1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/kernel.h> 6 #include <linux/types.h> 7 #include <linux/slab.h> 8 #include <linux/bpf.h> 9 #include <linux/bpf_verifier.h> 10 #include <linux/bpf_perf_event.h> 11 #include <linux/btf.h> 12 #include <linux/filter.h> 13 #include <linux/uaccess.h> 14 #include <linux/ctype.h> 15 #include <linux/kprobes.h> 16 #include <linux/spinlock.h> 17 #include <linux/syscalls.h> 18 #include <linux/error-injection.h> 19 #include <linux/btf_ids.h> 20 #include <linux/bpf_lsm.h> 21 #include <linux/fprobe.h> 22 #include <linux/bsearch.h> 23 #include <linux/sort.h> 24 #include <linux/key.h> 25 #include <linux/verification.h> 26 #include <linux/namei.h> 27 28 #include <net/bpf_sk_storage.h> 29 30 #include <uapi/linux/bpf.h> 31 #include <uapi/linux/btf.h> 32 33 #include <asm/tlb.h> 34 35 #include "trace_probe.h" 36 #include "trace.h" 37 38 #define CREATE_TRACE_POINTS 39 #include "bpf_trace.h" 40 41 #define bpf_event_rcu_dereference(p) \ 42 rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex)) 43 44 #define MAX_UPROBE_MULTI_CNT (1U << 20) 45 #define MAX_KPROBE_MULTI_CNT (1U << 20) 46 47 #ifdef CONFIG_MODULES 48 struct bpf_trace_module { 49 struct module *module; 50 struct list_head list; 51 }; 52 53 static LIST_HEAD(bpf_trace_modules); 54 static DEFINE_MUTEX(bpf_module_mutex); 55 56 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 57 { 58 struct bpf_raw_event_map *btp, *ret = NULL; 59 struct bpf_trace_module *btm; 60 unsigned int i; 61 62 mutex_lock(&bpf_module_mutex); 63 list_for_each_entry(btm, &bpf_trace_modules, list) { 64 for (i = 0; i < btm->module->num_bpf_raw_events; ++i) { 65 btp = &btm->module->bpf_raw_events[i]; 66 if (!strcmp(btp->tp->name, name)) { 67 if (try_module_get(btm->module)) 68 ret = btp; 69 goto out; 70 } 71 } 72 } 73 out: 74 mutex_unlock(&bpf_module_mutex); 75 return ret; 76 } 77 #else 78 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 79 { 80 return NULL; 81 } 82 #endif /* CONFIG_MODULES */ 83 84 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 85 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 86 87 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size, 88 u64 flags, const struct btf **btf, 89 s32 *btf_id); 90 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx); 91 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx); 92 93 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx); 94 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx); 95 96 /** 97 * trace_call_bpf - invoke BPF program 98 * @call: tracepoint event 99 * @ctx: opaque context pointer 100 * 101 * kprobe handlers execute BPF programs via this helper. 102 * Can be used from static tracepoints in the future. 103 * 104 * Return: BPF programs always return an integer which is interpreted by 105 * kprobe handler as: 106 * 0 - return from kprobe (event is filtered out) 107 * 1 - store kprobe event into ring buffer 108 * Other values are reserved and currently alias to 1 109 */ 110 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx) 111 { 112 unsigned int ret; 113 114 cant_sleep(); 115 116 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) { 117 /* 118 * since some bpf program is already running on this cpu, 119 * don't call into another bpf program (same or different) 120 * and don't send kprobe event into ring-buffer, 121 * so return zero here 122 */ 123 rcu_read_lock(); 124 bpf_prog_inc_misses_counters(rcu_dereference(call->prog_array)); 125 rcu_read_unlock(); 126 ret = 0; 127 goto out; 128 } 129 130 /* 131 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock 132 * to all call sites, we did a bpf_prog_array_valid() there to check 133 * whether call->prog_array is empty or not, which is 134 * a heuristic to speed up execution. 135 * 136 * If bpf_prog_array_valid() fetched prog_array was 137 * non-NULL, we go into trace_call_bpf() and do the actual 138 * proper rcu_dereference() under RCU lock. 139 * If it turns out that prog_array is NULL then, we bail out. 140 * For the opposite, if the bpf_prog_array_valid() fetched pointer 141 * was NULL, you'll skip the prog_array with the risk of missing 142 * out of events when it was updated in between this and the 143 * rcu_dereference() which is accepted risk. 144 */ 145 rcu_read_lock(); 146 ret = bpf_prog_run_array(rcu_dereference(call->prog_array), 147 ctx, bpf_prog_run); 148 rcu_read_unlock(); 149 150 out: 151 __this_cpu_dec(bpf_prog_active); 152 153 return ret; 154 } 155 156 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 157 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc) 158 { 159 regs_set_return_value(regs, rc); 160 override_function_with_return(regs); 161 return 0; 162 } 163 164 static const struct bpf_func_proto bpf_override_return_proto = { 165 .func = bpf_override_return, 166 .gpl_only = true, 167 .ret_type = RET_INTEGER, 168 .arg1_type = ARG_PTR_TO_CTX, 169 .arg2_type = ARG_ANYTHING, 170 }; 171 #endif 172 173 static __always_inline int 174 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr) 175 { 176 int ret; 177 178 ret = copy_from_user_nofault(dst, unsafe_ptr, size); 179 if (unlikely(ret < 0)) 180 memset(dst, 0, size); 181 return ret; 182 } 183 184 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size, 185 const void __user *, unsafe_ptr) 186 { 187 return bpf_probe_read_user_common(dst, size, unsafe_ptr); 188 } 189 190 const struct bpf_func_proto bpf_probe_read_user_proto = { 191 .func = bpf_probe_read_user, 192 .gpl_only = true, 193 .ret_type = RET_INTEGER, 194 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 195 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 196 .arg3_type = ARG_ANYTHING, 197 }; 198 199 static __always_inline int 200 bpf_probe_read_user_str_common(void *dst, u32 size, 201 const void __user *unsafe_ptr) 202 { 203 int ret; 204 205 /* 206 * NB: We rely on strncpy_from_user() not copying junk past the NUL 207 * terminator into `dst`. 208 * 209 * strncpy_from_user() does long-sized strides in the fast path. If the 210 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`, 211 * then there could be junk after the NUL in `dst`. If user takes `dst` 212 * and keys a hash map with it, then semantically identical strings can 213 * occupy multiple entries in the map. 214 */ 215 ret = strncpy_from_user_nofault(dst, unsafe_ptr, size); 216 if (unlikely(ret < 0)) 217 memset(dst, 0, size); 218 return ret; 219 } 220 221 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size, 222 const void __user *, unsafe_ptr) 223 { 224 return bpf_probe_read_user_str_common(dst, size, unsafe_ptr); 225 } 226 227 const struct bpf_func_proto bpf_probe_read_user_str_proto = { 228 .func = bpf_probe_read_user_str, 229 .gpl_only = true, 230 .ret_type = RET_INTEGER, 231 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 232 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 233 .arg3_type = ARG_ANYTHING, 234 }; 235 236 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size, 237 const void *, unsafe_ptr) 238 { 239 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr); 240 } 241 242 const struct bpf_func_proto bpf_probe_read_kernel_proto = { 243 .func = bpf_probe_read_kernel, 244 .gpl_only = true, 245 .ret_type = RET_INTEGER, 246 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 247 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 248 .arg3_type = ARG_ANYTHING, 249 }; 250 251 static __always_inline int 252 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr) 253 { 254 int ret; 255 256 /* 257 * The strncpy_from_kernel_nofault() call will likely not fill the 258 * entire buffer, but that's okay in this circumstance as we're probing 259 * arbitrary memory anyway similar to bpf_probe_read_*() and might 260 * as well probe the stack. Thus, memory is explicitly cleared 261 * only in error case, so that improper users ignoring return 262 * code altogether don't copy garbage; otherwise length of string 263 * is returned that can be used for bpf_perf_event_output() et al. 264 */ 265 ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size); 266 if (unlikely(ret < 0)) 267 memset(dst, 0, size); 268 return ret; 269 } 270 271 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size, 272 const void *, unsafe_ptr) 273 { 274 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr); 275 } 276 277 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = { 278 .func = bpf_probe_read_kernel_str, 279 .gpl_only = true, 280 .ret_type = RET_INTEGER, 281 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 282 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 283 .arg3_type = ARG_ANYTHING, 284 }; 285 286 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 287 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size, 288 const void *, unsafe_ptr) 289 { 290 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 291 return bpf_probe_read_user_common(dst, size, 292 (__force void __user *)unsafe_ptr); 293 } 294 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr); 295 } 296 297 static const struct bpf_func_proto bpf_probe_read_compat_proto = { 298 .func = bpf_probe_read_compat, 299 .gpl_only = true, 300 .ret_type = RET_INTEGER, 301 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 302 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 303 .arg3_type = ARG_ANYTHING, 304 }; 305 306 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size, 307 const void *, unsafe_ptr) 308 { 309 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 310 return bpf_probe_read_user_str_common(dst, size, 311 (__force void __user *)unsafe_ptr); 312 } 313 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr); 314 } 315 316 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = { 317 .func = bpf_probe_read_compat_str, 318 .gpl_only = true, 319 .ret_type = RET_INTEGER, 320 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 321 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 322 .arg3_type = ARG_ANYTHING, 323 }; 324 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */ 325 326 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src, 327 u32, size) 328 { 329 /* 330 * Ensure we're in user context which is safe for the helper to 331 * run. This helper has no business in a kthread. 332 * 333 * access_ok() should prevent writing to non-user memory, but in 334 * some situations (nommu, temporary switch, etc) access_ok() does 335 * not provide enough validation, hence the check on KERNEL_DS. 336 * 337 * nmi_uaccess_okay() ensures the probe is not run in an interim 338 * state, when the task or mm are switched. This is specifically 339 * required to prevent the use of temporary mm. 340 */ 341 342 if (unlikely(in_interrupt() || 343 current->flags & (PF_KTHREAD | PF_EXITING))) 344 return -EPERM; 345 if (unlikely(!nmi_uaccess_okay())) 346 return -EPERM; 347 348 return copy_to_user_nofault(unsafe_ptr, src, size); 349 } 350 351 static const struct bpf_func_proto bpf_probe_write_user_proto = { 352 .func = bpf_probe_write_user, 353 .gpl_only = true, 354 .ret_type = RET_INTEGER, 355 .arg1_type = ARG_ANYTHING, 356 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 357 .arg3_type = ARG_CONST_SIZE, 358 }; 359 360 #define MAX_TRACE_PRINTK_VARARGS 3 361 #define BPF_TRACE_PRINTK_SIZE 1024 362 363 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1, 364 u64, arg2, u64, arg3) 365 { 366 u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 }; 367 struct bpf_bprintf_data data = { 368 .get_bin_args = true, 369 .get_buf = true, 370 }; 371 int ret; 372 373 ret = bpf_bprintf_prepare(fmt, fmt_size, args, 374 MAX_TRACE_PRINTK_VARARGS, &data); 375 if (ret < 0) 376 return ret; 377 378 ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args); 379 380 trace_bpf_trace_printk(data.buf); 381 382 bpf_bprintf_cleanup(&data); 383 384 return ret; 385 } 386 387 static const struct bpf_func_proto bpf_trace_printk_proto = { 388 .func = bpf_trace_printk, 389 .gpl_only = true, 390 .ret_type = RET_INTEGER, 391 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 392 .arg2_type = ARG_CONST_SIZE, 393 }; 394 395 static void __set_printk_clr_event(struct work_struct *work) 396 { 397 /* 398 * This program might be calling bpf_trace_printk, 399 * so enable the associated bpf_trace/bpf_trace_printk event. 400 * Repeat this each time as it is possible a user has 401 * disabled bpf_trace_printk events. By loading a program 402 * calling bpf_trace_printk() however the user has expressed 403 * the intent to see such events. 404 */ 405 if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1)) 406 pr_warn_ratelimited("could not enable bpf_trace_printk events"); 407 } 408 static DECLARE_WORK(set_printk_work, __set_printk_clr_event); 409 410 const struct bpf_func_proto *bpf_get_trace_printk_proto(void) 411 { 412 schedule_work(&set_printk_work); 413 return &bpf_trace_printk_proto; 414 } 415 416 BPF_CALL_4(bpf_trace_vprintk, char *, fmt, u32, fmt_size, const void *, args, 417 u32, data_len) 418 { 419 struct bpf_bprintf_data data = { 420 .get_bin_args = true, 421 .get_buf = true, 422 }; 423 int ret, num_args; 424 425 if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 || 426 (data_len && !args)) 427 return -EINVAL; 428 num_args = data_len / 8; 429 430 ret = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data); 431 if (ret < 0) 432 return ret; 433 434 ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args); 435 436 trace_bpf_trace_printk(data.buf); 437 438 bpf_bprintf_cleanup(&data); 439 440 return ret; 441 } 442 443 static const struct bpf_func_proto bpf_trace_vprintk_proto = { 444 .func = bpf_trace_vprintk, 445 .gpl_only = true, 446 .ret_type = RET_INTEGER, 447 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 448 .arg2_type = ARG_CONST_SIZE, 449 .arg3_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 450 .arg4_type = ARG_CONST_SIZE_OR_ZERO, 451 }; 452 453 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void) 454 { 455 schedule_work(&set_printk_work); 456 return &bpf_trace_vprintk_proto; 457 } 458 459 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size, 460 const void *, args, u32, data_len) 461 { 462 struct bpf_bprintf_data data = { 463 .get_bin_args = true, 464 }; 465 int err, num_args; 466 467 if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 || 468 (data_len && !args)) 469 return -EINVAL; 470 num_args = data_len / 8; 471 472 err = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data); 473 if (err < 0) 474 return err; 475 476 seq_bprintf(m, fmt, data.bin_args); 477 478 bpf_bprintf_cleanup(&data); 479 480 return seq_has_overflowed(m) ? -EOVERFLOW : 0; 481 } 482 483 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file) 484 485 static const struct bpf_func_proto bpf_seq_printf_proto = { 486 .func = bpf_seq_printf, 487 .gpl_only = true, 488 .ret_type = RET_INTEGER, 489 .arg1_type = ARG_PTR_TO_BTF_ID, 490 .arg1_btf_id = &btf_seq_file_ids[0], 491 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 492 .arg3_type = ARG_CONST_SIZE, 493 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 494 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 495 }; 496 497 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len) 498 { 499 return seq_write(m, data, len) ? -EOVERFLOW : 0; 500 } 501 502 static const struct bpf_func_proto bpf_seq_write_proto = { 503 .func = bpf_seq_write, 504 .gpl_only = true, 505 .ret_type = RET_INTEGER, 506 .arg1_type = ARG_PTR_TO_BTF_ID, 507 .arg1_btf_id = &btf_seq_file_ids[0], 508 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 509 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 510 }; 511 512 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr, 513 u32, btf_ptr_size, u64, flags) 514 { 515 const struct btf *btf; 516 s32 btf_id; 517 int ret; 518 519 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id); 520 if (ret) 521 return ret; 522 523 return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags); 524 } 525 526 static const struct bpf_func_proto bpf_seq_printf_btf_proto = { 527 .func = bpf_seq_printf_btf, 528 .gpl_only = true, 529 .ret_type = RET_INTEGER, 530 .arg1_type = ARG_PTR_TO_BTF_ID, 531 .arg1_btf_id = &btf_seq_file_ids[0], 532 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 533 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 534 .arg4_type = ARG_ANYTHING, 535 }; 536 537 static __always_inline int 538 get_map_perf_counter(struct bpf_map *map, u64 flags, 539 u64 *value, u64 *enabled, u64 *running) 540 { 541 struct bpf_array *array = container_of(map, struct bpf_array, map); 542 unsigned int cpu = smp_processor_id(); 543 u64 index = flags & BPF_F_INDEX_MASK; 544 struct bpf_event_entry *ee; 545 546 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 547 return -EINVAL; 548 if (index == BPF_F_CURRENT_CPU) 549 index = cpu; 550 if (unlikely(index >= array->map.max_entries)) 551 return -E2BIG; 552 553 ee = READ_ONCE(array->ptrs[index]); 554 if (!ee) 555 return -ENOENT; 556 557 return perf_event_read_local(ee->event, value, enabled, running); 558 } 559 560 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags) 561 { 562 u64 value = 0; 563 int err; 564 565 err = get_map_perf_counter(map, flags, &value, NULL, NULL); 566 /* 567 * this api is ugly since we miss [-22..-2] range of valid 568 * counter values, but that's uapi 569 */ 570 if (err) 571 return err; 572 return value; 573 } 574 575 const struct bpf_func_proto bpf_perf_event_read_proto = { 576 .func = bpf_perf_event_read, 577 .gpl_only = true, 578 .ret_type = RET_INTEGER, 579 .arg1_type = ARG_CONST_MAP_PTR, 580 .arg2_type = ARG_ANYTHING, 581 }; 582 583 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags, 584 struct bpf_perf_event_value *, buf, u32, size) 585 { 586 int err = -EINVAL; 587 588 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 589 goto clear; 590 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled, 591 &buf->running); 592 if (unlikely(err)) 593 goto clear; 594 return 0; 595 clear: 596 memset(buf, 0, size); 597 return err; 598 } 599 600 static const struct bpf_func_proto bpf_perf_event_read_value_proto = { 601 .func = bpf_perf_event_read_value, 602 .gpl_only = true, 603 .ret_type = RET_INTEGER, 604 .arg1_type = ARG_CONST_MAP_PTR, 605 .arg2_type = ARG_ANYTHING, 606 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 607 .arg4_type = ARG_CONST_SIZE, 608 }; 609 610 const struct bpf_func_proto *bpf_get_perf_event_read_value_proto(void) 611 { 612 return &bpf_perf_event_read_value_proto; 613 } 614 615 static __always_inline u64 616 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map, 617 u64 flags, struct perf_raw_record *raw, 618 struct perf_sample_data *sd) 619 { 620 struct bpf_array *array = container_of(map, struct bpf_array, map); 621 unsigned int cpu = smp_processor_id(); 622 u64 index = flags & BPF_F_INDEX_MASK; 623 struct bpf_event_entry *ee; 624 struct perf_event *event; 625 626 if (index == BPF_F_CURRENT_CPU) 627 index = cpu; 628 if (unlikely(index >= array->map.max_entries)) 629 return -E2BIG; 630 631 ee = READ_ONCE(array->ptrs[index]); 632 if (!ee) 633 return -ENOENT; 634 635 event = ee->event; 636 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE || 637 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT)) 638 return -EINVAL; 639 640 if (unlikely(event->oncpu != cpu)) 641 return -EOPNOTSUPP; 642 643 perf_sample_save_raw_data(sd, event, raw); 644 645 return perf_event_output(event, sd, regs); 646 } 647 648 /* 649 * Support executing tracepoints in normal, irq, and nmi context that each call 650 * bpf_perf_event_output 651 */ 652 struct bpf_trace_sample_data { 653 struct perf_sample_data sds[3]; 654 }; 655 656 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds); 657 static DEFINE_PER_CPU(int, bpf_trace_nest_level); 658 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map, 659 u64, flags, void *, data, u64, size) 660 { 661 struct bpf_trace_sample_data *sds; 662 struct perf_raw_record raw = { 663 .frag = { 664 .size = size, 665 .data = data, 666 }, 667 }; 668 struct perf_sample_data *sd; 669 int nest_level, err; 670 671 preempt_disable(); 672 sds = this_cpu_ptr(&bpf_trace_sds); 673 nest_level = this_cpu_inc_return(bpf_trace_nest_level); 674 675 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) { 676 err = -EBUSY; 677 goto out; 678 } 679 680 sd = &sds->sds[nest_level - 1]; 681 682 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) { 683 err = -EINVAL; 684 goto out; 685 } 686 687 perf_sample_data_init(sd, 0, 0); 688 689 err = __bpf_perf_event_output(regs, map, flags, &raw, sd); 690 out: 691 this_cpu_dec(bpf_trace_nest_level); 692 preempt_enable(); 693 return err; 694 } 695 696 static const struct bpf_func_proto bpf_perf_event_output_proto = { 697 .func = bpf_perf_event_output, 698 .gpl_only = true, 699 .ret_type = RET_INTEGER, 700 .arg1_type = ARG_PTR_TO_CTX, 701 .arg2_type = ARG_CONST_MAP_PTR, 702 .arg3_type = ARG_ANYTHING, 703 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 704 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 705 }; 706 707 static DEFINE_PER_CPU(int, bpf_event_output_nest_level); 708 struct bpf_nested_pt_regs { 709 struct pt_regs regs[3]; 710 }; 711 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs); 712 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds); 713 714 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 715 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) 716 { 717 struct perf_raw_frag frag = { 718 .copy = ctx_copy, 719 .size = ctx_size, 720 .data = ctx, 721 }; 722 struct perf_raw_record raw = { 723 .frag = { 724 { 725 .next = ctx_size ? &frag : NULL, 726 }, 727 .size = meta_size, 728 .data = meta, 729 }, 730 }; 731 struct perf_sample_data *sd; 732 struct pt_regs *regs; 733 int nest_level; 734 u64 ret; 735 736 preempt_disable(); 737 nest_level = this_cpu_inc_return(bpf_event_output_nest_level); 738 739 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) { 740 ret = -EBUSY; 741 goto out; 742 } 743 sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]); 744 regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]); 745 746 perf_fetch_caller_regs(regs); 747 perf_sample_data_init(sd, 0, 0); 748 749 ret = __bpf_perf_event_output(regs, map, flags, &raw, sd); 750 out: 751 this_cpu_dec(bpf_event_output_nest_level); 752 preempt_enable(); 753 return ret; 754 } 755 756 BPF_CALL_0(bpf_get_current_task) 757 { 758 return (long) current; 759 } 760 761 const struct bpf_func_proto bpf_get_current_task_proto = { 762 .func = bpf_get_current_task, 763 .gpl_only = true, 764 .ret_type = RET_INTEGER, 765 }; 766 767 BPF_CALL_0(bpf_get_current_task_btf) 768 { 769 return (unsigned long) current; 770 } 771 772 const struct bpf_func_proto bpf_get_current_task_btf_proto = { 773 .func = bpf_get_current_task_btf, 774 .gpl_only = true, 775 .ret_type = RET_PTR_TO_BTF_ID_TRUSTED, 776 .ret_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], 777 }; 778 779 BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task) 780 { 781 return (unsigned long) task_pt_regs(task); 782 } 783 784 BTF_ID_LIST_SINGLE(bpf_task_pt_regs_ids, struct, pt_regs) 785 786 const struct bpf_func_proto bpf_task_pt_regs_proto = { 787 .func = bpf_task_pt_regs, 788 .gpl_only = true, 789 .arg1_type = ARG_PTR_TO_BTF_ID, 790 .arg1_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], 791 .ret_type = RET_PTR_TO_BTF_ID, 792 .ret_btf_id = &bpf_task_pt_regs_ids[0], 793 }; 794 795 struct send_signal_irq_work { 796 struct irq_work irq_work; 797 struct task_struct *task; 798 u32 sig; 799 enum pid_type type; 800 bool has_siginfo; 801 struct kernel_siginfo info; 802 }; 803 804 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work); 805 806 static void do_bpf_send_signal(struct irq_work *entry) 807 { 808 struct send_signal_irq_work *work; 809 struct kernel_siginfo *siginfo; 810 811 work = container_of(entry, struct send_signal_irq_work, irq_work); 812 siginfo = work->has_siginfo ? &work->info : SEND_SIG_PRIV; 813 814 group_send_sig_info(work->sig, siginfo, work->task, work->type); 815 put_task_struct(work->task); 816 } 817 818 static int bpf_send_signal_common(u32 sig, enum pid_type type, struct task_struct *task, u64 value) 819 { 820 struct send_signal_irq_work *work = NULL; 821 struct kernel_siginfo info; 822 struct kernel_siginfo *siginfo; 823 824 if (!task) { 825 task = current; 826 siginfo = SEND_SIG_PRIV; 827 } else { 828 clear_siginfo(&info); 829 info.si_signo = sig; 830 info.si_errno = 0; 831 info.si_code = SI_KERNEL; 832 info.si_pid = 0; 833 info.si_uid = 0; 834 info.si_value.sival_ptr = (void *)(unsigned long)value; 835 siginfo = &info; 836 } 837 838 /* Similar to bpf_probe_write_user, task needs to be 839 * in a sound condition and kernel memory access be 840 * permitted in order to send signal to the current 841 * task. 842 */ 843 if (unlikely(task->flags & (PF_KTHREAD | PF_EXITING))) 844 return -EPERM; 845 if (unlikely(!nmi_uaccess_okay())) 846 return -EPERM; 847 /* Task should not be pid=1 to avoid kernel panic. */ 848 if (unlikely(is_global_init(task))) 849 return -EPERM; 850 851 if (preempt_count() != 0 || irqs_disabled()) { 852 /* Do an early check on signal validity. Otherwise, 853 * the error is lost in deferred irq_work. 854 */ 855 if (unlikely(!valid_signal(sig))) 856 return -EINVAL; 857 858 work = this_cpu_ptr(&send_signal_work); 859 if (irq_work_is_busy(&work->irq_work)) 860 return -EBUSY; 861 862 /* Add the current task, which is the target of sending signal, 863 * to the irq_work. The current task may change when queued 864 * irq works get executed. 865 */ 866 work->task = get_task_struct(task); 867 work->has_siginfo = siginfo == &info; 868 if (work->has_siginfo) 869 copy_siginfo(&work->info, &info); 870 work->sig = sig; 871 work->type = type; 872 irq_work_queue(&work->irq_work); 873 return 0; 874 } 875 876 return group_send_sig_info(sig, siginfo, task, type); 877 } 878 879 BPF_CALL_1(bpf_send_signal, u32, sig) 880 { 881 return bpf_send_signal_common(sig, PIDTYPE_TGID, NULL, 0); 882 } 883 884 const struct bpf_func_proto bpf_send_signal_proto = { 885 .func = bpf_send_signal, 886 .gpl_only = false, 887 .ret_type = RET_INTEGER, 888 .arg1_type = ARG_ANYTHING, 889 }; 890 891 BPF_CALL_1(bpf_send_signal_thread, u32, sig) 892 { 893 return bpf_send_signal_common(sig, PIDTYPE_PID, NULL, 0); 894 } 895 896 const struct bpf_func_proto bpf_send_signal_thread_proto = { 897 .func = bpf_send_signal_thread, 898 .gpl_only = false, 899 .ret_type = RET_INTEGER, 900 .arg1_type = ARG_ANYTHING, 901 }; 902 903 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz) 904 { 905 struct path copy; 906 long len; 907 char *p; 908 909 if (!sz) 910 return 0; 911 912 /* 913 * The path pointer is verified as trusted and safe to use, 914 * but let's double check it's valid anyway to workaround 915 * potentially broken verifier. 916 */ 917 len = copy_from_kernel_nofault(©, path, sizeof(*path)); 918 if (len < 0) 919 return len; 920 921 p = d_path(©, buf, sz); 922 if (IS_ERR(p)) { 923 len = PTR_ERR(p); 924 } else { 925 len = buf + sz - p; 926 memmove(buf, p, len); 927 } 928 929 return len; 930 } 931 932 BTF_SET_START(btf_allowlist_d_path) 933 #ifdef CONFIG_SECURITY 934 BTF_ID(func, security_file_permission) 935 BTF_ID(func, security_inode_getattr) 936 BTF_ID(func, security_file_open) 937 #endif 938 #ifdef CONFIG_SECURITY_PATH 939 BTF_ID(func, security_path_truncate) 940 #endif 941 BTF_ID(func, vfs_truncate) 942 BTF_ID(func, vfs_fallocate) 943 BTF_ID(func, dentry_open) 944 BTF_ID(func, vfs_getattr) 945 BTF_ID(func, filp_close) 946 BTF_SET_END(btf_allowlist_d_path) 947 948 static bool bpf_d_path_allowed(const struct bpf_prog *prog) 949 { 950 if (prog->type == BPF_PROG_TYPE_TRACING && 951 prog->expected_attach_type == BPF_TRACE_ITER) 952 return true; 953 954 if (prog->type == BPF_PROG_TYPE_LSM) 955 return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id); 956 957 return btf_id_set_contains(&btf_allowlist_d_path, 958 prog->aux->attach_btf_id); 959 } 960 961 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path) 962 963 static const struct bpf_func_proto bpf_d_path_proto = { 964 .func = bpf_d_path, 965 .gpl_only = false, 966 .ret_type = RET_INTEGER, 967 .arg1_type = ARG_PTR_TO_BTF_ID, 968 .arg1_btf_id = &bpf_d_path_btf_ids[0], 969 .arg2_type = ARG_PTR_TO_MEM, 970 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 971 .allowed = bpf_d_path_allowed, 972 }; 973 974 #define BTF_F_ALL (BTF_F_COMPACT | BTF_F_NONAME | \ 975 BTF_F_PTR_RAW | BTF_F_ZERO) 976 977 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size, 978 u64 flags, const struct btf **btf, 979 s32 *btf_id) 980 { 981 const struct btf_type *t; 982 983 if (unlikely(flags & ~(BTF_F_ALL))) 984 return -EINVAL; 985 986 if (btf_ptr_size != sizeof(struct btf_ptr)) 987 return -EINVAL; 988 989 *btf = bpf_get_btf_vmlinux(); 990 991 if (IS_ERR_OR_NULL(*btf)) 992 return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL; 993 994 if (ptr->type_id > 0) 995 *btf_id = ptr->type_id; 996 else 997 return -EINVAL; 998 999 if (*btf_id > 0) 1000 t = btf_type_by_id(*btf, *btf_id); 1001 if (*btf_id <= 0 || !t) 1002 return -ENOENT; 1003 1004 return 0; 1005 } 1006 1007 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr, 1008 u32, btf_ptr_size, u64, flags) 1009 { 1010 const struct btf *btf; 1011 s32 btf_id; 1012 int ret; 1013 1014 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id); 1015 if (ret) 1016 return ret; 1017 1018 return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size, 1019 flags); 1020 } 1021 1022 const struct bpf_func_proto bpf_snprintf_btf_proto = { 1023 .func = bpf_snprintf_btf, 1024 .gpl_only = false, 1025 .ret_type = RET_INTEGER, 1026 .arg1_type = ARG_PTR_TO_MEM, 1027 .arg2_type = ARG_CONST_SIZE, 1028 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1029 .arg4_type = ARG_CONST_SIZE, 1030 .arg5_type = ARG_ANYTHING, 1031 }; 1032 1033 BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx) 1034 { 1035 /* This helper call is inlined by verifier. */ 1036 return ((u64 *)ctx)[-2]; 1037 } 1038 1039 static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = { 1040 .func = bpf_get_func_ip_tracing, 1041 .gpl_only = true, 1042 .ret_type = RET_INTEGER, 1043 .arg1_type = ARG_PTR_TO_CTX, 1044 }; 1045 1046 static inline unsigned long get_entry_ip(unsigned long fentry_ip) 1047 { 1048 #ifdef CONFIG_X86_KERNEL_IBT 1049 if (is_endbr((void *)(fentry_ip - ENDBR_INSN_SIZE))) 1050 fentry_ip -= ENDBR_INSN_SIZE; 1051 #endif 1052 return fentry_ip; 1053 } 1054 1055 BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs) 1056 { 1057 struct bpf_trace_run_ctx *run_ctx __maybe_unused; 1058 struct kprobe *kp; 1059 1060 #ifdef CONFIG_UPROBES 1061 run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx); 1062 if (run_ctx->is_uprobe) 1063 return ((struct uprobe_dispatch_data *)current->utask->vaddr)->bp_addr; 1064 #endif 1065 1066 kp = kprobe_running(); 1067 1068 if (!kp || !(kp->flags & KPROBE_FLAG_ON_FUNC_ENTRY)) 1069 return 0; 1070 1071 return get_entry_ip((uintptr_t)kp->addr); 1072 } 1073 1074 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = { 1075 .func = bpf_get_func_ip_kprobe, 1076 .gpl_only = true, 1077 .ret_type = RET_INTEGER, 1078 .arg1_type = ARG_PTR_TO_CTX, 1079 }; 1080 1081 BPF_CALL_1(bpf_get_func_ip_kprobe_multi, struct pt_regs *, regs) 1082 { 1083 return bpf_kprobe_multi_entry_ip(current->bpf_ctx); 1084 } 1085 1086 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe_multi = { 1087 .func = bpf_get_func_ip_kprobe_multi, 1088 .gpl_only = false, 1089 .ret_type = RET_INTEGER, 1090 .arg1_type = ARG_PTR_TO_CTX, 1091 }; 1092 1093 BPF_CALL_1(bpf_get_attach_cookie_kprobe_multi, struct pt_regs *, regs) 1094 { 1095 return bpf_kprobe_multi_cookie(current->bpf_ctx); 1096 } 1097 1098 static const struct bpf_func_proto bpf_get_attach_cookie_proto_kmulti = { 1099 .func = bpf_get_attach_cookie_kprobe_multi, 1100 .gpl_only = false, 1101 .ret_type = RET_INTEGER, 1102 .arg1_type = ARG_PTR_TO_CTX, 1103 }; 1104 1105 BPF_CALL_1(bpf_get_func_ip_uprobe_multi, struct pt_regs *, regs) 1106 { 1107 return bpf_uprobe_multi_entry_ip(current->bpf_ctx); 1108 } 1109 1110 static const struct bpf_func_proto bpf_get_func_ip_proto_uprobe_multi = { 1111 .func = bpf_get_func_ip_uprobe_multi, 1112 .gpl_only = false, 1113 .ret_type = RET_INTEGER, 1114 .arg1_type = ARG_PTR_TO_CTX, 1115 }; 1116 1117 BPF_CALL_1(bpf_get_attach_cookie_uprobe_multi, struct pt_regs *, regs) 1118 { 1119 return bpf_uprobe_multi_cookie(current->bpf_ctx); 1120 } 1121 1122 static const struct bpf_func_proto bpf_get_attach_cookie_proto_umulti = { 1123 .func = bpf_get_attach_cookie_uprobe_multi, 1124 .gpl_only = false, 1125 .ret_type = RET_INTEGER, 1126 .arg1_type = ARG_PTR_TO_CTX, 1127 }; 1128 1129 BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx) 1130 { 1131 struct bpf_trace_run_ctx *run_ctx; 1132 1133 run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx); 1134 return run_ctx->bpf_cookie; 1135 } 1136 1137 static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = { 1138 .func = bpf_get_attach_cookie_trace, 1139 .gpl_only = false, 1140 .ret_type = RET_INTEGER, 1141 .arg1_type = ARG_PTR_TO_CTX, 1142 }; 1143 1144 BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx) 1145 { 1146 return ctx->event->bpf_cookie; 1147 } 1148 1149 static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = { 1150 .func = bpf_get_attach_cookie_pe, 1151 .gpl_only = false, 1152 .ret_type = RET_INTEGER, 1153 .arg1_type = ARG_PTR_TO_CTX, 1154 }; 1155 1156 BPF_CALL_1(bpf_get_attach_cookie_tracing, void *, ctx) 1157 { 1158 struct bpf_trace_run_ctx *run_ctx; 1159 1160 run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx); 1161 return run_ctx->bpf_cookie; 1162 } 1163 1164 static const struct bpf_func_proto bpf_get_attach_cookie_proto_tracing = { 1165 .func = bpf_get_attach_cookie_tracing, 1166 .gpl_only = false, 1167 .ret_type = RET_INTEGER, 1168 .arg1_type = ARG_PTR_TO_CTX, 1169 }; 1170 1171 BPF_CALL_3(bpf_get_branch_snapshot, void *, buf, u32, size, u64, flags) 1172 { 1173 static const u32 br_entry_size = sizeof(struct perf_branch_entry); 1174 u32 entry_cnt = size / br_entry_size; 1175 1176 entry_cnt = static_call(perf_snapshot_branch_stack)(buf, entry_cnt); 1177 1178 if (unlikely(flags)) 1179 return -EINVAL; 1180 1181 if (!entry_cnt) 1182 return -ENOENT; 1183 1184 return entry_cnt * br_entry_size; 1185 } 1186 1187 const struct bpf_func_proto bpf_get_branch_snapshot_proto = { 1188 .func = bpf_get_branch_snapshot, 1189 .gpl_only = true, 1190 .ret_type = RET_INTEGER, 1191 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1192 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1193 }; 1194 1195 BPF_CALL_3(get_func_arg, void *, ctx, u32, n, u64 *, value) 1196 { 1197 /* This helper call is inlined by verifier. */ 1198 u64 nr_args = ((u64 *)ctx)[-1]; 1199 1200 if ((u64) n >= nr_args) 1201 return -EINVAL; 1202 *value = ((u64 *)ctx)[n]; 1203 return 0; 1204 } 1205 1206 static const struct bpf_func_proto bpf_get_func_arg_proto = { 1207 .func = get_func_arg, 1208 .ret_type = RET_INTEGER, 1209 .arg1_type = ARG_PTR_TO_CTX, 1210 .arg2_type = ARG_ANYTHING, 1211 .arg3_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED, 1212 .arg3_size = sizeof(u64), 1213 }; 1214 1215 BPF_CALL_2(get_func_ret, void *, ctx, u64 *, value) 1216 { 1217 /* This helper call is inlined by verifier. */ 1218 u64 nr_args = ((u64 *)ctx)[-1]; 1219 1220 *value = ((u64 *)ctx)[nr_args]; 1221 return 0; 1222 } 1223 1224 static const struct bpf_func_proto bpf_get_func_ret_proto = { 1225 .func = get_func_ret, 1226 .ret_type = RET_INTEGER, 1227 .arg1_type = ARG_PTR_TO_CTX, 1228 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED, 1229 .arg2_size = sizeof(u64), 1230 }; 1231 1232 BPF_CALL_1(get_func_arg_cnt, void *, ctx) 1233 { 1234 /* This helper call is inlined by verifier. */ 1235 return ((u64 *)ctx)[-1]; 1236 } 1237 1238 static const struct bpf_func_proto bpf_get_func_arg_cnt_proto = { 1239 .func = get_func_arg_cnt, 1240 .ret_type = RET_INTEGER, 1241 .arg1_type = ARG_PTR_TO_CTX, 1242 }; 1243 1244 #ifdef CONFIG_KEYS 1245 __bpf_kfunc_start_defs(); 1246 1247 /** 1248 * bpf_lookup_user_key - lookup a key by its serial 1249 * @serial: key handle serial number 1250 * @flags: lookup-specific flags 1251 * 1252 * Search a key with a given *serial* and the provided *flags*. 1253 * If found, increment the reference count of the key by one, and 1254 * return it in the bpf_key structure. 1255 * 1256 * The bpf_key structure must be passed to bpf_key_put() when done 1257 * with it, so that the key reference count is decremented and the 1258 * bpf_key structure is freed. 1259 * 1260 * Permission checks are deferred to the time the key is used by 1261 * one of the available key-specific kfuncs. 1262 * 1263 * Set *flags* with KEY_LOOKUP_CREATE, to attempt creating a requested 1264 * special keyring (e.g. session keyring), if it doesn't yet exist. 1265 * Set *flags* with KEY_LOOKUP_PARTIAL, to lookup a key without waiting 1266 * for the key construction, and to retrieve uninstantiated keys (keys 1267 * without data attached to them). 1268 * 1269 * Return: a bpf_key pointer with a valid key pointer if the key is found, a 1270 * NULL pointer otherwise. 1271 */ 1272 __bpf_kfunc struct bpf_key *bpf_lookup_user_key(s32 serial, u64 flags) 1273 { 1274 key_ref_t key_ref; 1275 struct bpf_key *bkey; 1276 1277 if (flags & ~KEY_LOOKUP_ALL) 1278 return NULL; 1279 1280 /* 1281 * Permission check is deferred until the key is used, as the 1282 * intent of the caller is unknown here. 1283 */ 1284 key_ref = lookup_user_key(serial, flags, KEY_DEFER_PERM_CHECK); 1285 if (IS_ERR(key_ref)) 1286 return NULL; 1287 1288 bkey = kmalloc(sizeof(*bkey), GFP_KERNEL); 1289 if (!bkey) { 1290 key_put(key_ref_to_ptr(key_ref)); 1291 return NULL; 1292 } 1293 1294 bkey->key = key_ref_to_ptr(key_ref); 1295 bkey->has_ref = true; 1296 1297 return bkey; 1298 } 1299 1300 /** 1301 * bpf_lookup_system_key - lookup a key by a system-defined ID 1302 * @id: key ID 1303 * 1304 * Obtain a bpf_key structure with a key pointer set to the passed key ID. 1305 * The key pointer is marked as invalid, to prevent bpf_key_put() from 1306 * attempting to decrement the key reference count on that pointer. The key 1307 * pointer set in such way is currently understood only by 1308 * verify_pkcs7_signature(). 1309 * 1310 * Set *id* to one of the values defined in include/linux/verification.h: 1311 * 0 for the primary keyring (immutable keyring of system keys); 1312 * VERIFY_USE_SECONDARY_KEYRING for both the primary and secondary keyring 1313 * (where keys can be added only if they are vouched for by existing keys 1314 * in those keyrings); VERIFY_USE_PLATFORM_KEYRING for the platform 1315 * keyring (primarily used by the integrity subsystem to verify a kexec'ed 1316 * kerned image and, possibly, the initramfs signature). 1317 * 1318 * Return: a bpf_key pointer with an invalid key pointer set from the 1319 * pre-determined ID on success, a NULL pointer otherwise 1320 */ 1321 __bpf_kfunc struct bpf_key *bpf_lookup_system_key(u64 id) 1322 { 1323 struct bpf_key *bkey; 1324 1325 if (system_keyring_id_check(id) < 0) 1326 return NULL; 1327 1328 bkey = kmalloc(sizeof(*bkey), GFP_ATOMIC); 1329 if (!bkey) 1330 return NULL; 1331 1332 bkey->key = (struct key *)(unsigned long)id; 1333 bkey->has_ref = false; 1334 1335 return bkey; 1336 } 1337 1338 /** 1339 * bpf_key_put - decrement key reference count if key is valid and free bpf_key 1340 * @bkey: bpf_key structure 1341 * 1342 * Decrement the reference count of the key inside *bkey*, if the pointer 1343 * is valid, and free *bkey*. 1344 */ 1345 __bpf_kfunc void bpf_key_put(struct bpf_key *bkey) 1346 { 1347 if (bkey->has_ref) 1348 key_put(bkey->key); 1349 1350 kfree(bkey); 1351 } 1352 1353 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION 1354 /** 1355 * bpf_verify_pkcs7_signature - verify a PKCS#7 signature 1356 * @data_p: data to verify 1357 * @sig_p: signature of the data 1358 * @trusted_keyring: keyring with keys trusted for signature verification 1359 * 1360 * Verify the PKCS#7 signature *sig_ptr* against the supplied *data_ptr* 1361 * with keys in a keyring referenced by *trusted_keyring*. 1362 * 1363 * Return: 0 on success, a negative value on error. 1364 */ 1365 __bpf_kfunc int bpf_verify_pkcs7_signature(struct bpf_dynptr *data_p, 1366 struct bpf_dynptr *sig_p, 1367 struct bpf_key *trusted_keyring) 1368 { 1369 struct bpf_dynptr_kern *data_ptr = (struct bpf_dynptr_kern *)data_p; 1370 struct bpf_dynptr_kern *sig_ptr = (struct bpf_dynptr_kern *)sig_p; 1371 const void *data, *sig; 1372 u32 data_len, sig_len; 1373 int ret; 1374 1375 if (trusted_keyring->has_ref) { 1376 /* 1377 * Do the permission check deferred in bpf_lookup_user_key(). 1378 * See bpf_lookup_user_key() for more details. 1379 * 1380 * A call to key_task_permission() here would be redundant, as 1381 * it is already done by keyring_search() called by 1382 * find_asymmetric_key(). 1383 */ 1384 ret = key_validate(trusted_keyring->key); 1385 if (ret < 0) 1386 return ret; 1387 } 1388 1389 data_len = __bpf_dynptr_size(data_ptr); 1390 data = __bpf_dynptr_data(data_ptr, data_len); 1391 sig_len = __bpf_dynptr_size(sig_ptr); 1392 sig = __bpf_dynptr_data(sig_ptr, sig_len); 1393 1394 return verify_pkcs7_signature(data, data_len, sig, sig_len, 1395 trusted_keyring->key, 1396 VERIFYING_UNSPECIFIED_SIGNATURE, NULL, 1397 NULL); 1398 } 1399 #endif /* CONFIG_SYSTEM_DATA_VERIFICATION */ 1400 1401 __bpf_kfunc_end_defs(); 1402 1403 BTF_KFUNCS_START(key_sig_kfunc_set) 1404 BTF_ID_FLAGS(func, bpf_lookup_user_key, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE) 1405 BTF_ID_FLAGS(func, bpf_lookup_system_key, KF_ACQUIRE | KF_RET_NULL) 1406 BTF_ID_FLAGS(func, bpf_key_put, KF_RELEASE) 1407 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION 1408 BTF_ID_FLAGS(func, bpf_verify_pkcs7_signature, KF_SLEEPABLE) 1409 #endif 1410 BTF_KFUNCS_END(key_sig_kfunc_set) 1411 1412 static const struct btf_kfunc_id_set bpf_key_sig_kfunc_set = { 1413 .owner = THIS_MODULE, 1414 .set = &key_sig_kfunc_set, 1415 }; 1416 1417 static int __init bpf_key_sig_kfuncs_init(void) 1418 { 1419 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 1420 &bpf_key_sig_kfunc_set); 1421 } 1422 1423 late_initcall(bpf_key_sig_kfuncs_init); 1424 #endif /* CONFIG_KEYS */ 1425 1426 static const struct bpf_func_proto * 1427 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1428 { 1429 const struct bpf_func_proto *func_proto; 1430 1431 switch (func_id) { 1432 case BPF_FUNC_get_smp_processor_id: 1433 return &bpf_get_smp_processor_id_proto; 1434 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 1435 case BPF_FUNC_probe_read: 1436 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1437 NULL : &bpf_probe_read_compat_proto; 1438 case BPF_FUNC_probe_read_str: 1439 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1440 NULL : &bpf_probe_read_compat_str_proto; 1441 #endif 1442 case BPF_FUNC_get_func_ip: 1443 return &bpf_get_func_ip_proto_tracing; 1444 default: 1445 break; 1446 } 1447 1448 func_proto = bpf_base_func_proto(func_id, prog); 1449 if (func_proto) 1450 return func_proto; 1451 1452 if (!bpf_token_capable(prog->aux->token, CAP_SYS_ADMIN)) 1453 return NULL; 1454 1455 switch (func_id) { 1456 case BPF_FUNC_probe_write_user: 1457 return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ? 1458 NULL : &bpf_probe_write_user_proto; 1459 default: 1460 return NULL; 1461 } 1462 } 1463 1464 static bool is_kprobe_multi(const struct bpf_prog *prog) 1465 { 1466 return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI || 1467 prog->expected_attach_type == BPF_TRACE_KPROBE_SESSION; 1468 } 1469 1470 static inline bool is_kprobe_session(const struct bpf_prog *prog) 1471 { 1472 return prog->expected_attach_type == BPF_TRACE_KPROBE_SESSION; 1473 } 1474 1475 static inline bool is_uprobe_multi(const struct bpf_prog *prog) 1476 { 1477 return prog->expected_attach_type == BPF_TRACE_UPROBE_MULTI || 1478 prog->expected_attach_type == BPF_TRACE_UPROBE_SESSION; 1479 } 1480 1481 static inline bool is_uprobe_session(const struct bpf_prog *prog) 1482 { 1483 return prog->expected_attach_type == BPF_TRACE_UPROBE_SESSION; 1484 } 1485 1486 static const struct bpf_func_proto * 1487 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1488 { 1489 switch (func_id) { 1490 case BPF_FUNC_perf_event_output: 1491 return &bpf_perf_event_output_proto; 1492 case BPF_FUNC_get_stackid: 1493 return &bpf_get_stackid_proto; 1494 case BPF_FUNC_get_stack: 1495 return prog->sleepable ? &bpf_get_stack_sleepable_proto : &bpf_get_stack_proto; 1496 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 1497 case BPF_FUNC_override_return: 1498 return &bpf_override_return_proto; 1499 #endif 1500 case BPF_FUNC_get_func_ip: 1501 if (is_kprobe_multi(prog)) 1502 return &bpf_get_func_ip_proto_kprobe_multi; 1503 if (is_uprobe_multi(prog)) 1504 return &bpf_get_func_ip_proto_uprobe_multi; 1505 return &bpf_get_func_ip_proto_kprobe; 1506 case BPF_FUNC_get_attach_cookie: 1507 if (is_kprobe_multi(prog)) 1508 return &bpf_get_attach_cookie_proto_kmulti; 1509 if (is_uprobe_multi(prog)) 1510 return &bpf_get_attach_cookie_proto_umulti; 1511 return &bpf_get_attach_cookie_proto_trace; 1512 default: 1513 return bpf_tracing_func_proto(func_id, prog); 1514 } 1515 } 1516 1517 /* bpf+kprobe programs can access fields of 'struct pt_regs' */ 1518 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1519 const struct bpf_prog *prog, 1520 struct bpf_insn_access_aux *info) 1521 { 1522 if (off < 0 || off >= sizeof(struct pt_regs)) 1523 return false; 1524 if (type != BPF_READ) 1525 return false; 1526 if (off % size != 0) 1527 return false; 1528 /* 1529 * Assertion for 32 bit to make sure last 8 byte access 1530 * (BPF_DW) to the last 4 byte member is disallowed. 1531 */ 1532 if (off + size > sizeof(struct pt_regs)) 1533 return false; 1534 1535 return true; 1536 } 1537 1538 const struct bpf_verifier_ops kprobe_verifier_ops = { 1539 .get_func_proto = kprobe_prog_func_proto, 1540 .is_valid_access = kprobe_prog_is_valid_access, 1541 }; 1542 1543 const struct bpf_prog_ops kprobe_prog_ops = { 1544 }; 1545 1546 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map, 1547 u64, flags, void *, data, u64, size) 1548 { 1549 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1550 1551 /* 1552 * r1 points to perf tracepoint buffer where first 8 bytes are hidden 1553 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it 1554 * from there and call the same bpf_perf_event_output() helper inline. 1555 */ 1556 return ____bpf_perf_event_output(regs, map, flags, data, size); 1557 } 1558 1559 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = { 1560 .func = bpf_perf_event_output_tp, 1561 .gpl_only = true, 1562 .ret_type = RET_INTEGER, 1563 .arg1_type = ARG_PTR_TO_CTX, 1564 .arg2_type = ARG_CONST_MAP_PTR, 1565 .arg3_type = ARG_ANYTHING, 1566 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1567 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1568 }; 1569 1570 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map, 1571 u64, flags) 1572 { 1573 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1574 1575 /* 1576 * Same comment as in bpf_perf_event_output_tp(), only that this time 1577 * the other helper's function body cannot be inlined due to being 1578 * external, thus we need to call raw helper function. 1579 */ 1580 return bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1581 flags, 0, 0); 1582 } 1583 1584 static const struct bpf_func_proto bpf_get_stackid_proto_tp = { 1585 .func = bpf_get_stackid_tp, 1586 .gpl_only = true, 1587 .ret_type = RET_INTEGER, 1588 .arg1_type = ARG_PTR_TO_CTX, 1589 .arg2_type = ARG_CONST_MAP_PTR, 1590 .arg3_type = ARG_ANYTHING, 1591 }; 1592 1593 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size, 1594 u64, flags) 1595 { 1596 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1597 1598 return bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1599 (unsigned long) size, flags, 0); 1600 } 1601 1602 static const struct bpf_func_proto bpf_get_stack_proto_tp = { 1603 .func = bpf_get_stack_tp, 1604 .gpl_only = true, 1605 .ret_type = RET_INTEGER, 1606 .arg1_type = ARG_PTR_TO_CTX, 1607 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1608 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1609 .arg4_type = ARG_ANYTHING, 1610 }; 1611 1612 static const struct bpf_func_proto * 1613 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1614 { 1615 switch (func_id) { 1616 case BPF_FUNC_perf_event_output: 1617 return &bpf_perf_event_output_proto_tp; 1618 case BPF_FUNC_get_stackid: 1619 return &bpf_get_stackid_proto_tp; 1620 case BPF_FUNC_get_stack: 1621 return &bpf_get_stack_proto_tp; 1622 case BPF_FUNC_get_attach_cookie: 1623 return &bpf_get_attach_cookie_proto_trace; 1624 default: 1625 return bpf_tracing_func_proto(func_id, prog); 1626 } 1627 } 1628 1629 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1630 const struct bpf_prog *prog, 1631 struct bpf_insn_access_aux *info) 1632 { 1633 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE) 1634 return false; 1635 if (type != BPF_READ) 1636 return false; 1637 if (off % size != 0) 1638 return false; 1639 1640 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64)); 1641 return true; 1642 } 1643 1644 const struct bpf_verifier_ops tracepoint_verifier_ops = { 1645 .get_func_proto = tp_prog_func_proto, 1646 .is_valid_access = tp_prog_is_valid_access, 1647 }; 1648 1649 const struct bpf_prog_ops tracepoint_prog_ops = { 1650 }; 1651 1652 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx, 1653 struct bpf_perf_event_value *, buf, u32, size) 1654 { 1655 int err = -EINVAL; 1656 1657 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 1658 goto clear; 1659 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled, 1660 &buf->running); 1661 if (unlikely(err)) 1662 goto clear; 1663 return 0; 1664 clear: 1665 memset(buf, 0, size); 1666 return err; 1667 } 1668 1669 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = { 1670 .func = bpf_perf_prog_read_value, 1671 .gpl_only = true, 1672 .ret_type = RET_INTEGER, 1673 .arg1_type = ARG_PTR_TO_CTX, 1674 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1675 .arg3_type = ARG_CONST_SIZE, 1676 }; 1677 1678 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx, 1679 void *, buf, u32, size, u64, flags) 1680 { 1681 static const u32 br_entry_size = sizeof(struct perf_branch_entry); 1682 struct perf_branch_stack *br_stack = ctx->data->br_stack; 1683 u32 to_copy; 1684 1685 if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE)) 1686 return -EINVAL; 1687 1688 if (unlikely(!(ctx->data->sample_flags & PERF_SAMPLE_BRANCH_STACK))) 1689 return -ENOENT; 1690 1691 if (unlikely(!br_stack)) 1692 return -ENOENT; 1693 1694 if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE) 1695 return br_stack->nr * br_entry_size; 1696 1697 if (!buf || (size % br_entry_size != 0)) 1698 return -EINVAL; 1699 1700 to_copy = min_t(u32, br_stack->nr * br_entry_size, size); 1701 memcpy(buf, br_stack->entries, to_copy); 1702 1703 return to_copy; 1704 } 1705 1706 static const struct bpf_func_proto bpf_read_branch_records_proto = { 1707 .func = bpf_read_branch_records, 1708 .gpl_only = true, 1709 .ret_type = RET_INTEGER, 1710 .arg1_type = ARG_PTR_TO_CTX, 1711 .arg2_type = ARG_PTR_TO_MEM_OR_NULL, 1712 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1713 .arg4_type = ARG_ANYTHING, 1714 }; 1715 1716 static const struct bpf_func_proto * 1717 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1718 { 1719 switch (func_id) { 1720 case BPF_FUNC_perf_event_output: 1721 return &bpf_perf_event_output_proto_tp; 1722 case BPF_FUNC_get_stackid: 1723 return &bpf_get_stackid_proto_pe; 1724 case BPF_FUNC_get_stack: 1725 return &bpf_get_stack_proto_pe; 1726 case BPF_FUNC_perf_prog_read_value: 1727 return &bpf_perf_prog_read_value_proto; 1728 case BPF_FUNC_read_branch_records: 1729 return &bpf_read_branch_records_proto; 1730 case BPF_FUNC_get_attach_cookie: 1731 return &bpf_get_attach_cookie_proto_pe; 1732 default: 1733 return bpf_tracing_func_proto(func_id, prog); 1734 } 1735 } 1736 1737 /* 1738 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp 1739 * to avoid potential recursive reuse issue when/if tracepoints are added 1740 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack. 1741 * 1742 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage 1743 * in normal, irq, and nmi context. 1744 */ 1745 struct bpf_raw_tp_regs { 1746 struct pt_regs regs[3]; 1747 }; 1748 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs); 1749 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level); 1750 static struct pt_regs *get_bpf_raw_tp_regs(void) 1751 { 1752 struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs); 1753 int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level); 1754 1755 if (nest_level > ARRAY_SIZE(tp_regs->regs)) { 1756 this_cpu_dec(bpf_raw_tp_nest_level); 1757 return ERR_PTR(-EBUSY); 1758 } 1759 1760 return &tp_regs->regs[nest_level - 1]; 1761 } 1762 1763 static void put_bpf_raw_tp_regs(void) 1764 { 1765 this_cpu_dec(bpf_raw_tp_nest_level); 1766 } 1767 1768 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args, 1769 struct bpf_map *, map, u64, flags, void *, data, u64, size) 1770 { 1771 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1772 int ret; 1773 1774 if (IS_ERR(regs)) 1775 return PTR_ERR(regs); 1776 1777 perf_fetch_caller_regs(regs); 1778 ret = ____bpf_perf_event_output(regs, map, flags, data, size); 1779 1780 put_bpf_raw_tp_regs(); 1781 return ret; 1782 } 1783 1784 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = { 1785 .func = bpf_perf_event_output_raw_tp, 1786 .gpl_only = true, 1787 .ret_type = RET_INTEGER, 1788 .arg1_type = ARG_PTR_TO_CTX, 1789 .arg2_type = ARG_CONST_MAP_PTR, 1790 .arg3_type = ARG_ANYTHING, 1791 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1792 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1793 }; 1794 1795 extern const struct bpf_func_proto bpf_skb_output_proto; 1796 extern const struct bpf_func_proto bpf_xdp_output_proto; 1797 extern const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto; 1798 1799 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args, 1800 struct bpf_map *, map, u64, flags) 1801 { 1802 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1803 int ret; 1804 1805 if (IS_ERR(regs)) 1806 return PTR_ERR(regs); 1807 1808 perf_fetch_caller_regs(regs); 1809 /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */ 1810 ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1811 flags, 0, 0); 1812 put_bpf_raw_tp_regs(); 1813 return ret; 1814 } 1815 1816 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = { 1817 .func = bpf_get_stackid_raw_tp, 1818 .gpl_only = true, 1819 .ret_type = RET_INTEGER, 1820 .arg1_type = ARG_PTR_TO_CTX, 1821 .arg2_type = ARG_CONST_MAP_PTR, 1822 .arg3_type = ARG_ANYTHING, 1823 }; 1824 1825 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args, 1826 void *, buf, u32, size, u64, flags) 1827 { 1828 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1829 int ret; 1830 1831 if (IS_ERR(regs)) 1832 return PTR_ERR(regs); 1833 1834 perf_fetch_caller_regs(regs); 1835 ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1836 (unsigned long) size, flags, 0); 1837 put_bpf_raw_tp_regs(); 1838 return ret; 1839 } 1840 1841 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = { 1842 .func = bpf_get_stack_raw_tp, 1843 .gpl_only = true, 1844 .ret_type = RET_INTEGER, 1845 .arg1_type = ARG_PTR_TO_CTX, 1846 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1847 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1848 .arg4_type = ARG_ANYTHING, 1849 }; 1850 1851 static const struct bpf_func_proto * 1852 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1853 { 1854 switch (func_id) { 1855 case BPF_FUNC_perf_event_output: 1856 return &bpf_perf_event_output_proto_raw_tp; 1857 case BPF_FUNC_get_stackid: 1858 return &bpf_get_stackid_proto_raw_tp; 1859 case BPF_FUNC_get_stack: 1860 return &bpf_get_stack_proto_raw_tp; 1861 case BPF_FUNC_get_attach_cookie: 1862 return &bpf_get_attach_cookie_proto_tracing; 1863 default: 1864 return bpf_tracing_func_proto(func_id, prog); 1865 } 1866 } 1867 1868 const struct bpf_func_proto * 1869 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1870 { 1871 const struct bpf_func_proto *fn; 1872 1873 switch (func_id) { 1874 #ifdef CONFIG_NET 1875 case BPF_FUNC_skb_output: 1876 return &bpf_skb_output_proto; 1877 case BPF_FUNC_xdp_output: 1878 return &bpf_xdp_output_proto; 1879 case BPF_FUNC_skc_to_tcp6_sock: 1880 return &bpf_skc_to_tcp6_sock_proto; 1881 case BPF_FUNC_skc_to_tcp_sock: 1882 return &bpf_skc_to_tcp_sock_proto; 1883 case BPF_FUNC_skc_to_tcp_timewait_sock: 1884 return &bpf_skc_to_tcp_timewait_sock_proto; 1885 case BPF_FUNC_skc_to_tcp_request_sock: 1886 return &bpf_skc_to_tcp_request_sock_proto; 1887 case BPF_FUNC_skc_to_udp6_sock: 1888 return &bpf_skc_to_udp6_sock_proto; 1889 case BPF_FUNC_skc_to_unix_sock: 1890 return &bpf_skc_to_unix_sock_proto; 1891 case BPF_FUNC_skc_to_mptcp_sock: 1892 return &bpf_skc_to_mptcp_sock_proto; 1893 case BPF_FUNC_sk_storage_get: 1894 return &bpf_sk_storage_get_tracing_proto; 1895 case BPF_FUNC_sk_storage_delete: 1896 return &bpf_sk_storage_delete_tracing_proto; 1897 case BPF_FUNC_sock_from_file: 1898 return &bpf_sock_from_file_proto; 1899 case BPF_FUNC_get_socket_cookie: 1900 return &bpf_get_socket_ptr_cookie_proto; 1901 case BPF_FUNC_xdp_get_buff_len: 1902 return &bpf_xdp_get_buff_len_trace_proto; 1903 #endif 1904 case BPF_FUNC_seq_printf: 1905 return prog->expected_attach_type == BPF_TRACE_ITER ? 1906 &bpf_seq_printf_proto : 1907 NULL; 1908 case BPF_FUNC_seq_write: 1909 return prog->expected_attach_type == BPF_TRACE_ITER ? 1910 &bpf_seq_write_proto : 1911 NULL; 1912 case BPF_FUNC_seq_printf_btf: 1913 return prog->expected_attach_type == BPF_TRACE_ITER ? 1914 &bpf_seq_printf_btf_proto : 1915 NULL; 1916 case BPF_FUNC_d_path: 1917 return &bpf_d_path_proto; 1918 case BPF_FUNC_get_func_arg: 1919 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_proto : NULL; 1920 case BPF_FUNC_get_func_ret: 1921 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_ret_proto : NULL; 1922 case BPF_FUNC_get_func_arg_cnt: 1923 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_cnt_proto : NULL; 1924 case BPF_FUNC_get_attach_cookie: 1925 if (prog->type == BPF_PROG_TYPE_TRACING && 1926 prog->expected_attach_type == BPF_TRACE_RAW_TP) 1927 return &bpf_get_attach_cookie_proto_tracing; 1928 return bpf_prog_has_trampoline(prog) ? &bpf_get_attach_cookie_proto_tracing : NULL; 1929 default: 1930 fn = raw_tp_prog_func_proto(func_id, prog); 1931 if (!fn && prog->expected_attach_type == BPF_TRACE_ITER) 1932 fn = bpf_iter_get_func_proto(func_id, prog); 1933 return fn; 1934 } 1935 } 1936 1937 static bool raw_tp_prog_is_valid_access(int off, int size, 1938 enum bpf_access_type type, 1939 const struct bpf_prog *prog, 1940 struct bpf_insn_access_aux *info) 1941 { 1942 return bpf_tracing_ctx_access(off, size, type); 1943 } 1944 1945 static bool tracing_prog_is_valid_access(int off, int size, 1946 enum bpf_access_type type, 1947 const struct bpf_prog *prog, 1948 struct bpf_insn_access_aux *info) 1949 { 1950 return bpf_tracing_btf_ctx_access(off, size, type, prog, info); 1951 } 1952 1953 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog, 1954 const union bpf_attr *kattr, 1955 union bpf_attr __user *uattr) 1956 { 1957 return -ENOTSUPP; 1958 } 1959 1960 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = { 1961 .get_func_proto = raw_tp_prog_func_proto, 1962 .is_valid_access = raw_tp_prog_is_valid_access, 1963 }; 1964 1965 const struct bpf_prog_ops raw_tracepoint_prog_ops = { 1966 #ifdef CONFIG_NET 1967 .test_run = bpf_prog_test_run_raw_tp, 1968 #endif 1969 }; 1970 1971 const struct bpf_verifier_ops tracing_verifier_ops = { 1972 .get_func_proto = tracing_prog_func_proto, 1973 .is_valid_access = tracing_prog_is_valid_access, 1974 }; 1975 1976 const struct bpf_prog_ops tracing_prog_ops = { 1977 .test_run = bpf_prog_test_run_tracing, 1978 }; 1979 1980 static bool raw_tp_writable_prog_is_valid_access(int off, int size, 1981 enum bpf_access_type type, 1982 const struct bpf_prog *prog, 1983 struct bpf_insn_access_aux *info) 1984 { 1985 if (off == 0) { 1986 if (size != sizeof(u64) || type != BPF_READ) 1987 return false; 1988 info->reg_type = PTR_TO_TP_BUFFER; 1989 } 1990 return raw_tp_prog_is_valid_access(off, size, type, prog, info); 1991 } 1992 1993 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = { 1994 .get_func_proto = raw_tp_prog_func_proto, 1995 .is_valid_access = raw_tp_writable_prog_is_valid_access, 1996 }; 1997 1998 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = { 1999 }; 2000 2001 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 2002 const struct bpf_prog *prog, 2003 struct bpf_insn_access_aux *info) 2004 { 2005 const int size_u64 = sizeof(u64); 2006 2007 if (off < 0 || off >= sizeof(struct bpf_perf_event_data)) 2008 return false; 2009 if (type != BPF_READ) 2010 return false; 2011 if (off % size != 0) { 2012 if (sizeof(unsigned long) != 4) 2013 return false; 2014 if (size != 8) 2015 return false; 2016 if (off % size != 4) 2017 return false; 2018 } 2019 2020 switch (off) { 2021 case bpf_ctx_range(struct bpf_perf_event_data, sample_period): 2022 bpf_ctx_record_field_size(info, size_u64); 2023 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 2024 return false; 2025 break; 2026 case bpf_ctx_range(struct bpf_perf_event_data, addr): 2027 bpf_ctx_record_field_size(info, size_u64); 2028 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 2029 return false; 2030 break; 2031 default: 2032 if (size != sizeof(long)) 2033 return false; 2034 } 2035 2036 return true; 2037 } 2038 2039 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type, 2040 const struct bpf_insn *si, 2041 struct bpf_insn *insn_buf, 2042 struct bpf_prog *prog, u32 *target_size) 2043 { 2044 struct bpf_insn *insn = insn_buf; 2045 2046 switch (si->off) { 2047 case offsetof(struct bpf_perf_event_data, sample_period): 2048 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 2049 data), si->dst_reg, si->src_reg, 2050 offsetof(struct bpf_perf_event_data_kern, data)); 2051 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 2052 bpf_target_off(struct perf_sample_data, period, 8, 2053 target_size)); 2054 break; 2055 case offsetof(struct bpf_perf_event_data, addr): 2056 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 2057 data), si->dst_reg, si->src_reg, 2058 offsetof(struct bpf_perf_event_data_kern, data)); 2059 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 2060 bpf_target_off(struct perf_sample_data, addr, 8, 2061 target_size)); 2062 break; 2063 default: 2064 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 2065 regs), si->dst_reg, si->src_reg, 2066 offsetof(struct bpf_perf_event_data_kern, regs)); 2067 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg, 2068 si->off); 2069 break; 2070 } 2071 2072 return insn - insn_buf; 2073 } 2074 2075 const struct bpf_verifier_ops perf_event_verifier_ops = { 2076 .get_func_proto = pe_prog_func_proto, 2077 .is_valid_access = pe_prog_is_valid_access, 2078 .convert_ctx_access = pe_prog_convert_ctx_access, 2079 }; 2080 2081 const struct bpf_prog_ops perf_event_prog_ops = { 2082 }; 2083 2084 static DEFINE_MUTEX(bpf_event_mutex); 2085 2086 #define BPF_TRACE_MAX_PROGS 64 2087 2088 int perf_event_attach_bpf_prog(struct perf_event *event, 2089 struct bpf_prog *prog, 2090 u64 bpf_cookie) 2091 { 2092 struct bpf_prog_array *old_array; 2093 struct bpf_prog_array *new_array; 2094 int ret = -EEXIST; 2095 2096 /* 2097 * Kprobe override only works if they are on the function entry, 2098 * and only if they are on the opt-in list. 2099 */ 2100 if (prog->kprobe_override && 2101 (!trace_kprobe_on_func_entry(event->tp_event) || 2102 !trace_kprobe_error_injectable(event->tp_event))) 2103 return -EINVAL; 2104 2105 mutex_lock(&bpf_event_mutex); 2106 2107 if (event->prog) 2108 goto unlock; 2109 2110 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 2111 if (old_array && 2112 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) { 2113 ret = -E2BIG; 2114 goto unlock; 2115 } 2116 2117 ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array); 2118 if (ret < 0) 2119 goto unlock; 2120 2121 /* set the new array to event->tp_event and set event->prog */ 2122 event->prog = prog; 2123 event->bpf_cookie = bpf_cookie; 2124 rcu_assign_pointer(event->tp_event->prog_array, new_array); 2125 bpf_prog_array_free_sleepable(old_array); 2126 2127 unlock: 2128 mutex_unlock(&bpf_event_mutex); 2129 return ret; 2130 } 2131 2132 void perf_event_detach_bpf_prog(struct perf_event *event) 2133 { 2134 struct bpf_prog_array *old_array; 2135 struct bpf_prog_array *new_array; 2136 struct bpf_prog *prog = NULL; 2137 int ret; 2138 2139 mutex_lock(&bpf_event_mutex); 2140 2141 if (!event->prog) 2142 goto unlock; 2143 2144 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 2145 if (!old_array) 2146 goto put; 2147 2148 ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array); 2149 if (ret < 0) { 2150 bpf_prog_array_delete_safe(old_array, event->prog); 2151 } else { 2152 rcu_assign_pointer(event->tp_event->prog_array, new_array); 2153 bpf_prog_array_free_sleepable(old_array); 2154 } 2155 2156 put: 2157 prog = event->prog; 2158 event->prog = NULL; 2159 2160 unlock: 2161 mutex_unlock(&bpf_event_mutex); 2162 2163 if (prog) { 2164 /* 2165 * It could be that the bpf_prog is not sleepable (and will be freed 2166 * via normal RCU), but is called from a point that supports sleepable 2167 * programs and uses tasks-trace-RCU. 2168 */ 2169 synchronize_rcu_tasks_trace(); 2170 2171 bpf_prog_put(prog); 2172 } 2173 } 2174 2175 int perf_event_query_prog_array(struct perf_event *event, void __user *info) 2176 { 2177 struct perf_event_query_bpf __user *uquery = info; 2178 struct perf_event_query_bpf query = {}; 2179 struct bpf_prog_array *progs; 2180 u32 *ids, prog_cnt, ids_len; 2181 int ret; 2182 2183 if (!perfmon_capable()) 2184 return -EPERM; 2185 if (event->attr.type != PERF_TYPE_TRACEPOINT) 2186 return -EINVAL; 2187 if (copy_from_user(&query, uquery, sizeof(query))) 2188 return -EFAULT; 2189 2190 ids_len = query.ids_len; 2191 if (ids_len > BPF_TRACE_MAX_PROGS) 2192 return -E2BIG; 2193 ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN); 2194 if (!ids) 2195 return -ENOMEM; 2196 /* 2197 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which 2198 * is required when user only wants to check for uquery->prog_cnt. 2199 * There is no need to check for it since the case is handled 2200 * gracefully in bpf_prog_array_copy_info. 2201 */ 2202 2203 mutex_lock(&bpf_event_mutex); 2204 progs = bpf_event_rcu_dereference(event->tp_event->prog_array); 2205 ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt); 2206 mutex_unlock(&bpf_event_mutex); 2207 2208 if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) || 2209 copy_to_user(uquery->ids, ids, ids_len * sizeof(u32))) 2210 ret = -EFAULT; 2211 2212 kfree(ids); 2213 return ret; 2214 } 2215 2216 extern struct bpf_raw_event_map __start__bpf_raw_tp[]; 2217 extern struct bpf_raw_event_map __stop__bpf_raw_tp[]; 2218 2219 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name) 2220 { 2221 struct bpf_raw_event_map *btp = __start__bpf_raw_tp; 2222 2223 for (; btp < __stop__bpf_raw_tp; btp++) { 2224 if (!strcmp(btp->tp->name, name)) 2225 return btp; 2226 } 2227 2228 return bpf_get_raw_tracepoint_module(name); 2229 } 2230 2231 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp) 2232 { 2233 struct module *mod; 2234 2235 guard(rcu)(); 2236 mod = __module_address((unsigned long)btp); 2237 module_put(mod); 2238 } 2239 2240 static __always_inline 2241 void __bpf_trace_run(struct bpf_raw_tp_link *link, u64 *args) 2242 { 2243 struct bpf_prog *prog = link->link.prog; 2244 struct bpf_run_ctx *old_run_ctx; 2245 struct bpf_trace_run_ctx run_ctx; 2246 2247 cant_sleep(); 2248 if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) { 2249 bpf_prog_inc_misses_counter(prog); 2250 goto out; 2251 } 2252 2253 run_ctx.bpf_cookie = link->cookie; 2254 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2255 2256 rcu_read_lock(); 2257 (void) bpf_prog_run(prog, args); 2258 rcu_read_unlock(); 2259 2260 bpf_reset_run_ctx(old_run_ctx); 2261 out: 2262 this_cpu_dec(*(prog->active)); 2263 } 2264 2265 #define UNPACK(...) __VA_ARGS__ 2266 #define REPEAT_1(FN, DL, X, ...) FN(X) 2267 #define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__) 2268 #define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__) 2269 #define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__) 2270 #define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__) 2271 #define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__) 2272 #define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__) 2273 #define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__) 2274 #define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__) 2275 #define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__) 2276 #define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__) 2277 #define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__) 2278 #define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__) 2279 2280 #define SARG(X) u64 arg##X 2281 #define COPY(X) args[X] = arg##X 2282 2283 #define __DL_COM (,) 2284 #define __DL_SEM (;) 2285 2286 #define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 2287 2288 #define BPF_TRACE_DEFN_x(x) \ 2289 void bpf_trace_run##x(struct bpf_raw_tp_link *link, \ 2290 REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \ 2291 { \ 2292 u64 args[x]; \ 2293 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \ 2294 __bpf_trace_run(link, args); \ 2295 } \ 2296 EXPORT_SYMBOL_GPL(bpf_trace_run##x) 2297 BPF_TRACE_DEFN_x(1); 2298 BPF_TRACE_DEFN_x(2); 2299 BPF_TRACE_DEFN_x(3); 2300 BPF_TRACE_DEFN_x(4); 2301 BPF_TRACE_DEFN_x(5); 2302 BPF_TRACE_DEFN_x(6); 2303 BPF_TRACE_DEFN_x(7); 2304 BPF_TRACE_DEFN_x(8); 2305 BPF_TRACE_DEFN_x(9); 2306 BPF_TRACE_DEFN_x(10); 2307 BPF_TRACE_DEFN_x(11); 2308 BPF_TRACE_DEFN_x(12); 2309 2310 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_raw_tp_link *link) 2311 { 2312 struct tracepoint *tp = btp->tp; 2313 struct bpf_prog *prog = link->link.prog; 2314 2315 /* 2316 * check that program doesn't access arguments beyond what's 2317 * available in this tracepoint 2318 */ 2319 if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64)) 2320 return -EINVAL; 2321 2322 if (prog->aux->max_tp_access > btp->writable_size) 2323 return -EINVAL; 2324 2325 return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func, link); 2326 } 2327 2328 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_raw_tp_link *link) 2329 { 2330 return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, link); 2331 } 2332 2333 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id, 2334 u32 *fd_type, const char **buf, 2335 u64 *probe_offset, u64 *probe_addr, 2336 unsigned long *missed) 2337 { 2338 bool is_tracepoint, is_syscall_tp; 2339 struct bpf_prog *prog; 2340 int flags, err = 0; 2341 2342 prog = event->prog; 2343 if (!prog) 2344 return -ENOENT; 2345 2346 /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */ 2347 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) 2348 return -EOPNOTSUPP; 2349 2350 *prog_id = prog->aux->id; 2351 flags = event->tp_event->flags; 2352 is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT; 2353 is_syscall_tp = is_syscall_trace_event(event->tp_event); 2354 2355 if (is_tracepoint || is_syscall_tp) { 2356 *buf = is_tracepoint ? event->tp_event->tp->name 2357 : event->tp_event->name; 2358 /* We allow NULL pointer for tracepoint */ 2359 if (fd_type) 2360 *fd_type = BPF_FD_TYPE_TRACEPOINT; 2361 if (probe_offset) 2362 *probe_offset = 0x0; 2363 if (probe_addr) 2364 *probe_addr = 0x0; 2365 } else { 2366 /* kprobe/uprobe */ 2367 err = -EOPNOTSUPP; 2368 #ifdef CONFIG_KPROBE_EVENTS 2369 if (flags & TRACE_EVENT_FL_KPROBE) 2370 err = bpf_get_kprobe_info(event, fd_type, buf, 2371 probe_offset, probe_addr, missed, 2372 event->attr.type == PERF_TYPE_TRACEPOINT); 2373 #endif 2374 #ifdef CONFIG_UPROBE_EVENTS 2375 if (flags & TRACE_EVENT_FL_UPROBE) 2376 err = bpf_get_uprobe_info(event, fd_type, buf, 2377 probe_offset, probe_addr, 2378 event->attr.type == PERF_TYPE_TRACEPOINT); 2379 #endif 2380 } 2381 2382 return err; 2383 } 2384 2385 static int __init send_signal_irq_work_init(void) 2386 { 2387 int cpu; 2388 struct send_signal_irq_work *work; 2389 2390 for_each_possible_cpu(cpu) { 2391 work = per_cpu_ptr(&send_signal_work, cpu); 2392 init_irq_work(&work->irq_work, do_bpf_send_signal); 2393 } 2394 return 0; 2395 } 2396 2397 subsys_initcall(send_signal_irq_work_init); 2398 2399 #ifdef CONFIG_MODULES 2400 static int bpf_event_notify(struct notifier_block *nb, unsigned long op, 2401 void *module) 2402 { 2403 struct bpf_trace_module *btm, *tmp; 2404 struct module *mod = module; 2405 int ret = 0; 2406 2407 if (mod->num_bpf_raw_events == 0 || 2408 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING)) 2409 goto out; 2410 2411 mutex_lock(&bpf_module_mutex); 2412 2413 switch (op) { 2414 case MODULE_STATE_COMING: 2415 btm = kzalloc(sizeof(*btm), GFP_KERNEL); 2416 if (btm) { 2417 btm->module = module; 2418 list_add(&btm->list, &bpf_trace_modules); 2419 } else { 2420 ret = -ENOMEM; 2421 } 2422 break; 2423 case MODULE_STATE_GOING: 2424 list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) { 2425 if (btm->module == module) { 2426 list_del(&btm->list); 2427 kfree(btm); 2428 break; 2429 } 2430 } 2431 break; 2432 } 2433 2434 mutex_unlock(&bpf_module_mutex); 2435 2436 out: 2437 return notifier_from_errno(ret); 2438 } 2439 2440 static struct notifier_block bpf_module_nb = { 2441 .notifier_call = bpf_event_notify, 2442 }; 2443 2444 static int __init bpf_event_init(void) 2445 { 2446 register_module_notifier(&bpf_module_nb); 2447 return 0; 2448 } 2449 2450 fs_initcall(bpf_event_init); 2451 #endif /* CONFIG_MODULES */ 2452 2453 struct bpf_session_run_ctx { 2454 struct bpf_run_ctx run_ctx; 2455 bool is_return; 2456 void *data; 2457 }; 2458 2459 #ifdef CONFIG_FPROBE 2460 struct bpf_kprobe_multi_link { 2461 struct bpf_link link; 2462 struct fprobe fp; 2463 unsigned long *addrs; 2464 u64 *cookies; 2465 u32 cnt; 2466 u32 mods_cnt; 2467 struct module **mods; 2468 }; 2469 2470 struct bpf_kprobe_multi_run_ctx { 2471 struct bpf_session_run_ctx session_ctx; 2472 struct bpf_kprobe_multi_link *link; 2473 unsigned long entry_ip; 2474 }; 2475 2476 struct user_syms { 2477 const char **syms; 2478 char *buf; 2479 }; 2480 2481 #ifndef CONFIG_HAVE_FTRACE_REGS_HAVING_PT_REGS 2482 static DEFINE_PER_CPU(struct pt_regs, bpf_kprobe_multi_pt_regs); 2483 #define bpf_kprobe_multi_pt_regs_ptr() this_cpu_ptr(&bpf_kprobe_multi_pt_regs) 2484 #else 2485 #define bpf_kprobe_multi_pt_regs_ptr() (NULL) 2486 #endif 2487 2488 static unsigned long ftrace_get_entry_ip(unsigned long fentry_ip) 2489 { 2490 unsigned long ip = ftrace_get_symaddr(fentry_ip); 2491 2492 return ip ? : fentry_ip; 2493 } 2494 2495 static int copy_user_syms(struct user_syms *us, unsigned long __user *usyms, u32 cnt) 2496 { 2497 unsigned long __user usymbol; 2498 const char **syms = NULL; 2499 char *buf = NULL, *p; 2500 int err = -ENOMEM; 2501 unsigned int i; 2502 2503 syms = kvmalloc_array(cnt, sizeof(*syms), GFP_KERNEL); 2504 if (!syms) 2505 goto error; 2506 2507 buf = kvmalloc_array(cnt, KSYM_NAME_LEN, GFP_KERNEL); 2508 if (!buf) 2509 goto error; 2510 2511 for (p = buf, i = 0; i < cnt; i++) { 2512 if (__get_user(usymbol, usyms + i)) { 2513 err = -EFAULT; 2514 goto error; 2515 } 2516 err = strncpy_from_user(p, (const char __user *) usymbol, KSYM_NAME_LEN); 2517 if (err == KSYM_NAME_LEN) 2518 err = -E2BIG; 2519 if (err < 0) 2520 goto error; 2521 syms[i] = p; 2522 p += err + 1; 2523 } 2524 2525 us->syms = syms; 2526 us->buf = buf; 2527 return 0; 2528 2529 error: 2530 if (err) { 2531 kvfree(syms); 2532 kvfree(buf); 2533 } 2534 return err; 2535 } 2536 2537 static void kprobe_multi_put_modules(struct module **mods, u32 cnt) 2538 { 2539 u32 i; 2540 2541 for (i = 0; i < cnt; i++) 2542 module_put(mods[i]); 2543 } 2544 2545 static void free_user_syms(struct user_syms *us) 2546 { 2547 kvfree(us->syms); 2548 kvfree(us->buf); 2549 } 2550 2551 static void bpf_kprobe_multi_link_release(struct bpf_link *link) 2552 { 2553 struct bpf_kprobe_multi_link *kmulti_link; 2554 2555 kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link); 2556 unregister_fprobe(&kmulti_link->fp); 2557 kprobe_multi_put_modules(kmulti_link->mods, kmulti_link->mods_cnt); 2558 } 2559 2560 static void bpf_kprobe_multi_link_dealloc(struct bpf_link *link) 2561 { 2562 struct bpf_kprobe_multi_link *kmulti_link; 2563 2564 kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link); 2565 kvfree(kmulti_link->addrs); 2566 kvfree(kmulti_link->cookies); 2567 kfree(kmulti_link->mods); 2568 kfree(kmulti_link); 2569 } 2570 2571 static int bpf_kprobe_multi_link_fill_link_info(const struct bpf_link *link, 2572 struct bpf_link_info *info) 2573 { 2574 u64 __user *ucookies = u64_to_user_ptr(info->kprobe_multi.cookies); 2575 u64 __user *uaddrs = u64_to_user_ptr(info->kprobe_multi.addrs); 2576 struct bpf_kprobe_multi_link *kmulti_link; 2577 u32 ucount = info->kprobe_multi.count; 2578 int err = 0, i; 2579 2580 if (!uaddrs ^ !ucount) 2581 return -EINVAL; 2582 if (ucookies && !ucount) 2583 return -EINVAL; 2584 2585 kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link); 2586 info->kprobe_multi.count = kmulti_link->cnt; 2587 info->kprobe_multi.flags = kmulti_link->link.flags; 2588 info->kprobe_multi.missed = kmulti_link->fp.nmissed; 2589 2590 if (!uaddrs) 2591 return 0; 2592 if (ucount < kmulti_link->cnt) 2593 err = -ENOSPC; 2594 else 2595 ucount = kmulti_link->cnt; 2596 2597 if (ucookies) { 2598 if (kmulti_link->cookies) { 2599 if (copy_to_user(ucookies, kmulti_link->cookies, ucount * sizeof(u64))) 2600 return -EFAULT; 2601 } else { 2602 for (i = 0; i < ucount; i++) { 2603 if (put_user(0, ucookies + i)) 2604 return -EFAULT; 2605 } 2606 } 2607 } 2608 2609 if (kallsyms_show_value(current_cred())) { 2610 if (copy_to_user(uaddrs, kmulti_link->addrs, ucount * sizeof(u64))) 2611 return -EFAULT; 2612 } else { 2613 for (i = 0; i < ucount; i++) { 2614 if (put_user(0, uaddrs + i)) 2615 return -EFAULT; 2616 } 2617 } 2618 return err; 2619 } 2620 2621 #ifdef CONFIG_PROC_FS 2622 static void bpf_kprobe_multi_show_fdinfo(const struct bpf_link *link, 2623 struct seq_file *seq) 2624 { 2625 struct bpf_kprobe_multi_link *kmulti_link; 2626 2627 kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link); 2628 2629 seq_printf(seq, 2630 "kprobe_cnt:\t%u\n" 2631 "missed:\t%lu\n", 2632 kmulti_link->cnt, 2633 kmulti_link->fp.nmissed); 2634 2635 seq_printf(seq, "%s\t %s\n", "cookie", "func"); 2636 for (int i = 0; i < kmulti_link->cnt; i++) { 2637 seq_printf(seq, 2638 "%llu\t %pS\n", 2639 kmulti_link->cookies[i], 2640 (void *)kmulti_link->addrs[i]); 2641 } 2642 } 2643 #endif 2644 2645 static const struct bpf_link_ops bpf_kprobe_multi_link_lops = { 2646 .release = bpf_kprobe_multi_link_release, 2647 .dealloc_deferred = bpf_kprobe_multi_link_dealloc, 2648 .fill_link_info = bpf_kprobe_multi_link_fill_link_info, 2649 #ifdef CONFIG_PROC_FS 2650 .show_fdinfo = bpf_kprobe_multi_show_fdinfo, 2651 #endif 2652 }; 2653 2654 static void bpf_kprobe_multi_cookie_swap(void *a, void *b, int size, const void *priv) 2655 { 2656 const struct bpf_kprobe_multi_link *link = priv; 2657 unsigned long *addr_a = a, *addr_b = b; 2658 u64 *cookie_a, *cookie_b; 2659 2660 cookie_a = link->cookies + (addr_a - link->addrs); 2661 cookie_b = link->cookies + (addr_b - link->addrs); 2662 2663 /* swap addr_a/addr_b and cookie_a/cookie_b values */ 2664 swap(*addr_a, *addr_b); 2665 swap(*cookie_a, *cookie_b); 2666 } 2667 2668 static int bpf_kprobe_multi_addrs_cmp(const void *a, const void *b) 2669 { 2670 const unsigned long *addr_a = a, *addr_b = b; 2671 2672 if (*addr_a == *addr_b) 2673 return 0; 2674 return *addr_a < *addr_b ? -1 : 1; 2675 } 2676 2677 static int bpf_kprobe_multi_cookie_cmp(const void *a, const void *b, const void *priv) 2678 { 2679 return bpf_kprobe_multi_addrs_cmp(a, b); 2680 } 2681 2682 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx) 2683 { 2684 struct bpf_kprobe_multi_run_ctx *run_ctx; 2685 struct bpf_kprobe_multi_link *link; 2686 u64 *cookie, entry_ip; 2687 unsigned long *addr; 2688 2689 if (WARN_ON_ONCE(!ctx)) 2690 return 0; 2691 run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, 2692 session_ctx.run_ctx); 2693 link = run_ctx->link; 2694 if (!link->cookies) 2695 return 0; 2696 entry_ip = run_ctx->entry_ip; 2697 addr = bsearch(&entry_ip, link->addrs, link->cnt, sizeof(entry_ip), 2698 bpf_kprobe_multi_addrs_cmp); 2699 if (!addr) 2700 return 0; 2701 cookie = link->cookies + (addr - link->addrs); 2702 return *cookie; 2703 } 2704 2705 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx) 2706 { 2707 struct bpf_kprobe_multi_run_ctx *run_ctx; 2708 2709 run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, 2710 session_ctx.run_ctx); 2711 return run_ctx->entry_ip; 2712 } 2713 2714 static int 2715 kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link *link, 2716 unsigned long entry_ip, struct ftrace_regs *fregs, 2717 bool is_return, void *data) 2718 { 2719 struct bpf_kprobe_multi_run_ctx run_ctx = { 2720 .session_ctx = { 2721 .is_return = is_return, 2722 .data = data, 2723 }, 2724 .link = link, 2725 .entry_ip = entry_ip, 2726 }; 2727 struct bpf_run_ctx *old_run_ctx; 2728 struct pt_regs *regs; 2729 int err; 2730 2731 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) { 2732 bpf_prog_inc_misses_counter(link->link.prog); 2733 err = 1; 2734 goto out; 2735 } 2736 2737 migrate_disable(); 2738 rcu_read_lock(); 2739 regs = ftrace_partial_regs(fregs, bpf_kprobe_multi_pt_regs_ptr()); 2740 old_run_ctx = bpf_set_run_ctx(&run_ctx.session_ctx.run_ctx); 2741 err = bpf_prog_run(link->link.prog, regs); 2742 bpf_reset_run_ctx(old_run_ctx); 2743 rcu_read_unlock(); 2744 migrate_enable(); 2745 2746 out: 2747 __this_cpu_dec(bpf_prog_active); 2748 return err; 2749 } 2750 2751 static int 2752 kprobe_multi_link_handler(struct fprobe *fp, unsigned long fentry_ip, 2753 unsigned long ret_ip, struct ftrace_regs *fregs, 2754 void *data) 2755 { 2756 struct bpf_kprobe_multi_link *link; 2757 int err; 2758 2759 link = container_of(fp, struct bpf_kprobe_multi_link, fp); 2760 err = kprobe_multi_link_prog_run(link, ftrace_get_entry_ip(fentry_ip), 2761 fregs, false, data); 2762 return is_kprobe_session(link->link.prog) ? err : 0; 2763 } 2764 2765 static void 2766 kprobe_multi_link_exit_handler(struct fprobe *fp, unsigned long fentry_ip, 2767 unsigned long ret_ip, struct ftrace_regs *fregs, 2768 void *data) 2769 { 2770 struct bpf_kprobe_multi_link *link; 2771 2772 link = container_of(fp, struct bpf_kprobe_multi_link, fp); 2773 kprobe_multi_link_prog_run(link, ftrace_get_entry_ip(fentry_ip), 2774 fregs, true, data); 2775 } 2776 2777 static int symbols_cmp_r(const void *a, const void *b, const void *priv) 2778 { 2779 const char **str_a = (const char **) a; 2780 const char **str_b = (const char **) b; 2781 2782 return strcmp(*str_a, *str_b); 2783 } 2784 2785 struct multi_symbols_sort { 2786 const char **funcs; 2787 u64 *cookies; 2788 }; 2789 2790 static void symbols_swap_r(void *a, void *b, int size, const void *priv) 2791 { 2792 const struct multi_symbols_sort *data = priv; 2793 const char **name_a = a, **name_b = b; 2794 2795 swap(*name_a, *name_b); 2796 2797 /* If defined, swap also related cookies. */ 2798 if (data->cookies) { 2799 u64 *cookie_a, *cookie_b; 2800 2801 cookie_a = data->cookies + (name_a - data->funcs); 2802 cookie_b = data->cookies + (name_b - data->funcs); 2803 swap(*cookie_a, *cookie_b); 2804 } 2805 } 2806 2807 struct modules_array { 2808 struct module **mods; 2809 int mods_cnt; 2810 int mods_cap; 2811 }; 2812 2813 static int add_module(struct modules_array *arr, struct module *mod) 2814 { 2815 struct module **mods; 2816 2817 if (arr->mods_cnt == arr->mods_cap) { 2818 arr->mods_cap = max(16, arr->mods_cap * 3 / 2); 2819 mods = krealloc_array(arr->mods, arr->mods_cap, sizeof(*mods), GFP_KERNEL); 2820 if (!mods) 2821 return -ENOMEM; 2822 arr->mods = mods; 2823 } 2824 2825 arr->mods[arr->mods_cnt] = mod; 2826 arr->mods_cnt++; 2827 return 0; 2828 } 2829 2830 static bool has_module(struct modules_array *arr, struct module *mod) 2831 { 2832 int i; 2833 2834 for (i = arr->mods_cnt - 1; i >= 0; i--) { 2835 if (arr->mods[i] == mod) 2836 return true; 2837 } 2838 return false; 2839 } 2840 2841 static int get_modules_for_addrs(struct module ***mods, unsigned long *addrs, u32 addrs_cnt) 2842 { 2843 struct modules_array arr = {}; 2844 u32 i, err = 0; 2845 2846 for (i = 0; i < addrs_cnt; i++) { 2847 bool skip_add = false; 2848 struct module *mod; 2849 2850 scoped_guard(rcu) { 2851 mod = __module_address(addrs[i]); 2852 /* Either no module or it's already stored */ 2853 if (!mod || has_module(&arr, mod)) { 2854 skip_add = true; 2855 break; /* scoped_guard */ 2856 } 2857 if (!try_module_get(mod)) 2858 err = -EINVAL; 2859 } 2860 if (skip_add) 2861 continue; 2862 if (err) 2863 break; 2864 err = add_module(&arr, mod); 2865 if (err) { 2866 module_put(mod); 2867 break; 2868 } 2869 } 2870 2871 /* We return either err < 0 in case of error, ... */ 2872 if (err) { 2873 kprobe_multi_put_modules(arr.mods, arr.mods_cnt); 2874 kfree(arr.mods); 2875 return err; 2876 } 2877 2878 /* or number of modules found if everything is ok. */ 2879 *mods = arr.mods; 2880 return arr.mods_cnt; 2881 } 2882 2883 static int addrs_check_error_injection_list(unsigned long *addrs, u32 cnt) 2884 { 2885 u32 i; 2886 2887 for (i = 0; i < cnt; i++) { 2888 if (!within_error_injection_list(addrs[i])) 2889 return -EINVAL; 2890 } 2891 return 0; 2892 } 2893 2894 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 2895 { 2896 struct bpf_kprobe_multi_link *link = NULL; 2897 struct bpf_link_primer link_primer; 2898 void __user *ucookies; 2899 unsigned long *addrs; 2900 u32 flags, cnt, size; 2901 void __user *uaddrs; 2902 u64 *cookies = NULL; 2903 void __user *usyms; 2904 int err; 2905 2906 /* no support for 32bit archs yet */ 2907 if (sizeof(u64) != sizeof(void *)) 2908 return -EOPNOTSUPP; 2909 2910 if (attr->link_create.flags) 2911 return -EINVAL; 2912 2913 if (!is_kprobe_multi(prog)) 2914 return -EINVAL; 2915 2916 flags = attr->link_create.kprobe_multi.flags; 2917 if (flags & ~BPF_F_KPROBE_MULTI_RETURN) 2918 return -EINVAL; 2919 2920 uaddrs = u64_to_user_ptr(attr->link_create.kprobe_multi.addrs); 2921 usyms = u64_to_user_ptr(attr->link_create.kprobe_multi.syms); 2922 if (!!uaddrs == !!usyms) 2923 return -EINVAL; 2924 2925 cnt = attr->link_create.kprobe_multi.cnt; 2926 if (!cnt) 2927 return -EINVAL; 2928 if (cnt > MAX_KPROBE_MULTI_CNT) 2929 return -E2BIG; 2930 2931 size = cnt * sizeof(*addrs); 2932 addrs = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL); 2933 if (!addrs) 2934 return -ENOMEM; 2935 2936 ucookies = u64_to_user_ptr(attr->link_create.kprobe_multi.cookies); 2937 if (ucookies) { 2938 cookies = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL); 2939 if (!cookies) { 2940 err = -ENOMEM; 2941 goto error; 2942 } 2943 if (copy_from_user(cookies, ucookies, size)) { 2944 err = -EFAULT; 2945 goto error; 2946 } 2947 } 2948 2949 if (uaddrs) { 2950 if (copy_from_user(addrs, uaddrs, size)) { 2951 err = -EFAULT; 2952 goto error; 2953 } 2954 } else { 2955 struct multi_symbols_sort data = { 2956 .cookies = cookies, 2957 }; 2958 struct user_syms us; 2959 2960 err = copy_user_syms(&us, usyms, cnt); 2961 if (err) 2962 goto error; 2963 2964 if (cookies) 2965 data.funcs = us.syms; 2966 2967 sort_r(us.syms, cnt, sizeof(*us.syms), symbols_cmp_r, 2968 symbols_swap_r, &data); 2969 2970 err = ftrace_lookup_symbols(us.syms, cnt, addrs); 2971 free_user_syms(&us); 2972 if (err) 2973 goto error; 2974 } 2975 2976 if (prog->kprobe_override && addrs_check_error_injection_list(addrs, cnt)) { 2977 err = -EINVAL; 2978 goto error; 2979 } 2980 2981 link = kzalloc(sizeof(*link), GFP_KERNEL); 2982 if (!link) { 2983 err = -ENOMEM; 2984 goto error; 2985 } 2986 2987 bpf_link_init(&link->link, BPF_LINK_TYPE_KPROBE_MULTI, 2988 &bpf_kprobe_multi_link_lops, prog, attr->link_create.attach_type); 2989 2990 err = bpf_link_prime(&link->link, &link_primer); 2991 if (err) 2992 goto error; 2993 2994 if (!(flags & BPF_F_KPROBE_MULTI_RETURN)) 2995 link->fp.entry_handler = kprobe_multi_link_handler; 2996 if ((flags & BPF_F_KPROBE_MULTI_RETURN) || is_kprobe_session(prog)) 2997 link->fp.exit_handler = kprobe_multi_link_exit_handler; 2998 if (is_kprobe_session(prog)) 2999 link->fp.entry_data_size = sizeof(u64); 3000 3001 link->addrs = addrs; 3002 link->cookies = cookies; 3003 link->cnt = cnt; 3004 link->link.flags = flags; 3005 3006 if (cookies) { 3007 /* 3008 * Sorting addresses will trigger sorting cookies as well 3009 * (check bpf_kprobe_multi_cookie_swap). This way we can 3010 * find cookie based on the address in bpf_get_attach_cookie 3011 * helper. 3012 */ 3013 sort_r(addrs, cnt, sizeof(*addrs), 3014 bpf_kprobe_multi_cookie_cmp, 3015 bpf_kprobe_multi_cookie_swap, 3016 link); 3017 } 3018 3019 err = get_modules_for_addrs(&link->mods, addrs, cnt); 3020 if (err < 0) { 3021 bpf_link_cleanup(&link_primer); 3022 return err; 3023 } 3024 link->mods_cnt = err; 3025 3026 err = register_fprobe_ips(&link->fp, addrs, cnt); 3027 if (err) { 3028 kprobe_multi_put_modules(link->mods, link->mods_cnt); 3029 bpf_link_cleanup(&link_primer); 3030 return err; 3031 } 3032 3033 return bpf_link_settle(&link_primer); 3034 3035 error: 3036 kfree(link); 3037 kvfree(addrs); 3038 kvfree(cookies); 3039 return err; 3040 } 3041 #else /* !CONFIG_FPROBE */ 3042 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 3043 { 3044 return -EOPNOTSUPP; 3045 } 3046 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx) 3047 { 3048 return 0; 3049 } 3050 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx) 3051 { 3052 return 0; 3053 } 3054 #endif 3055 3056 #ifdef CONFIG_UPROBES 3057 struct bpf_uprobe_multi_link; 3058 3059 struct bpf_uprobe { 3060 struct bpf_uprobe_multi_link *link; 3061 loff_t offset; 3062 unsigned long ref_ctr_offset; 3063 u64 cookie; 3064 struct uprobe *uprobe; 3065 struct uprobe_consumer consumer; 3066 bool session; 3067 }; 3068 3069 struct bpf_uprobe_multi_link { 3070 struct path path; 3071 struct bpf_link link; 3072 u32 cnt; 3073 struct bpf_uprobe *uprobes; 3074 struct task_struct *task; 3075 }; 3076 3077 struct bpf_uprobe_multi_run_ctx { 3078 struct bpf_session_run_ctx session_ctx; 3079 unsigned long entry_ip; 3080 struct bpf_uprobe *uprobe; 3081 }; 3082 3083 static void bpf_uprobe_unregister(struct bpf_uprobe *uprobes, u32 cnt) 3084 { 3085 u32 i; 3086 3087 for (i = 0; i < cnt; i++) 3088 uprobe_unregister_nosync(uprobes[i].uprobe, &uprobes[i].consumer); 3089 3090 if (cnt) 3091 uprobe_unregister_sync(); 3092 } 3093 3094 static void bpf_uprobe_multi_link_release(struct bpf_link *link) 3095 { 3096 struct bpf_uprobe_multi_link *umulti_link; 3097 3098 umulti_link = container_of(link, struct bpf_uprobe_multi_link, link); 3099 bpf_uprobe_unregister(umulti_link->uprobes, umulti_link->cnt); 3100 if (umulti_link->task) 3101 put_task_struct(umulti_link->task); 3102 path_put(&umulti_link->path); 3103 } 3104 3105 static void bpf_uprobe_multi_link_dealloc(struct bpf_link *link) 3106 { 3107 struct bpf_uprobe_multi_link *umulti_link; 3108 3109 umulti_link = container_of(link, struct bpf_uprobe_multi_link, link); 3110 kvfree(umulti_link->uprobes); 3111 kfree(umulti_link); 3112 } 3113 3114 static int bpf_uprobe_multi_link_fill_link_info(const struct bpf_link *link, 3115 struct bpf_link_info *info) 3116 { 3117 u64 __user *uref_ctr_offsets = u64_to_user_ptr(info->uprobe_multi.ref_ctr_offsets); 3118 u64 __user *ucookies = u64_to_user_ptr(info->uprobe_multi.cookies); 3119 u64 __user *uoffsets = u64_to_user_ptr(info->uprobe_multi.offsets); 3120 u64 __user *upath = u64_to_user_ptr(info->uprobe_multi.path); 3121 u32 upath_size = info->uprobe_multi.path_size; 3122 struct bpf_uprobe_multi_link *umulti_link; 3123 u32 ucount = info->uprobe_multi.count; 3124 int err = 0, i; 3125 char *p, *buf; 3126 long left = 0; 3127 3128 if (!upath ^ !upath_size) 3129 return -EINVAL; 3130 3131 if ((uoffsets || uref_ctr_offsets || ucookies) && !ucount) 3132 return -EINVAL; 3133 3134 umulti_link = container_of(link, struct bpf_uprobe_multi_link, link); 3135 info->uprobe_multi.count = umulti_link->cnt; 3136 info->uprobe_multi.flags = umulti_link->link.flags; 3137 info->uprobe_multi.pid = umulti_link->task ? 3138 task_pid_nr_ns(umulti_link->task, task_active_pid_ns(current)) : 0; 3139 3140 upath_size = upath_size ? min_t(u32, upath_size, PATH_MAX) : PATH_MAX; 3141 buf = kmalloc(upath_size, GFP_KERNEL); 3142 if (!buf) 3143 return -ENOMEM; 3144 p = d_path(&umulti_link->path, buf, upath_size); 3145 if (IS_ERR(p)) { 3146 kfree(buf); 3147 return PTR_ERR(p); 3148 } 3149 upath_size = buf + upath_size - p; 3150 3151 if (upath) 3152 left = copy_to_user(upath, p, upath_size); 3153 kfree(buf); 3154 if (left) 3155 return -EFAULT; 3156 info->uprobe_multi.path_size = upath_size; 3157 3158 if (!uoffsets && !ucookies && !uref_ctr_offsets) 3159 return 0; 3160 3161 if (ucount < umulti_link->cnt) 3162 err = -ENOSPC; 3163 else 3164 ucount = umulti_link->cnt; 3165 3166 for (i = 0; i < ucount; i++) { 3167 if (uoffsets && 3168 put_user(umulti_link->uprobes[i].offset, uoffsets + i)) 3169 return -EFAULT; 3170 if (uref_ctr_offsets && 3171 put_user(umulti_link->uprobes[i].ref_ctr_offset, uref_ctr_offsets + i)) 3172 return -EFAULT; 3173 if (ucookies && 3174 put_user(umulti_link->uprobes[i].cookie, ucookies + i)) 3175 return -EFAULT; 3176 } 3177 3178 return err; 3179 } 3180 3181 #ifdef CONFIG_PROC_FS 3182 static void bpf_uprobe_multi_show_fdinfo(const struct bpf_link *link, 3183 struct seq_file *seq) 3184 { 3185 struct bpf_uprobe_multi_link *umulti_link; 3186 char *p, *buf; 3187 pid_t pid; 3188 3189 umulti_link = container_of(link, struct bpf_uprobe_multi_link, link); 3190 3191 buf = kmalloc(PATH_MAX, GFP_KERNEL); 3192 if (!buf) 3193 return; 3194 3195 p = d_path(&umulti_link->path, buf, PATH_MAX); 3196 if (IS_ERR(p)) { 3197 kfree(buf); 3198 return; 3199 } 3200 3201 pid = umulti_link->task ? 3202 task_pid_nr_ns(umulti_link->task, task_active_pid_ns(current)) : 0; 3203 seq_printf(seq, 3204 "uprobe_cnt:\t%u\n" 3205 "pid:\t%u\n" 3206 "path:\t%s\n", 3207 umulti_link->cnt, pid, p); 3208 3209 seq_printf(seq, "%s\t %s\t %s\n", "cookie", "offset", "ref_ctr_offset"); 3210 for (int i = 0; i < umulti_link->cnt; i++) { 3211 seq_printf(seq, 3212 "%llu\t %#llx\t %#lx\n", 3213 umulti_link->uprobes[i].cookie, 3214 umulti_link->uprobes[i].offset, 3215 umulti_link->uprobes[i].ref_ctr_offset); 3216 } 3217 3218 kfree(buf); 3219 } 3220 #endif 3221 3222 static const struct bpf_link_ops bpf_uprobe_multi_link_lops = { 3223 .release = bpf_uprobe_multi_link_release, 3224 .dealloc_deferred = bpf_uprobe_multi_link_dealloc, 3225 .fill_link_info = bpf_uprobe_multi_link_fill_link_info, 3226 #ifdef CONFIG_PROC_FS 3227 .show_fdinfo = bpf_uprobe_multi_show_fdinfo, 3228 #endif 3229 }; 3230 3231 static int uprobe_prog_run(struct bpf_uprobe *uprobe, 3232 unsigned long entry_ip, 3233 struct pt_regs *regs, 3234 bool is_return, void *data) 3235 { 3236 struct bpf_uprobe_multi_link *link = uprobe->link; 3237 struct bpf_uprobe_multi_run_ctx run_ctx = { 3238 .session_ctx = { 3239 .is_return = is_return, 3240 .data = data, 3241 }, 3242 .entry_ip = entry_ip, 3243 .uprobe = uprobe, 3244 }; 3245 struct bpf_prog *prog = link->link.prog; 3246 bool sleepable = prog->sleepable; 3247 struct bpf_run_ctx *old_run_ctx; 3248 int err; 3249 3250 if (link->task && !same_thread_group(current, link->task)) 3251 return 0; 3252 3253 if (sleepable) 3254 rcu_read_lock_trace(); 3255 else 3256 rcu_read_lock(); 3257 3258 migrate_disable(); 3259 3260 old_run_ctx = bpf_set_run_ctx(&run_ctx.session_ctx.run_ctx); 3261 err = bpf_prog_run(link->link.prog, regs); 3262 bpf_reset_run_ctx(old_run_ctx); 3263 3264 migrate_enable(); 3265 3266 if (sleepable) 3267 rcu_read_unlock_trace(); 3268 else 3269 rcu_read_unlock(); 3270 return err; 3271 } 3272 3273 static bool 3274 uprobe_multi_link_filter(struct uprobe_consumer *con, struct mm_struct *mm) 3275 { 3276 struct bpf_uprobe *uprobe; 3277 3278 uprobe = container_of(con, struct bpf_uprobe, consumer); 3279 return uprobe->link->task->mm == mm; 3280 } 3281 3282 static int 3283 uprobe_multi_link_handler(struct uprobe_consumer *con, struct pt_regs *regs, 3284 __u64 *data) 3285 { 3286 struct bpf_uprobe *uprobe; 3287 int ret; 3288 3289 uprobe = container_of(con, struct bpf_uprobe, consumer); 3290 ret = uprobe_prog_run(uprobe, instruction_pointer(regs), regs, false, data); 3291 if (uprobe->session) 3292 return ret ? UPROBE_HANDLER_IGNORE : 0; 3293 return 0; 3294 } 3295 3296 static int 3297 uprobe_multi_link_ret_handler(struct uprobe_consumer *con, unsigned long func, struct pt_regs *regs, 3298 __u64 *data) 3299 { 3300 struct bpf_uprobe *uprobe; 3301 3302 uprobe = container_of(con, struct bpf_uprobe, consumer); 3303 uprobe_prog_run(uprobe, func, regs, true, data); 3304 return 0; 3305 } 3306 3307 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx) 3308 { 3309 struct bpf_uprobe_multi_run_ctx *run_ctx; 3310 3311 run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx, 3312 session_ctx.run_ctx); 3313 return run_ctx->entry_ip; 3314 } 3315 3316 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx) 3317 { 3318 struct bpf_uprobe_multi_run_ctx *run_ctx; 3319 3320 run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx, 3321 session_ctx.run_ctx); 3322 return run_ctx->uprobe->cookie; 3323 } 3324 3325 int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 3326 { 3327 struct bpf_uprobe_multi_link *link = NULL; 3328 unsigned long __user *uref_ctr_offsets; 3329 struct bpf_link_primer link_primer; 3330 struct bpf_uprobe *uprobes = NULL; 3331 struct task_struct *task = NULL; 3332 unsigned long __user *uoffsets; 3333 u64 __user *ucookies; 3334 void __user *upath; 3335 u32 flags, cnt, i; 3336 struct path path; 3337 char *name; 3338 pid_t pid; 3339 int err; 3340 3341 /* no support for 32bit archs yet */ 3342 if (sizeof(u64) != sizeof(void *)) 3343 return -EOPNOTSUPP; 3344 3345 if (attr->link_create.flags) 3346 return -EINVAL; 3347 3348 if (!is_uprobe_multi(prog)) 3349 return -EINVAL; 3350 3351 flags = attr->link_create.uprobe_multi.flags; 3352 if (flags & ~BPF_F_UPROBE_MULTI_RETURN) 3353 return -EINVAL; 3354 3355 /* 3356 * path, offsets and cnt are mandatory, 3357 * ref_ctr_offsets and cookies are optional 3358 */ 3359 upath = u64_to_user_ptr(attr->link_create.uprobe_multi.path); 3360 uoffsets = u64_to_user_ptr(attr->link_create.uprobe_multi.offsets); 3361 cnt = attr->link_create.uprobe_multi.cnt; 3362 pid = attr->link_create.uprobe_multi.pid; 3363 3364 if (!upath || !uoffsets || !cnt || pid < 0) 3365 return -EINVAL; 3366 if (cnt > MAX_UPROBE_MULTI_CNT) 3367 return -E2BIG; 3368 3369 uref_ctr_offsets = u64_to_user_ptr(attr->link_create.uprobe_multi.ref_ctr_offsets); 3370 ucookies = u64_to_user_ptr(attr->link_create.uprobe_multi.cookies); 3371 3372 name = strndup_user(upath, PATH_MAX); 3373 if (IS_ERR(name)) { 3374 err = PTR_ERR(name); 3375 return err; 3376 } 3377 3378 err = kern_path(name, LOOKUP_FOLLOW, &path); 3379 kfree(name); 3380 if (err) 3381 return err; 3382 3383 if (!d_is_reg(path.dentry)) { 3384 err = -EBADF; 3385 goto error_path_put; 3386 } 3387 3388 if (pid) { 3389 rcu_read_lock(); 3390 task = get_pid_task(find_vpid(pid), PIDTYPE_TGID); 3391 rcu_read_unlock(); 3392 if (!task) { 3393 err = -ESRCH; 3394 goto error_path_put; 3395 } 3396 } 3397 3398 err = -ENOMEM; 3399 3400 link = kzalloc(sizeof(*link), GFP_KERNEL); 3401 uprobes = kvcalloc(cnt, sizeof(*uprobes), GFP_KERNEL); 3402 3403 if (!uprobes || !link) 3404 goto error_free; 3405 3406 for (i = 0; i < cnt; i++) { 3407 if (__get_user(uprobes[i].offset, uoffsets + i)) { 3408 err = -EFAULT; 3409 goto error_free; 3410 } 3411 if (uprobes[i].offset < 0) { 3412 err = -EINVAL; 3413 goto error_free; 3414 } 3415 if (uref_ctr_offsets && __get_user(uprobes[i].ref_ctr_offset, uref_ctr_offsets + i)) { 3416 err = -EFAULT; 3417 goto error_free; 3418 } 3419 if (ucookies && __get_user(uprobes[i].cookie, ucookies + i)) { 3420 err = -EFAULT; 3421 goto error_free; 3422 } 3423 3424 uprobes[i].link = link; 3425 3426 if (!(flags & BPF_F_UPROBE_MULTI_RETURN)) 3427 uprobes[i].consumer.handler = uprobe_multi_link_handler; 3428 if (flags & BPF_F_UPROBE_MULTI_RETURN || is_uprobe_session(prog)) 3429 uprobes[i].consumer.ret_handler = uprobe_multi_link_ret_handler; 3430 if (is_uprobe_session(prog)) 3431 uprobes[i].session = true; 3432 if (pid) 3433 uprobes[i].consumer.filter = uprobe_multi_link_filter; 3434 } 3435 3436 link->cnt = cnt; 3437 link->uprobes = uprobes; 3438 link->path = path; 3439 link->task = task; 3440 link->link.flags = flags; 3441 3442 bpf_link_init(&link->link, BPF_LINK_TYPE_UPROBE_MULTI, 3443 &bpf_uprobe_multi_link_lops, prog, attr->link_create.attach_type); 3444 3445 for (i = 0; i < cnt; i++) { 3446 uprobes[i].uprobe = uprobe_register(d_real_inode(link->path.dentry), 3447 uprobes[i].offset, 3448 uprobes[i].ref_ctr_offset, 3449 &uprobes[i].consumer); 3450 if (IS_ERR(uprobes[i].uprobe)) { 3451 err = PTR_ERR(uprobes[i].uprobe); 3452 link->cnt = i; 3453 goto error_unregister; 3454 } 3455 } 3456 3457 err = bpf_link_prime(&link->link, &link_primer); 3458 if (err) 3459 goto error_unregister; 3460 3461 return bpf_link_settle(&link_primer); 3462 3463 error_unregister: 3464 bpf_uprobe_unregister(uprobes, link->cnt); 3465 3466 error_free: 3467 kvfree(uprobes); 3468 kfree(link); 3469 if (task) 3470 put_task_struct(task); 3471 error_path_put: 3472 path_put(&path); 3473 return err; 3474 } 3475 #else /* !CONFIG_UPROBES */ 3476 int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 3477 { 3478 return -EOPNOTSUPP; 3479 } 3480 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx) 3481 { 3482 return 0; 3483 } 3484 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx) 3485 { 3486 return 0; 3487 } 3488 #endif /* CONFIG_UPROBES */ 3489 3490 __bpf_kfunc_start_defs(); 3491 3492 __bpf_kfunc bool bpf_session_is_return(void) 3493 { 3494 struct bpf_session_run_ctx *session_ctx; 3495 3496 session_ctx = container_of(current->bpf_ctx, struct bpf_session_run_ctx, run_ctx); 3497 return session_ctx->is_return; 3498 } 3499 3500 __bpf_kfunc __u64 *bpf_session_cookie(void) 3501 { 3502 struct bpf_session_run_ctx *session_ctx; 3503 3504 session_ctx = container_of(current->bpf_ctx, struct bpf_session_run_ctx, run_ctx); 3505 return session_ctx->data; 3506 } 3507 3508 __bpf_kfunc_end_defs(); 3509 3510 BTF_KFUNCS_START(kprobe_multi_kfunc_set_ids) 3511 BTF_ID_FLAGS(func, bpf_session_is_return) 3512 BTF_ID_FLAGS(func, bpf_session_cookie) 3513 BTF_KFUNCS_END(kprobe_multi_kfunc_set_ids) 3514 3515 static int bpf_kprobe_multi_filter(const struct bpf_prog *prog, u32 kfunc_id) 3516 { 3517 if (!btf_id_set8_contains(&kprobe_multi_kfunc_set_ids, kfunc_id)) 3518 return 0; 3519 3520 if (!is_kprobe_session(prog) && !is_uprobe_session(prog)) 3521 return -EACCES; 3522 3523 return 0; 3524 } 3525 3526 static const struct btf_kfunc_id_set bpf_kprobe_multi_kfunc_set = { 3527 .owner = THIS_MODULE, 3528 .set = &kprobe_multi_kfunc_set_ids, 3529 .filter = bpf_kprobe_multi_filter, 3530 }; 3531 3532 static int __init bpf_kprobe_multi_kfuncs_init(void) 3533 { 3534 return register_btf_kfunc_id_set(BPF_PROG_TYPE_KPROBE, &bpf_kprobe_multi_kfunc_set); 3535 } 3536 3537 late_initcall(bpf_kprobe_multi_kfuncs_init); 3538 3539 typedef int (*copy_fn_t)(void *dst, const void *src, u32 size, struct task_struct *tsk); 3540 3541 /* 3542 * The __always_inline is to make sure the compiler doesn't 3543 * generate indirect calls into callbacks, which is expensive, 3544 * on some kernel configurations. This allows compiler to put 3545 * direct calls into all the specific callback implementations 3546 * (copy_user_data_sleepable, copy_user_data_nofault, and so on) 3547 */ 3548 static __always_inline int __bpf_dynptr_copy_str(struct bpf_dynptr *dptr, u32 doff, u32 size, 3549 const void *unsafe_src, 3550 copy_fn_t str_copy_fn, 3551 struct task_struct *tsk) 3552 { 3553 struct bpf_dynptr_kern *dst; 3554 u32 chunk_sz, off; 3555 void *dst_slice; 3556 int cnt, err; 3557 char buf[256]; 3558 3559 dst_slice = bpf_dynptr_slice_rdwr(dptr, doff, NULL, size); 3560 if (likely(dst_slice)) 3561 return str_copy_fn(dst_slice, unsafe_src, size, tsk); 3562 3563 dst = (struct bpf_dynptr_kern *)dptr; 3564 if (bpf_dynptr_check_off_len(dst, doff, size)) 3565 return -E2BIG; 3566 3567 for (off = 0; off < size; off += chunk_sz - 1) { 3568 chunk_sz = min_t(u32, sizeof(buf), size - off); 3569 /* Expect str_copy_fn to return count of copied bytes, including 3570 * zero terminator. Next iteration increment off by chunk_sz - 1 to 3571 * overwrite NUL. 3572 */ 3573 cnt = str_copy_fn(buf, unsafe_src + off, chunk_sz, tsk); 3574 if (cnt < 0) 3575 return cnt; 3576 err = __bpf_dynptr_write(dst, doff + off, buf, cnt, 0); 3577 if (err) 3578 return err; 3579 if (cnt < chunk_sz || chunk_sz == 1) /* we are done */ 3580 return off + cnt; 3581 } 3582 return off; 3583 } 3584 3585 static __always_inline int __bpf_dynptr_copy(const struct bpf_dynptr *dptr, u32 doff, 3586 u32 size, const void *unsafe_src, 3587 copy_fn_t copy_fn, struct task_struct *tsk) 3588 { 3589 struct bpf_dynptr_kern *dst; 3590 void *dst_slice; 3591 char buf[256]; 3592 u32 off, chunk_sz; 3593 int err; 3594 3595 dst_slice = bpf_dynptr_slice_rdwr(dptr, doff, NULL, size); 3596 if (likely(dst_slice)) 3597 return copy_fn(dst_slice, unsafe_src, size, tsk); 3598 3599 dst = (struct bpf_dynptr_kern *)dptr; 3600 if (bpf_dynptr_check_off_len(dst, doff, size)) 3601 return -E2BIG; 3602 3603 for (off = 0; off < size; off += chunk_sz) { 3604 chunk_sz = min_t(u32, sizeof(buf), size - off); 3605 err = copy_fn(buf, unsafe_src + off, chunk_sz, tsk); 3606 if (err) 3607 return err; 3608 err = __bpf_dynptr_write(dst, doff + off, buf, chunk_sz, 0); 3609 if (err) 3610 return err; 3611 } 3612 return 0; 3613 } 3614 3615 static __always_inline int copy_user_data_nofault(void *dst, const void *unsafe_src, 3616 u32 size, struct task_struct *tsk) 3617 { 3618 return copy_from_user_nofault(dst, (const void __user *)unsafe_src, size); 3619 } 3620 3621 static __always_inline int copy_user_data_sleepable(void *dst, const void *unsafe_src, 3622 u32 size, struct task_struct *tsk) 3623 { 3624 int ret; 3625 3626 if (!tsk) { /* Read from the current task */ 3627 ret = copy_from_user(dst, (const void __user *)unsafe_src, size); 3628 if (ret) 3629 return -EFAULT; 3630 return 0; 3631 } 3632 3633 ret = access_process_vm(tsk, (unsigned long)unsafe_src, dst, size, 0); 3634 if (ret != size) 3635 return -EFAULT; 3636 return 0; 3637 } 3638 3639 static __always_inline int copy_kernel_data_nofault(void *dst, const void *unsafe_src, 3640 u32 size, struct task_struct *tsk) 3641 { 3642 return copy_from_kernel_nofault(dst, unsafe_src, size); 3643 } 3644 3645 static __always_inline int copy_user_str_nofault(void *dst, const void *unsafe_src, 3646 u32 size, struct task_struct *tsk) 3647 { 3648 return strncpy_from_user_nofault(dst, (const void __user *)unsafe_src, size); 3649 } 3650 3651 static __always_inline int copy_user_str_sleepable(void *dst, const void *unsafe_src, 3652 u32 size, struct task_struct *tsk) 3653 { 3654 int ret; 3655 3656 if (unlikely(size == 0)) 3657 return 0; 3658 3659 if (tsk) { 3660 ret = copy_remote_vm_str(tsk, (unsigned long)unsafe_src, dst, size, 0); 3661 } else { 3662 ret = strncpy_from_user(dst, (const void __user *)unsafe_src, size - 1); 3663 /* strncpy_from_user does not guarantee NUL termination */ 3664 if (ret >= 0) 3665 ((char *)dst)[ret] = '\0'; 3666 } 3667 3668 if (ret < 0) 3669 return ret; 3670 return ret + 1; 3671 } 3672 3673 static __always_inline int copy_kernel_str_nofault(void *dst, const void *unsafe_src, 3674 u32 size, struct task_struct *tsk) 3675 { 3676 return strncpy_from_kernel_nofault(dst, unsafe_src, size); 3677 } 3678 3679 __bpf_kfunc_start_defs(); 3680 3681 __bpf_kfunc int bpf_send_signal_task(struct task_struct *task, int sig, enum pid_type type, 3682 u64 value) 3683 { 3684 if (type != PIDTYPE_PID && type != PIDTYPE_TGID) 3685 return -EINVAL; 3686 3687 return bpf_send_signal_common(sig, type, task, value); 3688 } 3689 3690 __bpf_kfunc int bpf_probe_read_user_dynptr(struct bpf_dynptr *dptr, u32 off, 3691 u32 size, const void __user *unsafe_ptr__ign) 3692 { 3693 return __bpf_dynptr_copy(dptr, off, size, (const void *)unsafe_ptr__ign, 3694 copy_user_data_nofault, NULL); 3695 } 3696 3697 __bpf_kfunc int bpf_probe_read_kernel_dynptr(struct bpf_dynptr *dptr, u32 off, 3698 u32 size, const void *unsafe_ptr__ign) 3699 { 3700 return __bpf_dynptr_copy(dptr, off, size, unsafe_ptr__ign, 3701 copy_kernel_data_nofault, NULL); 3702 } 3703 3704 __bpf_kfunc int bpf_probe_read_user_str_dynptr(struct bpf_dynptr *dptr, u32 off, 3705 u32 size, const void __user *unsafe_ptr__ign) 3706 { 3707 return __bpf_dynptr_copy_str(dptr, off, size, (const void *)unsafe_ptr__ign, 3708 copy_user_str_nofault, NULL); 3709 } 3710 3711 __bpf_kfunc int bpf_probe_read_kernel_str_dynptr(struct bpf_dynptr *dptr, u32 off, 3712 u32 size, const void *unsafe_ptr__ign) 3713 { 3714 return __bpf_dynptr_copy_str(dptr, off, size, unsafe_ptr__ign, 3715 copy_kernel_str_nofault, NULL); 3716 } 3717 3718 __bpf_kfunc int bpf_copy_from_user_dynptr(struct bpf_dynptr *dptr, u32 off, 3719 u32 size, const void __user *unsafe_ptr__ign) 3720 { 3721 return __bpf_dynptr_copy(dptr, off, size, (const void *)unsafe_ptr__ign, 3722 copy_user_data_sleepable, NULL); 3723 } 3724 3725 __bpf_kfunc int bpf_copy_from_user_str_dynptr(struct bpf_dynptr *dptr, u32 off, 3726 u32 size, const void __user *unsafe_ptr__ign) 3727 { 3728 return __bpf_dynptr_copy_str(dptr, off, size, (const void *)unsafe_ptr__ign, 3729 copy_user_str_sleepable, NULL); 3730 } 3731 3732 __bpf_kfunc int bpf_copy_from_user_task_dynptr(struct bpf_dynptr *dptr, u32 off, 3733 u32 size, const void __user *unsafe_ptr__ign, 3734 struct task_struct *tsk) 3735 { 3736 return __bpf_dynptr_copy(dptr, off, size, (const void *)unsafe_ptr__ign, 3737 copy_user_data_sleepable, tsk); 3738 } 3739 3740 __bpf_kfunc int bpf_copy_from_user_task_str_dynptr(struct bpf_dynptr *dptr, u32 off, 3741 u32 size, const void __user *unsafe_ptr__ign, 3742 struct task_struct *tsk) 3743 { 3744 return __bpf_dynptr_copy_str(dptr, off, size, (const void *)unsafe_ptr__ign, 3745 copy_user_str_sleepable, tsk); 3746 } 3747 3748 __bpf_kfunc_end_defs(); 3749