xref: /linux/kernel/trace/bpf_trace.c (revision 4eca0ef49af9b2b0c52ef2b58e045ab34629796b)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_verifier.h>
10 #include <linux/bpf_perf_event.h>
11 #include <linux/btf.h>
12 #include <linux/filter.h>
13 #include <linux/uaccess.h>
14 #include <linux/ctype.h>
15 #include <linux/kprobes.h>
16 #include <linux/spinlock.h>
17 #include <linux/syscalls.h>
18 #include <linux/error-injection.h>
19 #include <linux/btf_ids.h>
20 #include <linux/bpf_lsm.h>
21 #include <linux/fprobe.h>
22 #include <linux/bsearch.h>
23 #include <linux/sort.h>
24 #include <linux/key.h>
25 #include <linux/verification.h>
26 #include <linux/namei.h>
27 
28 #include <net/bpf_sk_storage.h>
29 
30 #include <uapi/linux/bpf.h>
31 #include <uapi/linux/btf.h>
32 
33 #include <asm/tlb.h>
34 
35 #include "trace_probe.h"
36 #include "trace.h"
37 
38 #define CREATE_TRACE_POINTS
39 #include "bpf_trace.h"
40 
41 #define bpf_event_rcu_dereference(p)					\
42 	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
43 
44 #ifdef CONFIG_MODULES
45 struct bpf_trace_module {
46 	struct module *module;
47 	struct list_head list;
48 };
49 
50 static LIST_HEAD(bpf_trace_modules);
51 static DEFINE_MUTEX(bpf_module_mutex);
52 
53 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
54 {
55 	struct bpf_raw_event_map *btp, *ret = NULL;
56 	struct bpf_trace_module *btm;
57 	unsigned int i;
58 
59 	mutex_lock(&bpf_module_mutex);
60 	list_for_each_entry(btm, &bpf_trace_modules, list) {
61 		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
62 			btp = &btm->module->bpf_raw_events[i];
63 			if (!strcmp(btp->tp->name, name)) {
64 				if (try_module_get(btm->module))
65 					ret = btp;
66 				goto out;
67 			}
68 		}
69 	}
70 out:
71 	mutex_unlock(&bpf_module_mutex);
72 	return ret;
73 }
74 #else
75 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
76 {
77 	return NULL;
78 }
79 #endif /* CONFIG_MODULES */
80 
81 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
82 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
83 
84 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
85 				  u64 flags, const struct btf **btf,
86 				  s32 *btf_id);
87 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx);
88 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
89 
90 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx);
91 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
92 
93 /**
94  * trace_call_bpf - invoke BPF program
95  * @call: tracepoint event
96  * @ctx: opaque context pointer
97  *
98  * kprobe handlers execute BPF programs via this helper.
99  * Can be used from static tracepoints in the future.
100  *
101  * Return: BPF programs always return an integer which is interpreted by
102  * kprobe handler as:
103  * 0 - return from kprobe (event is filtered out)
104  * 1 - store kprobe event into ring buffer
105  * Other values are reserved and currently alias to 1
106  */
107 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
108 {
109 	unsigned int ret;
110 
111 	cant_sleep();
112 
113 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
114 		/*
115 		 * since some bpf program is already running on this cpu,
116 		 * don't call into another bpf program (same or different)
117 		 * and don't send kprobe event into ring-buffer,
118 		 * so return zero here
119 		 */
120 		rcu_read_lock();
121 		bpf_prog_inc_misses_counters(rcu_dereference(call->prog_array));
122 		rcu_read_unlock();
123 		ret = 0;
124 		goto out;
125 	}
126 
127 	/*
128 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
129 	 * to all call sites, we did a bpf_prog_array_valid() there to check
130 	 * whether call->prog_array is empty or not, which is
131 	 * a heuristic to speed up execution.
132 	 *
133 	 * If bpf_prog_array_valid() fetched prog_array was
134 	 * non-NULL, we go into trace_call_bpf() and do the actual
135 	 * proper rcu_dereference() under RCU lock.
136 	 * If it turns out that prog_array is NULL then, we bail out.
137 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
138 	 * was NULL, you'll skip the prog_array with the risk of missing
139 	 * out of events when it was updated in between this and the
140 	 * rcu_dereference() which is accepted risk.
141 	 */
142 	rcu_read_lock();
143 	ret = bpf_prog_run_array(rcu_dereference(call->prog_array),
144 				 ctx, bpf_prog_run);
145 	rcu_read_unlock();
146 
147  out:
148 	__this_cpu_dec(bpf_prog_active);
149 
150 	return ret;
151 }
152 
153 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
154 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
155 {
156 	regs_set_return_value(regs, rc);
157 	override_function_with_return(regs);
158 	return 0;
159 }
160 
161 static const struct bpf_func_proto bpf_override_return_proto = {
162 	.func		= bpf_override_return,
163 	.gpl_only	= true,
164 	.ret_type	= RET_INTEGER,
165 	.arg1_type	= ARG_PTR_TO_CTX,
166 	.arg2_type	= ARG_ANYTHING,
167 };
168 #endif
169 
170 static __always_inline int
171 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
172 {
173 	int ret;
174 
175 	ret = copy_from_user_nofault(dst, unsafe_ptr, size);
176 	if (unlikely(ret < 0))
177 		memset(dst, 0, size);
178 	return ret;
179 }
180 
181 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
182 	   const void __user *, unsafe_ptr)
183 {
184 	return bpf_probe_read_user_common(dst, size, unsafe_ptr);
185 }
186 
187 const struct bpf_func_proto bpf_probe_read_user_proto = {
188 	.func		= bpf_probe_read_user,
189 	.gpl_only	= true,
190 	.ret_type	= RET_INTEGER,
191 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
192 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
193 	.arg3_type	= ARG_ANYTHING,
194 };
195 
196 static __always_inline int
197 bpf_probe_read_user_str_common(void *dst, u32 size,
198 			       const void __user *unsafe_ptr)
199 {
200 	int ret;
201 
202 	/*
203 	 * NB: We rely on strncpy_from_user() not copying junk past the NUL
204 	 * terminator into `dst`.
205 	 *
206 	 * strncpy_from_user() does long-sized strides in the fast path. If the
207 	 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
208 	 * then there could be junk after the NUL in `dst`. If user takes `dst`
209 	 * and keys a hash map with it, then semantically identical strings can
210 	 * occupy multiple entries in the map.
211 	 */
212 	ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
213 	if (unlikely(ret < 0))
214 		memset(dst, 0, size);
215 	return ret;
216 }
217 
218 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
219 	   const void __user *, unsafe_ptr)
220 {
221 	return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
222 }
223 
224 const struct bpf_func_proto bpf_probe_read_user_str_proto = {
225 	.func		= bpf_probe_read_user_str,
226 	.gpl_only	= true,
227 	.ret_type	= RET_INTEGER,
228 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
229 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
230 	.arg3_type	= ARG_ANYTHING,
231 };
232 
233 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
234 	   const void *, unsafe_ptr)
235 {
236 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
237 }
238 
239 const struct bpf_func_proto bpf_probe_read_kernel_proto = {
240 	.func		= bpf_probe_read_kernel,
241 	.gpl_only	= true,
242 	.ret_type	= RET_INTEGER,
243 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
244 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
245 	.arg3_type	= ARG_ANYTHING,
246 };
247 
248 static __always_inline int
249 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
250 {
251 	int ret;
252 
253 	/*
254 	 * The strncpy_from_kernel_nofault() call will likely not fill the
255 	 * entire buffer, but that's okay in this circumstance as we're probing
256 	 * arbitrary memory anyway similar to bpf_probe_read_*() and might
257 	 * as well probe the stack. Thus, memory is explicitly cleared
258 	 * only in error case, so that improper users ignoring return
259 	 * code altogether don't copy garbage; otherwise length of string
260 	 * is returned that can be used for bpf_perf_event_output() et al.
261 	 */
262 	ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
263 	if (unlikely(ret < 0))
264 		memset(dst, 0, size);
265 	return ret;
266 }
267 
268 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
269 	   const void *, unsafe_ptr)
270 {
271 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
272 }
273 
274 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
275 	.func		= bpf_probe_read_kernel_str,
276 	.gpl_only	= true,
277 	.ret_type	= RET_INTEGER,
278 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
279 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
280 	.arg3_type	= ARG_ANYTHING,
281 };
282 
283 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
284 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
285 	   const void *, unsafe_ptr)
286 {
287 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
288 		return bpf_probe_read_user_common(dst, size,
289 				(__force void __user *)unsafe_ptr);
290 	}
291 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
292 }
293 
294 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
295 	.func		= bpf_probe_read_compat,
296 	.gpl_only	= true,
297 	.ret_type	= RET_INTEGER,
298 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
299 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
300 	.arg3_type	= ARG_ANYTHING,
301 };
302 
303 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
304 	   const void *, unsafe_ptr)
305 {
306 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
307 		return bpf_probe_read_user_str_common(dst, size,
308 				(__force void __user *)unsafe_ptr);
309 	}
310 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
311 }
312 
313 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
314 	.func		= bpf_probe_read_compat_str,
315 	.gpl_only	= true,
316 	.ret_type	= RET_INTEGER,
317 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
318 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
319 	.arg3_type	= ARG_ANYTHING,
320 };
321 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
322 
323 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
324 	   u32, size)
325 {
326 	/*
327 	 * Ensure we're in user context which is safe for the helper to
328 	 * run. This helper has no business in a kthread.
329 	 *
330 	 * access_ok() should prevent writing to non-user memory, but in
331 	 * some situations (nommu, temporary switch, etc) access_ok() does
332 	 * not provide enough validation, hence the check on KERNEL_DS.
333 	 *
334 	 * nmi_uaccess_okay() ensures the probe is not run in an interim
335 	 * state, when the task or mm are switched. This is specifically
336 	 * required to prevent the use of temporary mm.
337 	 */
338 
339 	if (unlikely(in_interrupt() ||
340 		     current->flags & (PF_KTHREAD | PF_EXITING)))
341 		return -EPERM;
342 	if (unlikely(!nmi_uaccess_okay()))
343 		return -EPERM;
344 
345 	return copy_to_user_nofault(unsafe_ptr, src, size);
346 }
347 
348 static const struct bpf_func_proto bpf_probe_write_user_proto = {
349 	.func		= bpf_probe_write_user,
350 	.gpl_only	= true,
351 	.ret_type	= RET_INTEGER,
352 	.arg1_type	= ARG_ANYTHING,
353 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
354 	.arg3_type	= ARG_CONST_SIZE,
355 };
356 
357 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
358 {
359 	if (!capable(CAP_SYS_ADMIN))
360 		return NULL;
361 
362 	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
363 			    current->comm, task_pid_nr(current));
364 
365 	return &bpf_probe_write_user_proto;
366 }
367 
368 #define MAX_TRACE_PRINTK_VARARGS	3
369 #define BPF_TRACE_PRINTK_SIZE		1024
370 
371 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
372 	   u64, arg2, u64, arg3)
373 {
374 	u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 };
375 	struct bpf_bprintf_data data = {
376 		.get_bin_args	= true,
377 		.get_buf	= true,
378 	};
379 	int ret;
380 
381 	ret = bpf_bprintf_prepare(fmt, fmt_size, args,
382 				  MAX_TRACE_PRINTK_VARARGS, &data);
383 	if (ret < 0)
384 		return ret;
385 
386 	ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
387 
388 	trace_bpf_trace_printk(data.buf);
389 
390 	bpf_bprintf_cleanup(&data);
391 
392 	return ret;
393 }
394 
395 static const struct bpf_func_proto bpf_trace_printk_proto = {
396 	.func		= bpf_trace_printk,
397 	.gpl_only	= true,
398 	.ret_type	= RET_INTEGER,
399 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
400 	.arg2_type	= ARG_CONST_SIZE,
401 };
402 
403 static void __set_printk_clr_event(void)
404 {
405 	/*
406 	 * This program might be calling bpf_trace_printk,
407 	 * so enable the associated bpf_trace/bpf_trace_printk event.
408 	 * Repeat this each time as it is possible a user has
409 	 * disabled bpf_trace_printk events.  By loading a program
410 	 * calling bpf_trace_printk() however the user has expressed
411 	 * the intent to see such events.
412 	 */
413 	if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
414 		pr_warn_ratelimited("could not enable bpf_trace_printk events");
415 }
416 
417 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
418 {
419 	__set_printk_clr_event();
420 	return &bpf_trace_printk_proto;
421 }
422 
423 BPF_CALL_4(bpf_trace_vprintk, char *, fmt, u32, fmt_size, const void *, args,
424 	   u32, data_len)
425 {
426 	struct bpf_bprintf_data data = {
427 		.get_bin_args	= true,
428 		.get_buf	= true,
429 	};
430 	int ret, num_args;
431 
432 	if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
433 	    (data_len && !args))
434 		return -EINVAL;
435 	num_args = data_len / 8;
436 
437 	ret = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
438 	if (ret < 0)
439 		return ret;
440 
441 	ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
442 
443 	trace_bpf_trace_printk(data.buf);
444 
445 	bpf_bprintf_cleanup(&data);
446 
447 	return ret;
448 }
449 
450 static const struct bpf_func_proto bpf_trace_vprintk_proto = {
451 	.func		= bpf_trace_vprintk,
452 	.gpl_only	= true,
453 	.ret_type	= RET_INTEGER,
454 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
455 	.arg2_type	= ARG_CONST_SIZE,
456 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
457 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
458 };
459 
460 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void)
461 {
462 	__set_printk_clr_event();
463 	return &bpf_trace_vprintk_proto;
464 }
465 
466 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
467 	   const void *, args, u32, data_len)
468 {
469 	struct bpf_bprintf_data data = {
470 		.get_bin_args	= true,
471 	};
472 	int err, num_args;
473 
474 	if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
475 	    (data_len && !args))
476 		return -EINVAL;
477 	num_args = data_len / 8;
478 
479 	err = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
480 	if (err < 0)
481 		return err;
482 
483 	seq_bprintf(m, fmt, data.bin_args);
484 
485 	bpf_bprintf_cleanup(&data);
486 
487 	return seq_has_overflowed(m) ? -EOVERFLOW : 0;
488 }
489 
490 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
491 
492 static const struct bpf_func_proto bpf_seq_printf_proto = {
493 	.func		= bpf_seq_printf,
494 	.gpl_only	= true,
495 	.ret_type	= RET_INTEGER,
496 	.arg1_type	= ARG_PTR_TO_BTF_ID,
497 	.arg1_btf_id	= &btf_seq_file_ids[0],
498 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
499 	.arg3_type	= ARG_CONST_SIZE,
500 	.arg4_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
501 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
502 };
503 
504 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
505 {
506 	return seq_write(m, data, len) ? -EOVERFLOW : 0;
507 }
508 
509 static const struct bpf_func_proto bpf_seq_write_proto = {
510 	.func		= bpf_seq_write,
511 	.gpl_only	= true,
512 	.ret_type	= RET_INTEGER,
513 	.arg1_type	= ARG_PTR_TO_BTF_ID,
514 	.arg1_btf_id	= &btf_seq_file_ids[0],
515 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
516 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
517 };
518 
519 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
520 	   u32, btf_ptr_size, u64, flags)
521 {
522 	const struct btf *btf;
523 	s32 btf_id;
524 	int ret;
525 
526 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
527 	if (ret)
528 		return ret;
529 
530 	return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
531 }
532 
533 static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
534 	.func		= bpf_seq_printf_btf,
535 	.gpl_only	= true,
536 	.ret_type	= RET_INTEGER,
537 	.arg1_type	= ARG_PTR_TO_BTF_ID,
538 	.arg1_btf_id	= &btf_seq_file_ids[0],
539 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
540 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
541 	.arg4_type	= ARG_ANYTHING,
542 };
543 
544 static __always_inline int
545 get_map_perf_counter(struct bpf_map *map, u64 flags,
546 		     u64 *value, u64 *enabled, u64 *running)
547 {
548 	struct bpf_array *array = container_of(map, struct bpf_array, map);
549 	unsigned int cpu = smp_processor_id();
550 	u64 index = flags & BPF_F_INDEX_MASK;
551 	struct bpf_event_entry *ee;
552 
553 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
554 		return -EINVAL;
555 	if (index == BPF_F_CURRENT_CPU)
556 		index = cpu;
557 	if (unlikely(index >= array->map.max_entries))
558 		return -E2BIG;
559 
560 	ee = READ_ONCE(array->ptrs[index]);
561 	if (!ee)
562 		return -ENOENT;
563 
564 	return perf_event_read_local(ee->event, value, enabled, running);
565 }
566 
567 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
568 {
569 	u64 value = 0;
570 	int err;
571 
572 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
573 	/*
574 	 * this api is ugly since we miss [-22..-2] range of valid
575 	 * counter values, but that's uapi
576 	 */
577 	if (err)
578 		return err;
579 	return value;
580 }
581 
582 static const struct bpf_func_proto bpf_perf_event_read_proto = {
583 	.func		= bpf_perf_event_read,
584 	.gpl_only	= true,
585 	.ret_type	= RET_INTEGER,
586 	.arg1_type	= ARG_CONST_MAP_PTR,
587 	.arg2_type	= ARG_ANYTHING,
588 };
589 
590 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
591 	   struct bpf_perf_event_value *, buf, u32, size)
592 {
593 	int err = -EINVAL;
594 
595 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
596 		goto clear;
597 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
598 				   &buf->running);
599 	if (unlikely(err))
600 		goto clear;
601 	return 0;
602 clear:
603 	memset(buf, 0, size);
604 	return err;
605 }
606 
607 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
608 	.func		= bpf_perf_event_read_value,
609 	.gpl_only	= true,
610 	.ret_type	= RET_INTEGER,
611 	.arg1_type	= ARG_CONST_MAP_PTR,
612 	.arg2_type	= ARG_ANYTHING,
613 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
614 	.arg4_type	= ARG_CONST_SIZE,
615 };
616 
617 static __always_inline u64
618 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
619 			u64 flags, struct perf_sample_data *sd)
620 {
621 	struct bpf_array *array = container_of(map, struct bpf_array, map);
622 	unsigned int cpu = smp_processor_id();
623 	u64 index = flags & BPF_F_INDEX_MASK;
624 	struct bpf_event_entry *ee;
625 	struct perf_event *event;
626 
627 	if (index == BPF_F_CURRENT_CPU)
628 		index = cpu;
629 	if (unlikely(index >= array->map.max_entries))
630 		return -E2BIG;
631 
632 	ee = READ_ONCE(array->ptrs[index]);
633 	if (!ee)
634 		return -ENOENT;
635 
636 	event = ee->event;
637 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
638 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
639 		return -EINVAL;
640 
641 	if (unlikely(event->oncpu != cpu))
642 		return -EOPNOTSUPP;
643 
644 	return perf_event_output(event, sd, regs);
645 }
646 
647 /*
648  * Support executing tracepoints in normal, irq, and nmi context that each call
649  * bpf_perf_event_output
650  */
651 struct bpf_trace_sample_data {
652 	struct perf_sample_data sds[3];
653 };
654 
655 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
656 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
657 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
658 	   u64, flags, void *, data, u64, size)
659 {
660 	struct bpf_trace_sample_data *sds;
661 	struct perf_raw_record raw = {
662 		.frag = {
663 			.size = size,
664 			.data = data,
665 		},
666 	};
667 	struct perf_sample_data *sd;
668 	int nest_level, err;
669 
670 	preempt_disable();
671 	sds = this_cpu_ptr(&bpf_trace_sds);
672 	nest_level = this_cpu_inc_return(bpf_trace_nest_level);
673 
674 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
675 		err = -EBUSY;
676 		goto out;
677 	}
678 
679 	sd = &sds->sds[nest_level - 1];
680 
681 	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
682 		err = -EINVAL;
683 		goto out;
684 	}
685 
686 	perf_sample_data_init(sd, 0, 0);
687 	perf_sample_save_raw_data(sd, &raw);
688 
689 	err = __bpf_perf_event_output(regs, map, flags, sd);
690 out:
691 	this_cpu_dec(bpf_trace_nest_level);
692 	preempt_enable();
693 	return err;
694 }
695 
696 static const struct bpf_func_proto bpf_perf_event_output_proto = {
697 	.func		= bpf_perf_event_output,
698 	.gpl_only	= true,
699 	.ret_type	= RET_INTEGER,
700 	.arg1_type	= ARG_PTR_TO_CTX,
701 	.arg2_type	= ARG_CONST_MAP_PTR,
702 	.arg3_type	= ARG_ANYTHING,
703 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
704 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
705 };
706 
707 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
708 struct bpf_nested_pt_regs {
709 	struct pt_regs regs[3];
710 };
711 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
712 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
713 
714 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
715 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
716 {
717 	struct perf_raw_frag frag = {
718 		.copy		= ctx_copy,
719 		.size		= ctx_size,
720 		.data		= ctx,
721 	};
722 	struct perf_raw_record raw = {
723 		.frag = {
724 			{
725 				.next	= ctx_size ? &frag : NULL,
726 			},
727 			.size	= meta_size,
728 			.data	= meta,
729 		},
730 	};
731 	struct perf_sample_data *sd;
732 	struct pt_regs *regs;
733 	int nest_level;
734 	u64 ret;
735 
736 	preempt_disable();
737 	nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
738 
739 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
740 		ret = -EBUSY;
741 		goto out;
742 	}
743 	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
744 	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
745 
746 	perf_fetch_caller_regs(regs);
747 	perf_sample_data_init(sd, 0, 0);
748 	perf_sample_save_raw_data(sd, &raw);
749 
750 	ret = __bpf_perf_event_output(regs, map, flags, sd);
751 out:
752 	this_cpu_dec(bpf_event_output_nest_level);
753 	preempt_enable();
754 	return ret;
755 }
756 
757 BPF_CALL_0(bpf_get_current_task)
758 {
759 	return (long) current;
760 }
761 
762 const struct bpf_func_proto bpf_get_current_task_proto = {
763 	.func		= bpf_get_current_task,
764 	.gpl_only	= true,
765 	.ret_type	= RET_INTEGER,
766 };
767 
768 BPF_CALL_0(bpf_get_current_task_btf)
769 {
770 	return (unsigned long) current;
771 }
772 
773 const struct bpf_func_proto bpf_get_current_task_btf_proto = {
774 	.func		= bpf_get_current_task_btf,
775 	.gpl_only	= true,
776 	.ret_type	= RET_PTR_TO_BTF_ID_TRUSTED,
777 	.ret_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
778 };
779 
780 BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task)
781 {
782 	return (unsigned long) task_pt_regs(task);
783 }
784 
785 BTF_ID_LIST(bpf_task_pt_regs_ids)
786 BTF_ID(struct, pt_regs)
787 
788 const struct bpf_func_proto bpf_task_pt_regs_proto = {
789 	.func		= bpf_task_pt_regs,
790 	.gpl_only	= true,
791 	.arg1_type	= ARG_PTR_TO_BTF_ID,
792 	.arg1_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
793 	.ret_type	= RET_PTR_TO_BTF_ID,
794 	.ret_btf_id	= &bpf_task_pt_regs_ids[0],
795 };
796 
797 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
798 {
799 	struct bpf_array *array = container_of(map, struct bpf_array, map);
800 	struct cgroup *cgrp;
801 
802 	if (unlikely(idx >= array->map.max_entries))
803 		return -E2BIG;
804 
805 	cgrp = READ_ONCE(array->ptrs[idx]);
806 	if (unlikely(!cgrp))
807 		return -EAGAIN;
808 
809 	return task_under_cgroup_hierarchy(current, cgrp);
810 }
811 
812 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
813 	.func           = bpf_current_task_under_cgroup,
814 	.gpl_only       = false,
815 	.ret_type       = RET_INTEGER,
816 	.arg1_type      = ARG_CONST_MAP_PTR,
817 	.arg2_type      = ARG_ANYTHING,
818 };
819 
820 struct send_signal_irq_work {
821 	struct irq_work irq_work;
822 	struct task_struct *task;
823 	u32 sig;
824 	enum pid_type type;
825 };
826 
827 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
828 
829 static void do_bpf_send_signal(struct irq_work *entry)
830 {
831 	struct send_signal_irq_work *work;
832 
833 	work = container_of(entry, struct send_signal_irq_work, irq_work);
834 	group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
835 	put_task_struct(work->task);
836 }
837 
838 static int bpf_send_signal_common(u32 sig, enum pid_type type)
839 {
840 	struct send_signal_irq_work *work = NULL;
841 
842 	/* Similar to bpf_probe_write_user, task needs to be
843 	 * in a sound condition and kernel memory access be
844 	 * permitted in order to send signal to the current
845 	 * task.
846 	 */
847 	if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
848 		return -EPERM;
849 	if (unlikely(!nmi_uaccess_okay()))
850 		return -EPERM;
851 	/* Task should not be pid=1 to avoid kernel panic. */
852 	if (unlikely(is_global_init(current)))
853 		return -EPERM;
854 
855 	if (irqs_disabled()) {
856 		/* Do an early check on signal validity. Otherwise,
857 		 * the error is lost in deferred irq_work.
858 		 */
859 		if (unlikely(!valid_signal(sig)))
860 			return -EINVAL;
861 
862 		work = this_cpu_ptr(&send_signal_work);
863 		if (irq_work_is_busy(&work->irq_work))
864 			return -EBUSY;
865 
866 		/* Add the current task, which is the target of sending signal,
867 		 * to the irq_work. The current task may change when queued
868 		 * irq works get executed.
869 		 */
870 		work->task = get_task_struct(current);
871 		work->sig = sig;
872 		work->type = type;
873 		irq_work_queue(&work->irq_work);
874 		return 0;
875 	}
876 
877 	return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
878 }
879 
880 BPF_CALL_1(bpf_send_signal, u32, sig)
881 {
882 	return bpf_send_signal_common(sig, PIDTYPE_TGID);
883 }
884 
885 static const struct bpf_func_proto bpf_send_signal_proto = {
886 	.func		= bpf_send_signal,
887 	.gpl_only	= false,
888 	.ret_type	= RET_INTEGER,
889 	.arg1_type	= ARG_ANYTHING,
890 };
891 
892 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
893 {
894 	return bpf_send_signal_common(sig, PIDTYPE_PID);
895 }
896 
897 static const struct bpf_func_proto bpf_send_signal_thread_proto = {
898 	.func		= bpf_send_signal_thread,
899 	.gpl_only	= false,
900 	.ret_type	= RET_INTEGER,
901 	.arg1_type	= ARG_ANYTHING,
902 };
903 
904 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
905 {
906 	struct path copy;
907 	long len;
908 	char *p;
909 
910 	if (!sz)
911 		return 0;
912 
913 	/*
914 	 * The path pointer is verified as trusted and safe to use,
915 	 * but let's double check it's valid anyway to workaround
916 	 * potentially broken verifier.
917 	 */
918 	len = copy_from_kernel_nofault(&copy, path, sizeof(*path));
919 	if (len < 0)
920 		return len;
921 
922 	p = d_path(&copy, buf, sz);
923 	if (IS_ERR(p)) {
924 		len = PTR_ERR(p);
925 	} else {
926 		len = buf + sz - p;
927 		memmove(buf, p, len);
928 	}
929 
930 	return len;
931 }
932 
933 BTF_SET_START(btf_allowlist_d_path)
934 #ifdef CONFIG_SECURITY
935 BTF_ID(func, security_file_permission)
936 BTF_ID(func, security_inode_getattr)
937 BTF_ID(func, security_file_open)
938 #endif
939 #ifdef CONFIG_SECURITY_PATH
940 BTF_ID(func, security_path_truncate)
941 #endif
942 BTF_ID(func, vfs_truncate)
943 BTF_ID(func, vfs_fallocate)
944 BTF_ID(func, dentry_open)
945 BTF_ID(func, vfs_getattr)
946 BTF_ID(func, filp_close)
947 BTF_SET_END(btf_allowlist_d_path)
948 
949 static bool bpf_d_path_allowed(const struct bpf_prog *prog)
950 {
951 	if (prog->type == BPF_PROG_TYPE_TRACING &&
952 	    prog->expected_attach_type == BPF_TRACE_ITER)
953 		return true;
954 
955 	if (prog->type == BPF_PROG_TYPE_LSM)
956 		return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id);
957 
958 	return btf_id_set_contains(&btf_allowlist_d_path,
959 				   prog->aux->attach_btf_id);
960 }
961 
962 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
963 
964 static const struct bpf_func_proto bpf_d_path_proto = {
965 	.func		= bpf_d_path,
966 	.gpl_only	= false,
967 	.ret_type	= RET_INTEGER,
968 	.arg1_type	= ARG_PTR_TO_BTF_ID,
969 	.arg1_btf_id	= &bpf_d_path_btf_ids[0],
970 	.arg2_type	= ARG_PTR_TO_MEM,
971 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
972 	.allowed	= bpf_d_path_allowed,
973 };
974 
975 #define BTF_F_ALL	(BTF_F_COMPACT  | BTF_F_NONAME | \
976 			 BTF_F_PTR_RAW | BTF_F_ZERO)
977 
978 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
979 				  u64 flags, const struct btf **btf,
980 				  s32 *btf_id)
981 {
982 	const struct btf_type *t;
983 
984 	if (unlikely(flags & ~(BTF_F_ALL)))
985 		return -EINVAL;
986 
987 	if (btf_ptr_size != sizeof(struct btf_ptr))
988 		return -EINVAL;
989 
990 	*btf = bpf_get_btf_vmlinux();
991 
992 	if (IS_ERR_OR_NULL(*btf))
993 		return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
994 
995 	if (ptr->type_id > 0)
996 		*btf_id = ptr->type_id;
997 	else
998 		return -EINVAL;
999 
1000 	if (*btf_id > 0)
1001 		t = btf_type_by_id(*btf, *btf_id);
1002 	if (*btf_id <= 0 || !t)
1003 		return -ENOENT;
1004 
1005 	return 0;
1006 }
1007 
1008 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
1009 	   u32, btf_ptr_size, u64, flags)
1010 {
1011 	const struct btf *btf;
1012 	s32 btf_id;
1013 	int ret;
1014 
1015 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
1016 	if (ret)
1017 		return ret;
1018 
1019 	return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
1020 				      flags);
1021 }
1022 
1023 const struct bpf_func_proto bpf_snprintf_btf_proto = {
1024 	.func		= bpf_snprintf_btf,
1025 	.gpl_only	= false,
1026 	.ret_type	= RET_INTEGER,
1027 	.arg1_type	= ARG_PTR_TO_MEM,
1028 	.arg2_type	= ARG_CONST_SIZE,
1029 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1030 	.arg4_type	= ARG_CONST_SIZE,
1031 	.arg5_type	= ARG_ANYTHING,
1032 };
1033 
1034 BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx)
1035 {
1036 	/* This helper call is inlined by verifier. */
1037 	return ((u64 *)ctx)[-2];
1038 }
1039 
1040 static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = {
1041 	.func		= bpf_get_func_ip_tracing,
1042 	.gpl_only	= true,
1043 	.ret_type	= RET_INTEGER,
1044 	.arg1_type	= ARG_PTR_TO_CTX,
1045 };
1046 
1047 #ifdef CONFIG_X86_KERNEL_IBT
1048 static unsigned long get_entry_ip(unsigned long fentry_ip)
1049 {
1050 	u32 instr;
1051 
1052 	/* Being extra safe in here in case entry ip is on the page-edge. */
1053 	if (get_kernel_nofault(instr, (u32 *) fentry_ip - 1))
1054 		return fentry_ip;
1055 	if (is_endbr(instr))
1056 		fentry_ip -= ENDBR_INSN_SIZE;
1057 	return fentry_ip;
1058 }
1059 #else
1060 #define get_entry_ip(fentry_ip) fentry_ip
1061 #endif
1062 
1063 BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs)
1064 {
1065 	struct bpf_trace_run_ctx *run_ctx __maybe_unused;
1066 	struct kprobe *kp;
1067 
1068 #ifdef CONFIG_UPROBES
1069 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1070 	if (run_ctx->is_uprobe)
1071 		return ((struct uprobe_dispatch_data *)current->utask->vaddr)->bp_addr;
1072 #endif
1073 
1074 	kp = kprobe_running();
1075 
1076 	if (!kp || !(kp->flags & KPROBE_FLAG_ON_FUNC_ENTRY))
1077 		return 0;
1078 
1079 	return get_entry_ip((uintptr_t)kp->addr);
1080 }
1081 
1082 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = {
1083 	.func		= bpf_get_func_ip_kprobe,
1084 	.gpl_only	= true,
1085 	.ret_type	= RET_INTEGER,
1086 	.arg1_type	= ARG_PTR_TO_CTX,
1087 };
1088 
1089 BPF_CALL_1(bpf_get_func_ip_kprobe_multi, struct pt_regs *, regs)
1090 {
1091 	return bpf_kprobe_multi_entry_ip(current->bpf_ctx);
1092 }
1093 
1094 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe_multi = {
1095 	.func		= bpf_get_func_ip_kprobe_multi,
1096 	.gpl_only	= false,
1097 	.ret_type	= RET_INTEGER,
1098 	.arg1_type	= ARG_PTR_TO_CTX,
1099 };
1100 
1101 BPF_CALL_1(bpf_get_attach_cookie_kprobe_multi, struct pt_regs *, regs)
1102 {
1103 	return bpf_kprobe_multi_cookie(current->bpf_ctx);
1104 }
1105 
1106 static const struct bpf_func_proto bpf_get_attach_cookie_proto_kmulti = {
1107 	.func		= bpf_get_attach_cookie_kprobe_multi,
1108 	.gpl_only	= false,
1109 	.ret_type	= RET_INTEGER,
1110 	.arg1_type	= ARG_PTR_TO_CTX,
1111 };
1112 
1113 BPF_CALL_1(bpf_get_func_ip_uprobe_multi, struct pt_regs *, regs)
1114 {
1115 	return bpf_uprobe_multi_entry_ip(current->bpf_ctx);
1116 }
1117 
1118 static const struct bpf_func_proto bpf_get_func_ip_proto_uprobe_multi = {
1119 	.func		= bpf_get_func_ip_uprobe_multi,
1120 	.gpl_only	= false,
1121 	.ret_type	= RET_INTEGER,
1122 	.arg1_type	= ARG_PTR_TO_CTX,
1123 };
1124 
1125 BPF_CALL_1(bpf_get_attach_cookie_uprobe_multi, struct pt_regs *, regs)
1126 {
1127 	return bpf_uprobe_multi_cookie(current->bpf_ctx);
1128 }
1129 
1130 static const struct bpf_func_proto bpf_get_attach_cookie_proto_umulti = {
1131 	.func		= bpf_get_attach_cookie_uprobe_multi,
1132 	.gpl_only	= false,
1133 	.ret_type	= RET_INTEGER,
1134 	.arg1_type	= ARG_PTR_TO_CTX,
1135 };
1136 
1137 BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx)
1138 {
1139 	struct bpf_trace_run_ctx *run_ctx;
1140 
1141 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1142 	return run_ctx->bpf_cookie;
1143 }
1144 
1145 static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = {
1146 	.func		= bpf_get_attach_cookie_trace,
1147 	.gpl_only	= false,
1148 	.ret_type	= RET_INTEGER,
1149 	.arg1_type	= ARG_PTR_TO_CTX,
1150 };
1151 
1152 BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx)
1153 {
1154 	return ctx->event->bpf_cookie;
1155 }
1156 
1157 static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = {
1158 	.func		= bpf_get_attach_cookie_pe,
1159 	.gpl_only	= false,
1160 	.ret_type	= RET_INTEGER,
1161 	.arg1_type	= ARG_PTR_TO_CTX,
1162 };
1163 
1164 BPF_CALL_1(bpf_get_attach_cookie_tracing, void *, ctx)
1165 {
1166 	struct bpf_trace_run_ctx *run_ctx;
1167 
1168 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1169 	return run_ctx->bpf_cookie;
1170 }
1171 
1172 static const struct bpf_func_proto bpf_get_attach_cookie_proto_tracing = {
1173 	.func		= bpf_get_attach_cookie_tracing,
1174 	.gpl_only	= false,
1175 	.ret_type	= RET_INTEGER,
1176 	.arg1_type	= ARG_PTR_TO_CTX,
1177 };
1178 
1179 BPF_CALL_3(bpf_get_branch_snapshot, void *, buf, u32, size, u64, flags)
1180 {
1181 #ifndef CONFIG_X86
1182 	return -ENOENT;
1183 #else
1184 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1185 	u32 entry_cnt = size / br_entry_size;
1186 
1187 	entry_cnt = static_call(perf_snapshot_branch_stack)(buf, entry_cnt);
1188 
1189 	if (unlikely(flags))
1190 		return -EINVAL;
1191 
1192 	if (!entry_cnt)
1193 		return -ENOENT;
1194 
1195 	return entry_cnt * br_entry_size;
1196 #endif
1197 }
1198 
1199 static const struct bpf_func_proto bpf_get_branch_snapshot_proto = {
1200 	.func		= bpf_get_branch_snapshot,
1201 	.gpl_only	= true,
1202 	.ret_type	= RET_INTEGER,
1203 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1204 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1205 };
1206 
1207 BPF_CALL_3(get_func_arg, void *, ctx, u32, n, u64 *, value)
1208 {
1209 	/* This helper call is inlined by verifier. */
1210 	u64 nr_args = ((u64 *)ctx)[-1];
1211 
1212 	if ((u64) n >= nr_args)
1213 		return -EINVAL;
1214 	*value = ((u64 *)ctx)[n];
1215 	return 0;
1216 }
1217 
1218 static const struct bpf_func_proto bpf_get_func_arg_proto = {
1219 	.func		= get_func_arg,
1220 	.ret_type	= RET_INTEGER,
1221 	.arg1_type	= ARG_PTR_TO_CTX,
1222 	.arg2_type	= ARG_ANYTHING,
1223 	.arg3_type	= ARG_PTR_TO_LONG,
1224 };
1225 
1226 BPF_CALL_2(get_func_ret, void *, ctx, u64 *, value)
1227 {
1228 	/* This helper call is inlined by verifier. */
1229 	u64 nr_args = ((u64 *)ctx)[-1];
1230 
1231 	*value = ((u64 *)ctx)[nr_args];
1232 	return 0;
1233 }
1234 
1235 static const struct bpf_func_proto bpf_get_func_ret_proto = {
1236 	.func		= get_func_ret,
1237 	.ret_type	= RET_INTEGER,
1238 	.arg1_type	= ARG_PTR_TO_CTX,
1239 	.arg2_type	= ARG_PTR_TO_LONG,
1240 };
1241 
1242 BPF_CALL_1(get_func_arg_cnt, void *, ctx)
1243 {
1244 	/* This helper call is inlined by verifier. */
1245 	return ((u64 *)ctx)[-1];
1246 }
1247 
1248 static const struct bpf_func_proto bpf_get_func_arg_cnt_proto = {
1249 	.func		= get_func_arg_cnt,
1250 	.ret_type	= RET_INTEGER,
1251 	.arg1_type	= ARG_PTR_TO_CTX,
1252 };
1253 
1254 #ifdef CONFIG_KEYS
1255 __bpf_kfunc_start_defs();
1256 
1257 /**
1258  * bpf_lookup_user_key - lookup a key by its serial
1259  * @serial: key handle serial number
1260  * @flags: lookup-specific flags
1261  *
1262  * Search a key with a given *serial* and the provided *flags*.
1263  * If found, increment the reference count of the key by one, and
1264  * return it in the bpf_key structure.
1265  *
1266  * The bpf_key structure must be passed to bpf_key_put() when done
1267  * with it, so that the key reference count is decremented and the
1268  * bpf_key structure is freed.
1269  *
1270  * Permission checks are deferred to the time the key is used by
1271  * one of the available key-specific kfuncs.
1272  *
1273  * Set *flags* with KEY_LOOKUP_CREATE, to attempt creating a requested
1274  * special keyring (e.g. session keyring), if it doesn't yet exist.
1275  * Set *flags* with KEY_LOOKUP_PARTIAL, to lookup a key without waiting
1276  * for the key construction, and to retrieve uninstantiated keys (keys
1277  * without data attached to them).
1278  *
1279  * Return: a bpf_key pointer with a valid key pointer if the key is found, a
1280  *         NULL pointer otherwise.
1281  */
1282 __bpf_kfunc struct bpf_key *bpf_lookup_user_key(u32 serial, u64 flags)
1283 {
1284 	key_ref_t key_ref;
1285 	struct bpf_key *bkey;
1286 
1287 	if (flags & ~KEY_LOOKUP_ALL)
1288 		return NULL;
1289 
1290 	/*
1291 	 * Permission check is deferred until the key is used, as the
1292 	 * intent of the caller is unknown here.
1293 	 */
1294 	key_ref = lookup_user_key(serial, flags, KEY_DEFER_PERM_CHECK);
1295 	if (IS_ERR(key_ref))
1296 		return NULL;
1297 
1298 	bkey = kmalloc(sizeof(*bkey), GFP_KERNEL);
1299 	if (!bkey) {
1300 		key_put(key_ref_to_ptr(key_ref));
1301 		return NULL;
1302 	}
1303 
1304 	bkey->key = key_ref_to_ptr(key_ref);
1305 	bkey->has_ref = true;
1306 
1307 	return bkey;
1308 }
1309 
1310 /**
1311  * bpf_lookup_system_key - lookup a key by a system-defined ID
1312  * @id: key ID
1313  *
1314  * Obtain a bpf_key structure with a key pointer set to the passed key ID.
1315  * The key pointer is marked as invalid, to prevent bpf_key_put() from
1316  * attempting to decrement the key reference count on that pointer. The key
1317  * pointer set in such way is currently understood only by
1318  * verify_pkcs7_signature().
1319  *
1320  * Set *id* to one of the values defined in include/linux/verification.h:
1321  * 0 for the primary keyring (immutable keyring of system keys);
1322  * VERIFY_USE_SECONDARY_KEYRING for both the primary and secondary keyring
1323  * (where keys can be added only if they are vouched for by existing keys
1324  * in those keyrings); VERIFY_USE_PLATFORM_KEYRING for the platform
1325  * keyring (primarily used by the integrity subsystem to verify a kexec'ed
1326  * kerned image and, possibly, the initramfs signature).
1327  *
1328  * Return: a bpf_key pointer with an invalid key pointer set from the
1329  *         pre-determined ID on success, a NULL pointer otherwise
1330  */
1331 __bpf_kfunc struct bpf_key *bpf_lookup_system_key(u64 id)
1332 {
1333 	struct bpf_key *bkey;
1334 
1335 	if (system_keyring_id_check(id) < 0)
1336 		return NULL;
1337 
1338 	bkey = kmalloc(sizeof(*bkey), GFP_ATOMIC);
1339 	if (!bkey)
1340 		return NULL;
1341 
1342 	bkey->key = (struct key *)(unsigned long)id;
1343 	bkey->has_ref = false;
1344 
1345 	return bkey;
1346 }
1347 
1348 /**
1349  * bpf_key_put - decrement key reference count if key is valid and free bpf_key
1350  * @bkey: bpf_key structure
1351  *
1352  * Decrement the reference count of the key inside *bkey*, if the pointer
1353  * is valid, and free *bkey*.
1354  */
1355 __bpf_kfunc void bpf_key_put(struct bpf_key *bkey)
1356 {
1357 	if (bkey->has_ref)
1358 		key_put(bkey->key);
1359 
1360 	kfree(bkey);
1361 }
1362 
1363 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
1364 /**
1365  * bpf_verify_pkcs7_signature - verify a PKCS#7 signature
1366  * @data_ptr: data to verify
1367  * @sig_ptr: signature of the data
1368  * @trusted_keyring: keyring with keys trusted for signature verification
1369  *
1370  * Verify the PKCS#7 signature *sig_ptr* against the supplied *data_ptr*
1371  * with keys in a keyring referenced by *trusted_keyring*.
1372  *
1373  * Return: 0 on success, a negative value on error.
1374  */
1375 __bpf_kfunc int bpf_verify_pkcs7_signature(struct bpf_dynptr_kern *data_ptr,
1376 			       struct bpf_dynptr_kern *sig_ptr,
1377 			       struct bpf_key *trusted_keyring)
1378 {
1379 	int ret;
1380 
1381 	if (trusted_keyring->has_ref) {
1382 		/*
1383 		 * Do the permission check deferred in bpf_lookup_user_key().
1384 		 * See bpf_lookup_user_key() for more details.
1385 		 *
1386 		 * A call to key_task_permission() here would be redundant, as
1387 		 * it is already done by keyring_search() called by
1388 		 * find_asymmetric_key().
1389 		 */
1390 		ret = key_validate(trusted_keyring->key);
1391 		if (ret < 0)
1392 			return ret;
1393 	}
1394 
1395 	return verify_pkcs7_signature(data_ptr->data,
1396 				      __bpf_dynptr_size(data_ptr),
1397 				      sig_ptr->data,
1398 				      __bpf_dynptr_size(sig_ptr),
1399 				      trusted_keyring->key,
1400 				      VERIFYING_UNSPECIFIED_SIGNATURE, NULL,
1401 				      NULL);
1402 }
1403 #endif /* CONFIG_SYSTEM_DATA_VERIFICATION */
1404 
1405 __bpf_kfunc_end_defs();
1406 
1407 BTF_SET8_START(key_sig_kfunc_set)
1408 BTF_ID_FLAGS(func, bpf_lookup_user_key, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE)
1409 BTF_ID_FLAGS(func, bpf_lookup_system_key, KF_ACQUIRE | KF_RET_NULL)
1410 BTF_ID_FLAGS(func, bpf_key_put, KF_RELEASE)
1411 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
1412 BTF_ID_FLAGS(func, bpf_verify_pkcs7_signature, KF_SLEEPABLE)
1413 #endif
1414 BTF_SET8_END(key_sig_kfunc_set)
1415 
1416 static const struct btf_kfunc_id_set bpf_key_sig_kfunc_set = {
1417 	.owner = THIS_MODULE,
1418 	.set = &key_sig_kfunc_set,
1419 };
1420 
1421 static int __init bpf_key_sig_kfuncs_init(void)
1422 {
1423 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
1424 					 &bpf_key_sig_kfunc_set);
1425 }
1426 
1427 late_initcall(bpf_key_sig_kfuncs_init);
1428 #endif /* CONFIG_KEYS */
1429 
1430 static const struct bpf_func_proto *
1431 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1432 {
1433 	switch (func_id) {
1434 	case BPF_FUNC_map_lookup_elem:
1435 		return &bpf_map_lookup_elem_proto;
1436 	case BPF_FUNC_map_update_elem:
1437 		return &bpf_map_update_elem_proto;
1438 	case BPF_FUNC_map_delete_elem:
1439 		return &bpf_map_delete_elem_proto;
1440 	case BPF_FUNC_map_push_elem:
1441 		return &bpf_map_push_elem_proto;
1442 	case BPF_FUNC_map_pop_elem:
1443 		return &bpf_map_pop_elem_proto;
1444 	case BPF_FUNC_map_peek_elem:
1445 		return &bpf_map_peek_elem_proto;
1446 	case BPF_FUNC_map_lookup_percpu_elem:
1447 		return &bpf_map_lookup_percpu_elem_proto;
1448 	case BPF_FUNC_ktime_get_ns:
1449 		return &bpf_ktime_get_ns_proto;
1450 	case BPF_FUNC_ktime_get_boot_ns:
1451 		return &bpf_ktime_get_boot_ns_proto;
1452 	case BPF_FUNC_tail_call:
1453 		return &bpf_tail_call_proto;
1454 	case BPF_FUNC_get_current_pid_tgid:
1455 		return &bpf_get_current_pid_tgid_proto;
1456 	case BPF_FUNC_get_current_task:
1457 		return &bpf_get_current_task_proto;
1458 	case BPF_FUNC_get_current_task_btf:
1459 		return &bpf_get_current_task_btf_proto;
1460 	case BPF_FUNC_task_pt_regs:
1461 		return &bpf_task_pt_regs_proto;
1462 	case BPF_FUNC_get_current_uid_gid:
1463 		return &bpf_get_current_uid_gid_proto;
1464 	case BPF_FUNC_get_current_comm:
1465 		return &bpf_get_current_comm_proto;
1466 	case BPF_FUNC_trace_printk:
1467 		return bpf_get_trace_printk_proto();
1468 	case BPF_FUNC_get_smp_processor_id:
1469 		return &bpf_get_smp_processor_id_proto;
1470 	case BPF_FUNC_get_numa_node_id:
1471 		return &bpf_get_numa_node_id_proto;
1472 	case BPF_FUNC_perf_event_read:
1473 		return &bpf_perf_event_read_proto;
1474 	case BPF_FUNC_current_task_under_cgroup:
1475 		return &bpf_current_task_under_cgroup_proto;
1476 	case BPF_FUNC_get_prandom_u32:
1477 		return &bpf_get_prandom_u32_proto;
1478 	case BPF_FUNC_probe_write_user:
1479 		return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ?
1480 		       NULL : bpf_get_probe_write_proto();
1481 	case BPF_FUNC_probe_read_user:
1482 		return &bpf_probe_read_user_proto;
1483 	case BPF_FUNC_probe_read_kernel:
1484 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1485 		       NULL : &bpf_probe_read_kernel_proto;
1486 	case BPF_FUNC_probe_read_user_str:
1487 		return &bpf_probe_read_user_str_proto;
1488 	case BPF_FUNC_probe_read_kernel_str:
1489 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1490 		       NULL : &bpf_probe_read_kernel_str_proto;
1491 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1492 	case BPF_FUNC_probe_read:
1493 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1494 		       NULL : &bpf_probe_read_compat_proto;
1495 	case BPF_FUNC_probe_read_str:
1496 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1497 		       NULL : &bpf_probe_read_compat_str_proto;
1498 #endif
1499 #ifdef CONFIG_CGROUPS
1500 	case BPF_FUNC_cgrp_storage_get:
1501 		return &bpf_cgrp_storage_get_proto;
1502 	case BPF_FUNC_cgrp_storage_delete:
1503 		return &bpf_cgrp_storage_delete_proto;
1504 #endif
1505 	case BPF_FUNC_send_signal:
1506 		return &bpf_send_signal_proto;
1507 	case BPF_FUNC_send_signal_thread:
1508 		return &bpf_send_signal_thread_proto;
1509 	case BPF_FUNC_perf_event_read_value:
1510 		return &bpf_perf_event_read_value_proto;
1511 	case BPF_FUNC_get_ns_current_pid_tgid:
1512 		return &bpf_get_ns_current_pid_tgid_proto;
1513 	case BPF_FUNC_ringbuf_output:
1514 		return &bpf_ringbuf_output_proto;
1515 	case BPF_FUNC_ringbuf_reserve:
1516 		return &bpf_ringbuf_reserve_proto;
1517 	case BPF_FUNC_ringbuf_submit:
1518 		return &bpf_ringbuf_submit_proto;
1519 	case BPF_FUNC_ringbuf_discard:
1520 		return &bpf_ringbuf_discard_proto;
1521 	case BPF_FUNC_ringbuf_query:
1522 		return &bpf_ringbuf_query_proto;
1523 	case BPF_FUNC_jiffies64:
1524 		return &bpf_jiffies64_proto;
1525 	case BPF_FUNC_get_task_stack:
1526 		return &bpf_get_task_stack_proto;
1527 	case BPF_FUNC_copy_from_user:
1528 		return &bpf_copy_from_user_proto;
1529 	case BPF_FUNC_copy_from_user_task:
1530 		return &bpf_copy_from_user_task_proto;
1531 	case BPF_FUNC_snprintf_btf:
1532 		return &bpf_snprintf_btf_proto;
1533 	case BPF_FUNC_per_cpu_ptr:
1534 		return &bpf_per_cpu_ptr_proto;
1535 	case BPF_FUNC_this_cpu_ptr:
1536 		return &bpf_this_cpu_ptr_proto;
1537 	case BPF_FUNC_task_storage_get:
1538 		if (bpf_prog_check_recur(prog))
1539 			return &bpf_task_storage_get_recur_proto;
1540 		return &bpf_task_storage_get_proto;
1541 	case BPF_FUNC_task_storage_delete:
1542 		if (bpf_prog_check_recur(prog))
1543 			return &bpf_task_storage_delete_recur_proto;
1544 		return &bpf_task_storage_delete_proto;
1545 	case BPF_FUNC_for_each_map_elem:
1546 		return &bpf_for_each_map_elem_proto;
1547 	case BPF_FUNC_snprintf:
1548 		return &bpf_snprintf_proto;
1549 	case BPF_FUNC_get_func_ip:
1550 		return &bpf_get_func_ip_proto_tracing;
1551 	case BPF_FUNC_get_branch_snapshot:
1552 		return &bpf_get_branch_snapshot_proto;
1553 	case BPF_FUNC_find_vma:
1554 		return &bpf_find_vma_proto;
1555 	case BPF_FUNC_trace_vprintk:
1556 		return bpf_get_trace_vprintk_proto();
1557 	default:
1558 		return bpf_base_func_proto(func_id);
1559 	}
1560 }
1561 
1562 static const struct bpf_func_proto *
1563 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1564 {
1565 	switch (func_id) {
1566 	case BPF_FUNC_perf_event_output:
1567 		return &bpf_perf_event_output_proto;
1568 	case BPF_FUNC_get_stackid:
1569 		return &bpf_get_stackid_proto;
1570 	case BPF_FUNC_get_stack:
1571 		return &bpf_get_stack_proto;
1572 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
1573 	case BPF_FUNC_override_return:
1574 		return &bpf_override_return_proto;
1575 #endif
1576 	case BPF_FUNC_get_func_ip:
1577 		if (prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI)
1578 			return &bpf_get_func_ip_proto_kprobe_multi;
1579 		if (prog->expected_attach_type == BPF_TRACE_UPROBE_MULTI)
1580 			return &bpf_get_func_ip_proto_uprobe_multi;
1581 		return &bpf_get_func_ip_proto_kprobe;
1582 	case BPF_FUNC_get_attach_cookie:
1583 		if (prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI)
1584 			return &bpf_get_attach_cookie_proto_kmulti;
1585 		if (prog->expected_attach_type == BPF_TRACE_UPROBE_MULTI)
1586 			return &bpf_get_attach_cookie_proto_umulti;
1587 		return &bpf_get_attach_cookie_proto_trace;
1588 	default:
1589 		return bpf_tracing_func_proto(func_id, prog);
1590 	}
1591 }
1592 
1593 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
1594 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1595 					const struct bpf_prog *prog,
1596 					struct bpf_insn_access_aux *info)
1597 {
1598 	if (off < 0 || off >= sizeof(struct pt_regs))
1599 		return false;
1600 	if (type != BPF_READ)
1601 		return false;
1602 	if (off % size != 0)
1603 		return false;
1604 	/*
1605 	 * Assertion for 32 bit to make sure last 8 byte access
1606 	 * (BPF_DW) to the last 4 byte member is disallowed.
1607 	 */
1608 	if (off + size > sizeof(struct pt_regs))
1609 		return false;
1610 
1611 	return true;
1612 }
1613 
1614 const struct bpf_verifier_ops kprobe_verifier_ops = {
1615 	.get_func_proto  = kprobe_prog_func_proto,
1616 	.is_valid_access = kprobe_prog_is_valid_access,
1617 };
1618 
1619 const struct bpf_prog_ops kprobe_prog_ops = {
1620 };
1621 
1622 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1623 	   u64, flags, void *, data, u64, size)
1624 {
1625 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1626 
1627 	/*
1628 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1629 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1630 	 * from there and call the same bpf_perf_event_output() helper inline.
1631 	 */
1632 	return ____bpf_perf_event_output(regs, map, flags, data, size);
1633 }
1634 
1635 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1636 	.func		= bpf_perf_event_output_tp,
1637 	.gpl_only	= true,
1638 	.ret_type	= RET_INTEGER,
1639 	.arg1_type	= ARG_PTR_TO_CTX,
1640 	.arg2_type	= ARG_CONST_MAP_PTR,
1641 	.arg3_type	= ARG_ANYTHING,
1642 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1643 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1644 };
1645 
1646 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1647 	   u64, flags)
1648 {
1649 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1650 
1651 	/*
1652 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
1653 	 * the other helper's function body cannot be inlined due to being
1654 	 * external, thus we need to call raw helper function.
1655 	 */
1656 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1657 			       flags, 0, 0);
1658 }
1659 
1660 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1661 	.func		= bpf_get_stackid_tp,
1662 	.gpl_only	= true,
1663 	.ret_type	= RET_INTEGER,
1664 	.arg1_type	= ARG_PTR_TO_CTX,
1665 	.arg2_type	= ARG_CONST_MAP_PTR,
1666 	.arg3_type	= ARG_ANYTHING,
1667 };
1668 
1669 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1670 	   u64, flags)
1671 {
1672 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1673 
1674 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1675 			     (unsigned long) size, flags, 0);
1676 }
1677 
1678 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1679 	.func		= bpf_get_stack_tp,
1680 	.gpl_only	= true,
1681 	.ret_type	= RET_INTEGER,
1682 	.arg1_type	= ARG_PTR_TO_CTX,
1683 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1684 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1685 	.arg4_type	= ARG_ANYTHING,
1686 };
1687 
1688 static const struct bpf_func_proto *
1689 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1690 {
1691 	switch (func_id) {
1692 	case BPF_FUNC_perf_event_output:
1693 		return &bpf_perf_event_output_proto_tp;
1694 	case BPF_FUNC_get_stackid:
1695 		return &bpf_get_stackid_proto_tp;
1696 	case BPF_FUNC_get_stack:
1697 		return &bpf_get_stack_proto_tp;
1698 	case BPF_FUNC_get_attach_cookie:
1699 		return &bpf_get_attach_cookie_proto_trace;
1700 	default:
1701 		return bpf_tracing_func_proto(func_id, prog);
1702 	}
1703 }
1704 
1705 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1706 				    const struct bpf_prog *prog,
1707 				    struct bpf_insn_access_aux *info)
1708 {
1709 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1710 		return false;
1711 	if (type != BPF_READ)
1712 		return false;
1713 	if (off % size != 0)
1714 		return false;
1715 
1716 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1717 	return true;
1718 }
1719 
1720 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1721 	.get_func_proto  = tp_prog_func_proto,
1722 	.is_valid_access = tp_prog_is_valid_access,
1723 };
1724 
1725 const struct bpf_prog_ops tracepoint_prog_ops = {
1726 };
1727 
1728 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1729 	   struct bpf_perf_event_value *, buf, u32, size)
1730 {
1731 	int err = -EINVAL;
1732 
1733 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1734 		goto clear;
1735 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1736 				    &buf->running);
1737 	if (unlikely(err))
1738 		goto clear;
1739 	return 0;
1740 clear:
1741 	memset(buf, 0, size);
1742 	return err;
1743 }
1744 
1745 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1746          .func           = bpf_perf_prog_read_value,
1747          .gpl_only       = true,
1748          .ret_type       = RET_INTEGER,
1749          .arg1_type      = ARG_PTR_TO_CTX,
1750          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1751          .arg3_type      = ARG_CONST_SIZE,
1752 };
1753 
1754 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1755 	   void *, buf, u32, size, u64, flags)
1756 {
1757 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1758 	struct perf_branch_stack *br_stack = ctx->data->br_stack;
1759 	u32 to_copy;
1760 
1761 	if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1762 		return -EINVAL;
1763 
1764 	if (unlikely(!(ctx->data->sample_flags & PERF_SAMPLE_BRANCH_STACK)))
1765 		return -ENOENT;
1766 
1767 	if (unlikely(!br_stack))
1768 		return -ENOENT;
1769 
1770 	if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1771 		return br_stack->nr * br_entry_size;
1772 
1773 	if (!buf || (size % br_entry_size != 0))
1774 		return -EINVAL;
1775 
1776 	to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1777 	memcpy(buf, br_stack->entries, to_copy);
1778 
1779 	return to_copy;
1780 }
1781 
1782 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1783 	.func           = bpf_read_branch_records,
1784 	.gpl_only       = true,
1785 	.ret_type       = RET_INTEGER,
1786 	.arg1_type      = ARG_PTR_TO_CTX,
1787 	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
1788 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1789 	.arg4_type      = ARG_ANYTHING,
1790 };
1791 
1792 static const struct bpf_func_proto *
1793 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1794 {
1795 	switch (func_id) {
1796 	case BPF_FUNC_perf_event_output:
1797 		return &bpf_perf_event_output_proto_tp;
1798 	case BPF_FUNC_get_stackid:
1799 		return &bpf_get_stackid_proto_pe;
1800 	case BPF_FUNC_get_stack:
1801 		return &bpf_get_stack_proto_pe;
1802 	case BPF_FUNC_perf_prog_read_value:
1803 		return &bpf_perf_prog_read_value_proto;
1804 	case BPF_FUNC_read_branch_records:
1805 		return &bpf_read_branch_records_proto;
1806 	case BPF_FUNC_get_attach_cookie:
1807 		return &bpf_get_attach_cookie_proto_pe;
1808 	default:
1809 		return bpf_tracing_func_proto(func_id, prog);
1810 	}
1811 }
1812 
1813 /*
1814  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1815  * to avoid potential recursive reuse issue when/if tracepoints are added
1816  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1817  *
1818  * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1819  * in normal, irq, and nmi context.
1820  */
1821 struct bpf_raw_tp_regs {
1822 	struct pt_regs regs[3];
1823 };
1824 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1825 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1826 static struct pt_regs *get_bpf_raw_tp_regs(void)
1827 {
1828 	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1829 	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1830 
1831 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1832 		this_cpu_dec(bpf_raw_tp_nest_level);
1833 		return ERR_PTR(-EBUSY);
1834 	}
1835 
1836 	return &tp_regs->regs[nest_level - 1];
1837 }
1838 
1839 static void put_bpf_raw_tp_regs(void)
1840 {
1841 	this_cpu_dec(bpf_raw_tp_nest_level);
1842 }
1843 
1844 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1845 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
1846 {
1847 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1848 	int ret;
1849 
1850 	if (IS_ERR(regs))
1851 		return PTR_ERR(regs);
1852 
1853 	perf_fetch_caller_regs(regs);
1854 	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1855 
1856 	put_bpf_raw_tp_regs();
1857 	return ret;
1858 }
1859 
1860 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1861 	.func		= bpf_perf_event_output_raw_tp,
1862 	.gpl_only	= true,
1863 	.ret_type	= RET_INTEGER,
1864 	.arg1_type	= ARG_PTR_TO_CTX,
1865 	.arg2_type	= ARG_CONST_MAP_PTR,
1866 	.arg3_type	= ARG_ANYTHING,
1867 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1868 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1869 };
1870 
1871 extern const struct bpf_func_proto bpf_skb_output_proto;
1872 extern const struct bpf_func_proto bpf_xdp_output_proto;
1873 extern const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto;
1874 
1875 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1876 	   struct bpf_map *, map, u64, flags)
1877 {
1878 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1879 	int ret;
1880 
1881 	if (IS_ERR(regs))
1882 		return PTR_ERR(regs);
1883 
1884 	perf_fetch_caller_regs(regs);
1885 	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1886 	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1887 			      flags, 0, 0);
1888 	put_bpf_raw_tp_regs();
1889 	return ret;
1890 }
1891 
1892 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1893 	.func		= bpf_get_stackid_raw_tp,
1894 	.gpl_only	= true,
1895 	.ret_type	= RET_INTEGER,
1896 	.arg1_type	= ARG_PTR_TO_CTX,
1897 	.arg2_type	= ARG_CONST_MAP_PTR,
1898 	.arg3_type	= ARG_ANYTHING,
1899 };
1900 
1901 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1902 	   void *, buf, u32, size, u64, flags)
1903 {
1904 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1905 	int ret;
1906 
1907 	if (IS_ERR(regs))
1908 		return PTR_ERR(regs);
1909 
1910 	perf_fetch_caller_regs(regs);
1911 	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1912 			    (unsigned long) size, flags, 0);
1913 	put_bpf_raw_tp_regs();
1914 	return ret;
1915 }
1916 
1917 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1918 	.func		= bpf_get_stack_raw_tp,
1919 	.gpl_only	= true,
1920 	.ret_type	= RET_INTEGER,
1921 	.arg1_type	= ARG_PTR_TO_CTX,
1922 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1923 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1924 	.arg4_type	= ARG_ANYTHING,
1925 };
1926 
1927 static const struct bpf_func_proto *
1928 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1929 {
1930 	switch (func_id) {
1931 	case BPF_FUNC_perf_event_output:
1932 		return &bpf_perf_event_output_proto_raw_tp;
1933 	case BPF_FUNC_get_stackid:
1934 		return &bpf_get_stackid_proto_raw_tp;
1935 	case BPF_FUNC_get_stack:
1936 		return &bpf_get_stack_proto_raw_tp;
1937 	default:
1938 		return bpf_tracing_func_proto(func_id, prog);
1939 	}
1940 }
1941 
1942 const struct bpf_func_proto *
1943 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1944 {
1945 	const struct bpf_func_proto *fn;
1946 
1947 	switch (func_id) {
1948 #ifdef CONFIG_NET
1949 	case BPF_FUNC_skb_output:
1950 		return &bpf_skb_output_proto;
1951 	case BPF_FUNC_xdp_output:
1952 		return &bpf_xdp_output_proto;
1953 	case BPF_FUNC_skc_to_tcp6_sock:
1954 		return &bpf_skc_to_tcp6_sock_proto;
1955 	case BPF_FUNC_skc_to_tcp_sock:
1956 		return &bpf_skc_to_tcp_sock_proto;
1957 	case BPF_FUNC_skc_to_tcp_timewait_sock:
1958 		return &bpf_skc_to_tcp_timewait_sock_proto;
1959 	case BPF_FUNC_skc_to_tcp_request_sock:
1960 		return &bpf_skc_to_tcp_request_sock_proto;
1961 	case BPF_FUNC_skc_to_udp6_sock:
1962 		return &bpf_skc_to_udp6_sock_proto;
1963 	case BPF_FUNC_skc_to_unix_sock:
1964 		return &bpf_skc_to_unix_sock_proto;
1965 	case BPF_FUNC_skc_to_mptcp_sock:
1966 		return &bpf_skc_to_mptcp_sock_proto;
1967 	case BPF_FUNC_sk_storage_get:
1968 		return &bpf_sk_storage_get_tracing_proto;
1969 	case BPF_FUNC_sk_storage_delete:
1970 		return &bpf_sk_storage_delete_tracing_proto;
1971 	case BPF_FUNC_sock_from_file:
1972 		return &bpf_sock_from_file_proto;
1973 	case BPF_FUNC_get_socket_cookie:
1974 		return &bpf_get_socket_ptr_cookie_proto;
1975 	case BPF_FUNC_xdp_get_buff_len:
1976 		return &bpf_xdp_get_buff_len_trace_proto;
1977 #endif
1978 	case BPF_FUNC_seq_printf:
1979 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1980 		       &bpf_seq_printf_proto :
1981 		       NULL;
1982 	case BPF_FUNC_seq_write:
1983 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1984 		       &bpf_seq_write_proto :
1985 		       NULL;
1986 	case BPF_FUNC_seq_printf_btf:
1987 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1988 		       &bpf_seq_printf_btf_proto :
1989 		       NULL;
1990 	case BPF_FUNC_d_path:
1991 		return &bpf_d_path_proto;
1992 	case BPF_FUNC_get_func_arg:
1993 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_proto : NULL;
1994 	case BPF_FUNC_get_func_ret:
1995 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_ret_proto : NULL;
1996 	case BPF_FUNC_get_func_arg_cnt:
1997 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_cnt_proto : NULL;
1998 	case BPF_FUNC_get_attach_cookie:
1999 		return bpf_prog_has_trampoline(prog) ? &bpf_get_attach_cookie_proto_tracing : NULL;
2000 	default:
2001 		fn = raw_tp_prog_func_proto(func_id, prog);
2002 		if (!fn && prog->expected_attach_type == BPF_TRACE_ITER)
2003 			fn = bpf_iter_get_func_proto(func_id, prog);
2004 		return fn;
2005 	}
2006 }
2007 
2008 static bool raw_tp_prog_is_valid_access(int off, int size,
2009 					enum bpf_access_type type,
2010 					const struct bpf_prog *prog,
2011 					struct bpf_insn_access_aux *info)
2012 {
2013 	return bpf_tracing_ctx_access(off, size, type);
2014 }
2015 
2016 static bool tracing_prog_is_valid_access(int off, int size,
2017 					 enum bpf_access_type type,
2018 					 const struct bpf_prog *prog,
2019 					 struct bpf_insn_access_aux *info)
2020 {
2021 	return bpf_tracing_btf_ctx_access(off, size, type, prog, info);
2022 }
2023 
2024 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
2025 				     const union bpf_attr *kattr,
2026 				     union bpf_attr __user *uattr)
2027 {
2028 	return -ENOTSUPP;
2029 }
2030 
2031 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
2032 	.get_func_proto  = raw_tp_prog_func_proto,
2033 	.is_valid_access = raw_tp_prog_is_valid_access,
2034 };
2035 
2036 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
2037 #ifdef CONFIG_NET
2038 	.test_run = bpf_prog_test_run_raw_tp,
2039 #endif
2040 };
2041 
2042 const struct bpf_verifier_ops tracing_verifier_ops = {
2043 	.get_func_proto  = tracing_prog_func_proto,
2044 	.is_valid_access = tracing_prog_is_valid_access,
2045 };
2046 
2047 const struct bpf_prog_ops tracing_prog_ops = {
2048 	.test_run = bpf_prog_test_run_tracing,
2049 };
2050 
2051 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
2052 						 enum bpf_access_type type,
2053 						 const struct bpf_prog *prog,
2054 						 struct bpf_insn_access_aux *info)
2055 {
2056 	if (off == 0) {
2057 		if (size != sizeof(u64) || type != BPF_READ)
2058 			return false;
2059 		info->reg_type = PTR_TO_TP_BUFFER;
2060 	}
2061 	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
2062 }
2063 
2064 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
2065 	.get_func_proto  = raw_tp_prog_func_proto,
2066 	.is_valid_access = raw_tp_writable_prog_is_valid_access,
2067 };
2068 
2069 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
2070 };
2071 
2072 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
2073 				    const struct bpf_prog *prog,
2074 				    struct bpf_insn_access_aux *info)
2075 {
2076 	const int size_u64 = sizeof(u64);
2077 
2078 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
2079 		return false;
2080 	if (type != BPF_READ)
2081 		return false;
2082 	if (off % size != 0) {
2083 		if (sizeof(unsigned long) != 4)
2084 			return false;
2085 		if (size != 8)
2086 			return false;
2087 		if (off % size != 4)
2088 			return false;
2089 	}
2090 
2091 	switch (off) {
2092 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
2093 		bpf_ctx_record_field_size(info, size_u64);
2094 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
2095 			return false;
2096 		break;
2097 	case bpf_ctx_range(struct bpf_perf_event_data, addr):
2098 		bpf_ctx_record_field_size(info, size_u64);
2099 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
2100 			return false;
2101 		break;
2102 	default:
2103 		if (size != sizeof(long))
2104 			return false;
2105 	}
2106 
2107 	return true;
2108 }
2109 
2110 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
2111 				      const struct bpf_insn *si,
2112 				      struct bpf_insn *insn_buf,
2113 				      struct bpf_prog *prog, u32 *target_size)
2114 {
2115 	struct bpf_insn *insn = insn_buf;
2116 
2117 	switch (si->off) {
2118 	case offsetof(struct bpf_perf_event_data, sample_period):
2119 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2120 						       data), si->dst_reg, si->src_reg,
2121 				      offsetof(struct bpf_perf_event_data_kern, data));
2122 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
2123 				      bpf_target_off(struct perf_sample_data, period, 8,
2124 						     target_size));
2125 		break;
2126 	case offsetof(struct bpf_perf_event_data, addr):
2127 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2128 						       data), si->dst_reg, si->src_reg,
2129 				      offsetof(struct bpf_perf_event_data_kern, data));
2130 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
2131 				      bpf_target_off(struct perf_sample_data, addr, 8,
2132 						     target_size));
2133 		break;
2134 	default:
2135 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2136 						       regs), si->dst_reg, si->src_reg,
2137 				      offsetof(struct bpf_perf_event_data_kern, regs));
2138 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
2139 				      si->off);
2140 		break;
2141 	}
2142 
2143 	return insn - insn_buf;
2144 }
2145 
2146 const struct bpf_verifier_ops perf_event_verifier_ops = {
2147 	.get_func_proto		= pe_prog_func_proto,
2148 	.is_valid_access	= pe_prog_is_valid_access,
2149 	.convert_ctx_access	= pe_prog_convert_ctx_access,
2150 };
2151 
2152 const struct bpf_prog_ops perf_event_prog_ops = {
2153 };
2154 
2155 static DEFINE_MUTEX(bpf_event_mutex);
2156 
2157 #define BPF_TRACE_MAX_PROGS 64
2158 
2159 int perf_event_attach_bpf_prog(struct perf_event *event,
2160 			       struct bpf_prog *prog,
2161 			       u64 bpf_cookie)
2162 {
2163 	struct bpf_prog_array *old_array;
2164 	struct bpf_prog_array *new_array;
2165 	int ret = -EEXIST;
2166 
2167 	/*
2168 	 * Kprobe override only works if they are on the function entry,
2169 	 * and only if they are on the opt-in list.
2170 	 */
2171 	if (prog->kprobe_override &&
2172 	    (!trace_kprobe_on_func_entry(event->tp_event) ||
2173 	     !trace_kprobe_error_injectable(event->tp_event)))
2174 		return -EINVAL;
2175 
2176 	mutex_lock(&bpf_event_mutex);
2177 
2178 	if (event->prog)
2179 		goto unlock;
2180 
2181 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
2182 	if (old_array &&
2183 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
2184 		ret = -E2BIG;
2185 		goto unlock;
2186 	}
2187 
2188 	ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array);
2189 	if (ret < 0)
2190 		goto unlock;
2191 
2192 	/* set the new array to event->tp_event and set event->prog */
2193 	event->prog = prog;
2194 	event->bpf_cookie = bpf_cookie;
2195 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
2196 	bpf_prog_array_free_sleepable(old_array);
2197 
2198 unlock:
2199 	mutex_unlock(&bpf_event_mutex);
2200 	return ret;
2201 }
2202 
2203 void perf_event_detach_bpf_prog(struct perf_event *event)
2204 {
2205 	struct bpf_prog_array *old_array;
2206 	struct bpf_prog_array *new_array;
2207 	int ret;
2208 
2209 	mutex_lock(&bpf_event_mutex);
2210 
2211 	if (!event->prog)
2212 		goto unlock;
2213 
2214 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
2215 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array);
2216 	if (ret == -ENOENT)
2217 		goto unlock;
2218 	if (ret < 0) {
2219 		bpf_prog_array_delete_safe(old_array, event->prog);
2220 	} else {
2221 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
2222 		bpf_prog_array_free_sleepable(old_array);
2223 	}
2224 
2225 	bpf_prog_put(event->prog);
2226 	event->prog = NULL;
2227 
2228 unlock:
2229 	mutex_unlock(&bpf_event_mutex);
2230 }
2231 
2232 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
2233 {
2234 	struct perf_event_query_bpf __user *uquery = info;
2235 	struct perf_event_query_bpf query = {};
2236 	struct bpf_prog_array *progs;
2237 	u32 *ids, prog_cnt, ids_len;
2238 	int ret;
2239 
2240 	if (!perfmon_capable())
2241 		return -EPERM;
2242 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
2243 		return -EINVAL;
2244 	if (copy_from_user(&query, uquery, sizeof(query)))
2245 		return -EFAULT;
2246 
2247 	ids_len = query.ids_len;
2248 	if (ids_len > BPF_TRACE_MAX_PROGS)
2249 		return -E2BIG;
2250 	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
2251 	if (!ids)
2252 		return -ENOMEM;
2253 	/*
2254 	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
2255 	 * is required when user only wants to check for uquery->prog_cnt.
2256 	 * There is no need to check for it since the case is handled
2257 	 * gracefully in bpf_prog_array_copy_info.
2258 	 */
2259 
2260 	mutex_lock(&bpf_event_mutex);
2261 	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
2262 	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
2263 	mutex_unlock(&bpf_event_mutex);
2264 
2265 	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
2266 	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
2267 		ret = -EFAULT;
2268 
2269 	kfree(ids);
2270 	return ret;
2271 }
2272 
2273 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
2274 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
2275 
2276 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
2277 {
2278 	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
2279 
2280 	for (; btp < __stop__bpf_raw_tp; btp++) {
2281 		if (!strcmp(btp->tp->name, name))
2282 			return btp;
2283 	}
2284 
2285 	return bpf_get_raw_tracepoint_module(name);
2286 }
2287 
2288 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
2289 {
2290 	struct module *mod;
2291 
2292 	preempt_disable();
2293 	mod = __module_address((unsigned long)btp);
2294 	module_put(mod);
2295 	preempt_enable();
2296 }
2297 
2298 static __always_inline
2299 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
2300 {
2301 	cant_sleep();
2302 	if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) {
2303 		bpf_prog_inc_misses_counter(prog);
2304 		goto out;
2305 	}
2306 	rcu_read_lock();
2307 	(void) bpf_prog_run(prog, args);
2308 	rcu_read_unlock();
2309 out:
2310 	this_cpu_dec(*(prog->active));
2311 }
2312 
2313 #define UNPACK(...)			__VA_ARGS__
2314 #define REPEAT_1(FN, DL, X, ...)	FN(X)
2315 #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
2316 #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
2317 #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
2318 #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
2319 #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
2320 #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
2321 #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
2322 #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
2323 #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
2324 #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
2325 #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
2326 #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
2327 
2328 #define SARG(X)		u64 arg##X
2329 #define COPY(X)		args[X] = arg##X
2330 
2331 #define __DL_COM	(,)
2332 #define __DL_SEM	(;)
2333 
2334 #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
2335 
2336 #define BPF_TRACE_DEFN_x(x)						\
2337 	void bpf_trace_run##x(struct bpf_prog *prog,			\
2338 			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
2339 	{								\
2340 		u64 args[x];						\
2341 		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
2342 		__bpf_trace_run(prog, args);				\
2343 	}								\
2344 	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
2345 BPF_TRACE_DEFN_x(1);
2346 BPF_TRACE_DEFN_x(2);
2347 BPF_TRACE_DEFN_x(3);
2348 BPF_TRACE_DEFN_x(4);
2349 BPF_TRACE_DEFN_x(5);
2350 BPF_TRACE_DEFN_x(6);
2351 BPF_TRACE_DEFN_x(7);
2352 BPF_TRACE_DEFN_x(8);
2353 BPF_TRACE_DEFN_x(9);
2354 BPF_TRACE_DEFN_x(10);
2355 BPF_TRACE_DEFN_x(11);
2356 BPF_TRACE_DEFN_x(12);
2357 
2358 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2359 {
2360 	struct tracepoint *tp = btp->tp;
2361 
2362 	/*
2363 	 * check that program doesn't access arguments beyond what's
2364 	 * available in this tracepoint
2365 	 */
2366 	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
2367 		return -EINVAL;
2368 
2369 	if (prog->aux->max_tp_access > btp->writable_size)
2370 		return -EINVAL;
2371 
2372 	return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func,
2373 						   prog);
2374 }
2375 
2376 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2377 {
2378 	return __bpf_probe_register(btp, prog);
2379 }
2380 
2381 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2382 {
2383 	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
2384 }
2385 
2386 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
2387 			    u32 *fd_type, const char **buf,
2388 			    u64 *probe_offset, u64 *probe_addr,
2389 			    unsigned long *missed)
2390 {
2391 	bool is_tracepoint, is_syscall_tp;
2392 	struct bpf_prog *prog;
2393 	int flags, err = 0;
2394 
2395 	prog = event->prog;
2396 	if (!prog)
2397 		return -ENOENT;
2398 
2399 	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
2400 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
2401 		return -EOPNOTSUPP;
2402 
2403 	*prog_id = prog->aux->id;
2404 	flags = event->tp_event->flags;
2405 	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
2406 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
2407 
2408 	if (is_tracepoint || is_syscall_tp) {
2409 		*buf = is_tracepoint ? event->tp_event->tp->name
2410 				     : event->tp_event->name;
2411 		/* We allow NULL pointer for tracepoint */
2412 		if (fd_type)
2413 			*fd_type = BPF_FD_TYPE_TRACEPOINT;
2414 		if (probe_offset)
2415 			*probe_offset = 0x0;
2416 		if (probe_addr)
2417 			*probe_addr = 0x0;
2418 	} else {
2419 		/* kprobe/uprobe */
2420 		err = -EOPNOTSUPP;
2421 #ifdef CONFIG_KPROBE_EVENTS
2422 		if (flags & TRACE_EVENT_FL_KPROBE)
2423 			err = bpf_get_kprobe_info(event, fd_type, buf,
2424 						  probe_offset, probe_addr, missed,
2425 						  event->attr.type == PERF_TYPE_TRACEPOINT);
2426 #endif
2427 #ifdef CONFIG_UPROBE_EVENTS
2428 		if (flags & TRACE_EVENT_FL_UPROBE)
2429 			err = bpf_get_uprobe_info(event, fd_type, buf,
2430 						  probe_offset, probe_addr,
2431 						  event->attr.type == PERF_TYPE_TRACEPOINT);
2432 #endif
2433 	}
2434 
2435 	return err;
2436 }
2437 
2438 static int __init send_signal_irq_work_init(void)
2439 {
2440 	int cpu;
2441 	struct send_signal_irq_work *work;
2442 
2443 	for_each_possible_cpu(cpu) {
2444 		work = per_cpu_ptr(&send_signal_work, cpu);
2445 		init_irq_work(&work->irq_work, do_bpf_send_signal);
2446 	}
2447 	return 0;
2448 }
2449 
2450 subsys_initcall(send_signal_irq_work_init);
2451 
2452 #ifdef CONFIG_MODULES
2453 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
2454 			    void *module)
2455 {
2456 	struct bpf_trace_module *btm, *tmp;
2457 	struct module *mod = module;
2458 	int ret = 0;
2459 
2460 	if (mod->num_bpf_raw_events == 0 ||
2461 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
2462 		goto out;
2463 
2464 	mutex_lock(&bpf_module_mutex);
2465 
2466 	switch (op) {
2467 	case MODULE_STATE_COMING:
2468 		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
2469 		if (btm) {
2470 			btm->module = module;
2471 			list_add(&btm->list, &bpf_trace_modules);
2472 		} else {
2473 			ret = -ENOMEM;
2474 		}
2475 		break;
2476 	case MODULE_STATE_GOING:
2477 		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
2478 			if (btm->module == module) {
2479 				list_del(&btm->list);
2480 				kfree(btm);
2481 				break;
2482 			}
2483 		}
2484 		break;
2485 	}
2486 
2487 	mutex_unlock(&bpf_module_mutex);
2488 
2489 out:
2490 	return notifier_from_errno(ret);
2491 }
2492 
2493 static struct notifier_block bpf_module_nb = {
2494 	.notifier_call = bpf_event_notify,
2495 };
2496 
2497 static int __init bpf_event_init(void)
2498 {
2499 	register_module_notifier(&bpf_module_nb);
2500 	return 0;
2501 }
2502 
2503 fs_initcall(bpf_event_init);
2504 #endif /* CONFIG_MODULES */
2505 
2506 #ifdef CONFIG_FPROBE
2507 struct bpf_kprobe_multi_link {
2508 	struct bpf_link link;
2509 	struct fprobe fp;
2510 	unsigned long *addrs;
2511 	u64 *cookies;
2512 	u32 cnt;
2513 	u32 mods_cnt;
2514 	struct module **mods;
2515 	u32 flags;
2516 };
2517 
2518 struct bpf_kprobe_multi_run_ctx {
2519 	struct bpf_run_ctx run_ctx;
2520 	struct bpf_kprobe_multi_link *link;
2521 	unsigned long entry_ip;
2522 };
2523 
2524 struct user_syms {
2525 	const char **syms;
2526 	char *buf;
2527 };
2528 
2529 static int copy_user_syms(struct user_syms *us, unsigned long __user *usyms, u32 cnt)
2530 {
2531 	unsigned long __user usymbol;
2532 	const char **syms = NULL;
2533 	char *buf = NULL, *p;
2534 	int err = -ENOMEM;
2535 	unsigned int i;
2536 
2537 	syms = kvmalloc_array(cnt, sizeof(*syms), GFP_KERNEL);
2538 	if (!syms)
2539 		goto error;
2540 
2541 	buf = kvmalloc_array(cnt, KSYM_NAME_LEN, GFP_KERNEL);
2542 	if (!buf)
2543 		goto error;
2544 
2545 	for (p = buf, i = 0; i < cnt; i++) {
2546 		if (__get_user(usymbol, usyms + i)) {
2547 			err = -EFAULT;
2548 			goto error;
2549 		}
2550 		err = strncpy_from_user(p, (const char __user *) usymbol, KSYM_NAME_LEN);
2551 		if (err == KSYM_NAME_LEN)
2552 			err = -E2BIG;
2553 		if (err < 0)
2554 			goto error;
2555 		syms[i] = p;
2556 		p += err + 1;
2557 	}
2558 
2559 	us->syms = syms;
2560 	us->buf = buf;
2561 	return 0;
2562 
2563 error:
2564 	if (err) {
2565 		kvfree(syms);
2566 		kvfree(buf);
2567 	}
2568 	return err;
2569 }
2570 
2571 static void kprobe_multi_put_modules(struct module **mods, u32 cnt)
2572 {
2573 	u32 i;
2574 
2575 	for (i = 0; i < cnt; i++)
2576 		module_put(mods[i]);
2577 }
2578 
2579 static void free_user_syms(struct user_syms *us)
2580 {
2581 	kvfree(us->syms);
2582 	kvfree(us->buf);
2583 }
2584 
2585 static void bpf_kprobe_multi_link_release(struct bpf_link *link)
2586 {
2587 	struct bpf_kprobe_multi_link *kmulti_link;
2588 
2589 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2590 	unregister_fprobe(&kmulti_link->fp);
2591 	kprobe_multi_put_modules(kmulti_link->mods, kmulti_link->mods_cnt);
2592 }
2593 
2594 static void bpf_kprobe_multi_link_dealloc(struct bpf_link *link)
2595 {
2596 	struct bpf_kprobe_multi_link *kmulti_link;
2597 
2598 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2599 	kvfree(kmulti_link->addrs);
2600 	kvfree(kmulti_link->cookies);
2601 	kfree(kmulti_link->mods);
2602 	kfree(kmulti_link);
2603 }
2604 
2605 static int bpf_kprobe_multi_link_fill_link_info(const struct bpf_link *link,
2606 						struct bpf_link_info *info)
2607 {
2608 	u64 __user *uaddrs = u64_to_user_ptr(info->kprobe_multi.addrs);
2609 	struct bpf_kprobe_multi_link *kmulti_link;
2610 	u32 ucount = info->kprobe_multi.count;
2611 	int err = 0, i;
2612 
2613 	if (!uaddrs ^ !ucount)
2614 		return -EINVAL;
2615 
2616 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2617 	info->kprobe_multi.count = kmulti_link->cnt;
2618 	info->kprobe_multi.flags = kmulti_link->flags;
2619 	info->kprobe_multi.missed = kmulti_link->fp.nmissed;
2620 
2621 	if (!uaddrs)
2622 		return 0;
2623 	if (ucount < kmulti_link->cnt)
2624 		err = -ENOSPC;
2625 	else
2626 		ucount = kmulti_link->cnt;
2627 
2628 	if (kallsyms_show_value(current_cred())) {
2629 		if (copy_to_user(uaddrs, kmulti_link->addrs, ucount * sizeof(u64)))
2630 			return -EFAULT;
2631 	} else {
2632 		for (i = 0; i < ucount; i++) {
2633 			if (put_user(0, uaddrs + i))
2634 				return -EFAULT;
2635 		}
2636 	}
2637 	return err;
2638 }
2639 
2640 static const struct bpf_link_ops bpf_kprobe_multi_link_lops = {
2641 	.release = bpf_kprobe_multi_link_release,
2642 	.dealloc = bpf_kprobe_multi_link_dealloc,
2643 	.fill_link_info = bpf_kprobe_multi_link_fill_link_info,
2644 };
2645 
2646 static void bpf_kprobe_multi_cookie_swap(void *a, void *b, int size, const void *priv)
2647 {
2648 	const struct bpf_kprobe_multi_link *link = priv;
2649 	unsigned long *addr_a = a, *addr_b = b;
2650 	u64 *cookie_a, *cookie_b;
2651 
2652 	cookie_a = link->cookies + (addr_a - link->addrs);
2653 	cookie_b = link->cookies + (addr_b - link->addrs);
2654 
2655 	/* swap addr_a/addr_b and cookie_a/cookie_b values */
2656 	swap(*addr_a, *addr_b);
2657 	swap(*cookie_a, *cookie_b);
2658 }
2659 
2660 static int bpf_kprobe_multi_addrs_cmp(const void *a, const void *b)
2661 {
2662 	const unsigned long *addr_a = a, *addr_b = b;
2663 
2664 	if (*addr_a == *addr_b)
2665 		return 0;
2666 	return *addr_a < *addr_b ? -1 : 1;
2667 }
2668 
2669 static int bpf_kprobe_multi_cookie_cmp(const void *a, const void *b, const void *priv)
2670 {
2671 	return bpf_kprobe_multi_addrs_cmp(a, b);
2672 }
2673 
2674 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
2675 {
2676 	struct bpf_kprobe_multi_run_ctx *run_ctx;
2677 	struct bpf_kprobe_multi_link *link;
2678 	u64 *cookie, entry_ip;
2679 	unsigned long *addr;
2680 
2681 	if (WARN_ON_ONCE(!ctx))
2682 		return 0;
2683 	run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, run_ctx);
2684 	link = run_ctx->link;
2685 	if (!link->cookies)
2686 		return 0;
2687 	entry_ip = run_ctx->entry_ip;
2688 	addr = bsearch(&entry_ip, link->addrs, link->cnt, sizeof(entry_ip),
2689 		       bpf_kprobe_multi_addrs_cmp);
2690 	if (!addr)
2691 		return 0;
2692 	cookie = link->cookies + (addr - link->addrs);
2693 	return *cookie;
2694 }
2695 
2696 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
2697 {
2698 	struct bpf_kprobe_multi_run_ctx *run_ctx;
2699 
2700 	run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, run_ctx);
2701 	return run_ctx->entry_ip;
2702 }
2703 
2704 static int
2705 kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link *link,
2706 			   unsigned long entry_ip, struct pt_regs *regs)
2707 {
2708 	struct bpf_kprobe_multi_run_ctx run_ctx = {
2709 		.link = link,
2710 		.entry_ip = entry_ip,
2711 	};
2712 	struct bpf_run_ctx *old_run_ctx;
2713 	int err;
2714 
2715 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
2716 		bpf_prog_inc_misses_counter(link->link.prog);
2717 		err = 0;
2718 		goto out;
2719 	}
2720 
2721 	migrate_disable();
2722 	rcu_read_lock();
2723 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2724 	err = bpf_prog_run(link->link.prog, regs);
2725 	bpf_reset_run_ctx(old_run_ctx);
2726 	rcu_read_unlock();
2727 	migrate_enable();
2728 
2729  out:
2730 	__this_cpu_dec(bpf_prog_active);
2731 	return err;
2732 }
2733 
2734 static int
2735 kprobe_multi_link_handler(struct fprobe *fp, unsigned long fentry_ip,
2736 			  unsigned long ret_ip, struct pt_regs *regs,
2737 			  void *data)
2738 {
2739 	struct bpf_kprobe_multi_link *link;
2740 
2741 	link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2742 	kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs);
2743 	return 0;
2744 }
2745 
2746 static void
2747 kprobe_multi_link_exit_handler(struct fprobe *fp, unsigned long fentry_ip,
2748 			       unsigned long ret_ip, struct pt_regs *regs,
2749 			       void *data)
2750 {
2751 	struct bpf_kprobe_multi_link *link;
2752 
2753 	link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2754 	kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs);
2755 }
2756 
2757 static int symbols_cmp_r(const void *a, const void *b, const void *priv)
2758 {
2759 	const char **str_a = (const char **) a;
2760 	const char **str_b = (const char **) b;
2761 
2762 	return strcmp(*str_a, *str_b);
2763 }
2764 
2765 struct multi_symbols_sort {
2766 	const char **funcs;
2767 	u64 *cookies;
2768 };
2769 
2770 static void symbols_swap_r(void *a, void *b, int size, const void *priv)
2771 {
2772 	const struct multi_symbols_sort *data = priv;
2773 	const char **name_a = a, **name_b = b;
2774 
2775 	swap(*name_a, *name_b);
2776 
2777 	/* If defined, swap also related cookies. */
2778 	if (data->cookies) {
2779 		u64 *cookie_a, *cookie_b;
2780 
2781 		cookie_a = data->cookies + (name_a - data->funcs);
2782 		cookie_b = data->cookies + (name_b - data->funcs);
2783 		swap(*cookie_a, *cookie_b);
2784 	}
2785 }
2786 
2787 struct modules_array {
2788 	struct module **mods;
2789 	int mods_cnt;
2790 	int mods_cap;
2791 };
2792 
2793 static int add_module(struct modules_array *arr, struct module *mod)
2794 {
2795 	struct module **mods;
2796 
2797 	if (arr->mods_cnt == arr->mods_cap) {
2798 		arr->mods_cap = max(16, arr->mods_cap * 3 / 2);
2799 		mods = krealloc_array(arr->mods, arr->mods_cap, sizeof(*mods), GFP_KERNEL);
2800 		if (!mods)
2801 			return -ENOMEM;
2802 		arr->mods = mods;
2803 	}
2804 
2805 	arr->mods[arr->mods_cnt] = mod;
2806 	arr->mods_cnt++;
2807 	return 0;
2808 }
2809 
2810 static bool has_module(struct modules_array *arr, struct module *mod)
2811 {
2812 	int i;
2813 
2814 	for (i = arr->mods_cnt - 1; i >= 0; i--) {
2815 		if (arr->mods[i] == mod)
2816 			return true;
2817 	}
2818 	return false;
2819 }
2820 
2821 static int get_modules_for_addrs(struct module ***mods, unsigned long *addrs, u32 addrs_cnt)
2822 {
2823 	struct modules_array arr = {};
2824 	u32 i, err = 0;
2825 
2826 	for (i = 0; i < addrs_cnt; i++) {
2827 		struct module *mod;
2828 
2829 		preempt_disable();
2830 		mod = __module_address(addrs[i]);
2831 		/* Either no module or we it's already stored  */
2832 		if (!mod || has_module(&arr, mod)) {
2833 			preempt_enable();
2834 			continue;
2835 		}
2836 		if (!try_module_get(mod))
2837 			err = -EINVAL;
2838 		preempt_enable();
2839 		if (err)
2840 			break;
2841 		err = add_module(&arr, mod);
2842 		if (err) {
2843 			module_put(mod);
2844 			break;
2845 		}
2846 	}
2847 
2848 	/* We return either err < 0 in case of error, ... */
2849 	if (err) {
2850 		kprobe_multi_put_modules(arr.mods, arr.mods_cnt);
2851 		kfree(arr.mods);
2852 		return err;
2853 	}
2854 
2855 	/* or number of modules found if everything is ok. */
2856 	*mods = arr.mods;
2857 	return arr.mods_cnt;
2858 }
2859 
2860 static int addrs_check_error_injection_list(unsigned long *addrs, u32 cnt)
2861 {
2862 	u32 i;
2863 
2864 	for (i = 0; i < cnt; i++) {
2865 		if (!within_error_injection_list(addrs[i]))
2866 			return -EINVAL;
2867 	}
2868 	return 0;
2869 }
2870 
2871 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
2872 {
2873 	struct bpf_kprobe_multi_link *link = NULL;
2874 	struct bpf_link_primer link_primer;
2875 	void __user *ucookies;
2876 	unsigned long *addrs;
2877 	u32 flags, cnt, size;
2878 	void __user *uaddrs;
2879 	u64 *cookies = NULL;
2880 	void __user *usyms;
2881 	int err;
2882 
2883 	/* no support for 32bit archs yet */
2884 	if (sizeof(u64) != sizeof(void *))
2885 		return -EOPNOTSUPP;
2886 
2887 	if (prog->expected_attach_type != BPF_TRACE_KPROBE_MULTI)
2888 		return -EINVAL;
2889 
2890 	flags = attr->link_create.kprobe_multi.flags;
2891 	if (flags & ~BPF_F_KPROBE_MULTI_RETURN)
2892 		return -EINVAL;
2893 
2894 	uaddrs = u64_to_user_ptr(attr->link_create.kprobe_multi.addrs);
2895 	usyms = u64_to_user_ptr(attr->link_create.kprobe_multi.syms);
2896 	if (!!uaddrs == !!usyms)
2897 		return -EINVAL;
2898 
2899 	cnt = attr->link_create.kprobe_multi.cnt;
2900 	if (!cnt)
2901 		return -EINVAL;
2902 
2903 	size = cnt * sizeof(*addrs);
2904 	addrs = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2905 	if (!addrs)
2906 		return -ENOMEM;
2907 
2908 	ucookies = u64_to_user_ptr(attr->link_create.kprobe_multi.cookies);
2909 	if (ucookies) {
2910 		cookies = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2911 		if (!cookies) {
2912 			err = -ENOMEM;
2913 			goto error;
2914 		}
2915 		if (copy_from_user(cookies, ucookies, size)) {
2916 			err = -EFAULT;
2917 			goto error;
2918 		}
2919 	}
2920 
2921 	if (uaddrs) {
2922 		if (copy_from_user(addrs, uaddrs, size)) {
2923 			err = -EFAULT;
2924 			goto error;
2925 		}
2926 	} else {
2927 		struct multi_symbols_sort data = {
2928 			.cookies = cookies,
2929 		};
2930 		struct user_syms us;
2931 
2932 		err = copy_user_syms(&us, usyms, cnt);
2933 		if (err)
2934 			goto error;
2935 
2936 		if (cookies)
2937 			data.funcs = us.syms;
2938 
2939 		sort_r(us.syms, cnt, sizeof(*us.syms), symbols_cmp_r,
2940 		       symbols_swap_r, &data);
2941 
2942 		err = ftrace_lookup_symbols(us.syms, cnt, addrs);
2943 		free_user_syms(&us);
2944 		if (err)
2945 			goto error;
2946 	}
2947 
2948 	if (prog->kprobe_override && addrs_check_error_injection_list(addrs, cnt)) {
2949 		err = -EINVAL;
2950 		goto error;
2951 	}
2952 
2953 	link = kzalloc(sizeof(*link), GFP_KERNEL);
2954 	if (!link) {
2955 		err = -ENOMEM;
2956 		goto error;
2957 	}
2958 
2959 	bpf_link_init(&link->link, BPF_LINK_TYPE_KPROBE_MULTI,
2960 		      &bpf_kprobe_multi_link_lops, prog);
2961 
2962 	err = bpf_link_prime(&link->link, &link_primer);
2963 	if (err)
2964 		goto error;
2965 
2966 	if (flags & BPF_F_KPROBE_MULTI_RETURN)
2967 		link->fp.exit_handler = kprobe_multi_link_exit_handler;
2968 	else
2969 		link->fp.entry_handler = kprobe_multi_link_handler;
2970 
2971 	link->addrs = addrs;
2972 	link->cookies = cookies;
2973 	link->cnt = cnt;
2974 	link->flags = flags;
2975 
2976 	if (cookies) {
2977 		/*
2978 		 * Sorting addresses will trigger sorting cookies as well
2979 		 * (check bpf_kprobe_multi_cookie_swap). This way we can
2980 		 * find cookie based on the address in bpf_get_attach_cookie
2981 		 * helper.
2982 		 */
2983 		sort_r(addrs, cnt, sizeof(*addrs),
2984 		       bpf_kprobe_multi_cookie_cmp,
2985 		       bpf_kprobe_multi_cookie_swap,
2986 		       link);
2987 	}
2988 
2989 	err = get_modules_for_addrs(&link->mods, addrs, cnt);
2990 	if (err < 0) {
2991 		bpf_link_cleanup(&link_primer);
2992 		return err;
2993 	}
2994 	link->mods_cnt = err;
2995 
2996 	err = register_fprobe_ips(&link->fp, addrs, cnt);
2997 	if (err) {
2998 		kprobe_multi_put_modules(link->mods, link->mods_cnt);
2999 		bpf_link_cleanup(&link_primer);
3000 		return err;
3001 	}
3002 
3003 	return bpf_link_settle(&link_primer);
3004 
3005 error:
3006 	kfree(link);
3007 	kvfree(addrs);
3008 	kvfree(cookies);
3009 	return err;
3010 }
3011 #else /* !CONFIG_FPROBE */
3012 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3013 {
3014 	return -EOPNOTSUPP;
3015 }
3016 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
3017 {
3018 	return 0;
3019 }
3020 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3021 {
3022 	return 0;
3023 }
3024 #endif
3025 
3026 #ifdef CONFIG_UPROBES
3027 struct bpf_uprobe_multi_link;
3028 
3029 struct bpf_uprobe {
3030 	struct bpf_uprobe_multi_link *link;
3031 	loff_t offset;
3032 	u64 cookie;
3033 	struct uprobe_consumer consumer;
3034 };
3035 
3036 struct bpf_uprobe_multi_link {
3037 	struct path path;
3038 	struct bpf_link link;
3039 	u32 cnt;
3040 	struct bpf_uprobe *uprobes;
3041 	struct task_struct *task;
3042 };
3043 
3044 struct bpf_uprobe_multi_run_ctx {
3045 	struct bpf_run_ctx run_ctx;
3046 	unsigned long entry_ip;
3047 	struct bpf_uprobe *uprobe;
3048 };
3049 
3050 static void bpf_uprobe_unregister(struct path *path, struct bpf_uprobe *uprobes,
3051 				  u32 cnt)
3052 {
3053 	u32 i;
3054 
3055 	for (i = 0; i < cnt; i++) {
3056 		uprobe_unregister(d_real_inode(path->dentry), uprobes[i].offset,
3057 				  &uprobes[i].consumer);
3058 	}
3059 }
3060 
3061 static void bpf_uprobe_multi_link_release(struct bpf_link *link)
3062 {
3063 	struct bpf_uprobe_multi_link *umulti_link;
3064 
3065 	umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
3066 	bpf_uprobe_unregister(&umulti_link->path, umulti_link->uprobes, umulti_link->cnt);
3067 }
3068 
3069 static void bpf_uprobe_multi_link_dealloc(struct bpf_link *link)
3070 {
3071 	struct bpf_uprobe_multi_link *umulti_link;
3072 
3073 	umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
3074 	if (umulti_link->task)
3075 		put_task_struct(umulti_link->task);
3076 	path_put(&umulti_link->path);
3077 	kvfree(umulti_link->uprobes);
3078 	kfree(umulti_link);
3079 }
3080 
3081 static const struct bpf_link_ops bpf_uprobe_multi_link_lops = {
3082 	.release = bpf_uprobe_multi_link_release,
3083 	.dealloc = bpf_uprobe_multi_link_dealloc,
3084 };
3085 
3086 static int uprobe_prog_run(struct bpf_uprobe *uprobe,
3087 			   unsigned long entry_ip,
3088 			   struct pt_regs *regs)
3089 {
3090 	struct bpf_uprobe_multi_link *link = uprobe->link;
3091 	struct bpf_uprobe_multi_run_ctx run_ctx = {
3092 		.entry_ip = entry_ip,
3093 		.uprobe = uprobe,
3094 	};
3095 	struct bpf_prog *prog = link->link.prog;
3096 	bool sleepable = prog->aux->sleepable;
3097 	struct bpf_run_ctx *old_run_ctx;
3098 	int err = 0;
3099 
3100 	if (link->task && current != link->task)
3101 		return 0;
3102 
3103 	if (sleepable)
3104 		rcu_read_lock_trace();
3105 	else
3106 		rcu_read_lock();
3107 
3108 	migrate_disable();
3109 
3110 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
3111 	err = bpf_prog_run(link->link.prog, regs);
3112 	bpf_reset_run_ctx(old_run_ctx);
3113 
3114 	migrate_enable();
3115 
3116 	if (sleepable)
3117 		rcu_read_unlock_trace();
3118 	else
3119 		rcu_read_unlock();
3120 	return err;
3121 }
3122 
3123 static bool
3124 uprobe_multi_link_filter(struct uprobe_consumer *con, enum uprobe_filter_ctx ctx,
3125 			 struct mm_struct *mm)
3126 {
3127 	struct bpf_uprobe *uprobe;
3128 
3129 	uprobe = container_of(con, struct bpf_uprobe, consumer);
3130 	return uprobe->link->task->mm == mm;
3131 }
3132 
3133 static int
3134 uprobe_multi_link_handler(struct uprobe_consumer *con, struct pt_regs *regs)
3135 {
3136 	struct bpf_uprobe *uprobe;
3137 
3138 	uprobe = container_of(con, struct bpf_uprobe, consumer);
3139 	return uprobe_prog_run(uprobe, instruction_pointer(regs), regs);
3140 }
3141 
3142 static int
3143 uprobe_multi_link_ret_handler(struct uprobe_consumer *con, unsigned long func, struct pt_regs *regs)
3144 {
3145 	struct bpf_uprobe *uprobe;
3146 
3147 	uprobe = container_of(con, struct bpf_uprobe, consumer);
3148 	return uprobe_prog_run(uprobe, func, regs);
3149 }
3150 
3151 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3152 {
3153 	struct bpf_uprobe_multi_run_ctx *run_ctx;
3154 
3155 	run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx, run_ctx);
3156 	return run_ctx->entry_ip;
3157 }
3158 
3159 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx)
3160 {
3161 	struct bpf_uprobe_multi_run_ctx *run_ctx;
3162 
3163 	run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx, run_ctx);
3164 	return run_ctx->uprobe->cookie;
3165 }
3166 
3167 int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3168 {
3169 	struct bpf_uprobe_multi_link *link = NULL;
3170 	unsigned long __user *uref_ctr_offsets;
3171 	unsigned long *ref_ctr_offsets = NULL;
3172 	struct bpf_link_primer link_primer;
3173 	struct bpf_uprobe *uprobes = NULL;
3174 	struct task_struct *task = NULL;
3175 	unsigned long __user *uoffsets;
3176 	u64 __user *ucookies;
3177 	void __user *upath;
3178 	u32 flags, cnt, i;
3179 	struct path path;
3180 	char *name;
3181 	pid_t pid;
3182 	int err;
3183 
3184 	/* no support for 32bit archs yet */
3185 	if (sizeof(u64) != sizeof(void *))
3186 		return -EOPNOTSUPP;
3187 
3188 	if (prog->expected_attach_type != BPF_TRACE_UPROBE_MULTI)
3189 		return -EINVAL;
3190 
3191 	flags = attr->link_create.uprobe_multi.flags;
3192 	if (flags & ~BPF_F_UPROBE_MULTI_RETURN)
3193 		return -EINVAL;
3194 
3195 	/*
3196 	 * path, offsets and cnt are mandatory,
3197 	 * ref_ctr_offsets and cookies are optional
3198 	 */
3199 	upath = u64_to_user_ptr(attr->link_create.uprobe_multi.path);
3200 	uoffsets = u64_to_user_ptr(attr->link_create.uprobe_multi.offsets);
3201 	cnt = attr->link_create.uprobe_multi.cnt;
3202 
3203 	if (!upath || !uoffsets || !cnt)
3204 		return -EINVAL;
3205 
3206 	uref_ctr_offsets = u64_to_user_ptr(attr->link_create.uprobe_multi.ref_ctr_offsets);
3207 	ucookies = u64_to_user_ptr(attr->link_create.uprobe_multi.cookies);
3208 
3209 	name = strndup_user(upath, PATH_MAX);
3210 	if (IS_ERR(name)) {
3211 		err = PTR_ERR(name);
3212 		return err;
3213 	}
3214 
3215 	err = kern_path(name, LOOKUP_FOLLOW, &path);
3216 	kfree(name);
3217 	if (err)
3218 		return err;
3219 
3220 	if (!d_is_reg(path.dentry)) {
3221 		err = -EBADF;
3222 		goto error_path_put;
3223 	}
3224 
3225 	pid = attr->link_create.uprobe_multi.pid;
3226 	if (pid) {
3227 		rcu_read_lock();
3228 		task = get_pid_task(find_vpid(pid), PIDTYPE_PID);
3229 		rcu_read_unlock();
3230 		if (!task) {
3231 			err = -ESRCH;
3232 			goto error_path_put;
3233 		}
3234 	}
3235 
3236 	err = -ENOMEM;
3237 
3238 	link = kzalloc(sizeof(*link), GFP_KERNEL);
3239 	uprobes = kvcalloc(cnt, sizeof(*uprobes), GFP_KERNEL);
3240 
3241 	if (!uprobes || !link)
3242 		goto error_free;
3243 
3244 	if (uref_ctr_offsets) {
3245 		ref_ctr_offsets = kvcalloc(cnt, sizeof(*ref_ctr_offsets), GFP_KERNEL);
3246 		if (!ref_ctr_offsets)
3247 			goto error_free;
3248 	}
3249 
3250 	for (i = 0; i < cnt; i++) {
3251 		if (ucookies && __get_user(uprobes[i].cookie, ucookies + i)) {
3252 			err = -EFAULT;
3253 			goto error_free;
3254 		}
3255 		if (uref_ctr_offsets && __get_user(ref_ctr_offsets[i], uref_ctr_offsets + i)) {
3256 			err = -EFAULT;
3257 			goto error_free;
3258 		}
3259 		if (__get_user(uprobes[i].offset, uoffsets + i)) {
3260 			err = -EFAULT;
3261 			goto error_free;
3262 		}
3263 
3264 		uprobes[i].link = link;
3265 
3266 		if (flags & BPF_F_UPROBE_MULTI_RETURN)
3267 			uprobes[i].consumer.ret_handler = uprobe_multi_link_ret_handler;
3268 		else
3269 			uprobes[i].consumer.handler = uprobe_multi_link_handler;
3270 
3271 		if (pid)
3272 			uprobes[i].consumer.filter = uprobe_multi_link_filter;
3273 	}
3274 
3275 	link->cnt = cnt;
3276 	link->uprobes = uprobes;
3277 	link->path = path;
3278 	link->task = task;
3279 
3280 	bpf_link_init(&link->link, BPF_LINK_TYPE_UPROBE_MULTI,
3281 		      &bpf_uprobe_multi_link_lops, prog);
3282 
3283 	for (i = 0; i < cnt; i++) {
3284 		err = uprobe_register_refctr(d_real_inode(link->path.dentry),
3285 					     uprobes[i].offset,
3286 					     ref_ctr_offsets ? ref_ctr_offsets[i] : 0,
3287 					     &uprobes[i].consumer);
3288 		if (err) {
3289 			bpf_uprobe_unregister(&path, uprobes, i);
3290 			goto error_free;
3291 		}
3292 	}
3293 
3294 	err = bpf_link_prime(&link->link, &link_primer);
3295 	if (err)
3296 		goto error_free;
3297 
3298 	kvfree(ref_ctr_offsets);
3299 	return bpf_link_settle(&link_primer);
3300 
3301 error_free:
3302 	kvfree(ref_ctr_offsets);
3303 	kvfree(uprobes);
3304 	kfree(link);
3305 	if (task)
3306 		put_task_struct(task);
3307 error_path_put:
3308 	path_put(&path);
3309 	return err;
3310 }
3311 #else /* !CONFIG_UPROBES */
3312 int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3313 {
3314 	return -EOPNOTSUPP;
3315 }
3316 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx)
3317 {
3318 	return 0;
3319 }
3320 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3321 {
3322 	return 0;
3323 }
3324 #endif /* CONFIG_UPROBES */
3325