xref: /linux/kernel/trace/bpf_trace.c (revision 4c0a42c50021ee509f159c1f8a22efb35987c941)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_verifier.h>
10 #include <linux/bpf_perf_event.h>
11 #include <linux/btf.h>
12 #include <linux/filter.h>
13 #include <linux/uaccess.h>
14 #include <linux/ctype.h>
15 #include <linux/kprobes.h>
16 #include <linux/spinlock.h>
17 #include <linux/syscalls.h>
18 #include <linux/error-injection.h>
19 #include <linux/btf_ids.h>
20 #include <linux/bpf_lsm.h>
21 #include <linux/fprobe.h>
22 #include <linux/bsearch.h>
23 #include <linux/sort.h>
24 #include <linux/key.h>
25 #include <linux/verification.h>
26 #include <linux/namei.h>
27 
28 #include <net/bpf_sk_storage.h>
29 
30 #include <uapi/linux/bpf.h>
31 #include <uapi/linux/btf.h>
32 
33 #include <asm/tlb.h>
34 
35 #include "trace_probe.h"
36 #include "trace.h"
37 
38 #define CREATE_TRACE_POINTS
39 #include "bpf_trace.h"
40 
41 #define bpf_event_rcu_dereference(p)					\
42 	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
43 
44 #define MAX_UPROBE_MULTI_CNT (1U << 20)
45 #define MAX_KPROBE_MULTI_CNT (1U << 20)
46 
47 #ifdef CONFIG_MODULES
48 struct bpf_trace_module {
49 	struct module *module;
50 	struct list_head list;
51 };
52 
53 static LIST_HEAD(bpf_trace_modules);
54 static DEFINE_MUTEX(bpf_module_mutex);
55 
56 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
57 {
58 	struct bpf_raw_event_map *btp, *ret = NULL;
59 	struct bpf_trace_module *btm;
60 	unsigned int i;
61 
62 	mutex_lock(&bpf_module_mutex);
63 	list_for_each_entry(btm, &bpf_trace_modules, list) {
64 		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
65 			btp = &btm->module->bpf_raw_events[i];
66 			if (!strcmp(btp->tp->name, name)) {
67 				if (try_module_get(btm->module))
68 					ret = btp;
69 				goto out;
70 			}
71 		}
72 	}
73 out:
74 	mutex_unlock(&bpf_module_mutex);
75 	return ret;
76 }
77 #else
78 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
79 {
80 	return NULL;
81 }
82 #endif /* CONFIG_MODULES */
83 
84 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
85 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
86 
87 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
88 				  u64 flags, const struct btf **btf,
89 				  s32 *btf_id);
90 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx);
91 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
92 
93 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx);
94 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
95 
96 /**
97  * trace_call_bpf - invoke BPF program
98  * @call: tracepoint event
99  * @ctx: opaque context pointer
100  *
101  * kprobe handlers execute BPF programs via this helper.
102  * Can be used from static tracepoints in the future.
103  *
104  * Return: BPF programs always return an integer which is interpreted by
105  * kprobe handler as:
106  * 0 - return from kprobe (event is filtered out)
107  * 1 - store kprobe event into ring buffer
108  * Other values are reserved and currently alias to 1
109  */
110 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
111 {
112 	unsigned int ret;
113 
114 	cant_sleep();
115 
116 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
117 		/*
118 		 * since some bpf program is already running on this cpu,
119 		 * don't call into another bpf program (same or different)
120 		 * and don't send kprobe event into ring-buffer,
121 		 * so return zero here
122 		 */
123 		rcu_read_lock();
124 		bpf_prog_inc_misses_counters(rcu_dereference(call->prog_array));
125 		rcu_read_unlock();
126 		ret = 0;
127 		goto out;
128 	}
129 
130 	/*
131 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
132 	 * to all call sites, we did a bpf_prog_array_valid() there to check
133 	 * whether call->prog_array is empty or not, which is
134 	 * a heuristic to speed up execution.
135 	 *
136 	 * If bpf_prog_array_valid() fetched prog_array was
137 	 * non-NULL, we go into trace_call_bpf() and do the actual
138 	 * proper rcu_dereference() under RCU lock.
139 	 * If it turns out that prog_array is NULL then, we bail out.
140 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
141 	 * was NULL, you'll skip the prog_array with the risk of missing
142 	 * out of events when it was updated in between this and the
143 	 * rcu_dereference() which is accepted risk.
144 	 */
145 	rcu_read_lock();
146 	ret = bpf_prog_run_array(rcu_dereference(call->prog_array),
147 				 ctx, bpf_prog_run);
148 	rcu_read_unlock();
149 
150  out:
151 	__this_cpu_dec(bpf_prog_active);
152 
153 	return ret;
154 }
155 
156 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
157 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
158 {
159 	regs_set_return_value(regs, rc);
160 	override_function_with_return(regs);
161 	return 0;
162 }
163 
164 static const struct bpf_func_proto bpf_override_return_proto = {
165 	.func		= bpf_override_return,
166 	.gpl_only	= true,
167 	.ret_type	= RET_INTEGER,
168 	.arg1_type	= ARG_PTR_TO_CTX,
169 	.arg2_type	= ARG_ANYTHING,
170 };
171 #endif
172 
173 static __always_inline int
174 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
175 {
176 	int ret;
177 
178 	ret = copy_from_user_nofault(dst, unsafe_ptr, size);
179 	if (unlikely(ret < 0))
180 		memset(dst, 0, size);
181 	return ret;
182 }
183 
184 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
185 	   const void __user *, unsafe_ptr)
186 {
187 	return bpf_probe_read_user_common(dst, size, unsafe_ptr);
188 }
189 
190 const struct bpf_func_proto bpf_probe_read_user_proto = {
191 	.func		= bpf_probe_read_user,
192 	.gpl_only	= true,
193 	.ret_type	= RET_INTEGER,
194 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
195 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
196 	.arg3_type	= ARG_ANYTHING,
197 };
198 
199 static __always_inline int
200 bpf_probe_read_user_str_common(void *dst, u32 size,
201 			       const void __user *unsafe_ptr)
202 {
203 	int ret;
204 
205 	/*
206 	 * NB: We rely on strncpy_from_user() not copying junk past the NUL
207 	 * terminator into `dst`.
208 	 *
209 	 * strncpy_from_user() does long-sized strides in the fast path. If the
210 	 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
211 	 * then there could be junk after the NUL in `dst`. If user takes `dst`
212 	 * and keys a hash map with it, then semantically identical strings can
213 	 * occupy multiple entries in the map.
214 	 */
215 	ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
216 	if (unlikely(ret < 0))
217 		memset(dst, 0, size);
218 	return ret;
219 }
220 
221 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
222 	   const void __user *, unsafe_ptr)
223 {
224 	return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
225 }
226 
227 const struct bpf_func_proto bpf_probe_read_user_str_proto = {
228 	.func		= bpf_probe_read_user_str,
229 	.gpl_only	= true,
230 	.ret_type	= RET_INTEGER,
231 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
232 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
233 	.arg3_type	= ARG_ANYTHING,
234 };
235 
236 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
237 	   const void *, unsafe_ptr)
238 {
239 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
240 }
241 
242 const struct bpf_func_proto bpf_probe_read_kernel_proto = {
243 	.func		= bpf_probe_read_kernel,
244 	.gpl_only	= true,
245 	.ret_type	= RET_INTEGER,
246 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
247 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
248 	.arg3_type	= ARG_ANYTHING,
249 };
250 
251 static __always_inline int
252 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
253 {
254 	int ret;
255 
256 	/*
257 	 * The strncpy_from_kernel_nofault() call will likely not fill the
258 	 * entire buffer, but that's okay in this circumstance as we're probing
259 	 * arbitrary memory anyway similar to bpf_probe_read_*() and might
260 	 * as well probe the stack. Thus, memory is explicitly cleared
261 	 * only in error case, so that improper users ignoring return
262 	 * code altogether don't copy garbage; otherwise length of string
263 	 * is returned that can be used for bpf_perf_event_output() et al.
264 	 */
265 	ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
266 	if (unlikely(ret < 0))
267 		memset(dst, 0, size);
268 	return ret;
269 }
270 
271 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
272 	   const void *, unsafe_ptr)
273 {
274 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
275 }
276 
277 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
278 	.func		= bpf_probe_read_kernel_str,
279 	.gpl_only	= true,
280 	.ret_type	= RET_INTEGER,
281 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
282 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
283 	.arg3_type	= ARG_ANYTHING,
284 };
285 
286 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
287 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
288 	   const void *, unsafe_ptr)
289 {
290 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
291 		return bpf_probe_read_user_common(dst, size,
292 				(__force void __user *)unsafe_ptr);
293 	}
294 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
295 }
296 
297 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
298 	.func		= bpf_probe_read_compat,
299 	.gpl_only	= true,
300 	.ret_type	= RET_INTEGER,
301 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
302 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
303 	.arg3_type	= ARG_ANYTHING,
304 };
305 
306 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
307 	   const void *, unsafe_ptr)
308 {
309 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
310 		return bpf_probe_read_user_str_common(dst, size,
311 				(__force void __user *)unsafe_ptr);
312 	}
313 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
314 }
315 
316 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
317 	.func		= bpf_probe_read_compat_str,
318 	.gpl_only	= true,
319 	.ret_type	= RET_INTEGER,
320 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
321 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
322 	.arg3_type	= ARG_ANYTHING,
323 };
324 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
325 
326 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
327 	   u32, size)
328 {
329 	/*
330 	 * Ensure we're in user context which is safe for the helper to
331 	 * run. This helper has no business in a kthread.
332 	 *
333 	 * access_ok() should prevent writing to non-user memory, but in
334 	 * some situations (nommu, temporary switch, etc) access_ok() does
335 	 * not provide enough validation, hence the check on KERNEL_DS.
336 	 *
337 	 * nmi_uaccess_okay() ensures the probe is not run in an interim
338 	 * state, when the task or mm are switched. This is specifically
339 	 * required to prevent the use of temporary mm.
340 	 */
341 
342 	if (unlikely(in_interrupt() ||
343 		     current->flags & (PF_KTHREAD | PF_EXITING)))
344 		return -EPERM;
345 	if (unlikely(!nmi_uaccess_okay()))
346 		return -EPERM;
347 
348 	return copy_to_user_nofault(unsafe_ptr, src, size);
349 }
350 
351 static const struct bpf_func_proto bpf_probe_write_user_proto = {
352 	.func		= bpf_probe_write_user,
353 	.gpl_only	= true,
354 	.ret_type	= RET_INTEGER,
355 	.arg1_type	= ARG_ANYTHING,
356 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
357 	.arg3_type	= ARG_CONST_SIZE,
358 };
359 
360 #define MAX_TRACE_PRINTK_VARARGS	3
361 #define BPF_TRACE_PRINTK_SIZE		1024
362 
363 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
364 	   u64, arg2, u64, arg3)
365 {
366 	u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 };
367 	struct bpf_bprintf_data data = {
368 		.get_bin_args	= true,
369 		.get_buf	= true,
370 	};
371 	int ret;
372 
373 	ret = bpf_bprintf_prepare(fmt, fmt_size, args,
374 				  MAX_TRACE_PRINTK_VARARGS, &data);
375 	if (ret < 0)
376 		return ret;
377 
378 	ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
379 
380 	trace_bpf_trace_printk(data.buf);
381 
382 	bpf_bprintf_cleanup(&data);
383 
384 	return ret;
385 }
386 
387 static const struct bpf_func_proto bpf_trace_printk_proto = {
388 	.func		= bpf_trace_printk,
389 	.gpl_only	= true,
390 	.ret_type	= RET_INTEGER,
391 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
392 	.arg2_type	= ARG_CONST_SIZE,
393 };
394 
395 static void __set_printk_clr_event(struct work_struct *work)
396 {
397 	/*
398 	 * This program might be calling bpf_trace_printk,
399 	 * so enable the associated bpf_trace/bpf_trace_printk event.
400 	 * Repeat this each time as it is possible a user has
401 	 * disabled bpf_trace_printk events.  By loading a program
402 	 * calling bpf_trace_printk() however the user has expressed
403 	 * the intent to see such events.
404 	 */
405 	if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
406 		pr_warn_ratelimited("could not enable bpf_trace_printk events");
407 }
408 static DECLARE_WORK(set_printk_work, __set_printk_clr_event);
409 
410 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
411 {
412 	schedule_work(&set_printk_work);
413 	return &bpf_trace_printk_proto;
414 }
415 
416 BPF_CALL_4(bpf_trace_vprintk, char *, fmt, u32, fmt_size, const void *, args,
417 	   u32, data_len)
418 {
419 	struct bpf_bprintf_data data = {
420 		.get_bin_args	= true,
421 		.get_buf	= true,
422 	};
423 	int ret, num_args;
424 
425 	if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
426 	    (data_len && !args))
427 		return -EINVAL;
428 	num_args = data_len / 8;
429 
430 	ret = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
431 	if (ret < 0)
432 		return ret;
433 
434 	ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
435 
436 	trace_bpf_trace_printk(data.buf);
437 
438 	bpf_bprintf_cleanup(&data);
439 
440 	return ret;
441 }
442 
443 static const struct bpf_func_proto bpf_trace_vprintk_proto = {
444 	.func		= bpf_trace_vprintk,
445 	.gpl_only	= true,
446 	.ret_type	= RET_INTEGER,
447 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
448 	.arg2_type	= ARG_CONST_SIZE,
449 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
450 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
451 };
452 
453 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void)
454 {
455 	schedule_work(&set_printk_work);
456 	return &bpf_trace_vprintk_proto;
457 }
458 
459 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
460 	   const void *, args, u32, data_len)
461 {
462 	struct bpf_bprintf_data data = {
463 		.get_bin_args	= true,
464 	};
465 	int err, num_args;
466 
467 	if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
468 	    (data_len && !args))
469 		return -EINVAL;
470 	num_args = data_len / 8;
471 
472 	err = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
473 	if (err < 0)
474 		return err;
475 
476 	seq_bprintf(m, fmt, data.bin_args);
477 
478 	bpf_bprintf_cleanup(&data);
479 
480 	return seq_has_overflowed(m) ? -EOVERFLOW : 0;
481 }
482 
483 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
484 
485 static const struct bpf_func_proto bpf_seq_printf_proto = {
486 	.func		= bpf_seq_printf,
487 	.gpl_only	= true,
488 	.ret_type	= RET_INTEGER,
489 	.arg1_type	= ARG_PTR_TO_BTF_ID,
490 	.arg1_btf_id	= &btf_seq_file_ids[0],
491 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
492 	.arg3_type	= ARG_CONST_SIZE,
493 	.arg4_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
494 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
495 };
496 
497 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
498 {
499 	return seq_write(m, data, len) ? -EOVERFLOW : 0;
500 }
501 
502 static const struct bpf_func_proto bpf_seq_write_proto = {
503 	.func		= bpf_seq_write,
504 	.gpl_only	= true,
505 	.ret_type	= RET_INTEGER,
506 	.arg1_type	= ARG_PTR_TO_BTF_ID,
507 	.arg1_btf_id	= &btf_seq_file_ids[0],
508 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
509 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
510 };
511 
512 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
513 	   u32, btf_ptr_size, u64, flags)
514 {
515 	const struct btf *btf;
516 	s32 btf_id;
517 	int ret;
518 
519 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
520 	if (ret)
521 		return ret;
522 
523 	return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
524 }
525 
526 static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
527 	.func		= bpf_seq_printf_btf,
528 	.gpl_only	= true,
529 	.ret_type	= RET_INTEGER,
530 	.arg1_type	= ARG_PTR_TO_BTF_ID,
531 	.arg1_btf_id	= &btf_seq_file_ids[0],
532 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
533 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
534 	.arg4_type	= ARG_ANYTHING,
535 };
536 
537 static __always_inline int
538 get_map_perf_counter(struct bpf_map *map, u64 flags,
539 		     u64 *value, u64 *enabled, u64 *running)
540 {
541 	struct bpf_array *array = container_of(map, struct bpf_array, map);
542 	unsigned int cpu = smp_processor_id();
543 	u64 index = flags & BPF_F_INDEX_MASK;
544 	struct bpf_event_entry *ee;
545 
546 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
547 		return -EINVAL;
548 	if (index == BPF_F_CURRENT_CPU)
549 		index = cpu;
550 	if (unlikely(index >= array->map.max_entries))
551 		return -E2BIG;
552 
553 	ee = READ_ONCE(array->ptrs[index]);
554 	if (!ee)
555 		return -ENOENT;
556 
557 	return perf_event_read_local(ee->event, value, enabled, running);
558 }
559 
560 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
561 {
562 	u64 value = 0;
563 	int err;
564 
565 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
566 	/*
567 	 * this api is ugly since we miss [-22..-2] range of valid
568 	 * counter values, but that's uapi
569 	 */
570 	if (err)
571 		return err;
572 	return value;
573 }
574 
575 static const struct bpf_func_proto bpf_perf_event_read_proto = {
576 	.func		= bpf_perf_event_read,
577 	.gpl_only	= true,
578 	.ret_type	= RET_INTEGER,
579 	.arg1_type	= ARG_CONST_MAP_PTR,
580 	.arg2_type	= ARG_ANYTHING,
581 };
582 
583 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
584 	   struct bpf_perf_event_value *, buf, u32, size)
585 {
586 	int err = -EINVAL;
587 
588 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
589 		goto clear;
590 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
591 				   &buf->running);
592 	if (unlikely(err))
593 		goto clear;
594 	return 0;
595 clear:
596 	memset(buf, 0, size);
597 	return err;
598 }
599 
600 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
601 	.func		= bpf_perf_event_read_value,
602 	.gpl_only	= true,
603 	.ret_type	= RET_INTEGER,
604 	.arg1_type	= ARG_CONST_MAP_PTR,
605 	.arg2_type	= ARG_ANYTHING,
606 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
607 	.arg4_type	= ARG_CONST_SIZE,
608 };
609 
610 const struct bpf_func_proto *bpf_get_perf_event_read_value_proto(void)
611 {
612 	return &bpf_perf_event_read_value_proto;
613 }
614 
615 static __always_inline u64
616 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
617 			u64 flags, struct perf_raw_record *raw,
618 			struct perf_sample_data *sd)
619 {
620 	struct bpf_array *array = container_of(map, struct bpf_array, map);
621 	unsigned int cpu = smp_processor_id();
622 	u64 index = flags & BPF_F_INDEX_MASK;
623 	struct bpf_event_entry *ee;
624 	struct perf_event *event;
625 
626 	if (index == BPF_F_CURRENT_CPU)
627 		index = cpu;
628 	if (unlikely(index >= array->map.max_entries))
629 		return -E2BIG;
630 
631 	ee = READ_ONCE(array->ptrs[index]);
632 	if (!ee)
633 		return -ENOENT;
634 
635 	event = ee->event;
636 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
637 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
638 		return -EINVAL;
639 
640 	if (unlikely(event->oncpu != cpu))
641 		return -EOPNOTSUPP;
642 
643 	perf_sample_save_raw_data(sd, event, raw);
644 
645 	return perf_event_output(event, sd, regs);
646 }
647 
648 /*
649  * Support executing tracepoints in normal, irq, and nmi context that each call
650  * bpf_perf_event_output
651  */
652 struct bpf_trace_sample_data {
653 	struct perf_sample_data sds[3];
654 };
655 
656 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
657 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
658 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
659 	   u64, flags, void *, data, u64, size)
660 {
661 	struct bpf_trace_sample_data *sds;
662 	struct perf_raw_record raw = {
663 		.frag = {
664 			.size = size,
665 			.data = data,
666 		},
667 	};
668 	struct perf_sample_data *sd;
669 	int nest_level, err;
670 
671 	preempt_disable();
672 	sds = this_cpu_ptr(&bpf_trace_sds);
673 	nest_level = this_cpu_inc_return(bpf_trace_nest_level);
674 
675 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
676 		err = -EBUSY;
677 		goto out;
678 	}
679 
680 	sd = &sds->sds[nest_level - 1];
681 
682 	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
683 		err = -EINVAL;
684 		goto out;
685 	}
686 
687 	perf_sample_data_init(sd, 0, 0);
688 
689 	err = __bpf_perf_event_output(regs, map, flags, &raw, sd);
690 out:
691 	this_cpu_dec(bpf_trace_nest_level);
692 	preempt_enable();
693 	return err;
694 }
695 
696 static const struct bpf_func_proto bpf_perf_event_output_proto = {
697 	.func		= bpf_perf_event_output,
698 	.gpl_only	= true,
699 	.ret_type	= RET_INTEGER,
700 	.arg1_type	= ARG_PTR_TO_CTX,
701 	.arg2_type	= ARG_CONST_MAP_PTR,
702 	.arg3_type	= ARG_ANYTHING,
703 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
704 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
705 };
706 
707 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
708 struct bpf_nested_pt_regs {
709 	struct pt_regs regs[3];
710 };
711 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
712 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
713 
714 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
715 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
716 {
717 	struct perf_raw_frag frag = {
718 		.copy		= ctx_copy,
719 		.size		= ctx_size,
720 		.data		= ctx,
721 	};
722 	struct perf_raw_record raw = {
723 		.frag = {
724 			{
725 				.next	= ctx_size ? &frag : NULL,
726 			},
727 			.size	= meta_size,
728 			.data	= meta,
729 		},
730 	};
731 	struct perf_sample_data *sd;
732 	struct pt_regs *regs;
733 	int nest_level;
734 	u64 ret;
735 
736 	preempt_disable();
737 	nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
738 
739 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
740 		ret = -EBUSY;
741 		goto out;
742 	}
743 	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
744 	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
745 
746 	perf_fetch_caller_regs(regs);
747 	perf_sample_data_init(sd, 0, 0);
748 
749 	ret = __bpf_perf_event_output(regs, map, flags, &raw, sd);
750 out:
751 	this_cpu_dec(bpf_event_output_nest_level);
752 	preempt_enable();
753 	return ret;
754 }
755 
756 BPF_CALL_0(bpf_get_current_task)
757 {
758 	return (long) current;
759 }
760 
761 const struct bpf_func_proto bpf_get_current_task_proto = {
762 	.func		= bpf_get_current_task,
763 	.gpl_only	= true,
764 	.ret_type	= RET_INTEGER,
765 };
766 
767 BPF_CALL_0(bpf_get_current_task_btf)
768 {
769 	return (unsigned long) current;
770 }
771 
772 const struct bpf_func_proto bpf_get_current_task_btf_proto = {
773 	.func		= bpf_get_current_task_btf,
774 	.gpl_only	= true,
775 	.ret_type	= RET_PTR_TO_BTF_ID_TRUSTED,
776 	.ret_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
777 };
778 
779 BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task)
780 {
781 	return (unsigned long) task_pt_regs(task);
782 }
783 
784 BTF_ID_LIST(bpf_task_pt_regs_ids)
785 BTF_ID(struct, pt_regs)
786 
787 const struct bpf_func_proto bpf_task_pt_regs_proto = {
788 	.func		= bpf_task_pt_regs,
789 	.gpl_only	= true,
790 	.arg1_type	= ARG_PTR_TO_BTF_ID,
791 	.arg1_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
792 	.ret_type	= RET_PTR_TO_BTF_ID,
793 	.ret_btf_id	= &bpf_task_pt_regs_ids[0],
794 };
795 
796 struct send_signal_irq_work {
797 	struct irq_work irq_work;
798 	struct task_struct *task;
799 	u32 sig;
800 	enum pid_type type;
801 	bool has_siginfo;
802 	struct kernel_siginfo info;
803 };
804 
805 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
806 
807 static void do_bpf_send_signal(struct irq_work *entry)
808 {
809 	struct send_signal_irq_work *work;
810 	struct kernel_siginfo *siginfo;
811 
812 	work = container_of(entry, struct send_signal_irq_work, irq_work);
813 	siginfo = work->has_siginfo ? &work->info : SEND_SIG_PRIV;
814 
815 	group_send_sig_info(work->sig, siginfo, work->task, work->type);
816 	put_task_struct(work->task);
817 }
818 
819 static int bpf_send_signal_common(u32 sig, enum pid_type type, struct task_struct *task, u64 value)
820 {
821 	struct send_signal_irq_work *work = NULL;
822 	struct kernel_siginfo info;
823 	struct kernel_siginfo *siginfo;
824 
825 	if (!task) {
826 		task = current;
827 		siginfo = SEND_SIG_PRIV;
828 	} else {
829 		clear_siginfo(&info);
830 		info.si_signo = sig;
831 		info.si_errno = 0;
832 		info.si_code = SI_KERNEL;
833 		info.si_pid = 0;
834 		info.si_uid = 0;
835 		info.si_value.sival_ptr = (void *)(unsigned long)value;
836 		siginfo = &info;
837 	}
838 
839 	/* Similar to bpf_probe_write_user, task needs to be
840 	 * in a sound condition and kernel memory access be
841 	 * permitted in order to send signal to the current
842 	 * task.
843 	 */
844 	if (unlikely(task->flags & (PF_KTHREAD | PF_EXITING)))
845 		return -EPERM;
846 	if (unlikely(!nmi_uaccess_okay()))
847 		return -EPERM;
848 	/* Task should not be pid=1 to avoid kernel panic. */
849 	if (unlikely(is_global_init(task)))
850 		return -EPERM;
851 
852 	if (preempt_count() != 0 || irqs_disabled()) {
853 		/* Do an early check on signal validity. Otherwise,
854 		 * the error is lost in deferred irq_work.
855 		 */
856 		if (unlikely(!valid_signal(sig)))
857 			return -EINVAL;
858 
859 		work = this_cpu_ptr(&send_signal_work);
860 		if (irq_work_is_busy(&work->irq_work))
861 			return -EBUSY;
862 
863 		/* Add the current task, which is the target of sending signal,
864 		 * to the irq_work. The current task may change when queued
865 		 * irq works get executed.
866 		 */
867 		work->task = get_task_struct(task);
868 		work->has_siginfo = siginfo == &info;
869 		if (work->has_siginfo)
870 			copy_siginfo(&work->info, &info);
871 		work->sig = sig;
872 		work->type = type;
873 		irq_work_queue(&work->irq_work);
874 		return 0;
875 	}
876 
877 	return group_send_sig_info(sig, siginfo, task, type);
878 }
879 
880 BPF_CALL_1(bpf_send_signal, u32, sig)
881 {
882 	return bpf_send_signal_common(sig, PIDTYPE_TGID, NULL, 0);
883 }
884 
885 static const struct bpf_func_proto bpf_send_signal_proto = {
886 	.func		= bpf_send_signal,
887 	.gpl_only	= false,
888 	.ret_type	= RET_INTEGER,
889 	.arg1_type	= ARG_ANYTHING,
890 };
891 
892 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
893 {
894 	return bpf_send_signal_common(sig, PIDTYPE_PID, NULL, 0);
895 }
896 
897 static const struct bpf_func_proto bpf_send_signal_thread_proto = {
898 	.func		= bpf_send_signal_thread,
899 	.gpl_only	= false,
900 	.ret_type	= RET_INTEGER,
901 	.arg1_type	= ARG_ANYTHING,
902 };
903 
904 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
905 {
906 	struct path copy;
907 	long len;
908 	char *p;
909 
910 	if (!sz)
911 		return 0;
912 
913 	/*
914 	 * The path pointer is verified as trusted and safe to use,
915 	 * but let's double check it's valid anyway to workaround
916 	 * potentially broken verifier.
917 	 */
918 	len = copy_from_kernel_nofault(&copy, path, sizeof(*path));
919 	if (len < 0)
920 		return len;
921 
922 	p = d_path(&copy, buf, sz);
923 	if (IS_ERR(p)) {
924 		len = PTR_ERR(p);
925 	} else {
926 		len = buf + sz - p;
927 		memmove(buf, p, len);
928 	}
929 
930 	return len;
931 }
932 
933 BTF_SET_START(btf_allowlist_d_path)
934 #ifdef CONFIG_SECURITY
935 BTF_ID(func, security_file_permission)
936 BTF_ID(func, security_inode_getattr)
937 BTF_ID(func, security_file_open)
938 #endif
939 #ifdef CONFIG_SECURITY_PATH
940 BTF_ID(func, security_path_truncate)
941 #endif
942 BTF_ID(func, vfs_truncate)
943 BTF_ID(func, vfs_fallocate)
944 BTF_ID(func, dentry_open)
945 BTF_ID(func, vfs_getattr)
946 BTF_ID(func, filp_close)
947 BTF_SET_END(btf_allowlist_d_path)
948 
949 static bool bpf_d_path_allowed(const struct bpf_prog *prog)
950 {
951 	if (prog->type == BPF_PROG_TYPE_TRACING &&
952 	    prog->expected_attach_type == BPF_TRACE_ITER)
953 		return true;
954 
955 	if (prog->type == BPF_PROG_TYPE_LSM)
956 		return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id);
957 
958 	return btf_id_set_contains(&btf_allowlist_d_path,
959 				   prog->aux->attach_btf_id);
960 }
961 
962 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
963 
964 static const struct bpf_func_proto bpf_d_path_proto = {
965 	.func		= bpf_d_path,
966 	.gpl_only	= false,
967 	.ret_type	= RET_INTEGER,
968 	.arg1_type	= ARG_PTR_TO_BTF_ID,
969 	.arg1_btf_id	= &bpf_d_path_btf_ids[0],
970 	.arg2_type	= ARG_PTR_TO_MEM,
971 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
972 	.allowed	= bpf_d_path_allowed,
973 };
974 
975 #define BTF_F_ALL	(BTF_F_COMPACT  | BTF_F_NONAME | \
976 			 BTF_F_PTR_RAW | BTF_F_ZERO)
977 
978 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
979 				  u64 flags, const struct btf **btf,
980 				  s32 *btf_id)
981 {
982 	const struct btf_type *t;
983 
984 	if (unlikely(flags & ~(BTF_F_ALL)))
985 		return -EINVAL;
986 
987 	if (btf_ptr_size != sizeof(struct btf_ptr))
988 		return -EINVAL;
989 
990 	*btf = bpf_get_btf_vmlinux();
991 
992 	if (IS_ERR_OR_NULL(*btf))
993 		return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
994 
995 	if (ptr->type_id > 0)
996 		*btf_id = ptr->type_id;
997 	else
998 		return -EINVAL;
999 
1000 	if (*btf_id > 0)
1001 		t = btf_type_by_id(*btf, *btf_id);
1002 	if (*btf_id <= 0 || !t)
1003 		return -ENOENT;
1004 
1005 	return 0;
1006 }
1007 
1008 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
1009 	   u32, btf_ptr_size, u64, flags)
1010 {
1011 	const struct btf *btf;
1012 	s32 btf_id;
1013 	int ret;
1014 
1015 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
1016 	if (ret)
1017 		return ret;
1018 
1019 	return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
1020 				      flags);
1021 }
1022 
1023 const struct bpf_func_proto bpf_snprintf_btf_proto = {
1024 	.func		= bpf_snprintf_btf,
1025 	.gpl_only	= false,
1026 	.ret_type	= RET_INTEGER,
1027 	.arg1_type	= ARG_PTR_TO_MEM,
1028 	.arg2_type	= ARG_CONST_SIZE,
1029 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1030 	.arg4_type	= ARG_CONST_SIZE,
1031 	.arg5_type	= ARG_ANYTHING,
1032 };
1033 
1034 BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx)
1035 {
1036 	/* This helper call is inlined by verifier. */
1037 	return ((u64 *)ctx)[-2];
1038 }
1039 
1040 static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = {
1041 	.func		= bpf_get_func_ip_tracing,
1042 	.gpl_only	= true,
1043 	.ret_type	= RET_INTEGER,
1044 	.arg1_type	= ARG_PTR_TO_CTX,
1045 };
1046 
1047 static inline unsigned long get_entry_ip(unsigned long fentry_ip)
1048 {
1049 #ifdef CONFIG_X86_KERNEL_IBT
1050 	if (is_endbr((void *)(fentry_ip - ENDBR_INSN_SIZE)))
1051 		fentry_ip -= ENDBR_INSN_SIZE;
1052 #endif
1053 	return fentry_ip;
1054 }
1055 
1056 BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs)
1057 {
1058 	struct bpf_trace_run_ctx *run_ctx __maybe_unused;
1059 	struct kprobe *kp;
1060 
1061 #ifdef CONFIG_UPROBES
1062 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1063 	if (run_ctx->is_uprobe)
1064 		return ((struct uprobe_dispatch_data *)current->utask->vaddr)->bp_addr;
1065 #endif
1066 
1067 	kp = kprobe_running();
1068 
1069 	if (!kp || !(kp->flags & KPROBE_FLAG_ON_FUNC_ENTRY))
1070 		return 0;
1071 
1072 	return get_entry_ip((uintptr_t)kp->addr);
1073 }
1074 
1075 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = {
1076 	.func		= bpf_get_func_ip_kprobe,
1077 	.gpl_only	= true,
1078 	.ret_type	= RET_INTEGER,
1079 	.arg1_type	= ARG_PTR_TO_CTX,
1080 };
1081 
1082 BPF_CALL_1(bpf_get_func_ip_kprobe_multi, struct pt_regs *, regs)
1083 {
1084 	return bpf_kprobe_multi_entry_ip(current->bpf_ctx);
1085 }
1086 
1087 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe_multi = {
1088 	.func		= bpf_get_func_ip_kprobe_multi,
1089 	.gpl_only	= false,
1090 	.ret_type	= RET_INTEGER,
1091 	.arg1_type	= ARG_PTR_TO_CTX,
1092 };
1093 
1094 BPF_CALL_1(bpf_get_attach_cookie_kprobe_multi, struct pt_regs *, regs)
1095 {
1096 	return bpf_kprobe_multi_cookie(current->bpf_ctx);
1097 }
1098 
1099 static const struct bpf_func_proto bpf_get_attach_cookie_proto_kmulti = {
1100 	.func		= bpf_get_attach_cookie_kprobe_multi,
1101 	.gpl_only	= false,
1102 	.ret_type	= RET_INTEGER,
1103 	.arg1_type	= ARG_PTR_TO_CTX,
1104 };
1105 
1106 BPF_CALL_1(bpf_get_func_ip_uprobe_multi, struct pt_regs *, regs)
1107 {
1108 	return bpf_uprobe_multi_entry_ip(current->bpf_ctx);
1109 }
1110 
1111 static const struct bpf_func_proto bpf_get_func_ip_proto_uprobe_multi = {
1112 	.func		= bpf_get_func_ip_uprobe_multi,
1113 	.gpl_only	= false,
1114 	.ret_type	= RET_INTEGER,
1115 	.arg1_type	= ARG_PTR_TO_CTX,
1116 };
1117 
1118 BPF_CALL_1(bpf_get_attach_cookie_uprobe_multi, struct pt_regs *, regs)
1119 {
1120 	return bpf_uprobe_multi_cookie(current->bpf_ctx);
1121 }
1122 
1123 static const struct bpf_func_proto bpf_get_attach_cookie_proto_umulti = {
1124 	.func		= bpf_get_attach_cookie_uprobe_multi,
1125 	.gpl_only	= false,
1126 	.ret_type	= RET_INTEGER,
1127 	.arg1_type	= ARG_PTR_TO_CTX,
1128 };
1129 
1130 BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx)
1131 {
1132 	struct bpf_trace_run_ctx *run_ctx;
1133 
1134 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1135 	return run_ctx->bpf_cookie;
1136 }
1137 
1138 static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = {
1139 	.func		= bpf_get_attach_cookie_trace,
1140 	.gpl_only	= false,
1141 	.ret_type	= RET_INTEGER,
1142 	.arg1_type	= ARG_PTR_TO_CTX,
1143 };
1144 
1145 BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx)
1146 {
1147 	return ctx->event->bpf_cookie;
1148 }
1149 
1150 static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = {
1151 	.func		= bpf_get_attach_cookie_pe,
1152 	.gpl_only	= false,
1153 	.ret_type	= RET_INTEGER,
1154 	.arg1_type	= ARG_PTR_TO_CTX,
1155 };
1156 
1157 BPF_CALL_1(bpf_get_attach_cookie_tracing, void *, ctx)
1158 {
1159 	struct bpf_trace_run_ctx *run_ctx;
1160 
1161 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1162 	return run_ctx->bpf_cookie;
1163 }
1164 
1165 static const struct bpf_func_proto bpf_get_attach_cookie_proto_tracing = {
1166 	.func		= bpf_get_attach_cookie_tracing,
1167 	.gpl_only	= false,
1168 	.ret_type	= RET_INTEGER,
1169 	.arg1_type	= ARG_PTR_TO_CTX,
1170 };
1171 
1172 BPF_CALL_3(bpf_get_branch_snapshot, void *, buf, u32, size, u64, flags)
1173 {
1174 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1175 	u32 entry_cnt = size / br_entry_size;
1176 
1177 	entry_cnt = static_call(perf_snapshot_branch_stack)(buf, entry_cnt);
1178 
1179 	if (unlikely(flags))
1180 		return -EINVAL;
1181 
1182 	if (!entry_cnt)
1183 		return -ENOENT;
1184 
1185 	return entry_cnt * br_entry_size;
1186 }
1187 
1188 static const struct bpf_func_proto bpf_get_branch_snapshot_proto = {
1189 	.func		= bpf_get_branch_snapshot,
1190 	.gpl_only	= true,
1191 	.ret_type	= RET_INTEGER,
1192 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1193 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1194 };
1195 
1196 BPF_CALL_3(get_func_arg, void *, ctx, u32, n, u64 *, value)
1197 {
1198 	/* This helper call is inlined by verifier. */
1199 	u64 nr_args = ((u64 *)ctx)[-1];
1200 
1201 	if ((u64) n >= nr_args)
1202 		return -EINVAL;
1203 	*value = ((u64 *)ctx)[n];
1204 	return 0;
1205 }
1206 
1207 static const struct bpf_func_proto bpf_get_func_arg_proto = {
1208 	.func		= get_func_arg,
1209 	.ret_type	= RET_INTEGER,
1210 	.arg1_type	= ARG_PTR_TO_CTX,
1211 	.arg2_type	= ARG_ANYTHING,
1212 	.arg3_type	= ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
1213 	.arg3_size	= sizeof(u64),
1214 };
1215 
1216 BPF_CALL_2(get_func_ret, void *, ctx, u64 *, value)
1217 {
1218 	/* This helper call is inlined by verifier. */
1219 	u64 nr_args = ((u64 *)ctx)[-1];
1220 
1221 	*value = ((u64 *)ctx)[nr_args];
1222 	return 0;
1223 }
1224 
1225 static const struct bpf_func_proto bpf_get_func_ret_proto = {
1226 	.func		= get_func_ret,
1227 	.ret_type	= RET_INTEGER,
1228 	.arg1_type	= ARG_PTR_TO_CTX,
1229 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
1230 	.arg2_size	= sizeof(u64),
1231 };
1232 
1233 BPF_CALL_1(get_func_arg_cnt, void *, ctx)
1234 {
1235 	/* This helper call is inlined by verifier. */
1236 	return ((u64 *)ctx)[-1];
1237 }
1238 
1239 static const struct bpf_func_proto bpf_get_func_arg_cnt_proto = {
1240 	.func		= get_func_arg_cnt,
1241 	.ret_type	= RET_INTEGER,
1242 	.arg1_type	= ARG_PTR_TO_CTX,
1243 };
1244 
1245 #ifdef CONFIG_KEYS
1246 __bpf_kfunc_start_defs();
1247 
1248 /**
1249  * bpf_lookup_user_key - lookup a key by its serial
1250  * @serial: key handle serial number
1251  * @flags: lookup-specific flags
1252  *
1253  * Search a key with a given *serial* and the provided *flags*.
1254  * If found, increment the reference count of the key by one, and
1255  * return it in the bpf_key structure.
1256  *
1257  * The bpf_key structure must be passed to bpf_key_put() when done
1258  * with it, so that the key reference count is decremented and the
1259  * bpf_key structure is freed.
1260  *
1261  * Permission checks are deferred to the time the key is used by
1262  * one of the available key-specific kfuncs.
1263  *
1264  * Set *flags* with KEY_LOOKUP_CREATE, to attempt creating a requested
1265  * special keyring (e.g. session keyring), if it doesn't yet exist.
1266  * Set *flags* with KEY_LOOKUP_PARTIAL, to lookup a key without waiting
1267  * for the key construction, and to retrieve uninstantiated keys (keys
1268  * without data attached to them).
1269  *
1270  * Return: a bpf_key pointer with a valid key pointer if the key is found, a
1271  *         NULL pointer otherwise.
1272  */
1273 __bpf_kfunc struct bpf_key *bpf_lookup_user_key(u32 serial, u64 flags)
1274 {
1275 	key_ref_t key_ref;
1276 	struct bpf_key *bkey;
1277 
1278 	if (flags & ~KEY_LOOKUP_ALL)
1279 		return NULL;
1280 
1281 	/*
1282 	 * Permission check is deferred until the key is used, as the
1283 	 * intent of the caller is unknown here.
1284 	 */
1285 	key_ref = lookup_user_key(serial, flags, KEY_DEFER_PERM_CHECK);
1286 	if (IS_ERR(key_ref))
1287 		return NULL;
1288 
1289 	bkey = kmalloc(sizeof(*bkey), GFP_KERNEL);
1290 	if (!bkey) {
1291 		key_put(key_ref_to_ptr(key_ref));
1292 		return NULL;
1293 	}
1294 
1295 	bkey->key = key_ref_to_ptr(key_ref);
1296 	bkey->has_ref = true;
1297 
1298 	return bkey;
1299 }
1300 
1301 /**
1302  * bpf_lookup_system_key - lookup a key by a system-defined ID
1303  * @id: key ID
1304  *
1305  * Obtain a bpf_key structure with a key pointer set to the passed key ID.
1306  * The key pointer is marked as invalid, to prevent bpf_key_put() from
1307  * attempting to decrement the key reference count on that pointer. The key
1308  * pointer set in such way is currently understood only by
1309  * verify_pkcs7_signature().
1310  *
1311  * Set *id* to one of the values defined in include/linux/verification.h:
1312  * 0 for the primary keyring (immutable keyring of system keys);
1313  * VERIFY_USE_SECONDARY_KEYRING for both the primary and secondary keyring
1314  * (where keys can be added only if they are vouched for by existing keys
1315  * in those keyrings); VERIFY_USE_PLATFORM_KEYRING for the platform
1316  * keyring (primarily used by the integrity subsystem to verify a kexec'ed
1317  * kerned image and, possibly, the initramfs signature).
1318  *
1319  * Return: a bpf_key pointer with an invalid key pointer set from the
1320  *         pre-determined ID on success, a NULL pointer otherwise
1321  */
1322 __bpf_kfunc struct bpf_key *bpf_lookup_system_key(u64 id)
1323 {
1324 	struct bpf_key *bkey;
1325 
1326 	if (system_keyring_id_check(id) < 0)
1327 		return NULL;
1328 
1329 	bkey = kmalloc(sizeof(*bkey), GFP_ATOMIC);
1330 	if (!bkey)
1331 		return NULL;
1332 
1333 	bkey->key = (struct key *)(unsigned long)id;
1334 	bkey->has_ref = false;
1335 
1336 	return bkey;
1337 }
1338 
1339 /**
1340  * bpf_key_put - decrement key reference count if key is valid and free bpf_key
1341  * @bkey: bpf_key structure
1342  *
1343  * Decrement the reference count of the key inside *bkey*, if the pointer
1344  * is valid, and free *bkey*.
1345  */
1346 __bpf_kfunc void bpf_key_put(struct bpf_key *bkey)
1347 {
1348 	if (bkey->has_ref)
1349 		key_put(bkey->key);
1350 
1351 	kfree(bkey);
1352 }
1353 
1354 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
1355 /**
1356  * bpf_verify_pkcs7_signature - verify a PKCS#7 signature
1357  * @data_p: data to verify
1358  * @sig_p: signature of the data
1359  * @trusted_keyring: keyring with keys trusted for signature verification
1360  *
1361  * Verify the PKCS#7 signature *sig_ptr* against the supplied *data_ptr*
1362  * with keys in a keyring referenced by *trusted_keyring*.
1363  *
1364  * Return: 0 on success, a negative value on error.
1365  */
1366 __bpf_kfunc int bpf_verify_pkcs7_signature(struct bpf_dynptr *data_p,
1367 			       struct bpf_dynptr *sig_p,
1368 			       struct bpf_key *trusted_keyring)
1369 {
1370 	struct bpf_dynptr_kern *data_ptr = (struct bpf_dynptr_kern *)data_p;
1371 	struct bpf_dynptr_kern *sig_ptr = (struct bpf_dynptr_kern *)sig_p;
1372 	const void *data, *sig;
1373 	u32 data_len, sig_len;
1374 	int ret;
1375 
1376 	if (trusted_keyring->has_ref) {
1377 		/*
1378 		 * Do the permission check deferred in bpf_lookup_user_key().
1379 		 * See bpf_lookup_user_key() for more details.
1380 		 *
1381 		 * A call to key_task_permission() here would be redundant, as
1382 		 * it is already done by keyring_search() called by
1383 		 * find_asymmetric_key().
1384 		 */
1385 		ret = key_validate(trusted_keyring->key);
1386 		if (ret < 0)
1387 			return ret;
1388 	}
1389 
1390 	data_len = __bpf_dynptr_size(data_ptr);
1391 	data = __bpf_dynptr_data(data_ptr, data_len);
1392 	sig_len = __bpf_dynptr_size(sig_ptr);
1393 	sig = __bpf_dynptr_data(sig_ptr, sig_len);
1394 
1395 	return verify_pkcs7_signature(data, data_len, sig, sig_len,
1396 				      trusted_keyring->key,
1397 				      VERIFYING_UNSPECIFIED_SIGNATURE, NULL,
1398 				      NULL);
1399 }
1400 #endif /* CONFIG_SYSTEM_DATA_VERIFICATION */
1401 
1402 __bpf_kfunc_end_defs();
1403 
1404 BTF_KFUNCS_START(key_sig_kfunc_set)
1405 BTF_ID_FLAGS(func, bpf_lookup_user_key, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE)
1406 BTF_ID_FLAGS(func, bpf_lookup_system_key, KF_ACQUIRE | KF_RET_NULL)
1407 BTF_ID_FLAGS(func, bpf_key_put, KF_RELEASE)
1408 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
1409 BTF_ID_FLAGS(func, bpf_verify_pkcs7_signature, KF_SLEEPABLE)
1410 #endif
1411 BTF_KFUNCS_END(key_sig_kfunc_set)
1412 
1413 static const struct btf_kfunc_id_set bpf_key_sig_kfunc_set = {
1414 	.owner = THIS_MODULE,
1415 	.set = &key_sig_kfunc_set,
1416 };
1417 
1418 static int __init bpf_key_sig_kfuncs_init(void)
1419 {
1420 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
1421 					 &bpf_key_sig_kfunc_set);
1422 }
1423 
1424 late_initcall(bpf_key_sig_kfuncs_init);
1425 #endif /* CONFIG_KEYS */
1426 
1427 static const struct bpf_func_proto *
1428 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1429 {
1430 	const struct bpf_func_proto *func_proto;
1431 
1432 	switch (func_id) {
1433 	case BPF_FUNC_get_current_uid_gid:
1434 		return &bpf_get_current_uid_gid_proto;
1435 	case BPF_FUNC_get_current_comm:
1436 		return &bpf_get_current_comm_proto;
1437 	case BPF_FUNC_get_smp_processor_id:
1438 		return &bpf_get_smp_processor_id_proto;
1439 	case BPF_FUNC_perf_event_read:
1440 		return &bpf_perf_event_read_proto;
1441 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1442 	case BPF_FUNC_probe_read:
1443 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1444 		       NULL : &bpf_probe_read_compat_proto;
1445 	case BPF_FUNC_probe_read_str:
1446 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1447 		       NULL : &bpf_probe_read_compat_str_proto;
1448 #endif
1449 #ifdef CONFIG_CGROUPS
1450 	case BPF_FUNC_current_task_under_cgroup:
1451 		return &bpf_current_task_under_cgroup_proto;
1452 #endif
1453 	case BPF_FUNC_send_signal:
1454 		return &bpf_send_signal_proto;
1455 	case BPF_FUNC_send_signal_thread:
1456 		return &bpf_send_signal_thread_proto;
1457 	case BPF_FUNC_get_task_stack:
1458 		return prog->sleepable ? &bpf_get_task_stack_sleepable_proto
1459 				       : &bpf_get_task_stack_proto;
1460 	case BPF_FUNC_copy_from_user:
1461 		return &bpf_copy_from_user_proto;
1462 	case BPF_FUNC_copy_from_user_task:
1463 		return &bpf_copy_from_user_task_proto;
1464 	case BPF_FUNC_task_storage_get:
1465 		if (bpf_prog_check_recur(prog))
1466 			return &bpf_task_storage_get_recur_proto;
1467 		return &bpf_task_storage_get_proto;
1468 	case BPF_FUNC_task_storage_delete:
1469 		if (bpf_prog_check_recur(prog))
1470 			return &bpf_task_storage_delete_recur_proto;
1471 		return &bpf_task_storage_delete_proto;
1472 	case BPF_FUNC_get_func_ip:
1473 		return &bpf_get_func_ip_proto_tracing;
1474 	case BPF_FUNC_get_branch_snapshot:
1475 		return &bpf_get_branch_snapshot_proto;
1476 	case BPF_FUNC_find_vma:
1477 		return &bpf_find_vma_proto;
1478 	default:
1479 		break;
1480 	}
1481 
1482 	func_proto = bpf_base_func_proto(func_id, prog);
1483 	if (func_proto)
1484 		return func_proto;
1485 
1486 	if (!bpf_token_capable(prog->aux->token, CAP_SYS_ADMIN))
1487 		return NULL;
1488 
1489 	switch (func_id) {
1490 	case BPF_FUNC_probe_write_user:
1491 		return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ?
1492 		       NULL : &bpf_probe_write_user_proto;
1493 	default:
1494 		return NULL;
1495 	}
1496 }
1497 
1498 static bool is_kprobe_multi(const struct bpf_prog *prog)
1499 {
1500 	return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI ||
1501 	       prog->expected_attach_type == BPF_TRACE_KPROBE_SESSION;
1502 }
1503 
1504 static inline bool is_kprobe_session(const struct bpf_prog *prog)
1505 {
1506 	return prog->expected_attach_type == BPF_TRACE_KPROBE_SESSION;
1507 }
1508 
1509 static inline bool is_uprobe_multi(const struct bpf_prog *prog)
1510 {
1511 	return prog->expected_attach_type == BPF_TRACE_UPROBE_MULTI ||
1512 	       prog->expected_attach_type == BPF_TRACE_UPROBE_SESSION;
1513 }
1514 
1515 static inline bool is_uprobe_session(const struct bpf_prog *prog)
1516 {
1517 	return prog->expected_attach_type == BPF_TRACE_UPROBE_SESSION;
1518 }
1519 
1520 static const struct bpf_func_proto *
1521 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1522 {
1523 	switch (func_id) {
1524 	case BPF_FUNC_perf_event_output:
1525 		return &bpf_perf_event_output_proto;
1526 	case BPF_FUNC_get_stackid:
1527 		return &bpf_get_stackid_proto;
1528 	case BPF_FUNC_get_stack:
1529 		return prog->sleepable ? &bpf_get_stack_sleepable_proto : &bpf_get_stack_proto;
1530 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
1531 	case BPF_FUNC_override_return:
1532 		return &bpf_override_return_proto;
1533 #endif
1534 	case BPF_FUNC_get_func_ip:
1535 		if (is_kprobe_multi(prog))
1536 			return &bpf_get_func_ip_proto_kprobe_multi;
1537 		if (is_uprobe_multi(prog))
1538 			return &bpf_get_func_ip_proto_uprobe_multi;
1539 		return &bpf_get_func_ip_proto_kprobe;
1540 	case BPF_FUNC_get_attach_cookie:
1541 		if (is_kprobe_multi(prog))
1542 			return &bpf_get_attach_cookie_proto_kmulti;
1543 		if (is_uprobe_multi(prog))
1544 			return &bpf_get_attach_cookie_proto_umulti;
1545 		return &bpf_get_attach_cookie_proto_trace;
1546 	default:
1547 		return bpf_tracing_func_proto(func_id, prog);
1548 	}
1549 }
1550 
1551 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
1552 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1553 					const struct bpf_prog *prog,
1554 					struct bpf_insn_access_aux *info)
1555 {
1556 	if (off < 0 || off >= sizeof(struct pt_regs))
1557 		return false;
1558 	if (type != BPF_READ)
1559 		return false;
1560 	if (off % size != 0)
1561 		return false;
1562 	/*
1563 	 * Assertion for 32 bit to make sure last 8 byte access
1564 	 * (BPF_DW) to the last 4 byte member is disallowed.
1565 	 */
1566 	if (off + size > sizeof(struct pt_regs))
1567 		return false;
1568 
1569 	return true;
1570 }
1571 
1572 const struct bpf_verifier_ops kprobe_verifier_ops = {
1573 	.get_func_proto  = kprobe_prog_func_proto,
1574 	.is_valid_access = kprobe_prog_is_valid_access,
1575 };
1576 
1577 const struct bpf_prog_ops kprobe_prog_ops = {
1578 };
1579 
1580 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1581 	   u64, flags, void *, data, u64, size)
1582 {
1583 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1584 
1585 	/*
1586 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1587 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1588 	 * from there and call the same bpf_perf_event_output() helper inline.
1589 	 */
1590 	return ____bpf_perf_event_output(regs, map, flags, data, size);
1591 }
1592 
1593 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1594 	.func		= bpf_perf_event_output_tp,
1595 	.gpl_only	= true,
1596 	.ret_type	= RET_INTEGER,
1597 	.arg1_type	= ARG_PTR_TO_CTX,
1598 	.arg2_type	= ARG_CONST_MAP_PTR,
1599 	.arg3_type	= ARG_ANYTHING,
1600 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1601 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1602 };
1603 
1604 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1605 	   u64, flags)
1606 {
1607 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1608 
1609 	/*
1610 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
1611 	 * the other helper's function body cannot be inlined due to being
1612 	 * external, thus we need to call raw helper function.
1613 	 */
1614 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1615 			       flags, 0, 0);
1616 }
1617 
1618 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1619 	.func		= bpf_get_stackid_tp,
1620 	.gpl_only	= true,
1621 	.ret_type	= RET_INTEGER,
1622 	.arg1_type	= ARG_PTR_TO_CTX,
1623 	.arg2_type	= ARG_CONST_MAP_PTR,
1624 	.arg3_type	= ARG_ANYTHING,
1625 };
1626 
1627 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1628 	   u64, flags)
1629 {
1630 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1631 
1632 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1633 			     (unsigned long) size, flags, 0);
1634 }
1635 
1636 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1637 	.func		= bpf_get_stack_tp,
1638 	.gpl_only	= true,
1639 	.ret_type	= RET_INTEGER,
1640 	.arg1_type	= ARG_PTR_TO_CTX,
1641 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1642 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1643 	.arg4_type	= ARG_ANYTHING,
1644 };
1645 
1646 static const struct bpf_func_proto *
1647 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1648 {
1649 	switch (func_id) {
1650 	case BPF_FUNC_perf_event_output:
1651 		return &bpf_perf_event_output_proto_tp;
1652 	case BPF_FUNC_get_stackid:
1653 		return &bpf_get_stackid_proto_tp;
1654 	case BPF_FUNC_get_stack:
1655 		return &bpf_get_stack_proto_tp;
1656 	case BPF_FUNC_get_attach_cookie:
1657 		return &bpf_get_attach_cookie_proto_trace;
1658 	default:
1659 		return bpf_tracing_func_proto(func_id, prog);
1660 	}
1661 }
1662 
1663 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1664 				    const struct bpf_prog *prog,
1665 				    struct bpf_insn_access_aux *info)
1666 {
1667 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1668 		return false;
1669 	if (type != BPF_READ)
1670 		return false;
1671 	if (off % size != 0)
1672 		return false;
1673 
1674 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1675 	return true;
1676 }
1677 
1678 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1679 	.get_func_proto  = tp_prog_func_proto,
1680 	.is_valid_access = tp_prog_is_valid_access,
1681 };
1682 
1683 const struct bpf_prog_ops tracepoint_prog_ops = {
1684 };
1685 
1686 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1687 	   struct bpf_perf_event_value *, buf, u32, size)
1688 {
1689 	int err = -EINVAL;
1690 
1691 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1692 		goto clear;
1693 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1694 				    &buf->running);
1695 	if (unlikely(err))
1696 		goto clear;
1697 	return 0;
1698 clear:
1699 	memset(buf, 0, size);
1700 	return err;
1701 }
1702 
1703 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1704          .func           = bpf_perf_prog_read_value,
1705          .gpl_only       = true,
1706          .ret_type       = RET_INTEGER,
1707          .arg1_type      = ARG_PTR_TO_CTX,
1708          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1709          .arg3_type      = ARG_CONST_SIZE,
1710 };
1711 
1712 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1713 	   void *, buf, u32, size, u64, flags)
1714 {
1715 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1716 	struct perf_branch_stack *br_stack = ctx->data->br_stack;
1717 	u32 to_copy;
1718 
1719 	if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1720 		return -EINVAL;
1721 
1722 	if (unlikely(!(ctx->data->sample_flags & PERF_SAMPLE_BRANCH_STACK)))
1723 		return -ENOENT;
1724 
1725 	if (unlikely(!br_stack))
1726 		return -ENOENT;
1727 
1728 	if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1729 		return br_stack->nr * br_entry_size;
1730 
1731 	if (!buf || (size % br_entry_size != 0))
1732 		return -EINVAL;
1733 
1734 	to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1735 	memcpy(buf, br_stack->entries, to_copy);
1736 
1737 	return to_copy;
1738 }
1739 
1740 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1741 	.func           = bpf_read_branch_records,
1742 	.gpl_only       = true,
1743 	.ret_type       = RET_INTEGER,
1744 	.arg1_type      = ARG_PTR_TO_CTX,
1745 	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
1746 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1747 	.arg4_type      = ARG_ANYTHING,
1748 };
1749 
1750 static const struct bpf_func_proto *
1751 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1752 {
1753 	switch (func_id) {
1754 	case BPF_FUNC_perf_event_output:
1755 		return &bpf_perf_event_output_proto_tp;
1756 	case BPF_FUNC_get_stackid:
1757 		return &bpf_get_stackid_proto_pe;
1758 	case BPF_FUNC_get_stack:
1759 		return &bpf_get_stack_proto_pe;
1760 	case BPF_FUNC_perf_prog_read_value:
1761 		return &bpf_perf_prog_read_value_proto;
1762 	case BPF_FUNC_read_branch_records:
1763 		return &bpf_read_branch_records_proto;
1764 	case BPF_FUNC_get_attach_cookie:
1765 		return &bpf_get_attach_cookie_proto_pe;
1766 	default:
1767 		return bpf_tracing_func_proto(func_id, prog);
1768 	}
1769 }
1770 
1771 /*
1772  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1773  * to avoid potential recursive reuse issue when/if tracepoints are added
1774  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1775  *
1776  * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1777  * in normal, irq, and nmi context.
1778  */
1779 struct bpf_raw_tp_regs {
1780 	struct pt_regs regs[3];
1781 };
1782 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1783 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1784 static struct pt_regs *get_bpf_raw_tp_regs(void)
1785 {
1786 	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1787 	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1788 
1789 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1790 		this_cpu_dec(bpf_raw_tp_nest_level);
1791 		return ERR_PTR(-EBUSY);
1792 	}
1793 
1794 	return &tp_regs->regs[nest_level - 1];
1795 }
1796 
1797 static void put_bpf_raw_tp_regs(void)
1798 {
1799 	this_cpu_dec(bpf_raw_tp_nest_level);
1800 }
1801 
1802 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1803 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
1804 {
1805 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1806 	int ret;
1807 
1808 	if (IS_ERR(regs))
1809 		return PTR_ERR(regs);
1810 
1811 	perf_fetch_caller_regs(regs);
1812 	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1813 
1814 	put_bpf_raw_tp_regs();
1815 	return ret;
1816 }
1817 
1818 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1819 	.func		= bpf_perf_event_output_raw_tp,
1820 	.gpl_only	= true,
1821 	.ret_type	= RET_INTEGER,
1822 	.arg1_type	= ARG_PTR_TO_CTX,
1823 	.arg2_type	= ARG_CONST_MAP_PTR,
1824 	.arg3_type	= ARG_ANYTHING,
1825 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1826 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1827 };
1828 
1829 extern const struct bpf_func_proto bpf_skb_output_proto;
1830 extern const struct bpf_func_proto bpf_xdp_output_proto;
1831 extern const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto;
1832 
1833 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1834 	   struct bpf_map *, map, u64, flags)
1835 {
1836 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1837 	int ret;
1838 
1839 	if (IS_ERR(regs))
1840 		return PTR_ERR(regs);
1841 
1842 	perf_fetch_caller_regs(regs);
1843 	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1844 	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1845 			      flags, 0, 0);
1846 	put_bpf_raw_tp_regs();
1847 	return ret;
1848 }
1849 
1850 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1851 	.func		= bpf_get_stackid_raw_tp,
1852 	.gpl_only	= true,
1853 	.ret_type	= RET_INTEGER,
1854 	.arg1_type	= ARG_PTR_TO_CTX,
1855 	.arg2_type	= ARG_CONST_MAP_PTR,
1856 	.arg3_type	= ARG_ANYTHING,
1857 };
1858 
1859 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1860 	   void *, buf, u32, size, u64, flags)
1861 {
1862 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1863 	int ret;
1864 
1865 	if (IS_ERR(regs))
1866 		return PTR_ERR(regs);
1867 
1868 	perf_fetch_caller_regs(regs);
1869 	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1870 			    (unsigned long) size, flags, 0);
1871 	put_bpf_raw_tp_regs();
1872 	return ret;
1873 }
1874 
1875 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1876 	.func		= bpf_get_stack_raw_tp,
1877 	.gpl_only	= true,
1878 	.ret_type	= RET_INTEGER,
1879 	.arg1_type	= ARG_PTR_TO_CTX,
1880 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1881 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1882 	.arg4_type	= ARG_ANYTHING,
1883 };
1884 
1885 static const struct bpf_func_proto *
1886 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1887 {
1888 	switch (func_id) {
1889 	case BPF_FUNC_perf_event_output:
1890 		return &bpf_perf_event_output_proto_raw_tp;
1891 	case BPF_FUNC_get_stackid:
1892 		return &bpf_get_stackid_proto_raw_tp;
1893 	case BPF_FUNC_get_stack:
1894 		return &bpf_get_stack_proto_raw_tp;
1895 	case BPF_FUNC_get_attach_cookie:
1896 		return &bpf_get_attach_cookie_proto_tracing;
1897 	default:
1898 		return bpf_tracing_func_proto(func_id, prog);
1899 	}
1900 }
1901 
1902 const struct bpf_func_proto *
1903 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1904 {
1905 	const struct bpf_func_proto *fn;
1906 
1907 	switch (func_id) {
1908 #ifdef CONFIG_NET
1909 	case BPF_FUNC_skb_output:
1910 		return &bpf_skb_output_proto;
1911 	case BPF_FUNC_xdp_output:
1912 		return &bpf_xdp_output_proto;
1913 	case BPF_FUNC_skc_to_tcp6_sock:
1914 		return &bpf_skc_to_tcp6_sock_proto;
1915 	case BPF_FUNC_skc_to_tcp_sock:
1916 		return &bpf_skc_to_tcp_sock_proto;
1917 	case BPF_FUNC_skc_to_tcp_timewait_sock:
1918 		return &bpf_skc_to_tcp_timewait_sock_proto;
1919 	case BPF_FUNC_skc_to_tcp_request_sock:
1920 		return &bpf_skc_to_tcp_request_sock_proto;
1921 	case BPF_FUNC_skc_to_udp6_sock:
1922 		return &bpf_skc_to_udp6_sock_proto;
1923 	case BPF_FUNC_skc_to_unix_sock:
1924 		return &bpf_skc_to_unix_sock_proto;
1925 	case BPF_FUNC_skc_to_mptcp_sock:
1926 		return &bpf_skc_to_mptcp_sock_proto;
1927 	case BPF_FUNC_sk_storage_get:
1928 		return &bpf_sk_storage_get_tracing_proto;
1929 	case BPF_FUNC_sk_storage_delete:
1930 		return &bpf_sk_storage_delete_tracing_proto;
1931 	case BPF_FUNC_sock_from_file:
1932 		return &bpf_sock_from_file_proto;
1933 	case BPF_FUNC_get_socket_cookie:
1934 		return &bpf_get_socket_ptr_cookie_proto;
1935 	case BPF_FUNC_xdp_get_buff_len:
1936 		return &bpf_xdp_get_buff_len_trace_proto;
1937 #endif
1938 	case BPF_FUNC_seq_printf:
1939 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1940 		       &bpf_seq_printf_proto :
1941 		       NULL;
1942 	case BPF_FUNC_seq_write:
1943 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1944 		       &bpf_seq_write_proto :
1945 		       NULL;
1946 	case BPF_FUNC_seq_printf_btf:
1947 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1948 		       &bpf_seq_printf_btf_proto :
1949 		       NULL;
1950 	case BPF_FUNC_d_path:
1951 		return &bpf_d_path_proto;
1952 	case BPF_FUNC_get_func_arg:
1953 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_proto : NULL;
1954 	case BPF_FUNC_get_func_ret:
1955 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_ret_proto : NULL;
1956 	case BPF_FUNC_get_func_arg_cnt:
1957 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_cnt_proto : NULL;
1958 	case BPF_FUNC_get_attach_cookie:
1959 		if (prog->type == BPF_PROG_TYPE_TRACING &&
1960 		    prog->expected_attach_type == BPF_TRACE_RAW_TP)
1961 			return &bpf_get_attach_cookie_proto_tracing;
1962 		return bpf_prog_has_trampoline(prog) ? &bpf_get_attach_cookie_proto_tracing : NULL;
1963 	default:
1964 		fn = raw_tp_prog_func_proto(func_id, prog);
1965 		if (!fn && prog->expected_attach_type == BPF_TRACE_ITER)
1966 			fn = bpf_iter_get_func_proto(func_id, prog);
1967 		return fn;
1968 	}
1969 }
1970 
1971 static bool raw_tp_prog_is_valid_access(int off, int size,
1972 					enum bpf_access_type type,
1973 					const struct bpf_prog *prog,
1974 					struct bpf_insn_access_aux *info)
1975 {
1976 	return bpf_tracing_ctx_access(off, size, type);
1977 }
1978 
1979 static bool tracing_prog_is_valid_access(int off, int size,
1980 					 enum bpf_access_type type,
1981 					 const struct bpf_prog *prog,
1982 					 struct bpf_insn_access_aux *info)
1983 {
1984 	return bpf_tracing_btf_ctx_access(off, size, type, prog, info);
1985 }
1986 
1987 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1988 				     const union bpf_attr *kattr,
1989 				     union bpf_attr __user *uattr)
1990 {
1991 	return -ENOTSUPP;
1992 }
1993 
1994 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1995 	.get_func_proto  = raw_tp_prog_func_proto,
1996 	.is_valid_access = raw_tp_prog_is_valid_access,
1997 };
1998 
1999 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
2000 #ifdef CONFIG_NET
2001 	.test_run = bpf_prog_test_run_raw_tp,
2002 #endif
2003 };
2004 
2005 const struct bpf_verifier_ops tracing_verifier_ops = {
2006 	.get_func_proto  = tracing_prog_func_proto,
2007 	.is_valid_access = tracing_prog_is_valid_access,
2008 };
2009 
2010 const struct bpf_prog_ops tracing_prog_ops = {
2011 	.test_run = bpf_prog_test_run_tracing,
2012 };
2013 
2014 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
2015 						 enum bpf_access_type type,
2016 						 const struct bpf_prog *prog,
2017 						 struct bpf_insn_access_aux *info)
2018 {
2019 	if (off == 0) {
2020 		if (size != sizeof(u64) || type != BPF_READ)
2021 			return false;
2022 		info->reg_type = PTR_TO_TP_BUFFER;
2023 	}
2024 	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
2025 }
2026 
2027 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
2028 	.get_func_proto  = raw_tp_prog_func_proto,
2029 	.is_valid_access = raw_tp_writable_prog_is_valid_access,
2030 };
2031 
2032 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
2033 };
2034 
2035 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
2036 				    const struct bpf_prog *prog,
2037 				    struct bpf_insn_access_aux *info)
2038 {
2039 	const int size_u64 = sizeof(u64);
2040 
2041 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
2042 		return false;
2043 	if (type != BPF_READ)
2044 		return false;
2045 	if (off % size != 0) {
2046 		if (sizeof(unsigned long) != 4)
2047 			return false;
2048 		if (size != 8)
2049 			return false;
2050 		if (off % size != 4)
2051 			return false;
2052 	}
2053 
2054 	switch (off) {
2055 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
2056 		bpf_ctx_record_field_size(info, size_u64);
2057 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
2058 			return false;
2059 		break;
2060 	case bpf_ctx_range(struct bpf_perf_event_data, addr):
2061 		bpf_ctx_record_field_size(info, size_u64);
2062 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
2063 			return false;
2064 		break;
2065 	default:
2066 		if (size != sizeof(long))
2067 			return false;
2068 	}
2069 
2070 	return true;
2071 }
2072 
2073 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
2074 				      const struct bpf_insn *si,
2075 				      struct bpf_insn *insn_buf,
2076 				      struct bpf_prog *prog, u32 *target_size)
2077 {
2078 	struct bpf_insn *insn = insn_buf;
2079 
2080 	switch (si->off) {
2081 	case offsetof(struct bpf_perf_event_data, sample_period):
2082 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2083 						       data), si->dst_reg, si->src_reg,
2084 				      offsetof(struct bpf_perf_event_data_kern, data));
2085 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
2086 				      bpf_target_off(struct perf_sample_data, period, 8,
2087 						     target_size));
2088 		break;
2089 	case offsetof(struct bpf_perf_event_data, addr):
2090 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2091 						       data), si->dst_reg, si->src_reg,
2092 				      offsetof(struct bpf_perf_event_data_kern, data));
2093 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
2094 				      bpf_target_off(struct perf_sample_data, addr, 8,
2095 						     target_size));
2096 		break;
2097 	default:
2098 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2099 						       regs), si->dst_reg, si->src_reg,
2100 				      offsetof(struct bpf_perf_event_data_kern, regs));
2101 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
2102 				      si->off);
2103 		break;
2104 	}
2105 
2106 	return insn - insn_buf;
2107 }
2108 
2109 const struct bpf_verifier_ops perf_event_verifier_ops = {
2110 	.get_func_proto		= pe_prog_func_proto,
2111 	.is_valid_access	= pe_prog_is_valid_access,
2112 	.convert_ctx_access	= pe_prog_convert_ctx_access,
2113 };
2114 
2115 const struct bpf_prog_ops perf_event_prog_ops = {
2116 };
2117 
2118 static DEFINE_MUTEX(bpf_event_mutex);
2119 
2120 #define BPF_TRACE_MAX_PROGS 64
2121 
2122 int perf_event_attach_bpf_prog(struct perf_event *event,
2123 			       struct bpf_prog *prog,
2124 			       u64 bpf_cookie)
2125 {
2126 	struct bpf_prog_array *old_array;
2127 	struct bpf_prog_array *new_array;
2128 	int ret = -EEXIST;
2129 
2130 	/*
2131 	 * Kprobe override only works if they are on the function entry,
2132 	 * and only if they are on the opt-in list.
2133 	 */
2134 	if (prog->kprobe_override &&
2135 	    (!trace_kprobe_on_func_entry(event->tp_event) ||
2136 	     !trace_kprobe_error_injectable(event->tp_event)))
2137 		return -EINVAL;
2138 
2139 	mutex_lock(&bpf_event_mutex);
2140 
2141 	if (event->prog)
2142 		goto unlock;
2143 
2144 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
2145 	if (old_array &&
2146 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
2147 		ret = -E2BIG;
2148 		goto unlock;
2149 	}
2150 
2151 	ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array);
2152 	if (ret < 0)
2153 		goto unlock;
2154 
2155 	/* set the new array to event->tp_event and set event->prog */
2156 	event->prog = prog;
2157 	event->bpf_cookie = bpf_cookie;
2158 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
2159 	bpf_prog_array_free_sleepable(old_array);
2160 
2161 unlock:
2162 	mutex_unlock(&bpf_event_mutex);
2163 	return ret;
2164 }
2165 
2166 void perf_event_detach_bpf_prog(struct perf_event *event)
2167 {
2168 	struct bpf_prog_array *old_array;
2169 	struct bpf_prog_array *new_array;
2170 	struct bpf_prog *prog = NULL;
2171 	int ret;
2172 
2173 	mutex_lock(&bpf_event_mutex);
2174 
2175 	if (!event->prog)
2176 		goto unlock;
2177 
2178 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
2179 	if (!old_array)
2180 		goto put;
2181 
2182 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array);
2183 	if (ret < 0) {
2184 		bpf_prog_array_delete_safe(old_array, event->prog);
2185 	} else {
2186 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
2187 		bpf_prog_array_free_sleepable(old_array);
2188 	}
2189 
2190 put:
2191 	prog = event->prog;
2192 	event->prog = NULL;
2193 
2194 unlock:
2195 	mutex_unlock(&bpf_event_mutex);
2196 
2197 	if (prog) {
2198 		/*
2199 		 * It could be that the bpf_prog is not sleepable (and will be freed
2200 		 * via normal RCU), but is called from a point that supports sleepable
2201 		 * programs and uses tasks-trace-RCU.
2202 		 */
2203 		synchronize_rcu_tasks_trace();
2204 
2205 		bpf_prog_put(prog);
2206 	}
2207 }
2208 
2209 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
2210 {
2211 	struct perf_event_query_bpf __user *uquery = info;
2212 	struct perf_event_query_bpf query = {};
2213 	struct bpf_prog_array *progs;
2214 	u32 *ids, prog_cnt, ids_len;
2215 	int ret;
2216 
2217 	if (!perfmon_capable())
2218 		return -EPERM;
2219 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
2220 		return -EINVAL;
2221 	if (copy_from_user(&query, uquery, sizeof(query)))
2222 		return -EFAULT;
2223 
2224 	ids_len = query.ids_len;
2225 	if (ids_len > BPF_TRACE_MAX_PROGS)
2226 		return -E2BIG;
2227 	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
2228 	if (!ids)
2229 		return -ENOMEM;
2230 	/*
2231 	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
2232 	 * is required when user only wants to check for uquery->prog_cnt.
2233 	 * There is no need to check for it since the case is handled
2234 	 * gracefully in bpf_prog_array_copy_info.
2235 	 */
2236 
2237 	mutex_lock(&bpf_event_mutex);
2238 	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
2239 	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
2240 	mutex_unlock(&bpf_event_mutex);
2241 
2242 	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
2243 	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
2244 		ret = -EFAULT;
2245 
2246 	kfree(ids);
2247 	return ret;
2248 }
2249 
2250 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
2251 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
2252 
2253 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
2254 {
2255 	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
2256 
2257 	for (; btp < __stop__bpf_raw_tp; btp++) {
2258 		if (!strcmp(btp->tp->name, name))
2259 			return btp;
2260 	}
2261 
2262 	return bpf_get_raw_tracepoint_module(name);
2263 }
2264 
2265 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
2266 {
2267 	struct module *mod;
2268 
2269 	guard(rcu)();
2270 	mod = __module_address((unsigned long)btp);
2271 	module_put(mod);
2272 }
2273 
2274 static __always_inline
2275 void __bpf_trace_run(struct bpf_raw_tp_link *link, u64 *args)
2276 {
2277 	struct bpf_prog *prog = link->link.prog;
2278 	struct bpf_run_ctx *old_run_ctx;
2279 	struct bpf_trace_run_ctx run_ctx;
2280 
2281 	cant_sleep();
2282 	if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) {
2283 		bpf_prog_inc_misses_counter(prog);
2284 		goto out;
2285 	}
2286 
2287 	run_ctx.bpf_cookie = link->cookie;
2288 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2289 
2290 	rcu_read_lock();
2291 	(void) bpf_prog_run(prog, args);
2292 	rcu_read_unlock();
2293 
2294 	bpf_reset_run_ctx(old_run_ctx);
2295 out:
2296 	this_cpu_dec(*(prog->active));
2297 }
2298 
2299 #define UNPACK(...)			__VA_ARGS__
2300 #define REPEAT_1(FN, DL, X, ...)	FN(X)
2301 #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
2302 #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
2303 #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
2304 #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
2305 #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
2306 #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
2307 #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
2308 #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
2309 #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
2310 #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
2311 #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
2312 #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
2313 
2314 #define SARG(X)		u64 arg##X
2315 #define COPY(X)		args[X] = arg##X
2316 
2317 #define __DL_COM	(,)
2318 #define __DL_SEM	(;)
2319 
2320 #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
2321 
2322 #define BPF_TRACE_DEFN_x(x)						\
2323 	void bpf_trace_run##x(struct bpf_raw_tp_link *link,		\
2324 			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
2325 	{								\
2326 		u64 args[x];						\
2327 		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
2328 		__bpf_trace_run(link, args);				\
2329 	}								\
2330 	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
2331 BPF_TRACE_DEFN_x(1);
2332 BPF_TRACE_DEFN_x(2);
2333 BPF_TRACE_DEFN_x(3);
2334 BPF_TRACE_DEFN_x(4);
2335 BPF_TRACE_DEFN_x(5);
2336 BPF_TRACE_DEFN_x(6);
2337 BPF_TRACE_DEFN_x(7);
2338 BPF_TRACE_DEFN_x(8);
2339 BPF_TRACE_DEFN_x(9);
2340 BPF_TRACE_DEFN_x(10);
2341 BPF_TRACE_DEFN_x(11);
2342 BPF_TRACE_DEFN_x(12);
2343 
2344 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_raw_tp_link *link)
2345 {
2346 	struct tracepoint *tp = btp->tp;
2347 	struct bpf_prog *prog = link->link.prog;
2348 
2349 	/*
2350 	 * check that program doesn't access arguments beyond what's
2351 	 * available in this tracepoint
2352 	 */
2353 	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
2354 		return -EINVAL;
2355 
2356 	if (prog->aux->max_tp_access > btp->writable_size)
2357 		return -EINVAL;
2358 
2359 	return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func, link);
2360 }
2361 
2362 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_raw_tp_link *link)
2363 {
2364 	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, link);
2365 }
2366 
2367 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
2368 			    u32 *fd_type, const char **buf,
2369 			    u64 *probe_offset, u64 *probe_addr,
2370 			    unsigned long *missed)
2371 {
2372 	bool is_tracepoint, is_syscall_tp;
2373 	struct bpf_prog *prog;
2374 	int flags, err = 0;
2375 
2376 	prog = event->prog;
2377 	if (!prog)
2378 		return -ENOENT;
2379 
2380 	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
2381 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
2382 		return -EOPNOTSUPP;
2383 
2384 	*prog_id = prog->aux->id;
2385 	flags = event->tp_event->flags;
2386 	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
2387 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
2388 
2389 	if (is_tracepoint || is_syscall_tp) {
2390 		*buf = is_tracepoint ? event->tp_event->tp->name
2391 				     : event->tp_event->name;
2392 		/* We allow NULL pointer for tracepoint */
2393 		if (fd_type)
2394 			*fd_type = BPF_FD_TYPE_TRACEPOINT;
2395 		if (probe_offset)
2396 			*probe_offset = 0x0;
2397 		if (probe_addr)
2398 			*probe_addr = 0x0;
2399 	} else {
2400 		/* kprobe/uprobe */
2401 		err = -EOPNOTSUPP;
2402 #ifdef CONFIG_KPROBE_EVENTS
2403 		if (flags & TRACE_EVENT_FL_KPROBE)
2404 			err = bpf_get_kprobe_info(event, fd_type, buf,
2405 						  probe_offset, probe_addr, missed,
2406 						  event->attr.type == PERF_TYPE_TRACEPOINT);
2407 #endif
2408 #ifdef CONFIG_UPROBE_EVENTS
2409 		if (flags & TRACE_EVENT_FL_UPROBE)
2410 			err = bpf_get_uprobe_info(event, fd_type, buf,
2411 						  probe_offset, probe_addr,
2412 						  event->attr.type == PERF_TYPE_TRACEPOINT);
2413 #endif
2414 	}
2415 
2416 	return err;
2417 }
2418 
2419 static int __init send_signal_irq_work_init(void)
2420 {
2421 	int cpu;
2422 	struct send_signal_irq_work *work;
2423 
2424 	for_each_possible_cpu(cpu) {
2425 		work = per_cpu_ptr(&send_signal_work, cpu);
2426 		init_irq_work(&work->irq_work, do_bpf_send_signal);
2427 	}
2428 	return 0;
2429 }
2430 
2431 subsys_initcall(send_signal_irq_work_init);
2432 
2433 #ifdef CONFIG_MODULES
2434 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
2435 			    void *module)
2436 {
2437 	struct bpf_trace_module *btm, *tmp;
2438 	struct module *mod = module;
2439 	int ret = 0;
2440 
2441 	if (mod->num_bpf_raw_events == 0 ||
2442 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
2443 		goto out;
2444 
2445 	mutex_lock(&bpf_module_mutex);
2446 
2447 	switch (op) {
2448 	case MODULE_STATE_COMING:
2449 		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
2450 		if (btm) {
2451 			btm->module = module;
2452 			list_add(&btm->list, &bpf_trace_modules);
2453 		} else {
2454 			ret = -ENOMEM;
2455 		}
2456 		break;
2457 	case MODULE_STATE_GOING:
2458 		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
2459 			if (btm->module == module) {
2460 				list_del(&btm->list);
2461 				kfree(btm);
2462 				break;
2463 			}
2464 		}
2465 		break;
2466 	}
2467 
2468 	mutex_unlock(&bpf_module_mutex);
2469 
2470 out:
2471 	return notifier_from_errno(ret);
2472 }
2473 
2474 static struct notifier_block bpf_module_nb = {
2475 	.notifier_call = bpf_event_notify,
2476 };
2477 
2478 static int __init bpf_event_init(void)
2479 {
2480 	register_module_notifier(&bpf_module_nb);
2481 	return 0;
2482 }
2483 
2484 fs_initcall(bpf_event_init);
2485 #endif /* CONFIG_MODULES */
2486 
2487 struct bpf_session_run_ctx {
2488 	struct bpf_run_ctx run_ctx;
2489 	bool is_return;
2490 	void *data;
2491 };
2492 
2493 #ifdef CONFIG_FPROBE
2494 struct bpf_kprobe_multi_link {
2495 	struct bpf_link link;
2496 	struct fprobe fp;
2497 	unsigned long *addrs;
2498 	u64 *cookies;
2499 	u32 cnt;
2500 	u32 mods_cnt;
2501 	struct module **mods;
2502 	u32 flags;
2503 };
2504 
2505 struct bpf_kprobe_multi_run_ctx {
2506 	struct bpf_session_run_ctx session_ctx;
2507 	struct bpf_kprobe_multi_link *link;
2508 	unsigned long entry_ip;
2509 };
2510 
2511 struct user_syms {
2512 	const char **syms;
2513 	char *buf;
2514 };
2515 
2516 #ifndef CONFIG_HAVE_FTRACE_REGS_HAVING_PT_REGS
2517 static DEFINE_PER_CPU(struct pt_regs, bpf_kprobe_multi_pt_regs);
2518 #define bpf_kprobe_multi_pt_regs_ptr()	this_cpu_ptr(&bpf_kprobe_multi_pt_regs)
2519 #else
2520 #define bpf_kprobe_multi_pt_regs_ptr()	(NULL)
2521 #endif
2522 
2523 static unsigned long ftrace_get_entry_ip(unsigned long fentry_ip)
2524 {
2525 	unsigned long ip = ftrace_get_symaddr(fentry_ip);
2526 
2527 	return ip ? : fentry_ip;
2528 }
2529 
2530 static int copy_user_syms(struct user_syms *us, unsigned long __user *usyms, u32 cnt)
2531 {
2532 	unsigned long __user usymbol;
2533 	const char **syms = NULL;
2534 	char *buf = NULL, *p;
2535 	int err = -ENOMEM;
2536 	unsigned int i;
2537 
2538 	syms = kvmalloc_array(cnt, sizeof(*syms), GFP_KERNEL);
2539 	if (!syms)
2540 		goto error;
2541 
2542 	buf = kvmalloc_array(cnt, KSYM_NAME_LEN, GFP_KERNEL);
2543 	if (!buf)
2544 		goto error;
2545 
2546 	for (p = buf, i = 0; i < cnt; i++) {
2547 		if (__get_user(usymbol, usyms + i)) {
2548 			err = -EFAULT;
2549 			goto error;
2550 		}
2551 		err = strncpy_from_user(p, (const char __user *) usymbol, KSYM_NAME_LEN);
2552 		if (err == KSYM_NAME_LEN)
2553 			err = -E2BIG;
2554 		if (err < 0)
2555 			goto error;
2556 		syms[i] = p;
2557 		p += err + 1;
2558 	}
2559 
2560 	us->syms = syms;
2561 	us->buf = buf;
2562 	return 0;
2563 
2564 error:
2565 	if (err) {
2566 		kvfree(syms);
2567 		kvfree(buf);
2568 	}
2569 	return err;
2570 }
2571 
2572 static void kprobe_multi_put_modules(struct module **mods, u32 cnt)
2573 {
2574 	u32 i;
2575 
2576 	for (i = 0; i < cnt; i++)
2577 		module_put(mods[i]);
2578 }
2579 
2580 static void free_user_syms(struct user_syms *us)
2581 {
2582 	kvfree(us->syms);
2583 	kvfree(us->buf);
2584 }
2585 
2586 static void bpf_kprobe_multi_link_release(struct bpf_link *link)
2587 {
2588 	struct bpf_kprobe_multi_link *kmulti_link;
2589 
2590 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2591 	unregister_fprobe(&kmulti_link->fp);
2592 	kprobe_multi_put_modules(kmulti_link->mods, kmulti_link->mods_cnt);
2593 }
2594 
2595 static void bpf_kprobe_multi_link_dealloc(struct bpf_link *link)
2596 {
2597 	struct bpf_kprobe_multi_link *kmulti_link;
2598 
2599 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2600 	kvfree(kmulti_link->addrs);
2601 	kvfree(kmulti_link->cookies);
2602 	kfree(kmulti_link->mods);
2603 	kfree(kmulti_link);
2604 }
2605 
2606 static int bpf_kprobe_multi_link_fill_link_info(const struct bpf_link *link,
2607 						struct bpf_link_info *info)
2608 {
2609 	u64 __user *ucookies = u64_to_user_ptr(info->kprobe_multi.cookies);
2610 	u64 __user *uaddrs = u64_to_user_ptr(info->kprobe_multi.addrs);
2611 	struct bpf_kprobe_multi_link *kmulti_link;
2612 	u32 ucount = info->kprobe_multi.count;
2613 	int err = 0, i;
2614 
2615 	if (!uaddrs ^ !ucount)
2616 		return -EINVAL;
2617 	if (ucookies && !ucount)
2618 		return -EINVAL;
2619 
2620 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2621 	info->kprobe_multi.count = kmulti_link->cnt;
2622 	info->kprobe_multi.flags = kmulti_link->flags;
2623 	info->kprobe_multi.missed = kmulti_link->fp.nmissed;
2624 
2625 	if (!uaddrs)
2626 		return 0;
2627 	if (ucount < kmulti_link->cnt)
2628 		err = -ENOSPC;
2629 	else
2630 		ucount = kmulti_link->cnt;
2631 
2632 	if (ucookies) {
2633 		if (kmulti_link->cookies) {
2634 			if (copy_to_user(ucookies, kmulti_link->cookies, ucount * sizeof(u64)))
2635 				return -EFAULT;
2636 		} else {
2637 			for (i = 0; i < ucount; i++) {
2638 				if (put_user(0, ucookies + i))
2639 					return -EFAULT;
2640 			}
2641 		}
2642 	}
2643 
2644 	if (kallsyms_show_value(current_cred())) {
2645 		if (copy_to_user(uaddrs, kmulti_link->addrs, ucount * sizeof(u64)))
2646 			return -EFAULT;
2647 	} else {
2648 		for (i = 0; i < ucount; i++) {
2649 			if (put_user(0, uaddrs + i))
2650 				return -EFAULT;
2651 		}
2652 	}
2653 	return err;
2654 }
2655 
2656 static const struct bpf_link_ops bpf_kprobe_multi_link_lops = {
2657 	.release = bpf_kprobe_multi_link_release,
2658 	.dealloc_deferred = bpf_kprobe_multi_link_dealloc,
2659 	.fill_link_info = bpf_kprobe_multi_link_fill_link_info,
2660 };
2661 
2662 static void bpf_kprobe_multi_cookie_swap(void *a, void *b, int size, const void *priv)
2663 {
2664 	const struct bpf_kprobe_multi_link *link = priv;
2665 	unsigned long *addr_a = a, *addr_b = b;
2666 	u64 *cookie_a, *cookie_b;
2667 
2668 	cookie_a = link->cookies + (addr_a - link->addrs);
2669 	cookie_b = link->cookies + (addr_b - link->addrs);
2670 
2671 	/* swap addr_a/addr_b and cookie_a/cookie_b values */
2672 	swap(*addr_a, *addr_b);
2673 	swap(*cookie_a, *cookie_b);
2674 }
2675 
2676 static int bpf_kprobe_multi_addrs_cmp(const void *a, const void *b)
2677 {
2678 	const unsigned long *addr_a = a, *addr_b = b;
2679 
2680 	if (*addr_a == *addr_b)
2681 		return 0;
2682 	return *addr_a < *addr_b ? -1 : 1;
2683 }
2684 
2685 static int bpf_kprobe_multi_cookie_cmp(const void *a, const void *b, const void *priv)
2686 {
2687 	return bpf_kprobe_multi_addrs_cmp(a, b);
2688 }
2689 
2690 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
2691 {
2692 	struct bpf_kprobe_multi_run_ctx *run_ctx;
2693 	struct bpf_kprobe_multi_link *link;
2694 	u64 *cookie, entry_ip;
2695 	unsigned long *addr;
2696 
2697 	if (WARN_ON_ONCE(!ctx))
2698 		return 0;
2699 	run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx,
2700 			       session_ctx.run_ctx);
2701 	link = run_ctx->link;
2702 	if (!link->cookies)
2703 		return 0;
2704 	entry_ip = run_ctx->entry_ip;
2705 	addr = bsearch(&entry_ip, link->addrs, link->cnt, sizeof(entry_ip),
2706 		       bpf_kprobe_multi_addrs_cmp);
2707 	if (!addr)
2708 		return 0;
2709 	cookie = link->cookies + (addr - link->addrs);
2710 	return *cookie;
2711 }
2712 
2713 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
2714 {
2715 	struct bpf_kprobe_multi_run_ctx *run_ctx;
2716 
2717 	run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx,
2718 			       session_ctx.run_ctx);
2719 	return run_ctx->entry_ip;
2720 }
2721 
2722 static int
2723 kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link *link,
2724 			   unsigned long entry_ip, struct ftrace_regs *fregs,
2725 			   bool is_return, void *data)
2726 {
2727 	struct bpf_kprobe_multi_run_ctx run_ctx = {
2728 		.session_ctx = {
2729 			.is_return = is_return,
2730 			.data = data,
2731 		},
2732 		.link = link,
2733 		.entry_ip = entry_ip,
2734 	};
2735 	struct bpf_run_ctx *old_run_ctx;
2736 	struct pt_regs *regs;
2737 	int err;
2738 
2739 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
2740 		bpf_prog_inc_misses_counter(link->link.prog);
2741 		err = 1;
2742 		goto out;
2743 	}
2744 
2745 	migrate_disable();
2746 	rcu_read_lock();
2747 	regs = ftrace_partial_regs(fregs, bpf_kprobe_multi_pt_regs_ptr());
2748 	old_run_ctx = bpf_set_run_ctx(&run_ctx.session_ctx.run_ctx);
2749 	err = bpf_prog_run(link->link.prog, regs);
2750 	bpf_reset_run_ctx(old_run_ctx);
2751 	rcu_read_unlock();
2752 	migrate_enable();
2753 
2754  out:
2755 	__this_cpu_dec(bpf_prog_active);
2756 	return err;
2757 }
2758 
2759 static int
2760 kprobe_multi_link_handler(struct fprobe *fp, unsigned long fentry_ip,
2761 			  unsigned long ret_ip, struct ftrace_regs *fregs,
2762 			  void *data)
2763 {
2764 	struct bpf_kprobe_multi_link *link;
2765 	int err;
2766 
2767 	link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2768 	err = kprobe_multi_link_prog_run(link, ftrace_get_entry_ip(fentry_ip),
2769 					 fregs, false, data);
2770 	return is_kprobe_session(link->link.prog) ? err : 0;
2771 }
2772 
2773 static void
2774 kprobe_multi_link_exit_handler(struct fprobe *fp, unsigned long fentry_ip,
2775 			       unsigned long ret_ip, struct ftrace_regs *fregs,
2776 			       void *data)
2777 {
2778 	struct bpf_kprobe_multi_link *link;
2779 
2780 	link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2781 	kprobe_multi_link_prog_run(link, ftrace_get_entry_ip(fentry_ip),
2782 				   fregs, true, data);
2783 }
2784 
2785 static int symbols_cmp_r(const void *a, const void *b, const void *priv)
2786 {
2787 	const char **str_a = (const char **) a;
2788 	const char **str_b = (const char **) b;
2789 
2790 	return strcmp(*str_a, *str_b);
2791 }
2792 
2793 struct multi_symbols_sort {
2794 	const char **funcs;
2795 	u64 *cookies;
2796 };
2797 
2798 static void symbols_swap_r(void *a, void *b, int size, const void *priv)
2799 {
2800 	const struct multi_symbols_sort *data = priv;
2801 	const char **name_a = a, **name_b = b;
2802 
2803 	swap(*name_a, *name_b);
2804 
2805 	/* If defined, swap also related cookies. */
2806 	if (data->cookies) {
2807 		u64 *cookie_a, *cookie_b;
2808 
2809 		cookie_a = data->cookies + (name_a - data->funcs);
2810 		cookie_b = data->cookies + (name_b - data->funcs);
2811 		swap(*cookie_a, *cookie_b);
2812 	}
2813 }
2814 
2815 struct modules_array {
2816 	struct module **mods;
2817 	int mods_cnt;
2818 	int mods_cap;
2819 };
2820 
2821 static int add_module(struct modules_array *arr, struct module *mod)
2822 {
2823 	struct module **mods;
2824 
2825 	if (arr->mods_cnt == arr->mods_cap) {
2826 		arr->mods_cap = max(16, arr->mods_cap * 3 / 2);
2827 		mods = krealloc_array(arr->mods, arr->mods_cap, sizeof(*mods), GFP_KERNEL);
2828 		if (!mods)
2829 			return -ENOMEM;
2830 		arr->mods = mods;
2831 	}
2832 
2833 	arr->mods[arr->mods_cnt] = mod;
2834 	arr->mods_cnt++;
2835 	return 0;
2836 }
2837 
2838 static bool has_module(struct modules_array *arr, struct module *mod)
2839 {
2840 	int i;
2841 
2842 	for (i = arr->mods_cnt - 1; i >= 0; i--) {
2843 		if (arr->mods[i] == mod)
2844 			return true;
2845 	}
2846 	return false;
2847 }
2848 
2849 static int get_modules_for_addrs(struct module ***mods, unsigned long *addrs, u32 addrs_cnt)
2850 {
2851 	struct modules_array arr = {};
2852 	u32 i, err = 0;
2853 
2854 	for (i = 0; i < addrs_cnt; i++) {
2855 		bool skip_add = false;
2856 		struct module *mod;
2857 
2858 		scoped_guard(rcu) {
2859 			mod = __module_address(addrs[i]);
2860 			/* Either no module or it's already stored  */
2861 			if (!mod || has_module(&arr, mod)) {
2862 				skip_add = true;
2863 				break; /* scoped_guard */
2864 			}
2865 			if (!try_module_get(mod))
2866 				err = -EINVAL;
2867 		}
2868 		if (skip_add)
2869 			continue;
2870 		if (err)
2871 			break;
2872 		err = add_module(&arr, mod);
2873 		if (err) {
2874 			module_put(mod);
2875 			break;
2876 		}
2877 	}
2878 
2879 	/* We return either err < 0 in case of error, ... */
2880 	if (err) {
2881 		kprobe_multi_put_modules(arr.mods, arr.mods_cnt);
2882 		kfree(arr.mods);
2883 		return err;
2884 	}
2885 
2886 	/* or number of modules found if everything is ok. */
2887 	*mods = arr.mods;
2888 	return arr.mods_cnt;
2889 }
2890 
2891 static int addrs_check_error_injection_list(unsigned long *addrs, u32 cnt)
2892 {
2893 	u32 i;
2894 
2895 	for (i = 0; i < cnt; i++) {
2896 		if (!within_error_injection_list(addrs[i]))
2897 			return -EINVAL;
2898 	}
2899 	return 0;
2900 }
2901 
2902 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
2903 {
2904 	struct bpf_kprobe_multi_link *link = NULL;
2905 	struct bpf_link_primer link_primer;
2906 	void __user *ucookies;
2907 	unsigned long *addrs;
2908 	u32 flags, cnt, size;
2909 	void __user *uaddrs;
2910 	u64 *cookies = NULL;
2911 	void __user *usyms;
2912 	int err;
2913 
2914 	/* no support for 32bit archs yet */
2915 	if (sizeof(u64) != sizeof(void *))
2916 		return -EOPNOTSUPP;
2917 
2918 	if (attr->link_create.flags)
2919 		return -EINVAL;
2920 
2921 	if (!is_kprobe_multi(prog))
2922 		return -EINVAL;
2923 
2924 	flags = attr->link_create.kprobe_multi.flags;
2925 	if (flags & ~BPF_F_KPROBE_MULTI_RETURN)
2926 		return -EINVAL;
2927 
2928 	uaddrs = u64_to_user_ptr(attr->link_create.kprobe_multi.addrs);
2929 	usyms = u64_to_user_ptr(attr->link_create.kprobe_multi.syms);
2930 	if (!!uaddrs == !!usyms)
2931 		return -EINVAL;
2932 
2933 	cnt = attr->link_create.kprobe_multi.cnt;
2934 	if (!cnt)
2935 		return -EINVAL;
2936 	if (cnt > MAX_KPROBE_MULTI_CNT)
2937 		return -E2BIG;
2938 
2939 	size = cnt * sizeof(*addrs);
2940 	addrs = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2941 	if (!addrs)
2942 		return -ENOMEM;
2943 
2944 	ucookies = u64_to_user_ptr(attr->link_create.kprobe_multi.cookies);
2945 	if (ucookies) {
2946 		cookies = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2947 		if (!cookies) {
2948 			err = -ENOMEM;
2949 			goto error;
2950 		}
2951 		if (copy_from_user(cookies, ucookies, size)) {
2952 			err = -EFAULT;
2953 			goto error;
2954 		}
2955 	}
2956 
2957 	if (uaddrs) {
2958 		if (copy_from_user(addrs, uaddrs, size)) {
2959 			err = -EFAULT;
2960 			goto error;
2961 		}
2962 	} else {
2963 		struct multi_symbols_sort data = {
2964 			.cookies = cookies,
2965 		};
2966 		struct user_syms us;
2967 
2968 		err = copy_user_syms(&us, usyms, cnt);
2969 		if (err)
2970 			goto error;
2971 
2972 		if (cookies)
2973 			data.funcs = us.syms;
2974 
2975 		sort_r(us.syms, cnt, sizeof(*us.syms), symbols_cmp_r,
2976 		       symbols_swap_r, &data);
2977 
2978 		err = ftrace_lookup_symbols(us.syms, cnt, addrs);
2979 		free_user_syms(&us);
2980 		if (err)
2981 			goto error;
2982 	}
2983 
2984 	if (prog->kprobe_override && addrs_check_error_injection_list(addrs, cnt)) {
2985 		err = -EINVAL;
2986 		goto error;
2987 	}
2988 
2989 	link = kzalloc(sizeof(*link), GFP_KERNEL);
2990 	if (!link) {
2991 		err = -ENOMEM;
2992 		goto error;
2993 	}
2994 
2995 	bpf_link_init(&link->link, BPF_LINK_TYPE_KPROBE_MULTI,
2996 		      &bpf_kprobe_multi_link_lops, prog);
2997 
2998 	err = bpf_link_prime(&link->link, &link_primer);
2999 	if (err)
3000 		goto error;
3001 
3002 	if (!(flags & BPF_F_KPROBE_MULTI_RETURN))
3003 		link->fp.entry_handler = kprobe_multi_link_handler;
3004 	if ((flags & BPF_F_KPROBE_MULTI_RETURN) || is_kprobe_session(prog))
3005 		link->fp.exit_handler = kprobe_multi_link_exit_handler;
3006 	if (is_kprobe_session(prog))
3007 		link->fp.entry_data_size = sizeof(u64);
3008 
3009 	link->addrs = addrs;
3010 	link->cookies = cookies;
3011 	link->cnt = cnt;
3012 	link->flags = flags;
3013 
3014 	if (cookies) {
3015 		/*
3016 		 * Sorting addresses will trigger sorting cookies as well
3017 		 * (check bpf_kprobe_multi_cookie_swap). This way we can
3018 		 * find cookie based on the address in bpf_get_attach_cookie
3019 		 * helper.
3020 		 */
3021 		sort_r(addrs, cnt, sizeof(*addrs),
3022 		       bpf_kprobe_multi_cookie_cmp,
3023 		       bpf_kprobe_multi_cookie_swap,
3024 		       link);
3025 	}
3026 
3027 	err = get_modules_for_addrs(&link->mods, addrs, cnt);
3028 	if (err < 0) {
3029 		bpf_link_cleanup(&link_primer);
3030 		return err;
3031 	}
3032 	link->mods_cnt = err;
3033 
3034 	err = register_fprobe_ips(&link->fp, addrs, cnt);
3035 	if (err) {
3036 		kprobe_multi_put_modules(link->mods, link->mods_cnt);
3037 		bpf_link_cleanup(&link_primer);
3038 		return err;
3039 	}
3040 
3041 	return bpf_link_settle(&link_primer);
3042 
3043 error:
3044 	kfree(link);
3045 	kvfree(addrs);
3046 	kvfree(cookies);
3047 	return err;
3048 }
3049 #else /* !CONFIG_FPROBE */
3050 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3051 {
3052 	return -EOPNOTSUPP;
3053 }
3054 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
3055 {
3056 	return 0;
3057 }
3058 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3059 {
3060 	return 0;
3061 }
3062 #endif
3063 
3064 #ifdef CONFIG_UPROBES
3065 struct bpf_uprobe_multi_link;
3066 
3067 struct bpf_uprobe {
3068 	struct bpf_uprobe_multi_link *link;
3069 	loff_t offset;
3070 	unsigned long ref_ctr_offset;
3071 	u64 cookie;
3072 	struct uprobe *uprobe;
3073 	struct uprobe_consumer consumer;
3074 	bool session;
3075 };
3076 
3077 struct bpf_uprobe_multi_link {
3078 	struct path path;
3079 	struct bpf_link link;
3080 	u32 cnt;
3081 	u32 flags;
3082 	struct bpf_uprobe *uprobes;
3083 	struct task_struct *task;
3084 };
3085 
3086 struct bpf_uprobe_multi_run_ctx {
3087 	struct bpf_session_run_ctx session_ctx;
3088 	unsigned long entry_ip;
3089 	struct bpf_uprobe *uprobe;
3090 };
3091 
3092 static void bpf_uprobe_unregister(struct bpf_uprobe *uprobes, u32 cnt)
3093 {
3094 	u32 i;
3095 
3096 	for (i = 0; i < cnt; i++)
3097 		uprobe_unregister_nosync(uprobes[i].uprobe, &uprobes[i].consumer);
3098 
3099 	if (cnt)
3100 		uprobe_unregister_sync();
3101 }
3102 
3103 static void bpf_uprobe_multi_link_release(struct bpf_link *link)
3104 {
3105 	struct bpf_uprobe_multi_link *umulti_link;
3106 
3107 	umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
3108 	bpf_uprobe_unregister(umulti_link->uprobes, umulti_link->cnt);
3109 	if (umulti_link->task)
3110 		put_task_struct(umulti_link->task);
3111 	path_put(&umulti_link->path);
3112 }
3113 
3114 static void bpf_uprobe_multi_link_dealloc(struct bpf_link *link)
3115 {
3116 	struct bpf_uprobe_multi_link *umulti_link;
3117 
3118 	umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
3119 	kvfree(umulti_link->uprobes);
3120 	kfree(umulti_link);
3121 }
3122 
3123 static int bpf_uprobe_multi_link_fill_link_info(const struct bpf_link *link,
3124 						struct bpf_link_info *info)
3125 {
3126 	u64 __user *uref_ctr_offsets = u64_to_user_ptr(info->uprobe_multi.ref_ctr_offsets);
3127 	u64 __user *ucookies = u64_to_user_ptr(info->uprobe_multi.cookies);
3128 	u64 __user *uoffsets = u64_to_user_ptr(info->uprobe_multi.offsets);
3129 	u64 __user *upath = u64_to_user_ptr(info->uprobe_multi.path);
3130 	u32 upath_size = info->uprobe_multi.path_size;
3131 	struct bpf_uprobe_multi_link *umulti_link;
3132 	u32 ucount = info->uprobe_multi.count;
3133 	int err = 0, i;
3134 	char *p, *buf;
3135 	long left = 0;
3136 
3137 	if (!upath ^ !upath_size)
3138 		return -EINVAL;
3139 
3140 	if ((uoffsets || uref_ctr_offsets || ucookies) && !ucount)
3141 		return -EINVAL;
3142 
3143 	umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
3144 	info->uprobe_multi.count = umulti_link->cnt;
3145 	info->uprobe_multi.flags = umulti_link->flags;
3146 	info->uprobe_multi.pid = umulti_link->task ?
3147 				 task_pid_nr_ns(umulti_link->task, task_active_pid_ns(current)) : 0;
3148 
3149 	upath_size = upath_size ? min_t(u32, upath_size, PATH_MAX) : PATH_MAX;
3150 	buf = kmalloc(upath_size, GFP_KERNEL);
3151 	if (!buf)
3152 		return -ENOMEM;
3153 	p = d_path(&umulti_link->path, buf, upath_size);
3154 	if (IS_ERR(p)) {
3155 		kfree(buf);
3156 		return PTR_ERR(p);
3157 	}
3158 	upath_size = buf + upath_size - p;
3159 
3160 	if (upath)
3161 		left = copy_to_user(upath, p, upath_size);
3162 	kfree(buf);
3163 	if (left)
3164 		return -EFAULT;
3165 	info->uprobe_multi.path_size = upath_size;
3166 
3167 	if (!uoffsets && !ucookies && !uref_ctr_offsets)
3168 		return 0;
3169 
3170 	if (ucount < umulti_link->cnt)
3171 		err = -ENOSPC;
3172 	else
3173 		ucount = umulti_link->cnt;
3174 
3175 	for (i = 0; i < ucount; i++) {
3176 		if (uoffsets &&
3177 		    put_user(umulti_link->uprobes[i].offset, uoffsets + i))
3178 			return -EFAULT;
3179 		if (uref_ctr_offsets &&
3180 		    put_user(umulti_link->uprobes[i].ref_ctr_offset, uref_ctr_offsets + i))
3181 			return -EFAULT;
3182 		if (ucookies &&
3183 		    put_user(umulti_link->uprobes[i].cookie, ucookies + i))
3184 			return -EFAULT;
3185 	}
3186 
3187 	return err;
3188 }
3189 
3190 static const struct bpf_link_ops bpf_uprobe_multi_link_lops = {
3191 	.release = bpf_uprobe_multi_link_release,
3192 	.dealloc_deferred = bpf_uprobe_multi_link_dealloc,
3193 	.fill_link_info = bpf_uprobe_multi_link_fill_link_info,
3194 };
3195 
3196 static int uprobe_prog_run(struct bpf_uprobe *uprobe,
3197 			   unsigned long entry_ip,
3198 			   struct pt_regs *regs,
3199 			   bool is_return, void *data)
3200 {
3201 	struct bpf_uprobe_multi_link *link = uprobe->link;
3202 	struct bpf_uprobe_multi_run_ctx run_ctx = {
3203 		.session_ctx = {
3204 			.is_return = is_return,
3205 			.data = data,
3206 		},
3207 		.entry_ip = entry_ip,
3208 		.uprobe = uprobe,
3209 	};
3210 	struct bpf_prog *prog = link->link.prog;
3211 	bool sleepable = prog->sleepable;
3212 	struct bpf_run_ctx *old_run_ctx;
3213 	int err;
3214 
3215 	if (link->task && !same_thread_group(current, link->task))
3216 		return 0;
3217 
3218 	if (sleepable)
3219 		rcu_read_lock_trace();
3220 	else
3221 		rcu_read_lock();
3222 
3223 	migrate_disable();
3224 
3225 	old_run_ctx = bpf_set_run_ctx(&run_ctx.session_ctx.run_ctx);
3226 	err = bpf_prog_run(link->link.prog, regs);
3227 	bpf_reset_run_ctx(old_run_ctx);
3228 
3229 	migrate_enable();
3230 
3231 	if (sleepable)
3232 		rcu_read_unlock_trace();
3233 	else
3234 		rcu_read_unlock();
3235 	return err;
3236 }
3237 
3238 static bool
3239 uprobe_multi_link_filter(struct uprobe_consumer *con, struct mm_struct *mm)
3240 {
3241 	struct bpf_uprobe *uprobe;
3242 
3243 	uprobe = container_of(con, struct bpf_uprobe, consumer);
3244 	return uprobe->link->task->mm == mm;
3245 }
3246 
3247 static int
3248 uprobe_multi_link_handler(struct uprobe_consumer *con, struct pt_regs *regs,
3249 			  __u64 *data)
3250 {
3251 	struct bpf_uprobe *uprobe;
3252 	int ret;
3253 
3254 	uprobe = container_of(con, struct bpf_uprobe, consumer);
3255 	ret = uprobe_prog_run(uprobe, instruction_pointer(regs), regs, false, data);
3256 	if (uprobe->session)
3257 		return ret ? UPROBE_HANDLER_IGNORE : 0;
3258 	return 0;
3259 }
3260 
3261 static int
3262 uprobe_multi_link_ret_handler(struct uprobe_consumer *con, unsigned long func, struct pt_regs *regs,
3263 			      __u64 *data)
3264 {
3265 	struct bpf_uprobe *uprobe;
3266 
3267 	uprobe = container_of(con, struct bpf_uprobe, consumer);
3268 	uprobe_prog_run(uprobe, func, regs, true, data);
3269 	return 0;
3270 }
3271 
3272 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3273 {
3274 	struct bpf_uprobe_multi_run_ctx *run_ctx;
3275 
3276 	run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx,
3277 			       session_ctx.run_ctx);
3278 	return run_ctx->entry_ip;
3279 }
3280 
3281 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx)
3282 {
3283 	struct bpf_uprobe_multi_run_ctx *run_ctx;
3284 
3285 	run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx,
3286 			       session_ctx.run_ctx);
3287 	return run_ctx->uprobe->cookie;
3288 }
3289 
3290 int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3291 {
3292 	struct bpf_uprobe_multi_link *link = NULL;
3293 	unsigned long __user *uref_ctr_offsets;
3294 	struct bpf_link_primer link_primer;
3295 	struct bpf_uprobe *uprobes = NULL;
3296 	struct task_struct *task = NULL;
3297 	unsigned long __user *uoffsets;
3298 	u64 __user *ucookies;
3299 	void __user *upath;
3300 	u32 flags, cnt, i;
3301 	struct path path;
3302 	char *name;
3303 	pid_t pid;
3304 	int err;
3305 
3306 	/* no support for 32bit archs yet */
3307 	if (sizeof(u64) != sizeof(void *))
3308 		return -EOPNOTSUPP;
3309 
3310 	if (attr->link_create.flags)
3311 		return -EINVAL;
3312 
3313 	if (!is_uprobe_multi(prog))
3314 		return -EINVAL;
3315 
3316 	flags = attr->link_create.uprobe_multi.flags;
3317 	if (flags & ~BPF_F_UPROBE_MULTI_RETURN)
3318 		return -EINVAL;
3319 
3320 	/*
3321 	 * path, offsets and cnt are mandatory,
3322 	 * ref_ctr_offsets and cookies are optional
3323 	 */
3324 	upath = u64_to_user_ptr(attr->link_create.uprobe_multi.path);
3325 	uoffsets = u64_to_user_ptr(attr->link_create.uprobe_multi.offsets);
3326 	cnt = attr->link_create.uprobe_multi.cnt;
3327 	pid = attr->link_create.uprobe_multi.pid;
3328 
3329 	if (!upath || !uoffsets || !cnt || pid < 0)
3330 		return -EINVAL;
3331 	if (cnt > MAX_UPROBE_MULTI_CNT)
3332 		return -E2BIG;
3333 
3334 	uref_ctr_offsets = u64_to_user_ptr(attr->link_create.uprobe_multi.ref_ctr_offsets);
3335 	ucookies = u64_to_user_ptr(attr->link_create.uprobe_multi.cookies);
3336 
3337 	name = strndup_user(upath, PATH_MAX);
3338 	if (IS_ERR(name)) {
3339 		err = PTR_ERR(name);
3340 		return err;
3341 	}
3342 
3343 	err = kern_path(name, LOOKUP_FOLLOW, &path);
3344 	kfree(name);
3345 	if (err)
3346 		return err;
3347 
3348 	if (!d_is_reg(path.dentry)) {
3349 		err = -EBADF;
3350 		goto error_path_put;
3351 	}
3352 
3353 	if (pid) {
3354 		task = get_pid_task(find_vpid(pid), PIDTYPE_TGID);
3355 		if (!task) {
3356 			err = -ESRCH;
3357 			goto error_path_put;
3358 		}
3359 	}
3360 
3361 	err = -ENOMEM;
3362 
3363 	link = kzalloc(sizeof(*link), GFP_KERNEL);
3364 	uprobes = kvcalloc(cnt, sizeof(*uprobes), GFP_KERNEL);
3365 
3366 	if (!uprobes || !link)
3367 		goto error_free;
3368 
3369 	for (i = 0; i < cnt; i++) {
3370 		if (__get_user(uprobes[i].offset, uoffsets + i)) {
3371 			err = -EFAULT;
3372 			goto error_free;
3373 		}
3374 		if (uprobes[i].offset < 0) {
3375 			err = -EINVAL;
3376 			goto error_free;
3377 		}
3378 		if (uref_ctr_offsets && __get_user(uprobes[i].ref_ctr_offset, uref_ctr_offsets + i)) {
3379 			err = -EFAULT;
3380 			goto error_free;
3381 		}
3382 		if (ucookies && __get_user(uprobes[i].cookie, ucookies + i)) {
3383 			err = -EFAULT;
3384 			goto error_free;
3385 		}
3386 
3387 		uprobes[i].link = link;
3388 
3389 		if (!(flags & BPF_F_UPROBE_MULTI_RETURN))
3390 			uprobes[i].consumer.handler = uprobe_multi_link_handler;
3391 		if (flags & BPF_F_UPROBE_MULTI_RETURN || is_uprobe_session(prog))
3392 			uprobes[i].consumer.ret_handler = uprobe_multi_link_ret_handler;
3393 		if (is_uprobe_session(prog))
3394 			uprobes[i].session = true;
3395 		if (pid)
3396 			uprobes[i].consumer.filter = uprobe_multi_link_filter;
3397 	}
3398 
3399 	link->cnt = cnt;
3400 	link->uprobes = uprobes;
3401 	link->path = path;
3402 	link->task = task;
3403 	link->flags = flags;
3404 
3405 	bpf_link_init(&link->link, BPF_LINK_TYPE_UPROBE_MULTI,
3406 		      &bpf_uprobe_multi_link_lops, prog);
3407 
3408 	for (i = 0; i < cnt; i++) {
3409 		uprobes[i].uprobe = uprobe_register(d_real_inode(link->path.dentry),
3410 						    uprobes[i].offset,
3411 						    uprobes[i].ref_ctr_offset,
3412 						    &uprobes[i].consumer);
3413 		if (IS_ERR(uprobes[i].uprobe)) {
3414 			err = PTR_ERR(uprobes[i].uprobe);
3415 			link->cnt = i;
3416 			goto error_unregister;
3417 		}
3418 	}
3419 
3420 	err = bpf_link_prime(&link->link, &link_primer);
3421 	if (err)
3422 		goto error_unregister;
3423 
3424 	return bpf_link_settle(&link_primer);
3425 
3426 error_unregister:
3427 	bpf_uprobe_unregister(uprobes, link->cnt);
3428 
3429 error_free:
3430 	kvfree(uprobes);
3431 	kfree(link);
3432 	if (task)
3433 		put_task_struct(task);
3434 error_path_put:
3435 	path_put(&path);
3436 	return err;
3437 }
3438 #else /* !CONFIG_UPROBES */
3439 int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3440 {
3441 	return -EOPNOTSUPP;
3442 }
3443 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx)
3444 {
3445 	return 0;
3446 }
3447 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3448 {
3449 	return 0;
3450 }
3451 #endif /* CONFIG_UPROBES */
3452 
3453 __bpf_kfunc_start_defs();
3454 
3455 __bpf_kfunc bool bpf_session_is_return(void)
3456 {
3457 	struct bpf_session_run_ctx *session_ctx;
3458 
3459 	session_ctx = container_of(current->bpf_ctx, struct bpf_session_run_ctx, run_ctx);
3460 	return session_ctx->is_return;
3461 }
3462 
3463 __bpf_kfunc __u64 *bpf_session_cookie(void)
3464 {
3465 	struct bpf_session_run_ctx *session_ctx;
3466 
3467 	session_ctx = container_of(current->bpf_ctx, struct bpf_session_run_ctx, run_ctx);
3468 	return session_ctx->data;
3469 }
3470 
3471 __bpf_kfunc_end_defs();
3472 
3473 BTF_KFUNCS_START(kprobe_multi_kfunc_set_ids)
3474 BTF_ID_FLAGS(func, bpf_session_is_return)
3475 BTF_ID_FLAGS(func, bpf_session_cookie)
3476 BTF_KFUNCS_END(kprobe_multi_kfunc_set_ids)
3477 
3478 static int bpf_kprobe_multi_filter(const struct bpf_prog *prog, u32 kfunc_id)
3479 {
3480 	if (!btf_id_set8_contains(&kprobe_multi_kfunc_set_ids, kfunc_id))
3481 		return 0;
3482 
3483 	if (!is_kprobe_session(prog) && !is_uprobe_session(prog))
3484 		return -EACCES;
3485 
3486 	return 0;
3487 }
3488 
3489 static const struct btf_kfunc_id_set bpf_kprobe_multi_kfunc_set = {
3490 	.owner = THIS_MODULE,
3491 	.set = &kprobe_multi_kfunc_set_ids,
3492 	.filter = bpf_kprobe_multi_filter,
3493 };
3494 
3495 static int __init bpf_kprobe_multi_kfuncs_init(void)
3496 {
3497 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_KPROBE, &bpf_kprobe_multi_kfunc_set);
3498 }
3499 
3500 late_initcall(bpf_kprobe_multi_kfuncs_init);
3501 
3502 __bpf_kfunc_start_defs();
3503 
3504 __bpf_kfunc int bpf_send_signal_task(struct task_struct *task, int sig, enum pid_type type,
3505 				     u64 value)
3506 {
3507 	if (type != PIDTYPE_PID && type != PIDTYPE_TGID)
3508 		return -EINVAL;
3509 
3510 	return bpf_send_signal_common(sig, type, task, value);
3511 }
3512 
3513 __bpf_kfunc_end_defs();
3514