xref: /linux/kernel/trace/bpf_trace.c (revision 3fa7187eceee11998f756481e45ce8c4f9d9dc48)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_verifier.h>
10 #include <linux/bpf_perf_event.h>
11 #include <linux/btf.h>
12 #include <linux/filter.h>
13 #include <linux/uaccess.h>
14 #include <linux/ctype.h>
15 #include <linux/kprobes.h>
16 #include <linux/spinlock.h>
17 #include <linux/syscalls.h>
18 #include <linux/error-injection.h>
19 #include <linux/btf_ids.h>
20 #include <linux/bpf_lsm.h>
21 #include <linux/fprobe.h>
22 #include <linux/bsearch.h>
23 #include <linux/sort.h>
24 #include <linux/key.h>
25 #include <linux/verification.h>
26 
27 #include <net/bpf_sk_storage.h>
28 
29 #include <uapi/linux/bpf.h>
30 #include <uapi/linux/btf.h>
31 
32 #include <asm/tlb.h>
33 
34 #include "trace_probe.h"
35 #include "trace.h"
36 
37 #define CREATE_TRACE_POINTS
38 #include "bpf_trace.h"
39 
40 #define bpf_event_rcu_dereference(p)					\
41 	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
42 
43 #ifdef CONFIG_MODULES
44 struct bpf_trace_module {
45 	struct module *module;
46 	struct list_head list;
47 };
48 
49 static LIST_HEAD(bpf_trace_modules);
50 static DEFINE_MUTEX(bpf_module_mutex);
51 
52 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
53 {
54 	struct bpf_raw_event_map *btp, *ret = NULL;
55 	struct bpf_trace_module *btm;
56 	unsigned int i;
57 
58 	mutex_lock(&bpf_module_mutex);
59 	list_for_each_entry(btm, &bpf_trace_modules, list) {
60 		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
61 			btp = &btm->module->bpf_raw_events[i];
62 			if (!strcmp(btp->tp->name, name)) {
63 				if (try_module_get(btm->module))
64 					ret = btp;
65 				goto out;
66 			}
67 		}
68 	}
69 out:
70 	mutex_unlock(&bpf_module_mutex);
71 	return ret;
72 }
73 #else
74 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
75 {
76 	return NULL;
77 }
78 #endif /* CONFIG_MODULES */
79 
80 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
81 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
82 
83 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
84 				  u64 flags, const struct btf **btf,
85 				  s32 *btf_id);
86 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx);
87 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
88 
89 /**
90  * trace_call_bpf - invoke BPF program
91  * @call: tracepoint event
92  * @ctx: opaque context pointer
93  *
94  * kprobe handlers execute BPF programs via this helper.
95  * Can be used from static tracepoints in the future.
96  *
97  * Return: BPF programs always return an integer which is interpreted by
98  * kprobe handler as:
99  * 0 - return from kprobe (event is filtered out)
100  * 1 - store kprobe event into ring buffer
101  * Other values are reserved and currently alias to 1
102  */
103 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
104 {
105 	unsigned int ret;
106 
107 	cant_sleep();
108 
109 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
110 		/*
111 		 * since some bpf program is already running on this cpu,
112 		 * don't call into another bpf program (same or different)
113 		 * and don't send kprobe event into ring-buffer,
114 		 * so return zero here
115 		 */
116 		ret = 0;
117 		goto out;
118 	}
119 
120 	/*
121 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
122 	 * to all call sites, we did a bpf_prog_array_valid() there to check
123 	 * whether call->prog_array is empty or not, which is
124 	 * a heuristic to speed up execution.
125 	 *
126 	 * If bpf_prog_array_valid() fetched prog_array was
127 	 * non-NULL, we go into trace_call_bpf() and do the actual
128 	 * proper rcu_dereference() under RCU lock.
129 	 * If it turns out that prog_array is NULL then, we bail out.
130 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
131 	 * was NULL, you'll skip the prog_array with the risk of missing
132 	 * out of events when it was updated in between this and the
133 	 * rcu_dereference() which is accepted risk.
134 	 */
135 	rcu_read_lock();
136 	ret = bpf_prog_run_array(rcu_dereference(call->prog_array),
137 				 ctx, bpf_prog_run);
138 	rcu_read_unlock();
139 
140  out:
141 	__this_cpu_dec(bpf_prog_active);
142 
143 	return ret;
144 }
145 
146 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
147 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
148 {
149 	regs_set_return_value(regs, rc);
150 	override_function_with_return(regs);
151 	return 0;
152 }
153 
154 static const struct bpf_func_proto bpf_override_return_proto = {
155 	.func		= bpf_override_return,
156 	.gpl_only	= true,
157 	.ret_type	= RET_INTEGER,
158 	.arg1_type	= ARG_PTR_TO_CTX,
159 	.arg2_type	= ARG_ANYTHING,
160 };
161 #endif
162 
163 static __always_inline int
164 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
165 {
166 	int ret;
167 
168 	ret = copy_from_user_nofault(dst, unsafe_ptr, size);
169 	if (unlikely(ret < 0))
170 		memset(dst, 0, size);
171 	return ret;
172 }
173 
174 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
175 	   const void __user *, unsafe_ptr)
176 {
177 	return bpf_probe_read_user_common(dst, size, unsafe_ptr);
178 }
179 
180 const struct bpf_func_proto bpf_probe_read_user_proto = {
181 	.func		= bpf_probe_read_user,
182 	.gpl_only	= true,
183 	.ret_type	= RET_INTEGER,
184 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
185 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
186 	.arg3_type	= ARG_ANYTHING,
187 };
188 
189 static __always_inline int
190 bpf_probe_read_user_str_common(void *dst, u32 size,
191 			       const void __user *unsafe_ptr)
192 {
193 	int ret;
194 
195 	/*
196 	 * NB: We rely on strncpy_from_user() not copying junk past the NUL
197 	 * terminator into `dst`.
198 	 *
199 	 * strncpy_from_user() does long-sized strides in the fast path. If the
200 	 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
201 	 * then there could be junk after the NUL in `dst`. If user takes `dst`
202 	 * and keys a hash map with it, then semantically identical strings can
203 	 * occupy multiple entries in the map.
204 	 */
205 	ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
206 	if (unlikely(ret < 0))
207 		memset(dst, 0, size);
208 	return ret;
209 }
210 
211 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
212 	   const void __user *, unsafe_ptr)
213 {
214 	return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
215 }
216 
217 const struct bpf_func_proto bpf_probe_read_user_str_proto = {
218 	.func		= bpf_probe_read_user_str,
219 	.gpl_only	= true,
220 	.ret_type	= RET_INTEGER,
221 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
222 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
223 	.arg3_type	= ARG_ANYTHING,
224 };
225 
226 static __always_inline int
227 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
228 {
229 	int ret;
230 
231 	ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
232 	if (unlikely(ret < 0))
233 		memset(dst, 0, size);
234 	return ret;
235 }
236 
237 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
238 	   const void *, unsafe_ptr)
239 {
240 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
241 }
242 
243 const struct bpf_func_proto bpf_probe_read_kernel_proto = {
244 	.func		= bpf_probe_read_kernel,
245 	.gpl_only	= true,
246 	.ret_type	= RET_INTEGER,
247 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
248 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
249 	.arg3_type	= ARG_ANYTHING,
250 };
251 
252 static __always_inline int
253 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
254 {
255 	int ret;
256 
257 	/*
258 	 * The strncpy_from_kernel_nofault() call will likely not fill the
259 	 * entire buffer, but that's okay in this circumstance as we're probing
260 	 * arbitrary memory anyway similar to bpf_probe_read_*() and might
261 	 * as well probe the stack. Thus, memory is explicitly cleared
262 	 * only in error case, so that improper users ignoring return
263 	 * code altogether don't copy garbage; otherwise length of string
264 	 * is returned that can be used for bpf_perf_event_output() et al.
265 	 */
266 	ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
267 	if (unlikely(ret < 0))
268 		memset(dst, 0, size);
269 	return ret;
270 }
271 
272 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
273 	   const void *, unsafe_ptr)
274 {
275 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
276 }
277 
278 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
279 	.func		= bpf_probe_read_kernel_str,
280 	.gpl_only	= true,
281 	.ret_type	= RET_INTEGER,
282 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
283 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
284 	.arg3_type	= ARG_ANYTHING,
285 };
286 
287 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
288 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
289 	   const void *, unsafe_ptr)
290 {
291 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
292 		return bpf_probe_read_user_common(dst, size,
293 				(__force void __user *)unsafe_ptr);
294 	}
295 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
296 }
297 
298 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
299 	.func		= bpf_probe_read_compat,
300 	.gpl_only	= true,
301 	.ret_type	= RET_INTEGER,
302 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
303 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
304 	.arg3_type	= ARG_ANYTHING,
305 };
306 
307 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
308 	   const void *, unsafe_ptr)
309 {
310 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
311 		return bpf_probe_read_user_str_common(dst, size,
312 				(__force void __user *)unsafe_ptr);
313 	}
314 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
315 }
316 
317 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
318 	.func		= bpf_probe_read_compat_str,
319 	.gpl_only	= true,
320 	.ret_type	= RET_INTEGER,
321 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
322 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
323 	.arg3_type	= ARG_ANYTHING,
324 };
325 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
326 
327 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
328 	   u32, size)
329 {
330 	/*
331 	 * Ensure we're in user context which is safe for the helper to
332 	 * run. This helper has no business in a kthread.
333 	 *
334 	 * access_ok() should prevent writing to non-user memory, but in
335 	 * some situations (nommu, temporary switch, etc) access_ok() does
336 	 * not provide enough validation, hence the check on KERNEL_DS.
337 	 *
338 	 * nmi_uaccess_okay() ensures the probe is not run in an interim
339 	 * state, when the task or mm are switched. This is specifically
340 	 * required to prevent the use of temporary mm.
341 	 */
342 
343 	if (unlikely(in_interrupt() ||
344 		     current->flags & (PF_KTHREAD | PF_EXITING)))
345 		return -EPERM;
346 	if (unlikely(!nmi_uaccess_okay()))
347 		return -EPERM;
348 
349 	return copy_to_user_nofault(unsafe_ptr, src, size);
350 }
351 
352 static const struct bpf_func_proto bpf_probe_write_user_proto = {
353 	.func		= bpf_probe_write_user,
354 	.gpl_only	= true,
355 	.ret_type	= RET_INTEGER,
356 	.arg1_type	= ARG_ANYTHING,
357 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
358 	.arg3_type	= ARG_CONST_SIZE,
359 };
360 
361 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
362 {
363 	if (!capable(CAP_SYS_ADMIN))
364 		return NULL;
365 
366 	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
367 			    current->comm, task_pid_nr(current));
368 
369 	return &bpf_probe_write_user_proto;
370 }
371 
372 #define MAX_TRACE_PRINTK_VARARGS	3
373 #define BPF_TRACE_PRINTK_SIZE		1024
374 
375 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
376 	   u64, arg2, u64, arg3)
377 {
378 	u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 };
379 	struct bpf_bprintf_data data = {
380 		.get_bin_args	= true,
381 		.get_buf	= true,
382 	};
383 	int ret;
384 
385 	ret = bpf_bprintf_prepare(fmt, fmt_size, args,
386 				  MAX_TRACE_PRINTK_VARARGS, &data);
387 	if (ret < 0)
388 		return ret;
389 
390 	ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
391 
392 	trace_bpf_trace_printk(data.buf);
393 
394 	bpf_bprintf_cleanup(&data);
395 
396 	return ret;
397 }
398 
399 static const struct bpf_func_proto bpf_trace_printk_proto = {
400 	.func		= bpf_trace_printk,
401 	.gpl_only	= true,
402 	.ret_type	= RET_INTEGER,
403 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
404 	.arg2_type	= ARG_CONST_SIZE,
405 };
406 
407 static void __set_printk_clr_event(void)
408 {
409 	/*
410 	 * This program might be calling bpf_trace_printk,
411 	 * so enable the associated bpf_trace/bpf_trace_printk event.
412 	 * Repeat this each time as it is possible a user has
413 	 * disabled bpf_trace_printk events.  By loading a program
414 	 * calling bpf_trace_printk() however the user has expressed
415 	 * the intent to see such events.
416 	 */
417 	if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
418 		pr_warn_ratelimited("could not enable bpf_trace_printk events");
419 }
420 
421 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
422 {
423 	__set_printk_clr_event();
424 	return &bpf_trace_printk_proto;
425 }
426 
427 BPF_CALL_4(bpf_trace_vprintk, char *, fmt, u32, fmt_size, const void *, args,
428 	   u32, data_len)
429 {
430 	struct bpf_bprintf_data data = {
431 		.get_bin_args	= true,
432 		.get_buf	= true,
433 	};
434 	int ret, num_args;
435 
436 	if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
437 	    (data_len && !args))
438 		return -EINVAL;
439 	num_args = data_len / 8;
440 
441 	ret = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
442 	if (ret < 0)
443 		return ret;
444 
445 	ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
446 
447 	trace_bpf_trace_printk(data.buf);
448 
449 	bpf_bprintf_cleanup(&data);
450 
451 	return ret;
452 }
453 
454 static const struct bpf_func_proto bpf_trace_vprintk_proto = {
455 	.func		= bpf_trace_vprintk,
456 	.gpl_only	= true,
457 	.ret_type	= RET_INTEGER,
458 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
459 	.arg2_type	= ARG_CONST_SIZE,
460 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
461 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
462 };
463 
464 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void)
465 {
466 	__set_printk_clr_event();
467 	return &bpf_trace_vprintk_proto;
468 }
469 
470 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
471 	   const void *, args, u32, data_len)
472 {
473 	struct bpf_bprintf_data data = {
474 		.get_bin_args	= true,
475 	};
476 	int err, num_args;
477 
478 	if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
479 	    (data_len && !args))
480 		return -EINVAL;
481 	num_args = data_len / 8;
482 
483 	err = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
484 	if (err < 0)
485 		return err;
486 
487 	seq_bprintf(m, fmt, data.bin_args);
488 
489 	bpf_bprintf_cleanup(&data);
490 
491 	return seq_has_overflowed(m) ? -EOVERFLOW : 0;
492 }
493 
494 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
495 
496 static const struct bpf_func_proto bpf_seq_printf_proto = {
497 	.func		= bpf_seq_printf,
498 	.gpl_only	= true,
499 	.ret_type	= RET_INTEGER,
500 	.arg1_type	= ARG_PTR_TO_BTF_ID,
501 	.arg1_btf_id	= &btf_seq_file_ids[0],
502 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
503 	.arg3_type	= ARG_CONST_SIZE,
504 	.arg4_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
505 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
506 };
507 
508 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
509 {
510 	return seq_write(m, data, len) ? -EOVERFLOW : 0;
511 }
512 
513 static const struct bpf_func_proto bpf_seq_write_proto = {
514 	.func		= bpf_seq_write,
515 	.gpl_only	= true,
516 	.ret_type	= RET_INTEGER,
517 	.arg1_type	= ARG_PTR_TO_BTF_ID,
518 	.arg1_btf_id	= &btf_seq_file_ids[0],
519 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
520 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
521 };
522 
523 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
524 	   u32, btf_ptr_size, u64, flags)
525 {
526 	const struct btf *btf;
527 	s32 btf_id;
528 	int ret;
529 
530 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
531 	if (ret)
532 		return ret;
533 
534 	return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
535 }
536 
537 static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
538 	.func		= bpf_seq_printf_btf,
539 	.gpl_only	= true,
540 	.ret_type	= RET_INTEGER,
541 	.arg1_type	= ARG_PTR_TO_BTF_ID,
542 	.arg1_btf_id	= &btf_seq_file_ids[0],
543 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
544 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
545 	.arg4_type	= ARG_ANYTHING,
546 };
547 
548 static __always_inline int
549 get_map_perf_counter(struct bpf_map *map, u64 flags,
550 		     u64 *value, u64 *enabled, u64 *running)
551 {
552 	struct bpf_array *array = container_of(map, struct bpf_array, map);
553 	unsigned int cpu = smp_processor_id();
554 	u64 index = flags & BPF_F_INDEX_MASK;
555 	struct bpf_event_entry *ee;
556 
557 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
558 		return -EINVAL;
559 	if (index == BPF_F_CURRENT_CPU)
560 		index = cpu;
561 	if (unlikely(index >= array->map.max_entries))
562 		return -E2BIG;
563 
564 	ee = READ_ONCE(array->ptrs[index]);
565 	if (!ee)
566 		return -ENOENT;
567 
568 	return perf_event_read_local(ee->event, value, enabled, running);
569 }
570 
571 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
572 {
573 	u64 value = 0;
574 	int err;
575 
576 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
577 	/*
578 	 * this api is ugly since we miss [-22..-2] range of valid
579 	 * counter values, but that's uapi
580 	 */
581 	if (err)
582 		return err;
583 	return value;
584 }
585 
586 static const struct bpf_func_proto bpf_perf_event_read_proto = {
587 	.func		= bpf_perf_event_read,
588 	.gpl_only	= true,
589 	.ret_type	= RET_INTEGER,
590 	.arg1_type	= ARG_CONST_MAP_PTR,
591 	.arg2_type	= ARG_ANYTHING,
592 };
593 
594 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
595 	   struct bpf_perf_event_value *, buf, u32, size)
596 {
597 	int err = -EINVAL;
598 
599 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
600 		goto clear;
601 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
602 				   &buf->running);
603 	if (unlikely(err))
604 		goto clear;
605 	return 0;
606 clear:
607 	memset(buf, 0, size);
608 	return err;
609 }
610 
611 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
612 	.func		= bpf_perf_event_read_value,
613 	.gpl_only	= true,
614 	.ret_type	= RET_INTEGER,
615 	.arg1_type	= ARG_CONST_MAP_PTR,
616 	.arg2_type	= ARG_ANYTHING,
617 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
618 	.arg4_type	= ARG_CONST_SIZE,
619 };
620 
621 static __always_inline u64
622 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
623 			u64 flags, struct perf_sample_data *sd)
624 {
625 	struct bpf_array *array = container_of(map, struct bpf_array, map);
626 	unsigned int cpu = smp_processor_id();
627 	u64 index = flags & BPF_F_INDEX_MASK;
628 	struct bpf_event_entry *ee;
629 	struct perf_event *event;
630 
631 	if (index == BPF_F_CURRENT_CPU)
632 		index = cpu;
633 	if (unlikely(index >= array->map.max_entries))
634 		return -E2BIG;
635 
636 	ee = READ_ONCE(array->ptrs[index]);
637 	if (!ee)
638 		return -ENOENT;
639 
640 	event = ee->event;
641 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
642 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
643 		return -EINVAL;
644 
645 	if (unlikely(event->oncpu != cpu))
646 		return -EOPNOTSUPP;
647 
648 	return perf_event_output(event, sd, regs);
649 }
650 
651 /*
652  * Support executing tracepoints in normal, irq, and nmi context that each call
653  * bpf_perf_event_output
654  */
655 struct bpf_trace_sample_data {
656 	struct perf_sample_data sds[3];
657 };
658 
659 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
660 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
661 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
662 	   u64, flags, void *, data, u64, size)
663 {
664 	struct bpf_trace_sample_data *sds;
665 	struct perf_raw_record raw = {
666 		.frag = {
667 			.size = size,
668 			.data = data,
669 		},
670 	};
671 	struct perf_sample_data *sd;
672 	int nest_level, err;
673 
674 	preempt_disable();
675 	sds = this_cpu_ptr(&bpf_trace_sds);
676 	nest_level = this_cpu_inc_return(bpf_trace_nest_level);
677 
678 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
679 		err = -EBUSY;
680 		goto out;
681 	}
682 
683 	sd = &sds->sds[nest_level - 1];
684 
685 	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
686 		err = -EINVAL;
687 		goto out;
688 	}
689 
690 	perf_sample_data_init(sd, 0, 0);
691 	perf_sample_save_raw_data(sd, &raw);
692 
693 	err = __bpf_perf_event_output(regs, map, flags, sd);
694 out:
695 	this_cpu_dec(bpf_trace_nest_level);
696 	preempt_enable();
697 	return err;
698 }
699 
700 static const struct bpf_func_proto bpf_perf_event_output_proto = {
701 	.func		= bpf_perf_event_output,
702 	.gpl_only	= true,
703 	.ret_type	= RET_INTEGER,
704 	.arg1_type	= ARG_PTR_TO_CTX,
705 	.arg2_type	= ARG_CONST_MAP_PTR,
706 	.arg3_type	= ARG_ANYTHING,
707 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
708 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
709 };
710 
711 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
712 struct bpf_nested_pt_regs {
713 	struct pt_regs regs[3];
714 };
715 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
716 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
717 
718 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
719 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
720 {
721 	struct perf_raw_frag frag = {
722 		.copy		= ctx_copy,
723 		.size		= ctx_size,
724 		.data		= ctx,
725 	};
726 	struct perf_raw_record raw = {
727 		.frag = {
728 			{
729 				.next	= ctx_size ? &frag : NULL,
730 			},
731 			.size	= meta_size,
732 			.data	= meta,
733 		},
734 	};
735 	struct perf_sample_data *sd;
736 	struct pt_regs *regs;
737 	int nest_level;
738 	u64 ret;
739 
740 	preempt_disable();
741 	nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
742 
743 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
744 		ret = -EBUSY;
745 		goto out;
746 	}
747 	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
748 	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
749 
750 	perf_fetch_caller_regs(regs);
751 	perf_sample_data_init(sd, 0, 0);
752 	perf_sample_save_raw_data(sd, &raw);
753 
754 	ret = __bpf_perf_event_output(regs, map, flags, sd);
755 out:
756 	this_cpu_dec(bpf_event_output_nest_level);
757 	preempt_enable();
758 	return ret;
759 }
760 
761 BPF_CALL_0(bpf_get_current_task)
762 {
763 	return (long) current;
764 }
765 
766 const struct bpf_func_proto bpf_get_current_task_proto = {
767 	.func		= bpf_get_current_task,
768 	.gpl_only	= true,
769 	.ret_type	= RET_INTEGER,
770 };
771 
772 BPF_CALL_0(bpf_get_current_task_btf)
773 {
774 	return (unsigned long) current;
775 }
776 
777 const struct bpf_func_proto bpf_get_current_task_btf_proto = {
778 	.func		= bpf_get_current_task_btf,
779 	.gpl_only	= true,
780 	.ret_type	= RET_PTR_TO_BTF_ID_TRUSTED,
781 	.ret_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
782 };
783 
784 BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task)
785 {
786 	return (unsigned long) task_pt_regs(task);
787 }
788 
789 BTF_ID_LIST(bpf_task_pt_regs_ids)
790 BTF_ID(struct, pt_regs)
791 
792 const struct bpf_func_proto bpf_task_pt_regs_proto = {
793 	.func		= bpf_task_pt_regs,
794 	.gpl_only	= true,
795 	.arg1_type	= ARG_PTR_TO_BTF_ID,
796 	.arg1_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
797 	.ret_type	= RET_PTR_TO_BTF_ID,
798 	.ret_btf_id	= &bpf_task_pt_regs_ids[0],
799 };
800 
801 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
802 {
803 	struct bpf_array *array = container_of(map, struct bpf_array, map);
804 	struct cgroup *cgrp;
805 
806 	if (unlikely(idx >= array->map.max_entries))
807 		return -E2BIG;
808 
809 	cgrp = READ_ONCE(array->ptrs[idx]);
810 	if (unlikely(!cgrp))
811 		return -EAGAIN;
812 
813 	return task_under_cgroup_hierarchy(current, cgrp);
814 }
815 
816 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
817 	.func           = bpf_current_task_under_cgroup,
818 	.gpl_only       = false,
819 	.ret_type       = RET_INTEGER,
820 	.arg1_type      = ARG_CONST_MAP_PTR,
821 	.arg2_type      = ARG_ANYTHING,
822 };
823 
824 struct send_signal_irq_work {
825 	struct irq_work irq_work;
826 	struct task_struct *task;
827 	u32 sig;
828 	enum pid_type type;
829 };
830 
831 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
832 
833 static void do_bpf_send_signal(struct irq_work *entry)
834 {
835 	struct send_signal_irq_work *work;
836 
837 	work = container_of(entry, struct send_signal_irq_work, irq_work);
838 	group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
839 	put_task_struct(work->task);
840 }
841 
842 static int bpf_send_signal_common(u32 sig, enum pid_type type)
843 {
844 	struct send_signal_irq_work *work = NULL;
845 
846 	/* Similar to bpf_probe_write_user, task needs to be
847 	 * in a sound condition and kernel memory access be
848 	 * permitted in order to send signal to the current
849 	 * task.
850 	 */
851 	if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
852 		return -EPERM;
853 	if (unlikely(!nmi_uaccess_okay()))
854 		return -EPERM;
855 	/* Task should not be pid=1 to avoid kernel panic. */
856 	if (unlikely(is_global_init(current)))
857 		return -EPERM;
858 
859 	if (irqs_disabled()) {
860 		/* Do an early check on signal validity. Otherwise,
861 		 * the error is lost in deferred irq_work.
862 		 */
863 		if (unlikely(!valid_signal(sig)))
864 			return -EINVAL;
865 
866 		work = this_cpu_ptr(&send_signal_work);
867 		if (irq_work_is_busy(&work->irq_work))
868 			return -EBUSY;
869 
870 		/* Add the current task, which is the target of sending signal,
871 		 * to the irq_work. The current task may change when queued
872 		 * irq works get executed.
873 		 */
874 		work->task = get_task_struct(current);
875 		work->sig = sig;
876 		work->type = type;
877 		irq_work_queue(&work->irq_work);
878 		return 0;
879 	}
880 
881 	return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
882 }
883 
884 BPF_CALL_1(bpf_send_signal, u32, sig)
885 {
886 	return bpf_send_signal_common(sig, PIDTYPE_TGID);
887 }
888 
889 static const struct bpf_func_proto bpf_send_signal_proto = {
890 	.func		= bpf_send_signal,
891 	.gpl_only	= false,
892 	.ret_type	= RET_INTEGER,
893 	.arg1_type	= ARG_ANYTHING,
894 };
895 
896 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
897 {
898 	return bpf_send_signal_common(sig, PIDTYPE_PID);
899 }
900 
901 static const struct bpf_func_proto bpf_send_signal_thread_proto = {
902 	.func		= bpf_send_signal_thread,
903 	.gpl_only	= false,
904 	.ret_type	= RET_INTEGER,
905 	.arg1_type	= ARG_ANYTHING,
906 };
907 
908 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
909 {
910 	struct path copy;
911 	long len;
912 	char *p;
913 
914 	if (!sz)
915 		return 0;
916 
917 	/*
918 	 * The path pointer is verified as trusted and safe to use,
919 	 * but let's double check it's valid anyway to workaround
920 	 * potentially broken verifier.
921 	 */
922 	len = copy_from_kernel_nofault(&copy, path, sizeof(*path));
923 	if (len < 0)
924 		return len;
925 
926 	p = d_path(&copy, buf, sz);
927 	if (IS_ERR(p)) {
928 		len = PTR_ERR(p);
929 	} else {
930 		len = buf + sz - p;
931 		memmove(buf, p, len);
932 	}
933 
934 	return len;
935 }
936 
937 BTF_SET_START(btf_allowlist_d_path)
938 #ifdef CONFIG_SECURITY
939 BTF_ID(func, security_file_permission)
940 BTF_ID(func, security_inode_getattr)
941 BTF_ID(func, security_file_open)
942 #endif
943 #ifdef CONFIG_SECURITY_PATH
944 BTF_ID(func, security_path_truncate)
945 #endif
946 BTF_ID(func, vfs_truncate)
947 BTF_ID(func, vfs_fallocate)
948 BTF_ID(func, dentry_open)
949 BTF_ID(func, vfs_getattr)
950 BTF_ID(func, filp_close)
951 BTF_SET_END(btf_allowlist_d_path)
952 
953 static bool bpf_d_path_allowed(const struct bpf_prog *prog)
954 {
955 	if (prog->type == BPF_PROG_TYPE_TRACING &&
956 	    prog->expected_attach_type == BPF_TRACE_ITER)
957 		return true;
958 
959 	if (prog->type == BPF_PROG_TYPE_LSM)
960 		return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id);
961 
962 	return btf_id_set_contains(&btf_allowlist_d_path,
963 				   prog->aux->attach_btf_id);
964 }
965 
966 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
967 
968 static const struct bpf_func_proto bpf_d_path_proto = {
969 	.func		= bpf_d_path,
970 	.gpl_only	= false,
971 	.ret_type	= RET_INTEGER,
972 	.arg1_type	= ARG_PTR_TO_BTF_ID,
973 	.arg1_btf_id	= &bpf_d_path_btf_ids[0],
974 	.arg2_type	= ARG_PTR_TO_MEM,
975 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
976 	.allowed	= bpf_d_path_allowed,
977 };
978 
979 #define BTF_F_ALL	(BTF_F_COMPACT  | BTF_F_NONAME | \
980 			 BTF_F_PTR_RAW | BTF_F_ZERO)
981 
982 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
983 				  u64 flags, const struct btf **btf,
984 				  s32 *btf_id)
985 {
986 	const struct btf_type *t;
987 
988 	if (unlikely(flags & ~(BTF_F_ALL)))
989 		return -EINVAL;
990 
991 	if (btf_ptr_size != sizeof(struct btf_ptr))
992 		return -EINVAL;
993 
994 	*btf = bpf_get_btf_vmlinux();
995 
996 	if (IS_ERR_OR_NULL(*btf))
997 		return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
998 
999 	if (ptr->type_id > 0)
1000 		*btf_id = ptr->type_id;
1001 	else
1002 		return -EINVAL;
1003 
1004 	if (*btf_id > 0)
1005 		t = btf_type_by_id(*btf, *btf_id);
1006 	if (*btf_id <= 0 || !t)
1007 		return -ENOENT;
1008 
1009 	return 0;
1010 }
1011 
1012 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
1013 	   u32, btf_ptr_size, u64, flags)
1014 {
1015 	const struct btf *btf;
1016 	s32 btf_id;
1017 	int ret;
1018 
1019 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
1020 	if (ret)
1021 		return ret;
1022 
1023 	return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
1024 				      flags);
1025 }
1026 
1027 const struct bpf_func_proto bpf_snprintf_btf_proto = {
1028 	.func		= bpf_snprintf_btf,
1029 	.gpl_only	= false,
1030 	.ret_type	= RET_INTEGER,
1031 	.arg1_type	= ARG_PTR_TO_MEM,
1032 	.arg2_type	= ARG_CONST_SIZE,
1033 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1034 	.arg4_type	= ARG_CONST_SIZE,
1035 	.arg5_type	= ARG_ANYTHING,
1036 };
1037 
1038 BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx)
1039 {
1040 	/* This helper call is inlined by verifier. */
1041 	return ((u64 *)ctx)[-2];
1042 }
1043 
1044 static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = {
1045 	.func		= bpf_get_func_ip_tracing,
1046 	.gpl_only	= true,
1047 	.ret_type	= RET_INTEGER,
1048 	.arg1_type	= ARG_PTR_TO_CTX,
1049 };
1050 
1051 #ifdef CONFIG_X86_KERNEL_IBT
1052 static unsigned long get_entry_ip(unsigned long fentry_ip)
1053 {
1054 	u32 instr;
1055 
1056 	/* Being extra safe in here in case entry ip is on the page-edge. */
1057 	if (get_kernel_nofault(instr, (u32 *) fentry_ip - 1))
1058 		return fentry_ip;
1059 	if (is_endbr(instr))
1060 		fentry_ip -= ENDBR_INSN_SIZE;
1061 	return fentry_ip;
1062 }
1063 #else
1064 #define get_entry_ip(fentry_ip) fentry_ip
1065 #endif
1066 
1067 BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs)
1068 {
1069 	struct kprobe *kp = kprobe_running();
1070 
1071 	if (!kp || !(kp->flags & KPROBE_FLAG_ON_FUNC_ENTRY))
1072 		return 0;
1073 
1074 	return get_entry_ip((uintptr_t)kp->addr);
1075 }
1076 
1077 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = {
1078 	.func		= bpf_get_func_ip_kprobe,
1079 	.gpl_only	= true,
1080 	.ret_type	= RET_INTEGER,
1081 	.arg1_type	= ARG_PTR_TO_CTX,
1082 };
1083 
1084 BPF_CALL_1(bpf_get_func_ip_kprobe_multi, struct pt_regs *, regs)
1085 {
1086 	return bpf_kprobe_multi_entry_ip(current->bpf_ctx);
1087 }
1088 
1089 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe_multi = {
1090 	.func		= bpf_get_func_ip_kprobe_multi,
1091 	.gpl_only	= false,
1092 	.ret_type	= RET_INTEGER,
1093 	.arg1_type	= ARG_PTR_TO_CTX,
1094 };
1095 
1096 BPF_CALL_1(bpf_get_attach_cookie_kprobe_multi, struct pt_regs *, regs)
1097 {
1098 	return bpf_kprobe_multi_cookie(current->bpf_ctx);
1099 }
1100 
1101 static const struct bpf_func_proto bpf_get_attach_cookie_proto_kmulti = {
1102 	.func		= bpf_get_attach_cookie_kprobe_multi,
1103 	.gpl_only	= false,
1104 	.ret_type	= RET_INTEGER,
1105 	.arg1_type	= ARG_PTR_TO_CTX,
1106 };
1107 
1108 BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx)
1109 {
1110 	struct bpf_trace_run_ctx *run_ctx;
1111 
1112 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1113 	return run_ctx->bpf_cookie;
1114 }
1115 
1116 static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = {
1117 	.func		= bpf_get_attach_cookie_trace,
1118 	.gpl_only	= false,
1119 	.ret_type	= RET_INTEGER,
1120 	.arg1_type	= ARG_PTR_TO_CTX,
1121 };
1122 
1123 BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx)
1124 {
1125 	return ctx->event->bpf_cookie;
1126 }
1127 
1128 static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = {
1129 	.func		= bpf_get_attach_cookie_pe,
1130 	.gpl_only	= false,
1131 	.ret_type	= RET_INTEGER,
1132 	.arg1_type	= ARG_PTR_TO_CTX,
1133 };
1134 
1135 BPF_CALL_1(bpf_get_attach_cookie_tracing, void *, ctx)
1136 {
1137 	struct bpf_trace_run_ctx *run_ctx;
1138 
1139 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1140 	return run_ctx->bpf_cookie;
1141 }
1142 
1143 static const struct bpf_func_proto bpf_get_attach_cookie_proto_tracing = {
1144 	.func		= bpf_get_attach_cookie_tracing,
1145 	.gpl_only	= false,
1146 	.ret_type	= RET_INTEGER,
1147 	.arg1_type	= ARG_PTR_TO_CTX,
1148 };
1149 
1150 BPF_CALL_3(bpf_get_branch_snapshot, void *, buf, u32, size, u64, flags)
1151 {
1152 #ifndef CONFIG_X86
1153 	return -ENOENT;
1154 #else
1155 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1156 	u32 entry_cnt = size / br_entry_size;
1157 
1158 	entry_cnt = static_call(perf_snapshot_branch_stack)(buf, entry_cnt);
1159 
1160 	if (unlikely(flags))
1161 		return -EINVAL;
1162 
1163 	if (!entry_cnt)
1164 		return -ENOENT;
1165 
1166 	return entry_cnt * br_entry_size;
1167 #endif
1168 }
1169 
1170 static const struct bpf_func_proto bpf_get_branch_snapshot_proto = {
1171 	.func		= bpf_get_branch_snapshot,
1172 	.gpl_only	= true,
1173 	.ret_type	= RET_INTEGER,
1174 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1175 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1176 };
1177 
1178 BPF_CALL_3(get_func_arg, void *, ctx, u32, n, u64 *, value)
1179 {
1180 	/* This helper call is inlined by verifier. */
1181 	u64 nr_args = ((u64 *)ctx)[-1];
1182 
1183 	if ((u64) n >= nr_args)
1184 		return -EINVAL;
1185 	*value = ((u64 *)ctx)[n];
1186 	return 0;
1187 }
1188 
1189 static const struct bpf_func_proto bpf_get_func_arg_proto = {
1190 	.func		= get_func_arg,
1191 	.ret_type	= RET_INTEGER,
1192 	.arg1_type	= ARG_PTR_TO_CTX,
1193 	.arg2_type	= ARG_ANYTHING,
1194 	.arg3_type	= ARG_PTR_TO_LONG,
1195 };
1196 
1197 BPF_CALL_2(get_func_ret, void *, ctx, u64 *, value)
1198 {
1199 	/* This helper call is inlined by verifier. */
1200 	u64 nr_args = ((u64 *)ctx)[-1];
1201 
1202 	*value = ((u64 *)ctx)[nr_args];
1203 	return 0;
1204 }
1205 
1206 static const struct bpf_func_proto bpf_get_func_ret_proto = {
1207 	.func		= get_func_ret,
1208 	.ret_type	= RET_INTEGER,
1209 	.arg1_type	= ARG_PTR_TO_CTX,
1210 	.arg2_type	= ARG_PTR_TO_LONG,
1211 };
1212 
1213 BPF_CALL_1(get_func_arg_cnt, void *, ctx)
1214 {
1215 	/* This helper call is inlined by verifier. */
1216 	return ((u64 *)ctx)[-1];
1217 }
1218 
1219 static const struct bpf_func_proto bpf_get_func_arg_cnt_proto = {
1220 	.func		= get_func_arg_cnt,
1221 	.ret_type	= RET_INTEGER,
1222 	.arg1_type	= ARG_PTR_TO_CTX,
1223 };
1224 
1225 #ifdef CONFIG_KEYS
1226 __diag_push();
1227 __diag_ignore_all("-Wmissing-prototypes",
1228 		  "kfuncs which will be used in BPF programs");
1229 
1230 /**
1231  * bpf_lookup_user_key - lookup a key by its serial
1232  * @serial: key handle serial number
1233  * @flags: lookup-specific flags
1234  *
1235  * Search a key with a given *serial* and the provided *flags*.
1236  * If found, increment the reference count of the key by one, and
1237  * return it in the bpf_key structure.
1238  *
1239  * The bpf_key structure must be passed to bpf_key_put() when done
1240  * with it, so that the key reference count is decremented and the
1241  * bpf_key structure is freed.
1242  *
1243  * Permission checks are deferred to the time the key is used by
1244  * one of the available key-specific kfuncs.
1245  *
1246  * Set *flags* with KEY_LOOKUP_CREATE, to attempt creating a requested
1247  * special keyring (e.g. session keyring), if it doesn't yet exist.
1248  * Set *flags* with KEY_LOOKUP_PARTIAL, to lookup a key without waiting
1249  * for the key construction, and to retrieve uninstantiated keys (keys
1250  * without data attached to them).
1251  *
1252  * Return: a bpf_key pointer with a valid key pointer if the key is found, a
1253  *         NULL pointer otherwise.
1254  */
1255 __bpf_kfunc struct bpf_key *bpf_lookup_user_key(u32 serial, u64 flags)
1256 {
1257 	key_ref_t key_ref;
1258 	struct bpf_key *bkey;
1259 
1260 	if (flags & ~KEY_LOOKUP_ALL)
1261 		return NULL;
1262 
1263 	/*
1264 	 * Permission check is deferred until the key is used, as the
1265 	 * intent of the caller is unknown here.
1266 	 */
1267 	key_ref = lookup_user_key(serial, flags, KEY_DEFER_PERM_CHECK);
1268 	if (IS_ERR(key_ref))
1269 		return NULL;
1270 
1271 	bkey = kmalloc(sizeof(*bkey), GFP_KERNEL);
1272 	if (!bkey) {
1273 		key_put(key_ref_to_ptr(key_ref));
1274 		return NULL;
1275 	}
1276 
1277 	bkey->key = key_ref_to_ptr(key_ref);
1278 	bkey->has_ref = true;
1279 
1280 	return bkey;
1281 }
1282 
1283 /**
1284  * bpf_lookup_system_key - lookup a key by a system-defined ID
1285  * @id: key ID
1286  *
1287  * Obtain a bpf_key structure with a key pointer set to the passed key ID.
1288  * The key pointer is marked as invalid, to prevent bpf_key_put() from
1289  * attempting to decrement the key reference count on that pointer. The key
1290  * pointer set in such way is currently understood only by
1291  * verify_pkcs7_signature().
1292  *
1293  * Set *id* to one of the values defined in include/linux/verification.h:
1294  * 0 for the primary keyring (immutable keyring of system keys);
1295  * VERIFY_USE_SECONDARY_KEYRING for both the primary and secondary keyring
1296  * (where keys can be added only if they are vouched for by existing keys
1297  * in those keyrings); VERIFY_USE_PLATFORM_KEYRING for the platform
1298  * keyring (primarily used by the integrity subsystem to verify a kexec'ed
1299  * kerned image and, possibly, the initramfs signature).
1300  *
1301  * Return: a bpf_key pointer with an invalid key pointer set from the
1302  *         pre-determined ID on success, a NULL pointer otherwise
1303  */
1304 __bpf_kfunc struct bpf_key *bpf_lookup_system_key(u64 id)
1305 {
1306 	struct bpf_key *bkey;
1307 
1308 	if (system_keyring_id_check(id) < 0)
1309 		return NULL;
1310 
1311 	bkey = kmalloc(sizeof(*bkey), GFP_ATOMIC);
1312 	if (!bkey)
1313 		return NULL;
1314 
1315 	bkey->key = (struct key *)(unsigned long)id;
1316 	bkey->has_ref = false;
1317 
1318 	return bkey;
1319 }
1320 
1321 /**
1322  * bpf_key_put - decrement key reference count if key is valid and free bpf_key
1323  * @bkey: bpf_key structure
1324  *
1325  * Decrement the reference count of the key inside *bkey*, if the pointer
1326  * is valid, and free *bkey*.
1327  */
1328 __bpf_kfunc void bpf_key_put(struct bpf_key *bkey)
1329 {
1330 	if (bkey->has_ref)
1331 		key_put(bkey->key);
1332 
1333 	kfree(bkey);
1334 }
1335 
1336 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
1337 /**
1338  * bpf_verify_pkcs7_signature - verify a PKCS#7 signature
1339  * @data_ptr: data to verify
1340  * @sig_ptr: signature of the data
1341  * @trusted_keyring: keyring with keys trusted for signature verification
1342  *
1343  * Verify the PKCS#7 signature *sig_ptr* against the supplied *data_ptr*
1344  * with keys in a keyring referenced by *trusted_keyring*.
1345  *
1346  * Return: 0 on success, a negative value on error.
1347  */
1348 __bpf_kfunc int bpf_verify_pkcs7_signature(struct bpf_dynptr_kern *data_ptr,
1349 			       struct bpf_dynptr_kern *sig_ptr,
1350 			       struct bpf_key *trusted_keyring)
1351 {
1352 	int ret;
1353 
1354 	if (trusted_keyring->has_ref) {
1355 		/*
1356 		 * Do the permission check deferred in bpf_lookup_user_key().
1357 		 * See bpf_lookup_user_key() for more details.
1358 		 *
1359 		 * A call to key_task_permission() here would be redundant, as
1360 		 * it is already done by keyring_search() called by
1361 		 * find_asymmetric_key().
1362 		 */
1363 		ret = key_validate(trusted_keyring->key);
1364 		if (ret < 0)
1365 			return ret;
1366 	}
1367 
1368 	return verify_pkcs7_signature(data_ptr->data,
1369 				      __bpf_dynptr_size(data_ptr),
1370 				      sig_ptr->data,
1371 				      __bpf_dynptr_size(sig_ptr),
1372 				      trusted_keyring->key,
1373 				      VERIFYING_UNSPECIFIED_SIGNATURE, NULL,
1374 				      NULL);
1375 }
1376 #endif /* CONFIG_SYSTEM_DATA_VERIFICATION */
1377 
1378 __diag_pop();
1379 
1380 BTF_SET8_START(key_sig_kfunc_set)
1381 BTF_ID_FLAGS(func, bpf_lookup_user_key, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE)
1382 BTF_ID_FLAGS(func, bpf_lookup_system_key, KF_ACQUIRE | KF_RET_NULL)
1383 BTF_ID_FLAGS(func, bpf_key_put, KF_RELEASE)
1384 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
1385 BTF_ID_FLAGS(func, bpf_verify_pkcs7_signature, KF_SLEEPABLE)
1386 #endif
1387 BTF_SET8_END(key_sig_kfunc_set)
1388 
1389 static const struct btf_kfunc_id_set bpf_key_sig_kfunc_set = {
1390 	.owner = THIS_MODULE,
1391 	.set = &key_sig_kfunc_set,
1392 };
1393 
1394 static int __init bpf_key_sig_kfuncs_init(void)
1395 {
1396 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
1397 					 &bpf_key_sig_kfunc_set);
1398 }
1399 
1400 late_initcall(bpf_key_sig_kfuncs_init);
1401 #endif /* CONFIG_KEYS */
1402 
1403 static const struct bpf_func_proto *
1404 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1405 {
1406 	switch (func_id) {
1407 	case BPF_FUNC_map_lookup_elem:
1408 		return &bpf_map_lookup_elem_proto;
1409 	case BPF_FUNC_map_update_elem:
1410 		return &bpf_map_update_elem_proto;
1411 	case BPF_FUNC_map_delete_elem:
1412 		return &bpf_map_delete_elem_proto;
1413 	case BPF_FUNC_map_push_elem:
1414 		return &bpf_map_push_elem_proto;
1415 	case BPF_FUNC_map_pop_elem:
1416 		return &bpf_map_pop_elem_proto;
1417 	case BPF_FUNC_map_peek_elem:
1418 		return &bpf_map_peek_elem_proto;
1419 	case BPF_FUNC_map_lookup_percpu_elem:
1420 		return &bpf_map_lookup_percpu_elem_proto;
1421 	case BPF_FUNC_ktime_get_ns:
1422 		return &bpf_ktime_get_ns_proto;
1423 	case BPF_FUNC_ktime_get_boot_ns:
1424 		return &bpf_ktime_get_boot_ns_proto;
1425 	case BPF_FUNC_tail_call:
1426 		return &bpf_tail_call_proto;
1427 	case BPF_FUNC_get_current_pid_tgid:
1428 		return &bpf_get_current_pid_tgid_proto;
1429 	case BPF_FUNC_get_current_task:
1430 		return &bpf_get_current_task_proto;
1431 	case BPF_FUNC_get_current_task_btf:
1432 		return &bpf_get_current_task_btf_proto;
1433 	case BPF_FUNC_task_pt_regs:
1434 		return &bpf_task_pt_regs_proto;
1435 	case BPF_FUNC_get_current_uid_gid:
1436 		return &bpf_get_current_uid_gid_proto;
1437 	case BPF_FUNC_get_current_comm:
1438 		return &bpf_get_current_comm_proto;
1439 	case BPF_FUNC_trace_printk:
1440 		return bpf_get_trace_printk_proto();
1441 	case BPF_FUNC_get_smp_processor_id:
1442 		return &bpf_get_smp_processor_id_proto;
1443 	case BPF_FUNC_get_numa_node_id:
1444 		return &bpf_get_numa_node_id_proto;
1445 	case BPF_FUNC_perf_event_read:
1446 		return &bpf_perf_event_read_proto;
1447 	case BPF_FUNC_current_task_under_cgroup:
1448 		return &bpf_current_task_under_cgroup_proto;
1449 	case BPF_FUNC_get_prandom_u32:
1450 		return &bpf_get_prandom_u32_proto;
1451 	case BPF_FUNC_probe_write_user:
1452 		return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ?
1453 		       NULL : bpf_get_probe_write_proto();
1454 	case BPF_FUNC_probe_read_user:
1455 		return &bpf_probe_read_user_proto;
1456 	case BPF_FUNC_probe_read_kernel:
1457 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1458 		       NULL : &bpf_probe_read_kernel_proto;
1459 	case BPF_FUNC_probe_read_user_str:
1460 		return &bpf_probe_read_user_str_proto;
1461 	case BPF_FUNC_probe_read_kernel_str:
1462 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1463 		       NULL : &bpf_probe_read_kernel_str_proto;
1464 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1465 	case BPF_FUNC_probe_read:
1466 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1467 		       NULL : &bpf_probe_read_compat_proto;
1468 	case BPF_FUNC_probe_read_str:
1469 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1470 		       NULL : &bpf_probe_read_compat_str_proto;
1471 #endif
1472 #ifdef CONFIG_CGROUPS
1473 	case BPF_FUNC_cgrp_storage_get:
1474 		return &bpf_cgrp_storage_get_proto;
1475 	case BPF_FUNC_cgrp_storage_delete:
1476 		return &bpf_cgrp_storage_delete_proto;
1477 #endif
1478 	case BPF_FUNC_send_signal:
1479 		return &bpf_send_signal_proto;
1480 	case BPF_FUNC_send_signal_thread:
1481 		return &bpf_send_signal_thread_proto;
1482 	case BPF_FUNC_perf_event_read_value:
1483 		return &bpf_perf_event_read_value_proto;
1484 	case BPF_FUNC_get_ns_current_pid_tgid:
1485 		return &bpf_get_ns_current_pid_tgid_proto;
1486 	case BPF_FUNC_ringbuf_output:
1487 		return &bpf_ringbuf_output_proto;
1488 	case BPF_FUNC_ringbuf_reserve:
1489 		return &bpf_ringbuf_reserve_proto;
1490 	case BPF_FUNC_ringbuf_submit:
1491 		return &bpf_ringbuf_submit_proto;
1492 	case BPF_FUNC_ringbuf_discard:
1493 		return &bpf_ringbuf_discard_proto;
1494 	case BPF_FUNC_ringbuf_query:
1495 		return &bpf_ringbuf_query_proto;
1496 	case BPF_FUNC_jiffies64:
1497 		return &bpf_jiffies64_proto;
1498 	case BPF_FUNC_get_task_stack:
1499 		return &bpf_get_task_stack_proto;
1500 	case BPF_FUNC_copy_from_user:
1501 		return &bpf_copy_from_user_proto;
1502 	case BPF_FUNC_copy_from_user_task:
1503 		return &bpf_copy_from_user_task_proto;
1504 	case BPF_FUNC_snprintf_btf:
1505 		return &bpf_snprintf_btf_proto;
1506 	case BPF_FUNC_per_cpu_ptr:
1507 		return &bpf_per_cpu_ptr_proto;
1508 	case BPF_FUNC_this_cpu_ptr:
1509 		return &bpf_this_cpu_ptr_proto;
1510 	case BPF_FUNC_task_storage_get:
1511 		if (bpf_prog_check_recur(prog))
1512 			return &bpf_task_storage_get_recur_proto;
1513 		return &bpf_task_storage_get_proto;
1514 	case BPF_FUNC_task_storage_delete:
1515 		if (bpf_prog_check_recur(prog))
1516 			return &bpf_task_storage_delete_recur_proto;
1517 		return &bpf_task_storage_delete_proto;
1518 	case BPF_FUNC_for_each_map_elem:
1519 		return &bpf_for_each_map_elem_proto;
1520 	case BPF_FUNC_snprintf:
1521 		return &bpf_snprintf_proto;
1522 	case BPF_FUNC_get_func_ip:
1523 		return &bpf_get_func_ip_proto_tracing;
1524 	case BPF_FUNC_get_branch_snapshot:
1525 		return &bpf_get_branch_snapshot_proto;
1526 	case BPF_FUNC_find_vma:
1527 		return &bpf_find_vma_proto;
1528 	case BPF_FUNC_trace_vprintk:
1529 		return bpf_get_trace_vprintk_proto();
1530 	default:
1531 		return bpf_base_func_proto(func_id);
1532 	}
1533 }
1534 
1535 static const struct bpf_func_proto *
1536 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1537 {
1538 	switch (func_id) {
1539 	case BPF_FUNC_perf_event_output:
1540 		return &bpf_perf_event_output_proto;
1541 	case BPF_FUNC_get_stackid:
1542 		return &bpf_get_stackid_proto;
1543 	case BPF_FUNC_get_stack:
1544 		return &bpf_get_stack_proto;
1545 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
1546 	case BPF_FUNC_override_return:
1547 		return &bpf_override_return_proto;
1548 #endif
1549 	case BPF_FUNC_get_func_ip:
1550 		return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI ?
1551 			&bpf_get_func_ip_proto_kprobe_multi :
1552 			&bpf_get_func_ip_proto_kprobe;
1553 	case BPF_FUNC_get_attach_cookie:
1554 		return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI ?
1555 			&bpf_get_attach_cookie_proto_kmulti :
1556 			&bpf_get_attach_cookie_proto_trace;
1557 	default:
1558 		return bpf_tracing_func_proto(func_id, prog);
1559 	}
1560 }
1561 
1562 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
1563 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1564 					const struct bpf_prog *prog,
1565 					struct bpf_insn_access_aux *info)
1566 {
1567 	if (off < 0 || off >= sizeof(struct pt_regs))
1568 		return false;
1569 	if (type != BPF_READ)
1570 		return false;
1571 	if (off % size != 0)
1572 		return false;
1573 	/*
1574 	 * Assertion for 32 bit to make sure last 8 byte access
1575 	 * (BPF_DW) to the last 4 byte member is disallowed.
1576 	 */
1577 	if (off + size > sizeof(struct pt_regs))
1578 		return false;
1579 
1580 	return true;
1581 }
1582 
1583 const struct bpf_verifier_ops kprobe_verifier_ops = {
1584 	.get_func_proto  = kprobe_prog_func_proto,
1585 	.is_valid_access = kprobe_prog_is_valid_access,
1586 };
1587 
1588 const struct bpf_prog_ops kprobe_prog_ops = {
1589 };
1590 
1591 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1592 	   u64, flags, void *, data, u64, size)
1593 {
1594 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1595 
1596 	/*
1597 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1598 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1599 	 * from there and call the same bpf_perf_event_output() helper inline.
1600 	 */
1601 	return ____bpf_perf_event_output(regs, map, flags, data, size);
1602 }
1603 
1604 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1605 	.func		= bpf_perf_event_output_tp,
1606 	.gpl_only	= true,
1607 	.ret_type	= RET_INTEGER,
1608 	.arg1_type	= ARG_PTR_TO_CTX,
1609 	.arg2_type	= ARG_CONST_MAP_PTR,
1610 	.arg3_type	= ARG_ANYTHING,
1611 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1612 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1613 };
1614 
1615 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1616 	   u64, flags)
1617 {
1618 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1619 
1620 	/*
1621 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
1622 	 * the other helper's function body cannot be inlined due to being
1623 	 * external, thus we need to call raw helper function.
1624 	 */
1625 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1626 			       flags, 0, 0);
1627 }
1628 
1629 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1630 	.func		= bpf_get_stackid_tp,
1631 	.gpl_only	= true,
1632 	.ret_type	= RET_INTEGER,
1633 	.arg1_type	= ARG_PTR_TO_CTX,
1634 	.arg2_type	= ARG_CONST_MAP_PTR,
1635 	.arg3_type	= ARG_ANYTHING,
1636 };
1637 
1638 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1639 	   u64, flags)
1640 {
1641 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1642 
1643 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1644 			     (unsigned long) size, flags, 0);
1645 }
1646 
1647 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1648 	.func		= bpf_get_stack_tp,
1649 	.gpl_only	= true,
1650 	.ret_type	= RET_INTEGER,
1651 	.arg1_type	= ARG_PTR_TO_CTX,
1652 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1653 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1654 	.arg4_type	= ARG_ANYTHING,
1655 };
1656 
1657 static const struct bpf_func_proto *
1658 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1659 {
1660 	switch (func_id) {
1661 	case BPF_FUNC_perf_event_output:
1662 		return &bpf_perf_event_output_proto_tp;
1663 	case BPF_FUNC_get_stackid:
1664 		return &bpf_get_stackid_proto_tp;
1665 	case BPF_FUNC_get_stack:
1666 		return &bpf_get_stack_proto_tp;
1667 	case BPF_FUNC_get_attach_cookie:
1668 		return &bpf_get_attach_cookie_proto_trace;
1669 	default:
1670 		return bpf_tracing_func_proto(func_id, prog);
1671 	}
1672 }
1673 
1674 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1675 				    const struct bpf_prog *prog,
1676 				    struct bpf_insn_access_aux *info)
1677 {
1678 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1679 		return false;
1680 	if (type != BPF_READ)
1681 		return false;
1682 	if (off % size != 0)
1683 		return false;
1684 
1685 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1686 	return true;
1687 }
1688 
1689 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1690 	.get_func_proto  = tp_prog_func_proto,
1691 	.is_valid_access = tp_prog_is_valid_access,
1692 };
1693 
1694 const struct bpf_prog_ops tracepoint_prog_ops = {
1695 };
1696 
1697 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1698 	   struct bpf_perf_event_value *, buf, u32, size)
1699 {
1700 	int err = -EINVAL;
1701 
1702 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1703 		goto clear;
1704 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1705 				    &buf->running);
1706 	if (unlikely(err))
1707 		goto clear;
1708 	return 0;
1709 clear:
1710 	memset(buf, 0, size);
1711 	return err;
1712 }
1713 
1714 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1715          .func           = bpf_perf_prog_read_value,
1716          .gpl_only       = true,
1717          .ret_type       = RET_INTEGER,
1718          .arg1_type      = ARG_PTR_TO_CTX,
1719          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1720          .arg3_type      = ARG_CONST_SIZE,
1721 };
1722 
1723 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1724 	   void *, buf, u32, size, u64, flags)
1725 {
1726 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1727 	struct perf_branch_stack *br_stack = ctx->data->br_stack;
1728 	u32 to_copy;
1729 
1730 	if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1731 		return -EINVAL;
1732 
1733 	if (unlikely(!(ctx->data->sample_flags & PERF_SAMPLE_BRANCH_STACK)))
1734 		return -ENOENT;
1735 
1736 	if (unlikely(!br_stack))
1737 		return -ENOENT;
1738 
1739 	if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1740 		return br_stack->nr * br_entry_size;
1741 
1742 	if (!buf || (size % br_entry_size != 0))
1743 		return -EINVAL;
1744 
1745 	to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1746 	memcpy(buf, br_stack->entries, to_copy);
1747 
1748 	return to_copy;
1749 }
1750 
1751 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1752 	.func           = bpf_read_branch_records,
1753 	.gpl_only       = true,
1754 	.ret_type       = RET_INTEGER,
1755 	.arg1_type      = ARG_PTR_TO_CTX,
1756 	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
1757 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1758 	.arg4_type      = ARG_ANYTHING,
1759 };
1760 
1761 static const struct bpf_func_proto *
1762 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1763 {
1764 	switch (func_id) {
1765 	case BPF_FUNC_perf_event_output:
1766 		return &bpf_perf_event_output_proto_tp;
1767 	case BPF_FUNC_get_stackid:
1768 		return &bpf_get_stackid_proto_pe;
1769 	case BPF_FUNC_get_stack:
1770 		return &bpf_get_stack_proto_pe;
1771 	case BPF_FUNC_perf_prog_read_value:
1772 		return &bpf_perf_prog_read_value_proto;
1773 	case BPF_FUNC_read_branch_records:
1774 		return &bpf_read_branch_records_proto;
1775 	case BPF_FUNC_get_attach_cookie:
1776 		return &bpf_get_attach_cookie_proto_pe;
1777 	default:
1778 		return bpf_tracing_func_proto(func_id, prog);
1779 	}
1780 }
1781 
1782 /*
1783  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1784  * to avoid potential recursive reuse issue when/if tracepoints are added
1785  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1786  *
1787  * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1788  * in normal, irq, and nmi context.
1789  */
1790 struct bpf_raw_tp_regs {
1791 	struct pt_regs regs[3];
1792 };
1793 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1794 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1795 static struct pt_regs *get_bpf_raw_tp_regs(void)
1796 {
1797 	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1798 	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1799 
1800 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1801 		this_cpu_dec(bpf_raw_tp_nest_level);
1802 		return ERR_PTR(-EBUSY);
1803 	}
1804 
1805 	return &tp_regs->regs[nest_level - 1];
1806 }
1807 
1808 static void put_bpf_raw_tp_regs(void)
1809 {
1810 	this_cpu_dec(bpf_raw_tp_nest_level);
1811 }
1812 
1813 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1814 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
1815 {
1816 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1817 	int ret;
1818 
1819 	if (IS_ERR(regs))
1820 		return PTR_ERR(regs);
1821 
1822 	perf_fetch_caller_regs(regs);
1823 	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1824 
1825 	put_bpf_raw_tp_regs();
1826 	return ret;
1827 }
1828 
1829 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1830 	.func		= bpf_perf_event_output_raw_tp,
1831 	.gpl_only	= true,
1832 	.ret_type	= RET_INTEGER,
1833 	.arg1_type	= ARG_PTR_TO_CTX,
1834 	.arg2_type	= ARG_CONST_MAP_PTR,
1835 	.arg3_type	= ARG_ANYTHING,
1836 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1837 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1838 };
1839 
1840 extern const struct bpf_func_proto bpf_skb_output_proto;
1841 extern const struct bpf_func_proto bpf_xdp_output_proto;
1842 extern const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto;
1843 
1844 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1845 	   struct bpf_map *, map, u64, flags)
1846 {
1847 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1848 	int ret;
1849 
1850 	if (IS_ERR(regs))
1851 		return PTR_ERR(regs);
1852 
1853 	perf_fetch_caller_regs(regs);
1854 	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1855 	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1856 			      flags, 0, 0);
1857 	put_bpf_raw_tp_regs();
1858 	return ret;
1859 }
1860 
1861 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1862 	.func		= bpf_get_stackid_raw_tp,
1863 	.gpl_only	= true,
1864 	.ret_type	= RET_INTEGER,
1865 	.arg1_type	= ARG_PTR_TO_CTX,
1866 	.arg2_type	= ARG_CONST_MAP_PTR,
1867 	.arg3_type	= ARG_ANYTHING,
1868 };
1869 
1870 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1871 	   void *, buf, u32, size, u64, flags)
1872 {
1873 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1874 	int ret;
1875 
1876 	if (IS_ERR(regs))
1877 		return PTR_ERR(regs);
1878 
1879 	perf_fetch_caller_regs(regs);
1880 	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1881 			    (unsigned long) size, flags, 0);
1882 	put_bpf_raw_tp_regs();
1883 	return ret;
1884 }
1885 
1886 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1887 	.func		= bpf_get_stack_raw_tp,
1888 	.gpl_only	= true,
1889 	.ret_type	= RET_INTEGER,
1890 	.arg1_type	= ARG_PTR_TO_CTX,
1891 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1892 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1893 	.arg4_type	= ARG_ANYTHING,
1894 };
1895 
1896 static const struct bpf_func_proto *
1897 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1898 {
1899 	switch (func_id) {
1900 	case BPF_FUNC_perf_event_output:
1901 		return &bpf_perf_event_output_proto_raw_tp;
1902 	case BPF_FUNC_get_stackid:
1903 		return &bpf_get_stackid_proto_raw_tp;
1904 	case BPF_FUNC_get_stack:
1905 		return &bpf_get_stack_proto_raw_tp;
1906 	default:
1907 		return bpf_tracing_func_proto(func_id, prog);
1908 	}
1909 }
1910 
1911 const struct bpf_func_proto *
1912 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1913 {
1914 	const struct bpf_func_proto *fn;
1915 
1916 	switch (func_id) {
1917 #ifdef CONFIG_NET
1918 	case BPF_FUNC_skb_output:
1919 		return &bpf_skb_output_proto;
1920 	case BPF_FUNC_xdp_output:
1921 		return &bpf_xdp_output_proto;
1922 	case BPF_FUNC_skc_to_tcp6_sock:
1923 		return &bpf_skc_to_tcp6_sock_proto;
1924 	case BPF_FUNC_skc_to_tcp_sock:
1925 		return &bpf_skc_to_tcp_sock_proto;
1926 	case BPF_FUNC_skc_to_tcp_timewait_sock:
1927 		return &bpf_skc_to_tcp_timewait_sock_proto;
1928 	case BPF_FUNC_skc_to_tcp_request_sock:
1929 		return &bpf_skc_to_tcp_request_sock_proto;
1930 	case BPF_FUNC_skc_to_udp6_sock:
1931 		return &bpf_skc_to_udp6_sock_proto;
1932 	case BPF_FUNC_skc_to_unix_sock:
1933 		return &bpf_skc_to_unix_sock_proto;
1934 	case BPF_FUNC_skc_to_mptcp_sock:
1935 		return &bpf_skc_to_mptcp_sock_proto;
1936 	case BPF_FUNC_sk_storage_get:
1937 		return &bpf_sk_storage_get_tracing_proto;
1938 	case BPF_FUNC_sk_storage_delete:
1939 		return &bpf_sk_storage_delete_tracing_proto;
1940 	case BPF_FUNC_sock_from_file:
1941 		return &bpf_sock_from_file_proto;
1942 	case BPF_FUNC_get_socket_cookie:
1943 		return &bpf_get_socket_ptr_cookie_proto;
1944 	case BPF_FUNC_xdp_get_buff_len:
1945 		return &bpf_xdp_get_buff_len_trace_proto;
1946 #endif
1947 	case BPF_FUNC_seq_printf:
1948 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1949 		       &bpf_seq_printf_proto :
1950 		       NULL;
1951 	case BPF_FUNC_seq_write:
1952 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1953 		       &bpf_seq_write_proto :
1954 		       NULL;
1955 	case BPF_FUNC_seq_printf_btf:
1956 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1957 		       &bpf_seq_printf_btf_proto :
1958 		       NULL;
1959 	case BPF_FUNC_d_path:
1960 		return &bpf_d_path_proto;
1961 	case BPF_FUNC_get_func_arg:
1962 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_proto : NULL;
1963 	case BPF_FUNC_get_func_ret:
1964 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_ret_proto : NULL;
1965 	case BPF_FUNC_get_func_arg_cnt:
1966 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_cnt_proto : NULL;
1967 	case BPF_FUNC_get_attach_cookie:
1968 		return bpf_prog_has_trampoline(prog) ? &bpf_get_attach_cookie_proto_tracing : NULL;
1969 	default:
1970 		fn = raw_tp_prog_func_proto(func_id, prog);
1971 		if (!fn && prog->expected_attach_type == BPF_TRACE_ITER)
1972 			fn = bpf_iter_get_func_proto(func_id, prog);
1973 		return fn;
1974 	}
1975 }
1976 
1977 static bool raw_tp_prog_is_valid_access(int off, int size,
1978 					enum bpf_access_type type,
1979 					const struct bpf_prog *prog,
1980 					struct bpf_insn_access_aux *info)
1981 {
1982 	return bpf_tracing_ctx_access(off, size, type);
1983 }
1984 
1985 static bool tracing_prog_is_valid_access(int off, int size,
1986 					 enum bpf_access_type type,
1987 					 const struct bpf_prog *prog,
1988 					 struct bpf_insn_access_aux *info)
1989 {
1990 	return bpf_tracing_btf_ctx_access(off, size, type, prog, info);
1991 }
1992 
1993 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1994 				     const union bpf_attr *kattr,
1995 				     union bpf_attr __user *uattr)
1996 {
1997 	return -ENOTSUPP;
1998 }
1999 
2000 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
2001 	.get_func_proto  = raw_tp_prog_func_proto,
2002 	.is_valid_access = raw_tp_prog_is_valid_access,
2003 };
2004 
2005 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
2006 #ifdef CONFIG_NET
2007 	.test_run = bpf_prog_test_run_raw_tp,
2008 #endif
2009 };
2010 
2011 const struct bpf_verifier_ops tracing_verifier_ops = {
2012 	.get_func_proto  = tracing_prog_func_proto,
2013 	.is_valid_access = tracing_prog_is_valid_access,
2014 };
2015 
2016 const struct bpf_prog_ops tracing_prog_ops = {
2017 	.test_run = bpf_prog_test_run_tracing,
2018 };
2019 
2020 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
2021 						 enum bpf_access_type type,
2022 						 const struct bpf_prog *prog,
2023 						 struct bpf_insn_access_aux *info)
2024 {
2025 	if (off == 0) {
2026 		if (size != sizeof(u64) || type != BPF_READ)
2027 			return false;
2028 		info->reg_type = PTR_TO_TP_BUFFER;
2029 	}
2030 	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
2031 }
2032 
2033 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
2034 	.get_func_proto  = raw_tp_prog_func_proto,
2035 	.is_valid_access = raw_tp_writable_prog_is_valid_access,
2036 };
2037 
2038 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
2039 };
2040 
2041 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
2042 				    const struct bpf_prog *prog,
2043 				    struct bpf_insn_access_aux *info)
2044 {
2045 	const int size_u64 = sizeof(u64);
2046 
2047 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
2048 		return false;
2049 	if (type != BPF_READ)
2050 		return false;
2051 	if (off % size != 0) {
2052 		if (sizeof(unsigned long) != 4)
2053 			return false;
2054 		if (size != 8)
2055 			return false;
2056 		if (off % size != 4)
2057 			return false;
2058 	}
2059 
2060 	switch (off) {
2061 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
2062 		bpf_ctx_record_field_size(info, size_u64);
2063 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
2064 			return false;
2065 		break;
2066 	case bpf_ctx_range(struct bpf_perf_event_data, addr):
2067 		bpf_ctx_record_field_size(info, size_u64);
2068 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
2069 			return false;
2070 		break;
2071 	default:
2072 		if (size != sizeof(long))
2073 			return false;
2074 	}
2075 
2076 	return true;
2077 }
2078 
2079 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
2080 				      const struct bpf_insn *si,
2081 				      struct bpf_insn *insn_buf,
2082 				      struct bpf_prog *prog, u32 *target_size)
2083 {
2084 	struct bpf_insn *insn = insn_buf;
2085 
2086 	switch (si->off) {
2087 	case offsetof(struct bpf_perf_event_data, sample_period):
2088 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2089 						       data), si->dst_reg, si->src_reg,
2090 				      offsetof(struct bpf_perf_event_data_kern, data));
2091 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
2092 				      bpf_target_off(struct perf_sample_data, period, 8,
2093 						     target_size));
2094 		break;
2095 	case offsetof(struct bpf_perf_event_data, addr):
2096 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2097 						       data), si->dst_reg, si->src_reg,
2098 				      offsetof(struct bpf_perf_event_data_kern, data));
2099 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
2100 				      bpf_target_off(struct perf_sample_data, addr, 8,
2101 						     target_size));
2102 		break;
2103 	default:
2104 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2105 						       regs), si->dst_reg, si->src_reg,
2106 				      offsetof(struct bpf_perf_event_data_kern, regs));
2107 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
2108 				      si->off);
2109 		break;
2110 	}
2111 
2112 	return insn - insn_buf;
2113 }
2114 
2115 const struct bpf_verifier_ops perf_event_verifier_ops = {
2116 	.get_func_proto		= pe_prog_func_proto,
2117 	.is_valid_access	= pe_prog_is_valid_access,
2118 	.convert_ctx_access	= pe_prog_convert_ctx_access,
2119 };
2120 
2121 const struct bpf_prog_ops perf_event_prog_ops = {
2122 };
2123 
2124 static DEFINE_MUTEX(bpf_event_mutex);
2125 
2126 #define BPF_TRACE_MAX_PROGS 64
2127 
2128 int perf_event_attach_bpf_prog(struct perf_event *event,
2129 			       struct bpf_prog *prog,
2130 			       u64 bpf_cookie)
2131 {
2132 	struct bpf_prog_array *old_array;
2133 	struct bpf_prog_array *new_array;
2134 	int ret = -EEXIST;
2135 
2136 	/*
2137 	 * Kprobe override only works if they are on the function entry,
2138 	 * and only if they are on the opt-in list.
2139 	 */
2140 	if (prog->kprobe_override &&
2141 	    (!trace_kprobe_on_func_entry(event->tp_event) ||
2142 	     !trace_kprobe_error_injectable(event->tp_event)))
2143 		return -EINVAL;
2144 
2145 	mutex_lock(&bpf_event_mutex);
2146 
2147 	if (event->prog)
2148 		goto unlock;
2149 
2150 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
2151 	if (old_array &&
2152 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
2153 		ret = -E2BIG;
2154 		goto unlock;
2155 	}
2156 
2157 	ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array);
2158 	if (ret < 0)
2159 		goto unlock;
2160 
2161 	/* set the new array to event->tp_event and set event->prog */
2162 	event->prog = prog;
2163 	event->bpf_cookie = bpf_cookie;
2164 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
2165 	bpf_prog_array_free_sleepable(old_array);
2166 
2167 unlock:
2168 	mutex_unlock(&bpf_event_mutex);
2169 	return ret;
2170 }
2171 
2172 void perf_event_detach_bpf_prog(struct perf_event *event)
2173 {
2174 	struct bpf_prog_array *old_array;
2175 	struct bpf_prog_array *new_array;
2176 	int ret;
2177 
2178 	mutex_lock(&bpf_event_mutex);
2179 
2180 	if (!event->prog)
2181 		goto unlock;
2182 
2183 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
2184 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array);
2185 	if (ret == -ENOENT)
2186 		goto unlock;
2187 	if (ret < 0) {
2188 		bpf_prog_array_delete_safe(old_array, event->prog);
2189 	} else {
2190 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
2191 		bpf_prog_array_free_sleepable(old_array);
2192 	}
2193 
2194 	bpf_prog_put(event->prog);
2195 	event->prog = NULL;
2196 
2197 unlock:
2198 	mutex_unlock(&bpf_event_mutex);
2199 }
2200 
2201 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
2202 {
2203 	struct perf_event_query_bpf __user *uquery = info;
2204 	struct perf_event_query_bpf query = {};
2205 	struct bpf_prog_array *progs;
2206 	u32 *ids, prog_cnt, ids_len;
2207 	int ret;
2208 
2209 	if (!perfmon_capable())
2210 		return -EPERM;
2211 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
2212 		return -EINVAL;
2213 	if (copy_from_user(&query, uquery, sizeof(query)))
2214 		return -EFAULT;
2215 
2216 	ids_len = query.ids_len;
2217 	if (ids_len > BPF_TRACE_MAX_PROGS)
2218 		return -E2BIG;
2219 	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
2220 	if (!ids)
2221 		return -ENOMEM;
2222 	/*
2223 	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
2224 	 * is required when user only wants to check for uquery->prog_cnt.
2225 	 * There is no need to check for it since the case is handled
2226 	 * gracefully in bpf_prog_array_copy_info.
2227 	 */
2228 
2229 	mutex_lock(&bpf_event_mutex);
2230 	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
2231 	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
2232 	mutex_unlock(&bpf_event_mutex);
2233 
2234 	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
2235 	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
2236 		ret = -EFAULT;
2237 
2238 	kfree(ids);
2239 	return ret;
2240 }
2241 
2242 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
2243 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
2244 
2245 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
2246 {
2247 	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
2248 
2249 	for (; btp < __stop__bpf_raw_tp; btp++) {
2250 		if (!strcmp(btp->tp->name, name))
2251 			return btp;
2252 	}
2253 
2254 	return bpf_get_raw_tracepoint_module(name);
2255 }
2256 
2257 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
2258 {
2259 	struct module *mod;
2260 
2261 	preempt_disable();
2262 	mod = __module_address((unsigned long)btp);
2263 	module_put(mod);
2264 	preempt_enable();
2265 }
2266 
2267 static __always_inline
2268 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
2269 {
2270 	cant_sleep();
2271 	if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) {
2272 		bpf_prog_inc_misses_counter(prog);
2273 		goto out;
2274 	}
2275 	rcu_read_lock();
2276 	(void) bpf_prog_run(prog, args);
2277 	rcu_read_unlock();
2278 out:
2279 	this_cpu_dec(*(prog->active));
2280 }
2281 
2282 #define UNPACK(...)			__VA_ARGS__
2283 #define REPEAT_1(FN, DL, X, ...)	FN(X)
2284 #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
2285 #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
2286 #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
2287 #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
2288 #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
2289 #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
2290 #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
2291 #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
2292 #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
2293 #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
2294 #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
2295 #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
2296 
2297 #define SARG(X)		u64 arg##X
2298 #define COPY(X)		args[X] = arg##X
2299 
2300 #define __DL_COM	(,)
2301 #define __DL_SEM	(;)
2302 
2303 #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
2304 
2305 #define BPF_TRACE_DEFN_x(x)						\
2306 	void bpf_trace_run##x(struct bpf_prog *prog,			\
2307 			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
2308 	{								\
2309 		u64 args[x];						\
2310 		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
2311 		__bpf_trace_run(prog, args);				\
2312 	}								\
2313 	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
2314 BPF_TRACE_DEFN_x(1);
2315 BPF_TRACE_DEFN_x(2);
2316 BPF_TRACE_DEFN_x(3);
2317 BPF_TRACE_DEFN_x(4);
2318 BPF_TRACE_DEFN_x(5);
2319 BPF_TRACE_DEFN_x(6);
2320 BPF_TRACE_DEFN_x(7);
2321 BPF_TRACE_DEFN_x(8);
2322 BPF_TRACE_DEFN_x(9);
2323 BPF_TRACE_DEFN_x(10);
2324 BPF_TRACE_DEFN_x(11);
2325 BPF_TRACE_DEFN_x(12);
2326 
2327 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2328 {
2329 	struct tracepoint *tp = btp->tp;
2330 
2331 	/*
2332 	 * check that program doesn't access arguments beyond what's
2333 	 * available in this tracepoint
2334 	 */
2335 	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
2336 		return -EINVAL;
2337 
2338 	if (prog->aux->max_tp_access > btp->writable_size)
2339 		return -EINVAL;
2340 
2341 	return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func,
2342 						   prog);
2343 }
2344 
2345 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2346 {
2347 	return __bpf_probe_register(btp, prog);
2348 }
2349 
2350 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2351 {
2352 	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
2353 }
2354 
2355 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
2356 			    u32 *fd_type, const char **buf,
2357 			    u64 *probe_offset, u64 *probe_addr)
2358 {
2359 	bool is_tracepoint, is_syscall_tp;
2360 	struct bpf_prog *prog;
2361 	int flags, err = 0;
2362 
2363 	prog = event->prog;
2364 	if (!prog)
2365 		return -ENOENT;
2366 
2367 	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
2368 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
2369 		return -EOPNOTSUPP;
2370 
2371 	*prog_id = prog->aux->id;
2372 	flags = event->tp_event->flags;
2373 	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
2374 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
2375 
2376 	if (is_tracepoint || is_syscall_tp) {
2377 		*buf = is_tracepoint ? event->tp_event->tp->name
2378 				     : event->tp_event->name;
2379 		*fd_type = BPF_FD_TYPE_TRACEPOINT;
2380 		*probe_offset = 0x0;
2381 		*probe_addr = 0x0;
2382 	} else {
2383 		/* kprobe/uprobe */
2384 		err = -EOPNOTSUPP;
2385 #ifdef CONFIG_KPROBE_EVENTS
2386 		if (flags & TRACE_EVENT_FL_KPROBE)
2387 			err = bpf_get_kprobe_info(event, fd_type, buf,
2388 						  probe_offset, probe_addr,
2389 						  event->attr.type == PERF_TYPE_TRACEPOINT);
2390 #endif
2391 #ifdef CONFIG_UPROBE_EVENTS
2392 		if (flags & TRACE_EVENT_FL_UPROBE)
2393 			err = bpf_get_uprobe_info(event, fd_type, buf,
2394 						  probe_offset,
2395 						  event->attr.type == PERF_TYPE_TRACEPOINT);
2396 #endif
2397 	}
2398 
2399 	return err;
2400 }
2401 
2402 static int __init send_signal_irq_work_init(void)
2403 {
2404 	int cpu;
2405 	struct send_signal_irq_work *work;
2406 
2407 	for_each_possible_cpu(cpu) {
2408 		work = per_cpu_ptr(&send_signal_work, cpu);
2409 		init_irq_work(&work->irq_work, do_bpf_send_signal);
2410 	}
2411 	return 0;
2412 }
2413 
2414 subsys_initcall(send_signal_irq_work_init);
2415 
2416 #ifdef CONFIG_MODULES
2417 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
2418 			    void *module)
2419 {
2420 	struct bpf_trace_module *btm, *tmp;
2421 	struct module *mod = module;
2422 	int ret = 0;
2423 
2424 	if (mod->num_bpf_raw_events == 0 ||
2425 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
2426 		goto out;
2427 
2428 	mutex_lock(&bpf_module_mutex);
2429 
2430 	switch (op) {
2431 	case MODULE_STATE_COMING:
2432 		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
2433 		if (btm) {
2434 			btm->module = module;
2435 			list_add(&btm->list, &bpf_trace_modules);
2436 		} else {
2437 			ret = -ENOMEM;
2438 		}
2439 		break;
2440 	case MODULE_STATE_GOING:
2441 		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
2442 			if (btm->module == module) {
2443 				list_del(&btm->list);
2444 				kfree(btm);
2445 				break;
2446 			}
2447 		}
2448 		break;
2449 	}
2450 
2451 	mutex_unlock(&bpf_module_mutex);
2452 
2453 out:
2454 	return notifier_from_errno(ret);
2455 }
2456 
2457 static struct notifier_block bpf_module_nb = {
2458 	.notifier_call = bpf_event_notify,
2459 };
2460 
2461 static int __init bpf_event_init(void)
2462 {
2463 	register_module_notifier(&bpf_module_nb);
2464 	return 0;
2465 }
2466 
2467 fs_initcall(bpf_event_init);
2468 #endif /* CONFIG_MODULES */
2469 
2470 #ifdef CONFIG_FPROBE
2471 struct bpf_kprobe_multi_link {
2472 	struct bpf_link link;
2473 	struct fprobe fp;
2474 	unsigned long *addrs;
2475 	u64 *cookies;
2476 	u32 cnt;
2477 	u32 mods_cnt;
2478 	struct module **mods;
2479 };
2480 
2481 struct bpf_kprobe_multi_run_ctx {
2482 	struct bpf_run_ctx run_ctx;
2483 	struct bpf_kprobe_multi_link *link;
2484 	unsigned long entry_ip;
2485 };
2486 
2487 struct user_syms {
2488 	const char **syms;
2489 	char *buf;
2490 };
2491 
2492 static int copy_user_syms(struct user_syms *us, unsigned long __user *usyms, u32 cnt)
2493 {
2494 	unsigned long __user usymbol;
2495 	const char **syms = NULL;
2496 	char *buf = NULL, *p;
2497 	int err = -ENOMEM;
2498 	unsigned int i;
2499 
2500 	syms = kvmalloc_array(cnt, sizeof(*syms), GFP_KERNEL);
2501 	if (!syms)
2502 		goto error;
2503 
2504 	buf = kvmalloc_array(cnt, KSYM_NAME_LEN, GFP_KERNEL);
2505 	if (!buf)
2506 		goto error;
2507 
2508 	for (p = buf, i = 0; i < cnt; i++) {
2509 		if (__get_user(usymbol, usyms + i)) {
2510 			err = -EFAULT;
2511 			goto error;
2512 		}
2513 		err = strncpy_from_user(p, (const char __user *) usymbol, KSYM_NAME_LEN);
2514 		if (err == KSYM_NAME_LEN)
2515 			err = -E2BIG;
2516 		if (err < 0)
2517 			goto error;
2518 		syms[i] = p;
2519 		p += err + 1;
2520 	}
2521 
2522 	us->syms = syms;
2523 	us->buf = buf;
2524 	return 0;
2525 
2526 error:
2527 	if (err) {
2528 		kvfree(syms);
2529 		kvfree(buf);
2530 	}
2531 	return err;
2532 }
2533 
2534 static void kprobe_multi_put_modules(struct module **mods, u32 cnt)
2535 {
2536 	u32 i;
2537 
2538 	for (i = 0; i < cnt; i++)
2539 		module_put(mods[i]);
2540 }
2541 
2542 static void free_user_syms(struct user_syms *us)
2543 {
2544 	kvfree(us->syms);
2545 	kvfree(us->buf);
2546 }
2547 
2548 static void bpf_kprobe_multi_link_release(struct bpf_link *link)
2549 {
2550 	struct bpf_kprobe_multi_link *kmulti_link;
2551 
2552 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2553 	unregister_fprobe(&kmulti_link->fp);
2554 	kprobe_multi_put_modules(kmulti_link->mods, kmulti_link->mods_cnt);
2555 }
2556 
2557 static void bpf_kprobe_multi_link_dealloc(struct bpf_link *link)
2558 {
2559 	struct bpf_kprobe_multi_link *kmulti_link;
2560 
2561 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2562 	kvfree(kmulti_link->addrs);
2563 	kvfree(kmulti_link->cookies);
2564 	kfree(kmulti_link->mods);
2565 	kfree(kmulti_link);
2566 }
2567 
2568 static const struct bpf_link_ops bpf_kprobe_multi_link_lops = {
2569 	.release = bpf_kprobe_multi_link_release,
2570 	.dealloc = bpf_kprobe_multi_link_dealloc,
2571 };
2572 
2573 static void bpf_kprobe_multi_cookie_swap(void *a, void *b, int size, const void *priv)
2574 {
2575 	const struct bpf_kprobe_multi_link *link = priv;
2576 	unsigned long *addr_a = a, *addr_b = b;
2577 	u64 *cookie_a, *cookie_b;
2578 
2579 	cookie_a = link->cookies + (addr_a - link->addrs);
2580 	cookie_b = link->cookies + (addr_b - link->addrs);
2581 
2582 	/* swap addr_a/addr_b and cookie_a/cookie_b values */
2583 	swap(*addr_a, *addr_b);
2584 	swap(*cookie_a, *cookie_b);
2585 }
2586 
2587 static int bpf_kprobe_multi_addrs_cmp(const void *a, const void *b)
2588 {
2589 	const unsigned long *addr_a = a, *addr_b = b;
2590 
2591 	if (*addr_a == *addr_b)
2592 		return 0;
2593 	return *addr_a < *addr_b ? -1 : 1;
2594 }
2595 
2596 static int bpf_kprobe_multi_cookie_cmp(const void *a, const void *b, const void *priv)
2597 {
2598 	return bpf_kprobe_multi_addrs_cmp(a, b);
2599 }
2600 
2601 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
2602 {
2603 	struct bpf_kprobe_multi_run_ctx *run_ctx;
2604 	struct bpf_kprobe_multi_link *link;
2605 	u64 *cookie, entry_ip;
2606 	unsigned long *addr;
2607 
2608 	if (WARN_ON_ONCE(!ctx))
2609 		return 0;
2610 	run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, run_ctx);
2611 	link = run_ctx->link;
2612 	if (!link->cookies)
2613 		return 0;
2614 	entry_ip = run_ctx->entry_ip;
2615 	addr = bsearch(&entry_ip, link->addrs, link->cnt, sizeof(entry_ip),
2616 		       bpf_kprobe_multi_addrs_cmp);
2617 	if (!addr)
2618 		return 0;
2619 	cookie = link->cookies + (addr - link->addrs);
2620 	return *cookie;
2621 }
2622 
2623 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
2624 {
2625 	struct bpf_kprobe_multi_run_ctx *run_ctx;
2626 
2627 	run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, run_ctx);
2628 	return run_ctx->entry_ip;
2629 }
2630 
2631 static int
2632 kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link *link,
2633 			   unsigned long entry_ip, struct pt_regs *regs)
2634 {
2635 	struct bpf_kprobe_multi_run_ctx run_ctx = {
2636 		.link = link,
2637 		.entry_ip = entry_ip,
2638 	};
2639 	struct bpf_run_ctx *old_run_ctx;
2640 	int err;
2641 
2642 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
2643 		err = 0;
2644 		goto out;
2645 	}
2646 
2647 	migrate_disable();
2648 	rcu_read_lock();
2649 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2650 	err = bpf_prog_run(link->link.prog, regs);
2651 	bpf_reset_run_ctx(old_run_ctx);
2652 	rcu_read_unlock();
2653 	migrate_enable();
2654 
2655  out:
2656 	__this_cpu_dec(bpf_prog_active);
2657 	return err;
2658 }
2659 
2660 static int
2661 kprobe_multi_link_handler(struct fprobe *fp, unsigned long fentry_ip,
2662 			  unsigned long ret_ip, struct pt_regs *regs,
2663 			  void *data)
2664 {
2665 	struct bpf_kprobe_multi_link *link;
2666 
2667 	link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2668 	kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs);
2669 	return 0;
2670 }
2671 
2672 static void
2673 kprobe_multi_link_exit_handler(struct fprobe *fp, unsigned long fentry_ip,
2674 			       unsigned long ret_ip, struct pt_regs *regs,
2675 			       void *data)
2676 {
2677 	struct bpf_kprobe_multi_link *link;
2678 
2679 	link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2680 	kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs);
2681 }
2682 
2683 static int symbols_cmp_r(const void *a, const void *b, const void *priv)
2684 {
2685 	const char **str_a = (const char **) a;
2686 	const char **str_b = (const char **) b;
2687 
2688 	return strcmp(*str_a, *str_b);
2689 }
2690 
2691 struct multi_symbols_sort {
2692 	const char **funcs;
2693 	u64 *cookies;
2694 };
2695 
2696 static void symbols_swap_r(void *a, void *b, int size, const void *priv)
2697 {
2698 	const struct multi_symbols_sort *data = priv;
2699 	const char **name_a = a, **name_b = b;
2700 
2701 	swap(*name_a, *name_b);
2702 
2703 	/* If defined, swap also related cookies. */
2704 	if (data->cookies) {
2705 		u64 *cookie_a, *cookie_b;
2706 
2707 		cookie_a = data->cookies + (name_a - data->funcs);
2708 		cookie_b = data->cookies + (name_b - data->funcs);
2709 		swap(*cookie_a, *cookie_b);
2710 	}
2711 }
2712 
2713 struct modules_array {
2714 	struct module **mods;
2715 	int mods_cnt;
2716 	int mods_cap;
2717 };
2718 
2719 static int add_module(struct modules_array *arr, struct module *mod)
2720 {
2721 	struct module **mods;
2722 
2723 	if (arr->mods_cnt == arr->mods_cap) {
2724 		arr->mods_cap = max(16, arr->mods_cap * 3 / 2);
2725 		mods = krealloc_array(arr->mods, arr->mods_cap, sizeof(*mods), GFP_KERNEL);
2726 		if (!mods)
2727 			return -ENOMEM;
2728 		arr->mods = mods;
2729 	}
2730 
2731 	arr->mods[arr->mods_cnt] = mod;
2732 	arr->mods_cnt++;
2733 	return 0;
2734 }
2735 
2736 static bool has_module(struct modules_array *arr, struct module *mod)
2737 {
2738 	int i;
2739 
2740 	for (i = arr->mods_cnt - 1; i >= 0; i--) {
2741 		if (arr->mods[i] == mod)
2742 			return true;
2743 	}
2744 	return false;
2745 }
2746 
2747 static int get_modules_for_addrs(struct module ***mods, unsigned long *addrs, u32 addrs_cnt)
2748 {
2749 	struct modules_array arr = {};
2750 	u32 i, err = 0;
2751 
2752 	for (i = 0; i < addrs_cnt; i++) {
2753 		struct module *mod;
2754 
2755 		preempt_disable();
2756 		mod = __module_address(addrs[i]);
2757 		/* Either no module or we it's already stored  */
2758 		if (!mod || has_module(&arr, mod)) {
2759 			preempt_enable();
2760 			continue;
2761 		}
2762 		if (!try_module_get(mod))
2763 			err = -EINVAL;
2764 		preempt_enable();
2765 		if (err)
2766 			break;
2767 		err = add_module(&arr, mod);
2768 		if (err) {
2769 			module_put(mod);
2770 			break;
2771 		}
2772 	}
2773 
2774 	/* We return either err < 0 in case of error, ... */
2775 	if (err) {
2776 		kprobe_multi_put_modules(arr.mods, arr.mods_cnt);
2777 		kfree(arr.mods);
2778 		return err;
2779 	}
2780 
2781 	/* or number of modules found if everything is ok. */
2782 	*mods = arr.mods;
2783 	return arr.mods_cnt;
2784 }
2785 
2786 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
2787 {
2788 	struct bpf_kprobe_multi_link *link = NULL;
2789 	struct bpf_link_primer link_primer;
2790 	void __user *ucookies;
2791 	unsigned long *addrs;
2792 	u32 flags, cnt, size;
2793 	void __user *uaddrs;
2794 	u64 *cookies = NULL;
2795 	void __user *usyms;
2796 	int err;
2797 
2798 	/* no support for 32bit archs yet */
2799 	if (sizeof(u64) != sizeof(void *))
2800 		return -EOPNOTSUPP;
2801 
2802 	if (prog->expected_attach_type != BPF_TRACE_KPROBE_MULTI)
2803 		return -EINVAL;
2804 
2805 	flags = attr->link_create.kprobe_multi.flags;
2806 	if (flags & ~BPF_F_KPROBE_MULTI_RETURN)
2807 		return -EINVAL;
2808 
2809 	uaddrs = u64_to_user_ptr(attr->link_create.kprobe_multi.addrs);
2810 	usyms = u64_to_user_ptr(attr->link_create.kprobe_multi.syms);
2811 	if (!!uaddrs == !!usyms)
2812 		return -EINVAL;
2813 
2814 	cnt = attr->link_create.kprobe_multi.cnt;
2815 	if (!cnt)
2816 		return -EINVAL;
2817 
2818 	size = cnt * sizeof(*addrs);
2819 	addrs = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2820 	if (!addrs)
2821 		return -ENOMEM;
2822 
2823 	ucookies = u64_to_user_ptr(attr->link_create.kprobe_multi.cookies);
2824 	if (ucookies) {
2825 		cookies = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2826 		if (!cookies) {
2827 			err = -ENOMEM;
2828 			goto error;
2829 		}
2830 		if (copy_from_user(cookies, ucookies, size)) {
2831 			err = -EFAULT;
2832 			goto error;
2833 		}
2834 	}
2835 
2836 	if (uaddrs) {
2837 		if (copy_from_user(addrs, uaddrs, size)) {
2838 			err = -EFAULT;
2839 			goto error;
2840 		}
2841 	} else {
2842 		struct multi_symbols_sort data = {
2843 			.cookies = cookies,
2844 		};
2845 		struct user_syms us;
2846 
2847 		err = copy_user_syms(&us, usyms, cnt);
2848 		if (err)
2849 			goto error;
2850 
2851 		if (cookies)
2852 			data.funcs = us.syms;
2853 
2854 		sort_r(us.syms, cnt, sizeof(*us.syms), symbols_cmp_r,
2855 		       symbols_swap_r, &data);
2856 
2857 		err = ftrace_lookup_symbols(us.syms, cnt, addrs);
2858 		free_user_syms(&us);
2859 		if (err)
2860 			goto error;
2861 	}
2862 
2863 	link = kzalloc(sizeof(*link), GFP_KERNEL);
2864 	if (!link) {
2865 		err = -ENOMEM;
2866 		goto error;
2867 	}
2868 
2869 	bpf_link_init(&link->link, BPF_LINK_TYPE_KPROBE_MULTI,
2870 		      &bpf_kprobe_multi_link_lops, prog);
2871 
2872 	err = bpf_link_prime(&link->link, &link_primer);
2873 	if (err)
2874 		goto error;
2875 
2876 	if (flags & BPF_F_KPROBE_MULTI_RETURN)
2877 		link->fp.exit_handler = kprobe_multi_link_exit_handler;
2878 	else
2879 		link->fp.entry_handler = kprobe_multi_link_handler;
2880 
2881 	link->addrs = addrs;
2882 	link->cookies = cookies;
2883 	link->cnt = cnt;
2884 
2885 	if (cookies) {
2886 		/*
2887 		 * Sorting addresses will trigger sorting cookies as well
2888 		 * (check bpf_kprobe_multi_cookie_swap). This way we can
2889 		 * find cookie based on the address in bpf_get_attach_cookie
2890 		 * helper.
2891 		 */
2892 		sort_r(addrs, cnt, sizeof(*addrs),
2893 		       bpf_kprobe_multi_cookie_cmp,
2894 		       bpf_kprobe_multi_cookie_swap,
2895 		       link);
2896 	}
2897 
2898 	err = get_modules_for_addrs(&link->mods, addrs, cnt);
2899 	if (err < 0) {
2900 		bpf_link_cleanup(&link_primer);
2901 		return err;
2902 	}
2903 	link->mods_cnt = err;
2904 
2905 	err = register_fprobe_ips(&link->fp, addrs, cnt);
2906 	if (err) {
2907 		kprobe_multi_put_modules(link->mods, link->mods_cnt);
2908 		bpf_link_cleanup(&link_primer);
2909 		return err;
2910 	}
2911 
2912 	return bpf_link_settle(&link_primer);
2913 
2914 error:
2915 	kfree(link);
2916 	kvfree(addrs);
2917 	kvfree(cookies);
2918 	return err;
2919 }
2920 #else /* !CONFIG_FPROBE */
2921 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
2922 {
2923 	return -EOPNOTSUPP;
2924 }
2925 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
2926 {
2927 	return 0;
2928 }
2929 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
2930 {
2931 	return 0;
2932 }
2933 #endif
2934