xref: /linux/kernel/trace/bpf_trace.c (revision 23c9c2b314bab7f7f807a2f0cfe06cc4451b6eb7)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_perf_event.h>
10 #include <linux/btf.h>
11 #include <linux/filter.h>
12 #include <linux/uaccess.h>
13 #include <linux/ctype.h>
14 #include <linux/kprobes.h>
15 #include <linux/spinlock.h>
16 #include <linux/syscalls.h>
17 #include <linux/error-injection.h>
18 #include <linux/btf_ids.h>
19 #include <linux/bpf_lsm.h>
20 
21 #include <net/bpf_sk_storage.h>
22 
23 #include <uapi/linux/bpf.h>
24 #include <uapi/linux/btf.h>
25 
26 #include <asm/tlb.h>
27 
28 #include "trace_probe.h"
29 #include "trace.h"
30 
31 #define CREATE_TRACE_POINTS
32 #include "bpf_trace.h"
33 
34 #define bpf_event_rcu_dereference(p)					\
35 	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
36 
37 #ifdef CONFIG_MODULES
38 struct bpf_trace_module {
39 	struct module *module;
40 	struct list_head list;
41 };
42 
43 static LIST_HEAD(bpf_trace_modules);
44 static DEFINE_MUTEX(bpf_module_mutex);
45 
46 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
47 {
48 	struct bpf_raw_event_map *btp, *ret = NULL;
49 	struct bpf_trace_module *btm;
50 	unsigned int i;
51 
52 	mutex_lock(&bpf_module_mutex);
53 	list_for_each_entry(btm, &bpf_trace_modules, list) {
54 		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
55 			btp = &btm->module->bpf_raw_events[i];
56 			if (!strcmp(btp->tp->name, name)) {
57 				if (try_module_get(btm->module))
58 					ret = btp;
59 				goto out;
60 			}
61 		}
62 	}
63 out:
64 	mutex_unlock(&bpf_module_mutex);
65 	return ret;
66 }
67 #else
68 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
69 {
70 	return NULL;
71 }
72 #endif /* CONFIG_MODULES */
73 
74 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
75 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
76 
77 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
78 				  u64 flags, const struct btf **btf,
79 				  s32 *btf_id);
80 
81 /**
82  * trace_call_bpf - invoke BPF program
83  * @call: tracepoint event
84  * @ctx: opaque context pointer
85  *
86  * kprobe handlers execute BPF programs via this helper.
87  * Can be used from static tracepoints in the future.
88  *
89  * Return: BPF programs always return an integer which is interpreted by
90  * kprobe handler as:
91  * 0 - return from kprobe (event is filtered out)
92  * 1 - store kprobe event into ring buffer
93  * Other values are reserved and currently alias to 1
94  */
95 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
96 {
97 	unsigned int ret;
98 
99 	cant_sleep();
100 
101 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
102 		/*
103 		 * since some bpf program is already running on this cpu,
104 		 * don't call into another bpf program (same or different)
105 		 * and don't send kprobe event into ring-buffer,
106 		 * so return zero here
107 		 */
108 		ret = 0;
109 		goto out;
110 	}
111 
112 	/*
113 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
114 	 * to all call sites, we did a bpf_prog_array_valid() there to check
115 	 * whether call->prog_array is empty or not, which is
116 	 * a heuristic to speed up execution.
117 	 *
118 	 * If bpf_prog_array_valid() fetched prog_array was
119 	 * non-NULL, we go into trace_call_bpf() and do the actual
120 	 * proper rcu_dereference() under RCU lock.
121 	 * If it turns out that prog_array is NULL then, we bail out.
122 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
123 	 * was NULL, you'll skip the prog_array with the risk of missing
124 	 * out of events when it was updated in between this and the
125 	 * rcu_dereference() which is accepted risk.
126 	 */
127 	ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
128 
129  out:
130 	__this_cpu_dec(bpf_prog_active);
131 
132 	return ret;
133 }
134 
135 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
136 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
137 {
138 	regs_set_return_value(regs, rc);
139 	override_function_with_return(regs);
140 	return 0;
141 }
142 
143 static const struct bpf_func_proto bpf_override_return_proto = {
144 	.func		= bpf_override_return,
145 	.gpl_only	= true,
146 	.ret_type	= RET_INTEGER,
147 	.arg1_type	= ARG_PTR_TO_CTX,
148 	.arg2_type	= ARG_ANYTHING,
149 };
150 #endif
151 
152 static __always_inline int
153 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
154 {
155 	int ret;
156 
157 	ret = copy_from_user_nofault(dst, unsafe_ptr, size);
158 	if (unlikely(ret < 0))
159 		memset(dst, 0, size);
160 	return ret;
161 }
162 
163 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
164 	   const void __user *, unsafe_ptr)
165 {
166 	return bpf_probe_read_user_common(dst, size, unsafe_ptr);
167 }
168 
169 const struct bpf_func_proto bpf_probe_read_user_proto = {
170 	.func		= bpf_probe_read_user,
171 	.gpl_only	= true,
172 	.ret_type	= RET_INTEGER,
173 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
174 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
175 	.arg3_type	= ARG_ANYTHING,
176 };
177 
178 static __always_inline int
179 bpf_probe_read_user_str_common(void *dst, u32 size,
180 			       const void __user *unsafe_ptr)
181 {
182 	int ret;
183 
184 	/*
185 	 * NB: We rely on strncpy_from_user() not copying junk past the NUL
186 	 * terminator into `dst`.
187 	 *
188 	 * strncpy_from_user() does long-sized strides in the fast path. If the
189 	 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
190 	 * then there could be junk after the NUL in `dst`. If user takes `dst`
191 	 * and keys a hash map with it, then semantically identical strings can
192 	 * occupy multiple entries in the map.
193 	 */
194 	ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
195 	if (unlikely(ret < 0))
196 		memset(dst, 0, size);
197 	return ret;
198 }
199 
200 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
201 	   const void __user *, unsafe_ptr)
202 {
203 	return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
204 }
205 
206 const struct bpf_func_proto bpf_probe_read_user_str_proto = {
207 	.func		= bpf_probe_read_user_str,
208 	.gpl_only	= true,
209 	.ret_type	= RET_INTEGER,
210 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
211 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
212 	.arg3_type	= ARG_ANYTHING,
213 };
214 
215 static __always_inline int
216 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
217 {
218 	int ret = security_locked_down(LOCKDOWN_BPF_READ);
219 
220 	if (unlikely(ret < 0))
221 		goto fail;
222 	ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
223 	if (unlikely(ret < 0))
224 		goto fail;
225 	return ret;
226 fail:
227 	memset(dst, 0, size);
228 	return ret;
229 }
230 
231 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
232 	   const void *, unsafe_ptr)
233 {
234 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
235 }
236 
237 const struct bpf_func_proto bpf_probe_read_kernel_proto = {
238 	.func		= bpf_probe_read_kernel,
239 	.gpl_only	= true,
240 	.ret_type	= RET_INTEGER,
241 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
242 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
243 	.arg3_type	= ARG_ANYTHING,
244 };
245 
246 static __always_inline int
247 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
248 {
249 	int ret = security_locked_down(LOCKDOWN_BPF_READ);
250 
251 	if (unlikely(ret < 0))
252 		goto fail;
253 
254 	/*
255 	 * The strncpy_from_kernel_nofault() call will likely not fill the
256 	 * entire buffer, but that's okay in this circumstance as we're probing
257 	 * arbitrary memory anyway similar to bpf_probe_read_*() and might
258 	 * as well probe the stack. Thus, memory is explicitly cleared
259 	 * only in error case, so that improper users ignoring return
260 	 * code altogether don't copy garbage; otherwise length of string
261 	 * is returned that can be used for bpf_perf_event_output() et al.
262 	 */
263 	ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
264 	if (unlikely(ret < 0))
265 		goto fail;
266 
267 	return ret;
268 fail:
269 	memset(dst, 0, size);
270 	return ret;
271 }
272 
273 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
274 	   const void *, unsafe_ptr)
275 {
276 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
277 }
278 
279 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
280 	.func		= bpf_probe_read_kernel_str,
281 	.gpl_only	= true,
282 	.ret_type	= RET_INTEGER,
283 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
284 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
285 	.arg3_type	= ARG_ANYTHING,
286 };
287 
288 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
289 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
290 	   const void *, unsafe_ptr)
291 {
292 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
293 		return bpf_probe_read_user_common(dst, size,
294 				(__force void __user *)unsafe_ptr);
295 	}
296 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
297 }
298 
299 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
300 	.func		= bpf_probe_read_compat,
301 	.gpl_only	= true,
302 	.ret_type	= RET_INTEGER,
303 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
304 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
305 	.arg3_type	= ARG_ANYTHING,
306 };
307 
308 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
309 	   const void *, unsafe_ptr)
310 {
311 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
312 		return bpf_probe_read_user_str_common(dst, size,
313 				(__force void __user *)unsafe_ptr);
314 	}
315 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
316 }
317 
318 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
319 	.func		= bpf_probe_read_compat_str,
320 	.gpl_only	= true,
321 	.ret_type	= RET_INTEGER,
322 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
323 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
324 	.arg3_type	= ARG_ANYTHING,
325 };
326 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
327 
328 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
329 	   u32, size)
330 {
331 	/*
332 	 * Ensure we're in user context which is safe for the helper to
333 	 * run. This helper has no business in a kthread.
334 	 *
335 	 * access_ok() should prevent writing to non-user memory, but in
336 	 * some situations (nommu, temporary switch, etc) access_ok() does
337 	 * not provide enough validation, hence the check on KERNEL_DS.
338 	 *
339 	 * nmi_uaccess_okay() ensures the probe is not run in an interim
340 	 * state, when the task or mm are switched. This is specifically
341 	 * required to prevent the use of temporary mm.
342 	 */
343 
344 	if (unlikely(in_interrupt() ||
345 		     current->flags & (PF_KTHREAD | PF_EXITING)))
346 		return -EPERM;
347 	if (unlikely(uaccess_kernel()))
348 		return -EPERM;
349 	if (unlikely(!nmi_uaccess_okay()))
350 		return -EPERM;
351 
352 	return copy_to_user_nofault(unsafe_ptr, src, size);
353 }
354 
355 static const struct bpf_func_proto bpf_probe_write_user_proto = {
356 	.func		= bpf_probe_write_user,
357 	.gpl_only	= true,
358 	.ret_type	= RET_INTEGER,
359 	.arg1_type	= ARG_ANYTHING,
360 	.arg2_type	= ARG_PTR_TO_MEM,
361 	.arg3_type	= ARG_CONST_SIZE,
362 };
363 
364 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
365 {
366 	if (!capable(CAP_SYS_ADMIN))
367 		return NULL;
368 
369 	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
370 			    current->comm, task_pid_nr(current));
371 
372 	return &bpf_probe_write_user_proto;
373 }
374 
375 static DEFINE_RAW_SPINLOCK(trace_printk_lock);
376 
377 #define MAX_TRACE_PRINTK_VARARGS	3
378 #define BPF_TRACE_PRINTK_SIZE		1024
379 
380 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
381 	   u64, arg2, u64, arg3)
382 {
383 	u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 };
384 	enum bpf_printf_mod_type mod[MAX_TRACE_PRINTK_VARARGS];
385 	static char buf[BPF_TRACE_PRINTK_SIZE];
386 	unsigned long flags;
387 	int ret;
388 
389 	ret = bpf_printf_prepare(fmt, fmt_size, args, args, mod,
390 				 MAX_TRACE_PRINTK_VARARGS);
391 	if (ret < 0)
392 		return ret;
393 
394 	ret = snprintf(buf, sizeof(buf), fmt, BPF_CAST_FMT_ARG(0, args, mod),
395 		BPF_CAST_FMT_ARG(1, args, mod), BPF_CAST_FMT_ARG(2, args, mod));
396 	/* snprintf() will not append null for zero-length strings */
397 	if (ret == 0)
398 		buf[0] = '\0';
399 
400 	raw_spin_lock_irqsave(&trace_printk_lock, flags);
401 	trace_bpf_trace_printk(buf);
402 	raw_spin_unlock_irqrestore(&trace_printk_lock, flags);
403 
404 	bpf_printf_cleanup();
405 
406 	return ret;
407 }
408 
409 static const struct bpf_func_proto bpf_trace_printk_proto = {
410 	.func		= bpf_trace_printk,
411 	.gpl_only	= true,
412 	.ret_type	= RET_INTEGER,
413 	.arg1_type	= ARG_PTR_TO_MEM,
414 	.arg2_type	= ARG_CONST_SIZE,
415 };
416 
417 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
418 {
419 	/*
420 	 * This program might be calling bpf_trace_printk,
421 	 * so enable the associated bpf_trace/bpf_trace_printk event.
422 	 * Repeat this each time as it is possible a user has
423 	 * disabled bpf_trace_printk events.  By loading a program
424 	 * calling bpf_trace_printk() however the user has expressed
425 	 * the intent to see such events.
426 	 */
427 	if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
428 		pr_warn_ratelimited("could not enable bpf_trace_printk events");
429 
430 	return &bpf_trace_printk_proto;
431 }
432 
433 #define MAX_SEQ_PRINTF_VARARGS		12
434 
435 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
436 	   const void *, data, u32, data_len)
437 {
438 	enum bpf_printf_mod_type mod[MAX_SEQ_PRINTF_VARARGS];
439 	u64 args[MAX_SEQ_PRINTF_VARARGS];
440 	int err, num_args;
441 
442 	if (data_len & 7 || data_len > MAX_SEQ_PRINTF_VARARGS * 8 ||
443 	    (data_len && !data))
444 		return -EINVAL;
445 	num_args = data_len / 8;
446 
447 	err = bpf_printf_prepare(fmt, fmt_size, data, args, mod, num_args);
448 	if (err < 0)
449 		return err;
450 
451 	/* Maximumly we can have MAX_SEQ_PRINTF_VARARGS parameter, just give
452 	 * all of them to seq_printf().
453 	 */
454 	seq_printf(m, fmt, BPF_CAST_FMT_ARG(0, args, mod),
455 		BPF_CAST_FMT_ARG(1, args, mod), BPF_CAST_FMT_ARG(2, args, mod),
456 		BPF_CAST_FMT_ARG(3, args, mod), BPF_CAST_FMT_ARG(4, args, mod),
457 		BPF_CAST_FMT_ARG(5, args, mod), BPF_CAST_FMT_ARG(6, args, mod),
458 		BPF_CAST_FMT_ARG(7, args, mod), BPF_CAST_FMT_ARG(8, args, mod),
459 		BPF_CAST_FMT_ARG(9, args, mod), BPF_CAST_FMT_ARG(10, args, mod),
460 		BPF_CAST_FMT_ARG(11, args, mod));
461 
462 	bpf_printf_cleanup();
463 
464 	return seq_has_overflowed(m) ? -EOVERFLOW : 0;
465 }
466 
467 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
468 
469 static const struct bpf_func_proto bpf_seq_printf_proto = {
470 	.func		= bpf_seq_printf,
471 	.gpl_only	= true,
472 	.ret_type	= RET_INTEGER,
473 	.arg1_type	= ARG_PTR_TO_BTF_ID,
474 	.arg1_btf_id	= &btf_seq_file_ids[0],
475 	.arg2_type	= ARG_PTR_TO_MEM,
476 	.arg3_type	= ARG_CONST_SIZE,
477 	.arg4_type      = ARG_PTR_TO_MEM_OR_NULL,
478 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
479 };
480 
481 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
482 {
483 	return seq_write(m, data, len) ? -EOVERFLOW : 0;
484 }
485 
486 static const struct bpf_func_proto bpf_seq_write_proto = {
487 	.func		= bpf_seq_write,
488 	.gpl_only	= true,
489 	.ret_type	= RET_INTEGER,
490 	.arg1_type	= ARG_PTR_TO_BTF_ID,
491 	.arg1_btf_id	= &btf_seq_file_ids[0],
492 	.arg2_type	= ARG_PTR_TO_MEM,
493 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
494 };
495 
496 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
497 	   u32, btf_ptr_size, u64, flags)
498 {
499 	const struct btf *btf;
500 	s32 btf_id;
501 	int ret;
502 
503 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
504 	if (ret)
505 		return ret;
506 
507 	return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
508 }
509 
510 static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
511 	.func		= bpf_seq_printf_btf,
512 	.gpl_only	= true,
513 	.ret_type	= RET_INTEGER,
514 	.arg1_type	= ARG_PTR_TO_BTF_ID,
515 	.arg1_btf_id	= &btf_seq_file_ids[0],
516 	.arg2_type	= ARG_PTR_TO_MEM,
517 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
518 	.arg4_type	= ARG_ANYTHING,
519 };
520 
521 static __always_inline int
522 get_map_perf_counter(struct bpf_map *map, u64 flags,
523 		     u64 *value, u64 *enabled, u64 *running)
524 {
525 	struct bpf_array *array = container_of(map, struct bpf_array, map);
526 	unsigned int cpu = smp_processor_id();
527 	u64 index = flags & BPF_F_INDEX_MASK;
528 	struct bpf_event_entry *ee;
529 
530 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
531 		return -EINVAL;
532 	if (index == BPF_F_CURRENT_CPU)
533 		index = cpu;
534 	if (unlikely(index >= array->map.max_entries))
535 		return -E2BIG;
536 
537 	ee = READ_ONCE(array->ptrs[index]);
538 	if (!ee)
539 		return -ENOENT;
540 
541 	return perf_event_read_local(ee->event, value, enabled, running);
542 }
543 
544 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
545 {
546 	u64 value = 0;
547 	int err;
548 
549 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
550 	/*
551 	 * this api is ugly since we miss [-22..-2] range of valid
552 	 * counter values, but that's uapi
553 	 */
554 	if (err)
555 		return err;
556 	return value;
557 }
558 
559 static const struct bpf_func_proto bpf_perf_event_read_proto = {
560 	.func		= bpf_perf_event_read,
561 	.gpl_only	= true,
562 	.ret_type	= RET_INTEGER,
563 	.arg1_type	= ARG_CONST_MAP_PTR,
564 	.arg2_type	= ARG_ANYTHING,
565 };
566 
567 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
568 	   struct bpf_perf_event_value *, buf, u32, size)
569 {
570 	int err = -EINVAL;
571 
572 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
573 		goto clear;
574 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
575 				   &buf->running);
576 	if (unlikely(err))
577 		goto clear;
578 	return 0;
579 clear:
580 	memset(buf, 0, size);
581 	return err;
582 }
583 
584 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
585 	.func		= bpf_perf_event_read_value,
586 	.gpl_only	= true,
587 	.ret_type	= RET_INTEGER,
588 	.arg1_type	= ARG_CONST_MAP_PTR,
589 	.arg2_type	= ARG_ANYTHING,
590 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
591 	.arg4_type	= ARG_CONST_SIZE,
592 };
593 
594 static __always_inline u64
595 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
596 			u64 flags, struct perf_sample_data *sd)
597 {
598 	struct bpf_array *array = container_of(map, struct bpf_array, map);
599 	unsigned int cpu = smp_processor_id();
600 	u64 index = flags & BPF_F_INDEX_MASK;
601 	struct bpf_event_entry *ee;
602 	struct perf_event *event;
603 
604 	if (index == BPF_F_CURRENT_CPU)
605 		index = cpu;
606 	if (unlikely(index >= array->map.max_entries))
607 		return -E2BIG;
608 
609 	ee = READ_ONCE(array->ptrs[index]);
610 	if (!ee)
611 		return -ENOENT;
612 
613 	event = ee->event;
614 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
615 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
616 		return -EINVAL;
617 
618 	if (unlikely(event->oncpu != cpu))
619 		return -EOPNOTSUPP;
620 
621 	return perf_event_output(event, sd, regs);
622 }
623 
624 /*
625  * Support executing tracepoints in normal, irq, and nmi context that each call
626  * bpf_perf_event_output
627  */
628 struct bpf_trace_sample_data {
629 	struct perf_sample_data sds[3];
630 };
631 
632 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
633 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
634 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
635 	   u64, flags, void *, data, u64, size)
636 {
637 	struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
638 	int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
639 	struct perf_raw_record raw = {
640 		.frag = {
641 			.size = size,
642 			.data = data,
643 		},
644 	};
645 	struct perf_sample_data *sd;
646 	int err;
647 
648 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
649 		err = -EBUSY;
650 		goto out;
651 	}
652 
653 	sd = &sds->sds[nest_level - 1];
654 
655 	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
656 		err = -EINVAL;
657 		goto out;
658 	}
659 
660 	perf_sample_data_init(sd, 0, 0);
661 	sd->raw = &raw;
662 
663 	err = __bpf_perf_event_output(regs, map, flags, sd);
664 
665 out:
666 	this_cpu_dec(bpf_trace_nest_level);
667 	return err;
668 }
669 
670 static const struct bpf_func_proto bpf_perf_event_output_proto = {
671 	.func		= bpf_perf_event_output,
672 	.gpl_only	= true,
673 	.ret_type	= RET_INTEGER,
674 	.arg1_type	= ARG_PTR_TO_CTX,
675 	.arg2_type	= ARG_CONST_MAP_PTR,
676 	.arg3_type	= ARG_ANYTHING,
677 	.arg4_type	= ARG_PTR_TO_MEM,
678 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
679 };
680 
681 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
682 struct bpf_nested_pt_regs {
683 	struct pt_regs regs[3];
684 };
685 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
686 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
687 
688 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
689 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
690 {
691 	int nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
692 	struct perf_raw_frag frag = {
693 		.copy		= ctx_copy,
694 		.size		= ctx_size,
695 		.data		= ctx,
696 	};
697 	struct perf_raw_record raw = {
698 		.frag = {
699 			{
700 				.next	= ctx_size ? &frag : NULL,
701 			},
702 			.size	= meta_size,
703 			.data	= meta,
704 		},
705 	};
706 	struct perf_sample_data *sd;
707 	struct pt_regs *regs;
708 	u64 ret;
709 
710 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
711 		ret = -EBUSY;
712 		goto out;
713 	}
714 	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
715 	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
716 
717 	perf_fetch_caller_regs(regs);
718 	perf_sample_data_init(sd, 0, 0);
719 	sd->raw = &raw;
720 
721 	ret = __bpf_perf_event_output(regs, map, flags, sd);
722 out:
723 	this_cpu_dec(bpf_event_output_nest_level);
724 	return ret;
725 }
726 
727 BPF_CALL_0(bpf_get_current_task)
728 {
729 	return (long) current;
730 }
731 
732 const struct bpf_func_proto bpf_get_current_task_proto = {
733 	.func		= bpf_get_current_task,
734 	.gpl_only	= true,
735 	.ret_type	= RET_INTEGER,
736 };
737 
738 BPF_CALL_0(bpf_get_current_task_btf)
739 {
740 	return (unsigned long) current;
741 }
742 
743 BTF_ID_LIST_SINGLE(bpf_get_current_btf_ids, struct, task_struct)
744 
745 static const struct bpf_func_proto bpf_get_current_task_btf_proto = {
746 	.func		= bpf_get_current_task_btf,
747 	.gpl_only	= true,
748 	.ret_type	= RET_PTR_TO_BTF_ID,
749 	.ret_btf_id	= &bpf_get_current_btf_ids[0],
750 };
751 
752 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
753 {
754 	struct bpf_array *array = container_of(map, struct bpf_array, map);
755 	struct cgroup *cgrp;
756 
757 	if (unlikely(idx >= array->map.max_entries))
758 		return -E2BIG;
759 
760 	cgrp = READ_ONCE(array->ptrs[idx]);
761 	if (unlikely(!cgrp))
762 		return -EAGAIN;
763 
764 	return task_under_cgroup_hierarchy(current, cgrp);
765 }
766 
767 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
768 	.func           = bpf_current_task_under_cgroup,
769 	.gpl_only       = false,
770 	.ret_type       = RET_INTEGER,
771 	.arg1_type      = ARG_CONST_MAP_PTR,
772 	.arg2_type      = ARG_ANYTHING,
773 };
774 
775 struct send_signal_irq_work {
776 	struct irq_work irq_work;
777 	struct task_struct *task;
778 	u32 sig;
779 	enum pid_type type;
780 };
781 
782 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
783 
784 static void do_bpf_send_signal(struct irq_work *entry)
785 {
786 	struct send_signal_irq_work *work;
787 
788 	work = container_of(entry, struct send_signal_irq_work, irq_work);
789 	group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
790 }
791 
792 static int bpf_send_signal_common(u32 sig, enum pid_type type)
793 {
794 	struct send_signal_irq_work *work = NULL;
795 
796 	/* Similar to bpf_probe_write_user, task needs to be
797 	 * in a sound condition and kernel memory access be
798 	 * permitted in order to send signal to the current
799 	 * task.
800 	 */
801 	if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
802 		return -EPERM;
803 	if (unlikely(uaccess_kernel()))
804 		return -EPERM;
805 	if (unlikely(!nmi_uaccess_okay()))
806 		return -EPERM;
807 
808 	if (irqs_disabled()) {
809 		/* Do an early check on signal validity. Otherwise,
810 		 * the error is lost in deferred irq_work.
811 		 */
812 		if (unlikely(!valid_signal(sig)))
813 			return -EINVAL;
814 
815 		work = this_cpu_ptr(&send_signal_work);
816 		if (irq_work_is_busy(&work->irq_work))
817 			return -EBUSY;
818 
819 		/* Add the current task, which is the target of sending signal,
820 		 * to the irq_work. The current task may change when queued
821 		 * irq works get executed.
822 		 */
823 		work->task = current;
824 		work->sig = sig;
825 		work->type = type;
826 		irq_work_queue(&work->irq_work);
827 		return 0;
828 	}
829 
830 	return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
831 }
832 
833 BPF_CALL_1(bpf_send_signal, u32, sig)
834 {
835 	return bpf_send_signal_common(sig, PIDTYPE_TGID);
836 }
837 
838 static const struct bpf_func_proto bpf_send_signal_proto = {
839 	.func		= bpf_send_signal,
840 	.gpl_only	= false,
841 	.ret_type	= RET_INTEGER,
842 	.arg1_type	= ARG_ANYTHING,
843 };
844 
845 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
846 {
847 	return bpf_send_signal_common(sig, PIDTYPE_PID);
848 }
849 
850 static const struct bpf_func_proto bpf_send_signal_thread_proto = {
851 	.func		= bpf_send_signal_thread,
852 	.gpl_only	= false,
853 	.ret_type	= RET_INTEGER,
854 	.arg1_type	= ARG_ANYTHING,
855 };
856 
857 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
858 {
859 	long len;
860 	char *p;
861 
862 	if (!sz)
863 		return 0;
864 
865 	p = d_path(path, buf, sz);
866 	if (IS_ERR(p)) {
867 		len = PTR_ERR(p);
868 	} else {
869 		len = buf + sz - p;
870 		memmove(buf, p, len);
871 	}
872 
873 	return len;
874 }
875 
876 BTF_SET_START(btf_allowlist_d_path)
877 #ifdef CONFIG_SECURITY
878 BTF_ID(func, security_file_permission)
879 BTF_ID(func, security_inode_getattr)
880 BTF_ID(func, security_file_open)
881 #endif
882 #ifdef CONFIG_SECURITY_PATH
883 BTF_ID(func, security_path_truncate)
884 #endif
885 BTF_ID(func, vfs_truncate)
886 BTF_ID(func, vfs_fallocate)
887 BTF_ID(func, dentry_open)
888 BTF_ID(func, vfs_getattr)
889 BTF_ID(func, filp_close)
890 BTF_SET_END(btf_allowlist_d_path)
891 
892 static bool bpf_d_path_allowed(const struct bpf_prog *prog)
893 {
894 	if (prog->type == BPF_PROG_TYPE_TRACING &&
895 	    prog->expected_attach_type == BPF_TRACE_ITER)
896 		return true;
897 
898 	if (prog->type == BPF_PROG_TYPE_LSM)
899 		return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id);
900 
901 	return btf_id_set_contains(&btf_allowlist_d_path,
902 				   prog->aux->attach_btf_id);
903 }
904 
905 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
906 
907 static const struct bpf_func_proto bpf_d_path_proto = {
908 	.func		= bpf_d_path,
909 	.gpl_only	= false,
910 	.ret_type	= RET_INTEGER,
911 	.arg1_type	= ARG_PTR_TO_BTF_ID,
912 	.arg1_btf_id	= &bpf_d_path_btf_ids[0],
913 	.arg2_type	= ARG_PTR_TO_MEM,
914 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
915 	.allowed	= bpf_d_path_allowed,
916 };
917 
918 #define BTF_F_ALL	(BTF_F_COMPACT  | BTF_F_NONAME | \
919 			 BTF_F_PTR_RAW | BTF_F_ZERO)
920 
921 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
922 				  u64 flags, const struct btf **btf,
923 				  s32 *btf_id)
924 {
925 	const struct btf_type *t;
926 
927 	if (unlikely(flags & ~(BTF_F_ALL)))
928 		return -EINVAL;
929 
930 	if (btf_ptr_size != sizeof(struct btf_ptr))
931 		return -EINVAL;
932 
933 	*btf = bpf_get_btf_vmlinux();
934 
935 	if (IS_ERR_OR_NULL(*btf))
936 		return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
937 
938 	if (ptr->type_id > 0)
939 		*btf_id = ptr->type_id;
940 	else
941 		return -EINVAL;
942 
943 	if (*btf_id > 0)
944 		t = btf_type_by_id(*btf, *btf_id);
945 	if (*btf_id <= 0 || !t)
946 		return -ENOENT;
947 
948 	return 0;
949 }
950 
951 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
952 	   u32, btf_ptr_size, u64, flags)
953 {
954 	const struct btf *btf;
955 	s32 btf_id;
956 	int ret;
957 
958 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
959 	if (ret)
960 		return ret;
961 
962 	return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
963 				      flags);
964 }
965 
966 const struct bpf_func_proto bpf_snprintf_btf_proto = {
967 	.func		= bpf_snprintf_btf,
968 	.gpl_only	= false,
969 	.ret_type	= RET_INTEGER,
970 	.arg1_type	= ARG_PTR_TO_MEM,
971 	.arg2_type	= ARG_CONST_SIZE,
972 	.arg3_type	= ARG_PTR_TO_MEM,
973 	.arg4_type	= ARG_CONST_SIZE,
974 	.arg5_type	= ARG_ANYTHING,
975 };
976 
977 const struct bpf_func_proto *
978 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
979 {
980 	switch (func_id) {
981 	case BPF_FUNC_map_lookup_elem:
982 		return &bpf_map_lookup_elem_proto;
983 	case BPF_FUNC_map_update_elem:
984 		return &bpf_map_update_elem_proto;
985 	case BPF_FUNC_map_delete_elem:
986 		return &bpf_map_delete_elem_proto;
987 	case BPF_FUNC_map_push_elem:
988 		return &bpf_map_push_elem_proto;
989 	case BPF_FUNC_map_pop_elem:
990 		return &bpf_map_pop_elem_proto;
991 	case BPF_FUNC_map_peek_elem:
992 		return &bpf_map_peek_elem_proto;
993 	case BPF_FUNC_ktime_get_ns:
994 		return &bpf_ktime_get_ns_proto;
995 	case BPF_FUNC_ktime_get_boot_ns:
996 		return &bpf_ktime_get_boot_ns_proto;
997 	case BPF_FUNC_ktime_get_coarse_ns:
998 		return &bpf_ktime_get_coarse_ns_proto;
999 	case BPF_FUNC_tail_call:
1000 		return &bpf_tail_call_proto;
1001 	case BPF_FUNC_get_current_pid_tgid:
1002 		return &bpf_get_current_pid_tgid_proto;
1003 	case BPF_FUNC_get_current_task:
1004 		return &bpf_get_current_task_proto;
1005 	case BPF_FUNC_get_current_task_btf:
1006 		return &bpf_get_current_task_btf_proto;
1007 	case BPF_FUNC_get_current_uid_gid:
1008 		return &bpf_get_current_uid_gid_proto;
1009 	case BPF_FUNC_get_current_comm:
1010 		return &bpf_get_current_comm_proto;
1011 	case BPF_FUNC_trace_printk:
1012 		return bpf_get_trace_printk_proto();
1013 	case BPF_FUNC_get_smp_processor_id:
1014 		return &bpf_get_smp_processor_id_proto;
1015 	case BPF_FUNC_get_numa_node_id:
1016 		return &bpf_get_numa_node_id_proto;
1017 	case BPF_FUNC_perf_event_read:
1018 		return &bpf_perf_event_read_proto;
1019 	case BPF_FUNC_probe_write_user:
1020 		return bpf_get_probe_write_proto();
1021 	case BPF_FUNC_current_task_under_cgroup:
1022 		return &bpf_current_task_under_cgroup_proto;
1023 	case BPF_FUNC_get_prandom_u32:
1024 		return &bpf_get_prandom_u32_proto;
1025 	case BPF_FUNC_probe_read_user:
1026 		return &bpf_probe_read_user_proto;
1027 	case BPF_FUNC_probe_read_kernel:
1028 		return &bpf_probe_read_kernel_proto;
1029 	case BPF_FUNC_probe_read_user_str:
1030 		return &bpf_probe_read_user_str_proto;
1031 	case BPF_FUNC_probe_read_kernel_str:
1032 		return &bpf_probe_read_kernel_str_proto;
1033 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1034 	case BPF_FUNC_probe_read:
1035 		return &bpf_probe_read_compat_proto;
1036 	case BPF_FUNC_probe_read_str:
1037 		return &bpf_probe_read_compat_str_proto;
1038 #endif
1039 #ifdef CONFIG_CGROUPS
1040 	case BPF_FUNC_get_current_cgroup_id:
1041 		return &bpf_get_current_cgroup_id_proto;
1042 #endif
1043 	case BPF_FUNC_send_signal:
1044 		return &bpf_send_signal_proto;
1045 	case BPF_FUNC_send_signal_thread:
1046 		return &bpf_send_signal_thread_proto;
1047 	case BPF_FUNC_perf_event_read_value:
1048 		return &bpf_perf_event_read_value_proto;
1049 	case BPF_FUNC_get_ns_current_pid_tgid:
1050 		return &bpf_get_ns_current_pid_tgid_proto;
1051 	case BPF_FUNC_ringbuf_output:
1052 		return &bpf_ringbuf_output_proto;
1053 	case BPF_FUNC_ringbuf_reserve:
1054 		return &bpf_ringbuf_reserve_proto;
1055 	case BPF_FUNC_ringbuf_submit:
1056 		return &bpf_ringbuf_submit_proto;
1057 	case BPF_FUNC_ringbuf_discard:
1058 		return &bpf_ringbuf_discard_proto;
1059 	case BPF_FUNC_ringbuf_query:
1060 		return &bpf_ringbuf_query_proto;
1061 	case BPF_FUNC_jiffies64:
1062 		return &bpf_jiffies64_proto;
1063 	case BPF_FUNC_get_task_stack:
1064 		return &bpf_get_task_stack_proto;
1065 	case BPF_FUNC_copy_from_user:
1066 		return prog->aux->sleepable ? &bpf_copy_from_user_proto : NULL;
1067 	case BPF_FUNC_snprintf_btf:
1068 		return &bpf_snprintf_btf_proto;
1069 	case BPF_FUNC_per_cpu_ptr:
1070 		return &bpf_per_cpu_ptr_proto;
1071 	case BPF_FUNC_this_cpu_ptr:
1072 		return &bpf_this_cpu_ptr_proto;
1073 	case BPF_FUNC_task_storage_get:
1074 		return &bpf_task_storage_get_proto;
1075 	case BPF_FUNC_task_storage_delete:
1076 		return &bpf_task_storage_delete_proto;
1077 	case BPF_FUNC_for_each_map_elem:
1078 		return &bpf_for_each_map_elem_proto;
1079 	case BPF_FUNC_snprintf:
1080 		return &bpf_snprintf_proto;
1081 	default:
1082 		return NULL;
1083 	}
1084 }
1085 
1086 static const struct bpf_func_proto *
1087 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1088 {
1089 	switch (func_id) {
1090 	case BPF_FUNC_perf_event_output:
1091 		return &bpf_perf_event_output_proto;
1092 	case BPF_FUNC_get_stackid:
1093 		return &bpf_get_stackid_proto;
1094 	case BPF_FUNC_get_stack:
1095 		return &bpf_get_stack_proto;
1096 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
1097 	case BPF_FUNC_override_return:
1098 		return &bpf_override_return_proto;
1099 #endif
1100 	default:
1101 		return bpf_tracing_func_proto(func_id, prog);
1102 	}
1103 }
1104 
1105 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
1106 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1107 					const struct bpf_prog *prog,
1108 					struct bpf_insn_access_aux *info)
1109 {
1110 	if (off < 0 || off >= sizeof(struct pt_regs))
1111 		return false;
1112 	if (type != BPF_READ)
1113 		return false;
1114 	if (off % size != 0)
1115 		return false;
1116 	/*
1117 	 * Assertion for 32 bit to make sure last 8 byte access
1118 	 * (BPF_DW) to the last 4 byte member is disallowed.
1119 	 */
1120 	if (off + size > sizeof(struct pt_regs))
1121 		return false;
1122 
1123 	return true;
1124 }
1125 
1126 const struct bpf_verifier_ops kprobe_verifier_ops = {
1127 	.get_func_proto  = kprobe_prog_func_proto,
1128 	.is_valid_access = kprobe_prog_is_valid_access,
1129 };
1130 
1131 const struct bpf_prog_ops kprobe_prog_ops = {
1132 };
1133 
1134 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1135 	   u64, flags, void *, data, u64, size)
1136 {
1137 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1138 
1139 	/*
1140 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1141 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1142 	 * from there and call the same bpf_perf_event_output() helper inline.
1143 	 */
1144 	return ____bpf_perf_event_output(regs, map, flags, data, size);
1145 }
1146 
1147 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1148 	.func		= bpf_perf_event_output_tp,
1149 	.gpl_only	= true,
1150 	.ret_type	= RET_INTEGER,
1151 	.arg1_type	= ARG_PTR_TO_CTX,
1152 	.arg2_type	= ARG_CONST_MAP_PTR,
1153 	.arg3_type	= ARG_ANYTHING,
1154 	.arg4_type	= ARG_PTR_TO_MEM,
1155 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1156 };
1157 
1158 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1159 	   u64, flags)
1160 {
1161 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1162 
1163 	/*
1164 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
1165 	 * the other helper's function body cannot be inlined due to being
1166 	 * external, thus we need to call raw helper function.
1167 	 */
1168 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1169 			       flags, 0, 0);
1170 }
1171 
1172 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1173 	.func		= bpf_get_stackid_tp,
1174 	.gpl_only	= true,
1175 	.ret_type	= RET_INTEGER,
1176 	.arg1_type	= ARG_PTR_TO_CTX,
1177 	.arg2_type	= ARG_CONST_MAP_PTR,
1178 	.arg3_type	= ARG_ANYTHING,
1179 };
1180 
1181 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1182 	   u64, flags)
1183 {
1184 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1185 
1186 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1187 			     (unsigned long) size, flags, 0);
1188 }
1189 
1190 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1191 	.func		= bpf_get_stack_tp,
1192 	.gpl_only	= true,
1193 	.ret_type	= RET_INTEGER,
1194 	.arg1_type	= ARG_PTR_TO_CTX,
1195 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1196 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1197 	.arg4_type	= ARG_ANYTHING,
1198 };
1199 
1200 static const struct bpf_func_proto *
1201 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1202 {
1203 	switch (func_id) {
1204 	case BPF_FUNC_perf_event_output:
1205 		return &bpf_perf_event_output_proto_tp;
1206 	case BPF_FUNC_get_stackid:
1207 		return &bpf_get_stackid_proto_tp;
1208 	case BPF_FUNC_get_stack:
1209 		return &bpf_get_stack_proto_tp;
1210 	default:
1211 		return bpf_tracing_func_proto(func_id, prog);
1212 	}
1213 }
1214 
1215 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1216 				    const struct bpf_prog *prog,
1217 				    struct bpf_insn_access_aux *info)
1218 {
1219 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1220 		return false;
1221 	if (type != BPF_READ)
1222 		return false;
1223 	if (off % size != 0)
1224 		return false;
1225 
1226 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1227 	return true;
1228 }
1229 
1230 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1231 	.get_func_proto  = tp_prog_func_proto,
1232 	.is_valid_access = tp_prog_is_valid_access,
1233 };
1234 
1235 const struct bpf_prog_ops tracepoint_prog_ops = {
1236 };
1237 
1238 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1239 	   struct bpf_perf_event_value *, buf, u32, size)
1240 {
1241 	int err = -EINVAL;
1242 
1243 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1244 		goto clear;
1245 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1246 				    &buf->running);
1247 	if (unlikely(err))
1248 		goto clear;
1249 	return 0;
1250 clear:
1251 	memset(buf, 0, size);
1252 	return err;
1253 }
1254 
1255 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1256          .func           = bpf_perf_prog_read_value,
1257          .gpl_only       = true,
1258          .ret_type       = RET_INTEGER,
1259          .arg1_type      = ARG_PTR_TO_CTX,
1260          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1261          .arg3_type      = ARG_CONST_SIZE,
1262 };
1263 
1264 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1265 	   void *, buf, u32, size, u64, flags)
1266 {
1267 #ifndef CONFIG_X86
1268 	return -ENOENT;
1269 #else
1270 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1271 	struct perf_branch_stack *br_stack = ctx->data->br_stack;
1272 	u32 to_copy;
1273 
1274 	if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1275 		return -EINVAL;
1276 
1277 	if (unlikely(!br_stack))
1278 		return -EINVAL;
1279 
1280 	if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1281 		return br_stack->nr * br_entry_size;
1282 
1283 	if (!buf || (size % br_entry_size != 0))
1284 		return -EINVAL;
1285 
1286 	to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1287 	memcpy(buf, br_stack->entries, to_copy);
1288 
1289 	return to_copy;
1290 #endif
1291 }
1292 
1293 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1294 	.func           = bpf_read_branch_records,
1295 	.gpl_only       = true,
1296 	.ret_type       = RET_INTEGER,
1297 	.arg1_type      = ARG_PTR_TO_CTX,
1298 	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
1299 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1300 	.arg4_type      = ARG_ANYTHING,
1301 };
1302 
1303 static const struct bpf_func_proto *
1304 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1305 {
1306 	switch (func_id) {
1307 	case BPF_FUNC_perf_event_output:
1308 		return &bpf_perf_event_output_proto_tp;
1309 	case BPF_FUNC_get_stackid:
1310 		return &bpf_get_stackid_proto_pe;
1311 	case BPF_FUNC_get_stack:
1312 		return &bpf_get_stack_proto_pe;
1313 	case BPF_FUNC_perf_prog_read_value:
1314 		return &bpf_perf_prog_read_value_proto;
1315 	case BPF_FUNC_read_branch_records:
1316 		return &bpf_read_branch_records_proto;
1317 	default:
1318 		return bpf_tracing_func_proto(func_id, prog);
1319 	}
1320 }
1321 
1322 /*
1323  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1324  * to avoid potential recursive reuse issue when/if tracepoints are added
1325  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1326  *
1327  * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1328  * in normal, irq, and nmi context.
1329  */
1330 struct bpf_raw_tp_regs {
1331 	struct pt_regs regs[3];
1332 };
1333 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1334 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1335 static struct pt_regs *get_bpf_raw_tp_regs(void)
1336 {
1337 	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1338 	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1339 
1340 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1341 		this_cpu_dec(bpf_raw_tp_nest_level);
1342 		return ERR_PTR(-EBUSY);
1343 	}
1344 
1345 	return &tp_regs->regs[nest_level - 1];
1346 }
1347 
1348 static void put_bpf_raw_tp_regs(void)
1349 {
1350 	this_cpu_dec(bpf_raw_tp_nest_level);
1351 }
1352 
1353 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1354 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
1355 {
1356 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1357 	int ret;
1358 
1359 	if (IS_ERR(regs))
1360 		return PTR_ERR(regs);
1361 
1362 	perf_fetch_caller_regs(regs);
1363 	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1364 
1365 	put_bpf_raw_tp_regs();
1366 	return ret;
1367 }
1368 
1369 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1370 	.func		= bpf_perf_event_output_raw_tp,
1371 	.gpl_only	= true,
1372 	.ret_type	= RET_INTEGER,
1373 	.arg1_type	= ARG_PTR_TO_CTX,
1374 	.arg2_type	= ARG_CONST_MAP_PTR,
1375 	.arg3_type	= ARG_ANYTHING,
1376 	.arg4_type	= ARG_PTR_TO_MEM,
1377 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1378 };
1379 
1380 extern const struct bpf_func_proto bpf_skb_output_proto;
1381 extern const struct bpf_func_proto bpf_xdp_output_proto;
1382 
1383 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1384 	   struct bpf_map *, map, u64, flags)
1385 {
1386 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1387 	int ret;
1388 
1389 	if (IS_ERR(regs))
1390 		return PTR_ERR(regs);
1391 
1392 	perf_fetch_caller_regs(regs);
1393 	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1394 	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1395 			      flags, 0, 0);
1396 	put_bpf_raw_tp_regs();
1397 	return ret;
1398 }
1399 
1400 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1401 	.func		= bpf_get_stackid_raw_tp,
1402 	.gpl_only	= true,
1403 	.ret_type	= RET_INTEGER,
1404 	.arg1_type	= ARG_PTR_TO_CTX,
1405 	.arg2_type	= ARG_CONST_MAP_PTR,
1406 	.arg3_type	= ARG_ANYTHING,
1407 };
1408 
1409 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1410 	   void *, buf, u32, size, u64, flags)
1411 {
1412 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1413 	int ret;
1414 
1415 	if (IS_ERR(regs))
1416 		return PTR_ERR(regs);
1417 
1418 	perf_fetch_caller_regs(regs);
1419 	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1420 			    (unsigned long) size, flags, 0);
1421 	put_bpf_raw_tp_regs();
1422 	return ret;
1423 }
1424 
1425 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1426 	.func		= bpf_get_stack_raw_tp,
1427 	.gpl_only	= true,
1428 	.ret_type	= RET_INTEGER,
1429 	.arg1_type	= ARG_PTR_TO_CTX,
1430 	.arg2_type	= ARG_PTR_TO_MEM,
1431 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1432 	.arg4_type	= ARG_ANYTHING,
1433 };
1434 
1435 static const struct bpf_func_proto *
1436 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1437 {
1438 	switch (func_id) {
1439 	case BPF_FUNC_perf_event_output:
1440 		return &bpf_perf_event_output_proto_raw_tp;
1441 	case BPF_FUNC_get_stackid:
1442 		return &bpf_get_stackid_proto_raw_tp;
1443 	case BPF_FUNC_get_stack:
1444 		return &bpf_get_stack_proto_raw_tp;
1445 	default:
1446 		return bpf_tracing_func_proto(func_id, prog);
1447 	}
1448 }
1449 
1450 const struct bpf_func_proto *
1451 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1452 {
1453 	switch (func_id) {
1454 #ifdef CONFIG_NET
1455 	case BPF_FUNC_skb_output:
1456 		return &bpf_skb_output_proto;
1457 	case BPF_FUNC_xdp_output:
1458 		return &bpf_xdp_output_proto;
1459 	case BPF_FUNC_skc_to_tcp6_sock:
1460 		return &bpf_skc_to_tcp6_sock_proto;
1461 	case BPF_FUNC_skc_to_tcp_sock:
1462 		return &bpf_skc_to_tcp_sock_proto;
1463 	case BPF_FUNC_skc_to_tcp_timewait_sock:
1464 		return &bpf_skc_to_tcp_timewait_sock_proto;
1465 	case BPF_FUNC_skc_to_tcp_request_sock:
1466 		return &bpf_skc_to_tcp_request_sock_proto;
1467 	case BPF_FUNC_skc_to_udp6_sock:
1468 		return &bpf_skc_to_udp6_sock_proto;
1469 	case BPF_FUNC_sk_storage_get:
1470 		return &bpf_sk_storage_get_tracing_proto;
1471 	case BPF_FUNC_sk_storage_delete:
1472 		return &bpf_sk_storage_delete_tracing_proto;
1473 	case BPF_FUNC_sock_from_file:
1474 		return &bpf_sock_from_file_proto;
1475 	case BPF_FUNC_get_socket_cookie:
1476 		return &bpf_get_socket_ptr_cookie_proto;
1477 #endif
1478 	case BPF_FUNC_seq_printf:
1479 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1480 		       &bpf_seq_printf_proto :
1481 		       NULL;
1482 	case BPF_FUNC_seq_write:
1483 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1484 		       &bpf_seq_write_proto :
1485 		       NULL;
1486 	case BPF_FUNC_seq_printf_btf:
1487 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1488 		       &bpf_seq_printf_btf_proto :
1489 		       NULL;
1490 	case BPF_FUNC_d_path:
1491 		return &bpf_d_path_proto;
1492 	default:
1493 		return raw_tp_prog_func_proto(func_id, prog);
1494 	}
1495 }
1496 
1497 static bool raw_tp_prog_is_valid_access(int off, int size,
1498 					enum bpf_access_type type,
1499 					const struct bpf_prog *prog,
1500 					struct bpf_insn_access_aux *info)
1501 {
1502 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1503 		return false;
1504 	if (type != BPF_READ)
1505 		return false;
1506 	if (off % size != 0)
1507 		return false;
1508 	return true;
1509 }
1510 
1511 static bool tracing_prog_is_valid_access(int off, int size,
1512 					 enum bpf_access_type type,
1513 					 const struct bpf_prog *prog,
1514 					 struct bpf_insn_access_aux *info)
1515 {
1516 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1517 		return false;
1518 	if (type != BPF_READ)
1519 		return false;
1520 	if (off % size != 0)
1521 		return false;
1522 	return btf_ctx_access(off, size, type, prog, info);
1523 }
1524 
1525 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1526 				     const union bpf_attr *kattr,
1527 				     union bpf_attr __user *uattr)
1528 {
1529 	return -ENOTSUPP;
1530 }
1531 
1532 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1533 	.get_func_proto  = raw_tp_prog_func_proto,
1534 	.is_valid_access = raw_tp_prog_is_valid_access,
1535 };
1536 
1537 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1538 #ifdef CONFIG_NET
1539 	.test_run = bpf_prog_test_run_raw_tp,
1540 #endif
1541 };
1542 
1543 const struct bpf_verifier_ops tracing_verifier_ops = {
1544 	.get_func_proto  = tracing_prog_func_proto,
1545 	.is_valid_access = tracing_prog_is_valid_access,
1546 };
1547 
1548 const struct bpf_prog_ops tracing_prog_ops = {
1549 	.test_run = bpf_prog_test_run_tracing,
1550 };
1551 
1552 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1553 						 enum bpf_access_type type,
1554 						 const struct bpf_prog *prog,
1555 						 struct bpf_insn_access_aux *info)
1556 {
1557 	if (off == 0) {
1558 		if (size != sizeof(u64) || type != BPF_READ)
1559 			return false;
1560 		info->reg_type = PTR_TO_TP_BUFFER;
1561 	}
1562 	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1563 }
1564 
1565 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1566 	.get_func_proto  = raw_tp_prog_func_proto,
1567 	.is_valid_access = raw_tp_writable_prog_is_valid_access,
1568 };
1569 
1570 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1571 };
1572 
1573 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1574 				    const struct bpf_prog *prog,
1575 				    struct bpf_insn_access_aux *info)
1576 {
1577 	const int size_u64 = sizeof(u64);
1578 
1579 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1580 		return false;
1581 	if (type != BPF_READ)
1582 		return false;
1583 	if (off % size != 0) {
1584 		if (sizeof(unsigned long) != 4)
1585 			return false;
1586 		if (size != 8)
1587 			return false;
1588 		if (off % size != 4)
1589 			return false;
1590 	}
1591 
1592 	switch (off) {
1593 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1594 		bpf_ctx_record_field_size(info, size_u64);
1595 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1596 			return false;
1597 		break;
1598 	case bpf_ctx_range(struct bpf_perf_event_data, addr):
1599 		bpf_ctx_record_field_size(info, size_u64);
1600 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1601 			return false;
1602 		break;
1603 	default:
1604 		if (size != sizeof(long))
1605 			return false;
1606 	}
1607 
1608 	return true;
1609 }
1610 
1611 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1612 				      const struct bpf_insn *si,
1613 				      struct bpf_insn *insn_buf,
1614 				      struct bpf_prog *prog, u32 *target_size)
1615 {
1616 	struct bpf_insn *insn = insn_buf;
1617 
1618 	switch (si->off) {
1619 	case offsetof(struct bpf_perf_event_data, sample_period):
1620 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1621 						       data), si->dst_reg, si->src_reg,
1622 				      offsetof(struct bpf_perf_event_data_kern, data));
1623 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1624 				      bpf_target_off(struct perf_sample_data, period, 8,
1625 						     target_size));
1626 		break;
1627 	case offsetof(struct bpf_perf_event_data, addr):
1628 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1629 						       data), si->dst_reg, si->src_reg,
1630 				      offsetof(struct bpf_perf_event_data_kern, data));
1631 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1632 				      bpf_target_off(struct perf_sample_data, addr, 8,
1633 						     target_size));
1634 		break;
1635 	default:
1636 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1637 						       regs), si->dst_reg, si->src_reg,
1638 				      offsetof(struct bpf_perf_event_data_kern, regs));
1639 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1640 				      si->off);
1641 		break;
1642 	}
1643 
1644 	return insn - insn_buf;
1645 }
1646 
1647 const struct bpf_verifier_ops perf_event_verifier_ops = {
1648 	.get_func_proto		= pe_prog_func_proto,
1649 	.is_valid_access	= pe_prog_is_valid_access,
1650 	.convert_ctx_access	= pe_prog_convert_ctx_access,
1651 };
1652 
1653 const struct bpf_prog_ops perf_event_prog_ops = {
1654 };
1655 
1656 static DEFINE_MUTEX(bpf_event_mutex);
1657 
1658 #define BPF_TRACE_MAX_PROGS 64
1659 
1660 int perf_event_attach_bpf_prog(struct perf_event *event,
1661 			       struct bpf_prog *prog)
1662 {
1663 	struct bpf_prog_array *old_array;
1664 	struct bpf_prog_array *new_array;
1665 	int ret = -EEXIST;
1666 
1667 	/*
1668 	 * Kprobe override only works if they are on the function entry,
1669 	 * and only if they are on the opt-in list.
1670 	 */
1671 	if (prog->kprobe_override &&
1672 	    (!trace_kprobe_on_func_entry(event->tp_event) ||
1673 	     !trace_kprobe_error_injectable(event->tp_event)))
1674 		return -EINVAL;
1675 
1676 	mutex_lock(&bpf_event_mutex);
1677 
1678 	if (event->prog)
1679 		goto unlock;
1680 
1681 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1682 	if (old_array &&
1683 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1684 		ret = -E2BIG;
1685 		goto unlock;
1686 	}
1687 
1688 	ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
1689 	if (ret < 0)
1690 		goto unlock;
1691 
1692 	/* set the new array to event->tp_event and set event->prog */
1693 	event->prog = prog;
1694 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
1695 	bpf_prog_array_free(old_array);
1696 
1697 unlock:
1698 	mutex_unlock(&bpf_event_mutex);
1699 	return ret;
1700 }
1701 
1702 void perf_event_detach_bpf_prog(struct perf_event *event)
1703 {
1704 	struct bpf_prog_array *old_array;
1705 	struct bpf_prog_array *new_array;
1706 	int ret;
1707 
1708 	mutex_lock(&bpf_event_mutex);
1709 
1710 	if (!event->prog)
1711 		goto unlock;
1712 
1713 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1714 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
1715 	if (ret == -ENOENT)
1716 		goto unlock;
1717 	if (ret < 0) {
1718 		bpf_prog_array_delete_safe(old_array, event->prog);
1719 	} else {
1720 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
1721 		bpf_prog_array_free(old_array);
1722 	}
1723 
1724 	bpf_prog_put(event->prog);
1725 	event->prog = NULL;
1726 
1727 unlock:
1728 	mutex_unlock(&bpf_event_mutex);
1729 }
1730 
1731 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1732 {
1733 	struct perf_event_query_bpf __user *uquery = info;
1734 	struct perf_event_query_bpf query = {};
1735 	struct bpf_prog_array *progs;
1736 	u32 *ids, prog_cnt, ids_len;
1737 	int ret;
1738 
1739 	if (!perfmon_capable())
1740 		return -EPERM;
1741 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
1742 		return -EINVAL;
1743 	if (copy_from_user(&query, uquery, sizeof(query)))
1744 		return -EFAULT;
1745 
1746 	ids_len = query.ids_len;
1747 	if (ids_len > BPF_TRACE_MAX_PROGS)
1748 		return -E2BIG;
1749 	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1750 	if (!ids)
1751 		return -ENOMEM;
1752 	/*
1753 	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1754 	 * is required when user only wants to check for uquery->prog_cnt.
1755 	 * There is no need to check for it since the case is handled
1756 	 * gracefully in bpf_prog_array_copy_info.
1757 	 */
1758 
1759 	mutex_lock(&bpf_event_mutex);
1760 	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
1761 	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
1762 	mutex_unlock(&bpf_event_mutex);
1763 
1764 	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
1765 	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
1766 		ret = -EFAULT;
1767 
1768 	kfree(ids);
1769 	return ret;
1770 }
1771 
1772 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
1773 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
1774 
1775 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
1776 {
1777 	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
1778 
1779 	for (; btp < __stop__bpf_raw_tp; btp++) {
1780 		if (!strcmp(btp->tp->name, name))
1781 			return btp;
1782 	}
1783 
1784 	return bpf_get_raw_tracepoint_module(name);
1785 }
1786 
1787 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
1788 {
1789 	struct module *mod;
1790 
1791 	preempt_disable();
1792 	mod = __module_address((unsigned long)btp);
1793 	module_put(mod);
1794 	preempt_enable();
1795 }
1796 
1797 static __always_inline
1798 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
1799 {
1800 	cant_sleep();
1801 	rcu_read_lock();
1802 	(void) BPF_PROG_RUN(prog, args);
1803 	rcu_read_unlock();
1804 }
1805 
1806 #define UNPACK(...)			__VA_ARGS__
1807 #define REPEAT_1(FN, DL, X, ...)	FN(X)
1808 #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
1809 #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
1810 #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
1811 #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
1812 #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
1813 #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
1814 #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
1815 #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
1816 #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
1817 #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
1818 #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
1819 #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
1820 
1821 #define SARG(X)		u64 arg##X
1822 #define COPY(X)		args[X] = arg##X
1823 
1824 #define __DL_COM	(,)
1825 #define __DL_SEM	(;)
1826 
1827 #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
1828 
1829 #define BPF_TRACE_DEFN_x(x)						\
1830 	void bpf_trace_run##x(struct bpf_prog *prog,			\
1831 			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
1832 	{								\
1833 		u64 args[x];						\
1834 		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
1835 		__bpf_trace_run(prog, args);				\
1836 	}								\
1837 	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
1838 BPF_TRACE_DEFN_x(1);
1839 BPF_TRACE_DEFN_x(2);
1840 BPF_TRACE_DEFN_x(3);
1841 BPF_TRACE_DEFN_x(4);
1842 BPF_TRACE_DEFN_x(5);
1843 BPF_TRACE_DEFN_x(6);
1844 BPF_TRACE_DEFN_x(7);
1845 BPF_TRACE_DEFN_x(8);
1846 BPF_TRACE_DEFN_x(9);
1847 BPF_TRACE_DEFN_x(10);
1848 BPF_TRACE_DEFN_x(11);
1849 BPF_TRACE_DEFN_x(12);
1850 
1851 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1852 {
1853 	struct tracepoint *tp = btp->tp;
1854 
1855 	/*
1856 	 * check that program doesn't access arguments beyond what's
1857 	 * available in this tracepoint
1858 	 */
1859 	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
1860 		return -EINVAL;
1861 
1862 	if (prog->aux->max_tp_access > btp->writable_size)
1863 		return -EINVAL;
1864 
1865 	return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog);
1866 }
1867 
1868 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1869 {
1870 	return __bpf_probe_register(btp, prog);
1871 }
1872 
1873 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1874 {
1875 	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
1876 }
1877 
1878 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
1879 			    u32 *fd_type, const char **buf,
1880 			    u64 *probe_offset, u64 *probe_addr)
1881 {
1882 	bool is_tracepoint, is_syscall_tp;
1883 	struct bpf_prog *prog;
1884 	int flags, err = 0;
1885 
1886 	prog = event->prog;
1887 	if (!prog)
1888 		return -ENOENT;
1889 
1890 	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
1891 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
1892 		return -EOPNOTSUPP;
1893 
1894 	*prog_id = prog->aux->id;
1895 	flags = event->tp_event->flags;
1896 	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
1897 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
1898 
1899 	if (is_tracepoint || is_syscall_tp) {
1900 		*buf = is_tracepoint ? event->tp_event->tp->name
1901 				     : event->tp_event->name;
1902 		*fd_type = BPF_FD_TYPE_TRACEPOINT;
1903 		*probe_offset = 0x0;
1904 		*probe_addr = 0x0;
1905 	} else {
1906 		/* kprobe/uprobe */
1907 		err = -EOPNOTSUPP;
1908 #ifdef CONFIG_KPROBE_EVENTS
1909 		if (flags & TRACE_EVENT_FL_KPROBE)
1910 			err = bpf_get_kprobe_info(event, fd_type, buf,
1911 						  probe_offset, probe_addr,
1912 						  event->attr.type == PERF_TYPE_TRACEPOINT);
1913 #endif
1914 #ifdef CONFIG_UPROBE_EVENTS
1915 		if (flags & TRACE_EVENT_FL_UPROBE)
1916 			err = bpf_get_uprobe_info(event, fd_type, buf,
1917 						  probe_offset,
1918 						  event->attr.type == PERF_TYPE_TRACEPOINT);
1919 #endif
1920 	}
1921 
1922 	return err;
1923 }
1924 
1925 static int __init send_signal_irq_work_init(void)
1926 {
1927 	int cpu;
1928 	struct send_signal_irq_work *work;
1929 
1930 	for_each_possible_cpu(cpu) {
1931 		work = per_cpu_ptr(&send_signal_work, cpu);
1932 		init_irq_work(&work->irq_work, do_bpf_send_signal);
1933 	}
1934 	return 0;
1935 }
1936 
1937 subsys_initcall(send_signal_irq_work_init);
1938 
1939 #ifdef CONFIG_MODULES
1940 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
1941 			    void *module)
1942 {
1943 	struct bpf_trace_module *btm, *tmp;
1944 	struct module *mod = module;
1945 	int ret = 0;
1946 
1947 	if (mod->num_bpf_raw_events == 0 ||
1948 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
1949 		goto out;
1950 
1951 	mutex_lock(&bpf_module_mutex);
1952 
1953 	switch (op) {
1954 	case MODULE_STATE_COMING:
1955 		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
1956 		if (btm) {
1957 			btm->module = module;
1958 			list_add(&btm->list, &bpf_trace_modules);
1959 		} else {
1960 			ret = -ENOMEM;
1961 		}
1962 		break;
1963 	case MODULE_STATE_GOING:
1964 		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
1965 			if (btm->module == module) {
1966 				list_del(&btm->list);
1967 				kfree(btm);
1968 				break;
1969 			}
1970 		}
1971 		break;
1972 	}
1973 
1974 	mutex_unlock(&bpf_module_mutex);
1975 
1976 out:
1977 	return notifier_from_errno(ret);
1978 }
1979 
1980 static struct notifier_block bpf_module_nb = {
1981 	.notifier_call = bpf_event_notify,
1982 };
1983 
1984 static int __init bpf_event_init(void)
1985 {
1986 	register_module_notifier(&bpf_module_nb);
1987 	return 0;
1988 }
1989 
1990 fs_initcall(bpf_event_init);
1991 #endif /* CONFIG_MODULES */
1992