xref: /linux/kernel/trace/bpf_trace.c (revision 257ca10c7317d4a424e48bb95d14ca53a1f1dd6f)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_verifier.h>
10 #include <linux/bpf_perf_event.h>
11 #include <linux/btf.h>
12 #include <linux/filter.h>
13 #include <linux/uaccess.h>
14 #include <linux/ctype.h>
15 #include <linux/kprobes.h>
16 #include <linux/spinlock.h>
17 #include <linux/syscalls.h>
18 #include <linux/error-injection.h>
19 #include <linux/btf_ids.h>
20 #include <linux/bpf_lsm.h>
21 #include <linux/fprobe.h>
22 #include <linux/bsearch.h>
23 #include <linux/sort.h>
24 #include <linux/key.h>
25 #include <linux/verification.h>
26 #include <linux/namei.h>
27 #include <linux/fileattr.h>
28 
29 #include <net/bpf_sk_storage.h>
30 
31 #include <uapi/linux/bpf.h>
32 #include <uapi/linux/btf.h>
33 
34 #include <asm/tlb.h>
35 
36 #include "trace_probe.h"
37 #include "trace.h"
38 
39 #define CREATE_TRACE_POINTS
40 #include "bpf_trace.h"
41 
42 #define bpf_event_rcu_dereference(p)					\
43 	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
44 
45 #define MAX_UPROBE_MULTI_CNT (1U << 20)
46 #define MAX_KPROBE_MULTI_CNT (1U << 20)
47 
48 #ifdef CONFIG_MODULES
49 struct bpf_trace_module {
50 	struct module *module;
51 	struct list_head list;
52 };
53 
54 static LIST_HEAD(bpf_trace_modules);
55 static DEFINE_MUTEX(bpf_module_mutex);
56 
57 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
58 {
59 	struct bpf_raw_event_map *btp, *ret = NULL;
60 	struct bpf_trace_module *btm;
61 	unsigned int i;
62 
63 	mutex_lock(&bpf_module_mutex);
64 	list_for_each_entry(btm, &bpf_trace_modules, list) {
65 		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
66 			btp = &btm->module->bpf_raw_events[i];
67 			if (!strcmp(btp->tp->name, name)) {
68 				if (try_module_get(btm->module))
69 					ret = btp;
70 				goto out;
71 			}
72 		}
73 	}
74 out:
75 	mutex_unlock(&bpf_module_mutex);
76 	return ret;
77 }
78 #else
79 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
80 {
81 	return NULL;
82 }
83 #endif /* CONFIG_MODULES */
84 
85 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
86 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
87 
88 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
89 				  u64 flags, const struct btf **btf,
90 				  s32 *btf_id);
91 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx);
92 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
93 
94 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx);
95 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
96 
97 /**
98  * trace_call_bpf - invoke BPF program
99  * @call: tracepoint event
100  * @ctx: opaque context pointer
101  *
102  * kprobe handlers execute BPF programs via this helper.
103  * Can be used from static tracepoints in the future.
104  *
105  * Return: BPF programs always return an integer which is interpreted by
106  * kprobe handler as:
107  * 0 - return from kprobe (event is filtered out)
108  * 1 - store kprobe event into ring buffer
109  * Other values are reserved and currently alias to 1
110  */
111 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
112 {
113 	unsigned int ret;
114 
115 	cant_sleep();
116 
117 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
118 		/*
119 		 * since some bpf program is already running on this cpu,
120 		 * don't call into another bpf program (same or different)
121 		 * and don't send kprobe event into ring-buffer,
122 		 * so return zero here
123 		 */
124 		rcu_read_lock();
125 		bpf_prog_inc_misses_counters(rcu_dereference(call->prog_array));
126 		rcu_read_unlock();
127 		ret = 0;
128 		goto out;
129 	}
130 
131 	/*
132 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
133 	 * to all call sites, we did a bpf_prog_array_valid() there to check
134 	 * whether call->prog_array is empty or not, which is
135 	 * a heuristic to speed up execution.
136 	 *
137 	 * If bpf_prog_array_valid() fetched prog_array was
138 	 * non-NULL, we go into trace_call_bpf() and do the actual
139 	 * proper rcu_dereference() under RCU lock.
140 	 * If it turns out that prog_array is NULL then, we bail out.
141 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
142 	 * was NULL, you'll skip the prog_array with the risk of missing
143 	 * out of events when it was updated in between this and the
144 	 * rcu_dereference() which is accepted risk.
145 	 */
146 	rcu_read_lock();
147 	ret = bpf_prog_run_array(rcu_dereference(call->prog_array),
148 				 ctx, bpf_prog_run);
149 	rcu_read_unlock();
150 
151  out:
152 	__this_cpu_dec(bpf_prog_active);
153 
154 	return ret;
155 }
156 
157 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
158 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
159 {
160 	regs_set_return_value(regs, rc);
161 	override_function_with_return(regs);
162 	return 0;
163 }
164 
165 static const struct bpf_func_proto bpf_override_return_proto = {
166 	.func		= bpf_override_return,
167 	.gpl_only	= true,
168 	.ret_type	= RET_INTEGER,
169 	.arg1_type	= ARG_PTR_TO_CTX,
170 	.arg2_type	= ARG_ANYTHING,
171 };
172 #endif
173 
174 static __always_inline int
175 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
176 {
177 	int ret;
178 
179 	ret = copy_from_user_nofault(dst, unsafe_ptr, size);
180 	if (unlikely(ret < 0))
181 		memset(dst, 0, size);
182 	return ret;
183 }
184 
185 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
186 	   const void __user *, unsafe_ptr)
187 {
188 	return bpf_probe_read_user_common(dst, size, unsafe_ptr);
189 }
190 
191 const struct bpf_func_proto bpf_probe_read_user_proto = {
192 	.func		= bpf_probe_read_user,
193 	.gpl_only	= true,
194 	.ret_type	= RET_INTEGER,
195 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
196 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
197 	.arg3_type	= ARG_ANYTHING,
198 };
199 
200 static __always_inline int
201 bpf_probe_read_user_str_common(void *dst, u32 size,
202 			       const void __user *unsafe_ptr)
203 {
204 	int ret;
205 
206 	/*
207 	 * NB: We rely on strncpy_from_user() not copying junk past the NUL
208 	 * terminator into `dst`.
209 	 *
210 	 * strncpy_from_user() does long-sized strides in the fast path. If the
211 	 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
212 	 * then there could be junk after the NUL in `dst`. If user takes `dst`
213 	 * and keys a hash map with it, then semantically identical strings can
214 	 * occupy multiple entries in the map.
215 	 */
216 	ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
217 	if (unlikely(ret < 0))
218 		memset(dst, 0, size);
219 	return ret;
220 }
221 
222 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
223 	   const void __user *, unsafe_ptr)
224 {
225 	return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
226 }
227 
228 const struct bpf_func_proto bpf_probe_read_user_str_proto = {
229 	.func		= bpf_probe_read_user_str,
230 	.gpl_only	= true,
231 	.ret_type	= RET_INTEGER,
232 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
233 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
234 	.arg3_type	= ARG_ANYTHING,
235 };
236 
237 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
238 	   const void *, unsafe_ptr)
239 {
240 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
241 }
242 
243 const struct bpf_func_proto bpf_probe_read_kernel_proto = {
244 	.func		= bpf_probe_read_kernel,
245 	.gpl_only	= true,
246 	.ret_type	= RET_INTEGER,
247 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
248 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
249 	.arg3_type	= ARG_ANYTHING,
250 };
251 
252 static __always_inline int
253 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
254 {
255 	int ret;
256 
257 	/*
258 	 * The strncpy_from_kernel_nofault() call will likely not fill the
259 	 * entire buffer, but that's okay in this circumstance as we're probing
260 	 * arbitrary memory anyway similar to bpf_probe_read_*() and might
261 	 * as well probe the stack. Thus, memory is explicitly cleared
262 	 * only in error case, so that improper users ignoring return
263 	 * code altogether don't copy garbage; otherwise length of string
264 	 * is returned that can be used for bpf_perf_event_output() et al.
265 	 */
266 	ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
267 	if (unlikely(ret < 0))
268 		memset(dst, 0, size);
269 	return ret;
270 }
271 
272 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
273 	   const void *, unsafe_ptr)
274 {
275 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
276 }
277 
278 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
279 	.func		= bpf_probe_read_kernel_str,
280 	.gpl_only	= true,
281 	.ret_type	= RET_INTEGER,
282 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
283 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
284 	.arg3_type	= ARG_ANYTHING,
285 };
286 
287 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
288 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
289 	   const void *, unsafe_ptr)
290 {
291 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
292 		return bpf_probe_read_user_common(dst, size,
293 				(__force void __user *)unsafe_ptr);
294 	}
295 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
296 }
297 
298 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
299 	.func		= bpf_probe_read_compat,
300 	.gpl_only	= true,
301 	.ret_type	= RET_INTEGER,
302 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
303 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
304 	.arg3_type	= ARG_ANYTHING,
305 };
306 
307 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
308 	   const void *, unsafe_ptr)
309 {
310 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
311 		return bpf_probe_read_user_str_common(dst, size,
312 				(__force void __user *)unsafe_ptr);
313 	}
314 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
315 }
316 
317 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
318 	.func		= bpf_probe_read_compat_str,
319 	.gpl_only	= true,
320 	.ret_type	= RET_INTEGER,
321 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
322 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
323 	.arg3_type	= ARG_ANYTHING,
324 };
325 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
326 
327 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
328 	   u32, size)
329 {
330 	/*
331 	 * Ensure we're in user context which is safe for the helper to
332 	 * run. This helper has no business in a kthread.
333 	 *
334 	 * access_ok() should prevent writing to non-user memory, but in
335 	 * some situations (nommu, temporary switch, etc) access_ok() does
336 	 * not provide enough validation, hence the check on KERNEL_DS.
337 	 *
338 	 * nmi_uaccess_okay() ensures the probe is not run in an interim
339 	 * state, when the task or mm are switched. This is specifically
340 	 * required to prevent the use of temporary mm.
341 	 */
342 
343 	if (unlikely(in_interrupt() ||
344 		     current->flags & (PF_KTHREAD | PF_EXITING)))
345 		return -EPERM;
346 	if (unlikely(!nmi_uaccess_okay()))
347 		return -EPERM;
348 
349 	return copy_to_user_nofault(unsafe_ptr, src, size);
350 }
351 
352 static const struct bpf_func_proto bpf_probe_write_user_proto = {
353 	.func		= bpf_probe_write_user,
354 	.gpl_only	= true,
355 	.ret_type	= RET_INTEGER,
356 	.arg1_type	= ARG_ANYTHING,
357 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
358 	.arg3_type	= ARG_CONST_SIZE,
359 };
360 
361 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
362 {
363 	if (!capable(CAP_SYS_ADMIN))
364 		return NULL;
365 
366 	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
367 			    current->comm, task_pid_nr(current));
368 
369 	return &bpf_probe_write_user_proto;
370 }
371 
372 #define MAX_TRACE_PRINTK_VARARGS	3
373 #define BPF_TRACE_PRINTK_SIZE		1024
374 
375 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
376 	   u64, arg2, u64, arg3)
377 {
378 	u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 };
379 	struct bpf_bprintf_data data = {
380 		.get_bin_args	= true,
381 		.get_buf	= true,
382 	};
383 	int ret;
384 
385 	ret = bpf_bprintf_prepare(fmt, fmt_size, args,
386 				  MAX_TRACE_PRINTK_VARARGS, &data);
387 	if (ret < 0)
388 		return ret;
389 
390 	ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
391 
392 	trace_bpf_trace_printk(data.buf);
393 
394 	bpf_bprintf_cleanup(&data);
395 
396 	return ret;
397 }
398 
399 static const struct bpf_func_proto bpf_trace_printk_proto = {
400 	.func		= bpf_trace_printk,
401 	.gpl_only	= true,
402 	.ret_type	= RET_INTEGER,
403 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
404 	.arg2_type	= ARG_CONST_SIZE,
405 };
406 
407 static void __set_printk_clr_event(void)
408 {
409 	/*
410 	 * This program might be calling bpf_trace_printk,
411 	 * so enable the associated bpf_trace/bpf_trace_printk event.
412 	 * Repeat this each time as it is possible a user has
413 	 * disabled bpf_trace_printk events.  By loading a program
414 	 * calling bpf_trace_printk() however the user has expressed
415 	 * the intent to see such events.
416 	 */
417 	if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
418 		pr_warn_ratelimited("could not enable bpf_trace_printk events");
419 }
420 
421 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
422 {
423 	__set_printk_clr_event();
424 	return &bpf_trace_printk_proto;
425 }
426 
427 BPF_CALL_4(bpf_trace_vprintk, char *, fmt, u32, fmt_size, const void *, args,
428 	   u32, data_len)
429 {
430 	struct bpf_bprintf_data data = {
431 		.get_bin_args	= true,
432 		.get_buf	= true,
433 	};
434 	int ret, num_args;
435 
436 	if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
437 	    (data_len && !args))
438 		return -EINVAL;
439 	num_args = data_len / 8;
440 
441 	ret = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
442 	if (ret < 0)
443 		return ret;
444 
445 	ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
446 
447 	trace_bpf_trace_printk(data.buf);
448 
449 	bpf_bprintf_cleanup(&data);
450 
451 	return ret;
452 }
453 
454 static const struct bpf_func_proto bpf_trace_vprintk_proto = {
455 	.func		= bpf_trace_vprintk,
456 	.gpl_only	= true,
457 	.ret_type	= RET_INTEGER,
458 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
459 	.arg2_type	= ARG_CONST_SIZE,
460 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
461 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
462 };
463 
464 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void)
465 {
466 	__set_printk_clr_event();
467 	return &bpf_trace_vprintk_proto;
468 }
469 
470 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
471 	   const void *, args, u32, data_len)
472 {
473 	struct bpf_bprintf_data data = {
474 		.get_bin_args	= true,
475 	};
476 	int err, num_args;
477 
478 	if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
479 	    (data_len && !args))
480 		return -EINVAL;
481 	num_args = data_len / 8;
482 
483 	err = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
484 	if (err < 0)
485 		return err;
486 
487 	seq_bprintf(m, fmt, data.bin_args);
488 
489 	bpf_bprintf_cleanup(&data);
490 
491 	return seq_has_overflowed(m) ? -EOVERFLOW : 0;
492 }
493 
494 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
495 
496 static const struct bpf_func_proto bpf_seq_printf_proto = {
497 	.func		= bpf_seq_printf,
498 	.gpl_only	= true,
499 	.ret_type	= RET_INTEGER,
500 	.arg1_type	= ARG_PTR_TO_BTF_ID,
501 	.arg1_btf_id	= &btf_seq_file_ids[0],
502 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
503 	.arg3_type	= ARG_CONST_SIZE,
504 	.arg4_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
505 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
506 };
507 
508 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
509 {
510 	return seq_write(m, data, len) ? -EOVERFLOW : 0;
511 }
512 
513 static const struct bpf_func_proto bpf_seq_write_proto = {
514 	.func		= bpf_seq_write,
515 	.gpl_only	= true,
516 	.ret_type	= RET_INTEGER,
517 	.arg1_type	= ARG_PTR_TO_BTF_ID,
518 	.arg1_btf_id	= &btf_seq_file_ids[0],
519 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
520 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
521 };
522 
523 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
524 	   u32, btf_ptr_size, u64, flags)
525 {
526 	const struct btf *btf;
527 	s32 btf_id;
528 	int ret;
529 
530 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
531 	if (ret)
532 		return ret;
533 
534 	return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
535 }
536 
537 static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
538 	.func		= bpf_seq_printf_btf,
539 	.gpl_only	= true,
540 	.ret_type	= RET_INTEGER,
541 	.arg1_type	= ARG_PTR_TO_BTF_ID,
542 	.arg1_btf_id	= &btf_seq_file_ids[0],
543 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
544 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
545 	.arg4_type	= ARG_ANYTHING,
546 };
547 
548 static __always_inline int
549 get_map_perf_counter(struct bpf_map *map, u64 flags,
550 		     u64 *value, u64 *enabled, u64 *running)
551 {
552 	struct bpf_array *array = container_of(map, struct bpf_array, map);
553 	unsigned int cpu = smp_processor_id();
554 	u64 index = flags & BPF_F_INDEX_MASK;
555 	struct bpf_event_entry *ee;
556 
557 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
558 		return -EINVAL;
559 	if (index == BPF_F_CURRENT_CPU)
560 		index = cpu;
561 	if (unlikely(index >= array->map.max_entries))
562 		return -E2BIG;
563 
564 	ee = READ_ONCE(array->ptrs[index]);
565 	if (!ee)
566 		return -ENOENT;
567 
568 	return perf_event_read_local(ee->event, value, enabled, running);
569 }
570 
571 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
572 {
573 	u64 value = 0;
574 	int err;
575 
576 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
577 	/*
578 	 * this api is ugly since we miss [-22..-2] range of valid
579 	 * counter values, but that's uapi
580 	 */
581 	if (err)
582 		return err;
583 	return value;
584 }
585 
586 static const struct bpf_func_proto bpf_perf_event_read_proto = {
587 	.func		= bpf_perf_event_read,
588 	.gpl_only	= true,
589 	.ret_type	= RET_INTEGER,
590 	.arg1_type	= ARG_CONST_MAP_PTR,
591 	.arg2_type	= ARG_ANYTHING,
592 };
593 
594 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
595 	   struct bpf_perf_event_value *, buf, u32, size)
596 {
597 	int err = -EINVAL;
598 
599 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
600 		goto clear;
601 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
602 				   &buf->running);
603 	if (unlikely(err))
604 		goto clear;
605 	return 0;
606 clear:
607 	memset(buf, 0, size);
608 	return err;
609 }
610 
611 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
612 	.func		= bpf_perf_event_read_value,
613 	.gpl_only	= true,
614 	.ret_type	= RET_INTEGER,
615 	.arg1_type	= ARG_CONST_MAP_PTR,
616 	.arg2_type	= ARG_ANYTHING,
617 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
618 	.arg4_type	= ARG_CONST_SIZE,
619 };
620 
621 static __always_inline u64
622 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
623 			u64 flags, struct perf_sample_data *sd)
624 {
625 	struct bpf_array *array = container_of(map, struct bpf_array, map);
626 	unsigned int cpu = smp_processor_id();
627 	u64 index = flags & BPF_F_INDEX_MASK;
628 	struct bpf_event_entry *ee;
629 	struct perf_event *event;
630 
631 	if (index == BPF_F_CURRENT_CPU)
632 		index = cpu;
633 	if (unlikely(index >= array->map.max_entries))
634 		return -E2BIG;
635 
636 	ee = READ_ONCE(array->ptrs[index]);
637 	if (!ee)
638 		return -ENOENT;
639 
640 	event = ee->event;
641 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
642 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
643 		return -EINVAL;
644 
645 	if (unlikely(event->oncpu != cpu))
646 		return -EOPNOTSUPP;
647 
648 	return perf_event_output(event, sd, regs);
649 }
650 
651 /*
652  * Support executing tracepoints in normal, irq, and nmi context that each call
653  * bpf_perf_event_output
654  */
655 struct bpf_trace_sample_data {
656 	struct perf_sample_data sds[3];
657 };
658 
659 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
660 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
661 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
662 	   u64, flags, void *, data, u64, size)
663 {
664 	struct bpf_trace_sample_data *sds;
665 	struct perf_raw_record raw = {
666 		.frag = {
667 			.size = size,
668 			.data = data,
669 		},
670 	};
671 	struct perf_sample_data *sd;
672 	int nest_level, err;
673 
674 	preempt_disable();
675 	sds = this_cpu_ptr(&bpf_trace_sds);
676 	nest_level = this_cpu_inc_return(bpf_trace_nest_level);
677 
678 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
679 		err = -EBUSY;
680 		goto out;
681 	}
682 
683 	sd = &sds->sds[nest_level - 1];
684 
685 	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
686 		err = -EINVAL;
687 		goto out;
688 	}
689 
690 	perf_sample_data_init(sd, 0, 0);
691 	perf_sample_save_raw_data(sd, &raw);
692 
693 	err = __bpf_perf_event_output(regs, map, flags, sd);
694 out:
695 	this_cpu_dec(bpf_trace_nest_level);
696 	preempt_enable();
697 	return err;
698 }
699 
700 static const struct bpf_func_proto bpf_perf_event_output_proto = {
701 	.func		= bpf_perf_event_output,
702 	.gpl_only	= true,
703 	.ret_type	= RET_INTEGER,
704 	.arg1_type	= ARG_PTR_TO_CTX,
705 	.arg2_type	= ARG_CONST_MAP_PTR,
706 	.arg3_type	= ARG_ANYTHING,
707 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
708 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
709 };
710 
711 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
712 struct bpf_nested_pt_regs {
713 	struct pt_regs regs[3];
714 };
715 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
716 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
717 
718 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
719 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
720 {
721 	struct perf_raw_frag frag = {
722 		.copy		= ctx_copy,
723 		.size		= ctx_size,
724 		.data		= ctx,
725 	};
726 	struct perf_raw_record raw = {
727 		.frag = {
728 			{
729 				.next	= ctx_size ? &frag : NULL,
730 			},
731 			.size	= meta_size,
732 			.data	= meta,
733 		},
734 	};
735 	struct perf_sample_data *sd;
736 	struct pt_regs *regs;
737 	int nest_level;
738 	u64 ret;
739 
740 	preempt_disable();
741 	nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
742 
743 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
744 		ret = -EBUSY;
745 		goto out;
746 	}
747 	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
748 	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
749 
750 	perf_fetch_caller_regs(regs);
751 	perf_sample_data_init(sd, 0, 0);
752 	perf_sample_save_raw_data(sd, &raw);
753 
754 	ret = __bpf_perf_event_output(regs, map, flags, sd);
755 out:
756 	this_cpu_dec(bpf_event_output_nest_level);
757 	preempt_enable();
758 	return ret;
759 }
760 
761 BPF_CALL_0(bpf_get_current_task)
762 {
763 	return (long) current;
764 }
765 
766 const struct bpf_func_proto bpf_get_current_task_proto = {
767 	.func		= bpf_get_current_task,
768 	.gpl_only	= true,
769 	.ret_type	= RET_INTEGER,
770 };
771 
772 BPF_CALL_0(bpf_get_current_task_btf)
773 {
774 	return (unsigned long) current;
775 }
776 
777 const struct bpf_func_proto bpf_get_current_task_btf_proto = {
778 	.func		= bpf_get_current_task_btf,
779 	.gpl_only	= true,
780 	.ret_type	= RET_PTR_TO_BTF_ID_TRUSTED,
781 	.ret_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
782 };
783 
784 BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task)
785 {
786 	return (unsigned long) task_pt_regs(task);
787 }
788 
789 BTF_ID_LIST(bpf_task_pt_regs_ids)
790 BTF_ID(struct, pt_regs)
791 
792 const struct bpf_func_proto bpf_task_pt_regs_proto = {
793 	.func		= bpf_task_pt_regs,
794 	.gpl_only	= true,
795 	.arg1_type	= ARG_PTR_TO_BTF_ID,
796 	.arg1_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
797 	.ret_type	= RET_PTR_TO_BTF_ID,
798 	.ret_btf_id	= &bpf_task_pt_regs_ids[0],
799 };
800 
801 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
802 {
803 	struct bpf_array *array = container_of(map, struct bpf_array, map);
804 	struct cgroup *cgrp;
805 
806 	if (unlikely(idx >= array->map.max_entries))
807 		return -E2BIG;
808 
809 	cgrp = READ_ONCE(array->ptrs[idx]);
810 	if (unlikely(!cgrp))
811 		return -EAGAIN;
812 
813 	return task_under_cgroup_hierarchy(current, cgrp);
814 }
815 
816 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
817 	.func           = bpf_current_task_under_cgroup,
818 	.gpl_only       = false,
819 	.ret_type       = RET_INTEGER,
820 	.arg1_type      = ARG_CONST_MAP_PTR,
821 	.arg2_type      = ARG_ANYTHING,
822 };
823 
824 struct send_signal_irq_work {
825 	struct irq_work irq_work;
826 	struct task_struct *task;
827 	u32 sig;
828 	enum pid_type type;
829 };
830 
831 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
832 
833 static void do_bpf_send_signal(struct irq_work *entry)
834 {
835 	struct send_signal_irq_work *work;
836 
837 	work = container_of(entry, struct send_signal_irq_work, irq_work);
838 	group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
839 	put_task_struct(work->task);
840 }
841 
842 static int bpf_send_signal_common(u32 sig, enum pid_type type)
843 {
844 	struct send_signal_irq_work *work = NULL;
845 
846 	/* Similar to bpf_probe_write_user, task needs to be
847 	 * in a sound condition and kernel memory access be
848 	 * permitted in order to send signal to the current
849 	 * task.
850 	 */
851 	if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
852 		return -EPERM;
853 	if (unlikely(!nmi_uaccess_okay()))
854 		return -EPERM;
855 	/* Task should not be pid=1 to avoid kernel panic. */
856 	if (unlikely(is_global_init(current)))
857 		return -EPERM;
858 
859 	if (irqs_disabled()) {
860 		/* Do an early check on signal validity. Otherwise,
861 		 * the error is lost in deferred irq_work.
862 		 */
863 		if (unlikely(!valid_signal(sig)))
864 			return -EINVAL;
865 
866 		work = this_cpu_ptr(&send_signal_work);
867 		if (irq_work_is_busy(&work->irq_work))
868 			return -EBUSY;
869 
870 		/* Add the current task, which is the target of sending signal,
871 		 * to the irq_work. The current task may change when queued
872 		 * irq works get executed.
873 		 */
874 		work->task = get_task_struct(current);
875 		work->sig = sig;
876 		work->type = type;
877 		irq_work_queue(&work->irq_work);
878 		return 0;
879 	}
880 
881 	return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
882 }
883 
884 BPF_CALL_1(bpf_send_signal, u32, sig)
885 {
886 	return bpf_send_signal_common(sig, PIDTYPE_TGID);
887 }
888 
889 static const struct bpf_func_proto bpf_send_signal_proto = {
890 	.func		= bpf_send_signal,
891 	.gpl_only	= false,
892 	.ret_type	= RET_INTEGER,
893 	.arg1_type	= ARG_ANYTHING,
894 };
895 
896 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
897 {
898 	return bpf_send_signal_common(sig, PIDTYPE_PID);
899 }
900 
901 static const struct bpf_func_proto bpf_send_signal_thread_proto = {
902 	.func		= bpf_send_signal_thread,
903 	.gpl_only	= false,
904 	.ret_type	= RET_INTEGER,
905 	.arg1_type	= ARG_ANYTHING,
906 };
907 
908 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
909 {
910 	struct path copy;
911 	long len;
912 	char *p;
913 
914 	if (!sz)
915 		return 0;
916 
917 	/*
918 	 * The path pointer is verified as trusted and safe to use,
919 	 * but let's double check it's valid anyway to workaround
920 	 * potentially broken verifier.
921 	 */
922 	len = copy_from_kernel_nofault(&copy, path, sizeof(*path));
923 	if (len < 0)
924 		return len;
925 
926 	p = d_path(&copy, buf, sz);
927 	if (IS_ERR(p)) {
928 		len = PTR_ERR(p);
929 	} else {
930 		len = buf + sz - p;
931 		memmove(buf, p, len);
932 	}
933 
934 	return len;
935 }
936 
937 BTF_SET_START(btf_allowlist_d_path)
938 #ifdef CONFIG_SECURITY
939 BTF_ID(func, security_file_permission)
940 BTF_ID(func, security_inode_getattr)
941 BTF_ID(func, security_file_open)
942 #endif
943 #ifdef CONFIG_SECURITY_PATH
944 BTF_ID(func, security_path_truncate)
945 #endif
946 BTF_ID(func, vfs_truncate)
947 BTF_ID(func, vfs_fallocate)
948 BTF_ID(func, dentry_open)
949 BTF_ID(func, vfs_getattr)
950 BTF_ID(func, filp_close)
951 BTF_SET_END(btf_allowlist_d_path)
952 
953 static bool bpf_d_path_allowed(const struct bpf_prog *prog)
954 {
955 	if (prog->type == BPF_PROG_TYPE_TRACING &&
956 	    prog->expected_attach_type == BPF_TRACE_ITER)
957 		return true;
958 
959 	if (prog->type == BPF_PROG_TYPE_LSM)
960 		return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id);
961 
962 	return btf_id_set_contains(&btf_allowlist_d_path,
963 				   prog->aux->attach_btf_id);
964 }
965 
966 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
967 
968 static const struct bpf_func_proto bpf_d_path_proto = {
969 	.func		= bpf_d_path,
970 	.gpl_only	= false,
971 	.ret_type	= RET_INTEGER,
972 	.arg1_type	= ARG_PTR_TO_BTF_ID,
973 	.arg1_btf_id	= &bpf_d_path_btf_ids[0],
974 	.arg2_type	= ARG_PTR_TO_MEM,
975 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
976 	.allowed	= bpf_d_path_allowed,
977 };
978 
979 #define BTF_F_ALL	(BTF_F_COMPACT  | BTF_F_NONAME | \
980 			 BTF_F_PTR_RAW | BTF_F_ZERO)
981 
982 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
983 				  u64 flags, const struct btf **btf,
984 				  s32 *btf_id)
985 {
986 	const struct btf_type *t;
987 
988 	if (unlikely(flags & ~(BTF_F_ALL)))
989 		return -EINVAL;
990 
991 	if (btf_ptr_size != sizeof(struct btf_ptr))
992 		return -EINVAL;
993 
994 	*btf = bpf_get_btf_vmlinux();
995 
996 	if (IS_ERR_OR_NULL(*btf))
997 		return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
998 
999 	if (ptr->type_id > 0)
1000 		*btf_id = ptr->type_id;
1001 	else
1002 		return -EINVAL;
1003 
1004 	if (*btf_id > 0)
1005 		t = btf_type_by_id(*btf, *btf_id);
1006 	if (*btf_id <= 0 || !t)
1007 		return -ENOENT;
1008 
1009 	return 0;
1010 }
1011 
1012 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
1013 	   u32, btf_ptr_size, u64, flags)
1014 {
1015 	const struct btf *btf;
1016 	s32 btf_id;
1017 	int ret;
1018 
1019 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
1020 	if (ret)
1021 		return ret;
1022 
1023 	return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
1024 				      flags);
1025 }
1026 
1027 const struct bpf_func_proto bpf_snprintf_btf_proto = {
1028 	.func		= bpf_snprintf_btf,
1029 	.gpl_only	= false,
1030 	.ret_type	= RET_INTEGER,
1031 	.arg1_type	= ARG_PTR_TO_MEM,
1032 	.arg2_type	= ARG_CONST_SIZE,
1033 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1034 	.arg4_type	= ARG_CONST_SIZE,
1035 	.arg5_type	= ARG_ANYTHING,
1036 };
1037 
1038 BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx)
1039 {
1040 	/* This helper call is inlined by verifier. */
1041 	return ((u64 *)ctx)[-2];
1042 }
1043 
1044 static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = {
1045 	.func		= bpf_get_func_ip_tracing,
1046 	.gpl_only	= true,
1047 	.ret_type	= RET_INTEGER,
1048 	.arg1_type	= ARG_PTR_TO_CTX,
1049 };
1050 
1051 #ifdef CONFIG_X86_KERNEL_IBT
1052 static unsigned long get_entry_ip(unsigned long fentry_ip)
1053 {
1054 	u32 instr;
1055 
1056 	/* Being extra safe in here in case entry ip is on the page-edge. */
1057 	if (get_kernel_nofault(instr, (u32 *) fentry_ip - 1))
1058 		return fentry_ip;
1059 	if (is_endbr(instr))
1060 		fentry_ip -= ENDBR_INSN_SIZE;
1061 	return fentry_ip;
1062 }
1063 #else
1064 #define get_entry_ip(fentry_ip) fentry_ip
1065 #endif
1066 
1067 BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs)
1068 {
1069 	struct bpf_trace_run_ctx *run_ctx __maybe_unused;
1070 	struct kprobe *kp;
1071 
1072 #ifdef CONFIG_UPROBES
1073 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1074 	if (run_ctx->is_uprobe)
1075 		return ((struct uprobe_dispatch_data *)current->utask->vaddr)->bp_addr;
1076 #endif
1077 
1078 	kp = kprobe_running();
1079 
1080 	if (!kp || !(kp->flags & KPROBE_FLAG_ON_FUNC_ENTRY))
1081 		return 0;
1082 
1083 	return get_entry_ip((uintptr_t)kp->addr);
1084 }
1085 
1086 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = {
1087 	.func		= bpf_get_func_ip_kprobe,
1088 	.gpl_only	= true,
1089 	.ret_type	= RET_INTEGER,
1090 	.arg1_type	= ARG_PTR_TO_CTX,
1091 };
1092 
1093 BPF_CALL_1(bpf_get_func_ip_kprobe_multi, struct pt_regs *, regs)
1094 {
1095 	return bpf_kprobe_multi_entry_ip(current->bpf_ctx);
1096 }
1097 
1098 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe_multi = {
1099 	.func		= bpf_get_func_ip_kprobe_multi,
1100 	.gpl_only	= false,
1101 	.ret_type	= RET_INTEGER,
1102 	.arg1_type	= ARG_PTR_TO_CTX,
1103 };
1104 
1105 BPF_CALL_1(bpf_get_attach_cookie_kprobe_multi, struct pt_regs *, regs)
1106 {
1107 	return bpf_kprobe_multi_cookie(current->bpf_ctx);
1108 }
1109 
1110 static const struct bpf_func_proto bpf_get_attach_cookie_proto_kmulti = {
1111 	.func		= bpf_get_attach_cookie_kprobe_multi,
1112 	.gpl_only	= false,
1113 	.ret_type	= RET_INTEGER,
1114 	.arg1_type	= ARG_PTR_TO_CTX,
1115 };
1116 
1117 BPF_CALL_1(bpf_get_func_ip_uprobe_multi, struct pt_regs *, regs)
1118 {
1119 	return bpf_uprobe_multi_entry_ip(current->bpf_ctx);
1120 }
1121 
1122 static const struct bpf_func_proto bpf_get_func_ip_proto_uprobe_multi = {
1123 	.func		= bpf_get_func_ip_uprobe_multi,
1124 	.gpl_only	= false,
1125 	.ret_type	= RET_INTEGER,
1126 	.arg1_type	= ARG_PTR_TO_CTX,
1127 };
1128 
1129 BPF_CALL_1(bpf_get_attach_cookie_uprobe_multi, struct pt_regs *, regs)
1130 {
1131 	return bpf_uprobe_multi_cookie(current->bpf_ctx);
1132 }
1133 
1134 static const struct bpf_func_proto bpf_get_attach_cookie_proto_umulti = {
1135 	.func		= bpf_get_attach_cookie_uprobe_multi,
1136 	.gpl_only	= false,
1137 	.ret_type	= RET_INTEGER,
1138 	.arg1_type	= ARG_PTR_TO_CTX,
1139 };
1140 
1141 BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx)
1142 {
1143 	struct bpf_trace_run_ctx *run_ctx;
1144 
1145 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1146 	return run_ctx->bpf_cookie;
1147 }
1148 
1149 static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = {
1150 	.func		= bpf_get_attach_cookie_trace,
1151 	.gpl_only	= false,
1152 	.ret_type	= RET_INTEGER,
1153 	.arg1_type	= ARG_PTR_TO_CTX,
1154 };
1155 
1156 BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx)
1157 {
1158 	return ctx->event->bpf_cookie;
1159 }
1160 
1161 static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = {
1162 	.func		= bpf_get_attach_cookie_pe,
1163 	.gpl_only	= false,
1164 	.ret_type	= RET_INTEGER,
1165 	.arg1_type	= ARG_PTR_TO_CTX,
1166 };
1167 
1168 BPF_CALL_1(bpf_get_attach_cookie_tracing, void *, ctx)
1169 {
1170 	struct bpf_trace_run_ctx *run_ctx;
1171 
1172 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1173 	return run_ctx->bpf_cookie;
1174 }
1175 
1176 static const struct bpf_func_proto bpf_get_attach_cookie_proto_tracing = {
1177 	.func		= bpf_get_attach_cookie_tracing,
1178 	.gpl_only	= false,
1179 	.ret_type	= RET_INTEGER,
1180 	.arg1_type	= ARG_PTR_TO_CTX,
1181 };
1182 
1183 BPF_CALL_3(bpf_get_branch_snapshot, void *, buf, u32, size, u64, flags)
1184 {
1185 #ifndef CONFIG_X86
1186 	return -ENOENT;
1187 #else
1188 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1189 	u32 entry_cnt = size / br_entry_size;
1190 
1191 	entry_cnt = static_call(perf_snapshot_branch_stack)(buf, entry_cnt);
1192 
1193 	if (unlikely(flags))
1194 		return -EINVAL;
1195 
1196 	if (!entry_cnt)
1197 		return -ENOENT;
1198 
1199 	return entry_cnt * br_entry_size;
1200 #endif
1201 }
1202 
1203 static const struct bpf_func_proto bpf_get_branch_snapshot_proto = {
1204 	.func		= bpf_get_branch_snapshot,
1205 	.gpl_only	= true,
1206 	.ret_type	= RET_INTEGER,
1207 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1208 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1209 };
1210 
1211 BPF_CALL_3(get_func_arg, void *, ctx, u32, n, u64 *, value)
1212 {
1213 	/* This helper call is inlined by verifier. */
1214 	u64 nr_args = ((u64 *)ctx)[-1];
1215 
1216 	if ((u64) n >= nr_args)
1217 		return -EINVAL;
1218 	*value = ((u64 *)ctx)[n];
1219 	return 0;
1220 }
1221 
1222 static const struct bpf_func_proto bpf_get_func_arg_proto = {
1223 	.func		= get_func_arg,
1224 	.ret_type	= RET_INTEGER,
1225 	.arg1_type	= ARG_PTR_TO_CTX,
1226 	.arg2_type	= ARG_ANYTHING,
1227 	.arg3_type	= ARG_PTR_TO_LONG,
1228 };
1229 
1230 BPF_CALL_2(get_func_ret, void *, ctx, u64 *, value)
1231 {
1232 	/* This helper call is inlined by verifier. */
1233 	u64 nr_args = ((u64 *)ctx)[-1];
1234 
1235 	*value = ((u64 *)ctx)[nr_args];
1236 	return 0;
1237 }
1238 
1239 static const struct bpf_func_proto bpf_get_func_ret_proto = {
1240 	.func		= get_func_ret,
1241 	.ret_type	= RET_INTEGER,
1242 	.arg1_type	= ARG_PTR_TO_CTX,
1243 	.arg2_type	= ARG_PTR_TO_LONG,
1244 };
1245 
1246 BPF_CALL_1(get_func_arg_cnt, void *, ctx)
1247 {
1248 	/* This helper call is inlined by verifier. */
1249 	return ((u64 *)ctx)[-1];
1250 }
1251 
1252 static const struct bpf_func_proto bpf_get_func_arg_cnt_proto = {
1253 	.func		= get_func_arg_cnt,
1254 	.ret_type	= RET_INTEGER,
1255 	.arg1_type	= ARG_PTR_TO_CTX,
1256 };
1257 
1258 #ifdef CONFIG_KEYS
1259 __bpf_kfunc_start_defs();
1260 
1261 /**
1262  * bpf_lookup_user_key - lookup a key by its serial
1263  * @serial: key handle serial number
1264  * @flags: lookup-specific flags
1265  *
1266  * Search a key with a given *serial* and the provided *flags*.
1267  * If found, increment the reference count of the key by one, and
1268  * return it in the bpf_key structure.
1269  *
1270  * The bpf_key structure must be passed to bpf_key_put() when done
1271  * with it, so that the key reference count is decremented and the
1272  * bpf_key structure is freed.
1273  *
1274  * Permission checks are deferred to the time the key is used by
1275  * one of the available key-specific kfuncs.
1276  *
1277  * Set *flags* with KEY_LOOKUP_CREATE, to attempt creating a requested
1278  * special keyring (e.g. session keyring), if it doesn't yet exist.
1279  * Set *flags* with KEY_LOOKUP_PARTIAL, to lookup a key without waiting
1280  * for the key construction, and to retrieve uninstantiated keys (keys
1281  * without data attached to them).
1282  *
1283  * Return: a bpf_key pointer with a valid key pointer if the key is found, a
1284  *         NULL pointer otherwise.
1285  */
1286 __bpf_kfunc struct bpf_key *bpf_lookup_user_key(u32 serial, u64 flags)
1287 {
1288 	key_ref_t key_ref;
1289 	struct bpf_key *bkey;
1290 
1291 	if (flags & ~KEY_LOOKUP_ALL)
1292 		return NULL;
1293 
1294 	/*
1295 	 * Permission check is deferred until the key is used, as the
1296 	 * intent of the caller is unknown here.
1297 	 */
1298 	key_ref = lookup_user_key(serial, flags, KEY_DEFER_PERM_CHECK);
1299 	if (IS_ERR(key_ref))
1300 		return NULL;
1301 
1302 	bkey = kmalloc(sizeof(*bkey), GFP_KERNEL);
1303 	if (!bkey) {
1304 		key_put(key_ref_to_ptr(key_ref));
1305 		return NULL;
1306 	}
1307 
1308 	bkey->key = key_ref_to_ptr(key_ref);
1309 	bkey->has_ref = true;
1310 
1311 	return bkey;
1312 }
1313 
1314 /**
1315  * bpf_lookup_system_key - lookup a key by a system-defined ID
1316  * @id: key ID
1317  *
1318  * Obtain a bpf_key structure with a key pointer set to the passed key ID.
1319  * The key pointer is marked as invalid, to prevent bpf_key_put() from
1320  * attempting to decrement the key reference count on that pointer. The key
1321  * pointer set in such way is currently understood only by
1322  * verify_pkcs7_signature().
1323  *
1324  * Set *id* to one of the values defined in include/linux/verification.h:
1325  * 0 for the primary keyring (immutable keyring of system keys);
1326  * VERIFY_USE_SECONDARY_KEYRING for both the primary and secondary keyring
1327  * (where keys can be added only if they are vouched for by existing keys
1328  * in those keyrings); VERIFY_USE_PLATFORM_KEYRING for the platform
1329  * keyring (primarily used by the integrity subsystem to verify a kexec'ed
1330  * kerned image and, possibly, the initramfs signature).
1331  *
1332  * Return: a bpf_key pointer with an invalid key pointer set from the
1333  *         pre-determined ID on success, a NULL pointer otherwise
1334  */
1335 __bpf_kfunc struct bpf_key *bpf_lookup_system_key(u64 id)
1336 {
1337 	struct bpf_key *bkey;
1338 
1339 	if (system_keyring_id_check(id) < 0)
1340 		return NULL;
1341 
1342 	bkey = kmalloc(sizeof(*bkey), GFP_ATOMIC);
1343 	if (!bkey)
1344 		return NULL;
1345 
1346 	bkey->key = (struct key *)(unsigned long)id;
1347 	bkey->has_ref = false;
1348 
1349 	return bkey;
1350 }
1351 
1352 /**
1353  * bpf_key_put - decrement key reference count if key is valid and free bpf_key
1354  * @bkey: bpf_key structure
1355  *
1356  * Decrement the reference count of the key inside *bkey*, if the pointer
1357  * is valid, and free *bkey*.
1358  */
1359 __bpf_kfunc void bpf_key_put(struct bpf_key *bkey)
1360 {
1361 	if (bkey->has_ref)
1362 		key_put(bkey->key);
1363 
1364 	kfree(bkey);
1365 }
1366 
1367 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
1368 /**
1369  * bpf_verify_pkcs7_signature - verify a PKCS#7 signature
1370  * @data_ptr: data to verify
1371  * @sig_ptr: signature of the data
1372  * @trusted_keyring: keyring with keys trusted for signature verification
1373  *
1374  * Verify the PKCS#7 signature *sig_ptr* against the supplied *data_ptr*
1375  * with keys in a keyring referenced by *trusted_keyring*.
1376  *
1377  * Return: 0 on success, a negative value on error.
1378  */
1379 __bpf_kfunc int bpf_verify_pkcs7_signature(struct bpf_dynptr_kern *data_ptr,
1380 			       struct bpf_dynptr_kern *sig_ptr,
1381 			       struct bpf_key *trusted_keyring)
1382 {
1383 	const void *data, *sig;
1384 	u32 data_len, sig_len;
1385 	int ret;
1386 
1387 	if (trusted_keyring->has_ref) {
1388 		/*
1389 		 * Do the permission check deferred in bpf_lookup_user_key().
1390 		 * See bpf_lookup_user_key() for more details.
1391 		 *
1392 		 * A call to key_task_permission() here would be redundant, as
1393 		 * it is already done by keyring_search() called by
1394 		 * find_asymmetric_key().
1395 		 */
1396 		ret = key_validate(trusted_keyring->key);
1397 		if (ret < 0)
1398 			return ret;
1399 	}
1400 
1401 	data_len = __bpf_dynptr_size(data_ptr);
1402 	data = __bpf_dynptr_data(data_ptr, data_len);
1403 	sig_len = __bpf_dynptr_size(sig_ptr);
1404 	sig = __bpf_dynptr_data(sig_ptr, sig_len);
1405 
1406 	return verify_pkcs7_signature(data, data_len, sig, sig_len,
1407 				      trusted_keyring->key,
1408 				      VERIFYING_UNSPECIFIED_SIGNATURE, NULL,
1409 				      NULL);
1410 }
1411 #endif /* CONFIG_SYSTEM_DATA_VERIFICATION */
1412 
1413 __bpf_kfunc_end_defs();
1414 
1415 BTF_SET8_START(key_sig_kfunc_set)
1416 BTF_ID_FLAGS(func, bpf_lookup_user_key, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE)
1417 BTF_ID_FLAGS(func, bpf_lookup_system_key, KF_ACQUIRE | KF_RET_NULL)
1418 BTF_ID_FLAGS(func, bpf_key_put, KF_RELEASE)
1419 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
1420 BTF_ID_FLAGS(func, bpf_verify_pkcs7_signature, KF_SLEEPABLE)
1421 #endif
1422 BTF_SET8_END(key_sig_kfunc_set)
1423 
1424 static const struct btf_kfunc_id_set bpf_key_sig_kfunc_set = {
1425 	.owner = THIS_MODULE,
1426 	.set = &key_sig_kfunc_set,
1427 };
1428 
1429 static int __init bpf_key_sig_kfuncs_init(void)
1430 {
1431 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
1432 					 &bpf_key_sig_kfunc_set);
1433 }
1434 
1435 late_initcall(bpf_key_sig_kfuncs_init);
1436 #endif /* CONFIG_KEYS */
1437 
1438 /* filesystem kfuncs */
1439 __bpf_kfunc_start_defs();
1440 
1441 /**
1442  * bpf_get_file_xattr - get xattr of a file
1443  * @file: file to get xattr from
1444  * @name__str: name of the xattr
1445  * @value_ptr: output buffer of the xattr value
1446  *
1447  * Get xattr *name__str* of *file* and store the output in *value_ptr*.
1448  *
1449  * For security reasons, only *name__str* with prefix "user." is allowed.
1450  *
1451  * Return: 0 on success, a negative value on error.
1452  */
1453 __bpf_kfunc int bpf_get_file_xattr(struct file *file, const char *name__str,
1454 				   struct bpf_dynptr_kern *value_ptr)
1455 {
1456 	struct dentry *dentry;
1457 	u32 value_len;
1458 	void *value;
1459 	int ret;
1460 
1461 	if (strncmp(name__str, XATTR_USER_PREFIX, XATTR_USER_PREFIX_LEN))
1462 		return -EPERM;
1463 
1464 	value_len = __bpf_dynptr_size(value_ptr);
1465 	value = __bpf_dynptr_data_rw(value_ptr, value_len);
1466 	if (!value)
1467 		return -EINVAL;
1468 
1469 	dentry = file_dentry(file);
1470 	ret = inode_permission(&nop_mnt_idmap, dentry->d_inode, MAY_READ);
1471 	if (ret)
1472 		return ret;
1473 	return __vfs_getxattr(dentry, dentry->d_inode, name__str, value, value_len);
1474 }
1475 
1476 __bpf_kfunc_end_defs();
1477 
1478 BTF_SET8_START(fs_kfunc_set_ids)
1479 BTF_ID_FLAGS(func, bpf_get_file_xattr, KF_SLEEPABLE | KF_TRUSTED_ARGS)
1480 BTF_SET8_END(fs_kfunc_set_ids)
1481 
1482 static int bpf_get_file_xattr_filter(const struct bpf_prog *prog, u32 kfunc_id)
1483 {
1484 	if (!btf_id_set8_contains(&fs_kfunc_set_ids, kfunc_id))
1485 		return 0;
1486 
1487 	/* Only allow to attach from LSM hooks, to avoid recursion */
1488 	return prog->type != BPF_PROG_TYPE_LSM ? -EACCES : 0;
1489 }
1490 
1491 static const struct btf_kfunc_id_set bpf_fs_kfunc_set = {
1492 	.owner = THIS_MODULE,
1493 	.set = &fs_kfunc_set_ids,
1494 	.filter = bpf_get_file_xattr_filter,
1495 };
1496 
1497 static int __init bpf_fs_kfuncs_init(void)
1498 {
1499 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_LSM, &bpf_fs_kfunc_set);
1500 }
1501 
1502 late_initcall(bpf_fs_kfuncs_init);
1503 
1504 static const struct bpf_func_proto *
1505 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1506 {
1507 	switch (func_id) {
1508 	case BPF_FUNC_map_lookup_elem:
1509 		return &bpf_map_lookup_elem_proto;
1510 	case BPF_FUNC_map_update_elem:
1511 		return &bpf_map_update_elem_proto;
1512 	case BPF_FUNC_map_delete_elem:
1513 		return &bpf_map_delete_elem_proto;
1514 	case BPF_FUNC_map_push_elem:
1515 		return &bpf_map_push_elem_proto;
1516 	case BPF_FUNC_map_pop_elem:
1517 		return &bpf_map_pop_elem_proto;
1518 	case BPF_FUNC_map_peek_elem:
1519 		return &bpf_map_peek_elem_proto;
1520 	case BPF_FUNC_map_lookup_percpu_elem:
1521 		return &bpf_map_lookup_percpu_elem_proto;
1522 	case BPF_FUNC_ktime_get_ns:
1523 		return &bpf_ktime_get_ns_proto;
1524 	case BPF_FUNC_ktime_get_boot_ns:
1525 		return &bpf_ktime_get_boot_ns_proto;
1526 	case BPF_FUNC_tail_call:
1527 		return &bpf_tail_call_proto;
1528 	case BPF_FUNC_get_current_pid_tgid:
1529 		return &bpf_get_current_pid_tgid_proto;
1530 	case BPF_FUNC_get_current_task:
1531 		return &bpf_get_current_task_proto;
1532 	case BPF_FUNC_get_current_task_btf:
1533 		return &bpf_get_current_task_btf_proto;
1534 	case BPF_FUNC_task_pt_regs:
1535 		return &bpf_task_pt_regs_proto;
1536 	case BPF_FUNC_get_current_uid_gid:
1537 		return &bpf_get_current_uid_gid_proto;
1538 	case BPF_FUNC_get_current_comm:
1539 		return &bpf_get_current_comm_proto;
1540 	case BPF_FUNC_trace_printk:
1541 		return bpf_get_trace_printk_proto();
1542 	case BPF_FUNC_get_smp_processor_id:
1543 		return &bpf_get_smp_processor_id_proto;
1544 	case BPF_FUNC_get_numa_node_id:
1545 		return &bpf_get_numa_node_id_proto;
1546 	case BPF_FUNC_perf_event_read:
1547 		return &bpf_perf_event_read_proto;
1548 	case BPF_FUNC_current_task_under_cgroup:
1549 		return &bpf_current_task_under_cgroup_proto;
1550 	case BPF_FUNC_get_prandom_u32:
1551 		return &bpf_get_prandom_u32_proto;
1552 	case BPF_FUNC_probe_write_user:
1553 		return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ?
1554 		       NULL : bpf_get_probe_write_proto();
1555 	case BPF_FUNC_probe_read_user:
1556 		return &bpf_probe_read_user_proto;
1557 	case BPF_FUNC_probe_read_kernel:
1558 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1559 		       NULL : &bpf_probe_read_kernel_proto;
1560 	case BPF_FUNC_probe_read_user_str:
1561 		return &bpf_probe_read_user_str_proto;
1562 	case BPF_FUNC_probe_read_kernel_str:
1563 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1564 		       NULL : &bpf_probe_read_kernel_str_proto;
1565 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1566 	case BPF_FUNC_probe_read:
1567 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1568 		       NULL : &bpf_probe_read_compat_proto;
1569 	case BPF_FUNC_probe_read_str:
1570 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1571 		       NULL : &bpf_probe_read_compat_str_proto;
1572 #endif
1573 #ifdef CONFIG_CGROUPS
1574 	case BPF_FUNC_cgrp_storage_get:
1575 		return &bpf_cgrp_storage_get_proto;
1576 	case BPF_FUNC_cgrp_storage_delete:
1577 		return &bpf_cgrp_storage_delete_proto;
1578 #endif
1579 	case BPF_FUNC_send_signal:
1580 		return &bpf_send_signal_proto;
1581 	case BPF_FUNC_send_signal_thread:
1582 		return &bpf_send_signal_thread_proto;
1583 	case BPF_FUNC_perf_event_read_value:
1584 		return &bpf_perf_event_read_value_proto;
1585 	case BPF_FUNC_get_ns_current_pid_tgid:
1586 		return &bpf_get_ns_current_pid_tgid_proto;
1587 	case BPF_FUNC_ringbuf_output:
1588 		return &bpf_ringbuf_output_proto;
1589 	case BPF_FUNC_ringbuf_reserve:
1590 		return &bpf_ringbuf_reserve_proto;
1591 	case BPF_FUNC_ringbuf_submit:
1592 		return &bpf_ringbuf_submit_proto;
1593 	case BPF_FUNC_ringbuf_discard:
1594 		return &bpf_ringbuf_discard_proto;
1595 	case BPF_FUNC_ringbuf_query:
1596 		return &bpf_ringbuf_query_proto;
1597 	case BPF_FUNC_jiffies64:
1598 		return &bpf_jiffies64_proto;
1599 	case BPF_FUNC_get_task_stack:
1600 		return &bpf_get_task_stack_proto;
1601 	case BPF_FUNC_copy_from_user:
1602 		return &bpf_copy_from_user_proto;
1603 	case BPF_FUNC_copy_from_user_task:
1604 		return &bpf_copy_from_user_task_proto;
1605 	case BPF_FUNC_snprintf_btf:
1606 		return &bpf_snprintf_btf_proto;
1607 	case BPF_FUNC_per_cpu_ptr:
1608 		return &bpf_per_cpu_ptr_proto;
1609 	case BPF_FUNC_this_cpu_ptr:
1610 		return &bpf_this_cpu_ptr_proto;
1611 	case BPF_FUNC_task_storage_get:
1612 		if (bpf_prog_check_recur(prog))
1613 			return &bpf_task_storage_get_recur_proto;
1614 		return &bpf_task_storage_get_proto;
1615 	case BPF_FUNC_task_storage_delete:
1616 		if (bpf_prog_check_recur(prog))
1617 			return &bpf_task_storage_delete_recur_proto;
1618 		return &bpf_task_storage_delete_proto;
1619 	case BPF_FUNC_for_each_map_elem:
1620 		return &bpf_for_each_map_elem_proto;
1621 	case BPF_FUNC_snprintf:
1622 		return &bpf_snprintf_proto;
1623 	case BPF_FUNC_get_func_ip:
1624 		return &bpf_get_func_ip_proto_tracing;
1625 	case BPF_FUNC_get_branch_snapshot:
1626 		return &bpf_get_branch_snapshot_proto;
1627 	case BPF_FUNC_find_vma:
1628 		return &bpf_find_vma_proto;
1629 	case BPF_FUNC_trace_vprintk:
1630 		return bpf_get_trace_vprintk_proto();
1631 	default:
1632 		return bpf_base_func_proto(func_id);
1633 	}
1634 }
1635 
1636 static const struct bpf_func_proto *
1637 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1638 {
1639 	switch (func_id) {
1640 	case BPF_FUNC_perf_event_output:
1641 		return &bpf_perf_event_output_proto;
1642 	case BPF_FUNC_get_stackid:
1643 		return &bpf_get_stackid_proto;
1644 	case BPF_FUNC_get_stack:
1645 		return &bpf_get_stack_proto;
1646 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
1647 	case BPF_FUNC_override_return:
1648 		return &bpf_override_return_proto;
1649 #endif
1650 	case BPF_FUNC_get_func_ip:
1651 		if (prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI)
1652 			return &bpf_get_func_ip_proto_kprobe_multi;
1653 		if (prog->expected_attach_type == BPF_TRACE_UPROBE_MULTI)
1654 			return &bpf_get_func_ip_proto_uprobe_multi;
1655 		return &bpf_get_func_ip_proto_kprobe;
1656 	case BPF_FUNC_get_attach_cookie:
1657 		if (prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI)
1658 			return &bpf_get_attach_cookie_proto_kmulti;
1659 		if (prog->expected_attach_type == BPF_TRACE_UPROBE_MULTI)
1660 			return &bpf_get_attach_cookie_proto_umulti;
1661 		return &bpf_get_attach_cookie_proto_trace;
1662 	default:
1663 		return bpf_tracing_func_proto(func_id, prog);
1664 	}
1665 }
1666 
1667 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
1668 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1669 					const struct bpf_prog *prog,
1670 					struct bpf_insn_access_aux *info)
1671 {
1672 	if (off < 0 || off >= sizeof(struct pt_regs))
1673 		return false;
1674 	if (type != BPF_READ)
1675 		return false;
1676 	if (off % size != 0)
1677 		return false;
1678 	/*
1679 	 * Assertion for 32 bit to make sure last 8 byte access
1680 	 * (BPF_DW) to the last 4 byte member is disallowed.
1681 	 */
1682 	if (off + size > sizeof(struct pt_regs))
1683 		return false;
1684 
1685 	return true;
1686 }
1687 
1688 const struct bpf_verifier_ops kprobe_verifier_ops = {
1689 	.get_func_proto  = kprobe_prog_func_proto,
1690 	.is_valid_access = kprobe_prog_is_valid_access,
1691 };
1692 
1693 const struct bpf_prog_ops kprobe_prog_ops = {
1694 };
1695 
1696 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1697 	   u64, flags, void *, data, u64, size)
1698 {
1699 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1700 
1701 	/*
1702 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1703 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1704 	 * from there and call the same bpf_perf_event_output() helper inline.
1705 	 */
1706 	return ____bpf_perf_event_output(regs, map, flags, data, size);
1707 }
1708 
1709 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1710 	.func		= bpf_perf_event_output_tp,
1711 	.gpl_only	= true,
1712 	.ret_type	= RET_INTEGER,
1713 	.arg1_type	= ARG_PTR_TO_CTX,
1714 	.arg2_type	= ARG_CONST_MAP_PTR,
1715 	.arg3_type	= ARG_ANYTHING,
1716 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1717 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1718 };
1719 
1720 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1721 	   u64, flags)
1722 {
1723 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1724 
1725 	/*
1726 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
1727 	 * the other helper's function body cannot be inlined due to being
1728 	 * external, thus we need to call raw helper function.
1729 	 */
1730 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1731 			       flags, 0, 0);
1732 }
1733 
1734 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1735 	.func		= bpf_get_stackid_tp,
1736 	.gpl_only	= true,
1737 	.ret_type	= RET_INTEGER,
1738 	.arg1_type	= ARG_PTR_TO_CTX,
1739 	.arg2_type	= ARG_CONST_MAP_PTR,
1740 	.arg3_type	= ARG_ANYTHING,
1741 };
1742 
1743 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1744 	   u64, flags)
1745 {
1746 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1747 
1748 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1749 			     (unsigned long) size, flags, 0);
1750 }
1751 
1752 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1753 	.func		= bpf_get_stack_tp,
1754 	.gpl_only	= true,
1755 	.ret_type	= RET_INTEGER,
1756 	.arg1_type	= ARG_PTR_TO_CTX,
1757 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1758 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1759 	.arg4_type	= ARG_ANYTHING,
1760 };
1761 
1762 static const struct bpf_func_proto *
1763 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1764 {
1765 	switch (func_id) {
1766 	case BPF_FUNC_perf_event_output:
1767 		return &bpf_perf_event_output_proto_tp;
1768 	case BPF_FUNC_get_stackid:
1769 		return &bpf_get_stackid_proto_tp;
1770 	case BPF_FUNC_get_stack:
1771 		return &bpf_get_stack_proto_tp;
1772 	case BPF_FUNC_get_attach_cookie:
1773 		return &bpf_get_attach_cookie_proto_trace;
1774 	default:
1775 		return bpf_tracing_func_proto(func_id, prog);
1776 	}
1777 }
1778 
1779 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1780 				    const struct bpf_prog *prog,
1781 				    struct bpf_insn_access_aux *info)
1782 {
1783 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1784 		return false;
1785 	if (type != BPF_READ)
1786 		return false;
1787 	if (off % size != 0)
1788 		return false;
1789 
1790 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1791 	return true;
1792 }
1793 
1794 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1795 	.get_func_proto  = tp_prog_func_proto,
1796 	.is_valid_access = tp_prog_is_valid_access,
1797 };
1798 
1799 const struct bpf_prog_ops tracepoint_prog_ops = {
1800 };
1801 
1802 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1803 	   struct bpf_perf_event_value *, buf, u32, size)
1804 {
1805 	int err = -EINVAL;
1806 
1807 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1808 		goto clear;
1809 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1810 				    &buf->running);
1811 	if (unlikely(err))
1812 		goto clear;
1813 	return 0;
1814 clear:
1815 	memset(buf, 0, size);
1816 	return err;
1817 }
1818 
1819 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1820          .func           = bpf_perf_prog_read_value,
1821          .gpl_only       = true,
1822          .ret_type       = RET_INTEGER,
1823          .arg1_type      = ARG_PTR_TO_CTX,
1824          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1825          .arg3_type      = ARG_CONST_SIZE,
1826 };
1827 
1828 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1829 	   void *, buf, u32, size, u64, flags)
1830 {
1831 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1832 	struct perf_branch_stack *br_stack = ctx->data->br_stack;
1833 	u32 to_copy;
1834 
1835 	if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1836 		return -EINVAL;
1837 
1838 	if (unlikely(!(ctx->data->sample_flags & PERF_SAMPLE_BRANCH_STACK)))
1839 		return -ENOENT;
1840 
1841 	if (unlikely(!br_stack))
1842 		return -ENOENT;
1843 
1844 	if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1845 		return br_stack->nr * br_entry_size;
1846 
1847 	if (!buf || (size % br_entry_size != 0))
1848 		return -EINVAL;
1849 
1850 	to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1851 	memcpy(buf, br_stack->entries, to_copy);
1852 
1853 	return to_copy;
1854 }
1855 
1856 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1857 	.func           = bpf_read_branch_records,
1858 	.gpl_only       = true,
1859 	.ret_type       = RET_INTEGER,
1860 	.arg1_type      = ARG_PTR_TO_CTX,
1861 	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
1862 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1863 	.arg4_type      = ARG_ANYTHING,
1864 };
1865 
1866 static const struct bpf_func_proto *
1867 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1868 {
1869 	switch (func_id) {
1870 	case BPF_FUNC_perf_event_output:
1871 		return &bpf_perf_event_output_proto_tp;
1872 	case BPF_FUNC_get_stackid:
1873 		return &bpf_get_stackid_proto_pe;
1874 	case BPF_FUNC_get_stack:
1875 		return &bpf_get_stack_proto_pe;
1876 	case BPF_FUNC_perf_prog_read_value:
1877 		return &bpf_perf_prog_read_value_proto;
1878 	case BPF_FUNC_read_branch_records:
1879 		return &bpf_read_branch_records_proto;
1880 	case BPF_FUNC_get_attach_cookie:
1881 		return &bpf_get_attach_cookie_proto_pe;
1882 	default:
1883 		return bpf_tracing_func_proto(func_id, prog);
1884 	}
1885 }
1886 
1887 /*
1888  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1889  * to avoid potential recursive reuse issue when/if tracepoints are added
1890  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1891  *
1892  * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1893  * in normal, irq, and nmi context.
1894  */
1895 struct bpf_raw_tp_regs {
1896 	struct pt_regs regs[3];
1897 };
1898 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1899 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1900 static struct pt_regs *get_bpf_raw_tp_regs(void)
1901 {
1902 	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1903 	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1904 
1905 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1906 		this_cpu_dec(bpf_raw_tp_nest_level);
1907 		return ERR_PTR(-EBUSY);
1908 	}
1909 
1910 	return &tp_regs->regs[nest_level - 1];
1911 }
1912 
1913 static void put_bpf_raw_tp_regs(void)
1914 {
1915 	this_cpu_dec(bpf_raw_tp_nest_level);
1916 }
1917 
1918 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1919 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
1920 {
1921 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1922 	int ret;
1923 
1924 	if (IS_ERR(regs))
1925 		return PTR_ERR(regs);
1926 
1927 	perf_fetch_caller_regs(regs);
1928 	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1929 
1930 	put_bpf_raw_tp_regs();
1931 	return ret;
1932 }
1933 
1934 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1935 	.func		= bpf_perf_event_output_raw_tp,
1936 	.gpl_only	= true,
1937 	.ret_type	= RET_INTEGER,
1938 	.arg1_type	= ARG_PTR_TO_CTX,
1939 	.arg2_type	= ARG_CONST_MAP_PTR,
1940 	.arg3_type	= ARG_ANYTHING,
1941 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1942 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1943 };
1944 
1945 extern const struct bpf_func_proto bpf_skb_output_proto;
1946 extern const struct bpf_func_proto bpf_xdp_output_proto;
1947 extern const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto;
1948 
1949 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1950 	   struct bpf_map *, map, u64, flags)
1951 {
1952 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1953 	int ret;
1954 
1955 	if (IS_ERR(regs))
1956 		return PTR_ERR(regs);
1957 
1958 	perf_fetch_caller_regs(regs);
1959 	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1960 	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1961 			      flags, 0, 0);
1962 	put_bpf_raw_tp_regs();
1963 	return ret;
1964 }
1965 
1966 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1967 	.func		= bpf_get_stackid_raw_tp,
1968 	.gpl_only	= true,
1969 	.ret_type	= RET_INTEGER,
1970 	.arg1_type	= ARG_PTR_TO_CTX,
1971 	.arg2_type	= ARG_CONST_MAP_PTR,
1972 	.arg3_type	= ARG_ANYTHING,
1973 };
1974 
1975 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1976 	   void *, buf, u32, size, u64, flags)
1977 {
1978 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1979 	int ret;
1980 
1981 	if (IS_ERR(regs))
1982 		return PTR_ERR(regs);
1983 
1984 	perf_fetch_caller_regs(regs);
1985 	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1986 			    (unsigned long) size, flags, 0);
1987 	put_bpf_raw_tp_regs();
1988 	return ret;
1989 }
1990 
1991 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1992 	.func		= bpf_get_stack_raw_tp,
1993 	.gpl_only	= true,
1994 	.ret_type	= RET_INTEGER,
1995 	.arg1_type	= ARG_PTR_TO_CTX,
1996 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1997 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1998 	.arg4_type	= ARG_ANYTHING,
1999 };
2000 
2001 static const struct bpf_func_proto *
2002 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
2003 {
2004 	switch (func_id) {
2005 	case BPF_FUNC_perf_event_output:
2006 		return &bpf_perf_event_output_proto_raw_tp;
2007 	case BPF_FUNC_get_stackid:
2008 		return &bpf_get_stackid_proto_raw_tp;
2009 	case BPF_FUNC_get_stack:
2010 		return &bpf_get_stack_proto_raw_tp;
2011 	default:
2012 		return bpf_tracing_func_proto(func_id, prog);
2013 	}
2014 }
2015 
2016 const struct bpf_func_proto *
2017 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
2018 {
2019 	const struct bpf_func_proto *fn;
2020 
2021 	switch (func_id) {
2022 #ifdef CONFIG_NET
2023 	case BPF_FUNC_skb_output:
2024 		return &bpf_skb_output_proto;
2025 	case BPF_FUNC_xdp_output:
2026 		return &bpf_xdp_output_proto;
2027 	case BPF_FUNC_skc_to_tcp6_sock:
2028 		return &bpf_skc_to_tcp6_sock_proto;
2029 	case BPF_FUNC_skc_to_tcp_sock:
2030 		return &bpf_skc_to_tcp_sock_proto;
2031 	case BPF_FUNC_skc_to_tcp_timewait_sock:
2032 		return &bpf_skc_to_tcp_timewait_sock_proto;
2033 	case BPF_FUNC_skc_to_tcp_request_sock:
2034 		return &bpf_skc_to_tcp_request_sock_proto;
2035 	case BPF_FUNC_skc_to_udp6_sock:
2036 		return &bpf_skc_to_udp6_sock_proto;
2037 	case BPF_FUNC_skc_to_unix_sock:
2038 		return &bpf_skc_to_unix_sock_proto;
2039 	case BPF_FUNC_skc_to_mptcp_sock:
2040 		return &bpf_skc_to_mptcp_sock_proto;
2041 	case BPF_FUNC_sk_storage_get:
2042 		return &bpf_sk_storage_get_tracing_proto;
2043 	case BPF_FUNC_sk_storage_delete:
2044 		return &bpf_sk_storage_delete_tracing_proto;
2045 	case BPF_FUNC_sock_from_file:
2046 		return &bpf_sock_from_file_proto;
2047 	case BPF_FUNC_get_socket_cookie:
2048 		return &bpf_get_socket_ptr_cookie_proto;
2049 	case BPF_FUNC_xdp_get_buff_len:
2050 		return &bpf_xdp_get_buff_len_trace_proto;
2051 #endif
2052 	case BPF_FUNC_seq_printf:
2053 		return prog->expected_attach_type == BPF_TRACE_ITER ?
2054 		       &bpf_seq_printf_proto :
2055 		       NULL;
2056 	case BPF_FUNC_seq_write:
2057 		return prog->expected_attach_type == BPF_TRACE_ITER ?
2058 		       &bpf_seq_write_proto :
2059 		       NULL;
2060 	case BPF_FUNC_seq_printf_btf:
2061 		return prog->expected_attach_type == BPF_TRACE_ITER ?
2062 		       &bpf_seq_printf_btf_proto :
2063 		       NULL;
2064 	case BPF_FUNC_d_path:
2065 		return &bpf_d_path_proto;
2066 	case BPF_FUNC_get_func_arg:
2067 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_proto : NULL;
2068 	case BPF_FUNC_get_func_ret:
2069 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_ret_proto : NULL;
2070 	case BPF_FUNC_get_func_arg_cnt:
2071 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_cnt_proto : NULL;
2072 	case BPF_FUNC_get_attach_cookie:
2073 		return bpf_prog_has_trampoline(prog) ? &bpf_get_attach_cookie_proto_tracing : NULL;
2074 	default:
2075 		fn = raw_tp_prog_func_proto(func_id, prog);
2076 		if (!fn && prog->expected_attach_type == BPF_TRACE_ITER)
2077 			fn = bpf_iter_get_func_proto(func_id, prog);
2078 		return fn;
2079 	}
2080 }
2081 
2082 static bool raw_tp_prog_is_valid_access(int off, int size,
2083 					enum bpf_access_type type,
2084 					const struct bpf_prog *prog,
2085 					struct bpf_insn_access_aux *info)
2086 {
2087 	return bpf_tracing_ctx_access(off, size, type);
2088 }
2089 
2090 static bool tracing_prog_is_valid_access(int off, int size,
2091 					 enum bpf_access_type type,
2092 					 const struct bpf_prog *prog,
2093 					 struct bpf_insn_access_aux *info)
2094 {
2095 	return bpf_tracing_btf_ctx_access(off, size, type, prog, info);
2096 }
2097 
2098 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
2099 				     const union bpf_attr *kattr,
2100 				     union bpf_attr __user *uattr)
2101 {
2102 	return -ENOTSUPP;
2103 }
2104 
2105 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
2106 	.get_func_proto  = raw_tp_prog_func_proto,
2107 	.is_valid_access = raw_tp_prog_is_valid_access,
2108 };
2109 
2110 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
2111 #ifdef CONFIG_NET
2112 	.test_run = bpf_prog_test_run_raw_tp,
2113 #endif
2114 };
2115 
2116 const struct bpf_verifier_ops tracing_verifier_ops = {
2117 	.get_func_proto  = tracing_prog_func_proto,
2118 	.is_valid_access = tracing_prog_is_valid_access,
2119 };
2120 
2121 const struct bpf_prog_ops tracing_prog_ops = {
2122 	.test_run = bpf_prog_test_run_tracing,
2123 };
2124 
2125 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
2126 						 enum bpf_access_type type,
2127 						 const struct bpf_prog *prog,
2128 						 struct bpf_insn_access_aux *info)
2129 {
2130 	if (off == 0) {
2131 		if (size != sizeof(u64) || type != BPF_READ)
2132 			return false;
2133 		info->reg_type = PTR_TO_TP_BUFFER;
2134 	}
2135 	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
2136 }
2137 
2138 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
2139 	.get_func_proto  = raw_tp_prog_func_proto,
2140 	.is_valid_access = raw_tp_writable_prog_is_valid_access,
2141 };
2142 
2143 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
2144 };
2145 
2146 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
2147 				    const struct bpf_prog *prog,
2148 				    struct bpf_insn_access_aux *info)
2149 {
2150 	const int size_u64 = sizeof(u64);
2151 
2152 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
2153 		return false;
2154 	if (type != BPF_READ)
2155 		return false;
2156 	if (off % size != 0) {
2157 		if (sizeof(unsigned long) != 4)
2158 			return false;
2159 		if (size != 8)
2160 			return false;
2161 		if (off % size != 4)
2162 			return false;
2163 	}
2164 
2165 	switch (off) {
2166 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
2167 		bpf_ctx_record_field_size(info, size_u64);
2168 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
2169 			return false;
2170 		break;
2171 	case bpf_ctx_range(struct bpf_perf_event_data, addr):
2172 		bpf_ctx_record_field_size(info, size_u64);
2173 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
2174 			return false;
2175 		break;
2176 	default:
2177 		if (size != sizeof(long))
2178 			return false;
2179 	}
2180 
2181 	return true;
2182 }
2183 
2184 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
2185 				      const struct bpf_insn *si,
2186 				      struct bpf_insn *insn_buf,
2187 				      struct bpf_prog *prog, u32 *target_size)
2188 {
2189 	struct bpf_insn *insn = insn_buf;
2190 
2191 	switch (si->off) {
2192 	case offsetof(struct bpf_perf_event_data, sample_period):
2193 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2194 						       data), si->dst_reg, si->src_reg,
2195 				      offsetof(struct bpf_perf_event_data_kern, data));
2196 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
2197 				      bpf_target_off(struct perf_sample_data, period, 8,
2198 						     target_size));
2199 		break;
2200 	case offsetof(struct bpf_perf_event_data, addr):
2201 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2202 						       data), si->dst_reg, si->src_reg,
2203 				      offsetof(struct bpf_perf_event_data_kern, data));
2204 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
2205 				      bpf_target_off(struct perf_sample_data, addr, 8,
2206 						     target_size));
2207 		break;
2208 	default:
2209 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2210 						       regs), si->dst_reg, si->src_reg,
2211 				      offsetof(struct bpf_perf_event_data_kern, regs));
2212 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
2213 				      si->off);
2214 		break;
2215 	}
2216 
2217 	return insn - insn_buf;
2218 }
2219 
2220 const struct bpf_verifier_ops perf_event_verifier_ops = {
2221 	.get_func_proto		= pe_prog_func_proto,
2222 	.is_valid_access	= pe_prog_is_valid_access,
2223 	.convert_ctx_access	= pe_prog_convert_ctx_access,
2224 };
2225 
2226 const struct bpf_prog_ops perf_event_prog_ops = {
2227 };
2228 
2229 static DEFINE_MUTEX(bpf_event_mutex);
2230 
2231 #define BPF_TRACE_MAX_PROGS 64
2232 
2233 int perf_event_attach_bpf_prog(struct perf_event *event,
2234 			       struct bpf_prog *prog,
2235 			       u64 bpf_cookie)
2236 {
2237 	struct bpf_prog_array *old_array;
2238 	struct bpf_prog_array *new_array;
2239 	int ret = -EEXIST;
2240 
2241 	/*
2242 	 * Kprobe override only works if they are on the function entry,
2243 	 * and only if they are on the opt-in list.
2244 	 */
2245 	if (prog->kprobe_override &&
2246 	    (!trace_kprobe_on_func_entry(event->tp_event) ||
2247 	     !trace_kprobe_error_injectable(event->tp_event)))
2248 		return -EINVAL;
2249 
2250 	mutex_lock(&bpf_event_mutex);
2251 
2252 	if (event->prog)
2253 		goto unlock;
2254 
2255 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
2256 	if (old_array &&
2257 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
2258 		ret = -E2BIG;
2259 		goto unlock;
2260 	}
2261 
2262 	ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array);
2263 	if (ret < 0)
2264 		goto unlock;
2265 
2266 	/* set the new array to event->tp_event and set event->prog */
2267 	event->prog = prog;
2268 	event->bpf_cookie = bpf_cookie;
2269 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
2270 	bpf_prog_array_free_sleepable(old_array);
2271 
2272 unlock:
2273 	mutex_unlock(&bpf_event_mutex);
2274 	return ret;
2275 }
2276 
2277 void perf_event_detach_bpf_prog(struct perf_event *event)
2278 {
2279 	struct bpf_prog_array *old_array;
2280 	struct bpf_prog_array *new_array;
2281 	int ret;
2282 
2283 	mutex_lock(&bpf_event_mutex);
2284 
2285 	if (!event->prog)
2286 		goto unlock;
2287 
2288 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
2289 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array);
2290 	if (ret == -ENOENT)
2291 		goto unlock;
2292 	if (ret < 0) {
2293 		bpf_prog_array_delete_safe(old_array, event->prog);
2294 	} else {
2295 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
2296 		bpf_prog_array_free_sleepable(old_array);
2297 	}
2298 
2299 	bpf_prog_put(event->prog);
2300 	event->prog = NULL;
2301 
2302 unlock:
2303 	mutex_unlock(&bpf_event_mutex);
2304 }
2305 
2306 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
2307 {
2308 	struct perf_event_query_bpf __user *uquery = info;
2309 	struct perf_event_query_bpf query = {};
2310 	struct bpf_prog_array *progs;
2311 	u32 *ids, prog_cnt, ids_len;
2312 	int ret;
2313 
2314 	if (!perfmon_capable())
2315 		return -EPERM;
2316 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
2317 		return -EINVAL;
2318 	if (copy_from_user(&query, uquery, sizeof(query)))
2319 		return -EFAULT;
2320 
2321 	ids_len = query.ids_len;
2322 	if (ids_len > BPF_TRACE_MAX_PROGS)
2323 		return -E2BIG;
2324 	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
2325 	if (!ids)
2326 		return -ENOMEM;
2327 	/*
2328 	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
2329 	 * is required when user only wants to check for uquery->prog_cnt.
2330 	 * There is no need to check for it since the case is handled
2331 	 * gracefully in bpf_prog_array_copy_info.
2332 	 */
2333 
2334 	mutex_lock(&bpf_event_mutex);
2335 	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
2336 	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
2337 	mutex_unlock(&bpf_event_mutex);
2338 
2339 	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
2340 	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
2341 		ret = -EFAULT;
2342 
2343 	kfree(ids);
2344 	return ret;
2345 }
2346 
2347 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
2348 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
2349 
2350 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
2351 {
2352 	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
2353 
2354 	for (; btp < __stop__bpf_raw_tp; btp++) {
2355 		if (!strcmp(btp->tp->name, name))
2356 			return btp;
2357 	}
2358 
2359 	return bpf_get_raw_tracepoint_module(name);
2360 }
2361 
2362 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
2363 {
2364 	struct module *mod;
2365 
2366 	preempt_disable();
2367 	mod = __module_address((unsigned long)btp);
2368 	module_put(mod);
2369 	preempt_enable();
2370 }
2371 
2372 static __always_inline
2373 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
2374 {
2375 	cant_sleep();
2376 	if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) {
2377 		bpf_prog_inc_misses_counter(prog);
2378 		goto out;
2379 	}
2380 	rcu_read_lock();
2381 	(void) bpf_prog_run(prog, args);
2382 	rcu_read_unlock();
2383 out:
2384 	this_cpu_dec(*(prog->active));
2385 }
2386 
2387 #define UNPACK(...)			__VA_ARGS__
2388 #define REPEAT_1(FN, DL, X, ...)	FN(X)
2389 #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
2390 #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
2391 #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
2392 #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
2393 #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
2394 #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
2395 #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
2396 #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
2397 #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
2398 #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
2399 #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
2400 #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
2401 
2402 #define SARG(X)		u64 arg##X
2403 #define COPY(X)		args[X] = arg##X
2404 
2405 #define __DL_COM	(,)
2406 #define __DL_SEM	(;)
2407 
2408 #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
2409 
2410 #define BPF_TRACE_DEFN_x(x)						\
2411 	void bpf_trace_run##x(struct bpf_prog *prog,			\
2412 			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
2413 	{								\
2414 		u64 args[x];						\
2415 		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
2416 		__bpf_trace_run(prog, args);				\
2417 	}								\
2418 	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
2419 BPF_TRACE_DEFN_x(1);
2420 BPF_TRACE_DEFN_x(2);
2421 BPF_TRACE_DEFN_x(3);
2422 BPF_TRACE_DEFN_x(4);
2423 BPF_TRACE_DEFN_x(5);
2424 BPF_TRACE_DEFN_x(6);
2425 BPF_TRACE_DEFN_x(7);
2426 BPF_TRACE_DEFN_x(8);
2427 BPF_TRACE_DEFN_x(9);
2428 BPF_TRACE_DEFN_x(10);
2429 BPF_TRACE_DEFN_x(11);
2430 BPF_TRACE_DEFN_x(12);
2431 
2432 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2433 {
2434 	struct tracepoint *tp = btp->tp;
2435 
2436 	/*
2437 	 * check that program doesn't access arguments beyond what's
2438 	 * available in this tracepoint
2439 	 */
2440 	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
2441 		return -EINVAL;
2442 
2443 	if (prog->aux->max_tp_access > btp->writable_size)
2444 		return -EINVAL;
2445 
2446 	return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func,
2447 						   prog);
2448 }
2449 
2450 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2451 {
2452 	return __bpf_probe_register(btp, prog);
2453 }
2454 
2455 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2456 {
2457 	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
2458 }
2459 
2460 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
2461 			    u32 *fd_type, const char **buf,
2462 			    u64 *probe_offset, u64 *probe_addr,
2463 			    unsigned long *missed)
2464 {
2465 	bool is_tracepoint, is_syscall_tp;
2466 	struct bpf_prog *prog;
2467 	int flags, err = 0;
2468 
2469 	prog = event->prog;
2470 	if (!prog)
2471 		return -ENOENT;
2472 
2473 	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
2474 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
2475 		return -EOPNOTSUPP;
2476 
2477 	*prog_id = prog->aux->id;
2478 	flags = event->tp_event->flags;
2479 	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
2480 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
2481 
2482 	if (is_tracepoint || is_syscall_tp) {
2483 		*buf = is_tracepoint ? event->tp_event->tp->name
2484 				     : event->tp_event->name;
2485 		/* We allow NULL pointer for tracepoint */
2486 		if (fd_type)
2487 			*fd_type = BPF_FD_TYPE_TRACEPOINT;
2488 		if (probe_offset)
2489 			*probe_offset = 0x0;
2490 		if (probe_addr)
2491 			*probe_addr = 0x0;
2492 	} else {
2493 		/* kprobe/uprobe */
2494 		err = -EOPNOTSUPP;
2495 #ifdef CONFIG_KPROBE_EVENTS
2496 		if (flags & TRACE_EVENT_FL_KPROBE)
2497 			err = bpf_get_kprobe_info(event, fd_type, buf,
2498 						  probe_offset, probe_addr, missed,
2499 						  event->attr.type == PERF_TYPE_TRACEPOINT);
2500 #endif
2501 #ifdef CONFIG_UPROBE_EVENTS
2502 		if (flags & TRACE_EVENT_FL_UPROBE)
2503 			err = bpf_get_uprobe_info(event, fd_type, buf,
2504 						  probe_offset, probe_addr,
2505 						  event->attr.type == PERF_TYPE_TRACEPOINT);
2506 #endif
2507 	}
2508 
2509 	return err;
2510 }
2511 
2512 static int __init send_signal_irq_work_init(void)
2513 {
2514 	int cpu;
2515 	struct send_signal_irq_work *work;
2516 
2517 	for_each_possible_cpu(cpu) {
2518 		work = per_cpu_ptr(&send_signal_work, cpu);
2519 		init_irq_work(&work->irq_work, do_bpf_send_signal);
2520 	}
2521 	return 0;
2522 }
2523 
2524 subsys_initcall(send_signal_irq_work_init);
2525 
2526 #ifdef CONFIG_MODULES
2527 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
2528 			    void *module)
2529 {
2530 	struct bpf_trace_module *btm, *tmp;
2531 	struct module *mod = module;
2532 	int ret = 0;
2533 
2534 	if (mod->num_bpf_raw_events == 0 ||
2535 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
2536 		goto out;
2537 
2538 	mutex_lock(&bpf_module_mutex);
2539 
2540 	switch (op) {
2541 	case MODULE_STATE_COMING:
2542 		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
2543 		if (btm) {
2544 			btm->module = module;
2545 			list_add(&btm->list, &bpf_trace_modules);
2546 		} else {
2547 			ret = -ENOMEM;
2548 		}
2549 		break;
2550 	case MODULE_STATE_GOING:
2551 		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
2552 			if (btm->module == module) {
2553 				list_del(&btm->list);
2554 				kfree(btm);
2555 				break;
2556 			}
2557 		}
2558 		break;
2559 	}
2560 
2561 	mutex_unlock(&bpf_module_mutex);
2562 
2563 out:
2564 	return notifier_from_errno(ret);
2565 }
2566 
2567 static struct notifier_block bpf_module_nb = {
2568 	.notifier_call = bpf_event_notify,
2569 };
2570 
2571 static int __init bpf_event_init(void)
2572 {
2573 	register_module_notifier(&bpf_module_nb);
2574 	return 0;
2575 }
2576 
2577 fs_initcall(bpf_event_init);
2578 #endif /* CONFIG_MODULES */
2579 
2580 #ifdef CONFIG_FPROBE
2581 struct bpf_kprobe_multi_link {
2582 	struct bpf_link link;
2583 	struct fprobe fp;
2584 	unsigned long *addrs;
2585 	u64 *cookies;
2586 	u32 cnt;
2587 	u32 mods_cnt;
2588 	struct module **mods;
2589 	u32 flags;
2590 };
2591 
2592 struct bpf_kprobe_multi_run_ctx {
2593 	struct bpf_run_ctx run_ctx;
2594 	struct bpf_kprobe_multi_link *link;
2595 	unsigned long entry_ip;
2596 };
2597 
2598 struct user_syms {
2599 	const char **syms;
2600 	char *buf;
2601 };
2602 
2603 static int copy_user_syms(struct user_syms *us, unsigned long __user *usyms, u32 cnt)
2604 {
2605 	unsigned long __user usymbol;
2606 	const char **syms = NULL;
2607 	char *buf = NULL, *p;
2608 	int err = -ENOMEM;
2609 	unsigned int i;
2610 
2611 	syms = kvmalloc_array(cnt, sizeof(*syms), GFP_KERNEL);
2612 	if (!syms)
2613 		goto error;
2614 
2615 	buf = kvmalloc_array(cnt, KSYM_NAME_LEN, GFP_KERNEL);
2616 	if (!buf)
2617 		goto error;
2618 
2619 	for (p = buf, i = 0; i < cnt; i++) {
2620 		if (__get_user(usymbol, usyms + i)) {
2621 			err = -EFAULT;
2622 			goto error;
2623 		}
2624 		err = strncpy_from_user(p, (const char __user *) usymbol, KSYM_NAME_LEN);
2625 		if (err == KSYM_NAME_LEN)
2626 			err = -E2BIG;
2627 		if (err < 0)
2628 			goto error;
2629 		syms[i] = p;
2630 		p += err + 1;
2631 	}
2632 
2633 	us->syms = syms;
2634 	us->buf = buf;
2635 	return 0;
2636 
2637 error:
2638 	if (err) {
2639 		kvfree(syms);
2640 		kvfree(buf);
2641 	}
2642 	return err;
2643 }
2644 
2645 static void kprobe_multi_put_modules(struct module **mods, u32 cnt)
2646 {
2647 	u32 i;
2648 
2649 	for (i = 0; i < cnt; i++)
2650 		module_put(mods[i]);
2651 }
2652 
2653 static void free_user_syms(struct user_syms *us)
2654 {
2655 	kvfree(us->syms);
2656 	kvfree(us->buf);
2657 }
2658 
2659 static void bpf_kprobe_multi_link_release(struct bpf_link *link)
2660 {
2661 	struct bpf_kprobe_multi_link *kmulti_link;
2662 
2663 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2664 	unregister_fprobe(&kmulti_link->fp);
2665 	kprobe_multi_put_modules(kmulti_link->mods, kmulti_link->mods_cnt);
2666 }
2667 
2668 static void bpf_kprobe_multi_link_dealloc(struct bpf_link *link)
2669 {
2670 	struct bpf_kprobe_multi_link *kmulti_link;
2671 
2672 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2673 	kvfree(kmulti_link->addrs);
2674 	kvfree(kmulti_link->cookies);
2675 	kfree(kmulti_link->mods);
2676 	kfree(kmulti_link);
2677 }
2678 
2679 static int bpf_kprobe_multi_link_fill_link_info(const struct bpf_link *link,
2680 						struct bpf_link_info *info)
2681 {
2682 	u64 __user *uaddrs = u64_to_user_ptr(info->kprobe_multi.addrs);
2683 	struct bpf_kprobe_multi_link *kmulti_link;
2684 	u32 ucount = info->kprobe_multi.count;
2685 	int err = 0, i;
2686 
2687 	if (!uaddrs ^ !ucount)
2688 		return -EINVAL;
2689 
2690 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2691 	info->kprobe_multi.count = kmulti_link->cnt;
2692 	info->kprobe_multi.flags = kmulti_link->flags;
2693 	info->kprobe_multi.missed = kmulti_link->fp.nmissed;
2694 
2695 	if (!uaddrs)
2696 		return 0;
2697 	if (ucount < kmulti_link->cnt)
2698 		err = -ENOSPC;
2699 	else
2700 		ucount = kmulti_link->cnt;
2701 
2702 	if (kallsyms_show_value(current_cred())) {
2703 		if (copy_to_user(uaddrs, kmulti_link->addrs, ucount * sizeof(u64)))
2704 			return -EFAULT;
2705 	} else {
2706 		for (i = 0; i < ucount; i++) {
2707 			if (put_user(0, uaddrs + i))
2708 				return -EFAULT;
2709 		}
2710 	}
2711 	return err;
2712 }
2713 
2714 static const struct bpf_link_ops bpf_kprobe_multi_link_lops = {
2715 	.release = bpf_kprobe_multi_link_release,
2716 	.dealloc = bpf_kprobe_multi_link_dealloc,
2717 	.fill_link_info = bpf_kprobe_multi_link_fill_link_info,
2718 };
2719 
2720 static void bpf_kprobe_multi_cookie_swap(void *a, void *b, int size, const void *priv)
2721 {
2722 	const struct bpf_kprobe_multi_link *link = priv;
2723 	unsigned long *addr_a = a, *addr_b = b;
2724 	u64 *cookie_a, *cookie_b;
2725 
2726 	cookie_a = link->cookies + (addr_a - link->addrs);
2727 	cookie_b = link->cookies + (addr_b - link->addrs);
2728 
2729 	/* swap addr_a/addr_b and cookie_a/cookie_b values */
2730 	swap(*addr_a, *addr_b);
2731 	swap(*cookie_a, *cookie_b);
2732 }
2733 
2734 static int bpf_kprobe_multi_addrs_cmp(const void *a, const void *b)
2735 {
2736 	const unsigned long *addr_a = a, *addr_b = b;
2737 
2738 	if (*addr_a == *addr_b)
2739 		return 0;
2740 	return *addr_a < *addr_b ? -1 : 1;
2741 }
2742 
2743 static int bpf_kprobe_multi_cookie_cmp(const void *a, const void *b, const void *priv)
2744 {
2745 	return bpf_kprobe_multi_addrs_cmp(a, b);
2746 }
2747 
2748 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
2749 {
2750 	struct bpf_kprobe_multi_run_ctx *run_ctx;
2751 	struct bpf_kprobe_multi_link *link;
2752 	u64 *cookie, entry_ip;
2753 	unsigned long *addr;
2754 
2755 	if (WARN_ON_ONCE(!ctx))
2756 		return 0;
2757 	run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, run_ctx);
2758 	link = run_ctx->link;
2759 	if (!link->cookies)
2760 		return 0;
2761 	entry_ip = run_ctx->entry_ip;
2762 	addr = bsearch(&entry_ip, link->addrs, link->cnt, sizeof(entry_ip),
2763 		       bpf_kprobe_multi_addrs_cmp);
2764 	if (!addr)
2765 		return 0;
2766 	cookie = link->cookies + (addr - link->addrs);
2767 	return *cookie;
2768 }
2769 
2770 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
2771 {
2772 	struct bpf_kprobe_multi_run_ctx *run_ctx;
2773 
2774 	run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, run_ctx);
2775 	return run_ctx->entry_ip;
2776 }
2777 
2778 static int
2779 kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link *link,
2780 			   unsigned long entry_ip, struct pt_regs *regs)
2781 {
2782 	struct bpf_kprobe_multi_run_ctx run_ctx = {
2783 		.link = link,
2784 		.entry_ip = entry_ip,
2785 	};
2786 	struct bpf_run_ctx *old_run_ctx;
2787 	int err;
2788 
2789 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
2790 		bpf_prog_inc_misses_counter(link->link.prog);
2791 		err = 0;
2792 		goto out;
2793 	}
2794 
2795 	migrate_disable();
2796 	rcu_read_lock();
2797 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2798 	err = bpf_prog_run(link->link.prog, regs);
2799 	bpf_reset_run_ctx(old_run_ctx);
2800 	rcu_read_unlock();
2801 	migrate_enable();
2802 
2803  out:
2804 	__this_cpu_dec(bpf_prog_active);
2805 	return err;
2806 }
2807 
2808 static int
2809 kprobe_multi_link_handler(struct fprobe *fp, unsigned long fentry_ip,
2810 			  unsigned long ret_ip, struct pt_regs *regs,
2811 			  void *data)
2812 {
2813 	struct bpf_kprobe_multi_link *link;
2814 
2815 	link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2816 	kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs);
2817 	return 0;
2818 }
2819 
2820 static void
2821 kprobe_multi_link_exit_handler(struct fprobe *fp, unsigned long fentry_ip,
2822 			       unsigned long ret_ip, struct pt_regs *regs,
2823 			       void *data)
2824 {
2825 	struct bpf_kprobe_multi_link *link;
2826 
2827 	link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2828 	kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs);
2829 }
2830 
2831 static int symbols_cmp_r(const void *a, const void *b, const void *priv)
2832 {
2833 	const char **str_a = (const char **) a;
2834 	const char **str_b = (const char **) b;
2835 
2836 	return strcmp(*str_a, *str_b);
2837 }
2838 
2839 struct multi_symbols_sort {
2840 	const char **funcs;
2841 	u64 *cookies;
2842 };
2843 
2844 static void symbols_swap_r(void *a, void *b, int size, const void *priv)
2845 {
2846 	const struct multi_symbols_sort *data = priv;
2847 	const char **name_a = a, **name_b = b;
2848 
2849 	swap(*name_a, *name_b);
2850 
2851 	/* If defined, swap also related cookies. */
2852 	if (data->cookies) {
2853 		u64 *cookie_a, *cookie_b;
2854 
2855 		cookie_a = data->cookies + (name_a - data->funcs);
2856 		cookie_b = data->cookies + (name_b - data->funcs);
2857 		swap(*cookie_a, *cookie_b);
2858 	}
2859 }
2860 
2861 struct modules_array {
2862 	struct module **mods;
2863 	int mods_cnt;
2864 	int mods_cap;
2865 };
2866 
2867 static int add_module(struct modules_array *arr, struct module *mod)
2868 {
2869 	struct module **mods;
2870 
2871 	if (arr->mods_cnt == arr->mods_cap) {
2872 		arr->mods_cap = max(16, arr->mods_cap * 3 / 2);
2873 		mods = krealloc_array(arr->mods, arr->mods_cap, sizeof(*mods), GFP_KERNEL);
2874 		if (!mods)
2875 			return -ENOMEM;
2876 		arr->mods = mods;
2877 	}
2878 
2879 	arr->mods[arr->mods_cnt] = mod;
2880 	arr->mods_cnt++;
2881 	return 0;
2882 }
2883 
2884 static bool has_module(struct modules_array *arr, struct module *mod)
2885 {
2886 	int i;
2887 
2888 	for (i = arr->mods_cnt - 1; i >= 0; i--) {
2889 		if (arr->mods[i] == mod)
2890 			return true;
2891 	}
2892 	return false;
2893 }
2894 
2895 static int get_modules_for_addrs(struct module ***mods, unsigned long *addrs, u32 addrs_cnt)
2896 {
2897 	struct modules_array arr = {};
2898 	u32 i, err = 0;
2899 
2900 	for (i = 0; i < addrs_cnt; i++) {
2901 		struct module *mod;
2902 
2903 		preempt_disable();
2904 		mod = __module_address(addrs[i]);
2905 		/* Either no module or we it's already stored  */
2906 		if (!mod || has_module(&arr, mod)) {
2907 			preempt_enable();
2908 			continue;
2909 		}
2910 		if (!try_module_get(mod))
2911 			err = -EINVAL;
2912 		preempt_enable();
2913 		if (err)
2914 			break;
2915 		err = add_module(&arr, mod);
2916 		if (err) {
2917 			module_put(mod);
2918 			break;
2919 		}
2920 	}
2921 
2922 	/* We return either err < 0 in case of error, ... */
2923 	if (err) {
2924 		kprobe_multi_put_modules(arr.mods, arr.mods_cnt);
2925 		kfree(arr.mods);
2926 		return err;
2927 	}
2928 
2929 	/* or number of modules found if everything is ok. */
2930 	*mods = arr.mods;
2931 	return arr.mods_cnt;
2932 }
2933 
2934 static int addrs_check_error_injection_list(unsigned long *addrs, u32 cnt)
2935 {
2936 	u32 i;
2937 
2938 	for (i = 0; i < cnt; i++) {
2939 		if (!within_error_injection_list(addrs[i]))
2940 			return -EINVAL;
2941 	}
2942 	return 0;
2943 }
2944 
2945 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
2946 {
2947 	struct bpf_kprobe_multi_link *link = NULL;
2948 	struct bpf_link_primer link_primer;
2949 	void __user *ucookies;
2950 	unsigned long *addrs;
2951 	u32 flags, cnt, size;
2952 	void __user *uaddrs;
2953 	u64 *cookies = NULL;
2954 	void __user *usyms;
2955 	int err;
2956 
2957 	/* no support for 32bit archs yet */
2958 	if (sizeof(u64) != sizeof(void *))
2959 		return -EOPNOTSUPP;
2960 
2961 	if (prog->expected_attach_type != BPF_TRACE_KPROBE_MULTI)
2962 		return -EINVAL;
2963 
2964 	flags = attr->link_create.kprobe_multi.flags;
2965 	if (flags & ~BPF_F_KPROBE_MULTI_RETURN)
2966 		return -EINVAL;
2967 
2968 	uaddrs = u64_to_user_ptr(attr->link_create.kprobe_multi.addrs);
2969 	usyms = u64_to_user_ptr(attr->link_create.kprobe_multi.syms);
2970 	if (!!uaddrs == !!usyms)
2971 		return -EINVAL;
2972 
2973 	cnt = attr->link_create.kprobe_multi.cnt;
2974 	if (!cnt)
2975 		return -EINVAL;
2976 	if (cnt > MAX_KPROBE_MULTI_CNT)
2977 		return -E2BIG;
2978 
2979 	size = cnt * sizeof(*addrs);
2980 	addrs = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2981 	if (!addrs)
2982 		return -ENOMEM;
2983 
2984 	ucookies = u64_to_user_ptr(attr->link_create.kprobe_multi.cookies);
2985 	if (ucookies) {
2986 		cookies = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2987 		if (!cookies) {
2988 			err = -ENOMEM;
2989 			goto error;
2990 		}
2991 		if (copy_from_user(cookies, ucookies, size)) {
2992 			err = -EFAULT;
2993 			goto error;
2994 		}
2995 	}
2996 
2997 	if (uaddrs) {
2998 		if (copy_from_user(addrs, uaddrs, size)) {
2999 			err = -EFAULT;
3000 			goto error;
3001 		}
3002 	} else {
3003 		struct multi_symbols_sort data = {
3004 			.cookies = cookies,
3005 		};
3006 		struct user_syms us;
3007 
3008 		err = copy_user_syms(&us, usyms, cnt);
3009 		if (err)
3010 			goto error;
3011 
3012 		if (cookies)
3013 			data.funcs = us.syms;
3014 
3015 		sort_r(us.syms, cnt, sizeof(*us.syms), symbols_cmp_r,
3016 		       symbols_swap_r, &data);
3017 
3018 		err = ftrace_lookup_symbols(us.syms, cnt, addrs);
3019 		free_user_syms(&us);
3020 		if (err)
3021 			goto error;
3022 	}
3023 
3024 	if (prog->kprobe_override && addrs_check_error_injection_list(addrs, cnt)) {
3025 		err = -EINVAL;
3026 		goto error;
3027 	}
3028 
3029 	link = kzalloc(sizeof(*link), GFP_KERNEL);
3030 	if (!link) {
3031 		err = -ENOMEM;
3032 		goto error;
3033 	}
3034 
3035 	bpf_link_init(&link->link, BPF_LINK_TYPE_KPROBE_MULTI,
3036 		      &bpf_kprobe_multi_link_lops, prog);
3037 
3038 	err = bpf_link_prime(&link->link, &link_primer);
3039 	if (err)
3040 		goto error;
3041 
3042 	if (flags & BPF_F_KPROBE_MULTI_RETURN)
3043 		link->fp.exit_handler = kprobe_multi_link_exit_handler;
3044 	else
3045 		link->fp.entry_handler = kprobe_multi_link_handler;
3046 
3047 	link->addrs = addrs;
3048 	link->cookies = cookies;
3049 	link->cnt = cnt;
3050 	link->flags = flags;
3051 
3052 	if (cookies) {
3053 		/*
3054 		 * Sorting addresses will trigger sorting cookies as well
3055 		 * (check bpf_kprobe_multi_cookie_swap). This way we can
3056 		 * find cookie based on the address in bpf_get_attach_cookie
3057 		 * helper.
3058 		 */
3059 		sort_r(addrs, cnt, sizeof(*addrs),
3060 		       bpf_kprobe_multi_cookie_cmp,
3061 		       bpf_kprobe_multi_cookie_swap,
3062 		       link);
3063 	}
3064 
3065 	err = get_modules_for_addrs(&link->mods, addrs, cnt);
3066 	if (err < 0) {
3067 		bpf_link_cleanup(&link_primer);
3068 		return err;
3069 	}
3070 	link->mods_cnt = err;
3071 
3072 	err = register_fprobe_ips(&link->fp, addrs, cnt);
3073 	if (err) {
3074 		kprobe_multi_put_modules(link->mods, link->mods_cnt);
3075 		bpf_link_cleanup(&link_primer);
3076 		return err;
3077 	}
3078 
3079 	return bpf_link_settle(&link_primer);
3080 
3081 error:
3082 	kfree(link);
3083 	kvfree(addrs);
3084 	kvfree(cookies);
3085 	return err;
3086 }
3087 #else /* !CONFIG_FPROBE */
3088 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3089 {
3090 	return -EOPNOTSUPP;
3091 }
3092 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
3093 {
3094 	return 0;
3095 }
3096 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3097 {
3098 	return 0;
3099 }
3100 #endif
3101 
3102 #ifdef CONFIG_UPROBES
3103 struct bpf_uprobe_multi_link;
3104 
3105 struct bpf_uprobe {
3106 	struct bpf_uprobe_multi_link *link;
3107 	loff_t offset;
3108 	unsigned long ref_ctr_offset;
3109 	u64 cookie;
3110 	struct uprobe_consumer consumer;
3111 };
3112 
3113 struct bpf_uprobe_multi_link {
3114 	struct path path;
3115 	struct bpf_link link;
3116 	u32 cnt;
3117 	u32 flags;
3118 	struct bpf_uprobe *uprobes;
3119 	struct task_struct *task;
3120 };
3121 
3122 struct bpf_uprobe_multi_run_ctx {
3123 	struct bpf_run_ctx run_ctx;
3124 	unsigned long entry_ip;
3125 	struct bpf_uprobe *uprobe;
3126 };
3127 
3128 static void bpf_uprobe_unregister(struct path *path, struct bpf_uprobe *uprobes,
3129 				  u32 cnt)
3130 {
3131 	u32 i;
3132 
3133 	for (i = 0; i < cnt; i++) {
3134 		uprobe_unregister(d_real_inode(path->dentry), uprobes[i].offset,
3135 				  &uprobes[i].consumer);
3136 	}
3137 }
3138 
3139 static void bpf_uprobe_multi_link_release(struct bpf_link *link)
3140 {
3141 	struct bpf_uprobe_multi_link *umulti_link;
3142 
3143 	umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
3144 	bpf_uprobe_unregister(&umulti_link->path, umulti_link->uprobes, umulti_link->cnt);
3145 }
3146 
3147 static void bpf_uprobe_multi_link_dealloc(struct bpf_link *link)
3148 {
3149 	struct bpf_uprobe_multi_link *umulti_link;
3150 
3151 	umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
3152 	if (umulti_link->task)
3153 		put_task_struct(umulti_link->task);
3154 	path_put(&umulti_link->path);
3155 	kvfree(umulti_link->uprobes);
3156 	kfree(umulti_link);
3157 }
3158 
3159 static int bpf_uprobe_multi_link_fill_link_info(const struct bpf_link *link,
3160 						struct bpf_link_info *info)
3161 {
3162 	u64 __user *uref_ctr_offsets = u64_to_user_ptr(info->uprobe_multi.ref_ctr_offsets);
3163 	u64 __user *ucookies = u64_to_user_ptr(info->uprobe_multi.cookies);
3164 	u64 __user *uoffsets = u64_to_user_ptr(info->uprobe_multi.offsets);
3165 	u64 __user *upath = u64_to_user_ptr(info->uprobe_multi.path);
3166 	u32 upath_size = info->uprobe_multi.path_size;
3167 	struct bpf_uprobe_multi_link *umulti_link;
3168 	u32 ucount = info->uprobe_multi.count;
3169 	int err = 0, i;
3170 	long left;
3171 
3172 	if (!upath ^ !upath_size)
3173 		return -EINVAL;
3174 
3175 	if ((uoffsets || uref_ctr_offsets || ucookies) && !ucount)
3176 		return -EINVAL;
3177 
3178 	umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
3179 	info->uprobe_multi.count = umulti_link->cnt;
3180 	info->uprobe_multi.flags = umulti_link->flags;
3181 	info->uprobe_multi.pid = umulti_link->task ?
3182 				 task_pid_nr_ns(umulti_link->task, task_active_pid_ns(current)) : 0;
3183 
3184 	if (upath) {
3185 		char *p, *buf;
3186 
3187 		upath_size = min_t(u32, upath_size, PATH_MAX);
3188 
3189 		buf = kmalloc(upath_size, GFP_KERNEL);
3190 		if (!buf)
3191 			return -ENOMEM;
3192 		p = d_path(&umulti_link->path, buf, upath_size);
3193 		if (IS_ERR(p)) {
3194 			kfree(buf);
3195 			return PTR_ERR(p);
3196 		}
3197 		upath_size = buf + upath_size - p;
3198 		left = copy_to_user(upath, p, upath_size);
3199 		kfree(buf);
3200 		if (left)
3201 			return -EFAULT;
3202 		info->uprobe_multi.path_size = upath_size;
3203 	}
3204 
3205 	if (!uoffsets && !ucookies && !uref_ctr_offsets)
3206 		return 0;
3207 
3208 	if (ucount < umulti_link->cnt)
3209 		err = -ENOSPC;
3210 	else
3211 		ucount = umulti_link->cnt;
3212 
3213 	for (i = 0; i < ucount; i++) {
3214 		if (uoffsets &&
3215 		    put_user(umulti_link->uprobes[i].offset, uoffsets + i))
3216 			return -EFAULT;
3217 		if (uref_ctr_offsets &&
3218 		    put_user(umulti_link->uprobes[i].ref_ctr_offset, uref_ctr_offsets + i))
3219 			return -EFAULT;
3220 		if (ucookies &&
3221 		    put_user(umulti_link->uprobes[i].cookie, ucookies + i))
3222 			return -EFAULT;
3223 	}
3224 
3225 	return err;
3226 }
3227 
3228 static const struct bpf_link_ops bpf_uprobe_multi_link_lops = {
3229 	.release = bpf_uprobe_multi_link_release,
3230 	.dealloc = bpf_uprobe_multi_link_dealloc,
3231 	.fill_link_info = bpf_uprobe_multi_link_fill_link_info,
3232 };
3233 
3234 static int uprobe_prog_run(struct bpf_uprobe *uprobe,
3235 			   unsigned long entry_ip,
3236 			   struct pt_regs *regs)
3237 {
3238 	struct bpf_uprobe_multi_link *link = uprobe->link;
3239 	struct bpf_uprobe_multi_run_ctx run_ctx = {
3240 		.entry_ip = entry_ip,
3241 		.uprobe = uprobe,
3242 	};
3243 	struct bpf_prog *prog = link->link.prog;
3244 	bool sleepable = prog->aux->sleepable;
3245 	struct bpf_run_ctx *old_run_ctx;
3246 	int err = 0;
3247 
3248 	if (link->task && current != link->task)
3249 		return 0;
3250 
3251 	if (sleepable)
3252 		rcu_read_lock_trace();
3253 	else
3254 		rcu_read_lock();
3255 
3256 	migrate_disable();
3257 
3258 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
3259 	err = bpf_prog_run(link->link.prog, regs);
3260 	bpf_reset_run_ctx(old_run_ctx);
3261 
3262 	migrate_enable();
3263 
3264 	if (sleepable)
3265 		rcu_read_unlock_trace();
3266 	else
3267 		rcu_read_unlock();
3268 	return err;
3269 }
3270 
3271 static bool
3272 uprobe_multi_link_filter(struct uprobe_consumer *con, enum uprobe_filter_ctx ctx,
3273 			 struct mm_struct *mm)
3274 {
3275 	struct bpf_uprobe *uprobe;
3276 
3277 	uprobe = container_of(con, struct bpf_uprobe, consumer);
3278 	return uprobe->link->task->mm == mm;
3279 }
3280 
3281 static int
3282 uprobe_multi_link_handler(struct uprobe_consumer *con, struct pt_regs *regs)
3283 {
3284 	struct bpf_uprobe *uprobe;
3285 
3286 	uprobe = container_of(con, struct bpf_uprobe, consumer);
3287 	return uprobe_prog_run(uprobe, instruction_pointer(regs), regs);
3288 }
3289 
3290 static int
3291 uprobe_multi_link_ret_handler(struct uprobe_consumer *con, unsigned long func, struct pt_regs *regs)
3292 {
3293 	struct bpf_uprobe *uprobe;
3294 
3295 	uprobe = container_of(con, struct bpf_uprobe, consumer);
3296 	return uprobe_prog_run(uprobe, func, regs);
3297 }
3298 
3299 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3300 {
3301 	struct bpf_uprobe_multi_run_ctx *run_ctx;
3302 
3303 	run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx, run_ctx);
3304 	return run_ctx->entry_ip;
3305 }
3306 
3307 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx)
3308 {
3309 	struct bpf_uprobe_multi_run_ctx *run_ctx;
3310 
3311 	run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx, run_ctx);
3312 	return run_ctx->uprobe->cookie;
3313 }
3314 
3315 int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3316 {
3317 	struct bpf_uprobe_multi_link *link = NULL;
3318 	unsigned long __user *uref_ctr_offsets;
3319 	struct bpf_link_primer link_primer;
3320 	struct bpf_uprobe *uprobes = NULL;
3321 	struct task_struct *task = NULL;
3322 	unsigned long __user *uoffsets;
3323 	u64 __user *ucookies;
3324 	void __user *upath;
3325 	u32 flags, cnt, i;
3326 	struct path path;
3327 	char *name;
3328 	pid_t pid;
3329 	int err;
3330 
3331 	/* no support for 32bit archs yet */
3332 	if (sizeof(u64) != sizeof(void *))
3333 		return -EOPNOTSUPP;
3334 
3335 	if (prog->expected_attach_type != BPF_TRACE_UPROBE_MULTI)
3336 		return -EINVAL;
3337 
3338 	flags = attr->link_create.uprobe_multi.flags;
3339 	if (flags & ~BPF_F_UPROBE_MULTI_RETURN)
3340 		return -EINVAL;
3341 
3342 	/*
3343 	 * path, offsets and cnt are mandatory,
3344 	 * ref_ctr_offsets and cookies are optional
3345 	 */
3346 	upath = u64_to_user_ptr(attr->link_create.uprobe_multi.path);
3347 	uoffsets = u64_to_user_ptr(attr->link_create.uprobe_multi.offsets);
3348 	cnt = attr->link_create.uprobe_multi.cnt;
3349 
3350 	if (!upath || !uoffsets || !cnt)
3351 		return -EINVAL;
3352 	if (cnt > MAX_UPROBE_MULTI_CNT)
3353 		return -E2BIG;
3354 
3355 	uref_ctr_offsets = u64_to_user_ptr(attr->link_create.uprobe_multi.ref_ctr_offsets);
3356 	ucookies = u64_to_user_ptr(attr->link_create.uprobe_multi.cookies);
3357 
3358 	name = strndup_user(upath, PATH_MAX);
3359 	if (IS_ERR(name)) {
3360 		err = PTR_ERR(name);
3361 		return err;
3362 	}
3363 
3364 	err = kern_path(name, LOOKUP_FOLLOW, &path);
3365 	kfree(name);
3366 	if (err)
3367 		return err;
3368 
3369 	if (!d_is_reg(path.dentry)) {
3370 		err = -EBADF;
3371 		goto error_path_put;
3372 	}
3373 
3374 	pid = attr->link_create.uprobe_multi.pid;
3375 	if (pid) {
3376 		rcu_read_lock();
3377 		task = get_pid_task(find_vpid(pid), PIDTYPE_PID);
3378 		rcu_read_unlock();
3379 		if (!task) {
3380 			err = -ESRCH;
3381 			goto error_path_put;
3382 		}
3383 	}
3384 
3385 	err = -ENOMEM;
3386 
3387 	link = kzalloc(sizeof(*link), GFP_KERNEL);
3388 	uprobes = kvcalloc(cnt, sizeof(*uprobes), GFP_KERNEL);
3389 
3390 	if (!uprobes || !link)
3391 		goto error_free;
3392 
3393 	for (i = 0; i < cnt; i++) {
3394 		if (__get_user(uprobes[i].offset, uoffsets + i)) {
3395 			err = -EFAULT;
3396 			goto error_free;
3397 		}
3398 		if (uprobes[i].offset < 0) {
3399 			err = -EINVAL;
3400 			goto error_free;
3401 		}
3402 		if (uref_ctr_offsets && __get_user(uprobes[i].ref_ctr_offset, uref_ctr_offsets + i)) {
3403 			err = -EFAULT;
3404 			goto error_free;
3405 		}
3406 		if (ucookies && __get_user(uprobes[i].cookie, ucookies + i)) {
3407 			err = -EFAULT;
3408 			goto error_free;
3409 		}
3410 
3411 		uprobes[i].link = link;
3412 
3413 		if (flags & BPF_F_UPROBE_MULTI_RETURN)
3414 			uprobes[i].consumer.ret_handler = uprobe_multi_link_ret_handler;
3415 		else
3416 			uprobes[i].consumer.handler = uprobe_multi_link_handler;
3417 
3418 		if (pid)
3419 			uprobes[i].consumer.filter = uprobe_multi_link_filter;
3420 	}
3421 
3422 	link->cnt = cnt;
3423 	link->uprobes = uprobes;
3424 	link->path = path;
3425 	link->task = task;
3426 	link->flags = flags;
3427 
3428 	bpf_link_init(&link->link, BPF_LINK_TYPE_UPROBE_MULTI,
3429 		      &bpf_uprobe_multi_link_lops, prog);
3430 
3431 	for (i = 0; i < cnt; i++) {
3432 		err = uprobe_register_refctr(d_real_inode(link->path.dentry),
3433 					     uprobes[i].offset,
3434 					     uprobes[i].ref_ctr_offset,
3435 					     &uprobes[i].consumer);
3436 		if (err) {
3437 			bpf_uprobe_unregister(&path, uprobes, i);
3438 			goto error_free;
3439 		}
3440 	}
3441 
3442 	err = bpf_link_prime(&link->link, &link_primer);
3443 	if (err)
3444 		goto error_free;
3445 
3446 	return bpf_link_settle(&link_primer);
3447 
3448 error_free:
3449 	kvfree(uprobes);
3450 	kfree(link);
3451 	if (task)
3452 		put_task_struct(task);
3453 error_path_put:
3454 	path_put(&path);
3455 	return err;
3456 }
3457 #else /* !CONFIG_UPROBES */
3458 int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3459 {
3460 	return -EOPNOTSUPP;
3461 }
3462 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx)
3463 {
3464 	return 0;
3465 }
3466 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3467 {
3468 	return 0;
3469 }
3470 #endif /* CONFIG_UPROBES */
3471