xref: /linux/kernel/trace/Kconfig (revision af8f260abc608c06e4466a282b53f1e2dc09f042)
1# SPDX-License-Identifier: GPL-2.0-only
2#
3# Architectures that offer an FUNCTION_TRACER implementation should
4#  select HAVE_FUNCTION_TRACER:
5#
6
7config USER_STACKTRACE_SUPPORT
8	bool
9
10config NOP_TRACER
11	bool
12
13config HAVE_RETHOOK
14	bool
15
16config RETHOOK
17	bool
18	depends on HAVE_RETHOOK
19	help
20	  Enable generic return hooking feature. This is an internal
21	  API, which will be used by other function-entry hooking
22	  features like fprobe and kprobes.
23
24config HAVE_FUNCTION_TRACER
25	bool
26	help
27	  See Documentation/trace/ftrace-design.rst
28
29config HAVE_FUNCTION_GRAPH_TRACER
30	bool
31	help
32	  See Documentation/trace/ftrace-design.rst
33
34config HAVE_DYNAMIC_FTRACE
35	bool
36	help
37	  See Documentation/trace/ftrace-design.rst
38
39config HAVE_DYNAMIC_FTRACE_WITH_REGS
40	bool
41
42config HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
43	bool
44
45config HAVE_DYNAMIC_FTRACE_WITH_ARGS
46	bool
47	help
48	 If this is set, then arguments and stack can be found from
49	 the pt_regs passed into the function callback regs parameter
50	 by default, even without setting the REGS flag in the ftrace_ops.
51	 This allows for use of regs_get_kernel_argument() and
52	 kernel_stack_pointer().
53
54config HAVE_FTRACE_MCOUNT_RECORD
55	bool
56	help
57	  See Documentation/trace/ftrace-design.rst
58
59config HAVE_SYSCALL_TRACEPOINTS
60	bool
61	help
62	  See Documentation/trace/ftrace-design.rst
63
64config HAVE_FENTRY
65	bool
66	help
67	  Arch supports the gcc options -pg with -mfentry
68
69config HAVE_NOP_MCOUNT
70	bool
71	help
72	  Arch supports the gcc options -pg with -mrecord-mcount and -nop-mcount
73
74config HAVE_OBJTOOL_MCOUNT
75	bool
76	help
77	  Arch supports objtool --mcount
78
79config HAVE_C_RECORDMCOUNT
80	bool
81	help
82	  C version of recordmcount available?
83
84config HAVE_BUILDTIME_MCOUNT_SORT
85       bool
86       help
87         An architecture selects this if it sorts the mcount_loc section
88	 at build time.
89
90config BUILDTIME_MCOUNT_SORT
91       bool
92       default y
93       depends on HAVE_BUILDTIME_MCOUNT_SORT && DYNAMIC_FTRACE
94       help
95         Sort the mcount_loc section at build time.
96
97config TRACER_MAX_TRACE
98	bool
99
100config TRACE_CLOCK
101	bool
102
103config RING_BUFFER
104	bool
105	select TRACE_CLOCK
106	select IRQ_WORK
107
108config EVENT_TRACING
109	select CONTEXT_SWITCH_TRACER
110	select GLOB
111	bool
112
113config CONTEXT_SWITCH_TRACER
114	bool
115
116config RING_BUFFER_ALLOW_SWAP
117	bool
118	help
119	 Allow the use of ring_buffer_swap_cpu.
120	 Adds a very slight overhead to tracing when enabled.
121
122config PREEMPTIRQ_TRACEPOINTS
123	bool
124	depends on TRACE_PREEMPT_TOGGLE || TRACE_IRQFLAGS
125	select TRACING
126	default y
127	help
128	  Create preempt/irq toggle tracepoints if needed, so that other parts
129	  of the kernel can use them to generate or add hooks to them.
130
131# All tracer options should select GENERIC_TRACER. For those options that are
132# enabled by all tracers (context switch and event tracer) they select TRACING.
133# This allows those options to appear when no other tracer is selected. But the
134# options do not appear when something else selects it. We need the two options
135# GENERIC_TRACER and TRACING to avoid circular dependencies to accomplish the
136# hiding of the automatic options.
137
138config TRACING
139	bool
140	select RING_BUFFER
141	select STACKTRACE if STACKTRACE_SUPPORT
142	select TRACEPOINTS
143	select NOP_TRACER
144	select BINARY_PRINTF
145	select EVENT_TRACING
146	select TRACE_CLOCK
147	select TASKS_RCU if PREEMPTION
148
149config GENERIC_TRACER
150	bool
151	select TRACING
152
153#
154# Minimum requirements an architecture has to meet for us to
155# be able to offer generic tracing facilities:
156#
157config TRACING_SUPPORT
158	bool
159	depends on TRACE_IRQFLAGS_SUPPORT
160	depends on STACKTRACE_SUPPORT
161	default y
162
163menuconfig FTRACE
164	bool "Tracers"
165	depends on TRACING_SUPPORT
166	default y if DEBUG_KERNEL
167	help
168	  Enable the kernel tracing infrastructure.
169
170if FTRACE
171
172config BOOTTIME_TRACING
173	bool "Boot-time Tracing support"
174	depends on TRACING
175	select BOOT_CONFIG
176	help
177	  Enable developer to setup ftrace subsystem via supplemental
178	  kernel cmdline at boot time for debugging (tracing) driver
179	  initialization and boot process.
180
181config FUNCTION_TRACER
182	bool "Kernel Function Tracer"
183	depends on HAVE_FUNCTION_TRACER
184	select KALLSYMS
185	select GENERIC_TRACER
186	select CONTEXT_SWITCH_TRACER
187	select GLOB
188	select TASKS_RCU if PREEMPTION
189	select TASKS_RUDE_RCU
190	help
191	  Enable the kernel to trace every kernel function. This is done
192	  by using a compiler feature to insert a small, 5-byte No-Operation
193	  instruction at the beginning of every kernel function, which NOP
194	  sequence is then dynamically patched into a tracer call when
195	  tracing is enabled by the administrator. If it's runtime disabled
196	  (the bootup default), then the overhead of the instructions is very
197	  small and not measurable even in micro-benchmarks.
198
199config FUNCTION_GRAPH_TRACER
200	bool "Kernel Function Graph Tracer"
201	depends on HAVE_FUNCTION_GRAPH_TRACER
202	depends on FUNCTION_TRACER
203	depends on !X86_32 || !CC_OPTIMIZE_FOR_SIZE
204	default y
205	help
206	  Enable the kernel to trace a function at both its return
207	  and its entry.
208	  Its first purpose is to trace the duration of functions and
209	  draw a call graph for each thread with some information like
210	  the return value. This is done by setting the current return
211	  address on the current task structure into a stack of calls.
212
213config DYNAMIC_FTRACE
214	bool "enable/disable function tracing dynamically"
215	depends on FUNCTION_TRACER
216	depends on HAVE_DYNAMIC_FTRACE
217	default y
218	help
219	  This option will modify all the calls to function tracing
220	  dynamically (will patch them out of the binary image and
221	  replace them with a No-Op instruction) on boot up. During
222	  compile time, a table is made of all the locations that ftrace
223	  can function trace, and this table is linked into the kernel
224	  image. When this is enabled, functions can be individually
225	  enabled, and the functions not enabled will not affect
226	  performance of the system.
227
228	  See the files in /sys/kernel/debug/tracing:
229	    available_filter_functions
230	    set_ftrace_filter
231	    set_ftrace_notrace
232
233	  This way a CONFIG_FUNCTION_TRACER kernel is slightly larger, but
234	  otherwise has native performance as long as no tracing is active.
235
236config DYNAMIC_FTRACE_WITH_REGS
237	def_bool y
238	depends on DYNAMIC_FTRACE
239	depends on HAVE_DYNAMIC_FTRACE_WITH_REGS
240
241config DYNAMIC_FTRACE_WITH_DIRECT_CALLS
242	def_bool y
243	depends on DYNAMIC_FTRACE_WITH_REGS
244	depends on HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
245
246config DYNAMIC_FTRACE_WITH_ARGS
247	def_bool y
248	depends on DYNAMIC_FTRACE
249	depends on HAVE_DYNAMIC_FTRACE_WITH_ARGS
250
251config FPROBE
252	bool "Kernel Function Probe (fprobe)"
253	depends on FUNCTION_TRACER
254	depends on DYNAMIC_FTRACE_WITH_REGS
255	depends on HAVE_RETHOOK
256	select RETHOOK
257	default n
258	help
259	  This option enables kernel function probe (fprobe) based on ftrace.
260	  The fprobe is similar to kprobes, but probes only for kernel function
261	  entries and exits. This also can probe multiple functions by one
262	  fprobe.
263
264	  If unsure, say N.
265
266config FUNCTION_PROFILER
267	bool "Kernel function profiler"
268	depends on FUNCTION_TRACER
269	default n
270	help
271	  This option enables the kernel function profiler. A file is created
272	  in debugfs called function_profile_enabled which defaults to zero.
273	  When a 1 is echoed into this file profiling begins, and when a
274	  zero is entered, profiling stops. A "functions" file is created in
275	  the trace_stat directory; this file shows the list of functions that
276	  have been hit and their counters.
277
278	  If in doubt, say N.
279
280config STACK_TRACER
281	bool "Trace max stack"
282	depends on HAVE_FUNCTION_TRACER
283	select FUNCTION_TRACER
284	select STACKTRACE
285	select KALLSYMS
286	help
287	  This special tracer records the maximum stack footprint of the
288	  kernel and displays it in /sys/kernel/debug/tracing/stack_trace.
289
290	  This tracer works by hooking into every function call that the
291	  kernel executes, and keeping a maximum stack depth value and
292	  stack-trace saved.  If this is configured with DYNAMIC_FTRACE
293	  then it will not have any overhead while the stack tracer
294	  is disabled.
295
296	  To enable the stack tracer on bootup, pass in 'stacktrace'
297	  on the kernel command line.
298
299	  The stack tracer can also be enabled or disabled via the
300	  sysctl kernel.stack_tracer_enabled
301
302	  Say N if unsure.
303
304config TRACE_PREEMPT_TOGGLE
305	bool
306	help
307	  Enables hooks which will be called when preemption is first disabled,
308	  and last enabled.
309
310config IRQSOFF_TRACER
311	bool "Interrupts-off Latency Tracer"
312	default n
313	depends on TRACE_IRQFLAGS_SUPPORT
314	select TRACE_IRQFLAGS
315	select GENERIC_TRACER
316	select TRACER_MAX_TRACE
317	select RING_BUFFER_ALLOW_SWAP
318	select TRACER_SNAPSHOT
319	select TRACER_SNAPSHOT_PER_CPU_SWAP
320	help
321	  This option measures the time spent in irqs-off critical
322	  sections, with microsecond accuracy.
323
324	  The default measurement method is a maximum search, which is
325	  disabled by default and can be runtime (re-)started
326	  via:
327
328	      echo 0 > /sys/kernel/debug/tracing/tracing_max_latency
329
330	  (Note that kernel size and overhead increase with this option
331	  enabled. This option and the preempt-off timing option can be
332	  used together or separately.)
333
334config PREEMPT_TRACER
335	bool "Preemption-off Latency Tracer"
336	default n
337	depends on PREEMPTION
338	select GENERIC_TRACER
339	select TRACER_MAX_TRACE
340	select RING_BUFFER_ALLOW_SWAP
341	select TRACER_SNAPSHOT
342	select TRACER_SNAPSHOT_PER_CPU_SWAP
343	select TRACE_PREEMPT_TOGGLE
344	help
345	  This option measures the time spent in preemption-off critical
346	  sections, with microsecond accuracy.
347
348	  The default measurement method is a maximum search, which is
349	  disabled by default and can be runtime (re-)started
350	  via:
351
352	      echo 0 > /sys/kernel/debug/tracing/tracing_max_latency
353
354	  (Note that kernel size and overhead increase with this option
355	  enabled. This option and the irqs-off timing option can be
356	  used together or separately.)
357
358config SCHED_TRACER
359	bool "Scheduling Latency Tracer"
360	select GENERIC_TRACER
361	select CONTEXT_SWITCH_TRACER
362	select TRACER_MAX_TRACE
363	select TRACER_SNAPSHOT
364	help
365	  This tracer tracks the latency of the highest priority task
366	  to be scheduled in, starting from the point it has woken up.
367
368config HWLAT_TRACER
369	bool "Tracer to detect hardware latencies (like SMIs)"
370	select GENERIC_TRACER
371	help
372	 This tracer, when enabled will create one or more kernel threads,
373	 depending on what the cpumask file is set to, which each thread
374	 spinning in a loop looking for interruptions caused by
375	 something other than the kernel. For example, if a
376	 System Management Interrupt (SMI) takes a noticeable amount of
377	 time, this tracer will detect it. This is useful for testing
378	 if a system is reliable for Real Time tasks.
379
380	 Some files are created in the tracing directory when this
381	 is enabled:
382
383	   hwlat_detector/width   - time in usecs for how long to spin for
384	   hwlat_detector/window  - time in usecs between the start of each
385				     iteration
386
387	 A kernel thread is created that will spin with interrupts disabled
388	 for "width" microseconds in every "window" cycle. It will not spin
389	 for "window - width" microseconds, where the system can
390	 continue to operate.
391
392	 The output will appear in the trace and trace_pipe files.
393
394	 When the tracer is not running, it has no affect on the system,
395	 but when it is running, it can cause the system to be
396	 periodically non responsive. Do not run this tracer on a
397	 production system.
398
399	 To enable this tracer, echo in "hwlat" into the current_tracer
400	 file. Every time a latency is greater than tracing_thresh, it will
401	 be recorded into the ring buffer.
402
403config OSNOISE_TRACER
404	bool "OS Noise tracer"
405	select GENERIC_TRACER
406	help
407	  In the context of high-performance computing (HPC), the Operating
408	  System Noise (osnoise) refers to the interference experienced by an
409	  application due to activities inside the operating system. In the
410	  context of Linux, NMIs, IRQs, SoftIRQs, and any other system thread
411	  can cause noise to the system. Moreover, hardware-related jobs can
412	  also cause noise, for example, via SMIs.
413
414	  The osnoise tracer leverages the hwlat_detector by running a similar
415	  loop with preemption, SoftIRQs and IRQs enabled, thus allowing all
416	  the sources of osnoise during its execution. The osnoise tracer takes
417	  note of the entry and exit point of any source of interferences,
418	  increasing a per-cpu interference counter. It saves an interference
419	  counter for each source of interference. The interference counter for
420	  NMI, IRQs, SoftIRQs, and threads is increased anytime the tool
421	  observes these interferences' entry events. When a noise happens
422	  without any interference from the operating system level, the
423	  hardware noise counter increases, pointing to a hardware-related
424	  noise. In this way, osnoise can account for any source of
425	  interference. At the end of the period, the osnoise tracer prints
426	  the sum of all noise, the max single noise, the percentage of CPU
427	  available for the thread, and the counters for the noise sources.
428
429	  In addition to the tracer, a set of tracepoints were added to
430	  facilitate the identification of the osnoise source.
431
432	  The output will appear in the trace and trace_pipe files.
433
434	  To enable this tracer, echo in "osnoise" into the current_tracer
435          file.
436
437config TIMERLAT_TRACER
438	bool "Timerlat tracer"
439	select OSNOISE_TRACER
440	select GENERIC_TRACER
441	help
442	  The timerlat tracer aims to help the preemptive kernel developers
443	  to find sources of wakeup latencies of real-time threads.
444
445	  The tracer creates a per-cpu kernel thread with real-time priority.
446	  The tracer thread sets a periodic timer to wakeup itself, and goes
447	  to sleep waiting for the timer to fire. At the wakeup, the thread
448	  then computes a wakeup latency value as the difference between
449	  the current time and the absolute time that the timer was set
450	  to expire.
451
452	  The tracer prints two lines at every activation. The first is the
453	  timer latency observed at the hardirq context before the
454	  activation of the thread. The second is the timer latency observed
455	  by the thread, which is the same level that cyclictest reports. The
456	  ACTIVATION ID field serves to relate the irq execution to its
457	  respective thread execution.
458
459	  The tracer is build on top of osnoise tracer, and the osnoise:
460	  events can be used to trace the source of interference from NMI,
461	  IRQs and other threads. It also enables the capture of the
462	  stacktrace at the IRQ context, which helps to identify the code
463	  path that can cause thread delay.
464
465config MMIOTRACE
466	bool "Memory mapped IO tracing"
467	depends on HAVE_MMIOTRACE_SUPPORT && PCI
468	select GENERIC_TRACER
469	help
470	  Mmiotrace traces Memory Mapped I/O access and is meant for
471	  debugging and reverse engineering. It is called from the ioremap
472	  implementation and works via page faults. Tracing is disabled by
473	  default and can be enabled at run-time.
474
475	  See Documentation/trace/mmiotrace.rst.
476	  If you are not helping to develop drivers, say N.
477
478config ENABLE_DEFAULT_TRACERS
479	bool "Trace process context switches and events"
480	depends on !GENERIC_TRACER
481	select TRACING
482	help
483	  This tracer hooks to various trace points in the kernel,
484	  allowing the user to pick and choose which trace point they
485	  want to trace. It also includes the sched_switch tracer plugin.
486
487config FTRACE_SYSCALLS
488	bool "Trace syscalls"
489	depends on HAVE_SYSCALL_TRACEPOINTS
490	select GENERIC_TRACER
491	select KALLSYMS
492	help
493	  Basic tracer to catch the syscall entry and exit events.
494
495config TRACER_SNAPSHOT
496	bool "Create a snapshot trace buffer"
497	select TRACER_MAX_TRACE
498	help
499	  Allow tracing users to take snapshot of the current buffer using the
500	  ftrace interface, e.g.:
501
502	      echo 1 > /sys/kernel/debug/tracing/snapshot
503	      cat snapshot
504
505config TRACER_SNAPSHOT_PER_CPU_SWAP
506	bool "Allow snapshot to swap per CPU"
507	depends on TRACER_SNAPSHOT
508	select RING_BUFFER_ALLOW_SWAP
509	help
510	  Allow doing a snapshot of a single CPU buffer instead of a
511	  full swap (all buffers). If this is set, then the following is
512	  allowed:
513
514	      echo 1 > /sys/kernel/debug/tracing/per_cpu/cpu2/snapshot
515
516	  After which, only the tracing buffer for CPU 2 was swapped with
517	  the main tracing buffer, and the other CPU buffers remain the same.
518
519	  When this is enabled, this adds a little more overhead to the
520	  trace recording, as it needs to add some checks to synchronize
521	  recording with swaps. But this does not affect the performance
522	  of the overall system. This is enabled by default when the preempt
523	  or irq latency tracers are enabled, as those need to swap as well
524	  and already adds the overhead (plus a lot more).
525
526config TRACE_BRANCH_PROFILING
527	bool
528	select GENERIC_TRACER
529
530choice
531	prompt "Branch Profiling"
532	default BRANCH_PROFILE_NONE
533	help
534	 The branch profiling is a software profiler. It will add hooks
535	 into the C conditionals to test which path a branch takes.
536
537	 The likely/unlikely profiler only looks at the conditions that
538	 are annotated with a likely or unlikely macro.
539
540	 The "all branch" profiler will profile every if-statement in the
541	 kernel. This profiler will also enable the likely/unlikely
542	 profiler.
543
544	 Either of the above profilers adds a bit of overhead to the system.
545	 If unsure, choose "No branch profiling".
546
547config BRANCH_PROFILE_NONE
548	bool "No branch profiling"
549	help
550	  No branch profiling. Branch profiling adds a bit of overhead.
551	  Only enable it if you want to analyse the branching behavior.
552	  Otherwise keep it disabled.
553
554config PROFILE_ANNOTATED_BRANCHES
555	bool "Trace likely/unlikely profiler"
556	select TRACE_BRANCH_PROFILING
557	help
558	  This tracer profiles all likely and unlikely macros
559	  in the kernel. It will display the results in:
560
561	  /sys/kernel/debug/tracing/trace_stat/branch_annotated
562
563	  Note: this will add a significant overhead; only turn this
564	  on if you need to profile the system's use of these macros.
565
566config PROFILE_ALL_BRANCHES
567	bool "Profile all if conditionals" if !FORTIFY_SOURCE
568	select TRACE_BRANCH_PROFILING
569	help
570	  This tracer profiles all branch conditions. Every if ()
571	  taken in the kernel is recorded whether it hit or miss.
572	  The results will be displayed in:
573
574	  /sys/kernel/debug/tracing/trace_stat/branch_all
575
576	  This option also enables the likely/unlikely profiler.
577
578	  This configuration, when enabled, will impose a great overhead
579	  on the system. This should only be enabled when the system
580	  is to be analyzed in much detail.
581endchoice
582
583config TRACING_BRANCHES
584	bool
585	help
586	  Selected by tracers that will trace the likely and unlikely
587	  conditions. This prevents the tracers themselves from being
588	  profiled. Profiling the tracing infrastructure can only happen
589	  when the likelys and unlikelys are not being traced.
590
591config BRANCH_TRACER
592	bool "Trace likely/unlikely instances"
593	depends on TRACE_BRANCH_PROFILING
594	select TRACING_BRANCHES
595	help
596	  This traces the events of likely and unlikely condition
597	  calls in the kernel.  The difference between this and the
598	  "Trace likely/unlikely profiler" is that this is not a
599	  histogram of the callers, but actually places the calling
600	  events into a running trace buffer to see when and where the
601	  events happened, as well as their results.
602
603	  Say N if unsure.
604
605config BLK_DEV_IO_TRACE
606	bool "Support for tracing block IO actions"
607	depends on SYSFS
608	depends on BLOCK
609	select RELAY
610	select DEBUG_FS
611	select TRACEPOINTS
612	select GENERIC_TRACER
613	select STACKTRACE
614	help
615	  Say Y here if you want to be able to trace the block layer actions
616	  on a given queue. Tracing allows you to see any traffic happening
617	  on a block device queue. For more information (and the userspace
618	  support tools needed), fetch the blktrace tools from:
619
620	  git://git.kernel.dk/blktrace.git
621
622	  Tracing also is possible using the ftrace interface, e.g.:
623
624	    echo 1 > /sys/block/sda/sda1/trace/enable
625	    echo blk > /sys/kernel/debug/tracing/current_tracer
626	    cat /sys/kernel/debug/tracing/trace_pipe
627
628	  If unsure, say N.
629
630config KPROBE_EVENTS
631	depends on KPROBES
632	depends on HAVE_REGS_AND_STACK_ACCESS_API
633	bool "Enable kprobes-based dynamic events"
634	select TRACING
635	select PROBE_EVENTS
636	select DYNAMIC_EVENTS
637	default y
638	help
639	  This allows the user to add tracing events (similar to tracepoints)
640	  on the fly via the ftrace interface. See
641	  Documentation/trace/kprobetrace.rst for more details.
642
643	  Those events can be inserted wherever kprobes can probe, and record
644	  various register and memory values.
645
646	  This option is also required by perf-probe subcommand of perf tools.
647	  If you want to use perf tools, this option is strongly recommended.
648
649config KPROBE_EVENTS_ON_NOTRACE
650	bool "Do NOT protect notrace function from kprobe events"
651	depends on KPROBE_EVENTS
652	depends on DYNAMIC_FTRACE
653	default n
654	help
655	  This is only for the developers who want to debug ftrace itself
656	  using kprobe events.
657
658	  If kprobes can use ftrace instead of breakpoint, ftrace related
659	  functions are protected from kprobe-events to prevent an infinite
660	  recursion or any unexpected execution path which leads to a kernel
661	  crash.
662
663	  This option disables such protection and allows you to put kprobe
664	  events on ftrace functions for debugging ftrace by itself.
665	  Note that this might let you shoot yourself in the foot.
666
667	  If unsure, say N.
668
669config UPROBE_EVENTS
670	bool "Enable uprobes-based dynamic events"
671	depends on ARCH_SUPPORTS_UPROBES
672	depends on MMU
673	depends on PERF_EVENTS
674	select UPROBES
675	select PROBE_EVENTS
676	select DYNAMIC_EVENTS
677	select TRACING
678	default y
679	help
680	  This allows the user to add tracing events on top of userspace
681	  dynamic events (similar to tracepoints) on the fly via the trace
682	  events interface. Those events can be inserted wherever uprobes
683	  can probe, and record various registers.
684	  This option is required if you plan to use perf-probe subcommand
685	  of perf tools on user space applications.
686
687config BPF_EVENTS
688	depends on BPF_SYSCALL
689	depends on (KPROBE_EVENTS || UPROBE_EVENTS) && PERF_EVENTS
690	bool
691	default y
692	help
693	  This allows the user to attach BPF programs to kprobe, uprobe, and
694	  tracepoint events.
695
696config DYNAMIC_EVENTS
697	def_bool n
698
699config PROBE_EVENTS
700	def_bool n
701
702config BPF_KPROBE_OVERRIDE
703	bool "Enable BPF programs to override a kprobed function"
704	depends on BPF_EVENTS
705	depends on FUNCTION_ERROR_INJECTION
706	default n
707	help
708	 Allows BPF to override the execution of a probed function and
709	 set a different return value.  This is used for error injection.
710
711config FTRACE_MCOUNT_RECORD
712	def_bool y
713	depends on DYNAMIC_FTRACE
714	depends on HAVE_FTRACE_MCOUNT_RECORD
715
716config FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY
717	bool
718	depends on FTRACE_MCOUNT_RECORD
719
720config FTRACE_MCOUNT_USE_CC
721	def_bool y
722	depends on $(cc-option,-mrecord-mcount)
723	depends on !FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY
724	depends on FTRACE_MCOUNT_RECORD
725
726config FTRACE_MCOUNT_USE_OBJTOOL
727	def_bool y
728	depends on HAVE_OBJTOOL_MCOUNT
729	depends on !FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY
730	depends on !FTRACE_MCOUNT_USE_CC
731	depends on FTRACE_MCOUNT_RECORD
732	select OBJTOOL
733
734config FTRACE_MCOUNT_USE_RECORDMCOUNT
735	def_bool y
736	depends on !FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY
737	depends on !FTRACE_MCOUNT_USE_CC
738	depends on !FTRACE_MCOUNT_USE_OBJTOOL
739	depends on FTRACE_MCOUNT_RECORD
740
741config TRACING_MAP
742	bool
743	depends on ARCH_HAVE_NMI_SAFE_CMPXCHG
744	help
745	  tracing_map is a special-purpose lock-free map for tracing,
746	  separated out as a stand-alone facility in order to allow it
747	  to be shared between multiple tracers.  It isn't meant to be
748	  generally used outside of that context, and is normally
749	  selected by tracers that use it.
750
751config SYNTH_EVENTS
752	bool "Synthetic trace events"
753	select TRACING
754	select DYNAMIC_EVENTS
755	default n
756	help
757	  Synthetic events are user-defined trace events that can be
758	  used to combine data from other trace events or in fact any
759	  data source.  Synthetic events can be generated indirectly
760	  via the trace() action of histogram triggers or directly
761	  by way of an in-kernel API.
762
763	  See Documentation/trace/events.rst or
764	  Documentation/trace/histogram.rst for details and examples.
765
766	  If in doubt, say N.
767
768config USER_EVENTS
769	bool "User trace events"
770	select TRACING
771	select DYNAMIC_EVENTS
772	depends on BROKEN || COMPILE_TEST # API needs to be straighten out
773	help
774	  User trace events are user-defined trace events that
775	  can be used like an existing kernel trace event.  User trace
776	  events are generated by writing to a tracefs file.  User
777	  processes can determine if their tracing events should be
778	  generated by memory mapping a tracefs file and checking for
779	  an associated byte being non-zero.
780
781	  If in doubt, say N.
782
783config HIST_TRIGGERS
784	bool "Histogram triggers"
785	depends on ARCH_HAVE_NMI_SAFE_CMPXCHG
786	select TRACING_MAP
787	select TRACING
788	select DYNAMIC_EVENTS
789	select SYNTH_EVENTS
790	default n
791	help
792	  Hist triggers allow one or more arbitrary trace event fields
793	  to be aggregated into hash tables and dumped to stdout by
794	  reading a debugfs/tracefs file.  They're useful for
795	  gathering quick and dirty (though precise) summaries of
796	  event activity as an initial guide for further investigation
797	  using more advanced tools.
798
799	  Inter-event tracing of quantities such as latencies is also
800	  supported using hist triggers under this option.
801
802	  See Documentation/trace/histogram.rst.
803	  If in doubt, say N.
804
805config TRACE_EVENT_INJECT
806	bool "Trace event injection"
807	depends on TRACING
808	help
809	  Allow user-space to inject a specific trace event into the ring
810	  buffer. This is mainly used for testing purpose.
811
812	  If unsure, say N.
813
814config TRACEPOINT_BENCHMARK
815	bool "Add tracepoint that benchmarks tracepoints"
816	help
817	 This option creates the tracepoint "benchmark:benchmark_event".
818	 When the tracepoint is enabled, it kicks off a kernel thread that
819	 goes into an infinite loop (calling cond_resched() to let other tasks
820	 run), and calls the tracepoint. Each iteration will record the time
821	 it took to write to the tracepoint and the next iteration that
822	 data will be passed to the tracepoint itself. That is, the tracepoint
823	 will report the time it took to do the previous tracepoint.
824	 The string written to the tracepoint is a static string of 128 bytes
825	 to keep the time the same. The initial string is simply a write of
826	 "START". The second string records the cold cache time of the first
827	 write which is not added to the rest of the calculations.
828
829	 As it is a tight loop, it benchmarks as hot cache. That's fine because
830	 we care most about hot paths that are probably in cache already.
831
832	 An example of the output:
833
834	      START
835	      first=3672 [COLD CACHED]
836	      last=632 first=3672 max=632 min=632 avg=316 std=446 std^2=199712
837	      last=278 first=3672 max=632 min=278 avg=303 std=316 std^2=100337
838	      last=277 first=3672 max=632 min=277 avg=296 std=258 std^2=67064
839	      last=273 first=3672 max=632 min=273 avg=292 std=224 std^2=50411
840	      last=273 first=3672 max=632 min=273 avg=288 std=200 std^2=40389
841	      last=281 first=3672 max=632 min=273 avg=287 std=183 std^2=33666
842
843
844config RING_BUFFER_BENCHMARK
845	tristate "Ring buffer benchmark stress tester"
846	depends on RING_BUFFER
847	help
848	  This option creates a test to stress the ring buffer and benchmark it.
849	  It creates its own ring buffer such that it will not interfere with
850	  any other users of the ring buffer (such as ftrace). It then creates
851	  a producer and consumer that will run for 10 seconds and sleep for
852	  10 seconds. Each interval it will print out the number of events
853	  it recorded and give a rough estimate of how long each iteration took.
854
855	  It does not disable interrupts or raise its priority, so it may be
856	  affected by processes that are running.
857
858	  If unsure, say N.
859
860config TRACE_EVAL_MAP_FILE
861       bool "Show eval mappings for trace events"
862       depends on TRACING
863       help
864	The "print fmt" of the trace events will show the enum/sizeof names
865	instead of their values. This can cause problems for user space tools
866	that use this string to parse the raw data as user space does not know
867	how to convert the string to its value.
868
869	To fix this, there's a special macro in the kernel that can be used
870	to convert an enum/sizeof into its value. If this macro is used, then
871	the print fmt strings will be converted to their values.
872
873	If something does not get converted properly, this option can be
874	used to show what enums/sizeof the kernel tried to convert.
875
876	This option is for debugging the conversions. A file is created
877	in the tracing directory called "eval_map" that will show the
878	names matched with their values and what trace event system they
879	belong too.
880
881	Normally, the mapping of the strings to values will be freed after
882	boot up or module load. With this option, they will not be freed, as
883	they are needed for the "eval_map" file. Enabling this option will
884	increase the memory footprint of the running kernel.
885
886	If unsure, say N.
887
888config FTRACE_RECORD_RECURSION
889	bool "Record functions that recurse in function tracing"
890	depends on FUNCTION_TRACER
891	help
892	  All callbacks that attach to the function tracing have some sort
893	  of protection against recursion. Even though the protection exists,
894	  it adds overhead. This option will create a file in the tracefs
895	  file system called "recursed_functions" that will list the functions
896	  that triggered a recursion.
897
898	  This will add more overhead to cases that have recursion.
899
900	  If unsure, say N
901
902config FTRACE_RECORD_RECURSION_SIZE
903	int "Max number of recursed functions to record"
904	default	128
905	depends on FTRACE_RECORD_RECURSION
906	help
907	  This defines the limit of number of functions that can be
908	  listed in the "recursed_functions" file, that lists all
909	  the functions that caused a recursion to happen.
910	  This file can be reset, but the limit can not change in
911	  size at runtime.
912
913config RING_BUFFER_RECORD_RECURSION
914	bool "Record functions that recurse in the ring buffer"
915	depends on FTRACE_RECORD_RECURSION
916	# default y, because it is coupled with FTRACE_RECORD_RECURSION
917	default y
918	help
919	  The ring buffer has its own internal recursion. Although when
920	  recursion happens it wont cause harm because of the protection,
921	  but it does cause an unwanted overhead. Enabling this option will
922	  place where recursion was detected into the ftrace "recursed_functions"
923	  file.
924
925	  This will add more overhead to cases that have recursion.
926
927config GCOV_PROFILE_FTRACE
928	bool "Enable GCOV profiling on ftrace subsystem"
929	depends on GCOV_KERNEL
930	help
931	  Enable GCOV profiling on ftrace subsystem for checking
932	  which functions/lines are tested.
933
934	  If unsure, say N.
935
936	  Note that on a kernel compiled with this config, ftrace will
937	  run significantly slower.
938
939config FTRACE_SELFTEST
940	bool
941
942config FTRACE_STARTUP_TEST
943	bool "Perform a startup test on ftrace"
944	depends on GENERIC_TRACER
945	select FTRACE_SELFTEST
946	help
947	  This option performs a series of startup tests on ftrace. On bootup
948	  a series of tests are made to verify that the tracer is
949	  functioning properly. It will do tests on all the configured
950	  tracers of ftrace.
951
952config EVENT_TRACE_STARTUP_TEST
953	bool "Run selftest on trace events"
954	depends on FTRACE_STARTUP_TEST
955	default y
956	help
957	  This option performs a test on all trace events in the system.
958	  It basically just enables each event and runs some code that
959	  will trigger events (not necessarily the event it enables)
960	  This may take some time run as there are a lot of events.
961
962config EVENT_TRACE_TEST_SYSCALLS
963	bool "Run selftest on syscall events"
964	depends on EVENT_TRACE_STARTUP_TEST
965	help
966	 This option will also enable testing every syscall event.
967	 It only enables the event and disables it and runs various loads
968	 with the event enabled. This adds a bit more time for kernel boot
969	 up since it runs this on every system call defined.
970
971	 TBD - enable a way to actually call the syscalls as we test their
972	       events
973
974config FTRACE_SORT_STARTUP_TEST
975       bool "Verify compile time sorting of ftrace functions"
976       depends on DYNAMIC_FTRACE
977       depends on BUILDTIME_MCOUNT_SORT
978       help
979	 Sorting of the mcount_loc sections that is used to find the
980	 where the ftrace knows where to patch functions for tracing
981	 and other callbacks is done at compile time. But if the sort
982	 is not done correctly, it will cause non-deterministic failures.
983	 When this is set, the sorted sections will be verified that they
984	 are in deed sorted and will warn if they are not.
985
986	 If unsure, say N
987
988config RING_BUFFER_STARTUP_TEST
989       bool "Ring buffer startup self test"
990       depends on RING_BUFFER
991       help
992	 Run a simple self test on the ring buffer on boot up. Late in the
993	 kernel boot sequence, the test will start that kicks off
994	 a thread per cpu. Each thread will write various size events
995	 into the ring buffer. Another thread is created to send IPIs
996	 to each of the threads, where the IPI handler will also write
997	 to the ring buffer, to test/stress the nesting ability.
998	 If any anomalies are discovered, a warning will be displayed
999	 and all ring buffers will be disabled.
1000
1001	 The test runs for 10 seconds. This will slow your boot time
1002	 by at least 10 more seconds.
1003
1004	 At the end of the test, statics and more checks are done.
1005	 It will output the stats of each per cpu buffer. What
1006	 was written, the sizes, what was read, what was lost, and
1007	 other similar details.
1008
1009	 If unsure, say N
1010
1011config RING_BUFFER_VALIDATE_TIME_DELTAS
1012	bool "Verify ring buffer time stamp deltas"
1013	depends on RING_BUFFER
1014	help
1015	  This will audit the time stamps on the ring buffer sub
1016	  buffer to make sure that all the time deltas for the
1017	  events on a sub buffer matches the current time stamp.
1018	  This audit is performed for every event that is not
1019	  interrupted, or interrupting another event. A check
1020	  is also made when traversing sub buffers to make sure
1021	  that all the deltas on the previous sub buffer do not
1022	  add up to be greater than the current time stamp.
1023
1024	  NOTE: This adds significant overhead to recording of events,
1025	  and should only be used to test the logic of the ring buffer.
1026	  Do not use it on production systems.
1027
1028	  Only say Y if you understand what this does, and you
1029	  still want it enabled. Otherwise say N
1030
1031config MMIOTRACE_TEST
1032	tristate "Test module for mmiotrace"
1033	depends on MMIOTRACE && m
1034	help
1035	  This is a dumb module for testing mmiotrace. It is very dangerous
1036	  as it will write garbage to IO memory starting at a given address.
1037	  However, it should be safe to use on e.g. unused portion of VRAM.
1038
1039	  Say N, unless you absolutely know what you are doing.
1040
1041config PREEMPTIRQ_DELAY_TEST
1042	tristate "Test module to create a preempt / IRQ disable delay thread to test latency tracers"
1043	depends on m
1044	help
1045	  Select this option to build a test module that can help test latency
1046	  tracers by executing a preempt or irq disable section with a user
1047	  configurable delay. The module busy waits for the duration of the
1048	  critical section.
1049
1050	  For example, the following invocation generates a burst of three
1051	  irq-disabled critical sections for 500us:
1052	  modprobe preemptirq_delay_test test_mode=irq delay=500 burst_size=3
1053
1054	  What's more, if you want to attach the test on the cpu which the latency
1055	  tracer is running on, specify cpu_affinity=cpu_num at the end of the
1056	  command.
1057
1058	  If unsure, say N
1059
1060config SYNTH_EVENT_GEN_TEST
1061	tristate "Test module for in-kernel synthetic event generation"
1062	depends on SYNTH_EVENTS
1063	help
1064          This option creates a test module to check the base
1065          functionality of in-kernel synthetic event definition and
1066          generation.
1067
1068          To test, insert the module, and then check the trace buffer
1069	  for the generated sample events.
1070
1071	  If unsure, say N.
1072
1073config KPROBE_EVENT_GEN_TEST
1074	tristate "Test module for in-kernel kprobe event generation"
1075	depends on KPROBE_EVENTS
1076	help
1077          This option creates a test module to check the base
1078          functionality of in-kernel kprobe event definition.
1079
1080          To test, insert the module, and then check the trace buffer
1081	  for the generated kprobe events.
1082
1083	  If unsure, say N.
1084
1085config HIST_TRIGGERS_DEBUG
1086	bool "Hist trigger debug support"
1087	depends on HIST_TRIGGERS
1088	help
1089          Add "hist_debug" file for each event, which when read will
1090          dump out a bunch of internal details about the hist triggers
1091          defined on that event.
1092
1093          The hist_debug file serves a couple of purposes:
1094
1095            - Helps developers verify that nothing is broken.
1096
1097            - Provides educational information to support the details
1098              of the hist trigger internals as described by
1099              Documentation/trace/histogram-design.rst.
1100
1101          The hist_debug output only covers the data structures
1102          related to the histogram definitions themselves and doesn't
1103          display the internals of map buckets or variable values of
1104          running histograms.
1105
1106          If unsure, say N.
1107
1108endif # FTRACE
1109