xref: /linux/kernel/trace/bpf_trace.c (revision 055ee0d69887af1d511246d745610bdf9d627e75)
1 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  */
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/bpf_perf_event.h>
13 #include <linux/filter.h>
14 #include <linux/uaccess.h>
15 #include <linux/ctype.h>
16 #include <linux/kprobes.h>
17 #include <linux/syscalls.h>
18 #include <linux/error-injection.h>
19 
20 #include "trace_probe.h"
21 #include "trace.h"
22 
23 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
24 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
25 
26 /**
27  * trace_call_bpf - invoke BPF program
28  * @call: tracepoint event
29  * @ctx: opaque context pointer
30  *
31  * kprobe handlers execute BPF programs via this helper.
32  * Can be used from static tracepoints in the future.
33  *
34  * Return: BPF programs always return an integer which is interpreted by
35  * kprobe handler as:
36  * 0 - return from kprobe (event is filtered out)
37  * 1 - store kprobe event into ring buffer
38  * Other values are reserved and currently alias to 1
39  */
40 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
41 {
42 	unsigned int ret;
43 
44 	if (in_nmi()) /* not supported yet */
45 		return 1;
46 
47 	preempt_disable();
48 
49 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
50 		/*
51 		 * since some bpf program is already running on this cpu,
52 		 * don't call into another bpf program (same or different)
53 		 * and don't send kprobe event into ring-buffer,
54 		 * so return zero here
55 		 */
56 		ret = 0;
57 		goto out;
58 	}
59 
60 	/*
61 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
62 	 * to all call sites, we did a bpf_prog_array_valid() there to check
63 	 * whether call->prog_array is empty or not, which is
64 	 * a heurisitc to speed up execution.
65 	 *
66 	 * If bpf_prog_array_valid() fetched prog_array was
67 	 * non-NULL, we go into trace_call_bpf() and do the actual
68 	 * proper rcu_dereference() under RCU lock.
69 	 * If it turns out that prog_array is NULL then, we bail out.
70 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
71 	 * was NULL, you'll skip the prog_array with the risk of missing
72 	 * out of events when it was updated in between this and the
73 	 * rcu_dereference() which is accepted risk.
74 	 */
75 	ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
76 
77  out:
78 	__this_cpu_dec(bpf_prog_active);
79 	preempt_enable();
80 
81 	return ret;
82 }
83 EXPORT_SYMBOL_GPL(trace_call_bpf);
84 
85 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
86 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
87 {
88 	regs_set_return_value(regs, rc);
89 	override_function_with_return(regs);
90 	return 0;
91 }
92 
93 static const struct bpf_func_proto bpf_override_return_proto = {
94 	.func		= bpf_override_return,
95 	.gpl_only	= true,
96 	.ret_type	= RET_INTEGER,
97 	.arg1_type	= ARG_PTR_TO_CTX,
98 	.arg2_type	= ARG_ANYTHING,
99 };
100 #endif
101 
102 BPF_CALL_3(bpf_probe_read, void *, dst, u32, size, const void *, unsafe_ptr)
103 {
104 	int ret;
105 
106 	ret = probe_kernel_read(dst, unsafe_ptr, size);
107 	if (unlikely(ret < 0))
108 		memset(dst, 0, size);
109 
110 	return ret;
111 }
112 
113 static const struct bpf_func_proto bpf_probe_read_proto = {
114 	.func		= bpf_probe_read,
115 	.gpl_only	= true,
116 	.ret_type	= RET_INTEGER,
117 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
118 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
119 	.arg3_type	= ARG_ANYTHING,
120 };
121 
122 BPF_CALL_3(bpf_probe_write_user, void *, unsafe_ptr, const void *, src,
123 	   u32, size)
124 {
125 	/*
126 	 * Ensure we're in user context which is safe for the helper to
127 	 * run. This helper has no business in a kthread.
128 	 *
129 	 * access_ok() should prevent writing to non-user memory, but in
130 	 * some situations (nommu, temporary switch, etc) access_ok() does
131 	 * not provide enough validation, hence the check on KERNEL_DS.
132 	 */
133 
134 	if (unlikely(in_interrupt() ||
135 		     current->flags & (PF_KTHREAD | PF_EXITING)))
136 		return -EPERM;
137 	if (unlikely(uaccess_kernel()))
138 		return -EPERM;
139 	if (!access_ok(VERIFY_WRITE, unsafe_ptr, size))
140 		return -EPERM;
141 
142 	return probe_kernel_write(unsafe_ptr, src, size);
143 }
144 
145 static const struct bpf_func_proto bpf_probe_write_user_proto = {
146 	.func		= bpf_probe_write_user,
147 	.gpl_only	= true,
148 	.ret_type	= RET_INTEGER,
149 	.arg1_type	= ARG_ANYTHING,
150 	.arg2_type	= ARG_PTR_TO_MEM,
151 	.arg3_type	= ARG_CONST_SIZE,
152 };
153 
154 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
155 {
156 	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
157 			    current->comm, task_pid_nr(current));
158 
159 	return &bpf_probe_write_user_proto;
160 }
161 
162 /*
163  * Only limited trace_printk() conversion specifiers allowed:
164  * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %s
165  */
166 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
167 	   u64, arg2, u64, arg3)
168 {
169 	bool str_seen = false;
170 	int mod[3] = {};
171 	int fmt_cnt = 0;
172 	u64 unsafe_addr;
173 	char buf[64];
174 	int i;
175 
176 	/*
177 	 * bpf_check()->check_func_arg()->check_stack_boundary()
178 	 * guarantees that fmt points to bpf program stack,
179 	 * fmt_size bytes of it were initialized and fmt_size > 0
180 	 */
181 	if (fmt[--fmt_size] != 0)
182 		return -EINVAL;
183 
184 	/* check format string for allowed specifiers */
185 	for (i = 0; i < fmt_size; i++) {
186 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
187 			return -EINVAL;
188 
189 		if (fmt[i] != '%')
190 			continue;
191 
192 		if (fmt_cnt >= 3)
193 			return -EINVAL;
194 
195 		/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
196 		i++;
197 		if (fmt[i] == 'l') {
198 			mod[fmt_cnt]++;
199 			i++;
200 		} else if (fmt[i] == 'p' || fmt[i] == 's') {
201 			mod[fmt_cnt]++;
202 			i++;
203 			if (!isspace(fmt[i]) && !ispunct(fmt[i]) && fmt[i] != 0)
204 				return -EINVAL;
205 			fmt_cnt++;
206 			if (fmt[i - 1] == 's') {
207 				if (str_seen)
208 					/* allow only one '%s' per fmt string */
209 					return -EINVAL;
210 				str_seen = true;
211 
212 				switch (fmt_cnt) {
213 				case 1:
214 					unsafe_addr = arg1;
215 					arg1 = (long) buf;
216 					break;
217 				case 2:
218 					unsafe_addr = arg2;
219 					arg2 = (long) buf;
220 					break;
221 				case 3:
222 					unsafe_addr = arg3;
223 					arg3 = (long) buf;
224 					break;
225 				}
226 				buf[0] = 0;
227 				strncpy_from_unsafe(buf,
228 						    (void *) (long) unsafe_addr,
229 						    sizeof(buf));
230 			}
231 			continue;
232 		}
233 
234 		if (fmt[i] == 'l') {
235 			mod[fmt_cnt]++;
236 			i++;
237 		}
238 
239 		if (fmt[i] != 'i' && fmt[i] != 'd' &&
240 		    fmt[i] != 'u' && fmt[i] != 'x')
241 			return -EINVAL;
242 		fmt_cnt++;
243 	}
244 
245 /* Horrid workaround for getting va_list handling working with different
246  * argument type combinations generically for 32 and 64 bit archs.
247  */
248 #define __BPF_TP_EMIT()	__BPF_ARG3_TP()
249 #define __BPF_TP(...)							\
250 	__trace_printk(0 /* Fake ip */,					\
251 		       fmt, ##__VA_ARGS__)
252 
253 #define __BPF_ARG1_TP(...)						\
254 	((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64))	\
255 	  ? __BPF_TP(arg1, ##__VA_ARGS__)				\
256 	  : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32))	\
257 	      ? __BPF_TP((long)arg1, ##__VA_ARGS__)			\
258 	      : __BPF_TP((u32)arg1, ##__VA_ARGS__)))
259 
260 #define __BPF_ARG2_TP(...)						\
261 	((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64))	\
262 	  ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__)				\
263 	  : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32))	\
264 	      ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__)		\
265 	      : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
266 
267 #define __BPF_ARG3_TP(...)						\
268 	((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64))	\
269 	  ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__)				\
270 	  : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32))	\
271 	      ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__)		\
272 	      : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
273 
274 	return __BPF_TP_EMIT();
275 }
276 
277 static const struct bpf_func_proto bpf_trace_printk_proto = {
278 	.func		= bpf_trace_printk,
279 	.gpl_only	= true,
280 	.ret_type	= RET_INTEGER,
281 	.arg1_type	= ARG_PTR_TO_MEM,
282 	.arg2_type	= ARG_CONST_SIZE,
283 };
284 
285 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
286 {
287 	/*
288 	 * this program might be calling bpf_trace_printk,
289 	 * so allocate per-cpu printk buffers
290 	 */
291 	trace_printk_init_buffers();
292 
293 	return &bpf_trace_printk_proto;
294 }
295 
296 static __always_inline int
297 get_map_perf_counter(struct bpf_map *map, u64 flags,
298 		     u64 *value, u64 *enabled, u64 *running)
299 {
300 	struct bpf_array *array = container_of(map, struct bpf_array, map);
301 	unsigned int cpu = smp_processor_id();
302 	u64 index = flags & BPF_F_INDEX_MASK;
303 	struct bpf_event_entry *ee;
304 
305 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
306 		return -EINVAL;
307 	if (index == BPF_F_CURRENT_CPU)
308 		index = cpu;
309 	if (unlikely(index >= array->map.max_entries))
310 		return -E2BIG;
311 
312 	ee = READ_ONCE(array->ptrs[index]);
313 	if (!ee)
314 		return -ENOENT;
315 
316 	return perf_event_read_local(ee->event, value, enabled, running);
317 }
318 
319 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
320 {
321 	u64 value = 0;
322 	int err;
323 
324 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
325 	/*
326 	 * this api is ugly since we miss [-22..-2] range of valid
327 	 * counter values, but that's uapi
328 	 */
329 	if (err)
330 		return err;
331 	return value;
332 }
333 
334 static const struct bpf_func_proto bpf_perf_event_read_proto = {
335 	.func		= bpf_perf_event_read,
336 	.gpl_only	= true,
337 	.ret_type	= RET_INTEGER,
338 	.arg1_type	= ARG_CONST_MAP_PTR,
339 	.arg2_type	= ARG_ANYTHING,
340 };
341 
342 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
343 	   struct bpf_perf_event_value *, buf, u32, size)
344 {
345 	int err = -EINVAL;
346 
347 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
348 		goto clear;
349 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
350 				   &buf->running);
351 	if (unlikely(err))
352 		goto clear;
353 	return 0;
354 clear:
355 	memset(buf, 0, size);
356 	return err;
357 }
358 
359 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
360 	.func		= bpf_perf_event_read_value,
361 	.gpl_only	= true,
362 	.ret_type	= RET_INTEGER,
363 	.arg1_type	= ARG_CONST_MAP_PTR,
364 	.arg2_type	= ARG_ANYTHING,
365 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
366 	.arg4_type	= ARG_CONST_SIZE,
367 };
368 
369 static DEFINE_PER_CPU(struct perf_sample_data, bpf_trace_sd);
370 
371 static __always_inline u64
372 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
373 			u64 flags, struct perf_sample_data *sd)
374 {
375 	struct bpf_array *array = container_of(map, struct bpf_array, map);
376 	unsigned int cpu = smp_processor_id();
377 	u64 index = flags & BPF_F_INDEX_MASK;
378 	struct bpf_event_entry *ee;
379 	struct perf_event *event;
380 
381 	if (index == BPF_F_CURRENT_CPU)
382 		index = cpu;
383 	if (unlikely(index >= array->map.max_entries))
384 		return -E2BIG;
385 
386 	ee = READ_ONCE(array->ptrs[index]);
387 	if (!ee)
388 		return -ENOENT;
389 
390 	event = ee->event;
391 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
392 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
393 		return -EINVAL;
394 
395 	if (unlikely(event->oncpu != cpu))
396 		return -EOPNOTSUPP;
397 
398 	perf_event_output(event, sd, regs);
399 	return 0;
400 }
401 
402 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
403 	   u64, flags, void *, data, u64, size)
404 {
405 	struct perf_sample_data *sd = this_cpu_ptr(&bpf_trace_sd);
406 	struct perf_raw_record raw = {
407 		.frag = {
408 			.size = size,
409 			.data = data,
410 		},
411 	};
412 
413 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
414 		return -EINVAL;
415 
416 	perf_sample_data_init(sd, 0, 0);
417 	sd->raw = &raw;
418 
419 	return __bpf_perf_event_output(regs, map, flags, sd);
420 }
421 
422 static const struct bpf_func_proto bpf_perf_event_output_proto = {
423 	.func		= bpf_perf_event_output,
424 	.gpl_only	= true,
425 	.ret_type	= RET_INTEGER,
426 	.arg1_type	= ARG_PTR_TO_CTX,
427 	.arg2_type	= ARG_CONST_MAP_PTR,
428 	.arg3_type	= ARG_ANYTHING,
429 	.arg4_type	= ARG_PTR_TO_MEM,
430 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
431 };
432 
433 static DEFINE_PER_CPU(struct pt_regs, bpf_pt_regs);
434 static DEFINE_PER_CPU(struct perf_sample_data, bpf_misc_sd);
435 
436 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
437 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
438 {
439 	struct perf_sample_data *sd = this_cpu_ptr(&bpf_misc_sd);
440 	struct pt_regs *regs = this_cpu_ptr(&bpf_pt_regs);
441 	struct perf_raw_frag frag = {
442 		.copy		= ctx_copy,
443 		.size		= ctx_size,
444 		.data		= ctx,
445 	};
446 	struct perf_raw_record raw = {
447 		.frag = {
448 			{
449 				.next	= ctx_size ? &frag : NULL,
450 			},
451 			.size	= meta_size,
452 			.data	= meta,
453 		},
454 	};
455 
456 	perf_fetch_caller_regs(regs);
457 	perf_sample_data_init(sd, 0, 0);
458 	sd->raw = &raw;
459 
460 	return __bpf_perf_event_output(regs, map, flags, sd);
461 }
462 
463 BPF_CALL_0(bpf_get_current_task)
464 {
465 	return (long) current;
466 }
467 
468 static const struct bpf_func_proto bpf_get_current_task_proto = {
469 	.func		= bpf_get_current_task,
470 	.gpl_only	= true,
471 	.ret_type	= RET_INTEGER,
472 };
473 
474 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
475 {
476 	struct bpf_array *array = container_of(map, struct bpf_array, map);
477 	struct cgroup *cgrp;
478 
479 	if (unlikely(idx >= array->map.max_entries))
480 		return -E2BIG;
481 
482 	cgrp = READ_ONCE(array->ptrs[idx]);
483 	if (unlikely(!cgrp))
484 		return -EAGAIN;
485 
486 	return task_under_cgroup_hierarchy(current, cgrp);
487 }
488 
489 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
490 	.func           = bpf_current_task_under_cgroup,
491 	.gpl_only       = false,
492 	.ret_type       = RET_INTEGER,
493 	.arg1_type      = ARG_CONST_MAP_PTR,
494 	.arg2_type      = ARG_ANYTHING,
495 };
496 
497 BPF_CALL_3(bpf_probe_read_str, void *, dst, u32, size,
498 	   const void *, unsafe_ptr)
499 {
500 	int ret;
501 
502 	/*
503 	 * The strncpy_from_unsafe() call will likely not fill the entire
504 	 * buffer, but that's okay in this circumstance as we're probing
505 	 * arbitrary memory anyway similar to bpf_probe_read() and might
506 	 * as well probe the stack. Thus, memory is explicitly cleared
507 	 * only in error case, so that improper users ignoring return
508 	 * code altogether don't copy garbage; otherwise length of string
509 	 * is returned that can be used for bpf_perf_event_output() et al.
510 	 */
511 	ret = strncpy_from_unsafe(dst, unsafe_ptr, size);
512 	if (unlikely(ret < 0))
513 		memset(dst, 0, size);
514 
515 	return ret;
516 }
517 
518 static const struct bpf_func_proto bpf_probe_read_str_proto = {
519 	.func		= bpf_probe_read_str,
520 	.gpl_only	= true,
521 	.ret_type	= RET_INTEGER,
522 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
523 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
524 	.arg3_type	= ARG_ANYTHING,
525 };
526 
527 static const struct bpf_func_proto *
528 tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
529 {
530 	switch (func_id) {
531 	case BPF_FUNC_map_lookup_elem:
532 		return &bpf_map_lookup_elem_proto;
533 	case BPF_FUNC_map_update_elem:
534 		return &bpf_map_update_elem_proto;
535 	case BPF_FUNC_map_delete_elem:
536 		return &bpf_map_delete_elem_proto;
537 	case BPF_FUNC_probe_read:
538 		return &bpf_probe_read_proto;
539 	case BPF_FUNC_ktime_get_ns:
540 		return &bpf_ktime_get_ns_proto;
541 	case BPF_FUNC_tail_call:
542 		return &bpf_tail_call_proto;
543 	case BPF_FUNC_get_current_pid_tgid:
544 		return &bpf_get_current_pid_tgid_proto;
545 	case BPF_FUNC_get_current_task:
546 		return &bpf_get_current_task_proto;
547 	case BPF_FUNC_get_current_uid_gid:
548 		return &bpf_get_current_uid_gid_proto;
549 	case BPF_FUNC_get_current_comm:
550 		return &bpf_get_current_comm_proto;
551 	case BPF_FUNC_trace_printk:
552 		return bpf_get_trace_printk_proto();
553 	case BPF_FUNC_get_smp_processor_id:
554 		return &bpf_get_smp_processor_id_proto;
555 	case BPF_FUNC_get_numa_node_id:
556 		return &bpf_get_numa_node_id_proto;
557 	case BPF_FUNC_perf_event_read:
558 		return &bpf_perf_event_read_proto;
559 	case BPF_FUNC_probe_write_user:
560 		return bpf_get_probe_write_proto();
561 	case BPF_FUNC_current_task_under_cgroup:
562 		return &bpf_current_task_under_cgroup_proto;
563 	case BPF_FUNC_get_prandom_u32:
564 		return &bpf_get_prandom_u32_proto;
565 	case BPF_FUNC_probe_read_str:
566 		return &bpf_probe_read_str_proto;
567 	default:
568 		return NULL;
569 	}
570 }
571 
572 static const struct bpf_func_proto *
573 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
574 {
575 	switch (func_id) {
576 	case BPF_FUNC_perf_event_output:
577 		return &bpf_perf_event_output_proto;
578 	case BPF_FUNC_get_stackid:
579 		return &bpf_get_stackid_proto;
580 	case BPF_FUNC_get_stack:
581 		return &bpf_get_stack_proto;
582 	case BPF_FUNC_perf_event_read_value:
583 		return &bpf_perf_event_read_value_proto;
584 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
585 	case BPF_FUNC_override_return:
586 		return &bpf_override_return_proto;
587 #endif
588 	default:
589 		return tracing_func_proto(func_id, prog);
590 	}
591 }
592 
593 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
594 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
595 					const struct bpf_prog *prog,
596 					struct bpf_insn_access_aux *info)
597 {
598 	if (off < 0 || off >= sizeof(struct pt_regs))
599 		return false;
600 	if (type != BPF_READ)
601 		return false;
602 	if (off % size != 0)
603 		return false;
604 	/*
605 	 * Assertion for 32 bit to make sure last 8 byte access
606 	 * (BPF_DW) to the last 4 byte member is disallowed.
607 	 */
608 	if (off + size > sizeof(struct pt_regs))
609 		return false;
610 
611 	return true;
612 }
613 
614 const struct bpf_verifier_ops kprobe_verifier_ops = {
615 	.get_func_proto  = kprobe_prog_func_proto,
616 	.is_valid_access = kprobe_prog_is_valid_access,
617 };
618 
619 const struct bpf_prog_ops kprobe_prog_ops = {
620 };
621 
622 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
623 	   u64, flags, void *, data, u64, size)
624 {
625 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
626 
627 	/*
628 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
629 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
630 	 * from there and call the same bpf_perf_event_output() helper inline.
631 	 */
632 	return ____bpf_perf_event_output(regs, map, flags, data, size);
633 }
634 
635 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
636 	.func		= bpf_perf_event_output_tp,
637 	.gpl_only	= true,
638 	.ret_type	= RET_INTEGER,
639 	.arg1_type	= ARG_PTR_TO_CTX,
640 	.arg2_type	= ARG_CONST_MAP_PTR,
641 	.arg3_type	= ARG_ANYTHING,
642 	.arg4_type	= ARG_PTR_TO_MEM,
643 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
644 };
645 
646 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
647 	   u64, flags)
648 {
649 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
650 
651 	/*
652 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
653 	 * the other helper's function body cannot be inlined due to being
654 	 * external, thus we need to call raw helper function.
655 	 */
656 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
657 			       flags, 0, 0);
658 }
659 
660 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
661 	.func		= bpf_get_stackid_tp,
662 	.gpl_only	= true,
663 	.ret_type	= RET_INTEGER,
664 	.arg1_type	= ARG_PTR_TO_CTX,
665 	.arg2_type	= ARG_CONST_MAP_PTR,
666 	.arg3_type	= ARG_ANYTHING,
667 };
668 
669 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
670 	   u64, flags)
671 {
672 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
673 
674 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
675 			     (unsigned long) size, flags, 0);
676 }
677 
678 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
679 	.func		= bpf_get_stack_tp,
680 	.gpl_only	= true,
681 	.ret_type	= RET_INTEGER,
682 	.arg1_type	= ARG_PTR_TO_CTX,
683 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
684 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
685 	.arg4_type	= ARG_ANYTHING,
686 };
687 
688 static const struct bpf_func_proto *
689 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
690 {
691 	switch (func_id) {
692 	case BPF_FUNC_perf_event_output:
693 		return &bpf_perf_event_output_proto_tp;
694 	case BPF_FUNC_get_stackid:
695 		return &bpf_get_stackid_proto_tp;
696 	case BPF_FUNC_get_stack:
697 		return &bpf_get_stack_proto_tp;
698 	default:
699 		return tracing_func_proto(func_id, prog);
700 	}
701 }
702 
703 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
704 				    const struct bpf_prog *prog,
705 				    struct bpf_insn_access_aux *info)
706 {
707 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
708 		return false;
709 	if (type != BPF_READ)
710 		return false;
711 	if (off % size != 0)
712 		return false;
713 
714 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
715 	return true;
716 }
717 
718 const struct bpf_verifier_ops tracepoint_verifier_ops = {
719 	.get_func_proto  = tp_prog_func_proto,
720 	.is_valid_access = tp_prog_is_valid_access,
721 };
722 
723 const struct bpf_prog_ops tracepoint_prog_ops = {
724 };
725 
726 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
727 	   struct bpf_perf_event_value *, buf, u32, size)
728 {
729 	int err = -EINVAL;
730 
731 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
732 		goto clear;
733 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
734 				    &buf->running);
735 	if (unlikely(err))
736 		goto clear;
737 	return 0;
738 clear:
739 	memset(buf, 0, size);
740 	return err;
741 }
742 
743 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
744          .func           = bpf_perf_prog_read_value,
745          .gpl_only       = true,
746          .ret_type       = RET_INTEGER,
747          .arg1_type      = ARG_PTR_TO_CTX,
748          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
749          .arg3_type      = ARG_CONST_SIZE,
750 };
751 
752 static const struct bpf_func_proto *
753 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
754 {
755 	switch (func_id) {
756 	case BPF_FUNC_perf_event_output:
757 		return &bpf_perf_event_output_proto_tp;
758 	case BPF_FUNC_get_stackid:
759 		return &bpf_get_stackid_proto_tp;
760 	case BPF_FUNC_get_stack:
761 		return &bpf_get_stack_proto_tp;
762 	case BPF_FUNC_perf_prog_read_value:
763 		return &bpf_perf_prog_read_value_proto;
764 	default:
765 		return tracing_func_proto(func_id, prog);
766 	}
767 }
768 
769 /*
770  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
771  * to avoid potential recursive reuse issue when/if tracepoints are added
772  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack
773  */
774 static DEFINE_PER_CPU(struct pt_regs, bpf_raw_tp_regs);
775 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
776 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
777 {
778 	struct pt_regs *regs = this_cpu_ptr(&bpf_raw_tp_regs);
779 
780 	perf_fetch_caller_regs(regs);
781 	return ____bpf_perf_event_output(regs, map, flags, data, size);
782 }
783 
784 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
785 	.func		= bpf_perf_event_output_raw_tp,
786 	.gpl_only	= true,
787 	.ret_type	= RET_INTEGER,
788 	.arg1_type	= ARG_PTR_TO_CTX,
789 	.arg2_type	= ARG_CONST_MAP_PTR,
790 	.arg3_type	= ARG_ANYTHING,
791 	.arg4_type	= ARG_PTR_TO_MEM,
792 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
793 };
794 
795 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
796 	   struct bpf_map *, map, u64, flags)
797 {
798 	struct pt_regs *regs = this_cpu_ptr(&bpf_raw_tp_regs);
799 
800 	perf_fetch_caller_regs(regs);
801 	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
802 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
803 			       flags, 0, 0);
804 }
805 
806 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
807 	.func		= bpf_get_stackid_raw_tp,
808 	.gpl_only	= true,
809 	.ret_type	= RET_INTEGER,
810 	.arg1_type	= ARG_PTR_TO_CTX,
811 	.arg2_type	= ARG_CONST_MAP_PTR,
812 	.arg3_type	= ARG_ANYTHING,
813 };
814 
815 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
816 	   void *, buf, u32, size, u64, flags)
817 {
818 	struct pt_regs *regs = this_cpu_ptr(&bpf_raw_tp_regs);
819 
820 	perf_fetch_caller_regs(regs);
821 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
822 			     (unsigned long) size, flags, 0);
823 }
824 
825 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
826 	.func		= bpf_get_stack_raw_tp,
827 	.gpl_only	= true,
828 	.ret_type	= RET_INTEGER,
829 	.arg1_type	= ARG_PTR_TO_CTX,
830 	.arg2_type	= ARG_PTR_TO_MEM,
831 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
832 	.arg4_type	= ARG_ANYTHING,
833 };
834 
835 static const struct bpf_func_proto *
836 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
837 {
838 	switch (func_id) {
839 	case BPF_FUNC_perf_event_output:
840 		return &bpf_perf_event_output_proto_raw_tp;
841 	case BPF_FUNC_get_stackid:
842 		return &bpf_get_stackid_proto_raw_tp;
843 	case BPF_FUNC_get_stack:
844 		return &bpf_get_stack_proto_raw_tp;
845 	default:
846 		return tracing_func_proto(func_id, prog);
847 	}
848 }
849 
850 static bool raw_tp_prog_is_valid_access(int off, int size,
851 					enum bpf_access_type type,
852 					const struct bpf_prog *prog,
853 					struct bpf_insn_access_aux *info)
854 {
855 	/* largest tracepoint in the kernel has 12 args */
856 	if (off < 0 || off >= sizeof(__u64) * 12)
857 		return false;
858 	if (type != BPF_READ)
859 		return false;
860 	if (off % size != 0)
861 		return false;
862 	return true;
863 }
864 
865 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
866 	.get_func_proto  = raw_tp_prog_func_proto,
867 	.is_valid_access = raw_tp_prog_is_valid_access,
868 };
869 
870 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
871 };
872 
873 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
874 				    const struct bpf_prog *prog,
875 				    struct bpf_insn_access_aux *info)
876 {
877 	const int size_u64 = sizeof(u64);
878 
879 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
880 		return false;
881 	if (type != BPF_READ)
882 		return false;
883 	if (off % size != 0)
884 		return false;
885 
886 	switch (off) {
887 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
888 		bpf_ctx_record_field_size(info, size_u64);
889 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
890 			return false;
891 		break;
892 	case bpf_ctx_range(struct bpf_perf_event_data, addr):
893 		bpf_ctx_record_field_size(info, size_u64);
894 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
895 			return false;
896 		break;
897 	default:
898 		if (size != sizeof(long))
899 			return false;
900 	}
901 
902 	return true;
903 }
904 
905 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
906 				      const struct bpf_insn *si,
907 				      struct bpf_insn *insn_buf,
908 				      struct bpf_prog *prog, u32 *target_size)
909 {
910 	struct bpf_insn *insn = insn_buf;
911 
912 	switch (si->off) {
913 	case offsetof(struct bpf_perf_event_data, sample_period):
914 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
915 						       data), si->dst_reg, si->src_reg,
916 				      offsetof(struct bpf_perf_event_data_kern, data));
917 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
918 				      bpf_target_off(struct perf_sample_data, period, 8,
919 						     target_size));
920 		break;
921 	case offsetof(struct bpf_perf_event_data, addr):
922 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
923 						       data), si->dst_reg, si->src_reg,
924 				      offsetof(struct bpf_perf_event_data_kern, data));
925 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
926 				      bpf_target_off(struct perf_sample_data, addr, 8,
927 						     target_size));
928 		break;
929 	default:
930 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
931 						       regs), si->dst_reg, si->src_reg,
932 				      offsetof(struct bpf_perf_event_data_kern, regs));
933 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
934 				      si->off);
935 		break;
936 	}
937 
938 	return insn - insn_buf;
939 }
940 
941 const struct bpf_verifier_ops perf_event_verifier_ops = {
942 	.get_func_proto		= pe_prog_func_proto,
943 	.is_valid_access	= pe_prog_is_valid_access,
944 	.convert_ctx_access	= pe_prog_convert_ctx_access,
945 };
946 
947 const struct bpf_prog_ops perf_event_prog_ops = {
948 };
949 
950 static DEFINE_MUTEX(bpf_event_mutex);
951 
952 #define BPF_TRACE_MAX_PROGS 64
953 
954 int perf_event_attach_bpf_prog(struct perf_event *event,
955 			       struct bpf_prog *prog)
956 {
957 	struct bpf_prog_array __rcu *old_array;
958 	struct bpf_prog_array *new_array;
959 	int ret = -EEXIST;
960 
961 	/*
962 	 * Kprobe override only works if they are on the function entry,
963 	 * and only if they are on the opt-in list.
964 	 */
965 	if (prog->kprobe_override &&
966 	    (!trace_kprobe_on_func_entry(event->tp_event) ||
967 	     !trace_kprobe_error_injectable(event->tp_event)))
968 		return -EINVAL;
969 
970 	mutex_lock(&bpf_event_mutex);
971 
972 	if (event->prog)
973 		goto unlock;
974 
975 	old_array = event->tp_event->prog_array;
976 	if (old_array &&
977 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
978 		ret = -E2BIG;
979 		goto unlock;
980 	}
981 
982 	ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
983 	if (ret < 0)
984 		goto unlock;
985 
986 	/* set the new array to event->tp_event and set event->prog */
987 	event->prog = prog;
988 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
989 	bpf_prog_array_free(old_array);
990 
991 unlock:
992 	mutex_unlock(&bpf_event_mutex);
993 	return ret;
994 }
995 
996 void perf_event_detach_bpf_prog(struct perf_event *event)
997 {
998 	struct bpf_prog_array __rcu *old_array;
999 	struct bpf_prog_array *new_array;
1000 	int ret;
1001 
1002 	mutex_lock(&bpf_event_mutex);
1003 
1004 	if (!event->prog)
1005 		goto unlock;
1006 
1007 	old_array = event->tp_event->prog_array;
1008 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
1009 	if (ret < 0) {
1010 		bpf_prog_array_delete_safe(old_array, event->prog);
1011 	} else {
1012 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
1013 		bpf_prog_array_free(old_array);
1014 	}
1015 
1016 	bpf_prog_put(event->prog);
1017 	event->prog = NULL;
1018 
1019 unlock:
1020 	mutex_unlock(&bpf_event_mutex);
1021 }
1022 
1023 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1024 {
1025 	struct perf_event_query_bpf __user *uquery = info;
1026 	struct perf_event_query_bpf query = {};
1027 	u32 *ids, prog_cnt, ids_len;
1028 	int ret;
1029 
1030 	if (!capable(CAP_SYS_ADMIN))
1031 		return -EPERM;
1032 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
1033 		return -EINVAL;
1034 	if (copy_from_user(&query, uquery, sizeof(query)))
1035 		return -EFAULT;
1036 
1037 	ids_len = query.ids_len;
1038 	if (ids_len > BPF_TRACE_MAX_PROGS)
1039 		return -E2BIG;
1040 	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1041 	if (!ids)
1042 		return -ENOMEM;
1043 	/*
1044 	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1045 	 * is required when user only wants to check for uquery->prog_cnt.
1046 	 * There is no need to check for it since the case is handled
1047 	 * gracefully in bpf_prog_array_copy_info.
1048 	 */
1049 
1050 	mutex_lock(&bpf_event_mutex);
1051 	ret = bpf_prog_array_copy_info(event->tp_event->prog_array,
1052 				       ids,
1053 				       ids_len,
1054 				       &prog_cnt);
1055 	mutex_unlock(&bpf_event_mutex);
1056 
1057 	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
1058 	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
1059 		ret = -EFAULT;
1060 
1061 	kfree(ids);
1062 	return ret;
1063 }
1064 
1065 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
1066 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
1067 
1068 struct bpf_raw_event_map *bpf_find_raw_tracepoint(const char *name)
1069 {
1070 	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
1071 
1072 	for (; btp < __stop__bpf_raw_tp; btp++) {
1073 		if (!strcmp(btp->tp->name, name))
1074 			return btp;
1075 	}
1076 	return NULL;
1077 }
1078 
1079 static __always_inline
1080 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
1081 {
1082 	rcu_read_lock();
1083 	preempt_disable();
1084 	(void) BPF_PROG_RUN(prog, args);
1085 	preempt_enable();
1086 	rcu_read_unlock();
1087 }
1088 
1089 #define UNPACK(...)			__VA_ARGS__
1090 #define REPEAT_1(FN, DL, X, ...)	FN(X)
1091 #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
1092 #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
1093 #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
1094 #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
1095 #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
1096 #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
1097 #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
1098 #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
1099 #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
1100 #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
1101 #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
1102 #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
1103 
1104 #define SARG(X)		u64 arg##X
1105 #define COPY(X)		args[X] = arg##X
1106 
1107 #define __DL_COM	(,)
1108 #define __DL_SEM	(;)
1109 
1110 #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
1111 
1112 #define BPF_TRACE_DEFN_x(x)						\
1113 	void bpf_trace_run##x(struct bpf_prog *prog,			\
1114 			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
1115 	{								\
1116 		u64 args[x];						\
1117 		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
1118 		__bpf_trace_run(prog, args);				\
1119 	}								\
1120 	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
1121 BPF_TRACE_DEFN_x(1);
1122 BPF_TRACE_DEFN_x(2);
1123 BPF_TRACE_DEFN_x(3);
1124 BPF_TRACE_DEFN_x(4);
1125 BPF_TRACE_DEFN_x(5);
1126 BPF_TRACE_DEFN_x(6);
1127 BPF_TRACE_DEFN_x(7);
1128 BPF_TRACE_DEFN_x(8);
1129 BPF_TRACE_DEFN_x(9);
1130 BPF_TRACE_DEFN_x(10);
1131 BPF_TRACE_DEFN_x(11);
1132 BPF_TRACE_DEFN_x(12);
1133 
1134 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1135 {
1136 	struct tracepoint *tp = btp->tp;
1137 
1138 	/*
1139 	 * check that program doesn't access arguments beyond what's
1140 	 * available in this tracepoint
1141 	 */
1142 	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
1143 		return -EINVAL;
1144 
1145 	return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog);
1146 }
1147 
1148 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1149 {
1150 	int err;
1151 
1152 	mutex_lock(&bpf_event_mutex);
1153 	err = __bpf_probe_register(btp, prog);
1154 	mutex_unlock(&bpf_event_mutex);
1155 	return err;
1156 }
1157 
1158 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1159 {
1160 	int err;
1161 
1162 	mutex_lock(&bpf_event_mutex);
1163 	err = tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
1164 	mutex_unlock(&bpf_event_mutex);
1165 	return err;
1166 }
1167 
1168 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
1169 			    u32 *fd_type, const char **buf,
1170 			    u64 *probe_offset, u64 *probe_addr)
1171 {
1172 	bool is_tracepoint, is_syscall_tp;
1173 	struct bpf_prog *prog;
1174 	int flags, err = 0;
1175 
1176 	prog = event->prog;
1177 	if (!prog)
1178 		return -ENOENT;
1179 
1180 	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
1181 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
1182 		return -EOPNOTSUPP;
1183 
1184 	*prog_id = prog->aux->id;
1185 	flags = event->tp_event->flags;
1186 	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
1187 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
1188 
1189 	if (is_tracepoint || is_syscall_tp) {
1190 		*buf = is_tracepoint ? event->tp_event->tp->name
1191 				     : event->tp_event->name;
1192 		*fd_type = BPF_FD_TYPE_TRACEPOINT;
1193 		*probe_offset = 0x0;
1194 		*probe_addr = 0x0;
1195 	} else {
1196 		/* kprobe/uprobe */
1197 		err = -EOPNOTSUPP;
1198 #ifdef CONFIG_KPROBE_EVENTS
1199 		if (flags & TRACE_EVENT_FL_KPROBE)
1200 			err = bpf_get_kprobe_info(event, fd_type, buf,
1201 						  probe_offset, probe_addr,
1202 						  event->attr.type == PERF_TYPE_TRACEPOINT);
1203 #endif
1204 #ifdef CONFIG_UPROBE_EVENTS
1205 		if (flags & TRACE_EVENT_FL_UPROBE)
1206 			err = bpf_get_uprobe_info(event, fd_type, buf,
1207 						  probe_offset,
1208 						  event->attr.type == PERF_TYPE_TRACEPOINT);
1209 #endif
1210 	}
1211 
1212 	return err;
1213 }
1214