1536 #endif 1537 case BPF_FUNC_get_func_ip: 1538 return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI ? 1539 &bpf_get_func_ip_proto_kprobe_multi : 1540 &bpf_get_func_ip_proto_kprobe; 1541 case BPF_FUNC_get_attach_cookie: 1542 return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI ? 1543 &bpf_get_attach_cookie_proto_kmulti : 1544 &bpf_get_attach_cookie_proto_trace; 1545 default: 1546 return bpf_tracing_func_proto(func_id, prog); 1547 } 1548 } 1549 1550 /* bpf+kprobe programs can access fields of 'struct pt_regs' */ 1551 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1552 const struct bpf_prog *prog, 1553 struct bpf_insn_access_aux *info) 1554 { 1555 if (off < 0 || off >= sizeof(struct pt_regs)) 1556 return false; 1557 if (type != BPF_READ) 1558 return false; 1559 if (off % size != 0) 1560 return false; 1561 /* 1562 * Assertion for 32 bit to make sure last 8 byte access 1563 * (BPF_DW) to the last 4 byte member is disallowed. 1564 */ 1565 if (off + size > sizeof(struct pt_regs)) 1566 return false; 1567 1568 return true; 1569 } 1570 1571 const struct bpf_verifier_ops kprobe_verifier_ops = { 1572 .get_func_proto = kprobe_prog_func_proto, 1573 .is_valid_access = kprobe_prog_is_valid_access, 1574 }; 1575 1576 const struct bpf_prog_ops kprobe_prog_ops = { 1577 }; 1578 1579 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map, 1580 u64, flags, void *, data, u64, size) 1581 { 1582 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1583 1584 /* 1585 * r1 points to perf tracepoint buffer where first 8 bytes are hidden 1586 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it 1587 * from there and call the same bpf_perf_event_output() helper inline. 1588 */ 1589 return ____bpf_perf_event_output(regs, map, flags, data, size); 1590 } 1591 1592 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = { 1593 .func = bpf_perf_event_output_tp, 1594 .gpl_only = true, 1595 .ret_type = RET_INTEGER, 1596 .arg1_type = ARG_PTR_TO_CTX, 1597 .arg2_type = ARG_CONST_MAP_PTR, 1598 .arg3_type = ARG_ANYTHING, 1599 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1600 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1601 }; 1602 1603 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map, 1604 u64, flags) 1605 { 1606 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1607 1608 /* 1609 * Same comment as in bpf_perf_event_output_tp(), only that this time 1610 * the other helper's function body cannot be inlined due to being 1611 * external, thus we need to call raw helper function. 1612 */ 1613 return bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1614 flags, 0, 0); 1615 } 1616 1617 static const struct bpf_func_proto bpf_get_stackid_proto_tp = { 1618 .func = bpf_get_stackid_tp, 1619 .gpl_only = true, 1620 .ret_type = RET_INTEGER, 1621 .arg1_type = ARG_PTR_TO_CTX, 1622 .arg2_type = ARG_CONST_MAP_PTR, 1623 .arg3_type = ARG_ANYTHING, 1624 }; 1625 1626 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size, 1627 u64, flags) 1628 { 1629 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1630 1631 return bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1632 (unsigned long) size, flags, 0); 1633 } 1634 1635 static const struct bpf_func_proto bpf_get_stack_proto_tp = { 1636 .func = bpf_get_stack_tp, 1637 .gpl_only = true, 1638 .ret_type = RET_INTEGER, 1639 .arg1_type = ARG_PTR_TO_CTX, 1640 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1641 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1642 .arg4_type = ARG_ANYTHING, 1643 }; 1644 1645 static const struct bpf_func_proto * 1646 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1647 { 1648 switch (func_id) { 1649 case BPF_FUNC_perf_event_output: 1650 return &bpf_perf_event_output_proto_tp; 1651 case BPF_FUNC_get_stackid: 1652 return &bpf_get_stackid_proto_tp; 1653 case BPF_FUNC_get_stack: 1654 return &bpf_get_stack_proto_tp; 1655 case BPF_FUNC_get_attach_cookie: 1656 return &bpf_get_attach_cookie_proto_trace; 1657 default: 1658 return bpf_tracing_func_proto(func_id, prog); 1659 } 1660 } 1661 1662 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1663 const struct bpf_prog *prog, 1664 struct bpf_insn_access_aux *info) 1665 { 1666 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE) 1667 return false; 1668 if (type != BPF_READ) 1669 return false; 1670 if (off % size != 0) 1671 return false; 1672 1673 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64)); 1674 return true; 1675 } 1676 1677 const struct bpf_verifier_ops tracepoint_verifier_ops = { 1678 .get_func_proto = tp_prog_func_proto, 1679 .is_valid_access = tp_prog_is_valid_access, 1680 }; 1681 1682 const struct bpf_prog_ops tracepoint_prog_ops = { 1683 }; 1684 1685 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx, 1686 struct bpf_perf_event_value *, buf, u32, size) 1687 { 1688 int err = -EINVAL; 1689 1690 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 1691 goto clear; 1692 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled, 1693 &buf->running); 1694 if (unlikely(err)) 1695 goto clear; 1696 return 0; 1697 clear: 1698 memset(buf, 0, size); 1699 return err; 1700 } 1701 1702 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = { 1703 .func = bpf_perf_prog_read_value, 1704 .gpl_only = true, 1705 .ret_type = RET_INTEGER, 1706 .arg1_type = ARG_PTR_TO_CTX, 1707 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1708 .arg3_type = ARG_CONST_SIZE, 1709 }; 1710 1711 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx, 1712 void *, buf, u32, size, u64, flags) 1713 { 1714 static const u32 br_entry_size = sizeof(struct perf_branch_entry); 1715 struct perf_branch_stack *br_stack = ctx->data->br_stack; 1716 u32 to_copy; 1717 1718 if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE)) 1719 return -EINVAL; 1720 1721 if (unlikely(!(ctx->data->sample_flags & PERF_SAMPLE_BRANCH_STACK))) 1722 return -ENOENT; 1723 1724 if (unlikely(!br_stack)) 1725 return -ENOENT; 1726 1727 if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE) 1728 return br_stack->nr * br_entry_size; 1729 1730 if (!buf || (size % br_entry_size != 0)) 1731 return -EINVAL; 1732 1733 to_copy = min_t(u32, br_stack->nr * br_entry_size, size); 1734 memcpy(buf, br_stack->entries, to_copy); 1735 1736 return to_copy; 1737 } 1738 1739 static const struct bpf_func_proto bpf_read_branch_records_proto = { 1740 .func = bpf_read_branch_records, 1741 .gpl_only = true, 1742 .ret_type = RET_INTEGER, 1743 .arg1_type = ARG_PTR_TO_CTX, 1744 .arg2_type = ARG_PTR_TO_MEM_OR_NULL, 1745 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1746 .arg4_type = ARG_ANYTHING, 1747 }; 1748 1749 static const struct bpf_func_proto * 1750 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1751 { 1752 switch (func_id) { 1753 case BPF_FUNC_perf_event_output: 1754 return &bpf_perf_event_output_proto_tp; 1755 case BPF_FUNC_get_stackid: 1756 return &bpf_get_stackid_proto_pe; 1757 case BPF_FUNC_get_stack: 1758 return &bpf_get_stack_proto_pe; 1759 case BPF_FUNC_perf_prog_read_value: 1760 return &bpf_perf_prog_read_value_proto; 1761 case BPF_FUNC_read_branch_records: 1762 return &bpf_read_branch_records_proto; 1763 case BPF_FUNC_get_attach_cookie: 1764 return &bpf_get_attach_cookie_proto_pe; 1765 default: 1766 return bpf_tracing_func_proto(func_id, prog); 1767 } 1768 } 1769 1770 /* 1771 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp 1772 * to avoid potential recursive reuse issue when/if tracepoints are added 1773 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack. 1774 * 1775 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage 1776 * in normal, irq, and nmi context. 1777 */ 1778 struct bpf_raw_tp_regs { 1779 struct pt_regs regs[3]; 1780 }; 1781 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs); 1782 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level); 1783 static struct pt_regs *get_bpf_raw_tp_regs(void) 1784 { 1785 struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs); 1786 int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level); 1787 1788 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) { 1789 this_cpu_dec(bpf_raw_tp_nest_level); 1790 return ERR_PTR(-EBUSY); 1791 } 1792 1793 return &tp_regs->regs[nest_level - 1]; 1794 } 1795 1796 static void put_bpf_raw_tp_regs(void) 1797 { 1798 this_cpu_dec(bpf_raw_tp_nest_level); 1799 } 1800 1801 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args, 1802 struct bpf_map *, map, u64, flags, void *, data, u64, size) 1803 { 1804 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1805 int ret; 1806 1807 if (IS_ERR(regs)) 1808 return PTR_ERR(regs); 1809 1810 perf_fetch_caller_regs(regs); 1811 ret = ____bpf_perf_event_output(regs, map, flags, data, size); 1812 1813 put_bpf_raw_tp_regs(); 1814 return ret; 1815 } 1816 1817 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = { 1818 .func = bpf_perf_event_output_raw_tp, 1819 .gpl_only = true, 1820 .ret_type = RET_INTEGER, 1821 .arg1_type = ARG_PTR_TO_CTX, 1822 .arg2_type = ARG_CONST_MAP_PTR, 1823 .arg3_type = ARG_ANYTHING, 1824 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1825 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1826 }; 1827 1828 extern const struct bpf_func_proto bpf_skb_output_proto; 1829 extern const struct bpf_func_proto bpf_xdp_output_proto; 1830 extern const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto; 1831 1832 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args, 1833 struct bpf_map *, map, u64, flags) 1834 { 1835 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1836 int ret; 1837 1838 if (IS_ERR(regs)) 1839 return PTR_ERR(regs); 1840 1841 perf_fetch_caller_regs(regs); 1842 /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */ 1843 ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1844 flags, 0, 0); 1845 put_bpf_raw_tp_regs(); 1846 return ret; 1847 } 1848 1849 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = { 1850 .func = bpf_get_stackid_raw_tp, 1851 .gpl_only = true, 1852 .ret_type = RET_INTEGER, 1853 .arg1_type = ARG_PTR_TO_CTX, 1854 .arg2_type = ARG_CONST_MAP_PTR, 1855 .arg3_type = ARG_ANYTHING, 1856 }; 1857 1858 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args, 1859 void *, buf, u32, size, u64, flags) 1860 { 1861 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1862 int ret; 1863 1864 if (IS_ERR(regs)) 1865 return PTR_ERR(regs); 1866 1867 perf_fetch_caller_regs(regs); 1868 ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1869 (unsigned long) size, flags, 0); 1870 put_bpf_raw_tp_regs(); 1871 return ret; 1872 } 1873 1874 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = { 1875 .func = bpf_get_stack_raw_tp, 1876 .gpl_only = true, 1877 .ret_type = RET_INTEGER, 1878 .arg1_type = ARG_PTR_TO_CTX, 1879 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1880 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1881 .arg4_type = ARG_ANYTHING, 1882 }; 1883 1884 static const struct bpf_func_proto * 1885 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1886 { 1887 switch (func_id) { 1888 case BPF_FUNC_perf_event_output: 1889 return &bpf_perf_event_output_proto_raw_tp; 1890 case BPF_FUNC_get_stackid: 1891 return &bpf_get_stackid_proto_raw_tp; 1892 case BPF_FUNC_get_stack: 1893 return &bpf_get_stack_proto_raw_tp; 1894 default: 1895 return bpf_tracing_func_proto(func_id, prog); 1896 } 1897 } 1898 1899 const struct bpf_func_proto * 1900 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1901 { 1902 const struct bpf_func_proto *fn; 1903 1904 switch (func_id) { 1905 #ifdef CONFIG_NET 1906 case BPF_FUNC_skb_output: 1907 return &bpf_skb_output_proto; 1908 case BPF_FUNC_xdp_output: 1909 return &bpf_xdp_output_proto; 1910 case BPF_FUNC_skc_to_tcp6_sock: 1911 return &bpf_skc_to_tcp6_sock_proto; 1912 case BPF_FUNC_skc_to_tcp_sock: 1913 return &bpf_skc_to_tcp_sock_proto; 1914 case BPF_FUNC_skc_to_tcp_timewait_sock: 1915 return &bpf_skc_to_tcp_timewait_sock_proto; 1916 case BPF_FUNC_skc_to_tcp_request_sock: 1917 return &bpf_skc_to_tcp_request_sock_proto; 1918 case BPF_FUNC_skc_to_udp6_sock: 1919 return &bpf_skc_to_udp6_sock_proto; 1920 case BPF_FUNC_skc_to_unix_sock: 1921 return &bpf_skc_to_unix_sock_proto; 1922 case BPF_FUNC_skc_to_mptcp_sock: 1923 return &bpf_skc_to_mptcp_sock_proto; 1924 case BPF_FUNC_sk_storage_get: 1925 return &bpf_sk_storage_get_tracing_proto; 1926 case BPF_FUNC_sk_storage_delete: 1927 return &bpf_sk_storage_delete_tracing_proto; 1928 case BPF_FUNC_sock_from_file: 1929 return &bpf_sock_from_file_proto; 1930 case BPF_FUNC_get_socket_cookie: 1931 return &bpf_get_socket_ptr_cookie_proto; 1932 case BPF_FUNC_xdp_get_buff_len: 1933 return &bpf_xdp_get_buff_len_trace_proto; 1934 #endif 1935 case BPF_FUNC_seq_printf: 1936 return prog->expected_attach_type == BPF_TRACE_ITER ? 1937 &bpf_seq_printf_proto : 1938 NULL; 1939 case BPF_FUNC_seq_write: 1940 return prog->expected_attach_type == BPF_TRACE_ITER ? 1941 &bpf_seq_write_proto : 1942 NULL; 1943 case BPF_FUNC_seq_printf_btf: 1944 return prog->expected_attach_type == BPF_TRACE_ITER ? 1945 &bpf_seq_printf_btf_proto : 1946 NULL; 1947 case BPF_FUNC_d_path: 1948 return &bpf_d_path_proto; 1949 case BPF_FUNC_get_func_arg: 1950 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_proto : NULL; 1951 case BPF_FUNC_get_func_ret: 1952 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_ret_proto : NULL; 1953 case BPF_FUNC_get_func_arg_cnt: 1954 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_cnt_proto : NULL; 1955 case BPF_FUNC_get_attach_cookie: 1956 return bpf_prog_has_trampoline(prog) ? &bpf_get_attach_cookie_proto_tracing : NULL; 1957 default: 1958 fn = raw_tp_prog_func_proto(func_id, prog); 1959 if (!fn && prog->expected_attach_type == BPF_TRACE_ITER) 1960 fn = bpf_iter_get_func_proto(func_id, prog); 1961 return fn; 1962 } 1963 } 1964 1965 static bool raw_tp_prog_is_valid_access(int off, int size, 1966 enum bpf_access_type type, 1967 const struct bpf_prog *prog, 1968 struct bpf_insn_access_aux *info) 1969 { 1970 return bpf_tracing_ctx_access(off, size, type); 1971 } 1972 1973 static bool tracing_prog_is_valid_access(int off, int size, 1974 enum bpf_access_type type, 1975 const struct bpf_prog *prog, 1976 struct bpf_insn_access_aux *info) 1977 { 1978 return bpf_tracing_btf_ctx_access(off, size, type, prog, info); 1979 } 1980 1981 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog, 1982 const union bpf_attr *kattr, 1983 union bpf_attr __user *uattr) 1984 { 1985 return -ENOTSUPP; 1986 } 1987 1988 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = { 1989 .get_func_proto = raw_tp_prog_func_proto, 1990 .is_valid_access = raw_tp_prog_is_valid_access, 1991 }; 1992 1993 const struct bpf_prog_ops raw_tracepoint_prog_ops = { 1994 #ifdef CONFIG_NET 1995 .test_run = bpf_prog_test_run_raw_tp, 1996 #endif 1997 }; 1998 1999 const struct bpf_verifier_ops tracing_verifier_ops = { 2000 .get_func_proto = tracing_prog_func_proto, 2001 .is_valid_access = tracing_prog_is_valid_access, 2002 }; 2003 2004 const struct bpf_prog_ops tracing_prog_ops = { 2005 .test_run = bpf_prog_test_run_tracing, 2006 }; 2007 2008 static bool raw_tp_writable_prog_is_valid_access(int off, int size, 2009 enum bpf_access_type type, 2010 const struct bpf_prog *prog, 2011 struct bpf_insn_access_aux *info) 2012 { 2013 if (off == 0) { 2014 if (size != sizeof(u64) || type != BPF_READ) 2015 return false; 2016 info->reg_type = PTR_TO_TP_BUFFER; 2017 } 2018 return raw_tp_prog_is_valid_access(off, size, type, prog, info); 2019 } 2020 2021 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = { 2022 .get_func_proto = raw_tp_prog_func_proto, 2023 .is_valid_access = raw_tp_writable_prog_is_valid_access, 2024 }; 2025 2026 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = { 2027 }; 2028 2029 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 2030 const struct bpf_prog *prog, 2031 struct bpf_insn_access_aux *info) 2032 { 2033 const int size_u64 = sizeof(u64); 2034 2035 if (off < 0 || off >= sizeof(struct bpf_perf_event_data)) 2036 return false; 2037 if (type != BPF_READ) 2038 return false; 2039 if (off % size != 0) { 2040 if (sizeof(unsigned long) != 4) 2041 return false; 2042 if (size != 8) 2043 return false; 2044 if (off % size != 4) 2045 return false; 2046 } 2047 2048 switch (off) { 2049 case bpf_ctx_range(struct bpf_perf_event_data, sample_period): 2050 bpf_ctx_record_field_size(info, size_u64); 2051 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 2052 return false; 2053 break; 2054 case bpf_ctx_range(struct bpf_perf_event_data, addr): 2055 bpf_ctx_record_field_size(info, size_u64); 2056 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 2057 return false; 2058 break; 2059 default: 2060 if (size != sizeof(long)) 2061 return false; 2062 } 2063 2064 return true; 2065 } 2066 2067 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type, 2068 const struct bpf_insn *si, 2069 struct bpf_insn *insn_buf, 2070 struct bpf_prog *prog, u32 *target_size) 2071 { 2072 struct bpf_insn *insn = insn_buf; 2073 2074 switch (si->off) { 2075 case offsetof(struct bpf_perf_event_data, sample_period): 2076 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 2077 data), si->dst_reg, si->src_reg, 2078 offsetof(struct bpf_perf_event_data_kern, data)); 2079 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 2080 bpf_target_off(struct perf_sample_data, period, 8, 2081 target_size)); 2082 break; 2083 case offsetof(struct bpf_perf_event_data, addr): 2084 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 2085 data), si->dst_reg, si->src_reg, 2086 offsetof(struct bpf_perf_event_data_kern, data)); 2087 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 2088 bpf_target_off(struct perf_sample_data, addr, 8, 2089 target_size)); 2090 break; 2091 default: 2092 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 2093 regs), si->dst_reg, si->src_reg, 2094 offsetof(struct bpf_perf_event_data_kern, regs)); 2095 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg, 2096 si->off); 2097 break; 2098 } 2099 2100 return insn - insn_buf; 2101 } 2102 2103 const struct bpf_verifier_ops perf_event_verifier_ops = { 2104 .get_func_proto = pe_prog_func_proto, 2105 .is_valid_access = pe_prog_is_valid_access, 2106 .convert_ctx_access = pe_prog_convert_ctx_access, 2107 }; 2108 2109 const struct bpf_prog_ops perf_event_prog_ops = { 2110 }; 2111 2112 static DEFINE_MUTEX(bpf_event_mutex); 2113 2114 #define BPF_TRACE_MAX_PROGS 64 2115 2116 int perf_event_attach_bpf_prog(struct perf_event *event, 2117 struct bpf_prog *prog, 2118 u64 bpf_cookie) 2119 { 2120 struct bpf_prog_array *old_array; 2121 struct bpf_prog_array *new_array; 2122 int ret = -EEXIST; 2123 2124 /* 2125 * Kprobe override only works if they are on the function entry, 2126 * and only if they are on the opt-in list. 2127 */ 2128 if (prog->kprobe_override && 2129 (!trace_kprobe_on_func_entry(event->tp_event) || 2130 !trace_kprobe_error_injectable(event->tp_event))) 2131 return -EINVAL; 2132 2133 mutex_lock(&bpf_event_mutex); 2134 2135 if (event->prog) 2136 goto unlock; 2137 2138 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 2139 if (old_array && 2140 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) { 2141 ret = -E2BIG; 2142 goto unlock; 2143 } 2144 2145 ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array); 2146 if (ret < 0) 2147 goto unlock; 2148 2149 /* set the new array to event->tp_event and set event->prog */ 2150 event->prog = prog; 2151 event->bpf_cookie = bpf_cookie; 2152 rcu_assign_pointer(event->tp_event->prog_array, new_array); 2153 bpf_prog_array_free_sleepable(old_array); 2154 2155 unlock: 2156 mutex_unlock(&bpf_event_mutex); 2157 return ret; 2158 } 2159 2160 void perf_event_detach_bpf_prog(struct perf_event *event) 2161 { 2162 struct bpf_prog_array *old_array; 2163 struct bpf_prog_array *new_array; 2164 int ret; 2165 2166 mutex_lock(&bpf_event_mutex); 2167 2168 if (!event->prog) 2169 goto unlock; 2170 2171 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 2172 ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array); 2173 if (ret == -ENOENT) 2174 goto unlock; 2175 if (ret < 0) { 2176 bpf_prog_array_delete_safe(old_array, event->prog); 2177 } else { 2178 rcu_assign_pointer(event->tp_event->prog_array, new_array); 2179 bpf_prog_array_free_sleepable(old_array); 2180 } 2181 2182 bpf_prog_put(event->prog); 2183 event->prog = NULL; 2184 2185 unlock: 2186 mutex_unlock(&bpf_event_mutex); 2187 } 2188 2189 int perf_event_query_prog_array(struct perf_event *event, void __user *info) 2190 { 2191 struct perf_event_query_bpf __user *uquery = info; 2192 struct perf_event_query_bpf query = {}; 2193 struct bpf_prog_array *progs; 2194 u32 *ids, prog_cnt, ids_len; 2195 int ret; 2196 2197 if (!perfmon_capable()) 2198 return -EPERM; 2199 if (event->attr.type != PERF_TYPE_TRACEPOINT) 2200 return -EINVAL; 2201 if (copy_from_user(&query, uquery, sizeof(query))) 2202 return -EFAULT; 2203 2204 ids_len = query.ids_len; 2205 if (ids_len > BPF_TRACE_MAX_PROGS) 2206 return -E2BIG; 2207 ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN); 2208 if (!ids) 2209 return -ENOMEM; 2210 /* 2211 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which 2212 * is required when user only wants to check for uquery->prog_cnt. 2213 * There is no need to check for it since the case is handled 2214 * gracefully in bpf_prog_array_copy_info. 2215 */ 2216 2217 mutex_lock(&bpf_event_mutex); 2218 progs = bpf_event_rcu_dereference(event->tp_event->prog_array); 2219 ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt); 2220 mutex_unlock(&bpf_event_mutex); 2221 2222 if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) || 2223 copy_to_user(uquery->ids, ids, ids_len * sizeof(u32))) 2224 ret = -EFAULT; 2225 2226 kfree(ids); 2227 return ret; 2228 } 2229 2230 extern struct bpf_raw_event_map __start__bpf_raw_tp[]; 2231 extern struct bpf_raw_event_map __stop__bpf_raw_tp[]; 2232 2233 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name) 2234 { 2235 struct bpf_raw_event_map *btp = __start__bpf_raw_tp; 2236 2237 for (; btp < __stop__bpf_raw_tp; btp++) { 2238 if (!strcmp(btp->tp->name, name)) 2239 return btp; 2240 } 2241 2242 return bpf_get_raw_tracepoint_module(name); 2243 } 2244 2245 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp) 2246 { 2247 struct module *mod; 2248 2249 preempt_disable(); 2250 mod = __module_address((unsigned long)btp); 2251 module_put(mod); 2252 preempt_enable(); 2253 } 2254 2255 static __always_inline 2256 void __bpf_trace_run(struct bpf_prog *prog, u64 *args) 2257 { 2258 cant_sleep(); 2259 if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) { 2260 bpf_prog_inc_misses_counter(prog); 2261 goto out; 2262 } 2263 rcu_read_lock(); 2264 (void) bpf_prog_run(prog, args); 2265 rcu_read_unlock(); 2266 out: 2267 this_cpu_dec(*(prog->active)); 2268 } 2269 2270 #define UNPACK(...) __VA_ARGS__ 2271 #define REPEAT_1(FN, DL, X, ...) FN(X) 2272 #define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__) 2273 #define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__) 2274 #define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__) 2275 #define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__) 2276 #define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__) 2277 #define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__) 2278 #define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__) 2279 #define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__) 2280 #define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__) 2281 #define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__) 2282 #define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__) 2283 #define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__) 2284 2285 #define SARG(X) u64 arg##X 2286 #define COPY(X) args[X] = arg##X 2287 2288 #define __DL_COM (,) 2289 #define __DL_SEM (;) 2290 2291 #define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 2292 2293 #define BPF_TRACE_DEFN_x(x) \ 2294 void bpf_trace_run##x(struct bpf_prog *prog, \ 2295 REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \ 2296 { \ 2297 u64 args[x]; \ 2298 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \ 2299 __bpf_trace_run(prog, args); \ 2300 } \ 2301 EXPORT_SYMBOL_GPL(bpf_trace_run##x) 2302 BPF_TRACE_DEFN_x(1); 2303 BPF_TRACE_DEFN_x(2); 2304 BPF_TRACE_DEFN_x(3); 2305 BPF_TRACE_DEFN_x(4); 2306 BPF_TRACE_DEFN_x(5); 2307 BPF_TRACE_DEFN_x(6); 2308 BPF_TRACE_DEFN_x(7); 2309 BPF_TRACE_DEFN_x(8); 2310 BPF_TRACE_DEFN_x(9); 2311 BPF_TRACE_DEFN_x(10); 2312 BPF_TRACE_DEFN_x(11); 2313 BPF_TRACE_DEFN_x(12); 2314 2315 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 2316 { 2317 struct tracepoint *tp = btp->tp; 2318 2319 /* 2320 * check that program doesn't access arguments beyond what's 2321 * available in this tracepoint 2322 */ 2323 if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64)) 2324 return -EINVAL; 2325 2326 if (prog->aux->max_tp_access > btp->writable_size) 2327 return -EINVAL; 2328 2329 return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func, 2330 prog); 2331 } 2332 2333 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 2334 { 2335 return __bpf_probe_register(btp, prog); 2336 } 2337 2338 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 2339 { 2340 return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog); 2341 } 2342 2343 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id, 2344 u32 *fd_type, const char **buf, 2345 u64 *probe_offset, u64 *probe_addr) 2346 { 2347 bool is_tracepoint, is_syscall_tp; 2348 struct bpf_prog *prog; 2349 int flags, err = 0; 2350 2351 prog = event->prog; 2352 if (!prog) 2353 return -ENOENT; 2354 2355 /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */ 2356 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) 2357 return -EOPNOTSUPP; 2358 2359 *prog_id = prog->aux->id; 2360 flags = event->tp_event->flags; 2361 is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT; 2362 is_syscall_tp = is_syscall_trace_event(event->tp_event); 2363 2364 if (is_tracepoint || is_syscall_tp) { 2365 *buf = is_tracepoint ? event->tp_event->tp->name 2366 : event->tp_event->name; 2367 *fd_type = BPF_FD_TYPE_TRACEPOINT; 2368 *probe_offset = 0x0; 2369 *probe_addr = 0x0; 2370 } else { 2371 /* kprobe/uprobe */ 2372 err = -EOPNOTSUPP; 2373 #ifdef CONFIG_KPROBE_EVENTS 2374 if (flags & TRACE_EVENT_FL_KPROBE) 2375 err = bpf_get_kprobe_info(event, fd_type, buf, 2376 probe_offset, probe_addr, 2377 event->attr.type == PERF_TYPE_TRACEPOINT); 2378 #endif 2379 #ifdef CONFIG_UPROBE_EVENTS 2380 if (flags & TRACE_EVENT_FL_UPROBE) 2381 err = bpf_get_uprobe_info(event, fd_type, buf, 2382 probe_offset, 2383 event->attr.type == PERF_TYPE_TRACEPOINT); 2384 #endif 2385 } 2386 2387 return err; 2388 } 2389 2390 static int __init send_signal_irq_work_init(void) 2391 { 2392 int cpu; 2393 struct send_signal_irq_work *work; 2394 2395 for_each_possible_cpu(cpu) { 2396 work = per_cpu_ptr(&send_signal_work, cpu); 2397 init_irq_work(&work->irq_work, do_bpf_send_signal); 2398 } 2399 return 0; 2400 } 2401 2402 subsys_initcall(send_signal_irq_work_init); 2403 2404 #ifdef CONFIG_MODULES 2405 static int bpf_event_notify(struct notifier_block *nb, unsigned long op, 2406 void *module) 2407 { 2408 struct bpf_trace_module *btm, *tmp; 2409 struct module *mod = module; 2410 int ret = 0; 2411 2412 if (mod->num_bpf_raw_events == 0 || 2413 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING)) 2414 goto out; 2415 2416 mutex_lock(&bpf_module_mutex); 2417 2418 switch (op) { 2419 case MODULE_STATE_COMING: 2420 btm = kzalloc(sizeof(*btm), GFP_KERNEL); 2421 if (btm) { 2422 btm->module = module; 2423 list_add(&btm->list, &bpf_trace_modules); 2424 } else { 2425 ret = -ENOMEM; 2426 } 2427 break; 2428 case MODULE_STATE_GOING: 2429 list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) { 2430 if (btm->module == module) { 2431 list_del(&btm->list); 2432 kfree(btm); 2433 break; 2434 } 2435 } 2436 break; 2437 } 2438 2439 mutex_unlock(&bpf_module_mutex); 2440 2441 out: 2442 return notifier_from_errno(ret); 2443 } 2444 2445 static struct notifier_block bpf_module_nb = { 2446 .notifier_call = bpf_event_notify, 2447 }; 2448 2449 static int __init bpf_event_init(void) 2450 { 2451 register_module_notifier(&bpf_module_nb); 2452 return 0; 2453 } 2454 2455 fs_initcall(bpf_event_init); 2456 #endif /* CONFIG_MODULES */ 2457 2458 #ifdef CONFIG_FPROBE 2459 struct bpf_kprobe_multi_link { 2460 struct bpf_link link; 2461 struct fprobe fp; 2462 unsigned long *addrs; 2463 u64 *cookies; 2464 u32 cnt; 2465 u32 mods_cnt; 2466 struct module **mods; 2467 }; 2468 2469 struct bpf_kprobe_multi_run_ctx { 2470 struct bpf_run_ctx run_ctx; 2471 struct bpf_kprobe_multi_link *link; 2472 unsigned long entry_ip; 2473 }; 2474 2475 struct user_syms { 2476 const char **syms; 2477 char *buf; 2478 }; 2479 2480 static int copy_user_syms(struct user_syms *us, unsigned long __user *usyms, u32 cnt) 2481 { 2482 unsigned long __user usymbol; 2483 const char **syms = NULL; 2484 char *buf = NULL, *p; 2485 int err = -ENOMEM; 2486 unsigned int i; 2487 2488 syms = kvmalloc_array(cnt, sizeof(*syms), GFP_KERNEL); 2489 if (!syms) 2490 goto error; 2491 2492 buf = kvmalloc_array(cnt, KSYM_NAME_LEN, GFP_KERNEL); 2493 if (!buf) 2494 goto error; 2495 2496 for (p = buf, i = 0; i < cnt; i++) { 2497 if (__get_user(usymbol, usyms + i)) { 2498 err = -EFAULT; 2499 goto error; 2500 } 2501 err = strncpy_from_user(p, (const char __user *) usymbol, KSYM_NAME_LEN); 2502 if (err == KSYM_NAME_LEN) 2503 err = -E2BIG; 2504 if (err < 0) 2505 goto error; 2506 syms[i] = p; 2507 p += err + 1; 2508 } 2509 2510 us->syms = syms; 2511 us->buf = buf; 2512 return 0; 2513 2514 error: 2515 if (err) { 2516 kvfree(syms); 2517 kvfree(buf); 2518 } 2519 return err; 2520 } 2521 2522 static void kprobe_multi_put_modules(struct module **mods, u32 cnt) 2523 { 2524 u32 i; 2525 2526 for (i = 0; i < cnt; i++) 2527 module_put(mods[i]); 2528 } 2529 2530 static void free_user_syms(struct user_syms *us) 2531 { 2532 kvfree(us->syms); 2533 kvfree(us->buf); 2534 } 2535 2536 static void bpf_kprobe_multi_link_release(struct bpf_link *link) 2537 { 2538 struct bpf_kprobe_multi_link *kmulti_link; 2539 2540 kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link); 2541 unregister_fprobe(&kmulti_link->fp); 2542 kprobe_multi_put_modules(kmulti_link->mods, kmulti_link->mods_cnt); 2543 } 2544 2545 static void bpf_kprobe_multi_link_dealloc(struct bpf_link *link) 2546 { 2547 struct bpf_kprobe_multi_link *kmulti_link; 2548 2549 kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link); 2550 kvfree(kmulti_link->addrs); 2551 kvfree(kmulti_link->cookies); 2552 kfree(kmulti_link->mods); 2553 kfree(kmulti_link); 2554 } 2555 2556 static const struct bpf_link_ops bpf_kprobe_multi_link_lops = { 2557 .release = bpf_kprobe_multi_link_release, 2558 .dealloc = bpf_kprobe_multi_link_dealloc, 2559 }; 2560 2561 static void bpf_kprobe_multi_cookie_swap(void *a, void *b, int size, const void *priv) 2562 { 2563 const struct bpf_kprobe_multi_link *link = priv; 2564 unsigned long *addr_a = a, *addr_b = b; 2565 u64 *cookie_a, *cookie_b; 2566 2567 cookie_a = link->cookies + (addr_a - link->addrs); 2568 cookie_b = link->cookies + (addr_b - link->addrs); 2569 2570 /* swap addr_a/addr_b and cookie_a/cookie_b values */ 2571 swap(*addr_a, *addr_b); 2572 swap(*cookie_a, *cookie_b); 2573 } 2574 2575 static int bpf_kprobe_multi_addrs_cmp(const void *a, const void *b) 2576 { 2577 const unsigned long *addr_a = a, *addr_b = b; 2578 2579 if (*addr_a == *addr_b) 2580 return 0; 2581 return *addr_a < *addr_b ? -1 : 1; 2582 } 2583 2584 static int bpf_kprobe_multi_cookie_cmp(const void *a, const void *b, const void *priv) 2585 { 2586 return bpf_kprobe_multi_addrs_cmp(a, b); 2587 } 2588 2589 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx) 2590 { 2591 struct bpf_kprobe_multi_run_ctx *run_ctx; 2592 struct bpf_kprobe_multi_link *link; 2593 u64 *cookie, entry_ip; 2594 unsigned long *addr; 2595 2596 if (WARN_ON_ONCE(!ctx)) 2597 return 0; 2598 run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, run_ctx); 2599 link = run_ctx->link; 2600 if (!link->cookies) 2601 return 0; 2602 entry_ip = run_ctx->entry_ip; 2603 addr = bsearch(&entry_ip, link->addrs, link->cnt, sizeof(entry_ip), 2604 bpf_kprobe_multi_addrs_cmp); 2605 if (!addr) 2606 return 0; 2607 cookie = link->cookies + (addr - link->addrs); 2608 return *cookie; 2609 } 2610 2611 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx) 2612 { 2613 struct bpf_kprobe_multi_run_ctx *run_ctx; 2614 2615 run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, run_ctx); 2616 return run_ctx->entry_ip; 2617 } 2618 2619 static int 2620 kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link *link, 2621 unsigned long entry_ip, struct pt_regs *regs) 2622 { 2623 struct bpf_kprobe_multi_run_ctx run_ctx = { 2624 .link = link, 2625 .entry_ip = entry_ip, 2626 }; 2627 struct bpf_run_ctx *old_run_ctx; 2628 int err; 2629 2630 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) { 2631 err = 0; 2632 goto out; 2633 } 2634 2635 migrate_disable(); 2636 rcu_read_lock(); 2637 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2638 err = bpf_prog_run(link->link.prog, regs); 2639 bpf_reset_run_ctx(old_run_ctx); 2640 rcu_read_unlock(); 2641 migrate_enable(); 2642 2643 out: 2644 __this_cpu_dec(bpf_prog_active); 2645 return err; 2646 } 2647 2648 static void 2649 kprobe_multi_link_handler(struct fprobe *fp, unsigned long fentry_ip, 2650 struct pt_regs *regs) 2651 { 2652 struct bpf_kprobe_multi_link *link; 2653 2654 link = container_of(fp, struct bpf_kprobe_multi_link, fp); 2655 kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs); 2656 } 2657 2658 static int symbols_cmp_r(const void *a, const void *b, const void *priv) 2659 { 2660 const char **str_a = (const char **) a; 2661 const char **str_b = (const char **) b; 2662 2663 return strcmp(*str_a, *str_b); 2664 } 2665 2666 struct multi_symbols_sort { 2667 const char **funcs; 2668 u64 *cookies; 2669 }; 2670 2671 static void symbols_swap_r(void *a, void *b, int size, const void *priv) 2672 { 2673 const struct multi_symbols_sort *data = priv; 2674 const char **name_a = a, **name_b = b; 2675 2676 swap(*name_a, *name_b); 2677 2678 /* If defined, swap also related cookies. */ 2679 if (data->cookies) { 2680 u64 *cookie_a, *cookie_b; 2681 2682 cookie_a = data->cookies + (name_a - data->funcs); 2683 cookie_b = data->cookies + (name_b - data->funcs); 2684 swap(*cookie_a, *cookie_b); 2685 } 2686 } 2687 2688 struct module_addr_args { 2689 unsigned long *addrs; 2690 u32 addrs_cnt; 2691 struct module **mods; 2692 int mods_cnt; 2693 int mods_cap; 2694 }; 2695 2696 static int module_callback(void *data, const char *name, 2697 struct module *mod, unsigned long addr) 2698 { 2699 struct module_addr_args *args = data; 2700 struct module **mods; 2701 2702 /* We iterate all modules symbols and for each we: 2703 * - search for it in provided addresses array 2704 * - if found we check if we already have the module pointer stored 2705 * (we iterate modules sequentially, so we can check just the last 2706 * module pointer) 2707 * - take module reference and store it 2708 */ 2709 if (!bsearch(&addr, args->addrs, args->addrs_cnt, sizeof(addr), 2710 bpf_kprobe_multi_addrs_cmp)) 2711 return 0; 2712 2713 if (args->mods && args->mods[args->mods_cnt - 1] == mod) 2714 return 0; 2715 2716 if (args->mods_cnt == args->mods_cap) { 2717 args->mods_cap = max(16, args->mods_cap * 3 / 2); 2718 mods = krealloc_array(args->mods, args->mods_cap, sizeof(*mods), GFP_KERNEL); 2719 if (!mods) 2720 return -ENOMEM; 2721 args->mods = mods; 2722 } 2723 2724 if (!try_module_get(mod)) 2725 return -EINVAL; 2726 2727 args->mods[args->mods_cnt] = mod; 2728 args->mods_cnt++; 2729 return 0; 2730 } 2731 2732 static int get_modules_for_addrs(struct module ***mods, unsigned long *addrs, u32 addrs_cnt) 2733 { 2734 struct module_addr_args args = { 2735 .addrs = addrs, 2736 .addrs_cnt = addrs_cnt, 2737 }; 2738 int err; 2739 2740 /* We return either err < 0 in case of error, ... */ 2741 err = module_kallsyms_on_each_symbol(module_callback, &args); 2742 if (err) { 2743 kprobe_multi_put_modules(args.mods, args.mods_cnt); 2744 kfree(args.mods); 2745 return err; 2746 } 2747 2748 /* or number of modules found if everything is ok. */ 2749 *mods = args.mods; 2750 return args.mods_cnt; 2751 } 2752 2753 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 2754 { 2755 struct bpf_kprobe_multi_link *link = NULL; 2756 struct bpf_link_primer link_primer; 2757 void __user *ucookies; 2758 unsigned long *addrs; 2759 u32 flags, cnt, size; 2760 void __user *uaddrs; 2761 u64 *cookies = NULL; 2762 void __user *usyms; 2763 int err; 2764 2765 /* no support for 32bit archs yet */ 2766 if (sizeof(u64) != sizeof(void *)) 2767 return -EOPNOTSUPP; 2768 2769 if (prog->expected_attach_type != BPF_TRACE_KPROBE_MULTI) 2770 return -EINVAL; 2771 2772 flags = attr->link_create.kprobe_multi.flags; 2773 if (flags & ~BPF_F_KPROBE_MULTI_RETURN) 2774 return -EINVAL; 2775 2776 uaddrs = u64_to_user_ptr(attr->link_create.kprobe_multi.addrs); 2777 usyms = u64_to_user_ptr(attr->link_create.kprobe_multi.syms); 2778 if (!!uaddrs == !!usyms) 2779 return -EINVAL; 2780 2781 cnt = attr->link_create.kprobe_multi.cnt; 2782 if (!cnt) 2783 return -EINVAL; 2784 2785 size = cnt * sizeof(*addrs); 2786 addrs = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL); 2787 if (!addrs) 2788 return -ENOMEM; 2789 2790 ucookies = u64_to_user_ptr(attr->link_create.kprobe_multi.cookies); 2791 if (ucookies) { 2792 cookies = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL); 2793 if (!cookies) { 2794 err = -ENOMEM; 2795 goto error; 2796 } 2797 if (copy_from_user(cookies, ucookies, size)) { 2798 err = -EFAULT; 2799 goto error; 2800 } 2801 } 2802 2803 if (uaddrs) { 2804 if (copy_from_user(addrs, uaddrs, size)) { 2805 err = -EFAULT; 2806 goto error; 2807 } 2808 } else { 2809 struct multi_symbols_sort data = { 2810 .cookies = cookies, 2811 }; 2812 struct user_syms us; 2813 2814 err = copy_user_syms(&us, usyms, cnt); 2815 if (err) 2816 goto error; 2817 2818 if (cookies) 2819 data.funcs = us.syms; 2820 2821 sort_r(us.syms, cnt, sizeof(*us.syms), symbols_cmp_r, 2822 symbols_swap_r, &data); 2823 2824 err = ftrace_lookup_symbols(us.syms, cnt, addrs); 2825 free_user_syms(&us); 2826 if (err) 2827 goto error; 2828 } 2829 2830 link = kzalloc(sizeof(*link), GFP_KERNEL); 2831 if (!link) { 2832 err = -ENOMEM; 2833 goto error; 2834 } 2835 2836 bpf_link_init(&link->link, BPF_LINK_TYPE_KPROBE_MULTI, 2837 &bpf_kprobe_multi_link_lops, prog); 2838 2839 err = bpf_link_prime(&link->link, &link_primer); 2840 if (err) 2841 goto error; 2842 2843 if (flags & BPF_F_KPROBE_MULTI_RETURN) 2844 link->fp.exit_handler = kprobe_multi_link_handler; 2845 else 2846 link->fp.entry_handler = kprobe_multi_link_handler; 2847 2848 link->addrs = addrs; 2849 link->cookies = cookies; 2850 link->cnt = cnt; 2851 2852 if (cookies) { 2853 /* 2854 * Sorting addresses will trigger sorting cookies as well 2855 * (check bpf_kprobe_multi_cookie_swap). This way we can 2856 * find cookie based on the address in bpf_get_attach_cookie 2857 * helper. 2858 */ 2859 sort_r(addrs, cnt, sizeof(*addrs), 2860 bpf_kprobe_multi_cookie_cmp, 2861 bpf_kprobe_multi_cookie_swap, 2862 link); 2863 } else { 2864 /* 2865 * We need to sort addrs array even if there are no cookies 2866 * provided, to allow bsearch in get_modules_for_addrs. 2867 */ 2868 sort(addrs, cnt, sizeof(*addrs), 2869 bpf_kprobe_multi_addrs_cmp, NULL); 2870 } 2871 2872 err = get_modules_for_addrs(&link->mods, addrs, cnt); 2873 if (err < 0) { 2874 bpf_link_cleanup(&link_primer); 2875 return err; 2876 } 2877 link->mods_cnt = err; 2878 2879 err = register_fprobe_ips(&link->fp, addrs, cnt); 2880 if (err) { 2881 kprobe_multi_put_modules(link->mods, link->mods_cnt); 2882 bpf_link_cleanup(&link_primer); 2883 return err; 2884 } 2885 2886 return bpf_link_settle(&link_primer); 2887 2888 error: 2889 kfree(link); 2890 kvfree(addrs); 2891 kvfree(cookies); 2892 return err; 2893 } 2894 #else /* !CONFIG_FPROBE */ 2895 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 2896 { 2897 return -EOPNOTSUPP; 2898 } 2899 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx) 2900 { 2901 return 0; 2902 } 2903 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx) 2904 { 2905 return 0; 2906 } 2907 #endif 2908