1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/kernel.h> 6 #include <linux/types.h> 7 #include <linux/slab.h> 8 #include <linux/bpf.h> 9 #include <linux/bpf_verifier.h> 10 #include <linux/bpf_perf_event.h> 11 #include <linux/btf.h> 12 #include <linux/filter.h> 13 #include <linux/uaccess.h> 14 #include <linux/ctype.h> 15 #include <linux/kprobes.h> 16 #include <linux/spinlock.h> 17 #include <linux/syscalls.h> 18 #include <linux/error-injection.h> 19 #include <linux/btf_ids.h> 20 #include <linux/bpf_lsm.h> 21 #include <linux/fprobe.h> 22 #include <linux/bsearch.h> 23 #include <linux/sort.h> 24 #include <linux/key.h> 25 #include <linux/verification.h> 26 #include <linux/namei.h> 27 28 #include <net/bpf_sk_storage.h> 29 30 #include <uapi/linux/bpf.h> 31 #include <uapi/linux/btf.h> 32 33 #include <asm/tlb.h> 34 35 #include "trace_probe.h" 36 #include "trace.h" 37 38 #define CREATE_TRACE_POINTS 39 #include "bpf_trace.h" 40 41 #define bpf_event_rcu_dereference(p) \ 42 rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex)) 43 44 #define MAX_UPROBE_MULTI_CNT (1U << 20) 45 #define MAX_KPROBE_MULTI_CNT (1U << 20) 46 47 #ifdef CONFIG_MODULES 48 struct bpf_trace_module { 49 struct module *module; 50 struct list_head list; 51 }; 52 53 static LIST_HEAD(bpf_trace_modules); 54 static DEFINE_MUTEX(bpf_module_mutex); 55 56 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 57 { 58 struct bpf_raw_event_map *btp, *ret = NULL; 59 struct bpf_trace_module *btm; 60 unsigned int i; 61 62 mutex_lock(&bpf_module_mutex); 63 list_for_each_entry(btm, &bpf_trace_modules, list) { 64 for (i = 0; i < btm->module->num_bpf_raw_events; ++i) { 65 btp = &btm->module->bpf_raw_events[i]; 66 if (!strcmp(btp->tp->name, name)) { 67 if (try_module_get(btm->module)) 68 ret = btp; 69 goto out; 70 } 71 } 72 } 73 out: 74 mutex_unlock(&bpf_module_mutex); 75 return ret; 76 } 77 #else 78 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 79 { 80 return NULL; 81 } 82 #endif /* CONFIG_MODULES */ 83 84 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 85 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 86 87 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size, 88 u64 flags, const struct btf **btf, 89 s32 *btf_id); 90 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx); 91 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx); 92 93 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx); 94 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx); 95 96 /** 97 * trace_call_bpf - invoke BPF program 98 * @call: tracepoint event 99 * @ctx: opaque context pointer 100 * 101 * kprobe handlers execute BPF programs via this helper. 102 * Can be used from static tracepoints in the future. 103 * 104 * Return: BPF programs always return an integer which is interpreted by 105 * kprobe handler as: 106 * 0 - return from kprobe (event is filtered out) 107 * 1 - store kprobe event into ring buffer 108 * Other values are reserved and currently alias to 1 109 */ 110 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx) 111 { 112 unsigned int ret; 113 114 cant_sleep(); 115 116 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) { 117 /* 118 * since some bpf program is already running on this cpu, 119 * don't call into another bpf program (same or different) 120 * and don't send kprobe event into ring-buffer, 121 * so return zero here 122 */ 123 rcu_read_lock(); 124 bpf_prog_inc_misses_counters(rcu_dereference(call->prog_array)); 125 rcu_read_unlock(); 126 ret = 0; 127 goto out; 128 } 129 130 /* 131 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock 132 * to all call sites, we did a bpf_prog_array_valid() there to check 133 * whether call->prog_array is empty or not, which is 134 * a heuristic to speed up execution. 135 * 136 * If bpf_prog_array_valid() fetched prog_array was 137 * non-NULL, we go into trace_call_bpf() and do the actual 138 * proper rcu_dereference() under RCU lock. 139 * If it turns out that prog_array is NULL then, we bail out. 140 * For the opposite, if the bpf_prog_array_valid() fetched pointer 141 * was NULL, you'll skip the prog_array with the risk of missing 142 * out of events when it was updated in between this and the 143 * rcu_dereference() which is accepted risk. 144 */ 145 rcu_read_lock(); 146 ret = bpf_prog_run_array(rcu_dereference(call->prog_array), 147 ctx, bpf_prog_run); 148 rcu_read_unlock(); 149 150 out: 151 __this_cpu_dec(bpf_prog_active); 152 153 return ret; 154 } 155 156 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 157 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc) 158 { 159 regs_set_return_value(regs, rc); 160 override_function_with_return(regs); 161 return 0; 162 } 163 164 static const struct bpf_func_proto bpf_override_return_proto = { 165 .func = bpf_override_return, 166 .gpl_only = true, 167 .ret_type = RET_INTEGER, 168 .arg1_type = ARG_PTR_TO_CTX, 169 .arg2_type = ARG_ANYTHING, 170 }; 171 #endif 172 173 static __always_inline int 174 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr) 175 { 176 int ret; 177 178 ret = copy_from_user_nofault(dst, unsafe_ptr, size); 179 if (unlikely(ret < 0)) 180 memset(dst, 0, size); 181 return ret; 182 } 183 184 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size, 185 const void __user *, unsafe_ptr) 186 { 187 return bpf_probe_read_user_common(dst, size, unsafe_ptr); 188 } 189 190 const struct bpf_func_proto bpf_probe_read_user_proto = { 191 .func = bpf_probe_read_user, 192 .gpl_only = true, 193 .ret_type = RET_INTEGER, 194 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 195 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 196 .arg3_type = ARG_ANYTHING, 197 }; 198 199 static __always_inline int 200 bpf_probe_read_user_str_common(void *dst, u32 size, 201 const void __user *unsafe_ptr) 202 { 203 int ret; 204 205 /* 206 * NB: We rely on strncpy_from_user() not copying junk past the NUL 207 * terminator into `dst`. 208 * 209 * strncpy_from_user() does long-sized strides in the fast path. If the 210 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`, 211 * then there could be junk after the NUL in `dst`. If user takes `dst` 212 * and keys a hash map with it, then semantically identical strings can 213 * occupy multiple entries in the map. 214 */ 215 ret = strncpy_from_user_nofault(dst, unsafe_ptr, size); 216 if (unlikely(ret < 0)) 217 memset(dst, 0, size); 218 return ret; 219 } 220 221 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size, 222 const void __user *, unsafe_ptr) 223 { 224 return bpf_probe_read_user_str_common(dst, size, unsafe_ptr); 225 } 226 227 const struct bpf_func_proto bpf_probe_read_user_str_proto = { 228 .func = bpf_probe_read_user_str, 229 .gpl_only = true, 230 .ret_type = RET_INTEGER, 231 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 232 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 233 .arg3_type = ARG_ANYTHING, 234 }; 235 236 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size, 237 const void *, unsafe_ptr) 238 { 239 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr); 240 } 241 242 const struct bpf_func_proto bpf_probe_read_kernel_proto = { 243 .func = bpf_probe_read_kernel, 244 .gpl_only = true, 245 .ret_type = RET_INTEGER, 246 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 247 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 248 .arg3_type = ARG_ANYTHING, 249 }; 250 251 static __always_inline int 252 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr) 253 { 254 int ret; 255 256 /* 257 * The strncpy_from_kernel_nofault() call will likely not fill the 258 * entire buffer, but that's okay in this circumstance as we're probing 259 * arbitrary memory anyway similar to bpf_probe_read_*() and might 260 * as well probe the stack. Thus, memory is explicitly cleared 261 * only in error case, so that improper users ignoring return 262 * code altogether don't copy garbage; otherwise length of string 263 * is returned that can be used for bpf_perf_event_output() et al. 264 */ 265 ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size); 266 if (unlikely(ret < 0)) 267 memset(dst, 0, size); 268 return ret; 269 } 270 271 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size, 272 const void *, unsafe_ptr) 273 { 274 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr); 275 } 276 277 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = { 278 .func = bpf_probe_read_kernel_str, 279 .gpl_only = true, 280 .ret_type = RET_INTEGER, 281 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 282 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 283 .arg3_type = ARG_ANYTHING, 284 }; 285 286 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 287 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size, 288 const void *, unsafe_ptr) 289 { 290 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 291 return bpf_probe_read_user_common(dst, size, 292 (__force void __user *)unsafe_ptr); 293 } 294 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr); 295 } 296 297 static const struct bpf_func_proto bpf_probe_read_compat_proto = { 298 .func = bpf_probe_read_compat, 299 .gpl_only = true, 300 .ret_type = RET_INTEGER, 301 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 302 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 303 .arg3_type = ARG_ANYTHING, 304 }; 305 306 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size, 307 const void *, unsafe_ptr) 308 { 309 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 310 return bpf_probe_read_user_str_common(dst, size, 311 (__force void __user *)unsafe_ptr); 312 } 313 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr); 314 } 315 316 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = { 317 .func = bpf_probe_read_compat_str, 318 .gpl_only = true, 319 .ret_type = RET_INTEGER, 320 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 321 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 322 .arg3_type = ARG_ANYTHING, 323 }; 324 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */ 325 326 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src, 327 u32, size) 328 { 329 /* 330 * Ensure we're in user context which is safe for the helper to 331 * run. This helper has no business in a kthread. 332 * 333 * access_ok() should prevent writing to non-user memory, but in 334 * some situations (nommu, temporary switch, etc) access_ok() does 335 * not provide enough validation, hence the check on KERNEL_DS. 336 * 337 * nmi_uaccess_okay() ensures the probe is not run in an interim 338 * state, when the task or mm are switched. This is specifically 339 * required to prevent the use of temporary mm. 340 */ 341 342 if (unlikely(in_interrupt() || 343 current->flags & (PF_KTHREAD | PF_EXITING))) 344 return -EPERM; 345 if (unlikely(!nmi_uaccess_okay())) 346 return -EPERM; 347 348 return copy_to_user_nofault(unsafe_ptr, src, size); 349 } 350 351 static const struct bpf_func_proto bpf_probe_write_user_proto = { 352 .func = bpf_probe_write_user, 353 .gpl_only = true, 354 .ret_type = RET_INTEGER, 355 .arg1_type = ARG_ANYTHING, 356 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 357 .arg3_type = ARG_CONST_SIZE, 358 }; 359 360 #define MAX_TRACE_PRINTK_VARARGS 3 361 #define BPF_TRACE_PRINTK_SIZE 1024 362 363 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1, 364 u64, arg2, u64, arg3) 365 { 366 u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 }; 367 struct bpf_bprintf_data data = { 368 .get_bin_args = true, 369 .get_buf = true, 370 }; 371 int ret; 372 373 ret = bpf_bprintf_prepare(fmt, fmt_size, args, 374 MAX_TRACE_PRINTK_VARARGS, &data); 375 if (ret < 0) 376 return ret; 377 378 ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args); 379 380 trace_bpf_trace_printk(data.buf); 381 382 bpf_bprintf_cleanup(&data); 383 384 return ret; 385 } 386 387 static const struct bpf_func_proto bpf_trace_printk_proto = { 388 .func = bpf_trace_printk, 389 .gpl_only = true, 390 .ret_type = RET_INTEGER, 391 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 392 .arg2_type = ARG_CONST_SIZE, 393 }; 394 395 static void __set_printk_clr_event(struct work_struct *work) 396 { 397 /* 398 * This program might be calling bpf_trace_printk, 399 * so enable the associated bpf_trace/bpf_trace_printk event. 400 * Repeat this each time as it is possible a user has 401 * disabled bpf_trace_printk events. By loading a program 402 * calling bpf_trace_printk() however the user has expressed 403 * the intent to see such events. 404 */ 405 if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1)) 406 pr_warn_ratelimited("could not enable bpf_trace_printk events"); 407 } 408 static DECLARE_WORK(set_printk_work, __set_printk_clr_event); 409 410 const struct bpf_func_proto *bpf_get_trace_printk_proto(void) 411 { 412 schedule_work(&set_printk_work); 413 return &bpf_trace_printk_proto; 414 } 415 416 BPF_CALL_4(bpf_trace_vprintk, char *, fmt, u32, fmt_size, const void *, args, 417 u32, data_len) 418 { 419 struct bpf_bprintf_data data = { 420 .get_bin_args = true, 421 .get_buf = true, 422 }; 423 int ret, num_args; 424 425 if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 || 426 (data_len && !args)) 427 return -EINVAL; 428 num_args = data_len / 8; 429 430 ret = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data); 431 if (ret < 0) 432 return ret; 433 434 ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args); 435 436 trace_bpf_trace_printk(data.buf); 437 438 bpf_bprintf_cleanup(&data); 439 440 return ret; 441 } 442 443 static const struct bpf_func_proto bpf_trace_vprintk_proto = { 444 .func = bpf_trace_vprintk, 445 .gpl_only = true, 446 .ret_type = RET_INTEGER, 447 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 448 .arg2_type = ARG_CONST_SIZE, 449 .arg3_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 450 .arg4_type = ARG_CONST_SIZE_OR_ZERO, 451 }; 452 453 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void) 454 { 455 schedule_work(&set_printk_work); 456 return &bpf_trace_vprintk_proto; 457 } 458 459 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size, 460 const void *, args, u32, data_len) 461 { 462 struct bpf_bprintf_data data = { 463 .get_bin_args = true, 464 }; 465 int err, num_args; 466 467 if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 || 468 (data_len && !args)) 469 return -EINVAL; 470 num_args = data_len / 8; 471 472 err = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data); 473 if (err < 0) 474 return err; 475 476 seq_bprintf(m, fmt, data.bin_args); 477 478 bpf_bprintf_cleanup(&data); 479 480 return seq_has_overflowed(m) ? -EOVERFLOW : 0; 481 } 482 483 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file) 484 485 static const struct bpf_func_proto bpf_seq_printf_proto = { 486 .func = bpf_seq_printf, 487 .gpl_only = true, 488 .ret_type = RET_INTEGER, 489 .arg1_type = ARG_PTR_TO_BTF_ID, 490 .arg1_btf_id = &btf_seq_file_ids[0], 491 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 492 .arg3_type = ARG_CONST_SIZE, 493 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 494 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 495 }; 496 497 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len) 498 { 499 return seq_write(m, data, len) ? -EOVERFLOW : 0; 500 } 501 502 static const struct bpf_func_proto bpf_seq_write_proto = { 503 .func = bpf_seq_write, 504 .gpl_only = true, 505 .ret_type = RET_INTEGER, 506 .arg1_type = ARG_PTR_TO_BTF_ID, 507 .arg1_btf_id = &btf_seq_file_ids[0], 508 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 509 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 510 }; 511 512 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr, 513 u32, btf_ptr_size, u64, flags) 514 { 515 const struct btf *btf; 516 s32 btf_id; 517 int ret; 518 519 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id); 520 if (ret) 521 return ret; 522 523 return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags); 524 } 525 526 static const struct bpf_func_proto bpf_seq_printf_btf_proto = { 527 .func = bpf_seq_printf_btf, 528 .gpl_only = true, 529 .ret_type = RET_INTEGER, 530 .arg1_type = ARG_PTR_TO_BTF_ID, 531 .arg1_btf_id = &btf_seq_file_ids[0], 532 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 533 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 534 .arg4_type = ARG_ANYTHING, 535 }; 536 537 static __always_inline int 538 get_map_perf_counter(struct bpf_map *map, u64 flags, 539 u64 *value, u64 *enabled, u64 *running) 540 { 541 struct bpf_array *array = container_of(map, struct bpf_array, map); 542 unsigned int cpu = smp_processor_id(); 543 u64 index = flags & BPF_F_INDEX_MASK; 544 struct bpf_event_entry *ee; 545 546 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 547 return -EINVAL; 548 if (index == BPF_F_CURRENT_CPU) 549 index = cpu; 550 if (unlikely(index >= array->map.max_entries)) 551 return -E2BIG; 552 553 ee = READ_ONCE(array->ptrs[index]); 554 if (!ee) 555 return -ENOENT; 556 557 return perf_event_read_local(ee->event, value, enabled, running); 558 } 559 560 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags) 561 { 562 u64 value = 0; 563 int err; 564 565 err = get_map_perf_counter(map, flags, &value, NULL, NULL); 566 /* 567 * this api is ugly since we miss [-22..-2] range of valid 568 * counter values, but that's uapi 569 */ 570 if (err) 571 return err; 572 return value; 573 } 574 575 static const struct bpf_func_proto bpf_perf_event_read_proto = { 576 .func = bpf_perf_event_read, 577 .gpl_only = true, 578 .ret_type = RET_INTEGER, 579 .arg1_type = ARG_CONST_MAP_PTR, 580 .arg2_type = ARG_ANYTHING, 581 }; 582 583 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags, 584 struct bpf_perf_event_value *, buf, u32, size) 585 { 586 int err = -EINVAL; 587 588 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 589 goto clear; 590 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled, 591 &buf->running); 592 if (unlikely(err)) 593 goto clear; 594 return 0; 595 clear: 596 memset(buf, 0, size); 597 return err; 598 } 599 600 static const struct bpf_func_proto bpf_perf_event_read_value_proto = { 601 .func = bpf_perf_event_read_value, 602 .gpl_only = true, 603 .ret_type = RET_INTEGER, 604 .arg1_type = ARG_CONST_MAP_PTR, 605 .arg2_type = ARG_ANYTHING, 606 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 607 .arg4_type = ARG_CONST_SIZE, 608 }; 609 610 static __always_inline u64 611 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map, 612 u64 flags, struct perf_raw_record *raw, 613 struct perf_sample_data *sd) 614 { 615 struct bpf_array *array = container_of(map, struct bpf_array, map); 616 unsigned int cpu = smp_processor_id(); 617 u64 index = flags & BPF_F_INDEX_MASK; 618 struct bpf_event_entry *ee; 619 struct perf_event *event; 620 621 if (index == BPF_F_CURRENT_CPU) 622 index = cpu; 623 if (unlikely(index >= array->map.max_entries)) 624 return -E2BIG; 625 626 ee = READ_ONCE(array->ptrs[index]); 627 if (!ee) 628 return -ENOENT; 629 630 event = ee->event; 631 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE || 632 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT)) 633 return -EINVAL; 634 635 if (unlikely(event->oncpu != cpu)) 636 return -EOPNOTSUPP; 637 638 perf_sample_save_raw_data(sd, event, raw); 639 640 return perf_event_output(event, sd, regs); 641 } 642 643 /* 644 * Support executing tracepoints in normal, irq, and nmi context that each call 645 * bpf_perf_event_output 646 */ 647 struct bpf_trace_sample_data { 648 struct perf_sample_data sds[3]; 649 }; 650 651 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds); 652 static DEFINE_PER_CPU(int, bpf_trace_nest_level); 653 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map, 654 u64, flags, void *, data, u64, size) 655 { 656 struct bpf_trace_sample_data *sds; 657 struct perf_raw_record raw = { 658 .frag = { 659 .size = size, 660 .data = data, 661 }, 662 }; 663 struct perf_sample_data *sd; 664 int nest_level, err; 665 666 preempt_disable(); 667 sds = this_cpu_ptr(&bpf_trace_sds); 668 nest_level = this_cpu_inc_return(bpf_trace_nest_level); 669 670 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) { 671 err = -EBUSY; 672 goto out; 673 } 674 675 sd = &sds->sds[nest_level - 1]; 676 677 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) { 678 err = -EINVAL; 679 goto out; 680 } 681 682 perf_sample_data_init(sd, 0, 0); 683 684 err = __bpf_perf_event_output(regs, map, flags, &raw, sd); 685 out: 686 this_cpu_dec(bpf_trace_nest_level); 687 preempt_enable(); 688 return err; 689 } 690 691 static const struct bpf_func_proto bpf_perf_event_output_proto = { 692 .func = bpf_perf_event_output, 693 .gpl_only = true, 694 .ret_type = RET_INTEGER, 695 .arg1_type = ARG_PTR_TO_CTX, 696 .arg2_type = ARG_CONST_MAP_PTR, 697 .arg3_type = ARG_ANYTHING, 698 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 699 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 700 }; 701 702 static DEFINE_PER_CPU(int, bpf_event_output_nest_level); 703 struct bpf_nested_pt_regs { 704 struct pt_regs regs[3]; 705 }; 706 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs); 707 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds); 708 709 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 710 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) 711 { 712 struct perf_raw_frag frag = { 713 .copy = ctx_copy, 714 .size = ctx_size, 715 .data = ctx, 716 }; 717 struct perf_raw_record raw = { 718 .frag = { 719 { 720 .next = ctx_size ? &frag : NULL, 721 }, 722 .size = meta_size, 723 .data = meta, 724 }, 725 }; 726 struct perf_sample_data *sd; 727 struct pt_regs *regs; 728 int nest_level; 729 u64 ret; 730 731 preempt_disable(); 732 nest_level = this_cpu_inc_return(bpf_event_output_nest_level); 733 734 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) { 735 ret = -EBUSY; 736 goto out; 737 } 738 sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]); 739 regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]); 740 741 perf_fetch_caller_regs(regs); 742 perf_sample_data_init(sd, 0, 0); 743 744 ret = __bpf_perf_event_output(regs, map, flags, &raw, sd); 745 out: 746 this_cpu_dec(bpf_event_output_nest_level); 747 preempt_enable(); 748 return ret; 749 } 750 751 BPF_CALL_0(bpf_get_current_task) 752 { 753 return (long) current; 754 } 755 756 const struct bpf_func_proto bpf_get_current_task_proto = { 757 .func = bpf_get_current_task, 758 .gpl_only = true, 759 .ret_type = RET_INTEGER, 760 }; 761 762 BPF_CALL_0(bpf_get_current_task_btf) 763 { 764 return (unsigned long) current; 765 } 766 767 const struct bpf_func_proto bpf_get_current_task_btf_proto = { 768 .func = bpf_get_current_task_btf, 769 .gpl_only = true, 770 .ret_type = RET_PTR_TO_BTF_ID_TRUSTED, 771 .ret_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], 772 }; 773 774 BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task) 775 { 776 return (unsigned long) task_pt_regs(task); 777 } 778 779 BTF_ID_LIST(bpf_task_pt_regs_ids) 780 BTF_ID(struct, pt_regs) 781 782 const struct bpf_func_proto bpf_task_pt_regs_proto = { 783 .func = bpf_task_pt_regs, 784 .gpl_only = true, 785 .arg1_type = ARG_PTR_TO_BTF_ID, 786 .arg1_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], 787 .ret_type = RET_PTR_TO_BTF_ID, 788 .ret_btf_id = &bpf_task_pt_regs_ids[0], 789 }; 790 791 struct send_signal_irq_work { 792 struct irq_work irq_work; 793 struct task_struct *task; 794 u32 sig; 795 enum pid_type type; 796 bool has_siginfo; 797 struct kernel_siginfo info; 798 }; 799 800 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work); 801 802 static void do_bpf_send_signal(struct irq_work *entry) 803 { 804 struct send_signal_irq_work *work; 805 struct kernel_siginfo *siginfo; 806 807 work = container_of(entry, struct send_signal_irq_work, irq_work); 808 siginfo = work->has_siginfo ? &work->info : SEND_SIG_PRIV; 809 810 group_send_sig_info(work->sig, siginfo, work->task, work->type); 811 put_task_struct(work->task); 812 } 813 814 static int bpf_send_signal_common(u32 sig, enum pid_type type, struct task_struct *task, u64 value) 815 { 816 struct send_signal_irq_work *work = NULL; 817 struct kernel_siginfo info; 818 struct kernel_siginfo *siginfo; 819 820 if (!task) { 821 task = current; 822 siginfo = SEND_SIG_PRIV; 823 } else { 824 clear_siginfo(&info); 825 info.si_signo = sig; 826 info.si_errno = 0; 827 info.si_code = SI_KERNEL; 828 info.si_pid = 0; 829 info.si_uid = 0; 830 info.si_value.sival_ptr = (void *)(unsigned long)value; 831 siginfo = &info; 832 } 833 834 /* Similar to bpf_probe_write_user, task needs to be 835 * in a sound condition and kernel memory access be 836 * permitted in order to send signal to the current 837 * task. 838 */ 839 if (unlikely(task->flags & (PF_KTHREAD | PF_EXITING))) 840 return -EPERM; 841 if (unlikely(!nmi_uaccess_okay())) 842 return -EPERM; 843 /* Task should not be pid=1 to avoid kernel panic. */ 844 if (unlikely(is_global_init(task))) 845 return -EPERM; 846 847 if (preempt_count() != 0 || irqs_disabled()) { 848 /* Do an early check on signal validity. Otherwise, 849 * the error is lost in deferred irq_work. 850 */ 851 if (unlikely(!valid_signal(sig))) 852 return -EINVAL; 853 854 work = this_cpu_ptr(&send_signal_work); 855 if (irq_work_is_busy(&work->irq_work)) 856 return -EBUSY; 857 858 /* Add the current task, which is the target of sending signal, 859 * to the irq_work. The current task may change when queued 860 * irq works get executed. 861 */ 862 work->task = get_task_struct(task); 863 work->has_siginfo = siginfo == &info; 864 if (work->has_siginfo) 865 copy_siginfo(&work->info, &info); 866 work->sig = sig; 867 work->type = type; 868 irq_work_queue(&work->irq_work); 869 return 0; 870 } 871 872 return group_send_sig_info(sig, siginfo, task, type); 873 } 874 875 BPF_CALL_1(bpf_send_signal, u32, sig) 876 { 877 return bpf_send_signal_common(sig, PIDTYPE_TGID, NULL, 0); 878 } 879 880 static const struct bpf_func_proto bpf_send_signal_proto = { 881 .func = bpf_send_signal, 882 .gpl_only = false, 883 .ret_type = RET_INTEGER, 884 .arg1_type = ARG_ANYTHING, 885 }; 886 887 BPF_CALL_1(bpf_send_signal_thread, u32, sig) 888 { 889 return bpf_send_signal_common(sig, PIDTYPE_PID, NULL, 0); 890 } 891 892 static const struct bpf_func_proto bpf_send_signal_thread_proto = { 893 .func = bpf_send_signal_thread, 894 .gpl_only = false, 895 .ret_type = RET_INTEGER, 896 .arg1_type = ARG_ANYTHING, 897 }; 898 899 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz) 900 { 901 struct path copy; 902 long len; 903 char *p; 904 905 if (!sz) 906 return 0; 907 908 /* 909 * The path pointer is verified as trusted and safe to use, 910 * but let's double check it's valid anyway to workaround 911 * potentially broken verifier. 912 */ 913 len = copy_from_kernel_nofault(©, path, sizeof(*path)); 914 if (len < 0) 915 return len; 916 917 p = d_path(©, buf, sz); 918 if (IS_ERR(p)) { 919 len = PTR_ERR(p); 920 } else { 921 len = buf + sz - p; 922 memmove(buf, p, len); 923 } 924 925 return len; 926 } 927 928 BTF_SET_START(btf_allowlist_d_path) 929 #ifdef CONFIG_SECURITY 930 BTF_ID(func, security_file_permission) 931 BTF_ID(func, security_inode_getattr) 932 BTF_ID(func, security_file_open) 933 #endif 934 #ifdef CONFIG_SECURITY_PATH 935 BTF_ID(func, security_path_truncate) 936 #endif 937 BTF_ID(func, vfs_truncate) 938 BTF_ID(func, vfs_fallocate) 939 BTF_ID(func, dentry_open) 940 BTF_ID(func, vfs_getattr) 941 BTF_ID(func, filp_close) 942 BTF_SET_END(btf_allowlist_d_path) 943 944 static bool bpf_d_path_allowed(const struct bpf_prog *prog) 945 { 946 if (prog->type == BPF_PROG_TYPE_TRACING && 947 prog->expected_attach_type == BPF_TRACE_ITER) 948 return true; 949 950 if (prog->type == BPF_PROG_TYPE_LSM) 951 return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id); 952 953 return btf_id_set_contains(&btf_allowlist_d_path, 954 prog->aux->attach_btf_id); 955 } 956 957 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path) 958 959 static const struct bpf_func_proto bpf_d_path_proto = { 960 .func = bpf_d_path, 961 .gpl_only = false, 962 .ret_type = RET_INTEGER, 963 .arg1_type = ARG_PTR_TO_BTF_ID, 964 .arg1_btf_id = &bpf_d_path_btf_ids[0], 965 .arg2_type = ARG_PTR_TO_MEM, 966 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 967 .allowed = bpf_d_path_allowed, 968 }; 969 970 #define BTF_F_ALL (BTF_F_COMPACT | BTF_F_NONAME | \ 971 BTF_F_PTR_RAW | BTF_F_ZERO) 972 973 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size, 974 u64 flags, const struct btf **btf, 975 s32 *btf_id) 976 { 977 const struct btf_type *t; 978 979 if (unlikely(flags & ~(BTF_F_ALL))) 980 return -EINVAL; 981 982 if (btf_ptr_size != sizeof(struct btf_ptr)) 983 return -EINVAL; 984 985 *btf = bpf_get_btf_vmlinux(); 986 987 if (IS_ERR_OR_NULL(*btf)) 988 return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL; 989 990 if (ptr->type_id > 0) 991 *btf_id = ptr->type_id; 992 else 993 return -EINVAL; 994 995 if (*btf_id > 0) 996 t = btf_type_by_id(*btf, *btf_id); 997 if (*btf_id <= 0 || !t) 998 return -ENOENT; 999 1000 return 0; 1001 } 1002 1003 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr, 1004 u32, btf_ptr_size, u64, flags) 1005 { 1006 const struct btf *btf; 1007 s32 btf_id; 1008 int ret; 1009 1010 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id); 1011 if (ret) 1012 return ret; 1013 1014 return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size, 1015 flags); 1016 } 1017 1018 const struct bpf_func_proto bpf_snprintf_btf_proto = { 1019 .func = bpf_snprintf_btf, 1020 .gpl_only = false, 1021 .ret_type = RET_INTEGER, 1022 .arg1_type = ARG_PTR_TO_MEM, 1023 .arg2_type = ARG_CONST_SIZE, 1024 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1025 .arg4_type = ARG_CONST_SIZE, 1026 .arg5_type = ARG_ANYTHING, 1027 }; 1028 1029 BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx) 1030 { 1031 /* This helper call is inlined by verifier. */ 1032 return ((u64 *)ctx)[-2]; 1033 } 1034 1035 static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = { 1036 .func = bpf_get_func_ip_tracing, 1037 .gpl_only = true, 1038 .ret_type = RET_INTEGER, 1039 .arg1_type = ARG_PTR_TO_CTX, 1040 }; 1041 1042 #ifdef CONFIG_X86_KERNEL_IBT 1043 static unsigned long get_entry_ip(unsigned long fentry_ip) 1044 { 1045 u32 instr; 1046 1047 /* We want to be extra safe in case entry ip is on the page edge, 1048 * but otherwise we need to avoid get_kernel_nofault()'s overhead. 1049 */ 1050 if ((fentry_ip & ~PAGE_MASK) < ENDBR_INSN_SIZE) { 1051 if (get_kernel_nofault(instr, (u32 *)(fentry_ip - ENDBR_INSN_SIZE))) 1052 return fentry_ip; 1053 } else { 1054 instr = *(u32 *)(fentry_ip - ENDBR_INSN_SIZE); 1055 } 1056 if (is_endbr(instr)) 1057 fentry_ip -= ENDBR_INSN_SIZE; 1058 return fentry_ip; 1059 } 1060 #else 1061 #define get_entry_ip(fentry_ip) fentry_ip 1062 #endif 1063 1064 BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs) 1065 { 1066 struct bpf_trace_run_ctx *run_ctx __maybe_unused; 1067 struct kprobe *kp; 1068 1069 #ifdef CONFIG_UPROBES 1070 run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx); 1071 if (run_ctx->is_uprobe) 1072 return ((struct uprobe_dispatch_data *)current->utask->vaddr)->bp_addr; 1073 #endif 1074 1075 kp = kprobe_running(); 1076 1077 if (!kp || !(kp->flags & KPROBE_FLAG_ON_FUNC_ENTRY)) 1078 return 0; 1079 1080 return get_entry_ip((uintptr_t)kp->addr); 1081 } 1082 1083 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = { 1084 .func = bpf_get_func_ip_kprobe, 1085 .gpl_only = true, 1086 .ret_type = RET_INTEGER, 1087 .arg1_type = ARG_PTR_TO_CTX, 1088 }; 1089 1090 BPF_CALL_1(bpf_get_func_ip_kprobe_multi, struct pt_regs *, regs) 1091 { 1092 return bpf_kprobe_multi_entry_ip(current->bpf_ctx); 1093 } 1094 1095 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe_multi = { 1096 .func = bpf_get_func_ip_kprobe_multi, 1097 .gpl_only = false, 1098 .ret_type = RET_INTEGER, 1099 .arg1_type = ARG_PTR_TO_CTX, 1100 }; 1101 1102 BPF_CALL_1(bpf_get_attach_cookie_kprobe_multi, struct pt_regs *, regs) 1103 { 1104 return bpf_kprobe_multi_cookie(current->bpf_ctx); 1105 } 1106 1107 static const struct bpf_func_proto bpf_get_attach_cookie_proto_kmulti = { 1108 .func = bpf_get_attach_cookie_kprobe_multi, 1109 .gpl_only = false, 1110 .ret_type = RET_INTEGER, 1111 .arg1_type = ARG_PTR_TO_CTX, 1112 }; 1113 1114 BPF_CALL_1(bpf_get_func_ip_uprobe_multi, struct pt_regs *, regs) 1115 { 1116 return bpf_uprobe_multi_entry_ip(current->bpf_ctx); 1117 } 1118 1119 static const struct bpf_func_proto bpf_get_func_ip_proto_uprobe_multi = { 1120 .func = bpf_get_func_ip_uprobe_multi, 1121 .gpl_only = false, 1122 .ret_type = RET_INTEGER, 1123 .arg1_type = ARG_PTR_TO_CTX, 1124 }; 1125 1126 BPF_CALL_1(bpf_get_attach_cookie_uprobe_multi, struct pt_regs *, regs) 1127 { 1128 return bpf_uprobe_multi_cookie(current->bpf_ctx); 1129 } 1130 1131 static const struct bpf_func_proto bpf_get_attach_cookie_proto_umulti = { 1132 .func = bpf_get_attach_cookie_uprobe_multi, 1133 .gpl_only = false, 1134 .ret_type = RET_INTEGER, 1135 .arg1_type = ARG_PTR_TO_CTX, 1136 }; 1137 1138 BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx) 1139 { 1140 struct bpf_trace_run_ctx *run_ctx; 1141 1142 run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx); 1143 return run_ctx->bpf_cookie; 1144 } 1145 1146 static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = { 1147 .func = bpf_get_attach_cookie_trace, 1148 .gpl_only = false, 1149 .ret_type = RET_INTEGER, 1150 .arg1_type = ARG_PTR_TO_CTX, 1151 }; 1152 1153 BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx) 1154 { 1155 return ctx->event->bpf_cookie; 1156 } 1157 1158 static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = { 1159 .func = bpf_get_attach_cookie_pe, 1160 .gpl_only = false, 1161 .ret_type = RET_INTEGER, 1162 .arg1_type = ARG_PTR_TO_CTX, 1163 }; 1164 1165 BPF_CALL_1(bpf_get_attach_cookie_tracing, void *, ctx) 1166 { 1167 struct bpf_trace_run_ctx *run_ctx; 1168 1169 run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx); 1170 return run_ctx->bpf_cookie; 1171 } 1172 1173 static const struct bpf_func_proto bpf_get_attach_cookie_proto_tracing = { 1174 .func = bpf_get_attach_cookie_tracing, 1175 .gpl_only = false, 1176 .ret_type = RET_INTEGER, 1177 .arg1_type = ARG_PTR_TO_CTX, 1178 }; 1179 1180 BPF_CALL_3(bpf_get_branch_snapshot, void *, buf, u32, size, u64, flags) 1181 { 1182 static const u32 br_entry_size = sizeof(struct perf_branch_entry); 1183 u32 entry_cnt = size / br_entry_size; 1184 1185 entry_cnt = static_call(perf_snapshot_branch_stack)(buf, entry_cnt); 1186 1187 if (unlikely(flags)) 1188 return -EINVAL; 1189 1190 if (!entry_cnt) 1191 return -ENOENT; 1192 1193 return entry_cnt * br_entry_size; 1194 } 1195 1196 static const struct bpf_func_proto bpf_get_branch_snapshot_proto = { 1197 .func = bpf_get_branch_snapshot, 1198 .gpl_only = true, 1199 .ret_type = RET_INTEGER, 1200 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1201 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1202 }; 1203 1204 BPF_CALL_3(get_func_arg, void *, ctx, u32, n, u64 *, value) 1205 { 1206 /* This helper call is inlined by verifier. */ 1207 u64 nr_args = ((u64 *)ctx)[-1]; 1208 1209 if ((u64) n >= nr_args) 1210 return -EINVAL; 1211 *value = ((u64 *)ctx)[n]; 1212 return 0; 1213 } 1214 1215 static const struct bpf_func_proto bpf_get_func_arg_proto = { 1216 .func = get_func_arg, 1217 .ret_type = RET_INTEGER, 1218 .arg1_type = ARG_PTR_TO_CTX, 1219 .arg2_type = ARG_ANYTHING, 1220 .arg3_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED, 1221 .arg3_size = sizeof(u64), 1222 }; 1223 1224 BPF_CALL_2(get_func_ret, void *, ctx, u64 *, value) 1225 { 1226 /* This helper call is inlined by verifier. */ 1227 u64 nr_args = ((u64 *)ctx)[-1]; 1228 1229 *value = ((u64 *)ctx)[nr_args]; 1230 return 0; 1231 } 1232 1233 static const struct bpf_func_proto bpf_get_func_ret_proto = { 1234 .func = get_func_ret, 1235 .ret_type = RET_INTEGER, 1236 .arg1_type = ARG_PTR_TO_CTX, 1237 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED, 1238 .arg2_size = sizeof(u64), 1239 }; 1240 1241 BPF_CALL_1(get_func_arg_cnt, void *, ctx) 1242 { 1243 /* This helper call is inlined by verifier. */ 1244 return ((u64 *)ctx)[-1]; 1245 } 1246 1247 static const struct bpf_func_proto bpf_get_func_arg_cnt_proto = { 1248 .func = get_func_arg_cnt, 1249 .ret_type = RET_INTEGER, 1250 .arg1_type = ARG_PTR_TO_CTX, 1251 }; 1252 1253 #ifdef CONFIG_KEYS 1254 __bpf_kfunc_start_defs(); 1255 1256 /** 1257 * bpf_lookup_user_key - lookup a key by its serial 1258 * @serial: key handle serial number 1259 * @flags: lookup-specific flags 1260 * 1261 * Search a key with a given *serial* and the provided *flags*. 1262 * If found, increment the reference count of the key by one, and 1263 * return it in the bpf_key structure. 1264 * 1265 * The bpf_key structure must be passed to bpf_key_put() when done 1266 * with it, so that the key reference count is decremented and the 1267 * bpf_key structure is freed. 1268 * 1269 * Permission checks are deferred to the time the key is used by 1270 * one of the available key-specific kfuncs. 1271 * 1272 * Set *flags* with KEY_LOOKUP_CREATE, to attempt creating a requested 1273 * special keyring (e.g. session keyring), if it doesn't yet exist. 1274 * Set *flags* with KEY_LOOKUP_PARTIAL, to lookup a key without waiting 1275 * for the key construction, and to retrieve uninstantiated keys (keys 1276 * without data attached to them). 1277 * 1278 * Return: a bpf_key pointer with a valid key pointer if the key is found, a 1279 * NULL pointer otherwise. 1280 */ 1281 __bpf_kfunc struct bpf_key *bpf_lookup_user_key(u32 serial, u64 flags) 1282 { 1283 key_ref_t key_ref; 1284 struct bpf_key *bkey; 1285 1286 if (flags & ~KEY_LOOKUP_ALL) 1287 return NULL; 1288 1289 /* 1290 * Permission check is deferred until the key is used, as the 1291 * intent of the caller is unknown here. 1292 */ 1293 key_ref = lookup_user_key(serial, flags, KEY_DEFER_PERM_CHECK); 1294 if (IS_ERR(key_ref)) 1295 return NULL; 1296 1297 bkey = kmalloc(sizeof(*bkey), GFP_KERNEL); 1298 if (!bkey) { 1299 key_put(key_ref_to_ptr(key_ref)); 1300 return NULL; 1301 } 1302 1303 bkey->key = key_ref_to_ptr(key_ref); 1304 bkey->has_ref = true; 1305 1306 return bkey; 1307 } 1308 1309 /** 1310 * bpf_lookup_system_key - lookup a key by a system-defined ID 1311 * @id: key ID 1312 * 1313 * Obtain a bpf_key structure with a key pointer set to the passed key ID. 1314 * The key pointer is marked as invalid, to prevent bpf_key_put() from 1315 * attempting to decrement the key reference count on that pointer. The key 1316 * pointer set in such way is currently understood only by 1317 * verify_pkcs7_signature(). 1318 * 1319 * Set *id* to one of the values defined in include/linux/verification.h: 1320 * 0 for the primary keyring (immutable keyring of system keys); 1321 * VERIFY_USE_SECONDARY_KEYRING for both the primary and secondary keyring 1322 * (where keys can be added only if they are vouched for by existing keys 1323 * in those keyrings); VERIFY_USE_PLATFORM_KEYRING for the platform 1324 * keyring (primarily used by the integrity subsystem to verify a kexec'ed 1325 * kerned image and, possibly, the initramfs signature). 1326 * 1327 * Return: a bpf_key pointer with an invalid key pointer set from the 1328 * pre-determined ID on success, a NULL pointer otherwise 1329 */ 1330 __bpf_kfunc struct bpf_key *bpf_lookup_system_key(u64 id) 1331 { 1332 struct bpf_key *bkey; 1333 1334 if (system_keyring_id_check(id) < 0) 1335 return NULL; 1336 1337 bkey = kmalloc(sizeof(*bkey), GFP_ATOMIC); 1338 if (!bkey) 1339 return NULL; 1340 1341 bkey->key = (struct key *)(unsigned long)id; 1342 bkey->has_ref = false; 1343 1344 return bkey; 1345 } 1346 1347 /** 1348 * bpf_key_put - decrement key reference count if key is valid and free bpf_key 1349 * @bkey: bpf_key structure 1350 * 1351 * Decrement the reference count of the key inside *bkey*, if the pointer 1352 * is valid, and free *bkey*. 1353 */ 1354 __bpf_kfunc void bpf_key_put(struct bpf_key *bkey) 1355 { 1356 if (bkey->has_ref) 1357 key_put(bkey->key); 1358 1359 kfree(bkey); 1360 } 1361 1362 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION 1363 /** 1364 * bpf_verify_pkcs7_signature - verify a PKCS#7 signature 1365 * @data_p: data to verify 1366 * @sig_p: signature of the data 1367 * @trusted_keyring: keyring with keys trusted for signature verification 1368 * 1369 * Verify the PKCS#7 signature *sig_ptr* against the supplied *data_ptr* 1370 * with keys in a keyring referenced by *trusted_keyring*. 1371 * 1372 * Return: 0 on success, a negative value on error. 1373 */ 1374 __bpf_kfunc int bpf_verify_pkcs7_signature(struct bpf_dynptr *data_p, 1375 struct bpf_dynptr *sig_p, 1376 struct bpf_key *trusted_keyring) 1377 { 1378 struct bpf_dynptr_kern *data_ptr = (struct bpf_dynptr_kern *)data_p; 1379 struct bpf_dynptr_kern *sig_ptr = (struct bpf_dynptr_kern *)sig_p; 1380 const void *data, *sig; 1381 u32 data_len, sig_len; 1382 int ret; 1383 1384 if (trusted_keyring->has_ref) { 1385 /* 1386 * Do the permission check deferred in bpf_lookup_user_key(). 1387 * See bpf_lookup_user_key() for more details. 1388 * 1389 * A call to key_task_permission() here would be redundant, as 1390 * it is already done by keyring_search() called by 1391 * find_asymmetric_key(). 1392 */ 1393 ret = key_validate(trusted_keyring->key); 1394 if (ret < 0) 1395 return ret; 1396 } 1397 1398 data_len = __bpf_dynptr_size(data_ptr); 1399 data = __bpf_dynptr_data(data_ptr, data_len); 1400 sig_len = __bpf_dynptr_size(sig_ptr); 1401 sig = __bpf_dynptr_data(sig_ptr, sig_len); 1402 1403 return verify_pkcs7_signature(data, data_len, sig, sig_len, 1404 trusted_keyring->key, 1405 VERIFYING_UNSPECIFIED_SIGNATURE, NULL, 1406 NULL); 1407 } 1408 #endif /* CONFIG_SYSTEM_DATA_VERIFICATION */ 1409 1410 __bpf_kfunc_end_defs(); 1411 1412 BTF_KFUNCS_START(key_sig_kfunc_set) 1413 BTF_ID_FLAGS(func, bpf_lookup_user_key, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE) 1414 BTF_ID_FLAGS(func, bpf_lookup_system_key, KF_ACQUIRE | KF_RET_NULL) 1415 BTF_ID_FLAGS(func, bpf_key_put, KF_RELEASE) 1416 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION 1417 BTF_ID_FLAGS(func, bpf_verify_pkcs7_signature, KF_SLEEPABLE) 1418 #endif 1419 BTF_KFUNCS_END(key_sig_kfunc_set) 1420 1421 static const struct btf_kfunc_id_set bpf_key_sig_kfunc_set = { 1422 .owner = THIS_MODULE, 1423 .set = &key_sig_kfunc_set, 1424 }; 1425 1426 static int __init bpf_key_sig_kfuncs_init(void) 1427 { 1428 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 1429 &bpf_key_sig_kfunc_set); 1430 } 1431 1432 late_initcall(bpf_key_sig_kfuncs_init); 1433 #endif /* CONFIG_KEYS */ 1434 1435 static const struct bpf_func_proto * 1436 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1437 { 1438 const struct bpf_func_proto *func_proto; 1439 1440 switch (func_id) { 1441 case BPF_FUNC_map_lookup_elem: 1442 return &bpf_map_lookup_elem_proto; 1443 case BPF_FUNC_map_update_elem: 1444 return &bpf_map_update_elem_proto; 1445 case BPF_FUNC_map_delete_elem: 1446 return &bpf_map_delete_elem_proto; 1447 case BPF_FUNC_map_push_elem: 1448 return &bpf_map_push_elem_proto; 1449 case BPF_FUNC_map_pop_elem: 1450 return &bpf_map_pop_elem_proto; 1451 case BPF_FUNC_map_peek_elem: 1452 return &bpf_map_peek_elem_proto; 1453 case BPF_FUNC_map_lookup_percpu_elem: 1454 return &bpf_map_lookup_percpu_elem_proto; 1455 case BPF_FUNC_ktime_get_ns: 1456 return &bpf_ktime_get_ns_proto; 1457 case BPF_FUNC_ktime_get_boot_ns: 1458 return &bpf_ktime_get_boot_ns_proto; 1459 case BPF_FUNC_tail_call: 1460 return &bpf_tail_call_proto; 1461 case BPF_FUNC_get_current_task: 1462 return &bpf_get_current_task_proto; 1463 case BPF_FUNC_get_current_task_btf: 1464 return &bpf_get_current_task_btf_proto; 1465 case BPF_FUNC_task_pt_regs: 1466 return &bpf_task_pt_regs_proto; 1467 case BPF_FUNC_get_current_uid_gid: 1468 return &bpf_get_current_uid_gid_proto; 1469 case BPF_FUNC_get_current_comm: 1470 return &bpf_get_current_comm_proto; 1471 case BPF_FUNC_trace_printk: 1472 return bpf_get_trace_printk_proto(); 1473 case BPF_FUNC_get_smp_processor_id: 1474 return &bpf_get_smp_processor_id_proto; 1475 case BPF_FUNC_get_numa_node_id: 1476 return &bpf_get_numa_node_id_proto; 1477 case BPF_FUNC_perf_event_read: 1478 return &bpf_perf_event_read_proto; 1479 case BPF_FUNC_get_prandom_u32: 1480 return &bpf_get_prandom_u32_proto; 1481 case BPF_FUNC_probe_read_user: 1482 return &bpf_probe_read_user_proto; 1483 case BPF_FUNC_probe_read_kernel: 1484 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1485 NULL : &bpf_probe_read_kernel_proto; 1486 case BPF_FUNC_probe_read_user_str: 1487 return &bpf_probe_read_user_str_proto; 1488 case BPF_FUNC_probe_read_kernel_str: 1489 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1490 NULL : &bpf_probe_read_kernel_str_proto; 1491 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 1492 case BPF_FUNC_probe_read: 1493 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1494 NULL : &bpf_probe_read_compat_proto; 1495 case BPF_FUNC_probe_read_str: 1496 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1497 NULL : &bpf_probe_read_compat_str_proto; 1498 #endif 1499 #ifdef CONFIG_CGROUPS 1500 case BPF_FUNC_cgrp_storage_get: 1501 return &bpf_cgrp_storage_get_proto; 1502 case BPF_FUNC_cgrp_storage_delete: 1503 return &bpf_cgrp_storage_delete_proto; 1504 case BPF_FUNC_current_task_under_cgroup: 1505 return &bpf_current_task_under_cgroup_proto; 1506 #endif 1507 case BPF_FUNC_send_signal: 1508 return &bpf_send_signal_proto; 1509 case BPF_FUNC_send_signal_thread: 1510 return &bpf_send_signal_thread_proto; 1511 case BPF_FUNC_perf_event_read_value: 1512 return &bpf_perf_event_read_value_proto; 1513 case BPF_FUNC_ringbuf_output: 1514 return &bpf_ringbuf_output_proto; 1515 case BPF_FUNC_ringbuf_reserve: 1516 return &bpf_ringbuf_reserve_proto; 1517 case BPF_FUNC_ringbuf_submit: 1518 return &bpf_ringbuf_submit_proto; 1519 case BPF_FUNC_ringbuf_discard: 1520 return &bpf_ringbuf_discard_proto; 1521 case BPF_FUNC_ringbuf_query: 1522 return &bpf_ringbuf_query_proto; 1523 case BPF_FUNC_jiffies64: 1524 return &bpf_jiffies64_proto; 1525 case BPF_FUNC_get_task_stack: 1526 return prog->sleepable ? &bpf_get_task_stack_sleepable_proto 1527 : &bpf_get_task_stack_proto; 1528 case BPF_FUNC_copy_from_user: 1529 return &bpf_copy_from_user_proto; 1530 case BPF_FUNC_copy_from_user_task: 1531 return &bpf_copy_from_user_task_proto; 1532 case BPF_FUNC_snprintf_btf: 1533 return &bpf_snprintf_btf_proto; 1534 case BPF_FUNC_per_cpu_ptr: 1535 return &bpf_per_cpu_ptr_proto; 1536 case BPF_FUNC_this_cpu_ptr: 1537 return &bpf_this_cpu_ptr_proto; 1538 case BPF_FUNC_task_storage_get: 1539 if (bpf_prog_check_recur(prog)) 1540 return &bpf_task_storage_get_recur_proto; 1541 return &bpf_task_storage_get_proto; 1542 case BPF_FUNC_task_storage_delete: 1543 if (bpf_prog_check_recur(prog)) 1544 return &bpf_task_storage_delete_recur_proto; 1545 return &bpf_task_storage_delete_proto; 1546 case BPF_FUNC_for_each_map_elem: 1547 return &bpf_for_each_map_elem_proto; 1548 case BPF_FUNC_snprintf: 1549 return &bpf_snprintf_proto; 1550 case BPF_FUNC_get_func_ip: 1551 return &bpf_get_func_ip_proto_tracing; 1552 case BPF_FUNC_get_branch_snapshot: 1553 return &bpf_get_branch_snapshot_proto; 1554 case BPF_FUNC_find_vma: 1555 return &bpf_find_vma_proto; 1556 case BPF_FUNC_trace_vprintk: 1557 return bpf_get_trace_vprintk_proto(); 1558 default: 1559 break; 1560 } 1561 1562 func_proto = bpf_base_func_proto(func_id, prog); 1563 if (func_proto) 1564 return func_proto; 1565 1566 if (!bpf_token_capable(prog->aux->token, CAP_SYS_ADMIN)) 1567 return NULL; 1568 1569 switch (func_id) { 1570 case BPF_FUNC_probe_write_user: 1571 return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ? 1572 NULL : &bpf_probe_write_user_proto; 1573 default: 1574 return NULL; 1575 } 1576 } 1577 1578 static bool is_kprobe_multi(const struct bpf_prog *prog) 1579 { 1580 return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI || 1581 prog->expected_attach_type == BPF_TRACE_KPROBE_SESSION; 1582 } 1583 1584 static inline bool is_kprobe_session(const struct bpf_prog *prog) 1585 { 1586 return prog->expected_attach_type == BPF_TRACE_KPROBE_SESSION; 1587 } 1588 1589 static inline bool is_uprobe_multi(const struct bpf_prog *prog) 1590 { 1591 return prog->expected_attach_type == BPF_TRACE_UPROBE_MULTI || 1592 prog->expected_attach_type == BPF_TRACE_UPROBE_SESSION; 1593 } 1594 1595 static inline bool is_uprobe_session(const struct bpf_prog *prog) 1596 { 1597 return prog->expected_attach_type == BPF_TRACE_UPROBE_SESSION; 1598 } 1599 1600 static const struct bpf_func_proto * 1601 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1602 { 1603 switch (func_id) { 1604 case BPF_FUNC_perf_event_output: 1605 return &bpf_perf_event_output_proto; 1606 case BPF_FUNC_get_stackid: 1607 return &bpf_get_stackid_proto; 1608 case BPF_FUNC_get_stack: 1609 return prog->sleepable ? &bpf_get_stack_sleepable_proto : &bpf_get_stack_proto; 1610 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 1611 case BPF_FUNC_override_return: 1612 return &bpf_override_return_proto; 1613 #endif 1614 case BPF_FUNC_get_func_ip: 1615 if (is_kprobe_multi(prog)) 1616 return &bpf_get_func_ip_proto_kprobe_multi; 1617 if (is_uprobe_multi(prog)) 1618 return &bpf_get_func_ip_proto_uprobe_multi; 1619 return &bpf_get_func_ip_proto_kprobe; 1620 case BPF_FUNC_get_attach_cookie: 1621 if (is_kprobe_multi(prog)) 1622 return &bpf_get_attach_cookie_proto_kmulti; 1623 if (is_uprobe_multi(prog)) 1624 return &bpf_get_attach_cookie_proto_umulti; 1625 return &bpf_get_attach_cookie_proto_trace; 1626 default: 1627 return bpf_tracing_func_proto(func_id, prog); 1628 } 1629 } 1630 1631 /* bpf+kprobe programs can access fields of 'struct pt_regs' */ 1632 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1633 const struct bpf_prog *prog, 1634 struct bpf_insn_access_aux *info) 1635 { 1636 if (off < 0 || off >= sizeof(struct pt_regs)) 1637 return false; 1638 if (type != BPF_READ) 1639 return false; 1640 if (off % size != 0) 1641 return false; 1642 /* 1643 * Assertion for 32 bit to make sure last 8 byte access 1644 * (BPF_DW) to the last 4 byte member is disallowed. 1645 */ 1646 if (off + size > sizeof(struct pt_regs)) 1647 return false; 1648 1649 return true; 1650 } 1651 1652 const struct bpf_verifier_ops kprobe_verifier_ops = { 1653 .get_func_proto = kprobe_prog_func_proto, 1654 .is_valid_access = kprobe_prog_is_valid_access, 1655 }; 1656 1657 const struct bpf_prog_ops kprobe_prog_ops = { 1658 }; 1659 1660 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map, 1661 u64, flags, void *, data, u64, size) 1662 { 1663 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1664 1665 /* 1666 * r1 points to perf tracepoint buffer where first 8 bytes are hidden 1667 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it 1668 * from there and call the same bpf_perf_event_output() helper inline. 1669 */ 1670 return ____bpf_perf_event_output(regs, map, flags, data, size); 1671 } 1672 1673 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = { 1674 .func = bpf_perf_event_output_tp, 1675 .gpl_only = true, 1676 .ret_type = RET_INTEGER, 1677 .arg1_type = ARG_PTR_TO_CTX, 1678 .arg2_type = ARG_CONST_MAP_PTR, 1679 .arg3_type = ARG_ANYTHING, 1680 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1681 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1682 }; 1683 1684 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map, 1685 u64, flags) 1686 { 1687 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1688 1689 /* 1690 * Same comment as in bpf_perf_event_output_tp(), only that this time 1691 * the other helper's function body cannot be inlined due to being 1692 * external, thus we need to call raw helper function. 1693 */ 1694 return bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1695 flags, 0, 0); 1696 } 1697 1698 static const struct bpf_func_proto bpf_get_stackid_proto_tp = { 1699 .func = bpf_get_stackid_tp, 1700 .gpl_only = true, 1701 .ret_type = RET_INTEGER, 1702 .arg1_type = ARG_PTR_TO_CTX, 1703 .arg2_type = ARG_CONST_MAP_PTR, 1704 .arg3_type = ARG_ANYTHING, 1705 }; 1706 1707 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size, 1708 u64, flags) 1709 { 1710 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1711 1712 return bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1713 (unsigned long) size, flags, 0); 1714 } 1715 1716 static const struct bpf_func_proto bpf_get_stack_proto_tp = { 1717 .func = bpf_get_stack_tp, 1718 .gpl_only = true, 1719 .ret_type = RET_INTEGER, 1720 .arg1_type = ARG_PTR_TO_CTX, 1721 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1722 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1723 .arg4_type = ARG_ANYTHING, 1724 }; 1725 1726 static const struct bpf_func_proto * 1727 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1728 { 1729 switch (func_id) { 1730 case BPF_FUNC_perf_event_output: 1731 return &bpf_perf_event_output_proto_tp; 1732 case BPF_FUNC_get_stackid: 1733 return &bpf_get_stackid_proto_tp; 1734 case BPF_FUNC_get_stack: 1735 return &bpf_get_stack_proto_tp; 1736 case BPF_FUNC_get_attach_cookie: 1737 return &bpf_get_attach_cookie_proto_trace; 1738 default: 1739 return bpf_tracing_func_proto(func_id, prog); 1740 } 1741 } 1742 1743 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1744 const struct bpf_prog *prog, 1745 struct bpf_insn_access_aux *info) 1746 { 1747 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE) 1748 return false; 1749 if (type != BPF_READ) 1750 return false; 1751 if (off % size != 0) 1752 return false; 1753 1754 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64)); 1755 return true; 1756 } 1757 1758 const struct bpf_verifier_ops tracepoint_verifier_ops = { 1759 .get_func_proto = tp_prog_func_proto, 1760 .is_valid_access = tp_prog_is_valid_access, 1761 }; 1762 1763 const struct bpf_prog_ops tracepoint_prog_ops = { 1764 }; 1765 1766 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx, 1767 struct bpf_perf_event_value *, buf, u32, size) 1768 { 1769 int err = -EINVAL; 1770 1771 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 1772 goto clear; 1773 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled, 1774 &buf->running); 1775 if (unlikely(err)) 1776 goto clear; 1777 return 0; 1778 clear: 1779 memset(buf, 0, size); 1780 return err; 1781 } 1782 1783 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = { 1784 .func = bpf_perf_prog_read_value, 1785 .gpl_only = true, 1786 .ret_type = RET_INTEGER, 1787 .arg1_type = ARG_PTR_TO_CTX, 1788 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1789 .arg3_type = ARG_CONST_SIZE, 1790 }; 1791 1792 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx, 1793 void *, buf, u32, size, u64, flags) 1794 { 1795 static const u32 br_entry_size = sizeof(struct perf_branch_entry); 1796 struct perf_branch_stack *br_stack = ctx->data->br_stack; 1797 u32 to_copy; 1798 1799 if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE)) 1800 return -EINVAL; 1801 1802 if (unlikely(!(ctx->data->sample_flags & PERF_SAMPLE_BRANCH_STACK))) 1803 return -ENOENT; 1804 1805 if (unlikely(!br_stack)) 1806 return -ENOENT; 1807 1808 if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE) 1809 return br_stack->nr * br_entry_size; 1810 1811 if (!buf || (size % br_entry_size != 0)) 1812 return -EINVAL; 1813 1814 to_copy = min_t(u32, br_stack->nr * br_entry_size, size); 1815 memcpy(buf, br_stack->entries, to_copy); 1816 1817 return to_copy; 1818 } 1819 1820 static const struct bpf_func_proto bpf_read_branch_records_proto = { 1821 .func = bpf_read_branch_records, 1822 .gpl_only = true, 1823 .ret_type = RET_INTEGER, 1824 .arg1_type = ARG_PTR_TO_CTX, 1825 .arg2_type = ARG_PTR_TO_MEM_OR_NULL, 1826 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1827 .arg4_type = ARG_ANYTHING, 1828 }; 1829 1830 static const struct bpf_func_proto * 1831 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1832 { 1833 switch (func_id) { 1834 case BPF_FUNC_perf_event_output: 1835 return &bpf_perf_event_output_proto_tp; 1836 case BPF_FUNC_get_stackid: 1837 return &bpf_get_stackid_proto_pe; 1838 case BPF_FUNC_get_stack: 1839 return &bpf_get_stack_proto_pe; 1840 case BPF_FUNC_perf_prog_read_value: 1841 return &bpf_perf_prog_read_value_proto; 1842 case BPF_FUNC_read_branch_records: 1843 return &bpf_read_branch_records_proto; 1844 case BPF_FUNC_get_attach_cookie: 1845 return &bpf_get_attach_cookie_proto_pe; 1846 default: 1847 return bpf_tracing_func_proto(func_id, prog); 1848 } 1849 } 1850 1851 /* 1852 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp 1853 * to avoid potential recursive reuse issue when/if tracepoints are added 1854 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack. 1855 * 1856 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage 1857 * in normal, irq, and nmi context. 1858 */ 1859 struct bpf_raw_tp_regs { 1860 struct pt_regs regs[3]; 1861 }; 1862 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs); 1863 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level); 1864 static struct pt_regs *get_bpf_raw_tp_regs(void) 1865 { 1866 struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs); 1867 int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level); 1868 1869 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) { 1870 this_cpu_dec(bpf_raw_tp_nest_level); 1871 return ERR_PTR(-EBUSY); 1872 } 1873 1874 return &tp_regs->regs[nest_level - 1]; 1875 } 1876 1877 static void put_bpf_raw_tp_regs(void) 1878 { 1879 this_cpu_dec(bpf_raw_tp_nest_level); 1880 } 1881 1882 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args, 1883 struct bpf_map *, map, u64, flags, void *, data, u64, size) 1884 { 1885 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1886 int ret; 1887 1888 if (IS_ERR(regs)) 1889 return PTR_ERR(regs); 1890 1891 perf_fetch_caller_regs(regs); 1892 ret = ____bpf_perf_event_output(regs, map, flags, data, size); 1893 1894 put_bpf_raw_tp_regs(); 1895 return ret; 1896 } 1897 1898 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = { 1899 .func = bpf_perf_event_output_raw_tp, 1900 .gpl_only = true, 1901 .ret_type = RET_INTEGER, 1902 .arg1_type = ARG_PTR_TO_CTX, 1903 .arg2_type = ARG_CONST_MAP_PTR, 1904 .arg3_type = ARG_ANYTHING, 1905 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1906 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1907 }; 1908 1909 extern const struct bpf_func_proto bpf_skb_output_proto; 1910 extern const struct bpf_func_proto bpf_xdp_output_proto; 1911 extern const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto; 1912 1913 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args, 1914 struct bpf_map *, map, u64, flags) 1915 { 1916 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1917 int ret; 1918 1919 if (IS_ERR(regs)) 1920 return PTR_ERR(regs); 1921 1922 perf_fetch_caller_regs(regs); 1923 /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */ 1924 ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1925 flags, 0, 0); 1926 put_bpf_raw_tp_regs(); 1927 return ret; 1928 } 1929 1930 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = { 1931 .func = bpf_get_stackid_raw_tp, 1932 .gpl_only = true, 1933 .ret_type = RET_INTEGER, 1934 .arg1_type = ARG_PTR_TO_CTX, 1935 .arg2_type = ARG_CONST_MAP_PTR, 1936 .arg3_type = ARG_ANYTHING, 1937 }; 1938 1939 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args, 1940 void *, buf, u32, size, u64, flags) 1941 { 1942 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1943 int ret; 1944 1945 if (IS_ERR(regs)) 1946 return PTR_ERR(regs); 1947 1948 perf_fetch_caller_regs(regs); 1949 ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1950 (unsigned long) size, flags, 0); 1951 put_bpf_raw_tp_regs(); 1952 return ret; 1953 } 1954 1955 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = { 1956 .func = bpf_get_stack_raw_tp, 1957 .gpl_only = true, 1958 .ret_type = RET_INTEGER, 1959 .arg1_type = ARG_PTR_TO_CTX, 1960 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1961 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1962 .arg4_type = ARG_ANYTHING, 1963 }; 1964 1965 static const struct bpf_func_proto * 1966 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1967 { 1968 switch (func_id) { 1969 case BPF_FUNC_perf_event_output: 1970 return &bpf_perf_event_output_proto_raw_tp; 1971 case BPF_FUNC_get_stackid: 1972 return &bpf_get_stackid_proto_raw_tp; 1973 case BPF_FUNC_get_stack: 1974 return &bpf_get_stack_proto_raw_tp; 1975 case BPF_FUNC_get_attach_cookie: 1976 return &bpf_get_attach_cookie_proto_tracing; 1977 default: 1978 return bpf_tracing_func_proto(func_id, prog); 1979 } 1980 } 1981 1982 const struct bpf_func_proto * 1983 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1984 { 1985 const struct bpf_func_proto *fn; 1986 1987 switch (func_id) { 1988 #ifdef CONFIG_NET 1989 case BPF_FUNC_skb_output: 1990 return &bpf_skb_output_proto; 1991 case BPF_FUNC_xdp_output: 1992 return &bpf_xdp_output_proto; 1993 case BPF_FUNC_skc_to_tcp6_sock: 1994 return &bpf_skc_to_tcp6_sock_proto; 1995 case BPF_FUNC_skc_to_tcp_sock: 1996 return &bpf_skc_to_tcp_sock_proto; 1997 case BPF_FUNC_skc_to_tcp_timewait_sock: 1998 return &bpf_skc_to_tcp_timewait_sock_proto; 1999 case BPF_FUNC_skc_to_tcp_request_sock: 2000 return &bpf_skc_to_tcp_request_sock_proto; 2001 case BPF_FUNC_skc_to_udp6_sock: 2002 return &bpf_skc_to_udp6_sock_proto; 2003 case BPF_FUNC_skc_to_unix_sock: 2004 return &bpf_skc_to_unix_sock_proto; 2005 case BPF_FUNC_skc_to_mptcp_sock: 2006 return &bpf_skc_to_mptcp_sock_proto; 2007 case BPF_FUNC_sk_storage_get: 2008 return &bpf_sk_storage_get_tracing_proto; 2009 case BPF_FUNC_sk_storage_delete: 2010 return &bpf_sk_storage_delete_tracing_proto; 2011 case BPF_FUNC_sock_from_file: 2012 return &bpf_sock_from_file_proto; 2013 case BPF_FUNC_get_socket_cookie: 2014 return &bpf_get_socket_ptr_cookie_proto; 2015 case BPF_FUNC_xdp_get_buff_len: 2016 return &bpf_xdp_get_buff_len_trace_proto; 2017 #endif 2018 case BPF_FUNC_seq_printf: 2019 return prog->expected_attach_type == BPF_TRACE_ITER ? 2020 &bpf_seq_printf_proto : 2021 NULL; 2022 case BPF_FUNC_seq_write: 2023 return prog->expected_attach_type == BPF_TRACE_ITER ? 2024 &bpf_seq_write_proto : 2025 NULL; 2026 case BPF_FUNC_seq_printf_btf: 2027 return prog->expected_attach_type == BPF_TRACE_ITER ? 2028 &bpf_seq_printf_btf_proto : 2029 NULL; 2030 case BPF_FUNC_d_path: 2031 return &bpf_d_path_proto; 2032 case BPF_FUNC_get_func_arg: 2033 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_proto : NULL; 2034 case BPF_FUNC_get_func_ret: 2035 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_ret_proto : NULL; 2036 case BPF_FUNC_get_func_arg_cnt: 2037 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_cnt_proto : NULL; 2038 case BPF_FUNC_get_attach_cookie: 2039 if (prog->type == BPF_PROG_TYPE_TRACING && 2040 prog->expected_attach_type == BPF_TRACE_RAW_TP) 2041 return &bpf_get_attach_cookie_proto_tracing; 2042 return bpf_prog_has_trampoline(prog) ? &bpf_get_attach_cookie_proto_tracing : NULL; 2043 default: 2044 fn = raw_tp_prog_func_proto(func_id, prog); 2045 if (!fn && prog->expected_attach_type == BPF_TRACE_ITER) 2046 fn = bpf_iter_get_func_proto(func_id, prog); 2047 return fn; 2048 } 2049 } 2050 2051 static bool raw_tp_prog_is_valid_access(int off, int size, 2052 enum bpf_access_type type, 2053 const struct bpf_prog *prog, 2054 struct bpf_insn_access_aux *info) 2055 { 2056 return bpf_tracing_ctx_access(off, size, type); 2057 } 2058 2059 static bool tracing_prog_is_valid_access(int off, int size, 2060 enum bpf_access_type type, 2061 const struct bpf_prog *prog, 2062 struct bpf_insn_access_aux *info) 2063 { 2064 return bpf_tracing_btf_ctx_access(off, size, type, prog, info); 2065 } 2066 2067 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog, 2068 const union bpf_attr *kattr, 2069 union bpf_attr __user *uattr) 2070 { 2071 return -ENOTSUPP; 2072 } 2073 2074 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = { 2075 .get_func_proto = raw_tp_prog_func_proto, 2076 .is_valid_access = raw_tp_prog_is_valid_access, 2077 }; 2078 2079 const struct bpf_prog_ops raw_tracepoint_prog_ops = { 2080 #ifdef CONFIG_NET 2081 .test_run = bpf_prog_test_run_raw_tp, 2082 #endif 2083 }; 2084 2085 const struct bpf_verifier_ops tracing_verifier_ops = { 2086 .get_func_proto = tracing_prog_func_proto, 2087 .is_valid_access = tracing_prog_is_valid_access, 2088 }; 2089 2090 const struct bpf_prog_ops tracing_prog_ops = { 2091 .test_run = bpf_prog_test_run_tracing, 2092 }; 2093 2094 static bool raw_tp_writable_prog_is_valid_access(int off, int size, 2095 enum bpf_access_type type, 2096 const struct bpf_prog *prog, 2097 struct bpf_insn_access_aux *info) 2098 { 2099 if (off == 0) { 2100 if (size != sizeof(u64) || type != BPF_READ) 2101 return false; 2102 info->reg_type = PTR_TO_TP_BUFFER; 2103 } 2104 return raw_tp_prog_is_valid_access(off, size, type, prog, info); 2105 } 2106 2107 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = { 2108 .get_func_proto = raw_tp_prog_func_proto, 2109 .is_valid_access = raw_tp_writable_prog_is_valid_access, 2110 }; 2111 2112 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = { 2113 }; 2114 2115 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 2116 const struct bpf_prog *prog, 2117 struct bpf_insn_access_aux *info) 2118 { 2119 const int size_u64 = sizeof(u64); 2120 2121 if (off < 0 || off >= sizeof(struct bpf_perf_event_data)) 2122 return false; 2123 if (type != BPF_READ) 2124 return false; 2125 if (off % size != 0) { 2126 if (sizeof(unsigned long) != 4) 2127 return false; 2128 if (size != 8) 2129 return false; 2130 if (off % size != 4) 2131 return false; 2132 } 2133 2134 switch (off) { 2135 case bpf_ctx_range(struct bpf_perf_event_data, sample_period): 2136 bpf_ctx_record_field_size(info, size_u64); 2137 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 2138 return false; 2139 break; 2140 case bpf_ctx_range(struct bpf_perf_event_data, addr): 2141 bpf_ctx_record_field_size(info, size_u64); 2142 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 2143 return false; 2144 break; 2145 default: 2146 if (size != sizeof(long)) 2147 return false; 2148 } 2149 2150 return true; 2151 } 2152 2153 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type, 2154 const struct bpf_insn *si, 2155 struct bpf_insn *insn_buf, 2156 struct bpf_prog *prog, u32 *target_size) 2157 { 2158 struct bpf_insn *insn = insn_buf; 2159 2160 switch (si->off) { 2161 case offsetof(struct bpf_perf_event_data, sample_period): 2162 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 2163 data), si->dst_reg, si->src_reg, 2164 offsetof(struct bpf_perf_event_data_kern, data)); 2165 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 2166 bpf_target_off(struct perf_sample_data, period, 8, 2167 target_size)); 2168 break; 2169 case offsetof(struct bpf_perf_event_data, addr): 2170 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 2171 data), si->dst_reg, si->src_reg, 2172 offsetof(struct bpf_perf_event_data_kern, data)); 2173 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 2174 bpf_target_off(struct perf_sample_data, addr, 8, 2175 target_size)); 2176 break; 2177 default: 2178 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 2179 regs), si->dst_reg, si->src_reg, 2180 offsetof(struct bpf_perf_event_data_kern, regs)); 2181 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg, 2182 si->off); 2183 break; 2184 } 2185 2186 return insn - insn_buf; 2187 } 2188 2189 const struct bpf_verifier_ops perf_event_verifier_ops = { 2190 .get_func_proto = pe_prog_func_proto, 2191 .is_valid_access = pe_prog_is_valid_access, 2192 .convert_ctx_access = pe_prog_convert_ctx_access, 2193 }; 2194 2195 const struct bpf_prog_ops perf_event_prog_ops = { 2196 }; 2197 2198 static DEFINE_MUTEX(bpf_event_mutex); 2199 2200 #define BPF_TRACE_MAX_PROGS 64 2201 2202 int perf_event_attach_bpf_prog(struct perf_event *event, 2203 struct bpf_prog *prog, 2204 u64 bpf_cookie) 2205 { 2206 struct bpf_prog_array *old_array; 2207 struct bpf_prog_array *new_array; 2208 int ret = -EEXIST; 2209 2210 /* 2211 * Kprobe override only works if they are on the function entry, 2212 * and only if they are on the opt-in list. 2213 */ 2214 if (prog->kprobe_override && 2215 (!trace_kprobe_on_func_entry(event->tp_event) || 2216 !trace_kprobe_error_injectable(event->tp_event))) 2217 return -EINVAL; 2218 2219 mutex_lock(&bpf_event_mutex); 2220 2221 if (event->prog) 2222 goto unlock; 2223 2224 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 2225 if (old_array && 2226 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) { 2227 ret = -E2BIG; 2228 goto unlock; 2229 } 2230 2231 ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array); 2232 if (ret < 0) 2233 goto unlock; 2234 2235 /* set the new array to event->tp_event and set event->prog */ 2236 event->prog = prog; 2237 event->bpf_cookie = bpf_cookie; 2238 rcu_assign_pointer(event->tp_event->prog_array, new_array); 2239 bpf_prog_array_free_sleepable(old_array); 2240 2241 unlock: 2242 mutex_unlock(&bpf_event_mutex); 2243 return ret; 2244 } 2245 2246 void perf_event_detach_bpf_prog(struct perf_event *event) 2247 { 2248 struct bpf_prog_array *old_array; 2249 struct bpf_prog_array *new_array; 2250 struct bpf_prog *prog = NULL; 2251 int ret; 2252 2253 mutex_lock(&bpf_event_mutex); 2254 2255 if (!event->prog) 2256 goto unlock; 2257 2258 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 2259 if (!old_array) 2260 goto put; 2261 2262 ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array); 2263 if (ret < 0) { 2264 bpf_prog_array_delete_safe(old_array, event->prog); 2265 } else { 2266 rcu_assign_pointer(event->tp_event->prog_array, new_array); 2267 bpf_prog_array_free_sleepable(old_array); 2268 } 2269 2270 put: 2271 prog = event->prog; 2272 event->prog = NULL; 2273 2274 unlock: 2275 mutex_unlock(&bpf_event_mutex); 2276 2277 if (prog) { 2278 /* 2279 * It could be that the bpf_prog is not sleepable (and will be freed 2280 * via normal RCU), but is called from a point that supports sleepable 2281 * programs and uses tasks-trace-RCU. 2282 */ 2283 synchronize_rcu_tasks_trace(); 2284 2285 bpf_prog_put(prog); 2286 } 2287 } 2288 2289 int perf_event_query_prog_array(struct perf_event *event, void __user *info) 2290 { 2291 struct perf_event_query_bpf __user *uquery = info; 2292 struct perf_event_query_bpf query = {}; 2293 struct bpf_prog_array *progs; 2294 u32 *ids, prog_cnt, ids_len; 2295 int ret; 2296 2297 if (!perfmon_capable()) 2298 return -EPERM; 2299 if (event->attr.type != PERF_TYPE_TRACEPOINT) 2300 return -EINVAL; 2301 if (copy_from_user(&query, uquery, sizeof(query))) 2302 return -EFAULT; 2303 2304 ids_len = query.ids_len; 2305 if (ids_len > BPF_TRACE_MAX_PROGS) 2306 return -E2BIG; 2307 ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN); 2308 if (!ids) 2309 return -ENOMEM; 2310 /* 2311 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which 2312 * is required when user only wants to check for uquery->prog_cnt. 2313 * There is no need to check for it since the case is handled 2314 * gracefully in bpf_prog_array_copy_info. 2315 */ 2316 2317 mutex_lock(&bpf_event_mutex); 2318 progs = bpf_event_rcu_dereference(event->tp_event->prog_array); 2319 ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt); 2320 mutex_unlock(&bpf_event_mutex); 2321 2322 if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) || 2323 copy_to_user(uquery->ids, ids, ids_len * sizeof(u32))) 2324 ret = -EFAULT; 2325 2326 kfree(ids); 2327 return ret; 2328 } 2329 2330 extern struct bpf_raw_event_map __start__bpf_raw_tp[]; 2331 extern struct bpf_raw_event_map __stop__bpf_raw_tp[]; 2332 2333 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name) 2334 { 2335 struct bpf_raw_event_map *btp = __start__bpf_raw_tp; 2336 2337 for (; btp < __stop__bpf_raw_tp; btp++) { 2338 if (!strcmp(btp->tp->name, name)) 2339 return btp; 2340 } 2341 2342 return bpf_get_raw_tracepoint_module(name); 2343 } 2344 2345 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp) 2346 { 2347 struct module *mod; 2348 2349 preempt_disable(); 2350 mod = __module_address((unsigned long)btp); 2351 module_put(mod); 2352 preempt_enable(); 2353 } 2354 2355 static __always_inline 2356 void __bpf_trace_run(struct bpf_raw_tp_link *link, u64 *args) 2357 { 2358 struct bpf_prog *prog = link->link.prog; 2359 struct bpf_run_ctx *old_run_ctx; 2360 struct bpf_trace_run_ctx run_ctx; 2361 2362 cant_sleep(); 2363 if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) { 2364 bpf_prog_inc_misses_counter(prog); 2365 goto out; 2366 } 2367 2368 run_ctx.bpf_cookie = link->cookie; 2369 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2370 2371 rcu_read_lock(); 2372 (void) bpf_prog_run(prog, args); 2373 rcu_read_unlock(); 2374 2375 bpf_reset_run_ctx(old_run_ctx); 2376 out: 2377 this_cpu_dec(*(prog->active)); 2378 } 2379 2380 #define UNPACK(...) __VA_ARGS__ 2381 #define REPEAT_1(FN, DL, X, ...) FN(X) 2382 #define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__) 2383 #define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__) 2384 #define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__) 2385 #define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__) 2386 #define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__) 2387 #define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__) 2388 #define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__) 2389 #define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__) 2390 #define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__) 2391 #define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__) 2392 #define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__) 2393 #define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__) 2394 2395 #define SARG(X) u64 arg##X 2396 #define COPY(X) args[X] = arg##X 2397 2398 #define __DL_COM (,) 2399 #define __DL_SEM (;) 2400 2401 #define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 2402 2403 #define BPF_TRACE_DEFN_x(x) \ 2404 void bpf_trace_run##x(struct bpf_raw_tp_link *link, \ 2405 REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \ 2406 { \ 2407 u64 args[x]; \ 2408 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \ 2409 __bpf_trace_run(link, args); \ 2410 } \ 2411 EXPORT_SYMBOL_GPL(bpf_trace_run##x) 2412 BPF_TRACE_DEFN_x(1); 2413 BPF_TRACE_DEFN_x(2); 2414 BPF_TRACE_DEFN_x(3); 2415 BPF_TRACE_DEFN_x(4); 2416 BPF_TRACE_DEFN_x(5); 2417 BPF_TRACE_DEFN_x(6); 2418 BPF_TRACE_DEFN_x(7); 2419 BPF_TRACE_DEFN_x(8); 2420 BPF_TRACE_DEFN_x(9); 2421 BPF_TRACE_DEFN_x(10); 2422 BPF_TRACE_DEFN_x(11); 2423 BPF_TRACE_DEFN_x(12); 2424 2425 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_raw_tp_link *link) 2426 { 2427 struct tracepoint *tp = btp->tp; 2428 struct bpf_prog *prog = link->link.prog; 2429 2430 /* 2431 * check that program doesn't access arguments beyond what's 2432 * available in this tracepoint 2433 */ 2434 if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64)) 2435 return -EINVAL; 2436 2437 if (prog->aux->max_tp_access > btp->writable_size) 2438 return -EINVAL; 2439 2440 return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func, link); 2441 } 2442 2443 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_raw_tp_link *link) 2444 { 2445 return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, link); 2446 } 2447 2448 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id, 2449 u32 *fd_type, const char **buf, 2450 u64 *probe_offset, u64 *probe_addr, 2451 unsigned long *missed) 2452 { 2453 bool is_tracepoint, is_syscall_tp; 2454 struct bpf_prog *prog; 2455 int flags, err = 0; 2456 2457 prog = event->prog; 2458 if (!prog) 2459 return -ENOENT; 2460 2461 /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */ 2462 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) 2463 return -EOPNOTSUPP; 2464 2465 *prog_id = prog->aux->id; 2466 flags = event->tp_event->flags; 2467 is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT; 2468 is_syscall_tp = is_syscall_trace_event(event->tp_event); 2469 2470 if (is_tracepoint || is_syscall_tp) { 2471 *buf = is_tracepoint ? event->tp_event->tp->name 2472 : event->tp_event->name; 2473 /* We allow NULL pointer for tracepoint */ 2474 if (fd_type) 2475 *fd_type = BPF_FD_TYPE_TRACEPOINT; 2476 if (probe_offset) 2477 *probe_offset = 0x0; 2478 if (probe_addr) 2479 *probe_addr = 0x0; 2480 } else { 2481 /* kprobe/uprobe */ 2482 err = -EOPNOTSUPP; 2483 #ifdef CONFIG_KPROBE_EVENTS 2484 if (flags & TRACE_EVENT_FL_KPROBE) 2485 err = bpf_get_kprobe_info(event, fd_type, buf, 2486 probe_offset, probe_addr, missed, 2487 event->attr.type == PERF_TYPE_TRACEPOINT); 2488 #endif 2489 #ifdef CONFIG_UPROBE_EVENTS 2490 if (flags & TRACE_EVENT_FL_UPROBE) 2491 err = bpf_get_uprobe_info(event, fd_type, buf, 2492 probe_offset, probe_addr, 2493 event->attr.type == PERF_TYPE_TRACEPOINT); 2494 #endif 2495 } 2496 2497 return err; 2498 } 2499 2500 static int __init send_signal_irq_work_init(void) 2501 { 2502 int cpu; 2503 struct send_signal_irq_work *work; 2504 2505 for_each_possible_cpu(cpu) { 2506 work = per_cpu_ptr(&send_signal_work, cpu); 2507 init_irq_work(&work->irq_work, do_bpf_send_signal); 2508 } 2509 return 0; 2510 } 2511 2512 subsys_initcall(send_signal_irq_work_init); 2513 2514 #ifdef CONFIG_MODULES 2515 static int bpf_event_notify(struct notifier_block *nb, unsigned long op, 2516 void *module) 2517 { 2518 struct bpf_trace_module *btm, *tmp; 2519 struct module *mod = module; 2520 int ret = 0; 2521 2522 if (mod->num_bpf_raw_events == 0 || 2523 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING)) 2524 goto out; 2525 2526 mutex_lock(&bpf_module_mutex); 2527 2528 switch (op) { 2529 case MODULE_STATE_COMING: 2530 btm = kzalloc(sizeof(*btm), GFP_KERNEL); 2531 if (btm) { 2532 btm->module = module; 2533 list_add(&btm->list, &bpf_trace_modules); 2534 } else { 2535 ret = -ENOMEM; 2536 } 2537 break; 2538 case MODULE_STATE_GOING: 2539 list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) { 2540 if (btm->module == module) { 2541 list_del(&btm->list); 2542 kfree(btm); 2543 break; 2544 } 2545 } 2546 break; 2547 } 2548 2549 mutex_unlock(&bpf_module_mutex); 2550 2551 out: 2552 return notifier_from_errno(ret); 2553 } 2554 2555 static struct notifier_block bpf_module_nb = { 2556 .notifier_call = bpf_event_notify, 2557 }; 2558 2559 static int __init bpf_event_init(void) 2560 { 2561 register_module_notifier(&bpf_module_nb); 2562 return 0; 2563 } 2564 2565 fs_initcall(bpf_event_init); 2566 #endif /* CONFIG_MODULES */ 2567 2568 struct bpf_session_run_ctx { 2569 struct bpf_run_ctx run_ctx; 2570 bool is_return; 2571 void *data; 2572 }; 2573 2574 #ifdef CONFIG_FPROBE 2575 struct bpf_kprobe_multi_link { 2576 struct bpf_link link; 2577 struct fprobe fp; 2578 unsigned long *addrs; 2579 u64 *cookies; 2580 u32 cnt; 2581 u32 mods_cnt; 2582 struct module **mods; 2583 u32 flags; 2584 }; 2585 2586 struct bpf_kprobe_multi_run_ctx { 2587 struct bpf_session_run_ctx session_ctx; 2588 struct bpf_kprobe_multi_link *link; 2589 unsigned long entry_ip; 2590 }; 2591 2592 struct user_syms { 2593 const char **syms; 2594 char *buf; 2595 }; 2596 2597 #ifndef CONFIG_HAVE_FTRACE_REGS_HAVING_PT_REGS 2598 static DEFINE_PER_CPU(struct pt_regs, bpf_kprobe_multi_pt_regs); 2599 #define bpf_kprobe_multi_pt_regs_ptr() this_cpu_ptr(&bpf_kprobe_multi_pt_regs) 2600 #else 2601 #define bpf_kprobe_multi_pt_regs_ptr() (NULL) 2602 #endif 2603 2604 static unsigned long ftrace_get_entry_ip(unsigned long fentry_ip) 2605 { 2606 unsigned long ip = ftrace_get_symaddr(fentry_ip); 2607 2608 return ip ? : fentry_ip; 2609 } 2610 2611 static int copy_user_syms(struct user_syms *us, unsigned long __user *usyms, u32 cnt) 2612 { 2613 unsigned long __user usymbol; 2614 const char **syms = NULL; 2615 char *buf = NULL, *p; 2616 int err = -ENOMEM; 2617 unsigned int i; 2618 2619 syms = kvmalloc_array(cnt, sizeof(*syms), GFP_KERNEL); 2620 if (!syms) 2621 goto error; 2622 2623 buf = kvmalloc_array(cnt, KSYM_NAME_LEN, GFP_KERNEL); 2624 if (!buf) 2625 goto error; 2626 2627 for (p = buf, i = 0; i < cnt; i++) { 2628 if (__get_user(usymbol, usyms + i)) { 2629 err = -EFAULT; 2630 goto error; 2631 } 2632 err = strncpy_from_user(p, (const char __user *) usymbol, KSYM_NAME_LEN); 2633 if (err == KSYM_NAME_LEN) 2634 err = -E2BIG; 2635 if (err < 0) 2636 goto error; 2637 syms[i] = p; 2638 p += err + 1; 2639 } 2640 2641 us->syms = syms; 2642 us->buf = buf; 2643 return 0; 2644 2645 error: 2646 if (err) { 2647 kvfree(syms); 2648 kvfree(buf); 2649 } 2650 return err; 2651 } 2652 2653 static void kprobe_multi_put_modules(struct module **mods, u32 cnt) 2654 { 2655 u32 i; 2656 2657 for (i = 0; i < cnt; i++) 2658 module_put(mods[i]); 2659 } 2660 2661 static void free_user_syms(struct user_syms *us) 2662 { 2663 kvfree(us->syms); 2664 kvfree(us->buf); 2665 } 2666 2667 static void bpf_kprobe_multi_link_release(struct bpf_link *link) 2668 { 2669 struct bpf_kprobe_multi_link *kmulti_link; 2670 2671 kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link); 2672 unregister_fprobe(&kmulti_link->fp); 2673 kprobe_multi_put_modules(kmulti_link->mods, kmulti_link->mods_cnt); 2674 } 2675 2676 static void bpf_kprobe_multi_link_dealloc(struct bpf_link *link) 2677 { 2678 struct bpf_kprobe_multi_link *kmulti_link; 2679 2680 kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link); 2681 kvfree(kmulti_link->addrs); 2682 kvfree(kmulti_link->cookies); 2683 kfree(kmulti_link->mods); 2684 kfree(kmulti_link); 2685 } 2686 2687 static int bpf_kprobe_multi_link_fill_link_info(const struct bpf_link *link, 2688 struct bpf_link_info *info) 2689 { 2690 u64 __user *ucookies = u64_to_user_ptr(info->kprobe_multi.cookies); 2691 u64 __user *uaddrs = u64_to_user_ptr(info->kprobe_multi.addrs); 2692 struct bpf_kprobe_multi_link *kmulti_link; 2693 u32 ucount = info->kprobe_multi.count; 2694 int err = 0, i; 2695 2696 if (!uaddrs ^ !ucount) 2697 return -EINVAL; 2698 if (ucookies && !ucount) 2699 return -EINVAL; 2700 2701 kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link); 2702 info->kprobe_multi.count = kmulti_link->cnt; 2703 info->kprobe_multi.flags = kmulti_link->flags; 2704 info->kprobe_multi.missed = kmulti_link->fp.nmissed; 2705 2706 if (!uaddrs) 2707 return 0; 2708 if (ucount < kmulti_link->cnt) 2709 err = -ENOSPC; 2710 else 2711 ucount = kmulti_link->cnt; 2712 2713 if (ucookies) { 2714 if (kmulti_link->cookies) { 2715 if (copy_to_user(ucookies, kmulti_link->cookies, ucount * sizeof(u64))) 2716 return -EFAULT; 2717 } else { 2718 for (i = 0; i < ucount; i++) { 2719 if (put_user(0, ucookies + i)) 2720 return -EFAULT; 2721 } 2722 } 2723 } 2724 2725 if (kallsyms_show_value(current_cred())) { 2726 if (copy_to_user(uaddrs, kmulti_link->addrs, ucount * sizeof(u64))) 2727 return -EFAULT; 2728 } else { 2729 for (i = 0; i < ucount; i++) { 2730 if (put_user(0, uaddrs + i)) 2731 return -EFAULT; 2732 } 2733 } 2734 return err; 2735 } 2736 2737 static const struct bpf_link_ops bpf_kprobe_multi_link_lops = { 2738 .release = bpf_kprobe_multi_link_release, 2739 .dealloc_deferred = bpf_kprobe_multi_link_dealloc, 2740 .fill_link_info = bpf_kprobe_multi_link_fill_link_info, 2741 }; 2742 2743 static void bpf_kprobe_multi_cookie_swap(void *a, void *b, int size, const void *priv) 2744 { 2745 const struct bpf_kprobe_multi_link *link = priv; 2746 unsigned long *addr_a = a, *addr_b = b; 2747 u64 *cookie_a, *cookie_b; 2748 2749 cookie_a = link->cookies + (addr_a - link->addrs); 2750 cookie_b = link->cookies + (addr_b - link->addrs); 2751 2752 /* swap addr_a/addr_b and cookie_a/cookie_b values */ 2753 swap(*addr_a, *addr_b); 2754 swap(*cookie_a, *cookie_b); 2755 } 2756 2757 static int bpf_kprobe_multi_addrs_cmp(const void *a, const void *b) 2758 { 2759 const unsigned long *addr_a = a, *addr_b = b; 2760 2761 if (*addr_a == *addr_b) 2762 return 0; 2763 return *addr_a < *addr_b ? -1 : 1; 2764 } 2765 2766 static int bpf_kprobe_multi_cookie_cmp(const void *a, const void *b, const void *priv) 2767 { 2768 return bpf_kprobe_multi_addrs_cmp(a, b); 2769 } 2770 2771 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx) 2772 { 2773 struct bpf_kprobe_multi_run_ctx *run_ctx; 2774 struct bpf_kprobe_multi_link *link; 2775 u64 *cookie, entry_ip; 2776 unsigned long *addr; 2777 2778 if (WARN_ON_ONCE(!ctx)) 2779 return 0; 2780 run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, 2781 session_ctx.run_ctx); 2782 link = run_ctx->link; 2783 if (!link->cookies) 2784 return 0; 2785 entry_ip = run_ctx->entry_ip; 2786 addr = bsearch(&entry_ip, link->addrs, link->cnt, sizeof(entry_ip), 2787 bpf_kprobe_multi_addrs_cmp); 2788 if (!addr) 2789 return 0; 2790 cookie = link->cookies + (addr - link->addrs); 2791 return *cookie; 2792 } 2793 2794 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx) 2795 { 2796 struct bpf_kprobe_multi_run_ctx *run_ctx; 2797 2798 run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, 2799 session_ctx.run_ctx); 2800 return run_ctx->entry_ip; 2801 } 2802 2803 static int 2804 kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link *link, 2805 unsigned long entry_ip, struct ftrace_regs *fregs, 2806 bool is_return, void *data) 2807 { 2808 struct bpf_kprobe_multi_run_ctx run_ctx = { 2809 .session_ctx = { 2810 .is_return = is_return, 2811 .data = data, 2812 }, 2813 .link = link, 2814 .entry_ip = entry_ip, 2815 }; 2816 struct bpf_run_ctx *old_run_ctx; 2817 struct pt_regs *regs; 2818 int err; 2819 2820 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) { 2821 bpf_prog_inc_misses_counter(link->link.prog); 2822 err = 1; 2823 goto out; 2824 } 2825 2826 migrate_disable(); 2827 rcu_read_lock(); 2828 regs = ftrace_partial_regs(fregs, bpf_kprobe_multi_pt_regs_ptr()); 2829 old_run_ctx = bpf_set_run_ctx(&run_ctx.session_ctx.run_ctx); 2830 err = bpf_prog_run(link->link.prog, regs); 2831 bpf_reset_run_ctx(old_run_ctx); 2832 rcu_read_unlock(); 2833 migrate_enable(); 2834 2835 out: 2836 __this_cpu_dec(bpf_prog_active); 2837 return err; 2838 } 2839 2840 static int 2841 kprobe_multi_link_handler(struct fprobe *fp, unsigned long fentry_ip, 2842 unsigned long ret_ip, struct ftrace_regs *fregs, 2843 void *data) 2844 { 2845 struct bpf_kprobe_multi_link *link; 2846 int err; 2847 2848 link = container_of(fp, struct bpf_kprobe_multi_link, fp); 2849 err = kprobe_multi_link_prog_run(link, ftrace_get_entry_ip(fentry_ip), 2850 fregs, false, data); 2851 return is_kprobe_session(link->link.prog) ? err : 0; 2852 } 2853 2854 static void 2855 kprobe_multi_link_exit_handler(struct fprobe *fp, unsigned long fentry_ip, 2856 unsigned long ret_ip, struct ftrace_regs *fregs, 2857 void *data) 2858 { 2859 struct bpf_kprobe_multi_link *link; 2860 2861 link = container_of(fp, struct bpf_kprobe_multi_link, fp); 2862 kprobe_multi_link_prog_run(link, ftrace_get_entry_ip(fentry_ip), 2863 fregs, true, data); 2864 } 2865 2866 static int symbols_cmp_r(const void *a, const void *b, const void *priv) 2867 { 2868 const char **str_a = (const char **) a; 2869 const char **str_b = (const char **) b; 2870 2871 return strcmp(*str_a, *str_b); 2872 } 2873 2874 struct multi_symbols_sort { 2875 const char **funcs; 2876 u64 *cookies; 2877 }; 2878 2879 static void symbols_swap_r(void *a, void *b, int size, const void *priv) 2880 { 2881 const struct multi_symbols_sort *data = priv; 2882 const char **name_a = a, **name_b = b; 2883 2884 swap(*name_a, *name_b); 2885 2886 /* If defined, swap also related cookies. */ 2887 if (data->cookies) { 2888 u64 *cookie_a, *cookie_b; 2889 2890 cookie_a = data->cookies + (name_a - data->funcs); 2891 cookie_b = data->cookies + (name_b - data->funcs); 2892 swap(*cookie_a, *cookie_b); 2893 } 2894 } 2895 2896 struct modules_array { 2897 struct module **mods; 2898 int mods_cnt; 2899 int mods_cap; 2900 }; 2901 2902 static int add_module(struct modules_array *arr, struct module *mod) 2903 { 2904 struct module **mods; 2905 2906 if (arr->mods_cnt == arr->mods_cap) { 2907 arr->mods_cap = max(16, arr->mods_cap * 3 / 2); 2908 mods = krealloc_array(arr->mods, arr->mods_cap, sizeof(*mods), GFP_KERNEL); 2909 if (!mods) 2910 return -ENOMEM; 2911 arr->mods = mods; 2912 } 2913 2914 arr->mods[arr->mods_cnt] = mod; 2915 arr->mods_cnt++; 2916 return 0; 2917 } 2918 2919 static bool has_module(struct modules_array *arr, struct module *mod) 2920 { 2921 int i; 2922 2923 for (i = arr->mods_cnt - 1; i >= 0; i--) { 2924 if (arr->mods[i] == mod) 2925 return true; 2926 } 2927 return false; 2928 } 2929 2930 static int get_modules_for_addrs(struct module ***mods, unsigned long *addrs, u32 addrs_cnt) 2931 { 2932 struct modules_array arr = {}; 2933 u32 i, err = 0; 2934 2935 for (i = 0; i < addrs_cnt; i++) { 2936 struct module *mod; 2937 2938 preempt_disable(); 2939 mod = __module_address(addrs[i]); 2940 /* Either no module or we it's already stored */ 2941 if (!mod || has_module(&arr, mod)) { 2942 preempt_enable(); 2943 continue; 2944 } 2945 if (!try_module_get(mod)) 2946 err = -EINVAL; 2947 preempt_enable(); 2948 if (err) 2949 break; 2950 err = add_module(&arr, mod); 2951 if (err) { 2952 module_put(mod); 2953 break; 2954 } 2955 } 2956 2957 /* We return either err < 0 in case of error, ... */ 2958 if (err) { 2959 kprobe_multi_put_modules(arr.mods, arr.mods_cnt); 2960 kfree(arr.mods); 2961 return err; 2962 } 2963 2964 /* or number of modules found if everything is ok. */ 2965 *mods = arr.mods; 2966 return arr.mods_cnt; 2967 } 2968 2969 static int addrs_check_error_injection_list(unsigned long *addrs, u32 cnt) 2970 { 2971 u32 i; 2972 2973 for (i = 0; i < cnt; i++) { 2974 if (!within_error_injection_list(addrs[i])) 2975 return -EINVAL; 2976 } 2977 return 0; 2978 } 2979 2980 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 2981 { 2982 struct bpf_kprobe_multi_link *link = NULL; 2983 struct bpf_link_primer link_primer; 2984 void __user *ucookies; 2985 unsigned long *addrs; 2986 u32 flags, cnt, size; 2987 void __user *uaddrs; 2988 u64 *cookies = NULL; 2989 void __user *usyms; 2990 int err; 2991 2992 /* no support for 32bit archs yet */ 2993 if (sizeof(u64) != sizeof(void *)) 2994 return -EOPNOTSUPP; 2995 2996 if (!is_kprobe_multi(prog)) 2997 return -EINVAL; 2998 2999 flags = attr->link_create.kprobe_multi.flags; 3000 if (flags & ~BPF_F_KPROBE_MULTI_RETURN) 3001 return -EINVAL; 3002 3003 uaddrs = u64_to_user_ptr(attr->link_create.kprobe_multi.addrs); 3004 usyms = u64_to_user_ptr(attr->link_create.kprobe_multi.syms); 3005 if (!!uaddrs == !!usyms) 3006 return -EINVAL; 3007 3008 cnt = attr->link_create.kprobe_multi.cnt; 3009 if (!cnt) 3010 return -EINVAL; 3011 if (cnt > MAX_KPROBE_MULTI_CNT) 3012 return -E2BIG; 3013 3014 size = cnt * sizeof(*addrs); 3015 addrs = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL); 3016 if (!addrs) 3017 return -ENOMEM; 3018 3019 ucookies = u64_to_user_ptr(attr->link_create.kprobe_multi.cookies); 3020 if (ucookies) { 3021 cookies = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL); 3022 if (!cookies) { 3023 err = -ENOMEM; 3024 goto error; 3025 } 3026 if (copy_from_user(cookies, ucookies, size)) { 3027 err = -EFAULT; 3028 goto error; 3029 } 3030 } 3031 3032 if (uaddrs) { 3033 if (copy_from_user(addrs, uaddrs, size)) { 3034 err = -EFAULT; 3035 goto error; 3036 } 3037 } else { 3038 struct multi_symbols_sort data = { 3039 .cookies = cookies, 3040 }; 3041 struct user_syms us; 3042 3043 err = copy_user_syms(&us, usyms, cnt); 3044 if (err) 3045 goto error; 3046 3047 if (cookies) 3048 data.funcs = us.syms; 3049 3050 sort_r(us.syms, cnt, sizeof(*us.syms), symbols_cmp_r, 3051 symbols_swap_r, &data); 3052 3053 err = ftrace_lookup_symbols(us.syms, cnt, addrs); 3054 free_user_syms(&us); 3055 if (err) 3056 goto error; 3057 } 3058 3059 if (prog->kprobe_override && addrs_check_error_injection_list(addrs, cnt)) { 3060 err = -EINVAL; 3061 goto error; 3062 } 3063 3064 link = kzalloc(sizeof(*link), GFP_KERNEL); 3065 if (!link) { 3066 err = -ENOMEM; 3067 goto error; 3068 } 3069 3070 bpf_link_init(&link->link, BPF_LINK_TYPE_KPROBE_MULTI, 3071 &bpf_kprobe_multi_link_lops, prog); 3072 3073 err = bpf_link_prime(&link->link, &link_primer); 3074 if (err) 3075 goto error; 3076 3077 if (!(flags & BPF_F_KPROBE_MULTI_RETURN)) 3078 link->fp.entry_handler = kprobe_multi_link_handler; 3079 if ((flags & BPF_F_KPROBE_MULTI_RETURN) || is_kprobe_session(prog)) 3080 link->fp.exit_handler = kprobe_multi_link_exit_handler; 3081 if (is_kprobe_session(prog)) 3082 link->fp.entry_data_size = sizeof(u64); 3083 3084 link->addrs = addrs; 3085 link->cookies = cookies; 3086 link->cnt = cnt; 3087 link->flags = flags; 3088 3089 if (cookies) { 3090 /* 3091 * Sorting addresses will trigger sorting cookies as well 3092 * (check bpf_kprobe_multi_cookie_swap). This way we can 3093 * find cookie based on the address in bpf_get_attach_cookie 3094 * helper. 3095 */ 3096 sort_r(addrs, cnt, sizeof(*addrs), 3097 bpf_kprobe_multi_cookie_cmp, 3098 bpf_kprobe_multi_cookie_swap, 3099 link); 3100 } 3101 3102 err = get_modules_for_addrs(&link->mods, addrs, cnt); 3103 if (err < 0) { 3104 bpf_link_cleanup(&link_primer); 3105 return err; 3106 } 3107 link->mods_cnt = err; 3108 3109 err = register_fprobe_ips(&link->fp, addrs, cnt); 3110 if (err) { 3111 kprobe_multi_put_modules(link->mods, link->mods_cnt); 3112 bpf_link_cleanup(&link_primer); 3113 return err; 3114 } 3115 3116 return bpf_link_settle(&link_primer); 3117 3118 error: 3119 kfree(link); 3120 kvfree(addrs); 3121 kvfree(cookies); 3122 return err; 3123 } 3124 #else /* !CONFIG_FPROBE */ 3125 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 3126 { 3127 return -EOPNOTSUPP; 3128 } 3129 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx) 3130 { 3131 return 0; 3132 } 3133 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx) 3134 { 3135 return 0; 3136 } 3137 #endif 3138 3139 #ifdef CONFIG_UPROBES 3140 struct bpf_uprobe_multi_link; 3141 3142 struct bpf_uprobe { 3143 struct bpf_uprobe_multi_link *link; 3144 loff_t offset; 3145 unsigned long ref_ctr_offset; 3146 u64 cookie; 3147 struct uprobe *uprobe; 3148 struct uprobe_consumer consumer; 3149 bool session; 3150 }; 3151 3152 struct bpf_uprobe_multi_link { 3153 struct path path; 3154 struct bpf_link link; 3155 u32 cnt; 3156 u32 flags; 3157 struct bpf_uprobe *uprobes; 3158 struct task_struct *task; 3159 }; 3160 3161 struct bpf_uprobe_multi_run_ctx { 3162 struct bpf_session_run_ctx session_ctx; 3163 unsigned long entry_ip; 3164 struct bpf_uprobe *uprobe; 3165 }; 3166 3167 static void bpf_uprobe_unregister(struct bpf_uprobe *uprobes, u32 cnt) 3168 { 3169 u32 i; 3170 3171 for (i = 0; i < cnt; i++) 3172 uprobe_unregister_nosync(uprobes[i].uprobe, &uprobes[i].consumer); 3173 3174 if (cnt) 3175 uprobe_unregister_sync(); 3176 } 3177 3178 static void bpf_uprobe_multi_link_release(struct bpf_link *link) 3179 { 3180 struct bpf_uprobe_multi_link *umulti_link; 3181 3182 umulti_link = container_of(link, struct bpf_uprobe_multi_link, link); 3183 bpf_uprobe_unregister(umulti_link->uprobes, umulti_link->cnt); 3184 if (umulti_link->task) 3185 put_task_struct(umulti_link->task); 3186 path_put(&umulti_link->path); 3187 } 3188 3189 static void bpf_uprobe_multi_link_dealloc(struct bpf_link *link) 3190 { 3191 struct bpf_uprobe_multi_link *umulti_link; 3192 3193 umulti_link = container_of(link, struct bpf_uprobe_multi_link, link); 3194 kvfree(umulti_link->uprobes); 3195 kfree(umulti_link); 3196 } 3197 3198 static int bpf_uprobe_multi_link_fill_link_info(const struct bpf_link *link, 3199 struct bpf_link_info *info) 3200 { 3201 u64 __user *uref_ctr_offsets = u64_to_user_ptr(info->uprobe_multi.ref_ctr_offsets); 3202 u64 __user *ucookies = u64_to_user_ptr(info->uprobe_multi.cookies); 3203 u64 __user *uoffsets = u64_to_user_ptr(info->uprobe_multi.offsets); 3204 u64 __user *upath = u64_to_user_ptr(info->uprobe_multi.path); 3205 u32 upath_size = info->uprobe_multi.path_size; 3206 struct bpf_uprobe_multi_link *umulti_link; 3207 u32 ucount = info->uprobe_multi.count; 3208 int err = 0, i; 3209 char *p, *buf; 3210 long left = 0; 3211 3212 if (!upath ^ !upath_size) 3213 return -EINVAL; 3214 3215 if ((uoffsets || uref_ctr_offsets || ucookies) && !ucount) 3216 return -EINVAL; 3217 3218 umulti_link = container_of(link, struct bpf_uprobe_multi_link, link); 3219 info->uprobe_multi.count = umulti_link->cnt; 3220 info->uprobe_multi.flags = umulti_link->flags; 3221 info->uprobe_multi.pid = umulti_link->task ? 3222 task_pid_nr_ns(umulti_link->task, task_active_pid_ns(current)) : 0; 3223 3224 upath_size = upath_size ? min_t(u32, upath_size, PATH_MAX) : PATH_MAX; 3225 buf = kmalloc(upath_size, GFP_KERNEL); 3226 if (!buf) 3227 return -ENOMEM; 3228 p = d_path(&umulti_link->path, buf, upath_size); 3229 if (IS_ERR(p)) { 3230 kfree(buf); 3231 return PTR_ERR(p); 3232 } 3233 upath_size = buf + upath_size - p; 3234 3235 if (upath) 3236 left = copy_to_user(upath, p, upath_size); 3237 kfree(buf); 3238 if (left) 3239 return -EFAULT; 3240 info->uprobe_multi.path_size = upath_size; 3241 3242 if (!uoffsets && !ucookies && !uref_ctr_offsets) 3243 return 0; 3244 3245 if (ucount < umulti_link->cnt) 3246 err = -ENOSPC; 3247 else 3248 ucount = umulti_link->cnt; 3249 3250 for (i = 0; i < ucount; i++) { 3251 if (uoffsets && 3252 put_user(umulti_link->uprobes[i].offset, uoffsets + i)) 3253 return -EFAULT; 3254 if (uref_ctr_offsets && 3255 put_user(umulti_link->uprobes[i].ref_ctr_offset, uref_ctr_offsets + i)) 3256 return -EFAULT; 3257 if (ucookies && 3258 put_user(umulti_link->uprobes[i].cookie, ucookies + i)) 3259 return -EFAULT; 3260 } 3261 3262 return err; 3263 } 3264 3265 static const struct bpf_link_ops bpf_uprobe_multi_link_lops = { 3266 .release = bpf_uprobe_multi_link_release, 3267 .dealloc_deferred = bpf_uprobe_multi_link_dealloc, 3268 .fill_link_info = bpf_uprobe_multi_link_fill_link_info, 3269 }; 3270 3271 static int uprobe_prog_run(struct bpf_uprobe *uprobe, 3272 unsigned long entry_ip, 3273 struct pt_regs *regs, 3274 bool is_return, void *data) 3275 { 3276 struct bpf_uprobe_multi_link *link = uprobe->link; 3277 struct bpf_uprobe_multi_run_ctx run_ctx = { 3278 .session_ctx = { 3279 .is_return = is_return, 3280 .data = data, 3281 }, 3282 .entry_ip = entry_ip, 3283 .uprobe = uprobe, 3284 }; 3285 struct bpf_prog *prog = link->link.prog; 3286 bool sleepable = prog->sleepable; 3287 struct bpf_run_ctx *old_run_ctx; 3288 int err; 3289 3290 if (link->task && !same_thread_group(current, link->task)) 3291 return 0; 3292 3293 if (sleepable) 3294 rcu_read_lock_trace(); 3295 else 3296 rcu_read_lock(); 3297 3298 migrate_disable(); 3299 3300 old_run_ctx = bpf_set_run_ctx(&run_ctx.session_ctx.run_ctx); 3301 err = bpf_prog_run(link->link.prog, regs); 3302 bpf_reset_run_ctx(old_run_ctx); 3303 3304 migrate_enable(); 3305 3306 if (sleepable) 3307 rcu_read_unlock_trace(); 3308 else 3309 rcu_read_unlock(); 3310 return err; 3311 } 3312 3313 static bool 3314 uprobe_multi_link_filter(struct uprobe_consumer *con, struct mm_struct *mm) 3315 { 3316 struct bpf_uprobe *uprobe; 3317 3318 uprobe = container_of(con, struct bpf_uprobe, consumer); 3319 return uprobe->link->task->mm == mm; 3320 } 3321 3322 static int 3323 uprobe_multi_link_handler(struct uprobe_consumer *con, struct pt_regs *regs, 3324 __u64 *data) 3325 { 3326 struct bpf_uprobe *uprobe; 3327 int ret; 3328 3329 uprobe = container_of(con, struct bpf_uprobe, consumer); 3330 ret = uprobe_prog_run(uprobe, instruction_pointer(regs), regs, false, data); 3331 if (uprobe->session) 3332 return ret ? UPROBE_HANDLER_IGNORE : 0; 3333 return 0; 3334 } 3335 3336 static int 3337 uprobe_multi_link_ret_handler(struct uprobe_consumer *con, unsigned long func, struct pt_regs *regs, 3338 __u64 *data) 3339 { 3340 struct bpf_uprobe *uprobe; 3341 3342 uprobe = container_of(con, struct bpf_uprobe, consumer); 3343 uprobe_prog_run(uprobe, func, regs, true, data); 3344 return 0; 3345 } 3346 3347 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx) 3348 { 3349 struct bpf_uprobe_multi_run_ctx *run_ctx; 3350 3351 run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx, 3352 session_ctx.run_ctx); 3353 return run_ctx->entry_ip; 3354 } 3355 3356 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx) 3357 { 3358 struct bpf_uprobe_multi_run_ctx *run_ctx; 3359 3360 run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx, 3361 session_ctx.run_ctx); 3362 return run_ctx->uprobe->cookie; 3363 } 3364 3365 int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 3366 { 3367 struct bpf_uprobe_multi_link *link = NULL; 3368 unsigned long __user *uref_ctr_offsets; 3369 struct bpf_link_primer link_primer; 3370 struct bpf_uprobe *uprobes = NULL; 3371 struct task_struct *task = NULL; 3372 unsigned long __user *uoffsets; 3373 u64 __user *ucookies; 3374 void __user *upath; 3375 u32 flags, cnt, i; 3376 struct path path; 3377 char *name; 3378 pid_t pid; 3379 int err; 3380 3381 /* no support for 32bit archs yet */ 3382 if (sizeof(u64) != sizeof(void *)) 3383 return -EOPNOTSUPP; 3384 3385 if (!is_uprobe_multi(prog)) 3386 return -EINVAL; 3387 3388 flags = attr->link_create.uprobe_multi.flags; 3389 if (flags & ~BPF_F_UPROBE_MULTI_RETURN) 3390 return -EINVAL; 3391 3392 /* 3393 * path, offsets and cnt are mandatory, 3394 * ref_ctr_offsets and cookies are optional 3395 */ 3396 upath = u64_to_user_ptr(attr->link_create.uprobe_multi.path); 3397 uoffsets = u64_to_user_ptr(attr->link_create.uprobe_multi.offsets); 3398 cnt = attr->link_create.uprobe_multi.cnt; 3399 pid = attr->link_create.uprobe_multi.pid; 3400 3401 if (!upath || !uoffsets || !cnt || pid < 0) 3402 return -EINVAL; 3403 if (cnt > MAX_UPROBE_MULTI_CNT) 3404 return -E2BIG; 3405 3406 uref_ctr_offsets = u64_to_user_ptr(attr->link_create.uprobe_multi.ref_ctr_offsets); 3407 ucookies = u64_to_user_ptr(attr->link_create.uprobe_multi.cookies); 3408 3409 name = strndup_user(upath, PATH_MAX); 3410 if (IS_ERR(name)) { 3411 err = PTR_ERR(name); 3412 return err; 3413 } 3414 3415 err = kern_path(name, LOOKUP_FOLLOW, &path); 3416 kfree(name); 3417 if (err) 3418 return err; 3419 3420 if (!d_is_reg(path.dentry)) { 3421 err = -EBADF; 3422 goto error_path_put; 3423 } 3424 3425 if (pid) { 3426 task = get_pid_task(find_vpid(pid), PIDTYPE_TGID); 3427 if (!task) { 3428 err = -ESRCH; 3429 goto error_path_put; 3430 } 3431 } 3432 3433 err = -ENOMEM; 3434 3435 link = kzalloc(sizeof(*link), GFP_KERNEL); 3436 uprobes = kvcalloc(cnt, sizeof(*uprobes), GFP_KERNEL); 3437 3438 if (!uprobes || !link) 3439 goto error_free; 3440 3441 for (i = 0; i < cnt; i++) { 3442 if (__get_user(uprobes[i].offset, uoffsets + i)) { 3443 err = -EFAULT; 3444 goto error_free; 3445 } 3446 if (uprobes[i].offset < 0) { 3447 err = -EINVAL; 3448 goto error_free; 3449 } 3450 if (uref_ctr_offsets && __get_user(uprobes[i].ref_ctr_offset, uref_ctr_offsets + i)) { 3451 err = -EFAULT; 3452 goto error_free; 3453 } 3454 if (ucookies && __get_user(uprobes[i].cookie, ucookies + i)) { 3455 err = -EFAULT; 3456 goto error_free; 3457 } 3458 3459 uprobes[i].link = link; 3460 3461 if (!(flags & BPF_F_UPROBE_MULTI_RETURN)) 3462 uprobes[i].consumer.handler = uprobe_multi_link_handler; 3463 if (flags & BPF_F_UPROBE_MULTI_RETURN || is_uprobe_session(prog)) 3464 uprobes[i].consumer.ret_handler = uprobe_multi_link_ret_handler; 3465 if (is_uprobe_session(prog)) 3466 uprobes[i].session = true; 3467 if (pid) 3468 uprobes[i].consumer.filter = uprobe_multi_link_filter; 3469 } 3470 3471 link->cnt = cnt; 3472 link->uprobes = uprobes; 3473 link->path = path; 3474 link->task = task; 3475 link->flags = flags; 3476 3477 bpf_link_init(&link->link, BPF_LINK_TYPE_UPROBE_MULTI, 3478 &bpf_uprobe_multi_link_lops, prog); 3479 3480 for (i = 0; i < cnt; i++) { 3481 uprobes[i].uprobe = uprobe_register(d_real_inode(link->path.dentry), 3482 uprobes[i].offset, 3483 uprobes[i].ref_ctr_offset, 3484 &uprobes[i].consumer); 3485 if (IS_ERR(uprobes[i].uprobe)) { 3486 err = PTR_ERR(uprobes[i].uprobe); 3487 link->cnt = i; 3488 goto error_unregister; 3489 } 3490 } 3491 3492 err = bpf_link_prime(&link->link, &link_primer); 3493 if (err) 3494 goto error_unregister; 3495 3496 return bpf_link_settle(&link_primer); 3497 3498 error_unregister: 3499 bpf_uprobe_unregister(uprobes, link->cnt); 3500 3501 error_free: 3502 kvfree(uprobes); 3503 kfree(link); 3504 if (task) 3505 put_task_struct(task); 3506 error_path_put: 3507 path_put(&path); 3508 return err; 3509 } 3510 #else /* !CONFIG_UPROBES */ 3511 int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 3512 { 3513 return -EOPNOTSUPP; 3514 } 3515 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx) 3516 { 3517 return 0; 3518 } 3519 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx) 3520 { 3521 return 0; 3522 } 3523 #endif /* CONFIG_UPROBES */ 3524 3525 __bpf_kfunc_start_defs(); 3526 3527 __bpf_kfunc bool bpf_session_is_return(void) 3528 { 3529 struct bpf_session_run_ctx *session_ctx; 3530 3531 session_ctx = container_of(current->bpf_ctx, struct bpf_session_run_ctx, run_ctx); 3532 return session_ctx->is_return; 3533 } 3534 3535 __bpf_kfunc __u64 *bpf_session_cookie(void) 3536 { 3537 struct bpf_session_run_ctx *session_ctx; 3538 3539 session_ctx = container_of(current->bpf_ctx, struct bpf_session_run_ctx, run_ctx); 3540 return session_ctx->data; 3541 } 3542 3543 __bpf_kfunc_end_defs(); 3544 3545 BTF_KFUNCS_START(kprobe_multi_kfunc_set_ids) 3546 BTF_ID_FLAGS(func, bpf_session_is_return) 3547 BTF_ID_FLAGS(func, bpf_session_cookie) 3548 BTF_KFUNCS_END(kprobe_multi_kfunc_set_ids) 3549 3550 static int bpf_kprobe_multi_filter(const struct bpf_prog *prog, u32 kfunc_id) 3551 { 3552 if (!btf_id_set8_contains(&kprobe_multi_kfunc_set_ids, kfunc_id)) 3553 return 0; 3554 3555 if (!is_kprobe_session(prog) && !is_uprobe_session(prog)) 3556 return -EACCES; 3557 3558 return 0; 3559 } 3560 3561 static const struct btf_kfunc_id_set bpf_kprobe_multi_kfunc_set = { 3562 .owner = THIS_MODULE, 3563 .set = &kprobe_multi_kfunc_set_ids, 3564 .filter = bpf_kprobe_multi_filter, 3565 }; 3566 3567 static int __init bpf_kprobe_multi_kfuncs_init(void) 3568 { 3569 return register_btf_kfunc_id_set(BPF_PROG_TYPE_KPROBE, &bpf_kprobe_multi_kfunc_set); 3570 } 3571 3572 late_initcall(bpf_kprobe_multi_kfuncs_init); 3573 3574 __bpf_kfunc_start_defs(); 3575 3576 __bpf_kfunc int bpf_send_signal_task(struct task_struct *task, int sig, enum pid_type type, 3577 u64 value) 3578 { 3579 if (type != PIDTYPE_PID && type != PIDTYPE_TGID) 3580 return -EINVAL; 3581 3582 return bpf_send_signal_common(sig, type, task, value); 3583 } 3584 3585 __bpf_kfunc_end_defs(); 3586